Menu Close

運用データの計測

Red Hat OpenStack Platform 16.2

物理リソースおよび仮想リソースのトラッキングおよびメトリックの収集

概要

運用ツールを使用して、Red Hat OpenStack Platform 環境の計測と維持に役立てます。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。まずは、マスター (master)、スレーブ (slave)、ブラックリスト (blacklist)、ホワイトリスト (whitelist) の 4 つの用語の置き換えから始めます。この取り組みは膨大な作業を要するため、今後の複数のリリースで段階的に用語の置き換えを実施して参ります。詳細は、弊社 の CTO、Chris Wright のメッセージ を参照してください。

Red Hat ドキュメントへのフィードバック (英語のみ)

弊社ドキュメントに対するご意見をお聞かせください。ドキュメントの改善点があればお知らせください。

ドキュメントへのダイレクトフィードバック (DDF) 機能の使用 (英語版のみ)

特定の文章、段落、またはコードブロックに対して直接コメントを送付するには、DDF の Add Feedback 機能を使用してください。なお、この機能は英語版のドキュメントでのみご利用いただけます。

  1. Multi-page HTML 形式でドキュメントを表示します。
  2. ドキュメントの右上隅に Feedback ボタンが表示されていることを確認してください。
  3. コメントするテキスト部分をハイライト表示します。
  4. Add Feedback をクリックします。
  5. Add Feedback フィールドにコメントを入力します。
  6. (オプション) ドキュメントチームが連絡を取り問題についてお伺いできるように、ご自分のメールアドレスを追加します。
  7. 送信 をクリックします。

第1章 運用データ計測の概要

Red Hat OpenStack Platform (RHOSP) 環境の Telemetry サービスのコンポーネントを使用して、物理リソースおよび仮想リソースをトラッキングし、デプロイメントにおける CPU の使用状況やリソースの可用性などのメトリックを収集することができます。これには、Gnocchi バックエンドに集約値を保管するデータ収集デーモンが使用されます。

可用性およびパフォーマンス監視ツールを使用して、RHOSP 環境の計測および維持を行うことができます。これらのツールは、以下の機能を果たします。

可用性監視
RHOSP 環境内の全コンポーネントを監視して、いずれかのコンポーネントが現在使用できない、または機能していない状態かどうかを判断します。また、問題が確認された時にシステムがアラートを送信するように設定することも可能です。
パフォーマンスの監視
データ収集デーモンを使用してシステム情報を定期的に収集し、その値を保管および監視することができます。このデーモンにより、収集したオペレーティングシステムやログファイル等のデータを保管します。また、ネットワーク経由でデータを利用できるようになります。データから取得した統計値を使用して、システムの監視、パフォーマンスのボトルネックの特定、および将来的なシステム負荷の予測を行うことができます。

1.1. Telemetry のアーキテクチャー

Red Hat OpenStack Platform (RHOSP) Telemetry は、OpenStack をベースとするクラウドのユーザーレベルの使用状況データを提供します。このデータを、顧客への請求、システムのモニタリング、またはアラートに使用することができます。Telemetry のコンポーネントを設定し、既存の OpenStack コンポーネントにより送信される通知から (例: Compute の使用状況イベント)、または RHOSP インフラストラクチャーリソースへのポーリングにより (例: libvirt)、データを収集することができます。Telemetry は、収集したデータをデータストアやメッセージキュー等のさまざまなターゲットに公開します。

Telemetry は以下のコンポーネントで構成されます。

  • データ収集: Telemetry は Ceilometer を使用してメトリックデータおよびイベントデータを収集します。詳細は、「Ceilometer」を参照してください。
  • ストレージ: Telemetry は、メトリックデータを Gnocchi に、イベントデータを Panko に保存します。詳細は、「Gnocchi を使用したストレージ」を参照してください。
  • アラームサービス: Telemetry は、Alarming サービス Aodh を使用してアクションをトリガーします。アクションのトリガーは、Ceilometer の収集するメトリックデータまたはイベントデータに対して定義されたルールに基づきます。

データを収集したら、サードパーティーのツールを使用してメトリックデータを表示および解析し、Alarming サービスを使用してイベントのアラームを設定できます。

図1.1 Telemetry のアーキテクチャー

Telemetry のアーキテクチャー

1.1.1. 監視用コンポーネントのサポート状況

以下の表に、Red Hat OpenStack Platform の監視用コンポーネントのサポート状況を示します。

表1.1 サポート状況

コンポーネント  完全サポートが開始されたリリース非推奨になったリリース廃止されたリリース注記

Aodh

OSP 9

OSP 15

 

自動スケーリングに使用します。

Ceilometer

OSP 4

  

自動スケーリングに使用します。

Collectd

OSP 11

   

Gnocchi

OSP 9

OSP 15

 

自動スケーリングに使用します。

Panko

OSP 11

OSP 12 (OSP 14 以降、デフォルトではインストールされない)

OSP 16.1

16.1 まで、Cloudforms で必要

1.2. データ収集

Red Hat OpenStack Platform (RHOSP) は、2 種類のデータ収集をサポートします。

  • インフラストラクチャーモニタリング用の collectd。詳細は、「collectd」を参照してください。
  • OpenStack コンポーネントレベルのモニタリング用の Ceilometer。詳細は、「Ceilometer」を参照してください。

1.2.1. Ceilometer

Ceilometer は OpenStack Telemetry サービスのデフォルトのデータ収集コンポーネントで、現在の OpenStack コアコンポーネント全体にわたってデータを正規化し変換することができます。Ceilometer は、OpenStack サービスに関連する計測データおよびイベントデータを収集します。デプロイメントの設定に応じて、ユーザーは収集したデータにアクセスすることができます。

Ceilometer サービスは、3 つのエージェントを使用して Red Hat OpenStack Platform (RHOSP) コンポーネントからデータを収集します。

  • コンピュートエージェント (ceilometer-agent-compute): 各コンピュートノードで実行され、リソースの使用状況の統計値をポーリングします。このエージェントは、パラメーター --polling namespace-compute を使用して実行しているポーリングエージェント ceilometer-polling と同じです。
  • 中央エージェント (ceilometer-agent-central): 中央の管理サーバーで実行され、インスタンスまたは Compute ノードに関連付けられないリソースの使用状況の統計値をポーリングします。複数のエージェントを起動して、サービスをスケーリングすることができます。これは、パラメーター --polling namespace-central を使用して実行しているポーリングエージェント ceilometer-polling と同じです。
  • 通知エージェント (ceilometer-agent-notification): 中央の管理サーバーで実行され、メッセージキューからのメッセージを処理してイベントデータおよび計測データをビルドします。定義されたターゲットにデータを公開します。デフォルトのターゲットは gnocchi です。これらのサービスは、RHOSP の通知バスを使用して通信します。

Ceilometer エージェントは、パブリッシャーを使用してデータを該当するエンドポイント (Gnocchi 等) に送信します。この情報は、pipeline.yaml ファイルで設定することができます。

関連資料

1.2.1.1. パブリッシャー

Telemetry サービスでは、さまざまな転送方法により収集したデータを外部システムに送付することができます。転送方法の要件はこのデータを使用するシステムにより異なり、たとえばモニタリングシステムではデータ損失が許容され、請求システムでは信頼性の高いデータ転送が必要とされます。Telemetry は、両方のシステム種別の要件を満たす方法を提供します。サービスのパブリッシャーコンポーネントを使用して、メッセージバスを介してデータを永続ストレージに保存することや、1 つまたは複数の外部コンシューマーに送信することができます。1 つのチェーンに複数のパブリッシャーを含めることができます。

以下のパブリッシャー種別がサポートされます。

  • Gnocchi (デフォルト): Gnocchi パブリッシャーが有効な場合、計測およびリソース情報が時系列データに最適化されたストレージ用の Gnocchi にプッシュされます。Ceilometer は Identity サービスを通じて正確なパスを検出するので、Gnocchi を Identity サービスに登録するようにします。
  • Panko: Ceilometer からのイベントデータを panko に保管することができます。panko は、Red Hat OpenStack Platform のシステムイベントのクエリーを行うための HTTP REST インターフェースを提供します。Panko は非推奨となりました。
パブリッシャーパラメーターの設定

Telemetry サービス内の各データポイントに、複数のパブリッシャーを設定することができます。これにより、同じ技術メーターまたはイベントを複数のターゲットに複数回公開することができます。この場合、それぞれ異なる転送方法を使用することが可能です。

手順

  1. パブリッシャーパラメーターおよびデフォルト値を記述するための YAML ファイルを作成します (例: ceilometer-publisher.yaml)。以下のパラメーターを parameter_defaults に追加します。

    parameter_defaults:
    
    ManagePipeline: true
    ManageEventPipeline: true
    EventPipelinePublishers:
    - gnocchi://?archive_policy=high
    PipelinePublishers:
    - gnocchi://?archive_policy=high
  2. オーバークラウドをデプロイします。openstack overcloud deploy コマンドに修正した YAML ファイルを追加します。以下の例の <environment_files> を、デプロイメントに含めるその他の YAML ファイルに置き換えます。

    $ openstack overcloud  deploy
    --templates \
    -e /home/custom/ceilometer-publisher.yaml
    -e <environment_files>

関連資料

1.2.2. collectd

パフォーマンスのモニタリングでは、データ収集エージェントを使用してシステム情報を定期的に収集し、その値をさまざまな方法で保管および監視することができます。Red Hat は、データ収集エージェントとして collectd デーモンをサポートします。このデーモンは、データを時系列データベースに保管します。Red Hat がサポートするデータベースの 1 つは Gnocchi と呼ばれます。保管されたこのデータを使用して、システムの監視、パフォーマンスのボトルネックの特定、および将来的なシステム負荷の予測を行うことができます。

関連資料

1.3. Gnocchi を使用したストレージ

Gnocchi はオープンソースの時系列データベースです。大量のメトリックを保管し、運用者およびユーザーにメトリックおよびリソースへのアクセスを提供します。Gnocchi は、アーカイブポリシーを使用して処理する集約および保持する集約値の数を定義します。インデクサードライバーは、すべてのリソース、アーカイブポリシー、およびメトリックのインデックスを保管します。

1.3.1. アーカイブポリシー: 時系列データベースへの短期および長期両データの保管

アーカイブポリシーにより、処理する集約および保持する集約値の数を定義します。Gnocchi は、最小値、最大値、平均値、N 番目パーセンタイル、標準偏差などのさまざまな集約メソッドをサポートします。これらの集約は粒度と呼ばれる期間にわたって処理され、特定のタイムスパンの間保持されます。

アーカイブポリシーは、メトリックの集約方法および保管期間を定義します。それぞれのアーカイブポリシーは、タイムスパンにおけるポイント数として定義されます。

たとえば、アーカイブポリシーで 1 秒の粒度および 10 ポイントのポリシーを定義すると、時系列アーカイブは最大 10 秒間保持し、それぞれが 1 秒間の集約を表します。つまり、時系列は最大で、より新しいポイントと古いポイント間の 10 秒間のデータを保持します。

アーカイブポリシーは、使用する集約メソッドも定義します。デフォルトのメソッドはパラメーター default_aggregation_methods で設定し、そのデフォルト値は mean、min、max、sum、std、count に設定されています。したがって、ユースケースによってアーカイブポリシーおよび粒度は異なります。

関連資料

  • アーカイブポリシーについての詳細は、「アーカイブポリシーのプランニングおよび管理」を参照してください。

1.3.2. インデクサードライバー

インデクサーは、すべてのリソース、アーカイブポリシー、およびメトリックのインデックス、ならびにそれらの定義、種別、および属性を保管する役割を担います。また、リソースとメトリックをリンクさせる機能も果たします。Red Hat OpenStack Platform director は、デフォルトでインデクサードライバーをインストールします。Gnocchi が処理するすべてのリソースおよびメトリックをインデックス化するデータベースが必要です。サポートされるドライバーは MySQL です。

1.3.3. Gnocchi Metric-as-a-Service に関する用語

Metric-as-a-Service 機能で一般的に使用される用語の定義を以下の表にまとめます。

表1.2 Metric-as-a-Service に関する用語

用語定義

集約メソッド

複数の計測値から 1 つの集約値を生成するのに使用される関数。min 集約メソッドであれば、さまざまな計測値を、特定期間内の全計測値の最小値に集約します。

集約値 (Aggregate)

アーカイブポリシーに従って複数の計測値から生成されたデータポイントタプル。集約値はタイムスタンプおよび値で構成されます。

アーカイブポリシー

メトリックに割り当てられた集約値の保管ポリシー。アーカイブポリシーにより、集約値がメトリックに保持される期間および集約値の生成方法 (集約メソッド) が決定されます。

粒度 (Granularity)

メトリックの集約時系列における 2 つの集約値の時間間隔

計測値 (Measure)

API によって時系列データベースに送信される受信データポイントタプル。計測値はタイムスタンプおよび値で構成されます。

メトリック

UUID で識別される集約値を保管するエンティティー。名前を使用して、メトリックをリソースに割り当てることができます。メトリックがその集約値をどのように保管するかは、メトリックが関連付けられたアーカイブポリシーで定義されます。

リソース

メトリックを関連付ける、インフラストラクチャー内の任意の項目を表すエンティティー。リソースは一意の ID で識別され、属性を含めることができます。

時系列 (Time series)

集約値を時刻順に並べた一覧

タイムスパン

メトリックがその集約値を保持する期間。アーカイブポリシーを定義する際に使用されます。

1.4. メトリックデータの表示

以下のツールを使用して、メトリックデータを表示および解析することができます。

  • Grafana: オープンソースのメトリック分析および可視化スイート。Grafana は、インフラストラクチャーおよびアプリケーションを解析する際、時系列データの可視化用に最も一般的に使用されているツールです。
  • Red Hat CloudForms: インフラストラクチャーの管理プラットフォーム。IT 部門はこれを使用して、プロビジョニングおよび管理に関するユーザーのセルフサービス機能をコントロールし、仮想マシンおよびプライベートクラウド全体にわたるコンプライアンスを確保します。

関連資料

1.4.1. データ表示のための Grafana の使用および接続

Grafana 等のサードパーティーソフトウェアを使用して、収集および保管したメトリックをグラフィカルに表示することができます。

Grafana は、オープンソースのメトリック解析、モニタリング、および可視化スイートです。Grafana をインストールおよび設定するには、公式の「Grafana documentation」を参照してください。

第2章 運用データ計測のプランニング

監視するリソースは、ビジネスの要件によって異なります。Ceilometer または collectd を使用して、リソースを監視することができます。

2.1. Ceilometer による計測

Ceilometer の計測値の完全なリストは、https://docs.openstack.org/ceilometer/train/admin/telemetry-measurements.htmlを参照してください。

2.2. collectd による計測

以下の計測が、最も一般的に使用される collectd メトリックです。

  • disk
  • interface
  • load
  • memory
  • processes
  • tcpconns

計測の完全なリストは、「Collectd Metrics and Events」を参照してください。

2.3. データストレージのプランニング

Gnocchi は、データポイントのコレクションを保管します。この場合、それぞれのデータポイントが集約値です。ストレージの形式は、異なる技術を使用して圧縮されます。その結果、時系列データベースのサイズを計算するには、ワーストケースのシナリオに基づいてサイズを見積もりる必要があります。

手順

  1. データポイントの数を計算します。

    ポイント数 = タイムスパン / 粒度

    たとえば、1 分間の解像度で 1 年分のデータを保持する場合は、以下の式を使用します。

    データポイント数 = (365 日 X 24 時間 X 60 分) / 1 分 = 525600

  2. 時系列データベースのサイズを計算します。

    サイズ (バイト単位) = データポイント数 X 8 バイト

    この式を例に当てはめると、結果は 4.1 MB になります。

    サイズ (バイト単位) = 525600 ポイント X 8 バイト = 4204800 バイト = 4.1 MB

    この値は、単一の集約時系列データベースの推定ストレージ要件です。アーカイブポリシーで複数の集約メソッド (min、max、mean、sum、std、および count) が使用される場合は、使用する集約メソッドの数をこの値に掛けます。

2.4. アーカイブポリシーのプランニングおよび管理

アーカイブポリシーは、メトリックの集約方法および時系列データベースへの保管期間を定義します。アーカイブポリシーは、タイムスパンにおけるポイント数として定義されます。

アーカイブポリシーで 1 秒の粒度および 10 ポイントのポリシーを定義すると、時系列アーカイブは最大 10 秒間保持し、それぞれが 1 秒間の集約を表します。つまり、時系列は最大で、より新しいポイントと古いポイント間の 10 秒間のデータを保持します。アーカイブポリシーは、使用する集約メソッドも定義します。デフォルトは、パラメーター default_aggregation_methods に設定されます。ここで、デフォルト値は meanmin、max に設定されますsum, std, count.したがって、ユースケースによってアーカイブポリシーおよび粒度は異なる場合があります。

アーカイブポリシーをプランニングするには、以下の概念に精通している必要があります。

アーカイブポリシーを作成および管理するには、以下のタスクを実行します。

  1. アーカイブポリシーを作成する。詳細は、「アーカイブポリシーの作成」を参照してください。
  2. アーカイブポリシーを管理する。詳細は、「アーカイブポリシーの管理」を参照してください。
  3. アーカイブポリシールールを作成する。詳細は、「アーカイブポリシールールの作成」を参照してください。

2.4.1. メトリック

Gnocchi は、メトリック と呼ばれるオブジェクトタイプを提供します。メトリックとは、サーバーの CPU 使用状況、部屋の温度、ネットワークインターフェースによって送信されるバイト数など、計測することのできる任意の項目を指します。メトリックには以下の属性が含まれます。

  • 識別用の UUID
  • 名前
  • 計測値を保管および集約するのに使用されるアーカイブポリシー

関連資料

2.4.1.1. メトリックの作成

手順

  1. リソースを作成します。<resource_name> をリソースの名前に置き換えます。

    $ openstack metric resource create <resource_name>
  2. メトリックを作成します。<resource_name> をリソースの名前に、<metric_name> をメトリックの名前に、それぞれ置き換えます。

    $ openstack metric metric create -r <resource_name> <metric_name>

    メトリックを作成する場合、アーカイブポリシーの属性は固定され、変更することはできません。archive_policy エンドポイントを使用して、アーカイブポリシーの定義を変更できます。

2.4.2. カスタム計測値の作成

計測値とは、API が Gnocchi に送信する受信データポイントタプルを指します。計測値はタイムスタンプおよび値で構成されます。独自のカスタム計測値を作成することができます。

手順

  • カスタム計測値を作成します。

    $ openstack metric measures add -m <MEASURE1> -m <MEASURE2> .. -r <RESOURCE_NAME> <METRIC_NAME>

2.4.3. デフォルトのアーカイブポリシー

デフォルトでは、Gnocchi には以下のアーカイブポリシーがあります。

  • low

    • 5 分間の粒度で 30 日間のタイムスパン
    • 使用される集約メソッド: default_aggregation_methods
    • メトリック 1 つあたりの最大推定サイズ: 406 KiB
  • medium

    • 1 分間の粒度で 7 日間のタイムスパン
    • 1 時間の粒度で 365 日間のタイムスパン
    • 使用される集約メソッド: default_aggregation_methods
    • メトリック 1 つあたりの最大推定サイズ: 887 KiB
  • high

    • 1 秒間の粒度で 1 時間のタイムスパン
    • 1 分間の粒度で 1 週間のタイムスパン
    • 1 時間の粒度で 1 年間のタイムスパン
    • 使用される集約メソッド: default_aggregation_methods
    • メトリック 1 つあたりの最大推定サイズ: 1 057 KiB
  • ブール

    • 1 秒間の粒度で 1 年間のタイムスパン
    • 使用される集約メソッド: last
    • メトリック 1 つあたりの最大サイズ (楽観的): 1 539 KiB
    • メトリック 1 つあたりの最大サイズ (ワーストケース): 277 172 KiB

2.4.4. 時系列集約値のサイズの計算

Gnocchi は、データポイントのコレクションを保管します。この場合、それぞれのポイントが集約値です。ストレージの形式は、異なる技術を使用して圧縮されます。したがって、時系列のサイズの計算は、以下の例に示すようにワーストケースのシナリオに基づいて見積もられます。

手順

  1. 以下の式を使用して、ポイント数を計算します。

    ポイント数 = タイムスパン / 粒度

    たとえば、1 分間の解像度で 1 年分のデータを保持する場合の計算は、以下のようになります。

    ポイント数 = (365 日 X 24 時間 X 60 分) / 1 分

    ポイント数 = 525600

  2. ポイントサイズをバイト単位で計算するには、以下の式を使用します。

    サイズ (バイト単位) = ポイント数 X 8 バイト

    サイズ (バイト単位) = 525600 ポイント X 8 バイト = 4204800 バイト = 4.1 MB

    この値は、単一の集約時系列の推定ストレージ要件です。アーカイブポリシーで複数の集約メソッド (min、max、mean、sum、std、および count) が使用される場合は、使用する集約メソッドの数をこの値に掛けます。

2.4.5. metricd ワーカー

metricd デーモンを使用して、計測値の処理、集約値の作成、集約値ストレージへの計測値の保管、およびメトリックの削除を行うことができます。metricd デーモンは、Gnocchi のほとんどの CPU 使用および I/O ジョブを管理します。各メトリックのアーカイブポリシーは、metricd デーモンが実行する速度を決定します。metricd は、受信ストレージに新しい計測値がないか定期的に確認します。各確認の間に遅延を設定するには、[metricd]metric_processing_delay 設定 オプションを使用します。

2.4.6. アーカイブポリシーの作成

手順

  • アーカイブポリシーを作成します。<archive-policy-name> をポリシーの名前に、<aggregation-method> を集約メソッドに、それぞれ置き換えます。

    # openstack metric archive policy create <archive-policy-name> --definition <definition> \
    --aggregation-method <aggregation-method>
    注記

    <definition> はポリシー定義です。コンマ (,) を使用して、複数の属性を区切ります。コロン (:) を使用して、アーカイブポリシー定義の名前と値を区切ります。

2.4.7. アーカイブポリシーの管理

  • アーカイブポリシーを削除するには、以下のコマンドを実行します。

    openstack metric archive policy delete <archive-policy-name>
  • すべてのアーカイブポリシーを表示するには、以下のコマンドを実行します。

    # openstack metric archive policy list
  • アーカイブポリシーの詳細を表示するには、以下のコマンドを実行します。

    # openstack metric archive-policy show <archive-policy-name>

2.4.8. アーカイブポリシールールの作成

アーカイブポリシールールにより、メトリックとアーカイブポリシー間のマッピングを定義します。これにより、ユーザーはルールを事前に定義し、一致するパターンに基づいてアーカイブポリシーをメトリックに割り当てることができます。

手順

  • アーカイブポリシールールを作成します。<rule-name> をルールの名前に、<archive-policy-name> をアーカイブポリシーの名前に、それぞれ置き換えます。

    # openstack metric archive-policy-rule create <rule-name> /
    --archive-policy-name  <archive-policy-name>

2.5. Red Hat OpenStack Platform デプロイメントの検証

openstack metric コマンドを使用して、デプロイメントが正常に行われたことを確認できます。

手順

  • デプロイメントを確認します。

    (overcloud) [stack@undercloud-0 ~]$ openstack metric status
    +-----------------------------------------------------+-------+
    | Field                                           	| Value |
    +-----------------------------------------------------+-------+
    | storage/number of metric having measures to process | 0 	|
    | storage/total number of measures to process     	| 0 	|
    +-----------------------------------------------------+-------+

第3章 アラームの管理

Telemetry Alarming サービス (aodh) を使用して、アクションをトリガーすることができます。アクションのトリガーは、Ceilometer または Gnocchi の収集するメトリックデータまたはイベントデータに対して定義されたルールに基づきます。

アラームは以下の状態のいずれかになります。

ok
メトリクスまたはイベントは受け入れ可能な状態になります。
firing
メトリクスまたはイベントは、定義された ok 状態外です。
insufficient data
アラームの状態は不明です。これにはいくつかの理由があります。たとえば、要求される粒度のデータがなく、チェックはまだ実行されていないため、それなどがこれに該当します。

3.1. 既存のアラームの表示

既存の Telemetry アラーム情報を表示し、リソースに割り当てられたメーターを表示して、メトリックの現在の状態を確認することができます。

手順

  1. 既存の Telemetry アラームを一覧表示します。

    # openstack alarm list
    +--------------------------------------+--------------------------------------------+----------------------------+-------------------+----------+---------+
    | alarm_id                             | type                                       | name                       | state             | severity | enabled |
    +--------------------------------------+--------------------------------------------+----------------------------+-------------------+----------+---------+
    | 922f899c-27c8-4c7d-a2cf-107be51ca90a | gnocchi_aggregation_by_resources_threshold | iops-monitor-read-requests | insufficient data | low      | True    |
    +--------------------------------------+--------------------------------------------+----------------------------+-------------------+----------+---------+
  2. リソースに割り当てられたメーターを一覧表示するには、リソースの UUID を指定します。以下に例を示します。

    # openstack metric resource show 22592ae1-922a-4f51-b935-20c938f48753
    
    | Field                 | Value                                                             |
    +-----------------------+-------------------------------------------------------------------+
    | created_by_project_id | 1adaed3aaa7f454c83307688c0825978                                  |
    | created_by_user_id    | d8429405a2764c3bb5184d29bd32c46a                                  |
    | creator               | d8429405a2764c3bb5184d29bd32c46a:1adaed3aaa7f454c83307688c0825978 |
    | ended_at              | None                                                              |
    | id                    | 22592ae1-922a-4f51-b935-20c938f48753                              |
    | metrics               | cpu: a0375b0e-f799-47ea-b4ba-f494cf562ad8                         |
    |                       | disk.ephemeral.size: cd082824-dfd6-49c3-afdf-6bfc8c12bd2a         |
    |                       | disk.root.size: cd88dc61-ba85-45eb-a7b9-4686a6a0787b              |
    |                       | memory.usage: 7a1e787c-5fa7-4ac3-a2c6-4c3821eaf80a                |
    |                       | memory: ebd38ef7-cdc1-49f1-87c1-0b627d7c189e                      |
    |                       | vcpus: cc9353f1-bb24-4d37-ab8f-d3e887ca8856                       |
    | original_resource_id  | 22592ae1-922a-4f51-b935-20c938f48753                              |
    | project_id            | cdda46e0b5be4782bc0480dac280832a                                  |
    | revision_end          | None                                                              |
    | revision_start        | 2021-09-16T17:00:41.227453+00:00                                  |
    | started_at            | 2021-09-16T16:17:08.444032+00:00                                  |
    | type                  | instance                                                          |
    | user_id               | f00de1d74408428cadf483ea7dbb2a83                                  |
    +-----------------------+-------------------------------------------------------------------+

3.2. アラームの作成

Telemetry Alarming サービス(aodh)を使用して、特定の条件が満たされる際にトリガーされるアラームを作成します(例: しきい値に到達する場合)。以下の例では、個々のインスタンスの平均 CPU 使用率が 80% を超えると、アラームがアクティブになりログエントリーが追加されます。

手順

  1. アーカイブポリシーはデプロイメントプロセス時に事前に設定されるため、新しいアーカイブポリシーを作成する必要はほとんどありません。ただし、設定したアーカイブポリシーがない場合は、アーカイブポリシーを作成する必要があります。5s * 86400 ポイント(5 日)のメトリックを作成するアーカイブポリシーを作成するには、以下のコマンドを使用します。

    # openstack archive-policy create <name> \
           -d granularity:5s,points:86400 \
           -b 3 -m mean -m rate:mean

    + <name> をアーカイブポリシーの名前に置き換えます。

    注記

    Telemetry Alarming サービスの評価期間の値を 60 より大きい整数に設定するようにしてください。Ceilometer のポーリング間隔は、評価期間にリンクされます。Ceilometer のポーリング間隔の値を 60 から 600 までの数字に設定し、値が Telemetry Alarming サービスの評価期間の値よりも大きくされていることを確認します。Ceilometer のポーリング間隔が低すぎる場合には、システム負荷が大幅に影響を受ける可能性があります。

  2. アラームを作成し、クエリーを使用してモニタリングするインスタンスの特定の ID を分離します。以下の例のインスタンスの ID は 94619081-abf5-4f1f-81c7-9cedaa872403 です。

    注記

    しきい値を計算するには、数式 1,000,000,000 x {granularity} x {percentage_in_decimal} を使用します。

    # openstack alarm create \
    --type gnocchi_aggregation_by_resources_threshold \
    --name cpu_usage_high \
    --granularity 5
    --metric cpu \
    --threshold 48000000000 \
    --aggregation-method rate:mean \
    --resource-type instance \
    --query '{"=": {"id": "94619081-abf5-4f1f-81c7-9cedaa872403"}}' --alarm-action 'log://'
    +---------------------------+-------------------------------------------------------+
    | Field                     | Value                                                 |
    +---------------------------+-------------------------------------------------------+
    | aggregation_method        | rate:mean                                                   |
    | alarm_actions             | [u'log://']                                           |
    | alarm_id                  | b794adc7-ed4f-4edb-ace4-88cbe4674a94                  |
    | comparison_operator       | eq                                                    |
    | description               | gnocchi_aggregation_by_resources_threshold alarm rule |
    | enabled                   | True                                                  |
    | evaluation_periods        | 1                                                     |
    | granularity               | 5                                                    |
    | insufficient_data_actions | []                                                    |
    | metric                    | cpu                                              |
    | name                      | cpu_usage_high                                        |
    | ok_actions                | []                                                    |
    | project_id                | 13c52c41e0e543d9841a3e761f981c20                      |
    | query                     | {"=": {"id": "94619081-abf5-4f1f-81c7-9cedaa872403"}} |
    | repeat_actions            | False                                                 |
    | resource_type             | instance                                              |
    | severity                  | low                                                   |
    | state                     | insufficient data                                     |
    | state_timestamp           | 2016-12-09T05:18:53.326000                            |
    | threshold                 | 48000000000.0                                                  |
    | time_constraints          | []                                                    |
    | timestamp                 | 2016-12-09T05:18:53.326000                            |
    | type                      | gnocchi_aggregation_by_resources_threshold            |
    | user_id                   | 32d3f2c9a234423cb52fb69d3741dbbc                      |
    +---------------------------+-------------------------------------------------------+

3.3. アラームの編集

アラームを編集すると、アラームの値のしきい値を増減します。

手順

  • しきい値を更新するには、openstack alarm update コマンドを使用します。たとえば、アラームのしきい値を 75% に増やすには、以下のコマンドを使用します。

    # openstack alarm update --name cpu_usage_high --threshold 75

3.4. アラームの無効化

アラームを無効にして有効化することができます。

手順

  • アラームを無効にします。

    # openstack alarm update --name cpu_usage_high --enabled=false

3.5. アラームの削除

openstack alarm delete コマンドを使用してアラームを削除します。

手順

  • アラームを削除するには、以下のコマンドを入力します。

    # openstack alarm delete --name cpu_usage_high

3.6. 例: インスタンスのディスク動作の監視

この例では、Telemetry Alarming サービスの一部であるアラームを使用して、特定のプロジェクトに含まれるすべてのインスタンスの累積ディスクアクティビティーを監視する方法を説明します。

手順

  1. 既存のプロジェクトを確認し、監視するプロジェクトの適切な UUID を選択します。以下の例では、admin テナントを使用します。

    $ openstack project list
    +----------------------------------+----------+
    | ID                               | Name     |
    +----------------------------------+----------+
    | 745d33000ac74d30a77539f8920555e7 | admin    |
    | 983739bb834a42ddb48124a38def8538 | services |
    | be9e767afd4c4b7ead1417c6dfedde2b | demo     |
    +----------------------------------+----------+
  2. プロジェクトの UUID を使用して、admin テナント内のインスタンスが生成するすべての読み取りリクエストの sum() を解析するアラームを作成します。--query パラメーターを使用して、クエリーをさらに絞り込むことができます。

    # openstack alarm create \
    --type gnocchi_aggregation_by_resources_threshold \
    --name iops-monitor-read-requests \
    --metric disk.read.requests.rate \
    --threshold 42000 \
    --aggregation-method sum \
    --resource-type instance \
    --query '{"=": {"project_id": "745d33000ac74d30a77539f8920555e7"}}'
    +---------------------------+-----------------------------------------------------------+
    
    | Field                     | Value                                                     |
    +---------------------------+-----------------------------------------------------------+
    | aggregation_method        | sum                                                       |
    | alarm_actions             | []                                                        |
    | alarm_id                  | 192aba27-d823-4ede-a404-7f6b3cc12469                      |
    | comparison_operator       | eq                                                        |
    | description               | gnocchi_aggregation_by_resources_threshold alarm rule     |
    | enabled                   | True                                                      |
    | evaluation_periods        | 1                                                         |
    | granularity               | 60                                                        |
    | insufficient_data_actions | []                                                        |
    | metric                    | disk.read.requests.rate                                   |
    | name                      | iops-monitor-read-requests                                |
    | ok_actions                | []                                                        |
    | project_id                | 745d33000ac74d30a77539f8920555e7                          |
    | query                     | {"=": {"project_id": "745d33000ac74d30a77539f8920555e7"}} |
    | repeat_actions            | False                                                     |
    | resource_type             | instance                                                  |
    | severity                  | low                                                       |
    | state                     | insufficient data                                         |
    | state_timestamp           | 2016-11-08T23:41:22.919000                                |
    | threshold                 | 42000.0                                                   |
    | time_constraints          | []                                                        |
    | timestamp                 | 2016-11-08T23:41:22.919000                                |
    | type                      | gnocchi_aggregation_by_resources_threshold                |
    | user_id                   | 8c4aea738d774967b4ef388eb41fef5e                          |
    +---------------------------+-----------------------------------------------------------+

3.7. 例: CPU 使用率の監視

インスタンスのパフォーマンスを監視するには、Gnocchi データベースを調べ、メモリーや CPU の使用状況などの監視可能なメトリックを特定します。

手順

  1. 監視可能なメトリクスを特定するには、インスタンスの UUID を指定して openstack metric resource show コマンドを入力します。

    $ openstack metric resource show --type instance 22592ae1-922a-4f51-b935-20c938f48753
    
    +-----------------------+-------------------------------------------------------------------+
    | Field                 | Value                                                             |
    +-----------------------+-------------------------------------------------------------------+
    | availability_zone     | nova                                                              |
    | created_at            | 2021-09-16T16:16:24+00:00                                         |
    | created_by_project_id | 1adaed3aaa7f454c83307688c0825978                                  |
    | created_by_user_id    | d8429405a2764c3bb5184d29bd32c46a                                  |
    | creator               | d8429405a2764c3bb5184d29bd32c46a:1adaed3aaa7f454c83307688c0825978 |
    | deleted_at            | None                                                              |
    | display_name          | foo-2                                                             |
    | ended_at              | None                                                              |
    | flavor_id             | 0e5bae38-a949-4509-9868-82b353ef7ffb                              |
    | flavor_name           | workload_flavor_0                                                 |
    | host                  | compute-0.redhat.local                                            |
    | id                    | 22592ae1-922a-4f51-b935-20c938f48753                              |
    | image_ref             | 3cde20b4-7620-49f3-8622-eeacbdc43d49                              |
    | launched_at           | 2021-09-16T16:17:03+00:00                                         |
    | metrics               | cpu: a0375b0e-f799-47ea-b4ba-f494cf562ad8                         |
    |                       | disk.ephemeral.size: cd082824-dfd6-49c3-afdf-6bfc8c12bd2a         |
    |                       | disk.root.size: cd88dc61-ba85-45eb-a7b9-4686a6a0787b              |
    |                       | memory.usage: 7a1e787c-5fa7-4ac3-a2c6-4c3821eaf80a                |
    |                       | memory: ebd38ef7-cdc1-49f1-87c1-0b627d7c189e                      |
    |                       | vcpus: cc9353f1-bb24-4d37-ab8f-d3e887ca8856                       |
    | original_resource_id  | 22592ae1-922a-4f51-b935-20c938f48753                              |
    | project_id            | cdda46e0b5be4782bc0480dac280832a                                  |
    | revision_end          | None                                                              |
    | revision_start        | 2021-09-16T17:00:41.227453+00:00                                  |
    | server_group          | None                                                              |
    | started_at            | 2021-09-16T16:17:08.444032+00:00                                  |
    | type                  | instance                                                          |
    | user_id               | f00de1d74408428cadf483ea7dbb2a83                                  |
    +-----------------------+-------------------------------------------------------------------+

    この出力結果の metrics の値に、Alarming サービスを使用して監視可能なコンポーネントが一覧表示されます (例: cpu)。

  2. CPU の使用状況を監視するには、cpu メトリックを使用します。

    $ openstack metric show --resource-id 22592ae1-922a-4f51-b935-20c938f48753 cpu
    +--------------------------------+-------------------------------------------------------------------+
    | Field                          | Value                                                             |
    +--------------------------------+-------------------------------------------------------------------+
    | archive_policy/name            | ceilometer-high-rate                                              |
    | creator                        | d8429405a2764c3bb5184d29bd32c46a:1adaed3aaa7f454c83307688c0825978 |
    | id                             | a0375b0e-f799-47ea-b4ba-f494cf562ad8                              |
    | name                           | cpu                                                               |
    | resource/created_by_project_id | 1adaed3aaa7f454c83307688c0825978                                  |
    | resource/created_by_user_id    | d8429405a2764c3bb5184d29bd32c46a                                  |
    | resource/creator               | d8429405a2764c3bb5184d29bd32c46a:1adaed3aaa7f454c83307688c0825978 |
    | resource/ended_at              | None                                                              |
    | resource/id                    | 22592ae1-922a-4f51-b935-20c938f48753                              |
    | resource/original_resource_id  | 22592ae1-922a-4f51-b935-20c938f48753                              |
    | resource/project_id            | cdda46e0b5be4782bc0480dac280832a                                  |
    | resource/revision_end          | None                                                              |
    | resource/revision_start        | 2021-09-16T17:00:41.227453+00:00                                  |
    | resource/started_at            | 2021-09-16T16:17:08.444032+00:00                                  |
    | resource/type                  | instance                                                          |
    | resource/user_id               | f00de1d74408428cadf483ea7dbb2a83                                  |
    | unit                           | ns                                                                |
    +--------------------------------+-------------------------------------------------------------------+

    archive_policy は、std、count、min、max、sum、average の値を計算する際の集約間隔を定義します。

  3. 現在選択されている cpu メトリックのアーカイブポリシーを検査します。

    $ openstack metric archive-policy show ceilometer-high-rate
    
    +---------------------+-------------------------------------------------------------------+
    | Field               | Value                                                             |
    +---------------------+-------------------------------------------------------------------+
    | aggregation_methods | rate:mean, mean                                                   |
    | back_window         | 0                                                                 |
    | definition          | - timespan: 1:00:00, granularity: 0:00:01, points: 3600           |
    |                     | - timespan: 1 day, 0:00:00, granularity: 0:01:00, points: 1440    |
    |                     | - timespan: 365 days, 0:00:00, granularity: 1:00:00, points: 8760 |
    | name                | ceilometer-high-rate                                              |
    +---------------------+-------------------------------------------------------------------+
  4. アラームサービスを使用して、cpu にクエリーを行うモニタリングタスクを作成します。このタスクは、指定した設定に基づいてイベントをトリガーします。たとえば、インスタンスの CPU 使用率が上昇し一定期間 80% を超える場合にログエントリーを生成するには、以下のコマンドを使用します。

    $ openstack alarm create \
      --project-id 3cee262b907b4040b26b678d7180566b \
      --name high-cpu \
      --type gnocchi_resources_threshold \
      --description 'High CPU usage' \
      --metric cpu \
      --threshold 800,000,000.0 \
      --comparison-operator ge \
      --aggregation-method mean \
      --granularity 300 \
      --evaluation-periods 1 \
      --alarm-action 'log://' \
      --ok-action 'log://' \
      --resource-type instance \
      --resource-id 22592ae1-922a-4f51-b935-20c938f48753
    
      +---------------------------+--------------------------------------+
      | Field                     | Value                                |
      +---------------------------+--------------------------------------+
      | aggregation_method        | rate:mean                            |
      | alarm_actions             | ['log:']                             |
      | alarm_id                  | c7b326bd-a68c-4247-9d2b-56d9fb18bf38 |
      | comparison_operator       | ge                                   |
      | description               | High CPU usage                       |
      | enabled                   | True                                 |
      | evaluation_periods        | 1                                    |
      | granularity               | 300                                  |
      | insufficient_data_actions | []                                   |
      | metric                    | cpu                                  |
      | name                      | high-cpu                             |
      | ok_actions                | ['log:']                             |
      | project_id                | cdda46e0b5be4782bc0480dac280832a     |
      | repeat_actions            | False                                |
      | resource_id               | 22592ae1-922a-4f51-b935-20c938f48753 |
      | resource_type             | instance                             |
      | severity                  | low                                  |
      | state                     | insufficient data                    |
      | state_reason              | Not evaluated yet                    |
      | state_timestamp           | 2021-09-21T08:02:57.090592           |
      | threshold                 | 800000000.0                          |
      | time_constraints          | []                                   |
      | timestamp                 | 2021-09-21T08:02:57.090592           |
      | type                      | gnocchi_resources_threshold          |
      | user_id                   | f00de1d74408428cadf483ea7dbb2a83     |
      +---------------------------+--------------------------------------+
    • comparison-operator: ge 演算子は、CPU 使用率が 80% またはそれを超えた場合にアラームがトリガーされることを定義します。
    • granularity: メトリックにはアーカイブポリシーが関連付けられます。ポリシーには、さまざまな粒度を設定することができます。たとえば、5 分間の粒度で 1 時間、および 1 時間の粒度で 1 カ月粒度の値は、アーカイブポリシーで指定された期間と一致する必要があります。
    • evaluation-periods: アラームがトリガーされる前に満たさなければならない粒度期間の数。たとえば、この値を 2 に設定すると、アラームがトリガーされる前に、2 つのポーリング期間において CPU の使用率が 80% を超える必要があります。
    • [u’log://']: alarm_actions または ok_actions[u’log://'] に設定した場合、イベント (アラームのトリガーまたは通常状態への復帰) が aodh のログファイルに記録されます。

      注記

      アラームがトリガーされた時 (alarm_actions) や通常の状態に復帰した時 (ok_actions) に実行するアクションを、自由に定義することができます (例: Webhook URL)。

3.8. アラーム履歴の表示

特定のアラームがトリガーされているかどうかを確認するには、アラーム履歴にクエリーを行い、イベント情報を表示します。

手順

  • openstack alarm-history show コマンドを使用します。

    $ openstack alarm-history show 1625015c-49b8-4e3f-9427-3c312a8615dd --fit-width
    +----------------------------+------------------+---------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------+
    | timestamp                  | type             | detail                                                                                                                                            | event_id                             |
    +----------------------------+------------------+---------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------+
    | 2017-11-16T05:21:47.850094 | state transition | {"transition_reason": "Transition to ok due to 1 samples inside threshold, most recent: 0.0366665763", "state": "ok"}                             | 3b51f09d-ded1-4807-b6bb-65fdc87669e4 |
    +----------------------------+------------------+---------------------------------------------------------------------------------------------------------------------------------------------------+--------------------------------------+

第4章 ログサービスのインストールおよび設定

Red Hat OpenStack Platform (RHOSP) は、情報メッセージを特定のログファイルに書き込みます。これらのメッセージを、トラブルシューティングおよびシステムイベントのモニタリングに使用することができます。ログ収集エージェント Rsyslog はクライアント側のログを収集し、それらのログをサーバー側で実行されている Rsyslog インスタンスに送信します。サーバー側の Rsyslog インスタンスは、保管のためにログの記録を Elasticsearch にリダイレクトします。

注記

個々のログファイルをサポートケースに手動で添付する必要はありません。sosreport ユーティリティーは、必要なログを自動的に収集します。

4.1. 集中ログシステムのアーキテクチャーおよびコンポーネント

モニタリングツールは、クライアントが Red Hat OpenStack Platform (RHOSP) オーバークラウドノードにデプロイされる、クライアント/サーバーモデルを使用します。Rsyslog サービスは、クライアント側の集中ロギング (CL) を提供します。

すべての RHOSP サービスはログファイルを生成および更新します。これらのログファイルは、アクション、エラー、アラート、およびその他のイベントを記録します。OpenStack のような分散環境では、これらのログを一元的な場所に収集することで、デバッグおよび管理が簡素化されます。

集中ロギングの場合、RHOSP 環境全体にわたるログを 1 カ所で確認することができます。これらのログは、syslog や監査ログファイル等のオペレーティングシステム、RabbitMQ や MariaDB 等のインフラストラクチャーコンポーネント、および Identity や Compute 等の OpenStack サービスから収集されます。集中ロギングのツールチェーンは、以下のコンポーネントで構成されます。

  • ログ収集エージェント (Rsyslog)
  • データストア (ElasticSearch)
  • API/プレゼンテーション層 (Grafana)
注記

Red Hat OpenStack Platform director は、集中ロギング向けのサーバー側のコンポーネントをデプロイしません。Red Hat は、Elasticsearch データベースおよび Grafana を含むサーバー側のコンポーネントはサポートしません。

4.2. Elasticsearch を使用した集中ロギングの有効化

集中ロギングを有効にするには、OS::TripleO::Services::Rsyslog コンポーザブルサービスの実装を指定する必要があります。

注記

Rsyslog サービスは、集中ロギングのデータストアとして Elasticsearch だけを使用します。

前提条件

  • Elasticsearch がサーバー側にインストールされている。

手順

  • 以下の例に示すように、ご自分の環境およびデプロイに該当するその他の環境ファイルと共に、ロギング環境ファイルのファイルパスを overcloud deployment コマンドに追加します。

    openstack overcloud deploy \
    <existing_overcloud_environment_files> \
    -e /usr/share/openstack-tripleo-heat-templates/environments/logging-environment-rsyslog.yaml

    <existing_overcloud_environment_files> を既存のデプロイメントに含まれる環境ファイルの一覧に置き換えます。

4.3. ロギング機能の設定

ロギング機能を設定するには、logging-environment-rsyslog.yaml ファイルの RsyslogElasticsearchSetting パラメーターを変更します。

手順

  1. tripleo-heat-templates/environments/logging-environment-rsyslog.yaml ファイルをホームディレクトリーにコピーします。
  2. 実際の環境に合わせて RsyslogElasticsearchSetting パラメーターのエントリーを作成します。RsyslogElasticsearchSetting パラメーターの設定例を以下のスニペットに示します。

    parameter_defaults:
        RsyslogElasticsearchSetting:
            uid: "elastic"
            pwd: "yourownpassword"
            skipverifyhost: "on"
            allowunsignedcerts: "on"
            server: "https://log-store-service-telemetry.apps.stfcloudops1.lab.upshift.rdu2.redhat.com"
            serverport: 443

関連資料

4.3.1. 設定可能なロギングパラメーター

以下の表で、Red Hat OpenStack Platform (RHOSP) のロギング機能の設定に使用するロギングパラメーターについて説明します。これらのパラメーターは tripleo-heat-templates/deployment/logging/rsyslog-container-puppet.yaml ファイルにあります。

表4.1 設定可能なロギングパラメーター

パラメーター説明

RsyslogElasticsearchSetting

rsyslog-elasticsearchプラグインの構成。詳細は、「RSyslog Documentation」を参照してください。

RsyslogElasticsearchTlsCACert

Elasticsearch サーバーの証明書を発行した CA の CA 証明書の内容が含まれます。

RsyslogElasticsearchTlsClientCert

Elasticsearch に対してクライアント証明書の認可を行うためのクライアント証明書の内容が含まれます。

RsyslogElasticsearchTlsClientKey

証明書 RsyslogElasticsearchTlsClientCert に対応する秘密鍵の内容が含まれます。

4.4. デフォルトのログファイルパスのオーバーライド

デフォルトのコンテナーを変更し、変更箇所にサービスログファイルへのパスが含まれる場合は、デフォルトのログファイルパスも変更する必要があります。すべてのコンポーザブルサービスには <service_name>LoggingSource パラメーターがあります。たとえば、nova-compute サービスの場合、このパラメーターは NovaComputeLoggingSource です。

手順

  • nova-compute サービスのデフォルトパスをオーバーライドするには、設定ファイルの NovaComputeLoggingSource パラメーターにパスを追加します。

     NovaComputeLoggingSource:
          tag: openstack.nova.compute
          file: /some/other/path/nova-compute.log
    注記

    サービスごとに、tag および file を定義します。他の値にはデフォルト値が反映されます。

    1. 特定のサービスの形式を変更することができます。これは Rsyslog 設定に直接渡します。LoggingDefaultFormat パラメーターのデフォルト形式は、/(?<time>\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}.\d+) (?<pid>\d+) (?<priority>\S+) (?<message>.*)$/ です。以下の構文を使用します。

      <service_name>LoggingSource:
          tag: <service_name>.tag
          path: <service_name>.path
          format: <service_name>.format

      より複雑な変換の例を以下のスニペットに示します。

       ServiceLoggingSource:
          tag: openstack.Service
          path: /var/log/containers/service/service.log
          format: multiline
          format_firstline: '/^\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2}.\d{3} \d+ \S+ \S+ \[(req-\S+ \S+ \S+ \S+ \S+ \S+|-)\]/'
          format1: '/^(?<Timestamp>\S+ \S+) (?<Pid>\d+) (?<log_level>\S+) (?<python_module>\S+) (\[(req-(?<request_id>\S+) (?<user_id>\S+) (?<tenant_id>\S+) (?<domain_id>\S+) (?<user_domain>\S+) (?<project_domain>\S+)|-)\])? (?<Payload>.*)?$/'

4.5. ログレコードの形式の変更

特定のサービスについて、ログレコードの開始の形式を変更することができます。これは Rsyslog 設定に直接渡します。

Red Hat OpenStack Platform (RHOSP) のログレコードのデフォルト形式は ('^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}(.[0-9]+ [0-9]+)?(DEBUG|INFO|WARNING|ERROR) ') です。

手順

  • ログレコード開始の解析に異なる正規表現を追加するには、設定に startmsg.regex を追加します。

    NovaComputeLoggingSource:
           tag: openstack.nova.compute
           file: /some/other/path/nova-compute.log
           startmsg.regex: "^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}(.[0-9]+ \\+[0-9]+)? [A-Z]+ \\([a-z]+\\)

4.6. Rsyslog と Elasticsearch 間の接続のテスト

クライアント側で、Rsyslog と Elasticsearch 間の通信を確認することができます。

手順

  • Elasticsearch 接続ログファイル(Rsyslog コンテナーの /var/log/rsyslog/omelasticsearch.log)またはホスト上の /var/log/containers/rsyslog/omelasticsearch.log に移動します。このログファイルが存在しない場合や、ログファイルは存在するがログが含まれていない場合、接続の問題はありません。ログファイルが存在しログが含まれている場合は、Rsyslog は正常に接続されていません。
注記

サーバー側から接続をテストするには、Elasticsearch ログを表示して接続に問題を確認します。

4.7. サーバー側のロギング

Elasticsearch クラスターが動作中の場合、logging-environment-rsyslog.yaml ファイルの RsyslogElasticsearchSetting パラメーターを設定して、オーバークラウドノードで実行している Rsyslog を接続する必要があります。RsyslogElasticsearchSetting パラメーターを設定するには、https://www.rsyslog.com/doc/v8-stable/configuration/modules/omelasticsearch.html を参照してください。

4.8. トレースバック

問題が発生してトラブルシューティングを開始する場合、トレースバックログを使用して問題の診断を行うことができます。ログファイル中、通常トレースバックとしてすべて同じ問題に関連する複数の情報行が表示されます。

Rsyslog は、ログレコードの開始を定義する正規表現を提供します。通常、各ログレコードはタイムスタンプで始まります。トレースバックの最初の行は、この情報だけが含まれる行です。Rsyslog は最初の行と共に該当するレコードをバンドルし、1 つのログレコードとして送信します。

この動作設定オプションには、<Service>LoggingSource の startmsg.regex が使用されます。以下の正規表現が、director のすべての <service>LoggingSource パラメーターのデフォルト値です。

startmsg.regex='^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{2}:[0-9]{2}:[0-9]{2}(.[0-9]+ [0-9]+)? (DEBUG|INFO|WARNING|ERROR) '

このデフォルトが追加または変更した LoggingSource のログレコードと一致しない場合は、それに応じて startmsg.regex を変更する必要があります。

4.9. OpenStack サービスのログファイルの場所

それぞれの OpenStack コンポーネントには、実行中のサービス固有のファイルが含まれる個別のログディレクトリーがあります。

4.9.1. Bare Metal Provisioning (ironic) のログファイル

サービスサービス名ログのパス

OpenStack Ironic API

openstack-ironic-api.service

/var/log/containers/ironic/ironic-api.log

OpenStack Ironic Conductor

openstack-ironic-conductor.service

/var/log/containers/ironic/ironic-conductor.log

4.9.2. Block Storage (cinder) のログファイル

サービスサービス名ログのパス

Block Storage API

openstack-cinder-api.service

/var/log/containers/cinder-api.log

Block Storage Backup

openstack-cinder-backup.service

/var/log/containers/cinder/backup.log

情報メッセージ

cinder-manage コマンド

/var/log/containers/cinder/cinder-manage.log

Block Storage Scheduler

openstack-cinder-scheduler.service

/var/log/containers/cinder/scheduler.log

Block Storage Volume

openstack-cinder-volume.service

/var/log/containers/cinder/volume.log

4.9.3. Compute (nova) のログファイル

サービスサービス名ログのパス

OpenStack Compute API サービス

openstack-nova-api.service

/var/log/containers/nova/nova-api.log

OpenStack Compute 証明書サーバー

openstack-nova-cert.service

/var/log/containers/nova/nova-cert.log

OpenStack Compute サービス

openstack-nova-compute.service

/var/log/containers/nova/nova-compute.log

OpenStack Compute Conductor サービス

openstack-nova-conductor.service

/var/log/containers/nova/nova-conductor.log

OpenStack Compute VNC コンソール認証サーバー

openstack-nova-consoleauth.service

/var/log/containers/nova/nova-consoleauth.log

情報メッセージ

nova-manage コマンド

/var/log/containers/nova/nova-manage.log

OpenStack Compute NoVNC Proxy サービス

openstack-nova-novncproxy.service

/var/log/containers/nova/nova-novncproxy.log

OpenStack Compute Scheduler サービス

openstack-nova-scheduler.service

/var/log/containers/nova/nova-scheduler.log

4.9.4. Dashboard (horizon) のログファイル

サービスサービス名ログのパス

特定ユーザーの対話のログ

Dashboard インターフェース

/var/log/containers/horizon/horizon.log

Apache HTTP サーバーは、Dashboard Web インターフェース用にさまざまな追加ログファイルを使用します。このログファイルには、Web ブラウザーまたは keystone および nova 等のコマンドラインクライアントを使用してアクセスすることができます。以下の表のログファイルは、Dashboard の使用状況のトラッキングおよび障害の診断に役立ちます。

目的ログのパス

すべての処理された HTTP リクエスト

/var/log/containers/httpd/horizon_access.log

HTTP エラー

/var/log/containers/httpd/horizon_error.log

管理者ロールの API リクエスト

/var/log/containers/httpd/keystone_wsgi_admin_access.log

管理者ロールの API エラー

/var/log/containers/httpd/keystone_wsgi_admin_error.log

メンバーロールの API リクエスト

/var/log/containers/httpd/keystone_wsgi_main_access.log

メンバーロールの API エラー

/var/log/containers/httpd/keystone_wsgi_main_error.log

注記

同じホストで実行中の他の Web サービスが報告するエラーを保管するログファイル /var/log/containers/httpd/default_error.log もあります。

4.9.5. Identity サービス (keystone) のログファイル

サービスサービス名ログのパス

OpenStack Identity サービス

openstack-keystone.service

/var/log/containers/keystone/keystone.log

4.9.6. Image サービス (glance) のログファイル

サービスサービス名ログのパス

OpenStack Image サービス API サーバー

openstack-glance-api.service

/var/log/containers/glance/api.log

OpenStack Image サービスレジストリーサーバー

openstack-glance-registry.service

/var/log/containers/glance/registry.log

4.9.7. Networking (neutron) のログファイル

サービスサービス名ログのパス

OpenStack Neutron DHCP エージェント

neutron-dhcp-agent.service

/var/log/containers/neutron/dhcp-agent.log

OpenStack Networking レイヤー 3 エージェント

neutron-l3-agent.service

/var/log/containers/neutron/l3-agent.log

メタデータエージェントサービス

neutron-metadata-agent.service

/var/log/containers/neutron/metadata-agent.log

メタデータ名前空間プロキシー

該当せず

/var/log/containers/neutron/neutron-ns-metadata-proxy-UUID.log

Open vSwitch エージェント

neutron-openvswitch-agent.service

/var/log/containers/neutron/openvswitch-agent.log

OpenStack Networking サービス

neutron-server.service

/var/log/containers/neutron/server.log

4.9.8. Object Storage (swift) のログファイル

OpenStack Object Storage は、システムロギングファシリティーにのみログを送信します。

注記

デフォルトでは、すべての Object Storage ログファイルは、local0、local1、および local2 syslog ファシリティーを使用して /var/log/containers/swift/swift.log に保存されます。

Object Storage のログメッセージは、REST API サービスによるものとバックグラウンドデーモンによるものの 2 つのカテゴリーに大別されます。API サービスのメッセージには、一般的な HTTP サーバーと同様に、API リクエストごとに 1 つの行が含まれます。フロントエンド (プロキシー) とバックエンド (アカウント、コンテナー、オブジェクト) サービスの両方がこのメッセージの POST を行います。デーモンメッセージは構造化されておらず、通常、定期的なタスクを実行するデーモンに関する人間が判読できる情報が含まれます。ただし、メッセージを生成する Object Storage の部分に関係なく、ソースの ID は常に行の先頭に置かれます。

プロキシーメッセージの例を以下に示します。

Apr 20 15:20:34 rhev-a24c-01 proxy-server: 127.0.0.1 127.0.0.1 20/Apr/2015/19/20/34 GET /v1/AUTH_zaitcev%3Fformat%3Djson%26marker%3Dtestcont HTTP/1.0 200 - python-swiftclient-2.1.0 AUTH_tk737d6... - 2 - txc454fa8ea4844d909820a-0055355182 - 0.0162 - - 1429557634.806570053 1429557634.822791100

バックグラウンドデーモンからのアドホックメッセージの例を以下に示します。

Apr 27 17:08:15 rhev-a24c-02 object-auditor: Object audit (ZBF). Since Mon Apr 27 21:08:15 2015: Locally: 1 passed, 0 quarantined, 0 errors files/sec: 4.34 , bytes/sec: 0.00, Total time: 0.23, Auditing time: 0.00, Rate: 0.00
Apr 27 17:08:16 rhev-a24c-02 object-auditor: Object audit (ZBF) "forever" mode completed: 0.56s. Total quarantined: 0, Total errors: 0, Total files/sec: 14.31, Total bytes/sec: 0.00, Auditing time: 0.02, Rate: 0.04
Apr 27 17:08:16 rhev-a24c-02 account-replicator: Beginning replication run
Apr 27 17:08:16 rhev-a24c-02 account-replicator: Replication run OVER
Apr 27 17:08:16 rhev-a24c-02 account-replicator: Attempted to replicate 5 dbs in 0.12589 seconds (39.71876/s)
Apr 27 17:08:16 rhev-a24c-02 account-replicator: Removed 0 dbs
Apr 27 17:08:16 rhev-a24c-02 account-replicator: 10 successes, 0 failures

4.9.9. Orchestration (heat) のログファイル

サービスサービス名ログのパス

OpenStack Heat API サービス

openstack-heat-api.service

/var/log/containers/heat/heat-api.log

OpenStack Heat エンジンサービス

openstack-heat-engine.service

/var/log/containers/heat/heat-engine.log

Orchestration サービスイベント

該当せず

/var/log/containers/heat/heat-manage.log

4.9.10. Shared File Systems サービス (manila) のログファイル

サービスサービス名ログのパス

OpenStack Manila API サーバー

openstack-manila-api.service

/var/log/containers/manila/api.log

OpenStack Manila Scheduler

openstack-manila-scheduler.service

/var/log/containers/manila/scheduler.log

OpenStack Manila ファイル共有サービス

openstack-manila-share.service

/var/log/containers/manila/share.log

注記

Manila Python ライブラリーの一部の情報は、/var/log/containers/manila/manila-manage.log に記録することもできます。

4.9.11. Telemetry (ceilometer) のログファイル

サービスサービス名ログのパス

OpenStack ceilometer 通知エージェント

ceilometer_agent_notification

/var/log/containers/ceilometer/agent-notification.log

OpenStack ceilometer 中央エージェント

ceilometer_agent_central

/var/log/containers/ceilometer/central.log

OpenStack ceilometer コレクション

openstack-ceilometer-collector.service

/var/log/containers/ceilometer/collector.log

OpenStack ceilometer コンピュートエージェント

ceilometer_agent_compute

/var/log/containers/ceilometer/compute.log

4.9.12. サポートサービスのログファイル

以下のサービスは OpenStack のコアコンポーネントにより使用され、独自のログディレクトリーおよびファイルを持ちます。

サービスサービス名ログのパス

メッセージブローカー (RabbitMQ)

rabbitmq-server.service

/var/log/rabbitmq/rabbit@short_hostname.log
/var/log/rabbitmq/rabbit@short_hostname-sasl.log (簡易認証およびセキュリティーレイヤーに関するログメッセージ用)

データベースサーバー (MariaDB)

mariadb.service

/var/log/mariadb/mariadb.log

仮想ネットワークスイッチ (Open vSwitch)

openvswitch-nonetwork.service

/var/log/openvswitch/ovsdb-server.log
/var/log/openvswitch/ovs-vswitchd.log

4.9.13. aodh (アラームサービス) のログファイル

サービスコンテナー名ログのパス

アラーム用 API

aodh_api

/var/log/containers/httpd/aodh-api/aodh_wsgi_access.log

アラームエバリュエーターログ

aodh_evaluator

/var/log/containers/aodh/aodh-evaluator.log

アラームリスナー

aodh_listener

/var/log/containers/aodh/aodh-listener.log

アラーム通知

aodh_notifier

/var/log/containers/aodh/aodh-notifier.log

4.9.14. gnocchi (メトリックストレージ) のログファイル

サービスコンテナー名ログのパス

gnocchi API

gnocchi_api

/var/log/containers/httpd/gnocchi-api/gnocchi_wsgi_access.log

gnocchi metricd

gnocchi_metricd

/var/log/containers/gnocchi/gnocchi-metricd.log

gnocchi statsd

gnocchi_statsd  

/var/log/containers/gnocchi/gnocchi-statsd.log

第5章 collectd プラグイン

重要

現在、Red Hat では本リリース向けのプラグイン情報を更新しています。

Red Hat OpenStack Platform(RHOSP)16.2 環境に応じて、複数の collectd プラグインを設定することができます。

以下のプラグイン一覧は、デフォルトを上書きするように設定できる利用可能な heat テンプレートの ExtraConfig パラメーターを示しています。各セクションでは、ExtraConfig オプションの一般的な設定 名を指定します。たとえば、example _plugin という collectd プラグインがある場合、プラグインタイトルの形式は collectd::plugin::example_plugin になります

以下の例のように、特定のプラグインで利用可能なパラメーターの表を参照してください。

ExtraConfig:
  collectd::plugin::example_plugin::<parameter>: <value>

Prometheus または Grafana クエリーの特定プラグインのメトリクステーブルを参照します。

collectd::plugin::aggregation

複数の値を aggregation プラグインで集約できます。メトリクスを算出するには、sumaverageminmax などの集約関数を使用します (例: 平均および合計の CPU 統計)。

  • collectd::plugin::aggregation::aggregators
  • collectd::plugin::aggregation::interval

collectd::plugin::ampq

collectd::plugin::amqp1

amqp1 プラグインを使用して、AMQ Interconnect などの amqp1 メッセージバスに値を書き込みます。

表5.1 amqp1 パラメーター

パラメータータイプ

manage_package

ブール値

transport

文字列

host

文字列

port

整数

user

文字列

password

文字列

address

文字列

instances

hash

retry_delay

整数

send_queue_limit

整数

interval

整数

設定例

  Parameter_defaults:
    CollectdExtraPlugins:
      - amqp1
    ExtraConfig:
      collectd::plugin::amqp1::send_queue_limit: 50

collectd::plugin::apache

apache プラグインを使用して Apache データを収集します。

表5.2 Apache パラメーター

パラメータータイプ

instances

hash

interval

整数

manage-package

ブール値

package_install_options

List

設定例

parameter_defaults:
    ExtraConfig:
        collectd::plugin::apache:
          localhost:
              url: "http://10.0.0.111/status?auto"

関連資料

apache プラグインの設定の詳細は、apache を参照してください。

collectd::plugin::battery

battery プラグインを使用して、ラップトップのバッテリーの残量、電源、または電圧を報告します。

表5.3 バッテリーパラメーター

パラメータータイプ

values_percentage

ブール値

report_degraded

ブール値

query_state_fs

ブール値

interval

整数

関連資料

battery プラグインの設定の詳細は、「バッテリー」を参照してください。

collectd::plugin::bind

bind プラグインを使用して、DNS サーバーからクエリーおよび応答に関するエンコードされた統計を取得します。プラグインは、値を collectd に送信します。

collectd::plugin::ceph

ceph プラグインを使用して、ceph デーモンからデータを収集します。

表5.4 Ceph パラメーター

パラメータータイプ

デーモン

配列

longrunavglatency

ブール値

convertspecialmetrictypes

ブール値

manage_package

ブール値

package_name

文字列

設定例

parameter_defaults:
    ExtraConfig:
        collectd::plugin::ceph::daemons:
           - ceph-osd.0
           - ceph-osd.1
           - ceph-osd.2
           - ceph-osd.3
           - ceph-osd.4

注記

Object Storage Daemon(OSD)がすべてのノードでない場合は、OSD を一覧表示する必要があります。

注記

collectd をデプロイする際に、ceph プラグインは Ceph ノードに追加されます。デプロイメントに失敗するため、Ceph ノードの ceph プラグインを CollectdExtraPlugins に追加しないでください。

関連資料

ceph プラグインの設定の詳細は、「ceph」を参照してください。

collectd::plugins::cgroups

cgroups プラグインを使用して、cgroup 内のプロセスの情報を収集します。

表5.5 cgroups パラメーター

パラメータータイプ

ignore_selected

ブール値

interval

整数

cgroups

List

関連資料

cgroups プラグインの設定の詳細は、「cgroups」を参照してください。

collectd::plugin::connectivity

接続プラグインを使用して、ネットワークインターフェースの状態を監視します。

注記

インターフェースが一覧にない場合は、すべてのインターフェースがデフォルトで監視されます。

表5.6 接続性パラメーター

パラメータータイプ

interfaces

配列

設定例

parameter_defaults:
    ExtraConfig:
        collectd::plugin::connectivity::interfaces:
        - eth0
        - eth1

関連資料

connectivity プラグインの設定の詳細は、「接続性」を参照してください。

collectd::plugin::conntrack

conntrack プラグインを使用して、Linux 接続追跡テーブルのエントリー数を追跡します。このプラグインにはパラメーターがありません。

collectd::plugin::contextswitch

ContextSwitch プラグインを使用して、システムが処理するコンテキストスイッチの数を収集します。

関連資料

contextswitch プラグインの設定の詳細は、「contextswitch」を参照してください。

collectd::plugin::cpu

cpu プラグインを使用して、CPU がさまざまな状態で費やした時間(例: idle、ユーザーコードの実行中、システムコードの実行中、IO 操作の待機中など)を監視します。

cpu プラグインは、パーセンテージの値ではなく _jiffies_ を収集します。jiffy の値は、ハードウェアプラットフォームのクロック頻度に依存するため、絶対の時間間隔単位ではありません。

パーセンテージの値を報告するには、ブール値パラメーター reportbycpu および reportbystatetrue に設定し、ブール値のパラメーター値 percentage を true に設定します。

表5.7 CPU メトリック

名前説明クエリー

idle

アイドル時間

collectd_cpu_total{…​,type_instance=idle}

interrupt

割り込みでブロックされる CPU

collectd_cpu_total{…​,type_instance=interrupt}

nice

優先度の低いプロセスを実行する時間

collectd_cpu_total{…​,type_instance=nice}

softirq

割り込み要求の処理に費やされたサイクル数

collectd_cpu_total{…​,type_instance=waitirq}

steal

ハイパーバイザーが別の仮想プロセッサーに対応している間、仮想 CPU が実際の CPU を待機する時間の割合

collectd_cpu_total{…​,type_instance=steal}

system

システムレベル(カーネル)で費やされた時間

collectd_cpu_total{…​,type_instance=system}

user

ユーザープロセスが使用する jiffies

collectd_cpu_total{…​,type_instance=user}

wait

未処理の I/O 要求で待機中の CPU

collectd_cpu_total{…​,type_instance=wait}

表5.8 CPU パラメーター

パラメータータイプ

reportbystate

ブール値

valuespercentage

ブール値

reportbycpu

ブール値

reportnumcpu

ブール値

reportgueststate

ブール値

subtractgueststate

ブール値

interval

整数

設定例

parameter_defaults:
    CollectdExtraPlugins:
      - cpu
    ExtraConfig:
        collectd::plugin::cpu::reportbystate: true

関連資料

cpu プラグインの設定の詳細は、cpu を参照してください。

collectd::plugin::cpufreq

  • なし

collectd::plugin::cpusleep

collectd::plugin::csv

  • collectd::plugin::csv::datadir
  • collectd::plugin::csv::storerates
  • collectd::plugin::csv::interval

collectd::plugin::curl_json

collectd::plugin::curl

collectd::plugin::curl_xml

collectd::plugin::dbi

collectd::plugin::df

df プラグインを使用して、ファイルシステムのディスク領域の使用状況に関する情報を収集します。

表5.9 df メトリクス

名前説明クエリー

free

空きディスク容量

collectd_df_df_complex{…​, type_instance="free"}

予備

予約済みディスク容量

collectd_df_df_complex{…​, type_instance="reserved"}

used

使用済みディスク容量

collectd_df_df_complex{…​, type_instance="used"}

表5.10 df パラメーター

パラメータータイプ

devices

配列

fstypes

配列

ignoreselected

ブール値

mountpoints

配列

reportbydevice

ブール値

reportinodes

ブール値

reportreserved

ブール値

valuesabsolute

ブール値

valuespercentage

ブール値

設定例

parameter_defaults:
    CollectdExtraPlugins:
      - df
    ExtraConfig:
        collectd::plugin::df::fstypes: ['tmpfs','xfs']

関連資料

df プラグインの設定の詳細は、df を参照してください。

collectd::plugin::disk

disk プラグインを使用して、ハードディスクのパフォーマンス統計を収集し、サポートされている場合はパーティションを収集します。このプラグインはデフォルトで有効になっています。

表5.11 ディスクパラメーター

パラメータータイプ

disks

配列

ignoreselected

ブール値

udevnameattr

文字列

表5.12 ディスクメトリクス

名前説明

merged

マージ可能な操作の数(すでにキューに入れられた操作など)。たとえば、2 つ以上の論理操作に対応する 1 つの物理ディスクアクセス。

時間

I/O 操作の完了にかかる平均時間。値は完全に正確ではないことがあります。

io_time

I/O(ms)の実行に費やされた時間。このメトリックは、デバイスの負荷率として使用できます。1 秒の値は、負荷の 100% に一致します。

weighted_io_time

I/O 完了時間と累積するバックログの両方を測定します。

pending_operations

保留中の I/O 操作のキューサイズを表示します。

設定例

parameter_defaults:
    ExtraConfig:
        collectd::plugin::disk::disk: "sda"
        collectd::plugin::disk::ignoreselected: false

関連資料

disk プラグインの設定の詳細は、disk を参照してください。

collectd::plugin::dns

collectd::plugin::entropy

  • collectd::plugin::entropy::interval

collectd::plugin::ethstat

  • collectd::plugin::ethstat::interfaces
  • collectd::plugin::ethstat::maps
  • collectd::plugin::ethstat::mappedonly
  • collectd::plugin::ethstat::interval

collectd::plugin::exec

  • collectd::plugin::exec::commands
  • collectd::plugin::exec::commands_defaults
  • collectd::plugin::exec::globals
  • collectd::plugin::exec::interval

collectd::plugin::fhcount

  • collectd::plugin::fhcount::valuesabsolute
  • collectd::plugin::fhcount::valuespercentage
  • collectd::plugin::fhcount::interval

collectd::plugin::filecount

  • collectd::plugin::filecount::directories
  • collectd::plugin::filecount::interval

collectd::plugin::fscache

  • なし

collectd-hddtemp

  • collectd::plugin::hddtemp::host
  • collectd::plugin::hddtemp::port
  • collectd::plugin::hddtemp::interval

collectd::plugin::hugepages

hugepages プラグインを使用して hugepages 情報を収集します。このプラグインはデフォルトで有効になっています。

表5.13 hugepages パラメーター

パラメータータイプデフォルト

report_per_node_hp

ブール値

true

report_root_hp

ブール値

true

values_pages

ブール値

true

values_bytes

ブール値

false

values_percentage

ブール値

false

設定例

parameter_defaults:
    ExtraConfig:
        collectd::plugin::hugepages::values_percentage: true

関連資料

  • hugepages プラグインの設定の詳細は、「ヒュージページ」を参照してください。

collectd::plugin::intel_rdt

collectd::plugin::interface

interface プラグインを使用して、オクテットごとのパケット数、秒ごとのパケットレート、およびエラーレートでインターフェーストラフィックを測定します。このプラグインはデフォルトで有効になっています。

表5.14 インターフェースパラメーター

パラメータータイプ

デフォルト

interfaces

配列

[]

ignoreselected

Boolean

false

reportinactive

Boolean

true

設定例

parameter_defaults:
    ExtraConfig:
        collectd::plugin::interface::interfaces:
           - lo
        collectd::plugin::interface::ignoreselected: true

関連資料

collectd::plugin::ipc

  • なし

collectd::plugin::ipmi

  • collectd::plugin::ipmi::ignore_selected
  • collectd::plugin::ipmi::notify_sensor_add
  • collectd::plugin::ipmi::notify_sensor_remove
  • collectd::plugin::ipmi::notify_sensor_not_present
  • collectd::plugin::ipmi::sensors
  • collectd::plugin::ipmi::interval

collectd::plugin::iptables

collectd::plugin::irq

  • collectd::plugin::irq::irqs
  • collectd::plugin::irq::ignoreselected
  • collectd::plugin::irq::interval

collectd::plugin::load

load プラグインを使用して、システム負荷とシステムの使用状況の概要を収集します。このプラグインはデフォルトで有効になっています。

表5.15 プラグインパラメーター

パラメータータイプ

report_relative

ブール値

設定例

parameter_defaults:
    ExtraConfig:
        collectd::plugin::load::report_relative: false

関連資料

  • load プラグインの設定の詳細は、「ロード」を参照してください。

collectd::plugin::logfile

  • collectd::plugin::logfile::log_level
  • collectd::plugin::logfile::log_file
  • collectd::plugin::logfile::log_timestamp
  • collectd::plugin::logfile::print_severity
  • collectd::plugin::logfile::interval

collectd::plugin::log_logstash

collectd::plugin::madwifi

collectd::plugin::match_empty_counter

collectd::plugin::match_hashed

collectd::plugin::match_regex

collectd::plugin::match_timediff

collectd::plugin::match_value

collectd::plugin::mbmon

collectd::plugin::mcelog

the mcelog プラグインを使用して、マシンチェック例外の発生時に関連する通知および統計を送信します。デーモンモードで実行し、ロギング機能を有効にする(Configure mcelog )。

表5.16 mcelog パラメーター

パラメータータイプ

Mcelogfile

文字列

メモリー

hash { mcelogclientsocket[string], persistentnotification[boolean] }

設定例

parameter_defaults:
    CollectdExtraPlugins: mcelog
    CollectdEnableMcelog: true

関連資料

  • mcelog プラグインの設定の詳細は、celog を参照してください。

collectd::plugin::md

collectd::plugin::memcachec

collectd::plugin::memcached

  • collectd::plugin::memcached::instances
  • collectd::plugin::memcached::interval

collectd::plugin::memory

memory プラグインは、システムのメモリーに関する情報を提供します。このプラグインはデフォルトで有効になっています。

表5.17 メモリーパラメーター

パラメータータイプ

valuesabsolute

ブール値

valuespercentage

ブール値

設定例

parameter_defaults:
    ExtraConfig:
        collectd::plugin::memory::valuesabsolute: true
        collectd::plugin::memory::valuespercentage: false

関連資料

  • memory プラグインの設定の詳細は、「メモリー」を参照してください。

collectd::plugin::multimeter

collectd::plugin::mysql

  • collectd::plugin::mysql::interval
  • collectd::plugin::netlink::interfaces
  • collectd::plugin::netlink::verboseinterfaces
  • collectd::plugin::netlink::qdiscs
  • collectd::plugin::netlink::classes
  • collectd::plugin::netlink::filters
  • collectd::plugin::netlink::ignoreselected
  • collectd::plugin::netlink::interval

collectd::plugin::network

  • collectd::plugin::network::timetolive
  • collectd::plugin::network::maxpacketsize
  • collectd::plugin::network::forward
  • collectd::plugin::network::reportstats
  • collectd::plugin::network::listeners
  • collectd::plugin::network::servers
  • collectd::plugin::network::interval

collectd::plugin::nfs

  • collectd::plugin::nfs::interval

collectd::plugin::notify_nagios

collectd::plugin::ntpd

  • collectd::plugin::ntpd::host
  • collectd::plugin::ntpd::port
  • collectd::plugin::ntpd::reverselookups
  • collectd::plugin::ntpd::includeunitid
  • collectd::plugin::ntpd::interval

collectd::plugin::numa

  • なし

collectd::plugin::olsrd

collectd::plugin::openldap

collectd::plugin::openvpn

  • collectd::plugin::openvpn::statusfile
  • collectd::plugin::openvpn::improvednamingschema
  • collectd::plugin::openvpn::collectcompression
  • collectd::plugin::openvpn::collectindividualusers
  • collectd::plugin::openvpn::collectusercount
  • collectd::plugin::openvpn::interval

collectd::plugin::ovs_stats

OVS に接続されたインターフェースの統計値を収集するには、ovs_stats プラグインを使用します。ovs_stats プラグインは、OVSDB 管理プロトコル (RFC7047) モニターメカニズムを使用して OVSDB から統計値を取得します。

表5.18 ovs_stats パラメーター

パラメータータイプ

address

文字列

ブリッジ

List

port

整数

ソケット

文字列

設定例

以下の例は、ovs_stats プラグインを有効にする方法を示しています。オーバークラウドを OVS でデプロイする場合には、ovs_stats プラグインを有効にする必要はありません。

    parameter_defaults:
        CollectdExtraPlugins:
          - ovs_stats
        ExtraConfig:
          collectd::plugin::ovs_stats::socket: '/run/openvswitch/db.sock'

関連資料

  • ovs_stats プラグインの設定の詳細は、ovs_stats を参照してください。

collectd::plugin::pcie_errors

pcie_errors プラグインを使用して、ベースラインおよび Advanced Error Reporting (AER) エラーの PCI 設定領域をポーリングし、AER イベントの syslog を解析します。エラーは通知により報告されます。

表5.19 pcie_errors パラメーター

パラメータータイプ

source

enum(sysfs、proc)

アクセス

文字列

レポートマスク

ブール値

persistent_notifications

ブール値

設定例

parameter_defaults:
    CollectdExtraPlugins:
       - pcie_errors

関連資料

  • pcie_errors プラグインの設定に関する詳細は、pcie_errors を参照してください。

collectd::plugin::ping

  • collectd::plugin::ping::hosts
  • collectd::plugin::ping::timeout
  • collectd::plugin::ping::ttl
  • collectd::plugin::ping::source_address
  • collectd::plugin::ping::device
  • collectd::plugin::ping::max_missed
  • collectd::plugin::ping::size
  • collectd::plugin::ping::interval

collectd::plugin::powerdns

  • collectd::plugin::powerdns::interval
  • collectd::plugin::powerdns::servers
  • collectd::plugin::powerdns::recursors
  • collectd::plugin::powerdns::local_socket
  • collectd::plugin::powerdns::interval

collectd::plugin::processes

processes プラグインは、システムプロセスに関する情報を提供します。このプラグインはデフォルトで有効になっています。

表5.20 プラグインパラメーター

パラメータータイプ

processes

配列

process_matches

配列

collect_context_switch

Boolean

collect_file_descriptor

Boolean

collect_memory_maps

Boolean

関連資料

  • processes プラグインの設定の詳細は「プロセス」を参照してください。

collectd::plugin::protocols

  • collectd::plugin::protocols::ignoreselected
  • collectd::plugin::protocols::values

collectd::plugin::python

collectd::plugin::sensors

collectd::plugin::serial

collectd::plugin::smart

  • collectd::plugin::smart::disks
  • collectd::plugin::smart::ignoreselected
  • collectd::plugin::smart::interval

collectd::plugin::snmp

collectd::plugin::snmp_agent

snmp_agent プラグインを SNMP サブエージェントとして使用し、collectd メトリクスを関連する OID にマッピングします。snmp エージェントには、実行中の snmpd サービスも必要です。

設定例

parameter_defaults:
    CollectdExtraPlugins:
        snmp_agent
resource_registry:
    OS::TripleO::Services::Snmp: /usr/share/openstack-tripleo-heat-
templates/deployment/snmp/snmp-baremetal-puppet.yaml

その他のリソース:

snmp_agent の設定方法の詳細は、snmp_agent を参照してください。

collectd::plugin::statsd

  • collectd::plugin::statsd::host
  • collectd::plugin::statsd::port
  • collectd::plugin::statsd::deletecounters
  • collectd::plugin::statsd::deletetimers
  • collectd::plugin::statsd::deletegauges
  • collectd::plugin::statsd::deletesets
  • collectd::plugin::statsd::countersum
  • collectd::plugin::statsd::timerpercentile
  • collectd::plugin::statsd::timerlower
  • collectd::plugin::statsd::timerupper
  • collectd::plugin::statsd::timersum
  • collectd::plugin::statsd::timercount
  • collectd::plugin::statsd::interval

collectd::plugin::swap

  • collectd::plugin::swap::reportbydevice
  • collectd::plugin::swap::reportbytes
  • collectd::plugin::swap::valuesabsolute
  • collectd::plugin::swap::valuespercentage
  • collectd::plugin::swap::reportio
  • collectd::plugin::swap::interval

collectd::plugin::sysevent

collectd::plugin::syslog

  • collectd::plugin::syslog::log_level
  • collectd::plugin::syslog::notify_level
  • collectd::plugin::syslog::interval

collectd::plugin::table

  • collectd::plugin::table::tables
  • collectd::plugin::table::interval

collectd::plugin::tail

  • collectd::plugin::tail::files
  • collectd::plugin::tail::interval

collectd::plugin::tail_csv

  • collectd::plugin::tail_csv::metrics
  • collectd::plugin::tail_csv::files

collectd::plugin::target_notification

collectd::plugin::target_replace

collectd::plugin::target_scale

collectd::plugin::target_set

collectd::plugin::target_v5upgrade

collectd::plugin::tcpconns

  • collectd::plugin::tcpconns::localports
  • collectd::plugin::tcpconns::remoteports
  • collectd::plugin::tcpconns::listening
  • collectd::plugin::tcpconns::allportssummary
  • collectd::plugin::tcpconns::interval

collectd::plugin::ted

collectd::plugin::thermal

  • collectd::plugin::thermal::devices
  • collectd::plugin::thermal::ignoreselected
  • collectd::plugin::thermal::interval

collectd::plugin::threshold

  • collectd::plugin::threshold::types
  • collectd::plugin::threshold::plugins
  • collectd::plugin::threshold::hosts
  • collectd::plugin::threshold::interval

collectd::plugin::turbostat

  • collectd::plugin::turbostat::core_c_states
  • collectd::plugin::turbostat::package_c_states
  • collectd::plugin::turbostat::system_management_interrupt
  • collectd::plugin::turbostat::digital_temperature_sensor
  • collectd::plugin::turbostat::tcc_activation_temp
  • collectd::plugin::turbostat::running_average_power_limit
  • collectd::plugin::turbostat::logical_core_names

collectd::plugin::unixsock

collectd::plugin::uptime

  • collectd::plugin::uptime::interval

collectd::plugin::users

  • collectd::plugin::users::interval

collectd::plugin::uuid

  • collectd::plugin::uuid::uuid_file
  • collectd::plugin::uuid::interval

collectd::plugin::virt

virt プラグインを使用して、ホスト上の仮想マシンの libvirt API で CPU、ディスク、ネットワーク負荷、およびその他のメトリックを収集します。

表5.21 仮想パラメーター

パラメータータイプ

connection

文字列

refresh_interval

hash

domain

文字列

block_device

文字列

interface_device

文字列

ignore_selected

ブール値

plugin_instance_format

文字列

hostname_format

文字列

interface_format

文字列

extra_stats

文字列

設定例

ExtraConfig:
    collectd::plugin::virt::plugin_instance_format: name

関連資料

virt プラグインの設定の詳細は、「virt」を参照してください。

collectd::plugin::vmem

  • collectd::plugin::vmem::verbose
  • collectd::plugin::vmem::interval

collectd::plugin::vserver

collectd::plugin::wireless

collectd::plugin::write_graphite

  • collectd::plugin::write_graphite::carbons
  • collectd::plugin::write_graphite::carbon_defaults
  • collectd::plugin::write_graphite::globals

collectd::plugin::write_http

write_http 出力プラグインを使用して、POST リクエストを使用し JSON でメトリックをエンコードして、または PUTVAL コマンドを使用して、HTTP サーバーに値を送信します。

表5.22 write_http パラメーター

パラメータータイプ

ensure

enum[present,absent]

ノード

hash[String, Hash[String, Scalar]]

urls

hash[String, Hash[String, Scalar]]

manage_package

ブール値

設定例

parameter_defaults:
    CollectdExtraPlugins:
      - write_http
    ExtraConfig:
        collectd::plugin::write_http::nodes:
            collectd:
                url: “http://collectd.tld.org/collectd”
                metrics: true
                header: “X-Custom-Header: custom_value"

関連資料

  • write_http プラグインの設定に関する詳細は、write_http を参照してください。

collectd::plugin::write_kafka

write_kafka プラグインを使用して、値を Kafka トピックに送信します。write_kafka プラグインを 1 つ以上のトピックブロックで設定します。トピックブロックごとに、一意の名前と Kafka プロデューサーを指定する必要があります。topic ブロック内で以下の各トピックパラメーターを使用できます。

表5.23 write_kafka parameters

パラメータータイプ

kafka_hosts

array[String]

kafka_port

整数

topics

hash

properties

hash

meta

hash

設定例

parameter_defaults:
    CollectdExtraPlugins:
       - write_kafka
    ExtraConfig:
      collectd::plugin::write_kafka::kafka_hosts:
        - nodeA
        - nodeB
      collectd::plugin::write_kafka::topics:
        some_events:
          format: JSON

その他のリソース:

write_kafka プラグインの設定方法は「write_kafka」を参照してください。

collectd::plugin::write_log

  • collectd::plugin::write_log::format

collectd::plugin::zfs_arc

  • なし