
JBoss Enterprise Application Platform
5

Seam Reference Guide

for use with JBoss Enterprise Application Platform 5
Edition 5.2.0

Last Updated: 2017-10-13

JBoss Enterprise Application Platform 5 Seam Reference Guide

for use with JBoss Enterprise Application Platform 5
Edition 5.2.0

Gavin King

Pete Muir

Norman Richards

Shane Bryzak

Michael Yuan

Mike Youngstrom

Christian Bauer

Jay Balunas

Dan Allen

Max Andersen

Emmanuel Bernard

Nicklas Karlsson

Daniel Roth

Matt Drees

Jacob Orshalick

Marek Novotny

Edited by

Elspeth Thorne

Eva Kopalova

Laura Bailey

Petr Penicka

Russell Dickenson

Samson Kittoli

Scott Mumford

Legal Notice

Copyright © 2012 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is a Reference Guide for JBoss Enterprise Application Platform 5 and its patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

Table of Contents

CHAPTER 1. SEAM TUTORIAL
1.1. USING THE SEAM EXAMPLES

1.1.1. Running the examples on JBoss Enterprise Application Platform
1.1.2. Running the example tests

1.2. YOUR FIRST SEAM APPLICATION: THE REGISTRATION EXAMPLE
1.2.1. Understanding the code

1.2.1.1. The entity bean: User.java
1.2.1.2. The stateless session bean class: RegisterAction.java
1.2.1.3. The session bean local interface: Register.java
1.2.1.4. The view: register.xhtml and registered.xhtml
1.2.1.5. The Seam component deployment descriptor: components.xml
1.2.1.6. The web deployment description: web.xml
1.2.1.7. The JSF configuration: faces-config.xml
1.2.1.8. The EJB deployment descriptor: ejb-jar.xml
1.2.1.9. The EJB persistence deployment descriptor: persistence.xml
1.2.1.10. The EAR deployment descriptor: application.xml

1.2.2. How it works
1.3. CLICKABLE LISTS IN SEAM: THE MESSAGES EXAMPLE

1.3.1. Understanding the code
1.3.1.1. The entity bean: Message.java
1.3.1.2. The stateful session bean: MessageManagerBean.java
1.3.1.3. The session bean local interface: MessageManager.java
1.3.1.4. The view: messages.jsp

1.3.2. How it works
1.4. SEAM AND JBPM: THE TODO LIST EXAMPLE

1.4.1. Understanding the code
1.4.2. How it works

1.5. SEAM PAGEFLOW: THE NUMBERGUESS EXAMPLE
1.5.1. Understanding the code
1.5.2. How it works

1.6. A COMPLETE SEAM APPLICATION: THE HOTEL BOOKING EXAMPLE
1.6.1. Introduction
1.6.2. Overview of the booking example
1.6.3. Understanding Seam conversations
1.6.4. The Seam Debug Page

1.7. NESTED CONVERSATIONS: EXTENDING THE HOTEL BOOKING EXAMPLE
1.7.1. Introduction
1.7.2. Understanding Nested Conversations

1.8. A COMPLETE APPLICATION FEATURING SEAM AND JBPM: THE DVD STORE EXAMPLE
1.9. BOOKMARKABLE URLS WITH THE BLOG EXAMPLE

1.9.1. Using "pull"-style MVC
1.9.2. Bookmarkable search results page
1.9.3. Using "push"-style MVC in a RESTful application

CHAPTER 2. MIGRATION
2.1. MIGRATING FROM SEAM 1.2.X TO SEAM 2.0

2.1.1. Migrating to JavaServer Faces 1.2
2.1.2. Code Migration
2.1.3. Migrating components.xml
2.1.4. Migrating to Embedded JBoss
2.1.5. Migrating to jBPM 3.2

14
14
14
14
15
15
15
17
20
20
21
22
23
23
24
24
25
26
26
26
27
30
30
31
31
32
38
39
39
46
47
47
49
49
57
57
58
59
65
66
67
69
71

75
75
75
76
77
78
78

Table of Contents

1

. .

. .

. .

. .

2.1.6. Migrating to RichFaces 3.1
2.1.7. Changes to Components

2.2. MIGRATING FROM SEAM 2.0 TO SEAM 2.1 OR 2.2
2.2.1. Changes to dependency jar names
2.2.2. Changes to Components

CHAPTER 3. GETTING STARTED WITH SEAM-GEN
3.1. BEFORE YOU START
3.2. SETTING UP A NEW PROJECT
3.3. CREATING A NEW ACTION
3.4. CREATING A FORM WITH AN ACTION
3.5. GENERATING AN APPLICATION FROM AN EXISTING DATABASE
3.6. GENERATING AN APPLICATION FROM EXISTING JPA/EJB3 ENTITIES
3.7. DEPLOYING THE APPLICATION AS AN EAR
3.8. SEAM AND INCREMENTAL HOT DEPLOYMENT

CHAPTER 4. GETTING STARTED WITH JBOSS DEVELOPER STUDIO
4.1. HOT DEPLOYMENT WITH JBOSS DEVELOPER STUDIO

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL
5.1. SEAM CONTEXTS

5.1.1. Stateless context
5.1.2. Event context
5.1.3. Page context
5.1.4. Conversation context
5.1.5. Session context
5.1.6. Business process context
5.1.7. Application context
5.1.8. Context variables
5.1.9. Context search priority
5.1.10. Concurrency model

5.2. SEAM COMPONENTS
5.2.1. Stateless session beans
5.2.2. Stateful session beans
5.2.3. Entity beans
5.2.4. JavaBeans
5.2.5. Message-driven beans
5.2.6. Interception
5.2.7. Component names
5.2.8. Defining the component scope
5.2.9. Components with multiple roles
5.2.10. Built-in components

5.3. BIJECTION
5.4. LIFE CYCLE METHODS
5.5. CONDITIONAL INSTALLATION
5.6. LOGGING
5.7. THE MUTABLE INTERFACE AND @READONLY
5.8. FACTORY AND MANAGER COMPONENTS

CHAPTER 6. CONFIGURING SEAM COMPONENTS
6.1. CONFIGURING COMPONENTS VIA PROPERTY SETTINGS
6.2. CONFIGURING COMPONENTS VIA COMPONENTS.XML
6.3. FINE-GRAINED CONFIGURATION FILES
6.4. CONFIGURABLE PROPERTY TYPES

78
79
80
80
83

88
88
88
94
95
96
96
96
97

99
99

100
100
100
100
101
101
101
101
102
102
102
102
103
103
103
104
104
105
105
106
107
107
107
108
110
110
112
112
114

116
116
116
119
120

Seam Reference Guide

2

. .

. .

. .

6.5. USING XML NAMESPACES

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING
7.1. SEAM EVENTS
7.2. PAGE ACTIONS
7.3. PAGE PARAMETERS

7.3.1. Mapping request parameters to the model
7.4. PROPAGATING REQUEST PARAMETERS
7.5. URL REWRITING WITH PAGE PARAMETERS
7.6. CONVERSION AND VALIDATION
7.7. NAVIGATION
7.8. FINE-GRAINED FILES FOR DEFINING NAVIGATION, PAGE ACTIONS AND PARAMETERS
7.9. COMPONENT-DRIVEN EVENTS
7.10. CONTEXTUAL EVENTS
7.11. SEAM INTERCEPTORS
7.12. MANAGING EXCEPTIONS

7.12.1. Exceptions and transactions
7.12.2. Enabling Seam exception handling
7.12.3. Using annotations for exception handling
7.12.4. Using XML for exception handling

7.12.4.1. Suppressing exception logging
7.12.5. Some common exceptions

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT
8.1. SEAM'S CONVERSATION MODEL
8.2. NESTED CONVERSATIONS
8.3. STARTING CONVERSATIONS WITH GET REQUESTS
8.4. REQUIRING A LONG-RUNNING CONVERSATION
8.5. USING <S:LINK> AND <S:BUTTON>
8.6. SUCCESS MESSAGES
8.7. NATURAL CONVERSATION IDS
8.8. CREATING A NATURAL CONVERSATION
8.9. REDIRECTING TO A NATURAL CONVERSATION
8.10. WORKSPACE MANAGEMENT

8.10.1. Workspace management and JSF navigation
8.10.2. Workspace management and jPDL pageflow
8.10.3. The conversation switcher
8.10.4. The conversation list
8.10.5. Breadcrumbs

8.11. CONVERSATIONAL COMPONENTS AND JSF COMPONENT BINDINGS
8.12. CONCURRENT CALLS TO CONVERSATIONAL COMPONENTS

8.12.1. How should we design our conversational AJAX application?
8.12.2. Dealing with errors
8.12.3. RichFaces (Ajax4jsf)

CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES
9.1. PAGEFLOW IN SEAM

9.1.1. The two navigation models
9.1.2. Seam and the back button

9.2. USING JPDL PAGEFLOWS
9.2.1. Installing pageflows
9.2.2. Starting pageflows
9.2.3. Page nodes and transitions
9.2.4. Controlling the flow

122

125
125
125
127
127
127
128
129
130
132
132
134
136
137
138
138
138
139
140
140

142
142
144
145
146
146
148
148
149
149
150
150
151
151
152
153
153
154
154
155
156

158
158
158
161
162
162
163
163
165

Table of Contents

3

. .

. .

. .

. .

. .

. .

9.2.5. Ending the flow
9.2.6. Pageflow composition

9.3. BUSINESS PROCESS MANAGEMENT IN SEAM
9.4. USING JPDL BUSINESS PROCESS DEFINITIONS

9.4.1. Installing process definitions
9.4.2. Initializing actor IDs
9.4.3. Initiating a business process
9.4.4. Task assignment
9.4.5. Task lists
9.4.6. Performing a task

CHAPTER 10. SEAM AND OBJECT/RELATIONAL MAPPING
10.1. INTRODUCTION
10.2. SEAM MANAGED TRANSACTIONS

10.2.1. Disabling Seam-managed transactions
10.2.2. Configuring a Seam transaction manager
10.2.3. Transaction synchronization

10.3. SEAM-MANAGED PERSISTENCE CONTEXTS
10.3.1. Using a Seam-managed persistence context with JPA
10.3.2. Using a Seam-managed Hibernate session
10.3.3. Seam-managed persistence contexts and atomic conversations

10.4. USING THE JPA "DELEGATE"
10.5. USING EL IN EJB-QL/HQL
10.6. USING HIBERNATE FILTERS

CHAPTER 11. JSF FORM VALIDATION IN SEAM

CHAPTER 12. GROOVY INTEGRATION
12.1. GROOVY INTRODUCTION
12.2. WRITING SEAM APPLICATIONS IN GROOVY

12.2.1. Writing Groovy components
12.2.1.1. Entity

12.2.2. Seam component
12.2.3. seam-gen

12.3. DEPLOYMENT
12.3.1. Deploying Groovy code
12.3.2. Native .groovy file deployment at development time
12.3.3. seam-gen

CHAPTER 13. THE SEAM APPLICATION FRAMEWORK
13.1. INTRODUCTION
13.2. HOME OBJECTS
13.3. QUERY OBJECTS
13.4. CONTROLLER OBJECTS

CHAPTER 14. SEAM AND JBOSS RULES
14.1. INSTALLING RULES
14.2. USING RULES FROM A SEAM COMPONENT
14.3. USING RULES FROM A JBPM PROCESS DEFINITION

CHAPTER 15. SECURITY
15.1. OVERVIEW
15.2. DISABLING SECURITY
15.3. AUTHENTICATION

15.3.1. Configuring an Authenticator component

165
165
165
166
166
167
167
167
168
168

170
170
170
171
171
172
172
173
173
174
175
176
176

178

183
183
183
183
183
184
185
185
185
185
185

186
186
187
191
193

195
195
197
197

199
199
199
199
199

Seam Reference Guide

4

15.3.2. Writing an authentication method
15.3.2.1. Identity.addRole()
15.3.2.2. Writing an event observer for security-related events

15.3.3. Writing a login form
15.3.4. Configuration Summary
15.3.5. Remember Me

15.3.5.1. Token-based Remember Me Authentication
15.3.6. Handling Security Exceptions
15.3.7. Login Redirection
15.3.8. HTTP Authentication

15.3.8.1. Writing a Digest Authenticator
15.3.9. Advanced Authentication Features

15.3.9.1. Using your container's JAAS configuration
15.4. IDENTITY MANAGEMENT

15.4.1. Configuring IdentityManager
15.4.2. JpaIdentityStore

15.4.2.1. Configuring JpaIdentityStore
15.4.2.2. Configuring the Entities
15.4.2.3. Entity Bean Examples

15.4.2.3.1. Minimal schema example
15.4.2.3.2. Complex Schema Example

15.4.2.4. JpaIdentityStore Events
15.4.2.4.1. JpaIdentityStore.EVENT_PRE_PERSIST_USER
15.4.2.4.2. JpaIdentityStore.EVENT_USER_CREATED
15.4.2.4.3. JpaIdentityStore.EVENT_USER_AUTHENTICATED

15.4.3. LdapIdentityStore
15.4.3.1. Configuring LdapIdentityStore
15.4.3.2. LdapIdentityStore Configuration Example

15.4.4. Writing your own IdentityStore
15.4.5. Authentication with Identity Management
15.4.6. Using IdentityManager

15.5. ERROR MESSAGES
15.6. AUTHORIZATION

15.6.1. Core concepts
15.6.1.1. What is a role?
15.6.1.2. What is a permission?

15.6.2. Securing components
15.6.2.1. The @Restrict annotation
15.6.2.2. Inline restrictions

15.6.3. Security in the user interface
15.6.4. Securing pages
15.6.5. Securing Entities

15.6.5.1. Entity security with JPA
15.6.5.2. Entity security with a Managed Hibernate Session

15.6.6. Typesafe Permission Annotations
15.6.7. Typesafe Role Annotations
15.6.8. The Permission Authorization Model

15.6.8.1. PermissionResolver
15.6.8.1.1. Writing your own PermissionResolver

15.6.8.2. ResolverChain
15.6.9. RuleBasedPermissionResolver

15.6.9.1. Requirements
15.6.9.2. Configuration

200
201
202
202
203
203
204
206
207
207
208
208
208
208
209
209
209
210
211
211
212
214
214
214
214
214
214
217
217
218
218
221
222
222
222
223
223
223
224
225
226
226
228
228
228
229
230
230
231
231
232
232
233

Table of Contents

5

. .

. .

15.6.9.3. Writing Security Rules
15.6.9.4. Non-String permission targets
15.6.9.5. Wildcard permission checks

15.6.10. PersistentPermissionResolver
15.6.10.1. Configuration
15.6.10.2. Permission Stores
15.6.10.3. JpaPermissionStore

15.6.10.3.1. Permission annotations
15.6.10.3.2. Example Entity
15.6.10.3.3. Class-specific Permission Configuration
15.6.10.3.4. Permission masks
15.6.10.3.5. Identifier Policy
15.6.10.3.6. ClassIdentifierStrategy
15.6.10.3.7. EntityIdentifierStrategy

15.7. PERMISSION MANAGEMENT
15.7.1. PermissionManager
15.7.2. Permission checks for PermissionManager operations

15.8. SSL SECURITY
15.8.1. Overriding the default ports

15.9. CAPTCHA
15.9.1. Configuring the CAPTCHA Servlet
15.9.2. Adding a CAPTCHA to a form
15.9.3. Customizing the CAPTCHA algorithm

15.10. SECURITY EVENTS
15.11. RUN AS
15.12. EXTENDING THE IDENTITY COMPONENT
15.13. OPENID

15.13.1. Configuring OpenID
15.13.2. Presenting an OpenIdLogin form
15.13.3. Logging in immediately
15.13.4. Deferring log in
15.13.5. Logging out

CHAPTER 16. INTERNATIONALIZATION, LOCALIZATION AND THEMES
16.1. INTERNATIONALIZING YOUR APPLICATION

16.1.1. Application server configuration
16.1.2. Translated application strings
16.1.3. Other encoding settings

16.2. LOCALES
16.3. LABELS

16.3.1. Defining labels
16.3.2. Displaying labels
16.3.3. Faces messages

16.4. TIMEZONES
16.5. THEMES
16.6. PERSISTING LOCALE AND THEME PREFERENCES VIA COOKIES

CHAPTER 17. SEAM TEXT
17.1. BASIC FORMATTING
17.2. ENTERING CODE AND TEXT WITH SPECIAL CHARACTERS
17.3. LINKS
17.4. ENTERING HTML
17.5. USING THE SEAMTEXTPARSER

233
235
235
236
236
236
237
238
239
240
241
241
242
242
243
243
244
245
246
246
246
246
247
247
248
248
249
250
250
251
251
251

252
252
252
252
253
253
254
254
255
255
256
256
257

258
258
259
260
260
261

Seam Reference Guide

6

. .

. .

. .

CHAPTER 18. ITEXT PDF GENERATION
18.1. USING PDF SUPPORT

18.1.1. Creating a document
18.1.2. Basic Text Elements
18.1.3. Headers and Footers
18.1.4. Chapters and Sections
18.1.5. Lists
18.1.6. Tables
18.1.7. Document Constants

18.1.7.1. Color Values
18.1.7.2. Alignment Values

18.2. CHARTING
18.3. BAR CODES
18.4. FILL-IN-FORMS
18.5. RENDERING SWING/AWT COMPONENTS
18.6. CONFIGURING ITEXT
18.7. FURTHER DOCUMENTATION

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION
19.1. MICROSOFT EXCEL SUPPORT
19.2. CREATING A SIMPLE WORKBOOK
19.3. WORKBOOKS
19.4. WORKSHEETS
19.5. COLUMNS
19.6. CELLS

19.6.1. Validation
19.6.2. Format masks

19.6.2.1. Number masks
19.6.2.2. Date masks

19.7. FORMULAS
19.8. IMAGES
19.9. HYPERLINKS
19.10. HEADERS AND FOOTERS
19.11. PRINT AREAS AND TITLES
19.12. WORKSHEET COMMANDS

19.12.1. Grouping
19.12.2. Page breaks
19.12.3. Merging

19.13. DATATABLE EXPORTER
19.14. FONTS AND LAYOUT

19.14.1. Stylesheet links
19.14.2. Fonts
19.14.3. Borders
19.14.4. Background
19.14.5. Column settings
19.14.6. Cell settings
19.14.7. The datatable exporter
19.14.8. Limitations

19.15. INTERNATIONALIZATION
19.16. LINKS AND FURTHER DOCUMENTATION

CHAPTER 20. EMAIL
20.1. CREATING A MESSAGE

263
263
263
264
269
270
271
273
275
276
276
276
283
284
285
286
287

288
288
288
289
291
294
294
295
298
298
298
298
299
300
300
302
303
303
304
305
306
306
306
307
307
308
308
309
309
309
309
310

311
311

Table of Contents

7

. .

. .

. .

. .

20.1.1. Attachments
20.1.2. HTML/Text alternative part
20.1.3. Multiple recipients
20.1.4. Multiple messages
20.1.5. Templating
20.1.6. Internationalization
20.1.7. Other Headers

20.2. RECEIVING EMAILS
20.3. CONFIGURATION

20.3.1. mailSession
20.3.1.1. JNDI look up in EAP
20.3.1.2. Seam-configured Session

20.4. TAGS

CHAPTER 21. ASYNCHRONICITY AND MESSAGING
21.1. ASYNCHRONICITY

21.1.1. Asynchronous methods
21.1.2. Asynchronous methods with the Quartz Dispatcher
21.1.3. Asynchronous events
21.1.4. Handling exceptions from asynchronous calls

21.2. MESSAGING IN SEAM
21.2.1. Configuration
21.2.2. Sending messages
21.2.3. Receiving messages using a message-driven bean
21.2.4. Receiving messages in the client

CHAPTER 22. CACHING
22.1. USING CACHING IN SEAM
22.2. PAGE FRAGMENT CACHING

CHAPTER 23. WEB SERVICES
23.1. CONFIGURATION AND PACKAGING
23.2. CONVERSATIONAL WEB SERVICES

23.2.1. A Recommended Strategy
23.3. AN EXAMPLE WEB SERVICE
23.4. RESTFUL HTTP WEB SERVICES WITH RESTEASY

23.4.1. RESTEasy configuration and request serving
23.4.2. Resources and providers as Seam components
23.4.3. Securing resources
23.4.4. Mapping exceptions to HTTP responses
23.4.5. Exposing entities via RESTful API

23.4.5.1. ResourceQuery
23.4.5.2. ResourceHome

23.4.6. Testing resources and providers

CHAPTER 24. REMOTING
24.1. CONFIGURATION
24.2. THE SEAM OBJECT

24.2.1. A Hello World example
24.2.2. Seam.Component

24.2.2.1. Seam.Component.newInstance()
24.2.2.2. Seam.Component.getInstance()
24.2.2.3. Seam.Component.getComponentName()

24.2.3. Seam.Remoting

312
313
313
313
313
314
314
315
315
316
316
316
316

319
319
319
321
323
324
324
324
325
326
327

328
328
330

331
331
331
332
333
334
334
337
339
339
340
340
341
342

344
344
345
345
346
346
347
347
348

Seam Reference Guide

8

. .

. .

24.2.3.1. Seam.Remoting.createType()
24.2.3.2. Seam.Remoting.getTypeName()

24.3. EVALUATING EL EXPRESSIONS
24.4. CLIENT INTERFACES
24.5. THE CONTEXT

24.5.1. Setting and reading the Conversation ID
24.5.2. Remote calls within the current conversation scope

24.6. BATCH REQUESTS
24.7. WORKING WITH DATA TYPES

24.7.1. Primitives / Basic Types
24.7.1.1. String
24.7.1.2. Number
24.7.1.3. Boolean

24.7.2. JavaBeans
24.7.3. Dates and Times
24.7.4. Enums
24.7.5. Collections

24.7.5.1. Bags
24.7.5.2. Maps

24.8. DEBUGGING
24.9. HANDLING EXCEPTIONS
24.10. THE LOADING MESSAGE

24.10.1. Changing the message
24.10.2. Hiding the loading message
24.10.3. A Custom Loading Indicator

24.11. CONTROLLING WHAT DATA IS RETURNED
24.11.1. Constraining normal fields
24.11.2. Constraining Maps and Collections
24.11.3. Constraining objects of a specific type
24.11.4. Combining Constraints

24.12. TRANSACTIONAL REQUESTS
24.13. JMS MESSAGING

24.13.1. Configuration
24.13.2. Subscribing to a JMS Topic
24.13.3. Unsubscribing from a Topic
24.13.4. Tuning the Polling Process

CHAPTER 25. SEAM AND THE GOOGLE WEB TOOLKIT
25.1. CONFIGURATION
25.2. PREPARING YOUR COMPONENT
25.3. HOOKING UP A GWT WIDGET TO THE SEAM COMPONENT
25.4. GWT ANT TARGETS

CHAPTER 26. SPRING FRAMEWORK INTEGRATION
26.1. INJECTING SEAM COMPONENTS INTO SPRING BEANS
26.2. INJECTING SPRING BEANS INTO SEAM COMPONENTS
26.3. MAKING A SPRING BEAN INTO A SEAM COMPONENT
26.4. SEAM-SCOPED SPRING BEANS
26.5. USING SPRING PLATFORMTRANSACTIONMANAGEMENT
26.6. USING A SEAM-MANAGED PERSISTENCE CONTEXT IN SPRING
26.7. USING A SEAM-MANAGED HIBERNATE SESSION IN SPRING
26.8. SPRING APPLICATION CONTEXT AS A SEAM COMPONENT
26.9. USING A SPRING TASKEXECUTOR FOR @ASYNCHRONOUS

348
348
348
348
349
349
349
349
350
350
350
350
350
350
351
351
351
351
351
352
352
352
352
353
353
353
354
354
354
354
355
355
355
355
355
356

357
357
357
358
359

361
361
362
363
363
364
364
366
366
367

Table of Contents

9

. .

. .

. .

CHAPTER 27. HIBERNATE SEARCH
27.1. INTRODUCTION
27.2. CONFIGURATION
27.3. USAGE

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS
28.1. BASIC SEAM CONFIGURATION

28.1.1. Integrating Seam with JSF and your servlet container
28.1.2. Using Facelets
28.1.3. Seam Resource Servlet
28.1.4. Seam Servlet filters

28.1.4.1. Exception handling
28.1.4.2. Conversation propagation with redirects
28.1.4.3. URL rewriting
28.1.4.4. Multipart form submissions
28.1.4.5. Character encoding
28.1.4.6. RichFaces
28.1.4.7. Identity Logging
28.1.4.8. Context management for custom servlets
28.1.4.9. Adding custom filters

28.1.5. Integrating Seam with your EJB container
28.1.6. Remember

28.2. USING ALTERNATE JPA PROVIDERS
28.3. CONFIGURING SEAM IN JAVA EE 5

28.3.1. Packaging
28.4. CONFIGURING SEAM IN J2EE

28.4.1. Boostrapping Hibernate in Seam
28.4.2. Boostrapping JPA in Seam
28.4.3. Packaging

28.5. CONFIGURING SEAM IN JAVA SE, WITHOUT JBOSS EMBEDDED
28.6. CONFIGURING SEAM IN JAVA SE, WITH JBOSS EMBEDDED

28.6.1. Packaging
28.7. CONFIGURING JBPM IN SEAM

28.7.1. Packaging
28.8. CONFIGURING SFSB AND SESSION TIMEOUTS IN EAP
28.9. RUNNING SEAM IN A PORTLET
28.10. DEPLOYING CUSTOM RESOURCES

CHAPTER 29. SEAM ANNOTATIONS
29.1. ANNOTATIONS FOR COMPONENT DEFINITION
29.2. ANNOTATIONS FOR BIJECTION
29.3. ANNOTATIONS FOR COMPONENT LIFE CYCLE METHODS
29.4. ANNOTATIONS FOR CONTEXT DEMARCATION
29.5. ANNOTATIONS FOR USE WITH SEAM JAVABEAN COMPONENTS IN A J2EE ENVIRONMENT
29.6. ANNOTATIONS FOR EXCEPTIONS
29.7. ANNOTATIONS FOR SEAM REMOTING
29.8. ANNOTATIONS FOR SEAM INTERCEPTORS
29.9. ANNOTATIONS FOR ASYNCHRONICITY
29.10. ANNOTATIONS FOR USE WITH JSF

29.10.1. Annotations for use with dataTable
29.11. META-ANNOTATIONS FOR DATABINDING
29.12. ANNOTATIONS FOR PACKAGING
29.13. ANNOTATIONS FOR INTEGRATING WITH THE SERVLET CONTAINER

368
368
368
369

371
371
371
372
372
372
373
373
373
374
374
374
375
375
375
376
379
379
380
380
381
381
382
382
383
383
383
384
385
386
386
387

390
390
393
395
396
399
400
401
401
401
402
403
404
404
404

Seam Reference Guide

10

. .

. .

CHAPTER 30. BUILT-IN SEAM COMPONENTS
30.1. CONTEXT INJECTION COMPONENTS
30.2. JSF-RELATED COMPONENTS
30.3. UTILITY COMPONENTS
30.4. COMPONENTS FOR INTERNATIONALIZATION AND THEMES
30.5. COMPONENTS FOR CONTROLLING CONVERSATIONS
30.6. JBPM-RELATED COMPONENTS
30.7. SECURITY-RELATED COMPONENTS
30.8. JMS-RELATED COMPONENTS
30.9. MAIL-RELATED COMPONENTS
30.10. INFRASTRUCTURAL COMPONENTS
30.11. MISCELLANEOUS COMPONENTS
30.12. SPECIAL COMPONENTS

CHAPTER 31. SEAM JSF CONTROLS
31.1. TAGS

31.1.1. Navigation Controls
31.1.1.1. <s:button>
31.1.1.2. <s:conversationId>
31.1.1.3. <s:taskId>
31.1.1.4. <s:link>
31.1.1.5. <s:conversationPropagation>
31.1.1.6. <s:defaultAction>

31.1.2. Converters and Validators
31.1.2.1. <s:convertDateTime>
31.1.2.2. <s:convertEntity>
31.1.2.3. <s:convertEnum>
31.1.2.4. <s:convertAtomicBoolean>
31.1.2.5. <s:convertAtomicInteger>
31.1.2.6. <s:convertAtomicLong>
31.1.2.7. <s:validateEquality>
31.1.2.8. <s:validate>
31.1.2.9. <s:validateAll>

31.1.3. Formatting
31.1.3.1. <s:decorate>
31.1.3.2. <s:div>
31.1.3.3. <s:span>
31.1.3.4. <s:fragment>
31.1.3.5. <s:label>
31.1.3.6. <s:message>

31.1.4. Seam Text
31.1.4.1. <s:validateFormattedText>
31.1.4.2. <s:formattedText>

31.1.5. Form support
31.1.5.1. <s:token>
31.1.5.2. <s:enumItem>
31.1.5.3. <s:selectItems>
31.1.5.4. <s:fileUpload>

31.1.6. Other
31.1.6.1. <s:cache>
31.1.6.2. <s:resource>
31.1.6.3. <s:download>
31.1.6.4. <s:graphicImage>

406
406
406
407
408
410
411
413
413
413
414
416
416

419
419
419
419
419
420
420
420
421
421
421
422
423
423
424
424
424
425
425
426
426
427
427
427
428
428
428
428
428
429
429
430
430
431
432
432
433
434
434

Table of Contents

11

. .

. .

. .

. .

. .

. .

. .

31.1.6.5. <s:remote>
31.2. ANNOTATIONS

CHAPTER 32. JBOSS EL
32.1. PARAMETERIZED EXPRESSIONS

32.1.1. Usage
32.1.2. Limitations and Hints

32.2. PROJECTION

CHAPTER 33. CLUSTERING AND EJB PASSIVATION
33.1. CLUSTERING

33.1.1. Programming for clustering
33.1.2. Deploying a Seam application to a EAP cluster with session replication
33.1.3. Tutorial
33.1.4. Validating the distributable services of an application running in a EAP cluster

33.2. EJB PASSIVATION AND THE MANAGEDENTITYINTERCEPTOR
33.2.1. The friction between passivation and persistence
33.2.2. Case #1: Surviving EJB passivation
33.2.3. Case #2: Surviving HTTP session replication

CHAPTER 34. PERFORMANCE TUNING
34.1. BYPASSING INTERCEPTORS

CHAPTER 35. TESTING SEAM APPLICATIONS
35.1. UNIT TESTING SEAM COMPONENTS
35.2. INTEGRATION TESTING SEAM COMPONENTS

35.2.1. Using mocks in integration tests
35.3. INTEGRATION TESTING SEAM APPLICATION USER INTERACTIONS

35.3.1. Configuration
35.3.2. Using SeamTest with another test framework
35.3.3. Integration Testing with Mock Data
35.3.4. Integration Testing Seam Mail

CHAPTER 36. SEAM TOOLS
36.1. JBPM DESIGNER AND VIEWER

36.1.1. Business process designer
36.1.2. Pageflow viewer

CHAPTER 37. DEPENDENCIES
37.1. JAVA DEVELOPMENT KIT DEPENDENCIES

37.1.1. Sun's JDK 6 Considerations
37.2. PROJECT DEPENDENCIES

37.2.1. Core
37.2.2. RichFaces
37.2.3. Seam Mail
37.2.4. Seam PDF
37.2.5. Seam Microsoft®Excel®
37.2.6. JBoss Rules
37.2.7. JBPM
37.2.8. GWT
37.2.9. Spring
37.2.10. Groovy

APPENDIX A. REVISION HISTORY

435
435

437
437
437
438
439

440
440
440
441
441
442
443
444
444
445

446
446

447
447
448
448
449
451
452
453
454

456
456
456
456

458
458
458
458
458
459
459
460
460
460
461
461
461
461

463

Seam Reference Guide

12

Table of Contents

13

CHAPTER 1. SEAM TUTORIAL

1.1. USING THE SEAM EXAMPLES

Seam provides a number of example applications which demonstrate how to use a variety of Seam's
features. This tutorial will guide you through a few of those examples to help you get started learning
Seam. The Seam examples are located in the examples subdirectory of the Seam distribution. The first
example, on registration, is in the examples/registration directory.

Each example has the same directory structure:

The view directory contains view-related files such as web page templates, images and
stylesheets.

The resources directory contains deployment descriptors and other configuration files.

The src directory contains the application source code.

Note that all examples are built and run from the Ant build.xml, so you will need a recent version of
Ant installed before you get started.

1.1.1. Running the examples on JBoss Enterprise Application Platform

The examples are configured for use on JBoss Enterprise Application Platform. You will need to set
jboss.home, in the shared build.properties file (in the root folder of your Seam installation) to the
location of your JBoss Enterprise Application Platform installation.

Once you have set the location of JBoss Enterprise Application Platform and started the application
server, you can build and deploy any example by typing ant explode in that example's directory. Any
example that is packaged as an EAR (Enterprise Archive) deploys to a URL like /seam-example,
where example is the name of the example folder, with one exception: if the example folder begins with
"seam", the prefix "seam" is omitted. For instance, if JBoss Enterprise Application Platform is running on
port 8080, the URL for the Registration example is http://localhost:8080/seam-
registration/, whereas the URL for the SeamSpace example is
http://localhost:8080/seam-space/.

If, on the other hand, the example is packaged as a WAR, then it deploys to a URL like /jboss-
seam-example.

NOTE

Several of the examples — groovybooking, hibernate, jpa, and spring — can only be
deployed as a WAR.

1.1.2. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the tests is to
run ant test.

It is also possible to run the tests inside your IDE using the TestNG plug-in. This requires you to run ant
test before running or debugging Seam test cases in JBoss Developer Studio. Consult the readme.txt
in the examples directory of the Seam distribution for more information.

Seam Reference Guide

14

http://localhost:8080/seam-registration/
http://localhost:8080/seam-space/

1.2. YOUR FIRST SEAM APPLICATION: THE REGISTRATION EXAMPLE

The registration example is a simple application that lets a new user store their username, real name,
and password in the database. This example uses only basic functions to demonstrate the use of an
EJB3 session bean as a JSF action listener, and the basic configuration of Seam.

The start page displays a basic form with three input fields. Filling them in and submitting the form will
save a user object in the database.

1.2.1. Understanding the code

The example is implemented with two Facelets templates: one entity bean, and one stateless session
bean. This section will take you through the code in detail, starting from the base level.

1.2.1.1. The entity bean: User.java

We need an EJB entity bean for user data. This class defines persistence and validation declaratively, via
annotations. It also requires some extra annotations to define the class as a Seam component.

Example 1.1. User.java

@Entity

@Name("user")

@Scope(SESSION)

@Table(name="users")
public class User implements Serializable
{

CHAPTER 1. SEAM TUTORIAL

15

 private static final long serialVersionUID =
 1881413500711441951L;

 private String username;
 private String password;
 private String name;

 public User(String name,
 String password,
 String username)
 {
 this.name = name;
 this.password = password;
 this.username = username;
 }

 public User() {}

 @NotNull @Length(min=5, max=15)
 public String getPassword()
 {
 return password;
 }

 public void setPassword(String password)
 {
 this.password = password;
 }

 @NotNull
 public String getName()
 {
 return name;
 }

 public void setName(String name)
 {
 this.name = name;
 }

 @Id @NotNull @Length(min=5, max=15)
 public String getUsername()
 {
 return username;
 }

 public void setUsername(String username)
 {
 this.username = username;

Seam Reference Guide

16

The EJB3 standard @Entity annotation indicates that the User class is an entity bean.

A Seam component needs a component name specified by the @Name annotation. This name must
be unique within the Seam application. When JSF asks Seam to resolve a context variable with a
name that is the same as a Seam component name, and the context variable is currently undefined
(null), Seam will instantiate that component, and bind the new instance to the context variable. In this
case, Seam will instantiate a User the first time JSF encounters a variable named user.

Whenever Seam instantiates a component, it binds the new instance to a context variable in the
component's default context. The default context is specified using the @Scope annotation. The
User bean is a session scoped component.

The EJB standard @Table annotation indicates that the User class is mapped to the users table.

name, password and username are the persistent attributes of the entity bean. All of our
persistent attributes define accessor methods. These are needed when this component is used by
JSF in the render response and update model values phases.

An empty constructor is required by both the EJB specification and Seam.

The @NotNull and @Length annotations are part of the Hibernate Validator framework. Seam
integrates Hibernate Validator and lets you use it for data validation (even if you are not using
Hibernate for persistence).

The EJB standard @Id annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @Name and @Scope annotations. These
annotations establish that this class is a Seam component.

In the next section, you will see that the properties of the User class are bound directly to JSF
components and populated by JSF during the update model values phase. There is no glue code to
copy data back and forth between the JSP pages and the entity bean domain model.

However, entity beans should not perform transaction management or database access, so this
component should not be used as a JSF action listener. In this situation, a session bean is a better
choice.

1.2.1.2. The stateless session bean class: RegisterAction.java

Most Seam applications use session beans as JSF action listeners, though you may also use
JavaBeans.

We have exactly one JSF action in this application, and one session bean method attached to it. In this
case, we will use a stateless session bean, since all the state associated with our action is held by the
User bean.

The relevant code is shown below:

 }

}

CHAPTER 1. SEAM TUTORIAL

17

Example 1.2. RegisterAction.java

@Stateless

@Name("register")
public class RegisterAction implements Register
{
 @In

 private User user;

 @PersistenceContext

 private EntityManager em;

 @Logger

 private Log log;

 public String register()

 {
 List existing = em.createQuery("select username " +
 "from User " +
 "where username = #

{user.username}")
 .getResultList();

 if (existing.size()==0)
 {
 em.persist(user);
 log.info("Registered new user #{user.username}");

 return "/registered.xhtml";

 }
 else
 {
 FacesMessages.instance().add("User #{user.username}

already exists");
 return null;
 }

Seam Reference Guide

18

The EJB @Stateless annotation marks this class as a stateless session bean.

The @In annotation marks an attribute of the bean as injected by Seam. In this case, the attribute is
injected from a context variable named user (the instance variable name).

The EJB standard @PersistenceContext annotation is used to inject the EJB3 entity manager.

The Seam @Logger annotation is used to inject the component's Log instance.

The action listener method uses the standard EJB3 EntityManager API to interact with the
database, and returns the JSF outcome. Note that, since this is a session bean, a transaction is
automatically begun when the register() method is called, and committed when it completes.

Notice that Seam lets you use a JSF EL expression inside EJB-QL. Under the covers, this results in
an ordinary JPA setParameter() call on the standard JPA Query object.

The Log API lets us easily display templated log messages which can also make use of JSF EL
expressions.

JSF action listener methods return a string-valued outcome that determines what page will be
displayed next. A null outcome (or a void action listener method) redisplays the previous page. In plain
JSF, it is normal to always use a JSF navigation rule to determine the JSF view id from the outcome.
For complex applications this indirection is useful and a good practice. However, for very simple
examples like this one, Seam lets you use the JSF view id as the outcome, eliminating the
requirement for a navigation rule. Note that when you use a view id as an outcome, Seam always
performs a browser redirect.

Seam provides a number of built-in components to help solve common problems. The
FacesMessages component makes it easy to display templated error or success messages. (As of
Seam 2.1, you can use StatusMessages instead to remove the semantic dependency on JSF).
Built-in Seam components may be obtained by injection, or by calling the instance() method on
the class of the built-in component.

Note that we did not explicitly specify a @Scope this time. Each Seam component type has a default
scope, which will be used if scope is not explicitly specified. For stateless session beans, the default
scope is the stateless context.

The session bean action listener performs the business and persistence logic for our mini-application. In
a more complex application, a separate service layer might be necessary, but Seam allows you to
implement your own strategies for application layering. You can make any application as simple, or as
complex, as you want.

NOTE

This application is more complex than necessary for the sake of clear example code. All
of the application code could have been eliminated by using Seam's application
framework controllers.

 }

}

CHAPTER 1. SEAM TUTORIAL

19

1.2.1.3. The session bean local interface: Register.java

The session bean requires a local interface.

Example 1.3. Register.java

That's the end of the Java code. The next level to examine is the view.

1.2.1.4. The view: register.xhtml and registered.xhtml

The view pages for a Seam application can be implemented using any technology that supports JSF.
This example was written with Facelets.

Example 1.4. register.xhtml

@Local
public interface Register
{
 public String register();
}

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:s="http://jboss.com/products/seam/taglib"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core">

 <head>
 <title>Register New User</title>
 </head>
 <body>
 <f:view>
 <h:form>
 <s:validateAll>
 <h:panelGrid columns="2">
 Username: <h:inputText value="#{user.username}"
 required="true"/>
 Real Name: <h:inputText value="#{user.name}"
 required="true"/>
 Password: <h:inputSecret value="#{user.password}"
 required="true"/>
 </h:panelGrid>
 </s:validateAll>
 <h:messages/>
 <h:commandButton value="Register" action="#
{register.register}"/>
 </h:form>
 </f:view>
 </body>

</html>

Seam Reference Guide

20

The only Seam-specific tag here is <s:validateAll>. This JSF component tells JSF to validate all the
contained input fields against the Hibernate Validator annotations specified on the entity bean.

Example 1.5. registered.xhtml

The above is a simple Facelets page, created with inline EL — it contains nothing specific to Seam.

1.2.1.5. The Seam component deployment descriptor: components.xml

Before looking at deployment descriptors, it is worth noting that Seam strongly values minimal
configuration. These configuration files will be created for you when you create a Seam application, and
there will rarely be any need to alter them. They are presented here solely to assist you in understanding
the purpose and function of all of the example code.

If you have used Java frameworks previously, you will be used to declaring your component classes in
an XML file. You have probably also noticed that as a project matures, these XML files tend to become
unmanageable. Fortunately, Seam does not require application components to be accompanied by XML.
Most Seam applications require only a small amount of XML, which does not tend to increase in size as
projects expand.

However, it is often useful to be able to provide for some external configuration of some components,
particularly the components that are built into Seam. The most flexible option, here, is to provide this
configuration in a file called components.xml, located in the WEB-INF directory. The
components.xml file can be used to tell Seam how to find our EJB components in JNDI:

Example 1.6. components.xml example

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core">

 <head>
 <title>Successfully Registered New User</title>
 </head>
 <body>
 <f:view>
 Welcome, #{user.name}, you are successfully
 registered as #{user.username}.
 </f:view>
 </body>

</html>

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/core
 http://jboss.com/products/seam/core-2.2.xsd

CHAPTER 1. SEAM TUTORIAL

21

The above code configures a property named jndiPattern, which belongs to a built-in Seam
component named org.jboss.seam.core.init. The @ symbols are used to direct the Ant build
script to insert the correct JNDI pattern from the components.properties file when the application is
deployed. You will learn more about this process in Section 6.2, “Configuring components via
components.xml”.

1.2.1.6. The web deployment description: web.xml

The presentation layer for our mini-application will be deployed in a WAR, so a web deployment
descriptor is required:

Example 1.7. web.xml

 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.2.xsd">

 <core:init jndi-pattern="@jndiPattern@"/>

</components>

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <listener>
 <listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
 </listener>

 <context-param>
 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>
 <param-value>.xhtml</param-value>
 </context-param>

 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.seam</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>10</session-timeout>
 </session-config>

</web-app>

Seam Reference Guide

22

The above web.xml file configures both Seam and JSF. The configuration you see here changes very
little between Seam applications.

1.2.1.7. The JSF configuration: faces-config.xml

Most Seam applications use JSF views as the presentation layer, so faces-config.xml is usually a
requirement. In this case, Facelets is used to define our views, so we need to tell JSF to use Facelets as
its templating engine.

Example 1.8. faces-config.xml

Note that JSF managed bean declarations are unnecessary because the managed beans are annotated
Seam components. In Seam applications, faces-config.xml is used much less often than in plain
JSF. Here, we use it simply to enable Facelets (and not JSP) as the view handler.

Once you have set up all the basic descriptors, the only XML you need write to add functionality to a
Seam application will be for orchestration: navigation rules or jBPM process definitions. Seam operates
on the principle that process flow and configuration data are all that truly belongs in XML.

The above example does not require a navigation rule, since the view ID was embedded in our action
code.

1.2.1.8. The EJB deployment descriptor: ejb-jar.xml

The ejb-jar.xml file integrates Seam with EJB3 by attaching the SeamInterceptor to all session
beans in the archive.

Example 1.9. ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-
facesconfig_1_2.xsd"
 version="1.2">

 <application>
 <view-handler>com.sun.facelets.FaceletViewHandler</view-handler>
 </application>

</faces-config>

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">

CHAPTER 1. SEAM TUTORIAL

23

1.2.1.9. The EJB persistence deployment descriptor: persistence.xml

The persistence.xml file directs the EJB persistence provider to the appropriate datasource, and
contains some vendor-specific settings. In this case, it enables automatic schema export at start time.

Example 1.10. persistence.xml

1.2.1.10. The EAR deployment descriptor: application.xml

Finally, since our application is deployed as an EAR, we also require a deployment descriptor.

Example 1.11. registration application

 <interceptors>
 <interceptor>
 <interceptor-class>
 org.jboss.seam.ejb.SeamInterceptor
 </interceptor-class>
 </interceptor>
 </interceptors>

 <assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 org.jboss.seam.ejb.SeamInterceptor
 </interceptor-class>
 </interceptor-binding>
 </assembly-descriptor>

</ejb-jar>

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence

http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
 version="1.0">

 <persistence-unit name="userDatabase">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit>

</persistence>

Seam Reference Guide

24

This deployment descriptor links modules in the enterprise archive and binds the web application to the
context root /seam-registration.

You have now seen all of the files in the application.

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user. Since no value is yet
bound to that name (in any Seam context), Seam instantiates the user component, and returns the
resulting User entity bean instance to JSF after storing it in the Seam session context.

The form input values are now validated against the Hibernate Validator constraints specified on the
User entity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the form input
values to properties of the User entity bean.

Next, JSF asks Seam to resolve the variable named register. Seam uses the JNDI pattern mentioned
earlier to locate the stateless session bean, wraps it as a Seam component, and returns it. Seam then
presents this component to JSF and JSF invokes the register() action listener method.

Seam then intercepts the method call and injects the User entity from the Seam session context, before
allowing the invocation to continue.

The register() method checks if a user with the entered username already exists. If so, an error
message is queued with the FacesMessages component, and a null outcome is returned, causing a
page redisplay. The FacesMessages component interpolates the JSF expression embedded in the

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/application_5.xsd"
 version="5">

 <display-name>Seam Registration</display-name>

 <module>
 <web>
 <web-uri>jboss-seam-registration.war</web-uri>
 <context-root>/seam-registration</context-root>
 </web>
 </module>
 <module>
 <ejb>jboss-seam-registration.jar</ejb>
 </module>
 <module>
 <ejb>jboss-seam.jar</ejb>
 </module>
 <module>
 <java>jboss-el.jar</java>
 </module>

</application>

CHAPTER 1. SEAM TUTORIAL

25

message string and adds a JSF FacesMessage to the view.

If no user with that username exists, the "/registered.xhtml" outcome triggers a browser redirect to
the registered.xhtml page. When JSF comes to render the page, it asks Seam to resolve the
variable named user and uses property values of the returned User entity from Seam's session scope.

1.3. CLICKABLE LISTS IN SEAM: THE MESSAGES EXAMPLE

Clickable lists of database search results are a vital part of any online application. Seam provides special
functionality on top of JSF to make it easier to query data with EJB-QL or HQL, and display it as a
clickable list using a JSF <h:dataTable>. The messages example demonstrates this functionality.

1.3.1. Understanding the code

The message list example has one entity bean (Message), one session bean (MessageListBean), and
one JSP.

1.3.1.1. The entity bean: Message.java

The Message entity defines the title, text, date and time of a message, and a flag indicating whether the
message has been read:

Example 1.12. Message.java

Seam Reference Guide

26

1.3.1.2. The stateful session bean: MessageManagerBean.java

@Entity
@Name("message")
@Scope(EVENT)
public class Message implements Serializable {
 private Long id;
 private String title;
 private String text;
 private boolean read;
 private Date datetime;

 @Id @GeneratedValue
 public Long getId() {
 return id;
 }
 public void setId(Long id) {
 this.id = id;
 }

 @NotNull @Length(max=100)
 public String getTitle() {
 return title;
 }
 public void setTitle(String title) {
 this.title = title;
 }

 @NotNull @Lob
 public String getText() {
 return text;
 }
 public void setText(String text) {
 this.text = text;
 }

 @NotNull
 public boolean isRead() {
 return read;
 }
 public void setRead(boolean read) {
 this.read = read;
 }

 @NotNull
 @Basic @Temporal(TemporalType.TIMESTAMP)
 public Date getDatetime() {
 return datetime;
 }
 public void setDatetime(Date datetime) {
 this.datetime = datetime;
 }
}

CHAPTER 1. SEAM TUTORIAL

27

As in the previous example, this example contains a session bean (MessageManagerBean) which
defines the action listener methods for both of the buttons on our form. As in the previous example, one
of the buttons selects a message from the list and displays that message; the other button deletes a
message.

However, MessageManagerBean is also responsible for fetching the list of messages the first time we
navigate to the message list page. There are various ways for users to navigate to the page, not all of
which are preceded by a JSF action. (Navigating to the page from your favorites will not necessarily call
the JSF action, for example.) Therefore, fetching the message list must take place in a Seam factory
method, instead of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this a
stateful session bean.

Example 1.13. MessageManagerBean.java

@Stateful
@Scope(SESSION)
@Name("messageManager")
public class MessageManagerBean
 implements Serializable, MessageManager
{
 @DataModel

 private List<Message> messageList;

 @DataModelSelection

 @Out(required=false)

 private Message message;

 @PersistenceContext(type=EXTENDED)

 private EntityManager em;

 @Factory("messageList")

 public void findMessages()
 {
 messageList = em.createQuery("select msg " +
 "from Message msg" +
 "order by msg.datetime desc")
 .getResultList();
 }

 public void select()

Seam Reference Guide

28

The @DataModel annotation exposes an attributes of type java.util.List to the JSF page as
an instance of javax.faces.model.DataModel. This allows us to use the list in a JSF
<h:dataTable> with clickable links for each row. In this case, the DataModel is made available
in a session context variable named messageList.

The @DataModelSelection annotation tells Seam to inject the List element that corresponded
to the clicked link.

The @Out annotation then exposes the selected value directly to the page. So every time a row of the
clickable list is selected, the Message is injected to the attribute of the stateful bean, and then
subsequently outjected to the event context variable named message.

This stateful bean has an EJB3 extended persistence context. The messages retrieved in the query
remain in the managed state as long as the bean exists, so any subsequent method calls to the
stateful bean can update them without needing to make any explicit call to the EntityManager.

The first time we navigate to the JSP page, there will be no value in the messageList context
variable. The @Factory annotation tells Seam to create an instance of MessageManagerBean
and invoke the findMessages() method to initialize the value. We call findMessages() a
factory method for messages.

The select() action listener method marks the selected Message as read, and updates it in the
database.

The delete() action listener method removes the selected Message from the database.

All stateful session bean Seam components must define a parameterless method marked @Remove
that Seam uses to remove the stateful bean when the Seam context ends, and clean up any server-
side state.

 {
 message.setRead(true);
 }

 public void delete()

 {
 messageList.remove(message);
 em.remove(message);
 message=null;
 }

 @Remove

 public void destroy() {}

}

CHAPTER 1. SEAM TUTORIAL

29

NOTE

This is a session-scoped Seam component. It is associated with the user log in session,
and all requests from a log in session share the same instance of the component.
Session-scoped components are usually used sparingly in Seam applications.

1.3.1.3. The session bean local interface: MessageManager.java

All session beans have a business interface:

Example 1.14. MessageManager.java

From this point, local interfaces are no longer shown in these code examples. Components.xml,
persistence.xml, web.xml, ejb-jar.xml, faces-config.xml and application.xml operate
in a similar fashion to the previous example, and go directly to the JSP.

1.3.1.4. The view: messages.jsp

The JSP page is a straightforward use of the JSF <h:dataTable> component. Once again, these
functions are not Seam-specific.

Example 1.15. messages.jsp

@Local
public interface MessageManager {
 public void findMessages();
 public void select();
 public void delete();
 public void destroy();
}

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<html>
 <head>
 <title>Messages</title>
 </head>
 <body>
 <f:view>
 <h:form>
 <h2>Message List</h2>
 <h:outputText value="No messages to display"
 rendered="#{messageList.rowCount==0}"/>
 <h:dataTable var="msg" value="#{messageList}"
 rendered="#{messageList.rowCount>0}">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Read"/>
 </f:facet>
 <h:selectBooleanCheckbox value="#{msg.read}"
disabled="true"/>
 </h:column>
 <h:column>

Seam Reference Guide

30

1.3.2. How it works

The first time we navigate to messages.jsp, the page will try to resolve the messageList context
variable. Since this variable is not yet initialized, Seam calls the factory method findMessages, which
queries the database and retrieves a DataModel. This provides the row data required to render the
<h:dataTable>.

When the user clicks the <h:commandLink>, JSF calls the select() action listener. Seam intercepts
this call and injects the selected row data into the message attribute of the messageManager
component. The action listener fires, marking the selected Message as read. At the end of the call, Seam
outjects the selected Message to the message context variable. Next, the EJB container commits the
transaction, and the change to the Message is flushed to the database. Finally, the page is re-rendered,
redisplaying the message list, and displaying the selected message below it.

When the user clicks the <h:commandButton>, JSF calls the delete() action listener. Seam
intercepts this call and injects the selected row data into the message attribute of the messageList
component. The action listener fires, which removes the selected Message from the list, and also calls
remove() on the EntityManager. At the end of the call, Seam refreshes the messageList context
variable and clears the message context variable. The EJB container commits the transaction, and
deletes the Message from the database. Finally, the page is re-rendered, redisplaying the message list.

1.4. SEAM AND JBPM: THE TODO LIST EXAMPLE

jBPM provides sophisticated functionality for workflow and task management. As an example of jBPM's
integration with Seam, what follows is a simple "todo list" application. Managing task lists is a core
function of jBPM, so little Java is required in this example.

 <f:facet name="header">
 <h:outputText value="Title"/>
 </f:facet>
 <h:commandLink value="#{msg.title}"
 action="#{messageManager.select}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Date/Time"/>
 </f:facet>
 <h:outputText value="#{msg.datetime}">
 <f:convertDateTime type="both" dateStyle="medium"
 timeStyle="short"/>
 </h:outputText>
 </h:column>
 <h:column>
 <h:commandButton value="Delete"
 action="#{messageManager.delete}"/>
 </h:column>
 </h:dataTable>
 <h3><h:outputText value="#{message.title}"/></h3>
 <div><h:outputText value="#{message.text}"/></div>
 </h:form>
 </f:view>
 </body>
</html>

CHAPTER 1. SEAM TUTORIAL

31

1.4.1. Understanding the code

This example revolves around the jBPM process definition. It also uses two JSPs and two basic
JavaBeans. (Session beans are not required here since they would not access the database or have any
transactional behavior.) We will start with the process definition:

Example 1.16. todo.jpdl.xml

<process-definition name="todo">

 <start-state name="start">
 <transition to="todo"/>
 </start-state>

 <task-node name="todo">

 <task name="todo" description="#{todoList.description}">

 <assignment actor-id="#{actor.id}"/>
 </task>
 <transition to="done"/>
 </task-node>

 <end-state name="done"/>

</process-definition>

Seam Reference Guide

32

The <start-state> node represents the logical start of the process. When the process starts, it
immediately transitions to the todo node.

The <task-node> node represents a wait state , where business process execution pauses, waiting
for one or more tasks to be performed.

The <task> element defines a task to be performed by a user. Since there is only one task defined
on this node, when it is complete, execution resumes, and we transition to the end state. The task
gets its description from a Seam component named todoList (one of the JavaBeans).

Tasks need to be assigned to a user or group of users when they are created. In this case, the task is
assigned to the current user, which we get from a built-in Seam component named actor. Any
Seam component may be used to perform task assignment.

The <end-state> node defines the logical end of the business process. When execution reaches
this node, the process instance is destroyed.

Viewed with the process definition editor provided by JBossIDE, the process definition looks like this:

This document defines our business process as a graph of nodes. This is the simplest possible business
process: there is one task to be performed, and when that task is complete, the business process ends.

The first JavaBean handles the login screen, login.jsp. Here, it simply initializes the jBPM actor ID
with the actor component. In a real application, it would also need to authenticate the user.

Example 1.17. Login.java

@Name("login")
public class Login {

CHAPTER 1. SEAM TUTORIAL

33

Here we see the use of @In to inject the built-in Actor component.

The JSP itself is trivial:

Example 1.18. login.jsp

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.19. TodoList.java

 @In
 private Actor actor;

 private String user;

 public String getUser() {
 return user;
 }

 public void setUser(String user) {
 this.user = user;
 }

 public String login() {
 actor.setId(user);
 return "/todo.jsp";
 }
}

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>
<html>
 <head>
 <title>Login</title>
 </head>
 <body>
 <h1>Login</h1>
 <f:view>
 <h:form>
 <div>
 <h:inputText value="#{login.user}"/>
 <h:commandButton value="Login" action="#{login.login}"/>
 </div>
 </h:form>
 </f:view>
 </body>
</html>

@Name("todoList")
public class TodoList
{

Seam Reference Guide

34

The description property accepts user input from the JSP page, and exposes it to the process
definition, allowing the task description to be set.

The Seam @CreateProcess annotation creates a new jBPM process instance for the named
process definition.

The Seam @StartTask annotation starts work on a task. The @EndTask ends the task, and
allows the business process execution to resume.

In a more realistic example, @StartTask and @EndTask would not appear on the same method,
because some work would need to be done with the application in order to complete the task.

Finally, the core of the application is in todo.jsp:

Example 1.20. todo.jsp

 private String description;

 public String getDescription()
 {
 return description;
 }

 public void setDescription(String description)
 {
 this.description = description;
 }

 @CreateProcess(definition="todo")
 public void createTodo() {}

 @StartTask @EndTask
 public void done() {}

}

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>
<html>
 <head>
 <title>Todo List</title>
 </head>
 <body>
 <h1>Todo List</h1>
 <f:view>
 <h:form id="list">
 <div>

CHAPTER 1. SEAM TUTORIAL

35

 <h:outputText value="There are no todo items."
 rendered="#{empty taskInstanceList}"/>
 <h:dataTable value="#{taskInstanceList}" var="task"
 rendered="#{not empty taskInstanceList}">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Description"/>
 </f:facet>
 <h:inputText value="#{task.description}"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Created"/>
 </f:facet>
 <h:outputText value=
 "#
{task.taskMgmtInstance.processInstance.start}">
 <f:convertDateTime type="date"/>
 </h:outputText>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Priority"/>
 </f:facet>
 <h:inputText value="#{task.priority}" style="width: 30"/>
 </h:column>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Due Date"/>
 </f:facet>
 <h:inputText value="#{task.dueDate}" style="width: 100">
 <f:convertDateTime type="date" dateStyle="short"/>
 </h:inputText>
 </h:column>
 <h:column>
 <s:button value="Done" action="#{todoList.done}"
 taskInstance="#{task}"/>
 </h:column>
 </h:dataTable>
 </div>
 <div>
 <h:messages/>
 </div>
 <div>
 <h:commandButton value="Update Items" action="update"/>
 </div>
 </h:form>
 <h:form id="new">
 <div>
 <h:inputText value="#{todoList.description}"/>
 <h:commandButton value="Create New Item"
 action="#{todoList.createTodo}"/>
 </div>
 </h:form>

Seam Reference Guide

36

For simplicity's sake, we will look at this once section at a time.

The page renders a list of tasks, which it retrieves from a built-in Seam component named
taskInstanceList. The list is defined inside a JSF form.

Example 1.21. todo.jsp (taskInstanceList)

Each element of the list is an instance of the jBPM class TaskInstance. The following code displays
certain properties for every task in the list. Input controls are used for description, priority, and due date
to allow users to update these values.

Example 1.22. TaskInstance List Properties

 </f:view>
 </body>
</html>

<h:form id="list">
 <div>
 <h:outputText value="There are no todo items."
 rendered="#{empty taskInstanceList}"/>
 <h:dataTable value="#{taskInstanceList}" var="task"
 rendered="#{not empty taskInstanceList}">
 ...
 </h:dataTable>
 </div>
</h:form>

<h:column>
 <f:facet name="header">
 <h:outputText value="Description"/>
 </f:facet>
 <h:inputText value="#{task.description}"/>
</h:column>
<h:column>
 <f:facet name="header">
 <h:outputText value="Created"/>
 </f:facet>
 <h:outputText value="#{task.taskMgmtInstance.processInstance.start}">
 <f:convertDateTime type="date"/>
 </h:outputText>
</h:column>
<h:column>
 <f:facet name="header">
 <h:outputText value="Priority"/>
 </f:facet>
 <h:inputText value="#{task.priority}" style="width: 30"/>
</h:column>
<h:column>
 <f:facet name="header">
 <h:outputText value="Due Date"/>
 </f:facet>

CHAPTER 1. SEAM TUTORIAL

37

NOTE

Seam provides a default JSF date converter for converting a string into a date, so no
converter is necessary for the field bound to #{task.dueDate}.

This button ends the task by calling the action method annotated @StartTask @EndTask. It passes
the task ID to Seam as a request parameter:

Note that this uses a Seam <s:button> JSF control from the seam-ui.jar package. This button
updates the properties of the tasks. When the form is submitted, Seam and jBPM will make any changes
to the tasks persistent. There is no need for any action listener method:

A second form on the page creates new items with the action method annotated @CreateProcess.

1.4.2. How it works

After logging in, todo.jsp uses the taskInstanceList component to display a table of outstanding
todo items for the current user. (Initially there are none.) The page also displays a form to enter a new
task item. When the user types the todo item and clicks the Create New Item button, #
{todoList.createTodo} is called. This starts the todo process, as defined in todo.jpdl.xml.

When the process instance is created, it transitions immediately to the todo state, where a new task is
created. The task description is set based on the user input saved to #{todoList.description}.
The task is then assigned to the current user, stored in the seam actor component. In this example, the
process has no extra process state — all the state is stored in the task definition. The process and task
information is stored in the database at the end of the request.

 <h:inputText value="#{task.dueDate}" style="width: 100">
 <f:convertDateTime type="date" dateStyle="short"/>
 </h:inputText>
</h:column>

<h:column>
 <s:button value="Done" action="#{todoList.done}"
 taskInstance="#{task}"/>
</h:column>

 <h:commandButton value="Update Items" action="update"/>

 <h:form id="new">
 <div>
 <h:inputText value="#{todoList.description}"/>
 <h:commandButton value="Create New Item"
 action="#{todoList.createTodo}"/>
 </div>
</h:form>

Seam Reference Guide

38

When todo.jsp is redisplayed, taskInstanceList finds the newly-created task and displays it in an
h:dataTable. The internal state of the task is displayed in each column: #{task.description}, #
{task.priority}, #{task.dueDate}, etc. These fields can all be edited and saved to the database.

Each todo item also has a Done button, which calls #{todoList.done}. Each button specifies
taskInstance="#{task}" (the task for that particular row of the table) so that the todoList
component is able to distinctly identify which task is complete. The @StartTask and @EndTask
annotations activate and immediately complete the task. The original process then transitions into the
done state (according to the process definition) and ends. The state of the task and process are both
updated in the database.

When todo.jsp is displayed again, the completed task is no longer shown in the
taskInstanceList, since this component displays only incomplete tasks.

1.5. SEAM PAGEFLOW: THE NUMBERGUESS EXAMPLE

For Seam applications with freeform (ad hoc) navigation, JSF/Seam navigation rules are a good way to
define page flow. However, in applications with more constrained navigation styles, especially user
interfaces that are more stateful, navigation rules make understanding system flow difficult. Combining
information from view pages, actions, and navigation rules makes this flow easier to understand.

With Seam, jPDL process definition can be used to define pageflow, as seen in the number guessing
example that follows.

1.5.1. Understanding the code

The example uses one JavaBean, three JSP pages and a jPDL pageflow definition. We will start by
looking at the pageflow:

Example 1.23. pageflow.jpdl.xml

<pageflow-definition
 xmlns="http://jboss.com/products/seam/pageflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.com/products/seam/pageflow
 http://jboss.com/products/seam/pageflow-
2.2.xsd"
 name="numberGuess">

 <start-page name="displayGuess" view-id="/numberGuess.jspx">

CHAPTER 1. SEAM TUTORIAL

39

 <redirect/>
 <transition name="guess" to="evaluateGuess">

 <action expression="#{numberGuess.guess}"/>

 </transition>
 <transition name="giveup" to="giveup"/>
 <transition name="cheat" to="cheat"/>
 </start-page>

 <decision name="evaluateGuess" expression="#

{numberGuess.correctGuess}">
 <transition name="true" to="win"/>
 <transition name="false" to="evaluateRemainingGuesses"/>
 </decision>

 <decision name="evaluateRemainingGuesses" expression="#
{numberGuess.lastGuess}">
 <transition name="true" to="lose"/>
 <transition name="false" to="displayGuess"/>
 </decision>

 <page name="giveup" view-id="/giveup.jspx">
 <redirect/>
 <transition name="yes" to="lose"/>
 <transition name="no" to="displayGuess"/>
 </page>

 <process-state name="cheat">
 <sub-process name="cheat"/>
 <transition to="displayGuess"/>
 </process-state>

 <page name="win" view-id="/win.jspx">
 <redirect/>
 <end-conversation/>
 </page>

 <page name="lose" view-id="/lose.jspx">
 <redirect/>
 <end-conversation/>
 </page>

</pageflow-definition>

Seam Reference Guide

40

The <page> element defines a wait state where the system displays a particular JSF view and waits
for user input. The view-id is the same JSF view id used in plain JSF navigation rules. The
redirect attribute tells Seam to use post-then-redirect when navigating to the page. (This results
in friendly browser URLs.)

The <transition> element names a JSF outcome. The transition is triggered when a JSF action
results in that outcome. Execution will then proceed to the next node of the pageflow graph, after
invocation of any jBPM transition actions.

A transition <action> is just like a JSF action, except that it occurs when a jBPM transition occurs.
The transition action can invoke any Seam component.

A <decision> node branches the pageflow, and determines the next node to execute by
evaluating a JSF EL expression.

In the JBoss Developer Studio pageflow editor, the pageflow looks like this:

With that pageflow in mind, the rest of the application is much easier to understand.

Here is the main page of the application, numberGuess.jspx:

Example 1.24. numberGuess.jspx

<?xml version="1.0"?>

CHAPTER 1. SEAM TUTORIAL

41

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:s="http://jboss.com/products/seam/taglib"
 xmlns="http://www.w3.org/1999/xhtml"
 version="2.0">
 <jsp:output doctype-root-element="html"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system=
 "http://www.w3c.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd"/>
 <jsp:directive.page contentType="text/html"/>
 <html>
 <head>
 <title>Guess a number...</title>
 <link href="niceforms.css" rel="stylesheet" type="text/css" />
 <script language="javascript" type="text/javascript"
 src="niceforms.js" />
 </head>
 <body>
 <h1>Guess a number...</h1>
 <f:view>
 <h:form styleClass="niceform">

 <div>
 <h:messages globalOnly="true"/>
 <h:outputText value="Higher!"
 rendered="#{
 numberGuess.randomNumber gt
 numberGuess.currentGuess}"/>
 <h:outputText value="Lower!"
 rendered="#{
 numberGuess.randomNumber lt
 numberGuess.currentGuess}"/>
 </div>

 <div>
 I'm thinking of a number between
 <h:outputText value="#{numberGuess.smallest}"/> and
 <h:outputText value="#{numberGuess.biggest}"/>. You have
 <h:outputText value="#{numberGuess.remainingGuesses}"/>
 guesses.
 </div>

 <div>
 Your guess:
 <h:inputText value="#{numberGuess.currentGuess}"
 id="inputGuess" required="true" size="3"
 rendered="#{
 (numberGuess.biggest-
numberGuess.smallest) gt
 20}">
 <f:validateLongRange maximum="#{numberGuess.biggest}"
 minimum="#{numberGuess.smallest}"/>
 </h:inputText>
 <h:selectOneMenu value="#{numberGuess.currentGuess}"

Seam Reference Guide

42

Note that the command button names the guess transition instead of calling an action directly.

The win.jspx page is predictable:

Example 1.25. win.jspx

 id="selectGuessMenu" required="true"
 rendered="#{
 (numberGuess.biggest-
numberGuess.smallest) le
 20 and
 (numberGuess.biggest-
numberGuess.smallest) gt
 4}">
 <s:selectItems value="#{numberGuess.possibilities}"
 var="i" label="#{i}"/>
 </h:selectOneMenu>
 <h:selectOneRadio value="#{numberGuess.currentGuess}"
 id="selectGuessRadio"
 required="true"
 rendered="#{
 (numberGuess.biggest-
numberGuess.smallest) le
 4}">
 <s:selectItems value="#{numberGuess.possibilities}"
 var="i" label="#{i}"/>
 </h:selectOneRadio>
 <h:commandButton value="Guess" action="guess"/>
 <s:button value="Cheat" view="/confirm.jspx"/>
 <s:button value="Give up" action="giveup"/>
 </div>

 <div>
 <h:message for="inputGuess" style="color: red"/>
 </div>

 </h:form>
 </f:view>
 </body>
 </html>
</jsp:root>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns="http://www.w3.org/1999/xhtml"
 version="2.0">
 <jsp:output doctype-root-element="html"
 doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
 doctype-system="http://www.w3c.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd"/>
 <jsp:directive.page contentType="text/html"/>
 <html>
 <head>

CHAPTER 1. SEAM TUTORIAL

43

The lose.jspx is very similar, so we have not included it here.

Finally, the application code is as follows:

Example 1.26. NumberGuess.java

 <title>You won!</title>
 <link href="niceforms.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <h1>You won!</h1>
 <f:view>
 Yes, the answer was
 <h:outputText value="#{numberGuess.currentGuess}" />.
 It took you
 <h:outputText value="#{numberGuess.guessCount}" /> guesses.
 <h:outputText value="But you cheated, so it does not count!"
 rendered="#{numberGuess.cheat}"/>
 Would you like to play again?
 </f:view>
 </body>
 </html>
</jsp:root>

@Name("numberGuess")
@Scope(ScopeType.CONVERSATION)
public class NumberGuess implements Serializable {

 private int randomNumber;
 private Integer currentGuess;
 private int biggest;
 private int smallest;
 private int guessCount;
 private int maxGuesses;
 private boolean cheated;

 @Create
 public void begin()
 {
 randomNumber = new Random().nextInt(100);
 guessCount = 0;
 biggest = 100;
 smallest = 1;
 }

 public void setCurrentGuess(Integer guess)
 {
 this.currentGuess = guess;
 }

 public Integer getCurrentGuess()
 {
 return currentGuess;

Seam Reference Guide

44

 }

 public void guess()
 {
 if (currentGuess>randomNumber)
 {
 biggest = currentGuess - 1;
 }
 if (currentGuess<randomNumber)
 {
 smallest = currentGuess + 1;
 }
 guessCount ++;
 }

 public boolean isCorrectGuess()
 {
 return currentGuess==randomNumber;
 }

 public int getBiggest()
 {
 return biggest;
 }

 public int getSmallest()
 {
 return smallest;
 }

 public int getGuessCount()
 {
 return guessCount;
 }

 public boolean isLastGuess()
 {
 return guessCount==maxGuesses;
 }

 public int getRemainingGuesses() {
 return maxGuesses-guessCount;
 }

 public void setMaxGuesses(int maxGuesses) {
 this.maxGuesses = maxGuesses;
 }

 public int getMaxGuesses() {
 return maxGuesses;
 }

 public int getRandomNumber() {
 return randomNumber;
 }

CHAPTER 1. SEAM TUTORIAL

45

The first time a JSP page asks for a numberGuess component, Seam will create a new one for it,
and the @Create method will be invoked, allowing the component to initialize itself.

The pages.xml file starts a Seam conversation, and specifies the pageflow definition to use for the
conversation's page flow. Refer to Chapter 8, Conversations and workspace management for more
information.

Example 1.27. pages.xml

This component is pure business logic. Since it requires no information about the user interaction flow, it
is potentially more reuseable.

1.5.2. How it works

The game begins in the numberGuess.jspx view. When the page is first displayed, the pages.xml
configuration activates a conversation and associates it with the numberGuess pageflow. The pageflow
starts with a start-page tag (a wait state), so the numberGuess.xhtml is rendered.

The view references the numberGuess component, which causes a new instance to be created and
stored in the conversation. the @Create method is called, initializing the game's state. The view displays
an h:form, which allows the user to edit #{numberGuess.currentGuess}.

 public void cheated()
 {
 cheated = true;
 }

 public boolean isCheat() {
 return cheated;
 }

 public List<Integer> getPossibilities()
 {
 List<Integer> result = new ArrayList<Integer>();
 for(int i=smallest; i<=biggest; i++) result.add(i);
 return result;
 }

}

<?xml version="1.0" encoding="UTF-8"?>
<pages xmlns="http://jboss.com/products/seam/pages"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages-2.2.xsd">
 <page view-id="/numberGuess.jspx">
 <begin-conversation join="true" pageflow="numberGuess"/>
 </page>
</pages>

Seam Reference Guide

46

The "Guess" button triggers the guess action. Seam refers to the pageflow to handle the action, and the
pageflow invokes #{numberGuess.guess} (which updates the guess count and highest/lowest
suggestions in the numberGuess component), and transitions to the evaluateGuess state.

The evaluateGuess state checks the value of #{numberGuess.correctGuess} and transitions to
either the win or evaluatingRemainingGuesses state. Assuming the number was incorrect, the
pageflow transitions to evaluatingRemainingGuesses. This is also a decision state, which tests the
#{numberGuess.lastGuess} state to determine whether or not the user is allowed further guesses. If
further guesses are allowed (lastGuess is false), we transition back to the original displayGuess
state. Since this is a page state, the associated page /numberGuess.jspx is displayed. This page also
contains a redirect element, so Seam sends a redirect to the user's browser, which begins the process
again.

If on a future request either the win or the lose transition were invoked, the user would be taken to
/win.jspx or /lose.jspx respectively. Both states specify that Seam should end the conversation,
stop holding game and pageflow state, and redirect the user to the final page.

The numberguess example also contains Give up and Cheat buttons. The pageflow state for both
actions is relatively easy to trace, so we do not describe it here. Pay particular attention to the cheat
transition, which loads a sub-process to handle that particular flow. Although in this application this
process is superfluous, this demonstrates how complex pageflows can be broken down into smaller,
simpler structures to make them easier to understand.

1.6. A COMPLETE SEAM APPLICATION: THE HOTEL BOOKING
EXAMPLE

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following
features:

User registration

Login

Logout

Set password

Hotel search

Hotel selection

Room reservation

Reservation confirmation

Existing reservation list

CHAPTER 1. SEAM TUTORIAL

47

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view. There is also
a port of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you will notice about this application is that it is extremely robust. You can open
multiple windows, use the back and browser refresh buttons, and enter nonsensical data, but the
application is difficult to crash. Seam was designed to make building robust web applications
straightforward, so robustness that would previously be hand-coded comes naturally and automatically
with Seam.

As you browse the source code of the example application and learn how the application works, pay
particular attention to the way the declarative state management and integrated validation has been used
to achieve this robustness.

Seam Reference Guide

48

1.6.2. Overview of the booking example

The project structure here is identical to that of the previous project. To install and deploy this application,
refer to Section 1.1, “Using the Seam examples”. Once you have successfully started the application,
you can access it by pointing your browser to http://localhost:8080/seam-booking/

The application uses six session beans to implement the business logic for the following features:

AuthenticatorAction provides the log in authentication logic.

BookingListAction retrieves existing bookings for the currently logged in user.

ChangePasswordAction updates the password of the currently logged in user.

HotelBookingAction implements booking and confirmation functionality. This is implemented
as a conversation, so this is one of the more important classes in the application.

HotelSearchingAction implements the hotel search functionality.

RegisterAction registers a new system user.

Three entity beans implement the application's persistent domain model:

Hotel is an entity bean that represents a hotel

Booking is an entity bean that represents an existing booking

User is an entity bean representing a user who can make hotel bookings

1.6.3. Understanding Seam conversations

This tutorial concentrates upon one particular piece of functionality: placing a hotel reservation. From the
user's perspective, hotel search, selection, booking, and confirmation are one continuous unit of work —
a conversation. However, from our perspective, it is important that searching remains separate so that
users can select multiple hotels from the same search results page, and open distinct conversations in
separate browser tabs.

Most web application architectures do not have first class constructs to represent conversations, which
makes managing conversational state problematic. Java web applications generally use a combination of
several techniques. Some state is transferred in the URL, but what cannot be transferred here is either
added to the HttpSession or recorded to the database at the beginning and end of each request.

Since the database is the least-scalable tier, this drastically reduces scalability. The extra traffic to and
from the database also increases latency. In order to reduce redundant traffic, Java applications often
introduce a data cache to store commonly-accessed data between requests. However, since invalidation
is based upon an LRU policy, rather than whether the user has finished using the data, this cache is
inefficient. It is also shared between concurrent transactions, which introduces further issues associated
with keeping the cached state consistent with that of the database.

State held in the HttpSession suffers similar issues. The HttpSession is fine for storing true session
data — data common to all requests between user and application — but for data related to individual
request series, it does not work so well. Conversations stored here quickly break down when dealing
with multiple windows or the back button. Without careful programming, data in the HttpSession can
also grow quite large, which makes the session difficult to cluster. Developing mechanisms to deal with

CHAPTER 1. SEAM TUTORIAL

49

http://localhost:8080/seam-booking/

the problems these methods present (by isolating session state associated with distinct concurrent
conversations, and incorporating failsafes to ensure conversation state is destroyed when a conversation
is aborted) can be complicated.

Seam greatly improves conditions by introducing conversation context as a first class construct.
Conversation state is stored safely in this context, with a well-defined life cycle. Even better, there is no
need to push data continually between the application server and the database; the conversation context
is a natural cache for currently-used data.

In the following application, the conversation context is used to store stateful session beans. These are
sometimes regarded as detrimental to scalability, and in the past, they may have been. However,
modern application servers have sophisticated mechanisms for stateful session bean replication. JBoss
Enterprise Application Platform performs fine-grained replication, replicating only altered bean attribute
values. Used correctly, stateful session beans pose no scalability problems, but for those uncomfortable
or unfamiliar with the use of stateful session beans, Seam also allows the use of POJOs.

The booking example shows one way that stateful components with different scopes can collaborate to
achieve complex behaviors. The main page of the booking application allows the user to search for
hotels. Search results are stored in the Seam session scope. When the user navigate to a hotel, a
conversation begins, and a conversation scoped component retrieves the selected hotel from the session
scoped component.

The booking example also demonstrates the use of RichFaces Ajax to implement rich client behavior
without handwritten JavaScript.

The search function is implemented with a session-scoped stateful session bean, similar to the one used
in the message list example.

Example 1.28. HotelSearchingAction.java

@Stateful

@Name("hotelSearch")
@Scope(ScopeType.SESSION)
@Restrict("#{identity.loggedIn}")

public class HotelSearchingAction implements HotelSearching
{

 @PersistenceContext
 private EntityManager em;

 private String searchString;
 private int pageSize = 10;
 private int page;

 @DataModel

 private List<Hotel> hotels;

 public void find()
 {

Seam Reference Guide

50

 page = 0;
 queryHotels();
 }
 public void nextPage()
 {
 page++;
 queryHotels();
 }

 private void queryHotels()
 {
 hotels =
 em.createQuery("select h from Hotel h where lower(h.name)
like #{pattern} " +
 "or lower(h.city) like #{pattern} " +
 "or lower(h.zip) like #{pattern} " +
 "or lower(h.address) like #{pattern}")
 .setMaxResults(pageSize)
 .setFirstResult(page * pageSize)
 .getResultList();
 }

 public boolean isNextPageAvailable()
 {
 return hotels!=null && hotels.size()==pageSize;
 }

 public int getPageSize() {
 return pageSize;
 }

 public void setPageSize(int pageSize) {
 this.pageSize = pageSize;
 }

 @Factory(value="pattern", scope=ScopeType.EVENT)
 public String getSearchPattern()
 {
 return searchString==null ?
 "%" : '%' + searchString.toLowerCase().replace('*', '%') +
'%';
 }

 public String getSearchString()
 {
 return searchString;
 }

 public void setSearchString(String searchString)
 {
 this.searchString = searchString;
 }

 @Remove

CHAPTER 1. SEAM TUTORIAL

51

The EJB standard @Stateful annotation identifies this class as a stateful session bean. Stateful
session beans are scoped to the conversation context by default.

The @Restrict annotation applies a security restriction to the component. It restricts access to the
component allowing only logged-in users. The security chapter explains more about security in Seam.

The @DataModel annotation exposes a List as a JSF ListDataModel. This makes it easy to
implement clickable lists for search screens. In this case, the list of hotels is exposed to the page as a
ListDataModel in the conversation variable named hotels.

The EJB standard @Remove annotation specifies that a stateful session bean should be removed and
its state destroyed after invocation of the annotated method. In Seam, all stateful session beans must
define a parameterless method marked @Remove. This method will be called when Seam destroys
the session context.

The main page of the application is a Facelets page. The fragment that relates to searching for hotels is
shown below:

Example 1.29. main.xhtml

 public void destroy() {}
}

<div class="section">

 <h:messages globalOnly="true"/>

 <h1>Search Hotels</h1>

 <h:form id="searchCriteria">
 <fieldset>
 <h:inputText id="searchString" value="#
{hotelSearch.searchString}"
 style="width: 165px;">
 <a:support event="onkeyup" actionListener="#{hotelSearch.find}"

 reRender="searchResults" />
 </h:inputText>

 <a:commandButton id="findHotels" value="Find Hotels" action="#
{hotelSearch.find}"
 reRender="searchResults"/>

 <a:status>

Seam Reference Guide

52

 <f:facet name="start">
 <h:graphicImage value="/img/spinner.gif"/>
 </f:facet>
 </a:status>

 <h:outputLabel for="pageSize">Maximum
results:</h:outputLabel>
 <h:selectOneMenu value="#{hotelSearch.pageSize}" id="pageSize">
 <f:selectItem itemLabel="5" itemValue="5"/>
 <f:selectItem itemLabel="10" itemValue="10"/>
 <f:selectItem itemLabel="20" itemValue="20"/>
 </h:selectOneMenu>
 </fieldset>
 </h:form>

</div>

<a:outputPanel id="searchResults">

 <div class="section">
 <h:outputText value="No Hotels Found"
 rendered="#{hotels != null and hotels.rowCount==0}"/>
 <h:dataTable id="hotels" value="#{hotels}" var="hot"
 rendered="#{hotels.rowCount>0}">
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{hot.name}
 </h:column>
 <h:column>
 <f:facet name="header">Address</f:facet>
 #{hot.address}
 </h:column>
 <h:column>
 <f:facet name="header">City, State</f:facet>
 #{hot.city}, #{hot.state}, #{hot.country}
 </h:column>
 <h:column>
 <f:facet name="header">Zip</f:facet>
 #{hot.zip}
 </h:column>
 <h:column>
 <f:facet name="header">Action</f:facet>
 <s:link id="viewHotel" value="View Hotel"

 action="#{hotelBooking.selectHotel(hot)}"/>
 </h:column>
 </h:dataTable>
 <s:link value="More results" action="#{hotelSearch.nextPage}"
 rendered="#{hotelSearch.nextPageAvailable}"/>
 </div>
</a:outputPanel>

CHAPTER 1. SEAM TUTORIAL

53

The RichFaces Ajax <a:support> tag allows a JSF action event listener to be called by
asynchronous XMLHttpRequest when a JavaScript event like onkeyup occurs. Even better, the
reRender attribute lets us render a fragment of the JSF page and perform a partial page update
when the asynchronous response is received.

The RichFaces Ajax <a:status> tag lets us display an animated image while we wait for
asynchronous requests to return.

The RichFaces Ajax <a:outputPanel> tag defines a region of the page which can be re-rendered
by an asynchronous request.

The Seam <s:link> tag lets us attach a JSF action listener to an ordinary (non-JavaScript) HTML
link. The advantage of this over the standard JSF <h:commandLink> is that it preserves the
operation of "open in new window" and "open in new tab". Also notice that we use a method binding
with a parameter: #{hotelBooking.selectHotel(hot)}. This is not possible in the
standard Unified EL, but Seam provides an extension to the EL that lets you use parameters on any
method binding expression.

If you are wondering how navigation occurs, you can find all the rules in WEB-INF/pages.xml;
this is discussed in Section 7.7, “Navigation”.

This page displays search results dynamically as the user types, and passes a selected hotel to the
selectHotel() method of HotelBookingAction, where the real work occurs.

The following code shows how the booking example application uses a conversation-scoped stateful
session bean to achieve a natural cache of persistent data related to the conversation. Think of the code
as a list of scripted actions that implement the various steps of the conversation.

Example 1.30. HotelBookingAction.java

@Stateful
@Name("hotelBooking")
@Restrict("#{identity.loggedIn}")
public class HotelBookingAction implements HotelBooking
{

 @PersistenceContext(type=EXTENDED)

 private EntityManager em;

 @In
 private User user;

 @In(required=false) @Out
 private Hotel hotel;

 @In(required=false)
 @Out(required=false)

 private Booking booking;

Seam Reference Guide

54

 @In
 private FacesMessages facesMessages;

 @In
 private Events events;

 @Logger
 private Log log;

 private boolean bookingValid;

 @Begin

 public void selectHotel(Hotel selectedHotel)
 {
 hotel = em.merge(selectedHotel);
 }

 public void bookHotel()
 {
 booking = new Booking(hotel, user);
 Calendar calendar = Calendar.getInstance();
 booking.setCheckinDate(calendar.getTime());
 calendar.add(Calendar.DAY_OF_MONTH, 1);
 booking.setCheckoutDate(calendar.getTime());
 }

 public void setBookingDetails()
 {
 Calendar calendar = Calendar.getInstance();
 calendar.add(Calendar.DAY_OF_MONTH, -1);
 if (booking.getCheckinDate().before(calendar.getTime()))
 {
 facesMessages.addToControl("checkinDate",
 "Check in date must be a
future date");
 bookingValid=false;
 }
 else if (!booking.getCheckinDate().before(
booking.getCheckoutDate()))
 {
 facesMessages.addToControl("checkoutDate",
 "Check out date must be
later " +
 "than check in date");
 bookingValid=false;
 }
 else
 {
 bookingValid=true;
 }
 }

 public boolean isBookingValid()

CHAPTER 1. SEAM TUTORIAL

55

This bean uses an EJB3 extended persistence context, so that any entity instances remain managed
for the whole life cycle of the stateful session bean.

The @Out annotation declares that an attribute value is outjected to a context variable after method
invocations. In this case, the context variable named hotel will be set to the value of the hotel
instance variable after every action listener invocation completes.

The @Begin annotation specifies that the annotated method begins a long-running conversation, so
the current conversation context will not be destroyed at the end of the request. Instead, it will be
reassociated with every request from the current window, and destroyed either by timeout due to
conversation inactivity or invocation of a matching @End method.

The @End annotation specifies that the annotated method ends the current long-running conversation,
so the current conversation context will be destroyed at the end of the request.

This EJB remove method will be called when Seam destroys the conversation context. Do not forget
to define this method!

HotelBookingAction contains all the action listener methods that implement selection, booking and
booking confirmation, and holds state related to this work in its instance variables. This code is much
cleaner and simpler than getting and setting HttpSession attributes.

Even better, a user can have multiple isolated conversations per log in session. Log in, run a search, and
navigate to different hotel pages in multiple browser tabs. You'll be able to work on creating two different
hotel reservations at the same time. If you leave any one conversation inactive for long enough, Seam

 {
 return bookingValid;
 }

 @End

 public void confirm()
 {
 em.persist(booking);
 facesMessages.add("Thank you, #{user.name}, your confimation
number " +
 " for #{hotel.name} is #{booki g.id}");
 log.info("New booking: #{booking.id} for #{user.username}");
 events.raiseTransactionSuccessEvent("bookingConfirmed");
 }

 @End
 public void cancel() {}

 @Remove

 public void destroy() {}
}

Seam Reference Guide

56

will eventually time out that conversation and destroy its state. If, after ending a conversation, you
backtrack to a page of that conversation and try to perform an action, Seam will detect that the
conversation was already ended, and redirect you to the search page.

1.6.4. The Seam Debug Page

The WAR also includes seam-debug.jar. To make the Seam debug page available, deploy this jar in
WEB-INF/lib alongside Facelets, and set the debug property of the init component as shown here:

The debug page lets you browse and inspect the Seam components in any of the Seam contexts
associated with your current log in session. Just point your browser at
http://localhost:8080/seam-booking/debug.seam .

1.7. NESTED CONVERSATIONS: EXTENDING THE HOTEL BOOKING
EXAMPLE

<core:init jndi-pattern="@jndiPattern@" debug="true"/>

CHAPTER 1. SEAM TUTORIAL

57

http://localhost:8080/seam-booking/debug.seam

1.7.1. Introduction

Long-running conversations let you easily maintain state consistency in an application, even in the face
of multi-window operation and back-buttoning. Unfortunately, simply beginning and ending a long-
running conversation is not always enough. Depending on the requirements of the application,
inconsistencies between user expectations and application state can still result.

The nested booking application extends the features of the hotel booking application to incorporate room
selection. Each hotel has a list of available rooms from which the user can select. This requires the
addition of a room selection page in the hotel reservation flow.

The user can now select any available room to be included in the booking. If room selection were left in
the same conversation context, this could lead to issues with state consistency — if a conversation
variable changes, it affects all windows operating within the same conversation context.

For example, suppose the user clones the room selection screen in a new window. The user then selects
the Wonderful Room and proceeds to the confirmation screen. To check the cost of a more expensive
room, the user returns to the original window, selects the Fantastic Suite for booking, and again proceeds

Seam Reference Guide

58

to confirmation. After reviewing the total cost, the user returns to the window showing Wonderful Room to
confirm.

In this scenario, if all state were stored in the conversation, flexibility for multi-window operation within
the same conversation would be limited. Nested conversations allow us to achieve correct behavior even
when context can vary within the same conversation.

1.7.2. Understanding Nested Conversations

The following code shows the behavior of the hotel booking application with intended behavior for nested
conversations. Again, think of the code as a set of steps to be read in sequence.

Example 1.31. RoomPreferenceAction.java

@Stateful
@Name("roomPreference")
@Restrict("#{identity.loggedIn}")
public class RoomPreferenceAction implements RoomPreference
{

 @Logger
 private Log log;

 @In private Hotel hotel;

 @In private Booking booking;

 @DataModel(value="availableRooms")
 private List<Room> availableRooms;

 @DataModelSelection(value="availableRooms")
 private Room roomSelection;

 @In(required=false, value="roomSelection")
 @Out(required=false, value="roomSelection")
 private Room room;

 @Factory("availableRooms")
 public void loadAvailableRooms()
 {
 availableRooms =
hotel.getAvailableRooms(booking.getCheckinDate(),

booking.getCheckoutDate());
 log.info("Retrieved #0 available rooms",
availableRooms.size());
 }

 public BigDecimal getExpectedPrice()
 {
 log.info("Retrieving price for room #0",
roomSelection.getName());

CHAPTER 1. SEAM TUTORIAL

59

The hotel instance is injected from the conversation context. The hotel is loaded through an
extended persistence context so that the entity remains managed throughout the conversation. This
allows us to lazily load the availableRooms through an @Factory method by simply walking the
association.

When @Begin(nested=true) is encountered, a nested conversation is pushed onto the
conversation stack. When executing within a nested conversation, components still have access to all
outer conversation state, but setting any values in the nested conversation’s state container does not
affect the outer conversation. In addition, nested conversations can exist concurrently stacked on the
same outer conversation, allowing independent state for each.

 return booking.getTotal(roomSelection);
 }

 @Begin(nested=true)

 public String selectPreference()
 {
 log.info("Room selected");

 this.room = this.roomSelection;

 return "payment";
 }

 public String requestConfirmation()
 {
 // all validations are performed through the s:validateAll, so
checks are
 // already performed
 log.info("Request confirmation from user");

 return "confirm";
 }

 @End(beforeRedirect=true)

 public String cancel()
 {
 log.info("ending conversation");

 return "cancel";
 }

 @Destroy @Remove
 public void destroy() {}
}

Seam Reference Guide

60

The roomSelection is outjected to the conversation based on the @DataModelSelection.
Note that because the nested conversation has an independent context, the roomSelection is
only set into the new nested conversation. Should the user select a different preference in another
window or tab a new nested conversation would be started.

The @End annotation pops the conversation stack and resumes the outer conversation. The
roomSelection is destroyed along with the conversation context.

When we begin a nested conversation, it is pushed onto the conversation stack. In the nestedbooking
example, the conversation stack consists of the external long-running conversation (the booking) and
each of the nested conversations (room selections).

Example 1.32. rooms.xhtml

<div class="section">
 <h1>Room Preference</h1>
</div>

<div class="section">
 <h:form id="room_selections_form">
 <div class="section">
 <h:outputText styleClass="output"
 value="No rooms available for the dates selected: "
 rendered="#{availableRooms != null and availableRooms.rowCount
== 0}"/>
 <h:outputText styleClass="output"
 value="Rooms available for the dates selected: "
 rendered="#{availableRooms != null and availableRooms.rowCount
> 0}"/>

 <h:outputText styleClass="output" value="#
{booking.checkinDate}"/>
 <h:outputText styleClass="output" value="#
{booking.checkoutDate}"/>

 <h:dataTable value="#{availableRooms}" var="room"

 rendered="#{availableRooms.rowCount > 0}">
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{room.name}
 </h:column>
 <h:column>
 <f:facet name="header">Description</f:facet>
 #{room.description}
 </h:column>
 <h:column>
 <f:facet name="header">Per Night</f:facet>
 <h:outputText value="#{room.price}">

CHAPTER 1. SEAM TUTORIAL

61

When requested from EL, the #{availableRooms} are loaded by the @Factory method
defined in RoomPreferenceAction. The @Factory method will only be executed once to load
the values into the current context as a @DataModel instance.

Invoking the #{roomPreference.selectPreference} action results in the row being
selected and set into the @DataModelSelection. This value is then outjected to the nested
conversation context.

Revising the dates simply returns to the /book.xhtml. Note that we have not yet nested a
conversation (no room preference has been selected), so the current conversation can simply be
resumed. The <s:button> component simply propagates the current conversation when displaying
the /book.xhtml view.

Now that you have seen how to nest a conversation, the following code shows how we can confirm the
booking of a selected room by extending the behavior of the HotelBookingAction.

Example 1.33. HotelBookingAction.java

 <f:convertNumber type="currency" currencySymbol="$"/>
 </h:outputText>
 </h:column>
 <h:column>
 <f:facet name="header">Action</f:facet>
 <h:commandLink id="selectRoomPreference"
 action="#

{roomPreference.selectPreference}">Select</h:commandLink>
 </h:column>
 </h:dataTable>
 </div>
 <div class="entry">
 <div class="label"> </div>
 <div class="input">
 <s:button id="cancel" value="Revise Dates" view="/book.xhtml"/>

 </div>
 </div>
 </h:form>
</div>

@Stateful
@Name("hotelBooking")
@Restrict("#{identity.loggedIn}")
public class HotelBookingAction implements HotelBooking
{

 @PersistenceContext(type=EXTENDED)
 private EntityManager em;

 @In
 private User user;

Seam Reference Guide

62

 @In(required=false) @Out
 private Hotel hotel;

 @In(required=false)
 @Out(required=false)
 private Booking booking;

 @In(required=false)
 private Room roomSelection;

 @In
 private FacesMessages facesMessages;

 @In
 private Events events;

 @Logger
 private Log log;

 @Begin
 public void selectHotel(Hotel selectedHotel)
 {
 log.info("Selected hotel #0", selectedHotel.getName());
 hotel = em.merge(selectedHotel);
 }

 public String setBookingDates()
 {
 // the result will indicate whether or not to begin the nested
conversation
 // as well as the navigation. if a null result is returned, the
nested
 // conversation will not begin, and the user will be returned to
the current
 // page to fix validation issues
 String result = null;

 Calendar calendar = Calendar.getInstance();
 calendar.add(Calendar.DAY_OF_MONTH, -1);

 // validate what we have received from the user so far
 if (booking.getCheckinDate().before(calendar.getTime()))
 {
 facesMessages.addToControl("checkinDate",
 "Check in date must be a future
date");
 }
 else if (!booking.getCheckinDate().before(
booking.getCheckoutDate()))
 {
 facesMessages.addToControl("checkoutDate",
 "Check out date must be later than
check in date");
 }
 else

CHAPTER 1. SEAM TUTORIAL

63

Annotating an action with @End(root=true) ends the root conversation which effectively destroys
the entire conversation stack. When any conversation is ended, its nested conversations are ended as
well. As the root is the conversation that started it all, this is a simple way to destroy and release all
state associated with a workspace once the booking is confirmed.

The roomSelection is only associated with the booking on user confirmation. While outjecting
values to the nested conversation context will not impact the outer conversation, any objects injected
from the outer conversation are injected by reference. This means that any changing to these objects
will be reflected in the parent conversation as well as other concurrent nested conversations.

 {
 result = "rooms";
 }

 return result;
 }

 public void bookHotel()
 {
 booking = new Booking(hotel, user);
 Calendar calendar = Calendar.getInstance();
 booking.setCheckinDate(calendar.getTime());
 calendar.add(Calendar.DAY_OF_MONTH, 1);
 booking.setCheckoutDate(calendar.getTime());
 }

 @End(root=true)

 public void confirm()
 {
 // on confirmation we set the room preference in the booking. the
room preference
 // will be injected based on the nested conversation we are in.
 booking.setRoomPreference(roomSelection);

 em.persist(booking);
 facesMessages.add("Thank you, #{user.name}, your confimation
number" +
 " for #{hotel.name} is #{booking.id}");
 log.info("New booking: #{booking.id} for #{user.username}");
 events.raiseTransactionSuccessEvent("bookingConfirmed");
 }

 @End(root=true, beforeRedirect=true)

 public void cancel() {}

 @Destroy @Remove
 public void destroy() {}
}

Seam Reference Guide

64

By simply annotating the cancellation action with @End(root=true,
beforeRedirect=true) we can easily destroy and release all state associated with the
workspace prior to redirecting the user back to the hotel selection view.

Feel free to deploy the application and test it yourself. Open many windows or tabs, and attempt
combinations of various hotel and room preferences. Confirming a booking will always result in the
correct hotel and room preference with the nested conversation model.

1.8. A COMPLETE APPLICATION FEATURING SEAM AND JBPM: THE
DVD STORE EXAMPLE

The DVD Store demo application shows the practical usage of jBPM for both task management and
pageflow.

The user screens take advantage of a jPDL pageflow to implement search and shopping cart
functionality.

The administration screens use jBPM to manage the approval and shipping cycle for orders. The
business process can even be changed dynamically by selecting a different process definition.

CHAPTER 1. SEAM TUTORIAL

65

The Seam DVD Store demo can be run from the dvdstore directory, as with previous applications.

1.9. BOOKMARKABLE URLS WITH THE BLOG EXAMPLE

Seam makes it easy to implement applications which keep state on the server side. However, server-
side state is not always appropriate, particularly for functionality that serves up content. For this,
application state is often stored as part of the URL, so that any page can be accessed through a
bookmark at any time. The blog example shows how to implement an application that supports
bookmarking throughout, even on the search results page. This example demonstrates Seam's
management of application state in the URL.

Seam Reference Guide

66

The blog example demonstrates the use of "pull"-style model view control (MVC), where the view pulls
data from components as it is being rendered rather than using action listener methods to retrieve and
prepare data for the view.

1.9.1. Using "pull"-style MVC

This snippet from the index.xhtml facelets page displays a list of recent blog entries:

<h:dataTable value="#{blog.recentBlogEntries}" var="blogEntry" rows="3">
 <h:column>
 <div class="blogEntry">
 <h3>#{blogEntry.title}</h3>
 <div>
 <s:formattedText value="#{blogEntry.excerpt==null ?
 blogEntry.body : blogEntry.excerpt}"/>
 </div>
 <p>
 <s:link view="/entry.xhtml" rendered="#{blogEntry.excerpt!=null}"
 propagation="none" value="Read more...">
 <f:param name="blogEntryId" value="#{blogEntry.id}"/>
 </s:link>
 </p>
 <p>
 [Posted on

CHAPTER 1. SEAM TUTORIAL

67

If we navigate to this page from a bookmark, the #{blog.recentBlogEntries} data used by the
<h:dataTable> is retrieved lazily — "pulled" — when required, by a Seam component named blog.
This flow of control is the reverse of that used in traditional action-based web frameworks like Struts.

Example 1.34.

This component uses a seam-managed persistence context . Unlike the other examples we've seen,
this persistence context is managed by Seam, instead of by the EJB3 container. The persistence
context spans the entire web request, allowing us to avoid any exceptions that occur when accessing
unfetched associations in the view.

The @Unwrap annotation tells Seam to provide the return value of the method — the Blog —
instead of the actual BlogService component to clients. This is the Seam manager component
pattern.

This will store basic view content, but to bookmark form submission results like a search results page,
there are several other required definitions.

 <h:outputText value="#{blogEntry.date}">
 <f:convertDateTime timeZone="#{blog.timeZone}"
 locale="#{blog.locale}" type="both"/>
 </h:outputText>]

 <s:link view="/entry.xhtml" propagation="none" value="[Link]">
 <f:param name="blogEntryId" value="#{blogEntry.id}"/>
 </s:link>
 </p>
 </div>
 </h:column>
</h:dataTable>

 @Name("blog")
@Scope(ScopeType.STATELESS)
@AutoCreate
public class BlogService
{
 @In EntityManager entityManager;

 @Unwrap

 public Blog getBlog()
 {
 return (Blog) entityManager.createQuery("select distinct b from
Blog b left join fetch b.blogEntries")
 .setHint("org.hibernate.cacheable", true)
 .getSingleResult();
 }
}

Seam Reference Guide

68

1.9.2. Bookmarkable search results page

The blog example has a small form at the top right of each page that allows the user to search for blog
entries. This is defined in menu.xhtml, which is included by the Facelets template template.xhtml:

To implement a bookmarkable search results page, after the search form submission is processed, we
must perform a browser redirect. Because the JSF view ID is used as the action outcome, Seam
automatically redirects to the view ID when the form is submitted. We could also have defined a
navigation rule as follows:

In that case, the form would have looked like this:

However, to get a bookmarkable URL like http://localhost:8080/seam-blog/search/, the
values submitted with the form must be included in the URL. There is no easy way to do this with JSF,
but with Seam, only two features are required: page parameters and URL rewriting. Both are defined
here in WEB-INF/pages.xml:

<div id="search">
 <h:form>
 <h:inputText value="#{searchAction.searchPattern}"/>
 <h:commandButton value="Search" action="/search.xhtml"/>
 </h:form>
</div>

<navigation-rule>
 <navigation-case>
 <from-outcome>searchResults</from-outcome>
 <to-view-id>/search.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

<div id="search">
 <h:form>
 <h:inputText value="#{searchAction.searchPattern}"/>
 <h:commandButton value="Search" action="searchResults"/>
 </h:form>
</div>

 <pages>
 <page view-id="/search.xhtml">
 <rewrite pattern="/search/{searchPattern}"/>
 <rewrite pattern="/search"/>

 <param name="searchPattern" value="#{searchService.searchPattern}"/>

 </page>
 ...
</pages>

CHAPTER 1. SEAM TUTORIAL

69

The page parameter instructs Seam to link the searchPattern request parameter to the value held by
#{searchService.searchPattern}, whenever the search page is requested, and whenever a link
to the search page is generated. Seam takes responsibility for maintaining the link between URL state
and application state.

The URL for a search on the term book would ordinarily be http://localhost:8080/seam-
blog/seam/search.xhtml?searchPattern=book. Seam can simplify this URL by using a rewrite
rule. The first rewrite rule, for the pattern /search/{searchPattern}, states that whenever a URL for
search.xhtml contains a searchPattern request parameter, that URL can be compressed into a simplified
URL. So, the earlier URL (http://localhost:8080/seam-blog/seam/search.xhtml?
searchPattern= book) can instead be written as http://localhost:8080/seam-
blog/search/book.

As with page parameters, rewriting URLs is bidirectional. This means that Seam forwards requests for
the simplified URL to the correct view, and it automatically generates the simplified view — users need
not construct URLs. The entire process is handled transparently. The only requirement for rewriting
URLs is to enable the rewrite filter in components.xml:

The redirect takes us to the search.xhtml page:

Again, this uses "pull"-style MVC to retrieve the search results with Hibernate Search.

<web:rewrite-filter view-mapping="/seam/*" />

<h:dataTable value="#{searchResults}" var="blogEntry">
 <h:column>
 <div>
 <s:link view="/entry.xhtml" propagation="none"
 value="#{blogEntry.title}">
 <f:param name="blogEntryId" value="#{blogEntry.id}"/>
 </s:link>
 posted on
 <h:outputText value="#{blogEntry.date}">
 <f:convertDateTime timeZone="#{blog.timeZone}"
 locale="#{blog.locale}" type="both"/>
 </h:outputText>
 </div>
 </h:column>
</h:dataTable>

@Name("searchService")
public class SearchService {

 @In
 private FullTextEntityManager entityManager;

 private String searchPattern;

 @Factory("searchResults")
 public List<BlogEntry> getSearchResults() {
 if (searchPattern==null || "".equals(searchPattern))
 {
 searchPattern = null;
 return entityManager.createQuery(
 "select be from BlogEntry be order by date desc"

Seam Reference Guide

70

1.9.3. Using "push"-style MVC in a RESTful application

Push-style MVC is sometimes used to process RESTful pages, so Seam provides the notion of a page
action. The blog example uses a page action for the blog entry page, entry.xhtml.

NOTE

We use push-style for the sake of an example, but this particular function would be
simpler to implement with pull-style MVC.

The entryAction component works much like an action class in a traditional push-MVC action-
oriented framework like Struts.

).getResultList();
 }
 else
 {
 Map<String,Float> boostPerField = new HashMap<String,Float>();
 boostPerField.put("title", 4f);
 boostPerField.put("body", 1f);
 String[] productFields = {"title", "body"};
 QueryParser parser = new MultiFieldQueryParser(productFields,
 new StandardAnalyzer(), boostPerField);
 parser.setAllowLeadingWildcard(true);
 org.apache.lucene.search.Query luceneQuery;
 try
 {
 luceneQuery = parser.parse(searchPattern);
 }
 catch (ParseException e)
 {
 return null;
 }

 return entityManager
 .createFullTextQuery(luceneQuery, BlogEntry.class)
 .setMaxResults(100)
 .getResultList();
 }
 }

 public String getSearchPattern()
 {
 return searchPattern;
 }

 public void setSearchPattern(String searchPattern)
 {
 this.searchPattern = searchPattern;
 }

}

@Name("entryAction")

CHAPTER 1. SEAM TUTORIAL

71

Page actions are also declared in pages.xml:

NOTE

Note that the example uses page actions for post validation and the pageview counter.
Also note the use of a parameter in the page action method binding. This is not a standard
JSF EL feature, but Seam allows it both here and in JSF method bindings.

@Scope(STATELESS)
public class EntryAction
{
 @In Blog blog;

 @Out BlogEntry blogEntry;

 public void loadBlogEntry(String id) throws EntryNotFoundException {
 blogEntry = blog.getBlogEntry(id);
 if (blogEntry==null) throw new EntryNotFoundException(id);
 }

}

<pages>
 ...

 <page view-id="/entry.xhtml">
 <rewrite pattern="/entry/{blogEntryId}" />
 <rewrite pattern="/entry" />

 <param name="blogEntryId"
 value="#{blogEntry.id}"/>

 <action execute="#{entryAction.loadBlogEntry(blogEntry.id)}"/>
 </page>

 <page view-id="/post.xhtml" login-required="true">
 <rewrite pattern="/post" />

 <action execute="#{postAction.post}"
 if="#{validation.succeeded}"/>

 <action execute="#{postAction.invalid}"
 if="#{validation.failed}"/>

 <navigation from-action="#{postAction.post}">
 <redirect view-id="/index.xhtml"/>
 </navigation>
 </page>

 <page view-id="*">
 <action execute="#{blog.hitCount.hit}"/>
 </page>

</pages>

Seam Reference Guide

72

When the entry.xhtml page is requested, Seam first binds the blogEntryId page parameter to the
model. Remember that, because of URL rewriting, the blogEntryId parameter name won't appear in the
URL. Seam then runs the page action, which retrieves the required data — the blogEntry — and
places it in the Seam event context. Finally, it renders the following:

If the blog entry is not found in the database, the EntryNotFoundException exception is thrown. We
want this exception to result in a 404 error, not a 505, so we annotate the exception class:

An alternative implementation of the example does not use the parameter in the method binding:

<div class="blogEntry">
 <h3>#{blogEntry.title}</h3>
 <div>
 <s:formattedText value="#{blogEntry.body}"/>
 </div>
 <p>
 [Posted on
 <h:outputText value="#{blogEntry.date}">
 <f:convertDateTime timeZone="#{blog.timeZone}" locale="#
{blog.locale}" type="both"/>
 </h:outputText>]
 </p>
</div>

@ApplicationException(rollback=true)
@HttpError(errorCode=HttpServletResponse.SC_NOT_FOUND)
public class EntryNotFoundException extends Exception {
 EntryNotFoundException(String id) {
 super("entry not found: " + id);
 }
}

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction {
 @In(create=true)
 private Blog blog;

 @In @Out
 private BlogEntry blogEntry;

 public void loadBlogEntry() throws EntryNotFoundException {
 blogEntry = blog.getBlogEntry(blogEntry.getId());
 if (blogEntry==null) throw new EntryNotFoundException(id);
 }
}

<pages>
 ...
 <page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry}">
 <param name="blogEntryId" value="#{blogEntry.id}"/>
</page>
 ...
</pages>

CHAPTER 1. SEAM TUTORIAL

73

The implementation used depends entirely upon personal preference.

The blog example also demonstrates very simple password authentication, posting to the blog, page
fragment caching and atom feed generation.

Seam Reference Guide

74

CHAPTER 2. MIGRATION
If you already have a previous version of Seam installed, you will need to follow the instructions in this
chapter to migrate to latest version (2.2.0), which is available with the JBoss Enterprise Application
Platform.

If you are already using Seam 2.0, you can skip directly to Section 2.2, “Migrating from Seam 2.0 to
Seam 2.1 or 2.2”. If you are currently using Seam 1.2.x, follow the instructions in both Section 2.1,
“Migrating from Seam 1.2.x to Seam 2.0” and Section 2.2, “Migrating from Seam 2.0 to Seam 2.1 or 2.2”.

2.1. MIGRATING FROM SEAM 1.2.X TO SEAM 2.0

In this section, we show you how to migrate from Seam 1.2.x to Seam 2.0. We also list the changes to
Seam components between versions.

2.1.1. Migrating to JavaServer Faces 1.2

Seam 2.0 requires JSF 1.2 to work correctly. We recommend Sun's JSF Reference Implementation (RI),
which ships with most Java EE 5 application servers, including JBoss 4.2. To switch to the JSF RI, you
will need to make the following changes to your web.xml:

Remove the MyFaces StartupServletContextListener.

Remove the AJAX4JSF filter, mappings, and org.ajax4jsf.VIEW_HANDLERS context
parameter.

Rename org.jboss.seam.web.SeamFilter as
org.jboss.seam.servlet.SeamFilter.

Rename org.jboss.seam.servlet.ResourceServlet as
org.jboss.seam.servlet.SeamResourceServlet.

Change the web-app version from 2.4 to 2.5. In the namespace URL, change j2ee to
javaee. For example:

As of Seam 1.2, you can declare SeamFilter in web.xml instead of explicitly declaring
SeamExceptionFilter and SeamRedirectFilter in web.xml.

Client-side state saving is not required with the JSF RI, and can be removed. (Client-side state saving is
defined by the javax.faces.STATE_SAVING_METHOD context parameter.

You will also need to make the following changes to faces-config.xml:

Remove the TransactionalSeamPhaseListener or SeamPhaseListener declaration, if in
use.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5">
 ...
</web-app>

CHAPTER 2. MIGRATION

75

Remove the SeamELResolver declaration, if in use.

Change the SeamFaceletViewHandler declaration to the standard
com.sun.facelets.FaceletViewHandler, and ensure it is enabled.

Remove the Document Type Declaration (DTD) from the document and add the XML Schema
declarations to the <faces-config> root tag, like so:

2.1.2. Code Migration

Seam's built-in components have been reorganized to make them easier to learn and to isolate particular
technology dependencies into specific packages.

Persistence-related components have been moved to org.jboss.seam.persistence.

jBPM-related components have been moved to org.jboss.seam.bpm.

JSF-related components, most notably org.jboss.seam.faces.FacesMessages, have
been moved to org.jboss.seam.faces.

Servlet-related components have been moved to org.jboss.seam.web.

Components related to asynchronicity have been moved to org.jboss.seam.async.

Internationalization-related components have been moved to
org.jboss.seam.international.

The Pageflow component has been moved to org.jboss.seam.pageflow.

The Pages component has been moved to org.jboss.seam.navigation.

Any code that depends upon these APIs will need to be altered to reflect the new Java package names.

Annotations have also been reorganized:

BPM-related annotations are now included in the org.jboss.seam.annotations.bpm
package.

JSF-related annotations are now included in the org.jboss.seam.annotations.faces
package.

Interceptor annotations are now included in the org.jboss.seam.annotations.intercept
package.

Annotations related to asynchronicity are now included in the
org.jboss.seam.annotations.async package.

<faces-config version="1.2"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd">
 ...
</faces-config>

Seam Reference Guide

76

@RequestParameter is now included in the org.jboss.seam.annotations.web package.

@WebRemote is now included in the org.jboss.seam.annotations.remoting package.

@Restrict is now included in the org.jboss.seam.annotations.security package.

Exception handling annotations are now included in the
org.jboss.seam.annotations.exception package.

Use @BypassInterceptors instead of @Intercept(NEVER).

2.1.3. Migrating components.xml

The new packaging system outlined in the previous section means that you must update
components.xml with the new schemas and namespaces.

Namespaces originally took the form org.jboss.seam.foobar. The new namespace format is
http://jboss.com/products/seam/foobar, and the schema is of the form
http://jboss.com/products/seam/foobar-2.0.xsd. You will need to update the format of the
namespaces and schemas in your components.xml file so that the URLs correspond to the version of
Seam that you wish to migrate to (2.0 or 2.1).

The following declarations must have their locations corrected, or be removed entirely:

Replace <core:managed-persistence-context> with <persistence:managed-
persistence-context> .

Replace <core:entity-manager-factory> with <persistence:entity-manager-
factory> .

Remove conversation-is-long-running parameter from <core:manager/>
element.

Remove <core:ejb/> .

Remove <core:microcontainer/> .

Replace <core:transaction-listener/> with <transaction:ejb-
transaction/> .

Replace <core:resource-bundle/> with <core:resource-loader/> .

Example 2.1. components.xml Notes

Seam transaction management is now enabled by default. It is now controlled by components.xml
instead of a JSF phase listener declaration in faces-config.xml. To disable Seam-managed
transactions, use the following:

The expression attribute on event actions has been deprecated in favor of execute. For
example:

<core:init transaction-management-enabled="false"/>

<event type="org.jboss.seam.security.notLoggedIn">

CHAPTER 2. MIGRATION

77

In Seam 2.2, security events use the org.jboss.seam.security> prefix instead of
org.jboss.seam (for example, org.jboss.seam.security.notLoggedIn.)

NOTE

Instead of the org.jboss.seam.postAuthenticate event, use the
org.jboss.seam.security.loginSuccessful event to return to the captured view.

2.1.4. Migrating to Embedded JBoss

Embedded JBoss no longer supports the use of JBoss Embeddable EJB3 or JBoss Microcontainer.
Instead, the new Embedded JBoss distribution provides a complete set of Java EE-compatible APIs with
simplified deployment.

For testing, you will need to include the following in your classpath:

the jars in Seam's lib/ directory

the bootstrap/ directory

Remove any references or artifacts relating to JBoss Embeddable EJB3, such as the embeddded-ejb
directory and jboss-beans.xml. (You can use the Seam examples as reference.)

There are no longer any special configuration or packaging requirements for Tomcat deployment. To
deploy with Tomcat, follow the instructions in the User Guide.

NOTE

Embedded JBoss can bootstrap a datasource from a -ds.xml file, so the jboss-
beans.xml file is no longer required.

2.1.5. Migrating to jBPM 3.2

If you use jBPM for business processes as well as pageflows, you must add the tx service to
jbpm.cfg.xml:

2.1.6. Migrating to RichFaces 3.1

There has been a major reorganization of the codebase for both RichFaces and AJAX4JSF. The
ajax4jsf.jar and richfaces.jar jars have been replaced with the richfaces-api.jar (to be
placed in the EAR lib/ directory) and the richfaces-impl.jar and richfaces-ui.jar (to be
placed in WEB-INF/lib).

 <action execute="#{redirect.captureCurrentView}"/>
</event>
<event type="org.jboss.seam.loginSuccessful">
 <action execute="#{redirect.returnToCapturedView}"/>
</event>

<service name="tx" factory="org.jbpm.tx.TxServiceFactory" />

Seam Reference Guide

78

 <s:selectDate> has been deprecated in favor of <rich:calendar> . There will be no further
development of <s:selectDate> . The styles associated with the data picker should be removed
from your style sheet to reduce bandwidth use.

Check the RichFaces documentation for more information about changes to namespace and parameter
names.

2.1.7. Changes to Components

Packaging Changes

All dependencies that were previously declared as modules in application.xml should now be
placed in the lib/ directory of your EAR, except jboss-seam.jar, which should be declared as an
EJB module in application.xml.

Changes to the Seam User Interface

 <s:decorate> has become a naming container. Client IDs have therefore changed from
fooForm:fooInput to fooForm:foo:fooInput, assuming that the following has been declared:

If you do not provide an ID for <s:decorate> , JSF will generate an ID automatically.

Changes to seam-gen

Since Seam 2.0.0.CR2, there have been changes to the organization of generated classes in seam-gen
when generate-entities is executed.

Originally, classes were generated as follows:

 src/model/com/domain/projectname/model/EntityName.java
 src/action/com/domain/projectname/model/EntityNameHome.java
 src/action/com/domain/projectname/model/EntityNameList.java

Now, they are generated like this:

 src/model/com/domain/projectname/model/EntityName.java
 src/action/com/domain/projectname/action/EntityNameHome.java
 src/action/com/domain/projectname/action/EntityNameList.java

Home and Query objects are action components, not model components, and are therefore placed in the
action package. This makes generate-entities conventions consistent with those of the new-
entity command.

Model classes are listed separately because they cannot be hot-reloaded.

Since the testing system has changed from JBoss Embeddable EJB3 to Embedded JBoss, we
recommend that you generate a project with seam-gen in Seam 2.x, and use its build.xml file as a
base for new projects. If you have made extensive changes to the build.xml, you can focus on
migrating only test-related targets.

<h:form id="fooForm">
 <s:decorate id="foo">
 <h:inputText id="fooInput" value="#{bean.property}"/>
 </s:decorate>
</h:form>

CHAPTER 2. MIGRATION

79

For tests to work under Embedded JBoss, you need to change the value of the <datasource>
element in resources/META-INF/persistence-test.xml (or persistence-test-war.xml) to
java:/DefaultDS. Alternatively, you can deploy a -ds.xml file to the bootstrap/deploy folder
and use the JNDI name defined in that file.

If you use the Seam 2.x build.xml as described, you will also require the deployed-*.list files,
which define the jar files that are packaged in the EAR or WAR archive. These were introduced to
remove the jar set from the build.xml file.

Add the following CSS to your style sheet to allow your style to accommodate a change in the RichFaces
panel. Failing to add this code will mean that, in any page created by generate-entities, the search
criteria block will bleed into the results table.

2.2. MIGRATING FROM SEAM 2.0 TO SEAM 2.1 OR 2.2

This section describes the changes between Seam 2.0 and Seam 2.1 or 2.2. If you are trying to migrate
from Seam 1.2.x, you will need to read the previous section, Section 2.1, “Migrating from Seam 1.2.x to
Seam 2.0”, before following any steps outlined in this section.

2.2.1. Changes to dependency jar names

Refer to Table 2.1, “Included JARs” and Table 2.2, “Removed JARs” for a list of JARs which are
included, and other that have been removed from the Seam framework.

Table 2.1. Included JARs

File Name Description

lib/commons-codec.jar Apache Commons codec library.

lib/commons-httpclient.jar Apache Commons HTTP client library.

lib/drools-api.jar Drools API.

lib/drools-decisiontables.jar Drools decision tables.

lib/drools-templates.jar Drools templates.

lib/ecj.jar Eclipse compiler for Java (required for Drools
Compiler).

lib/ehcache.jar EH Cache (alternative cache provider)

lib/emma.jar Emma Code Coverage library.

lib/gen/ant.jar Ant build tool.

.rich-stglpanel-body {
 overflow: auto;
 }

Seam Reference Guide

80

lib/gen/cglib.jar Code generation library.

lib/gen/common.jar Eclipse Common library.

lib/gen/core.jar Eclipse Core compiler.

lib/gen/darkX.jar Richfaces DarkX skin library.

lib/gen/freemarker.jar Freemarker templating engine.

lib/gen/glassX.jar Richfaces GlassX skin library.

lib/gen/hibernate-tools.jar Hibernate tools.

lib/gen/jboss-seam-gen.jar JBoss Seam generator.

lib/gen/jtidy.jar JTidy library.

lib/gen/laguna.jar Richfaces Laguna skin library.

lib/gen/runtime.jar Eclipse Runtime.

lib/gen/text.jar Eclipse text library.

lib/guice.jar Google dependency injection framework.

lib/hibernate-core.jar Hibernate core.

lib/httpclient.jar Apache HTTP client library.

lib/httpcore.jar Apache HTTP commons library.

lib/itext-rtf.jar IText RTF support for IText library (PDF generation)

lib/itext.jar IText library (PDF generation)

lib/jaxrs-api.jar JAVA Restful API for Web services

lib/jboss-seam-excel.jar JBoss Seam Excel.

lib/jboss-seam-resteasy.jar JBoss Seam Resteasy.

lib/jboss-transaction-api.jar Java transaction API.

lib/jbosscache-core.jar JBoss Cache provider.

File Name Description

CHAPTER 2. MIGRATION

81

lib/jcip-annotations.jar Java Concurrency In Practice annotations.

lib/jcl-over-slf4j.jar Java Commons Logging bridge over SLF4J library.

lib/jettison.jar Jettison provider for processing JSON.

lib/jxl.jar Exel API library for Java.

lib/mvel2.jar Expressions Language library.

lib/nekohtml.jar NekoHTML library for parsing HTML.

lib/openid4java-nodeps.jar OpenID library for Java.

lib/resteasy-atom-provider.jar Resteasy Atom provider.

lib/resteasy-jaxb-provider.jar Resteasy JAXB provider.

lib/resteasy-jaxrs.jar Resteasy JAXRS API

lib/resteasy-jettison-provider.jar Resteasy Jettison provider.

lib/slf4j-api.jar SLF4J API.

lib/slf4j-log4j12.jar SLF4J Log4j binding library 1.2.

lib/testng-jdk15.jar TestNG test framework.

File Name Description

Many of the removed JARs have been excluded for several versions of the Platform. This list is mainly
included for historical purposes.

Table 2.2. Removed JARs

JAR Reason for Removal

activation.jar Activation is bundled with Java 6, so it can be
removed from the distribution.

commons-lang.jar Commons Lang Library is no longer required.

geronimo-jms_1.1_spec.jar

geronimo-jtaB_spec-1.0.1.jar

hibernate3.jar

Seam Reference Guide

82

jboss-cache-jdk50.jar

jboss-jmx.jar

jboss-system.jar

mvel.jar

testng.jar

JAR Reason for Removal

2.2.2. Changes to Components

Testing

SeamTest now boots Seam at the start of each suite, instead of the start of each class. This improves
speed. Check the reference guide if you wish to alter the default.

Changes to DTD and Schema Format

Document Type Declarations (DTDs) for Seam XML files are no longer supported. XML Schema
Declarations (XSDs) should be used for validation instead. Any file that uses Seam 2.0 XSDs should be
updated to refer to the Seam 2.1 XSDs instead.

Changes to Exception Handling

Caught exceptions are now available in EL as #{org.jboss.seam.caughtException}. They are no
longer available in #{org.jboss.seam.exception} form.

Changes to EntityConverter Configuration

You can now configure the entity manager used from the entity-loader component. For further
details, see the documentation.

Changes in Managed Hibernate Sessions

Several aspects of Seam, including the Seam Application Framework, rely upon the existence of a
common naming convention between the Seam-managed Persistence Context (JPA) and the Hibernate
Session. In versions earlier than Seam 2.1, the name of the managed Hibernate Session was assumed
to be session. Since session is an overloaded term in Seam and the Java Servlet API, the default has
been changed to hibernateSession to reduce ambiguity. This means that, when you inject or resolve
the Hibernate Session, it is much easier to identify the appropriate session.

You can use either of these approaches to inject the Hibernate Session:

If your Seam-managed Hibernate Session is still named session, you can inject the reference explicitly
with the session property:

@In private Session hibernateSession;

@In(name = "hibernateSession") private Session session;

CHAPTER 2. MIGRATION

83

Alternatively, you can override the getPersistenceContextName() method on any persistence
controller in the Seam Application Framework with the following:

Changes to Security

The configuration for security rules in components.xml has changed for projects that use rule-based
security. Previously, rules were configured as a property of the identity component:

Seam 2.1 uses the ruleBasedPermissionResolver component for its rule-based permission
checks. You must activate this component and register the security rules with it instead of with the
identity component:

<framework:hibernate-entity-home session="#{session}".../>
 <transaction:entity-transaction session="#{session}".../>

public String getPersistenceContextName() {
"session";
}

<security:identity security-rules="#{securityRules}"
 authenticate-method="#{authenticator.authenticate}"/>

<security:rule-based-permission-resolver
 security-rules="#{securityRules}"/>

Seam Reference Guide

84

IMPORTANT

The definition of a permission has changed. Prior to Seam 2.1, a permission consisted of
three elements:

name

action

contextual object (optional)

The name would typically be the Seam component's name, entity class, or view ID. The
action would be the method name, the JSF phase (restore or render), or an assigned
term representing the intent of the activity. Optionally, one or more contextual objects can
be inserted directly into the working memory to assist in decision-making. Typically, this
would be the target of the activity. For example:

In Seam 2.1, permissions have been simplified so that they contain two elements:

target

action

The target replaces the name element, becoming the focus of the permission. The action
still communicates the intent of the activity to be secured. Within the rules file, most
checking now revolves around the target object. For example:

This change means that the rules can be applied more broadly, and lets Seam consult a
persistent permission resolver (ACL) as well as the rule-based resolver.

Additionally, keep in mind that existing rules may behave oddly. This is because, given
the following permission check format:

Seam transposes the following to apply the new permission format:

Read the Security chapter for a complete overview of the new design.

Changes to Identity.isLoggedIn()

This method will no longer attempt to perform an authentication check if credentials have been set.
Instead, it will return true if the user is currently unauthenticated. To make use of the previous behavior,
use Identity.tryLogin() instead.

If you use Seam's token-based Remember-Me feature, you must add the following section to
components.xml to ensure that the user is logged in automatically when the application is first
accessed:

s:hasPermission('userManager', 'edit', user)

s:hasPermission(user, 'edit')

s:hasPermission('userManager', 'edit', user)

s:hasPemrission(user, 'edit')

CHAPTER 2. MIGRATION

85

Changes to iText (PDF)

The documentStore component has been moved from the external pdf/itext module into Seam
itself. Any references to pdf:document-store in components.xml should therefore be replaced with
document:document-store. Similarly, if your web.xml references
org.jboss.seam.pdf.DocumentStoreServlet, you should change the reference to
org.jboss.seam.document.DocumentStoreServlet.

Changes to Clustering

Seam's ManagedEntityInterceptor (previously ManagedEntityIdentityInterceptor) is now
disabled by default. If you need the ManagedEntityInterceptor for clustered conversation failover,
you can enable it in components.xml with the following:

Changes to Asynchronous Exception Handling

All asynchronous invocations are now wrapped by exception handling. By default, any exceptions that
propagate out of an asynchronous call are caught and logged at the error level. You will find further
information in Chapter 21, Asynchronicity and messaging.

Changes to Redeploy Events

The org.jboss.seam.postInitialization event is no longer called upon redeployment.
org.jboss.seam.postReInitialization is called instead.

Changes to Cache Support

<event type="org.jboss.seam.security.notLoggedIn">
 <action execute="#{redirect.captureCurrentView}"/>
 <action execute="#{identity.tryLogin}"/>
 </event>
 <event type="org.jboss.seam.security.loginSuccessful">
 <action execute="#{redirect.returnToCapturedView}"/>
 </event>

<core:init>
 <core:interceptors>
 <value>org.jboss.seam.core.SynchronizationInterceptor</value>
 <value>org.jboss.seam.async.AsynchronousInterceptor</value>
 <value>org.jboss.seam.ejb.RemoveInterceptor</value>

<value>org.jboss.seam.persistence.HibernateSessionProxyInterceptor</value>

<value>org.jboss.seam.persistence.EntityManagerProxyInterceptor</value>
 <value>org.jboss.seam.core.MethodContextInterceptor</value>
 <value>org.jboss.seam.core.EventInterceptor</value>
 <value>org.jboss.seam.core.ConversationalInterceptor</value>
 <value>org.jboss.seam.bpm.BusinessProcessInterceptor</value>
 <value>org.jboss.seam.core.ConversationInterceptor</value>
 <value>org.jboss.seam.core.BijectionInterceptor</value>
 <value>org.jboss.seam.transaction.RollbackInterceptor</value>
 <value>org.jboss.seam.transaction.TransactionInterceptor</value>
 <value>org.jboss.seam.webservice.WSSecurityInterceptor</value>
 <value>org.jboss.seam.security.SecurityInterceptor</value>
 <value>org.jboss.seam.persistence.ManagedEntityInterceptor</value>
 </core:interceptors>
 </core:init>

Seam Reference Guide

86

Cache support in Seam has been rewritten to support JBoss Cache 3.2, JBoss Cache 2 and Ehcache.
Further information is available in Chapter 22, Caching.

The <s:cache /> has not changed, but the pojoCache component can no longer be injected.

The CacheProvider provides a Map-like interface. The getDelegate() method can then be used to
retrieve the underlying cache.

Changes to Maven Dependencies

The provided platform is now JBoss Enterprise Application Platform 5.1.0, so
javaassist:javaassist and dom4j:dom4j are now marked as provided.

Changes to the Seam Application Framework

A number of properties now expect value expressions:

entityHome.createdMessage

entityHome.updatedMessage

entityHome.deletedMessage

entityQuery.restrictions

If you configure these objects with components.xml, no changes are necessary. If you configure the
objects with JavaScript, you must create a value expression as follows:

 public ValueExpression getCreatedMessage() {
 return createValueExpression("New person #{person.firstName}
 #{person.lastName} created");
 }

CHAPTER 2. MIGRATION

87

CHAPTER 3. GETTING STARTED WITH SEAM-GEN
Seam includes a command line utility that makes it easy to set up an Eclipse project, generate some
simple Seam skeleton code, and reverse-engineer an application from a preexisting database. This is an
easy way to familiarize yourself with Seam.

In this release, seam-gen works best in conjunction with JBoss Enterprise Application Platform.

seam-gen can be used without Eclipse, but this tutorial focuses on using seam-gen with Eclipse for
debugging and integration testing. If you would prefer not to use Eclipse, you can still follow this tutorial
— all steps can be performed from the command line.

3.1. BEFORE YOU START

JBoss Enterprise Application Platform has sophisticated support for hot redeployment of WARs and EARs.
Unfortunately, due to bugs in JVM, repeat redeployment of an EAR (common during development) uses
all of the JVM's perm gen space. Therefore, we recommend running JBoss in a JVM with a large perm
gen space during development.

If you are running JBoss from JBoss IDE, you can configure this in the server launch configuration,
under "VM arguments". We suggest the following values:

-Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512m

The minimum recommended values are:

-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256m

If you are running EAP from the command line, you can configure the JVM options in bin/run.conf.

3.2. SETTING UP A NEW PROJECT

Task

Create a Seam project using the seam-gen command line tool.

Prerequisites:

JDK 6 (see Section 37.1, “Java Development Kit Dependencies” for details)

JBoss Enterprise Application Platform 5

Ant 1.7.0

A recent version of Eclipse.

A recent version of the JBoss IDE plug-in for Eclipse.

Add your EAP instance to the JBoss Server View in Eclipse.

The TestNG plug-in for Eclipse.

An EAP server running in debug mode.

Seam Reference Guide

88

A command prompt in the directory where you unzipped the Seam distribution.

Procedure 3.1. Create a Seam project with seam-gen

1. Configure seam-gen for your environment by typing the following in your command line
interface:

The following output will be displayed:

Buildfile: build.xml

init:

setup:

 [echo] Welcome to seam-gen 2.2.2.EAP5 :-)

 [echo] Answer each question or hit ENTER to accept the default
(in brackets)

 [echo]

You will then receive the following prompts for required information:

1. [input] Enter the directory where you want the project to be
created (should not contain spaces) [/home/<username>/projects]
[/home/<username>/projects]

Pressing Enter will accept the shown default (/home/<username>/projects).

Alternatively you can enter a different value.

2. [input] Enter your JBoss AS home directory [/var/lib/jbossas]
[/var/lib/jbossas]

Again, press Enter to accept the default or enter a new value:

/home/<username>/path/to/jboss-as

3. [input] Enter your JBoss AS domain [default] [default]

If you use a custom domain, enter it here.

4. [input] Enter the project name [myproject] [myproject]

Enter the name of your project. Not entering a name will default to naming your project
myproject.

For this example, the project will be called helloworld.

cd seam_distribution_dir; ./seam setup

CHAPTER 3. GETTING STARTED WITH SEAM-GEN

89

[echo] Accepted project name as: helloworld

5. [input] Select a RichFaces skin [glassX] (blueSky, classic,
darkX, deepMarine, DEFAULT, emeraldTown, [glassX], japanCherry,
laguna, ruby, wine)

You can choose a skin for your project from the list presented. You can see that glassX is
the default.

6. [input] Is this project deployed as an EAR (with EJB components)
or a WAR (with no EJB support)? [war] (ear, [war])

Enter the appropriate archive format.

EAR projects support Enterprise JavaBeans 3.0 (EJB3) and require Java EE 5. WAR projects
do not support EJB3, but can be deployed to a J2EE environment, and their packaging is
simpler.

If you have an EJB3-ready application server like JBoss installed, choose ear. Otherwise,
choose war. This tutorial assumes you are using an EAR deployment, but you can follow
these steps even if your project is WAR-deployed.

7. [input] Enter the base package name for your Java classes
[com.mydomain.helloworld] [com.mydomain.helloworld]

[input] Enter the Java package name for your session beans
[com.mydomain.helloworld.action] [com.mydomain.helloworld.action]

[input] Enter the Java package name for your entity beans
[com.mydomain.helloworld.model] [com.mydomain.helloworld.model]

[input] Enter the Java package name for your test cases
[com.mydomain.helloworld.test] [com.mydomain.helloworld.test]

You will be prompted to nominate the package names for your Java classes, session beans,
entity beans and test cases.

8. [input] What kind of database are you using? [hsql] ([hsql],
mysql, derby, oracle, postgres, mssql, db2, sybase, enterprisedb,
h2)

Nominate your database, mysql, for example. The default is hsql.

9. [input] Enter the filesystem path to the JDBC driver jar [] []

Enter the path to your system's JDBC driver; /usr/share/java/mysql.jar for example.

You may see the following output:

[input] skipping input as property driver.license.jar.new has
already been set.

Seam Reference Guide

90

10. [input] Enter the Hibernate dialect for your database
[org.hibernate.dialect.MySQLDialect]
[org.hibernate.dialect.MySQLDialect]

Nominate the appropriate Hibernate dialect.

11. [input] Enter the JDBC DataSource class for your database
[com.mysql.jdbc.jdbc2.optional.MysqlDataSource]
[com.mysql.jdbc.jdbc2.optional.MysqlDataSource]

[input] Enter the JDBC driver class for your database
[com.mysql.jdbc.Driver] [com.mysql.jdbc.Driver]

You will be prompted to nominate the JDBC classes for your instance.

12. [input] Enter the JDBC URL for your database [jdbc:mysql:///test]
[jdbc:mysql:///test]

The default URL will differ based on your response to the earlier database question.

13. [input] Enter the database username [sa] [sa]

Nominate the username for access to the database, for example root.

14. [input] Enter the database password [] []

Set the password for the above username.

You may see the following message:

[input] skipping input as property
hibernate.default_schema.entered has already been set.

15. [input] Enter the database schema name (Enter '-' to clear
previous value) [] []

[input] Enter the database catalog name (Enter '-' to clear
previous value) [] []

Name the database schema and catalogue as prompted.

16. [input] Are you working with tables that already exist in the
database? [n] (y, [n])

If you are working with an existing data model, make sure to tell seam-gen that tables
already exist in the database.

17. [input] Do you want to recreate the database tables and execute
import.sql each time you deploy? [n] (y, [n])

Again, answer as appropriate.

CHAPTER 3. GETTING STARTED WITH SEAM-GEN

91

18. You will see the following output. Some details will differ in your instance, based on answers
you provided to the above questions:

[propertyfile] Creating new property file: /home/path/to/jboss-
as/seam/seam-gen/build.properties

 [echo] Installing JDBC driver jar to JBoss AS

 [copy] Copying 1 file to /home/path/to/jboss-
as/server/default/lib

init:

init-properties:

 [echo] /home/path/to/jboss-as/

validate-workspace:

validate-project:

settings:

 [echo] JBoss AS home: /home/path/to/jboss-as/

 [echo] Project name: helloworld

 [echo] Project location: /home/path/to/projects/helloworld

 [echo] Project type: ear

 [echo] Action package: com.mydomain.helloworld.action

 [echo] Model package: com.mydomain.helloworld.model

 [echo] Test package: com.mydomain.helloworld.test

 [echo] JDBC driver class: com.mysql.jdbc.Driver

 [echo] JDBC DataSource class:
com.mysql.jdbc.jdbc2.optional.MysqlDataSource

 [echo] Hibernate dialect: org.hibernate.dialect.MySQLDialect

 [echo] JDBC URL: jdbc:mysql:///test

 [echo] Database username: root

 [echo] Database password:

 [echo]

 [echo] Type './seam create-project' to create the new project

BUILD SUCCESSFUL
Total time: 2 minutes 14 seconds

Seam Reference Guide

92

The time shown in this example is non-indicative of the actual time it will take to complete
this task.

2. Create a new project in our Eclipse workspace directory by entering one of the following
commands:

Or

You will see the following output:

Buildfile: build.xml
...
new-project:
 [echo] A new Seam project named 'helloworld' was created in the
C:\Projects directory
 [echo] Type 'seam explode' and go to
http://localhost:8080/helloworld
 [echo] Eclipse Users: Add the project into Eclipse using File >
New > Project and select General > Project (not Java Project)
 [echo] NetBeans Users: Open the project in NetBeans
BUILD SUCCESSFUL Total time: 7 seconds
C:\Projects\jboss-seam>

This copies the Seam JARs, dependent JARs and the JDBC driver JAR to a new Eclipse project.
It generates all required resources and configuration files, a Facelets template file and
stylesheet, along with Eclipse metadata and an Ant build script. The Eclipse project will be
automatically deployed to an exploded directory structure in JBoss as soon as you add the
project. To add the project, go to New → Project... → General → Project → Next, type the
Project name (in this case, helloworld), and then click Finish. Do not select Java
Project from the New Project wizard.

If your default JDK in Eclipse is not Java SE 6 JDK, you will need to select a compliant JDK. Go to
Project → Properties → Java Compiler.

Alternatively, you can deploy the project from outside Eclipse by typing seam explode.

The welcome page can be found at http://localhost:8080/helloworld. This is a Facelets page
(view/home.xhtml) created using the template found at view/layout/template.xhtml. You can
edit the welcome page or the template in Eclipse, and see the results immediately by refreshing your
browser.

XML configuration documents will be generated in the project directory. These may appear complicated,
but they are comprised primarily of standard Java EE, and require little alteration, even between Seam
projects.

There are three database and persistence configurations in the generated project. persistence-
test.xml and import-test.sql are used while running TestNG unit tests against HSQLDB. The
database schema and test data in import-test.sql is always exported to the database before tests
are run. myproject-dev-ds.xml, persistence-dev.xml and import-dev.sql are used during
application deployment to your development database. If you told seam-gen that you were working with

./seam create-project

./seam new-project

CHAPTER 3. GETTING STARTED WITH SEAM-GEN

93

an existing database, the schema may be exported automatically upon deployment. myproject-prod-
ds.xml, persistence-prod.xml and import-prod.sql are used during application deployment to
your production database. The schema will not be exported automatically upon deployment.

3.3. CREATING A NEW ACTION

Task:

This task will show you how to create a simple web page with a stateless action method.

Prerequisites:

JDK 6 (see Section 37.1, “Java Development Kit Dependencies” for details)

JBoss Enterprise Application Platform 5.

Ant 1.7.0.

Recent versions of Eclipse, the JBoss IDE plug-in and the TestNG plug-in correctly installed.

Add your JBoss installation to the Server View in Eclipse.

JBoss Enterprise Application Platform running in debug mode.

A command prompt in the directory where you unzipped the Seam distribution.

Procedure 3.2.

1. Execute the command:

2. Seam prompts for some information, and generates a new Facelets page and Seam component
for your project.

Buildfile: build.xml

validate-workspace:

validate-project:

action-input:
 [input] Enter the Seam component name
ping
 [input] Enter the local interface name [Ping]

 [input] Enter the bean class name [PingBean]

 [input] Enter the action method name [ping]

 [input] Enter the page name [ping]

setup-filters:

seam new-action

Seam Reference Guide

94

new-action:
 [echo] Creating a new stateless session bean component with an
action method
 [copy] Copying 1 file to
C:\Projects\helloworld\src\hot\org\jboss\helloworld
 [copy] Copying 1 file to
C:\Projects\helloworld\src\hot\org\jboss\helloworld
 [copy] Copying 1 file to
C:\Projects\helloworld\src\hot\org\jboss\helloworld\test
 [copy] Copying 1 file to
C:\Projects\helloworld\src\hot\org\jboss\helloworld\test
 [copy] Copying 1 file to C:\Projects\helloworld\view
 [echo] Type 'seam restart' and go to
http://localhost:8080/helloworld/ping.seam

BUILD SUCCESSFUL
Total time: 13 seconds
C:\Projects\jboss-seam>

3. Since we have added a new Seam component, it is necessary to restart the exploded directory
deployment. You can do this by typing seam restart, or by running the restart target in the
generated project's build.xml file from within Eclipse. Alternatively, you can edit the
resources/META-INF/application.xml file in Eclipse.

You do not need to restart JBoss each time you change the application.

4. Now go to http://localhost:8080/helloworld/ping.seam and click the button. The
code behind this action is in the project src directory. Add a breakpoint to the ping() method,
and click the button again.

5. Finally, locate the PingTest.xml file in the test package, and run the integration tests with the
TestNG plug-in for Eclipse. You can also run the tests with seam test or the test target of the
generated build.

3.4. CREATING A FORM WITH AN ACTION

The next step is to create a form. Type: seam new-form

Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

validate-workspace:

validate-project:

action-input:
 [input] Enter the Seam component name
hello
 [input] Enter the local interface name [Hello]

 [input] Enter the bean class name [HelloBean]

 [input] Enter the action method name [hello]

 [input] Enter the page name [hello]

CHAPTER 3. GETTING STARTED WITH SEAM-GEN

95

setup-filters:

new-form:
 [echo] Creating a new stateful session bean component with an action
method
 [copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello
 [copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello
 [copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello\test
 [copy] Copying 1 file to C:\Projects\hello\view
 [copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello\test
 [echo] Type 'seam restart' and go to
http://localhost:8080/hello/hello.seam

BUILD SUCCESSFUL
Total time: 5 seconds
C:\Projects\jboss-seam>

Restart the application again, and go to http://localhost:8080/helloworld/hello.seam. Look
at the generated code. Run the test. Experiment with adding new fields to the form and Seam
component. (Remember to restart the deployment each time you alter the Java code.)

3.5. GENERATING AN APPLICATION FROM AN EXISTING DATABASE

Manually create tables in your database. (To switch to a different database, run seam setup again.)
Now type:seam generate-entities

Restart the deployment, and go to http://localhost:8080/helloworld. You can browse the
database, edit existing objects, and create new objects. The code generated here is very simple. Seam
was designed so that data access code is easy to write by hand, even without the assistance of seam-
gen.

3.6. GENERATING AN APPLICATION FROM EXISTING JPA/EJB3
ENTITIES

Place your existing, valid entity classes inside the src/main directory. Now, type: seam generate-ui

Restart the deployment, and go to http://localhost:8080/helloworld.

3.7. DEPLOYING THE APPLICATION AS AN EAR

Several changes are required before we can deploy the application with standard Java EE 5 packaging.
First, remove the exploded directory by running seam unexplode. To deploy the EAR, either type
seam deploy at the command prompt, or run the deploy target of the generated project build script.
To undeploy, use seam undeploy or the undeploy target.

By default, the application deploys with the dev profile. The EAR includes the persistence-dev.xml
and import-dev.sql files, and deploys myproject-dev-ds.xml. You can change the profile to
prod profile by typing: seam -Dprofile=prod deploy

Seam Reference Guide

96

You can also define new deployment profiles for your application. Just add appropriately named files to
your project — for example, persistence-staging.xml, import-staging.sql and myproject-
staging-ds.xml — and select the name of the profile with -Dprofile=staging.

3.8. SEAM AND INCREMENTAL HOT DEPLOYMENT

Some support for incremental hot deployment is included during development when you deploy your
Seam application as an exploded directory. Add the following line to components.xml to enable debug
mode in Seam and Facelets:

WARNING

Hot deployment of Facelets does not work if the hot deployment scanner is not
enabled for the server profile.

The following files may now be redeployed without requiring a full restart of the web application:

any Facelets page

any pages.xml file

If you want to change any Java code, you will still need to do a full restart of the application. In JBoss,
this can be accomplished by touching the top-level deployment descriptor: application.xml for an
EAR deployment, or web.xml for a WAR deployment.

Seam supports incremental redeployment of JavaBean components for a fast edit/compile/test cycle. To
make use of this, the JavaBean components must be deployed into the WEB-INF/dev directory. Here,
they will be loaded by a special Seam classloader instead of the WAR or EAR classloader.

This function has some limitations:

The components must be JavaBean components — they cannot be EJB3 beans. (Seam is
working to remove this limitation.)

Entities can never be hot-deployed.

Components deployed with components.xml cannot be hot-deployed.

Hot-deployable components will not be visible to any classes deployed outside WEB-INF/dev.

Seam debug mode must be enabled and jboss-seam-debug.jar must be included in WEB-
INF/lib.

The Seam filter must be installed in web.xml.

You may see errors if the system is placed under any load and debug is enabled.

<core:init debug="true">

CHAPTER 3. GETTING STARTED WITH SEAM-GEN

97

For WAR projects created with seam-gen, incremental hot deployment is available out of the box for
classes in the src/hot source directory. However, seam-gen does not support incremental hot
deployment for EAR projects.

Seam Reference Guide

98

CHAPTER 4. GETTING STARTED WITH JBOSS DEVELOPER
STUDIO
JBoss Developer Studio is a collection of Eclipse plug-ins: a project creation wizard for Seam, a content
assistant for the Unified Expression Language (EL) in both Facelets and Java, a graphical editor for
jPDL, a graphical editor for Seam configuration files, support for running Seam integration tests from
within Eclipse, and much more. For more information, review the JBoss Developer Studio Getting Started
Guide available at http://docs.redhat.com/docs/en-US/JBoss_Developer_Studio/index.html.

Procedures to execute the following Seam tasks in JBoss Developer Studio are in the Seam
Developer Tools Reference Guide:

Setting up a Seam project.

Creating a new Seam action.

Creating a new form with an action.

Generating an application from an existing database.

The Seam Developer Tools Reference Guide is available at http://docs.redhat.com/docs/en-
US/JBoss_Developer_Studio/index.html.

4.1. HOT DEPLOYMENT WITH JBOSS DEVELOPER STUDIO

JBoss Developer Studio supports incremental hot deployment of any Facelets page and any pages.xml
file out of the box. But if we want to change any Java code, we still need to do a full restart of the
application by doing a Full Publish.

Seam supports incremental redeployment of JavaBean components for a fast edit/compile/test cycle. To
make use of this, the JavaBean components must be deployed into the WEB-INF/dev directory. Here,
they will be loaded by a special Seam classloader instead of the WAR or EAR classloader.

This function has some limitations:

the components must be JavaBean components — they cannot be EJB3 beans. (Seam is
working to remove this limitation.)

entities can never be hot-deployed

components deployed via components.xml may not be hot-deployed

the hot-deployable components will not be visible to any classes deployed outside of WEB-
INF/dev

Seam debug mode must be enabled and jboss-seam-debug.jar must be in WEB-INF/lib

the Seam filter must be installed in web.xml

You may see errors if the system is placed under any load and debug is enabled.

For WAR projects created with JBoss Developer Studio, incremental hot deployment is available out of
the box. However, JBoss Developer Studio does not support incremental hot deployment for EAR
projects.

CHAPTER 4. GETTING STARTED WITH JBOSS DEVELOPER STUDIO

99

http://docs.redhat.com/docs/en-US/JBoss_Developer_Studio/index.html
http://docs.redhat.com/docs/en-US/JBoss_Developer_Studio/index.html

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL
Seam's two core concepts are the notions of a context and a component. Components are stateful
objects, usually Enterprise JavaBeans (EJBs). An instance of a component is associated with a context,
and assigned a name within that context. Bijection provides a mechanism for aliasing internal component
names (instance variables) to contextual names, which allows component trees to be dynamically
assembled and reassembled by Seam.

5.1. SEAM CONTEXTS

Seam has several built-in contexts, which are created and destroyed by the framework. The application
does not control context demarcation via explicit Java API calls. Contexts are usually implicit. In some
cases, however, contexts are demarcated with annotations.

There are a number of basic contexts:

Stateless context

Event (for instance, a request) context

Page context

Conversation context

Session context

Business process context

Application context

Some of these contexts serve similar purposes in Servlet and related specifications. Two you may not
have encountered previously are the conversation context and the business process context. One reason
that state management in web applications is so fragile and error-prone is that the three built-in contexts
(request, session, and application) are not especially meaningful for business logic. A user login session,
for example, is an arbitrary construct in terms of the application workflow. Therefore, most Seam
components are scoped to the conversation or business process contexts, since these are the most
meaningful contexts in terms of the application.

5.1.1. Stateless context

Components which are truly stateless (primarily stateless session beans) always operate in the stateless
context — the absence of a context, since the instance Seam resolves is not stored. Stateless
components are arguably object-oriented, but they are developed regularly and thus form an important
part of any Seam application.

5.1.2. Event context

The event context is the "narrowest" stateful context, and expands the notion of the web request to cover
other event types. The event context associated with the life cycle of a JSF request is the most important
example of an event context, and the one you will work with most often. Components associated with the
event context are destroyed at the end of the request, but their state is available and well- defined for at
least the life cycle of the request.

When you invoke a Seam component with RMI, or Seam Remoting, the event context is created and
destroyed just for the invocation.

Seam Reference Guide

100

5.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page. You can
initialize state in your event listener, or while rendering the page, and can then access it from any event
that originates from that page. This is especially useful for functionality such as clickable lists, where the
list is backed by changing data on the server side. The state is actually serialized to the client, so this
construct is extremely robust with respect to multi-window operation and the back button.

5.1.4. Conversation context

The conversation context is a central concept to Seam. A conversation is a single unit of work from the
user's perspective. In reality, it may span several interactions with a user — several requests and several
data transactions. But to the user, a conversation solves a single problem. For example, the processes of
booking a hotel, approving a contract, and creating an order are all conversations. It may help to think of
a conversation as implementing a single "use case", although the relationship is not necessarily this
exact.

A conversation holds state associated with the user's present task, in the current window. A single user
may have multiple conversations in progress at any point in time, usually spanning multiple windows.
The conversation context ensures that state from the different conversations does not collide and cause
bugs.

Some conversations last only for a single request. Conversations that span multiple requests must be
demarcated with annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant to a long-running business
process, and can trigger a business process state transition when completed successfully. Seam
provides a special set of annotations for task demarcation.

Conversations can be nested, with one conversation taking place inside a broader conversation. This is
an advanced feature.

Between requests, conversation state is usually held in the Servlet session. Seam implements
configurable conversation timeout to automatically destroy inactive conversations, which ensures that the
state held by a single user login session does not continue to grow if a user abandons a conversation. In
the same process, Seam serializes the processing of concurrent requests in the same long-running
conversation context.

Alternatively, Seam can also be configured to store conversational state in the client browser.

5.1.5. Session context

A session context holds state associated with the user login session. There are some cases where it is
useful for state to be shared between several conversations. However, session context should not
usually hold components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

5.1.6. Business process context

The business process context holds state associated with long-running business processes. This state is
managed and made persistent by the BPM engine (in this case, JBoss jBPM). The business process
spans multiple interactions with multiple users. State is shared between multiple users in a well-defined
manner. The current task determines the current business process instance, and the business process
life cycle is defined externally with process definition language, so there are no special annotations for
business process demarcation.

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL

101

5.1.7. Application context

The application context is the Servlet context from the Servlet specification. Application context is used
primarily to hold static information such as configuration data, reference data or metamodels. For
example, Seam stores its own configuration and metamodel in the application context.

5.1.8. Context variables

A context defines a namespace through a set of context variables. These work similarly to session or
request attributes in the Servlet specification. Any value may be bound to a context variable, but they are
usually bound to Seam component instances.

The context variable name identifies a component instance within a context. (The context variable name
usually matches the component name.) You can programmatically access a named component instance
in a particular scope with the Contexts class, which provides access to several thread-bound instances
of the Context interface:

You may also set or change the value associated with a name:

However, components are usually obtained from a context via injection. Component instances are
subsequently given to contexts via outjection.

5.1.9. Context search priority

Sometimes, component instances are obtained from a particular known scope. At other times, all stateful
scopes are searched, in the following order of priority:

Event context

Page context

Conversation context

Session context

Business process context

Application context

You can perform a priority search by calling Contexts.lookupInStatefulContexts(). Whenever
you access a component by name from a JSF page, a priority search occurs.

5.1.10. Concurrency model

Neither the Servlet, nor EJB specifications, define facilities for managing concurrent requests from the
same client. The Servlet container lets all threads run concurrently, without ensuring thread-safeness.
The EJB container allows concurrent access of stateless components, and throws an exception when
multiple threads access a stateful session bean. This is sufficient for web applications based around fine-
grained, synchronous requests. However, for modern applications, which frequently use asynchronous
(AJAX) requests, concurrency support is vital. Therefore, Seam adds a concurrency management layer
to its context model.

User user = (User) Contexts.getSessionContext().get("user");

Contexts.getSessionContext().set("user", user);

Seam Reference Guide

102

Session and application contexts are multi-threaded in Seam, allowing concurrent requests to be
processed concurrently. Event and page contexts are single-threaded. Strictly, the business process
context is multi-threaded, but concurrency here is rare, and can usually be disregarded. Seam serializes
concurrent requests within a long-running conversation context in order to enforce a single thread per
conversation per process model for the conversation context.

Because session context is multi-threaded and often contains volatile state, Seam always protects
session-scoped components from concurrent access while Seam interceptors are enabled. If interceptors
are disabled, any required thread safety must be implemented by the component itself. By default, Seam
serializes requests to session-scoped session beans and JavaBeans, and detects and breaks any
deadlocks that occur. However, this is not default behavior for application-scoped components, since
they do not usually hold volatile state, and global synchronization is extremely expensive. Serialized
threading models can be forced on any session bean or JavaBean component by adding the
@Synchronized annotation.

This concurrency model means that AJAX clients can safely use volatile session and conversational
state, without the need for any special work on the part of the developer.

5.2. SEAM COMPONENTS

Seam components are Plain Old Java Objects (POJOs). Specifically, they are JavaBeans, or Enterprise
JavaBean 3.0 (EJB3) enterprise beans. While Seam does not require components to be EJBs, and can
be used without an EJB3-compliant container, Seam was designed with EJB3 in mind, and includes
deep integration with EJB3. Seam supports the following component types:

EJB3 stateless session beans

EJB3 stateful session beans

EJB3 entity beans (for instance, JPA entity classes)

JavaBeans

EJB3 message-driven beans

Spring beans (see Chapter 26, Spring Framework integration)

5.2.1. Stateless session beans

Stateless session bean components cannot hold state across multiple invocations, so they usually
operate upon the state of other components in the various Seam contexts. They can be used as JSF
action listeners, but cannot provide properties to JSF components for display.

Stateless session beans always exist in the stateless context. They can be accessed concurrently as a
new instance is used for each request. The EJB3 container assigns instances to requests. (Normally,
instances are allocated from a reuseable pool, so instance variables can retain data from previous uses
of the bean.)

Seam stateless session bean components are instantiated with either Component.getInstance() or
@In(create=true). They should not be directly instantiated via JNDI look up or the new operator.

5.2.2. Stateful session beans

Stateful session bean components can not only hold state across multiple invocations of the bean, but
also across multiple requests. Any application state that does not belong in the database should be held

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL

103

by stateful session beans. This is a major difference between Seam and many other web application
frameworks. Current conversation data should be stored in the instance variables of a stateful session
bean bound to the conversation context, rather than in the HttpSession. This lets Seam manage state
life cycle, and ensures there are no collisions between state relating to different concurrent
conversations.

Stateful session beans are often used as JSF action listeners, and as backing beans to provide
properties to JSF components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be bound to
the page, or to stateless contexts.

Seam serializes concurrent requests to session-scoped stateful session beans while Seam interceptors
are enabled.

Seam stateful session bean components are instantiated with either Component.getInstance() or
@In(create=true). They should not be directly instantiated via JNDI look up or the new operator.

5.2.3. Entity beans

Entity beans can function as a Seam component when bound to a context variable. Because entities
have a persistent identity in addition to their contextual identity, entity instances are usually bound
explicitly in Java code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of an entity
bean trigger validation.

Entity beans are not usually used as JSF action listeners, but often function as backing beans to provide
properties to JSF components for display or form submission. They are commonly used as a backing
bean coupled with a stateless session bean action listener to implement create/update/delete-type
functionality.

By default, entity beans are bound to the conversation context, and can never be bound to the stateless
context.

NOTE

In a clustered environment, it is less efficient to bind an entity bean directly to a
conversation (or session-scoped Seam context variable) than it is to refer to the entity
bean with a stateful session bean. Not all Seam applications define entity beans as Seam
components for this reason.

Seam entity bean components are instantiated with Component.getInstance() or
@In(create=true), or directly instantiated with the new operator.

5.2.4. JavaBeans

JavaBeans are used similarly to stateless or stateful session beans. However, they do not provide
functions such as declarative transaction demarcation, declarative security, efficient clustered state
replication, EJB3 persistence, timeout methods, etc.

In a later chapter, we show you how to use Seam and Hibernate without an EJB container. In this case,
components are JavaBeans rather than session beans.

Seam Reference Guide

104

NOTE

In a clustered environment, it is less efficient to cluster conversation- or session-scoped
Seam JavaBean components than it is to cluster stateful session bean components.

By default, JavaBeans are bound to the event context.

Seam always serializes concurrent requests to session-scoped JavaBeans.

Seam JavaBean components are instantiated with Component.getInstance() or
@In(create=true). They should not be directly instantiated using the new operator.

5.2.5. Message-driven beans

Message-driven beans can function as Seam components. However, their call method differs from that
of other Seam components — rather than being invoked with the context variable, they listen for
messages sent to JMS queues or topics.

Message-driven beans cannot be bound to Seam contexts, nor can they access the session or
conversation state of their caller. However, they do support bijection and some other Seam functionality.

Message-driven beans are never instantiated by the application; they are instantiated by the EJB
container when a message is received.

5.2.6. Interception

To perform actions such as bijection, context demarcation, and validation, Seam must intercept
component invocations. For JavaBeans, Seam controls component instantiation completely, and no
special configuration is required. For entity beans, interception is not required, since bijection and context
demarcation are not defined. For session beans, an EJB interceptor must be registered for the session
bean component. This can be done with an annotation, as follows:

However, it is better to define the interceptor in ejb-jar.xml:

@Stateless
@Interceptors(SeamInterceptor.class)
public class LoginAction implements Login { ... }

 <interceptors>
 <interceptor>
 <interceptor-class>
 org.jboss.seam.ejb.SeamInterceptor
 </interceptor-class>
 </interceptor>
</interceptors>

<assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 org.jboss.seam.ejb.SeamInterceptor
 </interceptor-class>
 </interceptor-binding>
</assembly-descriptor>

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL

105

5.2.7. Component names

All Seam components require names. Assign a name with the @Name annotation:

This is the Seam component name, and does not relate to any other name defined by the EJB
specification. However, Seam component names work like JSF managed bean names, and can be
thought of in identical terms.

@Name is not the only way to define a component name, but the name must always be specified. No
other Seam annotation will function if a name is not defined.

When Seam instantiates a component, it binds the new instance to a variable matching the component
name in the component's configured scope. This is identical to JSF managed bean behavior, except that
Seam lets you configure this mapping with annotations rather than XML. You can also programmatically
bind a component to a context variable. This is useful if a particular component serves multiple roles
within the system. For example, the current User might be bound to the currentUser session context
variable, while a User that is the subject of some administration functionality might be bound to the user
conversation context variable. Take care when binding programmatically, because it is possible to
overwrite context variables that reference Seam components.

For very large applications, and for built-in Seam components, qualified component names are often
used to avoid naming conflicts.

The qualified component name can be used both in Java code and in JSF's expression language:

Since this is noisy, Seam also provides a means of aliasing a qualified name to a simple name. Add a
line like this to the components.xml file:

All built-in Seam components have qualified names, but can be accessed through their unqualified
names with Seam's namespace-import feature. The components.xml file included in the Seam JAR
defines the following namespaces:

@Name("loginAction")
@Stateless
public class LoginAction implements Login { ... }

@Name("com.jboss.myapp.loginAction")
@Stateless
public class LoginAction implements Login { ... }

<h:commandButton type="submit" value="Login"
 action="#{com.jboss.myapp.loginAction.login}"/>

<factory name="loginAction" scope="STATELESS"
 value="#{com.jboss.myapp.loginAction}"/>

<components xmlns="http://jboss.com/products/seam/components">
 <import>org.jboss.seam.core</import>
 <import>org.jboss.seam.cache</import>
 <import>org.jboss.seam.transaction</import>
 <import>org.jboss.seam.framework</import>
 <import>org.jboss.seam.web</import>
 <import>org.jboss.seam.faces</import>
 <import>org.jboss.seam.international</import>

Seam Reference Guide

106

When attempting to resolve an unqualified name, Seam will check each of these namespaces, in order.
Additional application-specific namespaces can be included in your application's components.xml file.

5.2.8. Defining the component scope

The @Scope annotation lets us override the scope (context) of a component to define the context a
component instance is bound to when instantiated by Seam.

org.jboss.seam.ScopeType defines an enumeration of possible scopes.

5.2.9. Components with multiple roles

Some Seam component classes can fulfill multiple roles in the system. For example, the User class is
usually a session-scoped component representing the current user, but in user administration screens
becomes a conversation-scoped component. The @Role annotation lets us define an additional named
role for a component, with a different scope — it lets us bind the same component class to different
context variables. (Any Seam component instance can be bound to multiple context variables, but this
lets us do it at the class level to take advantage of automatic instantiation.)

The @Roles annotation lets us specify additional roles as required.

5.2.10. Built-in components

 <import>org.jboss.seam.theme</import>
 <import>org.jboss.seam.pageflow</import>
 <import>org.jboss.seam.bpm</import>
 <import>org.jboss.seam.jms</import>
 <import>org.jboss.seam.mail</import>
 <import>org.jboss.seam.security</import>
 <import>org.jboss.seam.security.management</import>
 <import>org.jboss.seam.security.permission</import>
 <import>org.jboss.seam.captcha</import>
 <import>org.jboss.seam.excel.exporter</import>
 <!-- ... --->
</components>

@Name("user")
@Entity
@Scope(SESSION)
public class User { ... }

@Name("user")
@Entity
@Scope(CONVERSATION)
@Role(name="currentUser", scope=SESSION)
public class User { ... }

@Name("user")
@Entity
@Scope(CONVERSATION)
@Roles({ @Role(name="currentUser", scope=SESSION),
 @Role(name="tempUser", scope=EVENT)})
public class User { ... }

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL

107

Seam is implemented as a set of built-in interceptors and components. This makes it easy for
applications to interact with built-in components at runtime, or to customize basic Seam functionality by
replacing the built-in components with custom implementations. The built-in components are defined in
the Seam namespace org.jboss.seam.core, and in the Java package of the same name.

The built-in components may be injected like any other Seam component, but they also provide
convenient static instance() methods:

5.3. BIJECTION

Dependency injection or inversion of control (IoC) allows one component to reference another by having
the container "inject" the component into a setter method or instance variable. In previous dependency
injection implementations, injection occurred at component construction, and the reference did not
change for the lifetime of the component instance. This is reasonable for stateless components — from
the client's perspective, all instances of a particular stateless component are interchangeable. However,
Seam emphasizes the use of stateful components, so traditional dependency injection as a construct is
less useful. Seam introduces the notion of bijection as a generalization of injection. In contrast to
injection, bijection is:

contextual

Bijection is used to assemble stateful components from various different contexts. A component from
a wider context can even refer to a component from a narrower context.

bidirectional

Values are injected from context variables into attributes of the invoked component, and returned (via
outjection) to the context, allowing the invoked component to manipulate contextual variable values
simply by setting its own instance variables.

dynamic

Since the value of contextual variables changes over time, and since Seam components are stateful,
bijection takes place every time a component is invoked.

In essence, bijection lets you alias a context variable to a component instance variable, by specifying
that the value of the instance variable is injected, outjected, or both. Annotations are used to enable
bijection.

The @In annotation specifies that a value should be injected, either into an instance variable:

or into a setter method:

FacesMessages.instance().add("Welcome back, #{user.name}!");

@Name("loginAction")
@Stateless
public class LoginAction implements Login {
 @In User user;
 ...
}

@Name("loginAction")
@Stateless
public class LoginAction implements Login {

Seam Reference Guide

108

By default, Seam performs a priority search of all contexts, using the name of the property or instance
variable being injected. You may wish to specify the context variable name explicitly, using, for example,
@In("currentUser").

If you want Seam to create an instance of the component, where there is no existing component instance
bound to the named context variable, you should specify @In(create=true). If the value is optional (it
can be null), specify @In(required=false).

For some components, specifying @In(create=true) each time it is used can be repetitive. In such
cases, annotate the component @AutoCreate. This way, it will always be created whenever required,
even without the explicit use of create=true.

You can even inject the value of an expression:

Injected values are disinjected (that is, set to null) immediately after method completion and outjection.

(More information about component life cycle and injection can be found in the next chapter.)

The @Out annotation specifies that an attribute should be outjected, either from an instance variable:

or from a getter method:

An attribute may be both injected and outjected:

 User user;
 @In
 public void setUser(User user) { this.user=user; }
 ...
 }

@Name("loginAction")
@Stateless
public class LoginAction implements Login {
 @In("#{user.username}") String username;
 ...
}

@Name("loginAction")
@Stateless
public class LoginAction implements Login {
 @Out User user;
 ...
}

@Name("loginAction")
@Stateless
public class LoginAction implements Login {
 User user;

 @Out
 public User getUser() {
 return user;
 }
 ...
}

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL

109

or:

5.4. LIFE CYCLE METHODS

Session bean and entity bean Seam components support all common EJB3 life cycle callbacks
(@PostConstruct, @PreDestroy, etc.), but Seam also supports the use of any of these callbacks with
JavaBean components. However, since these annotations are not available in a J2EE environment,
Seam defines two additional component life cycle callbacks, equivalent to @PostConstruct and
@PreDestroy.

The @Create method is called after Seam instantiates a component. Components may define only one
@Create method.

The @Destroy method is called when the context that the Seam component is bound to ends.
Components may define only one @Destroy method.

In addition, stateful session bean components must define a method with no parameters, annotated
@Remove. This method is called by Seam when the context ends.

Finally, the @Startup annotation can be applied to any application- or session-scoped component. The
@Startup annotation tells Seam to instantiate the component immediately, when the context begins,
instead of waiting until it is first referenced by a client. It is possible to control the order of instantiation of
start up components by specifying @Startup(depends={....}).

5.5. CONDITIONAL INSTALLATION

The @Install annotation controls conditional installation of components that are required in some
deployment scenarios and not in others. This is useful when you want to:

@Name("loginAction")
@Stateless
public class LoginAction implements Login {
 @In
 @Out User user;
 ...
}

@Name("loginAction")
@Stateless
public class LoginAction implements Login {
 User user;

 @In
 public void setUser(User user) {
 this.user=user;
 }

 @Out
 public User getUser() {
 return user; }
 ...
}

Seam Reference Guide

110

mock out an infrastructural component in a test,

change a component's implementation in certain deployment scenarios, or

install some components only if their dependencies are available. (This is useful for framework
authors.)

@Install lets you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to install when
there are multiple classes with the same component name in the classpath. Seam will choose the
component with the higher precedence. Some predefined precedence values are (in ascending order):

1. BUILT_IN — the lowest precedence components are the components built in to Seam.

2. FRAMEWORK — components defined by third-party frameworks may override built-in
components, but are overridden by application components.

3. APPLICATION — the default precedence. This is appropriate for most application components.

4. DEPLOYMENT — for application components which are deployment-specific.

5. MOCK — for mock objects used in testing.

Suppose we have a component named messageSender that talks to a JMS queue.

In our unit tests, there is no available JMS queue, so we would like to stub out this method. We'll create
a mock component that exists in the classpath when unit tests are running, but is never deployed with
the application:

The precedence helps Seam decide which version to use when it finds both components in the
classpath.

If we are able to control precisely which classes are in the classpath, this works well. But if we are writing
a reuseable framework with many dependencies, we do not want to have to break that framework across
multiple jars. We want to be able to decide which components to install based on other installed
components, and classes available in the classpath. The @Install annotation also controls this
functionality. Seam uses this mechanism internally to enable the conditional installation of many built-in
components.

@Name("messageSender")
public class MessageSender {

 public void sendMessage() {
 //do something with JMS
 }
}

@Name("messageSender")
@Install(precedence=MOCK)
public class MockMessageSender extends MessageSender {
 public void sendMessage() {
 //do nothing!
 }
}

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL

111

5.6. LOGGING

Before Seam, even the simplest log message required verbose code:

Seam provides a logging API that simplifies this code significantly:

Except for entity bean components (which require the log variable to be static), this will work regardless
of whether the log variable is declared static.

String concatenation occurs inside the debug() method, so the verbose if (
log.isDebugEnabled()) guard is unnecessary. Usually, we would not even need to explicitly
specify the log category, since Seam knows where it is injecting the log.

If User and Product are Seam components available in the current contexts, the code is even more
concise:

Seam logging automatically chooses whether to send output to log4j or JDK logging — if log4j is in the
classpath, it will be used; if not, Seam uses JDK logging.

5.7. THE MUTABLE INTERFACE AND @READONLY

Many application servers feature HttpSession clustering where changes to the state of mutable
objects bound to the session are replicated only when setAttribute is called explicitly. This can lead
to bugs that manifest only upon failover, which cannot be effectively tested during development. Further,
the replication messages themselves are inefficient, since they contain the entire serialized object graph,
bound to the session attribute.

EJB stateful session beans must perform automatic dirty checking (that is, they must automatically

private static final Log log = LogFactory.getLog(CreateOrderAction.class);

public Order createOrder(User user, Product product, int quantity) {
 if (log.isDebugEnabled()) {
 log.debug("Creating new order for user: " + user.username() +
 " product: " + product.name() + " quantity: " + quantity);
 }
 return new Order(user, product, quantity);
}

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {
 log.debug("Creating new order for user: #0 product: #1 quantity: #2",
 user.username(), product.name(), quantity);

 return new Order(user, product, quantity);
}

@Logger private Log log;
public Order createOrder(User user, Product product, int quantity) {
 log.debug("Creating new order for user: #{user.username}
 product: #{product.name} quantity: #0", quantity);
 return new Order(user, product, quantity);
}

Seam Reference Guide

112

detect object state changes to synchronize updated states with the database) and replicate mutable
state. A sophisticated EJB container can introduce optimizations such as attribute-level replication.
Unfortunately, not all Seam users will be working in an environment that supports EJB3. Therefore,
Seam provides an extra layer of cluster-safe state management for session- and conversation-scoped
JavaBean and entity bean components.

For session- or conversation-scoped JavaBean components, Seam automatically forces replication by
calling setAttribute() once in every request where the component was invoked by the application.
However, this strategy is inefficient for read-mostly components. Control this behavior by implementing
the org.jboss.seam.core.Mutable interface, or by extending
org.jboss.seam.core.AbstractMutable and writing your own dirty-checking logic inside the
component. For example,

Or, you can use the @ReadOnly annotation to achieve a similar effect:

For session- or conversation-scoped entity bean components, Seam automatically forces replication by
calling setAttribute() once in every request, unless the (conversation-scoped) entity is currently
associated with a Seam-managed persistence context, in which case replication is unnecessary. This
strategy is not necessarily efficient, so session or conversation scope entity beans should be used with
care. You can always write a stateful session bean or JavaBean component to "manage" the entity bean
instance. For example:

@Name("account")
public class Account extends AbstractMutable {
 private BigDecimal balance;
 public void setBalance(BigDecimal balance) {
 setDirty(this.balance, balance);
 this.balance = balance;
 }

 public BigDecimal getBalance() {
 return balance;
 }
 ...
}

@Name("account")
public class Account {
 private BigDecimal balance;
 public void setBalance(BigDecimal balance) {
 this.balance = balance;
 }

 @ReadOnly
 public BigDecimal getBalance() {
 return balance;
 }
 ...
}

@Stateful @Name("account")
public class AccountManager extends AbstractMutable {
 private Account account; // an entity bean
 @Unwrap
 public Account getAccount() {

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL

113

Note that the EntityHome class in the Seam Application Framework is an excellent example of
managing an entity bean instance using a Seam component.

5.8. FACTORY AND MANAGER COMPONENTS

It is often necessary to work with objects that are not Seam components, but we still prefer to be able to
inject them into our components with @In, use them in value- and method-binding expressions, and tie
them into the Seam context life cycle (@Destroy, for example). Therefore, Seam contexts can hold
objects that are not Seam components, and Seam provides several features that simplify working with
non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component
object. A factory method will be called when a context variable is referenced but has no value bound to it.
Factory methods are defined with the @Factory annotation. The factory method binds a value to the
context variable, and determines the scope of the bound value. There are two styles of factory method.
The first style returns a value, which is bound to the context by Seam:

The second style is a method of type void, which binds the value to the context variable itself:

In either case, the factory method is called when the customerList context variable is referenced, and
its value is null. The factory method then has no further part in the life cycle of the value. The manager
component pattern is an even more powerful pattern. In this case, a Seam component bound to a context
variable manages the value of the context variable while remaining invisible to clients.

A manager component is any component with an @Unwrap method. This method returns the value that
will be visible to clients, and is called every time a context variable is referenced.

The manager component pattern is especially useful where more control is required over component life

 return account;
 }
 ...
}

@Factory(scope=CONVERSATION)
public List<Customer> getCustomerList() {
 return ... ;
}

@DataModel List<Customer> customerList;
@Factory("customerList")
public void initCustomerList() {
 customerList = ... ;
}

@Name("customerList")
@Scope(CONVERSATION)
public class CustomerListManager {
 ...
 @Unwrap
 public List<Customer> getCustomerList() {
 return ... ;
 }
}

Seam Reference Guide

114

cycle. For example, if you have a heavyweight object that needs a cleanup operation when the context
ends, you could @Unwrap the object, and perform cleanup in the @Destroy method of the manager
component.

Here, the managed component observes many events that change the underlying object. The
component manages these actions itself, and because the object is unwrapped each time it is accessed,
a consistent view is provided.

@Name("hens")
@Scope(APPLICATION)
public class HenHouse {
 Set<Hen> hens;

 @In(required=false) Hen hen;

 @Unwrap
 public List<Hen> getHens()
 {
 if (hens == null) {
 // Setup our hens }
 return hens;
 }

 @Observer({"chickBorn", "chickenBoughtAtMarket"})
 public addHen() {
 hens.add(hen);
 }

 @Observer("chickenSoldAtMarket")
 public removeHen() {
 hens.remove(hen);
 }

 @Observer("foxGetsIn")
 public removeAllHens() {
 hens.clear();
 }

 ...
}

CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL

115

CHAPTER 6. CONFIGURING SEAM COMPONENTS
Seam aims to minimize the need for XML-based configuration. However, there are various reasons you
might want to configure Seam components with XML: to isolate deployment-specific information from the
Java code, to enable the creation of reuseable frameworks, to configure Seam's built-in functionality, etc.
Seam provides two basic approaches to component configuration: via property settings in a properties
file or web.xml, and via components.xml.

6.1. CONFIGURING COMPONENTS VIA PROPERTY SETTINGS

You can provide Seam with configuration properties with either servlet context parameters (in system
properties), or with a properties file named seam.properties in the root of the classpath.

The configurable Seam component must expose JavaBean-style property setter methods for the
configurable attributes. That is, if a Seam component named com.jboss.myapp.settings has a
setter method named setLocale(), we can provide either:

a property named com.jboss.myapp.settings.locale in the seam.properties file,

a system property named
org.jboss.seam.properties.com.jboss.myapp.settings.locale via -D at start up,
or

the same system property as a Servlet context parameter.

Any of these will set the value of the locale attribute in the root of the class path.

The same mechanism is used to configure Seam itself. For example, to set conversation timeout, we
provide a value for org.jboss.seam.core.manager.conversationTimeout in web.xml,
seam.properties, or via a system property prefixed with org.jboss.seam.properties. (There is
a built-in Seam component named org.jboss.seam.core.manager with a setter method named
setConversationTimeout().)

6.2. CONFIGURING COMPONENTS VIA COMPONENTS.XML

The components.xml file is more powerful than property settings. It lets you:

configure components that have been installed automatically, including built-in components, and
application components that have been annotated with @Name and picked up by Seam's
deployment scanner.

install classes with no @Name annotation as Seam components. This is most useful for
infrastructural components which can be installed multiple times with different names (for
example, Seam-managed persistence contexts).

install components that do have a @Name annotation but are not installed by default because of
an @Install annotation that indicates the component should not be installed.

override the scope of a component.

A components.xml file appears in one of three locations:

The WEB-INF directory of a WAR.

Seam Reference Guide

116

The META-INF directory of a JAR.

Any JAR directory containing classes with a @Name annotation.

Seam components are installed when the deployment scanner discovers a class with a @Name
annotation in an archive with a seam.properties file, or a META-INF/components.xml file, unless
the component also has an @Install annotation indicating that it should not be installed by default. The
components.xml file handles special cases where the annotations must be overridden.

For example, the following components.xml file installs jBPM:

The following example also installs jBPM:

This example installs and configures two different Seam-managed persistence contexts:

This example also installs and configures two different Seam-managed persistence contexts:

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:bpm="http://jboss.com/products/seam/bpm">
 <bpm:jbpm/>
</components>

<components>
 <component class="org.jboss.seam.bpm.Jbpm"/>
</components>

<components xmlns="http://jboss.com/products/seam/components"

xmlns:persistence="http://jboss.com/products/seam/persistence">

 <persistence:managed-persistence-context name="customerDatabase"
 persistence-unit-jndi-name="java:/customerEntityManagerFactory"/>

 <persistence:managed-persistence-context name="accountingDatabase"
 persistence-unit-jndi-name="java:/accountingEntityManagerFactory"/>

</components>

<components>
 <component name="customerDatabase"

class="org.jboss.seam.persistence.ManagedPersistenceContext">
 <property name="persistenceUnitJndiName">
 java:/customerEntityManagerFactory
 </property>
 </component>

 <component name="accountingDatabase"

class="org.jboss.seam.persistence.ManagedPersistenceContext">
 <property name="persistenceUnitJndiName">
 java:/accountingEntityManagerFactory

CHAPTER 6. CONFIGURING SEAM COMPONENTS

117

The following examples create a session-scoped Seam-managed persistence context. (This is not
recommended in practice.)

The auto-create option is commonly used for infrastructural objects such as persistence contexts,
removing the need to specify create=true explicitly when using the @In annotation.

 </property>
 </component>
</components>

<components xmlns="http://jboss.com/products/seam/components"

xmlns:persistence="http://jboss.com/products/seam/persistence">

 <persistence:managed-persistence-context
 name="productDatabase" scope="session"
 persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

 <component name="productDatabase" scope="session"

class="org.jboss.seam.persistence.ManagedPersistenceContext">
 <property name="persistenceUnitJndiName">
 java:/productEntityManagerFactory
 </property>
 </component>

</components>

<components xmlns="http://jboss.com/products/seam/components"

xmlns:persistence="http://jboss.com/products/seam/persistence">

 <persistence:managed-persistence-context
 name="productDatabase" auto-create="true"
 persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

 <component name="productDatabase"
 auto-create="true"
 class="org.jboss.seam.persistence.ManagedPersistenceContext">
 <property name="persistenceUnitJndiName">
 java:/productEntityManagerFactory
 </property>
 </component>

</components>

Seam Reference Guide

118

The <factory> declaration specifies a value- or method-binding expression that will initialize the value
of a context variable when it is first referenced.

You can create an alias (a second name) for a Seam component like so:

You can even create an alias for a commonly used expression:

auto-create="true" is often used with the <factory> declaration:

The same components.xml file is sometimes used (with minor changes) during both deployment and
testing. Seam allows wildcards of the form @wildcard@ to be placed in components.xml, which can
be replaced at deployment time by either your Ant build script, or providing a file named
components.properties in the classpath. (The latter approach appears in the Seam examples.)

6.3. FINE-GRAINED CONFIGURATION FILES

If a large number of components require XML configuration, it is sensible to split components.xml into
several smaller files. With Seam, configuration for a class named com.helloworld.Hello can be
placed in a resource named com/helloworld/Hello.component.xml. (This pattern is also used in
Hibernate.) The root element of the file may either be a <components> or <component> element.

<components> lets you define multiple components in the file:

<component> only lets you configure one component, but is less verbose:

<components>
 <factory name="contact" method="#{contactManager.loadContact}"
 scope="CONVERSATION"/>
</components>

<components>
 <factory name="user" value="#{actor}" scope="STATELESS"/>
</components>

<components>
 <factory name="contact" value="#{contactManager.contact}"
 scope="STATELESS"/>
</components>

<components>
 <factory name="session" value="#{entityManager.delegate}"
 scope="STATELESS" auto-create="true"/>
</components>

<components>

 <component class="com.helloworld.Hello" name="hello">
 <property name="name">#{user.name}</property>
 </component>
 <factory name="message" value="#{hello.message}"/>

</components>

CHAPTER 6. CONFIGURING SEAM COMPONENTS

119

The class name in the latter is implied by the file in which the component definition appears.

Alternatively, you may put configuration for all classes in the com.helloworld package in
com/helloworld/components.xml.

6.4. CONFIGURABLE PROPERTY TYPES

Properties of string, primitive or primitive wrapper type are configured as follows:

org.jboss.seam.core.manager.conversationTimeout 60000

<core:manager conversation-timeout="60000"/>

Arrays, sets, and lists of strings or primitives are also supported:

Even maps with String-valued keys and string or primitive values are supported:

<component name="hello">
 <property name="name">#{user.name}</property>
</component>

 <component name="org.jboss.seam.core.manager">
 <property name="conversationTimeout">60000</property>
 </component>

org.jboss.seam.bpm.jbpm.processDefinitions
order.jpdl.xml,
return.jpdl.xml,
inventory.jpdl.xml

<bpm:jbpm>
 <bpm:process-definitions>
 <value>order.jpdl.xml</value>
 <value>return.jpdl.xml</value>
 <value>inventory.jpdl.xml</value>
 </bpm:process-definitions>
</bpm:jbpm>

<component name="org.jboss.seam.bpm.jbpm">

 <property name="processDefinitions">
 <value>order.jpdl.xml</value>
 <value>return.jpdl.xml</value>
 <value>inventory.jpdl.xml</value>
 </property>

</component>

<component name="issueEditor">

 <property name="issueStatuses">
 <key>open</key> <value>open issue</value>
 <key>resolved</key> <value>issue resolved by developer</value>
 <key>closed</key> <value>resolution accepted by user</value>

Seam Reference Guide

120

When configuring multi-valued properties, Seam preserves the order of attributes set out in
components.xml by default, unless SortedSet/SortedMap are used, in which case Seam refers to
TreeMap/TreeSet. If the property has a concrete type (LinkedList, for example) Seam will use that
type.

You can also override the type by specifying a fully qualified class name:

Finally, you can link components with a value-binding expression. Note that since this occurs upon
component instantiation, not invocation, this is quite different to injection with @In. It is more similar to
the dependency injection facilities offered by traditional Inversion of Control containers such as
JavaServer Faces (JSF) or Spring.

Seam also resolves EL expression strings prior to assigning the initial value to the bean property of the
component, so some contextual data can be injected into components:

However, there is one important exception: if the initial value is assigned to either a Seam
ValueExpression or MethodExpression, then the evaluation of the EL is deferred, and the
appropriate expression wrapper is created and assigned to the property. The message templates on the
Home component of the Seam Application Framework are a good example of this:

 </property>

</component>

<component name="issueEditor">

 <property name="issueStatusOptions" type="java.util.LinkedHashMap">
 <key>open</key> <value>open issue</value>
 <key>resolved</key> <value>issue resolved by developer</value>
 <key>closed</key> <value>resolution accepted by user</value>
 </property>

</component>

<drools:managed-working-memory name="policyPricingWorkingMemory"
 rule-base="#{policyPricingRules}"/>

<component name="policyPricingWorkingMemory"
 class="org.jboss.seam.drools.ManagedWorkingMemory">
 <property name="ruleBase">#{policyPricingRules}</property>
</component>

<component name="greeter" class="com.example.action.Greeter">
 <property name="message">
 Nice to see you, #{identity.username}!
 </property>
</component>

<framework:entity-home name="myEntityHome"
 class="com.example.action.MyEntityHome"
 entity-class="com.example.model.MyEntity"
 created-message="'#{myEntityHome.instance.name}'
 has been successfully added."/>

CHAPTER 6. CONFIGURING SEAM COMPONENTS

121

Within the component, you can access the expression string by calling getExpressionString() on
either ValueExpression or MethodExpression. If the property is a ValueExpression, resolve the
value with getValue(). If the property is a MethodExpression, invoke the method with
invoke({Object arguments}). To assign a value to a MethodExpression property, the entire
initial value must be a single EL expression.

6.5. USING XML NAMESPACES

Previous examples have alternated between two component declaration methods: with and without
using XML namespaces. The following shows a typical components.xml file that does not use
namespaces:

As you can see, this code is verbose. More importantly, the component and attribute names cannot be
validated at development time.

Using namespaces gives us:

Although the schema declarations are verbose, the XML content itself is lean and easy to understand.
The schemas provide detailed information about each component and the available attributes, allowing
XML editors to offer intelligent auto-completion. Using namespaced elements makes it easier to generate
and maintain correct components.xml files.

This works well for built-in Seam components, but for user components there are two available options.
First, Seam supports mixing both models, allowing the use of generic <component> declarations for
user components, and namespaced declarations for built-in components. More importantly, Seam lets
you quickly declare namespaces for your own components.

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.2.xsd">

 <component class="org.jboss.seam.core.init">
 <property name="debug">true</property>
 <property name="jndiPattern">@jndiPattern@</property>
 </component>

</components>

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/core
 http://jboss.com/products/seam/core-2.2.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.2.xsd">

 <core:init debug="true" jndi-pattern="@jndiPattern@"/>

</components>

Seam Reference Guide

122

Any Java package can be associated with an XML namespace by annotating the package with
@Namespace. (Package-level annotations are declared in a file named package-info.java in the
package directory.) An example of this from the seampay demo is:

Using the namespaced style in components.xml is that simple. Now we can write:

Or:

The previous examples illustrate the two usage models of a namespaced element. In the first
declaration, <pay:payment-home> references the paymentHome component:

@Namespace(value="http://jboss.com/products/seam/examples/ seampay")
package org.jboss.seam.example.seampay; import
org.jboss.seam.annotations.Namespace;

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:pay="http://jboss.com/products/seam/examples/seampay"
 ... >

 <pay:payment-home new-instance="#{newPayment}"
 created-message="Created a new payment to #{newPayment.payee}" />

 <pay:payment name="newPayment"
 payee="Somebody"
 account="#{selectedAccount}"
 payment-date="#{currentDatetime}"
 created-date="#{currentDatetime}" />
 ...
</components>

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:pay="http://jboss.com/products/seam/examples/seampay"
 ... >

 <pay:payment-home>
 <pay:new-instance>"#{newPayment}"</pay:new-instance>
 <pay:created-message>
 Created a new payment to #{newPayment.payee}
 </pay:created-message>
 </pay:payment-home>

 <pay:payment name="newPayment">
 <pay:payee>Somebody"</pay:payee>
 <pay:account>#{selectedAccount}</pay:account>
 <pay:payment-date>#{currentDatetime}</pay:payment-date>
 <pay:created-date>#{currentDatetime}</pay:created-date>
 </pay:payment>
 ...
</components>

package org.jboss.seam.example.seampay;
...
@Name("paymentHome")
public class PaymentController extends EntityHome<Payment> {
 ...

CHAPTER 6. CONFIGURING SEAM COMPONENTS

123

The element name is the hyphenated form of the component name. The attributes of the element are the
hyphenated forms of the property names.

In the second declaration, the <pay:payment> element refers to the Payment class in the
org.jboss.seam.example.seampay package. In this case, Payment is an entity that is being
declared as a Seam component:

A schema is required for validation and auto-completion to work for user-defined components. Seam
cannot yet generate a schema for a set of components automatically, so schema must be manually
created. You can use schema definitions for standard Seam packages for guidance.

The following are the namespaces used by Seam:

components — http://jboss.com/products/seam/components

core — http://jboss.com/products/seam/core

drools — http://jboss.com/products/seam/drools

framework — http://jboss.com/products/seam/framework

jms — http://jboss.com/products/seam/jms

remoting — http://jboss.com/products/seam/remoting

theme — http://jboss.com/products/seam/theme

security — http://jboss.com/products/seam/security

mail — http://jboss.com/products/seam/mail

web — http://jboss.com/products/seam/web

pdf — http://jboss.com/products/seam/pdf

spring — http://jboss.com/products/seam/spring

}

package org.jboss.seam.example.seampay;
...
@Entity
public class Payment implements Serializable {
 ...
}

Seam Reference Guide

124

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION
HANDLING
To complement the contextual component model, there are two further basic concepts that facilitate the
extremely loose coupling distinctive of Seam applications. The first is a strong event model, where
events are mapped to event listeners with method-binding expressions like those in JavaServer Faces
(JSF). The second is the pervasive use of annotations and interceptors to apply cross-cutting concerns to
components that implement business logic.

7.1. SEAM EVENTS

The Seam component model was developed for use with event-driven applications, specifically to
enable the development of fine-grained, loosely-coupled components in a fine-grained eventing model.
There are several event types in Seam:

JSF events

jBPM transition events

Seam page actions

Seam component-driven events

Seam contextual events

Each of these events is mapped to Seam components with JSF EL method-binding expressions. For a
JSF event, this is defined in the JSF template:

For a jBPM transition event, it is specified in the jBPM process definition or pageflow definition:

More information about JSF events and jBPM events is available elsewhere. For now, we will
concentrate upon the two additional event types defined by Seam.

7.2. PAGE ACTIONS

A Seam page action is an event occurring immediately before a JSF request is rendered. Declare page
actions in WEB-INF/pages.xml. We can define a page action for a particular JSF view ID:

Or we can use a * wildcard as a suffix to the view-id to specify an action that applies to all view IDs
that match that pattern:

<h:commandButton value="Click me!" action="#{helloWorld.sayHello}"/>

<start-page name="hello" view-id="/hello.jsp">
 <transition to="hello">
 <action expression="#{helloWorld.sayHello}"/>
 </transition>
 </start-page>

<pages>
 <page view-id="/hello.jsp" action="#{helloWorld.sayHello}"/>
 </pages>

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

125

NOTE

If the <page> element is defined in a fine-grained page descriptor, the view-id attribute
can be omitted, as it is already implied.

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in order of
least-specific to most-specific.

The page action method can return a JSF outcome. If the outcome is not null, Seam uses the defined
navigation rules to navigate to a view.

The view ID mentioned in the <page> element need not correspond to a real JSP or Facelets page. This
way, we can reproduce the functionality of a traditional action-oriented framework like Struts or
WebWork using page actions. This is useful for performing complex actions in response to non-Faces
requests like HTTP GET.

Multiple or conditional page actions can be specified with the <action> tag:

Page actions are executed on both an initial (non-Faces) request and a postback (Faces) request. If you
use the page action to load data, it may conflict with the standard JSF actions being executed on a
postback. One way to disable the page action is to set up a condition that resolves to true only upon an
initial request.

This condition consults the ResponseStateManager#isPostback(FacesContext) to determine if
the request is a postback. The ResponseStateManager is accessed using
FacesContext.getCurrentInstance().getRenderKit(). getResponseStateManager().

Seam offers a built-in condition that accomplishes this result less verbosely. You can disable a page
action on a postback by setting the on-postback attribute to false:

<pages>
 <page view-id="/hello/*" action="#{helloWorld.sayHello}"/>
 </pages>

<pages>
 <page view-id="/hello.jsp">
 <action execute="#{helloWorld.sayHello}"
 if="#{not validation.failed}"/>
 <action execute="#{hitCount.increment}"/>
 </page>
</pages>

<pages>
 <page view-id="/dashboard.xhtml">
 <action execute="#{dashboard.loadData}"
 if="#{not FacesContext.renderKit.responseStateManager
 .isPostback(FacesContext)}"/>
 </page>
</pages>

<pages>
 <page view-id="/dashboard.xhtml">
 <action execute="#{dashboard.loadData}" on-postback="false"/>

Seam Reference Guide

126

The on-postback attribute defaults to true to maintain backwards compatibility. However, you are
more likely to use false more often.

7.3. PAGE PARAMETERS

A Faces request (a JSF form submission) encapsulates both an action (a method binding) and
parameters (input value bindings). A page action can also require parameters.

Since non-Faces (GET) requests can be bookmarked, page parameters are passed as human-readable
request parameters.

You can use page parameters with or without an action method.

7.3.1. Mapping request parameters to the model

Seam lets us provide a value binding that maps a named request parameter to an attribute of a model
object.

The <param> declaration is bidirectional, as with value bindings for JSF input:

When a non-Faces (GET) request for the view ID occurs, Seam sets the value of the named
request parameter to the model object, after performing appropriate type conversions.

Any <s:link> or <s:button> includes the request parameter transparently. The parameter
value is determined by evaluating the value binding during the render phase (when the
<s:link> is rendered).

Any navigation rule with a <redirect/> to the view ID includes the request parameter
transparently. The parameter value is determined by evaluating the value binding at the end of
the invoke application phase.

The value is transparently propagated with any JSF form submission for the page with the given
view ID. This means that view parameters behave like PAGE-scoped context variables for Faces
requests.

However we arrive at /hello.jsp, the value of the model attribute referenced in the value binding is
held in memory, without the need for a conversation (or other server-side state).

7.4. PROPAGATING REQUEST PARAMETERS

If only the name attribute is specified, the request parameter is propagated with the PAGE context (that is,
it is not mapped to model property).

 </page>
 </pages>

<pages>
 <page view-id="/hello.jsp" action="#{helloWorld.sayHello}">
 <param name="firstName" value="#{person.firstName}"/>
 <param name="lastName" value="#{person.lastName}"/>
 </page>
</pages>

<pages>

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

127

Page parameter propagation is especially useful when building multi-layered master-detail CRUD pages.
You can use it to "remember" your view (for example, when pressing the Save button), and which entity
you were editing.

Any <s:link> or <s:button> transparently propagates the request parameter if that
parameter is listed as a page parameter for the view.

The value is transparently propagated with any JSF form submission for the page with the given
view ID. (This means that view parameters behave like PAGE-scoped context variables for Faces
requests.

Although this is fairly complex, it is definitely worthwhile to dedicate time to an understanding of page
parameters. They are the most elegant method of propagating state across non-Faces requests. They
are particularly useful in certain situations. For example, if we have search screens with bookmarkable
results pages, page parameters let us write handling for both POST and GET requests in the same
code. Page parameters eliminate repetitive request parameter-listing in the view definition, and simplify
redirect code.

7.5. URL REWRITING WITH PAGE PARAMETERS

Rewriting occurs based on patterns found for views in pages.xml. Seam URL rewriting performs both
incoming and outgoing URL rewriting based on the same pattern. A simple pattern for this process is:

In this case, any incoming request for /home will be sent to /home.xhtml. Any link generated that
would normally point to /home.seam will instead be rewritten as /home. Rewrite patterns only match the
portion of the URL before the query parameters, so /home.seam?conversationId=13 and
/home.seam?color=red will both be matched by this rewrite rule.

Rewrite rules can take query parameters into consideration, as shown with the following rules.

In this case, an incoming request for /home/red will be served as if it were a request for /home.seam?
color=red. Similarly, if color is a page parameter, an outgoing URL that would normally show as
/home.seam?color=blue would instead be output as /home/blue. Rules are processed in order, so
it is important to list more specific rules before more general rules.

Default Seam query parameters can also be mapped with URL rewriting, further concealing Seam's
fingerprints. In the following example, /search.seam?conversationId=13 would be written as
/search-13.

 <page view-id="/hello.jsp" action="#{helloWorld.sayHello}">
 <param name="firstName" />
 <param name="lastName" />
 </page>
</pages>

<page view-id="/home.xhtml">
 <rewrite pattern="/home" />
</page>

<page view-id="/home.xhtml">
 <rewrite pattern="/home/{color}" />
 <rewrite pattern="/home" />
</page>

Seam Reference Guide

128

Seam URL rewriting provides simple, bidirectional rewriting on a per-view basis. For more complex
rewriting rules that cover non-Seam components, Seam applications can continue to use the
org.tuckey.URLRewriteFilter, or apply rewriting rules at the web server.

To use URL rewriting, the Seam rewrite filter must be enabled. Rewrite filter configuration is discussed in
Section 28.1.4.3, “URL rewriting”.

7.6. CONVERSION AND VALIDATION

You can specify a JSF converter for complex model properties, in either of the following ways:

JSF validators, and required="true" may also be used, in either of the following ways:

Model-based Hibernate validator annotations are automatically recognized and validated. Seam also
provides a default date converter to convert a string parameter value to a date and back.

<page view-id="/search.xhtml">
 <rewrite pattern="/search-{conversationId}" />
 <rewrite pattern="/search" />
</page>

<pages>
 <page view-id="/calculator.jsp" action="#{calculator.calculate}">
 <param name="x" value="#{calculator.lhs}"/>
 <param name="y" value="#{calculator.rhs}"/>
 <param name="op" converterId="com.my.calculator.OperatorConverter"
 value="#{calculator.op}"/>
 </page>
</pages>

<pages>
 <page view-id="/calculator.jsp" action="#{calculator.calculate}">
 <param name="x" value="#{calculator.lhs}"/>
 <param name="y" value="#{calculator.rhs}"/>
 <param name="op" converter="#{operatorConverter}"
 value="#{calculator.op}"/>
 </page>
</pages>

<pages>
 <page view-id="/blog.xhtml">
 <param name="date" value="#{blog.date}"
 validatorId="com.my.blog.PastDate" required="true"/>
 </page>
</pages>

<pages>
 <page view-id="/blog.xhtml">
 <param name="date" value="#{blog.date}"
 validator="#{pastDateValidator}" required="true"/>
 </page>
</pages>

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

129

When type conversion or validation fails, a global FacesMessage is added to the FacesContext.

7.7. NAVIGATION

You can use standard JSF navigation rules defined in faces-config.xml in a Seam application.
However, these rules have several limitations:

It is not possible to specify that request parameters are used when redirecting.

It is not possible to begin or end conversations from a rule.

Rules work by evaluating the return value of the action method; it is not possible to evaluate an
arbitrary EL expression.

Another problem is that "orchestration" logic is scattered between pages.xml and faces-
config.xml. It is better to unify this logic under pages.xml.

This JSF navigation rule:

Can be rewritten as follows:

However, this method pollutes DocumentEditor with string-valued return values (the JSF outcomes).
Instead, Seam lets us write:

Or even:

<navigation-rule>
 <from-view-id>/editDocument.xhtml</from-view-id>
 <navigation-case>
 <from-action>#{documentEditor.update}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/viewDocument.xhtml</to-view-id>
 <redirect/>
 </navigation-case>
</navigation-rule>

<page view-id="/editDocument.xhtml">
 <navigation from-action="#{documentEditor.update}">
 <rule if-outcome="success">
 <redirect view-id="/viewDocument.xhtml"/>
 </rule>
 </navigation>
</page>

<page view-id="/editDocument.xhtml">
 <navigation from-action="#{documentEditor.update}"
 evaluate="#{documentEditor.errors.size}">
 <rule if-outcome="0">
 <redirect view-id="/viewDocument.xhtml"/>
 </rule>
 </navigation>
</page>

<page view-id="/editDocument.xhtml">

Seam Reference Guide

130

The first form evaluates a value binding to determine the outcome value used by the subsequent rules.
The second approach ignores the outcome and evaluates a value binding for each possible rule.

When an update succeeds, we probably want to end the current conversation, like so:

Since the conversation has ended, any subsequent requests will not know which document we are
interested in. We can pass the document ID as a request parameter, which also makes the view
bookmarkable:

Null outcomes are a special case in JSF, and are interpreted as instructions to redisplay the page. The
following navigation rule matches any non-null outcome, but not the null outcome:

To perform navigation when a null outcome occurs, use the following:

 <navigation from-action="#{documentEditor.update}">
 <rule if="#{documentEditor.errors.empty}">
 <redirect view-id="/viewDocument.xhtml"/>
 </rule>
 </navigation>
</page>

<page view-id="/editDocument.xhtml">
 <navigation from-action="#{documentEditor.update}">
 <rule if="#{documentEditor.errors.empty}">
 <end-conversation/>
 <redirect view-id="/viewDocument.xhtml"/>
 </rule>
 </navigation>
</page>

<page view-id="/editDocument.xhtml">
 <navigation from-action="#{documentEditor.update}">
 <rule if="#{documentEditor.errors.empty}">
 <end-conversation/>
 <redirect view-id="/viewDocument.xhtml">
 <param name="documentId" value="#{documentEditor.documentId}"/>
 </redirect>
 </rule>
 </navigation>
</page>

<page view-id="/editDocument.xhtml">
 <navigation from-action="#{documentEditor.update}">
 <rule>
 <render view-id="/viewDocument.xhtml"/>
 </rule>
 </navigation>
</page>

<page view-id="/editDocument.xhtml">
 <navigation from-action="#{documentEditor.update}">
 <render view-id="/viewDocument.xhtml"/>
 </navigation>
</page>

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

131

The view ID can be given as a JSF EL expression:

7.8. FINE-GRAINED FILES FOR DEFINING NAVIGATION, PAGE
ACTIONS AND PARAMETERS

If you have a large number of different page actions and parameters — or even just a large number of
navigation rules — it is sensible to split the declarations into several smaller files. You can define actions
and parameters for a page with the view ID /calc/calculator.jsp in a resource named
calc/calculator.page.xml. In this case, <page> is the root element, and the view ID is implied:

7.9. COMPONENT-DRIVEN EVENTS

Seam components interact by calling each other's methods. Stateful components can even implement
the observer/observable pattern. However, to enable more loosely-coupled interaction, Seam provides
component-driven events.

We specify event listeners (observers) in components.xml.

Here, the event type is an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear in
components.xml. Seam provides a built-in component to raise events.

<page view-id="/editDocument.xhtml">
 <navigation>
 <rule if-outcome="success">
 <redirect view-id="/#{userAgent}/displayDocument.xhtml"/>
 </rule>
 </navigation>
</page>

<page action="#{calculator.calculate}">
 <param name="x" value="#{calculator.lhs}"/>
 <param name="y" value="#{calculator.rhs}"/>
 <param name="op" converter="#{operatorConverter}" value="#
{calculator.op}"/>
</page>

<components>
 <event type="hello">
 <action execute="#{helloListener.sayHelloBack}"/>
 <action execute="#{logger.logHello}"/>
 </event>
</components>

@Name("helloWorld")
public class HelloWorld {
 public void sayHello() {
 FacesMessages.instance().add("Hello World!");
 Events.instance().raiseEvent("hello");
 }
}

Seam Reference Guide

132

You can also use an annotation, like so:

This event producer is not dependent upon event consumers. The event listener can now be
implemented with absolutely no dependency upon the producer:

The method binding defined above in components.xml maps the event to the consumer. If you prefer,
you can also do this with annotations:

If you are familiar with component-driven events, you may be wondering about event objects. In Seam,
event objects do not need to propagate state between the event producer and listener. State is held in
the Seam contexts, and shared between components. However, if you do want to pass an event object,
you can do so:

@Name("helloWorld")
public class HelloWorld {
 @RaiseEvent("hello")
 public void sayHello() {
 FacesMessages.instance().add("Hello World!");
 }
}

@Name("helloListener")
public class HelloListener {
 public void sayHelloBack() {
 FacesMessages.instance().add("Hello to you too!");
 }
}

@Name("helloListener")
public class HelloListener {
 @Observer("hello")
 public void sayHelloBack() {
 FacesMessages.instance().add("Hello to you too!");
 }
}

@Name("helloWorld")
public class HelloWorld {
 private String name;
 public void sayHello() {
 FacesMessages.instance().add("Hello World, my name is #0.", name);
 Events.instance().raiseEvent("hello", name);
 }
}

@Name("helloListener")
public class HelloListener {
 @Observer("hello")
 public void sayHelloBack(String name) {
 FacesMessages.instance().add("Hello #0!", name);
 }
}

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

133

7.10. CONTEXTUAL EVENTS

Seam defines a number of built-in events that the application uses for certain kinds of framework
integration. The events are:

Table 7.1. Contextual Events

Event Description

org.jboss.seam.validationFailed Called when JSFvalidation fails.

org.jboss.seam.noConversation Called when there is nolong-running
conversation and a long-running
conversation is required.

 org.jboss.seam.preSetVariable.<name> called when the context variable
<name> is set.

 org.jboss.seam.postSetVariable.<name> called when the context variable
<name> is set.

 org.jboss.seam.preRemoveVariable.<name> Called when the context variable
<name> is unset.

 org.jboss.seam.postRemoveVariable.<name> Called when the context variable
<name> is unset.

 org.jboss.seam.preDestroyContext.<SCOPE> Called before the <SCOPE> context is
destroyed.

 org.jboss.seam.postDestroyContext.<SCOPE> Called after the <SCOPE> context is
destroyed.

org.jboss.seam.beginConversation Called whenever along-running
conversation begins.

org.jboss.seam.endConversation Called whenever a long-running
conversation ends.

org.jboss.seam.conversationTimeout Called when a conversation timeout
occurs. The conversation ID is passed
as a parameter.

org.jboss.seam.beginPageflow Called when a pageflowbegins.

 org.jboss.seam.beginPageflow.<name> Called when the pageflow <name>
begins.

org.jboss.seam.endPageflow Called when a pageflowends.

 org.jboss.seam.endPageflow.<name> Called when the pageflow <name>
ends.

Seam Reference Guide

134

 org.jboss.seam.createProcess.<name> called when the process <name> is
created.

 org.jboss.seam.endProcess.<name> called when the process <name> ends.

 org.jboss.seam.initProcess.<name> called when the process <name> is
associated with the conversation.

 org.jboss.seam.initTask.<name> Called when the task <name> is
associated with the conversation.

 org.jboss.seam.startTask.<name> Called when the task <name> is started.

 org.jboss.seam.endTask.<name> Called when the task <name> is ended.

 org.jboss.seam.postCreate.<name> Called when the component <name> is
created.

 org.jboss.seam.preDestroy.<name> Called when the component <name> is
destroyed.

org.jboss.seam.beforePhase Called before the start of a JSF phase.

org.jboss.seam.afterPhase Called after the end of a JSF phase.

org.jboss.seam.postInitialization Called when Seam has initialized and
started up all components.

org.jboss.seam.postReInitialization Called when Seam has re-initialized and
started up all components after a
redeploy.

 org.jboss.seam.exceptionHandled.<type> Called when an uncaught exception is
handled by Seam.

org.jboss.seam.exceptionHandled Called when an uncaught exception is
handled by Seam.

org.jboss.seam.exceptionNotHandled Called when there was no handler for
an uncaught exception.

org.jboss.seam.afterTransactionSuccess Called when a transaction succeeds in
the Seam Application Framework.

 org.jboss.seam.afterTransactionSuccess.
<name>

Called when a transaction succeeds in
the Seam Application Framework
managing the entity <name> .

org.jboss.seam.security.loggedOut Called when a user logs out.

Event Description

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

135

org.jboss.seam.security.loginFailed Called when a user authentication
attempt fails.

org.jboss.seam.security.loginSuccessful Called when a user is successfully
authenticated.

org.jboss.seam.security.notAuthorized Called when an authorization check
fails.

org.jboss.seam.security.notLoggedIn Called when there is no authenticated
user and authentication is required.

org.jboss.seam.security.postAuthenticate Called after a user is authenticated.

org.jboss.seam.security.preAuthenticate Called before attempting to authenticate
a user.

Event Description

Seam components observe these events just as they observe any other component-driven event.

7.11. SEAM INTERCEPTORS

EJB3 introduced a standard interceptor model for session bean components. To add an interceptor to a
bean, you need to write a class with a method annotated @AroundInvoke and annotate the bean with
an @Interceptors annotation that specifies the name of the interceptor class. For example, the
following interceptor checks that the user is logged in before allowing invoking an action listener method:

To apply this interceptor to a session bean acting as an action listener, we must annotate the session
bean @Interceptors(LoggedInInterceptor.class). However, Seam builds upon the interceptor
framework in EJB3 by allowing you to use @Interceptors as a meta-annotation for class level
interceptors (those annotated @Target(TYPE)). In this example, we would create an @LoggedIn
annotation, as follows:

public class LoggedInInterceptor {
 @AroundInvoke
 public Object checkLoggedIn(InvocationContext invocation)
 throws Exception {
 boolean isLoggedIn = Contexts.getSessionContext()
 .get("loggedIn")!=null;
 if (isLoggedIn) {
 //the user is already logged in return invocation.proceed();
 } else {
 //the user is not logged in, fwd to login page return "login";
 }
 }
}

@Target(TYPE)
@Retention(RUNTIME)
@Interceptors(LoggedInInterceptor.class)
 public @interface LoggedIn {}

Seam Reference Guide

136

We can now annotate our action listener bean with @LoggedIn to apply the interceptor.

Where interceptor order is important, add @Interceptor annotations to your interceptor classes to
specify a particular order of interceptors.

You can even have a client-side interceptor, for built-in EJB3 functions:

EJB interceptors are stateful, and their life cycles match that of the component they intercept. For
interceptors that do not need to maintain state, Seam allows performance optimization where
@Interceptor(stateless=true) is specified.

Much of Seam's functionality is implemented as a set of built-in Seam interceptors, including the
interceptors named in the previous example. These interceptors exist for all interceptable Seam
components; you need not specify them explicitly through annotation.

Seam interceptors can also be used with JavaBean components.

EJB defines interception not only for business methods (using @AroundInvoke), but also for the life
cycle methods @PostConstruct, @PreDestroy, @PrePassivate and @PostActive. Seam
supports these life cycle methods on both component and interceptor, not only for EJB3 beans, but also
for JavaBean components (except @PreDestroy, which is not meaningful for JavaBean components).

7.12. MANAGING EXCEPTIONS

JSF has a limited ability to handle exceptions. To work around this problem, Seam lets you define
treatment of an exception class through annotation, or through declaration in an XML file. This combines
with the EJB3-standard @ApplicationException annotation, which specifies whether the exception
should cause a transaction rollback.

@Stateless
@Name("changePasswordAction")
@LoggedIn
@Interceptors(SeamInterceptor.class)
public class ChangePasswordAction implements ChangePassword {
 ...
 public String changePassword() {
 ...
 }
}

@Interceptor(around={BijectionInterceptor.class,
 ValidationInterceptor.class,
 ConversationInterceptor.class},
 within=RemoveInterceptor.class)
public class LoggedInInterceptor {
 ...
}

@Interceptor(type=CLIENT)
public class LoggedInInterceptor {
 ...
}

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

137

7.12.1. Exceptions and transactions

EJB specifies well-defined rules to control whether an exception immediately marks the current
transaction for rollback, when thrown by a business method of the bean. System exceptions always
cause a transaction rollback. Application exceptions do not cause a rollback by default, but they will
cause a rollback if @ApplicationException(rollback=true) is specified. (An application
exception is any checked exception, or any unchecked exception annotated
@ApplicationException. A system exception is any unchecked exception without an
@ApplicationException annotation.)

NOTE

Marking a transaction for rollback is not the same as actually rolling back the transaction.
The exception rules say that the transaction should be marked rollback only, but it may
still be active after the exception is thrown.

Seam also applies the EJB3 exception rollback rules to Seam JavaBean components.

These rules apply only in the Seam component layer. When an exception occurs outside the Seam
component layer, Seam rolls back any active transaction.

7.12.2. Enabling Seam exception handling

To enable Seam's exception handling, the master Servlet filter must be declared in web.xml:

For the exception handlers to fire, you must disable Facelets development mode in web.xml and Seam
debug mode in components.xml.

7.12.3. Using annotations for exception handling

The following exception results in a HTTP 404 error whenever it propagates outside the Seam
component layer. It does not roll back the current transaction immediately when thrown, but the
transaction will be rolled back if it the exception is not caught by another Seam component.

This exception results in a browser redirect whenever it propagates outside the Seam component layer.
It also ends the current conversation. It causes an immediate rollback of the current transaction.

<filter>
 <filter-name>Seam Filter</filter-name>
 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>Seam Filter</filter-name>
 <url-pattern>*.seam</url-pattern>
</filter-mapping>

@HttpError(errorCode=404)
public class ApplicationException extends Exception {
 ...
}

@Redirect(viewId="/failure.xhtml", end=true)

Seam Reference Guide

138

NOTE

Seam cannot handle exceptions that occur during JSF's RENDER_RESPONSE phase, as it
is not possible to perform a redirect once writing to the response has begun.

You can also use EL to specify the viewId to redirect to.

When this exception propagates outside the Seam component layer, it results in a redirect and a
message to the user. It also immediately rolls back the current transaction.

7.12.4. Using XML for exception handling

Since annotations cannot be added to all exception classes, Seam also lets us specify this functionality
in pages.xml.

The final <exception> declaration does not specify a class, and acts as catch-all for any exception
without specified handling via annotations or in pages.xml.

You can also use EL to specify the view-id to redirect to.

You can also access the handled exception instance through EL. Seam places it in the conversation
context. For example, to access the exception message:

@ApplicationException(rollback=true)
public class UnrecoverableApplicationException extends RuntimeException {
 ...
}

@Redirect(viewId="/error.xhtml", message="Unexpected error")
public class SystemException extends RuntimeException {
 ...
}

<pages>
 <exception class="javax.persistence.EntityNotFoundException">
 <http-error error-code="404"/>
 </exception>

 <exception class="javax.persistence.PersistenceException">
 <end-conversation/>
 <redirect view-id="/error.xhtml">
 <message>Database access failed</message>
 </redirect>
 </exception>

 <exception>
 <end-conversation/>
 <redirect view-id="/error.xhtml">
 <message>Unexpected failure</message>
 </redirect>
 </exception>
</pages>

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

139

org.jboss.seam.handledException holds the nested exception that was handled by an exception
handler. The outermost (wrapper) exception is also available as
org.jboss.seam.caughtException.

7.12.4.1. Suppressing exception logging

For the exception handlers defined in pages.xml, it is possible to declare the level at which the
exception will be logged, or to suppress exception logging altogether. The log and log-level
attributes are used to control exception logging. No log message will be generated when the specified
exception occurs when log="false" is set, as shown here:

If the log attribute is not specified, then it defaults to true — that is, the exception will be logged.
Alternatively, you can specify the log-level to control the level at which the exception will be logged:

The acceptable values for log-level are: fatal, error, warn, info, debug, and trace. If the
log-level is not specified, or if an invalid value is configured, log-level will default to error.

7.12.5. Some common exceptions

If you are using JPA:

...
 throw new AuthorizationException("You are not allowed to do this!");

<pages>
 <exception class="org.jboss.seam.security.AuthorizationException">
 <end-conversation/>
 <redirect view-id="/error.xhtml">
 <message severity="WARN">
 #{org.jboss.seam.handledException.message}
 </message>
 </redirect>
 </exception>
</pages>

<exception class="org.jboss.seam.security.NotLoggedInException"
 log="false">
 <redirect view-id="/register.xhtml">
 <message severity="warn">
 You must be a member to use this feature
 </message>
 </redirect>
</exception>

<exception class="org.jboss.seam.security.NotLoggedInException"
 log-level="info">
 <redirect view-id="/register.xhtml">
 <message severity="warn">
 You must be a member to use this feature
 </message>
 </redirect>
</exception>

Seam Reference Guide

140

If you are using the Seam Application Framework:

If you are using Seam Security:

And, for JSF:

A ViewExpiredException occurs when the user posts to a page after their session has expired. The
conversation-required and no-conversation-view-id settings in the Seam page descriptor,
discussed in Section 8.4, “Requiring a long-running conversation”, allow finer-grained control over
session expiration while accessing a page used within a conversation.

<exception class="javax.persistence.EntityNotFoundException">
 <redirect view-id="/error.xhtml">
 <message>Not found</message>
 </redirect>
</exception>

<exception class="javax.persistence.OptimisticLockException">
 <end-conversation/>
 <redirect view-id="/error.xhtml">
 <message>
 Another user changed the same data, please try again
 </message>
 </redirect>
</exception>

<exception class="org.jboss.seam.framework.EntityNotFoundException">
 <redirect view-id="/error.xhtml">
 <message>Not found</message>
 </redirect>
</exception>

<exception class="org.jboss.seam.security.AuthorizationException">
 <redirect>
 <message>You do not have permission to do this</message>
 </redirect>
</exception>

<exception class="org.jboss.seam.security.NotLoggedInException">
 <redirect view-id="/login.xhtml">
 <message>Please log in first</message>
 </redirect>
</exception>

<exception class="javax.Faces.application.ViewExpiredException">
 <redirect view-id="/error.xhtml">
 <message>Your session has timed out, please try again</message>
 </redirect>
</exception>

CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING

141

CHAPTER 8. CONVERSATIONS AND WORKSPACE
MANAGEMENT
Now we will take you through Seam's conversation model in finer detail.

The notion of a Seam conversation came about as a combination of three separate concepts:

the concept of a workspace, and effective workspace management.

the concept of an application transaction with optimistic semantics. Existing frameworks, based
around a stateless architecture, were unable to provide effective management of extended
persistence contexts.

the concept of a workflow task.

By unifying these ideas and providing deep support in the framework, we have created a powerful
construct that allows for richer and more efficient applications, using less verbose code.

8.1. SEAM'S CONVERSATION MODEL

All examples so far operate under a simple conversation model with the following rules:

A conversation context is always active during the apply request values, process validation,
update model values, invoke application and render response phases of the JSF request life
cycle.

At the end of the restore view phase of the JSF request life cycle, Seam attempts to restore any
previous long-running conversation context. If none exists, Seam creates a new temporary
conversation context.

When a @Begin method is encountered, the temporary conversation context is promoted to a
long-running conversation.

When an @End method is encountered, any long-running conversation context is demoted to a
temporary conversation.

At the end of the render response phase of the JSF request life cycle, Seam either stores the
contents of a long-running conversation context, or destroys the contents of a temporary
conversation context.

Any Faces request (a JSF postback) will propagate the conversation context. By default, non-
Faces requests (GET requests, for example) do not propagate the conversation context.

If the JSF request life cycle is foreshortened by a redirect, Seam transparently stores and
restores the current conversation context, unless the conversation was already ended via
@End(beforeRedirect=true).

Seam transparently propagates the conversation context (including the temporary conversation context)
across JSF postbacks and redirects. Without special additions, a non-Faces request (a GET request, for
example) will not propagate the conversation context, and will be processed in a new temporary
conversation. This is usually — but not always — the desired behavior.

To propagate a Seam conversation across a non-Faces request, the Seam conversation ID must be
explicitly coded as a request parameter:

Seam Reference Guide

142

Or, for JSF:

If you use the Seam tag library, this is equivalent:

The code to disable propagation of the conversation context for a postback is similar:

The equivalent for the Seam tag library is:

NOTE

Disabling conversation context propagation is not the same as ending the conversation.

The conversationPropagation request parameter or <s:conversationPropagation> tag can
also be used to begin and end conversations, or to begin a nested conversation.

 Continue

<h:outputLink value="main.jsf">
 <f:param name="#{manager.conversationIdParameter}"
 value="#{conversation.id}"/>
 <h:outputText value="Continue"/>
</h:outputLink>

<h:outputLink value="main.jsf">
 <s:conversationId/>
 <h:outputText value="Continue"/>
</h:outputLink>

<h:commandLink action="main" value="Exit">
 <f:param name="conversationPropagation" value="none"/>
</h:commandLink>

<h:commandLink action="main" value="Exit">
 <s:conversationPropagation type="none"/>
</h:commandLink>

<h:commandLink action="main" value="Exit">
 <s:conversationPropagation type="end"/>
</h:commandLink>

<h:commandLink action="main" value="Select Child">
 <s:conversationPropagation type="nested"/>
</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
 <s:conversationPropagation type="begin"/>
</h:commandLink>

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT

143

This conversation model makes it easy to build applications which behave correctly with respect to multi-
window operation. For many applications, this is all that is required. Some complex applications have
one or both of the following additional requirements:

A conversation spans many smaller units of user interaction, which execute serially or even
concurrently. The smaller nested conversations have their own isolated set of conversation
state, and have access to the state of the outer conversation.

The user can switch between many conversations within the same browser window. This feature
is called workspace management.

8.2. NESTED CONVERSATIONS

A nested conversation is created by invoking a method marked @Begin(nested=true) within the
scope of an existing conversation. A nested conversation has its own conversation context, but can read
values from the outer conversation's context. The outer conversation's context is read-only within a
nested conversation, but because objects are obtained by reference, changes to the objects themselves
will be reflected in the outer context.

Nesting a conversation initializes a context that is stacked on the context of the original, or outer,
conversation. The outer conversation is considered the parent.

Any values outjected or set directly into the nested conversation’s context do not affect the
objects accessible in the parent conversation’s context.

Injection, or a context look up from the conversation context, will first look up the value in the
current conversation context. If no value is found, look up will continue down the conversation
stack, if the conversation is nested. This behavior can be overridden.

When an @End is subsequently encountered, the nested conversation will be destroyed, and the outer
conversation will resume, popping the conversation stack. Conversations may be nested to any arbitrary
depth.

Certain user activities (workspace management, or the back button) can cause the outer conversation to
be resumed before the inner conversation ends. In this case, it is possible to have multiple concurrent
nested conversations belonging to the same outer conversation. If the outer conversation ends before a
nested conversation ends, Seam destroys all nested conversation contexts along with the outer context.

The conversation at the bottom of the conversation stack is the root conversation. Destroying this
conversation will always destroy all descendant conversations. You can achieve this declaratively by
specifying @End(root=true).

A conversation can be thought of as a continuable state. Nested conversations allow the application to
capture a consistent continuable state at various points in a user interaction, thus ensuring truly correct
behavior in the face of backbuttoning and workspace management.

As mentioned previously, if a component exists in a parent conversation of the current nested
conversation, the nested conversation will use the same instance. Occasionally, it is useful to have a
different instance in each nested conversation, so that the component instance that of the parent
conversation is invisible to its child conversations. You can achieve this behavior by annotating the
component @PerNestedConversation.

<h:commandLink action="main" value="Select Hotel">
 <s:conversationPropagation type="join"/>
</h:commandLink>

Seam Reference Guide

144

8.3. STARTING CONVERSATIONS WITH GET REQUESTS

JSF does not define any action listener triggered when a page is accessed via a non-Faces request (a
HTTP GET request, for example). This can occur when a user bookmarks the page, or navigates to the
page via an <h:outputLink>.

Sometimes we want a conversation to begin immediately the page is accessed. Since there is no JSF
action method, we cannot annotate the action with @Begin.

Further problems arise when the page requires state to be fetched into a context variable. We have
already seen two methods of solving this problem. If the state is held in a Seam component, we can
fetch the state in a @Create method. If not, we can define a @Factory method for the context variable.

If neither option works for you, Seam lets you define a page action in the pages.xml file.

This action method is called at the beginning of the render response phase — that is, any time the page
is about to be rendered. If a page action returns a non-null outcome, Seam will process any appropriate
JSF and Seam navigation rules. This can result in a completely different page rendering.

If beginning a conversation is all you want to do before rendering the page, you can use a built-in action
method:

You can also call this built-in action from a JSF control, and that #{conversation.end} similarly ends
conversations.

The <begin-conversation> element can be used as follows for further control over joining existing
conversations, or beginning a nested conversation, a pageflow, or an atomic conversation.

There is also an <end-conversation> element.

<pages>
 <page view-id="/messageList.jsp" action="#{messageManager.list}"/>
 ...
</pages>

<pages>
 <page view-id="/messageList.jsp" action="#{conversation.begin}"/>
 ...
</pages>

<pages>
 <page view-id="/messageList.jsp">
 <begin-conversation nested="true" pageflow="AddItem"/>
 <page>
 ...
</pages>

<pages>
 <page view-id="/home.jsp">
 <end-conversation/>
 <page>
 ...
</pages>

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT

145

We now have five options to begin a conversation immediately the page is accessed:

Annotate the @Create method with @Begin

Annotate the @Factory method with @Begin

Annotate the Seam page action method with @Begin

Use <begin-conversation> in pages.xml.

Use #{conversation.begin} as the Seam page action method

8.4. REQUIRING A LONG-RUNNING CONVERSATION

Certain pages are only relevant in the context of a long-running conversation. One way to restrict access
to such a page is to make the existence of a long-running conversation a prerequisite to the page being
rendered.

Seam's page descriptor has a conversation-required attribute, which lets you indicate that the
current conversation must be long-running (or nested) in order for a page to be rendered, like so:

NOTE

At present, you cannot indicate which long-running conversation is required. However,
you can build on the basic authorization by checking whether a specific value is also
present in the conversation within a page action.

When Seam determines that the page has been requested while no long-running conversation is
present, it performs the following actions:

raises a contextual event called org.jboss.seam.noConversation

registers a warning status message with the bundle key, org.jboss.seam.NoConversation

redirects the user to an alternative page, if defined in the no-conversation-view-id
attribute, like so:

This page will be used across the entire application; at present, multiple alternative pages
cannot be defined.

8.5. USING <S:LINK> AND <S:BUTTON>

JSF command links always perform a form submission with JavaScript, which causes problems with the
web browser's "open in new window" or "open in new tab" feature. If you require this functionality in plain
JSF, you need to use an <h:outputLink>, but there are two major limitations to this method:

JSF provides no way to attach an action listener to an <h:outputLink>, and

<page view-id="/book.xhtml" conversation-required="true"/>

<pages no-conversation-view-id="/main.xhtml"/>

Seam Reference Guide

146

JSF does not propagate the selected row of a DataModel, since there is no actual form
submission.

To solve the first problem, Seam implements the notion of a page action, but this does not solve the
second. It is possible to work around this by passing a request parameter and requerying for the selected
object on the server-side, and in some cases (like the Seam blog example application), this is the best
approach. Since it is RESTful and does not require server-side state, bookmarking is supported. In other
cases, where bookmarking is unnecessary, @DataModel and @DataModelSelection are transparent
and convenient.

To replace this missing functionality, and to simplify conversation propagation further, Seam provides the
<s:link> JSF tag.

The link can specify only the JSF ID:

It can also specify an action method, in which case the action outcome determines the page that results:

If both a JSF view ID and an action method are specified, the view will be used unless the action method
returns a non-null outcome:

The link automatically propagates the selected row of a DataModel inside <h:dataTable>:

You can leave the scope of an existing conversation:

You can begin, end, or nest conversations:

If the link begins a conversation, you can specify the use of a particular pageflow:

The taskInstance attribute is for use in jBPM task lists, as follows. See Section 1.8, “A complete
application featuring Seam and jBPM: the DVD Store example” for an example.

Finally, use <s:button> if you want the "link" rendered as a button:

<s:link view="/login.xhtml" value="Login"/>

<s:link action="#{login.logout}" value="Logout"/>

<s:link view="/loggedOut.xhtml" action="#{login.logout}" value="Logout"/>

<s:link view="/hotel.xhtml" action="#{hotelSearch.selectHotel}"
 value="#{hotel.name}"/>

<s:link view="/main.xhtml" propagation="none"/>

<s:link action="#{issueEditor.viewComment}" propagation="nest"/>

<s:link action="#{documentEditor.getDocument}" propagation="begin"
 pageflow="EditDocument"/>

<s:link action="#{documentApproval.approveOrReject}"
 taskInstance="#{task}"/>

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT

147

8.6. SUCCESS MESSAGES

Messages are commonly displayed to the user to indicate the success or failure of an action. A JSF
FacesMessage is convenient for this function. However, a successful action often requires a browser
redirect. Since JSF does not propagate Faces messages across redirects, it is difficult to display
success messages in plain JSF.

The built-in conversation-scoped Seam component named facesMessages solves this problem. (This
requires the Seam redirect filter.)

When a message is added to facesMessages, it is used in the nextg render response phase for the
current conversation. Since Seam preserves even temporary conversation contexts across redirects, this
works even without a long-running conversation.

You can even include JSF EL expressions in a Faces message summary:

Messages are displayed as usual:

8.7. NATURAL CONVERSATION IDS

When working with conversations that deal with persistent objects, there are several reasons to use the
natural business key of the object instead of the standard, "surrogate" conversation ID.

Easy redirect to existing conversation

If the user requests the same operation twice, it can be useful to redirect to an existing conversation.
Take the following situation, for example:

You are on Ebay, halfway through paying for an item you won as a Christmas present for your parents.
You want to send it straight to them, but once you have entered your payment details, you cannot
remember your parents' address. While you find the address, you accidentally reuse the same browser
window, but now you need to return to payment for the item.

<s:button action="#{login.logout}" value="Logout"/>

@Name("editDocumentAction")
@Stateless
 public class EditDocumentBean implements EditDocument {
 @In EntityManager em;
 @In Document document;
 @In FacesMessages facesMessages;

 public String update() {
 em.merge(document);
 facesMessages.add("Document updated");
 }
}

facesMessages.add("Document #{document.title} was updated");

<h:messages globalOnly="true"/>

Seam Reference Guide

148

With a natural conversation, the user can easily rejoin the previous conversation and pick up where they
left off. In this case, they can rejoin the payForItem conversation with the itemId as the conversation ID.

User-friendly URLs

A user-friendly URL is meaningful (refers to page contents plainly, without using ID numbers), and has a
navigable heirarchy (that is, the user can navigate by editing the URL).

With a natural conversation, applications can generate long, complex URLs, but display simple,
memorable URLs to users by using URLRewrite. In the case of our hotel booking example,
http://seam-hotels/book.seam?hotel=BestWesternAntwerpen is rewritten as
http://seam-hotels/book/BestWesternAntwerpen — much clearer. Note that URLRewrite
relies upon parameters: hotel in the previous example must map to a unique parameter on the domain
model.

8.8. CREATING A NATURAL CONVERSATION

Natural conversations are defined in pages.xml:

The first thing to note in the above definition is the conversation name, in this case PlaceBid. The
conversation name identifies this particular named conversation uniquely, and is used by the page
definition to identify a named conversation in which to participate.

The parameter-name attribute defines the request parameter that will hold the natural conversation ID,
and replace the default conversation ID parameter. In this case, parameter-name is auctionId. This
means that the URL of your page will contain auctionId=765432 instead of a conversation parameter
like cid=123.

The final attribute, parameter-value, defines an EL expression to evaluate the value of the natural
business key to use as the conversation ID. In this example, the conversation ID will be the primary key
value of the auction instance currently in scope.

Next, we define the pages participating in the named conversation. This is done by specifying the
conversation attribute for a page definition:

8.9. REDIRECTING TO A NATURAL CONVERSATION

When initiating or redirecting to a natural conversation, there are several ways to specify the natural
conversation name. We will start with the following page definition:

<conversation name="PlaceBid" parameter-name="auctionId"
 parameter-value="#{auction.auctionId}"/>

<page view-id="/bid.xhtml" conversation="PlaceBid" login-required="true">
 <navigation from-action="#{bidAction.confirmBid}">
 <rule if-outcome="success">
 <redirect view-id="/auction.xhtml">
 <param name="id" value="#{bidAction.bid.auction.auctionId}"/>
 </redirect>
 </rule>
 </navigation>
</page>

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT

149

Here we see that invoking #{bidAction.placeBid} redirects us to /bid.xhtml, which is configured
with the natural conversation ID PlaceBid. Our action method declaration looks like this:

When named conversations are specified in the <page/> element, redirection to the named
conversation occurs as part of navigation rules following the invocation of the action method. This can
cause problems when redirecting to an existing conversation, since redirection needs to occur before the
action method is invoked. Therefore, the conversation name must be specified before the action is
invoked. One method of doing this uses the <s:conversationName> tag:

You can also specify the conversationName attribute for either the s:link or s:button:

8.10. WORKSPACE MANAGEMENT

Workspace management is the ability to "switch" conversations in a single window. Seam workspace
management is completely transparent at the Java level. To enable workspace management:

Provide description text for each view ID (when using JSF or Seam navigation rules) or page
node (when using jPDL pageflows). Workspace switchers display this description text to the
user.

Include one or more workspace switcher JSP or Facelets fragments in your page. Standard
fragments support workspace management via a drop-down menu and a list of conversations, or
"breadcrumbs".

8.10.1. Workspace management and JSF navigation

With JSF or Seam navigation rules in place, Seam switches to a conversation by restoring the current
view-id for that conversation. The descriptive text for the workspace is defined in a file called
pages.xml, which Seam expects to find in the WEB-INF directory alongside faces-config.xml:

<page view-id="/auction.xhtml">
 <param name="id" value="#{auctionDetail.selectedAuctionId}"/>
 <navigation from-action="#{bidAction.placeBid}">
 <redirect view-id="/bid.xhtml"/>
 </navigation>
</page>

@Begin(join = true)
public void placeBid()

<h:commandButton id="placeBidWithAmount" styleClass="placeBid"
 action="#{bidAction.placeBid}">
 <s:conversationName value="PlaceBid"/>
</h:commandButton>

<s:link value="Place Bid" action="#{bidAction.placeBid}"
 conversationName="PlaceBid"/>

<pages>
 <page view-id="/main.xhtml">
 <description>Search hotels: #{hotelBooking.searchString}</description>
 </page>
 <page view-id="/hotel.xhtml">

Seam Reference Guide

150

NOTE

The Seam application will still work if this file is not present. However, workplace switching
will not be available.

8.10.2. Workspace management and jPDL pageflow

When a jPDL pageflow definition is in place, Seam switches to a particular conversation by restoring the
current jBPM process state. This is a more flexible model, since it allows the same view-id to have
different descriptions depending on the current <page> node. The description text is defined by the
<page> node:

8.10.3. The conversation switcher

Including the following fragment in your JSP or Facelets page will include a drop-down menu that lets
you switch to any current conversation, or any other page of the application:

 <description>View hotel: #{hotel.name}</description>
 </page>
 <page view-id="/book.xhtml">
 <description>Book hotel: #{hotel.name}</description>
 </page>
 <page view-id="/confirm.xhtml">
 <description>Confirm: #{booking.description}</description>
 </page>
</pages>

<pageflow-definition name="shopping">
 <start-state name="start">
 <transition to="browse"/>
 </start-state>
 <page name="browse" view-id="/browse.xhtml">
 <description>DVD Search: #{search.searchPattern}</description>
 <transition to="browse"/>
 <transition name="checkout" to="checkout"/>
 </page>
 <page name="checkout" view-id="/checkout.xhtml">
 <description>Purchase: $#{cart.total}</description>
 <transition to="checkout"/>
 <transition name="complete" to="complete"/>
 </page>
 <page name="complete" view-id="/complete.xhtml">
 <end-conversation />
 </page>
</pageflow-definition>

<h:selectOneMenu value="#{switcher.conversationIdOrOutcome}">
 <f:selectItem itemLabel="Find Issues" itemValue="findIssue"/>
 <f:selectItem itemLabel="Create Issue" itemValue="editIssue"/>
 <f:selectItems value="#{switcher.selectItems}"/>
</h:selectOneMenu>
<h:commandButton action="#{switcher.select}" value="Switch"/>

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT

151

This example includes a menu that contains an item for each conversation, plus two additional items that
let the user begin an additional conversation.

Only conversations with a description (specified in pages.xml) will be included in the drop-down menu.

8.10.4. The conversation list

The conversation list is similar to the conversation switcher, except that it is displayed as a table:

This can be customized for your own applications.

<h:dataTable value="#{conversationList}" var="entry"
 rendered="#{not empty conversationList}">
 <h:column>
 <f:facet name="header">Workspace</f:facet>
 <h:commandLink action="#{entry.select}" value="#{entry.description}"/>
 <h:outputText value="[current]" rendered="#{entry.current}"/>
 </h:column>
 <h:column>
 <f:facet name="header">Activity</f:facet>
 <h:outputText value="#{entry.startDatetime}">
 <f:convertDateTime type="time" pattern="hh:mm a"/>
 </h:outputText>
 <h:outputText value=" - "/>
 <h:outputText value="#{entry.lastDatetime}">
 <f:convertDateTime type="time" pattern="hh:mm a"/>
 </h:outputText>
 </h:column>
 <h:column>
 <f:facet name="header">Action</f:facet>
 <h:commandButton action="#{entry.select}" value="#{msg.Switch}"/>
 <h:commandButton action="#{entry.destroy}" value="#{msg.Destroy}"/>
 </h:column>
</h:dataTable>

Seam Reference Guide

152

Only conversations with a description will be included in the list.

Note that the conversation list also lets the user destroy workspaces.

8.10.5. Breadcrumbs

Breadcrumbs are a list of links to conversations in the current conversation stack. They are useful for
applications with a nested conversation model:

8.11. CONVERSATIONAL COMPONENTS AND JSF COMPONENT
BINDINGS

Conversational components have one minor limitation: they cannot be used to hold bindings to JSF
components. (Generally we recommend avoiding this feature of JSF unless absolutely necessary, since
it creates a hard dependency from application logic to the view.) On a postback request, component
bindings are updated during the Restore View phase, before the Seam conversation context has been
restored.

You can work around this by storing component bindings with an event-scoped component, and injecting
this into the requiring conversation-scoped component.

You are also limited in that a conversation-scoped component cannot be injected into an event-scoped
component with a JSF control bound to it. This includes Seam built-in components like
facesMessages.

You can also access the JSF component tree with the implicit uiComponent handle. The following
example accesses the getRowIndex() of the UIData component that backs the data table during
iteration, and prints the current row number:

<ui:repeat value="#{conversationStack}" var="entry">
 <h:outputText value=" | "/>
 <h:commandLink value="#{entry.description}" action="#{entry.select}"/>
</ui:repeat>

@Name("grid")
@Scope(ScopeType.EVENT)
public class Grid {
 private HtmlPanelGrid htmlPanelGrid; // getters and setters
 ...
}

@Name("gridEditor")
@Scope(ScopeType.CONVERSATION)
public class GridEditor {
 @In(required=false)
 private Grid grid;
 ...
}

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT

153

In this map, JSF UI components are available with their client identifier.

8.12. CONCURRENT CALLS TO CONVERSATIONAL COMPONENTS

Section 5.1.10, “Concurrency model” contains a general discussion of concurrent calls to Seam
components. In this section, we discuss the most common situation in which you will encounter
concurrency — when accessing conversational components from AJAX requests. We will also look at
the options provided by an AJAX client library, and RichFaces, to control events originating from the
client.

Conversational components do not allow true concurrent access, so Seam queues each request for
serial processing. This allows each request to be executed in a deterministic fashion. However, there are
some limitations to a simple queue. If a method, for whatever reason, takes a long time to complete,
running it whenever the client generates a request can lead to Denial of Service attacks. AJAX is also
often used to provide quick status updates to users, so continuing to run an action after a long time is not
useful.

Therefore, when you work inside a long-running conversation, Seam queues the action even for a period
of time (the concurrent request timeout). If Seam cannot process the event before timeout, it creates a
temporary conversation and prints a message for the user, informing them of the timeout. It is therefore
important not to flood the server with AJAX events.

We can set a sensible default for the concurrent request timeout (in milliseconds) in components.xml:

The concurrent request timeout can also be adjusted on a page-by-page basis:

So far we have discussed AJAX requests that appear serial to the user, where the client tells the server
than an event has occurred, and then rerenders part of the page based on the result. This approach is
sufficient when the AJAX request is lightweight (the methods called are simple, for example, calculating
the sum of a column of numbers), but complex computations require a different approach.

A poll-based approach is where the client sends an AJAX request to the server, causing actions to begin
immediate asynchronous execution on the server. The client then polls the server for updates while the
actions are executed. This is a sensible approach when it is important that no action in a long-running
action sequence times out.

8.12.1. How should we design our conversational AJAX application?

The first question is whether to use the simpler "serial" request method, or a polling approach.

If you want to use serial requests, you must estimate the time required for your request to complete. You
may need to alter the concurrent request timeout for this page, as discussed in the previous section. A

<h:dataTable id="lineItemTable" var="lineItem"
 value="#{orderHome.lineItems}">
 <h:column>
 Row: #{uiComponent['lineItemTable'].rowIndex}
 </h:column>
 ...
</h:dataTable>

<core:manager concurrent-request-timeout="500" />

<page view-id="/book.xhtml" conversation-required="true"
 login-required="true" concurrent-request-timeout="2000" />

Seam Reference Guide

154

queue on the server side is probably necessary, to prevent requests from flooding the server. If the event
occurs often (for example, a keystroke, or onblur of input fields) and immediate client update is not a
priority, set a request delay on the client side. Remember to factor the possibility of server-side queueing
into your request delay.

Finally, the client library may provide an option to abort unfinished duplicate requests in favor of the most
recent.

A polling approach requires less fine-tuning — simply mark your action method @Asynchronous and
decide on a polling interval:

8.12.2. Dealing with errors

However carefully your application is designed to queue concurrent requests to your conversational
component, there is a risk that the server will overload. When overload occurs, not all requests will be
processed before the concurrent-request-timeout period expires. In this case, Seam throws a
ConcurrentRequestTimeoutException, which is handled in pages.xml. We recommend sending
a HTTP 503 error:

NOTE

The server is currently unable to handle the request due to a temporary overloading or
maintenance of the server. The implication is that this is a temporary condition which will
be alleviated after some delay.

Alternatively you could redirect to an error page:

int total;

// This method is called when an event occurs on the client
// It takes a really long time to execute
@Asynchronous
public void calculateTotal() {
 total = someReallyComplicatedCalculation();
}

// This method is called as the result of the poll
// It's very quick to execute
public int getTotal() {
 return total;
}

<exception class="org.jboss.seam.ConcurrentRequestTimeoutException"
 log-level="trace">
 <http-error error-code="503" />
</exception>

<exception class="org.jboss.seam.ConcurrentRequestTimeoutException"
 log-level="trace">
 <end-conversation/>
 <redirect view-id="/error.xhtml">
 <message>
 The server is too busy to process your request,

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT

155

ICEfaces, RichFaces AJAX and Seam Remoting can all handle HTTP error codes. Seam Remoting will
pop up a dialog box showing the HTTP error. ICEfaces will indicate the error in its connection status
component. RichFaces provides the most complete support for handling HTTP errors by providing a
user definable callback. For example, to show the error message to the user:

If, rather than an error code, the server reports that the view has expired, perhaps because a session
timed out, use a separate callback function in RichFaces:

Alternatively, you can allow RichFaces to handle the error. In this case, the user will receive a prompt
reading, "View state could not be restored — reload page?" This message can be globally customized
by setting the following message key in an application resource bundle:

AJAX_VIEW_EXPIRED=View expired. Please reload the page.

8.12.3. RichFaces (Ajax4jsf)

RichFaces (Ajax4jsf) is the most common AJAX library used with Seam, and provides all of the controls
discussed in the previous section.

eventsQueue

Provides a queue in which events are placed. All events are queued, and requests are sent to the
server serially. This is useful if the request to the server can take some time to execute (for example,
in heavy computation, retrieving information from a slow source) since it prevents server flooding.

ignoreDupResponses

Ignores the response produced by a request if a more recent "similar" request is already queued.
ignoreDupResponses="true" does not cancel the processing of the request on the server side; it
only prevents unnecessary updates on the client side.

With Seam conversations, this option should be used with care, since it allows multiple concurrent
requests.

requestDelay

 please try again later
 </message>
 </redirect>
</exception>

<script type="text/javascript">
 A4J.AJAX.onError = function(req,status,message) {
 alert("An error occurred");
 };
</script>

<script type="text/javascript">
 A4J.AJAX.onExpired = function(loc,message) {
 alert("View expired");
 };
</script>

Seam Reference Guide

156

Defines the time in milliseconds that the request will remain on the queue. If, at this time, the request
has not been processed, the request will either be sent (regardless of whether a response has been
received), or discarded (if there is a more recent "similar" event queued).

With Seam conversations, this option should be used with care, as it allows multiple concurrent
requests. The delay that you set (in combination with the concurrent request timeout) must be longer
than the action will take to execute.

<a:poll reRender="total" interval="1000" />

Polls the server and rerenders an area, as required.

CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT

157

CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES
JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM
represents a business process or user interaction as a graph of nodes representing wait states,
decisions, tasks, web pages, etc. The graph is defined with a simple, very readable XML dialect called
jPDL, and can be edited and represented graphically using an Eclipse plug-in. jPDL is an extensible
language, suitable for a range of problems, from defining web application pageflow, to managing
traditional workflow, all the way up to orchestrating services in a SOA environment.

Seam applications use jBPM for two different problems: defining pageflow in complex user interactions,
and defining the overarching business process.

For the former, a jPDL process definition defines the pageflow for a single conversation, whereas a
Seam conversation is considered to be a relatively short-running interaction with a single user.

For the latter, the business process may span multiple conversations with multiple users. Its state is
persistent in the jBPM database, so it is considered long-running. Coordinating the activities of multiple
users is more complex than scripting interaction with a single user, so jBPM offers sophisticated facilities
for managing tasks and multiple concurrent execution paths.

NOTE

Do not confuse pageflow with the overarching business process. They operate at different
levels of granularity. Pageflows, conversations, and tasks are all single interactions with a
single user. A business process spans many tasks. Furthermore, the two applications of
jBPM are not dependent upon each other — you can use them together, independently, or
not at all.

NOTE

It is not necessary to know jPDL to use Seam. If you prefer to define pageflow with JSF or
Seam navigation rules, and your application is more data-driven than process-driven,
jBPM is probably unnecessary. However, we find that thinking of user interaction in terms
of a well-defined graphical representation helps us create more robust applications.

9.1. PAGEFLOW IN SEAM

There are two ways to define pageflow in Seam:

Using JavaServer Faces (JSF) or Seam navigation rules — the stateless navigation model

Using jPDL — the stateful navigation model

Simple applications will only require the stateless navigation model. Complex applications will use a
combination of the two. Each model has its strengths and weaknesses, and should be implemented
accordingly.

9.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical event outcomes directly to the
resulting view page. The navigation rules ignore any state held by the application, other than the page
from which the event originates. Therefore, action listener methods must sometimes make decisions
about the pageflow, since only they have access to the current state of the application.

Seam Reference Guide

158

Here is an example pageflow definition using JSF navigation rules:

Here is the same example pageflow definition using Seam navigation rules:

If you find navigation rules too verbose, you can return view IDs directly from your action listener
methods:

Note that this results in a redirect. You can also specify parameters to be used in the redirect:

<navigation-rule>
 <from-view-id>/numberGuess.jsp</from-view-id>

 <navigation-case>
 <from-outcome>guess</from-outcome>
 <to-view-id>/numberGuess.jsp</to-view-id>
 <redirect/>
 </navigation-case>

 <navigation-case>
 <from-outcome>win</from-outcome>
 <to-view-id>/win.jsp</to-view-id>
 <redirect/>
 </navigation-case>

 <navigation-case>
 <from-outcome>lose</from-outcome>
 <to-view-id>/lose.jsp</to-view-id>
 <redirect/>
 </navigation-case>

</navigation-rule>

<page view-id="/numberGuess.jsp">
 <navigation>

 <rule if-outcome="guess">
 <redirect view-id="/numberGuess.jsp"/>
 </rule>

 <rule if-outcome="win">
 <redirect view-id="/win.jsp"/>
 </rule>

 <rule if-outcome="lose">
 <redirect view-id="/lose.jsp"/>
 </rule>

 </navigation>
</page>

public String guess() {
 if (guess==randomNumber) return "/win.jsp";
 if (++guessCount==maxGuesses) return "/lose.jsp";
 return null;
}

CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES

159

The stateful model defines a set of transitions between a set of named, logical application states. With
this model, you can express the flow of any user interaction entirely in the jPDL pageflow definition, and
write action listener methods that are completely unaware of the flow of the interaction.

Here is an example page flow definition using jPDL:

public String search() {
 return "/searchResults.jsp?searchPattern=#{searchAction.searchPattern}";
}

<pageflow-definition name="numberGuess">
 <start-page name="displayGuess" view-id="/numberGuess.jsp">
 <redirect/>
 <transition name="guess" to="evaluateGuess">
 <action expression="#{numberGuess.guess}" />
 </transition>
 </start-page>

 <decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
 <transition name="true" to="win"/>
 <transition name="false" to="evaluateRemainingGuesses"/>
 </decision>

 <decision name="evaluateRemainingGuesses"
 expression="#{numberGuess.lastGuess}">
 <transition name="true" to="lose"/>
 <transition name="false" to="displayGuess"/>
 </decision>

 <page name="win" view-id="/win.jsp">
 <redirect/>
 <end-conversation />
 </page>

 <page name="lose" view-id="/lose.jsp">
 <redirect/>
 <end-conversation />
 </page>

</pageflow-definition>

Seam Reference Guide

160

Here, we notice two things immediately:

The JSF and Seam navigation rules are much simpler. (However, this obscures the fact that the
underlying Java code is more complex.)

The jPDL makes the user interaction immediately comprehensible, and removes the need to look
at JSP or Java code.

In addition, the stateful model is more constrained. For each logical state (each step in the pageflow),
there are a constrained set of possible transitions to other states. The stateless model is an ad hoc
model, suitable to relatively unconstrained, freeform navigation where the user decides where he/she
wants to go next, not the application.

The distinction between stateful and stateless navigation is similar to that between modal and modeless
interaction. Seam applications are not usually modal in the simple sense of the word — we use
conversations to avoid modal behavior. However, Seam applications can be, and often are, modal at the
level of a particular conversation. Because user movements are not perfectly predictable, modal
behavior is best avoided, but it has its place in the stateful model.

The biggest contrast between the two models is the back-button behavior.

9.1.2. Seam and the back button

With JSF or Seam navigation rules, the user can navigate freely with the back, forward and refresh
buttons. The application is responsible for ensuring that conversational state remains internally
consistent. Experience with web application frameworks and stateless component models has taught
developers how difficult this is. It becomes far more straightforward in Seam, where it sits in a well-
defined conversational model backed by stateful session beans. Usually, you need only combine a no-
conversation-view-id with null checks at the beginning of action listener methods. Freeform
navigation support is almost always desirable.

CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES

161

In this case, the no-conversation-view-id declaration goes in pages.xml. This tells Seam to
redirect to a different page if a request originates from a page that was rendered during a conversation
that no longer exists:

On the other hand, in the stateful model, the back button is interpreted as an undefined transition back to
a previous state. Since the stateful model enforces a defined set of transitions from the current state, the
back button is, by default, not permitted in the stateful model. Seam transparently detects the use of the
back button, and blocks any attempt to perform an action from a previous, "stale" page, redirecting the
user to the "current" page (and displaying a Faces message). Although developers view this as a feature,
it can be frustrating from the user's perspective. You can enable back button navigation from a particular
page node by setting back="enabled".

This allows navigation via the back button from the checkout state to any previous state.

NOTE

If a page is set to redirect after a transition, the back button cannot return a user to that
page even when back is enabled on a page later in the flow. This is because Seam stores
information about the pageflow in the page scope and the back button must result in a
POST for that information to be restored (for example, through a Faces request). A
redirect severs this link.

We must still define what happens if a request originates from a page rendered during a pageflow, and
the conversation with the pageflow no longer exists. In this case, the no-conversation-view-id
declaration goes into the pageflow definition:

In practice, both navigation models have their place, and you will quickly learn to recognize where one
model is better-suited to a task.

9.2. USING JPDL PAGEFLOWS

9.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and place the pageflow definitions (using the
standard .jpdl.xml extension) inside a Seam archive (an archive containing a seam.properties
file):

<page view-id="/checkout.xhtml" no-conversation-view-id="/main.xhtml"/>

<page name="checkout" view-id="/checkout.xhtml" back="enabled">
 <redirect/>
 <transition to="checkout"/>
 <transition name="complete" to="complete"/>
</page>

<page name="checkout" view-id="/checkout.xhtml" back="enabled"
 no-conversation-view-id="/main.xhtml">
 <redirect/>
 <transition to="checkout"/>
 <transition name="complete" to="complete"/>
</page>

Seam Reference Guide

162

We can also explicitly tell Seam where to find our pageflow definition. We specify this in
components.xml:

9.2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition with a @Begin,
@BeginTask or @StartTask annotation:

Alternatively, we can start a pageflow using pages.xml:

If we are beginning the pageflow during the RENDER_RESPONSE phase — during a @Factory or
@Create method, for example — we consider ourselves already at the rendered page, and use a
<start-page> node as the first node in the pageflow, as in the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action
listener determines the first page to be rendered. In this case, we use a <start-state> as the first
node in the pageflow, and declare a transition for each possible outcome:

9.2.3. Page nodes and transitions

<bpm:jbpm />

<bpm:jbpm>
 <bpm:pageflow-definitions>
 <value>pageflow.jpdl.xml</value>
 </bpm:pageflow-definitions>
</bpm:jbpm>

@Begin(pageflow="numberguess") public void begin() { ... }

<page>
 <begin-conversation pageflow="numberguess"/>
</page>

<pageflow-definition name="viewEditDocument">
 <start-state name="start">
 <transition name="documentFound" to="displayDocument"/>
 <transition name="documentNotFound" to="notFound"/>
 </start-state>

 <page name="displayDocument" view-id="/document.jsp">
 <transition name="edit" to="editDocument"/>
 <transition name="done" to="main"/>
 </page>

 ...

 <page name="notFound" view-id="/404.jsp">
 <end-conversation/>
 </page>

</pageflow-definition>

CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES

163

Each <page> node represents a state where the system is waiting for user input:

The view-id is the JSF view ID. The <redirect/> element has the same effect as <redirect/> in
a JSF navigation rule — that is, a post-then-redirect behavior, to overcome problems with the browser's
refresh button. (Note that Seam propagates conversation contexts across these browser redirects, so
Seam does not require a Ruby on Rails-style flash construct.)

The transition name is the name of a JSF outcome triggered by clicking a command button or command
link in numberGuess.jsp.

When clicking this button triggers the transition, jBPM activates the transition action by calling the
guess() method of the numberGuess component. The syntax used for specifying actions in the jPDL
is a familiar JSF EL expression, and the transition handler is a method of a Seam component in the
current Seam contexts. Thus, we have the same event model for jBPM events as we have for JSF
events. This is one of the guiding principles of Seam.

In the case of a null outcome (for example, a command button with no action defined), Seam signals
the transition with no name (if one exists), or simply redisplay the page if all transitions are named.
Therefore we could simplify this button and our pageflow like so:

This would fire the following un-named transition:

The button could also call an action method, in which case the action outcome determines the transition
to be made:

<page name="displayGuess" view-id="/numberGuess.jsp">
 <redirect/>
 <transition name="guess" to="evaluateGuess">
 <action expression="#{numberGuess.guess}" />
 </transition>
</page>

<h:commandButton type="submit" value="Guess" action="guess"/>

<h:commandButton type="submit" value="Guess"/>

<page name="displayGuess" view-id="/numberGuess.jsp">
 <redirect/>
 <transition to="evaluateGuess">
 <action expression="#{numberGuess.guess}" />
 </transition>
</page>

<h:commandButton type="submit" value="Guess"
 action="#{numberGuess.guess}"/>

<page name="displayGuess" view-id="/numberGuess.jsp">
 <transition name="correctGuess" to="win"/>
 <transition name="incorrectGuess" to="evaluateGuess"/>
</page>

Seam Reference Guide

164

However, this style is considered inferior, since it shifts responsibility for flow control out of the pageflow
definition and back into other components. It is much better to centralize this concern in the pageflow
itself.

9.2.4. Controlling the flow

Usually, the more powerful features of jPDL are not required when defining pageflows. However, we do
require the <decision> node:

A decision is made by evaluating a JSF EL expression within the Seam context.

9.2.5. Ending the flow

We end the conversation with <end-conversation> or @End. For the sake of readability, we
encourage you to use both.

Optionally, we can end a task, or specify a jBPM transition name. In this case, Seam signals the end
of the current task in the overarching business process.

9.2.6. Pageflow composition

It is possible to compose pageflows so that one pageflow pauses while another pageflow executes. The
<process-state> node pauses the outer pageflow, and begins execution of a named pageflow:

The inner flow begins executing at a <start-state> node. When it reaches an <end-state> node,
execution of the inner flow ends, and execution of the outer flow resumes with the transition defined by
the <process-state> element.

9.3. BUSINESS PROCESS MANAGEMENT IN SEAM

A business process is a set of tasks that must be performed by users or software systems according to
well-defined rules regarding who can perform a certain task, and when that task should be performed.

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
 <transition name="true" to="win"/>
 <transition name="false" to="evaluateRemainingGuesses"/>
</decision>

<page name="win" view-id="/win.jsp">
 <redirect/>
 <end-conversation/>
</page>

<page name="win" view-id="/win.jsp">
 <redirect/>
 <end-task transition="success"/>
</page>

<process-state name="cheat">
 <sub-process name="cheat"/>
 <transition to="displayGuess"/>
</process-state>

CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES

165

Seam's jBPM integration makes it easy to let users view and manage their task lists. Seam also lets the
application store state associated with the business process in the BUSINESS_PROCESS context, and
makes that state persistent through jBPM variables.

A simple business process definition resembles a pageflow definition, except that instead of <page>
nodes, we use <task-node> nodes. In a long-running business process, the wait state occurs where
the system is waiting for some user to log in and perform a task.

jPDL business process definitions and jPDL pageflow definitions can be used in the same project. When
this occurs, a single <task> in a business process corresponds to a whole pageflow <pageflow-
definition>.

9.4. USING JPDL BUSINESS PROCESS DEFINITIONS

9.4.1. Installing process definitions

First, we must install jBPM and tell it where to find the business process definitions:

<process-definition name="todo">
 <start-state name="start">
 <transition to="todo"/>
 </start-state>

 <task-node name="todo">
 <task name="todo" description="#{todoList.description}">
 <assignment actor-id="#{actor.id}"/>
 </task>
 <transition to="done"/>
 </task-node>

 <end-state name="done"/>

</process-definition>

Seam Reference Guide

166

Since jBPM processes persist across application restarts, when using Seam in a production
environment, it is unnecessary to install the process definition each time the application starts. Therefore,
the process must be deployed to jBPM outside Seam. It is only necessary to install process definitions
from components.xml during application development.

9.4.2. Initializing actor IDs

We always need to know which user is currently logged in. jBPM recognizes users with their actor ID and
group actor ID. We specify the current actor IDs with the built-in Seam component, actor:

9.4.3. Initiating a business process

To initiate a business process instance, we use the @CreateProcess annotation:

Alternatively we can initiate a business process using pages.xml:

9.4.4. Task assignment

When a process reaches a task node, task instances are created. These must be assigned to users or
user groups. We can either hard code our actor IDs, or delegate to a Seam component:

In this case, we have simply assigned the task to the current user. We can also assign tasks to a pool:

<bpm:jbpm>
 <bpm:process-definitions>
 <value>todo.jpdl.xml</value>
 </bpm:process-definitions>
</bpm:jbpm>

@In Actor actor;

public String login() {
 ...
 actor.setId(user.getUserName());
 actor.getGroupActorIds().addAll(user.getGroupNames());
 ...
}

@CreateProcess(definition="todo")
public void createTodo() { ... }

<page>
 <create-process definition="todo" />
</page>

<task name="todo" description="#{todoList.description}">
 <assignment actor-id="#{actor.id}"/>
</task>

<task name="todo" description="#{todoList.description}">
 <assignment pooled-actors="employees"/>
</task>

CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES

167

9.4.5. Task lists

Several built-in Seam components make it easy to display task lists. The pooledTaskInstanceList
is a list of pooled tasks that users may assign to themselves:

Note that instead of <s:link>, we can use a plain JSF <h:commandLink>:

The pooledTask component is a built-in component that simply assigns the task to the current user.

The taskInstanceListForType component includes tasks of a particular type that are assigned to
the current user:

9.4.6. Performing a task

To begin work on a task, we use either @StartTask or @BeginTask on the listener method:

Alternatively, we can begin work on a task with pages.xml:

These annotations begin a special kind of conversation that is significant in terms of the overarching
business process. Work done by this conversation has access to state held in the business process
context.

<h:dataTable value="#{pooledTaskInstanceList}" var="task">
 <h:column>
 <f:facet name="header">Description</f:facet>
 <h:outputText value="#{task.description}"/>
 </h:column>
 <h:column>
 <s:link action="#{pooledTask.assignToCurrentActor}"
 value="Assign" taskInstance="#{task}"/>
 </h:column>
</h:dataTable>

<h:commandLink action="#{pooledTask.assignToCurrentActor}">
 <f:param name="taskId" value="#{task.id}"/>
</h:commandLink>

<h:dataTable value="#{taskInstanceListForType['todo']}" var="task">
 <h:column>
 <f:facet name="header">Description</f:facet>
 <h:outputText value="#{task.description}"/>
 </h:column>
 <h:column>
 <s:link action="#{todoList.start}"
 value="Start Work" taskInstance="#{task}"/>
 </h:column>
</h:dataTable>

@StartTask public String start() { ... }

<page>
 <start-task />
</page>

Seam Reference Guide

168

If we end the conversation with @EndTask, Seam signals the completion of the task:

Alternatively, we can use pages.xml:

You can also use EL to specify the transition in pages.xml.

At this point, jBPM will continue to execute the business process definition. (In more complex processes,
several tasks may need to be completed before process execution can resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features that
jBPM provides for managing complex business processes.

@EndTask(transition="completed")
public String completed() { ... }

<page>
 <end-task transition="completed" />
</page>

CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES

169

CHAPTER 10. SEAM AND OBJECT/RELATIONAL MAPPING
Seam provides extensive support for the two most popular persistence architectures for Java: Hibernate,
and the Java Persistence API introduced with Enterprise JavaBeans 3.0 (EJB3). Seam's unique state-
management architecture allows the most sophisticated ORM integration of any web application
framework.

10.1. INTRODUCTION

Seam was created because of frustration with the statelessness typical of the previous generation of
Java application architectures. Seam's state management architecture was originally designed to solve
problems relating to persistence, particularly problems associated with optimistic transaction processing.
Scalable online applications always use optimistic transactions. An atomic (database/JTA) level
transaction should not span a user interaction unless the application is designed to support only a very
small number of concurrent clients. But almost all work involves first displaying data to a user, and then
updating that data. Hibernate was designed to support a persistence context that spanned an optimistic
transaction.

Unfortunately, the "stateless" architectures that preceded Seam and EJB3 had no construct to represent
an optimistic transaction. Instead, these architectures provided persistence contexts scoped to the
atomic transaction. This resulted in many problems for users, and causes the number one user
complaint: Hibernate's LazyInitializationException. A construct was required to represent an
optimistic transaction in the application tier.

EJB3 recognizes this problem, and introduces the idea of a stateful component (a stateful session bean)
with an extended persistence context scoped to the lifetime of the component. This is a partial solution to
the problem (and is a useful construct in and of itself), but there are still two issues with this approach:

The life cycle of the stateful session bean must be managed manually with code in the web tier.

Propagation of the persistence context between stateful components in the same optimistic
transaction is possible, but very complex.

Seam solves the first problem by providing conversations, and scoping stateful session bean
components to the conversation. (Most conversations actually represent optimistic transactions in the
data layer.) This is sufficient for many simple applications where persistence context propagation is not
required, such as the Seam booking example application. For more complex applications, with many
loosely-interacting components in each conversation, propagation of the persistence context across
components becomes an important issue. Therefore, Seam extends the persistence context
management model of EJB3, to provide conversation-scoped extended persistence contexts.

10.2. SEAM MANAGED TRANSACTIONS

EJB session beans feature declarative transaction management. The EJB container can start a
transaction transparently when the bean is invoked, and end it when the invocation ends. If we write a
session bean method that acts as a JSF action listener, all work associated with that action can be
performed as one transaction, and committed or rolled back when the action is completely processed.
This is a useful feature, and for some Seam applications, this is all that is required.

However, there is a problem with this approach: in a request from a single method call to a session
bean, a Seam application may not perform all data access.

when the request requires processing by several loosely-coupled components, with each
component being called independently from the web layer. It is common to see multiple calls per
request from the web layer to EJB components in Seam.

Seam Reference Guide

170

when view rendering requires lazily-fetched associations.

The more transactions that exist per request, the more likely we are to encounter atomicity and isolation
problems while our application processes many concurrent requests. All write operations should occur in
the same transaction.

To work around this problem, Hibernate users developed the open session in view pattern. This is also
important because some frameworks (Spring, for example) use transaction-scoped persistence contexts,
which caused LazyInitializationExceptions when unfetched associations were accessed.

Open session in view is usually implemented as a single transaction that spans the entire request. The
most serious problem with this implementation is that we cannot be certain that a transaction is
successful until we commit it — but when the transaction commits, the view is fully rendered, and the
rendered response may already be synchronized the client, so there is no way to notify the user that their
transaction did not succeed.

Seam solves the problems with transaction isolation and association fetching, while working around the
major flaw in open session in view, with two changes:

Seam uses an extended persistence context that is scoped to the conversation instead of the
transaction.

Seam uses two transactions per request. The first spans from the beginning of the restore view
phase until the end of the invoke application phase; the second spans the length of the render
response phase. (In some applications, the first phase will begin later, at the beginning of the
apply request values phase.)

The next section takes you through the setup of a conversation-scoped persistence context. Before this,
we will enable Seam transaction management. You can use conversation-scoped persistence contexts
without Seam transaction management, and Seam transaction management is useful even without
Seam-managed persistence contexts, but they work most effectively together.

10.2.1. Disabling Seam-managed transactions

Seam transaction management is enabled by default for all JSF requests, but can be disabled in
components.xml:

10.2.2. Configuring a Seam transaction manager

Seam provides a transaction management abstraction for beginning, committing, rolling back, and
synchronizing with transactions. By default, Seam uses a JTA transaction component to integrate with
container-managed and programmatic EJB transactions. If you work in a Java EE 5 environment, install
the EJB synchronization component in components.xml:

However, if you work in a non-EE 5 container, Seam attempts to auto-detect the correct transaction
synchronization mechanism. If Seam is unable to detect the correct mechanism, you may need to
configure one of the following:

<core:init transaction-management-enabled="false"/>

<transaction:no-transaction />

<transaction:ejb-transaction />

CHAPTER 10. SEAM AND OBJECT/RELATIONAL MAPPING

171

configure JPA RESOURCE_LOCAL managed transactions with the
javax.persistence.EntityTransaction interface. EntityTransaction starts the
transaction at the beginning of the apply request values phase.

configure Hibernate managed transactions with the org.hibernate.Transaction interface.
HibernateTransaction starts the transaction at the beginning of the apply request values
phase.

configure Spring managed transactions with the
org.springframework.transaction.PlatformTransactionManager interface. The
Spring PlatformTransactionManagement manager may begin the transaction at the
beginning of the apply request values phase if the userConversationContext attribute is
set.

Explicitly disable Seam managed transactions

To configure JPA RESOURCE_LOCAL transaction management, add the following to your
components.xml, where #{em} is the name of the persistence:managed-persistence-
context component. If your managed persistence context is named entityManager, you may leave
out the entity-manager attribute. (For further information, see Section 10.3, “Seam-managed
persistence contexts”.)

To configure Hibernate managed transactions, declare the following in your components.xml, where #
{hibernateSession} is the name of the project's persistence:managed-hibernate-session
component. If your managed hibernate session is named session, you can opt to leave out the
session attribute. (For further information, see Section 10.3, “Seam-managed persistence contexts”.)

To explicitly disable Seam managed transactions, declare the following in your components.xml:

For information about configuring Spring-managed transactions see Section 26.5, “Using Spring
PlatformTransactionManagement”.

10.2.3. Transaction synchronization

Transaction synchronization provides callbacks for transaction-related events such as
beforeCompletion() and afterCompletion(). By default, Seam uses its own transaction
synchronization component, which requires explicit use of the Seam transaction component when
committing transactions so that synchronization callbacks are correctly executed. If you work in a Java
EE 5 environment, declare <transaction:ejb-transaction/> in components.xml to ensure that
Seam synchronization callbacks are called correctly if the container commits a transaction outside
Seam.

10.3. SEAM-MANAGED PERSISTENCE CONTEXTS

If you use Seam outside a Java EE 5 environment, you cannot rely upon the container to manage the
persistence context lifestyle. Even within EE 5 environments, propagating the persistence context
between loosely-coupled components in a complex application can be difficult and error-prone.

<transaction:entity-transaction entity-manager="#{em}"/>

<transaction:hibernate-transaction session="#{hibernateSession}"/>

<transaction:no-transaction />

Seam Reference Guide

172

In this case, you will need to use a managed persistence context (for JPA) or a managed session (for
Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam component
that manages an instance of EntityManager or Session in the conversation context. You can inject it
with @In.

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam can
perform optimizations for container-managed persistence contexts that the EJB3 specification does not
allow. Seam supports transparent failover of extended persistence contexts, without replicating any
persistence context state between nodes. (We hope to add this support to the next revision of the EJB
specification.)

10.3.1. Using a Seam-managed persistence context with JPA

Configuring a managed persistence context is easy. In components.xml, write:

This configuration creates a conversation-scoped Seam component named bookingDatabase, which
manages the life cycle of EntityManager instances for the persistence unit
(EntityManagerFactory instance) with JNDI name
java:/EntityManagerFactories/bookingData.

You must bind the EntityManagerFactory into JNDI. In JBoss, you can do this by adding the
following property setting to persistence.xml.

Now we can inject our EntityManager with:

If you use EJB3, and mark your class or method @TransactionAttribute(REQUIRES_NEW), then
the transaction and persistence context should not propagate to method calls on this object. However,
since the Seam-managed persistence context propagates to any component within the conversation, it
propagates to methods marked REQUIRES_NEW. Therefore, if you mark a method REQUIRES_NEW, you
should access the entity manager with @PersistenceContext.

10.3.2. Using a Seam-managed Hibernate session

Seam-managed Hibernate sessions work in a similar fashion. In components.xml:

Here, java:/bookingSessionFactory is the name of the session factory specified in
hibernate.cfg.xml.

<persistence:managed-persistence-context name="bookingDatabase"
 auto-create="true"
 persistence-unit-jndi-name="java:/EntityManagerFactories/bookingData"/>

<property name="jboss.entity.manager.factory.jndi.name"
 value="java:/EntityManagerFactories/bookingData"/>

@In EntityManager bookingDatabase;

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

<persistence:managed-hibernate-session name="bookingDatabase"
 auto-create="true"
 session-factory-jndi-name="java:/bookingSessionFactory"/>

CHAPTER 10. SEAM AND OBJECT/RELATIONAL MAPPING

173

NOTE

Seam does not synchronize the session with the database, so always enable
hibernate.transaction.flush_before_completion to ensure that the session is
automatically synchronized before the JTA transaction commits.

We can now inject a managed Hibernate Session into our JavaBean components with the following
code:

10.3.3. Seam-managed persistence contexts and atomic conversations

Conversation-scoped persistence contexts let you program optimistic transactions spanning multiple
server requests, without using merge(), reloading data at the beginning of each request, or wrestling
with exceptions (LazyInitializationException or NonUniqueObjectException).

You can achieve transaction isolation and consistency by using optimistic locking. Both Hibernate and
EJB3 make optimistic locking easy with the @Version annotation.

By default, the persistence context is synchronized with the database (flushed) at the end of each
transaction. Sometimes this is desirable, but often we prefer all changes to be held in memory, and only
written to the database when the conversation ends successfully. This allows for truly atomic
conversations with EJB3 persistence. However, Hibernate provides this feature as a vendor extension to
the FlushModeTypes defined by the specification. We expect other vendors will soon provide a similar
extension.

Seam lets you specify FlushModeType.MANUAL when beginning a conversation. Currently, this works
only when Hibernate is the underlying persistence provider, but we plan to support other equivalent
vendor extensions.

<session-factory name="java:/bookingSessionFactory">
 <property name="transaction.flush_before_completion">true</property>
 <property name="connection.release_mode">after_statement</property>
 <property name="transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup
 </property>
 <property name="transaction.factory_class">
 org.hibernate.transaction.JTATransactionFactory
 </property>
 <property name="connection.datasource">
 java:/bookingDatasource
 </property>
 ...
</session-factory>

@In Session bookingDatabase;

@In EntityManager em; //a Seam-managed persistence context
@Begin(flushMode=MANUAL)

public void beginClaimWizard() {
 claim = em.find(Claim.class, claimId);
}

Seam Reference Guide

174

Now, the claim object remains managed by the persistence context for the entire conversation. We can
make changes to the claim:

But these changes will not be flushed to the database until we explicitly force synchronization to occur:

You can also set the flushMode to MANUAL from pages.xml, for example in a navigation rule:

You can set any Seam-managed persistence context to use manual flush mode:

10.4. USING THE JPA "DELEGATE"

The EntityManager interface lets you access a vendor-specific API with the getDelegate()
method. We recommend using Hibernate as your vendor, and org.hibernate.Session as your
delegate interface, but if you require a different JPA provider, see Section 28.2, “Using Alternate JPA
Providers” for further information.

Regardless of your vendor, there are several approaches to using the delegate in your Seam
components. One approach is:

If you, like most Java users, would rather avoid using typecasts, you can also access the delegate by
adding the following line to components.xml:

The session can now be injected directly:

public void addPartyToClaim() {
 Party party =;
 claim.addParty(party);
}

@End public void commitClaim() {
 em.flush();
}

<begin-conversation flush-mode="MANUAL" />

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core">
 <core:manager conversation-timeout="120000"
 default-flush-mode="manual" />
</components>

@In EntityManager entityManager;
@Create public void init() {
 ((Session)entityManager.getDelegate()).enableFilter("currentVersions");
}

<factory name="session" scope="STATELESS" auto-create="true"
 value="#{entityManager.delegate}"/>

@In Session session;

@Create

CHAPTER 10. SEAM AND OBJECT/RELATIONAL MAPPING

175

10.5. USING EL IN EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-managed
persistence context or inject a container-managed persistence context with @PersistenceContext.
This lets you safely and efficiently use EL expressions in your query strings. For example, this:

is equivalent to:

WARNING

Do not use the format below, because it is vulnerable to SQL injection attacks, as
well as being inefficient.

10.6. USING HIBERNATE FILTERS

Hibernate's most unique, useful feature is the filter. Filters provide a restricted view of the data in the
database. You can find more information in the Hibernate documentation, but this section takes you
through one easy, effective method of incorporating filters into Seam.

Seam-managed persistence contexts can have a list of filters defined, which will be enabled whenever an
EntityManager or Hibernate Session is first created. (These can only be used when Hibernate is the
underlying persistence provider.)

public void init() {
 session.enableFilter("currentVersions");
}

User user = em.createQuery("from User where username=#{user.username}")
 .getSingleResult();

User user = em.createQuery("from User where username=:username")
 .setParameter("username", user.getUsername())
 .getSingleResult();

User user = em.createQuery("from User where username=" +
user.getUsername()).getSingleResult(); //BAD!

<persistence:filter name="regionFilter">
 <persistence:name>region</persistence:name>
 <persistence:parameters>
 <key>regionCode</key>
 <value>#{region.code}</value>
 </persistence:parameters>
</persistence:filter>

<persistence:filter name="currentFilter">
 <persistence:name>current</persistence:name>
 <persistence:parameters>

Seam Reference Guide

176

 <key>date</key>
 <value>#{currentDate}</value>
 </persistence:parameters>
</persistence:filter>

<persistence:managed-persistence-context name="personDatabase"
 persistence-unit-jndi-
name="java:/EntityManagerFactories/personDatabase">
 <persistence:filters>
 <value>#{regionFilter}</value>
 <value>#{currentFilter}</value>
 </persistence:filters>
</persistence:managed-persistence-context>

CHAPTER 10. SEAM AND OBJECT/RELATIONAL MAPPING

177

CHAPTER 11. JSF FORM VALIDATION IN SEAM
In plain JSF, validation is defined in the view:

In practice, this approach usually violates DRY, since most "validation" actually enforces constraints that
are part of the data model, and exist all the way down to the database schema definition. Seam provides
support for model-based constraints defined with Hibernate Validator.

We will begin by defining our constraints, on our Location class:

In practice, it may be more elegant to use custom constraints rather than those built into Hibernate
Validator:

<h:form>
 <h:messages/>

 <div>
 Country:
 <h:inputText value="#{location.country}" required="true">
 <my:validateCountry/>
 </h:inputText>
 </div>

 <div>
 Zip code:
 <h:inputText value="#{location.zip}" required="true">
 <my:validateZip/>
 </h:inputText>
 </div>

 <h:commandButton/>
</h:form>

public class Location {
 private String country;
 private String zip;

 @NotNull
 @Length(max=30)
 public String getCountry() { return country; }
 public void setCountry(String c) { country = c; }

 @NotNull
 @Length(max=6)
 @Pattern("^\d*$")
 public String getZip() { return zip; }
 public void setZip(String z) { zip = z; }
}

public class Location {
 private String country;
 private String zip;

 @NotNull
 @Country

Seam Reference Guide

178

Whichever method we choose, we no longer need specify the validation type to be used in the JSF
page. Instead, we use <s:validate> to validate against the constraint defined on the model object.

NOTE

Specifying @NotNull on the model does not eliminate the need for required="true"
to appear on the control. This is a limitation of the JSF validation architecture.

This approach defines constraints on the model, and presents constraint violations in the view.

The design is better, but not much less verbose than our initial design. Now, we will use
<s:validateAll>:

 public String getCountry() { return country; }
 public void setCountry(String c) { country = c; }

 @NotNull
 @ZipCode
 public String getZip() { return zip; }
 public void setZip(String z) { zip = z; }
}

<h:form>
 <h:messages/>

 <div>
 Country:
 <h:inputText value="#{location.country}" required="true">
 <s:validate/>
 </h:inputText>
 </div>

 <div>
 Zip code:
 <h:inputText value="#{location.zip}" required="true">
 <s:validate/>
 </h:inputText>
 </div>

 <h:commandButton/>

</h:form>

<h:form>

 <h:messages/>

 <s:validateAll>

 <div>
 Country:
 <h:inputText value="#{location.country}" required="true"/>
 </div>

CHAPTER 11. JSF FORM VALIDATION IN SEAM

179

This tag adds an <s:validate> to every input in the form. In a large form, this can save a lot of typing.

Next, we need to display feedback to the user when validation fails. Currently, all messages are
displayed at the top of the form. To correlate the message with an input, you must define a label by using
the standard label attribute on the input component.

Inject this value into the message string with the placeholder {0} (the first and only parameter passed to a
JSF message for a Hibernate Validator restriction). See the internationalization section for more
information on where to define these messages.

NOTE

validator.length={0} length must be between {min} and {max}

We would prefer the message to be displayed beside the field with the error, highlight the field and label,
and display an image next to the field. In plain JSF, only the first is possible. We also want to display a
colored asterisk beside the label of each required form field.

This is a lot of functionality for each field. We do not want to specify highlighting and the layout of the
image, message, and input field for every field on the form, so we specify the layout in a facelets
template:

 <div>
 Zip code:
 <h:inputText value="#{location.zip}" required="true"/>
 </div>

 <h:commandButton/>

 </s:validateAll>

</h:form>

<h:inputText value="#{location.zip}" required="true" label="Zip:">
 <s:validate/>
</h:inputText>

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:s="http://jboss.com/products/seam/taglib">
 <div>

 <s:label styleClass="#{invalid?'error':''}">
 <ui:insert name="label"/>
 <s:span styleClass="required" rendered="#{required}">*</s:span>
 </s:label>

 <h:graphicImage value="/img/error.gif" rendered="#{invalid}"/>
 <s:validateAll>
 <ui:insert/>
 </s:validateAll>

Seam Reference Guide

180

We can include this template for each of our form fields by using <s:decorate>:

Finally, we can use RichFaces Ajax to display validation messages while the user navigates around the
form:

Stylistically, it is better to define explicit IDs for important page controls, particularly if you want
automated UI testing. If explicit IDs are not provided, JSF will generate its own — but they will not remain
static if anything on the page is changed.

 <s:message styleClass="error"/>

 </div>

</ui:composition>

<h:form>
 <h:messages globalOnly="true"/>

 <s:decorate template="edit.xhtml">
 <ui:define name="label">Country:</ui:define>
 <h:inputText value="#{location.country}" required="true"/>
 </s:decorate>

 <s:decorate template="edit.xhtml">
 <ui:define name="label">Zip code:</ui:define>
 <h:inputText value="#{location.zip}" required="true"/>
 </s:decorate>

 <h:commandButton/>

</h:form>

<h:form>
 <h:messages globalOnly="true"/>

 <s:decorate id="countryDecoration" template="edit.xhtml">
 <ui:define name="label">Country:</ui:define>
 <h:inputText value="#{location.country}" required="true">
 <a:support event="onblur" reRender="countryDecoration"
 bypassUpdates="true"/>
 </h:inputText>
 </s:decorate>

 <s:decorate id="zipDecoration" template="edit.xhtml">
 <ui:define name="label">Zip code:</ui:define>
 <h:inputText value="#{location.zip}" required="true">
 <a:support event="onblur" reRender="zipDecoration"
 bypassUpdates="true"/>
 </h:inputText>
 </s:decorate>

 <h:commandButton/>

</h:form>

CHAPTER 11. JSF FORM VALIDATION IN SEAM

181

If you want to specify a different message to be displayed when validation fails, you can use the Seam
message bundle with the Hibernate Validator:

 location.zipCode.invalid = The zip code is not valid for #{location.name}

<h:form id="form">
 <h:messages globalOnly="true"/>

 <s:decorate id="countryDecoration" template="edit.xhtml">
 <ui:define name="label">Country:</ui:define>
 <h:inputText id="country" value="#{location.country}"
 required="true">
 <a:support event="onblur" reRender="countryDecoration"
 bypassUpdates="true"/>
 </h:inputText>
 </s:decorate>

 <s:decorate id="zipDecoration" template="edit.xhtml">
 <ui:define name="label">Zip code:</ui:define>
 <h:inputText id="zip" value="#{location.zip}" required="true">
 <a:support event="onblur" reRender="zipDecoration"
 bypassUpdates="true"/>
 </h:inputText>
 </s:decorate>

 <h:commandButton/>

</h:form>

public class Location {
 private String name;
 private String zip;

 // Getters and setters for name

 @NotNull
 @Length(max=6)
 @ZipCode(message="#{messages['location.zipCode.invalid']}")
 public String getZip() { return zip; }
 public void setZip(String z) { zip = z; }
}

Seam Reference Guide

182

CHAPTER 12. GROOVY INTEGRATION
Seam has a great capability for Rapid Application Development (RAD). Seam allows you to utilize
dynamic languages with your existing platform, while retaining compatibility with standard Java APIs.
Static and dynamic languages are integrated, so there is no need for context-switching, and you can use
the same annotations and APIs to write a dynamic Seam component as you would for a regular Seam
component.

12.1. GROOVY INTRODUCTION

Groovy is an agile, Java-based dynamic language, with additional features inspired by Python, Ruby,
and Smalltalk. Being Java-based, with Java objects and classes, Groovy is easy to learn and integrates
seamlessly with existing Java libraries and frameworks.

12.2. WRITING SEAM APPLICATIONS IN GROOVY

Since Groovy objects are Java objects, any Seam component can be written and deployed with Groovy.
You can also combine Groovy and Java classes in the same application.

12.2.1. Writing Groovy components

You will need to use Groovy 1.1 or higher to support annotations. The rest of this chapter shows how to
use Groovy in a Seam application.

12.2.1.1. Entity

Example 12.1. Using Groovy in a Seam Application

@Entity
@Name("hotel")
class Hotel implements Serializable {
 @Id @GeneratedValue
 Long id

 @Length(max=50) @NotNull
 String name

 @Length(max=100) @NotNull
 String address

 @Length(max=40) @NotNull
 String city

 @Length(min=2, max=10) @NotNull
 String state

 @Length(min=4, max=6) @NotNull
 String zip

 @Length(min=2, max=40) @NotNull
 String country

 @Column(precision=6, scale=2)
 BigDecimal price

CHAPTER 12. GROOVY INTEGRATION

183

Since Groovy supports properties, there is no need to explicitly write verbose getters and setters. In the
previous example, the hotel class can be accessed from Java as hotel.getCity() — the getters and
setters are generated by the Groovy compiler. This makes the entity code very concise.

12.2.2. Seam component

You can write Seam components in Groovy exactly as you would in Java: annotations mark classes as
Seam components.

Example 12.2. Writing Seam Components in Groovy

 @Override
 String toString(){
 return "Hotel(${name},${address},${city},${zip})"
 }
}

@Scope(ScopeType.SESSION)
@Name("bookingList")
class BookingListAction implements Serializable
{
 @In EntityManager em
 @In User user
 @DataModel List<Booking> bookings
 @DataModelSelection Booking booking
 @Logger Log log

 @Factory
 public void getBookings()
 {
 bookings = em.createQuery('''
 select b from Booking b
 where b.user.username = :username
 order by b.checkinDate''').
 setParameter("username", user.username).
 getResultList()
 }

 public void cancel()
 {
 log.info("Cancel booking: #{bookingList.booking.id}
 for #{user.username}")
 Booking cancelled = em.find(Booking.class, booking.id)
 if (cancelled != null) em.remove(cancelled)
 getBookings()
 FacesMessages.instance().add("Booking cancelled for
confirmation
 number #
{bookingList.booking.id}",
 new Object[0])
 }
}

Seam Reference Guide

184

12.2.3. seam-gen

Seam-gen interacts transparently with Groovy. No additional infrastructure is required to include Groovy
code in seam-gen-backed projects — when writing an entity, just place your .groovy files in src/main.
When writing an action, place your .groovy files in src/hot.

12.3. DEPLOYMENT

Deploying Groovy classes works like deploying Java classes. As with JavaBeans component classes,
Seam can redeploy GroovyBeans component classes without restarting the application.

12.3.1. Deploying Groovy code

Groovy entities, session beans, and components all require compilation to deploy — use the groovyc
ant task. Once compiled, a Groovy class is identical to a Java class, and the application server will treat
them equally. This allows a seamless mix of Groovy and Java code.

12.3.2. Native .groovy file deployment at development time

Seam supports .groovy file hot deployment (deployment without compilation) in incremental hot
deployment mode. This mode is development-only, and enables a fast edit/test cycle. Follow the
configuration instructions at Section 3.8, “Seam and incremental hot deployment” to set up .groovy hot
deployment. Deploy your Groovy code (.groovy files) into the WEB-INF/dev directory. The
GroovyBean components will deploy incrementally, without needing to restart either application or
application server.

NOTE

The native .groovy file deployment has the same limitations as the regular Seam hot
deployment:

components must be either JavaBeans or GroovyBeans — they cannot be EJB3
beans.

entities cannot be hot deployed.

hot-deployable components are not visible to any classes deployed outside WEB-
INF/dev.

Seam debug mode must be enabled.

12.3.3. seam-gen

Seam-gen transparently supports Groovy file deployment and compilation. This includes the native
.groovy file hot deployment available during development. In WAR-type projects, Java and Groovy
classes in src/hot are automatic candidates for incremental hot deployment. In production mode,
Groovy files will be compiled prior to deployment.

There is a Booking demonstration, written completely in Groovy and supporting incremental hot
deployment, in examples/groovybooking.

CHAPTER 12. GROOVY INTEGRATION

185

CHAPTER 13. THE SEAM APPLICATION FRAMEWORK
Seam makes it easy to create applications with annotated plain Java classes. We can make common
programming tasks even easier by providing a set of pre-built components that are reusable with
configuration or extension.

The Seam Application Framework can reduce the amount of code you need to write in a web application
for basic database access with either Hibernate or JPA. The framework contains a handful of simple
classes that are easy to understand and to extend where required.

13.1. INTRODUCTION

The components provided by the Seam Application Framework can be used in two separate
approaches. The first approach is to install and configure an instance of the component in
components.xml, as with other built-in Seam components. For example, the following fragment (from
components.xml) installs a component that performs basic CRUD operations for a Person entity:

If this approach seems too XML-heavy, you can approach this through extension:

The major advantage to the second approach is that the framework classes were designed for extension
and customization, so it is easy to add extra functionality or override the built-in functionality.

Another advantage is that you have the option of using EJB stateful session beans (or plain JavaBean
components) as your classes:

You can also make your classes stateless session beans. In this case you must use injection to provide
the persistence context, even if it is called entityManager:

<framework:entity-home name="personHome" entity-class="eg.Person"
 entity-manager="#{personDatabase}">
<framework:id>#{param.personId}</framework:id>
</framework:entity-home>

@Name("personHome")
public class PersonHome extends EntityHome<Person> {
@In EntityManager personDatabase;
 public EntityManager getEntityManager() {
 return personDatabase;
 }
}

@Stateful
@Name("personHome")
public class PersonHome extends EntityHome<Person>
 implements LocalPersonHome { }

@Stateless
@Name("personHome")
public class PersonHome extends EntityHome<Person>
 implements LocalPersonHome {
 @In EntityManager entityManager;
 public EntityManager getPersistenceContext() {

Seam Reference Guide

186

At present, the Seam Application Framework provides four main built-in components: EntityHome and
HibernateEntityHome for CRUD, and EntityQuery and HibernateEntityQuery for queries.

The Home and Query components are written so that they can be session-, event- or conversation-
scoped. The scope depends upon the state model you wish to use in your application.

The Seam Application Framework works only with Seam-managed persistence contexts. By default,
components will expect a persistence context named entityManager.

13.2. HOME OBJECTS

A Home object provides persistence operations for a particular entity class. Suppose we have our
Person class:

We can define a personHome component either through configuration:

Or through extension:

A Home object provides operations like persist(), remove(), update() and getInstance().
Before you can call remove() or update(), you must set the identifier of the object you are interested
in, using the setId() method.

For example, we can use a Home directly from a JSF page:

 entityManager;
 }
}

@Entity
public class Person {
 @Id private Long id;
 private String firstName;
 private String lastName;
 private Country nationality;
 //getters and setters...
}

<framework:entity-home name="personHome" entity-class="eg.Person" />

@Name("personHome")
public class PersonHome extends EntityHome<Person> {}

<h1>Create Person</h1>
<h:form>
 <div>
 First name: <h:inputText value="#{personHome.instance.firstName}"/>
 </div>
 <div>
 Last name: <h:inputText value="#{personHome.instance.lastName}"/>
 </div>
 <div>
 <h:commandButton value="Create Person"

CHAPTER 13. THE SEAM APPLICATION FRAMEWORK

187

It is useful to be able to refer to Person as person, so we will add that line to components.xml (if we
are using configuration):

Or, if we are using extension, we can add a @Factory method to PersonHome:

This change simplifies our JSF page to the following:

This is all the code required to create new Person entries. If we want to be able to display, update, and
delete pre-existing Person entries in the database, we need to be able to pass the entry identifier to the
PersonHome. An excellent method is through page parameters:

Now we can add the extra operations to our JSF page:

 action="#{personHome.persist}"/>
 </div>
</h:form>

<factory name="person" value="#{personHome.instance}"/>
<framework:entity-home name="personHome" entity-class="eg.Person" />

@Name("personHome")
public class PersonHome extends EntityHome<Person> {
 @Factory("person")
 public Person initPerson() {
 return getInstance();
 }
}

<h1>Create Person</h1>
<h:form>
 <div>
 First name: <h:inputText value="#{person.firstName}"/>
 </div>
 <div>
 Last name: <h:inputText value="#{person.lastName}"/>
 </div>
 <div>
 <h:commandButton value="Create Person"
 action="#{personHome.persist}"/>
 </div>
</h:form>

<pages>
 <page view-id="/editPerson.jsp">
 <param name="personId" value="#{personHome.id}"/>
 </page>
</pages>

<h1>
 <h:outputText rendered="#{!personHome.managed}" value="Create Person"/>
 <h:outputText rendered="#{personHome.managed}" value="Edit Person"/>
</h1>
<h:form>
 <div>

Seam Reference Guide

188

When we link to the page with no request parameters, the page will be displayed as a Create Person
page. When we provide a value for the personId request parameter, it will be an Edit Person page.

If we need to create Person entries with their nationality initialized, we can do so easily. Via
configuration:

Or via extension:

The Country could be an object managed by another Home object, for example, CountryHome.

To add more sophisticated operations (association management, etc.), we simply add methods to
PersonHome.

 First name: <h:inputText value="#{person.firstName}"/>
 </div>
 <div>
 Last name: <h:inputText value="#{person.lastName}"/>
 </div>
 <div>
 <h:commandButton value="Create Person" action="#{personHome.persist}"
 rendered="#{!personHome.managed}"/>
 <h:commandButton value="Update Person" action="#{personHome.update}"
 rendered="#{personHome.managed}"/>
 <h:commandButton value="Delete Person" action="#{personHome.remove}"
 rendered="#{personHome.managed}"/>
 </div>
</h:form>

<factory name="person" value="#{personHome.instance}"/>
<framework:entity-home name="personHome" entity-class="eg.Person"
 new-instance="#{newPerson}"/>
<component name="newPerson" class="eg.Person">
 <property name="nationality">#{country}</property>
</component>

@Name("personHome")
public class PersonHome extends EntityHome<Person> {
 @In Country country;
 @Factory("person")
 public Person initPerson() {
 return getInstance();
 }
 protected Person createInstance() {
 return new Person(country);
 }
}

@Name("personHome")
public class PersonHome extends EntityHome<Person> {
 @In Country country;
 @Factory("person")
 public Person initPerson() {
 return getInstance();
 }
 protected Person createInstance() {

CHAPTER 13. THE SEAM APPLICATION FRAMEWORK

189

The Home object raises an org.jboss.seam.afterTransactionSuccess event when a transaction
(a call to persist(), update() or remove()) succeeds. By observing this event, we can refresh our
queries when the underlying entities change. If we only want to refresh certain queries when a particular
entry is persisted, updated, or removed, we can observe the
org.jboss.seam.afterTransactionSuccess.<name> (where <name> is the name of the entity).

The Home object automatically displays Faces messages when an operation succeeds. To customize
these messages we can, again, use configuration:

Or extension:

 return new Person(country);
 }
 public void migrate() {
 getInstance().setCountry(country);
 update();
 }
}

<factory name="person" value="#{personHome.instance}"/>
<framework:entity-home name="personHome" entity-class="eg.Person"
 new-instance="#{newPerson}">
 <framework:created-message>
 New person #{person.firstName} #{person.lastName} created
 </framework:created-message>
 <framework:deleted-message>
 Person #{person.firstName} #{person.lastName} deleted
 </framework:deleted-message>
 <framework:updated-message>
 Person #{person.firstName} #{person.lastName} updated
 </framework:updated-message>
</framework:entity-home>
<component name="newPerson" class="eg.Person">
 <property name="nationality">#{country}</property>
</component>

@Name("personHome")
public class PersonHome extends EntityHome<Person> {
 @In Country country;
 @Factory("person")
 public Person initPerson() {
 return getInstance();
 }
 protected Person createInstance() {
 return new Person(country);
 }
 protected String getCreatedMessage() {
 return createValueExpression("New person #{person.firstName}
 #{person.lastName}
created");
 }
 protected String getUpdatedMessage() {
 return createValueExpression("Person #{person.firstName}
 #{person.lastName} updated");
 }

Seam Reference Guide

190

The best way to specify messages is to put them in a resource bundle known to Seam — by default, the
bundle named messages.

This enables internationalization, and keeps your code and configuration clean of presentation concerns.

13.3. QUERY OBJECTS

If we need a list of all Person instances in the database, we can use a Query object, like the following.

We can use it from a JSF page:

If you require pagination support:

Use a page parameter to determine which page to display:

The JSF code for pagination control is slightly verbose, but manageable:

 protected String getDeletedMessage() {
 return createValueExpression("Person #{person.firstName}
 #{person.lastName} deleted");
 }
}

Person_created=New person #{person.firstName} #{person.lastName} created
Person_deleted=Person #{person.firstName} #{person.lastName} deleted
Person_updated=Person #{person.firstName} #{person.lastName} updated

<framework:entity-query name="people" ejbql="select p from Person p"/>

<h1>List of people</h1>
<h:dataTable value="#{people.resultList}" var="person">
 <h:column>
 <s:link view="/editPerson.jsp"
 value="#{person.firstName} #{person.lastName}">
 <f:param name="personId" value="#{person.id}"/>
 </s:link>
 </h:column>
</h:dataTable>

<framework:entity-query name="people" ejbql="select p from Person p"
 order="lastName" max-results="20"/>

<pages>
 <page view-id="/searchPerson.jsp">
 <param name="firstResult" value="#{people.firstResult}"/>
 </page>
</pages>

<h1>Search for people</h1>
<h:dataTable value="#{people.resultList}" var="person">
 <h:column>

 <s:link view="/editPerson.jsp"

CHAPTER 13. THE SEAM APPLICATION FRAMEWORK

191

Real search screens let the user enter optional search criteria to narrow the list of returned results. The
Query object lets you specify optional restrictions to support this usecase:

Notice the use of an "example" object.

 value="#{person.firstName} #{person.lastName}">
 <f:param name="personId" value="#{person.id}"/>
 </s:link>

 </h:column>

</h:dataTable>

<s:link view="/search.xhtml" rendered="#{people.previousExists}"
 value="First Page">
 <f:param name="firstResult" value="0"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.previousExists}"
 value="Previous Page">
 <f:param name="firstResult" value="#{people.previousFirstResult}"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}"
 value="Next Page">
 <f:param name="firstResult" value="#{people.nextFirstResult}"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}"
 value="Last Page">
 <f:param name="firstResult" value="#{people.lastFirstResult}"/>
</s:link>

<component name="examplePerson" class="Person"/>
<framework:entity-query name="people" ejbql="select p from Person p"
 order="lastName" max-results="20">
 <framework:restrictions>

 <value>
 lower(firstName) like lower(concat(#{examplePerson.firstName},'%&'))
 </value>

 <value>
 lower(lastName) like lower(concat(#{examplePerson.lastName},'%&'))
 </value>

 </framework:restrictions>
</framework:entity-query>

<h1>Search for people</h1>
<h:form>

 <div>
 First name: <h:inputText value="#{examplePerson.firstName}"/>
 </div>

Seam Reference Guide

192

To refresh the query when the underlying entities change, we observe the
org.jboss.seam.afterTransactionSuccess event:

Or, to refresh the query when the person entity is persisted, updated or removed through PersonHome:

Unfortunately, Query objects do not work well with join fetch queries. We do not recommend using
pagination with these queries. You will need to implement your own method of total result number
calculation by overriding getCountEjbql().

All of the examples in this section have shown re-use via configuration. It is equally possibly to re-use via
extension:

13.4. CONTROLLER OBJECTS

The class Controller and its subclasses (EntityController, HibernateEntityController
and BusinessProcessController) are an optional part of the Seam Application Framework. These
classes provide a convenient method to access frequently-used built-in components and component
methods. They save keystrokes, and provide an excellent foothold for new users to explore the rich
functionality built into Seam.

For example, RegisterAction (from the Seam registration example) looks like this:

 <div>
 Last name: <h:inputText value="#{examplePerson.lastName}"/>
 </div>

 <div>
 <h:commandButton value="Search" action="/search.jsp"/>
 </div>

</h:form>

<h:dataTable value="#{people.resultList}" var="person">
 <h:column>
 <s:link view="/editPerson.jsp"
 value="#{person.firstName} #{person.lastName}">
 <f:param name="personId" value="#{person.id}"/>
 </s:link>
 </h:column>
</h:dataTable>

<event type="org.jboss.seam.afterTransactionSuccess">
 <action execute="#{people.refresh}" />
</event>

<event type="org.jboss.seam.afterTransactionSuccess.Person">
 <action execute="#{people.refresh}" />
</event>

@Stateless
@Name("register")
public class RegisterAction extends EntityController implements Register {
 @In private User user;
 public String register() {

CHAPTER 13. THE SEAM APPLICATION FRAMEWORK

193

 List existing = createQuery("select u.username from
 User u where u.username=:username").
 setParameter("username",
 user.getUsername()).getResultList();
 if (existing.size()==0) {
 persist(user);
 info("Registered new user #{user.username}");
 return "/registered.jspx";
 } else {
 addFacesMessage("User #{user.username} already exists");
 return null;
 }
 }
}

Seam Reference Guide

194

CHAPTER 14. SEAM AND JBOSS RULES
Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM process
definitions.

14.1. INSTALLING RULES

The first step is to make an instance of org.drools.RuleBase available in a Seam context variable.
For testing purposes, Seam provides a built-in component that compiles a static set of rules from the
classpath. You can install this component via components.xml:

This component compiles rules from a set of DRL (.drl) or decision table (.xls) files and caches an
instance of org.drools.RuleBase in the Seam APPLICATION context. Note that you will likely need
to install multiple rule bases in a rule-driven application.

If you want to use a Drools DSL, you must also specify the DSL definition:

If you want to register a custom consequence exception handler through the RuleBaseConfiguration, you
need to write the handler. This is demonstrated in the following example:

and register it:

<drools:rule-base name="policyPricingRules">
 <drools:rule-files>
 <value>policyPricingRules.drl</value>
 </drools:rule-files>
</drools:rule-base>

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl">
 <drools:rule-files>
 <value>policyPricingRules.drl</value>
 </drools:rule-files>
</drools:rule-base>

@Scope(ScopeType.APPLICATION)
@Startup
@Name("myConsequenceExceptionHandler")
public class MyConsequenceExceptionHandler
 implements ConsequenceExceptionHandler, Externalizable {
 public void readExternal(ObjectInput in) throws IOException,
 ClassNotFoundException { }

 public void writeExternal(ObjectOutput out) throws IOException { }

 public void handleException(Activation activation,
 WorkingMemory workingMemory,
 Exception exception) {
 throw new ConsequenceException(exception, activation.getRule());
 }
}

<drools:rule-base name="policyPricingRules"
 dsl-file="policyPricing.dsl"
 consequence-exception-handler=

CHAPTER 14. SEAM AND JBOSS RULES

195

In most rules-driven applications, rules must be dynamically deployable. A Drools RuleAgent is useful to
manage the RuleBase. The RuleAgent can connect to a Drools rule server (BRMS), or hot-deploy rules
packages from a local file repository. The RulesAgent-managed RuleBase is also configurable via
components.xml:

The properties file contains properties specific to the RulesAgent. The following is an example
configuration file from the Drools example distribution:

It is also possible to configure the options on the component directly, bypassing the configuration file.

Next, make an instance of org.drools.WorkingMemory available to each conversation. (Each
WorkingMemory accumulates facts relating to the current conversation.)

Notice that we referred the policyPricingWorkingMemory back to our rule base via the ruleBase
configuration property.

We can also add means to be notified of rule engine events, including, for example, rules firing or objects
being asserted by adding event listeners to WorkingMemory.

 "#{myConsequenceExceptionHandler}">
 <drools:rule-files>
 <value>policyPricingRules.drl</value>
 </drools:rule-files>
</drools:rule-base>

<drools:rule-agent name="insuranceRules"
 configurationFile="/WEB-INF/deployedrules.properties" />

newInstance=true
url=http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/
 org.acme.insurance/fmeyer
localCacheDir=/Users/fernandomeyer/projects/jbossrules/drools-examples/
 drools-examples-brms/cache
poll=30
name=insuranceconfig

<drools:rule-agent name="insuranceRules"
 url="http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/
 package/org.acme.insurance/fmeyer"
 local-cache-dir="/Users/fernandomeyer/projects/jbossrules/
 drools-examples/drools-examples-brms/cache"
 poll="30"
 configuration-name="insuranceconfig" />

<drools:managed-working-memory name="policyPricingWorkingMemory"
 auto-create="true" rule-base="#{policyPricingRules}"/>

<drools:managed-working-memory name="policyPricingWorkingMemory"
 auto-create="true"
 rule-base="#{policyPricingRules}">
 <drools:event-listeners>
 <value>org.drools.event.DebugWorkingMemoryEventListener</value>

Seam Reference Guide

196

14.2. USING RULES FROM A SEAM COMPONENT

We can now inject our WorkingMemory into any Seam component, assert facts, and fire rules:

14.3. USING RULES FROM A JBPM PROCESS DEFINITION

A rule base can act as a jBPM action, decision, or assignment handler in either a pageflow or a business
process definition.

The <assertObjects> element specifies EL expressions that return an object or collection of objects
to be asserted as facts into the WorkingMemory.

Using Drools for jBPM task assignments is also supported:

 <value>org.drools.event.DebugAgendaEventListener</value>
 </drools:event-listeners>
</drools:managed-working-memory>

@In WorkingMemory policyPricingWorkingMemory;
@In Policy policy;
@In Customer customer;

public void pricePolicy() throws FactException {
 policyPricingWorkingMemory.insert(policy);
 policyPricingWorkingMemory.insert(customer);
 policyPricingWorkingMemory.fireAllRules();
}

<decision name="approval">
 <handler class="org.jboss.seam.drools.DroolsDecisionHandler">
 <workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>
 <assertObjects>
 <element>#{customer}</element>
 <element>#{order}</element>
 <element>#{order.lineItems}</element>
 </assertObjects>
 </handler>

 <transition name="approved" to="ship">
 <action class="org.jboss.seam.drools.DroolsActionHandler">
 <workingMemoryName>shippingRulesWorkingMemory</workingMemoryName>
 <assertObjects>
 <element>#{customer}</element>
 <element>#{order}</element>
 <element>#{order.lineItems}</element>
 </assertObjects>
 </action>
 </transition>
 <transition name="rejected" to="cancelled"/>
</decision>

<task-node name="review">
 <task name="review" description="Review Order">

CHAPTER 14. SEAM AND JBOSS RULES

197

Certain objects are available as Drools globals — the jBPM Assignable is available as assignable,
and the Seam Decision object is available as decision. Rules that handle decisions should call
decision.setOutcome("result") to determine the decision result. Rules that perform assignments
should set the actor ID with Assignable.

NOTE

More information about Drools is available at http://www.drools.org.

IMPORTANT

Seam comes packaged with enough Drools dependencies to implement some simple
rules. To add extra capabilities, download the full Drools distribution and add extra
dependencies as required.

 <assignment handler="org.jboss.seam.drools.DroolsAssignmentHandler">
 <workingMemoryName>
 orderApprovalRulesWorkingMemory
 </workingMemoryName>
 <assertObjects>
 <element>#{actor}</element>
 <element>#{customer}</element>
 <element>#{order}</element>
 <element>#{order.lineItems}</element>
 </assertObjects>
 </assignment>
 </task>
 <transition name="rejected" to="cancelled"/>
 <transition name="approved" to="approved"/>
</task-node>

package org.jboss.seam.examples.shop
import org.jboss.seam.drools.Decision
global Decision decision
rule "Approve Order For Loyal Customer"
 when
 Customer(loyaltyStatus == "GOLD")
 Order(totalAmount <= 10000)
 then
 decision.setOutcome("approved");
end

package org.jboss.seam.examples.shop
import org.jbpm.taskmgmt.exe.Assignable
global Assignable assignable
rule "Assign Review For Small Order"
 when
 Order(totalAmount <= 100)
 then
 assignable.setPooledActors(new String[] {"reviewers"});
end

Seam Reference Guide

198

http://www.drools.org

CHAPTER 15. SECURITY

15.1. OVERVIEW

The Seam Security API provides a multitude of security-related features for your Seam-based
application, including:

Authentication — an extensible, Java Authentication and Authorization Service (JAAS) based
authentication layer that allows users to authenticate against any security provider.

Identity Management — an API for managing the users and roles of a Seam application at
runtime.

Authorization — an extremely comprehensive authorization framework, supporting user roles,
persistent and rule-based permissions, and a pluggable permission-resolver that makes it easy
to implement customized security logic.

Permission Management — a set of built-in Seam components that make it easy to manage an
application's security policy.

CAPTCHA support — to assist in the prevention of automated software/scripts abusing your
Seam-based site.

This chapter covers each of these features in detail.

15.2. DISABLING SECURITY

In some situations, you may need to disable Seam Security (during unit tests, for instance, or to use a
different security approach, like native JAAS). To disable the security infrastructure, call the static
method Identity.setSecurityEnabled(false). However, when you want to configure the
application, a more convenient alternative is to control the following settings in components.xml:

Entity Security

Hibernate Security Interceptor

Seam Security Interceptor

Page restrictions

Servlet API security integration

This chapter documents the vast number of options available when establishing the user's identity
(authentication) and establishing access constraints (authorization). We will begin with the foundation of
the security model: authentication.

15.3. AUTHENTICATION

Seam Security provides Java Authentication and Authorization Service (JAAS) based authorization
features, providing a robust and highly configurable API for handling user authentication. If your
authentication needs are not this complex, Seam also offers a simplified authentication method.

15.3.1. Configuring an Authenticator component

CHAPTER 15. SECURITY

199

NOTE

If you use Seam's Identity Management features, you can skip this section — it is not
necessary to create an authenticator component.

Seam's simplified authentication method uses a built-in JAAS login module (SeamLoginModule) to
delegate authentication to one of your own Seam components. (This module requires no additional
configuration files, and comes pre-configured within Seam.) With this, you can write an authentication
method with the entity classes provided by your own application, or authenticate through another third-
party provider. Configuring this simplified authentication requires the identity component to be
configured in components.xml

#{authenticator.authenticate} is a method binding that indicates the authenticate method of
the authenticator component will be used to authenticate the user.

15.3.2. Writing an authentication method

The authenticate-method property specified for identity in components.xml specifies the
method used by SeamLoginModule to authenticate users. This method takes no parameters, and is
expected to return a Boolean indicating authentication success or failure. Username and password are
obtained from Credentials.getUsername() and Credentials.getPassword() respectively. (A
reference to the credentials component can be obtained via
Identity.instance().getCredentials().) Any role that the user is a member of should be
assigned with Identity.addRole(). The following is a complete example of an authentication
method inside a POJO component:

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:security="http://jboss.com/products/seam/security"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.2.xsd
 http://jboss.com/products/seam/security
 http://jboss.com/products/seam/security-2.2.xsd">

<security:identity authenticate-method="#{authenticator.authenticate}"/>

</components>

@Name("authenticator")
public class Authenticator {
 @In EntityManager entityManager;
 @In Credentials credentials;
 @In Identity identity;

 public boolean authenticate() {
 try {
 User user = (User) entityManager.createQuery(
 "from User where username = :username and password = :password")
 .setParameter("username", credentials.getUsername())
 .setParameter("password", credentials.getPassword())
 .getSingleResult();

Seam Reference Guide

200

In the example, both User and UserRole are application-specific entity beans. The roles parameter is
populated with roles that the user is a member of. This is added to the Set as literal string values — for
example, "admin", "user", etc. If the user record is not found, and a NoResultException is thrown, the
authentication method returns false to indicate authentication failure.

NOTE

It is important to keep authenticator methods minimal and free from any side-effects —
they can be invoked multiple times during a single request, so any special code that
should execute when authentication succeeds or fails should implement an event
observer. See Section 15.10, “Security Events” later in this chapter for more information
about events raised by Seam Security.

15.3.2.1. Identity.addRole()

The Identity.addRole() method's behavior depends upon current session authentication. If the
session is not authenticated, addRole() should only be called during the authentication process. When
called here, the role name is placed in a temporary list of pre-authenticated roles. Once authentication
succeeds, the pre-authenticated roles then become "real" roles, and calling Identity.hasRole() for
those roles returns true. The following sequence diagram represents the list of pre-authenticated roles
as a first class object to clarify its position in the authentication process.

 if (user.getRoles() != null) {
 for (UserRole mr : user.getRoles())
 identity.addRole(mr.getName());
 }

 return true;
 } catch (NoResultException ex) {
 return false;
 }

 }

}

CHAPTER 15. SECURITY

201

If the current session is already authenticated, then calling Identity.addRole() grants the specified
role to the current user immediately.

15.3.2.2. Writing an event observer for security-related events

If, upon successful log in, some user statistics require updates, you can write an event observer for the
org.jboss.seam.security.loginSuccessful event, like this:

This observer method can be placed anywhere, even in the Authenticator component itself. More
information about other security-related events appears later in the chapter.

15.3.3. Writing a login form

The credentials component provides both username and password properties, catering for the
most common authentication scenario. These properties can be bound directly to the username and
password fields on a login form. Once these properties are set, calling identity.login()
authenticates the user with the credentials provided. An example of a simple login form is as follows:

@In UserStats userStats;

@Observer("org.jboss.seam.security.loginSuccessful")
public void updateUserStats() {
 userStats.setLastLoginDate(new Date());
 userStats.incrementLoginCount();
}

<div>
 <h:outputLabel for="name" value="Username"/>

Seam Reference Guide

202

Similarly, the user is logged out by calling #{identity.logout}. This action clears the security state
of the currently authenticated user and invalidate the user's session.

15.3.4. Configuration Summary

There are three easy steps to configure authentication:

Configure an authentication method in components.xml.

Write an authentication method.

Write a login form so that the user can authenticate.

15.3.5. Remember Me

Seam Security supports two different modes of the Remember Me functionality common to many web-
based applications. The first mode allows the username to be stored in the user's browser as a cookie,
and leaves the browser to remember the password. The second mode stores a unique token in a cookie,
and lets a user authenticate automatically when they return to the site, without having to provide a
password.

 <h:inputText id="name" value="#{credentials.username}"/>
</div>

<div>
 <h:outputLabel for="password" value="Password"/>
 <h:inputSecret id="password" value="#{credentials.password}"/>
</div>

<div>
 <h:commandButton value="Login" action="#{identity.login}"/>
</div>

CHAPTER 15. SECURITY

203

WARNING

Although it is convenient for users, automatic client authentication through a
persistent cookie on the client machine is dangerous because the effects of any
cross-site scripting (XSS) security hole are magnified. Without the authentication
cookie, the only cookie an attacker can steal with XSS is the user's current session
cookie — so an attack can only occur while a user has a session open. If a
persistent Remember Me cookie is stolen, an attacker can log in without
authentication at any time. If you wish to use automatic client authentication, it is
vital to protect your website against XSS attacks.

Browser vendors introduced the Remember Passwords feature to combat this issue.
Here, the browser remembers the username and password used to log in to a
particular website and domain, and automatically fills in the login form when there is
no session active. A log in keyboard shortcut on your website can make the log in
process almost as convenient as the "Remember Me" cookie, and much safer.
Some browsers (for example, Safari on OS X) store the login form data in the
encrypted global operation system keychain. In a networked environment, the
keychain can be transported with the user between laptop and desktop — cookies
are not usually synchronized.

Although persistent Remember Me cookies with automatic authentication are widely
used, they are bad security practice. Cookies that recall only the user's login name,
and fill out the login form with that username as a convenience, are much more
secure.

No special configuration is required to enable the Remember Me feature for the default (safe, username-
only) mode. In your login form, simply bind the Remember Me checkbox to rememberMe.enabled, as
seen in the following example:

15.3.5.1. Token-based Remember Me Authentication

To use the automatic, token-based mode of the Remember Me feature, you must first configure a token
store. These authentication tokens are commonly stored within a database. Seam supports this method,

<div>
 <h:outputLabel for="name" value="User name"/>
 <h:inputText id="name" value="#{credentials.username}"/>
</div>

<div>
 <h:outputLabel for="password" value="Password"/>
 <h:inputSecret id="password" value="#{credentials.password}"
redisplay="true"/>
</div>

<div class="loginRow">
 <h:outputLabel for="rememberMe" value="Remember me"/>
 <h:selectBooleanCheckbox id="rememberMe" value="#{rememberMe.enabled}"/>
</div>

Seam Reference Guide

204

but you can also implement your own token store by using the
org.jboss.seam.security.TokenStore interface. This section assumes that you will be using the
provided JpaTokenStore implementation to store authentication tokens inside a database table.

First, create a new Entity to hold the tokens. The following is one possible structure:

Several special annotations, @TokenUsername and @TokenValue, are used to configure the username
and token properties of the entity. These annotations are required for the entity that holds the
authentication tokens.

The next step is to configure JpaTokenStore to store and retrieve authentication tokens with this entity
bean. Do this by specifying the token-class attribute in components.xml:

The final step is to configure the RememberMe component in components.xml. Its mode should be set
to autoLogin:

@Entity
public class AuthenticationToken implements Serializable {
 private Integer tokenId;
 private String username;
 private String value;

 @Id @GeneratedValue
 public Integer getTokenId() {
 return tokenId;
 }

 public void setTokenId(Integer tokenId) {
 this.tokenId = tokenId;
 }

 @TokenUsername
 public String getUsername() {
 return username;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 @TokenValue
 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }
}

<security:jpa-token-store
 token-class="org.jboss.seam.example.seamspace.AuthenticationToken"/>

CHAPTER 15. SECURITY

205

Users who check the Remember Me checkbox will now be authenticated automatically.

To ensure that users are automatically authenticated when returning to the site, the following section
should be placed in components.xml:

15.3.6. Handling Security Exceptions

So that users do not receive a basic default error page when a security error occurs, you should edit
pages.xml to redirect users to a more attractive page. The two main exceptions thrown by the security
API are:

NotLoggedInException — This exception is thrown when the user attempts to access a
restricted action or page when they are not logged in.

AuthorizationException — This exception is only thrown if the user is already logged in,
and they have attempted to access a restricted action or page for which they do not have the
necessary privileges.

In the case of a NotLoggedInException, we recommend the user be redirected to a login or
registration page so that they can log in. For an AuthorizationException, it may be useful to
redirect the user to an error page. Here's an example of a pages.xml file that redirects both of these
security exceptions:

<security:remember-me mode="autoLogin"/>

<event type="org.jboss.seam.security.notLoggedIn">
 <action execute="#{redirect.captureCurrentView}"/>
 <action execute="#{identity.tryLogin()}"/>
</event>
<event type="org.jboss.seam.security.loginSuccessful">
 <action execute="#{redirect.returnToCapturedView}"/>
</event>

<pages>

 ...

 <exception class="org.jboss.seam.security.NotLoggedInException">
 <redirect view-id="/login.xhtml">
 <message>You must be logged in to perform this action</message>
 </redirect>
 </exception>

 <exception class="org.jboss.seam.security.AuthorizationException">
 <end-conversation/>
 <redirect view-id="/security_error.xhtml">
 <message>
 You do not have the necessary security privileges to perform
this action.
 </message>
 </redirect>

Seam Reference Guide

206

Most web applications require more sophisticated handling of login redirection. Seam includes some
special functionality, outlined in the following section.

15.3.7. Login Redirection

When an unauthenticated user tries to access a particular view or wildcarded view ID, you can have
Seam redirect the user to a login screen as follows:

NOTE

This is more refined than the exception handler shown above, but should probably be
used in conjunction with it.

After the user logs in, we want to automatically redirect them to the action that required log in. If you add
the following event listeners to components.xml, attempts to access a restricted view while not logged
in are remembered. Upon a successful log in, the user is redirected to the originally requested view, with
any page parameters that existed in the original request.

NOTE

Login redirection is implemented as a conversation-scoped mechanism, so do not end the
conversation in your authenticate() method.

15.3.8. HTTP Authentication

Although we do not recommend it unless absolutely necessary, Seam provides the means to
authenticate with either HTTP Basic or HTTP Digest (RFC 2617) methods. For either form, you must
first enable the authentication-filter component in components.xml:

To enable basic authentication, set auth-type to basic. For digest authentication, set it to digest. If
you want to use digest authentication, you must also set the key and realm:

 </exception>

</pages>

<pages login-view-id="/login.xhtml">

 <page view-id="/members/*" login-required="true"/>
...
</pages>

<event type="org.jboss.seam.security.notLoggedIn">
 <action execute="#{redirect.captureCurrentView}"/>
</event>

<event type="org.jboss.seam.security.postAuthenticate">
 <action execute="#{redirect.returnToCapturedView}"/>
</event>

<web:authentication-filter url-pattern="*.seam" auth-type="basic"/>

CHAPTER 15. SECURITY

207

The key can be any String value. The realm is the name of the authentication realm that is presented to
the user when they authenticate.

15.3.8.1. Writing a Digest Authenticator

If using digest authentication, your authenticator class should extend the abstract class
org.jboss.seam.security.digest.DigestAuthenticator, and use the
validatePassword() method to validate the user's plain text password against the digest request.
Here is an example:

15.3.9. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for addressing more
complex security requirements.

15.3.9.1. Using your container's JAAS configuration

If you prefer not to use the simplified JAAS configuration provided by the Seam Security API, you can
use the default system JAAS configuration by adding a jaas-config-name property to
components.xml. For example, if you use JBoss Enterprise Application Platform and want to use the
other policy (which uses the UsersRolesLoginModule login module provided by JBoss Enterprise
Application Platform), then the entry in components.xml would look like this:

Keep in mind that doing this does not mean that your user will be authenticated in your Seam application
container — it instructs Seam Security to authenticate itself with the configured JAAS security policy.

15.4. IDENTITY MANAGEMENT

Identity Management provides a standard API for managing a Seam application's users and roles,
regardless of the identity store (database, LDAP, etc.) used in back-end operations. The
identityManager component is at the core of the Identity Management API, and provides all methods
for creating, modifying, and deleting users, granting and revoking roles, changing passwords, enabling
and disabling user accounts, authenticating users, and listing users and roles.

<web:authentication-filter url-pattern="*.seam" auth-type="digest"
 key="AA3JK34aSDlkj" realm="My App"/>

public boolean authenticate() {
 try {
 User user = (User) entityManager.createQuery(
 "from User where username = "username")
 .setParameter("username", identity.getUsername())
 .getSingleResult();

 return validatePassword(user.getPassword());
 } catch (NoResultException ex) {
 return false;
 }
}

<security:identity jaas-config-name="other"/>

Seam Reference Guide

208

Before use, the identityManager must be configured with at least one IdentityStore. These
components interact with the back-end security provider.

15.4.1. Configuring IdentityManager

The identityManager component allows you to configure separate identity stores for authentication
and authorization. This means that users can be authenticated against one identity store (for example,
an LDAP directory), but have their roles loaded from another identity store (such as a relational
database).

Seam provides two IdentityStore implementations out of the box. The default,
JpaIdentityStore, uses a relational database to store user and role information. The other
implementation is LdapIdentityStore, which uses an LDAP directory to store users and roles.

The identityManager component has two configurable properties: identityStore and
roleIndentityStore. The value for these properties must be an EL expression that refers to a Seam
component with the IdentityStore interface. If left unconfigured, the default (JpaIdentityStore)
will be used. If only the identityStore property is configured, the same value will be used for
roleIdentityStore. For example, the following entry in components.xml will configure
identityManager to use an LdapIdentityStore for both user-related and role-related operations:

The following example configures identityManager to use an LdapIdentityStore for user-related
operations, and JpaIdentityStore for role-related operations:

The following sections explain each identity storage method in greater detail.

15.4.2. JpaIdentityStore

This method stores users and roles in a relational database. It is designed to allow flexible database
design and table structure. A set of special annotations lets entity beans store user and role records.

15.4.2.1. Configuring JpaIdentityStore

Both user-class and role-class must be configured before JpaIdentityStore can be used.
These properties refer to the entity classes used to store user and role records, respectively. The
following example shows the components.xml file from the SeamSpace example:

<security:identity-manager identity-store="#{ldapIdentityStore}"/>

<security:identity-manager identity-store="#{ldapIdentityStore}"
 role-identity-store="#{jpaIdentityStore}"/>

CHAPTER 15. SECURITY

209

15.4.2.2. Configuring the Entities

The following table describes the special annotations used to configure entity beans for user and role
storage.

Table 15.1. User Entity Annotations

Annotation Status Description

@UserPrincipal Required This annotation marks the field or method containing
the user's username.

@UserPassword Required This annotation marks the field or method containing
the user's password. It allows a hash algorithm to be
specified for password hashing. Possible values for
hash are md5, sha and none. For example:

It is possible to extend the PasswordHash
component to implement other hashing algorithms, if
required.

@UserFirstName Optional This annotation marks the field or method containing
the user's first name.

@UserLastName Optional This annotation marks the field or method containing
the user's last name.

@UserEnabled Optional This annotation marks the field or method containing
the enabled user status. This should be a Boolean
property. If not present, all user accounts are
assumed to be enabled.

@UserRoles Required This annotation marks the field or method containing
the roles of the user. This property will be described
in more detail in a later section.

Table 15.2. Role Entity Annotations

Annotation Status Description

<security:jpa-identity-store
 user-class="org.jboss.seam.example.seamspace.MemberAccount"
 role-class="org.jboss.seam.example.seamspace.MemberRole"/>

@UserPassword(hash = "md5")
public String getPasswordHash() {
 return passwordHash;
}

Seam Reference Guide

210

@RoleName Required This annotation marks the field or method containing
the name of the role.

@RoleGroups Optional This annotation marks the field or method containing
the group memberships of the role.

@RoleConditional Optional This annotation marks the field or method that
indicates whether a role is conditional. Conditional
roles are explained later in this chapter.

Annotation Status Description

15.4.2.3. Entity Bean Examples

As mentioned previously, JpaIdentityStore is designed to be as flexible as possible when it comes
to the database schema design of your user and role tables. This section looks at a number of possible
database schemas that can be used to store user and role records.

15.4.2.3.1. Minimal schema example

Here, a simple user and role table are linked via a many-to-many relationship using a cross-reference
table named UserRoles.

@Entity
public class User {
 private Integer userId;
 private String username;
 private String passwordHash;
 private Set<Role> roles;

 @Id @GeneratedValue
 public Integer getUserId() { return userId; }
 public void setUserId(Integer userId) { this.userId = userId; }

 @UserPrincipal
 public String getUsername() { return username; }
 public void setUsername(String username) { this.username = username; }

 @UserPassword(hash = "md5")
 public String getPasswordHash() { return passwordHash; }
 public void setPasswordHash(String passwordHash) {
 this.passwordHash = passwordHash;

CHAPTER 15. SECURITY

211

15.4.2.3.2. Complex Schema Example

This example builds on the previous minimal example by including all optional fields, and allowing group
memberships for roles.

 }

 @UserRoles
 @ManyToMany(targetEntity = Role.class)
 @JoinTable(name = "UserRoles",
 joinColumns = @JoinColumn(name = "UserId"),
 inverseJoinColumns = @JoinColumn(name = "RoleId"))
 public Set<Role> getRoles() { return roles; }
 public void setRoles(Set<Role> roles) { this.roles = roles; }
}

@Entity
public class Role {
 private Integer roleId;
 private String rolename;

 @Id @Generated
 public Integer getRoleId() { return roleId; }
 public void setRoleId(Integer roleId) { this.roleId = roleId; }

 @RoleName
 public String getRolename() { return rolename; }
 public void setRolename(String rolename) { this.rolename = rolename; }
}

@Entity
public class User {
 private Integer userId;
 private String username;
 private String passwordHash;
 private Set<Role> roles;
 private String firstname;
 private String lastname;
 private boolean enabled;

 @Id @GeneratedValue

Seam Reference Guide

212

 public Integer getUserId() { return userId; }
 public void setUserId(Integer userId) { this.userId = userId; }

 @UserPrincipal
 public String getUsername() { return username; }
 public void setUsername(String username) { this.username = username; }

 @UserPassword(hash = "md5")
 public String getPasswordHash() { return passwordHash; }
 public void setPasswordHash(String passwordHash) {
 this.passwordHash = passwordHash;
 }

 @UserFirstName
 public String getFirstname() { return firstname; }
 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 @UserLastName
 public String getLastname() { return lastname; }
 public void setLastname(String lastname) { this.lastname = lastname; }

 @UserEnabled
 public boolean isEnabled() { return enabled; }
 public void setEnabled(boolean enabled) { this.enabled = enabled; }

 @UserRoles
 @ManyToMany(targetEntity = Role.class)
 @JoinTable(name = "UserRoles",
 joinColumns = @JoinColumn(name = "UserId"),
 inverseJoinColumns = @JoinColumn(name = "RoleId"))
 public Set<Role> getRoles() { return roles; }
 public void setRoles(Set<Role> roles) { this.roles = roles; }
}

@Entity
public class Role {
 private Integer roleId;
 private String rolename;
 private boolean conditional;

 @Id @Generated
 public Integer getRoleId() { return roleId; }
 public void setRoleId(Integer roleId) { this.roleId = roleId; }

 @RoleName
 public String getRolename() { return rolename; }
 public void setRolename(String rolename) { this.rolename = rolename; }

 @RoleConditional
 public boolean isConditional() { return conditional; }
 public void setConditional(boolean conditional) {
 this.conditional = conditional;
 }

CHAPTER 15. SECURITY

213

15.4.2.4. JpaIdentityStore Events

When using JpaIdentityStore with IdentityManager, several events are raised when certain
IdentityManager methods are invoked.

15.4.2.4.1. JpaIdentityStore.EVENT_PRE_PERSIST_USER

This event is raised in response to calling IdentityManager.createUser(). Just before the user
entity is persisted to the database, this event is raised to pass the entity instance as an event parameter.
The entity will be an instance of the user-class configured for JpaIdentityStore.

An observer can be useful, here, for setting entity field values that are not part of standard
createUser() functionality.

15.4.2.4.2. JpaIdentityStore.EVENT_USER_CREATED

This event is also raised in response to calling IdentityManager.createUser(). However, it is
raised after the user entity has already been persisted to the database. Like the
EVENT_PRE_PERSIST_USER event, it also passes the entity instance as an event parameter. It may be
useful to observe this event if you need to persist other entities that reference the user entity, such as
contact detail records or other user-specific data.

15.4.2.4.3. JpaIdentityStore.EVENT_USER_AUTHENTICATED

This event is raised when calling IdentityManager.authenticate(). It passes the user entity
instance as the event parameter, and is useful for reading additional properties from the user entity being
authenticated.

15.4.3. LdapIdentityStore

This identity storage method is designed to work with user records stored in an LDAP directory. It is
highly configurable, and allows very flexible directory storage of both users and roles. The following
sections describe the configuration options for this identity store, and provide some configuration
examples.

15.4.3.1. Configuring LdapIdentityStore

The following table describes the properties that can be configured in components.xml for
LdapIdentityStore.

Table 15.3. LdapIdentityStore Configuration Properties

 @RoleGroups
 @ManyToMany(targetEntity = Role.class)
 @JoinTable(name = "RoleGroups",
 joinColumns = @JoinColumn(name = "RoleId"),
 inverseJoinColumns = @JoinColumn(name = "GroupId"))
 public Set<Role> getGroups() { return groups; }
 public void setGroups(Set<Role> groups) { this.groups = groups; }

}

Seam Reference Guide

214

Property Default Value Description

server-address localhost The address of the
LDAP server.

server-port 389 The port number
that the LDAP
server listens on.

user-context-DN ou=Person,dc=acme,dc=com The Distinguished
Name (DN) of the
context containing
user records.

user-DN-prefix uid= This value is
prefixed to the
front of the
username to locate
the user's record.

user-DN-suffix ,ou=Person,dc=acme,dc=com This value is
appended to the
end of the
username to locate
the user's record.

role-context-DN ou=Role,dc=acme,dc=com The DN of the
context containing
role records.

role-DN-prefix cn= This value is
prefixed to the
front of the role
name to form the
DN that locates the
role record.

role-DN-suffix ,ou=Roles,dc=acme,dc=com This value is
appended to the
role name to form
the DN that locates
the role record.

bind-DN cn=Manager,dc=acme,dc=com This is the context
used to bind to the
LDAP server.

bind-credentials secret These are the
credentials (the
password) used to
bind to the LDAP
server.

CHAPTER 15. SECURITY

215

user-role-attribute roles The attribute name
of the user record
containing the list
of roles that the
user is a member
of.

role-attribute-is-DN true This Boolean
property indicates
whether the role
attribute of the
user record is itself
a distinguished
name.

user-name-attribute uid Indicates the user
record attribute
containing the
username.

user-password-attribute userPassword Indicates the user
record attribute
containing the
user's password.

first-name-attribute null Indicates the user
record attribute
containing the
user's first name.

last-name-attribute sn Indicates the user
record attribute
containing the
user's last name.

full-name-attribute cn Indicates the user
record attribute
containing the
user's full
(common) name.

enabled-attribute null Indicates the user
record attribute
that determines
whether the user
is enabled.

role-name-attribute cn Indicates the role
record attribute
containing the
name of the role.

Property Default Value Description

Seam Reference Guide

216

object-class-attribute objectClass Indicates the
attribute that
determines the
class of an object
in the directory.

role-object-classes organizationalRole An array of the
object classes that
new role records
should be created
as.

user-object-classes person,uidObject An array of the
object classes that
new user records
should be created
as.

Property Default Value Description

15.4.3.2. LdapIdentityStore Configuration Example

The following configuration example shows how LdapIdentityStore can be configured for an LDAP
directory running on fictional host directory.mycompany.com. The users are stored within this
directory under the ou=Person,dc=mycompany,dc=com context, and are identified by the uid
attribute (which corresponds to their username). Roles are stored in their own context,
ou=Roles,dc=mycompany,dc=com, and are referenced from the user's entry via the roles attribute.
Role entries are identified by their common name (the cn attribute), which corresponds to the role name.
In this example, users can be disabled by setting the value of their enabled attribute to false.

15.4.4. Writing your own IdentityStore

Writing your own identity store implementation allows you to authenticate and perform identity
management operations against security providers that are not supported out of the box by Seam. You
only need a single class that implements the
org.jboss.seam.security.management.IdentityStore interface to achieve this.

<security:ldap-identity-store
 server-address="directory.mycompany.com"
 bind-DN="cn=Manager,dc=mycompany,dc=com"
 bind-credentials="secret"
 user-DN-prefix="uid="
 user-DN-suffix=",ou=Person,dc=mycompany,dc=com"
 role-DN-prefix="cn="
 role-DN-suffix=",ou=Roles,dc=mycompany,dc=com"
 user-context-DN="ou=Person,dc=mycompany,dc=com"
 role-context-DN="ou=Roles,dc=mycompany,dc=com"
 user-role-attribute="roles"
 role-name-attribute="cn"
 user-object-classes="person,uidObject"
 enabled-attribute="enabled"
/>

CHAPTER 15. SECURITY

217

Refer to the JavaDoc about IdentityStore for a description of the methods that must be
implemented.

15.4.5. Authentication with Identity Management

If you use Identity Management features in your Seam application, then you do not need to provide an
authenticator component (see previous Authentication section) to enable authentication. Simply omit the
authenticator-method from the identity configuration in components.xml, and the
SeamLoginModule will use IdentityManager to authenticate your application's users without any
special configuration.

15.4.6. Using IdentityManager

Access the IdentityManager either by injecting it into your Seam component, like so:

or, through its static instance() method:

The following table describes IdentityManager's API methods:

Table 15.4. Identity Management API

Method Returns Description

createUser(String name,
String password)

boolean Creates a new user account, with the
specified name and password. Returns
true if successful; otherwise, returns
false.

deleteUser(String name) boolean Deletes the user account with the
specified name. Returns true if
successful; otherwise, returns false.

createRole(String role) boolean Creates a new role, with the specified
name. Returns true if successful;
otherwise, returns false.

deleteRole(String name) boolean Deletes the role with the specified name.
Returns true if successful; otherwise,
returns false.

enableUser(String name) boolean Enables the user account with the
specified name. Accounts that are not
enabled cannot authenticate. Returns
true if successful; otherwise, returns
false.

disableUser(String name) boolean Disables the user account with the
specified name. Returns true if
successful; otherwise, returns false.

@In IdentityManager identityManager;

IdentityManager identityManager = IdentityManager.instance();

Seam Reference Guide

218

changePassword(String name,
String password)

boolean Changes the password for the user
account with the specified name. Returns
true if successful; otherwise, returns
false.

isUserEnabled(String name) boolean Returns true if the specified user
account is enabled; otherwise, returns
false.

grantRole(String name,
String role)

boolean Grants the specified role to the specified
user or role. The role must already exist
for it to be granted. Returns true if the
role is successfully granted, or false if
the user has already been granted the
role.

revokeRole(String name,
String role)

boolean Revokes the specified role from the
specified user or role. Returns true if
the specified user is a member of the role
and it is successfully revoked, or false
if the user is not a member of the role.

userExists(String name) boolean Returns true if the specified user exists,
or false if it does not.

listUsers() List Returns a list of all user names, sorted in
alpha-numeric order.

listUsers(String filter) List Returns a list of all user names filtered by
the specified filter parameter, sorted in
alpha-numeric order.

listRoles() List Returns a list of all role names.

getGrantedRoles(String name) List Returns a list of all roles explicitly granted
to the specified user name.

getImpliedRoles(String name) List Returns a list of all roles implicitly granted
to the specified user name. Implicitly
granted roles include those that are
granted to the roles that the user is a
member of, rather than granted directly to
the user. For example, if the admin role
is a member of the user role, and a user
is a member of the admin role, then the
implied roles for the user are both the
admin, and user roles.

Method Returns Description

CHAPTER 15. SECURITY

219

authenticate(String name,
String password)

boolean Authenticates the specified username and
password using the configured Identity
Store. Returns true if successful or
false if authentication failed. Successful
authentication implies nothing beyond the
return value of the method. It does not
change the state of the Identity
component - to perform a proper Seam
log in the Identity.login() must
be used instead.

addRoleToGroup(String role,
String group)

boolean Adds the specified role as a member of
the specified group. Returns true if the
operation is successful.

removeRoleFromGroup(String
role, String group)

boolean Removes the specified role from the
specified group. Returns true if the
operation is successful.

listRoles() List Lists the names of all roles.

Method Returns Description

A calling user must have appropriate authorization to invoke methods on the Identity Management API.
The following table describes the permission requirements for each of the methods in
IdentityManager. The permission targets listed below are literal String values.

Table 15.5. Identity Management Security Permissions

Method Permission Target Permission
Action

createUser() seam.user create

deleteUser() seam.user delete

createRole() seam.role create

deleteRole() seam.role delete

enableUser() seam.user update

disableUser() seam.user update

changePassword() seam.user update

isUserEnabled() seam.user read

grantRole() seam.user update

Seam Reference Guide

220

revokeRole() seam.user update

userExists() seam.user read

listUsers() seam.user read

listRoles() seam.role read

addRoleToGroup() seam.role update

removeRoleFromGroup() seam.role update

Method Permission Target Permission
Action

The following code listing provides an example set of security rules that grants all admin role members
access to all Identity Management-related methods:

15.5. ERROR MESSAGES

The security API produces a number of default Faces messages for various security-related events. The
following table lists the message keys to specify in a message.properties resource file if you want to
override the messages. To suppress a message, add the key (with an empty value) to the resource file.

Table 15.6. Security Message Keys

Message Key Description

rule ManageUsers
 no-loop
 activation-group "permissions"
when
 check: PermissionCheck(name == "seam.user", granted == false)
 Role(name == "admin")
then
 check.grant();
end

rule ManageRoles
 no-loop
 activation-group "permissions"
when
 check: PermissionCheck(name == "seam.role", granted == false)
 Role(name == "admin")
then
 check.grant();
end

CHAPTER 15. SECURITY

221

org.jboss.seam.loginSuccessful This message is produced when
a user successfully logs in via the
security API.

org.jboss.seam.loginFailed This message is produced when
the log in process fails, either
because the user provided an
incorrect username or password,
or because authentication failed
in some other way.

org.jboss.seam.NotLoggedIn This message is produced when
a user attempts to perform an
action or access a page that
requires a security check, and the
user is not currently
authenticated.

org.jboss.seam.AlreadyLoggedIn This message is produced when
a user that is already
authenticated attempts to log in
again.

Message Key Description

15.6. AUTHORIZATION

This section describes the range of authorization mechanisms provided by the Seam Security API for
securing access to components, component methods, and pages. If you wish to use any of the advanced
features (for example, rule-based permissions), you may need to configure your components.xml file
— see the Configuration section previous.

15.6.1. Core concepts

Seam Security operates on the principle that users are granted roles or permissions, or both, which allow
them to perform operations that are not permissible for users without the required security privileges.
Each authorization mechanism provided by the Seam Security API is built upon this core concept of
roles and permissions, with an extensible framework to provide multiple ways to secure application
resources.

15.6.1.1. What is a role?

A role is a type of user that may have been granted certain privileges for performing one or more specific
actions within an application. They are simple constructs, consisting of a name (such as "admin", "user",
"customer", etc.) applied to users, or other roles. They are used to create logical user groups so that
specific application privileges can be easily assigned.

Seam Reference Guide

222

15.6.1.2. What is a permission?

A permission is a privilege (sometimes once-off) for performing a single, specific action. You can build
an application that operates solely on permissions, but roles are more convenient when granting
privileges to groups. Permissions are slightly more complex in structure than roles, consisting of three
"aspects"; a target, an action, and a recipient. The target of a permission is the object (or an arbitrary
name or class) for which a particular action is allowed to be performed by a specific recipient (or user).
For example, the user "Bob" may have permission to delete customer objects. In this case, the
permission target may be "customer", the permission action would be "delete" and the recipient would be
"Bob".

In this documentation, permissions are usually represented in the form target:action, omitting the
recipient. In reality, a recipient is always required.

15.6.2. Securing components

We will start with the simplest form of authorization: component security. First, we will look at the
@Restrict annotation.

NOTE

While the @Restrict annotation is a powerful and flexible method for security
components, it cannot support EL expressions. Therefore, we recommend using the
typesafe equivalent (described later in this chapter) for its compile-time safety.

15.6.2.1. The @Restrict annotation

Seam components can be secured at either the method or the class level with the @Restrict
annotation. If both a method and its declaring class are annotated with @Restrict, the method
restriction will take precedence and the class restriction will not apply. If a method invocation fails a
security check, an exception will be thrown as per the contract for Identity.checkRestriction().
(See the section following for more information on Inline Restrictions.) Placing @Restrict on the
component class itself is the equivalent of adding @Restrict to each of its methods.

An empty @Restrict implies a permission check of componentName:methodName. Take for example
the following component method:

@Name("account")
public class AccountAction {
 @Restrict
 public void delete() {
 ...
 }
}

CHAPTER 15. SECURITY

223

In this example, account:delete is the implied permission required to call the delete() method.
This is equivalent to writing @Restrict("#{s:hasPermission('account','delete')}"). The
following is another example:

Here, the component class itself is annotated with @Restrict. This means that any methods without an
overriding @Restrict annotation require an implicit permission check. In this case, the insert()
method requires a permission of account:insert, while the delete() method requires that the user
is a member of the admin role.

Before we go further, we will address the #{s:hasRole()} expression seen in the previous example.
s:hasRole and s:hasPermission are EL functions that delegate to the correspondingly-named
methods of the Identity class. These functions can be used within any EL expression throughout the
entirety of the security API.

Being an EL expression, the value of the @Restrict annotation may refer to any object within a Seam
context. This is extremely useful when checking permissions for a specific object instance. Take the
following example:

In this example, the hasPermission() function call refers to selectedAccount. The value of this
variable will be looked up from within the Seam context, and passed to the hasPermission() method
in Identity. This will determine whether the user has the required permissions to modify the specified
Account object.

15.6.2.2. Inline restrictions

It is sometimes necessary to perform a security check in code, without using the @Restrict annotation.
To do so, use Identity.checkRestriction() to evaluate a security expression, like this:

@Restrict @Name("account")
public class AccountAction {
 public void insert() {
 ...
 }
 @Restrict("#{s:hasRole('admin')}")
 public void delete() {
 ...
 }
}

@Name("account")
public class AccountAction {
 @In Account selectedAccount;
 @Restrict("#{s:hasPermission(selectedAccount,'modify')}")
 public void modify() {
 selectedAccount.modify();
 }
}

public void deleteCustomer() {
 Identity.instance().checkRestriction("#
{s:hasPermission(selectedCustomer,
 'delete')}");
}

Seam Reference Guide

224

If the specified expression does not evaluate to true, one of two exceptions occurs. If the user is not
logged in, a NotLoggedInException is thrown. If the user is logged in, an
AuthorizationException is thrown.

You can also call the hasRole() and hasPermission() methods directly from Java code:

15.6.3. Security in the user interface

A well-designed interface does not present a user with options they are not permitted to use. Seam
Security allows conditional rendering of page sections or individual controls based on user privileges,
using the same EL expressions that are used for component security.

In this section, we will go through some examples of interface security. Say we have a login form that we
want rendered only if the user is not already logged in. We can write the following with the
identity.isLoggedIn() property:

If the user is not logged in, the login form will be rendered — very straightforward. Say we also have a
menu on this page, and we want some actions to be accessed only by users in the manager role. One
way you could write this is the following:

This, too, is straightforward — if the user is not a member of the manager role, the outputLink will not be
rendered. The rendered attribute can generally be used on the control itself, or on a surrounding
<s:div> or <s:span> control.

A more complex example of conditional rendering might be the following situation: say you have a
h:dataTable control on a page, and you want to render action links on its records only for users with
certain privileges. The s:hasPermission EL function lets us use an object parameter to determine
whether the user has the necessary permission for that object. A dataTable with secured links might look
like this:

if (!Identity.instance().hasRole("admin"))
 throw new AuthorizationException("Must be admin to perform this
action");

if (!Identity.instance().hasPermission("customer", "create"))
 throw new AuthorizationException("You may not create new customers");

<h:form class="loginForm" rendered="#{not identity.loggedIn}">

<h:outputLink action="#{reports.listManagerReports}"
 rendered="#{s:hasRole('manager')}"> Manager Reports
</h:outputLink>

<h:dataTable value="#{clients}" var="cl">
 <h:column>
 <f:facet name="header">Name</f:facet>
 #{cl.name}
 </h:column>
 <h:column>
 <f:facet name="header">City</f:facet>
 #{cl.city}
 </h:column>
 <h:column>
 <f:facet name="header">Action</f:facet>

CHAPTER 15. SECURITY

225

15.6.4. Securing pages

To use page security, you will need a pages.xml file. Page security is easy to configure: simply include
a <restrict/> element in the page elements that you want to secure. If no explicit restriction is
specified in the restrict element, access via a non-Faces (GET) request requires an implied
/viewId.xhtml:render permission, and /viewId.xhtml:restore permission is required when
any JSF postback (form submission) originates from the page. Otherwise, the specified restriction will be
evaluated as a standard security expression. Some examples are:

This page requires an implied permission of /settings.xhtml:render for non-Faces requests, and
an implied permission of /settings.xhtml:restore for Faces requests.

Both Faces and non-Faces requests to this page require that the user is a member of the admin role.

15.6.5. Securing Entities

Seam Security also lets you apply security restrictions to certain actions (read, insert, update, and
delete) for entities.

To secure all actions for an entity class, add a @Restrict annotation on the class itself:

If no expression is specified in the @Restrict annotation, the default action is a permission check of
entity:action, where the permission target is the entity instance, and the action is either read,
insert, update or delete.

You can also restrict certain actions by placing a @Restrict annotation on the relevant entity life cycle
method (annotated as follows):

@PostLoad — Called after an entity instance is loaded from the database. Use this method to
configure a read permission.

 <s:link value="Modify Client" action="#{clientAction.modify}"
 rendered="#{s:hasPermission(cl,'modify')"/>
 <s:link value="Delete Client" action="#{clientAction.delete}"
 rendered="#{s:hasPermission(cl,'delete')"/>
 </h:column>
</h:dataTable>

<page view-id="/settings.xhtml">
 <restrict/>
</page>

<page view-id="/reports.xhtml">
 <restrict>#{s:hasRole('admin')}</restrict>
</page>

@Entity
@Name("customer")
@Restrict
public class Customer {
 ...
}

Seam Reference Guide

226

@PrePersist — Called before a new instance of the entity is inserted. Use this method to
configure an insert permission.

@PreUpdate — Called before an entity is updated. Use this method to configure an update
permission.

@PreRemove — Called before an entity is deleted. Use this method to configure a delete
permission.

The following example shows how an entity can be configured to perform a security check for any
insert operations. Note that the method need not perform any action; it is only important that it be
annotated correctly:

NOTE

You can also specify the callback method in /META-INF/orm.xml:

You will still need to annotate the prePersist() method on Customer with
@Restrict.

The following configuration is based on the Seamspace example, and checks if the authenticated user
has permission to insert a new MemberBlog record. The entity being checked is automatically inserted
into the working memory (in this case, MemberBlog):

@PrePersist
@Restrict
public void prePersist() {}

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings
xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 version="1.0">

 <entity class="Customer">
 <pre-persist method-name="prePersist" />
 </entity>

</entity-mappings>

rule InsertMemberBlog
 no-loop
 activation-group "permissions"
when
 principal: Principal()
 memberBlog: MemberBlog(member : member ->

(member.getUsername().equals(principal.getName())))
 check: PermissionCheck(target == memberBlog,
 action == "insert", granted == false)

CHAPTER 15. SECURITY

227

This rule grants the permission memberBlog:insert if the name of the currently authenticated user
(indicated by the Principal fact) matches that of the member for whom the blog entry is being created.
The principal: Principal() structure is a variable binding. It binds the instance of the Principal
object placed in the working memory during authentication, and assigns it to a variable called
principal. Variable bindings let the variable be referenced in other places, such as the following line,
which compares the member name to the Principal name. For further details, refer to the JBoss
Rules documentation.

Finally, install a listener class to integrate Seam Security with your JPA provider.

15.6.5.1. Entity security with JPA

Security checks for EJB3 entity beans are performed with an EntityListener. Install this listener with
the following META-INF/orm.xml file:

15.6.5.2. Entity security with a Managed Hibernate Session

If you use a Hibernate SessionFactory configured with Seam, and use annotations or orm.xml, you
do not need to make any changes to use entity security.

15.6.6. Typesafe Permission Annotations

Seam provides a number of alternative annotations to @Restrict. These support arbitrary EL
expressions differently, which gives them additional compile-time safety.

Seam comes with a set of annotations for standard CRUD-based permissions. The following annotations
are provided in the org.jboss.seam.annotations.security package:

@Insert

@Read

then
 check.grant();
end;

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 version="1.0">

 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <entity-listeners>
 <entity-listener
 class="org.jboss.seam.security.EntitySecurityListener"/>
 </entity-listeners>
 </persistence-unit-defaults>
 </persistence-unit-metadata>

</entity-mappings>

Seam Reference Guide

228

@Update

@Delete

To use these annotations, place them on the method or parameter for which you wish to perform a
security check. When placed on a method, they specify a target class for which the permission will be
checked. Take the following example:

Here, a permission check will be performed for the user to ensure that they have permission to create
new Customer objects. The target of the permission check is Customer.class (the actual
java.lang.Class instance itself), and the action is the lower case representation of the annotation
name, which in this example is insert.

You can annotate a component method's parameters in the same way, as follows. If you do this, you
need not specify a permission target, since the parameter value itself will be the target of the permission
check.

To create your own security annotation, just annotate it with @PermissionCheck. For example:

If you wish to override the default permission action name (the lower case version of the annotation
name) with another value, you can specify this within the @PermissionCheck annotation:

15.6.7. Typesafe Role Annotations

In addition to typsesafe permission annotation support, Seam Security provides typesafe role
annotations that let you restrict access to component methods based on the role memberships of the
currently authenticated user. Seam provides one such annotation
(org.jboss.seam.annotations.security.Admin) out of the box. This restricts access of a
particular method to users that belong to the admin role, as long as such a role is supported by your
application. To create your own role annotations, meta-annotate them with
org.jboss.seam.annotations.security.RoleCheck as in the following example:

@Insert(Customer.class)
public void createCustomer() { ... }

public void updateCustomer(@Update Customer customer) {
 ...
}

@Target({METHOD, PARAMETER})
@Documented
@Retention(RUNTIME)
@Inherited
@PermissionCheck
public @interface Promote {
 Class value() default void.class;
}

@PermissionCheck("upgrade")

@Target({METHOD})
@Documented
@Retention(RUNTIME)

CHAPTER 15. SECURITY

229

Any methods subsequently annotated with the @User annotation will be automatically intercepted. The
user will be checked for membership of the corresponding role name (the lower case version of the
annotation name, in this case user).

15.6.8. The Permission Authorization Model

Seam Security provides an extensible framework for resolving application permissions. The following
class diagram shows an overview of the main components of the permission framework:

The relevant classes are explained in more detail in the following sections.

15.6.8.1. PermissionResolver

An interface that provides methods for resolving individual object permissions. Seam provides the
following built-in PermissionResolver implementations, which are described in greater detail later in
the chapter:

@Inherited
@RoleCheck
public @interface User { }

Seam Reference Guide

230

RuleBasedPermissionResolver — Resolves rule-based permission checks with Drools.

PersistentPermissionResolver — Stores object permissions in a permanent store, such
as a relational database.

15.6.8.1.1. Writing your own PermissionResolver

Implementing your own permission resolver is simple. The PermissionResolver interface defines two
methods that must be implemented, as seen in the following table. If your PermissionResolver is
deployed in your Seam project, it will be scanned automatically during deployment and registered with
the default ResolverChain.

Table 15.7. PermissionResolver interface

Return type Method Description

boolean hasPermission(Object
target, String action)

This method resolves whether the
currently authenticated user (obtained
via a call to
Identity.getPrincipal()) has
the permission specified by the
target and action parameters. It
returns true if the user has the
specified permission, or false if they
do not.

void filterSetByAction(Set<Obje
ct> targets, String
action)

This method removes any objects from
the specified set that would return
true if passed to the
hasPermission() method with the
same action parameter value.

NOTE

Because they are cached in the user's session, any custom PermissionResolver
implementations must adhere to several restrictions. Firstly, they cannot contain any state
that is more fine-grained than the session scope, and the component itself should be
either application- or session-scoped. Secondly, they must not use dependency injection,
as they may be accessed from multiple threads simultaneously. For optimal performance,
we recommend annotating with @BypassInterceptors to bypass Seam's interceptor
stack altogether.

15.6.8.2. ResolverChain

A ResolverChain contains an ordered list of PermissionResolvers, to resolve object permissions
for a particular object class or permission target.

The default ResolverChain consists of all permission resolvers discovered during application
deployment. The org.jboss.seam.security.defaultResolverChainCreated event is raised
(and the ResolverChain instance passed as an event parameter) when the default ResolverChain
is created. This allows additional resolvers that were not discovered during deployment to be added, or
for resolvers that are in the chain to be re-ordered or removed.

The following sequence diagram shows the interaction between the components of the permission

CHAPTER 15. SECURITY

231

framework during a permission check. A permission check can originate from a number of possible
sources: the security interceptor, the s:hasPermission EL function, or via an API call to
Identity.checkPermission:

1. A permission check is initiated (either in code or via an EL expression), resulting in a call to
Identity.hasPermission().

1.1. Identity invokes PermissionMapper.resolvePermission(), passing in the
permission to be resolved.

1.1.1. PermissionMapper maintains a Map of ResolverChain instances, keyed by class. It
uses this map to locate the correct ResolverChain for the permission's target object. Once it
has the correct ResolverChain, it retrieves the list of PermissionResolvers it contains by
calling ResolverChain.getResolvers().

1.1.2. For each PermissionResolver in the ResolverChain, the PermissionMapper
invokes its hasPermission() method, passing in the permission instance to be checked. If the
PermissionResolvers return true, the permission check has succeeded and the
PermissionMapper also returns true to Identity. If none of the PermissionResolvers
return true, then the permission check has failed.

15.6.9. RuleBasedPermissionResolver

One of the built-in permission resolvers provided by Seam. This evaluates permissions based on a set of
Drools (JBoss Rules) security rules. Some advantages to the rule engine are a centralized location for
the business logic used to evaluate user permissions, and speed — Drools algorithms are very efficient
for evaluating large numbers of complex rules involving multiple conditions.

15.6.9.1. Requirements

If you want to use the rule-based permission features provided by Seam Security, Drools requires the
following JAR files to be distributed with your project:

drools-api.jar

drools-compiler.jar

drools-core.jar

Seam Reference Guide

232

janino.jar

antlr-runtime.jar

mvel2.jar

15.6.9.2. Configuration

The configuration for RuleBasedPermissionResolver requires that a Drools rule base is first
configured in components.xml. By default, it expects the rule base to be named securityRules, as
per the following example:

The default rule base name can be overridden by specifying the security-rules property for
RuleBasedPermissionResolver:

Once the RuleBase component is configured, you must write the security rules.

15.6.9.3. Writing Security Rules

The first step to writing security rules is to create a new rule file in the /META-INF directory of your
application's jar file. This file should be named security.drl or similar, but can be named anything as
long as it is configured correspondingly in components.xml.

We recommend the Drools documentation when you write your rules file. A simple example of rules file
contents is:

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:security="http://jboss.com/products/seam/security"
 xmlns:drools="http://jboss.com/products/seam/drools"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/core
 http://jboss.com/products/seam/core-2.2.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.2.xsd
 http://jboss.com/products/seam/drools
 http://jboss.com/products/seam/drools-2.2.xsd
 http://jboss.com/products/seam/security
 http://jboss.com/products/seam/security-2.2.xsd">

 <drools:rule-base name="securityRules">
 <drools:rule-files>
 <value>/META-INF/security.drl</value>
 </drools:rule-files>
 </drools:rule-base>

</components>

<security:rule-based-permission-resolver
 security-rules="#{prodSecurityRules}"/>

package MyApplicationPermissions;

CHAPTER 15. SECURITY

233

Here, the first thing we see is the package declaration. A package in Drools is a collection of rules. The
package name does not relate to anything outside the scope of the rule base, so it can be given any
name.

Next, we have several import statements for the PermissionCheck and Role classes. These imports
inform the rules engine that our rules will refer to these classes.

Finally, we have the rule code. Each rule within a package should have a unique name, usually to
describe the rule's purpose. In this case our rule is called CanUserDeleteCustomers and will be used
to check whether a user is allowed to delete a customer record.

There are two distinct sections in the body of the rule definition. Rules have a left hand side (LHS) and a
right hand side (RHS). The LHS is the conditional portion of the rule, that is, a list of conditions that must
be satisfied for the rule to fire. The LHS is represented by the when section. The RHS is the
consequence or action section of the rule, which will only be fired if all conditions in the LHS are met. The
RHS is represented by the then section. The end of the rule is denoted by the end line.

There are two conditions listed in the example LHS. The first condition is:

More plainly, this condition states that, to be fulfilled, there must be a PermissionCheck object with a
target property equal to customer, and an action property equal to delete within the working
memory.

Working memory is also known as a stateful session in Drools terminology. It is a session-scoped object
containing the contextual information that the rules engine requires to make a decision about a
permission check. Each time the hasPermission() method is called, a temporary PermissionCheck
object, or Fact, is inserted into the working memory. This PermissionCheck corresponds exactly to the
permission being checked, so if you call hasPermission("account", "create"), a
PermissionCheck object with a target equal to "account" and action equal to "create" will be
inserted into the working memory for the duration of the permission check.

Other than the PermissionCheck facts, there is also an org.jboss.seam.security.Role fact for
each role that the authenticated user is a member of. These Role facts are synchronized with the user's
authenticated roles at the beginning of every permission check. As a consequence, any Role object
inserted into the working memory during the course of a permission check will be removed before the
next permission check occurs, unless the authenticated user is actually a member of that role. The
working memory also contains the java.security.Principal object created as a result of the
authentication process.

You can insert additional long-lived facts into the working memory by calling
RuleBasedPermissionResolver.instance().getSecurityContext().insert (), which

import org.jboss.seam.security.permission.PermissionCheck;
import org.jboss.seam.security.Role;

rule CanUserDeleteCustomers
when
 c: PermissionCheck(target == "customer", action == "delete")
 Role(name == "admin")
then
 c.grant();
end

c: PermissionCheck(target == "customer", action == "delete")

Seam Reference Guide

234

passes the object as a parameter. Role objects are the exception, here, since they are synchronized at
the start of each permission check.

To return to our simple example, the first line of our LHS is prefixed with c:. This is a variable binding,
and is used to refer back to the object matching the condition (in this case, the PermissionCheck). The
second line of the LHS is:

This condition states that there must be a Role object with a name of "admin" within the working
memory. So, if you are checking for the customer:delete permission and the user is a member of the
admin role, this rule will fire.

The RHS shows us the consequence of the rule firing:

The RHS consists of Java code. In this case it invokes the grant() method of the c object, which is a
variable binding for the PermissionCheck object. Other than the name and action properties of the
PermissionCheck object, there is also a granted property. This is initially set to false. Calling
grant() on a PermissionCheck sets the granted property to true. This means the permission
check succeeded, and the user has permission to carry out the action that prompted the permission
check.

15.6.9.4. Non-String permission targets

So far, we have only looked at permission checks for String-literal permission targets. However, you can
also write security rules for more complex permission targets. For example, say you want to write a
security rule to allow your users to create blog comments. The following rule shows one way this can be
expressed, by requiring that the target of the permission check be an instance of MemberBlog, and that
the currently authenticated user be a member of the user role:

15.6.9.5. Wildcard permission checks

It is possible to implement a wildcard permission check (which allows all actions for a given permission
target), by omitting the action constraint for the PermissionCheck in your rule, like so:

Role(name == "admin")

c.grant()

rule CanCreateBlogComment
 no-loop
 activation-group "permissions"
when
 blog: MemberBlog()
 check: PermissionCheck(target == blog, action == "create",
 granted == false)
 Role(name == "user")
then
 check.grant();
end

rule CanDoAnythingToCustomersIfYouAreAnAdmin
when
 c: PermissionCheck(target == "customer")
 Role(name == "admin")

CHAPTER 15. SECURITY

235

This rule allows users with the admin role to perform any action for any customer permission check.

15.6.10. PersistentPermissionResolver

Another built-in permission resolver provided by Seam, PersistentPermissionResolver, allows
permissions to be loaded from persistent storage, such as a relational database. This permission
resolver provides Access Control List-style instance-based security, allowing specific object permissions
to be assigned to individual users and roles. It also allows persistent, arbitrarily-named permission
targets (which are not necessarily object/class based) to be assigned in the same way.

15.6.10.1. Configuration

To use PersistentPermissionResolver, you must configure a valid PermissionStore in
components.xml. If this is not configured, the PersistentPermissionResolver will attempt to use
the default permission store, Section 15.4.2.4, “JpaIdentityStore Events”. To use a permission store other
than the default, configure the permission-store property as follows:

15.6.10.2. Permission Stores

PersistentPermissionResolver requires a permission store to connect to the back-end storage
where permissions are persisted. Seam provides one PermissionStore implementation out of the
box, JpaPermissionStore, which stores permissions inside a relational database. You can write your
own permission store by implementing the PermissionStore interface, which defines the following
methods:

Table 15.8. PermissionStore interface

Return type Method Description

List<Permission> listPermissions(Object target) This method should
return a List of
Permission objects
representing all the
permissions granted for
the specified target
object.

List<Permission> listPermissions(Object target,
String action)

This method should
return a List of
Permission objects
representing all the
permissions with the
specified action granted
for the specified target
object.

then
 c.grant();
end;

<security:persistent-permission-resolver
 permission-store="#{myCustomPermissionStore}"/>

Seam Reference Guide

236

List<Permission> listPermissions(Set<Object> targets,
String action)

This method should
return a List of
Permission objects
representing all the
permissions with the
specified action granted
for the specified set of
target objects.

boolean grantPermission(Permission) This method should
persist the specified
Permission object to
the back-end storage,
and return true if
successful.

boolean grantPermissions(List<Permission>
permissions)

This method should
persist all of the
Permission objects
contained in the
specified List, and
return true if
successful.

boolean revokePermission(Permission
permission)

This method should
remove the specified
Permission object
from persistent storage.

boolean revokePermissions(List<Permission>
permissions)

This method should
remove all of the
Permission objects
in the specified list from
persistent storage.

List<String> listAvailableActions(Object target) This method should
return a list of all
available actions (as
Strings) for the class of
the specified target
object. It is used in
conjunction with
permission management
to build the user
interface for granting
specific class
permissions.

Return type Method Description

15.6.10.3. JpaPermissionStore

The Seam-provided default PermissionStore implementation, which stores permissions in a
relational database. It must be configured with either one or two entity classes for storing user and role
permissions before it can be used. These entity classes must be annotated with a special set of security

CHAPTER 15. SECURITY

237

annotations to configure the entity properties that correspond to various aspects of the stored
permissions.

If you want to use the same entity (that is, a single database table) to store both user and role
permissions, then you only need to configure the user-permission-class property. To user separate
tables for user and role permission storage, you must also configure the role-permission-class
property.

For example, to configure a single entity class to store both user and role permissions:

To configure separate entity classes for storing user and role permissions:

15.6.10.3.1. Permission annotations

The entity classes that contain the user and role permissions must be configured with a special set of
annotations in the org.jboss.seam.annotations.security.permission package. The following
table describes these annotations:

Table 15.9. Entity Permission annotations

Annotation Target Description

@PermissionTarget FIELD,METHOD This annotation identifies the entity
property containing the permission target.
The property should be of type
java.lang.String.

@PermissionAction FIELD,METHOD This annotation identifies the entity
property containing the permission action.
The property should be of type
java.lang.String.

@PermissionUser FIELD,METHOD This annotation identifies the entity
property containing the recipient user for
the permission. It should be of type
java.lang.String and contain the
user's username.

@PermissionRole FIELD,METHOD This annotation identifies the entity
property containing the recipient role for
the permission. It should be of type
java.lang.String and contain the
role name.

<security:jpa-permission-store
 user-permission-class="com.acme.model.AccountPermission"/>

<security:jpa-permission-store
 user-permission-class="com.acme.model.UserPermission"
 role-permission-class="com.acme.model.RolePermission"/>

Seam Reference Guide

238

@PermissionDiscriminator FIELD,METHOD This annotation should be used when the
same entity/table stores both user and
role permissions. It identifies the property
of the entity being used to discriminate
between user and role permissions. By
default, if the column value contains the
string literal user, then the record will be
treated as a user permission. If it contains
the string literal role, it will be treated as
a role permission. You can also override
these defaults by specifying the
userValue and roleValue
properties within the annotation. For
example, to use u and r instead of user
and role, write the annotation like so:

Annotation Target Description

15.6.10.3.2. Example Entity

The following is an example of an entity class that stores both user and role permissions, taken from the
Seamspace example.

@PermissionDiscriminator(
 userValue = "u",
 roleValue = "r")

@Entity
public class AccountPermission implements Serializable {
 private Integer permissionId;
 private String recipient;
 private String target;
 private String action;
 private String discriminator;

 @Id @GeneratedValue
 public Integer getPermissionId() {
 return permissionId;
 }

 public void setPermissionId(Integer permissionId) {
 this.permissionId = permissionId;
 }

 @PermissionUser @PermissionRole
 public String getRecipient() {
 return recipient;
 }

 public void setRecipient(String recipient) {
 this.recipient = recipient;
 }

 @PermissionTarget

CHAPTER 15. SECURITY

239

Here, the getDiscriminator() method has been annotated with @PermissionDiscriminator, to
allow JpaPermissionStore to determine which records represent user permissions and which
represent role permissions. The getRecipient() method is annotated with both @PermissionUser
and @PermissionRole. This means that the recipient property of the entity will either contain the
name of the user or the name of the role, depending on the value of the discriminator property.

15.6.10.3.3. Class-specific Permission Configuration

The permissions included in the org.jboss.seam.annotation.security.permission package
can be used to configure a specific set of allowable permissions for a target class.

Table 15.10. Class Permission Annotations

Annotation Target Description

@Permissions TYPE A container annotation, which can
contain an array of @Permission
annotations.

@Permission TYPE This annotation defines a single
allowable permission action for the
target class. Its action property must
be specified, and an optional mask
property may also be specified if
permission actions are to be persisted
as bitmasked values (see section
following).

 public String getTarget() {
 return target;
 }

 public void setTarget(String target) {
 this.target = target;
 }

 @PermissionAction
 public String getAction() {
 return action;
 }

 public void setAction(String action) {
 this.action = action;
 }

 @PermissionDiscriminator
 public String getDiscriminator() {
 return discriminator;
 }

 public void setDiscriminator(String discriminator) {
 this.discriminator = discriminator;
 }
}

Seam Reference Guide

240

The following shows the above annotations in use. They can also be seen in the SeamSpace example.

This example demonstrates how two allowable permission actions, view and comment can be declared
for the entity class MemberImage.

15.6.10.3.4. Permission masks

By default, multiple permissions for the same target object and recipient will be persisted as a single
database record, with the action property/column containing a list of granted actions, separated by
commas. You can use a bitmasked integer value to store the list of permission actions — this reduces
the amount of physical storage required to persist a large number of permissions.

For example, if recipient "Bob" is granted both the view and comment permissions for a particular
MemberImage (an entity bean) instance, then by default the action property of the permission entity
will contain "view,comment", representing the two granted permission actions. Or, if you are using
bitmasked values defined as follows:

The action property will contain "3" (with both the 1 bit and 2 bit switched on). For a large number of
allowable actions for any particular target class, the storage required for the permission records is greatly
reduced by using bitmasked actions.

IMPORTANT

The mask values specified must be powers of 2.

15.6.10.3.5. Identifier Policy

When storing or looking up permissions, JpaPermissionStore must be able to uniquely identify
specific object instances. To achieve this, an identifier strategy may be assigned to each target class so
that unique identifier values can be generated. Each identifier strategy implementation knows how to
generate unique identifiers for a particular type of class, and creating new identifier strategies is simple.

The IdentifierStrategy interface is very simple, declaring only two methods:

@Permissions({
 @Permission(action = "view"),
 @Permission(action = "comment")
})

@Entity
public class MemberImage implements Serializable {...}

@Permissions({
 @Permission(action = "view", mask = 1),
 @Permission(action = "comment", mask = 2)
})

@Entity
public class MemberImage implements Serializable {...}

public interface IdentifierStrategy {
 boolean canIdentify(Class targetClass);
 String getIdentifier(Object target);
}

CHAPTER 15. SECURITY

241

The first method, canIdentify(), returns true if the identifier strategy is capable of generating a
unique identifier for the specified target class. The second method, getIdentifier(), returns the
unique identifier value for the specified target object.

Seam also provides two IdentifierStrategy implementations, ClassIdentifierStrategy and
EntityIdentifierStrategy, which are described in the sections following.

To explicitly configure a specific identifier strategy for a particular class, annotate the strategy with
org.jboss.seam.annotations.security.permission.Identifier and set the value to a
concrete implementation of the IdentifierStrategy interface. You may also specify a name
property. (The effect of this depends upon the IdentifierStrategy implementation used.)

15.6.10.3.6. ClassIdentifierStrategy

This identifier strategy generates unique identifiers for classes, and uses the value of the name (if
specified) in the @Identifier annotation. If no name property is provided, the identifier strategy
attempts to use the component name of the class (if the class is a Seam component). It will create an
identifier based on the class name (excluding the package name) as a last resort. For example, the
identifier for the following class will be customer:

The identifier for the following class will be customerAction:

Finally, the identifier for the following class will be Customer:

15.6.10.3.7. EntityIdentifierStrategy

This identifier strategy generates unique identifiers for entity beans. It concatenates the entity name (or
otherwise configured name) with a string representation of the primary key value of the entity. The rules
for generating the name section of the identifier are similar to those in ClassIdentifierStrategy.
The primary key value (that is, the entity ID) is obtained with the PersistenceProvider component,
which can determine the value regardless of the persistence implementation being used in the Seam
application. For entities not annotated with @Entity, you must explicitly configure the identifier strategy
on the entity class itself, like this:

Assume we have the following entity class:

@Identifier(name = "customer")
public class Customer {...}

@Name("customerAction")
public class CustomerAction {...}

public class Customer {...}

@Identifier(value = EntityIdentifierStrategy.class)
public class Customer {...}

@Entity
public class Customer {
 private Integer id;
 private String firstName;
 private String lastName;

Seam Reference Guide

242

For a Customer instance with an id value of 1, the value of the identifier would be Customer:1. If the
entity class is annotated with an explicit identifier name, like so:

Then a Customer with an id value of 123 would have an identifier value of "cust:123".

15.7. PERMISSION MANAGEMENT

Just as Seam Security provides an Identity Management API to let you manage users and roles, it also
provides a Permissions Management API to let you manage persistent user permissions — the
PermissionManager component.

15.7.1. PermissionManager

The PermissionManager component is an application-scoped Seam component that provides a
number of permission-management methods. It must be configured with a permission store before use.
By default, it will attempt to use JpaPermissionStore. To configure a custom permission store,
specify the permission-store property in components.xml:

The following table describes each of the methods provided by PermissionManager:

Table 15.11. PermissionManager API methods

Return type Method Description

List<Permission> listPermissions(Object target,
String action)

Returns a list of
Permission objects
representing all of the
permissions that have
been granted for the
specified target and
action.

 @Id
 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }

 public String getFirstName() { return firstName; }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() { return lastName; }
 public void setLastName(String lastName) { this.lastName = lastName; }
}

@Entity @Identifier(name = "cust")
public class Customer {...}

<security:permission-manager permission-store="#{ldapPermissionStore}"/>

CHAPTER 15. SECURITY

243

List<Permission> listPermissions(Object target) Returns a list of
Permission objects
representing all of the
permissions that have
been granted for the
specified target and
action.

boolean grantPermission(Permission
permission)

Persists (grants) the
specified Permission
to the back-end
permission store.
Returns true if the
operation succeeds.

boolean grantPermissions(List<Permission>
permissions)

Persists (grants) the
specified list of
Permissions to the
back-end permission
store. Returns true if
the operation succeeds.

boolean revokePermission(Permission
permission)

Removes (revokes) the
specified Permission
from the back-end
permission store.
Returns true if the
operation succeeds.

boolean revokePermissions(List<Permission>
permissions)

Removes (revokes) the
specified list of
Permissions from
the back-end permission
store. Returns true if
the operation succeeds.

List<String> listAvailableActions(Object target) Returns a list of the
available actions for the
specified target object.
The actions that this
method returns are
dependent on the
@Permission
annotations configured
on the target object's
class.

Return type Method Description

15.7.2. Permission checks for PermissionManager operations

To invoke PermissionManager methods, the currently authenticated user must be authorized to
perform that management operation. The following table lists the permissions required to invoke a
particular method.

Seam Reference Guide

244

Table 15.12. Permission Management Security Permissions

Method Permission Target Permission Action

listPermissions() The specified target. seam.read-permissions

grantPermission() The target of the specified
Permission, or each of the
targets for the specified list of
Permissions (depending on
the method called).

seam.grant-permission

grantPermission() The target of the specified
Permission.

seam.grant-permission

grantPermissions() Each of the targets of the
specified list of Permissions.

seam.grant-permission

revokePermission() The target of the specified
Permission.

seam.revoke-permission

revokePermissions() Each of the targets of the
specified list of Permissions.

seam.revoke-permission

15.8. SSL SECURITY

Seam includes basic support for serving sensitive pages via the HTTPS protocol. To configure this,
specify a scheme for the page in pages.xml. The following example shows how the view
/login.xhtml can be configured to use HTTPS:

This configuration automatically extends to both s:link and s:button JSF controls, which (when
specifying the view) will render the link under the correct protocol. Based on the previous example, the
following link will use the HTTPS protocol because /login.xhtml is configured to use it:

If a user browses directly to a view with the incorrect protocol, a redirect is triggered, and the same view
will be reloaded with the correct protocol. For example, browsing to a scheme="https" page with
HTTP triggers a redirect to the same page using HTTPS.

You can also configure a default scheme for all pages. This is useful if you only want to use HTTPS for a
few pages. If no default scheme is specified, the current scheme will be used. So, once the user
accesses a page requiring HTTPS, then HTTPS continues to be used after the user has navigated to
other non-HTTPS pages. This is good for security, but not for performance. To define HTTP as the
default scheme, add this line to pages.xml:

If none of the pages in your application use HTTPS, you need not define a default scheme.

<page view-id="/login.xhtml" scheme="https"/>

<s:link view="/login.xhtml" value="Login"/>

<page view-id="*" scheme="http" />

CHAPTER 15. SECURITY

245

You can configure Seam to automatically invalidate the current HTTP session each time the scheme
changes. To do so, add this line to components.xml:

This option offers more protection from session ID sniffing and sensitive data leakage from pages using
HTTPS to pages using HTTP.

15.8.1. Overriding the default ports

If you wish to configure the HTTP and HTTPS ports manually, you can do so in pages.xml by
specifying the http-port and https-port attributes on the pages element:

15.9. CAPTCHA

Though not strictly part of the security API, Seam provides a built-in CAPTCHA (Completely Automated
Public Turing test to tell Computers and Humans Apart) algorithm to prevent automated processes from
interacting with your application.

15.9.1. Configuring the CAPTCHA Servlet

To use CAPTCHA, you need to configure the Seam Resource Servlet, which provides your pages with
CAPTCHA challenge images. Add the following to web.xml:

15.9.2. Adding a CAPTCHA to a form

It is easy to add a CAPTCHA challenge to a form:

<web:session invalidate-on-scheme-change="true"/>

<pages xmlns="http://jboss.com/products/seam/pages"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.com/products/seam/pages
http://jboss.com/products/seam/pages-2.2.xsd"
 no-conversation-view-id="/home.xhtml"
 login-view-id="/login.xhtml" http-port="8080" https-port="8443">

<servlet>
 <servlet-name>Seam Resource Servlet</servlet-name>
 <servlet-class>org.jboss.seam.servlet.SeamResourceServlet</servlet-
class>
</servlet>

<servlet-mapping>
 <servlet-name>Seam Resource Servlet</servlet-name>
 <url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

<h:graphicImage value="/seam/resource/captcha"/>
 <h:inputText id="verifyCaptcha" value="#{captcha.response}"
 required="true">

Seam Reference Guide

246

That is all you need to do. The graphicImage control displays the CAPTCHA challenge, and the
inputText receives the user's response. The response is automatically validated against the
CAPTCHA when the form is submitted.

15.9.3. Customizing the CAPTCHA algorithm

You can customize the CAPTCHA algorithm by overriding the built-in component:

15.10. SECURITY EVENTS

The following table describes a number of events (see Chapter 7, Events, interceptors and exception
handling) raised by Seam Security in response to certain security-related events.

Table 15.13. Security Events

Event Key Description

org.jboss.seam.security.loginSuccessful Raised when a log in attempt is
successful.

org.jboss.seam.security.loginFailed Raised when a log in attempt fails.

org.jboss.seam.security.alreadyLoggedIn Raised when a user that is already
authenticated attempts to log in again.

org.jboss.seam.security.notLoggedIn Raised when a security check fails when
the user is not logged in.

 <s:validate />
 </h:inputText>
<h:message for="verifyCaptcha"/>

@Name("org.jboss.seam.captcha.captcha")
@Scope(SESSION)
public class HitchhikersCaptcha extends Captcha
{
 @Override @Create
 public void init() {
 setChallenge("What is the answer to life, the universe and
everything?");
 setCorrectResponse("42");
 }

 @Override
 public BufferedImage renderChallenge() {
 BufferedImage img = super.renderChallenge();
 img.getGraphics().drawOval(5, 3, 60, 14); //add an obscuring
decoration
 return img;
 }
}

CHAPTER 15. SECURITY

247

org.jboss.seam.security.notAuthorized Raised when a security check fails
because the user is logged in, but does
not have sufficient privileges.

org.jboss.seam.security.preAuthenticate Raised just prior to user authentication.

org.jboss.seam.security.postAuthenticate Raised just after user authentication.

org.jboss.seam.security.loggedOut Raised after the user has logged out.

org.jboss.seam.security.credentialsUpdated Raised when the user's credentials have
been changed.

org.jboss.seam.security.rememberMe Raised when the Identity's rememberMe
property is changed.

Event Key Description

15.11. RUN AS

Users sometimes need to perform certain operations with elevated privileges — for example, an
unauthenticated user may need to create a new user account. Seam Security provides support in this
situation with the RunAsOperation class. This class allows either the Principal or Subject, or the
user's roles, to be overridden for a single set of operations.

The following code demonstrates RunAsOperation usage. The addRole() method is called to
provide a set of roles to 'borrow' for the duration of the operation. The execute() method contains the
code that will be executed with the elevated privileges.

Similarly, the getPrincipal() or getSubject() methods can also be overidden to specify the
Principal and Subject instances to use for the duration of the operation. Finally, the run() method
is used to carry out the RunAsOperation.

15.12. EXTENDING THE IDENTITY COMPONENT

If your application has special security requirements, you may need to extend your Identity component.
The following example shows an Identity component extended with an additional companyCode field to
handle credentials. (Usually this would be handled by a Credentials component.) The install
precedence of APPLICATION ensures that this extended Identity is installed instead of the built-in
Identity.

new RunAsOperation() {
 public void execute() {
 executePrivilegedOperation();
 }
}.addRole("admin")
 .run();

@Name("org.jboss.seam.security.identity")

Seam Reference Guide

248

WARNING

An Identity component must be marked @Startup so that it is available
immediately after the SESSION context begins. Failing to do this may render certain
Seam functionality inoperable in your application.

15.13. OPENID

WARNING

Technology Preview features are not fully supported under Red Hat subscription
level agreements (SLAs), may not be functionally complete, and are not intended for
production use. However, these features provide early access to upcoming product
innovations, enabling customers to test functionality and provide feedback during
the development process. As Red Hat considers making future iterations of
Technology Preview features generally available, we will provide commercially
reasonable efforts to resolve any reported issues that customers experience when
using these features.

@Scope(SESSION)
@Install(precedence = APPLICATION)
@BypassInterceptors
@Startup
public class CustomIdentity extends Identity {
 private static final LogProvider log =
 Logging.getLogProvider(CustomIdentity.class);

 private String companyCode;

 public String getCompanyCode() {
 return companyCode;
 }

 public void setCompanyCode(String companyCode) {
 this.companyCode = companyCode;
 }

 @Override
 public String login() {
 log.info("###### CUSTOM LOGIN CALLED ######");
 return super.login();
 }
}

CHAPTER 15. SECURITY

249

OpenID is a community standard for external web-based authentication. Any web application can
supplement (or replace) its local authentication handling by delegating responsibility to an external
OpenID server selected by the user. This benefits both user and developer — the user (who no longer
needs to remember login details for multiple web applications), and the developer (who need not
maintain an entire complex authentication system).

When using OpenID, the user selects an OpenID provider, and the provider assigns the user an OpenID.
The ID takes the form of a URL — http://maximoburrito.myopenid.com, for example. (The
http:// portion of the identifier can be omitted when logging into a site.) The web application (known
as a relying party) determines which OpenID server to contact and redirects the user to the remote site
for authentication. When authentication succeeds, the user is given the (cryptographically secure) token
proving his identity and is redirected back to the original web application. The local web application can
then assume that the user accessing the application owns the OpenID presented.

However, authentication does not imply authorization. The web application must still determine how to
treat the OpenID authentication. The web application can choose to treat the user as instantly logged in
and grant full access to the system, or it can attempt to map the OpenID to a local user account and
prompt unregistered users to register. This is a design decision for the local application.

15.13.1. Configuring OpenID

Seam uses the openid4java package, and requires four additional JARs to make use of Seam
integration. These are htmlparser.jar, openid4java.jar, openxri-client.jar and openxri-
syntax.jar.

OpenID processing requires the OpenIdPhaseListener, which should be added to your faces-
config.xml file. The phase listener processes the callback from the OpenID provider, allowing re-entry
into the local application.

This configuration makes OpenID support available to your application. The OpenID support component,
org.jboss.seam.security.openid.openid, is installed automatically if the openid4java
classes are on the classpath.

15.13.2. Presenting an OpenIdLogin form

To initiate an OpenID log in, present a form to the user requesting the user's OpenID. The #
{openid.id} value accepts the user's OpenID and the #{openid.login} action initiates an
authentication request.

When the user submits the login form, they are redirected to their OpenID provider. The user eventually
returns to your application through the Seam pseudo-view /openid.xhtml, provided by the
OpenIdPhaseListener. Your application can handle the OpenID response with a pages.xml
navigation from that view, just as if the user had never left your application.

<lifecycle>
 <phase-listener>
 org.jboss.seam.security.openid.OpenIdPhaseListener
 </phase-listener>
</lifecycle>

<h:form>
 <h:inputText value="#{openid.id}" />
 <h:commandButton action="#{openid.login}" value="OpenID Login"/>
</h:form>

Seam Reference Guide

250

15.13.3. Logging in immediately

The simplest strategy is to simply log the user in immediately. The following navigation rule shows how to
handle this using the #{openid.loginImmediately()} action.

The loginImmediately() action checks whether the OpenID is valid. If it is valid, an
OpenIdPrincipal is added to the identity component, and the user is marked as logged in (that is, #
{identity.loggedIn} is marked true), and the loginImmediately() action returns true. If the
OpenID is not validated, the method returns false, and the user re-enters the application un-
authenticated. If the user's OpenID is valid, it will be accessible using the expression #
{openid.validatedId} and #{openid.valid} will be true.

15.13.4. Deferring log in

If you do not want the user to be immediately logged in to your application, your navigation should check
the #{openid.valid} property, and redirect the user to a local registration or processing page. Here,
you can ask for more information and create a local user account, or present a CAPTCHA to avoid
programmatic registrations. When your process is complete, you can log the user in by calling the
loginImmediately method, either through EL (as shown previously), or direct interaction with the
org.jboss.seam.security.openid.OpenId component. You can also write custom code to
interact with the Seam identity component to create even more customized behavior.

15.13.5. Logging out

Logging out (forgetting an OpenID association) is done by calling #{openid.logout}. You can call
this method directly if you are not using Seam Security. If you are using Seam Security, you should
continue to use #{identity.logout} and install an event handler to capture the log out event, calling
the OpenID log out method.

It is important to include this, or the user will not be able to log in again in the same session.

<page view-id="/openid.xhtml">
 <navigation evaluate="#{openid.loginImmediately()}">
 <rule if-outcome="true">
 <redirect view-id="/main.xhtml">
 <message>OpenID login successful...</message>
 </redirect>
 </rule>
 <rule if-outcome="false">
 <redirect view-id="/main.xhtml">
 <message>OpenID login rejected...</message>
 </redirect>
 </rule>
 </navigation>
</page>

<event type="org.jboss.seam.security.loggedOut">
 <action execute="#{openid.logout}" />
</event>

CHAPTER 15. SECURITY

251

CHAPTER 16. INTERNATIONALIZATION, LOCALIZATION AND
THEMES
There are several stages required to internationalize and localize your application.

NOTE

Internationalization features are available only in the JSF context.

16.1. INTERNATIONALIZING YOUR APPLICATION

A Java EE 5 application involves many components, all of which must be configured properly to localize
your application.

Before you begin, ensure that your database server and client use the correct character encoding for
your locale. Normally, you will want UTF-8 encoding. (Setting the correct encoding falls outside the
scope of this tutorial.)

16.1.1. Application server configuration

You will need to configure the Tomcat connector to ensure that the application server receives the
request parameters from client requests in the correct encoding. Add the URIEncoding="UTF-8"
attribute to the connector configuration in $JBOSS_HOME/server/$PROFILE/deploy/jboss-
web.deployer/server.xml:

Alternatively, you can tell JBoss Enterprise Application Platform that the correct encoding for the request
parameters will be taken from the request:

16.1.2. Translated application strings

You will also need localized strings for all of the messages in your application (for example, field labels
on your views). First, ensure that your resource bundle is encoded with the desired character encoding.
ASCII is used by default. Although ASCII is enough for many languages, it does not provide characters
for all languages.

Resource bundles must either be created in ASCII, or use Unicode escape codes to represent Unicode
characters. Since you do not compile a property file to byte code, there is no way to tell JVM which
character set to use. Therefore, you must use either ASCII characters or escape characters not in the
ASCII character set. You can represent a Unicode character in any Java file with \uXXXX, where XXXX
is the hexadecimal representation of the character.

You can write your translation of labels (Section 16.3, “Labels”) to your message resource bundle in the
native coding. The native2ascii tool provided in the JDK lets you convert the contents of a file written
in your native encoding into one that represents non-ASCII characters as Unicode escape sequences.

Usage of this tool is described here for Java 6. For example, to convert a file from UTF-8:

<Connector port="8080" URIEncoding="UTF-8"/>

<Connector port="8080" useBodyEncodingForURI="true"/>

Seam Reference Guide

252

http://java.sun.com/javase/6/docs/technotes/tools/#intl

 $ native2ascii -encoding UTF-8 messages_cs.properties >
messages_cs_escaped.properties

16.1.3. Other encoding settings

We need to make sure that the view displays your localized data and messages in the correct character
set, and that any data submitted uses the correct encoding.

Use the <f:view locale="cs_CZ"/> tag to set the display character encoding. (Note that this
locale value sets JSF to use the Czech locale.) If you want to embed localized strings in the XML, you
may want to change the XML document's encoding. To do so, alter the encoding attribute value in the
XML declaration <?xml version="1.0" encoding="UTF-8"?>.

JSF/Facelets should submit any requests with the specified character encoding, but to ensure that
requests that do not specify an encoding are submitted, you can force the request encoding using a
servlet filter. Configure this in components.xml:

16.2. LOCALES

Each user log in session has an associated instance of java.util.Locale, which is available to the
application as a component named locale. Under normal circumstances, setting the locale requires no
special configuration. Seam delegates to JSF to determine the active locale as follows:

If a locale is associated with the HTTP request (the browser locale), and that locale is in the list
of supported locales from faces-config.xml, use that locale for the rest of the session.

Otherwise, if a default locale was specified in the faces-config.xml, use that locale for the
rest of the session.

Otherwise, use the default locale of the server.

You can set the locale manually through the Seam configuration properties
org.jboss.seam.international.localeSelector.language,
org.jboss.seam.international.localeSelector.country and
org.jboss.seam.international.localeSelector.variant, but there is no good reason to use
this method over those described above.

It is useful to allow the user to set the locale manually via the application user interface. Seam provides
built-in functionality to override the locale determined by the default algorithm. Do this by adding the
following fragment to a form in your JSP or Facelets page:

Or, if you want a list of all supported locales from faces-config.xml, use:

<web:character-encoding-filter encoding="UTF-8" override-client="true"
 url-pattern="*.seam" />

<h:selectOneMenu value="#{localeSelector.language}">
 <f:selectItem itemLabel="English" itemValue="en"/>
 <f:selectItem itemLabel="Deutsch" itemValue="de"/>
 <f:selectItem itemLabel="Francais" itemValue="fr"/>
</h:selectOneMenu>
<h:commandButton action="#{localeSelector.select}"
 value="#{messages['ChangeLanguage']}"/>

CHAPTER 16. INTERNATIONALIZATION, LOCALIZATION AND THEMES

253

When the user selects an item from the drop-down, then clicks the command button, the Seam and JSF
locales will be overridden for the rest of the session.

You can configure the supported locales and the default locale of the server with the built-in
org.jboss.seam.international.localeConfig component. First, declare an XML namespace
for Seam's international package in the Seam component descriptor. Then, define the default locale and
supported locales as follows:

Remember that supported locales must have matching resource bundles. Next, define your language-
specific labels.

16.3. LABELS

JSF supports the internationalization of user interface labels and descriptive text with the
<f:loadBundle />. In Seam applications, you can either take this approach, or use the Seam
messages component to display templated labels with embedded EL expressions.

16.3.1. Defining labels

Make your internationalized labels available with Seam's java.util.ResourceBundle, available to
the application as a org.jboss.seam.core.resourceBundle. By default, Seam uses a resource
bundle named messages, so you will need to define your labels in files named
messages.properties, messages_en.properties, messages_en_AU.properties, etc. These
files usually belong in the WEB-INF/classes directory.

So, in messages_en.properties:

Hello=Hello

And in messages_en_AU.properties:

Hello=G'day

You can select a different name for the resource bundle by setting the Seam configuration property
named org.jboss.seam.core.resourceLoader.bundleNames. You can even specify a list of
resource bundle names to be searched (depth first) for messages.

<h:selectOneMenu value="#{localeSelector.localeString}">
 <f:selectItems value="#{localeSelector.supportedLocales}"/>
</h:selectOneMenu>
<h:commandButton action="#{localeSelector.select}"
 value="#{messages['ChangeLanguage']}"/>

<international:locale-config default-locale="fr_CA"
 supported-locales="en fr_CA fr_FR"/>

<core:resource-loader>
 <core:bundle-names>
 <value>mycompany_messages</value>
 <value>standard_messages</value>
 </core:bundle-names>
</core:resource-loader>

Seam Reference Guide

254

To define a message for one particular page, specify it in a resource bundle with the same name as the
JSF view ID, with the leading / and trailing file extension removed. So, we could put our message in
welcome/hello_en.properties if we only needed to display the message on
/welcome/hello.jsp.

You can even specify an explicit bundle name in pages.xml:

Then we could use messages defined in HelloMessages.properties on /welcome/hello.jsp.

16.3.2. Displaying labels

If you define your labels with the Seam resource bundle, you can use them without having to type
<f:loadBundle... /> on each page. Instead, you can type:

or:

Even better, the messages themselves may contain EL expressions:

Hello=Hello, #{user.firstName} #{user.lastName}

Hello=G'day, #{user.firstName}

You can even use the messages in your code:

16.3.3. Faces messages

The facesMessages component is a convenient way to display success or failure messages to the
user. The functionality we just described also works for Faces messages:

This will display Hello, Gavin King or G'day, Gavin, depending upon the user's locale.

<page view-id="/welcome/hello.jsp" bundle="HelloMessages"/>

<h:outputText value="#{messages['Hello']}"/>

<h:outputText value="#{messages.Hello}"/>

@In private Map<String, String> messages;

@In("#{messages['Hello']}") private String helloMessage;

@Name("hello")
@Stateless
public class HelloBean implements Hello {
 @In FacesMessages facesMessages;
 public String sayIt() {
 facesMessages.addFromResourceBundle("Hello");
 }
}

CHAPTER 16. INTERNATIONALIZATION, LOCALIZATION AND THEMES

255

16.4. TIMEZONES

There is also a session-scoped instance of java.util.Timezone, named
org.jboss.seam.international.timezone, and a Seam component for changing the timezone
named org.jboss.seam.international.timezoneSelector. By default, the timezone is the
default timezone of the server. Unfortunately, the JSF specification assumes all dates and times are
UTC, and displayed as UTC, unless a different timezone is explicitly specified with
<f:convertDateTime>.

Seam overrides this behavior, and defaults all dates and times to the Seam timezone. In addition, Seam
provides the <s:convertDateTime> tag, which always performs conversions in the Seam timezone.

Seam also provides a default date converter to convert a string value to a date. This saves you from
having to specify a converter on input fields that capture dates. The pattern is selected according to the
user's locale and the time zone is selected as described above.

16.5. THEMES

Seam applications are also very easily skinnable. The theme API is very similar to the localization API,
but of course these two concerns are orthogonal, and some applications support both localization and
themes.

First, configure the set of supported themes:

The first theme listed is the default theme.

Themes are defined in a properties file with the same name as the theme. For example, the default
theme is defined as a set of entries in default.properties, which might define:

css ../screen.css template /template.xhtml

The entries in a theme resource bundle are usually paths to CSS styles or images and names of
Facelets templates (unlike localization resource bundles which are usually text).

Now we can use these entries in our JSP or Facelets pages. For example, to theme the stylesheet in a
Facelets page:

Or, where the page definition resides in a subdirectory:

Most powerfully, Facelets lets us theme the template used by a <ui:composition>:

<theme:theme-selector cookie-enabled="true">
 <theme:available-themes>
 <value>default</value>
 <value>accessible</value>
 <value>printable</value>
 </theme:available-themes>
</theme:theme-selector>

<link href="#{theme.css}" rel="stylesheet" type="text/css" />

<link href="#{facesContext.externalContext.requestContextPath}#
{theme.css}"
 rel="stylesheet" type="text/css" />

Seam Reference Guide

256

Just like the locale selector, there is a built-in theme selector to allow the user to freely switch themes:

16.6. PERSISTING LOCALE AND THEME PREFERENCES VIA COOKIES

The locale selector, theme selector and timezone selector all support persistence of locale and theme
preference to a cookie. Simply set the cookie-enabled property in components.xml:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 template="#{theme.template}">

<h:selectOneMenu value="#{themeSelector.theme}">
 <f:selectItems value="#{themeSelector.themes}"/>
</h:selectOneMenu>
<h:commandButton action="#{themeSelector.select}" value="Select Theme"/>

<theme:theme-selector cookie-enabled="true">
 <theme:available-themes>
 <value>default</value>
 <value>accessible</value>
 <value>printable</value>
 </theme:available-themes>
</theme:theme-selector>

<international:locale-selector cookie-enabled="true"/>

CHAPTER 16. INTERNATIONALIZATION, LOCALIZATION AND THEMES

257

CHAPTER 17. SEAM TEXT
Collaboration-oriented websites require a human-friendly markup language so that formatted text can be
entered easily in forum posts, wiki pages, blogs, comments, etc. Seam provides the
<s:formattedText/> control to display formatted text that conforms to the Seam Text language.
Seam Text is implemented with an ANTLR-based parser. (Experience with ANTLR is not required.)

17.1. BASIC FORMATTING

Here is a simple example: It's easy to make *emphasized*, |monospaced|, ~deleted~,
super^scripted^ or _underlined_ text.

If we display this using <s:formattedText/>, the following HTML will be produced:

We can use a blank line to indicate a new paragraph, and + to indicate a heading:

 +This is a big heading
 You /must/ have some text following a heading!

 ++This is a smaller heading
 This is the first paragraph. We can split it across multiple
 lines, but we must end it with a blank line.

 This is the second paragraph.

A simple new line is ignored — you need an additional blank line to wrap text into a new paragraph. This
is the HTML that results:

The # character creates items in an ordered list. Unordered lists use the = character:

 An ordered list:

<p>
 It's easy to make <i>emphasized</i>, <tt>monospaced</tt>,
 deleted, super^{scripted} or
 <u>underlined</u> text.
</p>

<h1>This is a big heading</h1>
<p>
 You <i>must</i> have some text following a heading!
</p>

<h2>This is a smaller heading</h2>
<p>
 This is the first paragraph. We can split it across multiple
 lines, but we must end it with a blank line.
</p>

<p>
 This is the second paragraph.
</p>

Seam Reference Guide

258

 #first item
 #second item
 #and even the /third/ item

 An unordered list:

 =an item
 =another item

Quoted sections should be surrounded in double quotes:

 He said:

 "Hello, how are /you/?"

 She answered, "Fine, and you?"

17.2. ENTERING CODE AND TEXT WITH SPECIAL CHARACTERS

Special characters such as *, | and #, and HTML characters such as <, > and & can be escaped with \:

You can write down equations like 2*3\=6 and HTML tags like \<body\>
using the escape character: \\.

<p>
 An ordered list:
</p>

 first item
 second item
 and even the <i>third</i> item

<p>
 An unordered list:
</p>

 an item
 another item

<p>
 He said:
</p>

<q>Hi, how are
<i>you</i>?</q>

<p>
 She answered, <q>Fine, and you?</q>
</p>

CHAPTER 17. SEAM TEXT

259

And we can quote code blocks with backticks:

My code does not work:
 `for (int i=0; i<100; i--)
 {
 doSomething();
 }`
Any ideas?

Since most monospace-formatted text is either code, or involves special characters, inline monospace
formatting always escapes. So, you can write:

This is a |<tag attribute="value"/>| example.

without escaping any of the characters inside the monospace bars. This also means that inline
monospace text cannot be formatted in any other way.

17.3. LINKS

You can create a link like so:

Go to the Seam website at [=>http://jboss.com/products/seam].

If you want to specify the link text:

Go to [the Seam website=>http://jboss.com/products/seam].

For advanced users, you can also customize the Seam Text parser to understand wikiword links written
in this syntax.

17.4. ENTERING HTML

Text can include a certain limited subset of HTML. (The subset was selected to remain safe from cross-
site scripting attacks.) This is useful for creating links:

<p>
 You can write down equations like 2*3=6 and HTML tags
 like <body> using the escape character: \.
</p>

<p>
 My code does not work:
</p>

<pre>for (int i=0; i<100; i--)
{
 doSomething();
}</pre>

<p>
 Any ideas?
</p>

Seam Reference Guide

260

You might want to link to
 something cool,
 or even include an image:

And for creating tables:

<table>
 <tr><td>First name:</td><td>Gavin</td></tr>
 <tr><td>Last name:</td><td>King</td></tr>
</table>

17.5. USING THE SEAMTEXTPARSER

The <s:formattedText/> JSF component uses the org.jboss.seam.text.SeamTextParser
internally. You can use this class directly to implement your own text parsing, rendering, and HTML
sanitation procedures. If you have a custom front-end interface for entering rich text, such as a
JavaScript-based HTML editor, this can be useful for validating user input in order to defend against
Cross-Site Scripting (XSS) attacks. You could also use it as a custom Wiki text-parsing and rendering
engine.

The following example defines a custom text parser, which overrides the default HTML sanitizer:

public class MyTextParser extends SeamTextParser {

 public MyTextParser(String myText) {
 super(new SeamTextLexer(new StringReader(myText)));

 setSanitizer(
 new DefaultSanitizer() {
 @Override
 public void validateHtmlElement(Token element)
throws SemanticException {
 // TODO: I want to validate HTML elements
myself!
 }
 }
);
 }

 // Customizes rendering of Seam text links such as [Some
Text=>http://example.com]
 @Override
 protected String linkTag(String descriptionText, String linkText) {
 return "My Custom Link: " +
 descriptionText + "";
 }

 // Renders a <p> or equivalent tag
 @Override
 protected String paragraphOpenTag() {
 return "<p class=\"myCustomStyle\">";
 }

 public void parse() throws ANTLRException {

CHAPTER 17. SEAM TEXT

261

linkTag() and paragraphOpenTag() methods are two of the methods you can override in order to
customize rendered output. These methods usually return String output. For further details, refer to
the Java Documentation. The org.jboss.seam.text.SeamTextParser.DefaultSanitizer Java
Documentation also contains more information about the HTML elements, attributes, and attribute values
that are filtered by default.

 startRule();
 }

}

Seam Reference Guide

262

CHAPTER 18. ITEXT PDF GENERATION
Seam now includes a component set for generating documents with iText. The primary focus of Seam's
iText document support is for the generation of PDF documents, but Seam also offers basic support for
RTF document generation.

18.1. USING PDF SUPPORT

iText support is provided by jboss-seam-pdf.jar. This JAR contains the iText JSF controls (which
construct views that can render to PDF) and the DocumentStore component (which serves the rendered
documents to the user). To include PDF support in your application, place jboss-seam-pdf.jar in
your WEB-INF/lib directory along with the iText JAR file. No further configuration is required to use
Seam's iText support.

The Seam iText module requires that Facelets be used as the view technology. Future versions of the
library may also support the use of JSP. It also requires the use of the seam-ui package.

The examples/itext project contains an example of the PDF support in action. It demonstrates
proper deployment packaging, and contains several examples demonstrating the key PDF-generation
features currently supported.

18.1.1. Creating a document

<p:document> Description

Documents are generated by Facelet XHTML files using tags in the
http://jboss.com/products/seam/pdf namespace. Documents
should always have the document tag at the root of the document. The
document tag prepares Seam to generate a document into the DocumentStore
and renders an HTML redirect to that stored content.

Attributes

type

The type of the document to be produced. Valid values are PDF, RTF and
HTML. Seam defaults to PDF generation, and many features only work
correctly when generating PDF documents.

pageSize

The size of the page to be generated. The most commonly used values are
LETTER and A4. A full list of supported pages sizes can be found in the
com.lowagie.text.PageSize class. Alternatively, pageSize can
provide the width and height of the page directly. The value "612 792", for
example, is equivalent to the LETTER page size.

orientation

The orientation of the page. Valid values are portrait and landscape.
Landscape mode swaps the height and width page values.

margins

The left, right, top and bottom margin values.

marginMirroring

Indicates that margin settings should be reversed on alternating pages.

CHAPTER 18. ITEXT PDF GENERATION

263

disposition

When generating PDFs in a web browser, this determines the HTTP
Content-Disposition of the document. Valid values are inline,
which indicates the document should be displayed in the browser window if
possible, and attachment, which indicates that the document should be
treated as a download. The default value is inline.

fileName

For attachments, this value overrides the downloaded file name.

Metadata Attributes

title

subject

keywords

author

creator

Usage

18.1.2. Basic Text Elements

Seam provides special UI components for generating content suitable to PDF. <p:image> and
<p:paragraph> tags form the foundations of simple documents. Tags like <p:font> provide style
information.

<p:document
xmlns:p="http://jboss.com/products/seam/pdf">
 The document goes here.
</p:document>

Seam Reference Guide

264

<p:paragraph> Description

For most purposes, text should be sectioned into paragraphs so that text
fragments can be assigned a logical flow, format and style.

Attributes

firstLineIndent

extraParagraphSpace

leading

multipliedLeading

spacingBefore — The blank space to be inserted before the
element.

spacingAfter — The blank space to be inserted after the element.

indentationLeft

indentationRight

keepTogether

Usage

<p:text> Description

The text tag lets application data produce text fragments using normal JSF
converter mechanisms. It is very similar to the outputText tag used when
rendering HTML documents.

Attributes

value — The value to be displayed. This is typically a value binding
expression.

Usage

<p:paragraph alignment="justify">
 This is a simple document. It is not very fancy.
</p:paragraph>

<p:paragraph>
 The item costs <p:text value="#{product.price}">
 <f:convertNumber type="currency"
 currencySymbol="$"/>
 </p:text>
</p:paragraph>

CHAPTER 18. ITEXT PDF GENERATION

265

<p:html> Description

The html tag renders HTML content into the PDF.

Attributes

value — The text to be displayed.

Usage

<p:font> Description

The font tag defines the default font to be used for all text inside of it.

Attributes

name — The font name, for example: COURIER, HELVETICA,
TIMES-ROMAN, SYMBOL or ZAPFDINGBATS.

size — The point size of the font.

style — The font styles. Any combination of : NORMAL, BOLD,
ITALIC, OBLIQUE, UNDERLINE, LINE-THROUGH

encoding — The character set encoding.

Usage

<p:html value="This is HTML with some markup"
/>
<p:html>
 <h1>This is more complex HTML</h1>

 one
 two
 three

</p:html>

<p:html>
 <s:formattedText value="*This* is |Seam Text| as
 HTML.
 It's very^cool^." />
</p:html>

<p:font name="courier" style="bold" size="24">
 <p:paragraph>My Title</p:paragraph>
</p:font>

Seam Reference Guide

266

<p:textcolumn> Description

p:textcolumn inserts a text column that can be used to control the flow of text.
The most common case is to support right to left direction fonts.

Attributes

left — The left bounds of the text column

right — The right bounds of the text column

direction — The run direction of the text in the column: RTL, LTR,
NO-BIDI, DEFAULT

Usage

<p:newPage> Description

p:newPage inserts a page break.

Usage

<p:textcolumn left="400" right="600"
direction="rtl">
<p:font name="/Library/Fonts/Arial Unicode.ttf"
encoding="Identity-H"
embedded="true">#{phrases.arabic}</p:font>
</p:textcolumn>

<p:newPage />

CHAPTER 18. ITEXT PDF GENERATION

267

<p:image> Description

p:image inserts an image into the document. Images can be loaded from the
classpath or from the web application context using the value attribute.

Resources can also be dynamically generated by application code. The
imageData attribute can specify a value binding expression whose value is a
java.awt.Image object.

Attributes

value — A resource name or a method expression that binds to an
application-generated image.

rotation — The rotation of the image in degrees.

height — The height of the image.

width — The width of the image.

alignment — The alignment of the image. (See Section 18.1.7.2,
“Alignment Values” for possible values.)

alt — Alternative text representation for the image.

indentationLeft

indentationRight

spacingBefore — The blank space to be inserted before the
element.

spacingAfter — The blank space to be inserted after the element.

widthPercentage

initialRotation

dpi

scalePercent — The scaling factor (as a percentage) to use for the
image. This can be expressed as a single percentage value or as two
percentage values representing separate x and y scaling percentages.

wrap

underlying

Usage

<p:image value="/jboss.jpg" />

<p:image value="#{images.chart}" />

Seam Reference Guide

268

<p:anchor> Description

p:anchor defines clickable links from a document. It supports the following
attributes:

Attributes

name — The name of an in-document anchor destination.

reference — The destination the link refers to. Links to other points in
the document should begin with a "#". For example, "#link1" to refer to an
anchor position with a name of link1. To point to a resource outside
the document, links must be a complete URL.

Usage

18.1.3. Headers and Footers

<p:listItem>
 <p:anchor reference="#reason1">Reason 1</p:anchor>
</p:listItem>
...
<p:paragraph>
 <p:anchor name="reason1">
 It's the quickest way to get "rich"
 </p:anchor>
 ...
</p:paragraph>

CHAPTER 18. ITEXT PDF GENERATION

269

<p:header>

<p:footer>

Description

The p:header and p:footer components let you place header and footer text
on each page of a generated document. Header and footer declarations should
appear at the beginning of a document.

Attributes

alignment — The alignment of the header/footer box section. (See
Section 18.1.7.2, “Alignment Values” for alignment values.)

backgroundColor — The background color of the header/footer box.
(See Section 18.1.7.1, “Color Values” for color values.)

borderColor — The border color of the header/footer box. Individual
border sides can be set using borderColorLeft,
borderColorRight, borderColorTop and
borderColorBottom. (See Section 18.1.7.1, “Color Values” for color
values.)

borderWidth — The width of the border. Individual border sides can
be specified using borderWidthLeft, borderWidthRight,
borderWidthTop and borderWidthBottom.

Usage

<p:pageNumber> Description

The current page number can be placed inside a header or footer with the
p:pageNumber tag. The page number tag can only be used in the context of a
header or footer and can only be used once.

Usage

18.1.4. Chapters and Sections

<p:facet name="header">
 <p:font size="12">
 <p:footer borderWidthTop="1"
borderColorTop="blue"
 borderWidthBottom="0" alignment="center">
 Why Seam? [<p:pageNumber />]
 </p:footer>
 </p:font>
</f:facet>

<p:footer borderWidthTop="1" borderColorTop="blue"
 borderWidthBottom="0" alignment="center">
 Why Seam? [<p:pageNumber />]
</p:footer>

Seam Reference Guide

270

<p:chapter>

<p:section>

Description

If the generated document follows a book/article structure, the p:chapter and
p:section tags can be used to provide structure. Sections can only be used
inside chapters, but they may be nested to any depth required. Most PDF viewers
provide easy navigation between chapters and sections in a document.

Attributes

alignment — The alignment of the header/footer box section. (See
Section 18.1.7.2, “Alignment Values” for alignment values.)

number — The chapter number. Every chapter should be assigned a
chapter number.

numberDepth — The depth of numbering for section. All sections are
numbered relative to their surrounding chapters/sections. The fourth
section of the first section of chapter three would be section 3.1.4, if
displayed at the default number depth of 3. To omit the chapter number,
a number depth of 2 should be used — this would display the section
number as 1.4.

Usage

<p:header> Description

Any chapter or section can contain a p:title. The title will be displayed next to
the chapter or section number. The body of the title may contain raw text or may
be a p:paragraph.

18.1.5. Lists

List structures can be displayed with the p:list and p:listItem tags. Lists may contain arbitrarily-
nested sublists. List items may not be used outside of a list. The following document uses the
ui:repeat tag to display a list of values retrieved from a Seam component.

<p:document
xmlns:p="http://jboss.com/products/seam/pdf"
title="Hello">
 <p:chapter number="1">

<p:title><p:paragraph>Hello</p:paragraph></p:title>
 <p:paragraph>Hello #{user.name}!</p:paragraph>
 </p:chapter>

 <p:chapter number="2">
 <p:title>
 <p:paragraph>
 Goodbye
 </p:paragraph>
 </p:title>
 <p:paragraph>Goodbye #{user.name}.</p:paragraph>
 </p:chapter>

</p:document>

<p:document xmlns:p="http://jboss.com/products/seam/pdf"

CHAPTER 18. ITEXT PDF GENERATION

271

<p:list> Attributes

style — The ordering/bulleting style of the list. One of: NUMBERED,
LETTERED, GREEK, ROMAN, ZAPFDINGBATS,
ZAPFDINGBATS_NUMBER. If no style is given, the list items are
bulleted by default.

listSymbol — For bulleted lists, specifies the bullet symbol.

indent — The indentation level of the list.

lowerCase — For list styles using letters, indicates whether the letters
should be lower case.

charNumber — For ZAPFDINGBATS, indicates the character code of
the bullet character.

numberType — For ZAPFDINGBATS_NUMBER, indicates the
numbering style.

Usage

 xmlns:ui="http://java.sun.com/jsf/facelets" title="Hello">

 <p:list style="numbered">
 <ui:repeat value="#{documents}" var="doc">
 <p:listItem>#{doc.name}</p:listItem>
 </ui:repeat>
 </p:list>

</p:document>

<p:list style="numbered">
 <ui:repeat value="#{documents}" var="doc">
 <p:listItem>#{doc.name}</p:listItem>
 </ui:repeat>
</p:list>

Seam Reference Guide

272

<p:listItem> Description

p:listItem supports the following attributes:

Attributes

alignment — The alignment of the header/footer box section. (See
Section 18.1.7.2, “Alignment Values” for alignment values.)

alignment — The alignment of the list item. (See Section 18.1.7.2,
“Alignment Values” for possible values.)

indentationLeft — The left indentation amount.

indentationRight — The right indentation amount.

listSymbol — Overrides the default list symbol for this list item.

Usage

18.1.6. Tables

Table structures can be created using the p:table and p:cell tags. Unlike many table structures,
there is no explicit row declaration. If a table has three columns, then every three cells will automatically
form a row. Header and footer rows can be declared, and the headers and footers will be repeated in the
event a table structure spans multiple pages.

<p:table> Description

p:table supports the following attributes.

Attributes

columns — The number of columns (cells) that make up a table row.

widths — The relative widths of each column. There should be one
value for each column. For example: widths="2 1 1" would indicate
that there are three columns and the first column should be twice the
size of the second and third column.

headerRows — The initial number of rows considered to be header
and footer rows, which should be repeated if the table spans multiple
pages.

footerRows — The number of rows considered to be footer rows.
This value is subtracted from the headerRows value. If document has
two rows which make up the header and one row that makes up the
footer, headerRows should be set to 3 and footerRows should be
set to 1.

widthPercentage — The percentage of the page width spanned by
the table.

horizontalAlignment — The horizontal alignment of the table.
(See Section 18.1.7.2, “Alignment Values” for possible values.)

skipFirstHeader

...

CHAPTER 18. ITEXT PDF GENERATION

273

runDirection

lockedWidth

splitRows

spacingBefore — The blank space to be inserted before the
element.

spacingAfter — The blank space to be inserted after the element.

extendLastRow

headersInEvent

splitLate

keepTogether

Usage

<p:table columns="3" headerRows="1">
 <p:cell>name</p:cell>
 <p:cell>owner</p:cell>
 <p:cell>size</p:cell>
 <ui:repeat value="#{documents}" var="doc">
 <p:cell>#{doc.name}</p:cell>
 <p:cell>#{doc.user.name}</p:cell>
 <p:cell>#{doc.size}</p:cell>
 </ui:repeat>
</p:table>

Seam Reference Guide

274

<p:cell> Description

p:cell supports the following attributes:

Attributes

colspan — Cells can span more than one column by declaring a
colspan greater than one. Cells cannot span multiple rows.

horizontalAlignment — The horizontal alignment of the cell. (See
Section 18.1.7.2, “Alignment Values” for possible values.)

verticalAlignment — The vertical alignment of the cell. (See
Section 18.1.7.2, “Alignment Values” for possible values.)

padding — Specify padding on a particular side using
paddingLeft, paddingRight, paddingTop and
paddingBottom.

useBorderPadding

leading

multipliedLeading

indent

verticalAlignment

extraParagraphSpace

fixedHeight

noWrap

minimumHeight

followingIndent

rightIndent

spaceCharRatio

runDirection

arabicOptions

useAscender

grayFill

rotation

Usage

18.1.7. Document Constants

This section documents some of the constants shared by attributes on multiple tags.

<p:cell>...</p:cell>

CHAPTER 18. ITEXT PDF GENERATION

275

18.1.7.1. Color Values

Seam documents do not yet support a full color specification. Currently, only named colors are
supported. They are: white, gray, lightgray, darkgray, black, red, pink, yellow, green,
magenta, cyan and blue.

18.1.7.2. Alignment Values

Seam PDF supports the following horizontal alignment values: left, right, center, justify and
justifyall. The vertical alignment values are top, middle, bottom, and baseline.

18.2. CHARTING

Charting support is also provided with jboss-seam-pdf.jar. Charts can be used in PDF documents,
or as images in an HTML page. To use charting, you will need to add the JFreeChart library
(jfreechart.jar and jcommon.jar) to the WEB-INF/lib directory. Three types of charts are
currently supported: pie charts, bar charts and line charts.

<p:chart> Description

Displays a chart already created in Java by a Seam component.

Attributes

chart -- The chart object to display

height -- The height fo the chart

width -- The width of the chart

Usage

<p:barchart> Description

Displays a bar chart.

Attributes

borderVisible — Controls whether or not a border is displayed around
the entire chart.

borderPaint — The color of the border, if visible.

borderBackgroundPaint — The default background color of the chart.

borderStroke

domainAxisLabel — The text label for the domain axis.

domainLabelPosition — The angle of the domain axis category
labels. Valid values are STANDARD, UP_45, UP_90, DOWN_45 and
DOWN_90. The value can also be a positive or negative angle in radians.

domainAxisPaint — The color of the domain axis label.

<p:chart chart="#{mycomponent.chart}" width="500"
height="500" />

Seam Reference Guide

276

domainGridlinesVisible— Controls whether or not gridlines for the
domain axis are shown on the chart.

domainGridlinePaint— The color of the domain gridlines, if visible.

domainGridlineStroke — The stroke style of the domain gridlines, if
visible.

height — The height of the chart.

width — The width of the chart.

is3D — A Boolean value indicating that the chart should be rendered in 3D
instead of 2D.

legend — A Boolean value indicating whether or not the chart should
include a legend.

legendItemPaint— The default color of the text labels in the legend.

legendItemBackgoundPaint— The background color for the legend,
if different from the chart background color.

legendOutlinePaint— The color of the border around the legend.

orientation — The orientation of the plot, either vertical (the
default) or horizontal.

plotBackgroundPaint — The color of the plot background.

plotBackgroundAlpha — The alpha (transparency) level of the plot
background. This should be a number between 0 (completely transparent)
and 1 (completely opaque).

plotForegroundAlpha — The alpha (transparency) level of the plot.
This should be a number between 0 (completely transparent) and 1
(completely opaque).

plotOutlinePaint — The color of the range gridlines, if visible.

plotOutlineStroke — The stroke style of the range gridlines, if visible.

rangeAxisLabel — The text label for the range axis.

rangeAxisPaint — The color of the range axis label.

rangeGridlinesVisible — Controls whether or not gridlines for the
range axis are shown on the chart.

rangeGridlinePaint — The color of the range gridlines, if visible.

rangeGridlineStroke — The stroke style of the range gridlines, if
visible.

title — The chart title text.

titlePaint — The color of the chart title text.

titleBackgroundPaint — The background color around the chart
title.

width — The width of the chart.

CHAPTER 18. ITEXT PDF GENERATION

277

Usage

<p:linechart> Description

Displays a line chart.

Attributes

borderVisible — Controls whether or not a border is displayed around
the entire chart.

borderPaint — The color of the border, if visible.

borderBackgroundPaint — The default background color of the chart.

borderStroke —

domainAxisLabel — The text label for the domain axis.

domainLabelPosition — The angle of the domain axis category
labels. Valid values are STANDARD, UP_45, UP_90, DOWN_45 and
DOWN_90. The value can also be a positive or negative angle in radians.

domainAxisPaint — The color of the domain axis label.

domainGridlinesVisible— Controls whether or not gridlines for the
domain axis are shown on the chart.

domainGridlinePaint— The color of the domain gridlines, if visible.

domainGridlineStroke — The stroke style of the domain gridlines, if
visible.

height — The height of the chart.

width — The width of the chart.

is3D — A Boolean value indicating that the chart should be rendered in 3D
instead of 2D.

legend — A Boolean value indicating whether or not the chart should
include a legend.

legendItemPaint — The default color of the text labels in the legend.

legendItemBackgoundPaint — The background color for the legend,
if different from the chart background color.

<p:barchart title="Bar Chart" legend="true"
width="500" height="500">
 <p:series key="Last Year">
 <p:data columnKey="Joe" value="100" />
 <p:data columnKey="Bob" value="120" />
 </p:series>
 <p:series key="This Year">
 <p:data columnKey="Joe" value="125" />
 <p:data columnKey="Bob" value="115" />
 </p:series>
</p:barchart>

Seam Reference Guide

278

legendOutlinePaint — The color of the border around the legend.

orientation — The orientation of the plot, either vertical (the
default) or horizontal.

plotBackgroundPaint — The color of the plot background.

plotBackgroundAlpha — The alpha (transparency) level of the plot
background. It should be a number between 0 (completely transparent) and
1 (completely opaque).

plotForegroundAlpha — The alpha (transparency) level of the plot. It
should be a number between 0 (completely transparent) and 1 (completely
opaque).

plotOutlinePaint — The color of the range gridlines, if visible.

plotOutlineStroke — The stroke style of the range gridlines, if visible.

rangeAxisLabel — The text label for the range axis.

rangeAxisPaint — The color of the range axis label.

rangeGridlinesVisible — Controls whether or not gridlines for the
range axis are shown on the chart.

rangeGridlinePaint — The color of the range gridlines, if visible.

rangeGridlineStroke — The stroke style of the range gridlines, if
visible.

title — The chart title text.

titlePaint — The color of the chart title text.

titleBackgroundPaint — The background color around the chart
title.

width — The width of the chart.

Usage

<p:piechart> Description

Displays a pie chart.

Attributes

title — The chart title text.

<p:linechart title="Line Chart" width="500"
height="500">
 <p:series key="Prices">
 <p:data columnKey="2003" value="7.36" />
 <p:data columnKey="2004" value="11.50" />
 <p:data columnKey="2005" value="34.625" />
 <p:data columnKey="2006" value="76.30" />
 <p:data columnKey="2007" value="85.05" />
 </p:series>
</p:linechart>

CHAPTER 18. ITEXT PDF GENERATION

279

label — The default label text for pie sections.

legend — A Boolean value indicating whether or not the chart should
include a legend. Default value is true.

is3D — A Boolean value indicating that the chart should be rendered in 3D
instead of 2D.

labelLinkMargin — The link margin for labels.

labelLinkPaint — The paint used for the label linking lines.

labelLinkStroke — The stroke used for the label linking lines.

labelLinksVisible — A flag that controls whether or not the label
links are drawn.

labelOutlinePaint — The paint used to draw the outline of the section
labels.

labelOutlineStroke — The stroke used to draw the outline of the
section labels.

labelShadowPaint — The paint used to draw the shadow for the
section labels.

labelPaint — The color used to draw the section labels.

labelGap — The gap between the labels and the plot, as a percentage of
the plot width.

labelBackgroundPaint — The color used to draw the background of
the section labels. If this is null, the background is not filled.

startAngle — The starting angle of the first section.

circular — A Boolean value indicating that the chart should be drawn as
a circle. If false, the chart is drawn as an ellipse. The default is true.

direction — The direction in which the pie sections are drawn. One of:
clockwise or anticlockwise. The default is clockwise.

sectionOutlinePaint — The outline paint for all sections.

sectionOutlineStroke — The outline stroke for all sections.

sectionOutlinesVisible — Indicates whether an outline is drawn for
each section in the plot.

baseSectionOutlinePaint — The base section outline paint.

baseSectionPaint — The base section paint.

baseSectionOutlineStroke — The base section outline stroke.

Usage

<p:piechart title="Pie Chart" circular="false"
 direction="anticlockwise" startAngle="30"
 labelGap="0.1" labelLinkPaint="red">
 <p:series key="Prices">
 <p:data key="2003" columnKey="2003" value="7.36"

Seam Reference Guide

280

<p:series> Description

Category data can be broken down into series. The series tag is used to categorize a
data set with a series and apply styling to the entire series.

Attributes

key — The series name.

seriesPaint — The color of each item in the series.

seriesOutlinePaint — The outline color for each item in the series.

seriesOutlineStroke — The stroke used to draw each item in the
series.

seriesVisible — A Boolean indicating if the series should be
displayed.

seriesVisibleInLegend — A Boolean indicating whether the series
should be listed in the legend.

Usage

/>
 <p:data key="2004" columnKey="2004" value="11.50"
/>
 <p:data key="2005" columnKey="2005" value="34.625"
/>
 <p:data key="2006" columnKey="2006" value="76.30"
/>
 <p:data key="2007" columnKey="2007" value="85.05"
/>
 </p:series>
</p:piechart>

<p:series key="data1">
 <ui:repeat value="#{data.pieData1}" var="item">
 <p:data columnKey="#{item.name}"
 value="#{item.value}" />
 </ui:repeat>
</p:series>

CHAPTER 18. ITEXT PDF GENERATION

281

<p:data> Description

The data tag describes each data point to be displayed in the graph.

Attributes

key — The name of the data item.

series — The series name, when not embedded inside a <p:series>.

value — The numeric data value.

explodedPercent — For pie charts, indicates how exploded from the
pie a piece is.

sectionOutlinePaint — For bar charts, the color of the section
outline.

sectionOutlineStroke — For bar charts, the stroke type for the
section outline.

sectionPaint — For bar charts, the color of the section.

Usage

<p:color> Description

The color component declares a color or gradient for filled shapes.

Attributes

color — The color value. For gradient colors, this indicates the starting
color. See Section 18.1.7.1, “Color Values” for color values.

color2 — For gradient colors, this is the color that ends the gradient.

point — The coordinates that mark the beginning of the gradient color.

point2 — The coordinates that mark the end of the gradient color.

Usage

<p:data key="foo" value="20" sectionPaint="#111111"
explodedPercent=".2" />
<p:data key="bar" value="30" sectionPaint="#333333" />
<p:data key="baz" value="40" sectionPaint="#555555"
 sectionOutlineStroke="my-dot-style" />

<p:color id="foo" color="#0ff00f"/>
<p:color id="bar" color="#ff00ff" color2="#00ff00"
 point="50 50" point2="300 300"/>

Seam Reference Guide

282

<p:stroke> Description

Describes a stroke used to draw lines in a chart.

Attributes

width — The width of the stroke.

cap — The line cap type. Valid values are butt, round and square

join — The line join type. Valid values are miter, round and bevel

miterLimit — For miter joins, this value is the limit of the size of the join.

dash — The dash value sets the dash pattern used to draw the line. Use
space-separated integers to indicate the length of each alternating drawn
and undrawn segment.

dashPhase — The dash phase indicates the point in the dash pattern that
corresponds to the beginning of the stroke.

Usage

18.3. BAR CODES

Seam can use iText to generate barcodes in a wide variety of formats. These barcodes can be
embedded in a PDF document or displayed as an image on a web page. However, barcodes cannot
currently display barcode text when used with HTML images.

<p:stroke id="dot2" width="2" cap="round" join="bevel"
dash="2 3" />

CHAPTER 18. ITEXT PDF GENERATION

283

<p:barCode> Description

Displays a barcode image.

Attributes

type — A barcode type supported by iText. Valid values include:
EAN13, EAN8, UPCA, UPCE, SUPP2, SUPP5, POSTNET, PLANET,
CODE128, CODE128_UCC, CODE128_RAW and CODABAR.

code — The value to be encoded by the barcode.

xpos — For PDFs, the absolute x position of the barcode on the page.

ypos — For PDFs, the absolute y position of the barcode on the page.

rotDegrees — For PDFs, the rotation factor of the barcode in
degrees.

barHeight — The height of the bars in the barcode.

minBarWidth — The minimum bar width.

barMultiplier — The bar multiplier for wide bars or the distance
between bars for POSTNET and PLANET code.

barColor — The color the bars should be drawn in.

textColor — The color of any text on the barcode.

textSize — The size of any text on the barcode.

altText — The alt text for HTML image links.

Usage

18.4. FILL-IN-FORMS

If you have a complex, pre-generated PDF with named fields, you can easily populate it with values from
your application and present it to the user.

<p:barCode type="code128" barHeight="80"
textSize="20"
 code="(10)45566(17)040301" codeType="code128_ucc"
 altText="My BarCode" />

Seam Reference Guide

284

<p:form> Description

Defines a form template to populate.

Attributes

URL — A URL that points to the PDF file to use as a template. If the
value contains no protocol (://), the file is read locally.

filename — The filename to use for the generated PDF file.

exportKey — If set, no redirect will occur when the generated PDF file
is placed in a DocumentData object under the specified key in the event
context.

<p:field> Description

Connects a field name to its value.

Attributes

name — The name of the field.

value — The value of the field.

readOnly — Whether the field is read-only. The default is true.

18.5. RENDERING SWING/AWT COMPONENTS

Seam now provides experimental support to render Swing components into PDF images. Some Swing
look and feel supports, specifically those that use native widgets, will not render correctly.

<p:form
 xmlns:p="http://jboss.com/products/seam/pdf"
 URL="http://localhost/Concept/form.pdf">
 <p:field name="person.name" value="Me, myself and I"/>
</p:form>

CHAPTER 18. ITEXT PDF GENERATION

285

<p:swing> Description

Renders a Swing component into a PDF document.

Attributes

width — The width of the component to be rendered.

height — The height of the component to be rendered.

component — An expression whose value is a Swing or AWT
component.

Usage

18.6. CONFIGURING ITEXT

Document generation itself requires no additional configuration, but some minor configuration can make
your application more user-friendly.

The default implementation serves PDF documents from a generic URL, /seam-doc.seam. Many
users prefer to see a URL that contains the actual document name and extension —
/myDocument.pdf, for example. To serve fully named files, the DocumentStoreServlet must
contain mappings for each document type:

DOCUMENT_TYPE can take on the following values:

*.pdf

*.xls

*.csv

To include multiple document types, add a <servlet-mapping> element, with <servlet-name> and
<url-pattern> sub-elements, for each desired document type.

The use-extensions option instructs the DocumentStore component to generate URLs with the
correct filename extension for the generated document type.

<p:swing width="310" height="120" component="#
{aButton}" />

<servlet>
 <servlet-name>Document Store Servlet</servlet-name>
 <servlet-class>
 org.jboss.seam.document.DocumentStoreServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Document Store Servlet</servlet-name>
 <url-pattern>DOCUMENT_TYPE</url-pattern>
</servlet-mapping>

<components xmlns="http://jboss.com/products/seam/components"

Seam Reference Guide

286

The DocumentStore holds documents in conversation scope, so documents will expire when the
conversation ends. At that point, references to the document will be invalid. Specify a default view to
show when a document does not exist by editing the error-page property of documentStore.

18.7. FURTHER DOCUMENTATION

For further information on iText, see:

iText Home Page

iText in Action

 xmlns:document="http://jboss.com/products/seam/document"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://jboss.com/products/seam/document
 http://jboss.com/products/seam/document-2.2.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.2.xsd">
 <document:document-store use-extensions="true"/>
</components>

<document:document-store use-extensions="true"
 error-page="/documentMissing.seam" />

CHAPTER 18. ITEXT PDF GENERATION

287

http://www.lowagie.com/iText/
http://www.manning.com/lowagie/

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET
APPLICATION
Seam can generate Microsoft® Excel® spreadsheets through the JExcelAPI library. The document
generated is compatible with Microsoft Excel versions 95, 97, 2000, XP, and 2003. At present, only a
limited subset of the library functionality is available. Refer to the JExcelAPI documentation for more
information about limitations and capabilities.

19.1. MICROSOFT EXCEL SUPPORT

To include Microsoft Excel support in your application, you must include jboss-seam-excel.jar
and jxl.jar in your WEB-INF/lib directory. jboss-seam-excel.jar contains the Microsoft Excel
JSF controls used to construct views for document rendering, and the DocumentStore component, which
serves the rendered document to the user. You will also need to configure the DocumentStore Servlet in
your web.xml file. The Microsoft Excel Seam module requires the seam-ui package, and that
Facelets be used as the view technology.

You can see an example of Microsoft Excel support in action in the examples/excel project. This
demonstrates the exposed functionality of the support, as well as correct deployment packaging.

You can easily customize the module to support other kinds of Microsoft Excel spreadsheet. Implement
the ExcelWorkbook interface and register the following in components.xml:

Register the Microsoft Excel namespace in the components tag like so:

Then set the UIWorkbook type to myExcelExporter to use your own preferred exporter. The default
here is jxl, but you can also use CSV with the csv type.

See Section 18.6, “Configuring iText” for information about how to configure the document servlet for
serving documents with an .xls extension.

If you have trouble accessing the generated file under Microsoft® Internet Explorer®, especially with
HTTPS, check that your web.xml or browser security constraints (see
http://www.nwnetworks.com/iezones.htm/) are not too strict.

19.2. CREATING A SIMPLE WORKBOOK

The worksheet support is used like a <h:dataTable>, and can be bound to a List, Set, Map, Array
or DataModel.

<excel:excelFactory>
 <property name="implementations">
 <key>myExcelExporter</key>
 <value>my.excel.exporter.ExcelExport</value>
 </property>
</excel:excelFactory>

xmlns:excel="http://jboss.com/products/seam/excel"

<e:workbook xmlns:e="http://jboss.com/products/seam/excel">
 <e:worksheet>

Seam Reference Guide

288

http://jexcelapi.sourceforge.net/
http://www.nwnetworks.com/iezones.htm/

The following is a more common use case:

The top-level workbook element serves as the container, and has no attributes. The child element,
worksheet, has two attributes: value="#{data}" is the EL-binding to the data, and var="item" is
the name of the current item. The worksheet contains a single column. Within this is the cell, which is
the final bind to the data in the currently iterated item.

Now you can bind your data into spreadsheets.

19.3. WORKBOOKS

Workbooks are the top-level parents of worksheets and stylesheet links.

<e:workbook> Attributes

type — Defines the export model. The value is a string and can be
either jxl or csv. The default is jxl.

templateURI — A template that forms the basis of the workbook. The
value is a string (URI).

arrayGrowSize — The amount of memory (in bytes) by which the
workbook data storage space should be increased. If your process reads
many small workbooks inside a web application server, you may need to
reduce the default size. The default value is 1 MB.

autoFilterDisabled — A Boolean value determining whether
autofiltering is disabled.

cellValidationDisabled — A Boolean value determining
whether cell validation is ignored.

characterSet — The character set used to read the spreadsheet.
Has no effect on the spreadsheet being written. The value is a string
(character set encoding).

drawingsDisabled — A Boolean value determining whether
drawings are disabled.

excelDisplayLanguage — The language that the generated file
will display in. The value is a string (two character ISO 3166 country
code).

 <e:cell column="0" row="0" value="Hello world!"/>
 </e:worksheet>
</e:workbook>

<e:workbook xmlns:e="http://jboss.com/products/seam/excel">
 <e:worksheet value="#{data}" var="item">
 <e:column>
 <e:cell value="#{item.value}"/>
 </e:column>
 </e:worksheet>
</e:workbook>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

289

excelRegionalSettings — The regional settings for the
generated file. The value is a string (two character ISO 3166 country
code).

formulaAdjust — A Boolean determining whether formulas are
adjusted.

gcDisabled — A Boolean determining whether garbage collection is
disabled.

ignoreBlanks — A Boolean value determining whether blanks are
ignored.

initialFileSize — The initial amount of memory (in bytes)
allocated to workbook data storage when reading a worksheet. If your
process reads many small workbooks inside a web application server,
you may need to reduce the default size. The default value is 5 MB.

locale — The locale JExcelAPI uses to generate the spreadsheet.
This value has no effect on the language or region of the generated file.
The value is a string.

mergedCellCheckingDisabled — A Boolean determining
whether merged cell checking is disabled.

namesDisabled — A Boolean determining whether name handling is
disabled.

propertySets — A Boolean determining whether property sets (such
as macros) are copied with the workbook. If this feature is enabled, the
JXL process will use more memory.

rationalization — A Boolean determining whether cell formats are
rationalized before the sheet is written. Defaults to true.

supressWarnings — A Boolean determining whether warnings are
suppressed. Depending on the type of logger used, this sets the warning
behavior across the JVM.

temporaryFileDuringWriteDirectory — A string value
containing the target directory for temporary files. Used in conjunction
with useTemporaryFileDuringWrite. If set to NULL, the default
temporary directory is used instead.

useTemporaryFileDuringWrite — A Boolean determining
whether a temporary file is used during workbook generation. If not set,
the workbook will be generated entirely in memory. Setting this flag
involves an assessment of the trade-offs between memory usage and
performance.

workbookProtected — A Boolean determining whether the
workbook is protected.

filename — A string value to be used as the download's filename. If
you map the DocumentServlet to some pattern, its file extension must
match.

exportKey — A key to store event-scoped data in a DocumentData
object. If used, there is no redirection.

Child elements

<e:link/> — Zero or more stylesheet links. (See Section 19.14.1,
“Stylesheet links”.)

Seam Reference Guide

290

<e:worksheet/> — Zero or more worksheets. (See Section 19.4,
“Worksheets”.)

Facets

none

This defines a workbook with a worksheet and a greeting at cell A1.

19.4. WORKSHEETS

Worksheets are the children of workbooks and the parent of columns and worksheet commands. They
can also contain explicitly placed cells, formulas, images and hyperlinks. They are the pages that make
up the workbook.

<e:worksheet>
value — An EL-expression string to the backing data. The target of this
expression is examined for an Iterable. If the target is a Map, the iteration
is done over the Map.Entry entrySet(), so use a .key or .value to target in
your references.

var — The current row iterator variable name to be referenced in cell
value attributes. The value is a string.

name — The name of the worksheet. The value is a string. Defaults to
Sheet<replaceable>#</replaceable> where # is the
worksheet index. If the given worksheet name exists, that sheet is
selected. This can be used to merge several data sets into a single
worksheet by defining each worksheet with the same name — use
startRow and startCol to make sure they do not occupy the same
space.

startRow — A number value that defines the starting row for the data.
This is used to position data from places other than the upper-left corner.
This is particularly useful when using multiple data sets for a single
worksheet. The default value is 0.

startColumn — A number value that defines the starting column for
the data. This is used to position data from places other than the upper-
left corner. This is particularly useful when using multiple data sets for a
single worksheet. The default value is 0.

automaticFormulaCalculation — A Boolean determining
whether formulas are calculated automatically.

bottomMargin — A number value determining the bottom margin in
inches.

copies — A number value determining the number of copies.

defaultColumnWidth — A number value defining the default
column width, in characters * 256.

<e:workbook>
 <e:worksheet>
 <e:cell value="Hello World" row="0" column="0"/>
 </e:worksheet>
<e:workbook>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

291

defaultRowHeight — A number value defining the default row
height, in 1/20ths of a point.

displayZeroValues — A Boolean determining whether zero values
are displayed.

fitHeight — A number value defining the number of pages vertically
that this sheet will print into.

fitToPages — A Boolean determining whether printing fits to pages.

fitWidth — A number value defining the number of pages across that
this sheet will print into.

footerMargin — A number value defining the margin for any page
footer in inches.

headerMargin — A number value defining the margin for any page
header in inches.

hidden — A Boolean determining whether the worksheet is hidden.

horizontalCentre — A Boolean determining whether the
worksheet is centred horizontally.

horizontalFreeze — A number value defining the column at which
the pane is frozen horizontally.

horizontalPrintResolution — A number value defining the
horizontal print resolution.

leftMargin — A number value defining the left margin in inches.

normalMagnification — A number value defining the normal
magnification factor as a percentage. This is not the zoom or scale factor.

orientation — A string value that determines the paper orientation
when this sheet is printed. Can be either landscape or portrait.

pageBreakPreviewMagnification — A number value defining
the page break preview magnification factor as a percentage.

pageBreakPreviewMode — A Boolean determining whether the
page is shown in preview mode.

pageStart — A number value defining the page number at which to
commence printing.

paperSize — A string value determining the paper size to be used
when printing. Possible values are a4, a3, letter, legal, etc. For a
full list, see jxl.format.PaperSize.

password — A string value determining the password for this sheet.

passwordHash — A string value determining the password hash. This
is used only when copying sheets.

printGridLines — A Boolean determining whether grid lines are
printed.

printHeaders — A Boolean determining whether headers are
printed.

Seam Reference Guide

292

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/PaperSize.html

sheetProtected — A Boolean determining whether the sheet is
read-only.

recalculateFormulasBeforeSave — A Boolean determining
whether formulas are recalculated when the sheet is saved. The default
value is false.

rightMargin — A number value defining the right margin in inches.

scaleFactor — A number value defining the scale factor (as a
percentage) used when this sheet is printed.

selected — A Boolean value determining whether the sheet is
selected automatically when the workbook opens.

showGridLines — A Boolean determining whether grid lines are
shown.

topMargin — A number value defining the top margin in inches.

verticalCentre — A Boolean determining whether the sheet is
vertically centred.

verticalFreeze — A number value determining the row at which
the pane is frozen vertically.

verticalPrintResolution — A number value determining the
vertical print resolution.

zoomFactor — A number value determining the zoom factor. This
relates to on-screen view, and should not be confused with the scale
factor.

Child elements

<e:printArea/> — Zero or more print area definitions. (See
Section 19.11, “Print areas and titles” .)

<e:printTitle/> — Zero or more print title definitions. (See
Section 19.11, “Print areas and titles” .)

<e:headerFooter/> — Zero or more header/footer definitions. (See
Section 19.10, “Headers and footers” .)

Zero or more worksheet commands. (See Section 19.12, “Worksheet
Commands”.)

Facets

header— Contents placed at the top of the data block, above the
column headers (if any).

footer— Contents placed at the bottom of the data block, below the
column footers (if any).

<e:workbook>
 <e:worksheet name="foo" startColumn="1" startRow="1">
 <e:column value="#{personList}" var="person">
 <f:facet name="header">
 <e:cell value="Last name"/>
 </f:facet>
 <e:cell value="#{person.lastName}"/>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

293

This defines a worksheet with the name "foo", starting at B2.

19.5. COLUMNS

Columns are the children of worksheets and the parents of cells, images, formulas and hyperlinks. They
control the iteration of the worksheet data. See Section 19.14.5, “Column settings” for formatting.

<e:column> Attributes

none

Child elements

<e:cell/> — Zero or more cells. (See Section 19.6, “Cells”.)

<e:formula/> — Zero or more formulas. (See Section 19.7,
“Formulas”.)

<e:image/> — Zero or more images. (See Section 19.8, “Images”.)

<e:hyperLink/> — Zero or more hyperlinks (see Section 19.9,
“Hyperlinks”).

Facets

header — This facet can/will contain one <e:cell>,
<e:formula>, <e:image> or <e:hyperLink>, which will be
used as header for the column.

footer — This facet can/will contain one <e:cell>,
<e:formula>, <e:image> or <e:hyperLink>, which will be
used as footer for the column.

This defines a column with a header and an iterated output.

19.6. CELLS

 </e:column>
 </e:worksheet>
<e:workbook>

<e:workbook>
 <e:worksheet>
 <e:column value="#{personList}" var="person">
 <f:facet name="header">
 <e:cell value="Last name"/>
 </f:facet>
 <e:cell value="#{person.lastName}"/>
 </e:column>
 </e:worksheet>
<e:workbook>

Seam Reference Guide

294

Cells are nested within columns (for iteration) or inside worksheets (for direct placement using the
column and row attributes) and are responsible for outputting the value, usually through an EL-
expression involving the var attribute of the datatable. See Section 19.14.6, “Cell settings”.

<e:cell> Attributes

column — A number value denoting the column that the cell belongs
to. The default is the internal counter. Note that the value is 0-based.

row — A number value denoting the row where to place the cell. The
default is the internal counter. Note that the value is 0-based.

value — A string defining the display value. Usually an EL-expression
referencing the var-attribute of the containing datatable.

comment — A string value defining a comment attached to the cell.

commentHeight — The comment height in pixels.

commentWidth — The comment width in pixels.

Child elements

Zero or more validation conditions. (See Section 19.6.1, “Validation”.)

Facets

none

This defines a column with a header and an iterated output.

19.6.1. Validation

Validations are nested inside cells or formulas. They add constraints to cell data.

<e:workbook>
 <e:worksheet>
 <e:column value="#{personList}" var="person">
 <f:facet name="header">
 <e:cell value="Last name"/>
 </f:facet>
 <e:cell value="#{person.lastName}"/>
 </e:column>
 </e:worksheet>
</e:workbook>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

295

<e:numericValida
tion>

Attributes

value — A number value denoting the limit (or lower limit where
applicable) of the validation.

value2 — A number value denoting the upper limit (where applicable)
of the validation.

condition — A string value defining the validation condition.

equal — requires the cell value to match the one defined in the
value-attribute.

greater_equal — requires the cell value to be greater than or
equal to the value defined in the value-attribute.

less_equal — requires the cell value to be less than or equal to
the value defined in the value-attribute.

less_than — requires the cell value to be less than the value
defined in the value-attribute.

not_equal — requires the cell value to not match the one defined
in the value-attribute.

between — requires the cell value to be between the values
defined in the value and value2 attributes.

not_between — requires the cell value not to be between the
values defined in the value- and value2 attributes.

Child elements

none

Facets

none

This adds numeric validation to a cell, specifying that the value must be between 4 and 18.

<e:workbook>
 <e:worksheet>
 <e:column value="#{personList}" var="person">
 <e:cell value="#{person.age">
 <e:numericValidation condition="between" value="4" value2="18"/>
 </e:cell>
 </e:column>
 </e:worksheet>
</e:workbook>

Seam Reference Guide

296

<e:rangeValidati
on>

Attributes

startColumn — A number value denoting the first column to validate
against.

startRow — A number value denoting the first row to validate against.

endColumn — A number value denoting the last column to validate
against.

endRow — A number value denoting the last row to validate against.

Child elements

none

Facets

none

This adds validation to a cell, specifying that the value must exist within the values specified in range
A1:A10.

<e:listValidatio
n>

Attributes

none

Child elements

 Zero or more list validation items.

Facets

none

e:listValidation is a just a container for holding multiple e:listValidationItem tags.

<e:workbook>
 <e:worksheet>
 <e:column value="#{personList}" var="person">
 <e:cell value="#{person.position">
 <e:rangeValidation startColumn="0" startRow="0" endColumn="0"
 endRow="10"/>
 </e:cell>
 </e:column>
 </e:worksheet>
</e:workbook>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

297

<e:listValidatio
nItem>

Attributes

value — A value to validate against.

Child elements

none

Facets

none

This adds validation to a cell, specifying that the value must be "manager" or "employee".

19.6.2. Format masks

Format masks are defined in the mask attribute in a cell or formula. There are two types of format
masks: one for numbers, and one for dates.

19.6.2.1. Number masks

When a format mask is encountered, a check is executed to see if the mask follows an internal form, for
example, format1, accounting_float, etc. (See jxl.write.NumberFormats.)

If the mask is not part of the internal list, it is treated as a custom mask (for example, 0.00), and
automatically converted to the closest match. (See java.text.DecimalFormat.)

19.6.2.2. Date masks

When a format mask is encountered, a check is executed to see if the mask follows an internal form, for
example, format1, format2, etc. (See jxl.write.DecimalFormats.)

If the mask is not part of the internal list, it is treated as a custom mask (for example, dd.MM.yyyy), and
automatically converted to the closest match. (See java. text.DateFormat.)

19.7. FORMULAS

Formulas are nested within columns (for iteration) or inside worksheets (for direct placement using the
column and row attributes), and add calculations or functions to ranges of cells. They are essentially

<e:workbook>
 <e:worksheet>
 <e:column value="#{personList}" var="person">
 <e:cell value="#{person.position">
 <e:listValidation>
 <e:listValidationItem value="manager"/>
 <e:listValidationItem value="employee"/>
 </e:listValidation>
 </e:cell>
 </e:column>
 </e:worksheet>
</e:workbook>

Seam Reference Guide

298

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ write/NumberFormats.html
http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ write/DecimalFormats.html
http://java.sun.com/javase/6/docs/api/java/text/DateFormat.html

cells, see Section 19.6, “Cells” for available attributes. They can apply templates and have their own font
definitions, etc., just as normal cells can.

The formula of the cell is placed in the value attribute as a normal Microsoft Excel notation. When
doing cross-sheet formulas, the worksheets must exist before referencing a formula against them. The
value is a string.

This defines a formula in B2 summing cells A1 in worksheets FooSheet and BarSheet.

19.8. IMAGES

Images are nested within columns (for iteration) or inside worksheets (for direct placement using the
startColumn/startRow and rowSpan/columnSpan attributes). Span tags are optional, and the
image will be inserted without resizing if they are omitted.

<e:image> Attributes

startColumn — A number value denoting the column in which the
image starts. The default is the internal counter. The number value is 0-
based.

startRow — A number value denoting the row in which the image
starts. The default is the internal counter. The number value is 0-based.

columnSpan — A float value denoting the column span of the image.
The default uses the default width of the image.

rowSpan — A float value denoting the row span of the image. The
default uses the default height of the image.

URI — A string value denoting the URI to the image.

Child elements

none

Facets

none

<e:workbook>
 <e:worksheet name="fooSheet">
 <e:cell column="0" row="0" value="1"/>
 </e:worksheet>
 <e:worksheet name="barSheet">
 <e:cell column="0" row="0" value="2"/>
 <e:formula column="0" row="1" value="fooSheet!A1+barSheet1!A1">
 <e:font fontSize="12"/>
 </e:formula>
 </e:worksheet>
</e:workbook>

<e:workbook>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

299

This defines an image in A1:E5 based on the given data.

19.9. HYPERLINKS

Hyperlinks are nested within columns (for iteration) or inside worksheets (for direct placement using the
startColumn/startRow and endColumn/endRow attributes). They add link navigation to URIs.

<e:hyperlink> Attributes

startColumn — A number value denoting the column in which the
hyperlink starts. The default is the internal counter. The number value is
0-based.

startRow — A number value denoting the row in which the hyperlink
starts. The default is the internal counter. The number value is 0-based.

endColumn — A number value denoting the column in which the
hyperlink ends. The default is the internal counter. The number value is
0-based.

endRow — A number value denoting the row in which the hyperlink
ends. The default is the internal counter. The number value is 0-based.

URL — A string value denoting the URL to link.

description — A string value describing the link. string.

Child elements

none

Facets

none

This defines a described hyperlink pointing to Seam Framework in the area A1:E5.

19.10. HEADERS AND FOOTERS

Headers and footers are children of worksheets, and contain facets, which contain strings to be parsed
as commands.

 <e:worksheet>
 <e:image startRow="0" startColumn="0" rowSpan="4" columnSpan="4"
 URI="http://foo.org/logo.jpg"/>
 </e:worksheet>
</e:workbook>

<e:workbook>
 <e:worksheet>
 <e:hyperLink startRow="0" startColumn="0" endRow="4" endColumn="4"
 URL="http://seamframework.org" description="The Seam Framework"/>
 </e:worksheet>
</e:workbook>

Seam Reference Guide

300

<e:header> Attributes

none

Child elements

none

Facets

left — The contents of the left header part.

center — The contents of the central header part.

right — The contents of the right header part.

<e:footer> Attributes

none

Child elements

none

Facets

left — The contents of the left footer part.

center — The contents of the central footer part.

right — The contents of the right footer part.

Because facets contain string values, they can contain various #-delimited commands, like the following:

#date# Inserts the current date.

#page_number# Inserts the current page number.

#time# Inserts the current time.

#total_pages# Inserts the total page count.

#worksheet_name# Inserts the worksheet name.

#workbook_name# Inserts the workbook name.

#bold# Toggles bold font. One use turns bold text on; a second use turns bold text off.

#italics# Toggles italic font. One use turns italic text on; a second use turns italic text off.

#underline# Toggles underlined font. One use turns underlined text on; a second use turns
underlined text off.

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

301

#double_underline# Toggles double-underlined font. One use turns double-underlying text on; a
second use turns double-underlined text off.

#outline# Toggles outlined font. One use turns outlined text on; a second use turns outlined
text off.

#shadow# Toggles shadowed font. One use turns shadowed text on; a second use turns
shadowed text off.

#strikethrough# Toggles struck-through font. One use turns struck-through text on; a second use
turns struck-through text off.

#subscript# Toggles subscript font. One use turns subscript text on; a second use turns
subscript text off.

#superscript# Toggles superscript font. One use turns superscript text on; a second use turns
superscript text off.

#font_name# Sets font name. To set Verdana as the font, use #font_name=Verdana#.

#font_size# Sets font size. To set 12 as the font size, use #font_size=12#.

19.11. PRINT AREAS AND TITLES

Print areas and titles are the children of worksheets and worksheet templates, and provide print areas
and titles.

<e:workbook>
 <e:worksheet>
 <e:header>
 <f:facet name="left">
 This document was made on #date# and has #total_pages# pages.
 </f:facet>
 <f:facet name="right"> #time# </f:facet>
 </e:header>
 <e:worksheet>
</e:workbook>

Seam Reference Guide

302

<e:printArea> Attributes

firstColumn — A number value denoting column that holds the top-
left corner of the area. The value is 0-based.

firstRow — A number value denoting the row that holds the top left
corner of the area.The value is 0-based.

lastColumn — A number value denoting the column that holds the
bottom-right corner of the area. The value is 0-based.

lastRow — A number value denoting the row that holds the bottom-
right corner of the area. The value is 0-based.

Child elements

none

Facets

none

This defines a print title between A1:A10 and a print area between B2:J10.

19.12. WORKSHEET COMMANDS

Worksheet commands are the children of workbooks and are usually executed only once.

19.12.1. Grouping

Provides grouping of columns and rows.

<e:workbook>
 <e:worksheet>
 <e:printTitles firstRow="0" firstColumn="0" lastRow="0"
 lastColumn="9"/>
 <e:printArea firstRow="1" firstColumn="0" lastRow="9"
lastColumn="9"/>
 </e:worksheet>
</e:workbook>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

303

<e:groupRows> Attributes

startRow — A number value denoting the row at which to begin the
grouping. The value is 0-based.

endRow — A number value denoting the row at which to end the
grouping. The value is 0-based.

collapse — A Boolean determining whether the grouping is initially
collapsed.

Child elements

none

Facets

none

<e:groupColumns> Attributes

startColumn — A number value denoting the column at which to
begin the grouping. The value is 0-based.

endColumn — A number value denoting the column at which to end the
grouping. The value is 0-based.

collapse — A Boolean determining whether the grouping is initially
collapsed.

Child elements

none

Facets

none

This groups rows 5 through 10 and columns 5 through 10 so that the rows are initially collapsed (but not
the columns).

19.12.2. Page breaks

Provides page breaks

<e:workbook>
 <e:worksheet>
 <e:groupRows startRow="4" endRow="9" collapse="true"/>
 <e:groupColumns startColumn="0" endColumn="9" collapse="false"/>
 </e:worksheet>
</e:workbook>

Seam Reference Guide

304

<e:rowPageBreak> Attributes

row — A number value denoting the row at which a page break should
occur. The value is 0-based.

Child elements

none

Facets

none

This causes a page break at row 5.

19.12.3. Merging

Provides cell merging

<e:mergeCells> Attributes

startRow — A number value denoting the row at which to begin the
merge. The value is 0-based.

startColumn — A number value denoting the column at which to
begin the merge. The value is 0-based.

endRow — A number value denoting the row at which to end the merge.
The value is 0-based.

endColumn — A number value denoting the column at which to end the
merge. The value is 0-based.

Child elements

none

Facets

none

<e:workbook>
 <e:worksheet>
 <e:rowPageBreak row="4"/>
 </e:worksheet>
</e:workbook>

<e:workbook>
 <e:worksheet>
 <e:mergeCells startRow="0" startColumn="0" endRow="9" endColumn="9"/>
 </e:worksheet>
</e:workbook>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

305

This merges the cells in the range A1:J10.

19.13. DATATABLE EXPORTER

If you prefer to export an existing JSF datatable instead of writing a dedicated XHTML document, you
can execute the org.jboss.seam.excel.excelExporter.export component, passing in the ID of
the datatable as an Seam EL parameter. For example, say you have the following datatable:

If you want to view this as a Microsoft Excel spreadsheet, place the following in the form:

You can also execute the exporter with a button, s:link, or other preferred method.

See Section 19.14, “Fonts and layout” for formatting.

19.14. FONTS AND LAYOUT

Output appearance is controlled with a combination of CSS style and tag attributes. CSS style attributes
flow from parent to child, and let you use one tag to apply all attributes defined for that tag in the
styleClass and style sheets.

If you have format masks or fonts that use special characters, such as spaces and semicolons, you can
escape the CSS string with '' characters such as xls-format-mask:'$;$'.

19.14.1. Stylesheet links

External stylesheets are referenced with the e:link tag. They are placed within the document as if they
are children of the workbook tag.

<e:link> Attributes

URL — The URL of the stylesheet.

Child elements

none

Facets

none

<h:form id="theForm">
 <h:dataTable id="theDataTable" value="#{personList.personList}"
 var="person">
 ...
 </h:dataTable>
</h:form>

<h:commandLink value="Export"
 action="#{excelExporter.export('theForm:theDataTable')}" />

Seam Reference Guide

306

This references a stylesheet located at /css/excel.css.

19.14.2. Fonts

This group of XLS-CSS attributes define a font and its attributes.

xls-font-family The name of the font. Make sure the font you enter here is supported by your
system.

xls-font-size A plain number value denoting the font size.

xls-font-color The color of the font. (See jxl.format.Colour.)

xls-font-bold A Boolean determining whether the font is bold. Valid values are true and
false.

xls-font-italic A Boolean determining whether the font is italicized. Valid values are true and
false.

xls-font-script-style The script style of the font. (See jxl.format.ScriptStyle.)

xls-font-underline-style The underline style of the font. (See jxl.format.UnderlineStyle.)

xls-font-struck-out A Boolean determining whether the font is struck-through. Valid values are true
and false.

xls-font A shorthand notation for setting all values associated with font. Place the font
name last. (If you wish to use a font with spaces in its name, use tick marks to
surround the font. For example, 'Times New Roman'.) Here, defined
italicized, bold, or struck-through text with italic, bold, or struckout.

For example: style="xls-font: red bold italic 22 Verdana"

19.14.3. Borders

This group of XLS-CSS attributes defines the borders of the cell.

xls-border-left-color The border color of the left edge of the cell. (See jxl.format.Colour.)

xls-border-left-line-style The border line style of the left edge of the cell. (See jxl.format.LineStyle.)

xls-border-left A shorthand notation for setting the line style and color of the left edge of the cell.
Use like so: style="xls-border-left: thick red"

xls-border-top-color The border color of the top edge of the cell. (See jxl.format.Colour.)

<e:workbook>
 <e:link URL="/css/excel.css"/>
</e:workbook>

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

307

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/ScriptStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/UnderlineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/LineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/Colour.html

xls-border-top-line-style The border line style of the top edge of the cell. (See jxl.format.LineStyle.)

xls-border-top A shorthand notation for setting the line style and color of the top edge of the cell.
Use like so: style="xls-border-top: red thick"

xls-border-right-color The border color of the right edge of the cell. (See jxl.format.Colour.)

xls-border-right-line-
style

The border line style of the right edge of the cell. (See jxl.format.LineStyle.)

xls-border-right A shorthand notation for setting the line style and color of the right edge of the cell.
Use like so: style="xls-border-right: thick red"

xls-border-bottom-color The border color of the bottom edge of the cell. (See jxl.format.Colour.)

xls-border-bottom-line-
style

The border line style of the bottom edge of the cell. (See jxl.format.LineStyle.)

xls-border-bottom A shorthand notation for setting the line style and color of the bottom edge of the
cell. Use like so: style="xls-border-bottom: thick red"

xls-border A shorthand notation for setting the line style and color for all edges of the cell.
Use like so: style="xls-border: thick red"

19.14.4. Background

This group of XLS-CSS attributes defines the background of the cell.

xls-background-color The color of the background. (See jxl.format.LineStyle.)

xls-background-pattern The pattern of the background. (See jxl.format.Pattern.)

xls-background A shorthand for setting the background color and pattern.

19.14.5. Column settings

This group of XLS-CSS attributes defines column properties.

xls-column-width The width of a column. We recommend beginning with values of approximately
5000, and adjusting as required. Used by the e:column in XHTML mode.

xls-column-widths The width of each column, respectively. We recommend beginning with values of
approximately 5000, and adjusting as required. Used by the excel exporter, and
placed in the datatable style attribute. Use numerical values, or * to bypass a
column.

For example: style="xls-column-widths: 5000, 5000, *,
10000"

Seam Reference Guide

308

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/LineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/LineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/Colour.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/LineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/LineStyle.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/Pattern.html

xls-column-autosize Determines whether the column should be autosized. Valid values are true and
false.

xls-column-hidden Determines whether the column is hidden. Valid values are true and false.

xls-column-export Determines whether the column is shown in export. Valid values are true and
false. Defaults to true.

19.14.6. Cell settings

This group of XLS-CSS attributes defines the cell properties.

xls-alignment The alignment of the cell value. (See jxl.format.Alignment.)

xls-force-type A string value determining the forced type of data in the cell. Valid values are
general, number, text, date, formula, and bool. The type is
automatically detected so there is rarely any use for this attribute.

xls-format-mask The format mask of the cell. (See Section 19.6.2, “Format masks”.)

xls-indentation A number value determining the indentation of the cell's contents.

xls-locked Determines whether a cell is locked. Used with workbook level locked. Valid
values are true or false.

xls-orientation The orientation of the cell value. (See jxl.format.Orientation.)

xls-vertical-alignment The vertical alignment of the cell value. (See jxl.format.VerticalAlignment.)

xls-shrink-to-fit Determines whether cell values shrink to fit. Valid values are true and false.

xls-wrap Determines whether the cell wraps new lines. Valid values are true and false.

19.14.7. The datatable exporter

The datatable exporter uses the same XLS-CSS attributes as the XHTML document, with the exception
that column widths are defined with the xls-column-widths attribute on the datatable (since the
UIColumn doesn't support the style or styleClass attributes).

19.14.8. Limitations

There are some known limitations to CSS support in the current version of Seam.

When using .xhtml documents, stylesheets must be referenced through the <e:link> tag.

When using the datatable exporter, CSS must be entered through style-attributes — external
stylesheets are not supported.

19.15. INTERNATIONALIZATION

CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION

309

http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/Alignment.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/Orientation.html
http://jexcelapi.sourceforge.net/resources/javadocs/current/docs/jxl/ format/VerticalAlignment.html

Only two resource bundle keys are used. Both are for invalid data formats, and both take a parameter
that defines the invalid value.

org.jboss.seam.excel.not_a_number — When a value thought to be a number could not
be treated as such.

org.jboss.seam.excel.not_a_date — When a value thought to be a date could not be
treated as such.

19.16. LINKS AND FURTHER DOCUMENTATION

The core of Microsoft Excel functionality in Seam is based on the JExcelAPI library, which can be found
on http://jexcelapi.sourceforge.net/. Most features and limitations are inherited from the JExcelAPI.

NOTE

JExcelAPI is not Seam. Any Seam-based issues are best reported in the JBoss Seam
JIRA under the Excel module.

Seam Reference Guide

310

http://jexcelapi.sourceforge.net

CHAPTER 20. EMAIL
Seam now includes an optional component for templating and sending email.

Email support is provided by jboss-seam-mail.jar. This JAR contains the mail JSF controls, used to
construct emails, and the mailSession manager component.

For a demonstration of the email support available in Seam, see the examples/mail project. This
demonstrates proper packaging, and contains a number of currently-supported key features.

You can test your mail system with Seam's integration testing environment. See Section 35.3.4,
“Integration Testing Seam Mail” for details.

20.1. CREATING A MESSAGE

Seam uses Facelets to template emails.

The <m:message> tag wraps the whole message, and tells Seam to start rendering an email. Inside the
<m:message> tag, we use an <m:from> tag to specify the sender, a <m:to> tag to specify a recipient,
and a <m:subject> tag. (Note that EL is used as it would be in a normal Facelet.)

The <m:body> tag wraps the body of the email. You can use regular HTML tags inside the body, as well
as JSF components.

Once the m:message is rendered, the mailSession is called to send the email. To send your email,
have Seam render the view:

<m:message xmlns="http://www.w3.org/1999/xhtml"
 xmlns:m="http://jboss.com/products/seam/mail"
 xmlns:h="http://java.sun.com/jsf/html">

 <m:from name="Peter" address="peter@example.com" />
 <m:to name="#{person.firstname} #{person.lastname}">
 #{person.address}
 </m:to>
 <m:subject>Try out Seam!</m:subject>

 <m:body>
 <p><h:outputText value="Dear #{person.firstname}" />,</p>
 <p>You can try out Seam by visiting

 http://labs.jboss.com/jbossseam
 .
 </p>
 <p>Regards,</p>
 <p>Pete</p>
 </m:body>

</m:message>

@In(create=true)
private Renderer renderer;

public void send() {

CHAPTER 20. EMAIL

311

If, for example, you entered an invalid email address, then an exception is thrown, caught and then
displayed to the user.

20.1.1. Attachments

Seam supports most standard Java types when working with files, so it is easy to attach files to an email.

For example, to email the jboss-seam-mail.jar:

Seam loads the file from the classpath and attaches it to the email. By default, this file is attached as
jboss-seam-mail.jar, but you can change the attachment name by adding and editing the
fileName attribute:

You can also attach a java.io.File, a java.net.URL:

Or a byte[] or a java.io.InputStream:

For byte[] and java.io.InputStream, you will need to specify the MIME type of the attachment,
since this information is not carried as part of the file.

You can attach a Seam-generated PDF, or any standard JSF view, by wrapping a <m:attachment>
tag around your normal tags:

To attach a set of files — for example, a set of pictures loaded from a database — you can use a
<ui:repeat>:

 try {
 renderer.render("/simple.xhtml");
 facesMessages.add("Email sent successfully");
 } catch (Exception e) {
 facesMessages.add("Email sending failed: " + e.getMessage());
 }
}

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar"/>

<m:attachment value="/WEB-INF/lib/jboss-seam-mail.jar"
 fileName="this-is-so-cool.jar"/>

<m:attachment value="#{numbers}"/>

<m:attachment value="#{person.photo}" contentType="image/png"/>

<m:attachment fileName="tiny.pdf">
 <p:document>
 A very tiny PDF
 </p:document>
</m:attachment>

<ui:repeat value="#{people}" var="person">
 <m:attachment value="#{person.photo}" contentType="image/jpeg"
 fileName="#{person.firstname}_#{person.lastname}.jpg"/>
</ui:repeat>

Seam Reference Guide

312

To display an attached image inline:

The cid:#{...} tag specifies that the attachments will be examined when attempting to locate the
image. The cid — Content-ID — must match.

You must declare the attachment before trying to access the status object.

20.1.2. HTML/Text alternative part

Although most mail readers support HTML, some do not. You can add a plain text alternative to your
email body:

20.1.3. Multiple recipients

Often you will want to send an email to a group of recipients, such as your users. All recipient mail tags
can be placed inside a <ui:repeat>:

20.1.4. Multiple messages

Sometimes — for example, during a password reset — you will need to send a slightly different message
to each recipient. The best way to do this is to place the whole message inside a <ui:repeat>:

20.1.5. Templating

The mail templating example shows that Facelets templating works with the Seam mail tags.

<m:attachment value="#{person.photo}" contentType="image/jpeg"
 fileName="#{person.firstname}_#{person.lastname}.jpg"
 status="personPhoto" disposition="inline" />

<m:body>
 <f:facet name="alternative">
 Sorry, your email reader can not show our fancy email. Please go to
 http://labs.jboss.com/jbossseam to explore Seam.
 </f:facet>
</m:body>

<ui:repeat value="#{allUsers} var="user">
 <m:to name="#{user.firstname} #{user.lastname}"
 address="#{user.emailAddress}"/>
</ui:repeat>

<ui:repeat value="#{people}" var="p">
 <m:message>
 <m:from name="#{person.firstname} #{person.lastname}">
 #{person.address}
 </m:from>
 <m:to name="#{p.firstname}">#{p.address}</m:to>
 ...
 </m:message>
</ui:repeat>

CHAPTER 20. EMAIL

313

Our template.xhtml contains:

Our templating.xhtml contains:

You can also use Facelets source tags in your email. These must be placed in a JAR in WEB-INF/lib
because referencing the .taglib.xml from web.xml is not reliable when using Seam Mail. (When mail
is sent asynchronously, Seam Mail cannot access the full JSF or Servlet context, so it does not
acknowledge web.xml configuration parameters.)

To configure Facelets or JSF further when sending mail, you will need to override the Renderer
component and perform the configuration programmatically. This should only be done by advanced
users.

20.1.6. Internationalization

Seam supports sending internationalized messages. By default, Seam uses encoding provided by JSF,
but this can be overridden on the template:

The body, subject, and recipient and sender names are encoded. You will need to make sure that
Facelets parses your page with the correct character set by setting the encoding of the template:

20.1.7. Other Headers

<m:message>
 <m:from name="Seam" address="do-not-reply@jboss.com" />
 <m:to name="#{person.firstname} #{person.lastname}">
 #{person.address}
 </m:to>
 <m:subject>#{subject}</m:subject>
 <m:body>
 <html>
 <body>
 <ui:insert name="body">
 This is the default body, specified by the template.
 </ui:insert>
 </body>
 </html>
 </m:body>
</m:message>

<ui:param name="subject" value="Templating with Seam Mail"/>
<ui:define name="body">
 <p>
 This example demonstrates that you can easily use
 <i>facelets templating</i> in email!
 </p>
</ui:define>

<m:message charset="UTF-8">
 ...
</m:message>

<?xml version="1.0" encoding="UTF-8"?>

Seam Reference Guide

314

Seam also provides support for some additional email headers. (See Section 20.4, “Tags”.) You can set
the importance of the email, and ask for a read receipt:

Otherwise, you can add any header to the message by using the <m:header> tag:

20.2. RECEIVING EMAILS

If you use Enterprise JavaBeans (EJB), you can use a MDB (Message Driven Bean) to receive email.
JBoss provides a JCA adaptor (mail-ra.rar). You can configure mail-ra.rar like this:

Each message received calls onMessage(Message message). Most Seam annotations work inside a
MDB, but you must not access the persistence context.

20.3. CONFIGURATION

Include jboss-seam-mail.jar in your WEB-INF/lib directory to include email support in your
application. If you use JBoss Enterprise Application Platform, no further configuration is required. If you
do not use EAP, make sure you have the JavaMail API and a copy of the Java Active Framework. The
versions distributed with Seam are lib/mail.jar and lib/activation.jar respectively.)

<m:message xmlns:m="http://jboss.com/products/seam/mail"
 importance="low" requestReadReceipt="true"/>

<m:header name="X-Sent-From" value="JBoss Seam"/>

@MessageDriven(activationConfig={
@ActivationConfigProperty(propertyName="mailServer",
 propertyValue="localhost"),
@ActivationConfigProperty(propertyName="mailFolder",
 propertyValue="INBOX"),
@ActivationConfigProperty(propertyName="storeProtocol",
 propertyValue="pop3"),
@ActivationConfigProperty(propertyName="userName",
 propertyValue="seam"),
@ActivationConfigProperty(propertyName="password",
 propertyValue="seam")
})
@ResourceAdapter("mail-ra.rar")
@Name("mailListener")
public class MailListenerMDB implements MailListener {

 @In(create=true)
 private OrderProcessor orderProcessor;

 public void onMessage(Message message) {
 // Process the message
 orderProcessor.process(message.getSubject());
 }

}

CHAPTER 20. EMAIL

315

NOTE

The Seam Mail module requires both the use of the seam-ui package, and that Facelets
be used as the view technology. Future versions of the library may also support the use of
JSP.

The mailSession component uses JavaMail to talk to a 'real' SMTP server.

20.3.1. mailSession

If you are working in a Java EE 5 environment, a JavaMail session may be available through a JNDI look
up. Otherwise, you can use a Seam-configured session.

The mailSession component's properties are described in more detail in Section 30.9, “Mail-related
components”.

20.3.1.1. JNDI look up in EAP

The JBossAS deploy/mail-service.xml configures a JavaMail session binding into JNDI. The
default service configuration must be altered for your network. http://wiki.jboss. org/wiki/Wiki.jsp?
page=JavaMail describes the service in more detail.

Here, we tell Seam to retrieve the mail session bound to java:/Mail from JNDI.

20.3.1.2. Seam-configured Session

A mail session can be configured via components.xml. Here we tell Seam to use
smtp.example.com as the SMTP server:

20.4. TAGS

Emails are generated using tags in the http://jboss.com/products/seam/mail namespace.
Documents should always have the message tag at the root of the message. The message tag prepares
Seam to generate an email.

Facelets standard templating tags can be used as normal. Inside the body, you can use any JSF tag. If
the tag requires access to external resources such as stylesheets or JavaScript, be sure to set the
urlBase.

<m:message>

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:mail="http://jboss.com/products/seam/mail">
 <mail:mail-session session-jndi-name="java:/Mail"/>
</components>

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:core="http://jboss.com/products/seam/core"
 xmlns:mail="http://jboss.com/products/seam/mail">
 <mail:mail-session host="smtp.example.com"/>
</components>

Seam Reference Guide

316

http://wiki.jboss.org/wiki/Wiki.jsp?page=JavaMail

Root tag of a mail message.

importance — Sets the importance of the mail message. Valid values are low, normal, or
high. Defaults to normal.

precedence — Sets the precedence of the message, for example, bulk.

requestReadReceipt — If set, a read receipt request will be added, and the read receipt
will be sent to the From: address. Defaults to false.

urlBase — If set, the value is prepended to the requestContextPath, allowing you to
use components such as <h:graphicImage> in your emails.

messageId — Explicitly sets the Message-ID.

<m:from>

Sets the From: address for the email. Only one exists per email.

name — The name that the email comes from.

address — The email address that the email comes from.

<m:replyTo>

Sets the Reply-to: address for the email. Only one exists per email.

address — the email address the email comes from.

<m:to>

Adds a recipient to the email. Use multiple <m:to> tags for multiple recipients. This tag can be safely
placed inside a repeat tag such as <ui:repeat>.

name — The name of the recipient.

address — The email address of the recipient.

<m:cc>

Adds a CC recipient to the email. Use multiple <m:cc> tags for multiple CCs. This tag can be safely
placed inside a iterator tag such as <ui:repeat>.

name — The name of the recipient.

address — The email address of the recipient.

<m:bcc>

Adds a BCC recipient to the email. Use multiple <m:bcc> tags for multiple bccs. This tag can be
safely placed inside a repeat tag such as <ui:repeat>.

name — The name of the recipient.

address — The email address of the recipient.

<m:header>

CHAPTER 20. EMAIL

317

Adds a header to the email. (For example, X-Sent-From: JBoss Seam.)

name — The name of the header to add. (For example, X-Sent-From.)

value — The value of the header to add. (For example, JBoss Seam.)

<m:attachment>

Adds an attachment to the email.

value — The file to attach:

String — A String is interpreted as a path to file within the classpath.

java.io.File — An EL expression can reference a File object.

java.net.URL — An EL expression can reference a URL object.

java.io.InputStream — An EL expression can reference an InputStream. In this
case both a fileName and a contentType must be specified.

byte[] — An EL expression can reference a byte[]. In this case both a fileName
and a contentType must be specified.

If the value attribute is omitted:

If this tag contains a <p:document> tag, the document described will be generated and
attached to the email. A fileName should be specified.

If this tag contains other JSF tags, a HTML document will be generated from them and
attached to the email. A fileName should be specified.

fileName — Specifies the file name to use for the attached file.

contentType — Specifies the MIME type of the attached file.

<m:subject>

Sets the subject for the email.

<m:body>

Sets the body for the email. Supports an alternative facet which, if a HTML email is generated,
can contain alternative text for a mail reader which does not support HTML.

type — If set to plain, a plain text email will be generated. Otherwise, a HTML email is
generated.

Seam Reference Guide

318

CHAPTER 21. ASYNCHRONICITY AND MESSAGING
Seam makes it easy to perform work asynchronously from a web request. Asynchronicity in Java EE is
usually linked with JMS, and where your quality of service requirements are strict and well-defined, this is
logical. It is easy to send JMS messages through Seam components.

However, for many use cases, JMS is more powerful than necessary. Seam layers a simple,
asynchronous method and event facility over your choice of dispatchers:

java.util.concurrent.ScheduledThreadPoolExecutor (by default)

the EJB timer service (for EJB 3.0 environments)

Quartz

21.1. ASYNCHRONICITY

Asynchronous events and method calls have the same quality of service expectations as the underlying
dispatcher mechanism. The default dispatcher, based upon a ScheduledThreadPoolExecutor
performs efficiently but provides no support for persistent asynchronous tasks, and hence no guarantee
that a task will ever actually be executed. If you are working in an environment that supports EJB 3.0, add
the following line to components.xml to ensure that your asynchronous tasks are processed by the
container's EJB timer service:

If you want to use asynchronous methods in Seam, you do not need to interact directly with the Timer
service. However, it is important that your EJB3 implementation has the option of using persistent timers,
which give some guarantee that the task will eventually be processed.

Alternatively, you can use the open source Quartz library to manage asynchronous method. To do so,
bundle the Quartz library JAR (found in the lib directory) in your EAR, and declare it as a Java module
in application.xml. You can configure the Quartz dispatcher by adding a Quartz property file to the
classpath —this file must be named seam.quartz.properties. To install the Quartz dispatcher, you
will also need to add the following line to components.xml:

Since the Seam API for the default ScheduledThreadPoolExecutor, the EJB3 Timer, and the
Quartz Scheduler are very similar, you can "plug and play" by adding a line to components.xml.

21.1.1. Asynchronous methods

An asynchronous call allows a method call to be processed asynchronously (in a different thread) to the
caller. Usually, asynchronous calls are used when we want to send an immediate response to the client,
and simultaneously process expensive work in the background. This pattern works well in AJAX
applications, where the client can automatically poll the server for the result of the work.

For EJB components, annotate the implementation of the bean to specify that a method be processed
asynchronously. For JavaBean components, annotate the component implementation class:

<async:timer-service-dispatcher/>

<async:quartz-dispatcher/>

@Stateless
@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler

CHAPTER 21. ASYNCHRONICITY AND MESSAGING

319

Asynchronicity is transparent to the bean class. It is also transparent to the client:

The asynchronous method is processed in a fresh event context, and has no access to the session or
conversation context state of the caller. However, the business process context is propagated.

You can schedule asynchronous method calls for delayed execution with the @Duration,
@Expiration and @IntervalDuration annotations.

{
 @Asynchronous
 public void processPayment(Payment payment) {
 //do some work!
 }
}

@Stateful
@Name("paymentAction")
public class CreatePaymentAction
{
 @In(create=true) PaymentHandler paymentHandler;
 @In Bill bill;

 public String pay() {
 paymentHandler.processPayment(new Payment(bill));
 return "success";
 }
}

@Local
public interface PaymentHandler {
 @Asynchronous
 public void processScheduledPayment(Payment payment,
 @Expiration Date date);

 @Asynchronous
 public void processRecurringPayment(Payment payment,
 @Expiration Date date,
 @IntervalDuration Long interval);
}

@Stateful
@Name("paymentAction")
public class CreatePaymentAction
{
 @In(create=true) PaymentHandler paymentHandler;
 @In Bill bill;

 public String schedulePayment() {
 paymentHandler.processScheduledPayment(new Payment(bill),
 bill.getDueDate());
 return "success";
 }

 public String scheduleRecurringPayment() {
 paymentHandler.processRecurringPayment(new Payment(bill),

Seam Reference Guide

320

Both client and server can access the Timer object associated with the invocation. The Timer shown
below is the EJB3 timer used with the EJB3 dispatcher. For the default
ScheduledThreadPoolExecutor, the timer returns Future from the JDK. For the Quartz dispatcher,
it returns QuartzTriggerHandle, which will be discussed in the next section.

Asynchronous methods cannot return any other value to the caller.

21.1.2. Asynchronous methods with the Quartz Dispatcher

The Quartz dispatcher lets you use the @Asynchronous, @Duration, @Expiration, and
@IntervalDuration annotations, as above, but it also supports several additional annotations.

 bill.getDueDate(), ONE_MONTH
);
 return "success";
 }
}

@Local
public interface PaymentHandler
{
 @Asynchronous
 public Timer processScheduledPayment(Payment payment,
 @Expiration Date date);
}

@Stateless
@Name("paymentHandler")
public class PaymentHandlerBean implements PaymentHandler {
 @In Timer timer;

 public Timer processScheduledPayment(Payment payment,
 @Expiration Date date) {
 //do some work!
 return timer; //note that return value is completely ignored
 }
}

@Stateful
@Name("paymentAction")
public class CreatePaymentAction
{
 @In(create=true) PaymentHandler paymentHandler;
 @In Bill bill;

 public String schedulePayment() {
 Timer timer =
 paymentHandler.processScheduledPayment(new Payment(bill),
 bill.getDueDate());
 return "success";
 }
}

CHAPTER 21. ASYNCHRONICITY AND MESSAGING

321

The @FinalExpiration annotation specifies an end date for a recurring task. Note that you can inject
the QuartzTriggerHandle.

Note that this method returns the QuartzTriggerHandle object, which can be used to stop, pause,
and resume the scheduler. The QuartzTriggerHandle object is serializable, so it can be saved into
the database if required for an extended period of time.

The @IntervalCron annotation supports Unix cron job syntax for task scheduling. For example, the
following asynchronous method runs at 2:10pm and at 2:44pm every Wednesday in the month of March.

@In QuartzTriggerHandle timer;

// Defines the method in the "processor" component
@Asynchronous
public QuartzTriggerHandle schedulePayment(@Expiration Date when,
 @IntervalDuration Long
interval,
 @FinalExpiration Date
endDate,
 Payment payment) {
 // do the repeating or long running task until endDate
}

... ...

// Schedule the task in the business logic processing code
// Starts now, repeats every hour, and ends on May 10th, 2010
Calendar cal = Calendar.getInstance ();
cal.set (2010, Calendar.MAY, 10);
processor.schedulePayment(new Date(), 60*60*1000, cal.getTime(), payment);

QuartzTriggerHandle handle=
 processor.schedulePayment(payment.getPaymentDate(),
 payment.getPaymentCron(),
 payment);
payment.setQuartzTriggerHandle(handle);
// Save payment to DB

// later ...

// Retrieve payment from DB
// Cancel the remaining scheduled tasks
payment.getQuartzTriggerHandle().cancel();

// Define the method
@Asynchronous
public QuartzTriggerHandle schedulePayment(@Expiration Date when,
 @IntervalCron String cron,
 Payment payment) {
 // do the repeating or long running task
}

... ...

Seam Reference Guide

322

The @IntervalBusinessDay annotation supports invocation in the "nth Business Day" scenario. For
instance, the following asynchronous method runs at 14:00 on the 2nd business day of each month. All
weekends and US Federal holidays are excluded from the business days by default.

The NthBusinessDay object contains the configuration of the invocation trigger. You can specify more
holidays (company holidays and non-US holidays, for example) in the additionalHolidays property.

The @IntervalDuration, @IntervalCron, and @IntervalNthBusinessDay annotations are
mutually exclusive. Attempting to use them in the same method will cause a RuntimeException error.

21.1.3. Asynchronous events

Component-driven events can also be asynchronous. To raise an event for asynchronous processing,

// Schedule the task in the business logic processing code
QuartzTriggerHandle handle =
 processor.schedulePayment(new Date(), "0 10,44 14 ? 3 WED", payment);

// Define the method
@Asynchronous
public QuartzTriggerHandle schedulePayment(@Expiration Date when,
 @IntervalBusinessDay NthBusinessDay
nth,
 Payment payment) {
 // do the repeating or long running task
}

... ...

// Schedule the task in the business logic processing code
QuartzTriggerHandle handle =
 processor.schedulePayment(new Date(),
 new NthBusinessDay(2, "14:00", WEEKLY),
 payment);

public class NthBusinessDay implements Serializable {
 int n;
 String fireAtTime;
 List<Date> additionalHolidays;
 BusinessDayIntervalType interval;
 boolean excludeWeekends;
 boolean excludeUsFederalHolidays;

 public enum BusinessDayIntervalType { WEEKLY, MONTHLY, YEARLY }

 public NthBusinessDay () {
 n = 1;
 fireAtTime = "12:00";
 additionalHolidays = new ArrayList<Date> ();
 interval = BusinessDayIntervalType.WEEKLY;
 excludeWeekends = true;
 excludeUsFederalHolidays = true;
 }

}

CHAPTER 21. ASYNCHRONICITY AND MESSAGING

323

call the raiseAsynchronousEvent() method of the Events class. To schedule a timed event, call
the raisedTimedEvent() method and pass a schedule object. (For the default dispatcher or timer
service dispatcher, use TimerSchedule.) Components can observe asynchronous events as usual, but
only business process context is propagated to the asynchronous thread.

21.1.4. Handling exceptions from asynchronous calls

Each asynchronous dispatcher behaves differently when an exception propagates through it. For
example, the java.util.concurrent suspends further executions of a repeating call, and the EJB3
timer service swallows the exception, so Seam catches any exception that propagates from the
asynchronous call before it reaches the dispatcher.

By default, any exception that propagates from an asynchronous execution will be caught and logged at
error level. You can customize this behavior globally by overriding the
org.jboss.seam.async.asynchronousExceptionHandler component:

Here, with java.util.concurrent dispatcher, we inject its control object and cancel all future
invocations when an exception is encountered.

You can alter this behavior for an individual component by implementing the public void
handleAsynchronousException(Exception exception); method on that component, like so:

21.2. MESSAGING IN SEAM

It is easy to send and receive JMS messages to and from Seam components.

21.2.1. Configuration

To configure Seam infrastructure to send JMS messages, you must first tell Seam about the topics and
queues you want to send messages to, and where to find the QueueConnectionFactory and
TopicConnectionFactory, depending on your requirements.

@Scope(ScopeType.STATELESS)
@Name("org.jboss.seam.async.asynchronousExceptionHandler")
public class MyAsynchronousExceptionHandler
 extends AsynchronousExceptionHandler {
 @Logger Log log;

 @In Future timer;

 @Override
 public void handleException(Exception exception) {
 log.debug(exception);
 timer.cancel(false);
 }

}

public void handleAsynchronousException(Exception exception) {
 log.fatal(exception);
}

Seam Reference Guide

324

By default, Seam uses UIL2ConnectionFactory, the default connection factory with JBossMQ. If you
use another JMS provider, you must set one or both of
queueConnection.queueConnectionFactoryJndiName and
topicConnection.topicConnectionFactoryJndiName, in either seam.properties, web.xml,
or components.xml.

To install Seam-managed TopicPublishers and QueueSenders, you must also list topics and
queues in components.xml:

21.2.2. Sending messages

Once configuration is complete, you can inject a JMS TopicPublisher and TopicSession into any
component:

Or, to work with a queue:

<jms:managed-topic-publisher name="stockTickerPublisher"
 auto-create="true" topic-jndi-name="topic/stockTickerTopic"/>

<jms:managed-queue-sender name="paymentQueueSender"
 auto-create="true" queue-jndi-name="queue/paymentQueue"/>

@Name("stockPriceChangeNotifier")
public class StockPriceChangeNotifier {
 @In private TopicPublisher stockTickerPublisher;

 @In private TopicSession topicSession;

 public void publish(StockPrice price) {
 try {
 stockTickerPublisher.publish(topicSession
 .createObjectMessage(price));
 } catch (Exception ex) {
 throw new RuntimeException(ex);
 }
 }
}

@Name("paymentDispatcher")
public class PaymentDispatcher {
 @In private QueueSender paymentQueueSender;

 @In private QueueSession queueSession;

 public void publish(Payment payment) {
 try {
 paymentQueueSender.send(queueSession.createObjectMessage(payment));
 } catch (Exception ex) {
 throw new RuntimeException(ex);
 }
 }
}

CHAPTER 21. ASYNCHRONICITY AND MESSAGING

325

21.2.3. Receiving messages using a message-driven bean

You can process messages with any EJB3 message-driven bean. Message-driven beans can
sometimes be Seam components, in which case, you can inject other event- and application-scoped
Seam components. The following is an example of the payment receiver, which delegates to the
payment processor.

NOTE

You may need to set the create attribute on the @In annotation to true so that Seam
can create an instance of the component to be injected. (This is necessary only if the
component does not support auto-creation — that is, it is not annotated with
@Autocreate.)

First, create a message-driven bean to receive the message:

Next, implement the Seam component to which the receiver will delegate payment processing:

@MessageDriven(activationConfig =
 {@ActivationConfigProperty(propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),
 @ActivationConfigProperty(propertyName = "destination",
 propertyValue = "queue/paymentQueue")
})

@Name("paymentReceiver")
public class PaymentReceiver implements MessageListener
{
 @Logger private Log log;

 @In(create = true) private PaymentProcessor paymentProcessor;

 @Override
 public void onMessage(Message message)
 {
 try {
 paymentProcessor.processPayment((Payment) ((ObjectMessage)
 message).getObject());
 } catch (JMSException ex) {
 log.error("Message payload did not contain a Payment object", ex);
 }
 }
}

@Name("paymentProcessor")
public class PaymentProcessor {
 @In private EntityManager entityManager;

 public void processPayment(Payment payment) {
 // perhaps do something more fancy
 entityManager.persist(payment);
 }
}

Seam Reference Guide

326

If you want to perform transaction operations in your message-driven bean, ensure that you are working
with an XA datasource, or you will not be able to roll back database changes in the event that a database
transaction commits, but a subsequent message operation fails.

21.2.4. Receiving messages in the client

Seam Remoting lets you subscribe to a JMS topic from client-side JavaScript. You can find more
information in Chapter 24, Remoting.

CHAPTER 21. ASYNCHRONICITY AND MESSAGING

327

CHAPTER 22. CACHING
The database is the primary bottleneck in almost all enterprise applications, and the least-scalable tier of
the runtime environment, so anything we can do to reduce the number of times the database is accessed
can dramatically improve application performance.

A well-designed Seam application will feature a rich, multi-layered caching strategy that impacts every
layer of the application, including:

A cache for the database. This is vital, but cannot scale like a cache in the application tier.

A secondary cache of data from the database, provided by your ORM solution (Hibernate, or
another JPA implementation). In a clustered environment, keeping cache data transactionally
consistent with both the database and the rest of the cluster can be very expensive to implement
effectively. Therefore, this secondary cache is best used to store data that is rarely updated, and
shared between many users. In traditional stateless architectures, this space is often used
(ineffectively) to store conversational state.

The Seam conversational context, which is a cache of conversational state. Components in the
conversation context store state relating to the current user interaction.

The Seam-managed persistence context, which acts as a cache of data read in the current
conversation. (An Enterprise JavaBean [EJB] container-managed persistence context
associated with a conversation-scoped stateful session bean can be used in place of a Seam-
managed persistence context.) Seam optimizes the replication of Seam-managed persistence
contexts in a clustered environment, and optimistic locking provides sufficient transactional
consistency with the database. Unless you read thousands of objects into a single persistence
context, the performance implications of this cache are minimal.

The Seam application context, which can be used to cache non-transactional state. State held
here is not visible to other nodes in the cluster.

The Seam cacheProvider component within the application, which integrates JBossCache, or
Ehcache into the Seam environment. State held here is visible to other nodes if your cache
supports running in clustered mode.

Finally, Seam can cache rendered fragments of a JSF page. Unlike the ORM secondary cache,
this is not automatically invalidated when data is updated, so you will need to write application
code to perform explicit invalidation, or set appropriate expiry policies.

For more information about the secondary cache, you will need to refer to the documentation of your
ORM solution, since this can be quite complex. In this section, we discuss the use of caching directly via
the cacheProvider component, or caching as stored page fragments, via the <s:cache> control.

22.1. USING CACHING IN SEAM

The built-in cacheProvider component manages an instance of:

JBoss Cache 3.2.x

org.jboss.cache.Cache

EhCache

net.sf.ehcache.CacheManager

Seam Reference Guide

328

Any immutable Java object placed in the cache will be stored there and replicated across the cluster (if
replication is supported and enabled). To keep mutable objects in the cache, read the underlying caching
project documentation for information about notifying the cache of changes made to stored objects.

To use cacheProvider, you need to include the JARs of the cache implementation in your project:

JBoss Cache 3.2.x

jbosscache-core.jar — JBoss Cache 3.2.x

jgroups.jar — JGroups 2.6.x

Ehcache

ehcache.jar — Ehcache 1.2.3

In EAR deployments of Seam, it is recommended that cache JARs and configuration go directly into the
EAR.

You will also need to provide a configuration file for JBossCache. Place cache-configuration.xml
with an appropriate cache configuration into the classpath — for example, the EJB JAR or WEB-
INF/classes. Refer to the JBossCache documentation for more information about configuring the
JBossCache.

You can find a sample cache-configuration.xml in examples/blog/resources/META-
INF/cache-configuration.xml.

Ehcache will run in its default configuration without a configuration file.

To alter the configuration file in use, configure your cache in components.xml:

Now you can inject the cache into any Seam component:

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:cache="http://jboss.com/products/seam/cache">
 <cache:jboss-cache-provider
 configuration="META-INF/cache/cache-configuration.xml" />
</components>

@Name("chatroomUsers")
@Scope(ScopeType.STATELESS)

public class ChatroomUsers {
 @In CacheProvider cacheProvider;
 @Unwrap public Set<String> getUsers() throws CacheException {
 Set<String> userList =
 (Set<String>) cacheProvider.get("chatroom", "userList");
 if (userList==null) {
 userList = new HashSet<String>();
 cacheProvider.put("chatroom", "userList", userList);
 } return userList;
 }
}

CHAPTER 22. CACHING

329

If you want multiple cache configurations available to your application, use components.xml to
configure multiple cache providers:

22.2. PAGE FRAGMENT CACHING

The <s:cache> tag is Seam's solution to the problem of page fragment caching in JSF. <s:cache>
uses pojoCache internally, so you will need to follow the previous steps — place the JARs in the EAR
and edit additional configuration options — before you can use it.

<s:cache> stores some rendered content that is rarely updated. For example, the welcome page of our
blog displays recent blog entries:

The key lets you store multiple versions of each page fragment. In this case, there is one cached version
per blog. The region determines the cache or region node where all versions are stored. Different
nodes may have differing expiry policies.

The <s:cache> cannot tell when the underlying data is updated, so you will need to manually remove
the cached fragment when a change occurs:

If changes need not be immediately visible to the user, you can set up a short expiry period on the cache
node.

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:cache="http://jboss.com/products/seam/cache">
 <cache:jboss-cache3-provider name="myCache"
 configuration="myown/cache.xml"/>
 <cache:jboss-cache3-provider name="myOtherCache"
 configuration="myother/cache.xml"/>
</components>

<s:cache key="recentEntries-#{blog.id}" region="welcomePageFragments">
 <h:dataTable value="#{blog.recentEntries}" var="blogEntry">
 <h:column>
 <h3>#{blogEntry.title}</h3>
 <div>
 <s:formattedText value="#{blogEntry.body}"/>
 </div>
 </h:column>
 </h:dataTable>
</s:cache>

public void post() {
 ...
 entityManager.persist(blogEntry);
 cacheProvider.remove("welcomePageFragments",
 "recentEntries-" + blog.getId());
}

Seam Reference Guide

330

CHAPTER 23. WEB SERVICES
Seam integrates with JBossWS (JWS) to allow standard Java EE web services to take full advantage of
Seam's contextual framework, including conversational web service support. This chapter guides you
through web service configuration for a Seam environment.

23.1. CONFIGURATION AND PACKAGING

For Seam to create contexts for web service requests, it must first have access to those requests.
org.jboss.seam.webservice.SOAPRequestHandler is a SOAPHandler implementation that
manages the Seam component life cycle during the scope of a web service request.

standard-jaxws-endpoint-config.xml (a configuration file) should be placed in the META-INF
directory of the JAR file that contains the web service classes. This file contains the following SOAP
handler configuration:

23.2. CONVERSATIONAL WEB SERVICES

Seam uses a SOAP header element in both SOAP request and response messages to carry the
conversation ID between the consumer and the service. One example of a web service request
containing a conversation ID is:

<jaxws-config xmlns="urn:jboss:jaxws-config:2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee"
 xsi:schemaLocation=
 "urn:jboss:jaxws-config:2.0 jaxws-config_2_0.xsd">

 <endpoint-config>
 <config-name>Seam WebService Endpoint</config-name>

 <pre-handler-chains>
 <javaee:handler-chain>
 <javaee:protocol-bindings>
 ##SOAP11_HTTP
 </javaee:protocol-bindings>
 <javaee:handler>
 <javaee:handler-name>
 SOAP Request Handler
 </javaee:handler-name>
 <javaee:handler-class>
 org.jboss.seam.webservice.SOAPRequestHandler
 </javaee:handler-class>
 </javaee:handler>
 </javaee:handler-chain>

 </pre-handler-chains>

 </endpoint-config>

</jaxws-config>

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

CHAPTER 23. WEB SERVICES

331

The above SOAP message contains a conversationId element, which contains the conversation ID
for the request — in this case, 2. Because web services can be consumed by a variety of web service
clients written in a variety of languages, the developer is responsible for implementing conversation ID
propagation between individual web services to be used in a single conversation's scope.

The conversationId header element must be qualified with a namespace of
http://www.jboss.org/seam/webservice, or Seam will be unable to read the conversation ID
from the request. An example response to the above request message is:

Note that the response message contains the same conversationId element as the request.

23.2.1. A Recommended Strategy

Since web services must be implemented as either stateless session beans or POJOs, we recommend
that conversational web services implement the web service as a facade for a conversational Seam
component.

 xmlns:seam="http://seambay.example.seam.jboss.org/">

 <soapenv:Header>
 <seam:conversationId
xmlns:seam='http://www.jboss.org/seam/webservice'>
 2
 </seam:conversationId>
 </soapenv:Header>

 <soapenv:Body>
 <seam:confirmAuction/>
 </soapenv:Body>

</soapenv:Envelope>

<env:Envelope xmlns:env='http://schemas.xmlsoap.org/soap/envelope/'>
 <env:Header>
 <seam:conversationId
xmlns:seam='http://www.jboss.org/seam/webservice'>
 2
 </seam:conversationId>
 </env:Header>
 <env:Body>
 <confirmAuctionResponse
 xmlns="http://seambay.example.seam.jboss.org/"/>
 </env:Body>
</env:Envelope>

Seam Reference Guide

332

If the web service is written as a stateless session bean, it can be transformed into a Seam component
by annotating it with @Name. This allows Seam bijection, and other features, to be used in the web
service class itself.

23.3. AN EXAMPLE WEB SERVICE

The example code that follows is from the seamBay example application, which can be found in Seam's
/examples directory, and follows the recommended strategy outlined in the previous section. First, we
will look at the web service class and one of its web service methods:

Here, the web service is a stateless session bean annotated with the JWS annotations from the
javax.jws package, as defined by JSR-181. The @WebService annotation tells the container that this
class implements a web service. The @WebMethod annotation on the login() method identifies the
method as a web service method. The name and serviceName attributes in the @WebService
annotation are optional.

When the web service is a stateless session bean, each method that will be exposed as a web service
method must also be declared in the remote interface of the web service class. In the previous example,
since the AuctionServiceRemote interface is annotated as a @WebService, it must declare the
login() method.

@Stateless
@WebService(name = "AuctionService", serviceName = "AuctionService")
public class AuctionService implements AuctionServiceRemote
{
 @WebMethod
 public boolean login(String username, String password)
 {
 Identity.instance().setUsername(username);
 Identity.instance().setPassword(password);
 Identity.instance().login();
 return Identity.instance().isLoggedIn();
 }

 // snip
}

CHAPTER 23. WEB SERVICES

333

In the previous example, the web service implements a login() method that delegates to Seam's built-
in Identity component. As our recommended strategy suggests, the web service is written as a simple
facade. The real work takes place in a Seam component. This means that business logic is reused
efficiently between web services and other clients.

In the following example, the web service method begins a new conversation by delegating to the
AuctionAction.createAuction() method:

The code from AuctionAction is as follows:

Here, we see how web services can participate in long-running conversations by acting as a facade and
delegating the real work to a conversational Seam component.

23.4. RESTFUL HTTP WEB SERVICES WITH RESTEASY

Seam integrates the RESTEasy implementation of the JAX-RS specification (JSR 311). You can decide
which of the following features are integrated with your Seam application:

RESTEasy bootstrap and configuration, with automatic resource detection. and providers.

SeamResourceServlet-served HTTP/REST requests, without the need for an external servlet or
configuration in web.xml.

Resources written as Seam components with full Seam life cycle management and bijection.

23.4.1. RESTEasy configuration and request serving

First, download the RESTEasy libraries and the jaxrs-api.jar, and deploy them alongside the
integration library (jboss-seam-resteasy.jar) and any other libraries your application requires.

In seam-gen based projects, this can be done by appending jaxrs-api.jar, resteasy-jaxrs.jar
and jboss-seam-resteasy.jar to the deployed-jars.list (war deployment) or deployed-
jars-ear.list (ear deployment) file. For a JBDS based project, copy the libraries mentioned above to
the EarContent/lib (ear deployment) or WebContent/WEB-INF/lib (war deployment) folder and
reload the project in the IDE.

@WebMethod
public void createAuction(String title, String description, int
categoryId)
{
 AuctionAction action =
 (AuctionAction) Component.getInstance(AuctionAction.class, true);
 action.createAuction();
 action.setDetails(title, description, categoryId);
}

@Begin
public void createAuction()
{
 auction = new Auction();
 auction.setAccount(authenticatedAccount);
 auction.setStatus(Auction.STATUS_UNLISTED);
 durationDays = DEFAULT_AUCTION_DURATION;
}

Seam Reference Guide

334

All classes annotated with @javax.ws.rs.Path will automatically be discovered and registered as
HTTP resources at start up. Seam automatically accepts and serves HTTP requests with its built-in
SeamResourceServlet. The URI of a resource is built like so:

The URI begins with the pattern mapped in web.xml for the SeamResourceServlet — in the
examples provided, /seam/resource. Change this setting to expose your RESTful resources
under a different base. Remember that this is a global change, and other Seam resources
(s:graphicImage) will also be served under this base path.

Seam's RESTEasy integration then appends a configurable string to the base path (/rest by
default). So, in the example, the full base path of your resources would be
/seam/resource/rest. We recommend changing this string in your application to something
more descriptive — add a version number to prepare for future REST API upgrades. This allows
old clients to keep the old URI base.

Finally, the resource is made available under the defined @Path. For example, a resource
mapped with @Path("/customer") would be available under
/seam/resource/rest/customer.

The following resource definition would return a plain text representation for any GET request using the
URI http://your.hostname/seam/resource/rest/customer/123:

If these defaults are acceptable, there is no need for additional configuration. However, if required, you
can configure RESTEasy in your Seam application. First, import the resteasy namespace into your
XML configuration file header:

The full base path to your resources is now /seam/resource/restv1/{resource}. Note that your
@Path definitions and mappings do not change. This is an application-wide switch, usually used for
versioning of the HTTP API.

@Path("/customer")
public class MyCustomerResource {

 @GET
 @Path("/{customerId}")
 @Produces("text/plain")
 public String getCustomer(@PathParam("customerId") int id) {
 return ...;
 }

}

<components
 xmlns="http://jboss.com/products/seam/components"
 xmlns:resteasy="http://jboss.com/products/seam/resteasy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/resteasy
 http://jboss.com/products/seam/resteasy-2.2.xsd
 http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.2.xsd">

<resteasy:application resource-path-prefix="/restv1"/>

CHAPTER 23. WEB SERVICES

335

If you want to map the full path in your resources, you can disable base path stripping:

Here, the path of a resource is now mapped with @Path("/seam/resource/rest/customer").
Disabling this feature binds your resource class mappings to a particular deployment scenario. This is
not recommended.

Seam scans your classpath for any deployed @javax.ws.rs.Path resources or
@javax.ws.rs.ext.Provider classes. You can disable scanning and configure these classes
manually like so:

The use-built-in-providers switch enables (default) or disables the RESTEasy built-in providers.
Since these provide plain text, JSON and JAXB marshaling, we recommend that these are left enabled.

RESTEasy supports plain EJBs (EJBs that are not Seam components) as resources. Instead of
configuring the JNDI names in a non-portable fashion in web.xml (see RESTEasy documentation), you
can simply list the EJB implementation classes, not the business interfaces, in components.xml as
shown above. Note that you have to annotate the @Local interface of the EJB with @Path, @GET, and
so on - not the bean implementation class. This allows you to keep your application deployment-portable
with the global Seam jndi-pattern switch on <core:init/>. Note that plain (non-Seam
component) EJB resources will not be found even if scanning of resources is enabled, you always have
to list them manually. Again, this whole paragraph is only relevant for EJB resources that are not also
Seam components and that do not have an @Name annotation.

Finally, you can configure media type and language URI extensions:

<resteasy:application strip-seam-resource-path="false"/>

<resteasy:application
 scan-providers="false"
 scan-resources="false"
 use-builtin-providers="true">

 <resteasy:resource-class-names>
 <value>org.foo.MyCustomerResource</value>
 <value>org.foo.MyOrderResource</value>
 <value>org.foo.MyStatelessEJBImplementation</value>
 </resteasy:resource-class-names>

 <resteasy:provider-class-names>
 <value>org.foo.MyFancyProvider</value>
 </resteasy:provider-class-names>

 </resteasy:application>

<resteasy:application>

 <resteasy:media-type-mappings>
 <key>txt</key>
 <value>text/plain</value>
 </resteasy:media-type-mappings>

 <resteasy:language-mappings>
 <key>deutsch</key><value>de-DE</value>

Seam Reference Guide

336

This definition would map the URI suffix of .txt.deutsch to the additional Accept and Accept-
Language header values, text/plain and de-DE.

23.4.2. Resources and providers as Seam components

Resource and provider instances are, by default, managed by RESTEasy. A resource class will be
instantiated by RESTEasy and serve a single request, after which it will be destroyed. This is the default
JAX-RS life cycle. Providers are instantiated once for the entire application. These are stateless
singletons.

Resources and providers can also be written as Seam components to take advantage of Seam's richer
life cycle management, and bijection and security abilities. Make your resource class into a Seam
component like so:

A customerResource instance is now handled by Seam when a request hits the server. This
component is event-scoped, so its life cycle is identical to that of the JAX-RS. However, the Seam
JavaBean component gives you full injection support, and full access to all other components and
contexts. Session, application, and stateless resource components are also supported. These three
scopes allow you to create an effectively stateless Seam middle-tier HTTP request-processing
application.

You can annotate an interface and keep the implementation free from JAX-RS annotations:

 </resteasy:language-mappings>

</resteasy:application>

@Name("customerResource")
@Path("/customer")
public class MyCustomerResource {

 @In
 CustomerDAO customerDAO;

 @GET
 @Path("/{customerId}")
 @Produces("text/plain")
 public String getCustomer(@PathParam("customerId") int id) {
 return customerDAO.find(id).getName();
 }

}

@Path("/customer")
public interface MyCustomerResource {

 @GET
 @Path("/{customerId}")
 @Produces("text/plain")
 public String getCustomer(@PathParam("customerId") int id);

}

@Name("customerResource")
@Scope(ScopeType.STATELESS)

CHAPTER 23. WEB SERVICES

337

You can use SESSION-scoped Seam components. By default, the session will however be shortened to
a single request. In other words, when an HTTP request is being processed by the RESTEasy
integration code, an HTTP session will be created so that Seam components can utilize that context.
When the request has been processed, Seam will look at the session and decide if the session was
created only to serve that single request (no session identifier has been provided with the request, or no
session existed for the request). If the session has been created only to serve this request, the session
will be destroyed after the request!

Assuming that your Seam application only uses event, application, or stateless components, this
procedure prevents exhaustion of available HTTP sessions on the server. The RESTEasy integration
with Seam assumes by default that sessions are not used, hence anemic sessions would add up as
every REST request would start a session that will only be removed when timed out.

If your RESTful Seam application has to preserve session state across REST HTTP requests, disable
this behavior in your configuration file:

Every REST HTTP request will now create a new session that will only be removed by timeout or explicit
invalidation in your code through Session.instance().invalidate(). It is your responsibility to
pass a valid session identifier along with your HTTP requests, if you want to utilize the session context
across requests.

Conversation-scoped resource components and conversation mapping are not currently supported, but
are planned for future versions of Seam.

Provider classes can also be Seam components. They must be either application-scoped or stateless.

Resources and providers can be EJBs or JavaBeans, like any other Seam component.

EJB Seam components are supported as REST resources. Always annotate the local business interface,
not the EJB implementation class, with JAX-RS annotations. The EJB has to be STATELESS.

NOTE

RESTEasy components do not support hot redeployment. As a result, the components
should never be placed in the src/hot folder. The src/main folder should be used
instead.

public class MyCustomerResourceBean implements MyCustomerResource {

 @In
 CustomerDAO customerDAO;

 public String getCustomer(int id) {
 return customerDAO.find(id).getName();
 }

}

<resteasy:application destroy-session-after-request="false"/>

Seam Reference Guide

338

NOTE

Sub-resources as defined in the JAX RS specification, section 3.4.1, can not be Seam
component instances at this time. Only root resource classes can be registered as Seam
components. In other words, do not return a Seam component instance from a root
resource method.

23.4.3. Securing resources

You can enable the Seam authentication filter for HTTP Basic and Digest authentication in
components.xml:

See the Seam security chapter on how to write an authentication routine.

After successful authentication, authorization rules with the common @Restrict and
@PermissionCheck annotations are in effect. You can also access the client Identity, work with
permission mapping, and so on. All regular Seam security features for authorization are available.

23.4.4. Mapping exceptions to HTTP responses

Section 3.3.4 of the JAX-RS specification defines how JAX RS handles checked and unchecked
exceptions. Integrating RESTEasy with Seam allows you to map exceptions to HTTP response codes
within Seam's pages.xml. If you use pages.xml already, this is easier to maintain than many JAX RS
exception mapper classes.

For exceptions to be handled within Seam, the Seam filter must be executed for your HTTP request. You
must filter all requests in your web.xml, not as a request URI pattern that does not cover your REST
requests. The following example intercepts all HTTP requests and enables Seam exception handling:

To convert the unchecked UnsupportedOperationException thrown by your resource methods to a
501 Not Implemented HTTP status response, add the following to your pages.xml descriptor:

Custom or checked exceptions are handled in the same way:

<web:authentication-filter url-pattern="/seam/resource/rest/*" auth-
type="basic"/>

<filter>
 <filter-name>Seam Filter</filter-name>
 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>Seam Filter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<exception class="java.lang.UnsupportedOperationException">
 <http-error error-code="501">
 <message>The requested operation is not supported</message>
 </http-error>
</exception>

<exception class="my.CustomException" log="false">

CHAPTER 23. WEB SERVICES

339

You do not have to send a HTTP error to the client if an exception occurs. Seam lets you map the
exception as a redirect to a view of your Seam application. Since this feature is typically used for human
clients (web browsers) and not for REST API remote clients, you should pay attention to conflicting
exception mappings in pages.xml.

The HTTP response does pass through the servlet container, so an additional mapping may apply if you
have <error-page> mappings in your web.xml configuration. The HTTP status code would then be
mapped to a rendered HTML error page with status 200 OK.

23.4.5. Exposing entities via RESTful API

Seam makes it really easy to use a RESTful approach for accessing application data. One of the
improvements that Seam introduces is the ability to expose parts of your SQL database for remote
access via plain HTTP calls. For this purpose, the Seam/RESTEasy integration module provides two
components: ResourceHome and ResourceQuery, which benefit from the API provided by the Seam
Application Framework (Chapter 13, The Seam Application Framework). These components allow you
to bind domain model entity classes to an HTTP API.

23.4.5.1. ResourceQuery

ResourceQuery exposes entity querying capabilities as a RESTful web service. By default, a simple
underlying Query component, which returns a list of instances of a given entity class, is created
automatically. Alternatively, the ResourceQuery component can be attached to an existing Query
component in more sophisticated cases. The following example demonstrates how easily
ResourceQuery can be configured:

With this single XML element, a ResourceQuery component is set up. The configuration is
straightforward:

The component will return a list of com.example.User instances.

The component will handle HTTP requests on the URI path /user.

The component will by default transform the data into XML or JSON (based on client's
preference). The set of supported mime types can be altered by using the media-types
attribute, for example:

 <http-error error-code="503">
 <message>Service not available: #
{org.jboss.seam.handledException.message}</message>
 </http-error>
</exception>

<resteasy:resource-query
 path="/user"
 name="userResourceQuery"
 entity-class="com.example.User"/>

<resteasy:resource-query
 path="/user"
 name="userResourceQuery"
 entity-class="com.example.User"
 media-types="application/fastinfoset"/>

Seam Reference Guide

340

Alternatively, if you do not like configuring components using XML, you can set up the component by
extension:

Queries are read-only operations, the resource only responds to GET requests. Furthermore,
ResourceQuery allows clients of a web service to manipulate the resultset of a query using the following
path parameters:

Parameter name Example Description

start /user?start=20 Returns a subset of a database
query result starting with the 20th
entry.

show /user?show=10 Returns a subset of the database
query result limited to 10 entries.

For example, you can send an HTTP GET request to /user?start=30&show=10 to get a list of
entries representing 10 rows starting with row 30.

NOTE

RESTEasy uses JAXB to marshall entities. Thus, in order to be able to transfer them over
the wire, you need to annotate entity classes with @XMLRootElement. Consult the JAXB
and RESTEasy documentation for more information.

23.4.5.2. ResourceHome

Just as ResourceQuery makes Query's API available for remote access, so does ResourceHome for the
Home component. The following table describes how the two APIs (HTTP and Home) are bound
together.

Table 23.1. Bindings in ResourceHome

HTTP method Path Function ResourceHome
method

GET {path}/{id} Read getResource()

POST {path} Create postResource()

PUT {path}/{id} Update putResource()

DELETE {path}/{id} Delete deleteResource()

@Name("userResourceQuery")
@Path("user")
public class UserResourceQuery extends ResourceQuery<User>
{
}

CHAPTER 23. WEB SERVICES

341

You can GET, PUT, and DELETE a particular user instance by sending HTTP requests to
/user/{userId}

Sending a POST request to /user creates a new user entity instance and persists it. Usually,
you leave it up to the persistence layer to provide the entity instance with an identifier value and
thus an URI. Therefore, the URI is sent back to the client in the Location header of the HTTP
response.

The configuration of ResourceHome is very similar to ResourceQuery except that you need to explicitly
specify the underlying Home component and the Java type of the entity identifier property.

Again, you can write a subclass of ResourceHome instead of XML:

For more examples of ResourceHome and ResourceQuery components, take a look at the Seam Tasks
example application, which demonstrates how Seam/RESTEasy integration can be used together with a
jQuery web client. In addition, you can find more code example in the Restbay example, which is used
mainly for testing purposes.

23.4.6. Testing resources and providers

Seam includes a unit testing utility class that helps you create unit tests for a RESTful architecture.
Extend the SeamTest class as usual and use the
ResourceRequestEnvironment.ResourceRequest to emulate HTTP requests/response cycles:

<resteasy:resource-home
 path="/user"
 name="userResourceHome"
 entity-home="#{userHome}"
 entity-id-class="java.lang.Integer"/>

@Name("userResourceHome")
@Path("user")
public class UserResourceHome extends ResourceHome<User, Integer>
{

 @In
 private EntityHome<User> userHome;

 @Override
 public Home<?, User> getEntityHome()
 {
 return userHome;
 }
}

import org.jboss.seam.mock.ResourceRequestEnvironment;
import org.jboss.seam.mock.EnhancedMockHttpServletRequest;
import org.jboss.seam.mock.EnhancedMockHttpServletResponse;
import static
org.jboss.seam.mock.ResourceRequestEnvironment.ResourceRequest;
import static org.jboss.seam.mock.ResourceRequestEnvironment.Method;

public class MyTest extends SeamTest {

 ResourceRequestEnvironment sharedEnvironment;

Seam Reference Guide

342

This test only executes local calls, it does not communicate with the SeamResourceServlet through
TCP. The mock request is passed through the Seam servlet and filters and the response is then available
for test assertions. Overriding the getDefaultHeaders() method in a shared instance of
ResourceRequestEnvironment allows you to set request headers for every test method in the test
class.

Note that a ResourceRequest has to be executed in a @Test method or in a @BeforeMethod
callback. You can not execute it in any other callback, such as @BeforeClass.

 @BeforeClass
 public void prepareSharedEnvironment() throws Exception {
 sharedEnvironment = new ResourceRequestEnvironment(this) {
 @Override
 public Map<String, Object> getDefaultHeaders() {
 return new HashMap<String, Object>() {{
 put("Accept", "text/plain");
 }};
 }
 };
 }

 @Test
 public void test() throws Exception
 {
 //Not shared: new ResourceRequest(new
ResourceRequestEnvironment(this), Method.GET, "/my/relative/uri)

 new ResourceRequest(sharedEnvironment, Method.GET,
"/my/relative/uri)
 {
 @Override
 protected void prepareRequest(EnhancedMockHttpServletRequest
request)
 {
 request.addQueryParameter("foo", "123");
 request.addHeader("Accept-Language", "en_US, de");
 }

 @Override
 protected void onResponse(EnhancedMockHttpServletResponse
response)
 {
 assert response.getStatus() == 200;
 assert response.getContentAsString().equals("foobar");
 }

 }.run();
 }
}

CHAPTER 23. WEB SERVICES

343

CHAPTER 24. REMOTING
Seam uses Asynchronous JavaScript and XML (AJAX) to remotely access components from a web
page. The framework for this functionality requires very little development effort — you can make your
components AJAX-accessible with simple annotations. This chapter describes the steps required to build
an AJAX-enabled web page, and explains the Seam Remoting framework in further detail.

24.1. CONFIGURATION

To use remoting, you must first configure your Seam Resource Servlet in your web.xml file:

Next, import the necessary JavaScript into your web page. A minimum of two scripts must be imported.
The first contains all client-side framework code, which enables remoting functionality:

The second contains the stubs and type definitions for the components you wish to call. This is
generated dynamically, based on the local interface of your components, and includes type definitions for
all classes that can be used to call the remotable methods of the interface. The script name reflects your
component name. For example, if you annotate a stateless session bean with
@Name("customerAction"), your script tag should look like this:

If you want to access more than one component from the same page, include them all as parameters of
your script tag:

You can also use the s:remote tag to import the required JavaScript. Separate each component or
class name that you want to import with a comma:

<servlet>
 <servlet-name>Seam Resource Servlet</servlet-name>
 <servlet-class>
 org.jboss.seam.servlet.SeamResourceServlet
 </servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>Seam Resource Servlet</servlet-name>
 <url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

<script type="text/javascript"
 src="seam/resource/remoting/resource/remote.js">
</script>

<script type="text/javascript"
 src="seam/resource/remoting/interface.js?customerAction">
</script>

<script type="text/javascript"
 src="seam/resource/remoting/interface.js?
customerAction&accountAction">
</script>

<s:remote include="customerAction,accountAction"/>

Seam Reference Guide

344

24.2. THE SEAM OBJECT

Client-side component interaction is performed with the Seam JavaScript object defined in remote.js.
This is used to make asynchronous calls against your component. It is split into two areas of
functionality: Seam.Component contains methods for working with components and Seam.Remoting
contains methods for executing remote requests. The easiest way to become familiar with this object is
to start with a simple example.

24.2.1. A Hello World example

Procedure 24.1. Hello World Example

1. To show you how the Seam object works, we will first create a new Seam component called
helloAction:

2. We will also need to create a local interface for our new component. In particular, note the
@WebRemote annotation, as this is required to make our method accessible via remoting:

3. This is all the server-side code we require. Next, create a new web page and import the
helloAction component:

4. Add a button to the page to make this an interactive user experience:

5. You will also need script that performs an action when the button is clicked:

@Stateless
@Name("helloAction")
public class HelloAction implements HelloLocal {
 public String sayHello(String name) {
 return "Hello, " + name;
 }
}

@Local
public interface HelloLocal {
 @WebRemote
 public String sayHello(String name);
}

<s:remote include="helloAction"/>

<button onclick="javascript:sayHello()">Say Hello</button>

<script type="text/javascript">
function sayHello() {
 var name = prompt("What is your name?");
 Seam.Component.getInstance("helloAction").sayHello(name,
sayHelloCallback);
}

function sayHelloCallback(result) {

CHAPTER 24. REMOTING

345

6. Now deploy your application and browse to your page. Click the button, and enter a name when
prompted. A message box will display the "Hello" message, confirming the call's success. (You
can find the full source code for this Hello World example in Seam's
/examples/remoting/helloworld directory.)

You can see from the JavaScript code listing that we have implemented two methods. The first method
prompts the user for their name, and makes a remote request. Look at the following line:

The first section of this line (Seam.Component.getInstance("helloAction")) returns a proxy, or
stub, for our helloAction component. The remainder of the line
(sayHello(name,sayHelloCallback);) invokes our component methods against the stub.

The whole line invokes the sayHello method of our component, passing in name as a parameter. The
second parameter, sayHelloCallback, is not a parameter of our component's sayHello method — it
tells the Seam Remoting framework that, once a response to the request is received, the response
should be passed to the sayHelloCallback JavaScript method. (This callback parameter is optional;
you can leave it out if you are calling a method with a void return type, or if the result of the request is
not important.)

When the sayHelloCallback method receives the response to our remote request, it displays an alert
message with the result of our method call.

24.2.2. Seam.Component

The Seam.Component JavaScript object provides a number of client-side methods for working with your
Seam components. The two main methods, newInstance() and getInstance() are documented
more thoroughly in the sections following. The main difference between them is that newInstance()
will always create a new instance of a component type, and getInstance() will return a singleton
instance.

24.2.2.1. Seam.Component.newInstance()

Use this method to create a new instance of an entity or JavaBean component. The object returned will
have the same getter/setter methods as its server-side counterpart. You can also access its fields
directly. For example:

 alert(result);
}
</script>

Seam.Component.getInstance("helloAction").sayHello(name,
sayHelloCallback);

@Name("customer")
@Entity
public class Customer implements Serializable
{
 private Integer customerId;
 private String firstName;
 private String lastName;

 @Column public Integer getCustomerId() {
 return customerId;
 }

Seam Reference Guide

346

To create a client-side Customer you would write the following code:

From here, you can set the fields of the customer object.

24.2.2.2. Seam.Component.getInstance()

The getInstance() method is used to refer to a Seam session bean component stub, which can then
be used to remotely execute methods against your component. This method returns a singleton for the
specified component, so calling it twice in a row with the same component name will return the same
instance of the component.

To continue the previous example, if we have created a new customer and we want to save it, we pass
it to the saveCustomer() method of our customerAction component:

24.2.2.3. Seam.Component.getComponentName()

Passing an object into this method returns the component name, if it is a component, or null if it is not.

 public void setCustomerId(Integer customerId} {
 this.customerId = customerId;
 }

 @Column public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 @Column public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
}

var customer = Seam.Component.newInstance("customer");

customer.setFirstName("John"); // Or you can set the fields directly
// customer.lastName = "Smith";

Seam.Component.getInstance("customerAction").saveCustomer(customer);

if (Seam.Component.getComponentName(instance) == "customer")
 alert("Customer");
else if (Seam.Component.getComponentName(instance) == "staff")
 alert("Staff member");

CHAPTER 24. REMOTING

347

24.2.3. Seam.Remoting

Most of the client side functionality for Seam Remoting is held within the Seam.Remoting object. You
should not need to directly call many of its methods, but there are several that are useful:

24.2.3.1. Seam.Remoting.createType()

If your application contains or uses JavaBean classes that are not Seam components, you may need to
create these types on the client side to pass as parameters into your component method. Use the
createType() method to create an instance of your type. Pass in the fully-qualified Java class name
as a parameter:

24.2.3.2. Seam.Remoting.getTypeName()

This method is the non-component equivalent of Seam.Component.getComponentName(). It returns
the name of the type for an object instance, or null if the type is not known. The name is the fully-
qualified name of the type's Java class.

24.3. EVALUATING EL EXPRESSIONS

Seam Remoting also supports EL expression evaluation, which is another convenient method of
retrieving data from the server. The Seam.Remoting.eval() function lets the EL expression be
remotely evaluated on the server, and returns the resulting value to a client-side callback method. This
function accepts two parameters: the EL expression to evaluate, and the callback method to invoke with
the expression value. For example:

Here, Seam evaluates the #{customers} expression, and the value of the expression (in this case, a
list of Customer objects) is returned to the customersCallback() method. Remember, objects
returned this way must have their types imported with s:remote for you to work with them in
JavaScript. To work with a list of customer objects, you must be able to import the customer type:

24.4. CLIENT INTERFACES

In the previous configuration section, the stub for our component is imported into our page with either
seam/resource/remoting/interface.js, or with the s:remote tag:

var widget = Seam.Remoting.createType("com.acme.widgets.MyWidget");

function customersCallback(customers) {
 for (var i = 0; i < customers.length; i++) {
 alert("Got customer: " + customers[i].getName());
 }
}

Seam.Remoting.eval("#{customers}", customersCallback);

<s:remote include="customer"/>

<script type="text/javascript"
 src="seam/resource/remoting/interface.js?customerAction">
</script>

Seam Reference Guide

348

Including this script generates the interface definitions for our component, plus any other components or
types required to execute the methods of our component, and makes them available for the remoting
framework's use.

Two types of stub can be generated: executable stubs, and type stubs. Executable stubs are behavioral,
and execute methods against your session bean components. Type stubs contain state, and represent
the types that can be passed in as parameters or returned as results.

The type of stub that is generated depends upon the type of your Seam component. If the component is
a session bean, an executable stub will be generated. If it is an entity or JavaBean, a type stub will be
generated. However, if your component is a JavaBean and any of its methods are annotated with
@WebRemote, an executable stub will be generated. This lets you call your JavaBean component's
methods in a non-EJB environment, where you do not have access to session beans.

24.5. THE CONTEXT

The Seam Remoting Context contains additional information that is sent and received as part of a
remoting request or response cycle. At this point, it contains only the conversation ID, but may be
expanded in future.

24.5.1. Setting and reading the Conversation ID

If you intend to use remote calls within a conversation's scope, then you must be able to read or set the
conversation ID in the Seam Remoting context. To read the conversation ID after making a remote
request, call Seam.Remoting.getContext().getConversationId(). To set the conversation ID
before making a request, call Seam.Remoting.getContext().setConversationId().

If the conversation ID has not been explicitly set with
Seam.Remoting.getContext().setConversationId(), then the first valid conversation ID
returned by any remoting call is assigned automatically. If you are working with multiple conversations
within your page, you may need to set your conversation ID explicitly before each call. Single
conversations do not require explicit ID setting.

24.5.2. Remote calls within the current conversation scope

Under some circumstances, you may need to make a remote call within the scope of the current view's
conversation. To do so, you must explicitly set the conversation ID to that of the view before making the
remote call. The following JavaScript will set the conversation ID being used for remote calls to the
current view's conversation ID:

24.6. BATCH REQUESTS

Seam Remoting lets you execute multiple component calls with a single request. We recommend using
this feature when you need to reduce network traffic.

The Seam.Remoting.startBatch() method starts a new batch. Any component calls executed after
starting a batch are queued, rather than being sent immediately. When all the desired component calls
have been added to the batch, the Seam.Remoting.executeBatch() method sends a single request

<s:remote include="customerAction"/>

Seam.Remoting.getContext().setConversationId(#{conversation.id});

CHAPTER 24. REMOTING

349

containing all of the queued calls to the server, where they will be executed in order. After the calls have
been executed, a single response containing all return values is returned to the client, and the callback
functions are triggered in their execution order.

If you begin a batch, and then decide you do not want to send it, the Seam.Remoting.cancelBatch()
method discards any queued calls and exits the batch mode.

For an example of batch use, see /examples/remoting/chatroom.

24.7. WORKING WITH DATA TYPES

24.7.1. Primitives / Basic Types

This section describes the support for basic data types. On the server side, these values are generally
compatible with either their primitive type, or their corresponding wrapper class.

24.7.1.1. String

Use JavaScript String objects to set String parameter values.

24.7.1.2. Number

Seam supports all Java-supported number types. On the client side, number values are always
serialized as their String representation. They are converted to the correct destination type on the server
side. Conversion into either a primitive or wrapper type is supported for Byte, Double, Float,
Integer, Long and Short types.

24.7.1.3. Boolean

Booleans are represented client-side by JavaScript Boolean values, and server-side by a Java Boolean.

24.7.2. JavaBeans

In general, these are either Seam entity or JavaBean components, or some other non-component class.
Use the appropriate method to create a new instance of the object —
Seam.Component.newInstance() for Seam components, or Seam.Remoting.createType() for
anything else.

Only objects created by either of these two methods should be used as parameter values, where the
parameter is not one of the preexisting valid types. You may encounter component methods where the
exact parameter type cannot be determined, such as:

In this case, the interface for myAction will not include myWidget, because it is not directly referenced
by any of its methods. Therefore, you cannot pass in an instance of your myWidget component unless
you import it explicitly:

@Name("myAction")
public class MyAction implements MyActionLocal {
 public void doSomethingWithObject(Object obj) {
 // code
 }
}

Seam Reference Guide

350

This allows a myWidget object to be created with Seam.Component.newInstance("myWidget"),
which can then be passed to myAction.doSomethingWithObject().

24.7.3. Dates and Times

Date values are serialized into a String representation that is accurate to the millisecond. On the client
side, use a JavaScript Date object to work with date values. On the server side, use any
java.util.Date class (or a descendant class, such as java.sql.Date or java.sql.Timestamp.)

24.7.4. Enums

On the client side, enums are treated similarly to Strings. When setting the value for an enum parameter,
use the String representation of the enum. Take the following component as an example:

To call the paint() method with the color red, pass the parameter value as a String literal:

The inverse is also true. That is, if a component method returns an enum parameter (or contains an
enum field anywhere in the returned object graph), then on the client-side it will be represented as a
String.

24.7.5. Collections

24.7.5.1. Bags

Bags cover all collection types, including arrays, collections, lists, and sets, but excluding maps — see
the section following. They are implemented client-side as a JavaScript array, both when called and
returned. The remoting framework on the server side can convert the bag to an appropriate type for the
component method call.

24.7.5.2. Maps

The Seam Remoting framework provides simple map support where no native support is available in
JavaScript. To create a map that can be used as a parameter to a remote call, create a new
Seam.Remoting.Map object:

This JavaScript implementation provides basic methods for working with Maps: size(), isEmpty(),
keySet(), values(), get(key), put(key, value), remove(key) and contains(key). Each of
these methods is equivalent to the Java method of the same name. Where the method returns a

<s:remote include="myAction,myWidget"/>

@Name("paintAction")
public class paintAction implements paintLocal {
 public enum Color {red, green, blue, yellow, orange, purple};
 public void paint(Color color) {
 // code
 }
}

Seam.Component.getInstance("paintAction").paint("red");

var map = new Seam.Remoting.Map();

CHAPTER 24. REMOTING

351

collection, as in keySet() and values(), a JavaScript array object will be returned that contains the
key or value objects (respectively).

24.8. DEBUGGING

To help you track down bugs, you can enable a debug mode, which displays the contents of all packets
sent between client and server in a pop-up window. To enable debug mode, either execute the
setDebug() method in JavaScript, like so:

Or configure it in components.xml:

To turn off debug mode, call setDebug(false). If you want to write your own messages to the debug
log, call Seam.Remoting.log(message).

24.9. HANDLING EXCEPTIONS

When invoking a remote component method, you can specify an exception handler to process the
response in the event of an exception during component invocation. To specify an exception handler
function, include a reference to it after the callback parameter in your JavaScript:

If you do not have a callback handler defined, you must specify null in its place:

The exception object that is passed to the exception handler exposes one method, getMessage(),
which returns the exception message belonging to the exception thrown by the @WebRemote method.

24.10. THE LOADING MESSAGE

You can modify, define custom rendering for, or even remove the default loading message that appears
in the top right corner of the screen.

24.10.1. Changing the message

Seam.Remoting.setDebug(true);

<remoting:remoting debug="true"/>

var callback = function(result) {
 alert(result);
};
var exceptionHandler = function(ex) {
 alert("An exception occurred: " + ex.getMessage());
};
Seam.Component.getInstance("helloAction")
 .sayHello(name, callback, exceptionHandler);

var exceptionHandler = function(ex) {
 alert("An exception occurred: " + ex.getMessage());
};
Seam.Component.getInstance("helloAction")
 .sayHello(name, null, exceptionHandler);

Seam Reference Guide

352

To change the message from the default "Please Wait...", set the value of
Seam.Remoting.loadingMessage:

24.10.2. Hiding the loading message

To completely suppress the display of the loading message, override the implementation of
displayLoadingMessage() and hideLoadingMessage() with actionless functions:

24.10.3. A Custom Loading Indicator

It is also possible to override the loading indicator to display an animated icon, or anything else that you
want. To do so, override the displayLoadingMessage() and hideLoadingMessage() messages
with your own implementations:

24.11. CONTROLLING WHAT DATA IS RETURNED

When a remote method is executed, the result is serialized into an XML response, which is returned to
the client. This response is then unmarshaled by the client into a JavaScript object. For complex types
(such as JavaBeans) that include references to other objects, all referenced objects are also serialized
as part of the response. These objects can reference other objects, which can reference other objects,
and so on — so, if left unchecked, this object "graph" can be enormous.

For this reason, and to prevent sensitive information being exposed to the client, Seam Remoting lets
you constrain the object graph by specifying the exclude field of the remote method's @WebRemote
annotation. This field accepts a String array containing one or more paths specified with dot notation.
When invoking a remote method, the objects in the result's object graph that match these paths are
excluded from the serialized result packet.

The examples that follow are all based on this Widget class:

Seam.Remoting.loadingMessage = "Loading...";

// do not display the loading indicator
Seam.Remoting.displayLoadingMessage = function() {};
Seam.Remoting.hideLoadingMessage = function() {};

Seam.Remoting.displayLoadingMessage = function() {
 // Write code here to display the indicator
};
Seam.Remoting.hideLoadingMessage = function() {
 // Write code here to hide the indicator
};

@Name("widget")
public class Widget {
 private String value;
 private String secret;
 private Widget child;
 private Map<String,Widget> widgetMap;
 private List<Widget> widgetList;

 // getters and setters for all fields

CHAPTER 24. REMOTING

353

24.11.1. Constraining normal fields

If your remote method returns an instance of Widget, but you do not want to expose the secret field
because it contains sensitive information, you would constrain it like so:

The value "secret" refers to the secret field of the returned object.

Now, note that the returned Widget value has a field child that is also a Widget. If we want to hide the
child's secret value, rather than the field itself, we can use dot notation to specify this field's path
within the result object's graph:

24.11.2. Constraining Maps and Collections

Objects within an object graph can also exist in a Map or a Collection (that is, a List, a Set, an Array,
etc.). Collections are treated like any other field — for example, if our Widget contained a list of other
Widgets in its widgetList field, we would constrain the secret field of the Widgets in this list with
the following notation:

To constrain a Map's key or value, the notation is slightly different. Appending [key] after the Map's field
name constrains the Map's key object values, while [value] constrains the value object values. The
following example demonstrates how the values of the widgetMap field have their secret field
constrained:

24.11.3. Constraining objects of a specific type

You can use square brackets to constrain the fields of an object type regardless of its location in the
object graph. If the object is a Seam component, use the name of the component; if not, use the fully-
qualified class name, like so:

24.11.4. Combining Constraints

Constraints can also be combined to filter objects from multiple paths within the object graph:

@WebRemote(exclude = {"secret"})
public Widget getWidget();

@WebRemote(exclude = {"child.secret"})
public Widget getWidget();

@WebRemote(exclude = {"widgetList.secret"})
public Widget getWidget();

@WebRemote(exclude = {"widgetMap[value].secret"})
public Widget getWidget();

@WebRemote(exclude = {"[widget].secret"})
public Widget getWidget();

@WebRemote(exclude = {"widgetList.secret", "widgetMap[value].secret"})
public Widget getWidget();

Seam Reference Guide

354

24.12. TRANSACTIONAL REQUESTS

By default, no transaction is active during a remoting request. If you wish to update the database during
a remoting request, you must annotate the @WebRemote method with @Transactional, like so:

24.13. JMS MESSAGING

Seam Remoting provides experimental support for JMS Messaging. This section describes currently-
implemented JMS support. Note that this may change in the future. At present, we do not recommend
using this feature within a production environment.

24.13.1. Configuration

Before you can subscribe to a JMS topic, you must first configure a list of the topics that Seam Remoting
can subscribe to. List the topics under
org.jboss.seam.remoting.messaging.subscriptionRegistry. allowedTopics in
seam.properties, web.xml or components.xml:

24.13.2. Subscribing to a JMS Topic

The following example demonstrates how to subscribe to a JMS Topic:

The Seam.Remoting.subscribe() method accepts two parameters: the name of the JMS topic to
subscribe to, and the callback function to invoke when a message is received.

Two message types are supported: Text messages, and Object messages. To test for the message type
that is passed to your callback function, use the instanceof operator. This tests whether the message
is a Seam.Remoting.TextMessage or Seam.Remoting.ObjectMessage. A TextMessage
contains the text value in its text field. (You can also fetch this value by calling the object's getText()
method.) An ObjectMessage contains its object value in its value field. (You can also fetch this value
by calling the object's getValue() method.)

24.13.3. Unsubscribing from a Topic

To unsubscribe from a topic, call Seam.Remoting.unsubscribe() and pass in the topic name:

@WebRemote
@Transactional(TransactionPropagationType.REQUIRED)
 public void updateOrder(Order order) {
 entityManager.merge(order);
}

<remoting:remoting poll-timeout="5" poll-interval="1"/>

function subscriptionCallback(message) {
 if (message instanceof Seam.Remoting.TextMessage)
 alert("Received message: " + message.getText());
}
Seam.Remoting.subscribe("topicName", subscriptionCallback);

Seam.Remoting.unsubscribe("topicName");

CHAPTER 24. REMOTING

355

24.13.4. Tuning the Polling Process

Polling can be controlled and modified with two parameters.

Seam.Remoting.pollInterval controls how long to wait between subsequent polls for new
messages. This parameter is expressed in seconds, and its default setting is 10.

Seam.Remoting.pollTimeout is also expressed in seconds. It controls how long a request to the
server should wait for a new message before timing out and sending an empty response. Its default is 0
seconds, which means that when the server is polled, if there are no messages ready for delivery, an
empty response will be immediately returned.

Use caution when setting a high pollTimeout value. Each request that has to wait for a message uses
a server thread until either the message is received, or the request times out. If many such requests are
served simultaneously, a large number of server threads will be used.

We recommend setting these options in components.xml, but they can be overridden with JavaScript if
desired. The following example demonstrates a more aggressive polling method. Set these parameters
to values that suit your application:

In components.xml:

With Java:

<remoting:remoting poll-timeout="5" poll-interval="1"/>

// Only wait 1 second between receiving a poll response and sending
// the next poll request.
Seam.Remoting.pollInterval = 1;
// Wait up to 5 seconds on the server for new messages
Seam.Remoting.pollTimeout = 5;

Seam Reference Guide

356

CHAPTER 25. SEAM AND THE GOOGLE WEB TOOLKIT

WARNING

Technology Preview features are not fully supported under Red Hat subscription
level agreements (SLAs), may not be functionally complete, and are not intended for
production use. However, these features provide early access to upcoming product
innovations, enabling customers to test functionality and provide feedback during
the development process. As Red Hat considers making future iterations of
Technology Preview features generally available, we will provide commercially
reasonable efforts to resolve any reported issues that customers experience when
using these features.

If you prefer to develop dynamic AJAX (Asynchronous Java and XML) applications with the Google Web
Toolkit (GWT), Seam provides an integration layer that allows GWT widgets to interact directly with
Seam components.

In this section, we assume you are already familiar with GWT Tools, and focus only on the Seam
integration. You can find more information at http://code.google.com/webtoolkit/ .

25.1. CONFIGURATION

You do not need to make any configuration changes to use GWT in a Seam application — all you need
to do is install the Seam Resource Servlet. See Chapter 28, Configuring Seam and packaging Seam
applications for details.

25.2. PREPARING YOUR COMPONENT

To prepare a Seam component to be called with GWT, you must first create both synchronous and
asynchronous service interfaces for the methods you wish to call. Both interfaces should extend the
GWT interface com.google.gwt.user.client.rpc.RemoteService:

The asynchronous interface should be identical, except for an additional AsyncCallback parameter for
each of the methods it declares:

The asynchronous interface (in this case, MyServiceAsync) is implemented by GWT, and should never
be implemented directly.

The next step is to create a Seam component that implements the synchronous interface:

public interface MyService extends RemoteService {
 public String askIt(String question);
}

public interface MyServiceAsync extends RemoteService {
 public void askIt(String question, AsyncCallback callback);
}

CHAPTER 25. SEAM AND THE GOOGLE WEB TOOLKIT

357

http://code.google.com/webtoolkit/

The Seam component's name must match the fully-qualified name of the GWT client interface (as
shown), or the Seam Resource Servlet will not be able to find it when a client makes a GWT call.
Methods that GWT will make accessible must be annotated with @WebRemote.

25.3. HOOKING UP A GWT WIDGET TO THE SEAM COMPONENT

Next, write a method that returns the asynchronous interface to the component. This method can be
located inside the widget class, and will be used by the widget to obtain a reference to the asynchronous
client stub:

Finally, write the widget code that invokes the method on the client stub. The following example creates
a simple user interface with a label, text input, and a button:

@Name("org.jboss.seam.example.remoting.gwt.client.MyService")
public class ServiceImpl implements MyService {

 @WebRemote
 public String askIt(String question) {

 if (!validate(question)) {
 throw new IllegalStateException("Hey, this should not happen, " +
 "I checked on the client, but " +
 "it's always good to double
check.");
 }
 return "42. Its the real question that you seek now.";
 }

 public boolean validate(String q) {
 ValidationUtility util = new ValidationUtility();
 return util.isValid(q);
 }
}

private MyServiceAsync getService() {
 String endpointURL = GWT.getModuleBaseURL() + "seam/resource/gwt";

 MyServiceAsync svc = (MyServiceAsync) GWT.create(MyService.class);
 ((ServiceDefTarget) svc).setServiceEntryPoint(endpointURL);
 return svc;
}

public class AskQuestionWidget extends Composite {
 private AbsolutePanel panel = new AbsolutePanel();

 public AskQuestionWidget() {
 Label lbl = new Label("OK, what do you want to know?");
 panel.add(lbl);
 final TextBox box = new TextBox();
 box.setText("What is the meaning of life?");
 panel.add(box);
 Button ok = new Button("Ask");

 ok.addClickListener(new ClickListener() {

Seam Reference Guide

358

When clicked, this button invokes the askServer() method, passing the contents of the input text. In
this example, it also validates that the input is a valid question. The askServer() method acquires a
reference to the asynchronous client stub (returned by the getService() method) and invokes the
askIt() method. The result (or error message, if the call fails) is shown in an alert window.

The complete code for this example can be found in the Seam distribution in the
examples/remoting/gwt directory.

25.4. GWT ANT TARGETS

To deploy GWT applications, you must also perform compilation to JavaScript. This compacts and
obfuscates the code. You can use an Ant utility instead of the command line or GUI utility provided by
GWT. To do so, you must have GWT downloaded, and the Ant task JAR in your Ant classpath.

Place the following near the top of your Ant file:

 public void onClick(Widget w) {
 ValidationUtility valid = new ValidationUtility();
 if (!valid.isValid(box.getText())) {
 Window.alert("A question has to end with a '?'");
 } else {
 askServer(box.getText());
 }
 }
 });
 panel.add(ok);

 initWidget(panel);
 }

 private void askServer(String text) {
 getService().askIt(text, new AsyncCallback() {
 public void onFailure(Throwable t) {
 Window.alert(t.getMessage());
 }

 public void onSuccess(Object data) {
 Window.alert((String) data);
 }
 });
}

...

<taskdef uri="antlib:de.samaflost.gwttasks"
 resource="de/samaflost/gwttasks/antlib.xml"

CHAPTER 25. SEAM AND THE GOOGLE WEB TOOLKIT

359

Create a build.properties file containing:

gwt.home=/gwt_home_dir

This must point to the directory in which GWT is installed. Next, create a target:

When called, this target compiles the GWT application and copies it to the specified directory (likely in
the webapp section of your WAR).

NOTE

Never edit the code generated by gwt-compile — if you need to edit, do so in the GWT
source directory.

We highly recommend using the hosted mode browser included in the GWT if you plan to develop
applications with the GWT.

 classpath="./lib/gwttasks.jar"/>
<property file="build.properties"/>

<!-- the following are handy utilities for doing GWT development.
 To use GWT, you will of course need to download GWT seperately -->

<target name="gwt-compile">
 <!-- in this case, we are "re homing" the gwt generated stuff, so
 in this case we can only have one GWT module - we are doing this
 deliberately to keep the URL short -->
 <delete>
 <fileset dir="view"/>
 </delete>
 <gwt:compile outDir="build/gwt"
 gwtHome="${gwt.home}"
 classBase="${gwt.module.name}"
 sourceclasspath="src"/>
 <copy todir="view">
 <fileset dir="build/gwt/${gwt.module.name}"/>
 </copy>
</target>

Seam Reference Guide

360

CHAPTER 26. SPRING FRAMEWORK INTEGRATION
The Spring Framework is part of the Seam inversion-of-control (IoC) module. It allows easy migration of
Spring-based projects to Seam, and benefits Spring applications with Seam features, such as
conversations and a more sophisticated persistence context management.

NOTE

The Spring integration code is included in the jboss-seam-ioc library. This library is a
required dependency for all Seam-Spring integration techniques covered in this chapter.

Seam's support for Spring gives you:

Seam component injection into Spring beans,

Spring bean injection into Seam components,

Spring bean to Seam component transformation,

the ability to place Spring beans in any Seam context,

the ability to start a spring WebApplicationContext with a Seam component,

support for using Spring PlatformTransactionManagement with your Seam-based applications,

support for using a Seam-managed replacement for Spring's
OpenEntityManagerInViewFilter and OpenSessionInViewFilter, and

support for backing @Asynchronous calls with Spring TaskExecutors.

26.1. INJECTING SEAM COMPONENTS INTO SPRING BEANS

Inject Seam component instances into Spring beans with the <seam:instance/> namespace handler.
To enable the Seam namespace handler, the Seam namespace must first be added to the Spring beans
definition file:

Any Seam component can now be injected into any Spring bean, like so:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:seam="http://jboss.com/products/seam/spring-seam"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd
 http://jboss.com/products/seam/spring-seam
 http://jboss.com/products/seam/spring-seam-2.2.xsd">

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
 <property name="someProperty">
 <seam:instance name="someComponent"/>
 </property>
</bean>

CHAPTER 26. SPRING FRAMEWORK INTEGRATION

361

You can use an EL expression instead of a component name:

You can inject a Seam component instance into a Spring bean by using a Spring bean ID, like so:

However, Spring, unlike Seam, was not designed to support a stateful component model with multiple
contexts. Spring injection does not occur at method invocation time, but when the Spring bean is
instantiated.

The instance available when the bean is instantiated will be used for the entire life of the bean. Say you
inject a Seam conversation-scoped component instance directly into a singleton Spring bean — that
singleton will hold a reference to the same instance long after the conversation is over. This is called
scope impedance.

Seam bijection maintains scope impedance naturally as an invocation flows through the system. In
Spring, we must inject a proxy of the Seam component, and resolve the reference when the proxy is
invoked.

The <seam:instance/> tag lets us automatically proxy the Seam component.

Here, we see one example of using a Seam-managed persistence context from a Spring bean. See the
section on Section 26.6, “Using a Seam-Managed Persistence Context in Spring” for a more robust way
to use Seam-managed persistence contexts as a replacement for the Spring
OpenEntityManagerInView filter.

26.2. INJECTING SPRING BEANS INTO SEAM COMPONENTS

You can inject a Spring bean into a Seam component instance either by using an EL expression, or by
making the Spring bean a Seam component.

The simplest approach is to access the Spring beans with EL.

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
 <property name="someProperty">
 <seam:instance name="#{someExpression}"/>
 </property>
</bean>

<seam:instance name="someComponent" id="someSeamComponentInstance"/>

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
 <property name="someProperty" ref="someSeamComponentInstance">
</bean>

<seam:instance id="seamManagedEM"
 name="someManagedEMComponent"
 proxy="true"/>

<bean id="someSpringBean" class="SomeSpringBeanClass">
 <property name="entityManager" ref="seamManagedEM">
</bean>

Seam Reference Guide

362

The Spring DelegatingVariableResolver assists Spring integration with JavaServer Faces (JSF).
This VariableResolver uses EL with bean IDs to make Spring beans available to JSF. You will need
to add the DelegatingVariableResolver to faces-config.xml:

You can then inject Spring beans using @In:

Spring beans are not limited to injection. They can be used wherever EL expressions are used in Seam:
process and pageflow definitions, working memory assertions, etc.

26.3. MAKING A SPRING BEAN INTO A SEAM COMPONENT

The <seam:component/> namespace handler can be used to transform any Spring bean into a Seam
component. Just add the <seam:component/> tag to the declaration of the bean that you want to make
into a Seam component:

By default, <seam:component/> creates a stateless Seam component with the class and name
provided in the bean definition. Occasionally — when a FactoryBean is used, for example — the
Spring bean class may differ from the class listed in the bean definition. In this case, specify the class
explicitly. You should also explicitly specify a Seam component name where there is a potential naming
conflict.

If you want the Spring bean to be managed in a particular Seam scope, use the scope attribute of
<seam:component/>. If the Seam scope specified is anything other than STATELESS, you must scope
your Spring bean to prototype. Pre-existing Spring beans usually have a fundamentally stateless
character, so this attribute is not usually necessary.

26.4. SEAM-SCOPED SPRING BEANS

With the Seam integration package, you can also use Seam's contexts as Spring 2.0-style custom
scopes, which lets you declare any Spring bean in any Seam context. However, because Spring's
component model was not built to support statefulness, this feature should be used with care. In
particular, there are problems with clustering session- or conversation-scoped Spring beans, and care
must be taken when injecting a bean or component from a wider scope into a bean of narrower scope.

Specify <seam:configure-scopes/> in a Spring bean factory configuration to make all Seam scopes
available to Spring beans as custom scopes. To associate a Spring bean with a particular Seam scope,
specify the desired scope in the scope attribute of the bean definition.

<application>
 <variable-resolver>
 org.springframework.web.jsf.DelegatingVariableResolver
 </variable-resolver>
</application>

@In("#{bookingService}")
private BookingService bookingService;

<bean id="someSpringBean" class="SomeSpringBeanClass" scope="prototype">
 <seam:component/>
</bean>

<!-- Only needs to be specified once per bean factory-->

CHAPTER 26. SPRING FRAMEWORK INTEGRATION

363

You can change the scope name's prefix by specifying the prefix attribute in the configure-scopes
definition. (The default prefix is seam..)

By default, a Spring component instance that is registered this way is not created automatically when
referenced with @In. To automatically create an instance, you must either specify @In(create=true)
at the injection point (to auto-create a specific bean), or use the default-auto-create attribute of
configure-scopes to auto-create all Seam-scoped Spring beans.

The latter approach lets you inject Seam-scoped Spring beans into other Spring beans without using
<seam:instance/>. However, you must be careful to maintain scope impedance. Normally, you would
specify <aop:scoped-proxy/> in the bean definition, but Seam-scoped Spring beans are not
compatible with <aop:scoped-proxy/>. Therefore, to inject a Seam-scoped Spring bean into a
singleton, use <seam:instance/>:

26.5. USING SPRING PLATFORMTRANSACTIONMANAGEMENT

Spring's extensible transaction management provides support for many transaction APIs, including the
Java Persistence API (JPA), Hibernate, Java Data Objects (JDO), and Java Transaction API (JTA). It
also exposes support for many advanced features such as nested transactions. Spring also provides
tight integration with many application server TransactionManagers, such as Websphere and Weblogic,
and supports full Java EE transaction propagation rules, such as REQUIRES_NEW and NOT_SUPPORTED.
See the Spring Documentation for further information.

To configure Seam to use Spring transactions, enable the SpringTransaction component, like so:

The spring:spring-transaction component will utilizes Spring's transaction synchronization
capabilities for synchronization callbacks.

26.6. USING A SEAM-MANAGED PERSISTENCE CONTEXT IN SPRING

Some of Seam's most powerful features are its conversation scope, and the ability to keep an
EntityManager open for the life of a conversation. These eliminate many problems associated with

<seam:configure-scopes/>

...

<bean id="someSpringBean" class="SomeSpringBeanClass"
 scope="seam.CONVERSATION"/>

<bean id="someSpringBean" class="SomeSpringBeanClass"
scope="seam.CONVERSATION"/>

...

<bean id="someSingleton">
 <property name="someSeamScopedSpringBean">
 <seam:instance name="someSpringBean" proxy="true"/>
 </property>
</bean>

<spring:spring-transaction
 platform-transaction-manager="#{transactionManager}"/>

Seam Reference Guide

364

http://static.springframework.org/spring/docs/2.0.x/reference/ transaction.html

detaching and reattaching entities, and mitigate the occurrence of LazyInitializationException.
Spring does not provide a way to manage persistence contexts beyond the scope of a single web
request (OpenEntityManagerInViewFilter).

Seam brings conversation-scoped persistence context capabilities to Spring applications by allowing
Spring developers to access a Seam-managed persistence context with the JPA tools provided with
Spring (PersistenceAnnotationBeanPostProcessor, JpaTemplate, etc.)

This integration work provides:

transparent access to a Seam-managed persistence context using Spring-provided tools

access to Seam conversation-scoped persistence contexts in a non-web request — for example,
an asynchronous Quartz job

the ability to use Seam-managed persistence contexts with Spring-managed transactions. This
requires manual flushing of the persistent context.

Spring's persistence context propagation model allows only one open EntityManager per
EntityManagerFactory, so the Seam integration works by wrapping an EntityManagerFactory
around a Seam-managed persistence context, like so:

Here, persistenceContextName is the name of the Seam-managed persistence context component.
By default, this EntityManagerFactory has a unitName equal to the Seam component name — in
this case, entityManager. If you wish to provide a different unitName, you can provide a
persistenceUnitName like so:

This EntityManagerFactory can now be used in any Spring-provided tools; in this case, you can use
Spring's PersistenceAnnotationBeanPostProcessor just as you would in Spring.

If you define your real EntityManagerFactory in Spring, but wish to use a Seam-managed
persistence context, you can tell the PersistenceAnnotationBeanPostProcessor your desired
default persistenctUnitName by specifying the defaultPersistenceUnitName property.

The applicationContext.xml might look like:

<bean id="seamEntityManagerFactory"
 class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">
 <property name="persistenceContextName" value="entityManager"/>
</bean>

<bean id="seamEntityManagerFactory"
 class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">
 <property name="persistenceContextName" value="entityManager"/>
 <property name="persistenceUnitName" value="bookingDatabase:extended"/>
</bean>

<bean class="org.springframework.orm.jpa.support
 .PersistenceAnnotationBeanPostProcessor"/>

<bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="bookingDatabase"/>
</bean>

CHAPTER 26. SPRING FRAMEWORK INTEGRATION

365

The component.xml might look like:

JpaTemplate and JpaDaoSupport have an identical configuration in a Spring-based persistence
context and in a normal Seam-managed persistence context.

26.7. USING A SEAM-MANAGED HIBERNATE SESSION IN SPRING

Spring integration into Seam also provides support for complete Spring tool access to a Seam-managed
Hibernate session. This integration is very similar to the JPA integration — see Section 26.6, “Using a
Seam-Managed Persistence Context in Spring” for details.

Spring's propagation model allows only one open EntityManager per EntityManagerFactory to be
available to Spring tools, so Seam integrates by wrapping a proxy SessionFactory around a Seam-
managed Hibernate session context.

Here, sessionName is the name of the persistence:managed-hibernate-session component.
This SessionFactory can then be used with any Spring-provided tool. The integration also provides
support for calls to SessionFactory.getCurrentInstance(), provided that
getCurrentInstance() is called on the SeamManagedSessionFactory.

26.8. SPRING APPLICATION CONTEXT AS A SEAM COMPONENT

Although it is possible to use the Spring ContextLoaderListener to start your application's Spring
ApplicationContext, there are some limitations: the Spring ApplicationContext must be started
after the SeamListener, and starting a Spring ApplicationContext for use in Seam unit and
integration tests can be complicated.

To overcome these limitations, the Spring integration includes a Seam component that can start a Spring
ApplicationContext. To use this component, place the <spring:context-loader/> definition in

<bean id="seamEntityManagerFactory"
 class="org.jboss.seam.ioc.spring.SeamManagedEntityManagerFactoryBean">
 <property name="persistenceContextName" value="entityManager"/>
 <property name="persistenceUnitName" value="bookingDatabase:extended"/>
</bean>
<bean class="org.springframework.orm.jpa
 .support.PersistenceAnnotationBeanPostProcessor">
 <property name="defaultPersistenceUnitName"
 value="bookingDatabase:extended"/>
</bean>

<persistence:managed-persistence-context name="entityManager"
 auto-create="true" entity-manager-factory="#{entityManagerFactory}"/>

<bean id="bookingService"
 class="org.jboss.seam.example.spring.BookingService">
 <property name="entityManagerFactory" ref="seamEntityManagerFactory"/>
</bean>

<bean id="seamSessionFactory"
 class="org.jboss.seam.ioc.spring.SeamManagedSessionFactoryBean">
 <property name="sessionName" value="hibernateSession"/>
</bean>

Seam Reference Guide

366

the components.xml file. Specify your Spring context file location in the config-locations attribute.
If more than one configuration file is required, you can place them in the nested <spring:config-
locations/> element, as per standard components.xml multi-value practices.

26.9. USING A SPRING TASKEXECUTOR FOR @ASYNCHRONOUS

Spring provides an abstraction for executing code asynchronously, called a TaskExecutor. The
Spring-Seam integration lets you use a Spring TaskExecutor to execute immediate @Asynchronous
method calls. To enable this functionality, install the SpringTaskExecutorDispatchor and provide a
Spring -bean defined taskExecutor like so:

Because a Spring TaskExecutor does not support scheduling asynchronous events, you can provide
handling with a fallback Seam Dispatcher, like so:

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:spring="http://jboss.com/products/seam/spring"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://jboss.com/products/seam/components
 http://jboss.com/products/seam/components-2.2.xsd
 http://jboss.com/products/seam/spring
 http://jboss.com/products/seam/spring-2.2.xsd">

 <spring:context-loader config-locations=
 "/WEB-INF/applicationContext.xml"/>

</components>

<spring:task-executor-dispatcher
 task-executor="#{springThreadPoolTaskExecutor}"/>

<!--
 Install a ThreadPoolDispatcher to handle scheduled asynchronous event
-->
<core:thread-pool-dispatcher name="threadPoolDispatcher"/>

<!-- Install the SpringDispatcher as default -->
<spring:task-executor-dispatcher
 task-executor="#{springThreadPoolTaskExecutor}"
 schedule-dispatcher="#{threadPoolDispatcher}"/>

CHAPTER 26. SPRING FRAMEWORK INTEGRATION

367

CHAPTER 27. HIBERNATE SEARCH

27.1. INTRODUCTION

Full text search engines like Apache™ Lucene™ bring full text and efficient queries to applications.
Hibernate Search, which makes use of Apache Lucene, can index your domain model with a few added
annotations, handle database or index synchronization, and return regular managed objects that are
matched by full text queries. There are some limitations to dealing with an object domain model over a
text index — such as maintaining index accuracy, consistency between index structure and the domain
model, and avoiding query mismatches — but these limitations are far outweighed by the advantages of
speed and efficiency.

Hibernate Search has been designed to integrate as naturally as possible with the Java Persistence API
(JPA) and Hibernate. As a natural extension, JBoss Seam provides Hibernate Search integration.

Refer to the Hibernate Search documentation for information specific to the Hibernate Search project.

27.2. CONFIGURATION

Hibernate Search is configured either in the META-INF/persistence.xml or hibernate.cfg.xml
file.

Hibernate Search configuration has sensible defaults for most configuration parameters. The following is
an example of a minimal persistence unit configuration:

NOTE

When using Hibernate Search 3.1.x, more event listeners are required, but these are
registered automatically by Hibernate Annotations. Refer to the Hibernate Search
Reference Guide to learn to configure event listeners without using Hibernate
EntityManager and Hibernate Annotations.

The following JARs must be deployed alongside the configuration file:

hibernate-search.jar

hibernate-commons-annotations.jar

lucene-core.jar

<persistence-unit name="sample">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 [...]
 <!-- use a file system based index -->
 <property name="hibernate.search.default.directory_provider"
 value="org.hibernate.search.store.FSDirectoryProvider"/>
 <!-- directory where the indexes will be stored -->
 <property name="hibernate.search.default.indexBase"
 value="/Users/prod/apps/dvdstore/dvdindexes"/>
 </properties>
</persistence-unit>

Seam Reference Guide

368

http://www.hibernate.org/hib_docs/search/reference/en/html_single/

NOTE

If you deploy these in an EAR, remember to update application.xml.

27.3. USAGE

Hibernate Search uses annotations to map entities to a Lucene index. Check the reference
documentation for more information.

Hibernate Search is completely integrated with the API, and semantic of JPA and Hibernate. Switching
from a HQL- or Criteria-based query requires little code. The application interacts primarily with the
FullTextSession API, which is a subclass of Hibernate's Session.

When Hibernate Search is present, JBoss Seam injects a FullTextSession:

NOTE

Here, FullTextSession extends org.hibernate.Session so that it can be used as
a regular Hibernate Session.

A smoother integration is proposed if the JPA is used:

@Stateful
@Name("search")
public class FullTextSearchAction implements FullTextSearch, Serializable
{

 @In FullTextSession session;

 public void search(String searchString) {
 org.apache.lucene.search.Query luceneQuery = getLuceneQuery();
 org.hibernate.Query query session.createFullTextQuery(luceneQuery,

Product.class);
 searchResults = query
 .setMaxResults(pageSize + 1)
 .setFirstResult(pageSize * currentPage)
 .list();
 }
 [...]
}

@Stateful
@Name("search")
public class FullTextSearchAction implements FullTextSearch, Serializable
{
 @In FullTextEntityManager em;
 public void search(String searchString) {
 org.apache.lucene.search.Query luceneQuery = getLuceneQuery();
 javax.persistence.Query query = em.createFullTextQuery(luceneQuery,

Product.class);
 searchResults = query
 .setMaxResults(pageSize + 1)

CHAPTER 27. HIBERNATE SEARCH

369

http://www.hibernate.org/hib_docs/search/reference/en/html_single/

Here, a FulltextEntityManager is injected where Hibernate Search is present.
FullTextEntityManager extends EntityManager with search specific methods, the same way
FullTextSession extends Session.

When an EJB 3.0 Session or Message Driven Bean injection is used (that is, where injection uses the
@PersistenceContext annotation), the EntityManager interface cannot be replaced by using the
FullTextEntityManager interface in the declaration statement. However, the implementation
injected will be a FullTextEntityManager implementation, which allows downcasting.

NOTE

If you are accustomed to using Hibernate Search outside Seam, remember that you do
not need to use Search.createFullTextSession when Hibernate Search is
integrated with Seam.

For a working example of Hibernate Search, check the DVDStore or Blog examples in the JBoss Seam
distribution.

 .setFirstResult(pageSize * currentPage)
 .getResultList();
 }
 [...]
}

@Stateful
@Name("search")
public class FullTextSearchAction implements FullTextSearch, Serializable
{

 @PersistenceContext EntityManager em;

 public void search(String searchString) {
 org.apache.lucene.search.Query luceneQuery = getLuceneQuery();
 FullTextEntityManager ftEm = (FullTextEntityManager) em;
 javax.persistence.Query query =
 ftEm.createFullTextQuery(luceneQuery, Product.class);
 searchResults = query
 .setMaxResults(pageSize + 1)
 .setFirstResult(pageSize * currentPage)
 .getResultList();
 }
 [...]
}

Seam Reference Guide

370

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM
APPLICATIONS
Configuration can be complex and tedious, but for the most part you will not need to write configuration
data from scratch. Only a few lines of XML are required to integrate Seam with your JavaServer Faces
(JSF) implementation and Servlet container, and for the most part you can either use seam-gen to start
your application, or simply copy and paste from the example applications provided with Seam.

28.1. BASIC SEAM CONFIGURATION

First, the basic configuration required whenever Seam is used with JSF.

28.1.1. Integrating Seam with JSF and your servlet container

First, define a Faces Servlet.

(You can adjust the URL pattern as you like.)

Seam also requires the following entry in your web.xml file:

This listener is responsible for bootstrapping Seam, and for destroying session and application contexts.

Some JSF implementations do not implement server-side state saving correctly, which interferes with
Seam's conversation propagation. If you have problems with conversation propagation during form
submissions, try switching to client-side state saving. To do so, add the following to web.xml:

The JSF specification is unclear about the mutability of view state values. Since Seam uses the JSF
view state to back its PAGE scope, this can be problematic. If you use server-side state saving with the
JSF-RI (JSF Reference Implementation), and you want a page-scoped bean to retain its exact value for a
given page view, you must specify the context parameter as follows:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.seam</url-pattern>
</servlet-mapping>

<listener>
 <listener-class>org.jboss.seam.servlet.SeamListener</listener-class>
</listener>

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
</context-param>

<context-param>
 <param-name>com.sun.faces.serializeServerState</param-name>

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

371

If this is not specified, a page-scoped component will contain the latest value of the page, and not the
value of the "back" page, when the "back" button is used. (See this specification issue for details.) This
setting is not enabled by default because serializing the JSF view with every request lowers overall
performance.

28.1.2. Using Facelets

To use the recommended Facelets over JavaServer Pages (JSP), add the following lines to faces-
config.xml:

Then, add the following lines to web.xml:

28.1.3. Seam Resource Servlet

The Seam Resource Servlet provides resources used by Seam Remoting, CAPTCHAs (see the Security
chapter) and some JSF UI controls. Configuring the Seam Resource Servlet requires the following entry
in web.xml:

28.1.4. Seam Servlet filters

Seam does not require Servlet filters for basic operation, but there are several features that depend upon
filter use. Seam lets you add and configure Servlet filters as you would configure other built-in Seam
components. To use this configuration method, you must first install a master filter in web.xml:

 <param-value>true</param-value>
</context-param>

<application>
 <view-handler>com.sun.facelets.FaceletViewHandler</view-handler>
</application>

<context-param>
 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>
 <param-value>.xhtml</param-value>
</context-param>

<servlet>
 <servlet-name>Seam Resource Servlet</servlet-name>
 <servlet-class>
 org.jboss.seam.servlet.SeamResourceServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Seam Resource Servlet</servlet-name>
 <url-pattern>/seam/resource/*</url-pattern>
</servlet-mapping>

<filter>
 <filter-name>Seam Filter</filter-name>
 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>
</filter>
<filter-mapping>

Seam Reference Guide

372

https://javaserverfaces-spec-public.dev.java.net/issues/show_bug.cgi? id=295

To ensure that it is run first, the Seam master filter must be the first filter specified in web.xml.

The Seam filters share a number of common attributes, which can be set in components.xml, along
with any parameters discussed below:

url-pattern — Specifies which requests are filtered. The default is all requests. url-
pattern is a pattern which allows a wildcard suffix.

regex-url-pattern — Specifies which requests are filtered. The default is all requests.
regex-url-pattern is a true regular expression match for request path.

disabled — Disables a built in filter.

These patterns are matched against the URI path of the request (see
HttpServletRequest.getURIPath()), and the name of the Servlet context is removed before
matching occurs.

Adding the master filter enables the following built-in filters:

28.1.4.1. Exception handling

This filter is required by most applications, and provides the exception mapping functionality in
pages.xml. It also rolls back uncommitted transactions when uncaught exceptions occur. (The web
container should do this automatically, but this does not occur reliably in some application servers.)

By default, the exception handling filter will process all requests, but you can adjust this behavior by
adding a <web:exception-filter> entry to components.xml, like so:

28.1.4.2. Conversation propagation with redirects

This filter allows Seam to propagate the conversation context across browser redirects. It intercepts any
browser redirects and adds a request parameter that specifies the Seam conversation identifier.

The redirect filter processes all requests by default, but this behavior can also be adjusted in
components.xml:

28.1.4.3. URL rewriting

This filter lets Seam apply URL rewriting for views, depending on its configuration in pages.xml. This
filter is not active by default, but can be activated by adding the following configuration to
components.xml:

 <filter-name>Seam Filter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:web="http://jboss.com/products/seam/web">
 <web:exception-filter url-pattern="*.seam"/>
</components>

<web:redirect-filter url-pattern="*.seam"/>

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

373

The view-mapping parameter must match the Servlet mapping defined for the Faces Servlet in the
web.xml file. If omitted, the rewrite filter assumes the pattern *.seam.

28.1.4.4. Multipart form submissions

This feature is required when you use the Seam file upload JSF control. It detects multipart form
requests and processes them according the multipart/form-data specification (RFC-2388). Add the
following to components.xml to override settings:

create-temp-files — If true, uploaded files are written to a temporary file, rather than
being held in memory. This can be important if you expect large file uploads. By default, this is
set to false.

max-request-size — If the size of a file upload request exceeds this value, the request will
be aborted. The default setting is 0 (no size limit). (The size of a file upload is determined by
reading the Content-Length header in the request.)

28.1.4.5. Character encoding

This filter sets the character encoding of submitted form data. It is not installed by default, and requires
an entry in components.xml to enable it:

encoding — The type of encoding to use.

override-client — If set to true, the request encoding will be set to that specified by
encoding, regardless of whether the request specifies a particular encoding. If set to false,
the request encoding will only be set if the client has not already specified the request encoding.
By default, this is set to false.

28.1.4.6. RichFaces

If RichFaces is used in your project, Seam automatically installs the RichFaces AJAX filter before all
other built-in filters, so there is no need to add it to web.xml manually.

The RichFaces Ajax filter is installed only if the RichFaces JARs are present in your project.

To override the default settings, add the following entry to components.xml. The options are the same
as those specified in the RichFaces Developer Guide:

force-parser — forces all JSF pages to be validated by RichFaces's XML syntax checker. If
false, only AJAX responses are validated and converted to well-formed XML. Setting force-
parser to false improves performance, but can provide visual artifacts on AJAX updates.

<web:rewrite-filter view-mapping="*.seam"/>

<web:multipart-filter create-temp-files="true"
 max-request-size="1000000" url-pattern="*.seam"/>

<web:character-encoding-filter encoding="UTF-16"
 override-client="true" url-pattern="*.seam"/>

<web:ajax4jsf-filter force-parser="true" enable-cache="true"
 log4j-init-file="custom-log4j.xml" url-pattern="*.seam"/>

Seam Reference Guide

374

enable-cache — enables caching of framework-generated resources, such as JavaScript,
CSS, images, etc. When developing custom JavaScript or CSS, setting this to true prevents
the browser from caching the resource.

log4j-init-file — is used to set up per-application logging. A path, relative to web
application context, to the log4j.xml configuration file should be provided.

28.1.4.7. Identity Logging

This filter adds the authenticated username to the log4j mapped diagnostic context, so that it can be
included in formatted log output by adding %X{username} to the pattern.

By default, the logging filter processes all requests. You can adjust this behavior by adding a
<web:logging-filter> entry to components.xml, like so:

28.1.4.8. Context management for custom servlets

Requests that are sent directly to Servlets other than the JSF Servlet are not processed in the JSF life
cycle, so Seam provides a Servlet filter that can be applied to any other Servlet requiring access to
Seam components.

This filter lets custom Servlets interact with Seam contexts. It sets up Seam contexts at the beginning of
each request, and removes them at the end of the request. This filter should never be applied to the JSF
FacesServlet — Seam uses the phase listener to manage context in a JSF request.

This filter is not installed by default, and must be enabled in components.xml:

The context filter expects the conversation ID of any conversation context to be defined in the
conversationId request parameter. You are responsible for ensuring that this is included in the
request.

You are also responsible for ensuring that any new conversation ID propagates back to the client. Seam
exposes the conversation ID as a property of the built in component conversation.

28.1.4.9. Adding custom filters

Seam can install your filters for you. This allows you to specify your filter's placement in the chain — the
Servlet specification does not provide a well-defined order when you specify your filters in web.xml. Add
a @Filter annotation to your Seam component. (Your Seam component must implement
javax.servlet.Filter.)

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:web="http://jboss.com/products/seam/web">
 <web:logging-filter url-pattern="*.seam"/>
</components>

<web:context-filter url-pattern="/media/*"/>

@Startup
@Scope(APPLICATION)
@Name("org.jboss.seam.web.multipartFilter")

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

375

Adding the @Startup annotation makes the component available during Seam start up. Bijection is not
available here (@BypassInterceptors), and the filter should be further down the chain than the
RichFaces filter (@Filter(within="org.jboss.seam.web.ajax4jsfFilter")).

28.1.5. Integrating Seam with your EJB container

EJB components in a Seam application are managed by both Seam and the EJB container. Seam
resolves EJB component references, manages the lifetime of stateful session bean components, and
participates in each method call via interceptors. To integrate Seam with your EJB container, you must
first configure the interceptor chain.

Apply the SeamInterceptor to your Seam EJB components. This interceptor delegates to a set of
built-in server-side interceptors that handle operations like bijection, conversation demarcation, and
business process signals. The simplest way to do this across an entire application is to add the following
interceptor configuration in ejb-jar.xml:

You must tell seam where to find session beans in JNDI. You could do this by specifying a @JndiName
annotation on every session bean Seam component. A better approach is to specify a pattern with which
Seam can calculate the JNDI name from the EJB name. However, the EJB3 specification does not define
a standard method of mapping to global JNDI — this mapping is vendor-specific, and can also depend
upon your naming conventions. We specify this option in components.xml:

For JBoss Enterprise Application Platform, the following pattern is correct:

Here, earName is the name of the EAR in which the bean is deployed. Seam replaces #{ejbName}
with the name of the EJB, and the final segment represents the type of interface (local or remote).

When outside the EAR context (for example, when using the JBoss Embeddable EJB3 container), the
first segment is dropped, since there is no EAR, which leaves us with the following pattern:

@BypassInterceptors
@Filter(within="org.jboss.seam.web.ajax4jsfFilter")
public class MultipartFilter extends AbstractFilter {...}

<interceptors>
 <interceptor>
 <interceptor-class>
 org.jboss.seam.ejb.SeamInterceptor
 </interceptor-class>
 </interceptor>
</interceptors>
<assembly-descriptor>
 <interceptor-binding>
 <ejb-name>*</ejb-name>
 <interceptor-class>
 org.jboss.seam.ejb.SeamInterceptor
 </interceptor-class>
 </interceptor-binding>
</assembly-descriptor>

<core:init jndi-name="earName/#{ejbName}/local" />

<core:init jndi-name="#{ejbName}/local" />

Seam Reference Guide

376

This process looks complicated, but in reality comprises few steps.

First, we will talk about how the EJB component is transferred to JNDI. To avoid using XML, JBoss
Enterprise Application Platform uses the aforementioned pattern (that is, EAR name/EJB name/interface
type) to automatically assign an EJB component a global JNDI name. The EJB name will be the first non-
empty value out of the following:

the <ejb-name> element in ejb-jar.xml,

the name attribute in the @Stateless or @Stateful annotation, or

the simple name of the bean class.

For example, assume that you have the following EJB bean and interface defined:

Assuming that your EJB bean class is deployed in an EAR named myapp, the global JNDI name
assigned on the JBoss Enterprise Application Platform will be myapp/AuthenticatorBean/local.
You can refer to this EJB component as a Seam component with the name authenticator, and Seam
will use the JNDI pattern (or the @JndiName annotation) to locate it in JNDI.

For other application servers, you must declare an EJB reference for your EJB so that it is assigned a
JNDI name. This does require some XML, and means that you must establish your own JNDI naming
convention so that you can use the Seam JNDI pattern. It may be useful to follow the JBoss convention.

You must define the EJB references in two locations when using Seam with a non-JBoss application
server. If you look up the Seam EJB component with JSF (in a JSF view, or as a JSF action listener) or a
Seam JavaBean component, then you must declare the EJB reference in web.xml. The EJB reference
that would be required for our example is:\

package com.example.myapp;
import javax.ejb.Local;

@Local
public class Authenticator {
 boolean authenticate();
}

package com.example.myapp;
import javax.ejb.Stateless;

@Stateless
@Name("authenticator")
public class AuthenticatorBean implements Authenticator {
 public boolean authenticate() { ... }
}

<ejb-local-ref>
 <ejb-ref-name>myapp/AuthenticatorBean/local</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local>org.example.vehicles.action.Authenticator</local>
</ejb-local-ref>

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

377

This reference covers most uses of the component in a Seam application. If you want to be able to inject
a Seam EJB component into another Seam EJB component with the @In annotation, you must define
this EJB reference in a second location: ejb-jar.xml. This is slightly more complicated.

When Seam looks for a Seam EJB component to satisfy an injection point defined with @In, the
component will only be found if it is referenced in JNDI. JBoss automatically registers EJBs to the JNDI
so that they are always available to the web and EJB containers. Other containers require you to define
your EJBs explicitly.

Application servers that adhere to the EJB specification require that EJB references are always explicitly
defined. These cannot be declared globally — you must specify each JNDI resource for an EJB
component individually.

Assuming that you have an EJB with a resolved name of RegisterAction, the following Seam
injection applies:

For this injection to work, you must also establish the link in ejb-jar.xml, like so:

The component is referenced here just as it was in web.xml. Identifying it here brings the reference into
the EJB context, where it can be used by the RegisterAction bean. You must add one reference for
each injection (via @In) of one Seam EJB component into another Seam EJB component. You can see
an example of this setup in the jee5/booking example.

It is possible to inject one EJB into another with the @EJB annotation, but this injects the EJB reference
rather than the Seam EJB component instance. Because Seam's interceptor is invoked on any method
call to an EJB component, and using @EJB only invokes Seam's server-side interceptor chain, some
Seam features will not work with @EJB injection. (Seam's state management and Seam's client-side
interceptor chain, which handles security and concurrency, are two affected features.) When a stateful
session bean is injected using the @EJB annotation, it will not necessarily bind to the active session or
conversation, either, so we recommend injecting with @In.

Some application servers (such as Glassfish) require you to specify JNDI names for all EJB components
explicitly, sometimes more than once. You may also need to alter the JNDI pattern used in Seam, even if
you follow the JBoss Enterprise Application Platform naming convention. For example, in Glassfish the
global JNDI names are automatically prefixed with java:comp/env, so you must define the JNDI
pattern as follows:

@In(create = true) Authenticator authenticator;

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>RegisterAction</ejb-name>
 <ejb-local-ref>
 <ejb-ref-name>myapp/AuthenticatorAction/local</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local>com.example.myapp.Authenticator</local>
 </ejb-local-ref>
 </session>
 </enterprise-beans>

 ...

</ejb-jar>

Seam Reference Guide

378

For transaction management, we recommend using a special built-in component that is fully aware of
container transactions, and can correctly process transaction success events registered with the Events
component. To tell Seam when container-managed transactions end, add the following line to your
components.xml file:

28.1.6. Remember

The final requirement for integration is that a seam.properties, META-INF/seam.properties or
META-INF/components.xml file be placed in any archive in which your Seam components are
deployed. For web archive (WAR) files, place a seam.properties file inside the WEB-INF/classes
directory in which your components are deployed.

Seam scans any archive with seam.properties files for Seam components at start up. The
seam.properties file can be empty, but it must be included so that the component is recognized by
Seam. This is a workaround for Java Virtual Machine (JVM) limitations — without the
seam.properties file, you would need to list every component explicitly in components.xml.

28.2. USING ALTERNATE JPA PROVIDERS

Seam comes packaged and configured with Hibernate as the default JPA provider. To use a different
JPA provider, you must configure it with Seam.

NOTE

This is a workaround — future versions of Seam will not require configuration changes to
use alternative JPA providers, unless you add a custom persistence provider
implementation.

There are two ways to tell Seam about your JPA provider. The first is to update your application's
components.xml so that the generic PersistenceProvider takes precedence over the Hibernate
version. Simply add the following to the file:

To take advantage of any of your JPA provider's non-standard features, you must write your own
implementation of the PersistenceProvider. (You can use HibernatePersistenceProvider as
a starting point.) Tell Seam to use this PersistenceProvider like so:

Now, update persistence.xml with the correct provider class, and any properties required by your
provider. Remember to package any required JAR files with your application.

<core:init jndi-name="java:comp/env/earName/#{ejbName}/local" />

<transaction:ejb-transaction/>

<component name="org.jboss.seam.persistence.persistenceProvider"
 class="org.jboss.seam.persistence.PersistenceProvider"
 scope="stateless">
</component>

<component name="org.jboss.seam.persistence.persistenceProvider"
 class="org.your.package.YourPersistenceProvider">
</component>

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

379

28.3. CONFIGURING SEAM IN JAVA EE 5

If you're running in a Java EE 5 environment, this is all the configuration required to start using Seam!

28.3.1. Packaging

Once packaged into an EAR, your archive will be structured similarly to the following:

my-application.ear/
 jboss-seam.jar
 lib/
 jboss-el.jar
 META-INF/
 MANIFEST.MF
 application.xml
 my-application.war/
 META-INF/
 MANIFEST.MF
 WEB-INF/
 web.xml
 components.xml
 faces-config.xml
 lib/
 jsf-facelets.jar
 jboss-seam-ui.jar
 login.jsp
 register.jsp
 ...
 my-application.jar/
 META-INF/
 MANIFEST.MF
 persistence.xml
 seam.properties
 org/
 jboss/
 myapplication/
 User.class
 Login.class
 LoginBean.class

Seam Reference Guide

380

 Register.class
 RegisterBean.class
 ...

Declare jboss-seam.jar as an EJB module in META-INF/application.xml. Add jboss-el.jar
to the EAR classpath by placing it in the EAR's lib directory.

To use jBPM or Drools, include the required JARs in the EAR's lib directory.

Tp use Facelets, as recommended, include jsf-facelets.jar in the WEB-INF/lib directory of the
WAR.

Most applications use the Seam tag library — to do so, include jboss-seam-ui.jar in the WEB-
INF/lib directory of the WAR. To use the PDF or email tag libraries, you must also place jboss-
seam-pdf.jar or jboss-seam-mail.jar in WEB-INF/lib.

To use the Seam debug page, include jboss-seam-debug.jar in the WEB-INF/lib directory of the
WAR. Seam's debug page only works for applications using Facelets.)

Seam also ships with several example applications — these are deployable in any Java EE container
with EJB3 support.

28.4. CONFIGURING SEAM IN J2EE

You can use Hibernate 3 or JPA instead of EJB3 persistence, and plain JavaBeans instead of session
beans. You can still take advantage of Seam's declarative state management architecture, and it is easy
to migrate to EJB3.

Unlike session beans, Seam JavaBean components do not provide declarative transaction demarcation.
Most applications use Seam-managed transactions when using Hibernate with JavaBeans, but you can
also manage your transactions manually with the JTA UserTransaction, or declaratively with Seam's
@Transactional annotation.

The Seam distribution includes extra versions of the booking example application — one uses
Hibernate3 and JavaBeans instead of EJB3, and the other uses JPA and JavaBeans. These example
applications are ready to deploy into any J2EE application server.

28.4.1. Boostrapping Hibernate in Seam

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

381

Install the following built-in component to have Seam bootstrap a Hibernate SessionFactory from
your hibernate.cfg.xml file:

To make a Seam-managed Hibernate Session available via injection, configure a managed session
as follows:

28.4.2. Boostrapping JPA in Seam

Install the following built-in component to have Seam bootstrap a JPA EntityManagerFactory from
your persistence.xml file:

To make a Seam-managed JPA EntityManager available via injection, configure a managed
persistence context as follows:

28.4.3. Packaging

Your application will have the following structure when packaged as a WAR:

my-application.war/
 META-INF/
 MANIFEST.MF
 WEB-INF/
 web.xml
 components.xml
 faces-config.xml
 lib/
 jboss-seam.jar
 jboss-seam-ui.jar
 jboss-el.jar
 jsf-facelets.jar
 hibernate3.jar
 hibernate-annotations.jar
 hibernate-validator.jar
 ...
 my-application.jar/
 META-INF/
 MANIFEST.MF
 seam.properties
 hibernate.cfg.xml
 org/
 jboss/
 myapplication/
 User.class

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

<persistence:managed-hibernate-session name="hibernateSession"
 session-factory="#{hibernateSessionFactory}"/>

<persistence:entity-manager-factory name="entityManagerFactory"/>

<persistence:managed-persistence-context name="entityManager"
 entity-manager-factory="#{entityManagerFactory}"/>

Seam Reference Guide

382

 Login.class
 Register.class
 ...
 login.jsp
 register.jsp
 ...

Some additional configuration is required in order to deploy Hibernate in a non-EE environment, such as
TestNG.

28.5. CONFIGURING SEAM IN JAVA SE, WITHOUT JBOSS EMBEDDED

To use Seam outside an EE environment, you must tell Seam how to manage transactions, since JTA
will not be available. If you use JPA, you can tell Seam to use JPA resource-local transactions — that is,
EntityTransaction — like so:

If you use Hibernate, you can tell Seam to use the Hibernate transaction API with the following:

You must also define a datasource.

28.6. CONFIGURING SEAM IN JAVA SE, WITH JBOSS EMBEDDED

JBoss Embedded lets you run EJB3 components outside the context of the Java EE 5 application server.
This is particularly useful in testing.

The Seam booking example application includes a TestNG integration test suite that runs on Embedded
JBoss via SeamTest.

28.6.1. Packaging

A WAR-based deployment on a Servlet engine will be structured as follows:

my-application.war/
 META-INF/
 MANIFEST.MF
 WEB-INF/
 web.xml
 components.xml
 faces-config.xml
 lib/

<transaction:entity-transaction entity-manager="#{entityManager}"/>

<transaction:hibernate-transaction session="#{session}"/>

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

383

 jboss-seam.jar
 jboss-seam-ui.jar
 jboss-el.jar
 jsf-facelets.jar
 jsf-api.jar
 jsf-impl.jar
 ...
 my-application.jar/
 META-INF/
 MANIFEST.MF
 persistence.xml
 seam.properties
 org/
 jboss/
 myapplication/
 User.class
 Login.class
 LoginBean.class
 Register.class
 RegisterBean.class
 ...
 login.jsp
 register.jsp
 ...

28.7. CONFIGURING JBPM IN SEAM

Seam's jBPM integration is not installed by default. To enable jBPM, you must install a built-in
component. You must also explicitly list your process and pageflow definitions. In components.xml:

If you only have pageflows, no further configuration is required. If you have business process definitions,
you must provide a jBPM configuration, and a Hibernate configuration for jBPM. The Seam DVD Store
demo includes example jbpm.cfg.xml and hibernate.cfg.xml files that will work with Seam:

<bpm:jbpm>
 <bpm:pageflow-definitions>
 <value>createDocument.jpdl.xml</value>
 <value>editDocument.jpdl.xml</value>
 <value>approveDocument.jpdl.xml</value>
 </bpm:pageflow-definitions>
 <bpm:process-definitions>
 <value>documentLifecycle.jpdl.xml</value>
 </bpm:process-definitions>
</bpm:jbpm>

<jbpm-configuration>
 <jbpm-context>
 <service name="persistence">
 <factory>
 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
 <field name="isTransactionEnabled"><false/></field>
 </bean>
 </factory>
 </service>
 <service name="tx" factory="org.jbpm.tx.TxServiceFactory" />

Seam Reference Guide

384

Note that jBPM transaction control is disabled — JTA transactions should be controlled by either Seam
or EJB3.

28.7.1. Packaging

There is no well-defined packaging format for jBPM configuration and process or pageflow definition
files. While other standard packaging formats may be developed, the Seam examples are packaged into
the root of the EAR, and follow this structure:

my-application.ear/
 jboss-seam.jar
 lib/
 jboss-el.jar
 jbpm-jpdl.jar
 META-INF/
 MANIFEST.MF
 application.xml
 my-application.war/
 META-INF/
 MANIFEST.MF
 WEB-INF/
 web.xml
 components.xml
 faces-config.xml
 lib/
 jsf-facelets.jar
 jboss-seam-ui.jar
 login.jsp
 register.jsp
 ...
 my-application.jar/
 META-INF/
 MANIFEST.MF
 persistence.xml
 seam.properties
 org/
 jboss/
 myapplication/
 User.class
 Login.class
 LoginBean.class
 Register.class
 RegisterBean.class

 <service name="message"
 factory="org.jbpm.msg.db.DbMessageServiceFactory" />
 <service name="scheduler"
 factory="org.jbpm.scheduler.db.DbSchedulerServiceFactory" />
 <service name="logging"
 factory="org.jbpm.logging.db.DbLoggingServiceFactory" />
 <service name="authentication"
 factory="org.jbpm.security.authentication
 .DefaultAuthenticationServiceFactory"/>
 </jbpm-context>
</jbpm-configuration>

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

385

 ...
 jbpm.cfg.xml
 hibernate.cfg.xml
 createDocument.jpdl.xml
 editDocument.jpdl.xml
 approveDocument.jpdl.xml
 documentLifecycle.jpdl.xml

28.8. CONFIGURING SFSB AND SESSION TIMEOUTS IN EAP

The timeout for stateful session beans must be longer than the timeout for HTTP sessions, or the stateful
session bean may timeout before the user's HTTP Session ends. The EAP has a default session bean
timeout of 30 minutes, which is configured in server/default/conf/standardjboss.xml — to
change this, replace default with your own preferred configuration.

In the LRUStatefulContextCachePolicy cache configuration, modify the value of max-bean-life
to change the default stateful session bean timeout:

You can modify the default HTTP Session timeout in
server/default/deployer/jbossweb.deployer/web.xml for JBoss Enterprise Application
Platform 5.1. The following entry in the web.xml file controls the default session timeout for all web
applications:

To override this value for your own application, simply include a modified version of this entry in your
application's own web.xml.

28.9. RUNNING SEAM IN A PORTLET

<container-cache-conf>
 <cache-policy>
 org.jboss.ejb.plugins.LRUStatefulContextCachePolicy
 </cache-policy>
 <cache-policy-conf>
 <min-capacity>50</min-capacity>
 <max-capacity>1000000</max-capacity>
 <remover-period>1800</remover-period>

 <!-- SFSB timeout in seconds; 1800 seconds == 30 minutes -->
 <max-bean-life>1800</max-bean-life>

 <overager-period>300</overager-period>
 <max-bean-age>600</max-bean-age>
 <resizer-period>400</resizer-period>
 <max-cache-miss-period>60</max-cache-miss-period>
 <min-cache-miss-period>1</min-cache-miss-period>
 <cache-load-factor>0.75</cache-load-factor>
 </cache-policy-conf>
</container-cache-conf>

<session-config>
 <!-- HTTP Session timeout, in minutes -->
 <session-timeout>30</session-timeout>
</session-config>

Seam Reference Guide

386

WARNING

Technology Preview features are not fully supported under Red Hat subscription
level agreements (SLAs), may not be functionally complete, and are not intended for
production use. However, these features provide early access to upcoming product
innovations, enabling customers to test functionality and provide feedback during
the development process. As Red Hat considers making future iterations of
Technology Preview features generally available, we will provide commercially
reasonable efforts to resolve any reported issues that customers experience when
using these features.

You can use the JBoss Portlet Bridge to run your Seam application in a portlet. The bridge supports JSF
within a portlet, and includes extensions for Seam and RichFaces. See http://labs.jboss.com/
portletbridge for more information.

28.10. DEPLOYING CUSTOM RESOURCES

On start up, Seam scans all JARs containing /seam.properties, /META-INF/components.xml or
/META-INF/seam.properties for resources. For example, all classes annotated with @Name are
registered on start as Seam components.

You can also use Seam to handle custom resources — that is, Seam can handle specific annotations.
First, provide a list of annotation types to handle in the /META-INF/seam-deployment.properties
files, like so:

A colon-separated list of annotation types to handle
org.jboss.seam.deployment.annotationTypes=com.acme.Foo:com.acme.Bar

Then, collect all classes annotated with @Foo on application start up:

@Name("fooStartup")
@Scope(APPLICATION)
@Startup
public class FooStartup {

 @In("#{deploymentStrategy.annotatedClasses['com.acme.Foo']}")
 private Set<Class<Object>> fooClasses;

 @In("#{hotDeploymentStrategy.annotatedClasses['com.acme.Foo']}")
 private Set<Class<Object>> hotFooClasses;

 @Create
 public void create() {
 for (Class clazz: fooClasses) {
 handleClass(clazz);
 }
 for (Class clazz: hotFooClasses) {
 handleClass(clazz);
 }
 }

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

387

http://labs.jboss.com/portletbridge

You can also set Seam to handle any resource. For example, if you want to process files with the
.foo.xml extension, you can write a custom deployment handler:

This provides us with a list of all files with the .foo.xml suffix.

Next, register the deployment handler with Seam in /META-INF/seam-deployment.properties:

For standard deployment
org.jboss.seam.deployment.deploymentHandlers=
com.acme.FooDeploymentHandler

For hot deployment
org.jboss.seam.deployment.hotDeploymentHandlers=
com.acme.FooDeploymentHandler

You can register multiple deployment handlers with a comma-separated list.

Seam uses deployment handlers internally to install components and namespaces, so the handle() is
called too early in Seam bootstrap to be useful. You can access the deployment handler easily during
the start up of an application-scoped component:

 public void handleClass(Class clazz) {
 // ...
 }

}

public class FooDeploymentHandler implements DeploymentHandler {
 private static DeploymentMetadata FOO_METADATA = new
DeploymentMetadata() {

 public String getFileNameSuffix() {
 return ".foo.xml";
 }
 };

 public String getName() {
 return "fooDeploymentHandler";
 }

 public DeploymentMetadata getMetadata() {
 return FOO_METADATA;
 }
}

@Name("fooStartup")
@Scope(APPLICATION)
@Startup
public class FooStartup {
 @In("#{deploymentStrategy.deploymentHandlers['fooDeploymentHandler']}")
 private FooDeploymentHandler myDeploymentHandler;
 @In("#
{hotDeploymentStrategy.deploymentHandlers['fooDeploymentHandler']}")
 private FooDeploymentHandler myHotDeploymentHandler;

Seam Reference Guide

388

 @Create public void create() {
 for (FileDescriptor fd: myDeploymentHandler.getResources()) {
 handleFooXml(fd);
 }
 for (FileDescriptor f: myHotDeploymentHandler.getResources()) {
 handleFooXml(fd);
 }
 }

 public void handleFooXml(FileDescriptor fd) {
 // ...
 }
}

CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS

389

CHAPTER 29. SEAM ANNOTATIONS
Seam uses annotations to achieve a declarative style of programming. Most annotations are defined by
the Enterprise JavaBean 3.0 (EJB3) specification, and the annotations used in data validation are
defined by the Hibernate Validator package. However, Seam also defines its own set of annotations,
which are described in this chapter.

All of these annotations are defined in the org.jboss.seam.annotations package.

29.1. ANNOTATIONS FOR COMPONENT DEFINITION

This group of annotations is used to define a Seam component. These annotations appear on the
component class.

@Name

Defines the Seam component name for a class. This annotation is required for all Seam components.

@Scope

Defines the default context of the component. The possible values are defined by the ScopeType
enumeration: EVENT, PAGE, CONVERSATION, SESSION, BUSINESS_PROCESS, APPLICATION, or
STATELESS.

When no scope is explicitly specified, the default varies with the component type. For stateless
session beans, the default is STATELESS. For entity beans and stateful session beans, the default is
CONVERSATION. For JavaBeans, the default is EVENT.

@Role

Allows a Seam component to be bound to multiple context variables. The @Name and @Scope
annotations define a default role. Each @Role annotation defines an additional role.

name — the context variable name.

scope — the context variable scope. When no scope is explicitly specified, the default
depends upon the component type, as above.

@Roles

Allows you to specify multiple additional roles.

@BypassInterceptors

@Name("componentName")

@Scope(ScopeType.CONVERSATION)

@Role(name="roleName", scope=ScopeType.SESSION)

@Roles({ @Role(name="user", scope=ScopeType.CONVERSATION),
@Role(name="currentUser", scope=ScopeType.SESSION) })

Seam Reference Guide

390

Disables all Seam interceptors on a particular component or component method.

@JndiName

Specifies the JNDI name that Seam will use to look up the EJB component. If no JNDI name is
explicitly specified, Seam will use the JNDI pattern specified by
org.jboss.seam.core.init.jndiPattern.

@Conversational

Specifies that a conversation scope component is conversational, meaning that no method of the
component may be called unless a long-running conversation is active.

@PerNestedConversation

Limits the scope of a conversation-scoped component to the parent conversation in which it was
instantiated. The component instance will not be visible to nested child conversations, which will
operate within their own instances.

WARNING

This is not a recommended application feature. It implies that a component will be
visible only for a specific part of a request cycle.

@Startup

Specifies that an application-scoped component will start immediately at initialization time. This is
used for built-in components that bootstrap critical infrastructure, such as JNDI, datasources, etc.

Specifies that a session-scoped component will start immediately at session creation time.

depends — specifies that the named components must be started first, if they are installed.

@Install

@BypassInterceptors

@JndiName("my/jndi/name")

@Conversational

@PerNestedConversation

@Scope(APPLICATION) @Startup(depends="org.jboss.seam.bpm.jbpm")

@Scope(SESSION) @Startup

CHAPTER 29. SEAM ANNOTATIONS

391

Specifies that a component should not be installed by default. (If you do not specify this annotation,
the component will be installed.)

Specifies that a component should only be installed if the components listed as dependencies are
also installed.

Specifies that a component should only be installed if a component that is implemented by a certain
class is installed. This is useful when a required dependency does not have a single well-known
name.

Specifies that a component should only be installed if the named class is included on the classpath.

Specifies the precedence of the component. If multiple components with the same name exist, the
one with the higher precedence will be installed. The defined precedence values are (in ascending
order):

BUILT_IN — precedence of all built-in Seam components.

FRAMEWORK — precedence to use for components of frameworks which extend Seam.

APPLICATION — precedence of application components (the default precedence).

DEPLOYMENT — precedence to use for components which override application components
in a particular deployment.

MOCK — precedence for mock objects used in testing.

@Synchronized

Specifies that a component is accessed concurrently by multiple clients, and that Seam should
serialize requests. If a request is not able to obtain its lock on the component in the given timeout
period, an exception will be raised.

@ReadOnly

Specifies that a JavaBean component or component method does not require state replication at the
end of the invocation.

@AutoCreate

@Install(false)

@Install(dependencies="org.jboss.seam.bpm.jbpm")

@Install(genericDependencies=ManagedQueueSender.class)

@Install(classDependencies="org.hibernate.Session")

@Install(precedence=BUILT_IN)

@Synchronized(timeout=1000)

@ReadOnly

Seam Reference Guide

392

Specifies that a component will be automatically created, even if the client does not specify
create=true.

29.2. ANNOTATIONS FOR BIJECTION

The next two annotations control bijection. These attributes occur on component instance variables or
property accessor methods.

@In

Specifies that a component attribute is to be injected from a context variable at the beginning of each
component invocation. If the context variable is null, an exception will be thrown.

Specifies that a component attribute is to be injected from a context variable at the beginning of each
component invocation. The context variable may be null.

Specifies that a component attribute is to be injected from a context variable at the beginning of each
component invocation. If the context variable is null, an instance of the component is instantiated by
Seam.

Specifies the name of the context variable explicitly, instead of using the annotated instance variable
name.

Specifies that a component attribute is to be injected by evaluating a JSF EL expression at the
beginning of each component invocation.

value — specifies the name of the context variable. Defaults to the name of the component
attribute. Alternatively, specifies a JSF EL expression, surrounded by #{...}.

create — specifies that Seam should instantiate the component with the same name as the
context variable, if the context variable is undefined (null) in all contexts. Defaults to false.

required — specifies that Seam should throw an exception if the context variable is
undefined in all contexts.

@Out

@AutoCreate

@In

@In(required=false)

@In(create=true)

@In(value="contextVariableName")

@In(value="#{customer.addresses['shipping']}")

@Out

CHAPTER 29. SEAM ANNOTATIONS

393

Specifies that a component attribute that is a Seam component is to be outjected to its context
variable at the end of the invocation. If the attribute is null, an exception is thrown.

Specifies that a component attribute that is a Seam component is to be outjected to its context
variable at the end of the invocation. The attribute can be null.

Specifies that a component attribute that is not a Seam component type is to be outjected to a
specific scope at the end of the invocation.

Alternatively, if no scope is explicitly specified, the scope of the component with the @Out attribute
issued (or the EVENT scope if the component is stateless).

Specifies the name of the context variable explicitly, instead of using the annotated instance variable
name.

value — specifies the name of the context variable. Default to the name of the component
attribute.

required — specifies that Seam should throw an exception if the component attribute is
null during outjection.

These annotations commonly occur together, as in the following example:

The next annotation supports the manager component pattern, where a Seam component manages the
life cycle of an instance of some other class that is to be injected. It appears on a component getter
method.

@Unwrap

Specifies that the object returned by the annotated getter method will be injected instead of the
component.

The next annotation supports the factory component pattern, in which a Seam component is responsible
for initializing the value of a context variable. This is especially useful for initializing any state required to
render a response to a non-Faces request. It appears on a component method.

@Factory

@Out(required=false)

@Out(scope=ScopeType.SESSION)

@Out(value="contextVariableName")

@In(create=true)
@Out private User currentUser;

@Unwrap

@Factory("processInstance")
public void createProcessInstance() { ... }

Seam Reference Guide

394

Specifies that the component method be used to initialize the value of the named context variable,
when the context variable has no value. This style is used with methods that return void.

Specifies that the value returned by the method should be used to initialize the value of the named
context variable, if the context variable has no value. This style is used with methods that return a
value. If no scope is explicitly specified, the scope of the component with the @Factory method is
used (unless the component is stateless, in which case the EVENT context is used).

value — specifies the name of the context variable. If the method is a getter method, this
defaults to the JavaBeans property name.

scope — specifies the scope to which Seam should bind the returned value. Only
meaningful for factory methods that return a value.

autoCreate — specifies that this factory method should be automatically called whenever
the variable is asked for, even if @In does not specify create=true.

The following annotation lets you inject a Log:

@Logger

Specifies that a component field is to be injected with an instance of org.jboss.seam.log.Log.
For entity beans, the field must be declared as static.

value — specifies the name of the log category. Defaults to the name of the component
class.

The final annotation lets you inject a request parameter value:

@RequestParameter

Specifies that a component attribute is to be injected with the value of a request parameter. Basic
type conversions are performed automatically.

value — specifies the name of the request parameter. Defaults to the name of the
component attribute.

29.3. ANNOTATIONS FOR COMPONENT LIFE CYCLE METHODS

These annotations allow a component to react to its own life cycle events. They occur on methods of the
component. Only one of these annotations may be used in any one component class.

@Create

@Factory("processInstance", scope=CONVERSATION)
public ProcessInstance createProcessInstance() { ... }

@Logger("categoryName")

@RequestParameter("parameterName")

CHAPTER 29. SEAM ANNOTATIONS

395

Specifies that the method should be called when an instance of the component is instantiated by
Seam. Create methods are only supported for JavaBeans and stateful session beans.

@Destroy

Specifies that the method should be called when the context ends and its context variables are
destroyed. Destroy methods are only supported for JavaBeans and stateful session beans.

Destroy methods should be used only for cleanup. Seam catches, logs and swallows any exception
that propagates out of a destroy method.

@Observer

Specifies that the method should be called when a component-driven event of the specified type
occurs.

Specifies that the method should be called when an event of the specified type occurs, but that an
instance should not be created if it does not already exist. If an instance does not exist and create is
set to false, the event will not be observed. The default value is true.

29.4. ANNOTATIONS FOR CONTEXT DEMARCATION

These annotations provide declarative conversation demarcation. They appear on Seam component
methods, usually action listener methods.

Every web request is associated with a conversation context. Most of these conversations end when the
request is complete. To span a conversation across multiple requests, you must "promote" the
conversation to a long-running conversation by calling a method marked with @Begin.

@Begin

Specifies that a long-running conversation begins when this method returns a non-null outcome
without exception.

Specifies that, if a long-running conversation is already in progress, the conversation context is
propagated.

@Create

@Destroy

@Observer("somethingChanged")

@Observer(value="somethingChanged",create=false)

@Begin

@Begin(join=true)

@Begin(nested=true)

Seam Reference Guide

396

Specifies that, if a long-running conversation is already in progress, a new nested conversation
context should begin. The nested conversation will end when the next @End is encountered, and the
outer conversation will resume. Multiple nested conversations can exist concurrently in the same
outer conversation.

Specifies a jBPM process definition name that defines the pageflow for this conversation.

Specifies the flush mode of any Seam-managed persistence contexts.
flushMode=FlushModeType.MANUAL supports the use of atomic conversations, where all write
operations are queued in the conversation context until an explicit call to flush() (which usually
occurs at the end of the conversation) is made.

join — determines the behavior when a long-running conversation is already in progress. If
true, the context is propagated. If false, an exception is thrown. Defaults to false. This
setting is ignored when nested=true is specified.

nested — specifies that a nested conversation should be started if a long-running
conversation is already in progress.

flushMode — sets the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

pageflow — the name of a jBPM process definition deployed via
org.jboss.seam.bpm.jbpm.pageflowDefinitions.

@End

Specifies that a long-running conversation ends when this method returns a non-null outcome without
exception.

beforeRedirect — by default, the conversation will not actually be destroyed until after
any redirect has occurred. Setting beforeRedirect=true specifies that the conversation
should be destroyed at the end of the current request, and that the redirect will be processed
in a new temporary conversation context.

root — by default, ending a nested conversation simply pops the conversation stack and
resumes the outer conversation. Setting root=true specifies that the root conversation
should be destroyed, which destroys the entire conversation stack. If the conversation is not
nested, the current conversation is destroyed.

@StartTask

Starts a jBPM task. Specifies that a long-running conversation begins when this method returns a
non-null outcome without exception. This conversation is associated with the jBPM task specified in
the named request parameter. Within the context of this conversation, a business process context is

@Begin(pageflow="process definition name")

@Begin(flushMode=FlushModeType.MANUAL)

@End

@StartTask

CHAPTER 29. SEAM ANNOTATIONS

397

also defined, for the business process instance of the task instance.

The jBPM TaskInstance is available in the taskInstance request context variable. The
jBPM ProcessInstance is available in the processInstance request context variable.
These objects can be injected with @In.

taskIdParameter — the name of a request parameter which holds the task ID. Default to
"taskId", which is also the default used by the Seam taskList JSF component.

flushMode — sets the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

@BeginTask

Resumes work on an incomplete jBPM task. Specifies that a long-running conversation begins when
this method returns a non-null outcome without exception. This conversation is associated with the
jBPM task specified in the named request parameter. Within the context of this conversation, a
business process context is also defined, for the business process instance of the task instance.

The jBPM org.jbpm.taskmgmt.exe.TaskInstance is available in the taskInstance
request context variable. The jBPM org.jbpm.graph.exe.ProcessInstance is
available in the processInstance request context variable.

taskIdParameter — the name of a request parameter which holds the ID of the task.
Defaults to "taskId", which is also the default used by the Seam taskList JSF
component.

flushMode — sets the flush mode of any Seam-managed Hibernate sessions or JPA
persistence contexts that are created during this conversation.

@EndTask

Ends a jBPM task. Specifies that a long-running conversation ends when this method returns a non-
null outcome, and that the current task is complete. Triggers a jBPM transition. The actual transition
triggered will be the default transition unless the application has called Transition.setName() on
the built-in component named transition.

Triggers the specified jBPM transition.

transition — the name of the jBPM transition to be triggered when ending the task.
Defaults to the default transition.

beforeRedirect — by default, the conversation will not actually be destroyed until after
any redirect has occurred. Setting beforeRedirect=true specifies that the conversation
should be destroyed at the end of the current request, and that the redirect will be processed
in a new temporary conversation context.

@CreateProcess

@BeginTask

@EndTask

@EndTask(transition="transitionName")

Seam Reference Guide

398

Creates a new jBPM process instance when the method returns a non-null outcome without
exception. The ProcessInstance object will be available in a context variable named
processInstance.

definition — the name of the jBPM process definition deployed via
org.jboss.seam.bpm.jbpm.processDefinitions.

@ResumeProcess

Re-enters the scope of an existing jBPM process instance when the method returns a non-null
outcome without exception. The ProcessInstance object will be available in a context variable
named processInstance.

processIdParameter — the name of the request parameter that holds the process ID.
Defaults to "processId".

@Transition

Marks a method as signalling a transition in the current jBPM process instance whenever the method
returns a non-null result.

29.5. ANNOTATIONS FOR USE WITH SEAM JAVABEAN COMPONENTS
IN A J2EE ENVIRONMENT

Seam provides an annotation that lets you force a rollback of the JTA transaction for certain action
listener outcomes.

@Transactional

Specifies that a JavaBean component should have similar transactional behavior to the default
behavior of a session bean component. That is, method invocations should take place in a
transaction, and if no transaction exists when the method is called, a transaction will be started just
for that method. This annotation can be applied at either class or method level.

NOTE

This annotation should not be used on EJB3 components — use
@TransactionAttribute instead.

@ApplicationException

@CreateProcess(definition="process definition name")

@ResumeProcess(processIdParameter="processId")

@Transition("cancel")

@Transactional

@ApplicationException

CHAPTER 29. SEAM ANNOTATIONS

399

Applied to an exception to denote that it is an application exception and should be reported to the
client directly — that is, unwrapped. Operates identically to javax.ejb.ApplicationException
when used in a pre-Java EE 5 environment.

NOTE

This annotation should not be used on EJB3 components — use
@javax.ejb.ApplicationException instead.

rollback — by default false, if true this exception sets the transaction to rollback only.

end — by default false, if true, this exception ends the current long-running conversation.

@Interceptors

Declares an ordered list of interceptors for a class or method. Operates identically to
javax.interceptors.Interceptors when used in a pre-Java EE 5 environment. Note that this
may only be used as a meta-annotation.

NOTE

This annotation should not be used on EJB3 components — use
@javax.interceptor.Interceptors instead.

These annotations are used primarily for JavaBean Seam components. If you use EJB3 components,
you should use the standard Java EE 5 annotations.

29.6. ANNOTATIONS FOR EXCEPTIONS

These annotations let you specify how Seam handles any exceptions propagating from a Seam
component.

@Redirect

Specifies that the annotated exception causes a browser redirect to a specified view ID.

viewId — specifies the JSF view ID to redirect to. You can use EL here.

message — a message to be displayed. Defaults to the exception message.

end — specifies that the long-running conversation should end. Defaults to false.

@HttpError

Specifies that the annotated exception causes a HTTP error to be sent.

@Interceptors({DVDInterceptor, CDInterceptor})

@Redirect(viewId="error.jsp")

@HttpError(errorCode=404)

Seam Reference Guide

400

errorCode — the HTTP error code. Defaults to 500.

message — a message to be sent with the HTTP error. Defaults to the exception message.

end — specifies that the long-running conversation should end. Defaults to false.

29.7. ANNOTATIONS FOR SEAM REMOTING

Seam Remoting requires that the local interface of a session bean be annotated with the following
annotation:

@WebRemote

Indicates that the annotated method may be called from client-side JavaScript. The exclude
property is optional, and allows objects to be excluded from the result's object graph. (See the
Chapter 24, Remoting chapter for more details.)

29.8. ANNOTATIONS FOR SEAM INTERCEPTORS

The following annotations appear on Seam interceptor classes.

Please refer to the documentation for the EJB3 specification for information about the annotations
required to define EJB interceptors.

@Interceptor

Specifies that this interceptor is stateless and Seam may optimize replication.

Specifies that this interceptor is a "client-side" interceptor, called prior to the EJB container.

Specifies that this interceptor is positioned higher in the stack than the given interceptors.

Specifies that this interceptor is positioned deeper in the stack than the given interceptors.

29.9. ANNOTATIONS FOR ASYNCHRONICITY

The following annotations are used to declare an asynchronous method, as in the following example:

@WebRemote(exclude="path.to.exclude")

@Interceptor(stateless=true)

@Interceptor(type=CLIENT)

@Interceptor(around={SomeInterceptor.class, OtherInterceptor.class})

@Interceptor(within={SomeInterceptor.class, OtherInterceptor.class})

@Asynchronous public void scheduleAlert(Alert alert,
 @Expiration Date date) {

CHAPTER 29. SEAM ANNOTATIONS

401

@Asynchronous

Specifies that the method call is processed asynchronously.

@Duration

Specifies the parameter of the asynchronous call that relates to the duration before the call is
processed (or first processed, for recurring calls).

@Expiration

Specifies the parameter of the asynchronous call that relates to the date and time at which the call is
processed (or first processed, for recurring calls).

@IntervalDuration

Specifies that an asynchronous method call recurs. The associated parameter defines the duration of
the interval between recurrences.

29.10. ANNOTATIONS FOR USE WITH JSF

The following annotations make it easier to work with JSF.

@Converter

Allows a Seam component to act as a JSF converter. The annotated class must be a Seam
component, and must implement javax.faces.convert.Converter.

id — the JSF converter ID. Defaults to the component name.

forClass — if specified, registers this component as the default converter for a type.

@Validator

 ...
}

@Asynchronous public Timer scheduleAlerts(Alert alert,
 @Expiration Date date,
 @IntervalDuration long
interval) {
 ...
}

@Asynchronous

@Duration

@Expiration

@IntervalDuration

Seam Reference Guide

402

Allows a Seam component to act as a JSF validator. The annotated class must be a Seam
component, and must implement javax.faces.validator.Validator.

id — the JSF validator ID. Defaults to the component name.

29.10.1. Annotations for use with dataTable

The following annotations make it easy to implement clickable lists backed by a stateful session bean.
They appear on attributes.

@DataModel

Outjects a property of type List, Map, Set or Object[] as a JSF DataModel into the scope of the
owning component (or the EVENT scope, if the owning component is STATELESS). In the case of Map,
each row of the DataModel is a Map.Entry.

value — name of the conversation context variable. Default to the attribute name.

scope — if scope=ScopeType.PAGE is explicitly specified, the DataModel will be kept in
the PAGE context.

@DataModelSelection

Injects the selected value from the JSF DataModel. (This is the element of the underlying collection,
or the map value.) If only one @DataModel attribute is defined for a component, the selected value
from that DataModel will be injected. Otherwise, the component name of each @DataModel must
be specified in the value attribute for each @DataModelSelection.

If PAGE scope is specified on the associated @DataModel, then the associated DataModel will be
injected in addition to the DataModel Selection. In this case, if the property annotated with
@DataModel is a getter method, then a setter method for the property must also be part of the
Business API of the containing Seam Component.

value — name of the conversation context variable. Not needed if there is exactly one
@DataModel in the component.

@DataModelSelectionIndex

Exposes the selection index of the JSF DataModel as an attribute of the component. (This is the row
number of the underlying collection, or the map key.) If only one @DataModel attribute is defined for
a component, the selected value from that DataModel will be injected. Otherwise, the component
name of each @DataModel must be specified in the value attribute for each
@DataModelSelectionIndex.

value — name of the conversation context variable. This is not required if there is exactly
one @DataModel in the component.

@DataModel("variableName")

@DataModelSelection

@DataModelSelectionIndex

CHAPTER 29. SEAM ANNOTATIONS

403

29.11. META-ANNOTATIONS FOR DATABINDING

These meta-annotations make it possible to implement similar functionality to @DataModel and
@DataModelSelection for other datastructures apart from lists.

@DataBinderClass

Specifies that an annotation is a databinding annotation.

@DataSelectorClass

Specifies that an annotation is a dataselection annotation.

29.12. ANNOTATIONS FOR PACKAGING

This annotation provides a mechanism for declaring information about a set of components that are
packaged together. It can be applied to any Java package.

@Namespace

Specifies that components in the current package are associated with the given namespace. The
declared namespace can be used as an XML namespace in a components.xml file to simplify
application configuration.

Specifies a namespace to associate with a given package. Additionally, it specifies a component
name prefix to be applied to component names specified in the XML file. For example, an XML
element named init that is associated with this namespace would be understood to actually refer to
a component named org.jboss.seam.core.init.

29.13. ANNOTATIONS FOR INTEGRATING WITH THE SERVLET
CONTAINER

These annotations allow you to integrate your Seam components with the Servlet container.

@Filter

When used to annotate a Seam component implementing javax.servlet.Filter, designates
that component as a servlet filter to be executed by Seam's master filter.

Specifies that this filter is positioned higher in the stack than the given filters.

@DataBinderClass(DataModelBinder.class)

@DataSelectorClass(DataModelSelector.class)

@Namespace(value="http://jboss.com/products/seam/example/seampay")

@Namespace(value="http://jboss.com/products/seam/core",
 prefix="org.jboss.seam.core")

@Filter(around={"seamComponent", "otherSeamComponent"})

Seam Reference Guide

404

Specifies that this filter is positioned deeper in the stack than the given filters.

@Filter(within={"seamComponent", "otherSeamComponent"})

CHAPTER 29. SEAM ANNOTATIONS

405

CHAPTER 30. BUILT-IN SEAM COMPONENTS
This chapter describes Seam's built-in components, and their configuration properties. The built-in
components are created automatically, even if they are not listed in your components.xml file.
However, if you need to override default properties or specify more than one component of a certain
type, you can do so in components.xml.

You can replace any of the built-in components with your own implementation by using @Name to name
your own class after the appropriate built-in component.

30.1. CONTEXT INJECTION COMPONENTS

The first set of built-in components support the injection of various contextual objects. For example, the
following component instance variable would have the Seam session context object injected:

org.jboss.seam.core.contexts

Component that provides access to Seam Context objects such as
org.jboss.seam.core.contexts.sessionContext['user'].

org.jboss.seam.faces.facesContext

Manager component for the FacesContext context object. (This is not a true Seam context.)

All of these components are always installed.

30.2. JSF-RELATED COMPONENTS

The following set of components are provided to supplement JSF.

org.jboss.seam.faces.dateConverter

Provides a default JSF converter for properties of type java.util.Date.

This converter is automatically registered with JSF, so developers need not specify a
DateTimeConverter on an input field or page parameter. By default, it assumes the type to be a date
(as opposed to a time or date plus time), and uses the short input style adjusted to the user's
Locale. For Locale.US, the input pattern is mm/dd/yy. However, to comply with Y2K, the year is
changed from two digits to four — mm/dd/yyyy.

You can override the input pattern globally by reconfiguring your component. Consult the JavaServer
Faces documentation for this class to see examples.

org.jboss.seam.faces.facesMessages

Allows Faces success messages to propagate across a browser redirect.

add(FacesMessage facesMessage) — adds a Faces message, which will be displayed
during the next render response phase that occurs in the current conversation.

add(String messageTemplate) — adds a Faces message, rendered from the given
message template, which may contain EL expressions.

@In private Context sessionContext;

Seam Reference Guide

406

add(Severity severity, String messageTemplate) — adds a Faces message,
rendered from the given message template, which may contain EL expressions.

addFromResourceBundle(String key) — adds a Faces message, rendered from a
message template defined in the Seam resource bundle which may contain EL expressions.

addFromResourceBundle(Severity severity, String key) — adds a Faces
message, rendered from a message template defined in the Seam resource bundle, which
may contain EL expressions.

clear() — clears all messages.

org.jboss.seam.faces.redirect

A convenient API for performing redirects with parameters. This is particularly useful for
bookmarkable search results screens.

redirect.viewId — the JSF view ID to redirect to.

redirect.conversationPropagationEnabled — determines whether the conversation
will propagate across the redirect.

redirect.parameters — a map of request parameter name to value, to be passed in the
redirect request.

execute() — performs the redirect immediately.

captureCurrentRequest() — stores the view ID and request parameters of the current
GET request (in the conversation context) for later use by calling execute().

org.jboss.seam.faces.httpError

A convenient API for sending HTTP errors.

org.jboss.seam.ui.renderStampStore

A component which maintains a collection of render stamps. A render stamp indicates whether a
rendered form has been submitted. This is particularly useful in conjunction with JSF's client-side
state saving method, because the form's status (posted or unposted) is controlled by the server
rather than the client.

Client-side state saving is often used to unbind this check from the session. To do so, you will need
an implementation that can store render stamps within the application (valid while the application
runs), or the database (valid across server restarts).

maxSize — The maximum number of stamps to keep in the store. The default is 100.

The JSF components are installed when the class javax.faces.context.FacesContext is
available on the classpath.

30.3. UTILITY COMPONENTS

The following components provide various functions that are useful across a broad range of applications.

org.jboss.seam.core.events

CHAPTER 30. BUILT-IN SEAM COMPONENTS

407

An API for raising events that can be observed via @Observer methods, or method bindings in
components.xml.

raiseEvent(String type) — raises an event of a particular type and distributes it to all
observers.

raiseAsynchronousEvent(String type) — raises an event to be processed
asynchronously by the EJB3 timer service.

raiseTimedEvent(String type,) — schedules an event to be processed
asynchronously by the EJB3 timer service.

addListener(String type, String methodBinding) — adds an observer for a
particular event type.

org.jboss.seam.core.interpolator

An API for interpolating the values of JSF EL expressions in Strings.

interpolate(String template) — scans the template for JSF EL expressions of the
form #{...} and replaces them with their evaluated values.

org.jboss.seam.core.expressions

An API for creating value and method bindings.

createValueBinding(String expression) — creates a value binding object.

createMethodBinding(String expression) — creates a method binding object.

org.jboss.seam.core.pojoCache

Manager component for a JBoss Cache PojoCache instance.

pojoCache.cfgResourceName — the name of the configuration file. Defaults to
treecache.xml.

All of these components are always installed.

30.4. COMPONENTS FOR INTERNATIONALIZATION AND THEMES

These components make it easy to build internationalized user interfaces using Seam.

org.jboss.seam.core.locale

The Seam locale.

org.jboss.seam.international.timezone

The Seam timezone. The timezone is session-scoped.

org.jboss.seam.core.resourceBundle

The Seam resource bundle. The resource bundle is stateless. The Seam resource bundle performs a
depth-first search for keys in a list of Java resource bundles.

Seam Reference Guide

408

org.jboss.seam.core.resourceLoader

The resource loader provides access to application resources and resource bundles.

resourceLoader.bundleNames — the names of the Java resource bundles to search
when the Seam resource bundle is used. Default to messages.

org.jboss.seam.international.localeSelector

Supports selection of the locale either at configuration time, or by the user at runtime.

select() — selects the specified locale.

localeSelector.locale — the actual java.util.Locale.

localeSelector.localeString — the string representation of the locale.

localeSelector.language — the language for the specified locale.

localeSelector.country — the country for the specified locale.

localeSelector.variant — the variant for the specified locale.

localeSelector.supportedLocales — a list of SelectItems representing the
supported locales listed in jsf-config.xml.

localeSelector.cookieEnabled — specifies that the locale selection should be
persisted via a cookie.

org.jboss.seam.international.timezoneSelector

Supports selection of the timezone either at configuration time, or by the user at runtime.

select() — selects the specified locale.

timezoneSelector.timezone — the actual java.util.TimeZone.

timezoneSelector.timeZoneId — the string representation of the timezone.

timezoneSelector.cookieEnabled — specifies that the timezone selection should be
persisted via a cookie.

org.jboss.seam.international.messages

A map containing internationalized messages rendered from message templates defined in the Seam
resource bundle.

org.jboss.seam.theme.themeSelector

Supports selection of the theme either at configuration time, or by the user at runtime.

select() — select the specified theme.

theme.availableThemes — the list of defined themes.

themeSelector.theme — the selected theme.

themeSelector.themes — a list of SelectItems representing the defined themes.

CHAPTER 30. BUILT-IN SEAM COMPONENTS

409

themeSelector.cookieEnabled — specifies that the theme selection should be
persisted via a cookie.

org.jboss.seam.theme.theme

A map containing theme entries.

All of these components are always installed.

30.5. COMPONENTS FOR CONTROLLING CONVERSATIONS

The following components allow you to control conversations through either the application or the user
interface.

org.jboss.seam.core.conversation

An API for controlling the current Seam conversation's attributes from within the application.

getId() — returns the current conversation ID.

isNested() — specifies whether the current conversation is a nested conversation.

isLongRunning() — specifies whether the current conversation is a long-running
conversation.

getId() — returns the current conversation ID.

getParentId() — returns the conversation ID of the parent conversation.

getRootId() — returns the conversation ID of the root conversation.

setTimeout(int timeout) — sets the timeout for the current conversation.

setViewId(String outcome) — sets the view ID to use when switching back to the
current conversation from the conversation switcher, conversation list, or breadcrumbs.

setDescription(String description) — sets the description of the current
conversation to be displayed in the conversation switcher, conversation list, or breadcrumbs.

redirect() — redirects to the last well-defined view ID for this conversation. This is useful
after log in challenges.

leave() — exits the scope of this conversation, without actually ending the conversation.

begin() — begins a long-running conversation (equivalent to @Begin).

beginPageflow(String pageflowName) — begin a long-running conversation with a
pageflow (equivalent to @Begin(pageflow="...")).

end() — ends a long-running conversation (equivalent to @End).

pop() — pops the conversation stack, and returns to the parent conversation.

root() — returns to the root conversation of the conversation stack.

Seam Reference Guide

410

changeFlushMode(FlushModeType flushMode) — changes the flush mode of the
conversation.

org.jboss.seam.core.conversationList

A manager component for the conversation list.

org.jboss.seam.core.conversationStack

A manager component for the conversation stack (breadcrumbs).

org.jboss.seam.faces.switcher

The conversation switcher.

All of these components are always installed.

30.6. JBPM-RELATED COMPONENTS

The following components are used with jBPM.

org.jboss.seam.pageflow.pageflow

An API for controlling Seam pageflows.

isInProcess() — returns true if there is currently a pageflow in process.

getProcessInstance() — returns jBPM ProcessInstance for the current pageflow.

begin(String pageflowName) — begins a pageflow in the context of the current
conversation.

reposition(String nodeName) — repositions the current pageflow to a particular node.

org.jboss.seam.bpm.actor

An API that controls the attributes of the jBPM actor associated with the current session, from within
the application.

setId(String actorId) — sets the jBPM actor ID of the current user.

getGroupActorIds() — returns a Set to which jBPM actor IDs for the current users
groups may be added.

org.jboss.seam.bpm.transition

An API that controls the current task's jBPM transition from within the application.

setName(String transitionName) — sets the jBPM transition name to be used when
the current task is ended via @EndTask.

org.jboss.seam.bpm.businessProcess

An API for programmatic control of the association between the conversation and business process.

businessProcess.taskId — the ID of the task associated with the current conversation.

CHAPTER 30. BUILT-IN SEAM COMPONENTS

411

businessProcess.processId — the ID of the process associated with the current
conversation.

businessProcess.hasCurrentTask() — specifies whether a task instance is
associated with the current conversation.

businessProcess.hasCurrentProcess() — specifies whether a process instance is
associated with the current conversation.

createProcess(String name) — creates an instance of the named process definition
and associates it with the current conversation.

startTask() — starts the task associated with the current conversation.

endTask(String transitionName) — ends the task associated with the current
conversation.

resumeTask(Long id) — associates the task with the specified ID with the current
conversation.

resumeProcess(Long id) — associates the process with the specified ID with the current
conversation.

transition(String transitionName) — triggers the transition.

org.jboss.seam.bpm.taskInstance

A manager component for the jBPM TaskInstance.

org.jboss.seam.bpm.processInstance

A manager component for the jBPM ProcessInstance.

org.jboss.seam.bpm.jbpmContext

A manager component for an event-scoped JbpmContext.

org.jboss.seam.bpm.taskInstanceList

A manager component for the jBPM task list.

org.jboss.seam.bpm.pooledTaskInstanceList

A manager component for the jBPM pooled task list.

org.jboss.seam.bpm.taskInstanceListForType

A manager component for the jBPM task lists.

org.jboss.seam.bpm.pooledTask

An action handler for pooled task assignment.

org.jboss.seam.bpm.processInstanceFinder

A manager component for the process instance task list.

org.jboss.seam.bpm.processInstanceList

Seam Reference Guide

412

The process instance task list.

All of these components are installed whenever the component org.jboss.seam.bpm.jbpm is
installed.

30.7. SECURITY-RELATED COMPONENTS

These components relate to web-tier security.

org.jboss.seam.web.userPrincipal

A manager component for the current user Principal.

org.jboss.seam.web.isUserInRole

Allows JSF pages to choose to render a control, depending upon the roles available to the current
principal, for example: <h:commandButton value="edit" rendered="#
{isUserInRole['admin']}"/>.

30.8. JMS-RELATED COMPONENTS

These components are for use with managed TopicPublishers and QueueSenders (see below).

org.jboss.seam.jms.queueSession

A manager component for a JMS QueueSession.

org.jboss.seam.jms.topicSession

A manager component for a JMS TopicSession.

30.9. MAIL-RELATED COMPONENTS

These components are for use with Seam's Email support.

org.jboss.seam.mail.mailSession

A manager component for a JavaMail Session. The session can be either looked up in the JNDI
context (by setting the sessionJndiName property), or created from the configuration options. In
this case, the host is mandatory.

org.jboss.seam.mail.mailSession.host — the hostname of the SMTP server to
use.

org.jboss.seam.mail.mailSession.port — the port of the SMTP server to use.

org.jboss.seam.mail.mailSession.username — the username to use to connect to
the SMTP server.

org.jboss.seam.mail.mailSession.password — the password to use to connect to
the SMTP server.

org.jboss.seam.mail.mailSession.debug — enables JavaMail debugging (very
verbose).

CHAPTER 30. BUILT-IN SEAM COMPONENTS

413

org.jboss.seam.mail.mailSession.ssl — enables SSL connection to SMTP (will
default to port 465).

org.jboss.seam.mail.mailSession.tls — enables TLS support in the mail session.
Defaults to true.

org.jboss.seam.mail.mailSession.sessionJndiName — name under which a
javax.mail.Session is bound to JNDI. If this is supplied, all other properties will be ignored.

30.10. INFRASTRUCTURAL COMPONENTS

These components provide critical platform infrastructure. You can install a component that is not
installed by default by setting install="true" on the component in components.xml.

org.jboss.seam.core.init

This component contains initialization settings for Seam. Always installed.

org.jboss.seam.core.init.jndiPattern — the JNDI pattern used for looking up
session beans.

org.jboss.seam.core.init.debug — enables Seam debug mode. During production,
this should be set to false; you may see errors if the system is placed under any load while
debug is enabled.

org.jboss.seam.core.init.clientSideConversations — when true, saves
conversation context variables in the client rather than the HttpSession.

org.jboss.seam.core.manager

An internal component for Seam page and conversation context management. Always installed.

org.jboss.seam.core.manager.conversationTimeout — the conversation context
timeout in milliseconds.

org.jboss.seam.core.manager.concurrentRequestTimeout — the maximum wait
time for a thread attempting to gain a lock on the long-running conversation context.

org.jboss.seam.core.manager.conversationIdParameter — the request
parameter used to propagate the conversation ID. The default is conversationId.

org.jboss.seam.core.manager.conversationIsLongRunningParameter — the
request parameter used to propagate that the conversation is long-running. The default is
conversationIsLongRunning.

org.jboss.seam.core.manager.defaultFlushMode — sets the default flush mode on
any Seam-managed Persistence Context. This defaults to AUTO.

org.jboss.seam.navigation.pages

An internal component for Seam workspace management. Always installed.

org.jboss.seam.navigation.pages.noConversationViewId — specifies the view
ID to redirect to, globally, when a conversation entry is not found on the server side.

Seam Reference Guide

414

org.jboss.seam.navigation.pages.loginViewId — specifies the view ID to redirect
to, globally, when an unauthenticated user attempts to access a protected view.

org.jboss.seam.navigation.pages.httpPort — specifies the port to use, globally,
when the HTTP scheme is requested.

org.jboss.seam.navigation.pages.httpsPort — specifies the port to use, globally,
when the HTTPS scheme is requested.

org.jboss.seam.navigation.pages.resources — specifies a list of resources to
search for pages.xml style resources. The default is WEB-INF/pages.xml.

org.jboss.seam.bpm.jbpm

This component bootstraps a JbpmConfiguration. Install it as the org.jboss.seam.bpm.Jbpm
class.

org.jboss.seam.bpm.jbpm.processDefinitions — specifies a list of jPDL file
resource names to use for orchestrating business processes.

org.jboss.seam.bpm.jbpm.pageflowDefinitions — specifies a list of jPDL file
resource names to use for orchestrating conversation page flows.

org.jboss.seam.core.conversationEntries

An internal session-scoped component that records active long-running conversations between
requests.

org.jboss.seam.faces.facesPage

An internal page-scoped component that records the conversation context associated with a page.

org.jboss.seam.persistence.persistenceContexts

An internal component that records the persistence contexts used in the current conversation.

org.jboss.seam.jms.queueConnection

Manages a JMS QueueConnection. This is installed whenever managed QueueSender is
installed.

org.jboss.seam.jms.queueConnection.queueConnectionFactoryJndiName —
specifies the JNDI name of a JMS QueueConnectionFactory. The default is
UIL2ConnectionFactory.

org.jboss.seam.jms.topicConnection

Manages a JMS TopicConnection. This is installed whenever managed TopicPublisher is
installed.

org.jboss.seam.jms.topicConnection.topicConnectionFactoryJndiName —
specifies the JNDI name of a JMS TopicConnectionFactory. The default is
UIL2ConnectionFactory.

org.jboss.seam.persistence.persistenceProvider

An abstraction layer for non-standardized features of the JPA provider.

CHAPTER 30. BUILT-IN SEAM COMPONENTS

415

org.jboss.seam.core.validators

Caches instances of Hibernate Validator ClassValidator.

org.jboss.seam.faces.validation

Lets the application determine whether validation succeeded.

org.jboss.seam.debug.introspector

Provides support for the Seam Debug Page.

org.jboss.seam.debug.contexts

Provides support for the Seam Debug Page.

org.jboss.seam.exception.exceptions

An internal component for exception handling.

org.jboss.seam.transaction.transaction

An API for controlling transactions and abstracting the underlying transaction management
implementation behind a JTA-compatible interface.

org.jboss.seam.faces.safeActions

Determines that an action expression in an incoming URL is safe by checking that the action
expression exists in the view.

30.11. MISCELLANEOUS COMPONENTS

Additional, uncategorized components.

org.jboss.seam.async.dispatcher

Dispatches stateless session beans for asynchronous methods.

org.jboss.seam.core.image

Used for image manipulation and interrogation.

org.jboss.seam.core.pojoCache

A manager component for a PojoCache instance.

org.jboss.seam.core.uiComponent

Manages a map of UIComponents keyed by component ID.

30.12. SPECIAL COMPONENTS

Certain Seam component classes can be installed multiple times under names specified in the Seam
configuration. For example, the following lines in components.xml install and configure two Seam
components:

Seam Reference Guide

416

The Seam component names are bookingDatabase and userDatabase.

<entityManager> , org.jboss.seam.persistence.ManagedPersistenceContext

A manager component for a conversation-scoped, managed EntityManager with an extended
persistence context.

<entityManager>.entityManagerFactory — a value binding expression that evaluates to an
instance of EntityManagerFactory.

<entityManager>.persistenceUnitJndiName — the JNDI name of the entity manager factory.
By default, this is java:/<managedPersistenceContext> .

<entityManagerFactory> , org.jboss.seam.persistence.EntityManagerFactory

Manages a JPA EntityManagerFactory. This is most useful when using JPA outside of an
environment with EJB3 support.

entityManagerFactory.persistenceUnitName — the name of the persistence unit.

See the API JavaDoc for further configuration properties.

<session> , org.jboss.seam.persistence.ManagedSession

A manager component for a conversation-scoped, managed Hibernate Session.

<session>.sessionFactory — a value binding expression that evaluates to an instance of
SessionFactory.

<session>.sessionFactoryJndiName — the JNDI name of the session factory. By default, this
is java:/<managedSession>.

<sessionFactory> , org.jboss.seam.persistence.HibernateSessionFactory

Manages a Hibernate SessionFactory.

<sessionFactory>.cfgResourceName — specifies the path to the configuration file. By
default, this is hibernate.cfg.xml.

See the API JavaDoc for further configuration properties.

<managedQueueSender> , org.jboss.seam.jms.ManagedQueueSender

<component name="bookingDatabase"
 class="org.jboss.seam.persistence.ManagedPersistenceContext">
 <property name="persistenceUnitJndiName">
 java:/comp/emf/bookingPersistence
 </property>
</component>

<component name="userDatabase"
 class="org.jboss.seam.persistence.ManagedPersistenceContext">
 <property name="persistenceUnitJndiName">
 java:/comp/emf/userPersistence
 </property>
</component>

CHAPTER 30. BUILT-IN SEAM COMPONENTS

417

A manager component for an event scoped managed JMS QueueSender.

<managedQueueSender>.queueJndiName — the JNDI name of the JMS queue.

<managedTopicPublisher> , org.jboss.seam.jms.ManagedTopicPublisher

A manager component for an event-scoped, managed JMS TopicPublisher.

<managedTopicPublisher>.topicJndiName — the JNDI name of the JMS topic.

<managedWorkingMemory> , org.jboss.seam.drools.ManagedWorkingMemory

A manager component for a conversation-scoped, managed Drools WorkingMemory.

<managedWorkingMemory>.ruleBase — a value expression that evaluates to an instance of
RuleBase.

<ruleBase> , org.jboss.seam.drools.RuleBase

A manager component for an application-scoped Drools RuleBase. Note that this does not support
dynamic installation of new rules, so it is not appropriate for use in production.

<ruleBase>.ruleFiles — a list of files containing Drools rules.

<ruleBase>.dslFile — a Drools DSL definition.

Seam Reference Guide

418

CHAPTER 31. SEAM JSF CONTROLS
Seam includes a number of JavaServer Faces (JSF) controls to complement built-in controls, and
controls from other third-party libraries. We recommend JBoss RichFaces and Apache MyFaces Trinidad
tag libraries for use with Seam. We do not recommend the use of the Tomahawk tag library.

31.1. TAGS

To use these tags, define the s namespace in your page as follows (Facelets only):

The user interface example demonstrates the use of a number of these tags.

31.1.1. Navigation Controls

31.1.1.1. <s:button>

Description

A button that supports invoking an action with control over conversation propagation. This button does
not submit the form.

Attributes

value — the button label.

action — a method binding that specifies the action listener.

view — specifies the JSF view ID to link to.

fragment — specifies the fragment identifier to link to.

disabled — specifies whether the link is disabled.

propagation — determines the conversation propagation style: begin, join, nest, none or
end.

pageflow — specifies a pageflow definition to begin. (Effective only when
propagation="begin" or propagation="join" is used.)

Usage

You can specify both view and action on <s:link />. In this case, the action will be called once the
redirect to the specified view has occurred.

The use of action listeners (including the default JSF action listener) is not supported with <s:button
/>.

31.1.1.2. <s:conversationId>

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:s="http://jboss.com/products/seam/taglib">

<s:button id="cancel" value="Cancel" action="#{hotelBooking.cancel}"/>

CHAPTER 31. SEAM JSF CONTROLS

419

Description

Adds the conversation ID to a JSF link or button, for example:

<h:commandLink />, <s:button />.

Attributes

None.

31.1.1.3. <s:taskId>

Description

Adds the task ID to an output link (or similar JSF control) when the task is available via #{task}.

Attributes

None.

31.1.1.4. <s:link>

Description

A link that supports invoking an action with control over conversation propagation. This does not submit
the form.

The use of action listeners (including the default JSF action listener) is not supported with <s:link />.

Attributes

value — specifies the link label.

action — a method binding that specifies the action listener.

view — specifies the JSF view ID to link to.

fragment — specifies the fragment identifier to link to.

disabled — specifies whether the link is disabled.

propagation — determines the conversation propagation style: begin, join, nest, none or
end.

pageflow — specifies a pageflow definition to begin. (Effective only when using
propagation="begin" or propagation="join".)

Usage

You can specify both view and action on <s:link />. In this case, the action will be called once the
redirect to the specified view has occurred.

31.1.1.5. <s:conversationPropagation>

<s:link id="register" view="/register.xhtml" value="Register New User"/>

Seam Reference Guide

420

Description

Customizes the conversation propagation for a command link or button (or similar JSF control). Facelets
only.

Attributes

type — determines the conversation propagation style: begin, join, nest, none or end.

pageflow — specifies a pageflow definition to begin. (Effective only useful when using
propagation="begin" or propagation="join".)

Usage

31.1.1.6. <s:defaultAction>

Description

Specifies the default action to run when the form is submitted using the enter key.

Currently you this can only be nested inside buttons, such as <h:commandButton />,
<a:commandButton /> or <tr:commandButton />).

You must specify an ID on the action source, and only one default action can be specified per form.

Attributes

None.

Usage

31.1.2. Converters and Validators

31.1.2.1. <s:convertDateTime>

Description

Perform date or time conversions in the Seam timezone.

Attributes

None.

Usage

<h:commandButton value="Apply" action="#{personHome.update}">
 <s:conversationPropagation type="join" />
</h:commandButton>

<h:commandButton id="foo" value="Foo" action="#{manager.foo}">
 <s:defaultAction />
</h:commandButton>

CHAPTER 31. SEAM JSF CONTROLS

421

31.1.2.2. <s:convertEntity>

Description

Assigns an entity converter to the current component. This is useful for radio button and dropdown
controls.

The converter works with any managed entity - either simple or composite. If the converter cannot find
the items declared in the JSF controls upon form submission, a validation error will occur.

Attributes

None.

Configuration

You must use Seam managed transactions (see Section 10.2, “Seam managed transactions”) with
<s:convertEntity />.

Your Managed Persistence Context must be named entityManager — if it is not, you can change its
named in components.xml:

If you are using a Managed Hibernate Session, you must also set this in components.xml:

Your Managed Hibernate Session must be named session — if it is not, you can change its named in
components.xml:

To use multiple entity managers with the entity converter, create a copy of the entity converter for each
entity manager in components.xml. The entity converter delegates to the entity loader to perform
persistence operations like so:

<h:outputText value="#{item.orderDate}">
 <s:convertDateTime type="both" dateStyle="full"/>
</h:outputText>

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:ui="http://jboss.com/products/seam/ui">
<ui:jpa-entity-loader entity-manager="#{em}" />

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:ui="http://jboss.com/products/seam/ui">
<ui:hibernate-entity-loader />

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:ui="http://jboss.com/products/seam/ui">
<ui:hibernate-entity-loader session="#{hibernateSession}" />

<components xmlns="http://jboss.com/products/seam/components"
 xmlns:ui="http://jboss.com/products/seam/ui">
<ui:entity-converter name="standardEntityConverter"
 entity-loader="#{standardEntityLoader}" />
<ui:jpa-entity-loader name="standardEntityLoader"
 entity-manager="#{standardEntityManager}" />
<ui:entity-converter name="restrictedEntityConverter"

Seam Reference Guide

422

Usage

31.1.2.3. <s:convertEnum>

Description

Assigns an enum converter to the current component. This is primarily useful for radio button and
dropdown controls.

Attributes

None.

Usage

31.1.2.4. <s:convertAtomicBoolean>

Description

javax.faces.convert.Converter for java.util.concurrent.atomic.AtomicBoolean.

Attributes

None.

Usage

 entity-loader="#{restrictedEntityLoader}" />
<ui:jpa-entity-loader name="restrictedEntityLoader"
 entity-manager="#{restrictedEntityManager}" />

<h:selectOneMenu value="#{person.continent}">
 <s:selectItems value="#{continents.resultList}"
 var="continent" label="#{continent.name}" />
 <f:converter converterId="standardEntityConverter" />
</h:selectOneMenu>

<h:selectOneMenu value="#{person.continent}" required="true">
 <s:selectItems value="#{continents.resultList}" var="continent"
 label="#{continent.name}" noSelectionLabel="Please Select..."/>
 <s:convertEntity />
</h:selectOneMenu>

<h:selectOneMenu value="#{person.honorific}">
 <s:selectItems value="#{honorifics}" var="honorific"
 label="#{honorific.label}" noSelectionLabel="Please select" />
 <s:convertEnum />
</h:selectOneMenu>

<h:outputText value="#{item.valid}">
 <s:convertAtomicBoolean />
</h:outputText>

CHAPTER 31. SEAM JSF CONTROLS

423

31.1.2.5. <s:convertAtomicInteger>

Description

javax.faces.convert.Converter for java.util.concurrent.atomic.AtomicInteger.

Attributes

None.

Usage

31.1.2.6. <s:convertAtomicLong>

Description

javax.faces.convert.Converter for java.util.concurrent.atomic.AtomicLong.

Attributes

None.

Usage

31.1.2.7. <s:validateEquality>

Description

Validates that an input control's parent's value is equal, or not equal, to the referenced control's value.

Attributes

for — The ID of a control to validate against.

message — Message to show on failure.

required — False will disable a check that a value at all is inputted in fields.

messageId — Message ID to show on failure.

operator — The operator to use when comparing values. Valid operators are:

equal — validates that value.equals(forValue).

not_equal — validates that !value.equals(forValue)

greater — validates that ((Comparable)value).compareTo(forValue) > 0

<h:outputText value="#{item.id}">
 <s:convertAtomicInteger />
</h:outputText>

<h:outputText value="#{item.id}">
 <s:convertAtomicLong />
</h:outputText>

Seam Reference Guide

424

greater_or_equal — validates that ((Comparable)value).compareTo(forValue) >= 0

less — validates that ((Comparable)value).compareTo(forValue) < 0

less_or_equal — validates that ((Comparable)value).compareTo(forValue) <= 0

Usage

31.1.2.8. <s:validate>

Description

A non-visual control that validates a JSF input field against the bound property with the Hibernate
Validator.

Attributes

None.

Usage

31.1.2.9. <s:validateAll>

Description

A non-visual control that validates all child JSF input fields against their bound properties with the
Hibernate Validator.

Attributes

None.

Usage

<h:inputText id="name" value="#{bean.name}"/>
<h:inputText id="nameVerification" >
 <s:validateEquality for="name" />
</h:inputText>

<h:inputText id="userName" required="true" value="#{customer.userName}">
 <s:validate />
</h:inputText>
<h:message for="userName" styleClass="error" />

<s:validateAll>
 <div class="entry">
 <h:outputLabel for="username">Username:</h:outputLabel>
 <h:inputText id="username" value="#{user.username}" required="true"/>
 <h:message for="username" styleClass="error" />
 </div>
 <div class="entry">
 <h:outputLabel for="password">Password:</h:outputLabel>
 <h:inputSecret id="password" value="#{user.password}"
 required="true"/>

CHAPTER 31. SEAM JSF CONTROLS

425

31.1.3. Formatting

31.1.3.1. <s:decorate>

Description

"Decorates" a JSF input field when validation fails or when required="true" is set.

Attributes

template — the Facelets template used to decorate the component.

enclose — if true, the template used to decorate the input field is enclosed by the element
specified with the "element" attribute. (By default, this is a div element.)

element — the element enclosing the template that decorates the input field. By default, the
template is enclosed with a div element.

#{invalid} and #{required} are available inside s:decorate. #{required} evaluates to true if
the input component being decorated is set to required. #{invalid} evaluates to true if a validation
error occurs.

Usage

 <h:message for="password" styleClass="error" />
 </div>
 <div class="entry">
 <h:outputLabel for="verify">Verify Password:</h:outputLabel>
 <h:inputSecret id="verify" value="#{register.verify}"
 required="true"/>
 <h:message for="verify" styleClass="error" />
 </div>
</s:validateAll>

<s:decorate template="edit.xhtml">
 <ui:define name="label">Country:</ui:define>
 <h:inputText value="#{location.country}" required="true"/>
</s:decorate>

<ui:composition xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:s="http://jboss.com/products/seam/taglib">
 <div>
 <s:label styleClass="#{invalid?'error':''}">
 <ui:insert name="label"/>
 <s:span styleClass="required" rendered="#{required}">*</s:span>
 </s:label>

 <s:validateAll>
 <ui:insert/>
 </s:validateAll>

Seam Reference Guide

426

31.1.3.2. <s:div>

Description

Renders a HTML <div>.

Attributes

None.

Usage

31.1.3.3. <s:span>

Description

Renders a HTML .

Attributes

title — Title for a span.

Usage

31.1.3.4. <s:fragment>

Description

A non-rendering component useful for enabling/disabling rendering of it's children.

Attributes

None.

Usage

 <s:message styleClass="error"/>
 </div>
</ui:composition>

<s:div rendered="#{selectedMember == null}">
 Sorry, but this member does not exist.
</s:div>

<s:span styleClass="required" rendered="#{required}" title="Small
tooltip">
 *
</s:span>

<s:fragment rendered="#{auction.highBidder ne null}">
 Current bid:
</s:fragment>

CHAPTER 31. SEAM JSF CONTROLS

427

31.1.3.5. <s:label>

Description

"Decorates" a JSF input field with the label. The label is placed inside the HTML <label> tag, and is
associated with the nearest JSF input component. It is often used with <s:decorate>.

Attributes

style — The control's style.

styleClass — The control's style class.

Usage

31.1.3.6. <s:message>

Description

"Decorates" a JSF input field with the validation error message.

Attributes

None.

Usage

31.1.4. Seam Text

31.1.4.1. <s:validateFormattedText>

Description

Checks that the submitted value is valid Seam Text.

Attributes

None.

31.1.4.2. <s:formattedText>

Description

<s:label styleClass="label"> Country: </s:label>
<h:inputText value="#{location.country}" required="true"/>

<f:facet name="afterInvalidField">
 <s:span>
 Error:
 <s:message/>
 </s:span>
</f:facet>

Seam Reference Guide

428

Outputs Seam Text, a rich text markup useful for blogs, wikis and other applications that might use rich
text. See the Seam Text chapter for full usage.

Attributes

value — an EL expression specifying the rich text markup to render.

Usage

Example

31.1.5. Form support

31.1.5.1. <s:token>

Description

Produces a random token to insert into a hidden form field in order to secure JSF form posts against
Cross-Site Request Forgery (XSRF) attacks. The browser must have cookies enabled to submit forms
that include this component.

Attributes

requireSession — indicates whether the session ID should be included in the form signature
to bind the token to the session. The default value is false, but this should only be used if
Facelets is in "build before restore" mode. ("Build before restore" is the default mode in JSF
2.0.)

<s:formattedText value="#{blog.text}"/>

CHAPTER 31. SEAM JSF CONTROLS

429

enableCookieNotice — indicates that a JavaScript check should be inserted into the page to
verify that cookies are enabled in the browser. If cookies are not enabled, present a notice to the
user that form posts will not work. The default value is false.

allowMultiplePosts — indicates whether the same form is allowed to submit multiple times
with the same signature (where the view has not changed). This is often required when the form
is performing AJAX calls without rerendering itself or the UIToken component. It is better to
rerender the UIToken component upon any AJAX call where the UIToken component would be
processed. The default value is false.

Usage

31.1.5.2. <s:enumItem>

Description

Creates a SelectItem from an enum value.

Attributes

enumValue — the string representation of the enum value.

label — the label to be used when rendering the SelectItem.

Usage

31.1.5.3. <s:selectItems>

Description

Creates a List<SelectItem> from a List, Set, DataModel or Array.

Attributes

value — an EL expression specifying the data that backs the ListSelectItem>

var — defines the name of the local variable that holds the current object during iteration.

<h:form>
 <s:token enableCookieNotice="true" requireSession="false"/>
 ...
</h:form>

<h:selectOneRadio id="radioList"
 layout="lineDirection"
 value="#{newPayment.paymentFrequency}">
 <s:convertEnum />
 <s:enumItem enumValue="ONCE" label="Only Once" />
 <s:enumItem enumValue="EVERY_MINUTE" label="Every Minute" />
 <s:enumItem enumValue="HOURLY" label="Every Hour" />
 <s:enumItem enumValue="DAILY" label="Every Day" />
 <s:enumItem enumValue="WEEKLY" label="Every Week" />
</h:selectOneRadio>

Seam Reference Guide

430

label — the label to be used when rendering the SelectItem. Can reference the var
variable.

itemValue — specifies the value to return to the server if this option is selected. This is an
optional attribute. If included, var is the default object used. Can reference the var variable.

disabled — if this is set to true, the SelectItem will be rendered disabled. Can reference
the var variable.

noSelectionLabel — specifies the (optional) label to place at the top of list. If
required="true" is also specified then selecting this value will cause a validation error.

hideNoSelectionLabel — if true, the noSelectionLabel will be hidden when a value is
selected.

Usage

31.1.5.4. <s:fileUpload>

Description

Renders a file upload control. This control must be used within a form with an encoding type of
multipart/form-data:

For multipart requests, the Seam Multipart servlet filter must also be configured in web.xml:

Configuration

The following configuration options for multipart requests can be configured in components.xml:

createTempFiles — if this option is set to true, uploaded files are streamed to a temporary
file rather than being held in memory.

maxRequestSize — the maximum size of a file upload request, in bytes.

Here's an example:

<h:selectOneMenu value="#{person.age}" converter="ageConverter">
 <s:selectItems value="#{ages}" var="age" label="#{age}" />
</h:selectOneMenu>

<h:form enctype="multipart/form-data">

<filter>
 <filter-name>Seam Filter</filter-name>
 <filter-class>org.jboss.seam.servlet.SeamFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>Seam Filter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

<component class="org.jboss.seam.web.MultipartFilter">
 <property name="createTempFiles">true</property>

CHAPTER 31. SEAM JSF CONTROLS

431

Attributes

data — specifies the value binding that receives the binary file data. The receiving field must be
declared as either a byte[] or InputStream.

contentType — an optional attribute specifying the value binding that receives the file's
content type.

fileName — an optional attribute specifying the value binding that receives the filename.

fileSize — an optional attribute specifying the value binding that receives the file size.

accept — a comma-separated list of acceptable content types, for example,
"images/png,images/jpg", "images/*". The types listed may not be supported by the
browser.

style — The control's style.

styleClass — The control's style class.

Usage

31.1.6. Other

31.1.6.1. <s:cache>

Description

Caches the rendered page fragment using JBoss Cache. Note that <s:cache> actually uses the
instance of JBoss Cache managed by the built-in pojoCache component.

Attributes

key — the key to cache rendered content, often a value expression. For example, if we were
caching a page fragment that displays a document, we might use key="Document-#
{document.id}".

enabled — a value expression that determines whether the cache should be used.

region — specifies the JBoss Cache node to use. Different nodes can have different expiry
policies.

Usage

 <property name="maxRequestSize">1000000</property>
</component>

<s:fileUpload id="picture"
 data="#{register.picture}" accept="image/png"
 contentType="#{register.pictureContentType}" />

<s:cache key="entry-#{blogEntry.id}" region="pageFragments">
 <div class="blogEntry">
 <h3>#{blogEntry.title}</h3>

Seam Reference Guide

432

31.1.6.2. <s:resource>

Description

A tag that acts as a file download provider. It must be alone in the JSF page. To use this control, you
must configure web.xml as follows:

Configuration

Attributes

data — specifies data that should be downloaded. May be a java.util.File, an InputStream or a
byte array.

fileName — the filename of the file to be served.

contentType — the content type of the file to be downloaded.

disposition — the disposition to use. The default disposition is inline.

Usage

The tag is used as follows:

Here, the bean named resources is some backing bean that, given some request parameters, serves a
specific file — see s:download.

 <div>
 <s:formattedText value="#{blogEntry.body}"/>
 </div>
 <p>
 [Posted on
 <h:outputText value="#{blogEntry.date}">
 <f:convertDateTime timezone="#{blog.timeZone}"
 locale="#{blog.locale}" type="both"/>
 </h:outputText>]
 </p>
 </div>
</s:cache>

<servlet>
 <servlet-name>Document Store Servlet</servlet-name>
 <servlet-class>
 org.jboss.seam.document.DocumentStoreServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>Document Store Servlet</servlet-name>
 <url-pattern>/seam/docstore/*</url-pattern>
</servlet-mapping>

<s:resource xmlns="http://www.w3.org/1999/xhtml"
 xmlns:s="http://jboss.com/products/seam/taglib"
 data="#{resources.data}" contentType="#{resources.contentType}"
 fileName="#{resources.fileName}" />

CHAPTER 31. SEAM JSF CONTROLS

433

31.1.6.3. <s:download>

Description

Builds a RESTful link to a <s:resource>. Nested f:param build up the url.

src — Resource file serving files.

Attributes

This produces a link of a similar form to the following: http://localhost/resources.seam?
fileId=1

31.1.6.4. <s:graphicImage>

Description

An extended <h:graphicImage> that allows the image to be created in a Seam Component. It is
possible to transform the image further.

All <h:graphicImage> attributes are supported, in addition to:

Attributes

value — specifies the image to display. Can be a path String (loaded from the classpath), a
byte[], a java.io.File, a java.io.InputStream or a java.net.URL. Currently
supported image formats are image/bmp, image/png, image/jpeg and image/gif.

fileName — specifies the filename of the image. This name should be unique. If left
unspecified, a unique filename will be generated for the image.

Transformations

To transform the image, nest a tag specifying which transformation to apply. Seam currently supports the
following transformation tags:

<s:transformImageSize>

width — specifies the new width of the image.

height — specifies the new height of the image.

maintainRatio — if true, and one of either width or height is specified, the image will
be resized to maintain the height:width aspect ratio.

factor — scales the image by the specified factor.

<s:transformImageBlur>

radius — performs a convolution blur with the specified radius.

<s:download src="/resources.xhtml">
 <f:param name="fileId" value="#{someBean.downloadableFileId}"/>
</s:download>

Seam Reference Guide

434

<s:transformImageType>

contentType — alters the image type to either image/jpeg or image/png.

You can also create your own image transformation. Create a UIComponent that implements
org.jboss.seam.ui.graphicImage.ImageTransform. Inside the applyTransform()method,
use image.getBufferedImage() to get the original image and image.setBufferedImage() to
set your transformed image. Transforms are applied in the order specified in the view.

Usage

31.1.6.5. <s:remote>

Description

Generates the Javascript stubs required to use Seam Remoting.

Attributes

include — a comma-separated list of the component names (or fully qualified class names) for
which to generate Seam Remoting Javascript stubs. See Chapter 24, Remoting for more details.

Usage

31.2. ANNOTATIONS

Seam also provides annotations to let you use Seam components as JSF converters and validators:

@Converter

<s:graphicImage rendered="#{auction.image ne null}"
 value="#{auction.image.data}">
 <s:transformImageSize width="200" maintainRatio="true"/>
</s:graphicImage>

<s:remote include="customerAction,accountAction,com.acme.MyBean"/>

@Name("itemConverter")
@BypassInterceptors
@Converter
public class ItemConverter implements Converter {
 @Transactional
 public Object getAsObject(FacesContext context, UIComponent cmp,
 String value) {
 EntityManager entityManager =
 (EntityManager) Component.getInstance("entityManager");
 entityManager.joinTransaction(); // Do the conversion
 }
 public String getAsString(FacesContext context, UIComponent cmp,
 Object value) {
 // Do the conversion
 }
}

CHAPTER 31. SEAM JSF CONTROLS

435

Registers the Seam component as a JSF converter. Here, the converter accesses the JPA
EntityManager inside a JTA transaction when converting the value back to its object representation.

@Validator

Registers the Seam component as a JSF validator. Here, the validator injects another Seam
component; the injected component is used to validate the value.

<h:inputText value="#{shop.item}" converter="itemConverter" />

@Name("itemValidator")
@BypassInterceptors
@org.jboss.seam.annotations.faces.Validator
public class ItemValidator implements javax.faces.validator.Validator {
 public void validate(FacesContext context, UIComponent cmp,
 Object value) throws ValidatorException {
 ItemController ItemController =
 (ItemController) Component.getInstance("itemController");
 boolean valid = itemController.validate(value);
 if (!valid) {
 throw ValidatorException("Invalid value " + value);
 }
 }
}

<h:inputText value="#{shop.item}" validator="itemValidator" />

Seam Reference Guide

436

CHAPTER 32. JBOSS EL
Seam uses JBoss EL to provide an extension to the standard Unified Expression Language (EL). This
provides several enhancements to the expressiveness and power of EL expressions.

32.1. PARAMETERIZED EXPRESSIONS

Standard EL does not allow methods to be used with user-defined parameters, but JBoss EL removes
this restriction. For example:

32.1.1. Usage

As in method calls from Java, parameters are surrounded by parentheses, and separated by commas:

Here, the parameters hotel and user will be evaluated as value expressions and passed to the
bookHotel() method of the component.

Any value expression can be used as a parameter:

When the page is rendered, the parameter names —hotel.id and user.username —are stored, and
evaluated as value expressions when the page is submitted. Objects cannot be passed as parameters.

Parameters must be available both when the page is rendered and when it is submitted. If the arguments
cannot be resolved at page submission time, the action method will be called with null arguments.

You can also pass literal strings using single quotes:

Unified EL also supports value expressions, which are used to bind a field to a backing bean. Value
expressions use JavaBean naming conventions and expect a getter/setter pair. JSF often expects a
value expression where only retrieval (get) is required (for example, in the rendered attribute), but
many objects do not have appropriately named property accessors, or do not require parameters.

<h:commandButton action="#{hotelBooking.bookHotel(hotel)}"
 value="Book Hotel"/>

@Name("hotelBooking")
public class HotelBooking {
 public String bookHotel(Hotel hotel) {
 // Book the hotel
 }
}

<h:commandButton action="#{hotelBooking.bookHotel(hotel, user)}"
 value="Book Hotel"/>

<h:commandButton action="#{hotelBooking.bookHotel(hotel.id,
 user.username)}"
 value="Book Hotel"/>

<h:commandLink action="#{printer.println('Hello world!')}"
 value="Hello"/>

CHAPTER 32. JBOSS EL

437

JBoss EL removes this restriction by allowing values to be retrieved using the method syntax. For
example:

You can access the size of a collection in a similar manner:

In general, any expression of the form #{obj.property} would be identical to the expression #
{obj.getProperty()}.

Parameters are also allowed. The following example calls the productsByColorMethod with a literal
string argument:

32.1.2. Limitations and Hints

JBoss EL does have several limitations:

Incompatibility with JSP 2.1 —JBoss EL cannot currently be used with JSP 2.1, because the
compiler rejects expressions that include parameters. You will need Facelets if you want to use
this extension with JSF 1.2. The extension works correctly with JSP 2.0.

Use inside iterative components —Components like <c:forEach /> and <ui:repeat />
iterate over a list or array, exposing each item in the list to nested components. This is effective
if you are selecting a row with a <h:commandButton /> or <h:commandLink /> like so:

However, if you want to use <s:link /> or <s:button /> you must expose the items as a
DataModel, and use a <dataTable /> (or equivalent from a component set like
<rich:dataTable />). Neither <s:link /> or <s:button /> submit the form, so they do
not produce a bookmarkable link. An additional parameter is required to recreate the item when
the action method is called. This parameter can only be added when a data table backed by a
DataModel is used.

Calling a MethodExpression from Java code —Normally, when a MethodExpression is
created, the parameter types are passed in by JSF. However, in a method binding, JSF
assumes that there are no parameters to pass. With this extension, there is no way to know the
parameter types prior to expression evaluation. This has two minor consequences:

<h:outputText value="#{person.name}"
 rendered="#{person.name.length() > 5}" />

#{searchResults.size()}

#{controller.productsByColor('blue')}

@Factory("items")
public List<Item> getItems() {
 return entityManager.createQuery("select ...").getResultList();
}

<h:dataTable value="#{items}" var="item">
 <h:column>
 <h:commandLink value="Select #{item.name}"
 action="#{itemSelector.select(item})" />
 </h:column>
</h:dataTable>

Seam Reference Guide

438

When you invoke a MethodExpression in Java code, parameters you pass may be
ignored. Parameters defined in the expression will take precedence.

Ordinarily, it is safe to call methodExpression.getMethodInfo().getParamTypes()
at any time. For an expression with parameters, you must first invoke the
MethodExpression before calling getParamTypes().

Both of these cases are exceedingly rare and only apply when you want to invoke the
MethodExpression by hand in Java code.

32.2. PROJECTION

JBoss EL supports a limited projection syntax. A projection expression maps a sub-expression across a
multi-valued (list, set, etc...) expression. For instance, the expression:

might return a list of departments. If you only need a list of department names, you must iterate over the
list to retrieve the values. JBoss EL allows this with a projection expression:

The sub-expression is enclosed in braces. In this example, the expression d.name is evaluated for each
department, using d as an alias to the department object. The result of this expression will be a list of
String values.

Any valid expression can be used in an expression, so —assuming you would use department names of
all lengths in a company —it would also be valid to write the following:

Projections can be nested. The following expression returns the last names of every employee in every
department:

Nested projections can be slightly tricky, however. The following expression appears to return a list of all
employees in all departments:

However, it actually returns a list containing a list of the employees for each individual department. To
combine the values, it is necessary to use a slightly longer expression:

This syntax cannot be parsed by either Facelets or JSP, so it cannot be used in XHTML or JSP files.
Future versions of JBoss EL may accommodate the projection syntax more easily.

#{company.departments}

#{company.departments.{d|d.name}}

#{company.departments.{d|d.size()}}

#{company.departments.{d|d.employees.{emp|emp.lastName}}}

#{company.departments.{d|d.employees}}

#{company.departments.{d|d.employees.{e|e}}}

CHAPTER 32. JBOSS EL

439

CHAPTER 33. CLUSTERING AND EJB PASSIVATION
Web clustering and EJB passivation share a common solution in Seam, so they are addressed together.
This chapter focuses on the programming model and how it is affected by the use of clustering and EJB
passivation. You will learn how Seam passivates component and entity instances, how passivation
relates to clustering, and how to enable passivation. You will also learn how to deploy a Seam application
into a cluster and verify that HTTP session replication is working correctly.

First, we will take you through some background information on clustering and show you an example
deployment of a Seam application to an EAP cluster.

33.1. CLUSTERING

Clustering, also known as web clustering, lets an application run on two or more parallel servers (nodes),
while providing a client with a uniform view of the application. Load is distributed across servers such
that if one or more servers fail, the application can still be accessed through any surviving nodes. This is
crucial for scalable enterprise applications, since performance and availability can be improved just by
adding nodes. However, this also provokes the question of what happens to state held on a server that
fails.

So far, you know that Seam provides state management by including additional scopes and governing
the life cycles of stateful (scoped) components. But Seam's state management goes beyond creating,
storing, and destroying instances. Seam tracks changes to JavaBean components and stores those
changes at strategic points during a request so that changes can be restored when the request shifts to
a secondary node in the cluster. Monitoring and replicating stateful EJB components is already handled
by the EJB server; Seam state management provides the same feature for stateful JavaBeans.

In addition to monitoring JavaBean components, Seam ensures that managed entity instances (that is,
JPA and Hibernate entities) are not attached during replication. Seam keeps a record of entities to be
loaded, and loads them automatically on the secondary node. You must be using a Seam-managed
persistence context to use this feature. More information is provided later in this chapter.

Next we will take you through how to program for clustering.

33.1.1. Programming for clustering

Any session- or conversation-scoped mutable JavaBean component to be used in a clustered
environment must implement the org.jboss.seam.core.Mutable interface from the Seam API. As
part of the contract, the component must maintain a dirtyflag event, which indicates whether the user
has made changes to the form that must be saved. This event is reported and reset by the
clearDirty() method, which is called to determine whether the component must be replicated. This
lets you avoid using the Servlet API to add and remove the session attribute for every change to an
object.

You must also make sure that all session- and conversation-scoped JavaBean components are
serializable. All fields of a stateful component (EJB or JavaBean) must be serializable, unless marked
transient or set to null in a @PrePassivate method. You can restore the value of a transient or nullified
field in a @PostActivate method.

One area that can be problematic is in using List.subList to create a list, because the list created is
not serializable. A similar situation can occur for a number of methods that create objects automatically.
If you encounter a java.io.NotSerializableException, you can place a breakpoint on this
exception and run the application server in debug mode to find the problem method.

Seam Reference Guide

440

NOTE

Clustering does not work with components that are hot-deployed. Further, you should
avoid using hot-deployable components in non-development environments.

33.1.2. Deploying a Seam application to a EAP cluster with session replication

The following procedure has been validated against a seam-gen application and the Seam Booking
example.

This section assumes that the IP addresses of the master and slave servers are 192.168.1.2 and
192.168.1.3, respectively. The mod_jk load balancer was not use intentionally to make it easier to
validate that both nodes are responding to requests and interchanging sessions.

The following log messages were generated out of the deployment of a WAR application,
vehicles.war, and its corresponding datasource, vehiclesDatasource. The Booking example fully
supports this process, and you can find instructions about deploying it to a cluster in the
examples/booking/readme.txt file.

These instructions use the farm deployment method, but you can also deploy the application normally
and let the two servers negotiate a master/slave relationship based on start order.

All timestamps in this tutorial have been replaced with zeroes to reduce noise.

NOTE

If your nodes are on different machines that run Red Hat Enterprise Linux or Fedora, they
may not acknowledge each other automatically. EAP clustering relies on the UDP (User
Datagram Protocol) multi-casting provided by jGroups. The SELinux configuration that
ships with Red Hat Enterprise Linux and Fedora blocks these packets by default. To allow
the packets, modify the iptables rules (as root). The following commands apply to an IP
address that matches 192.168.1.x:

 /sbin/iptables -I RH-Firewall-1-INPUT 5 -p udp -d 224.0.0.0/4
-j ACCEPT
 /sbin/iptables -I RH-Firewall-1-INPUT 9 -p udp -s
192.168.1.0/24 -j ACCEPT
 /sbin/iptables -I RH-Firewall-1-INPUT 10 -p tcp -s
192.168.1.0/24 -j ACCEPT
 /etc/init.d/iptables save

NOTE

If you are deploying an application with stateful session beans and HTTP Session
replication to a EAP cluster, your stateful session bean classes must be annotated with
@Clustered (from the JBoss EJB 3.0 annotation API) or marked as clustered in the
jboss.xml descriptor. For details, see the Booking example.

33.1.3. Tutorial

1. Create two instances of JBoss Enterprise Application Platform. (To do so, just extract the zip
twice.)

CHAPTER 33. CLUSTERING AND EJB PASSIVATION

441

Deploy the JDBC driver to server/all/lib/ on both instances if you are not using HSQLDB.

2. Add <distributable/> as the first child element in WEB-INF/web.xml.

3. Set the distributable property on org.jboss.seam.core.init to true to enable the
ManagedEntityInterceptor (that is, <core:init distributable="true"> in WEB-
INF/components.xml).

4. Ensure that you have two IP addresses available (two computers, two network cards, or two IP
addresses bound to the same interface). We assume that these two IP addresses are
192.168.1.2 and 192.168.1.3.

5. Start the master JBoss Enterprise Application Platform instance on the first IP:

 ./bin/run.sh -c all -b 192.168.1.2

The log should report one cluster member and zero other members.

6. Verify that the server/all/farm directory in the slave JBoss Enterprise Application Platform
instance is empty.

7. Start the slave JBoss Enterprise Application Platform instance on the second IP:

 ./bin/run.sh -c all -b 192.168.1.3

The log should report two cluster members and one other member. It should also show the state
being retrieved from the master instance.

8. Deploy the -ds.xml to the server/all/farm of the master instance.

In the log of the master instance you should see acknowledgement of this deployment. You
should see a corresponding message acknowledging deployment to the slave instance.

9. Deploy the application to the server/all/farm directory. You should see acknowledgement of
deployment in the log of the master instance after normal application start messages have
finished. The slave instance log should show a corresponding message acknowledging
deployment. (You may need to wait up to three minutes for the deployed archive to be
transferred.)

Your application is now running in a cluster with HTTP Session replication. The next step is to validate
that the clustering is working correctly.

33.1.4. Validating the distributable services of an application running in a EAP
cluster

Your application now starts successfully on two different JBoss Enterprise Application Platform servers,
but it is important to validate that the two instances are exchanging HTTP Sessions correctly, so that the
application continues to operate with the slave instance if the master instance is stopped.

First, browse to the application on the master instance to start the first HTTP Session. On the same
instance, open the JBoss Enterprise Application Platform JMX Console and navigate to the following
managed bean:

Category: jboss.cache

Seam Reference Guide

442

Entry: config=standard-session-cache,service=Cache

Method: printDetails()

Invoke the printDetails() method. This will present you with a tree of active HTTP Sessions. Verify
that the session used by your browser corresponds to one of the sessions on the tree.

Next, switch to the slave instance and invoke the same method in the JMX Console. You should see an
identical tree under this application's context path.

That these trees are identical proves that both servers claim to have identical sessions. Next, we must
test that the data is serializing and unserializing correctly.

Sign in via the URL of the master instance. Then, construct a URL for the second instance by placing the
;jsessionid=XXXX immediately after the Servlet path and changing the IP address. (You should see
that the session has carried over to the other instance.)

Now, kill the master instance and check that you can continue to use the application from the slave
instance. Then, remove the deployed applications from the server/all/farm directory and restart the
instance.

Change the IP in the URL back to that of the master instance, and browse to the new URL — you should
see that the original session ID is still being used.

You can watch objects passivate and activate by creating a session- or conversation-scoped Seam
component and implementing the appropriate life-cycle methods. You can use methods from the
HttpSessionActivationListener interface (which is automatically registered on all non-EJB
components):

Alternatively, you can mark two public void methods (without arguments) with @PrePassivate and
@PostActivate respectively. Remember that passivation will occur at the end of every request, while
activation will occur when a node is called.

In order to make replication transparent, Seam automatically keeps track of objects that have been
changed. All that you need to do is maintain a dirtyflag on your session- or conversation-scoped
component, and Seam will handle JPA entity instances for you.

33.2. EJB PASSIVATION AND THE MANAGEDENTITYINTERCEPTOR

The ManagedEntityInterceptor (MEI) is an optional interceptor in Seam. When enabled, it is
applied to conversation-scoped components. To enable the MEI, set distributable to true on the
org.jboss.seam.init.core component. You can also add or update the following component
declaration in your components.xml file:

This does not enable HTTP Session replication, but it does let Seam handle the passivation of either
EJB components or components in the HTTP Session.

The MEI ensures that, throughout the life of a conversation with at least one extended persistence
context, any entity instances loaded by the persistence context remain managed — that is, they are not
prematurely detached by a passivation event. This ensures the integrity of the extended persistence

public void sessionWillPassivate(HttpSessionEvent e);
public void sessionDidActivate(HttpSessionEvent e);

<core:init distributable="true"/>

CHAPTER 33. CLUSTERING AND EJB PASSIVATION

443

context, and therefore the integrity of its guarantees.

There are two situations that threaten integrity: the passivation of a stateful session bean that hosts an
extended persistence context, and the passivation of the HTTP Session.

33.2.1. The friction between passivation and persistence

The persistence context is used to store entity instances (objects) that the persistence manager has
loaded from the database. There is only ever one object per unique database record in a persistence
context. It is often referred to as the first-level cache because it allows an application to avoid a call to
the database when a record has been loaded into the persistence context.

Objects in the persistence context can be modified, and once modified they are considered dirty.
Changes are tracked by the persistence manager, which then migrates these changes to the database
when necessary. The persistence context, therefore, maintains a set of pending changes to the
database.

Database-oriented applications capture transactional information that must be transferred into the
database immediately. This information cannot always be captured in one screen, and the user may
need to decide whether to accept or reject the pending changes.

These aspects of transactions have not necessarily been apparent from the user's perspective. The
extended persistence context extends the user's understanding of transactions. It can hold changes for
as long as the application requires, and then push these pending changes to the database via built-in
persistence manager capabilities (EntityManager#flush()).

The persistence manager is linked to an entity instance via an object reference. Entity instances can be
serialized, but the persistence manager cannot. Serialization can occur when either a stateful session
bean or the HTTP Session is passivated. For the application to continue its activity, the relationship
between the persistence manager and its entity instances must be maintained. MEI provides this
support.

33.2.2. Case #1: Surviving EJB passivation

Conversations were initially designed for stateful session beans because the EJB3 specification defines
stateful session beans as the hosts of the extended persistence context. Seam introduces the Seam-
managed persistence context, which works around a number of limitations in the specification. Both
contexts can be used with stateful session beans.

For a stateful session bean to remain active, a client must hold a reference to the stateful session bean.
Seam's conversation context is an ideal location for this reference, which means that the stateful session
bean remains active for the duration of the conversation context. Further, EntityManagers that are
injected into the stateful session bean with the @PersistenceContext(EXTENDED) annotation will be
bound to the stateful session bean and remain active for the bean's lifetime. EntityManagers injected
with the @In annotation are maintained by Seam and stored directly in the conversation context, so they
remain active for the duration of the conversation, independent of the stateful session bean.

The Java EE container can also passivate a stateful session bean, but this method can be problematic.
Rather than making the container responsible for this process, after each invocation of the stateful
session bean, Seam transfers the reference to the entity instance from the stateful session bean to the
current conversation, and therefore into the HTTP Session. This nullifies the associated fields on the
stateful session bean. Seam then restores these references at the beginning of the subsequent
invocation. Because Seam already stores the persistence manager in the conversation, stateful session
bean passivation and activation has no adverse effect on the application.

Seam Reference Guide

444

IMPORTANT

If your application uses stateful session beans that hold references to extended
persistence contexts, and those beans can passivate, then you must use the MEI,
regardless of whether you use a single instance or a cluster.

You can disable passivation on stateful session beans. See the Ejb3DisableSfsbPassivation page on the
JBoss Wiki for details.

33.2.3. Case #2: Surviving HTTP session replication

The HTTP Session is used when passivating stateful session beans, but in clustered environments that
have enabled session replication, the HTTP Session can also be passivated. Since the persistence
manager cannot be serialized, passivating the HTTP Session would normally involve destroying the
persistence manager.

When an entity instance is first placed into a conversation, Seam embeds the instance in a wrapper that
contains information about reassociating the instance with the persistence manager post-serialization.
When the application changes nodes (when a server fails, for instance), Seam's MEI reconstructs the
persistence context. The persistence context is reconstructed from the database, so pending changes to
the instance are lost. However, Seam's optimistic locking ensures that, where files have changed, only
the most recent changes are accepted where multiple versions of an instance occur.

IMPORTANT

If your application is deployed in a cluster with HTTP Session replication, you must use
the MEI.

CHAPTER 33. CLUSTERING AND EJB PASSIVATION

445

http://www.jboss.org/community/docs/DOC-9656

CHAPTER 34. PERFORMANCE TUNING
This chapter contains tips for getting the best performance from your Seam application.

34.1. BYPASSING INTERCEPTORS

For repetitive value bindings such as those found in JavaServer Faces (JSF) dataTables, or in iterative
controls such as ui:repeat, the full interceptor stack is invoked upon each invocation of the referenced
Seam component. This can substantially decrease performance, particularly if the component is
accessed many times. You can improve performance by disabling the interceptor stack for the invoked
Seam component —annotate the component class with @BypassInterceptors.

WARNING

Before you disable the interceptors, note that any component marked with
@BypassInterceptors cannot use features such as bijection, annotated security
restrictions, or synchronization. However, you can usually compensate for the loss
of these features —for example, instead of injecting a component with @In, you can
use Component.getInstance() instead.

The following code listing demonstrates a Seam component with its interceptors disabled:

@Name("foo")
@Scope(EVENT)
@BypassInterceptors
public class Foo {
 public String getRowActions() {
 // Role-based security check performed inline instead of using
 // @Restrict or other security annotation
 Identity.instance().checkRole("user");

 // Inline code to lookup component instead of using @In
 Bar bar = (Bar) Component.getInstance("bar");

 String actions;
 // some code here that does something
 return actions;
 }
}

Seam Reference Guide

446

CHAPTER 35. TESTING SEAM APPLICATIONS
Most Seam applications will require at least two kinds of automated tests: unit tests, which test a
particular Seam component in isolation, and scripted integration tests, which exercise all Java layers of
the application (that is, everything except the view pages).

Both test types are easily written.

35.1. UNIT TESTING SEAM COMPONENTS

All Seam components are POJOs (Plain Old Java Objects), which simplifies unit testing. Since Seam
also emphasizes the use of bijection for component interaction and contextual object access, testing
Seam components outside their normal runtime environments is very easy.

The following Seam Component which creates a statement of account for a customer:

We can test the calculateTotal method, which tests the component's business logic, as follows:

@Stateless
@Scope(EVENT)
@Name("statementOfAccount")
public class StatementOfAccount {

 @In(create=true) EntityManager entityManager

 private double statementTotal;

 @In
 private Customer customer;

 @Create
 public void create() {
 List<Invoice> invoices = entityManager
 .createQuery("select invoice from Invoice invoice where " +
 "invoice.customer = :customer")
 .setParameter("customer", customer)
 .getResultList();
 statementTotal = calculateTotal(invoices);
 }

 public double calculateTotal(List<Invoice> invoices) {
 double total = 0.0;
 for (Invoice invoice: invoices) {
 double += invoice.getTotal();
 }
 return total;
 }
 // getter and setter for statementTotal
}

public class StatementOfAccountTest {
 @Test
 public testCalculateTotal {
 List<Invoice> invoices =
 generateTestInvoices(); // A test data generator

CHAPTER 35. TESTING SEAM APPLICATIONS

447

Note that we are not testing data retrieval or persistence, or any of the functions provided by Seam.
Here, we are testing only the logic of our POJOs. Seam components do not usually depend directly upon
container infrastructure, so most unit tests are just as easy.

If you do want to test the entire application, read the section following.

35.2. INTEGRATION TESTING SEAM COMPONENTS

Integration testing is more complicated. We cannot eliminate the container infrastructure, but neither do
we want to deploy our application to an application server to run automated tests. Therefore, our testing
environment must replicate enough container infrastructure that we can exercise the entire application,
without impacting performance too heavily.

Seam lets you use the JBoss Embedded container to test your components — see the configuration
chapter for details. This means you can write tests to exercise your application fully within a minimized
container:

35.2.1. Using mocks in integration tests

You may need to replace Seam components requiring resources that are unavailable in the integration
test environment. For example, suppose that you use the following Seam component as a facade to
some payment processing system:

 double statementTotal =
 new StatementOfAccount().calculateTotal(invoices);
 assert statementTotal = 123.45;
 }
}

public class RegisterTest extends SeamTest {

 @Test
 public void testRegisterComponent() throws Exception {

 new ComponentTest() {

 protected void testComponents() throws Exception {
 setValue("#{user.username}", "1ovthafew");
 setValue("#{user.name}", "Gavin King");
 setValue("#{user.password}", "secret");
 assert invokeMethod("#{register.register}").equals("success");
 assert getValue("#{user.username}").equals("1ovthafew");
 assert getValue("#{user.name}").equals("Gavin King");
 assert getValue("#{user.password}").equals("secret");
 }

 }.run();

 }

 ...

}

@Name("paymentProcessor")

Seam Reference Guide

448

For integration tests, we can make a mock component like so:

The MOCK precedence is higher than the default precedence of application components, so Seam will
install the mock implementation whenever it is in the classpath. When deployed into production, the
mock implementation is absent, so the real component will be installed.

35.3. INTEGRATION TESTING SEAM APPLICATION USER
INTERACTIONS

It is more difficult to emulate user interactions, and to place assertions appropriately. Some test
frameworks let us test the whole application by reproducing user interactions with the web browser.
These are useful, but not appropriate during development.

SeamTest lets you write scripted tests in a simulated JSF environment. A scripted test reproduces the
interaction between the view and the Seam components, so you play the role of the JSF implementation
during testing. You can test everything but the view with this approach.

Consider a JSP view for the component we unit tested above:

public class PaymentProcessor {
 public boolean processPayment(Payment payment) { }
}

@Name("paymentProcessor")
@Install(precedence=MOCK)
public class MockPaymentProcessor extends PaymentProcessor {
 public boolean processPayment(Payment payment) {
 return true;
 }
}

<html>
 <head>
 <title>Register New User</title>
 </head>
 <body>
 <f:view>
 <h:form>
 <table border="0">
 <tr>
 <td>Username</td>
 <td><h:inputText value="#{user.username}"/></td>
 </tr>
 <tr>
 <td>Real Name</td>
 <td><h:inputText value="#{user.name}"/></td>
 </tr>
 <tr>
 <td>Password</td>
 <td><h:inputSecret value="#{user.password}"/></td>
 </tr>
 </table>
 <h:messages/>
 <h:commandButton type="submit" value="Register"

CHAPTER 35. TESTING SEAM APPLICATIONS

449

We want to test the registration functionality of our application (that is, what happens when a user clicks
the Register button). We will reproduce the JSF request life cycle in an automated TestNG test:

Here, we extend SeamTest to provide a Seam environment for our components, and our test script is
written as an anonymous class that extends SeamTest.FacesRequest, which provides an emulated
JSF request life cycle. (There is also a SeamTest.NonFacesRequest for testing GET requests.) Our
code includes methods named for various JSF phases, to emulate the calls that JSF would make to our
components. We have then included various assertions.

The Seam example applications include integration tests demonstrating more complex cases. You can
run these tests with Ant, or with the TestNG plug-in for Eclipse:

 action="#{register.register}"/>
 </h:form>
 </f:view>
 </body>
</html>

public class RegisterTest extends SeamTesFt {

 @Test
 public void testRegister() throws Exception {

 new FacesRequest() {

 @Override
 protected void processValidations() throws Exception {
 validateValue("#{user.username}", "1ovthafew");
 validateValue("#{user.name}", "Gavin King");
 validateValue("#{user.password}", "secret");
 assert !isValidationFailure();
 }

 @Override
 protected void updateModelValues() throws Exception {
 setValue("#{user.username}", "1ovthafew");
 setValue("#{user.name}", "Gavin King");
 setValue("#{user.password}", "secret");
 }

 @Override
 protected void invokeApplication() {
 assert invokeMethod("#{register.register}").equals("success");
 }

 @Override
 protected void renderResponse() {
 assert getValue("#{user.username}").equals("1ovthafew");
 assert getValue("#{user.name}").equals("Gavin King");
 assert getValue("#{user.password}").equals("secret");
 }
 }.run();
 }
 ...
}

Seam Reference Guide

450

35.3.1. Configuration

If you created your project with seam-gen, you can start writing tests immediately. Otherwise, you must
first set up a testing environment in a build tool such as Ant, Maven, or Eclipse.

CHAPTER 35. TESTING SEAM APPLICATIONS

451

You will require at least the following dependencies:

Table 35.1.

Group ID Artifact ID Location in Seam

org.jboss.seam.embedded hibernate-all lib/test/hibernate-
all.jar

org.jboss.seam.embedded jboss-embedded-all lib/test/jboss-
embedded-all.jar

org.jboss.seam.embedded thirdparty-all lib/test/thirdparty-
all.jar

org.jboss.seam.embedded jboss-embedded-api lib/jboss-embedded-
api.jar

org.jboss.seam jboss-seam lib/jboss-seam.jar

org.jboss.el jboss-el lib/jboss-el.jar

javax.faces jsf-api lib/jsf-api.jar

javax.el el-api lib/el-api.jar

javax.activation javax.activation lib/activation.jar

Do not put the compile-time JBoss Enterprise Application Platform dependencies from lib/ (such as
jboss-system.jar) on the classpath, as this will prevent Embedded JBoss from booting. Add
dependencies such as Drools and jBPM as you require them.

You must include the bootstrap/ directory on the classpath, since it contains the configuration for
Embedded JBoss.

You must also include your built project, tests, and the jar for your test framework on the classpath, as
well as configuration files for JPA and Seam. Seam asks Embedded JBoss to deploy any resource (JAR
or directory) with seam.properties in its root. If the structure of the directory containing your built
project does not resemble that of a deployable archive, you must include seam.properties in each
resource.

By default, a generated project uses the java:/DefaultDS (a built in HSQL datasource in Embedded
JBoss) for testing. To use another datasource, place the foo-ds.xml into bootstrap/deploy
directory.

35.3.2. Using SeamTest with another test framework

Seam provides TestNG support out of the box, but you can also use other test frameworks such as
JUnit. To do so, you must provide an implementation of AbstractSeamTest that does the following:

Calls super.begin() before every test method.

Seam Reference Guide

452

Calls super.end() after every test method.

Calls super.setupClass() to set up the integration test environment. This should be called
prior to any test methods.

Calls super.cleanupClass() to clean up the integration test environment.

Calls super.startSeam() to start Seam when integration testing begins.

Calls super.stopSeam() to cleanly shut down Seam at the end of integration testing.

35.3.3. Integration Testing with Mock Data

To insert or clean data in your database before each test, you can use Seam's integration with DBUnit.
To do this, extend DBUnitSeamTest rather than SeamTest.

You must provide a dataset for DBUnit.

DBUnit supports two formats for dataset files, flat and XML. Seam's DBUnitSeamTest assumes that you
use the flat format, so make sure that your dataset is in this format.

In your test class, configure your dataset by overriding prepareDBUnitOperations() as follows:

DataSetOperation defaults to DatabaseOperation.CLEAN_INSERT if no other operation is
specified as a constructor argument. The previous example cleans all tables defined BaseData.xml,
then inserts all rows declared in BaseData.xml before each @Test method is invoked.

If you require extra cleanup after a test method executes, add operations to the
afterTestOperations list.

You need to tell DBUnit about your datasource by setting a TestNG test parameter named
datasourceJndiName:

<dataset>

 <ARTIST
 id="1"
 dtype="Band"
 name="Pink Floyd" />

 <DISC
 id="1"
 name="Dark Side of the Moon"
 artist_id="1" />

</dataset>

protected void prepareDBUnitOperations() {
 beforeTestOperations.add(
 new DataSetOperation("my/datasets/BaseData.xml")
);
}

<parameter name="datasourceJndiName" value="java:/seamdiscsDatasource"/>

CHAPTER 35. TESTING SEAM APPLICATIONS

453

DBUnitSeamTest supports both MySQL and HSQL. You must tell it which database is being used,
otherwise it defaults to HSQL:

It also allows you to insert binary data into the test data set. (Note that this is untested on Windows.) Tell
DBUnitSeamTest where to find these resources on your classpath:

You do not have to configure any of these parameters if you use HSQL and have no binary imports.
However, unless you specify datasourceJndiName in your test configuration, you will have to call
setDatabaseJndiName() before your test runs. If you are not using HSQL or MySQL, you need to
override some methods. See the Javadoc of DBUnitSeamTest for more details.

35.3.4. Integration Testing Seam Mail

WARNING

This feature is still under development.

It is very easy to integration test your Seam Mail:

 <parameter name="database" value="MYSQL" />

<parameter name="binaryDir" value="images/" />

public class MailTest extends SeamTest {

 @Test
 public void testSimpleMessage() throws Exception {

 new FacesRequest() {

 @Override
 protected void updateModelValues() throws Exception {
 setValue("#{person.firstname}", "Pete");
 setValue("#{person.lastname}", "Muir");
 setValue("#{person.address}", "test@example.com");
 }

 @Override
 protected void invokeApplication() throws Exception {
 MimeMessage renderedMessage =
 getRenderedMailMessage("/simple.xhtml");
 assert renderedMessage.getAllRecipients().length == 1;
 InternetAddress to =
 (InternetAddress) renderedMessage.getAllRecipients()[0];
 assert to.getAddress().equals("test@example.com");
 }

Seam Reference Guide

454

Create a new FacesRequest as normal. Inside the invokeApplication hook, we render the
message using getRenderedMailMessage(viewId);, which passes the viewId of he message to
be rendered. The method returns the rendered message on which you can perform tests. You can also
use any standard JSF life cycle method.

There is no support for rendering standard JSF components, so you cannot easily test the contents of
the mail message.

 }.run();
 }
}

CHAPTER 35. TESTING SEAM APPLICATIONS

455

CHAPTER 36. SEAM TOOLS

36.1. JBPM DESIGNER AND VIEWER

The jBPM designer and viewer is included in JBoss Eclipse IDE, and lets you design and view business
processes and pageflows aesthetically. Detailed usage information is located in the JBoss Developer
Studio Seam Developer Tools Reference Guide available on http://docs.redhat.com/docs/en-
US/index.html.

36.1.1. Business process designer

This tool lets you design your own business process graphically.

36.1.2. Pageflow viewer

This tool lets you build graphical representations of pageflows so that complex designs can be shared
and compared easily.

Seam Reference Guide

456

http://docs.redhat.com/docs/en-US/index.html

CHAPTER 36. SEAM TOOLS

457

CHAPTER 37. DEPENDENCIES

37.1. JAVA DEVELOPMENT KIT DEPENDENCIES

Seam does not work with JDK™ (Java Development Kit) 1.4, and requires JDK 6 or higher to support
annotations and other features. Seam has been thoroughly tested with other JDKs. There are no known
issues that are specific to Seam.

37.1.1. Sun's JDK 6 Considerations

The version of JAXB distributed with early versions of JDK 6 was incompatible with Seam, and had to be
overridden. The upgrade to JAXB 2.1 (released in JDK 6 Update 4) resolved this issue. When building,
testing, or executing, be sure to use this version or higher.

Seam uses Embedded JBoss in its unit and integration testing. When using Embedded JBoss with JDK
6, you must set the following JVM argument: -
Dsun.lang.ClassLoader.allowArraySyntax=true

Seam's internal build system sets this by default when it executes Seam's test suite, but you must set
this value manually when using Embedded JBoss.

37.2. PROJECT DEPENDENCIES

This section lists both compilation and runtime dependencies for Seam. For EAR-type dependencies,
include the library in the /lib directory of your application's EAR file. For WAR-type dependencies,
include the library in the /WEB-INF/lib directory of your application's WAR file. The scope of each
dependency is either all, runtime or provided (by EAP 4.2 or 5.0).

This documentation does not include up-to-date version information and complete dependency
information —this information is provided in the /dependency-report.txt generated from the Maven
POM stored in /build. You can generate this file by running ant dependencyReport.

37.2.1. Core

Table 37.1.

Name Scope Type Notes

jboss-seam.jar all EAR The core Seam library. Always
required.

jboss-seam-
debug.jar

runtime WAR Include during development when
enabling Seam's debug feature.

jboss-seam-ioc.jar runtime WAR Required when using Seam with
Spring.

jboss-seam-pdf.jar runtime WAR Required when using Seam's PDF
features.

Seam Reference Guide

458

jboss-seam-
excel.jar

runtime WAR Required when using Seam's
Microsoft® Excel® features.

jboss-seam-
remoting.jar

runtime WAR Required when using Seam
Remoting.

jboss-seam-ui.jar runtime WAR Required to use the Seam
JavaServer Faces (JSF) controls.

jsf-api.jar provided JSF API.

jsf-impl.jar provided JSF Reference Implementation.

jsf-facelets.jar runtime WAR Facelets.

urlrewritefilter.ja
r

runtime WAR URL Rewrite library.

quartz.jar runtime EAR Required when using Quartz with
Seam's asynchronous features.

Name Scope Type Notes

37.2.2. RichFaces

Table 37.2. RichFaces dependencies

Name Scope Type Notes

richfaces-api.jar all EAR Required to use RichFaces.
Provides API classes that can be
used from your application, for
example, to create a tree.

richfaces-impl.jar runtime WAR Required to use RichFaces.

richfaces-ui.jar runtime WAR Required to use RichFaces.
Provides all the UI components.

37.2.3. Seam Mail

Table 37.3. Seam Mail Dependencies

Name Scope Type Notes

activation.jar runtime EAR Required for attachment support.

mail.jar runtime EAR Required for outgoing mail support.

CHAPTER 37. DEPENDENCIES

459

mail-ra.jar compile only Required for incoming mail support.

jboss-seam-mail.jar runtime WAR Seam Mail.

Name Scope Type Notes

37.2.4. Seam PDF

Table 37.4. Seam PDF Dependencies

Name Type Scope Notes

itext.jar runtime WAR PDF Library

jfreechart.jar runtime WAR Charting library.

jcommon.jar runtime WAR Required by JFreeChart.

jboss-seam-pdf.jar runtime WAR Seam PDF core library.

37.2.5. Seam Microsoft®Excel®

Table 37.5. Seam Microsoft®Excel® Dependencies

Name Type Scope Notes

jxl.jar runtime WAR JExcelAPI library.

jboss-seam-
excel.jar

runtime WAR Seam Microsoft® Excel® core
library.

37.2.6. JBoss Rules

The JBoss Rules (Drools) libraries can be found in the drools/lib directory in Seam.

Table 37.6. JBoss Rules Dependencies

Name Scope Type Notes

antlr-runtime.jar runtime EAR ANTLR Runtime Library.

core.jar runtime EAR Eclipse JDT.

drools-api.jar runtime EAR

Seam Reference Guide

460

drools-compiler.jar runtime EAR

drools-core.jar runtime EAR

drools-
decisiontables.jar

runtime EAR

drools-
templates.jar

runtime EAR

janino.jar runtime EAR

mvel2.jar runtime EAR

Name Scope Type Notes

37.2.7. JBPM

Table 37.7. JBPM dependencies

Name Scope Type Notes

jbpm-jpdl.jar runtime EAR

37.2.8. GWT

These libraries are required to use the Google Web Toolkit (GWT) with your Seam application.

Table 37.8. GWT dependencies

Name Scope Type Notes

gwt-servlet.jar runtime WAR The GWT Servlet libraries.

37.2.9. Spring

These libraries are required to use the Spring Framework with your Seam application.

Table 37.9. Spring Framework dependencies

Name Scope Type Notes

spring.jar runtime EAR The Spring Framework library.

37.2.10. Groovy

CHAPTER 37. DEPENDENCIES

461

These libraries are required to use Groovy with your Seam application.

Table 37.10. Groovy dependencies

Name Scope Type Notes

groovy-all.jar runtime EAR The Groovy libraries.

Seam Reference Guide

462

APPENDIX A. REVISION HISTORY

Revision 5.2.0-100.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 5.2.0-100 Wed 23 Jan 2013 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.2.0 GA. For information about documentation changes to this

guide, refer to Release Notes 5.2.0.

Revision 5.1.2-101 Fri 27 January 2012 Russell Dickenson
Bug fixes for Bugzilla: https://bugzilla.redhat.com/show_bug.cgi?id=755367

Revision 5.1.2-100 Thu 8 December 2011 Russell Dickenson
Incorporated changes for JBoss Enterprise Application Platform 5.1.2 GA. For information about documentation changes to this

guide, refer to Release Notes 5.1.2.

APPENDIX A. REVISION HISTORY

463

	Table of Contents
	CHAPTER 1. SEAM TUTORIAL
	1.1. USING THE SEAM EXAMPLES
	1.1.1. Running the examples on JBoss Enterprise Application Platform
	1.1.2. Running the example tests

	1.2. YOUR FIRST SEAM APPLICATION: THE REGISTRATION EXAMPLE
	1.2.1. Understanding the code
	1.2.1.1. The entity bean: User.java
	1.2.1.2. The stateless session bean class: RegisterAction.java
	1.2.1.3. The session bean local interface: Register.java
	1.2.1.4. The view: register.xhtml and registered.xhtml
	1.2.1.5. The Seam component deployment descriptor: components.xml
	1.2.1.6. The web deployment description: web.xml
	1.2.1.7. The JSF configuration: faces-config.xml
	1.2.1.8. The EJB deployment descriptor: ejb-jar.xml
	1.2.1.9. The EJB persistence deployment descriptor: persistence.xml
	1.2.1.10. The EAR deployment descriptor: application.xml

	1.2.2. How it works

	1.3. CLICKABLE LISTS IN SEAM: THE MESSAGES EXAMPLE
	1.3.1. Understanding the code
	1.3.1.1. The entity bean: Message.java
	1.3.1.2. The stateful session bean: MessageManagerBean.java
	1.3.1.3. The session bean local interface: MessageManager.java
	1.3.1.4. The view: messages.jsp

	1.3.2. How it works

	1.4. SEAM AND JBPM: THE TODO LIST EXAMPLE
	1.4.1. Understanding the code
	1.4.2. How it works

	1.5. SEAM PAGEFLOW: THE NUMBERGUESS EXAMPLE
	1.5.1. Understanding the code
	1.5.2. How it works

	1.6. A COMPLETE SEAM APPLICATION: THE HOTEL BOOKING EXAMPLE
	1.6.1. Introduction
	1.6.2. Overview of the booking example
	1.6.3. Understanding Seam conversations
	1.6.4. The Seam Debug Page

	1.7. NESTED CONVERSATIONS: EXTENDING THE HOTEL BOOKING EXAMPLE
	1.7.1. Introduction
	1.7.2. Understanding Nested Conversations

	1.8. A COMPLETE APPLICATION FEATURING SEAM AND JBPM: THE DVD STORE EXAMPLE
	1.9. BOOKMARKABLE URLS WITH THE BLOG EXAMPLE
	1.9.1. Using "pull"-style MVC
	1.9.2. Bookmarkable search results page
	1.9.3. Using "push"-style MVC in a RESTful application

	CHAPTER 2. MIGRATION
	2.1. MIGRATING FROM SEAM 1.2.X TO SEAM 2.0
	2.1.1. Migrating to JavaServer Faces 1.2
	2.1.2. Code Migration
	2.1.3. Migrating components.xml
	2.1.4. Migrating to Embedded JBoss
	2.1.5. Migrating to jBPM 3.2
	2.1.6. Migrating to RichFaces 3.1
	2.1.7. Changes to Components

	2.2. MIGRATING FROM SEAM 2.0 TO SEAM 2.1 OR 2.2
	2.2.1. Changes to dependency jar names
	2.2.2. Changes to Components

	CHAPTER 3. GETTING STARTED WITH SEAM-GEN
	3.1. BEFORE YOU START
	3.2. SETTING UP A NEW PROJECT
	3.3. CREATING A NEW ACTION
	3.4. CREATING A FORM WITH AN ACTION
	3.5. GENERATING AN APPLICATION FROM AN EXISTING DATABASE
	3.6. GENERATING AN APPLICATION FROM EXISTING JPA/EJB3 ENTITIES
	3.7. DEPLOYING THE APPLICATION AS AN EAR
	3.8. SEAM AND INCREMENTAL HOT DEPLOYMENT

	CHAPTER 4. GETTING STARTED WITH JBOSS DEVELOPER STUDIO
	4.1. HOT DEPLOYMENT WITH JBOSS DEVELOPER STUDIO

	CHAPTER 5. THE CONTEXTUAL COMPONENT MODEL
	5.1. SEAM CONTEXTS
	5.1.1. Stateless context
	5.1.2. Event context
	5.1.3. Page context
	5.1.4. Conversation context
	5.1.5. Session context
	5.1.6. Business process context
	5.1.7. Application context
	5.1.8. Context variables
	5.1.9. Context search priority
	5.1.10. Concurrency model

	5.2. SEAM COMPONENTS
	5.2.1. Stateless session beans
	5.2.2. Stateful session beans
	5.2.3. Entity beans
	5.2.4. JavaBeans
	5.2.5. Message-driven beans
	5.2.6. Interception
	5.2.7. Component names
	5.2.8. Defining the component scope
	5.2.9. Components with multiple roles
	5.2.10. Built-in components

	5.3. BIJECTION
	5.4. LIFE CYCLE METHODS
	5.5. CONDITIONAL INSTALLATION
	5.6. LOGGING
	5.7. THE MUTABLE INTERFACE AND @READONLY
	5.8. FACTORY AND MANAGER COMPONENTS

	CHAPTER 6. CONFIGURING SEAM COMPONENTS
	6.1. CONFIGURING COMPONENTS VIA PROPERTY SETTINGS
	6.2. CONFIGURING COMPONENTS VIA COMPONENTS.XML
	6.3. FINE-GRAINED CONFIGURATION FILES
	6.4. CONFIGURABLE PROPERTY TYPES
	6.5. USING XML NAMESPACES

	CHAPTER 7. EVENTS, INTERCEPTORS AND EXCEPTION HANDLING
	7.1. SEAM EVENTS
	7.2. PAGE ACTIONS
	7.3. PAGE PARAMETERS
	7.3.1. Mapping request parameters to the model

	7.4. PROPAGATING REQUEST PARAMETERS
	7.5. URL REWRITING WITH PAGE PARAMETERS
	7.6. CONVERSION AND VALIDATION
	7.7. NAVIGATION
	7.8. FINE-GRAINED FILES FOR DEFINING NAVIGATION, PAGE ACTIONS AND PARAMETERS
	7.9. COMPONENT-DRIVEN EVENTS
	7.10. CONTEXTUAL EVENTS
	7.11. SEAM INTERCEPTORS
	7.12. MANAGING EXCEPTIONS
	7.12.1. Exceptions and transactions
	7.12.2. Enabling Seam exception handling
	7.12.3. Using annotations for exception handling
	7.12.4. Using XML for exception handling
	7.12.4.1. Suppressing exception logging

	7.12.5. Some common exceptions

	CHAPTER 8. CONVERSATIONS AND WORKSPACE MANAGEMENT
	8.1. SEAM'S CONVERSATION MODEL
	8.2. NESTED CONVERSATIONS
	8.3. STARTING CONVERSATIONS WITH GET REQUESTS
	8.4. REQUIRING A LONG-RUNNING CONVERSATION
	8.5. USING <S:LINK> AND <S:BUTTON>
	8.6. SUCCESS MESSAGES
	8.7. NATURAL CONVERSATION IDS
	8.8. CREATING A NATURAL CONVERSATION
	8.9. REDIRECTING TO A NATURAL CONVERSATION
	8.10. WORKSPACE MANAGEMENT
	8.10.1. Workspace management and JSF navigation
	8.10.2. Workspace management and jPDL pageflow
	8.10.3. The conversation switcher
	8.10.4. The conversation list
	8.10.5. Breadcrumbs

	8.11. CONVERSATIONAL COMPONENTS AND JSF COMPONENT BINDINGS
	8.12. CONCURRENT CALLS TO CONVERSATIONAL COMPONENTS
	8.12.1. How should we design our conversational AJAX application?
	8.12.2. Dealing with errors
	8.12.3. RichFaces (Ajax4jsf)

	CHAPTER 9. PAGEFLOWS AND BUSINESS PROCESSES
	9.1. PAGEFLOW IN SEAM
	9.1.1. The two navigation models
	9.1.2. Seam and the back button

	9.2. USING JPDL PAGEFLOWS
	9.2.1. Installing pageflows
	9.2.2. Starting pageflows
	9.2.3. Page nodes and transitions
	9.2.4. Controlling the flow
	9.2.5. Ending the flow
	9.2.6. Pageflow composition

	9.3. BUSINESS PROCESS MANAGEMENT IN SEAM
	9.4. USING JPDL BUSINESS PROCESS DEFINITIONS
	9.4.1. Installing process definitions
	9.4.2. Initializing actor IDs
	9.4.3. Initiating a business process
	9.4.4. Task assignment
	9.4.5. Task lists
	9.4.6. Performing a task

	CHAPTER 10. SEAM AND OBJECT/RELATIONAL MAPPING
	10.1. INTRODUCTION
	10.2. SEAM MANAGED TRANSACTIONS
	10.2.1. Disabling Seam-managed transactions
	10.2.2. Configuring a Seam transaction manager
	10.2.3. Transaction synchronization

	10.3. SEAM-MANAGED PERSISTENCE CONTEXTS
	10.3.1. Using a Seam-managed persistence context with JPA
	10.3.2. Using a Seam-managed Hibernate session
	10.3.3. Seam-managed persistence contexts and atomic conversations

	10.4. USING THE JPA "DELEGATE"
	10.5. USING EL IN EJB-QL/HQL
	10.6. USING HIBERNATE FILTERS

	CHAPTER 11. JSF FORM VALIDATION IN SEAM
	CHAPTER 12. GROOVY INTEGRATION
	12.1. GROOVY INTRODUCTION
	12.2. WRITING SEAM APPLICATIONS IN GROOVY
	12.2.1. Writing Groovy components
	12.2.1.1. Entity

	12.2.2. Seam component
	12.2.3. seam-gen

	12.3. DEPLOYMENT
	12.3.1. Deploying Groovy code
	12.3.2. Native .groovy file deployment at development time
	12.3.3. seam-gen

	CHAPTER 13. THE SEAM APPLICATION FRAMEWORK
	13.1. INTRODUCTION
	13.2. HOME OBJECTS
	13.3. QUERY OBJECTS
	13.4. CONTROLLER OBJECTS

	CHAPTER 14. SEAM AND JBOSS RULES
	14.1. INSTALLING RULES
	14.2. USING RULES FROM A SEAM COMPONENT
	14.3. USING RULES FROM A JBPM PROCESS DEFINITION

	CHAPTER 15. SECURITY
	15.1. OVERVIEW
	15.2. DISABLING SECURITY
	15.3. AUTHENTICATION
	15.3.1. Configuring an Authenticator component
	15.3.2. Writing an authentication method
	15.3.2.1. Identity.addRole()
	15.3.2.2. Writing an event observer for security-related events

	15.3.3. Writing a login form
	15.3.4. Configuration Summary
	15.3.5. Remember Me
	15.3.5.1. Token-based Remember Me Authentication

	15.3.6. Handling Security Exceptions
	15.3.7. Login Redirection
	15.3.8. HTTP Authentication
	15.3.8.1. Writing a Digest Authenticator

	15.3.9. Advanced Authentication Features
	15.3.9.1. Using your container's JAAS configuration

	15.4. IDENTITY MANAGEMENT
	15.4.1. Configuring IdentityManager
	15.4.2. JpaIdentityStore
	15.4.2.1. Configuring JpaIdentityStore
	15.4.2.2. Configuring the Entities
	15.4.2.3. Entity Bean Examples
	15.4.2.4. JpaIdentityStore Events

	15.4.3. LdapIdentityStore
	15.4.3.1. Configuring LdapIdentityStore
	15.4.3.2. LdapIdentityStore Configuration Example

	15.4.4. Writing your own IdentityStore
	15.4.5. Authentication with Identity Management
	15.4.6. Using IdentityManager

	15.5. ERROR MESSAGES
	15.6. AUTHORIZATION
	15.6.1. Core concepts
	15.6.1.1. What is a role?
	15.6.1.2. What is a permission?

	15.6.2. Securing components
	15.6.2.1. The @Restrict annotation
	15.6.2.2. Inline restrictions

	15.6.3. Security in the user interface
	15.6.4. Securing pages
	15.6.5. Securing Entities
	15.6.5.1. Entity security with JPA
	15.6.5.2. Entity security with a Managed Hibernate Session

	15.6.6. Typesafe Permission Annotations
	15.6.7. Typesafe Role Annotations
	15.6.8. The Permission Authorization Model
	15.6.8.1. PermissionResolver
	15.6.8.2. ResolverChain

	15.6.9. RuleBasedPermissionResolver
	15.6.9.1. Requirements
	15.6.9.2. Configuration
	15.6.9.3. Writing Security Rules
	15.6.9.4. Non-String permission targets
	15.6.9.5. Wildcard permission checks

	15.6.10. PersistentPermissionResolver
	15.6.10.1. Configuration
	15.6.10.2. Permission Stores
	15.6.10.3. JpaPermissionStore

	15.7. PERMISSION MANAGEMENT
	15.7.1. PermissionManager
	15.7.2. Permission checks for PermissionManager operations

	15.8. SSL SECURITY
	15.8.1. Overriding the default ports

	15.9. CAPTCHA
	15.9.1. Configuring the CAPTCHA Servlet
	15.9.2. Adding a CAPTCHA to a form
	15.9.3. Customizing the CAPTCHA algorithm

	15.10. SECURITY EVENTS
	15.11. RUN AS
	15.12. EXTENDING THE IDENTITY COMPONENT
	15.13. OPENID
	15.13.1. Configuring OpenID
	15.13.2. Presenting an OpenIdLogin form
	15.13.3. Logging in immediately
	15.13.4. Deferring log in
	15.13.5. Logging out

	CHAPTER 16. INTERNATIONALIZATION, LOCALIZATION AND THEMES
	16.1. INTERNATIONALIZING YOUR APPLICATION
	16.1.1. Application server configuration
	16.1.2. Translated application strings
	16.1.3. Other encoding settings

	16.2. LOCALES
	16.3. LABELS
	16.3.1. Defining labels
	16.3.2. Displaying labels
	16.3.3. Faces messages

	16.4. TIMEZONES
	16.5. THEMES
	16.6. PERSISTING LOCALE AND THEME PREFERENCES VIA COOKIES

	CHAPTER 17. SEAM TEXT
	17.1. BASIC FORMATTING
	17.2. ENTERING CODE AND TEXT WITH SPECIAL CHARACTERS
	17.3. LINKS
	17.4. ENTERING HTML
	17.5. USING THE SEAMTEXTPARSER

	CHAPTER 18. ITEXT PDF GENERATION
	18.1. USING PDF SUPPORT
	18.1.1. Creating a document
	18.1.2. Basic Text Elements
	18.1.3. Headers and Footers
	18.1.4. Chapters and Sections
	18.1.5. Lists
	18.1.6. Tables
	18.1.7. Document Constants
	18.1.7.1. Color Values
	18.1.7.2. Alignment Values

	18.2. CHARTING
	18.3. BAR CODES
	18.4. FILL-IN-FORMS
	18.5. RENDERING SWING/AWT COMPONENTS
	18.6. CONFIGURING ITEXT
	18.7. FURTHER DOCUMENTATION

	CHAPTER 19. THE MICROSOFT® EXCEL® SPREADSHEET APPLICATION
	19.1. MICROSOFT EXCEL SUPPORT
	19.2. CREATING A SIMPLE WORKBOOK
	19.3. WORKBOOKS
	19.4. WORKSHEETS
	19.5. COLUMNS
	19.6. CELLS
	19.6.1. Validation
	19.6.2. Format masks
	19.6.2.1. Number masks
	19.6.2.2. Date masks

	19.7. FORMULAS
	19.8. IMAGES
	19.9. HYPERLINKS
	19.10. HEADERS AND FOOTERS
	19.11. PRINT AREAS AND TITLES
	19.12. WORKSHEET COMMANDS
	19.12.1. Grouping
	19.12.2. Page breaks
	19.12.3. Merging

	19.13. DATATABLE EXPORTER
	19.14. FONTS AND LAYOUT
	19.14.1. Stylesheet links
	19.14.2. Fonts
	19.14.3. Borders
	19.14.4. Background
	19.14.5. Column settings
	19.14.6. Cell settings
	19.14.7. The datatable exporter
	19.14.8. Limitations

	19.15. INTERNATIONALIZATION
	19.16. LINKS AND FURTHER DOCUMENTATION

	CHAPTER 20. EMAIL
	20.1. CREATING A MESSAGE
	20.1.1. Attachments
	20.1.2. HTML/Text alternative part
	20.1.3. Multiple recipients
	20.1.4. Multiple messages
	20.1.5. Templating
	20.1.6. Internationalization
	20.1.7. Other Headers

	20.2. RECEIVING EMAILS
	20.3. CONFIGURATION
	20.3.1. mailSession
	20.3.1.1. JNDI look up in EAP
	20.3.1.2. Seam-configured Session

	20.4. TAGS

	CHAPTER 21. ASYNCHRONICITY AND MESSAGING
	21.1. ASYNCHRONICITY
	21.1.1. Asynchronous methods
	21.1.2. Asynchronous methods with the Quartz Dispatcher
	21.1.3. Asynchronous events
	21.1.4. Handling exceptions from asynchronous calls

	21.2. MESSAGING IN SEAM
	21.2.1. Configuration
	21.2.2. Sending messages
	21.2.3. Receiving messages using a message-driven bean
	21.2.4. Receiving messages in the client

	CHAPTER 22. CACHING
	22.1. USING CACHING IN SEAM
	22.2. PAGE FRAGMENT CACHING

	CHAPTER 23. WEB SERVICES
	23.1. CONFIGURATION AND PACKAGING
	23.2. CONVERSATIONAL WEB SERVICES
	23.2.1. A Recommended Strategy

	23.3. AN EXAMPLE WEB SERVICE
	23.4. RESTFUL HTTP WEB SERVICES WITH RESTEASY
	23.4.1. RESTEasy configuration and request serving
	23.4.2. Resources and providers as Seam components
	23.4.3. Securing resources
	23.4.4. Mapping exceptions to HTTP responses
	23.4.5. Exposing entities via RESTful API
	23.4.5.1. ResourceQuery
	23.4.5.2. ResourceHome

	23.4.6. Testing resources and providers

	CHAPTER 24. REMOTING
	24.1. CONFIGURATION
	24.2. THE SEAM OBJECT
	24.2.1. A Hello World example
	24.2.2. Seam.Component
	24.2.2.1. Seam.Component.newInstance()
	24.2.2.2. Seam.Component.getInstance()
	24.2.2.3. Seam.Component.getComponentName()

	24.2.3. Seam.Remoting
	24.2.3.1. Seam.Remoting.createType()
	24.2.3.2. Seam.Remoting.getTypeName()

	24.3. EVALUATING EL EXPRESSIONS
	24.4. CLIENT INTERFACES
	24.5. THE CONTEXT
	24.5.1. Setting and reading the Conversation ID
	24.5.2. Remote calls within the current conversation scope

	24.6. BATCH REQUESTS
	24.7. WORKING WITH DATA TYPES
	24.7.1. Primitives / Basic Types
	24.7.1.1. String
	24.7.1.2. Number
	24.7.1.3. Boolean

	24.7.2. JavaBeans
	24.7.3. Dates and Times
	24.7.4. Enums
	24.7.5. Collections
	24.7.5.1. Bags
	24.7.5.2. Maps

	24.8. DEBUGGING
	24.9. HANDLING EXCEPTIONS
	24.10. THE LOADING MESSAGE
	24.10.1. Changing the message
	24.10.2. Hiding the loading message
	24.10.3. A Custom Loading Indicator

	24.11. CONTROLLING WHAT DATA IS RETURNED
	24.11.1. Constraining normal fields
	24.11.2. Constraining Maps and Collections
	24.11.3. Constraining objects of a specific type
	24.11.4. Combining Constraints

	24.12. TRANSACTIONAL REQUESTS
	24.13. JMS MESSAGING
	24.13.1. Configuration
	24.13.2. Subscribing to a JMS Topic
	24.13.3. Unsubscribing from a Topic
	24.13.4. Tuning the Polling Process

	CHAPTER 25. SEAM AND THE GOOGLE WEB TOOLKIT
	25.1. CONFIGURATION
	25.2. PREPARING YOUR COMPONENT
	25.3. HOOKING UP A GWT WIDGET TO THE SEAM COMPONENT
	25.4. GWT ANT TARGETS

	CHAPTER 26. SPRING FRAMEWORK INTEGRATION
	26.1. INJECTING SEAM COMPONENTS INTO SPRING BEANS
	26.2. INJECTING SPRING BEANS INTO SEAM COMPONENTS
	26.3. MAKING A SPRING BEAN INTO A SEAM COMPONENT
	26.4. SEAM-SCOPED SPRING BEANS
	26.5. USING SPRING PLATFORMTRANSACTIONMANAGEMENT
	26.6. USING A SEAM-MANAGED PERSISTENCE CONTEXT IN SPRING
	26.7. USING A SEAM-MANAGED HIBERNATE SESSION IN SPRING
	26.8. SPRING APPLICATION CONTEXT AS A SEAM COMPONENT
	26.9. USING A SPRING TASKEXECUTOR FOR @ASYNCHRONOUS

	CHAPTER 27. HIBERNATE SEARCH
	27.1. INTRODUCTION
	27.2. CONFIGURATION
	27.3. USAGE

	CHAPTER 28. CONFIGURING SEAM AND PACKAGING SEAM APPLICATIONS
	28.1. BASIC SEAM CONFIGURATION
	28.1.1. Integrating Seam with JSF and your servlet container
	28.1.2. Using Facelets
	28.1.3. Seam Resource Servlet
	28.1.4. Seam Servlet filters
	28.1.4.1. Exception handling
	28.1.4.2. Conversation propagation with redirects
	28.1.4.3. URL rewriting
	28.1.4.4. Multipart form submissions
	28.1.4.5. Character encoding
	28.1.4.6. RichFaces
	28.1.4.7. Identity Logging
	28.1.4.8. Context management for custom servlets
	28.1.4.9. Adding custom filters

	28.1.5. Integrating Seam with your EJB container
	28.1.6. Remember

	28.2. USING ALTERNATE JPA PROVIDERS
	28.3. CONFIGURING SEAM IN JAVA EE 5
	28.3.1. Packaging

	28.4. CONFIGURING SEAM IN J2EE
	28.4.1. Boostrapping Hibernate in Seam
	28.4.2. Boostrapping JPA in Seam
	28.4.3. Packaging

	28.5. CONFIGURING SEAM IN JAVA SE, WITHOUT JBOSS EMBEDDED
	28.6. CONFIGURING SEAM IN JAVA SE, WITH JBOSS EMBEDDED
	28.6.1. Packaging

	28.7. CONFIGURING JBPM IN SEAM
	28.7.1. Packaging

	28.8. CONFIGURING SFSB AND SESSION TIMEOUTS IN EAP
	28.9. RUNNING SEAM IN A PORTLET
	28.10. DEPLOYING CUSTOM RESOURCES

	CHAPTER 29. SEAM ANNOTATIONS
	29.1. ANNOTATIONS FOR COMPONENT DEFINITION
	29.2. ANNOTATIONS FOR BIJECTION
	29.3. ANNOTATIONS FOR COMPONENT LIFE CYCLE METHODS
	29.4. ANNOTATIONS FOR CONTEXT DEMARCATION
	29.5. ANNOTATIONS FOR USE WITH SEAM JAVABEAN COMPONENTS IN A J2EE ENVIRONMENT
	29.6. ANNOTATIONS FOR EXCEPTIONS
	29.7. ANNOTATIONS FOR SEAM REMOTING
	29.8. ANNOTATIONS FOR SEAM INTERCEPTORS
	29.9. ANNOTATIONS FOR ASYNCHRONICITY
	29.10. ANNOTATIONS FOR USE WITH JSF
	29.10.1. Annotations for use with dataTable

	29.11. META-ANNOTATIONS FOR DATABINDING
	29.12. ANNOTATIONS FOR PACKAGING
	29.13. ANNOTATIONS FOR INTEGRATING WITH THE SERVLET CONTAINER

	CHAPTER 30. BUILT-IN SEAM COMPONENTS
	30.1. CONTEXT INJECTION COMPONENTS
	30.2. JSF-RELATED COMPONENTS
	30.3. UTILITY COMPONENTS
	30.4. COMPONENTS FOR INTERNATIONALIZATION AND THEMES
	30.5. COMPONENTS FOR CONTROLLING CONVERSATIONS
	30.6. JBPM-RELATED COMPONENTS
	30.7. SECURITY-RELATED COMPONENTS
	30.8. JMS-RELATED COMPONENTS
	30.9. MAIL-RELATED COMPONENTS
	30.10. INFRASTRUCTURAL COMPONENTS
	30.11. MISCELLANEOUS COMPONENTS
	30.12. SPECIAL COMPONENTS

	CHAPTER 31. SEAM JSF CONTROLS
	31.1. TAGS
	31.1.1. Navigation Controls
	31.1.1.1. <s:button>
	31.1.1.2. <s:conversationId>
	31.1.1.3. <s:taskId>
	31.1.1.4. <s:link>
	31.1.1.5. <s:conversationPropagation>
	31.1.1.6. <s:defaultAction>

	31.1.2. Converters and Validators
	31.1.2.1. <s:convertDateTime>
	31.1.2.2. <s:convertEntity>
	31.1.2.3. <s:convertEnum>
	31.1.2.4. <s:convertAtomicBoolean>
	31.1.2.5. <s:convertAtomicInteger>
	31.1.2.6. <s:convertAtomicLong>
	31.1.2.7. <s:validateEquality>
	31.1.2.8. <s:validate>
	31.1.2.9. <s:validateAll>

	31.1.3. Formatting
	31.1.3.1. <s:decorate>
	31.1.3.2. <s:div>
	31.1.3.3. <s:span>
	31.1.3.4. <s:fragment>
	31.1.3.5. <s:label>
	31.1.3.6. <s:message>

	31.1.4. Seam Text
	31.1.4.1. <s:validateFormattedText>
	31.1.4.2. <s:formattedText>

	31.1.5. Form support
	31.1.5.1. <s:token>
	31.1.5.2. <s:enumItem>
	31.1.5.3. <s:selectItems>
	31.1.5.4. <s:fileUpload>

	31.1.6. Other
	31.1.6.1. <s:cache>
	31.1.6.2. <s:resource>
	31.1.6.3. <s:download>
	31.1.6.4. <s:graphicImage>
	31.1.6.5. <s:remote>

	31.2. ANNOTATIONS

	CHAPTER 32. JBOSS EL
	32.1. PARAMETERIZED EXPRESSIONS
	32.1.1. Usage
	32.1.2. Limitations and Hints

	32.2. PROJECTION

	CHAPTER 33. CLUSTERING AND EJB PASSIVATION
	33.1. CLUSTERING
	33.1.1. Programming for clustering
	33.1.2. Deploying a Seam application to a EAP cluster with session replication
	33.1.3. Tutorial
	33.1.4. Validating the distributable services of an application running in a EAP cluster

	33.2. EJB PASSIVATION AND THE MANAGEDENTITYINTERCEPTOR
	33.2.1. The friction between passivation and persistence
	33.2.2. Case #1: Surviving EJB passivation
	33.2.3. Case #2: Surviving HTTP session replication

	CHAPTER 34. PERFORMANCE TUNING
	34.1. BYPASSING INTERCEPTORS

	CHAPTER 35. TESTING SEAM APPLICATIONS
	35.1. UNIT TESTING SEAM COMPONENTS
	35.2. INTEGRATION TESTING SEAM COMPONENTS
	35.2.1. Using mocks in integration tests

	35.3. INTEGRATION TESTING SEAM APPLICATION USER INTERACTIONS
	35.3.1. Configuration
	35.3.2. Using SeamTest with another test framework
	35.3.3. Integration Testing with Mock Data
	35.3.4. Integration Testing Seam Mail

	CHAPTER 36. SEAM TOOLS
	36.1. JBPM DESIGNER AND VIEWER
	36.1.1. Business process designer
	36.1.2. Pageflow viewer

	CHAPTER 37. DEPENDENCIES
	37.1. JAVA DEVELOPMENT KIT DEPENDENCIES
	37.1.1. Sun's JDK 6 Considerations

	37.2. PROJECT DEPENDENCIES
	37.2.1. Core
	37.2.2. RichFaces
	37.2.3. Seam Mail
	37.2.4. Seam PDF
	37.2.5. Seam Microsoft®Excel®
	37.2.6. JBoss Rules
	37.2.7. JBPM
	37.2.8. GWT
	37.2.9. Spring
	37.2.10. Groovy

	APPENDIX A. REVISION HISTORY

