
Red Hat Process Automation Manager
7.0

Designing a decision service using DMN
models

Last Updated: 2018-10-05

Red Hat Process Automation Manager 7.0 Designing a decision service
using DMN models

Red Hat Customer Content Services
brms-docs@redhat.com

法律上の通知法律上の通知

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要概要

This document describes how to implement Decision Model and Notation (DMN) models in your
decision services in Red Hat Process Automation Manager 7.0.

. .

. .

. .

. .

. .

. .

. .

. .

目次目次

PREFACE

第第1章章 DECISION MODEL AND NOTATION
1.1. DMN CONFORMANCE LEVELS
1.2. DMN ELEMENTS
1.3. RULE EXPRESSIONS IN FEEL

1.3.1. Variable and function names in FEEL
1.3.2. Data types in FEEL

1.4. DMN DECISION TABLES
1.4.1. Hit policies

1.5. BOXED EXPRESSIONS

第第2章章 DMN USE CASE

第第3章章 DMN MODEL EXAMPLE

第第4章章 DMN SUPPORT IN RED HAT PROCESS AUTOMATION MANAGER
4.1. CONFIGURABLE DMN PROPERTIES IN RED HAT PROCESS AUTOMATION MANAGER

第第5章章 OPTIONS FOR INVOKING A DMN MODEL
5.1. EMBEDDING A DMN CALL DIRECTLY INTO THE JAVA APPLICATION
5.2. EXECUTING DMN SERVICES REMOTELY ON PROCESS SERVER (JAVA)
5.3. CALLING A DMN SERVICE ON A REMOTE SERVER USING REST APIS

第第6章章 ADDITIONAL RESOURCES

付録付録A VERSIONING INFORMATION

3

4
4
4
5
5
6

12
12
13

14

17

21
21

23
23
25
27

32

33

目次目次

1

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

2

PREFACE
As a business analyst or business rules developer, you can use Decision Model and Notation (DMN) to
model a decision service graphically in a decision requirements diagram (DRD). This diagram traces
business decisions from start to finish, with each decision node drawing logic from DMN model decision
elements such as decision tables. Red Hat Process Automation Manager includes full runtime support
for DMN 1.1 models at conformance level 3, but currently does not include a built-in DMN model editor.
You can design your DMN models using a third-party DMN authoring tool and include them in your Red
Hat Process Automation Manager projects for deployment and execution.

For more information about DMN 1.1, see the OMG Decision Model and Notation specification.

PREFACE

3

http://www.omg.org/spec/DMN/1.1

第1章 DECISION MODEL AND NOTATION
Decision Model and Notation (DMN) is a standard established by the Object Management Group (OMG)
for describing and modeling operational decisions. DMN decision models can be shared between
platforms and across organizations so that business analysts and business rules developers are unified
in designing and implementing DMN decision services. The DMN standard is similar to and can be used
together with the Business Process Model and Notation (BPMN) standard for designing and modeling
business processes.

For more information about the background and applications of DMN, see the OMG Decision Model and
Notation specification.

1.1. DMN CONFORMANCE LEVELS

The DMN specification defines three incremental levels of conformance in a software implementation. A
product that claims compliance at one level must also be compliant with any preceding levels. For
example, a conformance level 3 implementation must also include the supported components in
conformance levels 1 and 2. For the formal definitions of each conformance level, see the OMG Decision
Model and Notation specification.

The following are summaries of the three DMN conformance levels:

Conformance level 1

A DMN conformance level 1 implementation supports decision requirement diagrams (DRDs),
decision logic, and decision tables, but decision models are not executable. Any language can be
used to define the expressions, including natural, unstructured languages.

Conformance level 2

A DMN conformance level 2 implementation includes the requirements in conformance level 1, and
supports Simplified Friendly Enough Expression Language (S-FEEL) expressions and fully
executable decision models.

Conformance level 3

A DMN conformance level 3 implementation includes the requirements in conformance levels 1 and
2, and supports Friendly Enough Expression Language (FEEL) expressions, the full set of boxed
expressions, and fully executable decision models.

注記注記

Red Hat Process Automation Manager includes full runtime support for DMN 1.1
models at conformance level 3, but currently does not include a built-in DMN model
editor. Editors for DMN models will be added to the platform in the near future, but
meanwhile you can use third-party DMN authoring platforms and implement DMN
models in your decision services in Red Hat Process Automation Manager.

1.2. DMN ELEMENTS

DMN models consist of the following five elements:

Decisions: Nodes in the model where one or several inputs determine an output based on
decision logic.

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

4

http://www.omg.org/spec/DMN/1.1
http://www.omg.org/spec/DMN/1.1

Input data: Information necessary to determine a decision. This information usually includes
business-level concepts or objects relevant to the business, such as a restaurant’s peak
business hours and staff availability.

Business knowledge models: Reusable pieces of decision logic. Decisions that have the same
logic but depend on different sub-inputs or sub-decisions use business knowledge models to
determine which procedure to follow.

Knowledge sources: External regulations, documents, committees, policies, and so on that
shape decision logic. Knowledge sources are references to real-world factors rather than
executable business rules.

Decision service: A decision service is a top-level decision, with well-defined inputs, that is
published as a service for invocation. In the diagram it is represented by an overlay rectangle
with round corners. The decision service can be invoked from an external application or
business process (BPMN). For more information, see page 36 of the DMN specification
document.

図図1.1 Basic decision requirements diagram

1.3. RULE EXPRESSIONS IN FEEL

Friendly Enough Expression Language (FEEL) is an expression language defined by the OMG DMN
specification. FEEL expressions define the logic of a decision in a DMN model. FEEL is designed to
facilitate both decision modeling and execution by assigning semantics to the decision model constructs.
FEEL expressions in decision requirements diagrams (DRDs) occupy either table cells in decision tables
or decision nodes.

For more information about FEEL in DMN, see the OMG Decision Model and Notation specification.

1.3.1. Variable and function names in FEEL

Unlike many traditional expression languages, Friendly Enough Expression Language (FEEL) supports
spaces and a few special characters as part of variable and function names. A FEEL name must start
with a letter, ?, or _ element. The unicode letter characters are also allowed. Variable names cannot

第第1章章 DECISION MODEL AND NOTATION

5

http://www.omg.org/spec/DMN/1.1

start with a language keyword, such as and, true, or every. The remaining characters in a variable
name can be any of the starting characters, as well as digits, white spaces, and special characters
such as +, -, /, *, ', and ..

For example, the following names are all valid FEEL names:

Age

Birth Date

Flight 234 pre-check procedure

Several limitations apply to variable and function names in FEEL:

Ambiguity

The use of spaces, keywords, and other special characters as part of names can make FEEL
ambiguous. The ambiguities are resolved in the context of the expression, matching names from left
to right. The parser resolves the variable name as the longest name matched in scope. You can use
() to disambiguate names if necessary.

Spaces in names

The DMN specification limits the use of spaces in FEEL names. According to the DMN specification,
names can contain multiple spaces but not two consecutive spaces.
In order to make the language easier to use and avoid common errors due to spaces, Red Hat
Process Automation Manager removes the limitation on the use of consecutive spaces. Red Hat
Process Automation Manager supports variable names with any number of consecutive spaces, but
normalizes them into a single space. For example, the two variable references First Name and
First Name are both acceptable in Red Hat Process Automation Manager.

Red Hat Process Automation Manager also normalizes the use of other white spaces, like the non-
breakable white space that is common in web pages, tabs, and line breaks. From a Red Hat Process
Automation Manager FEEL engine perspective, all of these characters are normalized into a single
white space before processing.

The keyword in

The keyword in is the only keyword in the language that cannot be used as part of a variable name.
Although the specifications allow the use of keywords in the middle of variable names, the use of in
in variable names conflicts with the grammar definition of for, every and some expression
constructs.

1.3.2. Data types in FEEL

Friendly Enough Expression Language (FEEL) supports the following data types:

Numbers

Strings

Boolean values

Dates

Time

Date and time

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

6

Days and time duration

Years and months duration

Functions

Contexts

Ranges (or intervals)

Lists

注記注記

Functions, contexts, ranges, and lists are not explicitly supported in the DMN specification
as data types, but they are supported by extension in Red Hat Process Automation
Manager.

The following are descriptions of each data type:

Numbers

Numbers in FEEL are based on the IEEE 754-2008 Decimal 128 format, with 34 digits of precision.
Internally, numbers are represented in Java as BigDecimals with MathContext DECIMAL128.
FEEL supports only one number data type, so the same type is used to represent both integers and
floating point numbers.
FEEL numbers use a dot (.) as a decimal separator. FEEL does not support -INF, +INF, or NaN.
FEEL uses null to represent invalid numbers.

Red Hat Process Automation Manager extends the DMN specification and supports additional
number notations:

Scientific: You can use scientific notation with the suffix e<exp> or E<exp>. For example,
1.2e3 is the same as writing the expression 1.2*10**3, but is a literal instead of an
expression.

Hexadecimal: You can use hexadecimal numbers with the prefix 0x. For example, 0xff is
the same as the decimal number 255. Both uppercase and lowercase letters are supported.
For example, 0XFF is the same as 0xff.

Type suffixes: You can use the type suffixes f, F, d, D, l, and L. These suffixes are
ignored.

Strings

Strings in FEEL are any sequence of characters delimited by double quotation marks.
Example:

"John Doe"

Boolean values

FEEL uses three-valued boolean logic, so a boolean logic expression may have values true, false,
or null.

Dates

第第1章章 DECISION MODEL AND NOTATION

7

http://ieeexplore.ieee.org/document/4610935/
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

FEEL does not have date literals, but you can use the built-in date() function to construct date
values. Date strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "YYYY-MM-DD" where YYYY is the year with four digits, MM is the number of
the month with two digits, and DD is the number of the day.
Example:

date("2017-06-23")

Date objects have time equal to "00:00:00", which is midnight. The dates are considered to be
local, without a timezone.

Time

FEEL does not have time literals, but you can use the built-in time() function to construct time
values. Time strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "hh:mm:ss[.uuu][(+-)hh:mm]" where hh is the hour of the day (from
00 to 23), mm is the minutes in the hour, and ss is the number of seconds in the minute. Optionally,
the string may define the number of milliseconds (uuu) within the second and contain a positive (+) or
negative (-) offset from UTC time to define its timezone. Instead of using an offset, you can use the
letter z to represent the UTC time, which is the same as an offset of -00:00. If no offset is defined,
the time is considered to be local.
Examples:

time("04:25:12")
time("14:10:00+02:00")
time("22:35:40.345-05:00")
time("15:00:30z")

Time values that define an offset or a timezone cannot be compared to local times that do not define
an offset or a timezone.

Date and time

FEEL does not have date and time literals, but you can use the built-in date and time() function
to construct date and time values. Date and time strings in FEEL follow the format defined in the XML
Schema Part 2: Datatypes document. The format is "<date>T<time>", where <date> and <time>
follow the prescribed XML schema formatting, conjoined by T.
Examples:

date and time("2017-10-22T23:59:00")
date and time("2017-06-13T14:10:00+02:00")
date and time("2017-02-05T22:35:40.345-05:00")
date and time("2017-06-13T15:00:30z")

Date and time values that define an offset or a timezone cannot be compared to local date and time
values that do not define an offset or a timezone.

重要重要

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dateTime as a synonym of date and time.

Days and time duration

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

8

https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#dateTime

FEEL does not have days and time duration literals, but you can use the built-in duration()
function to construct days and time duration values. Days and time duration strings in FEEL follow the
format defined in the XML Schema Part 2: Datatypes document, but are restricted to only days, hours,
minutes and seconds. Months and years are not supported.
Examples:

duration("P1DT23H12M30S")
duration("P23D")
duration("PT12H")
duration("PT35M")

重要重要

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dayTimeDuration as a synonym of days and time
duration.

Years and months duration

FEEL does not have years and months duration literals, but you can use the built-in duration()
function to construct days and time duration values. Years and months duration strings in FEEL
follow the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only
years and months. Days, hours, minutes, or seconds are not supported.
Examples:

duration("P3Y5M")
duration("P2Y")
duration("P10M")
duration("P25M")

重要重要

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword yearMonthDuration as a synonym of years and
months duration.

Functions

FEEL supports function literals (or anonymous functions) that you can use to create functions.
FEEL does not provide an explicit way of declaring a variable as a function in the DMN
specification, but Red Hat Process Automation Manager extends the DMN built-in types to support
functions.
Example:

function(a, b) a + b

In this example, the FEEL expression creates a function that adds the parameters a and b and
returns the result.

第第1章章 DECISION MODEL AND NOTATION

9

https://www.w3.org/TR/xmlschema-2/#duration
https://www.w3.org/TR/xmlschema-2/#duration

重要重要

A function datatype is an extension of the DMN specification and is subject to
change if the DMN specification provides a standard way to declare functions in the
future.

Contexts

FEEL supports context literals that you can use to create contexts. A context in FEEL is a list of
key and value pairs, similar to maps in languages like Java. FEEL does not provide an explicit way of
declaring a variable as a context in the DMN specification, but Red Hat Process Automation
Manager extends the DMN built-in types to support contexts.
Example:

{ x : 5, y : 3 }

In this example, the expression creates a context with two entries, x and y, representing a coordinate
in a chart.

In DMN 1.1, another way to create contexts is to create an item definition that contains the list of keys
as attributes, and then declare the variable as having that item definition type.

The Red Hat Process Automation Manager DMN API supports DMN ItemDefinition structural
types in a DMNContext represented in two ways:

User-defined Java type: Must be a valid JavaBeans object defining properties and getters for
each of the components in the DMN ItemDefinition. If necessary, you can also use the
@FEELProperty annotation for those getters representing a component name which would
result in an invalid Java identifier.

java.util.Map interface: The map needs to define the appropriate entries, with the keys
corresponding to the component name in the DMN ItemDefinition.

重要重要

A context data type is an extension of the DMN specification and is subject to
change if the DMN specification provides a standard way to declare contexts in the
future.

Ranges (or intervals)

FEEL supports range literals that you can use to create ranges or intervals. A range in FEEL is a
value that defines a lower and an upper bound, where either can be open or closed. FEEL does not
provide an explicit way of declaring a variable as a range in the DMN specification (unless it is within
another expression), but Red Hat Process Automation Manager extends the DMN built-in types to
support ranges.
The syntax of a range is defined in the following formats:

range := interval_start endpoint '..' endpoint interval_end
interval_start := open_start | closed_start
open_start := '(' | ']'
closed_start := '['
interval_end := open_end | closed_end

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

10

open_end := ')' | '['
closed_end := ']'
endpoint := expression

The expression for the endpoint must return a comparable value, and the lower bound endpoint must
be lower than the upper bound endpoint.

For example, the following literal expression defines an interval between 1 and 10, including the
boundaries (a closed interval on both endpoints):

[1 .. 10]

The following literal expression defines an interval between 1 hour and 12 hours, including the lower
boundary (a closed interval), but excluding the upper boundary (an open interval):

[duration("PT1H") .. duration("PT12H")]

You can use ranges in decision tables to test for ranges of values, or use ranges in simple literal
expressions. For example, the following literal expression returns true if the value of a variable x is
between 0 and 100:

x in [1 .. 100]

重要重要

A range data type is an extension of the DMN specification and is subject to change if
the DMN specification provides a standard way to declare contexts in the future.

Lists

Lists in FEEL are represented by a comma-separated list of values enclosed in square brackets.
FEEL does not provide an explicit way of declaring a variable as a list in the DMN specification, but
Red Hat Process Automation Manager extends the DMN built-in types to support contexts.
Example:

[2, 3, 4, 5]

All lists in FEEL contain elements of the same type and are immutable. Elements in a list can be
accessed by index, where the first element is 1. Negative indexes can access elements starting from
the end of the list so that -1 is the last element.

For example, the following expression returns the second element of a list x:

x[2]

The following expression returns the second-to-last element of a list x:

x[-2]

第第1章章 DECISION MODEL AND NOTATION

11

重要重要

A list data type is an extension of the DMN specification and is subject to change if
the DMN specification provides a standard way to declare contexts in the future.

1.4. DMN DECISION TABLES

A decision table in DMN is a visual representation of one or more rules in a tabular format. Each rule
consists of a single row in the table, and includes columns that define the conditions and outcome for that
particular row. The definition of each row is precise enough to derive the outcome using the values of the
conditions. For readability purposes, there is often a means to hide some of the more technical details
when viewing the table.

図図1.2 Decision table example

Decision tables are a popular way for modeling rules and decisions, and are used in many
methodologies (such as DMN) and implementation frameworks (such as Drools used in Red Hat
Process Automation Manager).

重要重要

Although the concept of decision tables is similar in DMN and Drools, DMN decision
tables syntax and layout are defined by the DMN standard while Drools decision tables
are defined by the Drools project. Red Hat Process Automation Manager supports both
formats of decision tables, but they are not interchangeable. For more information about
Drools decision tables, see Designing a decision service using uploaded decision tables.

1.4.1. Hit policies

Hit policies define how to reach an outcome when multiple rules match on a single decision table.
Decision modelers select one of the following five policies for reaching an outcome and then specify that
policy by placing an indicator in the table’s upper-left corner. In the following list, the indicators are listed
after the indicator type, in parentheses ().

Unique (U): Permits only one rule to match. Any overlap raises an error.

Any (A): Permits multiple rules to match, but they must all have the same output. If multiple
matching rules do not have the same output, an error is raised.

Priority (P): Permits multiple rules to match, with different outputs. The output that comes first in
the output values list is selected.

First (F): Uses the first match in rule order.

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

12

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/designing_a_decision_service_using_uploaded_decision_tables

Collect (C+, C>, C<, C#): Aggregates output from multiple rules based on an aggregation
function.

Collect (C): Aggregates values in an arbitrary list.

Collect Sum (C+): Outputs the sum of all collected values. Values must be numeric.

Collect Min (C<): Outputs the minimum value among the matches. The resulting values
must be comparable, such as numbers, dates, or text (lexicographic order).

Collect Max (C>): Outputs the maximum value among the matches. The resulting values
must be comparable, such as numbers, dates or text (lexicographic order).

Collect Count (C#): Outputs the number of matching rules.

1.5. BOXED EXPRESSIONS

Boxed expressions are tabular representations of contexts, function definitions, function invocations, and
other expressions in a DMN model. For example, the following boxed expression defines the function
Installment calculation that uses four parameters (Product, Rate, Term, and Amount) and
calculates the monthly installment amount.

図図1.3 Boxed expression example

第第1章章 DECISION MODEL AND NOTATION

13

第2章 DMN USE CASE
This real-world DMN example demonstrates how you can use decision modeling to reach a decision
based on inputs, circumstances, and company guidelines. The process in this section demonstrate how
some of these components work together. In this scenario, a flight from San Diego to New York is
canceled, requiring the affected airline to find alternate arrangements for its inconvenienced passengers.

First, the airline collects the information necessary to determine how best to get the travelers to their
destinations:

Inputs

A list of flights

A list of passengers

Decisions

Prioritizing the passengers who will get seats on a new flight

Determining which flights those passengers will be offered

Business knowledge models

The company process for determining passenger priority

Any flights that have space available

Company rules for determining how best to reassign inconvenienced customers

Then, the airline uses the DMN standard to model its decision process in a decision requirements
diagram (DRD), and creates the following diagram for determining the best rebooking solution:

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

14

図図2.1 Decision requirements diagram for passenger rebooking example

Similar to flowcharts, DRDs use shapes to represent the different elements in a process. Ovals contain
the two necessary inputs, rectangles contain the decision points in the model, and rectangles with
clipped corners contain reusable logic that can be repeatedly invoked.

The DRD places details for each element into boxed content that provide variable definitions, again
using FEEL expressions. Some content can be simple, such as the airline’s decision process for
establishing a prioritized waiting list.

図図2.2 Boxed expression example for prioritized wait list

Other elements can involve significantly greater detail and calculation. Consider the following business
knowledge model for reassigning the next passenger:

第第2章章 DMN USE CASE

15

図図2.3 Decision example for reassigning next passenger

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

16

第3章 DMN MODEL EXAMPLE
DMN defines an XML schema that enables DMN models to be used between different DMN authoring
platforms. The DMN specification enables multiple software platforms to work with the same file for
authoring, testing, and production execution. You must use a third-party authoring platform such as
Trisotech or Signavio if you require visual authoring capabilities.

The following decision requirements diagram (DRD) example demonstrates a classification-type decision
for the age categories of movie ticket purchases. This basic example demonstrates good form by
creating classifications to avoid repeated calculations so that this mini-decision can be an input for other
decisions.

図図3.1 Decision requirements diagram for the age classification decision

This example consists of a single numeric input value (Age), and produces a string output
(AgeClassification). The inner workings of the AgeClassification decision is a basic table:

第第3章章 DMN MODEL EXAMPLE

17

図図3.2 Decision table for the age classification decision

This table assigns a value to the AgeClassification output value using simple FEEL expressions to
determine ranges on the age value. This decision model was created in the Trisotech DMN Authoring
environment.

The following output is the XML source of this decision model:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<semantic:definitions
xmlns:semantic="http://www.omg.org/spec/DMN/20151101/dmn.xsd"
 xmlns:feel="http://www.omg.org/spec/FEEL/20140401"

xmlns:tc="http://www.omg.org/spec/DMN/20160719/testcase"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 namespace="http://www.redhat.com/_c7328033-c355-

43cd-b616-0aceef80e52a" 1

 name="dmn-movieticket-ageclassification" 2
 id="_99">

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

18

1

2

Model namespace

Model name

This basic file captures enough information to encapsulate the business logic, the input and outputs of
the overall decision, and enough detail to enable software tools to graphically represent the relationships
consistently.

The namespace and name attributes of the root definitions tag uniquely identify this decision model.

 <semantic:extensionElements/>
 <semantic:inputData displayName="Age" id="_1" name="Age">
 <semantic:variable id="_2" name="Age" typeRef="feel:number"/>
 </semantic:inputData>
 <semantic:decision displayName="AgeClassification" id="_3"
name="AgeClassification">
 <semantic:variable id="_4" name="AgeClassification"
typeRef="feel:string"/>
 <semantic:informationRequirement>
 <semantic:requiredInput href="#_1"/>
 </semantic:informationRequirement>
 <semantic:decisionTable hitPolicy="UNIQUE" id="_5"
outputLabel="AgeClassification">
 <semantic:input id="_6">
 <semantic:inputExpression typeRef="feel:number">
 <semantic:text>Age</semantic:text>
 </semantic:inputExpression>
 </semantic:input>
 <semantic:output id="_7"/>
 <semantic:rule id="_8">
 <semantic:inputEntry id="_9">
 <semantic:text>< 13</semantic:text>
 </semantic:inputEntry>
 <semantic:outputEntry id="_10">
 <semantic:text>"Child"</semantic:text>
 </semantic:outputEntry>
 </semantic:rule>
 <semantic:rule id="_11">
 <semantic:inputEntry id="_12">
 <semantic:text>[13..65)</semantic:text>
 </semantic:inputEntry>
 <semantic:outputEntry id="_13">
 <semantic:text>"Adult"</semantic:text>
 </semantic:outputEntry>
 </semantic:rule>
 <semantic:rule id="_14">
 <semantic:inputEntry id="_15">
 <semantic:text>>= 65</semantic:text>
 </semantic:inputEntry>
 <semantic:outputEntry id="_16">
 <semantic:text>"Senior"</semantic:text>
 </semantic:outputEntry>
 </semantic:rule>
 </semantic:decisionTable>
 </semantic:decision>
</semantic:definitions>

第第3章章 DMN MODEL EXAMPLE

19

Like much XML, the namespace value appears as a unique URL associated with the organization or
individual that authored the document.

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

20

第4章 DMN SUPPORT IN RED HAT PROCESS AUTOMATION
MANAGER

Red Hat Process Automation Manager includes full runtime support for DMN 1.1 models at conformance
level 3, but currently does not include a built-in DMN model editor. Editors for DMN models will be added
to the platform in the near future, but meanwhile you can use third-party DMN authoring platforms to
create DMN models and then integrate the DMN models in your decision services in Red Hat Process
Automation Manager. You can import DMN files into your project in Business Central (Menu → Design
→ Projects → Import Asset) or package the DMN files as part of your project knowledge JAR (KJAR)
file without Business Central. In addition to all DMN conformance level 3 requirements, Red Hat Process
Automation Manager also includes enhancements and fixes to FEEL and DMN model components to
optimize the experience of implementing DMN decision services with Red Hat Process Automation
Manager.

From a platform perspective, DMN models are like any other business asset in Red Hat Process
Automation Manager, such as DRL files or uploaded decision tables, that you can include in your Red
Hat Process Automation Manager project and deploy to Process Server in order to start your DMN
decision services. This enables you to use your preferred DMN authoring tool to design your DMN
models that you then deploy with your existing Red Hat Process Automation Manager assets. For
example, you might have BPMN models that directly invoke DMN decision services from their decision
task nodes.

For more information about including assets such as DMN files with your project packaging and
deployment method, see Packaging and deploying a Red Hat Process Automation Manager
project.

4.1. CONFIGURABLE DMN PROPERTIES IN RED HAT PROCESS
AUTOMATION MANAGER

Red Hat Process Automation Manager provides the following DMN properties that you can configure
when you execute your DMN models on Process Server or on your client application:

org.kie.dmn.strictConformance

When enabled, this property disables by default any extensions or profiles provided beyond the DMN
standard, such as some helper functions, enhanced features of DMN 1.2 backported into DMN 1.1,
and the like. You can use this property to configure the process engine to support only pure DMN 1.1
features, such as when running the DMN Technology Compatibility Kit (TCK).
Default value: false

-Dorg.kie.dmn.strictConformance=true

org.kie.dmn.runtime.typecheck

When enabled, this property enables verification of actual values conforming to their declared types in
the DMN model, as input or output of DRD elements. You can use this property to verify whether data
supplied to the DMN model or produced by the DMN model is compliant with what is specified in the
model.
Default value: false

-Dorg.kie.dmn.runtime.typecheck=true

org.kie.dmn.decisionservice.coercesingleton

By default, this property makes the result of a decision service defining a single output decision be the

第第4章章 DMN SUPPORT IN RED HAT PROCESS AUTOMATION MANAGER

21

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project
https://dmn-tck.github.io/tck/

single value of the output decision value. When disabled, this property makes the result of a decision
service defining a single output decision be a context with the single entry for that decision. You
can use this property to adjust your decision service outputs according to your project requirements.
Default value: true

-Dorg.kie.dmn.decisionservice.coercesingleton=false

org.kie.dmn.profiles.$PROFILE_NAME

When valorized with a Java fully qualified name, this property loads a DMN profile onto the process
engine at start time. You can use this property to implement a predefined DMN profile with supported
features different from or beyond the DMN standard. For example, if you are creating DMN models
using the Signavio DMN modeller, use this property to implement features from the Signavio DMN
profile into your DMN decision service.

-
Dorg.kie.dmn.profiles.signavio=org.kie.dmn.signavio.KieDMNSignavioProfil
e

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

22

第5章 OPTIONS FOR INVOKING A DMN MODEL
You can import DMN files into your Red Hat Process Automation Manager project using Business
Central (Menu → Design → Projects → Import Asset) or package the DMN files as part of your project
knowledge JAR (KJAR) file without Business Central. After you implement your DMN files in your Red
Hat Process Automation Manager project, you can invoke the DMN decision service by deploying the
KIE container that contains it to Process Server for remote access or manipulating the KIE container
directly as a dependency of the calling application. Other options for creating and deploying DMN
knowledge packages are also available, and most are similar for all types of knowledge assets, such as
DRL files or process definitions.

For more information about including DMN assets with your project packaging and deployment method,
see Packaging and deploying a Red Hat Process Automation Manager project .

5.1. EMBEDDING A DMN CALL DIRECTLY INTO THE JAVA
APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You typically embed
knowledge assets directly into a project if there is a tight relationship between the version of the code
and the version of the DMN definition. Any changes to the decision take effect after you have
intentionally updated and redeployed the application. One potential benefit of this approach is that proper
operation does not rely on any external dependencies to the run time, which can be a limitation of locked-
down environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can
dynamically change, for example, by using a system property, and it can be periodically scanned for
updates and automatically updated. This introduces an external dependency on the deploy time of the
service, but executes the decision locally, reducing reliance on an external service being available during
run time.

Prerequisites

A KJAR containing the DMN model to execute has been created. For information about project
packaging, see Packaging and deploying a Red Hat Process Automation Manager project .

The following dependencies have been added to the pom.xml file of the project:

<!-- Required for the DMN runtime API -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-dmn-core</artifactId>
 <version>${drools-version}</version>
</dependency>

<!-- Required if not using classpath kie container -->
<dependency>
 <groupId>org.kie</groupId>
 <artifactId>kie-ci</artifactId>
 <version>${drools-version}</version>
</dependency>

第第5章章 OPTIONS FOR INVOKING A DMN MODEL

23

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

1

2

注記注記

${drools-version} is a Maven property that must resolve to the precise version used for
other Red Hat Process Automation Manager dependencies at run time.

Procedure

1. Create a KIE container from classpath or ReleaseId:

Alternative option:

2. Obtain DMNRuntime from the KIE container and a reference to the DMN model to be evaluated,
by using the model namespace and modelName:

3. Execute the decision services for the desired model:

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

Assign input variables for the input DMN context.

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "my-
kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer(releaseId
);

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

DMNRuntime dmnRuntime = kieContainer.newKieSession().getKieRuntime(
DMNRuntime.class);

DMNModel dmnModel =
 dmnRuntime.getModel("http://www.redhat.com/_c7328033-c355-
43cd-b616-0aceef80e52a",
 "dmn-movieticket-ageclassification");

DMNContext dmnContext = dmnRuntime.newContext(); 1

for (Integer age : Arrays.asList(1,12,13,64,65,66)) {

 dmnContext.set("Age", age); 2
 DMNResult dmnResult =

 dmnRuntime.evaluateAll(dmnModel, dmnContext); 3

 for (DMNDecisionResult dr : dmnResult.getDecisionResults()) {

4
 log.info("Age: " + age + ", " +
 "Decision: '" + dr.getDecisionName() + "', " +
 "Result: " + dr.getResult());
 }
}

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

24

3

4

Evaluate all DMN decisions defined in the DMN model.

Each evaluation may result in one or more results, creating the loop.

This example prints the following output:

Age 1 Decision 'AgeClassification' : Child
Age 12 Decision 'AgeClassification' : Child
Age 13 Decision 'AgeClassification' : Adult
Age 64 Decision 'AgeClassification' : Adult
Age 65 Decision 'AgeClassification' : Senior
Age 66 Decision 'AgeClassification' : Senior

5.2. EXECUTING DMN SERVICES REMOTELY ON PROCESS SERVER
(JAVA)

The KIE remote API client provides a lightweight approach to invoking a remote DMN service either
through the REST or JMS interfaces of Process Server. This approach reduces the number of runtime
dependencies necessary to interact with a knowledge base. Decoupling the calling code from the
decision definition also increases flexibility by enabling them to iterate independently at the appropriate
pace.

Prerequisites

Process Server is installed and configured, including a known user name and credentials for a
user with the kie-server role. For installation options, see Planning a Red Hat Process
Automation Manager installation.

A KIE container is deployed in Process Server in the form of a KJAR that includes the DMN
model. For information about project packaging and deployment, see Packaging and
deploying a Red Hat Process Automation Manager project.

You have the container ID of the KIE container containing the DMN model. If more than one
model is present, you must also know the model namespace and model name of the relevant
model.

The following dependency is added to the pom.xml file of the project:

注記注記

${drools-version} is a Maven property that must resolve to the precise version used for
other Red Hat Process Automation Manager dependencies at run time.

Procedure

1. Instantiate a KieServicesClient instance with the appropriate connection information.

<dependency>
 <groupId>org.kie.server</groupId>
 <artifactId>kie-server-client</artifactId>
 <version>${drools-version}</version>
</dependency>

第第5章章 OPTIONS FOR INVOKING A DMN MODEL

25

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/planning_a_red_hat_process_automation_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

1

2

1

Example:

The connection information:

Example URL: http://localhost:8080/kie-server/services/rest/server

The credentials should reference a user with the kie-server role.

The Marshalling format is an instance of
org.kie.server.api.marshalling.MarshallingFormat. It controls whether the
messages will be JSON or XML. Options for Marshalling format are JSON, JAXB, or
XSTREAM.

2. Obtain a DMNServicesClient from the KIE server Java client connected to the related
Process Server by invoking the method getServicesClient() on the KIE server Java client
instance:

The dmnClient can now execute decision services on Process Server.

3. Execute the decision services for the desired model.
Example:

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

KieServicesConfiguration conf =
 KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD);

1

conf.setMarshallingFormat(MarshallingFormat.JSON); 2

KieServicesClient kieServicesClient =
KieServicesFactory.newKieServicesClient(conf);

DMNServicesClient dmnClient =
kieServicesClient.getServicesClient(DMNServicesClient.class);

for (Integer age : Arrays.asList(1,12,13,64,65,66)) {

 DMNContext dmnContext = dmnClient.newContext(); 1

 dmnContext.set("Age", age); 2

 ServiceResponse<DMNResult> serverResp = 3
 dmnClient.evaluateAll($kieContainerId,
 $modelNamespace,
 $modelName,
 dmnContext);

 DMNResult dmnResult = serverResp.getResult(); 4
 for (DMNDecisionResult dr : dmnResult.getDecisionResults()) {
 log.info("Age: " + age + ", " +
 "Decision: '" + dr.getDecisionName() + "', " +
 "Result: " + dr.getResult());
 }
}

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

26

http://localhost:8080/kie-server/services/rest/server

2

3

4

Assign input variables for the input DMN Context.

Evaluate all the DMN Decisions defined in the DMN model:

$kieContainerId is the ID of the container where the KJAR containing the DMN
model is deployed

$modelNamespace is the namespace for the model.

$modelName is the name for the model.

The DMN Result object is available from the server response.

At this point, the dmnResult contains all the decision results from the evaluated DMN model.

You can also execute only a specific DMN decision in the model by using alternative methods of
the DMNServicesClient.

ヒントヒント

If the KIE container only contains one DMN model, you can omit $modelNamespace and
$modelName because the Process Server API selects it by default.

5.3. CALLING A DMN SERVICE ON A REMOTE SERVER USING REST
APIS

Directly interacting with the REST endpoints of Process Server provides the most separation between
the calling code and the decision logic definition. The calling code is completely free of direct
dependencies, and you can implement it in an entirely different development platform such as node.js
or .net. The examples in this section demonstrate Nix-style curl commands but provide relevant
information to adapt to any REST client.

Prerequisites

Process Server is installed and configured, including a known user name and credentials for a
user with the kie-server role. For installation options, see Planning a Red Hat Process
Automation Manager installation.

A KIE container is deployed in Process Server in the form of a KJAR that includes the DMN
model. For information about project packaging and deployment, see Packaging and
deploying a Red Hat Process Automation Manager project.

You have the container ID of the KIE container containing the DMN model. If more than one
model is present, you must also know the model namespace and model name of the relevant
model.

Procedure

1. Determine the base URL for accessing the Process Server REST API endpoints. This requires
knowing the following values (with the default local deployment values as an example):

Host (localhost)

Port (8080)

第第5章章 OPTIONS FOR INVOKING A DMN MODEL

27

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/planning_a_red_hat_process_automation_manager_installation
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

Root context (kie-server)

Base REST path (services/rest/server)

Local deployment example URL:

http://localhost:8080/kie-server/services/rest/server

2. Determine user authentication requirements.
When users are defined directly in the Process Server configuration, BasicAuth is used which
requires the user name and password. Successful requests require that the user have the kie-
server role.

The following example demonstrates how to add credentials to a curl request:

curl -u username:password <request>

If Process Server is configured with Red Hat Single Sign-On, the request must include a bearer
token:

3. Specify the format of the request and response. The REST API endpoints work with both JSON
and XML formats and are set using request headers:

JSON

curl -H "accept: application/json" -H "content-type:
application/json"

XML

curl -H "accept: application/xml" -H "content-type: application/xml"

4. (Optional) Query the container for a list of deployed decision models:
[GET] /containers/CONTAINER_ID/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/xml" -X GET
"http://localhost:8080/kie-
server/services/rest/server/containers/MovieDMNContainer/dmn"

Sample XML output:

curl -H "Authorization: bearer $TOKEN" <request>

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK models successfully retrieved from
container 'MovieDMNContainer'">
 <dmn-model-info-list>
 <model>
 <model-namespace>http://www.redhat.com/_c7328033-c355-
43cd-b616-0aceef80e52a</model-namespace>
 <model-name>dmn-movieticket-ageclassification</model-

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

28

Sample JSON output:

5. Execute the model:
[POST] /containers/CONTAINER_ID/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/json" -H "content-type:
application/json" -X POST "http://localhost:8080/kie-
server/services/rest/server/containers/MovieDMNContainer/dmn" -d "{
\"model-namespace\" : \"http://www.redhat.com/_c7328033-c355-43cd-
b616-0aceef80e52a\", \"model-name\" : \"dmn-movieticket-
ageclassification\", \"decision-name\" : [], \"decision-id\" : [],
\"dmn-context\" : {\"Age\" : 66}}"

Example JSON request:

name>
 <model-id>_99</model-id>
 <decisions>
 <dmn-decision-info>
 <decision-id>_3</decision-id>
 <decision-name>AgeClassification</decision-
name>
 </dmn-decision-info>
 </decisions>
 </model>
 </dmn-model-info-list>
</response>

{
 "type" : "SUCCESS",
 "msg" : "OK models successfully retrieved from container
'MovieDMNContainer'",
 "result" : {
 "dmn-model-info-list" : {
 "models" : [{
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-
43cd-b616-0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "model-id" : "_99",
 "decisions" : [{
 "decision-id" : "_3",
 "decision-name" : "AgeClassification"
 }]
 }]
 }
 }
}

{
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-
b616-0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "decision-name" : [],

第第5章章 OPTIONS FOR INVOKING A DMN MODEL

29

Example XML request (JAXB style):

注記注記

Regardless of the request format, the request requires the following elements:

Model namespace

Model name

Context object containing input values

Example JSON response:

 "decision-id" : [],
 "dmn-context" : {"Age" : 66}
}

<?xml version="1.0" encoding="UTF-8"?>
<dmn-evaluation-context>
 <model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
0aceef80e52a</model-namespace>
 <model-name>dmn-movieticket-ageclassification</model-name>
 <dmn-context xsi:type="jaxbListWrapper"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <type>MAP</type>
 <element xsi:type="jaxbStringObjectPair" key="Age">
 <value xsi:type="xs:int"
xmlns:xs="http://www.w3.org/2001/XMLSchema">66</value>
 </element>
 </dmn-context>
</dmn-evaluation-context>

{
 "type" : "SUCCESS",
 "msg" : "OK from container 'MovieDMNContainer'",
 "result" : {
 "dmn-evaluation-result" : {
 "messages" : [],
 "model-namespace" : "http://www.redhat.com/_c7328033-c355-
43cd-b616-0aceef80e52a",
 "model-name" : "dmn-movieticket-ageclassification",
 "decision-name" : [],
 "dmn-context" : {
 "Age" : 66,
 "AgeClassification" : "Senior"
 },
 "decision-results" : {
 "_3" : {
 "messages" : [],
 "decision-id" : "_3",
 "decision-name" : "AgeClassification",
 "result" : "Senior",
 "status" : "SUCCEEDED"
 }

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

30

Example XML (JAXB format) response:

 }
 }
 }
}

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK from container
'MovieDMNContainer'">
 <dmn-evaluation-result>
 <model-namespace>http://www.redhat.com/_c7328033-c355-
43cd-b616-0aceef80e52a</model-namespace>
 <model-name>dmn-movieticket-ageclassification</model-
name>
 <dmn-context xsi:type="jaxbListWrapper"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <type>MAP</type>
 <element xsi:type="jaxbStringObjectPair"
key="Age">
 <value xsi:type="xs:int"
xmlns:xs="http://www.w3.org/2001/XMLSchema">66</value>
 </element>
 <element xsi:type="jaxbStringObjectPair"
key="AgeClassification">
 <value xsi:type="xs:string"
xmlns:xs="http://www.w3.org/2001/XMLSchema">Senior</value>
 </element>
 </dmn-context>
 <messages/>
 <decisionResults>
 <entry>
 <key>_3</key>
 <value>
 <decision-id>_3</decision-id>
 <decision-
name>AgeClassification</decision-name>
 <result xsi:type="xs:string"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">Senior</result>
 <messages/>
 <status>SUCCEEDED</status>
 </value>
 </entry>
 </decisionResults>
 </dmn-evaluation-result>
</response>

第第5章章 OPTIONS FOR INVOKING A DMN MODEL

31

第6章 ADDITIONAL RESOURCES
Decision Model and Notation specification

DMN Technology Compatibility Kit

Packaging and deploying a Red Hat Process Automation Manager project

Red Hat Process Automation Manager 7.0 Designing a decision service using DMN models

32

http://www.omg.org/spec/DMN/1.1
https://dmn-tck.github.io/tck/
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.0/html-single/packaging_and_deploying_a_red_hat_process_automation_manager_project

付録A VERSIONING INFORMATION
Documentation last updated on: Monday, October 1, 2018.

付録付録A VERSIONING INFORMATION

33

	目次
	PREFACE
	第1章 DECISION MODEL AND NOTATION
	1.1. DMN CONFORMANCE LEVELS
	1.2. DMN ELEMENTS
	1.3. RULE EXPRESSIONS IN FEEL
	1.3.1. Variable and function names in FEEL
	1.3.2. Data types in FEEL

	1.4. DMN DECISION TABLES
	1.4.1. Hit policies

	1.5. BOXED EXPRESSIONS

	第2章 DMN USE CASE
	第3章 DMN MODEL EXAMPLE
	第4章 DMN SUPPORT IN RED HAT PROCESS AUTOMATION MANAGER
	4.1. CONFIGURABLE DMN PROPERTIES IN RED HAT PROCESS AUTOMATION MANAGER

	第5章 OPTIONS FOR INVOKING A DMN MODEL
	5.1. EMBEDDING A DMN CALL DIRECTLY INTO THE JAVA APPLICATION
	5.2. EXECUTING DMN SERVICES REMOTELY ON PROCESS SERVER (JAVA)
	5.3. CALLING A DMN SERVICE ON A REMOTE SERVER USING REST APIS

	第6章 ADDITIONAL RESOURCES
	付録A VERSIONING INFORMATION

