
Red Hat JBoss Fuse 6.3

SwitchYard Development Guide

Develop applications with SwitchYard

Last Updated: 2020-10-27

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

Develop applications with SwitchYard

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2016 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use this guide to help you develop integrated applications with SwitchYard.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. READ ME
1.1. BACK UP YOUR DATA
1.2. RED HAT DOCUMENTATION SITE
1.3. EAP_HOME
1.4. MODE

CHAPTER 2. JBOSS INTEGRATION AND SOA DEVELOPMENT
2.1. JBOSS INTEGRATION AND SOA DEVELOPMENT
2.2. INSTALLING JBOSS DEVELOPER STUDIO INTEGRATION STACK
2.3. HELPFUL TIPS
2.4. RUNNING QUICKSTARTS FROM JBOSS DEVELOPER STUDIO
2.5. IMPORT PROJECTS FROM A GIT REPOSITORY IN JBOSS DEVELOPER STUDIO
2.6. SETTING A NEW RULES RUNTIME IN JBOSS DEVELOPER STUDIO
2.7. EDITING THE SWITCHYARD CONFIGURATION FILE

CHAPTER 3. APPLICATION BASICS
3.1. COMPOSITE
3.2. COMPONENT
3.3. IMPLEMENTATION
3.4. COMPONENT SERVICE
3.5. COMPOSITE SERVICE
3.6. SERVICE BINDING
3.7. COMPONENT REFERENCE
3.8. COMPOSITE REFERENCE
3.9. REFERENCE BINDINGS

CHAPTER 4. SETTING UP THE SERVER
4.1. ADD JBOSS EAP SERVER

CHAPTER 5. SWITCHYARD PROJECT
5.1. CREATING A NEW SWITCHYARD PROJECT
5.2. IMPORTING EXISTING MAVEN PROJECT
5.3. ADDING SWITCHYARD CAPABILITIES TO EXISTING PROJECTS
5.4. EDITING SWITCHYARD PROJECTS

CHAPTER 6. SWITCHYARD CONTRACTS
6.1. SWITCHYARD CONTRACTS
6.2. COMPONENT CONTRACTS
6.3. TRANSFORMATIONS BETWEEN CONTRACTS

CHAPTER 7. PACKAGING AND DEPLOYMENT FOR SWITCHYARD
7.1. DEPLOYMENT FOR SWITCHYARD
7.2. DEPLOY A WAR FILE FOR SWITCHYARD

CHAPTER 8. SERVICE IMPLEMENTATIONS
8.1. BEAN
8.2. BPM
8.3. BPEL
8.4. CAMEL
8.5. RULES
8.6. KNOWLEDGE SERVICES
8.7. MANIFEST
8.8. PROPERTIES

5
5
5
5
5

6
6
6
8
8
9

10
11

13
13
14
15
16
17
18
19

20
21

23
23

25
25
26
26
26

29
29
29
32

36
36
36

38
38
44
51

53
58
62
65
66

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 9. GATEWAYS
9.1. WHAT IS A GATEWAY
9.2. BINDINGS
9.3. MESSAGE COMPOSITION
9.4. OPERATION SELECTORS
9.5. THROTTLING

CHAPTER 10. TRANSFORMER
10.1. WHAT IS A TRANSFORMER
10.2. TRANSFORMATION IN SWITCHYARD
10.3. ADDING TRANSFORMATION TO A SWITCHYARD APPLICATION
10.4. CHAINING TRANSFORMERS
10.5. ADDING A TRANSFORMER USING SWITCHYARD EDITOR
10.6. MESSAGE CONTENT TYPE NAMES
10.7. SUPPORTED TRANSFORMATIONS

CHAPTER 11. VALIDATORS
11.1. WHAT IS A VALIDATOR
11.2. MESSAGE VALIDATION
11.3. ADD VALIDATION TO YOUR APPLICATION
11.4. SUPPORTED VALIDATORS

CHAPTER 12. CONFIGURATION PROPERTIES
12.1. SWITCHYARD MODEL CONFIGURATION
12.2. INJECTING PROPERTIES INTO SERVICE IMPLEMENTATION
12.3. INVOCATION PROPERTIES
12.4. CONFIGURATION TIPS AND TRICKS

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD
13.1. SWITCHYARDRUNNER CLASS
13.2. SWITCHYARDTESTKIT CLASS
13.3. SWITCHYARDTESTCASECONFIG
13.4. ADD TEST SUPPORT TO A SWITCHYARD APPLICATION
13.5. THE TESTMIXIN FEATURE
13.6. TESTMIXIN CLASSES
13.7. SCANNERS
13.8. METADATA AND SUPPORT CLASS INJECTIONS
13.9. SELECTIVELY ENABLING ACTIVATORS FOR A TEST
13.10. USEFUL TIPS FOR CREATING JUNIT TESTS

CHAPTER 14. REMOTE INVOKER
14.1. SWITCHYARD REMOTE INVOKER
14.2. USE A REMOTEINVOKER

CHAPTER 15. SERIALIZATION
15.1. SERIALIZATION AND DESERIALIZATION IN SWITCHYARD
15.2. CUSTOM OBJECTS
15.3. SWITCHYARD ANNOTATIONS FOR SERIALIZATION
15.4. SWITCHYARD SERIALIZATION API USAGE

CHAPTER 16. CONTEXT MAPPING
16.1. CONTEXT MAPPER
16.2. CREATE A CUSTOM CONTEXT MAPPER
16.3. CUSTOM CONTEXT MAPPER PROPERTIES
16.4. CONTEXT MAPPER IMPLEMENTATIONS AVAILABLE OUT-OF-THE-BOX

68
68
68

108
109

111

112
112
112
112
112
113
114
115

119
119
119
119

120

123
123
123
125
125

130
130
130
131
131
132
132
132
133
135
136

150
150
150

151
151
151
151
151

153
153
153
153
154

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

2

. .

. .

. .

. .

CHAPTER 17. AUDITING
17.1. SWITCHYARD AUDITING
17.2. ENABLE CUSTOM AUDITORS
17.3. MEDIATION STATE
17.4. LIST OF MEDIATION STATES
17.5. CREATE A CUSTOM AUDITOR
17.6. DETERMINE LOCATION FOR AUDIT ASSIGNMENT
17.7. USE EXCHANGE PROPERTIES

CHAPTER 18. EXTENSIONS
18.1. CREATE SWITCHYARD EXTENSION MODULE IN JBOSS EAP
18.2. EXTENSION TYPES AND USAGE

CHAPTER 19. REFERENCE
19.1. CONFIGURATION DESCRIPTORS
19.2. DESCRIPTOR CONFIGURATION EXAMPLE
19.3. COMPOSITE
19.4. COMPOSITE ELEMENTS
19.5. THE TRANSFORMS DEFINITION
19.6. THE VALIDATES DEFINITION
19.7. GENERATED CONFIGURATION
19.8. SERVICE OPERATIONS
19.9. SERVICE OPERATION TYPES
19.10. THE @DEFAULTTYPE ANNOTATION
19.11. BEAN SERVICES IN A JAVA EE WEB APPLICATION CONTAINER
19.12. JAVASERVER FACES
19.13. INDIRECT SERVICE INVOCATION
19.14. INDIRECT SERVICE INVOCATION EXAMPLE
19.15. INDIRECT SERVICE INVOCATION WITH JSF COMPONENTS EXAMPLE
19.16. INDIRECT SERVICE INVOCATION WITH ANNOTATIONS
19.17. CORE API ANNOTATIONS
19.18. COMPONENT ANNOTATIONS
19.19. TESTING ANNOTATIONS
19.20. JBOSS RULES
19.21. APACHE CAMEL

CHAPTER 20. DEBUGGING
20.1. MESSAGE TRACING
20.2. EXCHANGE INTERCEPTORS

157
157
157
157
157
159
159
160

161
161

163

164
164
164
165
165
166
166
166
166
166
167
167
167
167
168
168
169
170
170
171
171
172

175
175
176

Table of Contents

3

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

4

CHAPTER 1. READ ME

1.1. BACK UP YOUR DATA

WARNING

Red Hat recommends that you back up your system settings and data before
undertaking any of the configuration tasks mentioned in this book.

1.2. RED HAT DOCUMENTATION SITE

Red Hat's official documentation site is at https://access.redhat.com/site/documentation/. There you
will find the latest version of every book, including this one.

1.3. EAP_HOME

EAP_HOME refers to the root directory of the Red Hat JBoss Enterprise Application Platform
installation on which JBoss Fuse is deployed.

1.4. MODE

NOTE

Please note that Red Hat JBoss Fuse 6.0 does not support Red Hat JBoss Enterprise
Application Platform run in Domain mode.

MODE is either standalone or domain depending on whether your instance of JBoss Enterprise
Application Platform is running in standalone or domain mode. Substitute one of these whenever you
see MODE in a file path in this documentation.

CHAPTER 1. READ ME

5

https://access.redhat.com/site/documentation/

CHAPTER 2. JBOSS INTEGRATION AND SOA DEVELOPMENT

2.1. JBOSS INTEGRATION AND SOA DEVELOPMENT

The JBoss Integration and SOA Development plug-in is provided to support JBoss Fuse in JBoss
Developer Studio. It provides the following features:

Creation of SwitchYard projects

Adding SwitchYard capabilities to existing Maven based JBoss Developer Studio projects

Configuration of SwitchYard capabilities

A graphical editor for editing SwitchYard application configuration

Java2WSDL

XML catalog entries for SwitchYard configuration schema

Integration supporting the SwitchYard Maven plug-in (org.switchyard:switchyard-plugin)

Support for workspace deployment of SwitchYard projects

The JBoss Integration and SOA Development plug-in is provided by the JBoss Development Studio
Integration Stack.

2.2. INSTALLING JBOSS DEVELOPER STUDIO INTEGRATION STACK

JBoss Developer Studio Integration Stack is not packaged as part of JBoss Developer Studio
installations. These plug-ins must be installed independently through JBoss Central, as detailed in the
procedure below.

Procedure 2.1. Install JBoss Developer Studio Integration Stack

1. Start JBoss Developer Studio.

2. In JBoss Central, select the Software/Update tab. Scroll through the list to locate JBoss
Developer Studio Integration Stack. Select the check box next to JBoss Integration and
SOA Development and click Install.

Figure 2.1. Find JBoss Developer Studio Integration Stack in JBoss Central

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

6

Figure 2.1. Find JBoss Developer Studio Integration Stack in JBoss Central
Software/Update Tab

3. In the Install wizard, ensure the check boxes are selected for the software you want to install
and click Next. It is recommended that you install all of the selected components.

4. Review the details of the items listed for install and click Next. After reading and agreeing to the
license(s), click I accept the terms of the license agreement(s) and click Finish. The
Installing Software window opens and reports the progress of the installation.

5. During the installation process you may receive warnings about installing unsigned content. If
this is the case, check the details of the content and if satisfied click OK to continue with the
installation.

Figure 2.2. Warning Prompt for Installing Unsigned Content

6. Once installing is complete, you are prompted to restart the IDE. Click Yes to restart now and
No if you need to save any unsaved changes to open projects. Note that changes do not take
effect until the IDE is restarted.

Once installed, you may need to complete additional configuration actions before you can use the
individual JBoss Developer Studio Integration Stack components. For plug-in specific configuration

CHAPTER 2. JBOSS INTEGRATION AND SOA DEVELOPMENT

7

information, see the appropriate Red Hat JBoss product documentation available from
https://access.redhat.com/site/documentation on the Red Hat Customer Portal.

IMPORTANT

The installation method for early releases of JBoss Developer Studio Integration Stack
may vary from that given here. For instructions, see the appropriate Red Hat JBoss
product documentation available from https://access.redhat.com/site/documentation
on the Red Hat Customer Portal.

2.3. HELPFUL TIPS

Honor all XML schema locations

After installation, go to XML → XML Files → Validation → Preferences and ensure Honor all XML
schema locations check box is cleared. This prevents erroneous XML validation errors from
appearing on switchyard.xml files.

DTD warning

Importing SwitchYard quickstarts into JBoss Developer Studio results in non-fatal warnings
regarding log4j.dtd. These can be safely ignored. To stop receiving the warning, ensure the file
log4j.xml is closed before starting a project.

JavaSE-1.6 error message

When commencing a project, a warning may be displayed saying "Build path specifies execution
environment JavaSE-1.6". To disable this warning, go to your Java preferences and ensure that
JavaSE-1.7 JDK is checked to support JavaSE-1.6 environments.

2.4. RUNNING QUICKSTARTS FROM JBOSS DEVELOPER STUDIO

Overview

This topic demonstrates how to import a quickstart application to JBoss Developer Studio and then
deploy it to a running application server.

Prerequisites

The JBoss Integration and SOA Development tools must be installed from the JBoss Developer Studio
Integration Stack.

1. Open JBoss Developer Studio.

2. Click File → Import → Maven → Existing Maven Projects.

3. Select Browse and navigate to the quickstart directory, for example,
EAP_HOME/quickstarts/switchyard/bean-service and then select OK.

The import tool scans the directory to locate the associated pom.xml file.

4. Click Finish.

5. The quickstart is listed in the Project Explorer view. You can expand the project to explore its
contents.

6. In the Project Explorer view, right-click on the project's name and click Run as → Run on server

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

8

https://access.redhat.com/site/documentation
https://access.redhat.com/site/documentation

6. In the Project Explorer view, right-click on the project's name and click Run as → Run on server
→ EAP.

Result

The quickstart application is deployed to the server and enabled by default.

2.5. IMPORT PROJECTS FROM A GIT REPOSITORY IN JBOSS
DEVELOPER STUDIO

JBoss Developer Studio can be configured to connect to a central Git asset repository. The repository
is where versions of rules, models, functions and processes are stored. This Git repository must already
be defined by the KIE Workbench.

1. Start the Red Hat JBoss EAP server (if not already running) by selecting the server from the
server tab and click the start icon.

2. Select File → Import and expand Git. Select Projects from Git and click Next.

3. Select the repository source as URI and click Next.

4. Enter the details of the Git repository in the next window and click Next.

Figure 2.3. Git Repository Details

CHAPTER 2. JBOSS INTEGRATION AND SOA DEVELOPMENT

9

Figure 2.3. Git Repository Details

5. Select which branch you want to import in the next window and click Next.

6. You are presented with the option to define the local storage for this project. Enter (or select) a
non-empty directory, make any configuration changes and click Next.

7. Import the project as a general project in the next window and click Next. Name this project and
click Finish.

2.6. SETTING A NEW RULES RUNTIME IN JBOSS DEVELOPER STUDIO

Setting this runtime provides an environment for new rules sets. It consists of a collection of jar files
which are then utilized in rules creation. Once you have set up a runtime, you can go about adding and
modifying rules in JBoss Developer Studio.

1. Download and unzip the runtime jars files located in the jboss-brms-engine.zip archive of the
JBoss BRMS Deployable zip archive (available from Red Hat Customer Portal).

2. From the Red Hat JBoss Developer Studio menu, select Window and click Preferences.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

10

https://access.redhat.com

A:

Q:

A:

Q:

3. Select JBoss Rules → Installed JBoss Rules Runtimes → Runtime locations.

4. Click Add; provide a name for the new runtime, and click Browse to navigate to the directory
where the runtime is located.

5. Click OK, select the new runtime and click OK again. A dialog box indicates, if you have existing
projects, that JBoss Developer Studio must be restarted to update the Runtime.

2.7. EDITING THE SWITCHYARD CONFIGURATION FILE

The JBoss Integration and SOA Development plug-in for JBoss Developer Studio provides a graphical
editor for creating and maintaining your SwitchYard configuration file (switchyard.xml).

Assuming you have the plug-in installed, when you open a switchyard.xml file, by default it opens with
the SwitchYard Visual Multipage Editor.

From here you can choose between three tabs (or views):

Design

This is the primary graphical interface for building your SwitchYard application. From here you can
interact with and configure each of the application's entities, and add new entities from the Palette.
The visual design is automatically converted into XML which you can view from the Source tab.

Domain

In this tab you can set additional configuration such as Domain Properties and Security
Configurations. You can also enable message tracing from here.

Source

From the Source tab you can see the source XML which is generated automatically from the entities
configured in the Design tab.

NOTE

Users cannot modify the switchyard.xml file directly from the Source tab.

Why should I use the graphical editor?

The editor automatically manages dependencies for a project. For example, when you add
a new binding or implementation to a composite, the editor adds the necessary info to
switchyard.xml and the necessary Maven dependencies to the pom.xml. If you forget to
update the pom.xml, the project fails to build (validate).

The editor automatically manages namespaces based on the features being used and the
configuration level of the project.

The editor provides syntax and semantic validation, such as missing transformations and
unused references.

How can I modify the switchyard.xml file directly within JBoss Developer Studio?

1. Navigate to the src/main/resources/META-INF/switchyard.xml file in the Project
Explorer window.

CHAPTER 2. JBOSS INTEGRATION AND SOA DEVELOPMENT

11

2. Right-click on the file and select Open With → XML Editor.

IMPORTANT

Close the switchyard.xml file (as presented by the SwitchYard Visual
Multipage Editor) before opening it with the XML Editor to avoid
synchronization issues.

After completing your source edits, close the file and synchronize the
model for the visual editor: right-click on the project in the Project
Explorer, then select Maven → Update Project.

NOTE

The default editor for this file now is the XML Editor. To change it back to the
graphical editor, right-click on the file and select Open With → SwitchYard Visual
Multipage Editor.

WARNING

Red Hat recommends using the graphical editor to prevent corruption of the
switchyard.xml file. If the editor does not suit your needs, please consider
submitting a request for enhancement.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

12

CHAPTER 3. APPLICATION BASICS
This section introduces the basic building blocks of a SwitchYard application starting from an empty
application and building up to the complete application as shown below:

Figure 3.1. Composite

Each topic includes a visual representation of the switchyard.xml configuration file as designed in the
SwitchYard graphical editor and the corresponding source XML which is automatically generated from
the visual design.

3.1. COMPOSITE

A composite is displayed as a light blue rectangle and represents the boundary between what is inside
your application and what is outside your application. A SwitchYard application consists of exactly one
composite that has a name and a targetNamespace. The targetNamespace value is important as it
allows names defined locally in the application (for example, service names) to be qualified and unique
within a SwitchYard runtime.

Figure 3.2. Composite

CHAPTER 3. APPLICATION BASICS

13

Figure 3.2. Composite

Example 3.1. Sample Corresponding XML

3.2. COMPONENT

A component is a modular container for application logic and consists of the following:

0 or 1 component service definitions

0 to many component reference definitions

1 implementation

Services and references allow a component to interact with other components, while the implementation
provides the actual logic for providing or consuming services.

Figure 3.3. Component

<sca:composite name="example" targetNamespace="urn:example:switchyard:1.0">
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

14

Figure 3.3. Component

Example 3.2. Sample Corresponding XML

3.3. IMPLEMENTATION

An implementation acts as the brain of a service component and it is how implement your application
logic. The following implementation options are available:

Bean : allows a CDI Bean to consume or provide services using annotations

Camel : EIP-style routing and service composition using the XML or Java DSL in Apache Camel

BPMN 2 : service orchestration and human task integration expressed as BPMN 2 and executed
using jBPM

BPEL Process : web service orchestration using the OASIS Business Process Execution
Language

Rules : decision services based on Drools

Implementations are private to a component, which means external consumers and providers are not
aware of the details of a component's implementation (implementation-hiding). All interactions with
other components within an application and with external services are handled through component
services and references.

Figure 3.4. Implementation

<sca:component name="Routing">
</sca:component>

CHAPTER 3. APPLICATION BASICS

15

Figure 3.4. Implementation

Example 3.3. Sample Corresponding XML

3.4. COMPONENT SERVICE

A component service is used to expose the functionality of an implementation as a service. All
component services have a contract, which can be a Java interface, WSDL portType definition, or a set
of named data types (interface.esb). Component services are private to an application, which means a
component service can only be invoked by other components in the same application. In order to expose
a component service to consumers external to the application, a component service can be promoted to
a composite service. A component service can be promoted multiple times to create different
composite services.

Figure 3.5. Component Service

<sca:component name="Routing">
 <camel:implementation.camel>
 <camel:xml path="RoutingService.xml"/>
 </camel:implementation.camel>
</sca:component>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

16

Figure 3.5. Component Service

Example 3.4. Sample Corresponding XML

3.5. COMPOSITE SERVICE

A composite service represents an application service which is visible to other applications. A composite
service can only be realized by promoting a component service within the application. The name and the
interface of the composite service can be different from the component service. If the interface, or
contract, of the composite service is different from the component service, be aware that a
transformation may be required to map between the types defined in each interface. In our example
application, the component service has a Java interface while the composite service has a WSDL
interface. This means we must declare a transformer which maps between XML and Java to resolve the
data type mismatch.

Figure 3.6. Composite Service

<sca:component name="Routing">
 <camel:implementation.camel>
 <camel:xml path="route.xml"/>
 </camel:implementation.camel>
 <sca:service name="ServiceA">
 <sca:interface.java interface="org.example.ServiceA"/>
 </sca:service>
</sca:component>

CHAPTER 3. APPLICATION BASICS

17

Figure 3.6. Composite Service

Example 3.5. Sample Corresponding XML

3.6. SERVICE BINDING

A service binding is used to define an access method for a composite service. Composite services can
have multiple bindings, which allows a single service to be accessed in different ways. In most cases, a
service binding represents a protocol or transport adapter (for example, SOAP, JMS, and REST). An
important exception to this rule is the SCA binding, which allows services across applications in the same
runtime to be wired together in memory. Regardless of the underlying binding details, a binding must
always be used to facilitate inter-application communication in SwitchYard.

Figure 3.7. Service Binding

<sca:composite name="example" targetNamespace="urn:example:switchyard:1.0">
 <sca:service name="ServiceA" promote="Routing/ServiceA">
 <sca:interface.wsdl interface="ServiceA.wsdl#wsdl.porttype(ServiceAPortType)"/>
 </sca:service>
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

18

Figure 3.7. Service Binding

Example 3.6. Sample Corresponding XML

3.7. COMPONENT REFERENCE

A component reference allows a component to consume other services. A component reference can be
wired to a service offered by another component in the same application or it can be wired to services
outside the application with a composite reference. Similar to component services, all component
references have a contract which allows a component to invoke services without knowing
implementation or binding details. The picture below shows an example of wiring a reference on the
Routing component to a service offered by the Bean component.

Figure 3.8. Component Reference

<sca:composite name="example" targetNamespace="urn:example:switchyard:1.0">
 <sca:service name="ServiceA" promote="Routing/ServiceA">
 <sca:interface.wsdl interface="ServiceA.wsdl#wsdl.porttype(ServiceAPortType)"/>
 <soap:binding.soap>
 <soap:wsdl>ServiceA.wsdl</soap:wsdl>
 </soap:binding.soap>
 </sca:service>
</sca:composite>

CHAPTER 3. APPLICATION BASICS

19

Figure 3.8. Component Reference

Example 3.7. Sample Corresponding XML

3.8. COMPOSITE REFERENCE

A composite reference allows a component reference to be wired to a service outside the application.
Similar to composite services, bindings are used with composite references to specify the
communication method for invoking the external service.

Figure 3.9. Composite Reference

<sca:component name="Routing">
 <camel:implementation.camel>
 <camel:xml path="route.xml"/>
 </camel:implementation.camel>
 <sca:service name="ServiceA">
 <sca:interface.java interface="org.example.ServiceA"/>
 </sca:service>
 <sca:reference name="ServiceC">
 <sca:interface.java interface="org.example.ServiceC"/>
 </sca:reference>
</sca:component>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

20

Figure 3.9. Composite Reference

Example 3.8. Sample Corresponding XML

3.9. REFERENCE BINDINGS

A reference binding is used to define an access method for an external service with a composite
reference. Unlike service bindings, there can only be one binding for each composite reference. The set
of bindings available for references is identical to the set of bindings available for services, although the
configuration values for a given binding may be different depending on whether it is used as a service
binding or a reference binding.

Figure 3.10. Reference Bindings

<sca:composite name="example" targetNamespace="urn:example:switchyard:1.0">
 <sca:reference name="ReferenceB" multiplicity="0..1" promote="Routing/ServiceB">
 <sca:interface.java interface="org.example.ServiceB"/>
 </sca:reference>
</sca:composite>

CHAPTER 3. APPLICATION BASICS

21

Figure 3.10. Reference Bindings

Example 3.9. Sample Corresponding XML

NOTE

Although endpoint configuration can be static or dynamic (depending on the
component), the endpoint reference itself is static. An example of a dynamic endpoint
would be a file component configuration that maps properties (like file name) from the
incoming binding and carries it to the outgoing reference. In this manner, the output file
can be made to share the same name (in a different directory) as the incoming file that
triggered the service invocation. The user did not have to specify a filename on the
outgoing reference configuration - it was 'dynamic' and specified at runtime. Dynamic
addressing for HTTP-based endpoints (such as SOAP, RESTEasy, and HTTP) is not
currently available.

<sca:composite name="example" targetNamespace="urn:example:switchyard:1.0">
 <sca:reference name="ReferenceB" multiplicity="0..1" promote="Routing/ServiceB">
 <sca:interface.java interface="org.example.ServiceB"/>
 <jms:binding.jms>
 <jms:queue>MyQueue</jms:queue>
 <jms:connectionFactory>#ConnectionFactory</jms:connectionFactory>
 </jms:binding.jms>
 </sca:reference>
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

22

CHAPTER 4. SETTING UP THE SERVER
To make it possible for the tooling to manage a server, you need to add it to the Servers list. You can set
up target runtime server using the Servers view. Once added, the server is displayed in the Servers view.
Selecting a server in Servers view, enables you to start it, to stop it, or to delete its configuration. You
can add multiple servers of the same type, as long as each uses a separate installation directory.

NOTE

If you have added a default runtime server when installing JBoss Developer Studio, you
can see it in the Servers view.

4.1. ADD JBOSS EAP SERVER

1. In JBoss Developer Studio, click the Servers view. If the Servers view is not visible, click
Window → Show View → Servers.

2. If no servers have been previously created then the Servers view displays a new server hyperlink.
Click this link to create a new server.

If there are one or more existing servers, right-click an existing server and click New → Server.

3. In the Define a New Server dialog, select a JBoss Enterprise Application Platform server from
the Select the server type list.

4. The Server's host name and Server name fields are completed by default. In the Server name
field, you can type a custom name by which to identify the server in the Servers view.

5. From the Server runtime environment list, select an existing server runtime environment for
the application server type. Alternatively, to create a new runtime environment click Add and
complete the fields and options as appropriate.

NOTE

If the Server runtime environment field is not shown, no server runtime
environments exist for the selected application server type. To create a new
server runtime environment without canceling the wizard, click Next and
complete the fields and options as appropriate.

6. Click Next.

7. The server behavior options displayed vary depending on the selected application server type.
To specify that the server life-cycle is to be managed from outside the IDE, select the Server is
externally managed check box.

To specify that the server should be launched to respond to requests on all hostnames, select
the Listen on all interfaces to allow remote web connections check box.

From the location list, select Local. Click Next.

NOTE

CHAPTER 4. SETTING UP THE SERVER

23

NOTE

The Expose your management port as the server's hostname option, which
enables management commands sent by the IDE to be successfully received by
the server, is bypassed for local servers regardless of whether the check box is
selected.

8. To select applications to deploy with this server, from the Available list select the applications
and click Add. Applications to be deployed are detailed in the Configured list.

9. Click Finish to create the server.

Result

The new server appears in the list of servers in the Servers panel.

IMPORTANT

You can create multiple servers that use the same application server. But a warning is
displayed if you try to simultaneously run more than one server on the same host. This is
because multiple running servers on the same host can result in port conflicts.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

24

CHAPTER 5. SWITCHYARD PROJECT
A SwitchYard project is a Maven based project with the following characteristics:

a switchyard.xml file in the project's META-INF folder

one or more SwitchYard runtime dependencies declared in the pom.xml file

org.switchyard:switchyard-plugin Maven Old Java Object (MOJO) configured in the pom.xml
file

A SwitchYard project may also contain a variety of other resources used to implement the application,
for example: Java, BPMN2, DRL, BPEL, WSDL, XSD, and XML files.

The JBoss Developer Studio tooling supports the creation of new SwitchYard projects. The tooling also
allows users to add SwitchYard capabilities to existing Maven projects.

5.1. CREATING A NEW SWITCHYARD PROJECT

Use the New SwitchYard Project wizard to create new SwitchYard project in your workspace.

The wizard creates a new project with the following structure:

a switchyard.xml file in src/main/resources/META-INF/ directory

a pom.xml file declaring SwitchYard runtime dependencies and configuration for the
switchyard-plugin MOJO

a beans.xml file in src/main/resources/META-INF/ directory

a beans.xml file in src/test/resources/META-INF/ directory

a folder hierarchy for the specified Java package

Procedure 5.1. Create a New SwitchYard Project

1. Click File → New → Project to start the New Project wizard. Click SwitchYard → SwitchYard
Project and then click Next.

2. Enter the name and location for the new project and then click Next.

3. Provide other details for the project.

The library version can be specified directly using the Library Version field or indirectly by
selecting a Target Runtime. Selecting a target runtime sets the library version to match the
version provided by the target runtime.

NOTE

It is not necessary to select any components when creating the project. The
tooling automatically configures components on the project as necessary.

4. Click Finish to create the new project.

The SwitchYard editor displays the switchyard.xml file for the newly created SwitchYard project after
the wizard finishes.

CHAPTER 5. SWITCHYARD PROJECT

25

5.2. IMPORTING EXISTING MAVEN PROJECT

You can import the existing Maven projects to your workspace.

Procedure 5.2. Import a Maven Project

1. Click File → Import to import the existing project. Click Maven → Existing Maven Projects and
then click Next.

2. Click Browse and navigate to the directory where the project's pom.xml is located. Click OK.

3. The pom.xml file for the existing project is displayed in the Projects section. Click the check box
to select the desired POM file.

4. Click Finish to start the importing process.

The SwitchYard editor displays the switchyard.xml file for newly created SwitchYard project after the
wizard finishes.

5.3. ADDING SWITCHYARD CAPABILITIES TO EXISTING PROJECTS

SwitchYard capabilities may be added to existing projects in the workspace.

NOTE

SwitchYard capabilities can only be added to Maven projects.

Procedure 5.3. Add SwitchYard Capabilities to Existing Project

1. Right-click the project and click SwitchYard → Configure Capabilities to add (or modify)
SwitchYard capabilities.

2. The SwitchYard Settings dialog is displayed. Modify the settings as required. Click OK to
update the configuration.

Changes are reflected in the pom.xml file and switchyard.xml file.

5.4. EDITING SWITCHYARD PROJECTS

5.4.1. Editing the SwitchYard Configuration File

The JBoss Integration and SOA Development plug-in for JBoss Developer Studio provides a graphical
editor for creating and maintaining your SwitchYard configuration file (switchyard.xml).

Assuming you have the plug-in installed, when you open a switchyard.xml file, by default it opens with
the SwitchYard Visual Multipage Editor.

From here you can choose between three tabs (or views):

Design

This is the primary graphical interface for building your SwitchYard application. From here you can
interact with and configure each of the application's entities, and add new entities from the Palette.
The visual design is automatically converted into XML which you can view from the Source tab.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

26

A:

Q:

A:

Q:

Domain

In this tab you can set additional configuration such as Domain Properties and Security
Configurations. You can also enable message tracing from here.

Source

From the Source tab you can see the source XML which is generated automatically from the entities
configured in the Design tab.

NOTE

Users cannot modify the switchyard.xml file directly from the Source tab.

Why should I use the graphical editor?

The editor automatically manages dependencies for a project. For example, when you add
a new binding or implementation to a composite, the editor adds the necessary info to
switchyard.xml and the necessary Maven dependencies to the pom.xml. If you forget to
update the pom.xml, the project fails to build (validate).

The editor automatically manages namespaces based on the features being used and the
configuration level of the project.

The editor provides syntax and semantic validation, such as missing transformations and
unused references.

How can I modify the switchyard.xml file directly within JBoss Developer Studio?

1. Navigate to the src/main/resources/META-INF/switchyard.xml file in the Project
Explorer window.

2. Right-click on the file and select Open With → XML Editor.

IMPORTANT

Close the switchyard.xml file (as presented by the SwitchYard Visual
Multipage Editor) before opening it with the XML Editor to avoid
synchronization issues.

After completing your source edits, close the file and synchronize the
model for the visual editor: right-click on the project in the Project
Explorer, then select Maven → Update Project.

NOTE

The default editor for this file now is the XML Editor. To change it back to the
graphical editor, right-click on the file and select Open With → SwitchYard Visual
Multipage Editor.

CHAPTER 5. SWITCHYARD PROJECT

27

WARNING

Red Hat recommends using the graphical editor to prevent corruption of the
switchyard.xml file. If the editor does not suit your needs, please consider
submitting a request for enhancement.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

28

CHAPTER 6. SWITCHYARD CONTRACTS

6.1. SWITCHYARD CONTRACTS

SwitchYard uses a component service to expose the functionality of an implementation. All component
services and implementations have service contracts. You can define a contract depending on
Component Implementation and Service Binding.

A simple service has following contracts:

Component Contracts

Component Service

Component Reference

Composite Contracts

Composite Service

Composite Reference

Binding Contracts

Service Binding

Reference Binding

6.2. COMPONENT CONTRACTS

Component Contract can be either a Component Service or a Component Reference. A Component
Service is used to expose the functionality of an implementation as a service. A Component Reference

CHAPTER 6. SWITCHYARD CONTRACTS

29

allows a component to consume other services. A component contract can be defined in three different
ways in SwitchYard:

Java: Using a Java interface.

WSDL: Using a port type in a WSDL file.

ESB: Using a virtual interface definition. (No real file is used).

A component contract in SwitchYard has the following characteristics. All are optional:

argument: If used, this is the message content. It is optional as there can be operations that
don’t expect a message (for example, REST GET, Scheduled operations). Used in Exchanges of
type IN_ONLY and IN_OUT.

return type: If used, this is the message content for the response. Used only in Exchanges of
type IN_OUT.

exceptions: If used, this is the message content for the response in case of an Exception. Used in
Exchanges of type IN_ONLY and IN_OUT.

NOTE

Contracts in Camel can be defined with empty parameters, and users can still work with
the message content.

Java contract

A Java contract is defined by a Java Interface.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

30

NOTE

Java components require Java contracts.

WSDL contract

A WSDL contract is defined by a port type in a WSDL file.

CHAPTER 6. SWITCHYARD CONTRACTS

31

ESB contract

An ESB contract is a virtual contract (no file required) that declares the types of the input, output and
exception types.

NOTE

ESB contract may be used in components with one single operation.

6.3. TRANSFORMATIONS BETWEEN CONTRACTS

Transformation between contracts is necessary when a message flows in SwitchYard, and there are
different types in the contracts on both ends of the channel. Implicit or explicit transformations happen
wherever necessary. The extension points define how the transformation between types in contracts
must happen.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

32

Composite Service Binding and Composite Service / Composite Reference and Composite
Reference Binding

Contract differences are handled in the ServiceHandlers when composing and decomposing the
SwitchYard message. Any difference in contracts is handled in the Message composer.

NOTE

Camel and HttpMessageComposers carry out Camel Implicit Transformations if required.
If target type is JAXB, the class must have @XMLRootElement annotation.

Composite Service and Component Service / Component Reference and Composite
Reference

Contract differences are handled by transformers defined in the composite application, which are
applied by the ExchangeHandler chain during the execution of the Exchange. The transformers usually
map from an origin type to a destination type.

When the Exchange is between a composite service and a component service:

In the IN phase, from is the argument’s type of the composite service and the to is the type in
the component service.

In the OUT phase, from is the return/exception type of the component service and the to is the
return/exception type of the composite service.

When the Exchange is between a component reference and a composite reference:

In the IN phase, from is the argument’s type of the component reference and the to is the type
in the composite reference.

In the OUT phase, from is the return/exception type of the composite reference and the to is
the return/exception type of the component reference.

CHAPTER 6. SWITCHYARD CONTRACTS

33

NOTE

Some implicit transformations happen (without declaring a transformer) if SwitchYard
supports automatic transformation between both types, as declared by Camel
Transformer.

Component Service and Component Reference

Contract differences are handled in the component implementation, and has to be explicitly
transformed.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

34

IMPORTANT

If a Composite Service does not declare a contract, it uses the contract defined
by the promoted Component Service.

Every Component can have one Service.

Binding name can be null. In this case, a binding name is automatically generated
with "ServiceName+BindingType+i".

When the input parameter of a service contract is empty, the message does not
change, it is in its original form (e.g. java.io.Reader for streaming bindings like
http, File,…)

CHAPTER 6. SWITCHYARD CONTRACTS

35

CHAPTER 7. PACKAGING AND DEPLOYMENT FOR
SWITCHYARD

SwitchYard supports the following packaging types for deployment:

JAR

JAR is the default packaging type for SwitchYard apps.

WAR

WAR files are useful when you need to include additional libraries with your application or you have
web application resources (e.g. JSPs, JSF, etc.).

For an example of packaging as a WAR, see the quickstart at
EAP_HOME/quickstarts/switchyard/demos/orders.

EAR

EAR files support multiple application modules in a single deployment along with additional libraries.

EAR deployments allow multiple SwitchYard applications to be included in a single deployable
archive. Keep in mind that the SwitchYard applications included in an EAR are still considered
separate applications from a lifecycle and visibility (both class loading and service) standpoint. For an
example of deploying a SwitchYard application as an EAR, see the quickstart at
EAP_HOME/quickstarts/switchyard/ear-deployment.

7.1. DEPLOYMENT FOR SWITCHYARD

You can deploy SwitchYard applications to the server using file-based deployment, CLI, maven plugin,
and the management console. See the JBoss EAP deployment documentation for more information.

7.2. DEPLOY A WAR FILE FOR SWITCHYARD

To prepare a WAR file for deployment to SwitchYard, the SwitchYard component dependencies
(switchyard-*.jar) must be excluded as they are provided by the Fuse Service Works container. There are
two methods of excluding the SwitchYard dependencies:

1. Mark the SwitchYard dependencies as provided.

To do this, edit the pom.xml file for the WAR file. Mark the switchyard-*.jar dependiencies as
provided.

<dependency>
 <groupId>org.switchyard</groupId>
 <artifactId>switchyard-api</artifactId>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.switchyard.components</groupId>
 <artifactId>switchyard-component-bean</artifactId>
 <scope>provided</scope>
</dependency>
...

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

36

Next, configure switchyard-plugin in the pom.xml file:

2. Configure the Maven WAR plugin to exclude SwitchYard dependencies

An alternative to marking the SwitchYard dependencies as provided, is to use the Maven WAR
plugin to exclude SwitchYard dependencies. Edit the pom.xml file to include the following entry:

NOTE

The preferred method is option 1, Mark the SwitchYard dependencies as provided.

<plugin>
 <groupId>org.switchyard</groupId>
 <artifactId>switchyard-plugin</artifactId>
 <configuration>
 ...
 <!-- Output to war directory -->
 <outputFile>${project.build.directory}/${project.build.finalName}/WEB-
INF/switchyard.xml</outputFile>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>configure</goal>
 </goals>
 </execution>
 </executions>
</plugin>

<plugin>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>
 <packagingExcludes>
 WEB-INF/lib/*.jar,
 WEB-INF/classes/META-INF/switchyard.xml
 </packagingExcludes>
 <webResources>
 <resource>
 <directory>target/classes/META-INF</directory>
 <targetPath>WEB-INF</targetPath>
 <includes>
 <include>switchyard.xml</include>
 </includes>
 </resource>
 </webResources>
 </configuration>
</plugin>

CHAPTER 7. PACKAGING AND DEPLOYMENT FOR SWITCHYARD

37

CHAPTER 8. SERVICE IMPLEMENTATIONS

8.1. BEAN

8.1.1. Bean Service Component

The Bean Component is a pluggable container in SwitchYard which allows Java classes (or beans) to
provide and consume services. This means that you can implement a service by simply annotating a Java
class. It also means you can consume a service by injecting a reference to that service directly into your
Java class.

NOTE

In a SwitchYard Beans service implementation java:comp/BeanManager lookup via JNDI
is not supported. You can use @InjectBeanManager, which is supported.

8.1.2. Bean Services

Bean Services are standard CDI beans with a few extra annotations. This also opens up the possibilities
of how SwitchYard is used; you can now expose existing CDI-based beans in your application as services
to the outside world or consume services within your bean.

8.1.3. Create a Bean Service

Prerequisites

Name: the name of the Java class for your bean service.

Service Name: the name of the service your bean provides.

Interface: the contract for the service being provided. Java is the only valid interface type for
bean services.

Procedure 8.1. Task

1. Create a new Bean Service Class in the SwitchYard Editor JBoss Developer Studio plug-in.

NOTE

If you provide the interface value first, it automatically generates default names
for Name and Service Name.

Figure 8.1. Creating a New Bean Service

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

38

Figure 8.1. Creating a New Bean Service

The example above shows ExampleBean as the name of the class and
com.example.switchyard.docs.Example as the interface.

2. Click Finish.

Your new class looks like this:

package com.example.switchyard.docs;

import org.switchyard.component.bean.Service;

CHAPTER 8. SERVICE IMPLEMENTATIONS

39

The @Service annotation allows the SwitchYard CDI Extension to discover your bean at runtime
and register it as a service. The value of the annotation (Example.class in the above example)
represents the service contract for the service. Every bean service must have an @Service
annotation with a value identifying the service interface for the service.

3. After creating a bean service, complete the service definition by adding one or more operations
to the service interface and a corresponding implementation in your bean:

8.1.4. Providing a Service

Procedure 8.2. Task

In order to provide a service with the Bean component, add an @Service annotation to your
bean:

The SimpleService interface represents the Service Interface that defines the service
operations exposed by SwitchYard.

8.1.5. @Service

The @Service annotation allows the SwitchYard CDI Extension to discover your bean at runtime and
register it as a service. The value of the annotation (SimpleService.class in the above example)
represents the service contract for the service. Every bean service must have an @Service annotation
with a value identifying the service interface for the service.

The META-INF/beans.xml file in your deployed application tells the JBoss application server to look for

@Service(Example.class)
public class ExampleBean implements Example {
}

package com.example.switchyard.docs;

import org.switchyard.component.bean.Service;

@Service(Example.class)
public class ExampleBean implements Example {

 public void greet(Person person) {
 // implement service logic here for greet operation
 }
}

 @Service(SimpleService.class)
public class SimpleServiceBean implements SimpleService {
 public String sayHello(String message) {
 System.out.println("*** Hello message received: " + message);
 return "Hi there!!";
 }
}

public interface SimpleService {
 String sayHello(String message);
}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

40

The META-INF/beans.xml file in your deployed application tells the JBoss application server to look for
beans in this application and to activate the CDI. The SwitchYardCDIServiceDiscovery CDI extension
picks up the @Service beans and makes them available to the application deployer. The service can now
be invoked from other services within SwitchYard or bound to a wire protocol through SwitchYard
gateways.

8.1.6. Consuming a Service

Procedure 8.3. Task

In order to consume a SwitchYard service from within a CDI bean, add a @Reference annotation
to your bean:

By default, SwitchYard expects a service reference to be declared with a name which matches
the Java type used for the reference. In the above example, the SimpleService type expects a
service reference called "SimpleService" in your SwitchYard configuration. However, the
@Reference annotation also accepts a service name if the service reference name does not
match the Java type name of the contract. For example:

8.1.7. @Reference

The @Reference annotation enables CDI beans to consume other services. The reference can point to
services provided in the same application by other implementations, or to a service that is hosted
outside of SwitchYard and exposed over JMS, SOAP, or FTP. The JBoss application server routes the
invocations made through this reference through the SwitchYard exchange mechanism.

8.1.8. ReferenceInvoker

Although the @Reference annotation injects a reference using the Java interface of the reference
contract, it does not allow you to use SwitchYard API constructs like the Message and Context
interfaces.

When invoking a reference from a Bean service, the ReferenceInvoker enables you to access an
attachment or a context property.

@Service(ConsumerService.class)
public class ConsumerServiceBean implements ConsumerService {

 @Inject
 @Reference
 private SimpleService service;

 public void consumeSomeService() {
 service.sayHello("Hello");
 }
}

public interface ConsumerService {

 void consumeSomeService();
}

@Reference("urn:myservices:purchasing:OrderService")
private OrderService orders;

CHAPTER 8. SERVICE IMPLEMENTATIONS

41

To use a ReferenceInvoker, replace the service contract interface type with a ReferenceInvoker type. It
allows SwitchYard to inject the correct instance automatically.

NOTE

Red Hat recommends you create a new instance of ReferenceInvocation each time you
want to invoke a service using ReferenceInvoker.

For example, here is an instance which uses a ReferenceInvoker to invoke SimpleService.

8.1.9. Invocation Properties

While it is a best practice to write your service logic to the data that is defined in the contract (the input
and output message types), there can be situations where you need to access contextual information
like message headers such as received file name in your implementation. To facilitate this, the Bean
component allows you to access the SwitchYard Exchange Context instance associated with a given
Bean Service Operation invocation.

Invocation properties represent the contextual information (like message headers) in your bean
implementation.

8.1.10. Accessing Invocation Properties

Procedure 8.4. Task

To enable access to the invocation properties, add a Context property to your bean and
annotate it with the CDI @Inject annotation:

@Inject
@Reference("SimpleService")
private ReferenceInvoker service;

public void consumeSomeService(String consumerName) {
 service.newInvocation("sayHello")
 .setProperty("myHeader", "myValue")
 .invoke(consumerName);
}

package com.example.switchyard.docs;

import javax.inject.Inject;

import org.switchyard.Context;
import org.switchyard.component.bean.Service;
@Service(SimpleService.class)
public class SimpleServiceBean implements SimpleService {

@Inject
private Context context;

public String sayHello(String message) {

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

42

Here, the Context interface allows your bean logic to get and set properties in the context.

NOTE

You can invoke the Context instance only within the scope of one of the Service
Operation methods. If you invoke it outside this scope, it results in an
UnsupportedOperationException error.

8.1.11. @Inject

The @Inject annotation lets you define an injection point that is injected during bean instantiation. Once
your beans are registered as Services, they can be injected as CDI beans using @Inject annotation.

8.1.12. Implementation Properties

Implementation properties represent environmental properties that are defined in the SwitchYard
application descriptor (switchyard.xml) for your bean implementation.

8.1.13. Accessing Implementation Properties

Implementation properties represent environmental properties that you have defined in the SwitchYard
application descriptor (switchyard.xml) for your bean implementation. Implementation properties in
SwitchYard are the properties that you can configure on a specific service implementation. That is, you
can make the property value available to service logic executing inside an implementation container.
Here is an example:

Procedure 8.5. Task

To access the Implementation Properties, add an @Property annotation to your bean class
identifying the property you want to inject:

 System.out.println("*** Funky Context Property Value: " +
context.getPropertyValue("funkyContextProperty"));
 return "Hi there!!";
 }
}

<sca:component name="SimpleServiceBean">
 <bean:implementation.bean
class="com.example.switchyard.switchyard_example.SimpleServiceBean"/>
 <sca:service name="SimpleService">
 <sca:interface.java interface="com.example.switchyard.switchyard_example.SimpleService">
 <properties>
 <property name="userName" value="${user.name}"/>
 </properties>
 </sca:interface.java>
 </sca:service>
 </sca:component>

package com.example.switchyard.docs;

import org.switchyard.component.bean.Property;
import org.switchyard.component.bean.Service;

CHAPTER 8. SERVICE IMPLEMENTATIONS

43

Here, the @Property annotation is used for injecting the user.name property.

8.1.14. @Property

The @Property annotation enables you to identify the implementation property that you want to inject in
a bean.

8.2. BPM

8.2.1. BPM Component

SwitchYard implements the Business Process Management (BPM) functionality through the BPM
Component. The BPM Component is a pluggable container in SwitchYard that allows you to expose a
business process as a service. Using the BPM component, you can start a process, signal a process
event, or abort a process.

IMPORTANT

A JBoss Fuse subscription includes an entitlement to use embedded BPM as a
SwitchYard component only. All other uses (for example, with Apache Camel) require a
separate BPM subscription.

8.2.2. Create a BPM Service

Prerequisites

File Name: The file name of the new BPMN 2 Process definition.

Interface Type: The contract for the service provided by your bean. BPM supports Java and
WSDL contract types.

Service Name: The name of the service provided by your bean.

Procedure 8.6. Task

1. Create a new BPMN file in the SwitchYard Editor JBoss Developer Studio plug-in.

2. Input the values into the SwitchYard Editor's New SwitchYard BPMN File Screen.

Figure 8.2. New SwitchYard BPMN File Screen

@Service(SimpleService.class)
public class SimpleServiceBean implements SimpleService {

 @Property(name="userName")
 private String name;

 @Override
 public String sayHello(String message) {
 return "Hello " + name + ", I got a message: " + message;
 }

}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

44

Figure 8.2. New SwitchYard BPMN File Screen

3. Click Finish.

This creates a new service component definition for your process service and an empty BPMN
process definition.

4. After creating a new BPM Service, create the BPMN 2 process definition and configure the
BPM service component to interact with that process definition.

8.2.3. Process Interaction

You define interaction with a process by the actions you add to a BPM service component. Study this
sample code which is for a service contract:

CHAPTER 8. SERVICE IMPLEMENTATIONS

45

By using actions, you can map an operation in the service contract to one of the following interactions
with a business process:

START_PROCESS

Operations configured with the START_PROCESS action type start new process instances.

When you start your process (actually, any interaction with a service whose implementation is bpm),
the processInstanceId is put into the SwitchYard context at Scope.EXCHANGE and is fed back to
your client in a binding-specific way. For SOAP, it is in the form of a SOAP header in the SOAP
response envelope:

In future process interactions, you need to send back that same processInstanceId, so that the
correlation is done properly. For SOAP, that means including the same SOAP header that was
returned in the response to be sent back with subsequent requests.

IMPORTANT

If you are using persistence, the sessionId is also available in the Context, and must be
fed back as well. It looks the same as the processInstanceId in the SOAP header.

SIGNAL_EVENT

Operations configured with the SIGNAL_EVENT action type have to signal the associated process
instance. The processInstanceId must be available in the Context so the correct process instance is
correlated.

There are two other pieces of information that are needed when signaling an event:

The "id". In BPMN2 lexicon, this is known as the "signal id", but in jBPM can also be known as
the "event type". This is set as the id of the annotation.

NOTE

In BPMN2, a signal looks like this:

In jBPM, it is the signal id that is respected, not the name. This might require
you to tweak a tooling-generated id if you want to customize its name.

The "event object". This is the data representing the event itself. There are two ways to pass

package org.switchyard.userguide;
public interface MyService {
 public void start(String data);
 public void signal(String data);
 public void stop(String data);
}

<soap:Header>
 <bpm:processInstanceId xmlns:bpm="urn:switchyard-component-
bpm:bpm:1.0">1</bpm:processInstanceId>
</soap:Header>

<signal id="foo" value="bar"/>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

46

The "event object". This is the data representing the event itself. There are two ways to pass
in the event object:

1. The first way is through a Context object. The way in which this is passed is similar to the
processInstanceId, and it is known as "signalEvent". If you use this, you are limited to a
String type.

2. The second way is through the Message content object itself (that is, your payload). If
the signalEvent Context property is absent, the content of the Message is used as the
event object.

ABORT_PROCESS_INSTANCE

If an operation is configured with the ABORT_PROCESS_INSTANCE action type, associated process
instances are aborted. Note that the processInstanceId must be available in the Context so the
correct process instance is correlated.

8.2.4. Use Process Variables

Prerequisites

JBoss Developer Studio jBPM Plug-In

Procedure 8.7. Use Process Variables

1. Click on the white space around a process or on any of your process nodes.

2. Access the Properties view.

3. Declare the variablenames at the process level and in the Parameter Mapping (and possibly
Result Mapping).

8.2.5. Mappings

Mappings are the way to move data in or out of the action for that operation. You can specify as many
mappings as you like for an action, and they get grouped as globals, inputs or outputs:

Mapping variables from your SwitchYard Exchange, Context or Message into jBPM process variables
can be done with expressions. Each action for a process service has a distinct set of variable mappings.

Global mappings are used to provide data that is applicable to the entire action, and is often
used in classic in/out param (or data-holder/provider) fashion. An example of a global mapping
is a global variable specified within a Drools Rule Language (DRL) file.

Input mappings are used to provide data that represents parameters being fed into an action.
An example of an input mapping for BPM is a process variable used while starting a business
process. For Rules, it could be a fact to insert into a rules engine session.

Output mappings are used to return data from an action. An example of an output mapping is a
BPM process variable that you want to set as the outgoing (response) message’s content.

NOTE

The onlyexpressionType supported currently is MVEL, so you do not have to specify it.
The expression itself can be any MVEL expression

CHAPTER 8. SERVICE IMPLEMENTATIONS

47

8.2.6. expressionType Properties

These variables are available by default:

exchange

The current org.switchyard.Exchange.

context

The current org.switchyard.Context.

message

The current org.switchyard.Message.

Whatever the resultant value of the expression is constitutes the data that is made available to the
action.

This is the same as message.getContent().

This is the same as context.getProperty("foo", Scope.IN).getValue() in a null-safe manner.

NOTE

Specifying the scope attribute only matters if you use the context variable inside your
expression. If you don’t specify a scope, the default Context access (which is done like a
Map, if you picked up on that), is done with Scope.EXCHANGE for global mappings,
Scope.IN for input mappings, and Scope.OUT for output mappings.

Specifying the variable attribute is often optional, but this depends on the usage. For example, if you are
specifying a global variable for a rule, or a process variable to put into (or get out of) a BPM process,
then it is required. However, if the result of the expression is to be used as facts for rule session insertion,
then specifying a variable name is not applicable.

Here is some XML sample code:

8.2.7. Consuming a Service

There are two ways of consuming Services with the SwitchYard BPM component:

1. By invoking the BPM implementation through a gateway binding. Since the BPM component
exposes a Java interface fronting the business process, you can use any of the bindings
provided by SwitchYard. (You could, for example, use either a SOAP Binding or a Camel
Binding.)

2. By invoking other SwitchYard Services from inside a BPM process itself. To do this, you can use

expression="message.content"

expression="context[‘foo’]" scope="IN"

 <mapping expression="theExpression" expressionType="MVEL" scope="IN"
variable="theVariable"/>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

48

2. By invoking other SwitchYard Services from inside a BPM process itself. To do this, you can use
the SwitchYardServiceWorkItemHandler, which is provided out-of-the-box. (To make authoring
BPMN2 processes easier, SwitchYard provides a widget for the Eclipse BPMN2 Modeler visual
editor palette.)

8.2.8. SwitchYard Service Task Properties

You can use the following properties to configure the SwitchYard Service task.

Service Naming Properties:

ServiceName

This is the name of the SwitchYard service to invoke. It is a mandatory property

ServiceOperationName

This is the name of the operation within the SwitchYard service to invoke. It is an optional property.
(The default behavior is to use the single method name in the service interface, if there is just one.)

Content I/O Properties:

ContentInputName

This is the process variable into which the message content is placed. It is an optional property. The
default value is contentInput.

ContentOutputName

The process variable from which the message content is obtained. It is an optional property. The
default value is contentOutput.

Fault-Handling Properties:

FaultResultName

This is the name of the output parameter (in other words, the result variable) under which the
exception is stored. It is optional.

FaultSignalId

This is the bpmn signal id (or event type) that is used to signal an event in the same process instance.
The event object is the exception. This is an optional property.

FaultWorkItemAction

This property determines what happens after a fault occurs. If it is set to null, nothing is done. If set to
complete, the current work item (that is, the SwitchYard service task) is completed. If it is set to
abort, the current work item is aborted. (The default setting is null.) This property is optional.

8.2.9. SwitchYard Service Fault Handling

The SwitchYardServiceWorkItemHandler class is used for fault handling in the Switchyard Service
tasks during process execution. It executes service references according to the SwitchYard's fault-
handling properties that you have configured. The SwitchYard's fault-handling properties define the

CHAPTER 8. SERVICE IMPLEMENTATIONS

49

behavior of the SwitchYardServiceWorkItemHandler class when a fault is encountered during the
execution of the service reference.

You can use the SwitchYardServiceWorkItemHandler class for fault handling in the following
scenarios:

If you want to have a split gateway in your process flow, to inspect a process variable for any
occurrence of a fault. To achieve this, you need to set the following fault-handling properties in
your SwitchYard Service task:

FaultResultName: Specifying the FaultResultName property enables the
SwitchYardServiceWorkItemHandler class to make the fault available as an output
parameter of the task. You can then associate it with a process variable, and inspect for
existence in your split gateway.

FaultWorkItemAction: Specifying the FaultWorkItemAction property to complete enables
the process to continue on to your split gateway.

If you want to have a single shared path of fault-handling in your process flow. To achieve this,
you need to set the following fault-handling properties in your SwitchYard Service task:

FaultSignalId: Specifying the FaultSignalId property same as the Signal ID you specified in
your bpmn2 process definition, enables you to add an event node in your process that is
triggered with this signal id. The flow starting from this event node is your fault handling
path. The SwitchYardServiceWorkItemHandler class then signals the proper event with
the configured ID.

8.2.10. Using The Standard BPMN2 Service Task

You can invoke SwitchYard Services using the standard BPMN2 Service Task. You can use the Service
Task icon from the BPMN2 Editor palette and configure its properties. To configure the Service Task,
keep in mind the following points:

The <serviceTask> attribute invokes SwitchYard when it has an
implementation="##SwitchYard" attribute.

The ServiceName is derived from the BPMN2 interfaceImplementationRef.

The ServiceOperationName is derived from the BPMN2 operationImplementationRef.

The ContentInputName is always called Parameter.

The ContentOutputName is always called Result.

8.2.11. Resources

A resource represents an artifact that your BPM process uses at runtime. A resource can be a properties
file or a Drools Rule Language file. You can configure the list of resources available to your process in
the BPM service component.

8.2.12. WorkItemHandler Interface

A work item handler is responsible for executing work items of a specific type. They represent the glue
code between an abstract, high-level work item that is used inside the process and the implementation
of this work item. You can add your own code into the business process using the WorkItemHandler. To

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

50

do so, implement the org.kie.runtime.process.WorkItemHandler interface and add a handler
definition to your BPM service component.

8.3. BPEL

8.3.1. BPEL Component

The BPEL Component is a pluggable container in SwitchYard that allows you to expose a WS-BPEL
business process as a service through an interface defined using WSDL.

8.3.2. Providing a Service with the BPEL Component

Procedure 8.8.

1. Define your process using WS-BPEL within JBoss Developer Studio (with JBoss Integration and
SOA Development tooling installed).

2. Define a WSDL interface for the BPEL service.

3. Define a Deployment Descriptor using the ODE Deployment Descriptor editor bundled with
JBoss Tools.

4. Add the component containing the implementation and service interface to the SwitchYard
configuration.

8.3.3. Example of BPEL Component Configuration

Here is an example of the component section of the SwitchYard configuration:

The BPEL component contains a single implementation.bpel element that identifies the fully qualified
name of the BPEL process. This component may also contain one or more service elements defining the
WSDL port types through which the BPEL process can be accessed.

In the packaged Switchyard application, ensure that the BPEL process associated with this fully
qualified name must be present within the root folder of the distribution, along with the deployment
descriptor (deploy.xml). Here is an example of the deployment descriptor for the BPEL process
referenced above:

 <sca:component name="SayHelloService">
 <bpel:implementation.bpel process="sh:SayHello"/>
 <sca:service name="SayHelloService">
 <sca:interface.wsdl interface="SayHelloArtifacts.wsdl#wsdl.porttype(SayHello)"/>
 </sca:service>
 </sca:component>

 <deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03"
 xmlns:examples="http://www.jboss.org/bpel/examples">

 <process name="examples:SayHello">
 <active>true</active>
 <retired>false</retired>
 <process-events generate="all"/>
 <provide partnerLink="client">

CHAPTER 8. SERVICE IMPLEMENTATIONS

51

8.3.4. Consuming a Service from a BPEL Process

To enable a BPEL process to invoke other services, you need to define the WSDL interface representing
the service to be consumed, using an invoke element within the deployment descriptor. For example, in
the deploy.xml file:

Here, the usePeer2Peer property informs the BPEL engine not to use internal communications for
sending messages between BPEL processes that may be executing within the same engine, and instead
pass messages through the SwitchYard infrastructure.

For each consumed service, you can then create a reference element within the SwitchYard
configuration to locate the WSDL file and identify the port type associated with the required WSDL
service or port, as shown in the switchyard.xml file below:

8.3.5. Property Injection into a BPEL Process

You can inject properties into your BPEL process definition by using the
SwitchYardPropertyFunction.resolveProperty() XPath custom function. The bpel:copy section
copies Greeting property value into the ReplySayHelloVar variable in example shown below:

 <service name="examples:SayHelloService" port="SayHelloPort"/>
 </provide>
 </process>
 </deploy>

 <process name="ls:loanApprovalProcess">
 <active>true</active>
 <process-events generate="all"/>
 <provide partnerLink="customer">
 <service name="ls:loanService" port="loanService_Port"/>
 </provide>
 <invoke partnerLink="assessor" usePeer2Peer="false">
 <service name="ra:riskAssessor" port="riskAssessor_Port"/>
 </invoke>
 </process>

 <sca:component name="loanService">
 <bpel:implementation.bpel process="ls:loanApprovalProcess" />
 <sca:service name="loanService">
 <sca:interface.wsdl interface="loanServicePT.wsdl#wsdl.porttype(loanServicePT)"/>
 </sca:service>
 <sca:reference name="riskAssessor">
 <sca:interface.wsdl interface="riskAssessmentPT.wsdl#wsdl.porttype(riskAssessmentPT)"/>
 </sca:reference>
 </sca:component>

 <bpel:copy>
 <bpel:from
xmlns:property="java:org.switchyard.component.bpel.riftsaw.SwitchYardPropertyFunction"
 expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath2.0">
 <![CDATA[concat(property:resolveProperty('Greeting'),
$ReceiveSayHelloVar.parameters/tns:input)]]>
 </bpel:from>
 <bpel:to part="parameters" variable="ReplySayHelloVar">

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

52

8.3.6. Maintaining Multiple Versions of a BPEL Process

You can use the BPEL processes to implement long lasting stateful business processes. However the
BPEL process may need to change, over the course of its lifetime, to accommodate new requirements.
This introduces the problem of how to deal with the existing active instances of the BPEL process that
may not complete for weeks, months or even years. To deal with multiple version of a BPEL process and
to enable new requirements to be introduced (while still preserving the original process definitions
associated with existing active process instances), you can associate a version number with the BPEL
process by adding it as a suffix to the BPEL file name.

For example, if your BPEL process is located in the HelloWorld.bpel file, then you can simply add a
hyphen followed by the version number, such as HelloWorld-32.bpel. This indicates that this is the thirty
second version of this BPEL process. Whenever you define a new version of the BPEL process, package
it in the SwitchYard application along side the previous versions of the BPEL process. It is important that
the older version of the BPEL process remain in the SwitchYard application until there are no longer any
active process instances associated with that version. You need to then re-deploy the SwitchYard
application, without undeploying the previous version. If you undeploy the previous version of the
SwitchYard application, the BPEL engine deletes all outstanding active instances associated with the
deleted process definitions.

You can version the BPEL process but not the WSDL interfaces. So you must ensure that any changes
made to the WSDL interfaces are backward compatible, so that both the new and older versions of the
BPEL (that still have active process instances) are not affected by the changes.

8.3.7. Structure of a SwitchYard BPEL Application

For SwitchYard BPEL applications, the artifacts within the src/main/resources folder are structured
differently. The switchyard.xml configuration file is located in the META-INF folder. However, the
BPEL deployment descriptor (deploy.xml), and the BPEL process definition are located in the root
folder. You can locate the WSDL interface definitions, and any accompanying XSD schemas in the sub-
folders. You must ensure that the BPEL process and SwitchYard BPEL component configuration define
the correct relative path for the artifacts.

Here is an example that shows the structure of the say_hello SwitchYard BPEL quickstart:

8.4. CAMEL

 <bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0"><!
[CDATA[tns:result]]></bpel:query>
 </bpel:to>
 </bpel:copy>

say_hello
 src/main/java
 src/main/resources
 META-INF
 switchyard.xml
 deploy.xml
 SayHello.bpel
 SayHelloArtifacts.wsdl
 JRE System Library [JavaSE-1.6]
 src
 pom.xml

CHAPTER 8. SERVICE IMPLEMENTATIONS

53

8.4.1. Camel Services

Camel services allow you to leverage the core routing engine of Apache Camel to route between
services in SwitchYard. Camel endpoints function as protocol adapters, exposing services hosted in
SwitchYard to the outside world and allowing external services to be invoked from within SwitchYard.
You can define the Camel routes using Java DSL or XML and deploy them within SwitchYard to handle
pipeline orchestration between SwitchYard services.

8.4.2. Create a Camel Service

Prerequisites

Name: the name of the Java class or XML file for your bean service.

Service Name: the name of the service your bean provides.

Interface: the contract for the service being provided. Camel supports Java and WSDL contract
types.

Procedure 8.9. Create a Camel Service

1. Create a new Camel Route file resource in the SwitchYard Editor JBoss Developer Studio plug-
in.

2. Decide whether to use DSL or XML dialect for the route. (Functionally, they are more or less
equivalent, the choice is determined by how you want to express your routing logic.)

3. If you want create a Java DSL route, select the "Camel (Java)" implementation type. For XML,
use the "Camel (XML)" type.

4. Input the values into the SwitchYard Editor's New Route File Screen.

5. Click Finish.

8.4.3. Guidelines of Camel Route

These are some general guidelines to keep in mind when creating either type of route:

There is only one route per service.

The consumer or "from" endpoint in a route is always a "switchyard" endpoint and the endpoint
name must equal the service name. This is default behavior in the tooling.

To consume other services from within your route, only use "switchyard" consumer (in other
words "to") endpoints. This keeps your routing logic independent of the binding details for
consumed services.

8.4.4. Java DSL Route

You can define Camel routes using the Java Domain Specific Language (DSL). To implement the Java
DSL, extend the RouteBuilder class. As there can be only one route per service, you can have only one
RouteBuilder class for each Camel routing service in your application. You can then add logic to your
routing service in the configure() method as shown below:

package com.example.switchyard.docs;

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

54

8.4.5. XML Route

You can define Camel routes using XML. To define Camel routes in XML files, use the <route> tag with
the namespace "http://camel.apache.org/schema/spring" as shown below:

You can have only one file containing a route definition for each XML routing service in your application.

8.4.6. Consuming Services From Camel Routes

You can invoke another service from your Camel route by using the SwitchYard producer endpoint
(switchyard://) within your route as shown below:

Here,

service-name: Name of the SwitchYard service. This value should match the name of a service
reference defined on the service component for the route.

operation-name: Name of the service operation you want to invoke. This is only used on
references and is optional if the target service only has a single operation.

The example below illustrates the default XML route modified to invoke a SwitchYard service:

import org.apache.camel.builder.RouteBuilder;

public class CamelServiceRoute extends RouteBuilder {
 /**
 * The Camel route is configured through this method. The from:
 * endpoint is required to be a SwitchYard service.
 */
 public void configure() {
 // TODO Auto-generated method stub
 from("switchyard://Example").log(
 "Received message for 'Example' : ${body}");
 }
}

 <?xml version="1.0" encoding="ASCII"?>
 <route xmlns="http://camel.apache.org/schema/spring">
 <from uri="switchyard://Example"/>
 <log message="Example - message received: ${body}"/>
 </route>

switchyard://[service-name]?operationName=[operation-name]

 <?xml version="1.0" encoding="ASCII"?>
 <route xmlns="http://camel.apache.org/schema/spring">
 <from uri="switchyard://Example"/>
 <log message="Example - message received: ${body}"/>
 <!-- Invoke hasItem operation on WarehouseService -->
 <to uri="switchyard://WarehouseService?operationName=hasItem"/>
 </route>

CHAPTER 8. SERVICE IMPLEMENTATIONS

55

8.4.7. Message Exchange Pattern

Exchanges are of central importance in Apache Camel, because the exchange is the standard form in
which messages are propagated through routing rules. An exchange object consists of a message,
augmented by metadata. Using an Exchange object makes it easy to generalize message processing to
different message exchange patterns (MEP). See Apache Camel Development Guide for more
information about exchange objects and message exchange patterns in Camel.

It is possible to temporarily implement an InOut (Request/Response) MEP when the default has been
set as non Request/Response. For example, in the quickstarts/switchyard/camel-jpa-binding example
from the quickstarts on EAP, you can change the storeGreeting() method to be InOut by manipulating
the call.

This is the original call. No return value is specified.

Specify a return value and the established MEP will be overriden and will become an InOut MEP.

8.4.8. Using Scripting Languages

Camel supports dynamic scripting languages inside the XML and Java DSL route logic. You can use the
scripting languages in the following ways:

1. You can use them to create a predicate in a message filter as shown below:

2. You can use them to implement your service using transform element as shown below:

Additionally, you can generate responses by using predefined variables like request, response, or
exchange inside your script.

void storeGreeting(Greet event);

int storeGreeting(Greet event);

public class ScriptingBuilder extends RouteBuilder
{
public void configure()
{
from("switchyard://Inbound").filter().javaScript("request.getHeader('myHeader') !=
null").to("switchyard://Outbound");
}
}

public class ScriptingImplementationBuilder extends RouteBuilder {
public void configure()
{
from("switchyard://Inbound").transform().groovy("classpath:script.groovy");
// classpath resource
from("switchyard://InboundBsh").transform().language("beanshell", "file:script.bsh");
// file system resource
}
}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

56

https://access.redhat.com/documentation/en/red-hat-jboss-fuse/6.3/single/apache-camel-development-guide/#FMRS-BJDS

8.4.9. Supported Scripting Languages

SwitchYard supports the following scripting languages inside the XML and Java DSL route logic:

BeanShell

JavaScript

Groovy

Ruby

Python

8.4.10. Using CDI Beans in Camel Routes

The Camel component provides a convenient and powerful mechanism for routing between SwitchYard
services using Java DSL or XML routing definitions. When creating these routes, you may need to add
logic to the service pipeline that is specific to the Camel route. Instead of implementing your logic as a
service, you can add a CDI bean to your application and call that as a bean from within your Camel route.
SwitchYard integrates the CDI Bean Manager with the Camel Bean Registry to allow you to reference
CDI Beans in your Camel routes. For example, you can use the following CDI bean inside your
SwitchYard Camel Routes:

The SwitchYard Camel Route logic implemented with this CDI bean looks like this:

Any Java class annotated with @Named annotation in your application is available through Camel's
Bean registry.

8.4.11. Injecting Implementation Properties in Camel Routes

SwitchYard integrates with the Properties Component in Camel to make system and application
properties available inside your route definitions. You can inject properties into your camel route using
{{propertyName}} expression, where propertyName is the name of the property.

@Named("StringSupport")
@ApplicationScoped
public class StringUtil
 {
 public String trim(String string)
 {
 return string.trim();
 }
 }

 public class ExampleBuilder extends RouteBuilder
 {
 public void configure()
 {
 from("switchyard://ExampleBuilder")
 .split(body(String.class).tokenize("\n"))
 .filter(body(String.class).startsWith("sally:"))
 .to("bean:StringSupport");
 }
 }

CHAPTER 8. SERVICE IMPLEMENTATIONS

57

For example, the following camel route expects the user.name property to be injected in the last <Log>
statement:

8.5. RULES

8.5.1. Rules Component

The Rules component is a pluggable container in SwitchYard which allows you to expose business rules
as a service. You can add a custom interface to your rules and annotate its methods to define which
methods should execute the rules. The Rules component supports Drools as the rule engine.

IMPORTANT

A JBoss Fuse subscription includes an entitlement to use embedded BRMS (Drools) as a
SwitchYard component only. All other uses (for example, with Apache Camel) require a
separate BRMS subscription.

NOTE

In a SwitchYard Rules service implementation java:comp/BeanManager lookup via JNDI
is not supported. There is no supported alternative.

8.5.2. Create a Rules Service

Prerequisites

File Name: the name of the file that is used to create a new template rules definition.

Service Name: the name of the service that your rules provide.

Interface Type: the contract for the service being provided. Rules services support Java and
WSDL contract types.

Package Name: package name used for the new Rules file.

Procedure 8.10. Create a Rules Service

1. Create a new SwitchYard Rules file in the SwitchYard Editor JBoss Developer Studio plug-in.

2. The MyService interface can be as simple as this, with no SwitchYard-specific imports:

 <route xmlns="http://camel.apache.org/schema/spring" id="CamelTestRoute">
 <log message="ItemId [${body}]"/>
 <to uri="switchyard://WarehouseService?operationName=hasItem"/>
 <log message="Title Name [${body}]"/>
 <log message="Properties [{{user.name}}]"/>
 </route>

package com.example.switchyard.docs;
public interface Example {
 public void process(MyData data);
 }

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

58

3. The generated rule template looks like this:

4. Input the values into the SwitchYard Editor's SwitchYard Rules File screen.

5. Click Finish.

8.5.3. Stateless and Stateful Rules Executions

Introduction

By default, service method invocation creates a new Drools knowledge session, execute it given the
passed-in domain data and then be disposed cleanly.

However, it is possible to configure SwitchYard so that a stateful knowledge session is used. To do this,
you use the FIRE_ALL_RULES action type instead of EXECUTE.

There is also a capability which allows you to insert facts into a stateful knowledge session without firing
the rules. In this case, use the INSERT action type.

8.5.4. Stateless Knowledge Session

Stateless session that does not utilize inference is the simplest use case for JBoss Rules. A stateless
session can be called like a function. It can be passed some data and then receive some results back.

Here are some common use cases for stateless sessions:

Validation

Is this person eligible for a mortgage?

Calculation

Compute a mortgage premium.

Routing and Filtering

Filter incoming messages, such as emails, into folders.

Send incoming messages to a destination.

8.5.5. Stateful Knowledge Session

A stateful knowledge session is one which persists in memory, allowing it to span multiple invocations.
They can change iteratively over time. In contrast to a Stateless Session, the dispose() method must be

package com.example.switchyard.docs
import org.switchyard.Message
global Message message

rule "RulesExample"
 when
 // insert conditional here
 then
 // insert consequence here
 System.out.println("service: ExampleService, payload: " + message.getContent());
end

CHAPTER 8. SERVICE IMPLEMENTATIONS

59

called afterwards to ensure there are no memory leaks, as the Knowledge Base contains references to
Stateful Knowledge Sessions when they are created. StatefulKnowledgeSession also supports the
BatchExecutor interface, like StatelessKnowledgeSession, the only difference being that the
FireAllRules command is not automatically called at the end for a Stateful Session.

Here are some common use cases for Stateful Sessions:

Monitoring

Stock market monitoring and analysis for semi-automatic buying.

Diagnostics

Fault finding and medical diagnostics

Logistics

Parcel tracking and delivery provisioning

Compliance

Validation of legality for market trades.

8.5.6. Mapping Global Variables

You can map variables from your SwitchYard Exchange, Context or Message into JBoss Rules globals
with MVEL expressions.

1. To map the variables, hover the mouse over the Rules component in switchyard.xml and click
Properties icon.

Figure 8.3. Properties dialog for Rules Component

2. In the Properties dialog, click Implementation. From the right hand side panel, click Operations
tab to view Operation Mapping tooling window.

Figure 8.4. Operations Mapping

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

60

Figure 8.4. Operations Mapping

8.5.7. Map Global Variables

1. Configure the rules implementation.

NOTE

Your expression can use the variables exchange (org.switchyard.Exchange),
context (org.switchyard.Context) or message (org.switchyard.Message).

Context can be accessed in the expression as a java.util.Map. When accessing it
as such, the default properties Scope is IN. This can be overridden using the
contextScope attribute by changing it to OUT or EXCHANGE

2. Use these global variables in your JBoss Rules Drools Rule Language file:

NOTE

package example

global java.lang.String service
global java.lang.String messageId
global com.example.Payload payload

rule "Example"
 when
 ...
 then
 ...
 System.out.println("service: " + service + ", messageId: " + messageId + ", payload: " +
payload);
end

CHAPTER 8. SERVICE IMPLEMENTATIONS

61

NOTE

In a more realistic scenario, the payload would be accessed in rule firing because
it was inserted into the session directly by the RulesExchangeHandler, and thus
evaluated (rather than being accessed as a global).

8.5.8. Mapping Facts

The object which is inserted into the rules engine as a fact by default is the SwitchYard message's
content. However, you can override this by specifying your own fact mappings.

8.5.9. Notes About Mapping Facts

If you specify your own fact mappings, the SwitchYard message's content is not inserted as a
fact. You can add a fact mapping with an expression of "message.content" if you want to still
include it.

There is no point in specifying the "variable" attribute of the mappings (as done for global
mappings), as the result of each expression is inserted as a nameless fact.

For stateless execution, the full list of facts is passed to the StatelessKnowledgeSessions'
execute(Iterable) method.

For stateful execution, each fact is individually inserted into the StatefulKnowledgeSession.

If the result of the mapping expression implements Iterable (for example, a Collection), then the
result is iterated over, and each iteration is inserted as a separate fact, rather than the parent
Iterable itself being inserted. This is not recursive behavior (because it is only done once).

8.5.10. Auditing a Service

SwitchYard supports basic audit mechanism to audit the Drools rules execution. For auditing a service,
SwitchYard requires a CDI environment to run. You can write custom auditors for your service and use
listeners to monitor them. For example, you can use listeners to audit a BPM process and save the audit
details into a database while the process progresses. The listener then reports the audit details at a later
time.

8.5.11. Consuming a Service from the Rules Component

Consuming a SwitchYard Service from within the Rules Component leverages the Channels capability.
You can configure channels within your process that executes business rules.

8.6. KNOWLEDGE SERVICES

8.6.1. Knowledge Services

Knowledge Services are SwitchYard services that leverage Knowledge, Innovation and Enterprise (KIE)
and provide knowledge based content as outputs. The Knowledge Services leverage Drools and jBPM.
Drools and jBPM are tightly integrated under KIE, and hence both SwitchYard's BPM component and
Rules component share most of their runtime configuration.

8.6.2. Actions

When you invoke a SwitchYard operation, it results in the execution of the corresponding Action. Actions

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

62

are how Knowledge Services know how to map service operation invocations to their appropriate
runtime counterparts. For example, when you invoke a method myOperation, it may result in execution
of actions like execute some business rules or start a business process. Here is an example of Actions
attribute illustrating myOperation method and an action of type ACTION_TYPE:

Here, the placeholder ACTION_TYPE can hold values for the actual ActionTypes specific to the BPM
or Rules components.

8.6.3. Mappings

You can use Mappings to move data in or out of the action for an operation. You can specify as many
mappings as you like for an action. The mappings are categorized as global, input, and output mappings:

Global Mappings: Use the global mappings to provide data that is applicable to the entire action.
You can use them in an in/out parameter or a data-holder/provider structure. An example of a
global mapping is a global variable specified within a Drools Rule Language (DRL) file.

Input Mappings: Use the input mappings to provide data that represents parameters provided
to an action. An example of an input mapping for BPM is a process variable used while starting a
business process. An example of an input mapping for Rules is a fact to insert into a rules engine
session.

Output Mappings: Use the output mappings to return data out of an action. An example of an
output mapping is a BPM process variable that you want to set as the outgoing (response)
message’s content.

8.6.4. MVEL expressionType

The mappings support a default expressionType called MVEL. You can use following variables with
MVEL:

exchange: The current org.switchyard.Exchange.

context: The current org.switchyard.Context.

message: The current org.switchyard.Message.

Here are some examples of the expressions using default variables:

<actions>
 <action id="myId" operation="myOperation" type="ACTION_TYPE">
 <globals>
 <mapping/>
 </globals>
 <inputs>
 <mapping/>
 </inputs>
 <outputs>
 <mapping/>
 </outputs>
 </action>
</actions>

expression="message.content" - This is the same as message.getContent().
expression="context[‘foo’]" scope="IN" - This is the same as context.getProperty("foo",
Scope.IN).getValue(), in a null-safe manner.

CHAPTER 8. SERVICE IMPLEMENTATIONS

63

NOTE

Specify the scope attribute only if you use the context variable inside your expression. If
you do not specify a scope, the default Context access is done with Scope.EXCHANGE
for global mappings, Scope.IN for input mappings, and Scope.OUT for output mappings.

It is important to specify a global variable for a rule, or a process variable to put into (or get out of) a
BPM process. However, if you need to use the result of an expression as facts for rule session insertion,
then you need not specify a variable name. Here is an XML example of how you can specify variable
name:

8.6.5. Channels

Drools support the use of Channels that are the exit points in your Drools Rule Language (DRL) file.
Channels must implement org.kie.runtime.Channel. Here is an example illustrating the use of channels
in a method:

The following example illustrates use of channels in XML:

8.6.6. SwitchYard Service Channel

SwitchYard provides an out-of-the-box channel called SwitchYard Service channel, which allows you to
invoke (one-way) other SwitchYard services directly and easily from your DRL. Here is an example:

Here,

class: The channel implementation class. Default value is SwitchYardServiceChannel.

name: The channel name.

 <mapping expression="theExpression" expressionType="MVEL" scope="IN"
variable="theVariable"/>

package com.example
rule "example rule"
 when
 $f : Foo (bar > 10)
 then
 channels["Bar"].send($f.getBar());
end

<channels>
 <channel class="com.example.BarChannel" name="Bar"/>
</channels>

<channel name="HelloWorld" reference="HelloWorld" operation="greet"/>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

64

reference: The service reference qualified name.

operation: The service reference operation name.

input: The service reference operation input name.

8.6.7. Listeners

You can use Listeners to monitor specific types of events that occur during Knowledge execution. For
example, you can use listeners to audit a BPM process and save the audit details into a database while
the process progresses. The listener then reports the audit details at a later time. Drools and jBPM
provide many out-of-the-box listeners. If you write your own listener, ensure that it implements
java.util.EventListener.

To register your listener, you must implement one of the KIE/Drools/jBPM Listener interfaces. For
example:

org.drools.event.WorkingMemoryEventListener

org.drools.event.AgendaEventListener

org.kie.event.process.ProcessEventListener

Here is an example of listener implementation:

8.6.8. Loggers

Loggers are special types of listeners, which you can use to output the events that occur during
Knowledge execution. Support for loggers use a dedicated configuration element. You can log events to
the console or a file. If events log are directed to a file, you can open those logs with the JBoss
Developer Studio or JBoss Developer Studio Integration Stack. Here is an example of a logger
implementation:

8.7. MANIFEST

8.7.1. Manifest

The Manifest is where you specify from where the "intelligence" of the component is to come. For the
BPM component, you need to specify, at the minimum, the location of the BPMN 2 process definition
file. For the Rules component, you can specify the location of DRL, DSL, DSLR or XLS files.

<listeners><listener class="org.drools.event.DebugProcessEventListener"/>
<listener class="org.kie.event.rule.DebugWorkingMemoryEventListener"/>
<listener class="com.example.MyListener"/>
</listeners>

<loggers>
 <logger interval="2000" log="myLog" type="THREADED_FILE"/>
 <logger type="CONSOLE/>
</loggers>

CHAPTER 8. SERVICE IMPLEMENTATIONS

65

8.7.2. Ways of Configuring the Manifest

NOTE

The following code examples assume there is a DRL file located on the classpath at
com/example/MyRules.drl.

There are two ways to to configure the Manifest:

with a KIE Container. (This relies upon the existence of a META-INF/kmodule.xml configuration
file.)

Here is the sample META-INF/kmodule.xml file:

Here is the sample XML file:

In addition to the sessionName attribute, you can also specify baseName and releaseId, if you
desire.

To enable it to scan for updates, simply set scan="true" and, optionally,

with a manually defined list of resources.

Here is the sample XML file:

IMPORTANT

These two options are mutually exclusive: You have to choose one or the other.

8.8. PROPERTIES

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">
 <kbase name="com.example">
 <ksession name="my-session"/>
 </kbase>
</kmodule>

<manifest>
 <container sessionName="my-session"/>
</manifest>

 scanInterval=<# of milliseconds>

<manifest>
 <resources>
 <resource location="com/example/MyProcess.bpmn" type="BPMN2"/>
 <resource location="com/example/MyRules.drl" type="DRL"/>
 </resources>
</manifest>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

66

8.8.1. Properties

Properties allow you to provide "hints" to the underlying KIE/Drools/jBPM runtime on how certain
options are configured. Use them to avoid having to expose every single KIE/Drools/jBPM option as a
configurable element or attribute within SwitchYard.

8.8.2. Add a Property

Procedure 8.11. Add a Property

1. Launch the JBoss Developer Studio's SwitchYard Editor.

2. Open a Type Hierarchy that has a root of org.kie.conf.Option.

3. Here you can see the full list. Here is one example:

<properties>
 <property name="drools.clockType" value="pseudo"/>
 <property name="drools.eventProcessingMode" value="stream"/>
</properties>

CHAPTER 8. SERVICE IMPLEMENTATIONS

67

CHAPTER 9. GATEWAYS

9.1. WHAT IS A GATEWAY

Gateway is a network point that enables the SwitchYard applications to interact with services outside
the application. They provide connectivity to/from external systems

9.2. BINDINGS

The Service Component Architecture (SCA) binding provides a means by which SwitchYard services and
SwitchYard-aware clients communicate with one another. It facilitates inter-application communication
within a SwitchYard runtime and provides clustering of SwitchYard services in two or more SwitchYard
instances.

This section provides details on the out of the box gateway bindings provided with the SwitchYard
application.

9.2.1. SOAP

The SOAP component in SwitchYard provides SOAP-based web service binding support for services
and references.

NOTE

More information about incorporating WS-Security is available in this guide.

See Also:

Section 9.2.1.4.1, “Enable WS-Security”

9.2.1.1. Binding Services with SOAP

You can expose composite-level services as a SOAP-based web service using the

binding definition. The following configuration options are available:

wsdl

This is the location of the WSDL used to describe the web service endpoint. A relative path can be
used if the WSDL is included in the deployed application. If the WSDL is located outside the
application, then you can use a file: or http: URL.

socketAddr

This is the IP Socket Address to be used. The value can be in the form of
hostName/ipAddress:portNumber, hostName/ipAddress or :portNumber.

wsdlPort

This is the port name in the WSDL to use. If you leave it unspecified, the first port definition in the
WSDL is used for the service endpoint.

<binding.soap>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

68

contextPath

This is an additional context path for the SOAP endpoint. (The default is none.)

NOTE

By default, the JBossWS-CXF stack is enabled on JBoss EAP, so the socketAddr
parameter is ignored. However, this parameter can be used for standalone usage.

Example 9.1. Sample SOAP Service Binding

9.2.1.2. Binding References with SOAP

You can bind references with SOAP to make SOAP-based web services available to SwitchYard
services. The following configuration options are available:

wsdl

This is the location of the WSDL used to describe the web service endpoint. A relative path can be
used if the WSDL is included in the deployed application. (If the WSDL is located outside the
application, then you can use a file: or http: URL.)

wsdlPort

This is the port name in the WSDL to use. If you leave it unspecified, the first port definition in the
WSDL is used for the service endpoint.

endpointAddress

This SOAP endpoint address overrides the address specified in the WSDL. This is an optional
property. If you do not specify it, the endpoint address specified in the WSDL is used instead.

timeout

This is the requests timeout value in milliseconds.

proxy

This is the HTTP Proxy settings for the endpoint.

basic/ntlm

This is the authentication configuration for the endpoint.

Example 9.2. Sample SOAP Reference Binding

<sca:composite name="orders" targetNamespace="urn:switchyard-quickstart-demo:orders:0.1.0">
 <sca:service name="OrderService" promote="OrderService">
 <soap:binding.soap>
 <soap:wsdl>wsdl/OrderService.wsdl</soap:wsdl>
 <soap:socketAddr>:9000</soap:socketAddr>
 </soap:binding.soap>
 </sca:service>
</sca:composite>

CHAPTER 9. GATEWAYS

69

9.2.1.2.1. Proxy Configuration

If you need the SOAP reference to pass through a proxy server, then provide the proxy server
configuration using the proxy element. The following configuration options are available:

type : The proxy type. This can be HTTP or SOCKS. The default is HTTP.

host : The proxy host.

port : The proxy port (optional).

user : The proxy user (optional).

password : The proxy password (optional).

Example 9.3. Sample SOAP Proxy Configuration

9.2.1.2.2. Authentication Configuration

If the SOAP reference endpoint is secured using BASIC or NTLM, then you can provide the
authentication configuration using the BASIC or NTLM elements. The following configuration options
are available:

user : The user name.

<sca:composite name="orders" targetNamespace="urn:switchyard-quickstart-demo:orders:0.1.0">
 <sca:reference name="WarehouseService" promote="OrderComponent/WarehouseService"
multiplicity="1..1">
 <soap:binding.soap>
 <soap:wsdl>wsdl/OrderService.wsdl</soap:wsdl>
 <soap:endpointAddress></soap:endpointAddress>
 </soap:binding.soap>
 </sca:reference>
</sca:composite>

<sca:composite name="orders" targetNamespace="urn:switchyard-quickstart-demo:orders:0.1.0">
 <sca:reference name="WarehouseService" promote="OrderComponent/WarehouseService"
multiplicity="1..1">
 <soap:binding.soap>
 <soap:wsdl>wsdl/OrderService.wsdl</soap:wsdl>
 <soap:endpointAddress>[</soap:endpointAddress>
 <soap:proxy>
 <soap:type>HTTP</soap:type>
 <soap:host>192.168.1.2</soap:host>
 <soap:port>9090</soap:port>
 <soap:user>user</soap:user>
 <soap:password>password</soap:password>
 </soap:proxy>
 </soap:binding.soap>
 </sca:reference>
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

70

password : The password.

host : The authentication host (optional).

port : The authentication port (optional).

realm : The authentication realm (optional, applicable only for BASIC).

domain: The Windows domain for authentication (optional, applicable only for NTLM).

Example 9.4. Sample NTLM Authentication Configuration

9.2.1.3. Enabling SOAP Message Logging for SOAP Binding

To log inbound and outbound SOAP messages on SOAP binding, turn on DEBUG level logging for
switchyard.component.soap.InboundHandler and switchyard.component.soap.OutboundHandler.

Add the following to EAP_HOME/standalone/configuration/standalone.xml:

<logger category="org.switchyard.component.soap.InboundHandler">
 <level name="DEBUG" />
</logger>
<logger category="org.switchyard.component.soap.OutboundHandler">
 <level name="DEBUG" />
</logger>

9.2.1.4. WS-Security

9.2.1.4.1. Enable WS-Security

Procedure 9.1. Enable WS-Security

1. Define a Policy within your WSDL and reference it with a PolicyReference inside your binding.

2. Configure your <soap.binding> with an <endpointConfig> to ensure that JBossWS-CXF is
configured appropriately.

3. Configure your <soap.binding> with an <inInterceptors> section, including the appropriate

<sca:composite name="orders" targetNamespace="urn:switchyard-quickstart-demo:orders:0.1.0">
 <sca:reference name="WarehouseService" promote="OrderComponent/WarehouseService"
multiplicity="1..1">
 <soap:binding.soap>
 <soap:wsdl>wsdl/OrderService.wsdl</soap:wsdl>
 <soap:endpointAddress>[</soap:endpointAddress>
 <soap:ntlm>
 <soap:user>user</soap:user>
 <soap:password>password</soap:password>
 <soap:domain>domain</soap:domain>
 </soap:ntlm>
 </soap:binding.soap>
 </sca:reference>
</sca:composite>

CHAPTER 9. GATEWAYS

71

3. Configure your <soap.binding> with an <inInterceptors> section, including the appropriate
JBossWS-CXF <interceptor> to handle incoming SOAP requests.

4. Include a WEB-INF/jboss-web.xml file in your application with a <security-domain> specified, so
that JBossWS-CXF knows which modules to use for authentication and role mapping.

9.2.1.4.2. Sample WS-Security Configurations

JBoss Fuse provides the policy-security-wss-username quickstart application as an example. The
following are the pertinent sections:

META-INF/WorkService.wsdl:

META-INF/switchyard.xml:

META-INF/jaxws-endpoint-config.xml:

<binding name="WorkServiceBinding" type="tns:WorkService">
 <wsp:PolicyReference URI="#WorkServicePolicy"/>
 ...
</binding>
<wsp:Policy wsu:Id="WorkServicePolicy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SupportingTokens xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702">
 <wsp:Policy>
 <sp:UsernameToken sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SupportingTokens>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

<binding.soap xmlns="urn:switchyard-component-soap:config:1.0">
 <wsdl>META-INF/WorkService.wsdl</wsdl>
 <contextPath>policy-security-wss-username</contextPath>
 <endpointConfig configFile="META-INF/jaxws-endpoint-config.xml"
configName="SwitchYard-Endpoint-Config"/>
 <inInterceptors>
 <interceptor
class="org.jboss.wsf.stack.cxf.security.authentication.SubjectCreatingPolicyInterceptor"/>
 </inInterceptors>
</binding.soap>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"
xmlns:javaee="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-
config_4_0.xsd">

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

72

WEB-INF/jboss-web.xml:

With these in place, JBossWS-CXF intercepts incoming SOAP requests, extract the UsernameToken,
attempt to authenticate it against the LoginModule(s) configured in the application server's "other"
security domain, and provide any authorized roles. If successful, the request is handed over to
SwitchYard, which processes it further, including enforcing your own policies. In the case of WS-Security,
SwitchYard does not attempt a second clientAuthentication, but instead respects the outcome from
JBossWS-CXF.

NOTE

If the original clientAuthentication fails, this is a "fail-fast" scenario, and the request is not
channeled into SwitchYard.

9.2.1.4.3. Signature and Encryption Support

To setup WS-Security encryption, ensure the following:

The Policy in your WSDL must reflect the added requirements. See Section 9.2.1.4.3.1, “Sample
Endpoint Configurations”, Section 9.2.1.4.3.2, “Sample Client Configurations”, and
Section 9.2.1.4.3.3, “Endpoint Serving Multiple Clients” .

Configure your <soap.binding> with an <endpointConfig> to ensure JBossWS-CXF is configured
appropriately.

For example:

META-INF/switchyard.xml

META-INF/jaxws-endpoint-config.xml

 <endpoint-config>
 <config-name>SwitchYard-Endpoint-Config</config-name>
 <property>
 <property-name>ws-security.validate.token</property-name>
 <property-value>false</property-value>
 </property>
 </endpoint-config>
</jaxws-config>

<jboss-web>
 <security-domain>java:/jaas/other</security-domain>
</jboss-web>

<binding.soap xmlns="urn:switchyard-component-soap:config:1.0">
 <wsdl>META-INF/WorkService.wsdl</wsdl>
 <contextPath>policy-security-wss-username</contextPath>
 <endpointConfig configFile="META-INF/jaxws-endpoint-config.xml" configName="SwitchYard-
Endpoint-Config">
</binding.soap>

<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"
xmlns:javaee="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

CHAPTER 9. GATEWAYS

73

META-INF/bob.properties

See Also:

Section 9.2.1.4.4, “Sample CXF Interceptor Configurations”

9.2.1.4.3.1. Sample Endpoint Configurations

An endpoint declares all the abstract methods that are exposed to the client. You can use endpoint
configurations to include property declarations. The endpoint implementations can be associated with a
given endpoint configuration using the @EndpointConfig annotation. The following steps describe a
sample endpoint configuration:

1. Create the web service endpoint using JAX-WS. Use a contract-first approach when using WS-
Security as the policies declared in the WSDL are parsed by the Apache CXF engine on both
server and client sides. Here is an example of WSDL contract enforcing signature and
encryption using X 509 certificates:

xsi:schemaLocation="urn:jboss:jbossws-jaxws-config:4.0 schema/jbossws-jaxws-
config_4_0.xsd">
 <endpoint-config>
 <config-name>SwitchYard-Endpoint-Config</config-name>
 <property>
 <property-name>ws-security.callback-handler</property-name>
 <property-
value>org.switchyard.quickstarts.demo.policy.security.wss.signencrypt.WorkServiceCallbackHandler<
/property-value>
 </property>
 <property>
 <property-name>ws-security.encryption.properties</property-name>
 <property-value>META-INF/bob.properties</property-value>
 </property>
 <property>
 <property-name>ws-security.encryption.username</property-name>
 <property-value>alice</property-value>
 </property>
 <property>
 <property-name>ws-security.signature.properties</property-name>
 <property-value>META-INF/bob.properties</property-value>
 </property>
 <property>
 <property-name>ws-security.signature.username</property-name>
 <property-value>bob</property-value>
 </property>
 </endpoint-config>
</jaxws-config>

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.alias=bob
org.apache.ws.security.crypto.merlin.file=META-INF/bob.jks

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

74

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions targetNamespace="http://www.jboss.org/jbossws/ws-
extensions/wssecuritypolicy" name="SecurityService"
 xmlns:tns="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 xmlns:wsaws="http://www.w3.org/2005/08/addressing"
 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy"
schemaLocation="SecurityService_schema1.xsd"/>
 </xsd:schema>
 </types>
 <message name="sayHello">
 <part name="parameters" element="tns:sayHello"/>
 </message>
 <message name="sayHelloResponse">
 <part name="parameters" element="tns:sayHelloResponse"/>
 </message>
 <portType name="ServiceIface">
 <operation name="sayHello">
 <input message="tns:sayHello"/>
 <output message="tns:sayHelloResponse"/>
 </operation>
 </portType>
 <binding name="SecurityServicePortBinding" type="tns:ServiceIface">
 <wsp:PolicyReference URI="#SecurityServiceSignThenEncryptPolicy"/>
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="sayHello">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="SecurityService">
 <port name="SecurityServicePort" binding="tns:SecurityServicePortBinding">
 <soap:address location="http://localhost:8080/jaxws-samples-wssePolicy-sign-encrypt"/>
 </port>
 </service>

 <wsp:Policy wsu:Id="SecurityServiceSignThenEncryptPolicy"
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:AsymmetricBinding
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>

CHAPTER 9. GATEWAYS

75

 <sp:InitiatorToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Always
ToRecipient">
 <wsp:Policy>
 <sp:WssX509V1Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:InitiatorToken>
 <sp:RecipientToken>
 <wsp:Policy>
 <sp:X509Token
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never"
>
 <wsp:Policy>
 <sp:WssX509V1Token11/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:RecipientToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp-cxf:Basic128GCM xmlns:sp-cxf="http://cxf.apache.org/custom/security-
policy"/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>
 <sp:Lax/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 <sp:EncryptSignature/>
 <sp:OnlySignEntireHeadersAndBody/>
 <sp:SignBeforeEncrypting/>
 </wsp:Policy>
 </sp:AsymmetricBinding>
 <sp:SignedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 </sp:SignedParts>
 <sp:EncryptedParts xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Body/>
 </sp:EncryptedParts>
 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:MustSupportRefIssuerSerial/>
 </wsp:Policy>
 </sp:Wss10>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
</definitions>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

76

You can generate the service endpoint using the wsconsume tool and then use a
@EndpointConfig annotation as shown below:

2. Use the referenced jaxws-endpoint-config.xml descriptor to provide a custom endpoint
configuration with the required server side configuration properties as shown below. This tells
the engine which certificate or key to use for signature, signature verification, encryption, and
decryption.

package org.jboss.test.ws.jaxws.samples.wsse.policy.basic;

import javax.jws.WebService;
import org.jboss.ws.api.annotation.EndpointConfig;

@WebService
(
 portName = "SecurityServicePort",
 serviceName = "SecurityService",
 wsdlLocation = "WEB-INF/wsdl/SecurityService.wsdl",
 targetNamespace = "http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",
 endpointInterface = "org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceIface"
)
@EndpointConfig(configFile = "WEB-INF/jaxws-endpoint-config.xml", configName = "Custom
WS-Security Endpoint")
public class ServiceImpl implements ServiceIface
{
 public String sayHello()
 {
 return "Secure Hello World!";
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<jaxws-config xmlns="urn:jboss:jbossws-jaxws-config:4.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee" xsi:schemaLocation="urn:jboss:jbossws-
jaxws-config:4.0 schema/jbossws-jaxws-config_4_0.xsd">
 <endpoint-config>
 <config-name>Custom WS-Security Endpoint</config-name>
 <property>
 <property-name>ws-security.signature.properties</property-name>
 <property-value>bob.properties</property-value>
 </property>
 <property>
 <property-name>ws-security.encryption.properties</property-name>
 <property-value>bob.properties</property-value>
 </property>
 <property>
 <property-name>ws-security.signature.username</property-name>
 <property-value>bob</property-value>
 </property>
 <property>
 <property-name>ws-security.encryption.username</property-name>
 <property-value>alice</property-value>

CHAPTER 9. GATEWAYS

77

Here,

The bob.properties configuration file includes the WSS4J Crypto properties which in turn
links to the keystore file, type, alias, and password for accessing it. For example:

The callback handler enables Apache CXF to access the keystore. For example:

 </property>
 <property>
 <property-name>ws-security.callback-handler</property-name>
 <property-
value>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.KeystorePasswordCallback</prope
rty-value>
 </property>
 </endpoint-config>
</jaxws-config>

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin

org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.alias=bob
org.apache.ws.security.crypto.merlin.keystore.file=bob.jks

package org.jboss.test.ws.jaxws.samples.wsse.policy.basic;

import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class KeystorePasswordCallback implements CallbackHandler {
 private Map<String, String> passwords = new HashMap<String, String>();

 public KeystorePasswordCallback() {
 passwords.put("alice", "password");
 passwords.put("bob", "password");
 }

 /**
 * It attempts to get the password from the private
 * alias/passwords map.
 */
 public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];

 String pass = passwords.get(pc.getIdentifier());

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

78

3. Assuming the bob.jks keystore is properly generated and contains the server Bob's full key as
well as the client Alice's public key, you can proceed to packaging the endpoint. Here is the
expected content:

 if (pass != null) {
 pc.setPassword(pass);
 return;
 }
 }
 }

 /**
 * Add an alias/password pair to the callback mechanism.
 */
 public void setAliasPassword(String alias, String password) {
 passwords.put(alias, password);
 }
}

 /dati/jbossws/stack/cxf/trunk $ jar -tvf ./modules/testsuite/cxf-tests/target/test-libs/jaxws-
samples-wsse-policy-sign-encrypt.war
 0 Thu Jun 16 18:50:48 CEST 2011 META-INF/
 140 Thu Jun 16 18:50:46 CEST 2011 META-INF/MANIFEST.MF
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/
 586 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/web.xml
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-INF/classes/org/jboss/test/ws/jaxws/samples/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/
 1687 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/KeystorePasswordCallback.class

 383 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/ServiceIface.class
 1070 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/basic/ServiceImpl.class
 0 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/
 705 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHello.class
 1069 Thu Jun 16 18:50:48 CEST 2011 WEB-
INF/classes/org/jboss/test/ws/jaxws/samples/wsse/policy/jaxws/SayHelloResponse.class
 1225 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/jaxws-endpoint-config.xml
 0 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/
 4086 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService.wsdl

CHAPTER 9. GATEWAYS

79

Here, the jaxws classes generated by the tools and a basic web.xml referencing the endpoint
bean are also included:

NOTE

If you are deploying the endpoint archive to JBoss Application Server 7, add a
dependency to org.apache.ws.security module in the MANIFEST.MF file:

9.2.1.4.3.2. Sample Client Configurations

On the client side, use the wsconsume tool to consume the published WSDL and then invoke the
endpoint as a standard JAX-WS one as shown below:

 653 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/wsdl/SecurityService_schema1.xsd
 1820 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/classes/bob.jks
 311 Thu Jun 16 18:50:44 CEST 2011 WEB-INF/classes/bob.properties

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <servlet>
 <servlet-name>TestService</servlet-name>
 <servlet-class>org.jboss.test.ws.jaxws.samples.wsse.policy.basic.ServiceImpl</servlet-
class>
 </servlet>
 <servlet-mapping>
 <servlet-name>TestService</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.7.1
Created-By: 17.0-b16 (Sun Microsystems Inc.)
Dependencies: org.apache.ws.security

QName serviceName = new QName("http://www.jboss.org/jbossws/ws-extensions/wssecuritypolicy",
"SecurityService");
URL wsdlURL = new URL(serviceURL + "?wsdl");
Service service = Service.create(wsdlURL, serviceName);
ServiceIface proxy = (ServiceIface)service.getPort(ServiceIface.class);

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.CALLBACK_HANDLER, new
KeystorePasswordCallback());
((BindingProvider)proxy).getRequestContext().put(SecurityConstants.SIGNATURE_PROPERTIES,
 Thread.currentThread().getContextClassLoader().getResource("META-INF/alice.properties"));
((BindingProvider)proxy).getRequestContext().put(SecurityConstants.ENCRYPT_PROPERTIES,
 Thread.currentThread().getContextClassLoader().getResource("META-INF/alice.properties"));

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

80

The WS-Security properties are set in the request context. Here, the KeystorePasswordCallback is
same as that on the server side. The alice.properties file is the client side equivalent of the server side
bob.properties file and references the alice.jks keystore file, which has been populated with client
Alice's full key as well as server Bob's public key:

The Apache CXF WS-Policy engine consumes the security requirements in the contract and ensures
that a valid secure communication is in place for interacting with the server endpoint.

9.2.1.4.3.3. Endpoint Serving Multiple Clients

n the endpoint and client configuration examples, the server side configuration implies that the endpoint
is configured for serving a given client which a service agreement is established for. In real world
scenarios, a server should be able to decrypt and encrypt messages coming from and being sent to
multiple clients. Apache CXF supports that through the useReqSigCert value for the ws-
security.encryption.username configuration parameter. The referenced server side keystore then
needs to contain the public key of all the clients that are expected to be served.

9.2.1.4.4. Sample CXF Interceptor Configurations

For adding a CXF Interceptor, perform the following configuration settings:

META-INF/switchyard.xml

 com/example/MyInterceptor.java

((BindingProvider)proxy).getRequestContext().put(SecurityConstants.SIGNATURE_USERNAME,
"alice");
((BindingProvider)proxy).getRequestContext().put(SecurityConstants.ENCRYPT_USERNAME,
"bob");

proxy.sayHello();

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.alias=alice
org.apache.ws.security.crypto.merlin.keystore.file=META-INF/alice.jks

<binding.soap xmlns="urn:switchyard-component-soap:config:1.0">
 <wsdl>META-INF/WorkService.wsdl</wsdl>
 <contextPath>policy-security-wss-username</contextPath>
 <inInterceptors>
 <interceptor class="com.example.MyInterceptor"/>
 </inInterceptors>
</binding.soap>

public class MyInterceptor extends WSS4JInterceptor {
 private static final PROPS;

CHAPTER 9. GATEWAYS

81

 META-INF/bob.properties

9.2.1.5. Attachments

9.2.1.5.1. SOAP with Attachments

By default, any attachment sent with a SOAP Envelope is passed around in a SwitchYard Message as an
attachment. The default SOAPMessageComposer handles this.

9.2.1.5.2. SOAP with MTOM/XOP

To support Message Transmission Optimization Mechanism (MTOM), the underlying stack sends and
receives attachments as MIME multipart messages. One additional configuration in SwitchYard that
allows you to expand an xop:include's SOAP Message is mtom. When the corresponding xopExpand
attribute is set to true, the xop:include element is replaced with the contents from the MIME
attachment.

Example 9.5.

You can enable MTOM by overriding as shown above, or by using WSDL policy as shown below:

 static {
 Map<String,String> props = new HashMap<String,String>();
 props.put("action", "Signature Encryption");
 props.put("signaturePropFile", "META-INF/bob.properties");
 props.put("decryptionPropFile", "META-INF/bob.properties");
 props.put("passwordCallbackClass", "com.example.MyCallbackHandler");
 PROPS = props;
 }
 public MyInterceptor() {
 super(PROPS);
 }
}

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=password
org.apache.ws.security.crypto.merlin.keystore.alias=bob
org.apache.ws.security.crypto.merlin.file=META-INF/bob.jks

<soap:binding.soap xmlns:soap="urn:switchyard-component-soap:config:1.0">
 <soap:wsdl>Foo.wsdl</soap:wsdl>
 <soap:endpointAddress></soap:endpointAddress>
 <soap:mtom enabled="true" xopExpand="true"/>
</soap:binding.soap>

<definitions targetNamespace="urn:switchyard-component-soap:test-ws:1.0" name="ImageService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

82

9.2.1.6. WS-Addressing

SwitchYard runtime provides support for WS-A (WS-Addressing) through the underlying SOAP stack.
To enable WS-A, you can either set a policy or use the UseAdrressing element in the WSDL as shown
below:

 xmlns:tns="urn:switchyard-component-soap:test-ws:1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
 xmlns:wsoma="http://www.w3.org/2007/08/soap12-mtom-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
...
 <wsp:Policy wsu:Id="ImageServicePortBinding_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsoma:MTOM/>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
...
 <binding name="ImageServicePortBinding" type="tns:ImageService">
 <wsp:PolicyReference URI="#ImageServicePortBinding_policy"/>
 <soap:binding transport="http://www.w3.org/2003/05/soap/bindings/HTTP/" style="document"/>
 <operation name="resize">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

<definitions targetNamespace="urn:switchyard-component-soap:test-ws:1.0"
name="HelloAddressingService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="urn:switchyard-component-soap:test-ws:1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:wsam="http://www.w3.org/2007/05/addressing/metadata"
 xmlns:wsp="http://www.w3.org/ns/ws-policy"
 xmlns:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
...
 <wsp:Policy wsu:Id="HelloSOAPAddressingServicePortBinding_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsam:Addressing wsdl:required="false">
 <wsp:Policy/>

CHAPTER 9. GATEWAYS

83

9.2.2. HTTP

9.2.2.1. HTTP Component

The HTTP component in SwitchYard provides HTTP-based binding support for services and references
in SwitchYard.

9.2.2.2. Binding Services with HTTP

To expose composite-level services as an HTTP-based service, use the

binding definition. You can use these configuration options:

operationSelector

This is the specification of the operation to use for the message exchange.

contextPath

This is the context path for the HTTP endpoint.

 </wsam:Addressing>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>
...
 <binding name="HelloSOAPAddressingServicePortBinding" type="tns:HelloAddressingService">
 <wsp:PolicyReference URI="#HelloSOAPAddressingServicePortBinding_policy"/>
 <soap:binding transport="http://www.w3.org/2003/05/soap/bindings/HTTP/" style="document"/>
 <operation name="sayHello">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
...
 <binding name="HelloSOAPAddressingServicePortBinding2" type="tns:HelloAddressingService2">
 <wsaw:UsingAddressing required="true" />
 <soap:binding transport="http://www.w3.org/2003/05/soap/bindings/HTTP/" style="document"/>
 <operation name="sayHello">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

<binding.http>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

84

Here is an example HTTP service binding:

NOTE

Do not edit the SwitchYard.xml file directly. Red Hat recommends using the JBoss
Developer Studio SwitchYard Editor to edit the SwitchYard.xmlfile.

9.2.2.3. Binding References with HTTP

When you bind a reference with HTTP, it makes HTTP-based services available to SwitchYard services.

The following configuration options are available to you for binding.http when binding references:

address

This is a URL that points to an HTTP endpoint. It is optional and if you do not specify it, it defaults to
http://127.0.0.1:8080/.

method

This is the HTTP method used for invoking the endpoint. (The default is GET.)

contentType

This is the HTTP content type header that must be set on the request.

Here is an example HTTP reference binding:

9.2.3. RESTEasy

9.2.3.1. About RESTEasy

RESTEasy is a portable implementation of the JAX-RS Java API. It also provides additional features,
including a client side framework (the RESTEasy JAX-RS Client Framework) for mapping outgoing
requests to remote servers, allowing JAX-RS to operate as a client or server-side specification.

9.2.3.2. RESTEasy Component

The RESTEasy component provides REST-based binding support for services and references in

<sca:service name="QuoteService" promote="StockService/QuoteService">
 <http:binding.http>
 <selector:operationSelector operationName="getPrice"/>
 <http:contextPath>http-binding/quote</http:contextPath>
 </http:binding.http>
</sca:service>

<sca:reference name="Symbol" promote="StockService/SymbolService" multiplicity="1..1">
 <http:binding.http>
 <http:address>http://localhost:8080/http-binding/symbol</http:address>
 <http:method>POST</http:method>
 <http:contentType>text/plain</http:contentType>
 </http:binding.http>
</sca:reference>

CHAPTER 9. GATEWAYS

85

http://127.0.0.1:8080/

The RESTEasy component provides REST-based binding support for services and references in
SwitchYard.

9.2.3.3. Binding Services with RESTEasy

To expose composite-level services as a REST-based service, use the

binding definition. The following configuration options are available for binding.rest when you are binding
services:

interfaces

This is a comma separated list of interfaces or empty classes with JAX-RS annotations.

contextPath

This is an additional context path for the REST endpoint. (The default is setting is none.)

Here is an example REST service binding:

For more information on RESTEasy Component's REST binding features, refer to the rest-binding
quickstart.

9.2.3.4. Binding References with RESTEasy

When you bind a reference with RESTEasy, it makes REST-based services available to SwitchYard
services.

The following configuration options are available to you for binding.rest when binding references:

address

This is a URL that points to the root path of resources. This is only applicable for Reference bindings.
It is optional and if you do not specify it, it defaults to http://127.0.0.1:8080/.

interfaces

This is a comma-separated list of interfaces or abstract or empty classes with JAX-RS annotations.

contextPath

This is an additional context path for the REST endpoint. (The default is none.)

Here is an example HTTP reference binding. Note the resource URLs start from
http://localhost:8080/rest-binding:

<binding.rest>

<sca:service name="OrderService" promote="OrderService/OrderService">
 <rest:binding.rest>

<rest:interfaces>org.switchyard.quickstarts.rest.binding.OrderResource,org.switchyard.quickstarts.rest.b
inding.TestResource</rest:interfaces>
 <rest:contextPath>rest-binding</rest:contextPath>
 </rest:binding.rest>
</sca:service>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

86

http://127.0.0.1:8080/
http://localhost:8080/rest-binding

9.2.3.5. Proxy Configuration

If the REST reference needs to pass through a proxy server then the proxy server configuration can be
provided using the proxy element. The following configuration options are available:

host : The proxy host.

port : The proxy port (optional).

user : The proxy user (optional).

password : The proxy password (optional).

Example 9.6.

9.2.3.6. Authentication Configuration

If the REST reference endpoint is secured using BASIC/NTLM, then the authentication configuration
can be provided using the basic or ntlm elements. The following configuration options are available:

user : The authentication user.

password : The authentication password.

realm/domain : The authentication realm or the Windows domain.

Example 9.7. Sample NTLM Authentication Configuration

<sca:reference name="Warehouse" promote="OrderService/Warehouse" multiplicity="1..1">
 <rest:binding.rest>
 <rest:interfaces>org.switchyard.quickstarts.rest.binding.WarehouseResource</rest:interfaces>
 <rest:address>http://localhost:8080</rest:address>
 <rest:contextPath>rest-binding</rest:contextPath>
 </rest:binding.rest>
</sca:reference>

<sca:reference name="Warehouse" promote="OrderService/Warehouse" multiplicity="1..1">
 <rest:binding.rest>

<rest:interfaces>org.switchyard.quickstarts.rest.binding.WarehouseResource</rest:interfaces>
 <rest:address></rest:address>
 <rest:proxy>
 <rest:host>host</rest:host>
 <rest:port>8090</rest:port>
 <rest:user>Beal</rest:user>
 <rest:password>conjecture</rest:password>
 </rest:proxy>
 </rest:binding.rest>
</sca:reference>

<sca:reference name="Warehouse" promote="OrderService/Warehouse" multiplicity="1..1">
 <rest:binding.rest>

CHAPTER 9. GATEWAYS

87

9.2.4. JCA

9.2.4.1. Java Connector Architecture (JCA) Transport

The Java Connector Architecture (JCA) Transport is a Java-based piece of architecture that works as a
service integrator. It is a connector that links application servers and enterprise information systems.

9.2.4.2. JCA Adapter

A JCA Adapter provides outbound and inbound connectivity between Enterprise Information Systems
(for example, mainframe transaction processing and database systems), application servers, and
enterprise applications. It controls the inflow of messages to Message-Driven Beans (MDBs) and the
outflow of messages sent from other Java EE components. It also provides a variety of options to fine
tune your messaging applications.

9.2.4.3. JCA Gateway

The JCA gateway allows you to send and receive messages to and from EIS by means of the JCA
ResourceAdapter.

9.2.4.4. Binding Services with JCA Message Inflow

You can bind composite-level services to an EIS with JCA message inflow using the <binding.jca>
binding definition. You require the following configuration options for binding.jca

operationSelector: Specification of the service operation used for invoking the message
exchange. For more details, see Section 9.4.2, “Types of Operation Selectors” .

inboundConnection

resourceAdapter

@name: Name of the ResourceAdapter archive. Ensure that the resource adapter is
deployed on the JBoss application server before you deploy the SwitchYard application
which has JCA binding.

activationSpec

property: Properties for injecting into the ActivationSpec instance. Provide properties
that are specific to the ResourceAdapter implementation.

inboundInteraction

listener: A fully qualified name (FQN) of the listener interface. When you use JMSEndpoint,

<rest:interfaces>org.switchyard.quickstarts.rest.binding.WarehouseResource</rest:interfaces>
 <rest:address></rest:address>
 <rest:ntlm>
 <rest:user>user</rest:user>
 <rest:password>password</rest:password>
 <rest:domain>domain</rest:domain>
 </rest:ntlm>
 </rest:binding.rest>
</sca:reference>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

88

specify the javax.jms.MessageListener and when you use CCIEndpoint, specify the
javax.resource.cci.MessageListener. Otherwise, you may need to specify EIS specific
listener interface according to its ResourceAdapter. Also ensure that the endpoint class
implements this listener interface.

endpoint

@type: An FQN of the endpoint implementation class. There are two built-in endpoints
namely org.switchyard.component.jca.endpoint.JMSEndpoint and
org.switchyard.component.jca.endpoint.CCIEndpoint. These two endpoints have
corresponding listeners. If neither JMSEndpoint nor CCIEndpoint is applicable for the
EIS you are binding to, then you need to implement its own Endpoint class according to
the ResourceAdapter implementation. The endpoint class should be a subclass of
org.switchyard.component.jca.endpoint.AbstractInflowEndpoint.

property: Properties for injecting into the endpoint class. The JMSEndpoint does not
require a property. The CCIEndpoint requires connectionFactoryJNDIName property.

transacted: The boolean value to indicate whether the endpoint needs a transaction or not.
Its value is true by default.

batchCommit: If you define this element, multiple incoming messages are processed in one
transaction. The transaction is committed when the number of processed messages reach
to batchSize, or batchTimeout milliseconds pass since the start of the transaction.
Transaction reaper thread watches the inflight transaction, and once batch timeout occurs
the transaction reaper thread commits it.

@batchSize: The number of messages to be processed in one transaction.

@batchTimeout:The batch timeout in milliseconds.

Here is an example that binds a service to HornetQ:

<sca:composite name="JCAInflowExample" targetNamespace="urn:userguide:jca-example-
service:0.1.0">
 <sca:service name="JCAService" promote="SomeService">
 <jca:binding.jca>
 <selector:operationSelector operationName="onMessage"/>
 <jca:inboundConnection>
 <jca:resourceAdapter name="hornetq-ra.rar"/>
 <jca:activationSpec>
 <jca:property name="destinationType" value="javax.jms.Queue"/>
 <jca:property name="destination" value="ServiceQueue"/>
 </jca:activationSpec>
 </jca:inboundConnection>
 <jca:inboundInteraction>
 <jca:listener>javax.jms.MessageListener</jca:listener>
 <jca:endpoint type="org.switchyard.component.jca.endpoint.JMSEndpoint"/>
 <jca:transacted>true</jca:transacted>
 <jca:batchCommit batchSize="10" batchTimeout="5000"/>
 </jca:inboundInteraction>
 </jca:binding.jca>
 </service>
 <!-- sca:component definition omitted -->
</sca:composite>

CHAPTER 9. GATEWAYS

89

9.2.4.5. Binding References with JCA Outbound

Composite-level references can be bound to a EIS with JCA outbound using the binding.jca binding
definition. The following configuration options are required for binding.jca:

outboundConnection

resourceAdapter

@name: Name of the ResourceAdapter archive. Ensure that the resource adapter is
deployed on the JBoss application server before you deploy the SwitchYard application
which has the JCA binding.

connection

@jndiName: JNDI name to which the ConnectionFactory is bound.

outboundInteraction

connectionSpec: This is the configuration for javax.resource.cci.ConnectionSpec. Note
that the JMSProcessor does not use this option.

@type:This is the FQN of the ConnectionSpec implementation class.

property: These are the properties to be injected into ConnectionSpec instance.

interactionSpec: This is the configuration for the _javax.resource.cci.InteractionSpec.
Note that the JMSProcessor does not use this option.

@type:This is the FQN of the InteractionSpec implementation class.

property: These are the properties to be injected into InteractionSpec instance.

processor

@type: This is the FQN of the class which processes outbound delivery. There are two
built-in processors, org.switchyard.component.jca.processor.JMSProcessor and
org.switchyard.component.jca.processor.CCIProcessor. If neither JMSProcessor
nor CCIProcessor is applicable for the EIS to which you have to bind, then you need to
implement the EIS' own processor class according to the ResourceAdapter
implementation. Note that this class should be a subclass of
org.switchyard.component.jca.processor.AbstractOutboundProcessor.

property: These are the properties to be injected into processor instance.
JMSProcessor needs destination property to specify target destination. CCIProcessor
needs recordClassName property to specify record type to be used to interact with EIS.
If you use CCIProcessor with the record type other than MappedRecord and
IndexedRecord, you need to implement the corresponding RecordHandler.

Here is an example of a JCA reference binding to HornetQ:

<sca:composite name="JCAReferenceExample" targetNamespace="urn:userguide:jca-example-
reference:0.1.0">
 <sca:reference name="JCAReference" promote="SomeComponent/SomeReference"
multiplicity="1..1">
 <jca:binding.jca>
 <jca:outboundConnection>
 <jca:resourceAdapter name="hornetq-ra.rar"/>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

90

9.2.5. JMS

9.2.5.1. SwitchYard JMS Binding

The Java Message Service binding in SwitchYard provides support for asynchronous communication
with messaging providers for services and references. The JMS binding is built on top of camel-jms and
supports most of options for this endpoint.

9.2.5.2. Generic JMS Options

You can apply these options to <binding.jms>

queue or topic: this is the destination name from which resources are consumed or to which they
shall be sent.

connectionFactory: this is the name of the connection factory instance to use.

username

password

clientId

durableSubscriptionName

concurrentConsumers

maxConcurrentConsumers

disableReplyTo

preserveMessageQos

deliveryPersistent

priority

explicitQosEnabled

replyTo

replyToType

requestTimeout

 <jca:connection jndiName="java:/JmsXA"/>
 </jca:outboundConnection>
 <jca:outboundInteraction>
 <jca:processor type="org.switchyard.component.jca.processor.JMSProcessor">
 <jca:property name="destination" value="ReferenceQueue"/>
 </jca:processor>
 </jca:outboundInteraction>
 </jca:binding.jca>
 </sca:reference>
</sca:composite>

CHAPTER 9. GATEWAYS

91

selector

timeToLive

transacted

transactionManager

Here is what a JMS service binding looks like:

Here is what a JMS reference binding looks like:

9.2.6. File

9.2.6.1. File Binding

The file binding in SwitchYard provides filesystem level support for services and references. The file
binding is built on top of camel-file and supports the endpoint options listed in the following sections.

9.2.6.2. Generic File Options

You can apply these options to <binding.file>:

directory: directory name for consuming and producing files

autoCreate: automatically creates directory if a directory does not exist

bufferSize: write buffer size

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.jms>
 <camel:queue>INCOMING_GREETS</camel:queue>
 <camel:connectionFactory>#connectionFactory</camel:connectionFactory>
 <camel:username>esb</camel:username>
 <camel:password>rox</camel:password>
 <camel:selector>RECEIVER='ESB' AND SENDER='ERP'<camel:selector>
 </camel:binding.jms>
 </sca:service>
</sca:composite>

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:reference name="GreetingService" promote="camel-binding/GreetingService"
multiplicity="1..1">
 <camel:binding.jms>
 <camel:topic>GREETINGS_NOTIFICATION</camel:topic>
 <camel:connectionFactory>#connectionFactory</camel:connectionFactory>
 <camel:priority>8</camel:priority>
 <camel:binding.jms>
 </sca:reference>
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

92

fileName: file name filter for consumer or file name pattern for producer

flatten: skip path and just use file name

charset: charset used for reading or writing file

Here is what a File service binding looks like:

Supported options for binding services with files are:

delete

recursive

noop

preMove

move

moveFailed

include

exclude

idempotent

idempotentRepository

inProgressRepository

filter

inProgressRepository

sorter

sortBy

readLock

readLockTimeout

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.file>
 <camel:directory>target/input</camel:directory>
 <camel:fileName>test.txt</camel:fileName>
 <camel:consume>
 <camel:initialDelay>50</camel:initialDelay>
 <camel:delete>true</camel:delete>
 </camel:consume>
 </camel:binding.file>
 </sca:service>
</sca:composite>

CHAPTER 9. GATEWAYS

93

readLockCheckInterval

readLockTimeout

exclusiveReadLockStrategy

processStrategy

startingDirectoryMustExist

directoryMustExist

doneFileName

Here is what a File reference binding looks like:

Supported options for binding references with files are:

fileExist

tempPrefix

tempFileName

keepLastModified

eagerDeleteTargetFile

doneFileName

9.2.7. FTP FTPS SFTP

9.2.7.1. FTP Binding

SwitchYard provides support for remote file systems on both service and reference. The ftp binding is
built on top of camel-ftp and supports the endpoint options listed in the following sections.

9.2.7.2. Generic FTP FTPS SFTP Options

You can apply these options to <binding.ftp>,<binding.ftps>, and <binding.sftp>:

host

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:reference name="GreetingService" promote="camel-binding/GreetingService"
multiplicity="1..1">
 <camel:binding.file>
 <camel:directory>target/output</camel:directory>
 <camel:autoCreate>false</camel:autoCreate>
 <camel:produce>
 <camel:fileExist>Override</camel:fileExist>
 </camel:produce>
 <camel:binding.file>
 </sca:reference>
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

94

port

username

password

binary

connectTimeout

disconnect

maximumReconnectAttempts

reconnectDelay

separator

stepwise

throwExceptionOnConnectFailed

Here is what a FTP service binding and FTP reference binding looks like.

The supported options for a FTP service are same as that for file. However, binding a reference with file
can be used to store outcome of service on remote server. All File reference properties are supported in
FTP reference binding.

9.2.7.3. Specific FTP FTPS SFTP Options

cat switchyard.xml
<xml version="1.0" encoding="UTF-8"><switchyard xmlns="urn:switchyard-config:switchyard:1.0">
<composite xmlns="http://docs.oasis-open.org/ns/opencsa/sca/200912" name="camel-ftp-binding"
targetNamespace="urn:switchyard-quickstart:camel-ftp-binding:0.1.0">
<service name="GreetingService" promote="GreetingService/GreetingService">
<ftp:binding.ftp xmlns:ftp="urn:switchyard-component-camel-ftp:config:1.0">
<ftp:directory>/</ftp:directory>
<ftp:host>localhost</ftp:host>
<ftp:port>2222</ftp:port>
<ftp:username>camel</ftp:username>
<ftp:password>isMyFriend</ftp:password>
<ftp:consume>
<ftp:initialDelay>50</ftp:initialDelay>
<ftp:delay>50</ftp:delay>
</ftp:consume>
</ftp:binding.ftp>
</service>
<component name="GreetingService">
<implementation.bean xmlns="urn:switchyard-component-bean:config:1.0"
class="org.switchyard.quickstarts.camel.ftp.binding.GreetingServiceBean"/>
<service name="GreetingService">
<interface.java interface="org.switchyard.quickstarts.camel.ftp.binding.GreetingService"/>
</service>
</component>
</composite>
</switchyard>

CHAPTER 9. GATEWAYS

95

You can apply these options to <binding.ftp>:

passiveMode

timeout

soTimeout

siteCommand

You can apply these options to <binding.ftps>:

securityProtocol

isImplicit

execPbsz

execProt

disableSecureDataChannelDefaults

You can apply these options to <binding.sftp>:

knownHostsFile

privateKeyFile

privateKeyFilePassphrase

9.2.8. TCP UDP

9.2.8.1. TCP UDP Binding

SwitchYard provides support for network level integration with TCP and UPD protocols. The TCP and
UDP binding is built on top of camel-netty and supports most of options for this endpoint.

IMPORTANT

The camel-netty component is deprecated since JBoss Fuse 6.3 and will be replaced by
the camel-netty4 component in a future release of JBoss Fuse.

9.2.8.2. Generic TCP UDP Options

You can apply these options to <binding.tcp> and <binding.udp>:

host

port

receiveBufferSize

sendBufferSize

reuseAddress

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

96

encoders

decoders

allowDefaultCodec

workerCount

sync

disconnect

Here is what a TCP/UDP service binding looks like:

9.2.8.3. Specific TCP UDP Options

You can apply these options to <binding.tcp>:

textline

tcpNoDelay

keepAlive

You can apply these options to <binding.udp>:

broadcast

9.2.8.4. SSL Configuration Options

This endpoint supports SSL. You can use the following parameters to configure it:

ssl: turn on SSL

sslHandler: custom SSL Handler to use

passphrase: bean reference to String instance used to open KeyStore

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.tcp>
 <camel:host>localhost</camel:host>
 <camel:port>3939</camel:port>
 <camel:allowDefaultCodec>false</camel:allowDefaultCodec>
 <camel:sync>false</camel:sync>
 </camel:binding.tcp>
 <camel:binding.udp>
 <camel:host>localhost</camel:host>
 <camel:port>3940</camel:port>
 <camel:allowDefaultCodec>false</camel:allowDefaultCodec>
 <camel:sync>false</camel:sync>
 </camel:binding.udp>
 </sca:service>
</sca:composite>

CHAPTER 9. GATEWAYS

97

securityProvider: name of Java security provider

keyStoreFormat

keyStoreFile: reference to File instance which is loaded into java KeyStore

trustStoreFile: reference to File instance

sslContextParametersRef: if this parameter is specified, it must be an bean reference to an
instance of org.apache.camel.util.jsse.SSLContextParameters where you may specify all
necessary parameters at once

9.2.9. JPA

9.2.9.1. JPA Binding

The JPA binding in SwitchYard provides support for consuming and storing JPA entities. It supports
both service binding for entity consumption and reference for entity storing. The JPA binding is built on
top of camel-jpa and supports most of options for this endpoint.

9.2.9.2. Generic JPA Options

You can apply these options to <binding.jpa>

entityClassName

persistenceUnit

transactionManager

Here is what a JPA service binding looks like:

Supported options for binding services with JPA are:

consumeDelete

consumeLockEntity

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.jpa>

<camel:entityClassName>org.switchyard.quickstarts.camel.jpa.binding.domain.Greet</camel:entityClass
Name>
 <camel:persistenceUnit>JpaEvents</camel:persistenceUnit>
 <camel:transactionManager>#jtaTransactionManager</camel:transactionManager>
 <camel:consume>
 <camel:consumeLockEntity>false</camel:consumeLockEntity>
 <camel:consumer.transacted>true</camel:consumer.transacted>
 </camel:consume>
 </camel:binding.jpa>
 </sca:service>
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

98

maximumResults

consumer.query

consumer.namedQuery

consumer.nativeQuery

consumer.resultClass

consumer.transacted

Here is what a JPA reference binding looks like:

Supported options for binding references with JPA are:

flushOnSend

usePersist

9.2.10. SQL

9.2.10.1. SQL Binding

The SQL binding in SwitchYard provides database read/write support for references in SwitchYard. This
binding is built on top of camel-sql.

9.2.10.2. Generic SQL Options

You can apply these options to <binding.sql>:

query

SQL query to execute

dataSourceRef

Data Source name

batch

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:reference name="GreetingService" promote="camel-binding/GreetingService"
multiplicity="1..1">
 <camel:binding.jpa>

<camel:entityClassName>org.switchyard.quickstarts.camel.jpa.binding.domain.Greet</camel:entityClass
Name>
 <camel:persistenceUnit>JpaEvents</camel:persistenceUnit>
 <camel:produce>
 <camel:flushOnSend>false</camel:flushOnSend>
 </camel:produce>
 </camel:binding.jpa>
 </sca:reference>
</sca:composite>

CHAPTER 9. GATEWAYS

99

Turn on JDBC batching

placeholder

A placeholder sign used to replace parameters in query

You may use the following two additional attributes for binding.sql element when used with service
reference:

period

initialDelay

Here is what a SQL service binding looks like:

Here is what a SQL reference binding looks like:

9.2.11. Mail

9.2.11.1. Mail Binding

The Mail binding in SwitchYard provides support for consuming and sending mail messages. It supports
both service binding for mail consumption and reference for message sending. The Mail binding is built
on top of camel-mail and supports most of options for this endpoint.

9.2.11.2. Generic Mail Options

You can apply these options to <binding.mail>:

host

port

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.sql period="10s">
 <camel:query>SELECT * FROM greetings</camel:query>
 <camel:dataSourceRef>java:jboss/datasources/GreetDS</camel:dataSourceRef>
 </camel:binding.sql>
 </sca:service>
</sca:composite>

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:reference name="GreetingDatabaseStore" promote="camel-binding/GreetingDatabaseStore"
multiplicity="1..1">
 <camel:binding.sql>
 <camel:query>INSERT INTO greetings (name) VALUES (#)</camel:query>
 <camel:dataSourceRef>java:jboss/datasources/GreetDS</camel:dataSourceRef>
 <camel:binding.sql>
 </sca:reference>
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

100

username

password

connectionTimeout

You may also use the secure attribute to identify usage of secured connection
(pop3s/imaps/smtps).

Here is what a Mail service binding looks like:

Supported options for binding services with Mail are:

folderName

fetchSize

unseen

delete

copyTo

disconnect

You may specify additional attribute accountType to choose mail protocol. The possible values
for this attribute are pop3 or imap. Default is imap.

Here is what a Mail reference binding looks like:

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.mail>
 <camel:host>localhost</camel:host>
 <camel:username>camel</camel:username>
 <camel:consume accountType="pop3">
 <camel:copyTo>after-processing</camel:copyTo>
 </camel:consume>
 </camel:binding.mail>
 </sca:service>
</sca:composite>

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:reference name="GreetingService" promote="camel-binding/GreetingService"
multiplicity="1..1">
 <camel:binding.mail>
 <camel:host>localhost</camel:host>
 <camel:username>camel</camel:username>
 <camel:produce>
 <camel:subject>Forwarded message</camel:subject>
 <camel:from>camel@localhost</camel:from>
 <camel:to>rider@camel</camel:to>
 </camel:produce>

CHAPTER 9. GATEWAYS

101

Supported options for binding references with Mail are:

subject

from

to

CC

BCC

replyTo

9.2.12. Quartz

9.2.12.1. Quartz Binding

The Quartz binding in SwitchYard provides support for triggering services with a given cron expression.
The Quartz binding is built on top of camel-quartz.

9.2.12.2. Generic Quartz Options

You can apply these options to <binding.quartz>:

name: name of the job

cron: execution expression

Here is what a Quartz service binding looks like:

9.2.13. Timer

9.2.13.1. Timer Binding

The Timer binding in SwitchYard provides support for triggering services with fixed timer. It is a
lightweight alternative for Quartz. The file binding is built on top of camel-timer.

9.2.13.2. Generic Timer Options

 </camel:binding.mail>
 </sca:reference>
</sca:composite>

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.quartz>
 <camel:name>GreetingJob</camel:name>
 <camel:cron>0 0/5 * * * ?</camel:cron>
 </camel:binding.quartz>
 </sca:service>
</sca:composite>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

102

You can apply these options to <binding.timer>:

name: name of the timer

time

pattern

period

delay

fixedRate

daemon

Here is what a Timer service binding looks like:

9.2.14. SEDA

9.2.14.1. SEDA Binding

The SEDA binding in SwitchYard provides asynchronous service binding between camel route and
SwitchYard service. This binding is built on top of camel-seda.

NOTE

The SEDA queue is not persistent.

9.2.14.2. Generic SEDA Options

You can apply these options to <binding.seda>:

name: name of the queue

size: the maximum capacity of the SEDA queue (the number of messages it can hold)

concurrentConsumers

waitForTaskToComplete

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.timer>
 <camel:name>GreetingTimer</camel:name>
 <camel:time>2012-01-01T12:00:00</camel:time>
 <camel:pattern>yyyy-MM-dd'T'HH:mm:ss</camel:pattern>
 <camel:delay>1000</camel:delay>
 <camel:fixedRate>true</camel:fixedRate>
 </camel:binding.timer>
 </sca:service>
</sca:composite>

CHAPTER 9. GATEWAYS

103

timeout

multipleConsumers

limitConcurrentConsumers

Here is what a SEDA service binding looks like:

9.2.15. Camel URI

9.2.15.1. Camel Binding

Camel binding support in SwitchYard allows Camel components to be used as gateway bindings for
services and references within an application.

9.2.15.2. Generic Camel Options

Every Camel component binding supported by SwitchYard has its own configuration name-space with
one exception. Bindings for Direct, SEDA, Timer and Mock share the same name-space: urn:switchyard-
component-camel-core:config:1.0.

Composite-level services can be bound to a Camel component using the <binding.uri> binding definition.
The following configuration options are available for binding.uri:

configURI

This contains the Camel endpoint URI used to configure a Camel component instance.

operationSelector

This is the specification of the operation to use for the message exchange. (This setting is not used
for CXFRSconfigurations.)

NOTE

binding.uri is not linked with any specific component. It allows usage of 3rd party camel
components which are not part of distribution.

Here is a sample service binding that uses a Camel component:

<sca:composite name="camel-binding" targetNamespace="urn:switchyard-quickstart:camel-
binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService">
 <camel:binding.seda>
 <camel:name>GreetingQueue</camel:name>
 <camel:size>6</camel:size>
 <camel:concurrentConsumers>2</camel:concurrentConsumers>
 </camel:binding.seda>
 </sca:service>
</sca:composite>

<sca:composite name="SimpleCamelService" targetNamespace="urn:userguide:simple-camel-
service:0.1.0">

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

104

urn:switchyard-component-camel-core:config:1.0

Binding a reference with Camel is very similar to binding a service. The only significant difference is that
specification of the operationSelector is not required on reference bindings. Logically reference
elements points to outgoing communication (which may, for example, be a service called by
SwitchYard):

9.2.16. SCA

The SCA binding provides a means by which SwitchYard services and SwitchYard-aware clients can
communicate with one another. There are three basic use cases for the SCA binding:

Facilitate inter-application communication within a SwitchYard runtime. The SCA binding can be
used to link a composite reference in one application to a composite service in another
application.

Provide a remote invocation endpoint for external clients using RemoteInvoker. This allows a
stand-alone client to communicate with a SY application.

Allow clustering of SwitchYard services in two or more SwitchYard instances.

9.2.16.1. SCA Service Bindings

An SCA binding can be added to composite-level services to make that service available to other
applications and remote clients through a SwitchYard internal communication protocol.

There is only one configuration option available for SCA bindings:

clustered : when enabled, the service is published in the distributed SY runtime registry so that
other cluster instances can discover and consume the service.

Regardless of the clustering setting, all services with an SCA binding are invokable through the
SwitchYard remote invoker endpoint. The default URL for this endpoint is
http://localhost:8080/switchyard-remote. The hostname and port for this endpoint are based on the
default HTTP listener defined in AS 7.

9.2.16.2. SCA Reference Bindings

 <sca:service name="SimpleCamelService" promote="SimpleComponent/SimpleCamelService">
 <camel:binding.uri configURI="file://target/input?
fileName=test.txt&initialDelay=50&delete=true">
 <selector:operationSelector operationName="print"/>
 </camel:binding.uri>
 </sca:service>
 <!-- sca:component definition omitted -->
</sca:composite>

<sca:composite name="orders" targetNamespace="urn:switchyard-quickstart-demo:orders:0.1.0">
 <sca:reference name="WarehouseService" promote="OrderComponent/WarehouseService"
multiplicity="1..1">
 <camel:binding.uri configURI="file://target/output"/>
 </sca:reference>
</sca:composite>
</sca:composite>

CHAPTER 9. GATEWAYS

105

An SCA binding can be added to a composite-level reference to invoke services provided in other
SwitchYard applications deployed locally or in a cluster.

The following configuration parameters can be used with an SCA reference binding:

clustered : if enabled, the reference binding discovers remote SY service endpoints in a cluster.

load balancing : the name of a load balancing strategy to be used with clustering. Two out of the
box options available are "RoundRobinStrategy" and "RandomStrategy". You can also specify a
custom load balance strategy by implementing LoadBalanceStrategy.

target service : allows you to override the name of the service being invoked in the case where
the target application uses a service name different from the reference name (default is that
reference and service name match).

target namespace : allows you to override the namespace of the service being invoked. By
default, all applications in SwitchYard use a different namespace, so keep this setting in mind
when invocations occur across application boundaries.

9.2.16.3. Remote Transaction Propagation

If you invoke remote SwitchYard service through SCA binding under the active JTA transaction,
SwitchYard runtime propagates its transaction context. Let's say we have ServiceA and ServiceB, where
ServiceA is deployed on NodeA and ServiceB is on NodeB. ServiceA invokes ServiceB through SCA
reference binding besides. If ServiceA is processing under the active JTA transaction, SwitchYard
runtime embeds its transaction context into the remote invocation message when ServiceA invokes
ServiceB. Then ServiceB extracts that transaction context and create subordinate JTA transaction,
which means ServiceB is processed under the subordinate transaction of ServiceA's transaction, so
those transactions could synchronize. Please note that transaction policy must allow this behavior on
both sides of ServiceA and ServiceB.

In order to achieve this remote transaction propagation, XTS must be enabled in AS 7 configuration.
Following changes must be applied:

--- standalone-ha.xml 2013-10-09 22:09:32.085300978 +0900
+++ standalone-ha-xts.xml 2013-10-16 11:40:57.198147545 +0900
@@ -25,6 +25,7 @@
 <extension module="org.jboss.as.webservices"/>
 <extension module="org.jboss.as.weld"/>
 <extension module="org.switchyard"/>
+ <extension module="org.jboss.as.xts"/>
 </extensions>
 <management>
 <security-realms>
@@ -405,6 +406,9 @@
 <extension identifier="org.apache.camel.soap"/>
 </extensions>
 </subsystem>
+<subsystem xmlns="urn:jboss:domain:xts:1.0">
+ <xts-environment url="http://${jboss.bind.address:127.0.0.1}:8080/ws-c11/ActivationService"/>
+</subsystem>
 </profile>
 <interfaces>
 <interface name="management">

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

106

9.2.17. MQTT

The MQTT binding in SwitchYard provides support for asynchronous communication with MQTT
messaging providers. It supports both sides - service and reference. The MQTT binding is built on top of
camel-mqtt (http://camel.apache.org/mqtt.html) and supports most options for this endpoint.

9.2.17.1. Generic options

You can apply the following options to the <binding.mqtt> definition:

host : The host that you want to connect to.

localAddress : The local address.

connectAttemptsMax : The maximum number of connect attempts.

reconnectAttemptsMax : The maximum number of reconnect attempts.

reconnectDelay : The time in milliseconds between reconnect attempts.

reconnectBackOffMultiplier : The multiplier to use to the delay between connection attempts.

reconnectDelayMax : The maximum time in milliseconds between reconnect attempts.

userName : user name

password : password

qualityOfService : The MQTT Quality of Service. Possible values are: AtMostOnce,
AtLeastOnce, or ExactlyOnce.

byDefaultRetain : The default retain policy.

mqttTopicPropertyName : The property name for the MQTT topic.

mqttRetainPropertyName : The property name for the MQTT Retain policy.

mqttQosPropertyName : The property name for the MQTT Quality of Service.

connectWaitInSeconds : Delay in seconds to wait before establishing the connection.

disconnectWaitInSeconds : Delay in seconds to wait before disconnecting the connection.

sendWaitInSeconds : Delay in seconds to wait before sending the message.

9.2.17.2. Binding Services with MQTT

You can specify the MQTT Topic name with the subscribeTopicName option.

Example 9.8. Example MQTT service binding

<sca:composite name="camel-mqtt-binding" targetNamespace="urn:switchyard-quickstart:camel-
mqtt-binding:0.1.0">
 <sca:service name="GreetingService" promote="GreetingService/GreetingService">
 <mqtt:binding.mqtt name="Greet">
 <mqtt:userName>karaf</mqtt:userName>

CHAPTER 9. GATEWAYS

107

9.2.17.3. Binding References with MQTT

You can specify the MQTT Topic name to publish with the publishTopicName option.

Example 9.9. Example MQTT reference binding

9.3. MESSAGE COMPOSITION

9.3.1. Message Composers

A MessageComposer composes or decomposes a native binding message to or from SwitchYard's
canonical message. It does so in three steps:

1. Construct a new target message instance.

2. Copy the content of the message.

3. Delegate the header/property mapping to a ContextMapper.

A SOAPMessageComposer and CamelMessageComposer are included with SwitchYard. These
implementations are used by their associated bindings but you can override these with your own
implementations.

9.3.2. Create a Custom Message Composer

Procedure 9.2. Create a Custom Message Composer

1. Implement the org.switchyard.component.common.composer.MessageComposer
interface:

 <mqtt:password>karaf</mqtt:password>
 <mqtt:subscribeTopicName>camel/mqtt/test/input</mqtt:subscribeTopicName>
 </mqtt:binding.mqtt>
 </sca:service>
</sca:composite>

<sca:composite name="camel-mqtt-binding" targetNamespace="urn:switchyard-quickstart:camel-
mqtt-binding:0.1.0">
 <sca:reference name="StoreReference" multiplicity="0..1"
promote="GreetingService/StoreReference">
 <mqtt:binding.mqtt name="Store">
 <mqtt:userName>karaf</mqtt:userName>
 <mqtt:password>karaf</mqtt:password>
 <mqtt:publishTopicName>camel/mqtt/test/output</mqtt:publishTopicName>
 </mqtt:binding.mqtt>
 </sca:reference>
</sca:composite>

public interface MessageComposer<T> {
 ContextMapper<T> getContextMapper();

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

108

2. Specify your implementation in your switchyard.xml file:

9.3.3. Custom Message Composer Properties

The getContextMapper() and setContextMapper() methods are bean properties. If you extend
BaseMessageComposer, both properties are implemented for you.

Your compose() method needs to take the data from the passed-in source native message and
compose a SwitchYard Message based on the specified Exchange. The create parameter
determines whether or not we ask the Exchange to create a new Message, or use the existing
one.

Your decompose() method needs to take the data from the SwitchYard Message in the
specified Exchange and "decompose it" into the target native message.

9.4. OPERATION SELECTORS

9.4.1. Operation Selector

Use the OperationSelector to determine which service operation should be invoked for the message
exchange.

9.4.2. Types of Operation Selectors

SwitchYard provides the following options for Operation Selectors.

IMPORTANT

Operation selectors are used in combination with a service binding to help SwitchYard
determine the target operation for a service invocation. When a service only has a single
operation, an operation selector should not be used. If an operation selector is used for a
service with a single operation, failure to assign an operation in the operation selector will
not result in an error. If an operation selector fails to assign an operation for a service with
multiple operations an error is reported.

Static Operation Selector

You can specify an operation name in the configuration. Here is what a Static Operation Selector
configuration looks like:

 MessageComposer<T> setContextMapper(ContextMapper<T> contextMapper);
 Message compose(T source, Exchange exchange, boolean create) throws Exception;
 public T decompose(Exchange exchange, T target) throws Exception;
}

<binding.xyz ...>
 <messageComposer class="com.example.MyMessageComposer"/>
</binding.xyz>

<hornetq:binding.hornetq>
 <swyd:operationSelector operationName="greet" xmlns:swyd="urn:switchyard-
config:switchyard:1.0"/>

CHAPTER 9. GATEWAYS

109

XPath Operation Selector

You can specify an XPath location which contains an operation name to be invoked in the message
contents. Here is what an XPath Operation Selector configuration looks like:

For this configuration, if you specify the following message content, then the operation spanish() is
invoked:

Regex Operation Selector

You can specify a regular expression to find an operation name to be invoked in the message
contents. Here is what a Regex Operation Selector configuration looks like:

For this configuration, if you specify the following message content, then the operation
regexOperation() is invoked:

Java Operation Selector

You can specify a Java class which is able to determine the operation to be invoked. Here is what a
Java Operation Selector configuration looks like:

Here, the org.switchyard.example.MyOperationSelectorImpl has to implement
org.switchyard.selector.OperationSelector or be a subclass of concrete OperationSelector classes
for each service bindings. You can override the selectOperation() method as you like.

Following are the default OperationSelector implementation for each service bindings:

(... snip ...)
</hornetq:binding.hornetq>

<jca:binding.jca>
 <swyd:operationSelector.xpath expression="//person/language" xmlns:swyd="urn:switchyard-
config:switchyard:1.0"/>
(... snip ...)
</jca:binding.jca>

<person>
 <name>Fernando</name>
 <language>spanish</language>
</person>

<http:binding.http>
 <swyd:operationSelector.regex expression="[a-zA-Z]*Operation" xmlns:swyd="urn:switchyard-
config:switchyard:1.0"/>
(... snip ...)
</http:binding.http>

xxx yyy zzz regexOperation aaa bbb ccc

<jca:binding.jca>
 <swyd:operationSelector.java class="org.switchyard.example.MyOperationSelectorImpl"
xmlns:swyd="urn:switchyard-config:switchyard:1.0"/>
(... snip ...)
</jca:binding.jca>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

110

Camel : org.switchyard.component.camel.selector.CamelOperationSelector

JCA/JMS : org.switchyard.component.jca.selector.JMSOperationSelector

JCA/CCI : org.switchyard.component.jca.selector.CCIOperationSelector

HTTP : org.switchyard.component.http.selector.HttpOperationSelector

9.5. THROTTLING

SwitchYard provides support for message throttling. Throttling is configured on a composite service and
applies to all requests received through all gateways configured on the service. If you have multiple
bindings on a composite service, they share the same throttling configuration. If you want a given service
to have two different throttling settings (one per binding), then promote the service twice and provide
a unique setting for each composite service.

SwitchYard provides the following throttling options:

timePeriod : (optional; defaults to 1000) The time period, in milliseconds, over which requests
are counted. The message count is reset at the beginning of each period.

The setting for the time period is static - it can not change at runtime.

maxRequests : The maximum number of requests that can be processed within a specified
timePeriod. Processing is delayed until the start of the next period for any messages received
after the limit is reached.

The setting for the number of messages is dynamic - it can change at runtime.

NOTE

Throttling of individual gateways is not supported.

9.5.1. Example

Here's an example configuration, restricting the OrderService to handle at most one request every ten
seconds. Note that the sy:throttling element is located within an sca:extensions element.

You can specify the same configuration using the SwitchYard editor as well.

<sca:composite name="orders" targetNamespace="urn:switchyard-quickstart-demo:orders:0.1.0">
 <sca:service name="OrderService" promote="OrderService">
 <soap:binding.soap>
 <soap:wsdl>wsdl/OrderService.wsdl</soap:wsdl>
 <soap:socketAddr>:9000</soap:socketAddr>
 </soap:binding.soap>
 <sca:extensions>
 <sy:throttling maxRequests="1" timePeriod="10000"/>
 </sca:extensions>
 </sca:service>
</sca:composite>

CHAPTER 9. GATEWAYS

111

CHAPTER 10. TRANSFORMER

10.1. WHAT IS A TRANSFORMER

It is not possible for the message providers to know what format of message is expected by every
consumer. Therefore Transformers are used to enable the loose-coupling of message providers and
message consumers. Transformers convert message content to various formats, thereby playing an
important role in connecting service consumers and providers.

10.2. TRANSFORMATION IN SWITCHYARD

Transformation represents a change to the format or representation of a message's content. The
representation of a message is the Java contract used to access the underlying content. For example,
java.lang.String and org.example.MyFancyObject. The format of a message refers to the actual
structure of the data itself. Examples of data formats include XML, JSON, CSV, and EDI. Here is an
example of message content in XML format:

You can also represent XML in Java as a String. For example:

Transformation plays an important role in connecting service consumers and providers, as the format
and representation of message content can be quite different between the two. For example, a SOAP
gateway binding is likely use a different representation and format for messages than a service offered
by a Java Bean. In order to route services from the SOAP gateway to the Bean providing the service, the
format and representation of the SOAP message needs to change. Implementing the transformation
logic directly in the consumer or provider pollutes the service logic and can lead to tight coupling.
SwitchYard allows you to declare the transformation logic outside the service logic and inject into the
mediation layer at runtime.

10.3. ADDING TRANSFORMATION TO A SWITCHYARD APPLICATION

You can specify transformation of message content in the descriptor of your SwitchYard application
(switchyard.xml). The qualified name of the type being transformed from as well as the type being
transformed to are defined along with the transformer implementation. This allows transformation to be
a declarative aspect of a SwitchYard application, as the runtime automatically registers and executes
transformers in the course of a message exchange. Here is an example of message content
transformation:

10.4. CHAINING TRANSFORMERS

<MyBook>
 <Chapter1>
 <Chapter2>
</MyBook>

String content = "<MyBook>...";

<transforms>
 <transform.java bean="MyTransformerBean"
 from="{urn:switchyard-quickstart-demo:orders:1.0}submitOrder"
 to="java:org.switchyard.quickstarts.demos.orders.Order"/>
</transforms>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

112

JBoss Fuse Service Works 6.0 allows you to chain transformers. Say you have a transformer that
transforms from A to B and another that transforms from B to C. If you then have an invocation where
the consumer is using type A and the provider is using type C, then the runtime will invoke the A->B and
the B->C transformers to achieve A->C.

For example, for a SOAP message, you could define two transformers:

The first transformer transforms the SOAP reply which contains the GetStatisticsResponse element
into an intermediate object which is just the content of the return element (CDATA containing the
element), implemented in Java as follows:

The second transformer then takes care of transforming from the element to the Statistics Java model
using JAXB.

JBoss Fuse Service Works 6.0 knows, from the contracts on the reference definitions, that it needs to
go from {http://web.service.com/}GetStatisticsResponse to java:com.sample.model.Statistics and
will automatically invoke both transformers to make that happen.

See Unable to transform from SOAP response with CDATA block to a POJO in FSW 6 for more
information.

10.5. ADDING A TRANSFORMER USING SWITCHYARD EDITOR

This section describes how to add a transformer to an application in the SwitchYard editor. The example
in this section shows how to add a Smooks transformer.

1. Select the main object (transform-smooks) in the SwitchYard editor.

Figure 10.1. Smooks Transformations in SwitchYard Editor

<transform:transform.java from="{http://web.service.com/}GetStatisticsResponse" to="
{urn:web.service.com}StatisticsCData" bean="CDataReturn"/>
<transform:transform.jaxb from="{urn:web.service.com}StatisticsCData"
to="java:com.sample.model.Statistics" contextPath="com.sample.model"/>

@Named("CDataReturn")
public class CDataExtractor {

 @Transformer(from = "{http://web.service.com/}GetStatisticsResponse",
 to = "{urn:web.service.com}StatisticsCData")
 public String transform(Element from) {
 String value = null;
 NodeList nodes = from.getElementsByTagName("return");
 if(nodes.getLength() > 0){
 value = nodes.item(0).getChildNodes().item(0).getNodeValue();
 }
 return value;
 }
}

CHAPTER 10. TRANSFORMER

113

https://access.redhat.com/solutions/1393583

Figure 10.1. Smooks Transformations in SwitchYard Editor

2. Select the Transforms tab in the Properties view. The existing transformers are listed.

3. Select Add to add new transformers.

Figure 10.2. List of Transformers Under Properties View

NOTE

Users are not able to add transformers unless they are required.

If no transformers are visible in the properties page, try updating the Maven
project configuration by right-clicking the project and selecting Maven →
Update Project.

10.6. MESSAGE CONTENT TYPE NAMES

Since transformations occur between named types (for example, from type A to type B), it is important
to understand how the type names are derived. The type of the message is determined based on the
service contract, which can be WSDL or Java.

WSDL

For WSDL interfaces, the message name is determined based on the fully-qualified element
name of a WSDL message. Here is an example of a WSDL definition:

<definitions xmlns:tns="urn:switchyard-quickstart:bean-service:1.0">
 <message name="submitOrder">
 <part name="parameters" element="tns:submitOrder"/>
 </message>
 <portType name="OrderService">

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

114

This yields the following message type name based on the message element name defined in
the WSDL:

Java

For Java interfaces, the message name consists of the full package name and the class name
prefixed with "java:". Here is an example of a Java definition:

This yields the following message type name:

You may override the default operation name generated for a Java interface. The
@OperationTypes annotation provides this capability by allowing you to specify the input,
output, and fault type names used for a Java service interface. For example, if you want to
accept XML input content without any need for transformation to a Java object model, you can
change the OrderService interface as shown below:

This annotation can be useful if you want to maintain a tight control over the names used for
message content.

10.7. SUPPORTED TRANSFORMATIONS

10.7.1. Java

10.7.1.1. Java Transformer

You can create a Java-based transformer in SwitchYard using any of the following methods:

Implement the org.switchyard.transform.Transformer interface and add a <transform.java>
definition to your switchyard.xml.

Annotate one or more methods on your Java class with @Transformer annotation.

When using the @Transformer annotation, the SwitchYard maven plug-in automatically generates the

 <operation name="submitOrder">
 <input message="tns:submitOrder"/>
 </operation>
 </portType>
</definitions>

{urn:switchyard-quickstart:bean-service:1.0}submitOrder

package org.switchyard.example;
public interface OrderService {
 void submitOrder(Order order);
}

java:org.switchyard.example.Order

package org.switchyard.example;
public interface OrderService {
 @OperationTypes(in = "{urn:switchyard-quickstart:bean-service:1.0}submitOrder")
 void submitOrder(String orderXML);
}

CHAPTER 10. TRANSFORMER

115

When using the @Transformer annotation, the SwitchYard maven plug-in automatically generates the
<transform.java> definition and adds them to the switchyard.xml packaged in your application. Here is
an example of a Java class that produces the <transform.java> definition:

Here, the from and to elements of the @Transformer annotation are optional. You can use them to
specify the qualified type name used during transformer registration. If not specified, the full class name
of the method parameter is used as the from type and the full class name of the return type is used as
the to type.

The CDI bean name specified by @Named annotation is used to resolve transformer class. If not
specified, the class name of the transformer is used instead. Here is an example:

NOTE

The bean attribute and class attribute are mutually exclusive.

10.7.2. JAXB

10.7.2.1. JAXB Transformer

SwitchYard automatically detects and adds the JAXB Transformations for your application deployment.
For example, if you develop a CDI Bean Service and use JAXB generated types in the Service Interface,
you do not need to configure any of the transformations. SwitchYard automatically detects their
availability for your application and automatically applies them at the appropriate time during service
invocation.

The JAXB transformer allows you to perform Java to XML and XML to Java transformations using
JAXB (XML marshalling and unmarshalling). The JAXB Transformer is similar to the JSON Transformer
configuration. It also requires a to and from configuration with one Java type and one QNamed XML
type.

For example in the source file ObjectFactory.java, the factory methods represent the available
marshallings/unmarshallings as shown below:

Here, the @XmlElementDecl annotation implies that the XML QName associated with the

@Named("MyTransformerBean")
public class MyTransformer {
 @Transformer(from = "{urn:switchyard-quickstart-demo:orders:1.0}submitOrder")
 public Order transform(Element from) {
 // handle transformation here
 }
}

<transforms>
 <transform.java class="org.switchyard.quickstarts.demos.orders.MyTransformer"
 from="{urn:switchyard-quickstart-demo:orders:1.0}submitOrder"
 to="java:org.switchyard.quickstarts.demos.orders.Order"/>
</transforms>

@XmlElementDecl(namespace = "http://com.acme/orders", name = "create")
public JAXBElement<CreateOrder> createOrder(CreateOrder value) {
 return new JAXBElement<Order>(_CreateOrder_QNAME, CreateOrder.class, null, value);
}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

116

Here, the @XmlElementDecl annotation implies that the XML QName associated with the
com.acme.orders.CreateOrder type is "{http://com.acme/orders}create". This means that you can
have the following SwitchYard JAXB Transformer configurations:

10.7.3. JSON

10.7.3.1. JSON Transformer

The JSON transformer provides a basic mapping facility between POJOs and JSON (JSON marshalling
and unmarshalling). Just like the JAXB Transformer, specification of the transformer requires a to and
from specification with one Java type and one QNamed JSON type, depending on whether you are
performing a Java to JSON or JSON to Java transformation.

Here is an example configuration of JSON to Java transformation:

Here is a sample configuration of Java to JSON transformation:

10.7.4. Smooks

10.7.4.1. Smooks Transformer

SwitchYard provides three distinct transformation models for Smooks:

XML to Java : Based on a standard Smooks Java Binding configuration.

Java to XML: Based on a standard Smooks Java Binding configuration.

Smooks : This is a normal Smooks transformation in which you must define which Smooks
filtering result is to be exported back to the SwitchYard Message as the transformation result.

You can declare a Smooks transformation by including a <transform.smooks> definition in your
switchyard.xml. Here is an example:

The Smooks and XSLT translators require an external configuration file that tells the translator how to
go about its actions. In the example above, the config attribute points to a Smooks resource containing
the mapping definition. The type attribute can be one of SMOOKS, XML2JAVA, or JAVA2XML.

For more information on Smooks and XSLT configuration files, see Red Hat JBoss Fuse Development

<transform.jaxb from="{http://com.acme/orders}create" to="java:com.acme.orders.CreateOrder" />
<transform.jaxb from="java:com.acme.orders.CreateOrder" to="{http://com.acme/orders}create" />

<trfm:transform.json
 from="{urn:switchyard-quickstart:transform-json:1.0}order"
 to="java:org.switchyard.quickstarts.transform.json.Order"/>

<trfm:transform.json
 from="java:org.switchyard.quickstarts.transform.json.Order"
 to="{urn:switchyard-quickstart:transform-json:1.0}order"/>

<transform.smooks config="/smooks/OrderAck_XML.xml"
 from="java:org.switchyard.quickstarts.transform.smooks.OrderAck"
 to="{urn:switchyard-quickstart:transform-smooks:1.0}submitOrderResponse"
 type="JAVA2XML"/>

CHAPTER 10. TRANSFORMER

117

For more information on Smooks and XSLT configuration files, see Red Hat JBoss Fuse Development
Guide Volume 2: Smooks.

For more information on the elements that extend the abstract transform, see the
/docs/schema/soa/org/switchyard/transform/config/model/v1/transform_<latest_version>.xsd.

10.7.5. XSLT

10.7.5.1. XSLT Transformer

You can perform transformations with the XSLT transformer using an XSLT. You can configure it by
specifying the to and from QNames, and the path to the XSLT. Here is an example of XSLT Transformer
configuration:

<transform.xslt from="{http://acme/}A" to="{http://acme/}B" xsltFile="com/acme/xslt/A2B.xslt"/>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

118

CHAPTER 11. VALIDATORS

11.1. WHAT IS A VALIDATOR

A Validator provides message content checking functionality. SwitchYard allows you to declare the
validation logic outside the service logic and inject it into the mediation layer at runtime.

11.2. MESSAGE VALIDATION

Here is a sample that depicts message validation.

Message Content:

This is the associated XML Schema definition:

The XML content is still well-formed, but it has a Chapter2 element that is not declared as the child of
MyBook element in the XML schema. Hence the content cannot be validated against the schema.

11.3. ADD VALIDATION TO YOUR APPLICATION

Procedure 11.1. Add Validation to Your Application

Specify message validation in the descriptor of your SwitchYard application by editing the
switchyard.xml file using the JBoss Developer Studio SwitchYard Editor.

The qualified name of the type being validated is defined along with the validator
implementation. This allows validation to be a declarative aspect of a SwitchYard application, as
the runtime will automatically register and execute validators in the course of a message
exchange.

<MyBook xmlns="example">
 <Chapter1/>
 <Chapter2/>
</MyBook>

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="example"
 xmlns:orders="example">
 <element name="MyBook" type="example:MyBook"/>
 <complexType name="MyBook">
 <sequence>
 <element name="Chapter1" type="string"/>
 </sequence>
 </complexType>
</schema>

<validates>
 <validate.xml schemaType="XML_SCHEMA"
 name="{urn:example}MyBook">
 <schemaFiles><entry file="/xsd/orders.xsd"/></schemaFiles>

CHAPTER 11. VALIDATORS

119

11.4. SUPPORTED VALIDATORS

11.4.1. Java

11.4.1.1. Use a Java Validator

Procedure 11.2. Create a Java Validator

1. Implement the org.switchyard.validate.Validator interface.

2. Add a <validate.java> definition to your switchyard.xml file.

3. Alternatively, annotate one or more methods to your Java class with @Validator:

When using the @Validator annotation, the SwitchYard Maven plug-in automatically generates
the <validate.java> definitions for you and add them to the switchyard.xml file packaged in your
application.

The Java class above produces this <validate.java> definition:

11.4.1.2. Java Validator Reference

The optional name element of the @Validator annotation can be used to specify the qualified type name
used during validator registration. If not supplied, the full class name of the method parameter is used as
the type.

The CDI bean name specified by @Named annotation is used to resolve validator class. If you fail to
specify it, then the validator's class name is used instead:

 </validate.xml>
</validates>

@Named("MyValidatorBean")
public class MyValidator {
 @Validator(name = "{urn:switchyard-quickstart-demo:orders:1.0}submitOrder")
 public ValidationResult validate(Element from) {
 // handle validation here
 }
}

<validate.java bean="MyValidatorBean"
 name="{urn:switchyard-quickstart-demo:orders:1.0}submitOrder"/>

<validates>
 <validate.java class="org.switchyard.quickstarts.demos.orders.MyValidator"

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

120

NOTE

Each of the <validate.java> definitions have either a bean attribute or a class attribute.
These two attributes are mutually exclusive.

11.4.1.3. ValidationResult

ValidationResult is a simple interface which represents the result of validation. It has two methods,
isValid() and getDetail().

11.4.1.4. Java Validation Failure

If Java validation fails, the message exchange process stops immediately and a HandlerException is
thrown along with a validation failure message which is returned by ValidationResult.getDetail(). Make
sure that you return a ValidationResult with failure detail message when you want to indicate a
validation failure in your Java Validator, instead of throwing a RuntimeException.

11.4.1.5. ValidationResult Properties

isValid() returns whether the validation succeeded or not. _getDetail() returns an error message if
validation fails.

There are three convenience methods available for org.switchyard.validate.BaseValidator. These are
validResult(), invalidResult() and invalidResult(String) Use them to generate ValidationResult
objects.

11.4.2. XML

11.4.2.1. Use an XML Validator

The XML validator allows you to perform a validation against its schema definition. It support DTD,
XML_SCHEMA, and RELAX_NG schema types. You can configure an XML validator by specifying the
schema Type, the name QName, and the path to the schema file. Here is an example:

If you specify the failOnWarning attribute as true, the validation fails if any warning is detected during

 name="{urn:switchyard-quickstart-demo:orders:1.0}submitOrder"/>
</transforms>

package org.switchyard.validate;
public interface ValidationResult {
 boolean isValid();
 String getDetail();
}

<validate.xml schemaType="XML_SCHEMA" name="{urn:switchyard-quickstart:validate-
xml:0.1.0}order" failOnWarning="true" namespaceAware="true">
 <schemaFiles>
 <entry file="/xsd/orders.xsd"/>
 </schemaFiles>
 <schemaCatalogs>
 <entry file="/xsd/catalog.xml"/>
 </schemaCatalogs>
</validate.xml>

CHAPTER 11. VALIDATORS

121

If you specify the failOnWarning attribute as true, the validation fails if any warning is detected during
validation. If the XML content to be validated has namespace prefix, then you need to specify
namespaceAware as true.

11.4.2.2. XML Catalog

You can use XML catalog to decouple the schema file location from schema definition itself. This
schema is orders.xsd which has a import element. It refers to logical name orders.base by the
schemaLocation attribute:

Here is the catalog.xml file that resolves actual schema location from logical name orders.base:

11.4.2.3. XML Validation Failure

If XML validation fails, the message exchange process stops immediately and a HandlerException is
thrown along with a validation failure message. XMLValidator collects a set of validation failures through
the SAX ErrorHandler, and uses the getMessage() of each received SAXParseException as a failure
detail with extracting root cause, if exists.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:switchyard-quickstart:validate-xml:0.1.0"
 xmlns:base="urn:switchyard-quickstart:validate-xml-base:0.1.0"
 xmlns:orders="urn:switchyard-quickstart:validate-xml:0.1.0">
 <import namespace="urn:switchyard-quickstart:validate-xml-base:0.1.0"
schemaLocation="orders.base"/>
...

<catalog xmlns="urn:oasis:names:tc:entity:xmlns:xml:catalog">
 <system systemId="orders.base" uri="orders-base.xsd"/>
</catalog>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

122

CHAPTER 12. CONFIGURATION PROPERTIES
SwitchYard supports configuration properties that can be injected into configuration or into service
implementations.

12.1. SWITCHYARD MODEL CONFIGURATION

SwitchYard allows you to replace any attribute or element value in the switchyard.xml file with a
property from the runtime environment. The syntax for a replaced token is:

Here, varname is the property name. The configuration layer in SwitchYard is configured with instances
of PropertyResolver, which are used to resolve the value of a property based on its name.

Property values are resolved from the following locations:

System properties passed by -D option of Java VM. For example:

System environment variables, referenced with an env. prefix. For example:

Unit test properties

JBoss EAP properties, including access into the SecurityVault

Domain properties in switchyard.xml file

SCA property definitions in the composite or component

The priority in resolving a property is from top to bottom. So a property defined as a System property
always takes precedence over a property defined at domain or composite, and a property at domain
level always takes precedence over a property defined at component level.

12.2. INJECTING PROPERTIES INTO SERVICE IMPLEMENTATION

Implementation properties allow you to inject one or more property values into a service implementation.
This is based on the property support in the SCA assembly specification. Since the property is injected
into service implementation logic, the injection mechanism itself is unique to each implementation type.
Here are the details for each implementation type:

Java: Injected using @Property into a CDI bean

Camel: Wired into Camel properties component and accessible in a Camel route using Camel’s
own varName property notation

BPEL: Mapped into process variables using <assign> with using resolveProperty() XPath
custom function

BPMN 2: Inserted into process variables by data input associations

${varname}

-Dproperty.name=property.value

env.PATH

CHAPTER 12. CONFIGURATION PROPERTIES

123

Drools: Available in a global map

12.2.1. Injecting Properties in Java Bean Implementations

Implementation properties represent environmental properties that you have defined in the SwitchYard
application descriptor (switchyard.xml) for your bean implementation. Implementation properties in
SwitchYard are the properties that you can configure on a specific service implementation. That is, you
can make the property value available to service logic executing inside an implementation container.
Here is an example:

To access the Implementation Properties, add an @Property annotation to your bean class identifying
the property you want to inject:

12.2.2. Injecting Implementation Properties in Camel Routes

SwitchYard integrates with the Properties Component in Camel to make system and application
properties available inside your route definitions. You can inject properties into your camel route using
{{propertyname}} expression, where propertyName is the name of the property. For example, the
following camel route expects the user.name property to be injected in the last <Log> statement:

12.2.3. Injecting Implementation Properties in BPEL

You can inject properties into your BPEL process definition with using

<sca:component name="SimpleServiceBean">
 <bean:implementation.bean
class="com.example.switchyard.switchyard_example.SimpleServiceBean"/>
 <sca:service name="SimpleService">
 <sca:interface.java interface="com.example.switchyard.switchyard_example.SimpleService">
 <properties>
 <property name="userName" value="${user.name}"/>
 </properties>
 </sca:interface.java>
 </sca:service>
</sca:component>

@Service(SimpleService.class)
public class SimpleServiceBean implements SimpleService {

 @Property(name="userName")
 private String name;

 @Override
 public String sayHello(String message) {
 return "Hello " + name + ", I got a message: " + message;
 }

}

<route xmlns="http://camel.apache.org/schema/spring" id="CamelTestRoute">
 <log message="ItemId [${body}]"/>
 <to uri="switchyard://WarehouseService?operationName=hasItem"/>
 <log message="Title Name [${body}]"/>
 <log message="Properties [{{user.name}}]"/>
</route>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

124

You can inject properties into your BPEL process definition with using
SwitchYardPropertyFunction.resolveProperty() XPath custom function. In the example below,
bpel:copy section copies Greeting property value into the ReplySayHelloVar variable:

12.3. INVOCATION PROPERTIES

While it is a best practice to write your service logic to the data that is defined in the contract (the input
and output message types), there can be situations where you need to access contextual information
like message headers (such as, received file name in your implementation). To facilitate this, the Bean
component allows you to access the SwitchYard Exchange Context instance associated with a given
Bean Service Operation invocation. Invocation properties represent the contextual information (like
message headers) in your bean implementation.

To enable access to the invocation properties, add a Context property to your bean and annotate it with
the CDI @Inject annotation:

Here, the Context interface allows your bean logic to get and set properties in the context.

NOTE

You can invoke the Context instance only within the scope of one of the Service
Operation methods. If you invoke it outside this scope, it results in an
UnsupportedOperationException error.

12.4. CONFIGURATION TIPS AND TRICKS

<bpel:copy>
 <bpel:from
xmlns:property="java:org.switchyard.component.bpel.riftsaw.SwitchYardPropertyFunction"
 expressionLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath2.0">
 <![CDATA[concat(property:resolveProperty('Greeting'),
$ReceiveSayHelloVar.parameters/tns:input)]]>
 <bpel:from>
 <bpel:to part="parameters" variable="ReplySayHelloVar">
 <bpel:query queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0">
 <![CDATA[tns:result]]>
 </bpel:query>
 </bpel:to>
</bpel:copy>

@Service(SimpleService.class)
public class SimpleServiceBean implements SimpleService {

@Inject
private Context context;

public String sayHello(String message) {
 System.out.println("*** Funky Context Property Value: " +
context.getPropertyValue("funkyContextProperty"));
 return "Hi there!!";
 }
}

CHAPTER 12. CONFIGURATION PROPERTIES

125

12.4.1. Defining Default Value for a Property

When you define a property, you can provide a default value for it. To define this default value, append
the default value to the property name, separated by a colon (:). For example:

12.4.2. Defining Environment Properties

12.4.2.1. Environment Properties as Component Properties

You can define properties as component properties. This way of defining properties is not dynamic, but
you can override each property defined here, by properties defined in a prioritized scope.

12.4.2.2. Environment Properties as Composite Properties

You can define properties as composite properties. This way of defining properties is not dynamic, but
you can override every property defined here, by properties defined in a prioritized scope.

${server.port:8080}

<sy:switchyard ...>
 <sca:composite ...>
 <sca:component ...>
 ...
 <sca:property value="test" name="MY_PROPERTY"/>
 </sca:component>
 <sca:service...>
 ...
 </sca:service>
 <sca:reference ...>
 ...
 </sca:reference>

 </sca:composite>
 ...
</sy:switchyard>

<sy:switchyard ...>
 <sca:composite ...>
 <sca:component ...>
 ...
 </sca:component>
 <sca:service...>
 ...
 </sca:service>
 <sca:reference ...>
 <sca:interface.java .../>
 <file:binding.file name="FileBinding">
 <file:directory>/tmp</file:directory>
 <file:fileName>${MY_FILENAME}</file:fileName>
 <file:produce/>
 </file:binding.file>
 </sca:reference>
 <sca:property value="test.txt" name="MY_FILENAME"/>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

126

12.4.2.3. Environment Properties as Domain Properties

You can define properties as composite properties. This way of defining properties is not dynamic, but
you can override each property defined here, by properties defined in a prioritized scope.

12.4.2.4. Environment Properties as OS Environment Properties

You can load properties from OS environment properties. Every environment property is accessible by
prefixing it with env. For example, in bash, you can use a property defined as export
MY_PROPERTY=test, in your SwitchYard application as shown below:

12.4.2.5. Environment Properties as Application Server Properties from AS Configuration

Application server has the ability to define properties directly in its configuration either by file or with the
console. This configuration is dynamically updated and persisted.

Add the configuration to the server definition as shown below:

 </sca:composite>
 ...
</sy:switchyard>

<sy:switchyard ...>
 <sca:composite ...>
 <sca:component ...>
 ...
 </sca:component>
 <sca:service...>
 ...
 </sca:service>
 <sca:reference ...>
 ...
 </sca:reference>
 </sca:composite>
 ...
 <sca:domain>
 <sca:property value="test.txt" name="MY_FILENAME"/>
 </sca:domain>
 </sy:switchyard>

<ftp:binding.sftp>
 <ftp:host>${env.MY_PROPERTY}</ftp:host>

</ftp:binding.sftp>

<server name="xyz.home" xmlns="urn:jboss:domain:1.0">
 <extensions>
 <extension module="org.jboss.as.clustering.infinispan"/>
 <extension module="org.jboss.as.clustering.jgroups"/>
 <extension module="org.jboss.as.connector"/>

 </extensions>

CHAPTER 12. CONFIGURATION PROPERTIES

127

This property is used in your SwitchYard application as:

12.4.2.6. Environment Properties as Application Server Properties from File

You can pass a properties file as an argument to JBoss Application Server (AS) startup script to load all
the properties in the file and make them accessible. You can start the AS as shown below:

Here are some alternatives:

-P=<url>: Load system properties from the given URL

-P<url>: Load system properties from the given URL

--properties=<url>: Load system properties from the given URL

In your SwitchYard application, you can use these properties as:

12.4.3. Loading Properties for Test

In tests, you can add and resolve properties at the top level. The PropertyMixIn eases working with
properties:

 <system-properties>
 <property name="MY_PROPERTY" value="test"/>
 </system-properties>

<ftp:binding.sftp>
 <ftp:host>${MY_PROPERTY}</ftp:host>

</ftp:binding.sftp>

$./standalone.sh -P file:///data/production.properties

<ftp:binding.sftp>
 <ftp:host>${env.MY_PROPERTY}</ftp:host>

</ftp:binding.sftp>

 private PropertyMixIn pmi;

 ...
 pmi.set("test.property.name", "test");
 pmi.set("test.property.name", Integer.valueOf(100));
 ...
 pmi.get("test.property.name");
 ...

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

128

In case you need access to the PropertyResolver for tests, where a MixIn is not applicable, you can use
TestPropertyResolver.INSTANCE and avoid setting command line parameters as shown below:

TestPropertyResolver.INSTANCE.getMap().put("name","value");

CHAPTER 12. CONFIGURATION PROPERTIES

129

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD
SwitchYard uses JUnit, which is a unit testing framework for Java. SwitchYard provides comprehensive
unit test support for testing your applications. There are three primary elements to test support in
SwitchYard:

SwitchYardRunner

SwitchYardTestKit

SwitchYardTestCaseConfig

13.1. SWITCHYARDRUNNER CLASS

The SwitchYardRunner Class is a JUnit test Runner class that takes care of bootstrapping an embedded
SwitchYard runtime and deploying a SwitchYard application for the test instance.

In order to take advantage of the test support in SwitchYard, ensure that your unit test is annotated with
the SwitchYardRunner JUnit test Runner class. The SwitchYardRunner creates and starts an
embedded runtime for each test method. After the embedded runtime starts, the project containing the
test is packaged as a SwitchYard application and deployed to it. An instance of the SwitchYardTestKit
class is injected into the test when a property of type SwitchYardTestKit is declared in the test. This
instance represents the runtime state of the deployed SwitchYard test application.

The SwitchYardTestKit class provides a set of utility methods for performing all sorts of deployment
configuration and test operations.

13.2. SWITCHYARDTESTKIT CLASS

@RunWith(SwitchYardRunner.class)
public class MyServiceTest {

 private SwitchYardTestKit testKit;

 @Test
 public void testOperation() {
 MyTestServiceHandler service = new MyTestServiceHandler();

 // register the service...
 testKit.registerInOutService("MyService", service);

 // invoke the service and capture the response...
 Message response = newInvoker("MyService")
 .sendInOut("<create>A1234</create>");

 // test the response content by doing an XML comparison with a
 // file resource on the classpath...
 testKit.compareXMLToResource(response.getContent(String.class), "/myservice/expected-
create-response.xml");
 }

 private class MyTestServiceHandler implements ExchangeHandler {
 // implement methods....
 }
}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

130

The SwitchYardRunner Class represents the runtime state of the deployed SwitchYard application
instance deployed by SwitchYardRunner. It also provides access to a set of test utility methods for the
test (For example, assertion methods). If a property of type SwitchYardTestKit is declared in the test,
the SwitchYardTestKit is injected into the test instance.

13.3. SWITCHYARDTESTCASECONFIG

The SwitchYardTestCaseConfig annotation is optional. You can use it control the behavior of the
SwitchYardRunner:

config: Enables you to specify a SwitchYard XML configuration file (switchyard.xml) for the
test. The SwitchYardRunner attempts to load the specified configuration from the classpath. If
it fails to locate the config on the classpath, it attempts to locate it on the file system (For
example, within the project structure).

mixins: Enables you to add specific testing tools to your test case. Each TestMixIn is a
composition-based method that provides customized testing tools for service implementations,
gateway bindings, and transformers. When a TestMixIn is annotated on a test class, the
SwitchYardRunner handles all the initialization and cleanup (life cycle) of the TestMixIn
instances. It is also possible to manually create and manage TestMixIn instances within your test
class if you are not using the SwitchYardRunner.

scanners: Enables you to add classpath scanning as part of the test life cycle. This adds the
same Scanner behavior as the one available with the SwitchYard maven build plug-in. However,
it allows the scanning to take place as part of the test life cycle. You may need to add Scanners
if you want your test to run inside your IDE. This is because running your test inside your IDE
bypasses the whole maven build process, which means the build plug-in does not perform any
scanning.

Here is how you can use the SwitchYardTestCaseConfig annotation:

13.4. ADD TEST SUPPORT TO A SWITCHYARD APPLICATION

You can add test support to your SwitchYard application by adding a dependency to the switchyard-test
module in your application's pom.xml as shown below:

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(config = "testconfigs/switchyard-01.xml", mixins = {CDIMixIn.class},
scanners = {BeanSwitchYardScanner.class, TransformSwitchYardScanner.class})
public class MyServiceTest {

 @Test
 public void testOperation() {
 newInvoker("OrderService")
 .operation("createOrder")
 .sendInOnly("<order><product>AAA</product><quantity>2</quantity></order>");
 }
}

<dependency>
 <groupId>org.switchyard</groupId>
 <artifactId>switchyard-test</artifactId>
 <version>[release-version]</version> <!-- e.g. "1.1.1-p5-redhat-1" -->
 <scope>test</scope>
</dependency>

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

131

NOTE

Note: camel dependency version is 2.10.0.redhat-60024.

In addition to a dependency on the core test framework, you can also use the MixIns in your test classes.

13.5. THE TESTMIXIN FEATURE

The TestMixIn feature allows you to selectively enable additional test functionality based on the
capabilities of your application. To include MixIn support in your application, you must include a Maven
dependency in your application's pom.xml:

13.6. TESTMIXIN CLASSES

CDIMixIn (switchyard-component-test-mixin-cdi): Boostraps a stand-alone CDI environment,
automatically discovers CDI beans, registers bean services, and injects references to SwitchYard
services.

HTTPMixIn (switchyard-component-test-mixin-http): Client methods for testing HTTP-based
services.

SmooksMixIn (switchyard-component-test-mixin-smooks): Stand-alone testing of any
Smoooks transformers in your application.

HornetQMixIn (switchyard-component-test-mixin-hornetq): Bootstraps a stand-alone
HornetQ server and provides utility methods to interact with it for testing purpose. It can be
also used to interact with remote HornetQ server.

NamingMixIn (switchyard-component-test-mixin-naming): Provides access to naming and
JNDI services within an application.

PropertyMixIn (switchyard-test): Provides ability to set test values to properties that are used
within the configuration of the application.

13.7. SCANNERS

Scanners add classpath scanning as part of the test life cycle. This adds the same Scanner behavior as is
available with the SwitchYard maven build plug-in, but allows the scanning to take place as part of the
test life cycle. SwitchYard provides the following Scanners:

BeanSwitchYardScanner: Scans for CDI Bean Service implementations.

TransformSwitchYardScanner: Scans for Transformer

BpmSwitchYardScanner: Scans for @Process, @StartProcess, @SignalEvent and
@AbortProcessInstance annotations.

<dependency>
 <groupId>org.switchyard.components</groupId>
 <artifactId>switchyard-component-test-mixin-name</artifactId>
 <version>release-version</version> <!-- e.g. "1.0" -->
 <scope>test</scope>
</dependency>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

132

RouteScanner: Scans for Camel Routes

RulesSwitchYardScanner: Scans for @Rule annotations

13.8. METADATA AND SUPPORT CLASS INJECTIONS

13.8.1. TestKit Injection

You can inject the SwitchYardTestKit instance into the test at runtime by declaring a property
of that type in the test class, as shown below:

13.8.2. Deployment Injection

You can inject the deployment instance by declaring a property of the type Deployment, as shown
below:

13.8.3. SwitchYardModel Injection

You can inject the SwitchYardModel instance by declaring a property of the type SwitchYardModel, as
shown below:

13.8.4. ServiceDomain Injection

You can inject the ServiceDomain instance by declaring a property of the type ServiceDomain, as shown
below:

@RunWith(SwitchYardRunner.class)
public class MyServiceTest {

 private SwitchYardTestKit testKit;

 // implement test methods...
}

@RunWith(SwitchYardRunner.class)
public class MyServiceTest {

 private Deployment deployment;

 // implement test methods...
}

@RunWith(SwitchYardRunner.class)
public class MyServiceTest {

 private SwitchYardModel model;

 // implement test methods...
}

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

133

13.8.5. TransformerRegistry Injection

You can inject the TransformerRegistry instance by declaring a property of the type
TransformerRegistry, as shown below:

13.8.6. TestMixIn Injection

You can inject the TestMixIn Injection instance by declaring a property of the type TestMixIn Injection,
as shown below:

13.8.7. PropertyMixIn Injection

PropertyMixIn instances are injected like any other TestMixIn type, however you must set any properties
you wish to use on the MixIn before deployment in order for them to be used. To do this, use the
@BeforeDeploy annotation:

@RunWith(SwitchYardRunner.class)
public class MyServiceTest {

 private ServiceDomain serviceDomain;

 // implement test methods...
}

@RunWith(SwitchYardRunner.class)
public class MyServiceTest {

 private TransformerRegistry transformRegistry;

 // implement test methods...
}

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = {CDIMixIn.class, HTTPMixIn.class})
public class MyServiceTest {

 private CDIMixIn cdiMixIn;
 private HTTPMixIn httpIn;

 // implement test methods...
}

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = {CDIMixIn.class, PropertyMixIn.class, HTTPMixIn.class})
public class MyServiceTest {

 private PropertyMixIn propMixIn;
 private HTTPMixIn httpMixIn;

 @BeforeDeploy

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

134

13.8.8. Invoker Injection

To inject Service Invoker instances, declare properties of the type Invoker and annotate them with
@ServiceOperation. (Note the annotation value is a dot-delimited Service Operation name of the form
[service-name].[operation-name].)

13.9. SELECTIVELY ENABLING ACTIVATORS FOR A TEST

The test framework defaults to a mode where the entire application descriptor is processed during a test
run. This means all gateway bindings and service implementations are activated during each test. There
are times when this may not be appropriate, so we allow activators to be selectively enabled or disabled
based on your test configuration.

In this example, SOAP bindings are excluded from all tests. (This means that SOAP gateway bindings will
not be activated when the test framework loads the application.)

This example includes only CDI bean services as defined in the application descriptor:

Sometimes you will need to add some procedures before you perform the test. The JUnit @Before

 public void setTestProperties() {
 propMixIn.set("soapPort", Integer.valueOf(18002));
 }

 // implement test methods...
}

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(config = "testconfigs/switchyard-01.xml")
public class MyServiceTest {

 @ServiceOperation("OrderService.createOrder")
 private Invoker createOrderInvoker;

 @Test
 public void test_createOrder() {
 createOrderInvoker.sendInOnly("<order><product>AAA</product><quantity>2</quantity>
</order>");
 }
}

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(config = "testconfigs/switchyard-01.xml" exclude="soap")
public class NoSOAPTest {
 ...
}

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(config = "testconfigs/switchyard-02.xml" include="bean")
public class BeanServicesOnlyTest {
...
}

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

135

Sometimes you will need to add some procedures before you perform the test. The JUnit @Before
operation is invoked immediately after the application is deployed. You cannot, however, use it if you
expect something to happen before deployment.

13.10. USEFUL TIPS FOR CREATING JUNIT TESTS

13.10.1. Using Harmcrest to Assert

Hamcrest is a framework for writing matcher objects. It allows you to define match rules declaratively.
Use Hamcrest’s assertThat construct and the standard set of matchers, both of which you can statically
import:

Hamcrest comes with a library of useful matchers, such as:

Core

anything: Always matches, useful if you do not want to know what the object under test is

describedAs: Decorator for adding custom failure description

is: Decorator to improve readability

Logical

allOf: Matches if all matchers match, short circuits (like && in Java)

anyOf: Matches if any matchers match, short circuits (like || in Java)

not: Matches if the wrapped matcher does not match and vice versa

Object

equalTo: Test object equality using Object.equals

hasToString: Test Object.toString

instanceOf, isCompatibleType: Test type

notNullValue, nullValue: Test for null

sameInstance: Test object identity

Beans

hasProperty: Test JavaBeans properties

Collections

array: Test an array’s elements against an array of matchers

hasEntry, hasKey, hasValue: Test a map contains an entry, key or value

hasItem, hasItems: Test a collection contains elements

import static org.hamcrest. MatcherAssert .assertThat;
import static org.hamcrest. Matchers .*;

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

136

hasItemInArray: Test an array contains an element

Number

closeTo: Test floating point values are close to a given value

greaterThan, greaterThanOrEqualTo, lessThan, lessThanOrEqualTo: Test ordering

Text

equalToIgnoringCase: Test string equality ignoring case

equalToIgnoringWhiteSpace: Test string equality ignoring differences in runs of whitespace

containsString, endsWith, startsWith: Test string matching

13.10.2. Invoking a Component Service

In order to invoke a component service, you must inject an invoker for certain ServiceOperation. When
injecting a service operation, specify it in [service_name].[operation_name] notation.

import org.switchyard.test.Invoker;
...

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(mixins = CDIMixIn.class)
public class ExampleServiceTest {

 @ServiceOperation("ExampleService.submitOperation")
 private Invoker submitOperation;

 @Test
 public void testOK() throws Exception {
 ParamIn testParam = new ParamIn()
 .set...(...);

 ParamOut result = submitOperation
 .sendInOut(testParam)
 .getContent(ParamOut.class);

 Assert....
 }

 @Test
 public void testForFault() throws Exception {
 ParamIn testParam = new ParamIn()
 .set...(...);

 try{
 // This method invocation should throw a fault
 ParamOut result = submitOperation
 .sendInOut(testParam)
 .getContent(ParamOut.class);

 Assert.fail
 } catch (InvocationFaultException ifex){

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

137

An invocation to a service operation can throw a InvocationFaultException whenever the method
throws a fault. So catching this exception is similar to validating for the fault being thrown.

You can:

Check against original exception by checking the type of the InvocationFaultException:

Use the JUnit functionality of setting the expected exception in the test:

13.10.3. SwitchYardTestKit Utility Methods

TestKit provides the following set of utility methods to ease validations and some common operations
that are performed on test classes:

Access to underlying

getTestInstance

getActivators

getDeployment

getServiceDomain

createQName

Service manipulation

registerInOutService

registerInOnlyService

removeService

replaceService

Invocation

newInvoker

Transformations

addTransformer

newTransformer

registerTransformer

 Assert.... // Assert for correct type of exception
 }
 }

 ifex.isType(MyOriginalException.class)

 @Test(expected=org.switchyard.test.InvocationFaultException.class)

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

138

MixIns

getMixIns

getMixIn

Dependencies

getRequiredDependencies

getOptionalDependencies

Resources

getResourceAsStream

readResourceBytes

readResourceString: Reads a resource (file) form the classpath

readResourceDocument

Configuration

loadSwitchYardModel

loadConfigModel

XML Comparison

compareXMLToResource: Compares a XML in string format with a XML file in the classpath.

compareXMLToString

Tracing

traceMessages: enables message tracing for the application under test.

13.10.4. Testing Transformations in Component Service

While testing a component invocation, you can test for the appropriate transformation with additional
methods on the invocation. You can do this for the input transformation, as well as for the output
transformation as shown below:

...

 @ServiceOperation("ExampleService.submitOperation")
 private Invoker serviceOperationInvocation;

 @Test
 public void testForInputTransformation() throws Exception {
 ParamOut result = serviceOperationInvocation
 .inputType(QName.valueOf("{urn:com.examaple:service:1.0"}submitOperation))
 .sendInOut(....)
 .getContent(ParamOut.class);
 Assert.... // Assert that result is OK, so transformation was OK
 }

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

139

You can use XMLUnit and XMLAssert from org.custommonkey.xmlunit to ease validations.

13.10.5. Mocking a Service, Component, or Reference

Mocking a component may be useful, so it is never invoked for the sake of a test. For this,
SwitchYardTestKit provides with the ability of adding, replacing, or removing services.

If you want to assert what has arrived or produced in the MockHandler, you can use the following
options:

getMessages(): This provides with the list of received messages.

getFaults(): This provides with the list of prodced faults.

If the service is InOut, you may need to mock a response. You can use the following options:

forwardInToOut()

forwardInToFault()

replyWithOut(Object)

replyWithFault(Object)

For example:

 @Test
 public void testForOutputXMLTransformation() throws Exception {
 ParamIn testParam = new ParamIn()
 .set...(...);

 ParamOut result = serviceOperationInvocation
 .expectedOutputType(QName.valueOf("
{urn:com.examaple:service:1.0"}submitOperationResponse))
 .sendInOut(testParam)
 .getContent(Element.class); // Expect Element as transformation is for XML

 XMLAssert.... // Assert that result is what is expected
 }

 // replace existing implementation for testing purposes
 testKit.removeService("MyService");s
 final MockHandler myService = testKit.registerInOnlyService("MyService");

 // Invoke the service under test

 // Assert what has arrived ath the mocked service
 final LinkedBlockingQueue<Exchange> recievedMessages = myService.getMessages();
 assertThat(recievedMessages, is(notNullValue()));

 final Exchange recievedExchange = recievedMessages.iterator().next();
 assertThat(recievedExchange.getMessage().getContent(String.class), is(equalTo(...)));

final MockHandler mockHandler = testKit.registerInOutService("MyService");
 mockHandler.forwardInToOut();

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

140

If you want to instruct the MockHandler to wait for certain message, you can use the following
options:

waitForOkMessage()

waitForFaultMessage()

The MockHandler waits for 5 seconds by default, unless instructed to wait for a different
period with setWaitTimeout(milis).

13.10.6. Mocking a Service For More Than One Method Invocation

In some cases, the service you are mocking may be called

Twice in the context of a single unit test, or

Multiple times for the same method, or

Multiple times for different methods

In this case, you can register an ExchangeHandler with the mock, while registering and replacing the
original service. The ExchangeHandler gets the message, and contains the logic that you need to put
to deal with this scenario, as shown below:

You can reuse this ExchangeHandler by making it a named class (not anonymous).

13.10.6.1. Multiple Invocations of a Single Method

In the case of multiple invocation of the same method, the ExchangeHandler keeps track of the
invocation number, in case it has to answer with different messages:

 testKit.replaceService(qname, new ExchangeHandler() {

 @Override
 public void handleMessage(Exchange arg0) throws HandlerException {
 // Here logic to handle with messages
 }

 @Override
 public void handleFault(Exchange arg0) throws HandlerException {
 // Here logic to handle with faults
 }
 });

testKit.replaceService(qname, new ExchangeHandler() {
 int call=1;

 @Override
 public void handleMessage(Exchange exchange) throws HandlerException {
 if (call++ == 1){ // First call
 // Do whatever wants to be done as result of this operation call, and return the expected
output
 Result result = ...; / Result is return type for operation store
 exchange.send(exchange.createMessage().setContent(result));

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

141

13.10.6.2. Multiple Invocations of Different Methods

In the case of multiple invocation of different methods, the ExchangeHandler checks for operation
name, to know which method is being invoked:

13.10.7. Setting Properties For a Test

You can use the PropertyMixIn property to set test properties in configurations, as shown below:

 }else if (call++ == 2){ // Second call
 // Do whatever wants to be done as result of this operation call, and return the expected
output
 Result result = ...; / Result is return type for operation store
 exchange.send(exchange.createMessage().setContent(result));
 }else{
 throw new HandlerException("This mock should not be called more than 2 times");
 }
 }

 @Override
 public void handleFault(Exchange exchange) throws HandlerException {
 // Here logic to handle with faults
 }
 });

testKit.replaceService(qname, new ExchangeHandler() {

 @Override
 public void handleMessage(Exchange exchange) throws HandlerException {
 if (exchange.getContract().getProviderOperation().getName().equals("store")){
 // Do whatever wants to be done as result of this operation call, and return the expected
output
 Result result = ...; / Result is return type for operation store
 exchange.send(exchange.createMessage().setContent(result));
 }else if (exchange.getContract().getProviderOperation().getName().equals("getId")){
 // Do whatever wants to be done as result of this operation call, and return the expected
output
 exchange.send(exchange.createMessage().setContent(1)); // This operation returns a Int
 }else{
 throw new HandlerException("No operation with that name should be executed");
 }
 }

 @Override
 public void handleFault(Exchange exchange) throws HandlerException {
 // Here logic to handle with faults
 }
 });

 private PropertyMixIn pmi;

 ...
 pmi.set("test.property.name", "test");
 pmi.set("test.property.name", Integer.valueOf(100));

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

142

13.10.8. Testing a Deployed Service with HTTPMixin

Use HTTPMixin to test a deployed service, as shown below:

You can also use HTTPMixin from a main class, as shown below:

13.10.9. Creating an Embedded WebService to Test a Component

In situations where you wish to only test a single component, you can expose it dynamically as a
WebService and invoke it, as shown below:

 ...
 pmi.get("test.property.name");
 ...

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(
 scanners = TransformSwitchYardScanner.class,
 mixins = {CDIMixIn.class, HTTPMixIn.class})
public class WebServiceTest {

 private HTTPMixIn httpMixIn;

 @Test
 public void invokeWebService() throws Exception {
 // Use the HttpMixIn to invoke the SOAP binding endpoint with a SOAP input (from the test
classpath)
 // and compare the SOAP response to a SOAP response resource (from the test classpath)...
 httpMixIn.setContentType("application/soap+xml");
 httpMixIn.postResourceAndTestXML("http://localhost:18001/service-context/ServiceName",
"/xml/soap-request.xml", "/xml/soap-response.xml");
 }
}

 /**
 * Only execution point for this application.
 * @param ignored not used.
 * @throws Exception if something goes wrong.
 */
 public static void main(final String[] ignored) throws Exception {

 HTTPMixIn soapMixIn = new HTTPMixIn();
 soapMixIn.initialize();

 try {
 String result = soapMixIn.postFile(URL, XML);
 System.out.println("SOAP Reply:\n" + result);
 } finally {
 soapMixIn.uninitialize();
 }
 }

import javax.xml.ws.Endpoint;
...

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

143

13.10.10. Testing a Deployed Service with HornetQMixIn

When you need to test an application that has a JMS binding, you may want to test with the binding
itself. In such cases, you can use HornetQMixIn. HornetQMixIn gets its configuration from the following
two files, which must be present on the classpath for the test:

hornetq-configuration.xml: This file contains the configuration for the HornetQ server.

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(
 config = SwitchYardTestCaseConfig.SWITCHYARD_XML,
 scanners = {TransformSwitchYardScanner.class},
 mixins = {HTTPMixIn.class})
public class CamelSOAPProxyTest {

 private static final String WEB_SERVICE = "http://localhost:8081/MyService";

 private HTTPMixIn _http;
 private Endpoint _endpoint;

 @BeforeDeploy
 public void setProperties() {
 System.setProperty("org.switchyard.component.http.standalone.port", "8081");
 }

 @Before
 public void startWebService() throws Exception {
 _endpoint = Endpoint.publish(WEB_SERVICE, new ReverseService());
 }

 @After
 public void stopWebService() throws Exception {
 _endpoint.stop();
 }

 @Test
 public void testWebService() throws Exception {
 _http.postResourceAndTestXML(WEB_SERVICE, "/xml/soap-request.xml", "/xml/soap-
response.xml");
 }
}

<configuration xmlns="urn:hornetq">

 <paging-directory>target/data/paging</paging-directory>
 <bindings-directory>target/data/bindings</bindings-directory>
 <persistence-enabled>false</persistence-enabled>
 <journal-directory>target/data/journal</journal-directory>
 <journal-min-files>10</journal-min-files>
 <large-messages-directory>target/data/large-messages</large-messages-directory>
 <security-enabled>false</security-enabled>

 <connectors>
 <connector name="invm-connector">

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

144

IMPORTANT

The camel-netty component is deprecated since JBoss Fuse 6.3 and will be
replaced by the camel-netty4 component in a future release of JBoss Fuse.

hornetq-configuration.xml: This file contains the definition of the connection factories,
queues, and topics.

To use HornetQMixIn in a test, you need to get a reference to the MixIn and use the appropriate mixin

 <factory-
class>org.hornetq.core.remoting.impl.invm.InVMConnectorFactory</factory-class>
 </connector>
 <connector name="netty-connector">
 <factory-
class>org.hornetq.core.remoting.impl.netty.NettyConnectorFactory</factory-class>
 <param key="port" value="5545"/>
 </connector>
 </connectors>

 <acceptors>
 <acceptor name="invm-acceptor">
 <factory-
class>org.hornetq.core.remoting.impl.invm.InVMAcceptorFactory</factory-class>
 </acceptor>
 <acceptor name="netty-acceptor">
 <factory-
class>org.hornetq.core.remoting.impl.netty.NettyAcceptorFactory</factory-class>
 <param key="port" value="5545"/>
 </acceptor>
 </acceptors>

</configuration>

<configuration xmlns="urn:hornetq">

 <connection-factory name="ConnectionFactory">
 <connectors>
 <connector-ref connector-name="invm-connector"/>
 </connectors>

 <entries>
 <entry name="ConnectionFactory"/>
 </entries>
 </connection-factory>

 <queue name="TestRequestQueue">
 <entry name="TestRequestQueue"/>
 </queue>
 <queue name="TestReplyQueue">
 <entry name="TestReplyQueue"/>
 </queue>

</configuration>

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

145

To use HornetQMixIn in a test, you need to get a reference to the MixIn and use the appropriate mixin
methods, as shown below:

You can also test from a standalone client, as shown below:

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(
 config = SwitchYardTestCaseConfig.SWITCHYARD_XML,
 mixins = {CDIMixIn.class, HornetQMixIn.class}
)

public class JmsBindingTest {

 private HornetQMixIn _hqMixIn;

 @Test
 public void testHelloService() throws Exception {
 Session session = _hqMixIn.getJMSSession();
 MessageProducer producer =
session.createProducer(HornetQMixIn.getJMSQueue(REQUEST_NAME));
 Message message = _hqMixIn.createJMSMessage(createPayload(NAME));
 producer.send(message);

 MessageConsumer consumer =
session.createConsumer(HornetQMixIn.getJMSQueue(REPLY_NAME));
 message = consumer.receive(3000);
 String reply = _hqMixIn.readStringFromJMSMessage(message);
 SwitchYardTestKit.compareXMLToString(reply, createExpectedReply(NAME));
 }

 @Before
 public void getHornetQMixIn() {
 _hqMixIn = _testKit.getMixIn(HornetQMixIn.class);
 }

public static void main(final String[] args) throws Exception {

 HornetQMixIn hqMixIn = new HornetQMixIn(false)
 .setUser(USER)
 .setPassword(PASSWD);
 hqMixIn.initialize();

 try {
 Session session = hqMixIn.getJMSSession();
 final MessageProducer producer =
session.createProducer(HornetQMixIn.getJMSQueue(REQUEST_NAME));
 producer.send(hqMixIn.createJMSMessage("<....>");
 System.out.println("Message sent. Waiting for reply ...");

 final MessageConsumer consumer =
session.createConsumer(HornetQMixIn.getJMSQueue(REPLY_NAME));
 Message message = consumer.receive(3000);
 String reply = hqMixIn.readStringFromJMSMessage(message);

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

146

13.10.11. Testing a Deployed Service with TransactionMixIn

You can use TransactionMixIn to test your required services with a transaction. TransactionMixIn with
combination of CDIMixIn injects a UserTransaction object when required. If you need explicit access, you
can use @Inject in the UserTransaction object. otherwise, it is injected in SwitchYard’s functionalities.
This MixIn introduces NamingMixIn, as it is a required dependency.

This binds the following objects into the JNDI tree:

TransactionManager: java:jboss/TransactionManager

UserTransaction: java:jboss/UserTransaction

TransactionSynchronizationRegistry: java:jboss/TransactionSynchronizationRegistry

If you need access to the provided objects, you can use the MixIn to get a reference, as shown below:

This mixin creates transactional logs in target/tx-store and uses Arjuna Transactions Provider
(com.arjuna.ats.jta).

13.10.12. Testing With a Different SwitchYard Configuration File

You can use the following annotation on the test class and create your reduced <switchyard-
XXXX.xml> within the test/resources folder at the same package level as your test class:

13.10.13. Selectively Enabling Activators for a Test

The test framework defaults to a mode where the entire application descriptor is processed during a test
run. This means all gateway bindings and service implementations are activated during each test. There
are times when this may not be appropriate. So you must allow activators to be selectively enabled or

 System.out.println("REPLY: \n" + reply);
 } finally {
 hqMixIn.uninitialize();
 }

 }

@SwitchYardTestCaseConfig(
 config = SwitchYardTestCaseConfig.SWITCHYARD_XML,
 mixins = {CDIMixIn.class, TransactionMixIn.class}
)
public YourClass{

}

 private TransactionMixIn transaction;

 transaction.getUserTransaction();
 transaction.getTransactionManager();
 transaction.getSynchronizationRegistry();

@SwitchYardTestCaseConfig(config = "switchyard-XXXXX.xml", mixins = {.....})

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

147

disabled based on your test configuration. In the example below, SOAP bindings are excluded from all
tests. This means that SOAP gateway bindings are not activated when the test framework loads the
application.

The example below includes only CDI bean services as defined in the application descriptor:

You may need to add some procedures before you perform the test. The JUnit @Before operation is
invoked immediately after the application is deployed. However, you can not use it if you expect
something to happen before deployment.

13.10.14. Preparing Procedure for Test

JUnit @Before operation is invoked right after the application is deployed. So, you can not use @Before
operation if you expect something before deployment. Use @BeforeDeploy annotation when you need
to add some procedures before a test is performed.

13.10.15. Testing a Camel Binding

If you are exposing services with a camel binding, you can test it by getting the CamelContext and then
creating a ProducerTemplate as shown below:

You can test a service like the one defined below that has a camel binding:

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(config = "testconfigs/switchyard-01.xml" exclude="soap")
public class NoSOAPTest {
 ...
}

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(config = "testconfigs/switchyard-02.xml" include="bean")
public class BeanServicesOnlyTest {
...
}

@RunWith(SwitchYardRunner.class)
@SwitchYardTestCaseConfig(
 config = SwitchYardTestCaseConfig.SWITCHYARD_XML,
 mixins = { CDIMixIn.class })
public class ExampleTest {

 private SwitchYardTestKit testKit;

 @Test
 public void testIntake() throws Exception {
 ServiceDomain domain = testKit.getServiceDomain();
 CamelContext ctx = (CamelContext)domain.getProperty("CamelContextProperty");
 ProducerTemplate producer = ctx.createProducerTemplate();
 producer.sendBody("direct://HelloService", "Message content");
 }
}

<sca:service name="Hello/HelloService" promote="Hello/HelloService">

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

148

 <sca:interface.java interface="org.jboss.example.ExampleService"/>
 <camel_1:binding.uri name="camel1" configURI="direct://HelloService"/>
</sca:service>

CHAPTER 13. TESTING SUPPORT IN SWITCHYARD

149

CHAPTER 14. REMOTE INVOKER

14.1. SWITCHYARD REMOTE INVOKER

The RemoteInvoker serves as a remote invocation client for SwitchYard services. It allows non-
SwitchYard applications to invoke any service in SwitchYard which uses a <binding.sca> binding. It is also
used by the internal clustering channel to facilitate intra-cluster communication between instances.

14.2. USE A REMOTEINVOKER

Procedure 14.1. Task

Include a RemoteInvoker and supporting classes in your application with the following Maven
dependency:

Each instance of SwitchYard includes a special context path called switchyard-remote, which is bound to
the default HTTP listener in Red Hat JBoss Fuse. The initial version of RemoteInvoker supports
communication with this endpoint directly. Here is an example of invoking an in-out service in
SwitchYard using the HttpInvoker:

<dependency>
 <groupId>org.switchyard</groupId>
 <artifactId>switchyard-remote</artifactId>
 <version> <!-- SY version goes here (e.g. 1.0) --> </version>
</dependency>

public class MyClient {
 public static void main(String[] args) throws Exception {
 RemoteInvoker invoker = new HttpInvoker("http://localhost:8080/switchyard-remote");
 Offer offer = new Offer();
 offer.setAmount(100);
 offer.setItem("honda");

 RemoteMessage msg = invoker.invoke(new RemoteMessage()
 .setContext(new DefaultContext())
 .setService(new QName("urn:com.example.switchyard:remote", "Dealer"))
 .setContent(offer));

 Deal deal = (Deal)msg.getContent();
 System.out.println("It's a deal? " + deal.isAccepted());
 }
}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

150

CHAPTER 15. SERIALIZATION

15.1. SERIALIZATION AND DESERIALIZATION IN SWITCHYARD

Serialization is a process of converting an object into a binary format, which can be persisted in a
database or transmitted over a network. Deserialization is a process of creating an object from binary
format. In SwitchYard, the process of serialization is a concern in case of clustering and execution from a
client invoker. In such cases, SwitchYard uses objects that represent the content of a SwitchYard
Message or objects that are placed within a SwitchYard Exchange's Context, for serialization and
deserialization.

15.2. CUSTOM OBJECTS

Custom (application-defined) objects that are stored as the content of the message or property of the
exchange context, are not required to implement java.io.Serializable. This is because SwitchYard does
not use the JDK's default object serialization mechanism. It traverses the object graph, extracting the
properties along the way, and stores the values in its own graph representation, which by default is
serialized to/from the JSON format. For this to work, custom objects must follow one of the following
two rules:

Adhere to the JavaBeans specification. This means a public, no arg constructor, and public
getter/setter pairs for every property you want serialized. If you follow this rule, your custom
objects do not require any compilation dependencies on SwitchYard.

Use SwitchYard annotations to define your serialization strategy.

15.3. SWITCHYARD ANNOTATIONS FOR SERIALIZATION

The org.switchyard.serial.graph package provides the following annotations, enums, interface and class:

@Strategy

Here you can define the serialization strategy, including access type, coverage type, and factory for
your class. All these are optional.

access=AccessType: BEAN (default) for getter/setter property access, FIELD for member
variable access.

coverage=CoverageType: INCLUSIVE (default) for serializing all properties, EXCLUSIVE for
ignoring all properties.

factory=Factory: Interface for how the class gets instantiated.

DefaultFactory: Creates an instance of the class using the default constructor.

@Include

You can place this on individual getter methods or fields to override CoverageType.EXCLUSIVE.

@Exclude

You can place this on individual getter methods or fields to override CoverageType.INCLUSIVE.

15.4. SWITCHYARD SERIALIZATION API USAGE

CHAPTER 15. SERIALIZATION

151

You can implement Serialization using Serializers from the SerializerFactory. Although it is not
recommended to use SwitchYard's serialization API directly, however, if you need to use it, here is an
example of Serializer.create invocation:

Out of the box, the available FormatTypes are SER_OBJECT, XML_BEAN and JSON, and the available
CompressionTypes are GZIP, ZIP, or null (for no compression).

// See SerializerFactory for overloaded "create" methods.
Serializer ser = SerializerFactory.create(FormatType.JSON, CompressionType.GZIP, true);

// to and from a byte array
Foo fooBefore = new Foo();
byte[] bytes = ser.serialize(fooBefore, Foo.class);
Foo fooAfter = ser.deserialize(bytes, Foo.class);

// to and from output/input streams
Bar barBefore = new Bar();
OutputStream out = ...
ser.serialize(barBefore, Bar.class, out);
InputStream in = ...
Bar barAfter = ser.deserialize(in, Bar.class);

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

152

CHAPTER 16. CONTEXT MAPPING

16.1. CONTEXT MAPPER

A ContextMapper moves native binding message headers and/or properties to and from SwitchYard's
canonical context. The default ContextMapper implementations are used by their associated bindings
but can be overridden by the user.

16.2. CREATE A CUSTOM CONTEXT MAPPER

Procedure 16.1. Create a Custom Context Mapper

1. Implement the org.switchyard.component.common.composer.ContextMapper interface:

2. Specify your implementation in your switchyard.xml file:

3. Alternatively, you can implement the
org.switchyard.component.common.composer.RegexContextMapper interface, which adds
regular expression support:

16.3. CUSTOM CONTEXT MAPPER PROPERTIES

Your mapFrom() method needs to map a source native message's properties to the SwitchYard
Message's Context.

Your mapTo() method needs to map a SwitchYard Message's Context properties into the target
native message.

If you extend BaseContextMapper, these methods are canceled with "no-op" implementations
so you only have to implement what you wish.

If you are adding regular expression, support, note the following:

public interface ContextMapper<T> {
 void mapFrom(T source, Context context) throws Exception;
 void mapTo(Context context, T target) throws Exception;
}

<binding.xyz ...>
 <contextMapper class="com.example.MyContextMapper"/>
</binding.xyz>

public interface RegexContextMapper<T> extends ContextMapper<T> {
 ContextMapper<T> setIncludes(String includes);
 ContextMapper<T> setExcludes(String excludes);
 ContextMapper<T> setIncludeNamespaces(String includeNamespaces);
 ContextMapper<T> setExcludeNamespaces(String excludeNamespaces);
 boolean matches(String name);
 boolean matches(QName qname);
}

CHAPTER 16. CONTEXT MAPPING

153

The setIncludes(), setExcludes(), setIncludeNamespaces() and setExcludeNamespaces()
methods are just bean properties. The matches() methods use those bean properties to
determine if the specified name or qualified name passes the collective regular expressions.

If you extend the BaseRegexContextMapper, all of these are implemented for you. Then, in
your implementation's mapFrom and mapTo methods, you only need to first check if the
property matches before you map it.

Also for RegexContextMapper, the following additional attributes of the <contextMapper/> element
are used:

includes

This indicates which context property names to include.

excludes

This indicates which context property names to exclude.

includeNamespaces

This indicates which context property namespaces to include (if the property name is a qualified
name).

excludeNamespaces

This indicates which context property namespaces to exclude (if the property name is a qualified
name).

16.4. CONTEXT MAPPER IMPLEMENTATIONS AVAILABLE OUT-OF-
THE-BOX

The following four out-of-the-box implementations extend BaseRegexContextMapper, thus each of
them can be configured to use the additional regular expression attributes.

SOAPContextMapper

When processing an incoming SOAPMessage, the SOAPContextMapper takes the MIME (in most
cases, HTTP) headers from a SOAP envelope and maps them into the SwitchYard Context as
Scope.IN properties with the SOAPComposition.SOAP_MESSAGE_MIME_HEADER label, and takes
the SOAP header elements from the soap envelope and maps them into the SwitchYard Context as
Scope.EXCHANGE properties with the SOAPComposition.SOAP_MESSAGE_HEADER label. When
processing an outgoing SOAPMessage, it takes the SwitchYard Scope.OUT Context properties and
maps them into mime (in most cases, HTTP) headers, and takes the SwitchYard Scope.EXCHANGE
Context properties and maps them into the SOAP envelope as soap header elements.

You can map these properties with a namespace to the soap header.

NOTE

response.getContext().setProperty("{urn:test:1.0}soapProperty", "soapPropertyValue",
Scope.EXCHANGE);

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

154

NOTE

The SOAPContextMapper has an additional attribute that the other OOTB
ContextMappers do not use, namely soapHeadersType:

The value of soapHeadersType can be CONFIG, DOM, VALUE or XML (and
correspond to the enum SOAPHeadersType.CONFIG, DOM, VALUE or XML). With
CONFIG, each soap header element is mapped into an
org.switchyard.config.Configuration object, with DOM, each soap header element is
left as is (a DOM element), with VALUE, only the String value of each soap header
element is stored, and with XML, each soap header element is transformed into an
XML String.

CamelContextMapper

When processing an incoming CamelMessage, the CamelContextMapper takes the CamelMessage
headers and maps them into the SwitchYard Context as Scope.IN properties with the
CamelComposition.CAMEL_MESSAGE_HEADER label, and takes the Camel Exchange properties
and maps them into the SwitchYardContext as Scope.EXCHANGE properties with the
CamelComposition.CAMEL_EXCHANGE_PROPERTY label. When processing an outgoing
CamelMessage, it takes the SwitchYard Scope.OUT Context properties and maps them into the
CamelMessage as headers, and takes the SwitchYard Scope.EXCHANGE Context properties and
maps them into the Camel Exchange as properties.

HttpContextMapper

When processing an incoming HTTP request, the HttpContextMapper takes the incoming request
headers and maps them into the SwitchYard Context as Scope.IN with the
HttpComposition.HTTTP_HEADER label. When processing an outgoing HTTP response, it takes the
SwitchYard Scope.OUT Context properties and maps them into the response headers.

RESTEasyContextMapper

When processing an incoming HTTP request, the RESTEasyContextMapper takes the incoming
request headers and maps them into the SwitchYard Context as Scope.IN with the
RESTEasyComposition.HTTP_HEADER label. When processing an outgoing HTTP response, it takes
the SwitchYard Scope.OUT Context properties and maps them into the response headers.

The JCA Component provides three different ContextMappers:

IndexedRecordContextMapper

When processing an incoming IndexedRecord, the IndexedRecordContextMapper takes the record
name and record short description and maps them into the SwitchYardContext as
Scope.EXCHANGE properties with the JCAComposition.JCA_MESSAGE_PROPERTY label. When
processing an outgoing IndexedRecord, it looks for those properties specifically in the
SwitchYard.EXCHANGE Context properties by key and sets them on the IndexedRecord.

MappedRecordContextMapper

When processing an incoming MappedRecord, the MappedRecordContextMapper takes the record
name and record short description and maps them into the SwitchYardContext as
Scope.EXCHANGE properties with the JCAComposition.JCA_MESSAGE_PROPERTY label. When

<binding.soap>
 <contextMapper includes=".*" soapHeadersType="VALUE"/>
</binding.soap>

CHAPTER 16. CONTEXT MAPPING

155

processing an outgoing MappedRecord, it looks for those properties specifically in the
SwitchYard.EXCHANGE Context properties by key and sets them on the MappedRecord.

JMSContextMapper

When processing an incoming (JMS) Message, the JMSContextMapper takes the Message
properties and maps them into the SwitchYardContext as Scope.EXCHANGE properties with the
JCAComposition.JCA_MESSAGE_PROPERTY label. When processing an outgoing (JMS) Message,
it takes the SwitchYard.EXCHANGE Context properties and maps them into the Message as Object
properties.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

156

CHAPTER 17. AUDITING

17.1. SWITCHYARD AUDITING

SwitchYard possesses auditing functionality. It traces exchanges through their various mediation states.
The auditing functionality requires the CDI environment (the META-INF/beans.xml file) to run. The
auditing functionality also works in a test environment.

17.2. ENABLE CUSTOM AUDITORS

Audit mechanism requires CDI runtime environment to run.

To enable custom auditors, define the Auditor implementations with the @Named annotation. It helps
Apache Camel component to recognize all the auditor implementations. Camel Exchange Bus, a default
implementation used by SwitchYard, look up for bean definitions with @Audit annotation.

NOTE

Do not include any state inside the Custom Auditor's field. Red Hat recommends you to
use exchange properties or message headers to store values.

17.3. MEDIATION STATE

Mediation state is the term used to described the interim states a SwitchYard exchange goes through as
it is sent from a service consumer to a service provider.

17.4. LIST OF MEDIATION STATES

Domain handlers

In this state all the handlers defined in switchyard.xml are executed. This is an early phase of
mediation where you can either implement own logic or choose the service provider logic to use.

@Audit
@Named("custom auditor")
public class SimpleAuditor implements Auditor
{
@Override
public void beforeCall(Processors processor, Exchange exchange)
{
System.out.println("Before " + processor.name());
}

@Override
public void afterCall(Processors processor, Exchange exchange)
{
System.out.println("After " + processor.name());
}

}

CHAPTER 17. AUDITING

157

Addressing

If this is not specified by the domain handlers then the addressing handler will determine what to do
by using the consumer contract.

Transaction

If the service is required to run a transaction this handler starts it.

Security

This state verifies constraints related to authentication and authorization.

General policy

This executes checks other than those for security and transactions.

Validation

This executes custom validators.

Transformation

This prepares the payload by calling a provider.

Validation (2)

This validates the transformed payload.

Provider call

This calls the provisional service.

Transaction (2)

This commits or, if necessary, rolls back the transaction.

If the service consumer is synchronous and the exchange pattern is set to in-out, then some of these
handlers may be called once again:

Domain handlers

These are called when a response is generated by a provider service.

Validation

This verifies the output generated by the provider.

Transformation

This converts the payload to the structure required by the consumer.

Validation

This checks the output after the transformation has occurred.

Consumer callback

This returns the exchange to the service consumer.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

158

17.5. CREATE A CUSTOM AUDITOR

Prerequisities

CDI Runtime

Annotate your auditor implementations with @Named in order to have Camel recognize them.

NOTE

The Camel Exchange Bus looks for bean definitions with the @Audit annotation.

Here is code that shows what a very simple auditor would look like:

IMPORTANT

Be aware that the afterCall method is not called if the step it surrounds throws an
exception. If this happens, afterCall will be skipped.

Result

You can see many statements like 'Before DOMAIN_HANDLERS' and 'Before ADDRESSING' appearing
in the server console. This is because every step of mediation is surrounded by this SimpleAuditor class.

17.6. DETERMINE LOCATION FOR AUDIT ASSIGNMENT

In SwitchYard, you may choose to provide an argument to the @Audit annotation. The accepted values
for this comes from org.switchyard.bus.camel.processors.Processors enumeration. For example, the
following combination can handle only validation occurrences:

Note the following important facts about validation, transformation, and transaction in SwitchYard:

The validation is executed twice for in-only exchanges and four times for in-out exchanges.

@Audit
@Named("custom auditor")
public class SimpleAuditor implements Auditor {

 @Override
 public void beforeCall(Processors processor, Exchange exchange) {
 System.out.println("Before " + processor.name());
 }

 @Override
 public void afterCall(Processors processor, Exchange exchange) {
 System.out.println("After " + processor.name());
 }

}

@Audit(Processors.VALIDATION)

CHAPTER 17. AUDITING

159

The validation occurs before and after transformation of inbound messages.

When SwitchYard sends outgoing messages, the validation occurs before and after
transformation of outbound messages.

Transformation is executed once for in-only exchanges and twice for in-out exchanges.

Transaction phase is always executed twice.

If you want to implement only one execution of your auditor, use the following combination:

Here, the auditor is executed just before sending exchange to service implementation. You can also
implement one auditor instance with few mediation steps. For example, a bean with annotation
following:

This bean is executed twice. One pair of before or after call for provider service and second pair for
outgoing response.

17.7. USE EXCHANGE PROPERTIES

As only one instance of auditor is created by default and there is no guarantee for dispatching order,
ensure that the custom auditors do not preserve state inside any of the fields. If you want to store
values, use exchange properties or message headers. Here is an example of how to count processing
time using Exchange properties as temporary storage:

@Audit(Processors.PROVIDER_CALLBACK).

@Audit({Processors.PROVIDER_CALLBACK, Processors.CONSUMER_CALLBACK})

@Named("custom auditor")
public class SimpleAuditor implements Auditor {

 private Logger _logger = Logger.getLogger(SimpleAuditor.class);

 @Override
 public void beforeCall(Processors processor, Exchange exchange) {
 exchange.setProperty("time", System.currentTimeMillis());
 }

 @Override
 public void afterCall(Processors processor, Exchange exchange) {
 long time = System.currentTimeMillis() - exchange.getProperty("time", 0, Long.class);
 _logger.info("Step " + processor.name() + " took " + time + "ms");
 }

}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

160

CHAPTER 18. EXTENSIONS
An extension is a module that extends the core capabilities of JBoss EAP.

You can extend SwitchYard functionality by creating extension modules for JBoss EAP. Use this feature
to:

Support additional binding types through Camel components not included in the distribution.

Add data formats and other Camel libraries for use within Camel routing services.

Implement custom gateway bindings as Camel components.

18.1. CREATE SWITCHYARD EXTENSION MODULE IN JBOSS EAP

Procedure 18.1. Create, Register and Build a SwitchYard Extension Module in JBoss EAP

1. An extension is deployed in the modules folder of JBoss EAP.

Extension modules are placed under the modules/system/layers/soa/org/ directory of your
JBoss EAP installation. The jar files that make up the module are placed in the
modules/system/layers/soa/org/product/subsystem/modulename/main directory. The
module.xml file contains definition information. For example, in directory
modules/system/layers/soa/org/apache/camel/saxon/main, the module.xml file looks like
this:

The module.xml file contains the following information:

The module name. The module name is comprised of the directory names for the module
underneath the EAP-Home/modules/system/layers/soa directory.

Resources required. Notice that the files mentioned in the <resources> section are in the
same directory as the module.xml file.

Dependencies for the module.

2. In order to make SwitchYard aware of the extension module, add the module name to the list of
extensions defined in the SwitchYard subsystem in standalone.xml:

<?xml version="1.0" encoding="UTF-8"?>
 <module xmlns="urn:jboss:module:1.0" name="org.apache.camel.saxon">

 <resources>
 <resource-root path="camel-saxon-2.10.0.redhat-60024.jar"/>
 <resource-root path="saxon9he-9.3.0.11.jar"/>
 </resources>

 <dependencies>
 <module name="javax.api"/>
 <module name="org.slf4j"/>
 <module name="org.apache.camel.core"/>
 </dependencies>

</module>

CHAPTER 18. EXTENSIONS

161

3. Build the application that will be using the module using the mvn clean install command. If
there are problems running the JVM tests step locally, use the -DskipTests argument.

Update the pom.xml file for the application. Add the module as a dependency and mark it as
provided.

4. If the module is created from a jar not supplied with JBoss Fuse Service Works, you must ensure
that a jboss-deployment-structure.xml file exists in the application-
name/src/main/resources/META-INF folder of the application that will run it. The jboss-
deployment-structure.xml file contains information in the following format:

The module name must be the same as the module name defined in step 1 with the same
naming rules.

<subsystem xmlns="urn:jboss:domain:switchyard:1.0">
 <modules>
 <module identifier="org.switchyard.component.bean"
implClass="org.switchyard.component.bean.deploy.BeanComponent"/>
 <module identifier="org.switchyard.component.soap"
implClass="org.switchyard.component.soap.deploy.SOAPComponent">
 <!-- snip -->
 </modules>
 <extensions>
 <extension identifier="org.apache.camel.mvel"/>
 <extension identifier="org.apache.camel.ognl"/>
 <extension identifier="org.apache.camel.jaxb"/>
 <extension identifier="org.apache.camel.soap"/>
 <extension identifier="org.apache.camel.saxon"/>
 </extensions>
</subsystem>

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-saxon</artifactId>
 <version>2.10.0.redhat-60024</version>
 <scope>provided</scope>
</dependency>

<?xml version="1.0" encoding="UTF-8"?>
<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.apache.camel.saxon" services="import" export="true">
 <imports>
 <include path="META-INF/services/org/apache/camel/component" />
 <include path="META-INF/services/org/apache/camel/language" />
 </imports>
 <exports>
 <include path="META-INF/services/org/apache/camel/component" />
 <include path="META-INF/services/org/apache/camel/language" />
 </exports>
 </module>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

162

For an example of an extension module and an application, see
https://access.redhat.com/solutions/653823.

18.2. EXTENSION TYPES AND USAGE

How you use an extension in your application depends on the type of extension.

Table 18.1. Extensions

Type Usage

Camel DataFormat Once a data format is packaged as a module and
added as an extension to the SwitchYard subsystem,
no further configuration is required in your
application. You can refer to the data format directly
in your route as if it was packaged directly within your
application.

Camel Gateway Components If the extension is to be used as a gateway binding
for services or references, then use the Camel URI
binding in your application to configure the endpoint
details.

CHAPTER 18. EXTENSIONS

163

https://access.redhat.com/solutions/653823

CHAPTER 19. REFERENCE

19.1. CONFIGURATION DESCRIPTORS

Each SwitchYard application must include a configuration descriptor named switchyard.xml in the
/META-INF directory of its archive. The basic structure of this descriptor is:

A parent <switchyard> element, which contains all other configuration.

One child <composite> element, which contains the SCA description of the application.

No more than one <transforms> element, which can contain one or more transform definitions.

No more than one <validates> element, which can contain one or more validate definitions.

19.2. DESCRIPTOR CONFIGURATION EXAMPLE

Here's an example of what a SwitchYard descriptor looks like:

<switchyard xmlns="urn:switchyard-config:switchyard:1.0"
 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 xmlns:bean="urn:switchyard-component-bean:config:1.0"
 xmlns:soap="urn:switchyard-component-soap:config:1.0">
 <sca:composite name="orders" targetNamespace="urn:switchyard-quickstart-demo:orders:0.1.0">
 <sca:service name="OrderService" promote="OrderService">
 <soap:binding.soap>
 <soap:socketAddr>:18001</soap:socketAddr>
 <soap:wsdl>wsdl/OrderService.wsdl</soap:wsdl>
 </soap:binding.soap>
 </sca:service>
 <sca:component name="InventoryService">
 <bean:implementation.bean
class="org.switchyard.quickstarts.demos.orders.InventoryServiceBean"/>
 <sca:service name="InventoryService">
 <sca:interface.java interface="org.switchyard.quickstarts.demos.orders.InventoryService"/>
 </sca:service>
 </sca:component>
 <sca:component name="OrderService">
 <bean:implementation.bean
class="org.switchyard.quickstarts.demos.orders.OrderServiceBean"/>
 <sca:service name="OrderService">
 <sca:interface.java interface="org.switchyard.quickstarts.demos.orders.OrderService"/>
 </sca:service>
 <sca:reference name="InventoryService">
 <sca:interface.java interface="org.switchyard.quickstarts.demos.orders.InventoryService"/>
 </sca:reference>
 </sca:component>
 </sca:composite>
 <transforms xmlns="urn:switchyard-config:transform:1.0">
 <transform.java bean="Transformers"
 from="{urn:switchyard-quickstart-demo:orders:1.0}submitOrder"
 to="java:org.switchyard.quickstarts.demos.orders.Order"/>
 <transform.java bean="Transformers"
 from="java:org.switchyard.quickstarts.demos.orders.OrderAck"

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

164

NOTE

Do not edit the SwitchYard.xml file directly. Red Hat recommends using the JBoss
Developer Studio SwitchYard Editor to edit the SwitchYard.xml file.

19.3. COMPOSITE

The composition of a SwitchYard application is defined using the Service Component Architecture
Assembly Model, an open specification undergoing standardization in OASIS. Through this, a number of
elements can be added to a service.

19.4. COMPOSITE ELEMENTS

Table 19.1. Composite Elements

Name Description

<composite> Single, top-level application element which defines a
set of services, the relationships and dependencies
of those services, and the linkage (if any) to services
available outside the application.

<component> Contains the implementation of a service and the
dependencies of that service.

<service> Defines the name and interface for a service. This
element is used inside a component definition to
declare a service and can also appear inside a
composite definition to indicate that a service is
visible to outside applications.

<interface.XXX> The contract for a service. The type of the interface
replaces 'XXX' in the definition. Supported interface
types are Java and WSDL.

<binding.XXX> The binding of a service. The type of the binding
replaces 'XXX' in the definition. Example bindings
include binding.soap and binding.camel.

<implementation.XXX> The implementation of a service. The type of the
implementation replaces 'XXX' in the definition.
Example implementations include
implementation.bean and implementation.camel.

 to="{urn:switchyard-quickstart-demo:orders:1.0}submitOrderResponse"/>
 </transforms>
 <validates>
 <validate.java bean="Validators"
 name="java:org.switchyard.quickstarts.demos.orders.Order"/>
 <validate.java bean="Validators"
 name="java:org.switchyard.quickstarts.demos.orders.OrderAck"/>
 </validates>
</switchyard>

CHAPTER 19. REFERENCE

165

19.5. THE TRANSFORMS DEFINITION

The <transforms> definition is used to define transformers local to your application. Much like interfaces,
bindings, and implementations, each transformer definition includes a type in its definition (e.g.
transform.java, transform.smooks). The from and to definitions on each transformer correspond to the
message type used on a service and/or reference interface used within SwitchYard.

19.6. THE VALIDATES DEFINITION

The <validates> definition is used to set validators locally to your application. Similar to transformers,
each validator definition includes a type in its definition (e.g. validate.java, validate.xml). The name
definition on each validator corresponds to the message type used on a service and/or reference
interface used within SwitchYard.

19.7. GENERATED CONFIGURATION

SwitchYard is capable of generating configurations from annotations in an application code. This
negates the need to edit the XML configuration manually. The generated configuration is packaged with
the application as part of the Maven build life cycle. It is located in target/classes/META-
INF/switchyard.xml. (You may also place a descriptor in src/main/resources/META-
INF/switchyard.xml.)

This version of the configuration can be edited by the user directly and is also used by Forge tooling to
specify configuration in response to SwitchYard forge commands. During the build process, the user-
editable switchyard.xml is merged with any generated configuration to produce the final
switchyard.xml in the target/ directory.

19.8. SERVICE OPERATIONS

All SwitchYard services, no matter their implementation type, are composed of one or more service
operations. In the case of a Bean service, the service operations are the set of Java methods exposed by
the service interface.

A Bean service operation does the following:

Declares a maximum of one Input type. The Java method signature must have a maximum of
one Java parameter.

Declares a maximum of one Output type. This is enforced by the Java language. You can only
define one return type on a Java method.

Declares a maximum of one Fault (exception) type.

19.9. SERVICE OPERATION TYPES

All service operations on a SwitchYard service can define Input, Output and Fault messages. These
messages have a type associated with them, which is defined as a QName. This type is used by the data
transformation layer, when trying to work out which transformers to apply to a message payload.

For Bean services, the default type QName for Input (input param), Output (return value) and Fault
(Exception) are derived from the Java class name in each case (param, return, throws). For some types
however (such as org.w3c.dom.Element), the Java type name alone does not tell you the real type of
the data being held by that Java Object instance. For this reason, Bean service operations (methods)
can be annotated with the @OperationTypes annotation.

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

166

19.10. THE @DEFAULTTYPE ANNOTATION

You can set the default data type for a Java type using the @DefaultType type level annotation. This is
useful for setting the type for a hierarchy of Java types, as shown below:

In this example, the type for OrderCreateFailureException has been changed to
java:com.acme.exceptions.OrderManagementException by defining a fault type on the
@OperationTypes. Its type would otherwise default to
java:com.acme.exceptions.OrderCreateFailureException. It could also be done by annotating the base
OrderManagementException class with the @DefaultType annotation. This would set the default type
for the OrderManagementException class and all its sub-classes, including
OrderCreateFailureException, which would mean not having to defining a fault type on the
@OperationTypes wherever one of these exceptions is used on a Bean Service Operation.

19.11. BEAN SERVICES IN A JAVA EE WEB APPLICATION CONTAINER

The JEE Web Application Container can be used to deploy applications (for example, Tomcat or Jetty).
This means that you do not have to use the SwitchYard Application Servers for deployment.You can use
it to configure the SwitchYard WebApplicationDeployer servlet listener in your web application, and
configure Weld into a servlet container.

19.12. JAVASERVER FACES

The JavaServer Faces (JSF) technology provides a server-side component framework that is designed
to simplify the development of user interfaces (UIs) for Java EE applications. JSF integrates with CDI
to provide the Object Model behind the JSF user interface components. The fact that SwitchYard Bean
Services are based on CDI means it's possible to have a smooth integration between SwitchYard Bean
services and a JSF-based user interface.

19.13. INDIRECT SERVICE INVOCATION

SwitchYard services can be indirectly invoked through the SwitchYard Exchange mechanism. This
reduces the coupling between JSF components and SwitchYard Service implementations. This is done
by invoking a SwitchYard CDI Bean Service and the SwitchYard Exchange mechanism through a
@Reference injected Service reference. This provides a client side proxy bean that handles all the
SwitchYard Exchange invocation details for all the operations exposed by the service.

NOTE

public interface OrderService {

 @OperationTypes(
 in = "{http://acme.com/orders}createOrder",
 out = "{http://acme.com/orders}createOrderResult",
 fault = "java:com.acme.exceptions.OrderManagementException"
)
 Element createOrder(Element order) throws OrderCreateFailureException;

}

CHAPTER 19. REFERENCE

167

NOTE

The proxy beans for these invocations are not available (through CDI) to the JSF
components. To work around this, users can create a standard named (@Named) CDI
bean. It must contain a @Reference between the JSF components and the SwitchYard
CDI Bean services.

19.14. INDIRECT SERVICE INVOCATION EXAMPLE

This invocation uses an OrderService example:

19.15. INDIRECT SERVICE INVOCATION WITH JSF COMPONENTS
EXAMPLE

JSF components have a more fluid interaction with the Order bean than with the OrderService:

public interface OrderService {

 OrderAck submitOrder(Order order);

}

public class Order implements Serializable {

 private String orderId;
 private String itemId;
 private int quantity = 1;

 public String getOrderId() {
 return orderId;
 }

 public void setOrderId(String orderId) {
 this.orderId = orderId;
 }

 public String getItemId() {
 return itemId;
 }

 public void setItemId(String itemId) {
 this.itemId = itemId;
 }

 public int getQuantity() {
 return quantity;
 }

 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }
}

<div id="content">

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

168

19.16. INDIRECT SERVICE INVOCATION WITH ANNOTATIONS

In the example below, annotations have been added to the bean called Order to manage invocation:

 <h1>New Order</h1>

 <div style="color: red">
 <h:messages id="messages" globalOnly="false" />
 </div>

 <h:form id="newOrder">
 <div>
 Order ID:
 <h:inputText id="orderID" value="#{order.orderId}" required="true"/>

 Item ID:
 <h:inputText id="itemID" value="#{order.itemId}" required="true"/>

 Quantity:
 <h:inputText id="quantity" value="#{order.quantity}" required="true"/>
 <p/>
 <h:commandButton id="createOrder" value="Create" action="#{order.create}"/>
 </div>
 </h:form>

</div>

@Named
@RequestScoped
public class Order implements Serializable {

 @Inject
 @Reference
 private OrderService orderService;

 private String orderId;
 private String itemId;
 private int quantity = 1;

 public String getOrderId() {
 return orderId;
 }

 public void setOrderId(String orderId) {
 this.orderId = orderId;
 }

 public String getItemId() {
 return itemId;
 }

 public void setItemId(String itemId) {
 this.itemId = itemId;
 }

CHAPTER 19. REFERENCE

169

Annotations @Named and @RequestScoped have been added.

The OrderService property has a @Reference annotation. Because of this, its instance is not a
reference to the actual service implementation. Instead, it is a SwitchYard Exchange proxy to
that service implementation. By using @Reference injected service references, backend service
implementations can be non-CDI Bean service implementations.

Implementing the create method invokes the OrderService reference (exchange proxy).

19.17. CORE API ANNOTATIONS

Table 19.2. Core API Annotations

Feature Feature's Annotations

Policy @Requires

Transformation @Transformer

Validation @Validator

Service Interface @OperationTypes

Serialization @Strategy, @Include, @Exclude

19.18. COMPONENT ANNOTATIONS

Table 19.3. Component Annotations

Component Annotations

Bean @DefaultType, @Inject, @Service, @Reference,
@Property

Camel @Route

 public int getQuantity() {
 return quantity;
 }

 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }

 public void create() {
 OrderAck serviceAck = orderService.submitOrder(this);
 FacesContext.getCurrentInstance().addMessage(null, new
FacesMessage(serviceAck.toString()));
 }
}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

170

Knowledge Services @Channel, @Listener, @Logger, @Manifest,
@Container, @Resource, @Property

BPM @BPM, @WorkItemHandler, @StartProcess,
@SignalEvent, @AbortProcessInstance

Rules @Rules, @Execute, @Insert, @FireAllRules,
@FireUntilHalt

Component Annotations

19.19. TESTING ANNOTATIONS

Table 19.4. Testing Annotations

Action Annotations

Testing @RunWith, @Test, @SwitchYardTestCaseConfig,
@ServiceOperation, @BeforeDeploy

19.20. JBOSS RULES

19.20.1. JBoss Rules

JBoss Rules is the name of the business rule engine provided as part of the Red Hat JBoss Fuse
product.

19.20.2. The JBoss Rules Engine

The JBoss Rules engine is the computer program that applies rules and delivers Knowledge
Representation and Reasoning (KRR) functionality to the developer.

19.20.3. Production Rules

A production rule is a two-part structure that uses first order logic to represent knowledge. It takes the
following form:

19.20.4. The Inference Engine

The inference engine is the part of the BRMS engine which matches production facts and data to rules. It
performs the actions based on what it infers from the information. A production rules system's inference
engine is stateful and is responsible for truth maintenance.

when
 <conditions>
then
 <actions>

CHAPTER 19. REFERENCE

171

19.20.5. ReteOO

The Rete implementation used in JBoss Rules is called ReteOO. It is an enhanced and optimized
implementation of the Rete algorithm specifically for object-oriented systems. The Rete Algorithm has
now been deprecated, and PHREAK is an enhancement of Rete. This section merely describes how the
Rete Algorithm functions.

19.20.6. Using JBoss Rules

To learn how to use JBoss Rules, please refer to the BRMS Development Guide.

19.21. APACHE CAMEL

19.21.1. Apache Camel

Camel is an open source rules-based router developed by the Apache Project.

19.21.2. Using Apache Camel

To learn how to use Apache Camel, refer to the Red Hat JBoss Fuse Web Services and Routing with
Camel CXF Guide.

19.21.3. Using Camel Routes Directly

You can deploy Camel routes directly in your user application, without needing to use SwitchYard. For
example, you can deploy the Camel routes as a WAR file, fronted by a servlet or CXF.

19.21.4. Supported Camel Components

The following Apache Camel components are supported by JBoss Fuse:

camel-amqp

camel-atom

camel-atom

camel-bindy

camel-cdi

camel-cxf

camel-dozer

camel-file

camel-ftp

camel-hl7

camel-http

camel-jaxb

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

172

camel-jms

camel-jpa

camel-mail

camel-mqtt

camel-netty

camel-quartz

camel-rss

camel-sap

camel-saxon

camel-sql

19.21.5. Running Camel Examples

The Camel CXF (code first) example uses code-first to expose a web service in Camel running on JBoss
EAP. It can be run using Maven.

Procedure 19.1. Task

1. To build the example, navigate to its directory and run the following command:

mvn clean install

2. To run the example, deploy it in JBoss EAP by copying the camel-example-cxf-tomcat.war
located in the target directory to the standalone/deployments/ folder.

The webservice is available in http://localhost:8080/camel-example-cxf-
tomcat/webservices/incident?wsdl.

19.21.6. Sample Client With Camel CXF

This is what a sample client made with Camel CXF looks like:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:reportIncident xmlns:ns1="http://incident.cxf.example.camel.apache.org/">
 <arg0>
 <details>Accounting Department</details>
 <email>johncitizen@acompany.com</email>
 <familyName>Citizen</familyName>
 <givenName>John</givenName>
 <incidentId>12345</incidentId>
 <summary>Incident</summary>
 </arg0>
 </ns1:reportIncident>
 </soap:Body>
</soap:Envelope>

CHAPTER 19. REFERENCE

173

19.21.7. Camel Servlet Without Spring Example

Procedure 19.2. Task

1. To build the example, navigate to the Apache Tomcat directory and enter the following
command:

mvn package

2. To deploy the example, copy the resulting .war file into Apache Tomcat's Deploy folder.

3. To access the example, open your browser and navigate to http://localhost:8080/camel-
example-servlet-tomcat-no-spring-2.10.0

4. To access the servlet, go to http://localhost:8080/camel-example-servlet-tomcat-no-spring-
2.10.0/camel

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:statusIncident xmlns:ns1="http://incident.cxf.example.camel.apache.org/">
 <arg0>
 <incidentId>12345</incidentId>
 </arg0>
 </ns1:statusIncident>
 </soap:Body>
</soap:Envelope>

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

174

http://localhost:8080/camel-example-servlet-tomcat-no-spring-2.10.0
 http://localhost:8080/camel-example-servlet-tomcat-no-spring-2.10.0/camel

CHAPTER 20. DEBUGGING

20.1. MESSAGE TRACING

Message tracing provides a view of the content and context of a message exchange on the SwitchYard
bus. Message tracing prints exchange information to the log. An exchange interceptor that generates
the trace, is triggered at the following points:

Immediately after the consumer sends the request message. For example, In the case of a
service which is invoked from a service binding, this is the point at which the gateway binding
puts the message onto the bus.

Immediately before the service provider is invoked.

Immediately after the service provider is invoked.

At completion of the exchange before the message is returned to the consumer.

20.1.1. Trace Output Example

Trace output includes details on the metadata, context properties, payload, and attachments for a
message exchange. Here is an example of a trace entry:

12:48:25,038 INFO [org.switchyard.handlers.MessageTraceHandler]
------- Begin Message Trace -------
Consumer -> {urn:switchyard-quickstart:bean-service:0.1.0}OrderService
Provider -> [unassigned]
Operation -> submitOrder
MEP -> IN_OUT
Phase -> IN
State -> OK
Exchange Context ->
 org.switchyard.bus.camel.consumer : ServiceReference [name={urn:switchyard-quickstart:bean-
service:0.1.0}OrderService, interface=BaseServiceInterface [type=wsdl, operations=[submitOrder :
IN_OUT : [{urn:switchyard-quickstart:bean-service:1.0}submitOrder, {urn:switchyard-quickstart:bean-
service:1.0}submitOrderResponse, null]]], domain=ServiceDomain
[name=org.switchyard.domains.root]]
 org.switchyard.exchangeGatewayName : _OrderService_soap_1
 org.switchyard.bus.camel.securityContext : SecurityContext[credentials=[ConfidentialityCredential
[confidential=false]], securityDomainsToSubjects={}]
 org.switchyard.exchangeInitiatedNS : 1375980505021790000
 CamelCreatedTimestamp : Thu Aug 08 12:48:25 EDT 2013
 org.switchyard.bus.camel.phase : IN
 org.switchyard.bus.camel.dispatcher : org.switchyard.bus.camel.ExchangeDispatcher@b4aa453
 org.switchyard.bus.camel.labels : {org.switchyard.exchangeGatewayName=
[org.switchyard.label.behavior.transient]}
 CamelToEndpoint : direct://%7Burn:switchyard-quickstart:bean-service:0.1.0%7DOrderService
 org.switchyard.bus.camel.contract : org.switchyard.metadata.BaseExchangeContract@2176feaf
 org.switchyard.bus.camel.replyHandler :
org.switchyard.component.common.SynchronousInOutHandler@516a4aef
 CamelFilterMatched : false
Message Context ->
 org.switchyard.bus.camel.labels : {org.switchyard.contentType=
[org.switchyard.label.behavior.transient], org.switchyard.bus.camel.messageSent=
[org.switchyard.label.behavior.transient]}

CHAPTER 20. DEBUGGING

175

20.1.2. Enabling Message Tracing

You can enable message tracing within JBoss Developer Studio.

When using the SwitchYard visual editor to view the switchyard.xml file, select the Domain tab
to view the Domain Settings, then select the Enable Message Trace check box.

This sets the value of the org.switchyard.handlers.messageTrace.enabled property to true in your
application domain. This is captured by the <sy:domain> element in the switchyard.xml source file.

20.2. EXCHANGE INTERCEPTORS

Exchange Interceptors provide a mechanism for injecting logic into the message path of the SwitchYard
exchange bus. You can use an interceptor to read or update message content and context properties,
which makes interceptors useful for debugging and for applying logic outside a traditional service
implementation in SwitchYard.

20.2.1. Implementing an Exchange Interceptor

The Java class ExchangeInterceptor has the following properties:

Implements the org.switchyard.ExchangeInterceptor interface.

Is annotated with @Named so that it can be discovered as a CDI bean.

The ExchangeInterceptor interface looks like this:

An interceptor is invoked for all message exchanges in an application, so if you only care about a specific
service you will want to add a conditional to before() and after() to check for service name. You can

 org.switchyard.messageId : ID-kookaburra-local-49858-1375980502093-0-1
 org.switchyard.bus.camel.messageSent : true
 org.switchyard.soap.messageName : submitOrder
 org.switchyard.contentType : {urn:switchyard-quickstart:bean-service:1.0}submitOrder
 breadcrumbId : ID-kookaburra-local-49858-1375980502093-0-1
Message Content ->
<?xml version="1.0" encoding="UTF-8"?><orders:submitOrder xmlns:orders="urn:switchyard-
quickstart:bean-service:1.0">
 <order>
 <orderId>PO-19838-XYZ</orderId>
 <itemId>BUTTER</itemId>
 <quantity>200</quantity>
 </order>
 </orders:submitOrder>
------ End Message Trace -------

public interface ExchangeInterceptor {
 String CONSUMER = "Consumer";
 String PROVIDER = "Provider";

 void before(String target, Exchange exchange) throws HandlerException;
 void after(String target, Exchange exchange) throws HandlerException;
 List<String> getTargets();
}

Red Hat JBoss Fuse 6.3 SwitchYard Development Guide

176

restrict the interception points used through the getTargets() method. The CONSUMER and
PROVIDER string constants are provided for use with getTargets() to restrict interception to the
consumer, provider, or both. The CONSUMER target maps to an injection point just after the consumer
sends a request and just before the reply is handed back. The PROVIDER target maps to an injection
point just before the provider is called with a request and just after it produces a response.

Here is an example ExchangeInterceptor implementation from the bean-service quickstart:

package org.switchyard.quickstarts.bean.service;

import java.util.Arrays;
import java.util.List;

import javax.inject.Named;

import org.switchyard.Exchange;
import org.switchyard.ExchangeInterceptor;
import org.switchyard.ExchangeState;
import org.switchyard.HandlerException;

/**
 * This is an example of an exchange interceptor which can be used to inject code
 * around targets during a message exchange. This example updates the content of
 * OrderAck after the provider has generated a response.
 */
@Named("UpdateStatus")
public class OrderInterceptor implements ExchangeInterceptor {

 @Override
 public void before(String target, Exchange exchange) throws HandlerException {
 // Not interested in doing anything before the provider is invoked
 }

 @Override
 public void after(String target, Exchange exchange) throws HandlerException {
 // We only want to intercept successful replies from OrderService
 if (exchange.getProvider().getName().getLocalPart().equals("OrderService")
 && ExchangeState.OK.equals(exchange.getState())) {
 OrderAck orderAck = exchange.getMessage().getContent(OrderAck.class);
 orderAck.setStatus(orderAck.getStatus() + " [intercepted]");
 }
 }

 @Override
 public List<String> getTargets() {
 return Arrays.asList(PROVIDER);
 }

}

CHAPTER 20. DEBUGGING

177

	Table of Contents
	CHAPTER 1. READ ME
	1.1. BACK UP YOUR DATA
	1.2. RED HAT DOCUMENTATION SITE
	1.3. EAP_HOME
	1.4. MODE

	CHAPTER 2. JBOSS INTEGRATION AND SOA DEVELOPMENT
	2.1. JBOSS INTEGRATION AND SOA DEVELOPMENT
	2.2. INSTALLING JBOSS DEVELOPER STUDIO INTEGRATION STACK
	2.3. HELPFUL TIPS
	2.4. RUNNING QUICKSTARTS FROM JBOSS DEVELOPER STUDIO
	2.5. IMPORT PROJECTS FROM A GIT REPOSITORY IN JBOSS DEVELOPER STUDIO
	2.6. SETTING A NEW RULES RUNTIME IN JBOSS DEVELOPER STUDIO
	2.7. EDITING THE SWITCHYARD CONFIGURATION FILE

	CHAPTER 3. APPLICATION BASICS
	3.1. COMPOSITE
	3.2. COMPONENT
	3.3. IMPLEMENTATION
	3.4. COMPONENT SERVICE
	3.5. COMPOSITE SERVICE
	3.6. SERVICE BINDING
	3.7. COMPONENT REFERENCE
	3.8. COMPOSITE REFERENCE
	3.9. REFERENCE BINDINGS

	CHAPTER 4. SETTING UP THE SERVER
	4.1. ADD JBOSS EAP SERVER

	CHAPTER 5. SWITCHYARD PROJECT
	5.1. CREATING A NEW SWITCHYARD PROJECT
	5.2. IMPORTING EXISTING MAVEN PROJECT
	5.3. ADDING SWITCHYARD CAPABILITIES TO EXISTING PROJECTS
	5.4. EDITING SWITCHYARD PROJECTS
	5.4.1. Editing the SwitchYard Configuration File

	CHAPTER 6. SWITCHYARD CONTRACTS
	6.1. SWITCHYARD CONTRACTS
	6.2. COMPONENT CONTRACTS
	6.3. TRANSFORMATIONS BETWEEN CONTRACTS

	CHAPTER 7. PACKAGING AND DEPLOYMENT FOR SWITCHYARD
	7.1. DEPLOYMENT FOR SWITCHYARD
	7.2. DEPLOY A WAR FILE FOR SWITCHYARD

	CHAPTER 8. SERVICE IMPLEMENTATIONS
	8.1. BEAN
	8.1.1. Bean Service Component
	8.1.2. Bean Services
	8.1.3. Create a Bean Service
	8.1.4. Providing a Service
	8.1.5. @Service
	8.1.6. Consuming a Service
	8.1.7. @Reference
	8.1.8. ReferenceInvoker
	8.1.9. Invocation Properties
	8.1.10. Accessing Invocation Properties
	8.1.11. @Inject
	8.1.12. Implementation Properties
	8.1.13. Accessing Implementation Properties
	8.1.14. @Property

	8.2. BPM
	8.2.1. BPM Component
	8.2.2. Create a BPM Service
	8.2.3. Process Interaction
	8.2.4. Use Process Variables
	8.2.5. Mappings
	8.2.6. expressionType Properties
	8.2.7. Consuming a Service
	8.2.8. SwitchYard Service Task Properties
	8.2.9. SwitchYard Service Fault Handling
	8.2.10. Using The Standard BPMN2 Service Task
	8.2.11. Resources
	8.2.12. WorkItemHandler Interface

	8.3. BPEL
	8.3.1. BPEL Component
	8.3.2. Providing a Service with the BPEL Component
	8.3.3. Example of BPEL Component Configuration
	8.3.4. Consuming a Service from a BPEL Process
	8.3.5. Property Injection into a BPEL Process
	8.3.6. Maintaining Multiple Versions of a BPEL Process
	8.3.7. Structure of a SwitchYard BPEL Application

	8.4. CAMEL
	8.4.1. Camel Services
	8.4.2. Create a Camel Service
	8.4.3. Guidelines of Camel Route
	8.4.4. Java DSL Route
	8.4.5. XML Route
	8.4.6. Consuming Services From Camel Routes
	8.4.7. Message Exchange Pattern
	8.4.8. Using Scripting Languages
	8.4.9. Supported Scripting Languages
	8.4.10. Using CDI Beans in Camel Routes
	8.4.11. Injecting Implementation Properties in Camel Routes

	8.5. RULES
	8.5.1. Rules Component
	8.5.2. Create a Rules Service
	8.5.3. Stateless and Stateful Rules Executions
	8.5.4. Stateless Knowledge Session
	8.5.5. Stateful Knowledge Session
	8.5.6. Mapping Global Variables
	8.5.7. Map Global Variables
	8.5.8. Mapping Facts
	8.5.9. Notes About Mapping Facts
	8.5.10. Auditing a Service
	8.5.11. Consuming a Service from the Rules Component

	8.6. KNOWLEDGE SERVICES
	8.6.1. Knowledge Services
	8.6.2. Actions
	8.6.3. Mappings
	8.6.4. MVEL expressionType
	8.6.5. Channels
	8.6.6. SwitchYard Service Channel
	8.6.7. Listeners
	8.6.8. Loggers

	8.7. MANIFEST
	8.7.1. Manifest
	8.7.2. Ways of Configuring the Manifest

	8.8. PROPERTIES
	8.8.1. Properties
	8.8.2. Add a Property

	CHAPTER 9. GATEWAYS
	9.1. WHAT IS A GATEWAY
	9.2. BINDINGS
	9.2.1. SOAP
	9.2.1.1. Binding Services with SOAP
	9.2.1.2. Binding References with SOAP
	9.2.1.3. Enabling SOAP Message Logging for SOAP Binding
	9.2.1.4. WS-Security
	9.2.1.5. Attachments
	9.2.1.6. WS-Addressing

	9.2.2. HTTP
	9.2.2.1. HTTP Component
	9.2.2.2. Binding Services with HTTP
	9.2.2.3. Binding References with HTTP

	9.2.3. RESTEasy
	9.2.3.1. About RESTEasy
	9.2.3.2. RESTEasy Component
	9.2.3.3. Binding Services with RESTEasy
	9.2.3.4. Binding References with RESTEasy
	9.2.3.5. Proxy Configuration
	9.2.3.6. Authentication Configuration

	9.2.4. JCA
	9.2.4.1. Java Connector Architecture (JCA) Transport
	9.2.4.2. JCA Adapter
	9.2.4.3. JCA Gateway
	9.2.4.4. Binding Services with JCA Message Inflow
	9.2.4.5. Binding References with JCA Outbound

	9.2.5. JMS
	9.2.5.1. SwitchYard JMS Binding
	9.2.5.2. Generic JMS Options

	9.2.6. File
	9.2.6.1. File Binding
	9.2.6.2. Generic File Options

	9.2.7. FTP FTPS SFTP
	9.2.7.1. FTP Binding
	9.2.7.2. Generic FTP FTPS SFTP Options
	9.2.7.3. Specific FTP FTPS SFTP Options

	9.2.8. TCP UDP
	9.2.8.1. TCP UDP Binding
	9.2.8.2. Generic TCP UDP Options
	9.2.8.3. Specific TCP UDP Options
	9.2.8.4. SSL Configuration Options

	9.2.9. JPA
	9.2.9.1. JPA Binding
	9.2.9.2. Generic JPA Options

	9.2.10. SQL
	9.2.10.1. SQL Binding
	9.2.10.2. Generic SQL Options

	9.2.11. Mail
	9.2.11.1. Mail Binding
	9.2.11.2. Generic Mail Options

	9.2.12. Quartz
	9.2.12.1. Quartz Binding
	9.2.12.2. Generic Quartz Options

	9.2.13. Timer
	9.2.13.1. Timer Binding
	9.2.13.2. Generic Timer Options

	9.2.14. SEDA
	9.2.14.1. SEDA Binding
	9.2.14.2. Generic SEDA Options

	9.2.15. Camel URI
	9.2.15.1. Camel Binding
	9.2.15.2. Generic Camel Options

	9.2.16. SCA
	9.2.16.1. SCA Service Bindings
	9.2.16.2. SCA Reference Bindings
	9.2.16.3. Remote Transaction Propagation

	9.2.17. MQTT
	9.2.17.1. Generic options
	9.2.17.2. Binding Services with MQTT
	9.2.17.3. Binding References with MQTT

	9.3. MESSAGE COMPOSITION
	9.3.1. Message Composers
	9.3.2. Create a Custom Message Composer
	9.3.3. Custom Message Composer Properties

	9.4. OPERATION SELECTORS
	9.4.1. Operation Selector
	9.4.2. Types of Operation Selectors

	9.5. THROTTLING
	9.5.1. Example

	CHAPTER 10. TRANSFORMER
	10.1. WHAT IS A TRANSFORMER
	10.2. TRANSFORMATION IN SWITCHYARD
	10.3. ADDING TRANSFORMATION TO A SWITCHYARD APPLICATION
	10.4. CHAINING TRANSFORMERS
	10.5. ADDING A TRANSFORMER USING SWITCHYARD EDITOR
	10.6. MESSAGE CONTENT TYPE NAMES
	10.7. SUPPORTED TRANSFORMATIONS
	10.7.1. Java
	10.7.1.1. Java Transformer

	10.7.2. JAXB
	10.7.2.1. JAXB Transformer

	10.7.3. JSON
	10.7.3.1. JSON Transformer

	10.7.4. Smooks
	10.7.4.1. Smooks Transformer

	10.7.5. XSLT
	10.7.5.1. XSLT Transformer

	CHAPTER 11. VALIDATORS
	11.1. WHAT IS A VALIDATOR
	11.2. MESSAGE VALIDATION
	11.3. ADD VALIDATION TO YOUR APPLICATION
	11.4. SUPPORTED VALIDATORS
	11.4.1. Java
	11.4.1.1. Use a Java Validator
	11.4.1.2. Java Validator Reference
	11.4.1.3. ValidationResult
	11.4.1.4. Java Validation Failure
	11.4.1.5. ValidationResult Properties

	11.4.2. XML
	11.4.2.1. Use an XML Validator
	11.4.2.2. XML Catalog
	11.4.2.3. XML Validation Failure

	CHAPTER 12. CONFIGURATION PROPERTIES
	12.1. SWITCHYARD MODEL CONFIGURATION
	12.2. INJECTING PROPERTIES INTO SERVICE IMPLEMENTATION
	12.2.1. Injecting Properties in Java Bean Implementations
	12.2.2. Injecting Implementation Properties in Camel Routes
	12.2.3. Injecting Implementation Properties in BPEL

	12.3. INVOCATION PROPERTIES
	12.4. CONFIGURATION TIPS AND TRICKS
	12.4.1. Defining Default Value for a Property
	12.4.2. Defining Environment Properties
	12.4.2.1. Environment Properties as Component Properties
	12.4.2.2. Environment Properties as Composite Properties
	12.4.2.3. Environment Properties as Domain Properties
	12.4.2.4. Environment Properties as OS Environment Properties
	12.4.2.5. Environment Properties as Application Server Properties from AS Configuration
	12.4.2.6. Environment Properties as Application Server Properties from File

	12.4.3. Loading Properties for Test

	CHAPTER 13. TESTING SUPPORT IN SWITCHYARD
	13.1. SWITCHYARDRUNNER CLASS
	13.2. SWITCHYARDTESTKIT CLASS
	13.3. SWITCHYARDTESTCASECONFIG
	13.4. ADD TEST SUPPORT TO A SWITCHYARD APPLICATION
	13.5. THE TESTMIXIN FEATURE
	13.6. TESTMIXIN CLASSES
	13.7. SCANNERS
	13.8. METADATA AND SUPPORT CLASS INJECTIONS
	13.8.1. TestKit Injection
	13.8.2. Deployment Injection
	13.8.3. SwitchYardModel Injection
	13.8.4. ServiceDomain Injection
	13.8.5. TransformerRegistry Injection
	13.8.6. TestMixIn Injection
	13.8.7. PropertyMixIn Injection
	13.8.8. Invoker Injection

	13.9. SELECTIVELY ENABLING ACTIVATORS FOR A TEST
	13.10. USEFUL TIPS FOR CREATING JUNIT TESTS
	13.10.1. Using Harmcrest to Assert
	13.10.2. Invoking a Component Service
	13.10.3. SwitchYardTestKit Utility Methods
	13.10.4. Testing Transformations in Component Service
	13.10.5. Mocking a Service, Component, or Reference
	13.10.6. Mocking a Service For More Than One Method Invocation
	13.10.6.1. Multiple Invocations of a Single Method
	13.10.6.2. Multiple Invocations of Different Methods

	13.10.7. Setting Properties For a Test
	13.10.8. Testing a Deployed Service with HTTPMixin
	13.10.9. Creating an Embedded WebService to Test a Component
	13.10.10. Testing a Deployed Service with HornetQMixIn
	13.10.11. Testing a Deployed Service with TransactionMixIn
	13.10.12. Testing With a Different SwitchYard Configuration File
	13.10.13. Selectively Enabling Activators for a Test
	13.10.14. Preparing Procedure for Test
	13.10.15. Testing a Camel Binding

	CHAPTER 14. REMOTE INVOKER
	14.1. SWITCHYARD REMOTE INVOKER
	14.2. USE A REMOTEINVOKER

	CHAPTER 15. SERIALIZATION
	15.1. SERIALIZATION AND DESERIALIZATION IN SWITCHYARD
	15.2. CUSTOM OBJECTS
	15.3. SWITCHYARD ANNOTATIONS FOR SERIALIZATION
	15.4. SWITCHYARD SERIALIZATION API USAGE

	CHAPTER 16. CONTEXT MAPPING
	16.1. CONTEXT MAPPER
	16.2. CREATE A CUSTOM CONTEXT MAPPER
	16.3. CUSTOM CONTEXT MAPPER PROPERTIES
	16.4. CONTEXT MAPPER IMPLEMENTATIONS AVAILABLE OUT-OF-THE-BOX

	CHAPTER 17. AUDITING
	17.1. SWITCHYARD AUDITING
	17.2. ENABLE CUSTOM AUDITORS
	17.3. MEDIATION STATE
	17.4. LIST OF MEDIATION STATES
	17.5. CREATE A CUSTOM AUDITOR
	17.6. DETERMINE LOCATION FOR AUDIT ASSIGNMENT
	17.7. USE EXCHANGE PROPERTIES

	CHAPTER 18. EXTENSIONS
	18.1. CREATE SWITCHYARD EXTENSION MODULE IN JBOSS EAP
	18.2. EXTENSION TYPES AND USAGE

	CHAPTER 19. REFERENCE
	19.1. CONFIGURATION DESCRIPTORS
	19.2. DESCRIPTOR CONFIGURATION EXAMPLE
	19.3. COMPOSITE
	19.4. COMPOSITE ELEMENTS
	19.5. THE TRANSFORMS DEFINITION
	19.6. THE VALIDATES DEFINITION
	19.7. GENERATED CONFIGURATION
	19.8. SERVICE OPERATIONS
	19.9. SERVICE OPERATION TYPES
	19.10. THE @DEFAULTTYPE ANNOTATION
	19.11. BEAN SERVICES IN A JAVA EE WEB APPLICATION CONTAINER
	19.12. JAVASERVER FACES
	19.13. INDIRECT SERVICE INVOCATION
	19.14. INDIRECT SERVICE INVOCATION EXAMPLE
	19.15. INDIRECT SERVICE INVOCATION WITH JSF COMPONENTS EXAMPLE
	19.16. INDIRECT SERVICE INVOCATION WITH ANNOTATIONS
	19.17. CORE API ANNOTATIONS
	19.18. COMPONENT ANNOTATIONS
	19.19. TESTING ANNOTATIONS
	19.20. JBOSS RULES
	19.20.1. JBoss Rules
	19.20.2. The JBoss Rules Engine
	19.20.3. Production Rules
	19.20.4. The Inference Engine
	19.20.5. ReteOO
	19.20.6. Using JBoss Rules

	19.21. APACHE CAMEL
	19.21.1. Apache Camel
	19.21.2. Using Apache Camel
	19.21.3. Using Camel Routes Directly
	19.21.4. Supported Camel Components
	19.21.5. Running Camel Examples
	19.21.6. Sample Client With Camel CXF
	19.21.7. Camel Servlet Without Spring Example

	CHAPTER 20. DEBUGGING
	20.1. MESSAGE TRACING
	20.1.1. Trace Output Example
	20.1.2. Enabling Message Tracing

	20.2. EXCHANGE INTERCEPTORS
	20.2.1. Implementing an Exchange Interceptor

