Red Hat Training

A Red Hat training course is available for Red Hat OpenStack Platform

第5章 オーバークラウドのプランニング

以下の項には、ノードロールの定義、ネットワークトポロジーのプランニング、ストレージなど、Red Hat OpenStack Platform 環境のさまざまな面のプランニングに関するガイドラインを記載します。

5.1. ノードロール

director はオーバークラウドの構築に、デフォルトで複数のノード種別を提供します。これらのノード種別は以下のとおりです。

コントローラー

環境を制御するための主要なサービスを提供します。これには、Dashboard (Horizon)、認証 (Keystone)、イメージストレージ (Glance)、ネットワーク (Neutron)、オーケストレーション (Heat)、高可用性サービスが含まれます。高可用性の場合は、Red Hat OpenStack Platform 環境にコントローラーノードが 3 台必要です。

注記

1 台のノードで構成される環境はテスト目的で使用することができます。2 台のノードまたは 4 台以上のノードで構成される環境はサポートされません。

Compute
ハイパーバイザーとして機能し、環境内で仮想マシンを実行するのに必要な処理能力を提供する物理サーバー。基本的な Red Hat OpenStack Platform 環境には少なくとも 1 つのコンピュートノードが必要です。
Ceph Storage
Red Hat Ceph Storage を提供するホスト。Ceph Storage ホストはクラスターに追加され、クラスターをスケーリングします。このデプロイメントロールはオプションです。
Swift ストレージ
OpenStack の Swift サービスに外部オブジェクトストレージを提供するホスト。このデプロイメントロールはオプションです。

以下の表には、オーバークラウドの構成例と各シナリオで使用するノードタイプの定義をまとめています。

表5.1 各種シナリオに使用するノードデプロイメントロール

 

コントローラー

Compute

Ceph Storage

Swift ストレージ

合計

小規模のオーバークラウド

3

1

-

-

4

中規模のオーバークラウド

3

3

-

-

6

追加のオブジェクトストレージがある中規模のオーバークラウド

3

3

-

3

9

Ceph Storage クラスターがある中規模のオーバークラウド

3

3

3

-

9

さらに、個別のサービスをカスタムのロールに分割するかどうかを検討します。コンポーザブルロールのアーキテクチャーに関する詳しい情報は『オーバークラウドの高度なカスタマイズ』「コンポーザブルサービスとカスタムロール」を参照してください。

5.2. オーバークラウドネットワーク

ロールとサービスを適切にマッピングして相互に正しく通信できるように、環境のネットワークトポロジーおよびサブネットのプランニングを行うことが重要です。Red Hat OpenStack Platform では、自律的に動作してソフトウェアベースのネットワーク、静的/Floating IP アドレス、DHCP を管理する Openstack Networking (neutron) サービスを使用します。

デフォルトでは、director は接続に プロビジョニング / コントロールプレーン を使用するようにノードを設定します。ただし、ネットワークトラフィックを一連の コンポーザブルネットワーク に分離し、カスタマイズしてサービスを割り当てることができます。

一般的な Red Hat OpenStack Platform のシステム環境では通常、ネットワーク種別の数は物理ネットワークのリンク数を超えます。全ネットワークを正しいホストに接続するには、オーバークラウドは VLAN タグ付けを使用して、1 つのインターフェースに複数のネットワークを提供します。ネットワークの多くは、サブネットが分離されていますが、インターネットアクセスまたはインフラストラクチャーにネットワーク接続ができるようにルーティングを提供するレイヤー 3 のゲートウェイが必要です。ネットワークトラフィックの種別を分離するのに VLAN を使用している場合には、802.1Q 標準をサポートするスイッチを使用してタグ付けされた VLAN を提供します。

注記

デプロイ時に neutron VLAN モード (トンネリングは無効) を使用する場合でも、プロジェクトネットワーク (GRE または VXLAN でトンネリング) をデプロイすることを推奨します。これには、デプロイ時にマイナーなカスタマイズを行う必要があり、将来ユーティリティーネットワークまたは仮想化ネットワークとしてトンネルネットワークを使用するためのオプションが利用可能な状態になります。VLAN を使用してテナントネットワークを作成することは変わりませんが、テナントの VLAN を消費せずに特別な用途のネットワーク用に VXLAN トンネルを作成することも可能です。また、テナント VLAN を使用するデプロイメントに VXLAN 機能を追加することは可能ですが、サービスを中断せずにテナント VLAN を既存のオーバークラウドに追加することはできません。

director には、NIC を分離コンポーザブルネットワークと連携させるための、さまざまなテンプレートも用意されています。

  • シングル NIC 構成: ネイティブ VLAN 上のプロビジョニングネットワークと、オーバークラウドネットワークの種別ごとのサブネットを使用するタグ付けされた VLAN 用に NIC を 1つ。
  • ボンディングされた NIC 構成: ネイティブ VLAN 上のプロビジョニングネットワーク用に NIC を 1 つと、オーバークラウドネットワークの種別ごとのタグ付けされた VLAN 用にボンディング構成の 2 つの NIC。
  • 複数 NIC 構成: 各 NIC は、オーバークラウドネットワークの種別ごとのサブセットを使用します。

専用のテンプレートを作成して、特定の NIC 構成をマッピングすることもできます。

ネットワーク構成を検討する上で、以下の点を考慮することも重要です。

  • オーバークラウドの作成時には、全オーバークラウドマシンで 1 つの名前を使用して NIC を参照します。理想としては、混乱を避けるため、対象のネットワークごとに、各オーバークラウドノードで同じ NIC を使用してください。たとえば、プロビジョニングネットワークにはプライマリー NIC を使用して、OpenStack サービスにはセカンダリー NIC を使用します。
  • すべてのオーバークラウドシステムをプロビジョニング NIC から PXE ブートするように設定して、同システム上の外部 NIC およびその他の NIC の PXE ブートを無効にします。また、プロビジョニング NIC の PXE ブートは、ハードディスクや CD/DVD ドライブよりも優先されるように、起動順序の最上位に指定します。
  • オーバークラウドのベアメタルシステムにはすべて、Intelligent Platform Management Interface (IPMI) などのサポート対象の電源管理インターフェースが必要です。このインターフェースにより、director は各ノードの電源管理を制御することが可能となります。
  • 各オーバークラウドシステムの詳細 (プロビジョニング NIC の MAC アドレス、IPMI NIC の IP アドレス、IPMI ユーザー名、IPMI パスワード) をメモしてください。この情報は、後でオーバークラウドノードを設定する際に役立ちます。
  • インスタンスが外部のインターネットからアクセス可能である必要がある場合には、パブリックネットワークから Floating IP アドレスを割り当てて、そのアドレスをインスタンスに関連付けます。インスタンスは、引き続きプライベートの IP アドレスを確保しますが、ネットワークトラフィックは NAT を使用して、Floating IP アドレスに到達します。Floating IP アドレスは、複数のプライベート IP アドレスではなく、単一のインスタンスにのみ割り当て可能である点に注意してください、ただし、Floating IP アドレスは、単一のテナントで使用するように確保され、そのテナントは必要に応じて特定のインスタンスに関連付け/関連付け解除することができます。この構成を使用すると、インフラストラクチャーが外部のインターネットに公開されるので、適切なセキュリティープラクティスを順守しているかどうかを確認する必要があるでしょう。
  • 1 つのブリッジには単一のインターフェースまたは単一のボンディングのみをメンバーにすると、Open vSwitch でネットワークループが発生するリスクを緩和することができます。複数のボンディングまたはインターフェースが必要な場合には、複数のブリッジを設定することが可能です。
  • オーバークラウドノードが Red Hat Content Delivery Network やネットワークタイムサーバーなどの外部のサービスに接続できるようにするには、DNS によるホスト名解決を使用することを推奨します。

5.3. オーバークラウドのストレージ

注記

任意のドライバーまたはバックエンド種別のバックエンド cinder ボリュームを使用するゲストインスタンスで LVM を使用すると、パフォーマンスとボリュームの可視性/可用性で問題が生じます。このような問題は、LVM フィルターを使用すると緩和することができます。詳しくは、『Storage Guide』「Back Ends」および KCS の記事「Using LVM on a cinder volume exposes the data to the compute host」を参照してください。

director は、オーバークラウド環境にさまざまなストレージオプションを提供します。オプションは以下のとおりです。

Ceph Storage ノード

director は、Red Hat Ceph Storage を使用して拡張可能なストレージノードセットを作成します。オーバークラウドは、各種ノードを以下の目的で使用します。

  • イメージ: Glance は仮想マシンのイメージを管理します。イメージは変更できないため、OpenStack はイメージバイナリーブロブとして処理し、それに応じてイメージをダウンロードします。Ceph ブロックデバイスでイメージを格納するには、Glance を使用することができます。
  • ボリューム: Cinder ボリュームはブロックデバイスです。OpenStack は、仮想マシンの起動や、実行中の仮想マシンへのボリュームのアタッチにボリュームを使用し、Cinder サービスを使用してボリュームを管理します。さらに、イメージの CoW (Copy-on-Write) のクローンを使用して仮想マシンを起動する際には Cinder を使用します。
  • ファイルシステム: manila 共有はファイルシステムによりバッキングされます。OpenStack ユーザーは、manila サービスを使用して共有を管理します。manila を使用して、Ceph Storage ノードにデータを保管する CephFS ファイルシステムにバッキングされる共有を管理することができます。
  • ゲストディスク: ゲストディスクは、ゲストオペレーティングシステムのディスクです。デフォルトでは、Nova で仮想マシンを起動すると、ディスクは、ハイパーバイザーのファイルシステム上のファイルとして表示されます (通常 /var/lib/nova/instances/<uuid>/ の配下)。Ceph 内にあるすべての仮想マシンは、Cinder を使用せずに起動することができます。これにより、ライブマイグレーションのプロセスを使用して、簡単にメンテナンス操作を実行することができます。また、ハイパーバイザーが停止した場合には、nova evacuate をトリガーして仮想マシンを別の場所で実行することもできるので便利です。

    重要

    サポートされるイメージフォーマットの情報については、『Instances and Images Guide』「Image Service」の章を参照してください

    その他の情報については、『Red Hat Ceph Storage Architecture Guide』を参照してください。

Swift Storage ノード
director は、外部オブジェクトストレージノードを作成します。これは、オーバークラウド環境でコントローラーノードをスケーリングまたは置き換える必要があるが、高可用性クラスター外にオブジェクトストレージを保持する必要がある場合に便利です。

5.4. オーバークラウドのセキュリティー

OpenStack Platform の実装のセキュリティーレベルは、その環境のセキュリティーレベルと同等です。ネットワーク環境内の適切なセキュリティー原則に従って、ネットワークアクセスが正しく制御されるようにします。以下に例を示します。

  • ネットワークのセグメント化を使用して、ネットワークトラフィックを軽減し、機密データを分離します。フラットなネットワークはセキュリティーレベルがはるかに低くなります。
  • サービスアクセスとポートを最小限に制限します。
  • 適切なファイアウォールルールとパスワードが使用されるようにします。
  • SELinux が有効化されていることを確認します。

システムのセキュリティー保護については、以下のドキュメントを参照してください。

5.5. オーバークラウドの高可用性

高可用性なオーバークラウドをデプロイするために、director は複数のコントローラー、コンピュート、およびストレージノードを単一のクラスターとして連携するように設定します。ノードで障害が発生すると、障害が発生したノードのタイプに応じて、自動フェンシングおよび再起動プロセスがトリガーされます。オーバークラウド高可用性アーキテクチャーおよびサービスに関する情報は、『Understanding Red Hat OpenStack Platform High Availability』を参照してください。

director を使用して、コンピュートインスタンスの高可用性 (インスタンス HA) を設定することもできます。このメカニズムにより、ノードで障害が発生するとコンピュートノード上のインスタンスが自動的に退避および再起動されます。インスタンス HA に対する要件は通常のオーバークラウドの要件と同じですが、追加のステップを実施してデプロイメントのために環境を準備する必要があります。インスタンス HA の仕組みおよびインストール手順に関する情報は、『High Availability for Compute Instances』を参照してください。

5.6. コントローラーノードの要件

コントローラーノードは、Red Hat OpenStack Platform 環境の中核となるサービス (例: Horizon Dashboard、バックエンドのデータベースサーバー、Keystone 認証、高可用性サービスなど) をホストする役割を果たします。

プロセッサー
Intel 64 または AMD64 CPU 拡張機能のサポートがある 64 ビットの x86 プロセッサー
メモリー

最小のメモリー容量は 32 GB です。ただし、推奨のメモリー容量は、仮想 CPU の数によって異なります (CPU コアをハイパースレッディングの値で乗算した数値に基づいています)。以下の計算を参考にしてください。

  • コントローラーの最小メモリー容量の算出:

    • 1 仮想 CPU あたり 1.5 GB のメモリーを使用します。たとえば、仮想 CPU が 48 個あるマシンにはメモリーは 72 GB 必要です。
  • コントローラーの推奨メモリー容量の算出:

    • 1 仮想 CPU あたり 3 GB のメモリーを使用します。たとえば、仮想 CPU が 48 個あるマシンにはメモリーは 144 GB 必要です。

メモリーの要件に関する詳しい情報は、Red Hat カスタマーポータルで「Red Hat OpenStack Platform Hardware Requirements for Highly Available Controllers」の記事を参照してください。

ディスクストレージとレイアウト

最小で 40 GB のストレージが必要です。ただし、Telemetry (gnocchi) と Object Storage (swift) のサービスはいずれもコントローラーにインストールされ、ルートディスクを使用するように設定されます。これらのデフォルトは、コモディティーハードウェア上に構築される小型のオーバークラウドのデプロイに適しています。これは、概念検証およびテストの標準的な環境です。これらのデフォルトにより、最小限のプランニングでオーバークラウドをデプロイすることができますが、ワークロードキャパシティーとパフォーマンスの面ではあまり優れていません。

ただし、Telemetry がストレージに絶えずアクセスするため、エンタープライズ環境では、これによって大きなボトルネックが生じる可能性があります。これにより、ディスク I/O が過度に使用されて、その他すべてのコントローラーサービスに深刻な影響をもたらします。このタイプの環境では、オーバークラウドのプランニングを行って、適切に設定する必要があります。

Red Hat は、Telemetry と Object Storage の両方の推奨設定をいくつか提供しています。詳しくは、『Deployment Recommendations for Specific Red Hat OpenStack Platform Services』を参照してください。

ネットワークインターフェースカード
最小 2 枚の 1 Gbps ネットワークインターフェースカード。タグ付けされた VLAN トラフィックを委譲する場合や、ボンディングインターフェース向けの場合には追加のネットワークインターフェースを使用します。
電源管理
各コントローラーノードには、Intelligent Platform Management Interface (IPMI) 機能などのサポート対象の電源管理インターフェースがサーバーのマザーボードに搭載されている必要があります。

5.7. コンピュートノードの要件

コンピュートノードは、仮想マシンインスタンスが起動した後にそれらを稼働させる役割を果たします。コンピュートノードは、ハードウェアの仮想化をサポートしている必要があります。また、ホストする仮想マシンインスタンスの要件をサポートするのに十分なメモリーとディスク容量も必要です。

プロセッサー
  • Intel 64 または AMD64 CPU 拡張機能をサポートする 64 ビット x86 プロセッサーで Intel VT または AMD-V のハードウェア仮想化拡張機能が有効化されていること。このプロセッサーには最小でも 4 つのコアが搭載されていることを推奨しています。
  • IBM POWER 8 プロセッサー
メモリー
最小で 6 GB のメモリー。これに、仮想マシンインスタンスに割り当てるメモリー容量に基づいて、追加の RAM を加算します。
ディスク領域
最小 40 GB の空きディスク領域
ネットワークインターフェースカード
最小 1 枚の 1 Gbps ネットワークインターフェースカード (実稼働環境では最低でも NIC を 2 枚使用することを推奨)。タグ付けされた VLAN トラフィックを委譲する場合や、ボンディングインターフェース向けの場合には追加のネットワークインターフェースを使用します。
電源管理
各コンピュートノードには、Intelligent Platform Management Interface (IPMI) 機能などのサポート対象の電源管理インターフェースがサーバーのマザーボードに搭載されている必要があります。

5.8. Ceph Storage ノードの要件

Ceph Storage ノードは、Red Hat OpenStack Platform 環境でオブジェクトストレージを提供する役割を果たします。

プロセッサー
Intel 64 または AMD64 CPU 拡張機能のサポートがある 64 ビットの x86 プロセッサー
メモリー
一般的には、OSD ホスト毎に 16 GB の RAM をベースとし、さらに OSD デーモン毎に 2 GB の RAM を追加することを推奨します。
ディスクのレイアウト

サイズはストレージの要件によって異なります。Red Hat Ceph Storage ノードの推奨設定では、少なくとも 3 つ、またはそれ以上のディスクを以下と同様のレイアウトで構成する必要があります。

  • /dev/sda: ルートディスク。director は、主なオーバークラウドイメージをディスクにコピーします。このディスクには、少なくとも 40 GB の空き容量が必要です。
  • /dev/sdb: ジャーナルディスク。このディスクは、/dev/sdb1/dev/sdb2/dev/sdb3 などのように、Ceph OSD ジャーナル向けにパーティションを分割します。ジャーナルディスクは通常、システムパフォーマンスの向上に役立つ Solid State Drive (SSD) です。
  • /dev/sdc 以降: OSD ディスク。ストレージ要件で必要な数のディスクを使用します。

    注記

    Red Hat OpenStack Platform director では ceph-ansible が使われますが、OSD を Ceph Storage ノードのルートディスクにインストールすることには対応していません。つまり、サポートされる Ceph Storage ノード用に少なくとも 2 つのディスクが必要になります。

ネットワークインターフェースカード
最小で 1 x 1 Gbps ネットワークインターフェースカード (実稼働環境では、最低でも NIC を 2 つ以上使用することを推奨します)。ボンディングインターフェース向けの場合や、タグ付けされた VLAN トラフィックを委譲する場合には、追加のネットワークインターフェースを使用します。特に大量のトラフィックにサービスを提供する OpenStack Platform 環境を構築する場合には、ストレージノードには 10 Gbps インターフェースを使用することを推奨します。
電源管理
各コントローラーノードには、Intelligent Platform Management Interface (IPMI) 機能などのサポート対象の電源管理インターフェースがサーバーのマザーボードに搭載されている必要があります。

Ceph Storage クラスターを使用するオーバークラウドのインストールについては、『Deploying an Overcloud with Containerized Red Hat Ceph』を参照してください。

5.9. オブジェクトストレージノードの要件

オブジェクトストレージノードは、オーバークラウドのオブジェクトストレージ層を提供します。Object Storage プロキシーは、コントローラーノードにインストールされます。ストレージ層には、ノードごとに複数のディスクを持つベアメタルノードが必要です。

プロセッサー
Intel 64 または AMD64 CPU 拡張機能のサポートがある 64 ビットの x86 プロセッサー
メモリー
メモリー要件はストレージ容量によって異なります。ハードディスク容量 1 TB あたり最小で 1 GB のメモリーを使用するのが理想的です。最適なパフォーマンスを得るには、特にワークロードが小さいファイル (100 GB 未満) の場合にはハードディスク容量 1 TB あたり 2 GB のメモリーを使用することを推奨します。
ディスク領域

ストレージ要件は、ワークロードに必要とされる容量により異なります。アカウントとコンテナーのデータを保存するには SSD ドライブを使用することを推奨します。アカウントおよびコンテナーデータとオブジェクトの容量比率は、約 1 % です。たとえば、ハードドライブの容量 100 TB ごとに、アカウントおよびコンテナーデータの SSD 容量は 1 TB 用意するようにします。

ただし、これは保存したデータの種類により異なります。保存するオブジェクトサイズの大半が小さい場合には、SSD の容量がさらに必要です。オブジェクトが大きい場合には (ビデオ、バックアップなど)、SSD の容量を減らします。

ディスクのレイアウト

推奨のノード設定には、以下のようなディスクレイアウトが必要です。

  • /dev/sda: ルートディスク。director は、主なオーバークラウドイメージをディスクにコピーします。
  • /dev/sdb: アカウントデータに使用します。
  • /dev/sdc: コンテナーデータに使用します。
  • /dev/sdc 以降: オブジェクトサーバーディスク。ストレージ要件で必要な数のディスクを使用します。
ネットワークインターフェースカード
最小 2 枚の 1 Gbps ネットワークインターフェースカード。タグ付けされた VLAN トラフィックを委譲する場合や、ボンディングインターフェース向けの場合には追加のネットワークインターフェースを使用します。
電源管理
各コントローラーノードには、Intelligent Platform Management Interface (IPMI) 機能などのサポート対象の電源管理インターフェースがサーバーのマザーボードに搭載されている必要があります。

5.10. オーバークラウドのリポジトリー

アンダークラウドのインストールおよび設定には、以下のリポジトリーが必要です。

表5.2 コアリポジトリー

名前リポジトリー要件の説明

Red Hat Enterprise Linux 7 Server (RPMS)

rhel-7-server-rpms

x86_64 システム用ベースオペレーティングシステムのリポジトリー

Red Hat Enterprise Linux 7 Server - Extras (RPMs)

rhel-7-server-extras-rpms

Red Hat OpenStack Platform の依存関係が含まれます。

Red Hat Enterprise Linux 7 Server - RH Common (RPMs)

rhel-7-server-rh-common-rpms

Red Hat OpenStack Platform のデプロイと設定ツールが含まれます。

Red Hat Satellite Tools for RHEL 7 Server RPMs x86_64

rhel-7-server-satellite-tools-6.3-rpms

Red Hat Satellite 6 でのホスト管理ツール

Red Hat Enterprise Linux High Availability (for RHEL 7 Server) (RPMs)

rhel-ha-for-rhel-7-server-rpms

Red Hat Enterprise Linux の高可用性ツール。コントローラーノードの高可用性に使用します。

Red Hat OpenStack Platform 14 for RHEL 7 (RPMs)

rhel-7-server-openstack-14-rpms

Red Hat OpenStack Platform のコアリポジトリー

表5.3 Ceph 用リポジトリー

名前リポジトリー要件の説明

Red Hat Ceph Storage OSD 3 for Red Hat Enterprise Linux 7 Server (RPMs)

rhel-7-server-rhceph-3-osd-rpms

(Ceph Storage ノード向け) Ceph Storage Object Storage デーモンのリポジトリー。Ceph Storage ノードにインストールします。

Red Hat Ceph Storage MON 3 for Red Hat Enterprise Linux 7 Server (RPMs)

rhel-7-server-rhceph-3-mon-rpms

(Ceph Storage ノード向け) Ceph Storage Monitor デーモンのリポジトリー。Ceph Storage ノードを使用して OpenStack 環境にあるコントローラーノードにインストールします。

Red Hat Ceph Storage Tools 3 for Red Hat Enterprise Linux 7 Server (RPMs)

rhel-7-server-rhceph-3-tools-rpms

Ceph Storage クラスターと通信するためのノード用のツールを提供します。このリポジトリーは、Ceph Storage クラスターを使用するオーバークラウドをデプロイする際に、全ノードに有効化する必要があります。

表5.4 NFV 用リポジトリー

名前リポジトリー要件の説明

Enterprise Linux for Real Time for NFV (RHEL 7 Server) (RPMs)

rhel-7-server-nfv-rpms

NFV 向けの Real Time KVM (RT-KVM) のリポジトリー。リアルタイムカーネルを有効化するためのパッケージが含まれています。このリポジトリーは、RT-KVM 対象の全コンピュートノードで有効化する必要があります。このリポジトリーにアクセスするためには、Red Hat OpenStack Platform for Real Time の SKU とは別のサブスクリプションが必要となる点に注意してください。

IBM POWER 用リポジトリー

これらのリポジトリーは、POWER PC アーキテクチャー上で Openstack Platform を構築するのに使われます。コアリポジトリーの該当リポジトリーの代わりに、これらのリポジトリーを使用してください。

名前リポジトリー要件の説明

Red Hat Enterprise Linux for IBM Power, little endian

rhel-7-for-power-le-rpms

ppc64le システム用ベースオペレーティングシステムのリポジトリー

Red Hat OpenStack Platform 14 for RHEL 7 (RPMs)

rhel-7-server-openstack-14-for-power-le-rpms

ppc64le システム用 Red Hat OpenStack Platform のコアリポジトリー