‘® redhat.

Red Hat JBoss Fuse 6.2

Deploying into the Container

Getting application packages into the container

Last Updated: 2017-09-26

Red Hat JBoss Fuse 6.2 Deploying into the Container

Getting application packages into the container

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The quide describes the options for deploying applications into a Red Hat JBoss Fuse container.

Table of Contents
PART I. THE RED HAT JBOSS FUSE CONTAINER ...uuuuneeeeeeennennnnns

CHAPTER 1. RED HAT JBOSS FUSEOVERVIEWciiiiiiiiiiine,
1.1.RED HAT JBOSS FUSE CONTAINER ARCHITECTURE

1.2. DEPLOYMENT MODELS

1.3. DEPENDENCY INJECTION FRAMEWORKS
1.4. SYNCHRONOUS COMMUNICATION

1.5. ASYNCHRONOUS COMMUNICATION

1.6. FUSE FABRIC

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS
2.1. SPRING AND BLUEPRINT FRAMEWORKS
2.2.HOT DEPLOYMENT
2.3. USING OSGI CONFIGURATION PROPERTIES

CHAPTER 3. BUILDINGWITHMAVEN ittt

3.1. MAVEN DIRECTORY STRUCTURE
3.2. PREPARING TO USE MAVEN

CHAPTER 4. LOCATING DEPENDENCIEScciiiiiiiiiiiiiiiiiiinnnns
4.1. UNDERSTANDING WHERE RED HAT JBOSS FUSE BUNDLES ARE STORED

4.2. LOCATING MAVEN ARTIFACTS AT BUILD TIME
4.3. LOCATING MAVEN ARTIFACTS AT RUN TIME
4.4. LOCATING ARTIFACTS IN A FABRIC

4.5. GENERATING A CUSTOM OFFLINE REPOSITORY

PART Il. OSGI BUNDLE DEPLOYMENTMODELcciiiiiiiiiiinnn....

CHAPTER 5. INTRODUCTIONTO OSGI ...iiiiiiiiiiiiiiiiiiiiiiiennnns

5.1. RED HAT JBOSS FUSE
5.2. 0SGI FRAMEWORK
5.3. OSGI SERVICES

5.4. 0OSGI BUNDLES

CHAPTER 6. BUILDING AN OSGIBUNDLEc.iiiiiiiiiiiiiinnnnnnns

6.1. GENERATING A BUNDLE PROJECT

6.2. MODIFYING AN EXISTING MAVEN PROJECT
6.3. PACKAGING A WEB SERVICE IN A BUNDLE
6.4. CONFIGURING THE BUNDLE PLUG-IN

CHAPTER 7. DEPLOYING ANOSGIBUNDLEcccoviiiiiiiininnae,

7.1.HOT DEPLOYMENT

7.2. MANUAL DEPLOYMENT

7.3. LIFECYCLE MANAGEMENT

7.4. TROUBLESHOOTING DEPENDENCIES

CHAPTER 8. DEPLOYING FEATURES .. .ciiiiiiiiiiiiiiiiiiiiiiiiennnes

8.1. CREATING A FEATURE
8.2. DEPLOYING A FEATURE

CHAPTER 9. DEPLOYING APLAINJAR ..ottt

9.1. BUNDLE TOOL (BND)
9.2. CONVERTING A JAR USING BND
9.3. CONVERTING A JAR USING THE WRAP SCHEME

Table of Contents

O OV 0w o Ul

............................... 19

19
21

.............................. 26

26
27
28
31
33

.............................. 40

.............................. 41

41
42
43
45

.............................. 47

47
48
50
52

.............................. 57

57
57
58
60

.............................. 64

64
68

............................... n

n
72
75

Red Hat JBoss Fuse 6.2 Deploying into the Container

CHAPTER 10. OSGI BUNDLE TUTORIALS ...ttt ittt iiiiiteieeeineeannecennnecnnns 78
10.1. GENERATING AND RUNNING AN EIP BUNDLE 78
10.2. GENERATING AND RUNNING A WEB SERVICES BUNDLE 80

PART IIl. WAR DEPLOYMENT MODEL ..ttt ittt ittt ieiiteeinneetanecnnnecnnnans 83

CHAPTERTL.BUILDING A WAR ...ttt ittt iitettiteteinetenseeennscennscenanccnnns 84
11.1. MODIFYING AN EXISTING MAVEN PROJECT 84
11.2. BOOTSTRAPPING A CXF SERVLET IN A WAR 87
11.3. BOOTSTRAPPING A SPRING CONTEXT IN A WAR 88

CHAPTER 12. DEPLOYING A WA R ..ottt iiiiiiiiitttiitetaisetensecessscessacesnscesnncannns 90
12.1. CONVERTING THE WAR USING THE WAR SCHEME 90
12.2. CONFIGURING THE WEB CONTAINER 91

PART IV. OSGI SERVICE LAYE R ittt ittt ittt ittt eeiateeiaseetnseesnsecnnnecnnnaes 93

CHAPTER 13. OSGI SERVICES ...ttt ittt iiiiiitiitetiieeeansecensocensscesnscesnscennscannns 94
13.1. THE BLUEPRINT CONTAINER 94
13.2. PUBLISHING AN OSGI SERVICE 108
13.3. ACCESSING AN OSGI SERVICE 12
13.4. INTEGRATION WITH APACHE CAMEL 16

CHAPTER14. JMS BROKER ..ottt ittt tiititiiteeeseeannecennscannncanns, 19
14.1. WORKING WITH THE DEFAULT BROKER 19
14.2. JMS ENDPOINTS IN A ROUTER APPLICATION 120

APPENDIX A.URLHANDLERS . ittt ittt ittt tiitetiineeasnarennecennscennnnans 124
A1.FILE URL HANDLER 124
A.2. HTTP URL HANDLER 124
A.3. MVN URL HANDLER 124
A.4. WRAP URL HANDLER 127
A.5.WAR URL HANDLER 128

APPENDIX B. OSGI BEST PRACTICES ...iiiiiiiiiiiiiiiiiiiiiitiiittiiteeiineeeeneeesnscsensecannacnns 131
B.1. OSGI TOOLING 131
B.2. BUILDING OSGI BUNDLES 132
B.3. SAMPLE POM FILE 137

APPENDIX C. PAX-EXAM TESTING FRAMEWORK .. ittt ittt ittt iiiiinineeans 139
C.1.INTRODUCTION TO PAX-EXAM 139
C.2. SAMPLE PAX-EXAM TEST CLASS 142

IN D E X ittt ittt ittt ittt tiieeenaeeeenaeeensacensacensscennscennscesnsscnnsccsnnscnnns 145

Table of Contents

Red Hat JBoss Fuse 6.2 Deploying into the Container

PART |. THE RED HAT JBOSS FUSE CONTAINER

Abstract

The Red Hat JBoss Fuse container is a flexible container that supports a variety of different
deployment models: OSGi bundle deployment and WAR deployment. The container is also integrated
with Apache Maven, so that required artifacts can be downloaded and installed dynamically at deploy
time.

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

Abstract

Red Hat JBoss Fuse is a flexible container that allows you to deploy applications in a range of different
package types (WAR or OSGi bundle) and has support for both synchronous and asynchronous
communication.

1.1. RED HAT JBOSS FUSE CONTAINER ARCHITECTURE

Overview

Figure 1.1, “Red Hat JBoss Fuse Container Architecture” shows a high-level overview of the Red Hat
JBoss Fuse container architecture, showing the variety of deployment models that are supported.

Figure 1.1. Red Hat JBoss Fuse Container Architecture

4]

s

Bundle

hd

Deployment models

Red Hat JBoss Fuse is a multi-faceted container that supports a variety of deployment models. You can
deploy any of the following kinds of deployment unit:

OSGi bundle

An OSGi bundle is a JAR file augmented with metadata in the JAR's META-INF/MANIFEST .MF file.
Because the Red Hat JBoss Fuse container is fundamentally an OSGi container, the OSGi bundle is
also the native format for the container. Ultimately, after deployment, all of the other deployment
unit types are converted into OSGi bundles.

WAR

A Web application ARchive (WAR) is the standard archive format for applications that run inside a
Web server. As originally conceived by the Java servlet specification,a WAR packages Web pages,
JSP pages, Java classes, servlet code, and so on, as required for a typical Web application. More
generally, however, a WAR can be any deployment unit that obeys the basic WAR packaging rules
(which, in particular, require the presence of a Web application deployment descriptor, web . xml).

Spring framework

The Spring framework is a popular dependency injection framework, which is fully integrated into the
JBoss Fuse container. In other words, Spring enables you to create instances of Java objects and wire

http://www.springsource.org/

Red Hat JBoss Fuse 6.2 Deploying into the Container

them together by defining a file in XML format. In addition, you can also access a wide variety of
utilities and services (such as security, persistence, and transactions) through the Spring framework.

Blueprint framework

The blueprint framework is a dependency injection framework defined by the OSGi Alliance. It is
similar to Spring (in fact, it was originally sponsored by SpringSource), but is a more lightweight
framework that is optimized for the OSGi environment.

OSGi core framework

At its heart, Red Hat JBoss Fuse is an OSGi container, based on Apache Karaf, whose architecture is
defined by the OSGi Service Platform Core Specification(available from
http://www.osgi.org/Release4/Download). OSGi is a flexible and dynamic container, whose particular
strengths include: sophisticated management of version dependencies; sharing libraries between
applications; and support for dynamically updating libraries at run time (hot fixes).

For more details about the OSGi framework, see Chapter 5, Introduction to OSGi.

Red Hat JBoss Fuse kernel

The JBoss Fuse kernel extends the core framework of OSGi, adding features such as the runtime
console, administration, logging, deployment, provisioning, management, and so on. For more details,
see Section 5.1, “Red Hat JBoss Fuse”.

1.2. DEPLOYMENT MODELS
09/27/12
Reordered to make OSGi more prominent

Overview

Although Red Hat JBoss Fuse is an OSGi container at heart, it supports a variety of different
deployment models. You can think of these as virtual containers, which hide the details of the OSGi
framework. In this section we compare the deployment models to give you some idea of the
weaknesses and strengths of each model.

Table 1.1, “Alternative Deployment Packages” shows an overview of the package types associated with
each deployment model.

Table 1.1. Alternative Deployment Packages

Package Metadata Maven Plug-in URI Scheme File Suffix

Bundle MANIFEST .MF maven - None .jar
bundle-
plugin

WAR web . xml maven-war - war: .war
plugin

OSGi bundle deployment model

http://www.osgi.org
http://www.osgi.org/Release4/Download

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

Figure 1.2, “Installing an OSGi Bundle” gives an overview of what happens when you install an OSGi
bundle into the Red Hat JBoss Fuse container, where the bundle depends on several other bundles.

Figure 1.2. Installing an OSGi Bundle

OSGi Container

[App

(

install

I

>

App

Z

DepA

]

—==

DepB

=

-

‘ install>

\insta1£>>

Gl |

Maven Repository

DepB]

Implicitly, a bundle shares all of its dependencies. This is a flexible approach to deployment, which
minimizes resource consumption. But it also introduces a degree of complexity when working with
large applications. A bundle does not automatically load all of its requisite dependencies, so a bundle
might fail to resolve, due to missing dependencies. The recommended way to remedy this is to use
features to deploy the bundle together with its dependencies (see Chapter 8, Deploying Features).

WAR deployment model

Figure 1.3, “Installing a WAR” gives an overview of what happens when you install a WAR into the JBoss
Fuse container.

Figure 1.3. Installing a WAR

WAR File

OSG/ Container
App

[
>/\

osgi:install
DepA DepB

App |

T

DepA DepB

J

The WAR has a relatively simple deployment model, because the WAR is typically packaged together
with all of its dependencies. Hence, the container usually does not have to do any work to resolve the
WAR's dependencies. The drawback of this approach, however, is that the WAR is typically large and it

Red Hat JBoss Fuse 6.2 Deploying into the Container

duplicates libraries already available in the container (thus consuming more resources).

1.3. DEPENDENCY INJECTION FRAMEWORKS
09/27/12
Reordered to make blueprint more prominent

Dependency injection

Dependency injection or inversion of control (I0C) is a design paradigm for initializing and configuring
applications. Instead of writing Java code that explicitly finds and sets the properties and attributes
required by an object, you declare setter methods for all of the properties and objects that this object
depends on. The framework takes responsibility for injecting dependencies and properties into the
object, using the declared setter methods. This approach reduces dependencies between components
and reduces the amount of code that must be devoted to retrieving configuration properties.

There are many popular dependency injection frameworks in current use. In particular, the Spring
framework and the blueprint framework are fully integrated with Red Hat JBoss Fuse.

OSGi framework extensions

One of the important characteristics of the OSGi framework is that it is extensible. OSGi provides a
framework extension API, which makes it possible to implement OSGi plug-ins that are tightly
integrated with the OSGi core. An OSGi extension can be deployed into the OSGi container as an
extension bundle, which is a special kind of bundle that enjoys privileged access to the OSGi core
framework.

Red Hat JBoss Fuse defines extension bundles to integrate the following dependency injection
frameworks with OSGi:

o Blueprint—the blueprint extensor is based on the blueprint implementation from Apache Karaf.
o Spring—the Spring extensor is based on Spring Dynamic Modules (Spring-DM), which is the
OSGi integration component from SpringSource.
Activating a framework

The framework extension mechanism enables both the Spring extensor and the blueprint extensor to
be integrated with the bundle lifecycle. In particular, the extenders receive notifications whenever a
bundle is activated (using the command, osgi:start) or de-activated (using the command,
osgi:stop). This gives the extenders a chance to scan the bundle, look for configuration files of the
appropriate type and, if necessary, activate the dependency injection framework for that bundle.

For example, when you activate a bundle that is configured using Spring, the blueprint extensor scans

the bundle package, looking for any blueprint XML files in the standard location and, if it finds one or
more such files, activates the blueprint framework for this bundle.

Blueprint XML file location

The blueprint extensor searches a bundle for blueprint XML files whose location matches the following
pattern:

I OSGI-INF/blueprint/*.xml

http://karaf.apache.org/
http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

NOTE

A blueprint XML file can also be placed in a non-standard location, by specifying the
location in a bundle header (see the section called “Custom Blueprint file locations”).

2

Spring XML file location

The Spring extensor searches a bundle for Spring XML files whose location matches the following
pattern:

I META-INF/spring/*.xml

NOTE

A WAR package uses a different mechanism to specify the location of Spring XML files
(see Section 11.3, “Bootstrapping a Spring Contextina WAR”).

1.4. SYNCHRONOUS COMMUNICATION

Overview

Synchronous communication between bundles in the OSGi container is realized by publishing a Java
object as an OSGi service. Clients of the OSGi service can then invoke the methods of the published
object.

OSGi services

An OSGi service is a plain Java object, which is published to make it accessible to other bundles
deployed in the OSGi container. Other bundles then bindto the Java object and invoke its methods
synchronously, using the normal Java syntax. OSGi services thus support a model of synchronous
communication between bundles.

One of the strengths of this model is that the OSGi service is a perfectly ordinary Java object The object
is not required to inherit from specific interfaces nor is it required to have any annotations. In other
words, your application code is not polluted by the OSGi deployment model.

OSGi registry

To publish an OSGi service, you must register it in the OSGi registry. The OSGi specification defines a
Java API for registering services, but the simplest way to publish an OSGi service is to exploit the
special syntax provided by the blueprint framework. Use the blueprint service element to register a
Java object in the OSGi registry. For example, to create a SavingsAccountImpl object and export it
as an OSGi service (exposing it through the org. fusesource.example.Account Java interface)

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
<service ref="savings" interface="org.fusesource.example.Account"/>

</blueprint>

Red Hat JBoss Fuse 6.2 Deploying into the Container

Another bundle in the container can then bind to the published OSGi service, by defining a blueprint
reference element that searches the OSGi registry for a service that supports the
org.fusesource.example.Account interface.

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<reference id="savingsRef"
interface="org.fusesource.example.Account"/>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAccount" ref="savingsRef'"/>

</bean>

</blueprint>

For more details, see Section 13.1.2, “Defining a Service Bean”.

NOTE

Spring XML also supports the publication and binding of OSGi services.

Dynamic interaction between bundles

Another important feature of OSGi services is that they are tightly integrated with the bundle
lifecycle. When a bundle is activated (for example, using the console command, osgi:start),its OSGi
services are published to the OSGi registry. And when a bundle is de-activated (for example, using the
console command, osgi: stop), its OSGi services are removed from the OSGi registry. Clients of a
service can elect to receive notifications whenever a service is published to or removed from the OSGi
registry.

Consequently, the presence or absence of an OSGi service in the registry can serve as a flag that
signals to other bundles whether or not a particular bundle is available (active). With appropriate
programming, clients can thus be implemented to respond flexibly as other bundles are uninstalled
and re-installed in the container. For example, a client could be programmed to suspend certain kinds
of processing until a bundle is re-activated, thus facilitating dynamic reconfiguration or updating of
that dependent bundle.

1.5. ASYNCHRONOUS COMMUNICATION

JMS broker

You can optionally install a broker instance, typically Apache ActiveMQ, into the Red Hat JBoss Fuse
container, to provide support for asynchronous communication between bundles in the container.
Apache ActiveMQ is a sophisticated implementation of a JMS broker, which supports asynchronous
communication using either queues or topics (publish-subscribe model). Some of the basic features of
this JMS broker are as follows:

o VM protocolthe Virtual Machine (VM) transport protocol is ideal for communicating within the
container. VM is optimized for sending messages within the same JVM instance.

e Persistent or non-persistent messaging-you can choose whether the broker should persist
messages or not, depending on the requirements of your application.

e FEase of use-there is no need to create and configure destinations (that is, queues or topics)

10

CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW

before you can use them. After connecting to a broker, you can immediately start sending and
receiving messages. If you start sending messages to a queue that does not exist yet, Apache
ActiveMQ creates it dynamically.

e External communication—you can also configure a TCP port on the broker, opening it up to
external JMS clients or other brokers.

For details of how to set up a JMS broker in Red Hat JBoss Fuse, see Chapter 14, JMS Broker.

1.6. FUSE FABRIC

Overview

Fuse Fabric is a technology layer that allows a group of containers to form a cluster that shares a
common set of configuration information and a common set of repositories from which to access
runtime artifacts. Fabric containers are managed by a Fabric Agent that installs a set of bundles that
are specified in the profiles assigned to the container. The agent requests artifacts from the Fabric
Ensemble. The ensemble has a list of repositories that it can access. These repositories are managed
using a Maven proxy and include a repository that is local to the ensemble.

The added layer imposed on fabric containers does not change the basic deployment models, but it
does impact how you specify what needs to be deployed. It also impacts how dependencies are
located.

Bundle deployment

In a fabric container, you cannot directly deploy bundles to a container. A container's configuration is
managed by a Fabric Agent that updates its contents and configuration based on one or more profiles.
So to add a bundle to a container, you must either add the bundle to an existing profile or create a new
profile containing the bundle. When the profile is applied to a container the Fuse Agent will install the
bundle.

The installation process will download the bundle from a Maven repository and use the appropriate
install command to load it into the container. Once the bundle is installed, the dependency resolution
process proceeds as it would in a standalone container.

Things to consider

While installing bundles to a fabric container is not radically different from installing bundles in a
standalone container, there are a number of things to consider when thinking about creating profiles to
deploy your applications:

e Bundles must be accessible through the fabric's Maven proxy

When a Fabric Agent installs a bundle, it must first copy the bundle to the container's host
computer. To do so, the agent uses the fabric's Maven Proxy to locate the bundle in one of the
accessible Maven repositories and downloads it. This mechanism ensures that all of the
containers in the fabric have access to the same set of bundles.

To address this issue, you need to ensure that the fabric's Maven proxy is configured to have
access to all of the repositories from which your applications will need to download bundles.
For more information see chapter "Configuring a Fabric's Maven Proxy" in "Configuring and
Running JBoss Fuse".

e Fabric Agents only load the bundles specified in a profile

1

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Configuring_and_Running_JBoss_Fuse/FESBFabricMavenProxyConfig.html

Red Hat JBoss Fuse 6.2 Deploying into the Container

12

A fabric container's contents is completely controlled by the profiles associated with it. The
fabric agent managing the container inspects each of the profiles associated with the
container, downloads the listed bundles, and features, and installs them. If one of the bundles
in a profile depends on a bundle that is not specified in the profile, or one of the other profiles
associated with the container, the bundle will not be able to resolve that dependency.

To address this issue you can do one of the following:

o construct your profiles to ensure that it contains all of the required bundles and their
dependencies

o deploy the application as a feature that contains all of the required bundles and their
dependencies

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS

Abstract

Red Hat JBoss Fuse supports two alternative dependency injection frameworks: Spring and OSGi
blueprint. These frameworks are fully integrated with the Red Hat JBoss Fuse container, so that Spring
XML files and blueprint XML files are automatically activated at the same time the corresponding
bundle is activated.

2.1. SPRING AND BLUEPRINT FRAMEWORKS

Overview

The OSGi framework allows third-party frameworks to be piggybacked on top of it. In particular, Red
Hat JBoss Fuse enables the Spring framework and the blueprint framework, by default. In the case of
the Spring framework, OSGi automatically activates any Spring XML files under the META-
INF/spring/ directoryin a JAR, and Spring XML files can also be hot-deployed to the
ESBInstallDir/deploy directory. In the case of the blueprint framework, OSGi automatically
activates any blueprint XML files under the 0SGI-INF/blueprint/ directory in a JAR, and blueprint
XML files can also be hot-deployed to the ESBInstallDir/deploy directory.

Prefer Blueprint over Spring-DM

The Blueprint container is now the preferred framework for instantiating, reqgistering, and referencing
OSGi services, because this container has now been adopted as an OSGi standard. This ensures
greater portability for your OSGi service definitions in the future.

Spring Dynamic Modules (Spring-DM) provided much of the original impetus for the definition of the

Blueprint standard, but should now be regarded as obsolescent. Using the Blueprint container does not
prevent you from using the Spring framework: the latest version of Spring is compatible with Blueprint.

Configuration files

There are two kinds of file that you can use to configure your project:

e Spring configuration—in the standard Maven directory layout, Spring XML configuration files are
located under ProjectDir/src/main/resources/META-INF/spring.

e Blueprint configuration—in the standard Maven directory layout, blueprint XML configuration
files are located under ProjectDir/src/main/resources/0SGI-INF/blueprint.

If you decide to use the blueprint configuration, you can embed camelContext elements in the
blueprint file, as described in the section called “Blueprint configuration file”.

Prerequisites for blueprint configuration

If you decide to configure your Apache Camel application using blueprint, you must ensure that the
camel-blueprint feature is installed. If necessary, install it by entering the following console
command:

I JBossFuse:karaf@root> features:install camel-blueprint

13

Red Hat JBoss Fuse 6.2 Deploying into the Container

Spring configuration file

You can deploy a camelContext using a Spring configuration file, where the root element is a Spring
beans element and the camelContext element is a child of the beans element. In this case, the
camelContext namespace must be http://camel.apache.org/schema/spring.

For example, the following Spring configuration defines a route that generates timer messages every
two seconds, sending the messages to the ExampleRouter log (which get incorporated into the
console log file, InstallDir/data/log/servicemix.log):

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="timer://myTimer?fixedRate=true&period=2000"/>
<to uri="log:ExampleRouter"/>
</route>
</camelContext>

</beans>

It is not necessary to specify schema locations in the configuration. But if you are editing the
configuration file with an XML editor, you might want to add the schema locations in order to support
schema validation and content completion in the editor. For the preceding example, you could specify
the schema locations as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
http://camel.apache.org/schema/spring

http://camel.apache.org/schema/spring/camel-spring.xsd">

Blueprint configuration file

Before deploying routes in a blueprint configuration file, check that the camel-blueprint feature is already
installed.

You can deploy a camelContext using a blueprint configuration file, where the root element is
blueprint and the camelContext element is a child of the blueprint element. In this case, the
camelContext namespace must be http://camel.apache.org/schema/blueprint.

For example, the following blueprint configuration defines a route that generates timer messages
every two seconds, sending the messages to the ExampleRouter log (which get incorporated into the
console log file, InstallDir/data/log/servicemix.log):

<?xml version="1.0" encoding="UTF-8"7?>
<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

14

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS

>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="timer://myTimer?fixedRate=true&period=2000"/>
<to uri="log:ExampleRouter"/>
</route>
</camelContext>

</blueprint>

NOTE
Blueprint is a dependency injection framework, defined by the OSGi standard, which is

similar to Spring in many respects. For more details about blueprint, see Section 13.1,
“The Blueprint Container”.

2.2. HOT DEPLOYMENT

Types of configuration file

You can hot deploy the following types of configuration file:
e Spring XML file, deployable with the suffix, . xml.

e Blueprint XML file, deployable with the suffix, . xml1.

Hot deploy directory

If you have an existing Spring XML or blueprint XML configuration file, you can deploy the
configuration file directly by copying it into the following hot deploy directory:

I InstallDir/deploy
After deploying, the configuration file is activated immediately.

Prerequisites

If you want to deploy Apache Camel routes in a blueprint configuration file, the camel-blueprint
feature must be installed (which it is by default). If the camel-blueprint feature has been disabled,
however, you can re-install it by entering the following console command:

I JBossFuse:karaf@root> features:install camel-blueprint

Default bundle version

When a Spring XML file or a Blueprint XML file is hot deployed, the XML file is automatically wrapped in
an OSGi bundle and deployed as a bundle in the OSGi container. By default, the generated bundle has
the version, 0.0.0.

Customizing the bundle version

15

Red Hat JBoss Fuse 6.2 Deploying into the Container

If you prefer to customize the bundle version, use the manifest element in the XML file. The
manifest element enables you to override any of the headers in the generated bundle's META-
INF/MANIFEST.MF file. In particular, you can use it to specify the bundle version.

Specifying the bundle version in a Spring XML file

To specify the bundle version in a hot-deployed Spring XML file, define amanifest element as follows:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<manifest xmlns="http://karaf.apache.org/xmlns/deployer/spring/v1.0.0">
Bundle-Version = 1.2.3.4
</manifest>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="timer://myTimer?fixedRate=true&period=2000"/>
<to uri="log:ExampleRouter"/>
</route>
</camelContext>

</beans>

The manifest element for Spring XML files belongs to the following schema namespace:
I http://karaf.apache.org/xmlns/deployer/spring/v1.0.0

The contents of the manifest element are specified using the syntax of a Java properties file.

Specifying the bundle version in a Blueprint XML file

To specify the bundle version in a hot-deployed Blueprint XML file, define a manifest element as
follows:

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
>

<manifest
xmlns="http://karaf.apache.org/xmlns/deployer/blueprint/v1.0.0">
Bundle-Version = 1.2.3.4
</manifest>

<camelContext xmlns="http://camel.apache.org/schema/blueprint">
<route>
<from uri="timer://myTimer?fixedRate=true&period=2000"/>
<to uri="log:ExampleRouter"/>
</route>

16

CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS

</camelContext>

</blueprint>
The manifest element for Blueprint XML files belongs to the following schema namespace:
I http://karaf.apache.org/xmlns/deployer/blueprint/v1.0.0

The contents of the manifest element are specified using the syntax of a Java properties file.

2.3. USING OSGI CONFIGURATION PROPERTIES

Overview

The OSGi Configuration Admin service defines a mechanism for passing configuration settings to an
OSGi bundle. You do not have to use this service for configuration, but it is typically the most
convenient way of configuring applications deployed in Red Hat JBoss Fuse.

Persistent ID

In the OSGi Configuration Admin service, a persistent IDis a name that identifies a group of related
configuration properties. In JBoss Fuse, every persistent ID, PersistentID, is implicitly associated with a
file named PersistentID.cfginthe ESBInstallDir/etc/ directory. If the corresponding file
exists, it can be used to initialize the values of properties belonging to the PersistentID property group.

For example, the etc/org.ops4j.pax.url.mvn.cfgfile is used to set the properties associated
with the org.ops4j.pax.url.mvn persistent ID (for the PAX Mvn URL handler).

Blueprint example

Example 2.1, “Using OSGi Configuration Properties in Blueprint” shows how to pass the value of the
prefix variable to the constructor of the myTransform bean in blueprint XML, where the value of
prefixis set by the OSGi Configuration Admin service.

xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1i.1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
. >

<cm:property-placeholder persistent-id="org.fusesource.example'">
<cm:default-properties>
<cm:property name="prefix" value="Blueprint-Example"/>
</cm:default-properties>
</cm:property-placeholder>

<bean id="myTransform"

class="org.apache.servicemix.examples.camel.MyTransform">

Example 2.1. Using OSGi Configuration Properties in Blueprint
<property name="prefix" value="${prefix}" />

<blueprint
xmlns="http://www.0sgi.org/xmlns/blueprint/v1.0.0"

17

Red Hat JBoss Fuse 6.2 Deploying into the Container
</bean>
</blueprint>

The syntax, {{prefix}}, substitutes the value of the prefix variable into the blueprint XML file. The
OSGi properties are set up using the following XML elements:

cm:property-placeholder

This element gives you access to the properties associated with the specified persistent ID. After
defining this element, you can use the syntax, {{PropName}}, to substitute variables belonging to
the specified persistent ID.

cm:property-placeholder/cm:default-properties

You can optionally specify default values for properties by defining cm: property elements inside
the cm:default-properties element. If the corresponding etc/PersistentID.cfgfile
defines property values, however, these will be used instead.

Using multiple property placeholders in Blueprint

It is legal to define multiple property placeholders in a Blueprint XML file (that is, defining multiple
cm:property-placeholder elements that reference different persistent IDs). One thing that you
need to be aware of, however, is that there can be a clash if two properties from different property
placeholders have the same name. In this case, the following rules determine which property takes
precedence:

1. Explicitly defined property settings (for example, defined in a etc/PersistentID.cfgfile)
take precedence over default property settings (defined in a cm:default-properties
element).

2. If there is more than one explicit setting for a given property, the setting from the last property
placeholder in the Blueprint file takes precedence.

3. Default property settings (defined in a cm:default-properties element) have the lowest
priority.

18

CHAPTER 3. BUILDING WITH MAVEN

CHAPTER 3. BUILDING WITH MAVEN

Abstract

Maven is an open source build system which is available from the Apache Maven project. This chapter
explains some of the basic Maven concepts and describes how to set up Maven to work with Red Hat
JBoss Fuse. In principle, you could use any build system to build an OSGi bundle. But Maven is strongly
recommended, because it is well supported by Red Hat JBoss Fuse.

3.1. MAVEN DIRECTORY STRUCTURE

Overview

One of the most important principles of the Maven build system is that there are standard locations for
all of the files in the Maven project. There are several advantages to this principle. One advantage is
that Maven projects normally have an identical directory layout, making it easy to find files in a project.
Another advantage is that the various tools integrated with Maven need almost no initial configuration.
For example, the Java compiler knows that it should compile all of the source files under
src/main/java and put the results into target/classes.

Standard directory layout

Example 3.1, “Standard Maven Directory Layout” shows the elements of the standard Maven directory
layout that are relevant to building OSGi bundle projects. In addition, the standard locations for Spring-
DM and Blueprint configuration files (which are not defined by Maven) are also shown.

Example 3.1. Standard Maven Directory Layout

ProjectDir/
pom.xml
src/
main/
java/

resources/
META-INF/
spring/
* . xml
0OSGI-INF/
blueprint/
* . xml
test/
java/
resources/
target/

NOTE

It is possible to override the standard directory layout, but this is not a recommended
practice in Maven.

19

http://maven.apache.org/

Red Hat JBoss Fuse 6.2 Deploying into the Container

pom.xml file

The pom. xml file is the Project Object Model (POM) for the current project, which contains a complete
description of how to build the current project. A pom. xml file can be completely self-contained, but
frequently (particular for more complex Maven projects) it can import settings from a parent POM file.

After building the project, a copy of the pom. xm1l file is automatically embedded at the following
location in the generated JAR file:

I META-INF/maven/groupId/artifactId/pom.xml

src and target directories

The src/ directory contains all of the code and resource files that you will work on while developing
the project.

The target/ directory contains the result of the build (typically a JAR file), as well as all all of the
intermediate files generated during the build. For example, after performing a build, the
target/classes/ directory will contain a copy of the resource files and the compiled Java classes.

main and test directories

The src/main/ directory contains all of the code and resources needed for building the artifact.

The src/test/ directory contains all of the code and resources for running unit tests against the
compiled artifact.

java directory

Each java/ sub-directory contains Java source code (*. java files) with the standard Java directory
layout (that is, where the directory pathnames mirror the Java package names, with / in place of the .
character). The src/main/java/ directory contains the bundle source code and the
src/test/java/ directory contains the unit test source code.

resources directory

If you have any configuration files, data files, or Java properties to include in the bundle, these should
be placed under the src/main/resources/ directory. The files and directories under
src/main/resources/ will be copied into the root of the JAR file that is generated by the Maven
build process.

The files under src/test/resources/ are used only during the testing phase and will not be copied
into the generated JAR file.

Spring integration

By default, Red Hat JBoss Fuse installs and activates support for Spring Dynamic Modules (Spring DM),
which integrates Spring with the OSGi container. This means that it is possible for you to include
Spring configuration files, META-INF/spring/*.xml, in your bundle. One of the key consequences of
having Spring DM enabled in the OSGi container is that the lifecycle of the Spring application context

is automatically synchronized with the OSGi bundle lifecycle:

e Activation—when a bundle is activated, Spring DM automatically scans the bundle to look for

20

http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/

CHAPTER 3. BUILDING WITH MAVEN

Spring configuration files in the standard location (any . xml files found under the META -
INF/spring/ directory). If any Spring files are found, Spring DM creates an application
context for the bundle and creates the beans defined in the Spring configuration files.

e Stopping—when a bundle is stopped, Spring DM automatically shuts down the bundle's Spring
application context, causing any Spring beans to be deleted.

In practice, this means that you can treat your Spring-enabled bundle as if it is being deployed in a
Spring container. Using Spring DM, the features of the OSGi container and a Spring container are
effectively merged. In addition, Spring DM provides additional features to support the OSGi container
environment—some of these features are discussed in Chapter 13, OSGi Services.

Blueprint container

OSGi R4.2 defines a blueprint container, which is effectively a standardized version of Spring DM. Red
Hat JBoss Fuse has built-in support for the blueprint container, which you can enable simply by
including blueprint configuration files, 0SGI-INF/blueprint/*.xml, in your project. For more
details about the blueprint container, see Chapter 13, OSGi Services.

3.2. PREPARING TO USE MAVEN

Overview

This section gives a brief overview of how to prepare Maven for building Red Hat JBoss Fuse projects
and introduces the concept of Maven coordinates, which are used to locate Maven artifacts.

Prerequisites

In order to build a project using Maven, you must have the following prerequisites:

e Maven installation-Maven is a free, open source build tool from Apache. You can download the
latest version from the Maven download page.

o Network connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. By default, Maven looks for
repositories that are accessed over the Internet. You can change this behavior so that Maven
will prefer searching repositories that are on a local network.

NOTE

Maven can run in an offline mode. In offline mode Maven will only look for
artifacts in its local repository.

Adding the Red Hat JBoss Fuse repository

In order to access artifacts from the Red Hat JBoss Fuse Maven repository, you need to add it to
Maven's settings.xml file. Maven looks for your settings.xml file in the .m2 directory of the
user's home directory. If there is not a user specified settings . xml file, Maven will use the system-
level settings.xml file at M2_HOME/conf/settings.xml.

To add the JBoss Fuse repository to Maven's list of repositories, you can either create a new

.m2/settings.xml file or modify the system-level settings. In the settings.xml file, add the
repository element for the JBoss Fuse repository as shown in bold text in Example 3.2, “Adding the

21

http://maven.apache.org/download.html

Red Hat JBoss Fuse 6.2 Deploying into the Container

<id>fusesource.snapshot</id>

<url>http://repo.fusesource.com/nexus/content/groups/public-

Red Hat JBoss Fuse Repositories to Maven”.
snapshots/</url>
<snapshots>

Example 3.2. Adding the Red Hat JBoss Fuse Repositories to Maven
<settings>
<profiles>
<profile>
<id>my-profile</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<repositories>
<repository>
<id>fusesource</id>
<url>http://repo.fusesource.com/nexus/content/groups/public/</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository> <repository>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>false</enabled>
</releases>
</repository>
<repository>
<id>apache-public</id>
<url>https://repository.apache.org/content/groups/public/</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository>

</repositories>
<pluginRepositories>
<pluginRepository>
<id>fusesource</id>

<url>https://repo.fusesource.com/nexus/content/groups/public/</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>

22

CHAPTER 3. BUILDING WITH MAVEN

<enabled>true</enabled>
</releases>
</pluginRepository>
<pluginRepository>
<id>fusesource.snapshot</id>

<url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>false</enabled>
</releases>
</pluginRepository>
<pluginRepository>
<id>apache-public</id>

<url>https://repository.apache.org/content/groups/public/</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</pluginRepository>

</pluginRepositories>
</profile>
</profiles>

</settings>

The preceding example also shows repository element for the following repositories:

fusesource-snapshot repository—if you want to experiment with building your application
using an Red Hat JBoss Fuse snapshot kit, you can include this repository.

apache-public repository—you might not always need this repository, but it is often useful to
include it, because JBoss Fuse depends on many of the artifacts from Apache.

Artifacts

The basic building block in the Maven build system is an artifact. The output of an artifact, after
performing a Maven build, is typically an archive, such as a JAR or a WAR.

Maven coordinates

A key aspect of Maven functionality is the ability to locate artifacts and manage the dependencies
between them. Maven defines the location of an artifact using the system of Maven coordinates, which
uniquely define the location of a particular artifact. A basic coordinate tuple has the form, {groupId,
artifactId, version}.Sometimes Maven augments the basic set of coordinates with the

23

Red Hat JBoss Fuse 6.2 Deploying into the Container

additional coordinates, packaging and classifier. A tuple can be written with the basic coordinates, or
with the additional packaging coordinate, or with the addition of both the packaging and classifier
coordinates, as follows:

groupdId:artifactId:version
groupdId:artifactId:packaging:version
groupdId:artifactld:packaging:classifier:version

Each coordinate can be explained as follows:

groupdid

Defines a scope for the name of the artifact. You would typically use all or part of a package name as
a group ID—for example, org. fusesource.example.

artifactld

Defines the artifact name (relative to the group ID).

version

Specifies the artifact's version. A version number can have up to four parts:n.n.n.n, where the
last part of the version number can contain non-numeric characters (for example, the last part of
1.0-SNAPSHOT is the alphanumeric substring, 0-SNAPSHOT).

packaging

Defines the packaged entity that is produced when you build the project. For OSGi projects, the
packaging is bundle. The default value is jar.

classifier

Enables you to distinguish between artifacts that were built from the same POM, but have different
content.

The group ID, artifact ID, packaging, and version are defined by the corresponding elements in an
artifact's POM file. For example:

<project ... >

<groupId>org.fusesource.example</groupId>
<artifactId>bundle-demo</artifactId>
<packaging>bundle</packaging>
<version>1.0-SNAPSHOT</version>

</project>

For example, to define a dependency on the preceding artifact, you could add the following
dependency element to a POM:

<project ... >

<dependencies>
<dependency>
<groupId>org.fusesource.example</groupId>
<artifactId>bundle-demo</artifactId>

24

CHAPTER 3. BUILDING WITH MAVEN

<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>

</project>

package type. If you do need to specify the packaging type explicitly in a dependency,

NOTE

It is not necessary to specify the bundle package type in the preceding dependency,

because a bundle is just a particular kind of JAR file and jar is the default Maven
however, you can use the type element.

25

Red Hat JBoss Fuse 6.2 Deploying into the Container

CHAPTER 4. LOCATING DEPENDENCIES

Abstract

In Red Hat JBoss Fuse, Maven is the primary mechanism for locating artifacts and dependencies, both
at build time and at run time. Normally, Maven requires Internet connectivity, so that dependencies can
be downloaded from remote repositories on demand. But, as explained here, it is also possible to
provide dependencies locally, so that the need for Internet connectivity is reduced.

4.1. UNDERSTANDING WHERE RED HAT JBOSS FUSE BUNDLES ARE
STORED

Overview

Red Hat JBoss Fuse uses Maven as the primary mechanism for locating features, bundles, and their
dependencies. Maven is an inherently online tool and will automatically search remote repositories if it
cannot locate a dependency in a local repository. Most of the repositories Maven uses by default are
accessed through the Internet. A few of them are also public repositories.

It is important to understand where the bundles for the JBoss Fuse features are stored to make sure
you understand the connectivity requirements for using JBoss Fuse. It is also useful to know this
information so that you understand the potential risks involved. If your systems are not able to connect
to the public Internet, you can create either request a copy of the JBoss Fuse off-line repository or
build a repository to be hosted on your local network.

Core Red Hat JBoss Fuse features

If you start up a JBoss Fuse console and enter the features:1list command you will see a complete
list of the available features. The first column of the listing indicates whether each feature is installed
or uninstalled. If you run this command immediately after installing JBoss Fuse, the installed features
are the core JBoss Fuse features These core features and all of their dependencies are provided in the
JBoss Fuse installation under the EsbInstallDir/systemdirectory.

All of the core features are contained locally to the installation. Maven will not need to access a
network to search for anything.

Optional Red Hat JBoss Fuse features

If yourun features:list immediately after installing JBoss Fuse, the features listed as uninstalled
are the optional JBoss Fuse features The optional features are not provided in the system repository
and must be downloaded over a network connection.

The default configuration for a standalone container will look for these in the FuseSource repositories
first. If it cannot find some artifacts, it will then begin looking in other repositories such as Maven
central and SpringSource's repositories.

Custom offline repository

If you are working in an environment that does not allow access to the Internet, you need to make sure
that all of the JBoss Fuse features you require are available from internal repositories. One way to
achieve this is to create a smaller custom offline repository, which contains just the features and

26

CHAPTER 4. LOCATING DEPENDENCIES

artifacts you need to run your application. For more details, see Section 4.5, “Generating a Custom
Offline Repository”.

4.2. LOCATING MAVEN ARTIFACTS AT BUILD TIME

Overview

This section explains how Maven locates artifacts at build time. Essentially, Maven implements a simple
caching scheme: artifacts are downloaded from remote repositories on the Internet and then cached in
the local repository. Figure 4.1, “How Maven Locates Artifacts at Build Time” shows an overview of the
procedure that Maven follows when locating artifacts at build time.

Figure 4.1. How Maven Locates Artifacts at Build Time

]

Local Repository

(1 ﬂ;!user,hnmel/,m?/rermsi’rnrvj

Procedure for locating artifacts

While building a project, Maven locates required artifacts (dependencies, required plug-ins, and so on)
as follows:

1. The first place that Maven looks for artifacts is in the local repository, which is the local cache
where Maven stores all of the artifacts it has downloaded or found elsewhere. The default
location of the local repository is the .m2/repository/ directory under the user's home
directory.

2. If an artifact is not available in the local repository, Maven has an ordered list repositories,
from which it can try to download the artifact. This list of repositories can include both internal
and remote repositories. Normally, any internal repositories (that is, repositories maintained in
the local network) should appear at the head of the repository list, so that they are consulted
first.

3. If the artifact is not available from local or internal repositories, the next repositories to try are
the remote repositories (which are accessible, for example, through the HTTP or the HTTPS
protocols).

4. When a Maven project is built using the mvn install command, the project itself is installed
into the local repository.

Configuration
You can configure the following kinds of repository for locating Maven artifacts at build time:

e the section called “Local repository”.

27

Red Hat JBoss Fuse 6.2 Deploying into the Container

e the section called “Internal repositories”.

e the section called “Remote repositories”.

Local repository

Maven resolves the location of the local repository, by checking the following settings:

1. The location specified by the localRepository elementin the ~/.m2/settings.xml file
(UNIX and Linux) or C:\Documents and Settings\UserName\.m2\settings.xml
(Windows).

2. Otherwise, the location specified by the localRepository element in the
M2_HOME/conf/settings.xml file.

3. Otherwise, the default location is in the user's home directory, ~/.m2/repository/ (UNIX
and Linux) or C:\Documents and Settings\UserName\.m2\repository (Windows).

Internal repositories

Maven enables you to specify the location of internal repositories either in your settings.xml file
(which applies to all projects) or in a pom.xml (which applies to that project only). Typically, the
location of an internal repository is specified using either a file:// URL ora http:// URL (assuming
you have set up a local Web server to serve up the artifacts) and you should generally ensure that
internal repositories are listed before remote repositories. Otherwise, there is nothing special about an
internal repository: it is just a repository that happens to be located in your internal network.

For an example of how to specify a repository in your settings.xml file, see the section called
“Adding the Red Hat JBoss Fuse repository”.

Remote repositories

Remote repositories are configured in the same way as internal repositories, except that they should
be listed after any internal repositories.

4.3. LOCATING MAVEN ARTIFACTS AT RUN TIME

Overview

At run time the container strikes a balance between accessing artifacts locally and downloading
artifacts from remote repositories. The container will first search all systems local to the container. If it
cannot locate the artifacts in a local repository, it will then search remote repositories.

For default features, the artifacts are always stored in the container's system repository. For non-
default features, third party bundles, or customer developed bundles, it is likely that Maven will need to
search remote repositories to locate the artifacts.

Procedure for locating artifacts

Figure 4.2, “How the Container Locates Artifacts at Run Time” shows an overview of the procedure
that Red Hat JBoss Fuse follows when a feature or bundle is installed at run time.

28

CHAPTER 4. LOCATING DEPENDENCIES

Figure 4.2. How the Container Locates Artifacts at Run Time

_ Default Repositories ________ _ J

${karaf.home}/system

@

‘ Custom repository -

©)

The steps followed to locate the required Maven artifacts are:
1. The container searches for artifacts in the system repository.

This repository contains all of the artifacts provided with the JBoss Fuse installation. The
system repository is located at EsbInstallDir/system.

2. If an artifact is not available in the system repository, the container searches any other
configured default repositories.

JBoss Fuse allows you to specify one or more repositories into which you can place artifacts.
For example, you could use a shared folder as a default repository that provides an easy way to
distribute bundles to remote machines. See the section called “Default repositories” for details
on configuring the default repositories.

3. If the artifact is not available in the default repositories, the container searches the Maven
local repository.

The default location of the local repository is the .m2/repository/ directory under the
user's home directory. See the section called “Local repository” for details on configuring the
local repository.

4. If the artifact is not available in any of the local repositories, the container searches the
remote repositories specified in the JBoss Fuse configuration.

The remote repositories are specified by the org.ops4j.pax.url.mvn.repositories
property in the org.ops4j.pax.url.mvn. PID. See the section called “Remote
repositories” for details on configuring the remote repositories that the container will check.

NOTE

If an artifact is found in a remote repository, it is automatically downloaded and
installed into the local repository.

Default repositories

The default repositories are a list of repositories that the container always checks first. The list is
specified by the org.ops4j.pax.url.mvn.defaultRepositoriesin the
org.ops4j.pax.url.mvnPID. The property's initial setting is a single entry for the container's
system repository as shown in Example 4.1, “Initial Setting for a Container's Default Repositories” .

I Example 4.1. Initial Setting for a Container's Default Repositories

29

Red Hat JBoss Fuse 6.2 Deploying into the Container

org.ops4j.pax.url.mvn.defaultRepositories=file:${karaf.home}/${karaf.def
ault.repositoryl}@snapshots

Theorg.ops4j.pax.url.mvn.defaultRepositories property is a comma-separated list, so you
can specify multiple default repositories. You can specify the repository location using a URL with a
file:, http:, or https: scheme. You can optionally add the following suffixes to the URL:

e @snapshots—allow snapshot versions to be read from the repository

e @noreleases—do not allow release versions to be read from the repository

NOTE

It is recommended that you leave the container's system repository as the first entry in
the list.

Local repository

The container resolves the location of the local repository in the following manner:

1. Use the location specified by the
org.ops4j.pax.url.mvn.localRepository.localRepository property in the
org.ops4j.pax.url.mvnPID.

2. Otherwise, use the location specified by the localRepository element in the
settings.xml file specified by the
org.ops4j.pax.url.mvn.localRepository.settings property in the
org.ops4j.pax.url.mvnPID.

3. Otherwise, use the location specified by the localRepository element in the
.m2/settings.xml file located under the user's home directory.

4. Otherwise, use the location specified by the localRepository elementin the
M2_HOME/conf/settings.xml file.

5. Otherwise, the default location is .m2/repository/ under the user's home directory.

Remote repositories

The remote repositories checked by the container are specified by the
org.ops4j.pax.url.mvn.repositories propertyinthe org.ops4j.pax.url.mvnPID. The
repositories are specified as a comma-separated list as shown in Example 4.2, “Setting a Container's
Remote Repositories”.

http://repol.maven.org/maven2, \
http://repo.fusesource.com/maven2, \
http://repo.fusesource.com/maven2-snapshot@snapshots@noreleases, \

Example 4.2. Setting a Container's Remote Repositories
http://repo.fusesource.com/nexus/content/repositories/releases, \

‘ org.ops4j.pax.url.mvn.repositories= \

30

CHAPTER 4. LOCATING DEPENDENCIES

s@noreleases, \
http://repository.apache.org/content/groups/snapshots-

group@snapshots@noreleases, \
http://repository.ops4j.org/maven2, \
http://svn.apache.org/repos/asf/servicemix/m2-repo, \
http://repository.springsource.com/maven/bundles/release, \

http://repo.fusesource.com/nexus/content/repositories/snapshots@snapshot
http://repository.springsource.com/maven/bundles/external

You can optionally add the following suffixes to the URsL:
e @snapshots—allow snapshot versions to be read from the repository

e @noreleases—do not allow release versions to be read from the repository

4.4.LOCATING ARTIFACTS IN A FABRIC

Overview

Fabric containers also use Maven to locate artifacts, however they do so in a more constrained manner
than a standalone container. Fabric containers use Maven through the fabric's Maven proxy and never
search the local repository of the system on which it is running.

The Maven proxy attempts to strike a similar balance between accessing artifacts locally and accessing
artifacts from remote repositories, however it changes the scope of local and remote. For default
features, the artifacts are always stored in the fabric's system repository which is maintained by the
fabric's ensemble servers. For non-default features, third party bundles, or customer developed

bundles, it is likely that Maven will need to search remote repositories that are outside of the fabric to
locate the artifacts.

Procedure for locating artifacts

Figure 4.3, “How Containers Locate Artifacts in a Fabric” shows an overview of the procedure that a
fabric container follows when a feature or bundle is installed.

Figure 4.3. How Containers Locate Artifacts in a Fabric

-
|

insta

hd

The steps followed to locate the required Maven artifacts are:
1. The container contacts the fabric Maven proxy to search for the artifacts.

2. The proxy searches for the artifacts in the fabric's system repository.

31

Red Hat JBoss Fuse 6.2 Deploying into the Container

This repository contains all of the artifacts provided with the Red Hat JBoss Fuse installation.

3. If the artifacts are not available in system repository, the proxy searches the remote
repositories specified in its configuration.

See chapter "Configuring a Fabric's Maven Proxy" in "Configuring and Running JBoss Fuse"
for details on how to configure a fabric's Maven proxy.

4. The Maven proxy downloads the artifacts to the container.

Loading artifacts into the fabric's repository

Because fabric containers generally do not check a repository local to the machine on which it is
running, you must load all of an application's artifacts into a repository that the fabric's Maven proxy
knows about. There are two ways to do this:

e |oad the application's artifacts into the fabric's system repository

Maven can upload artifacts directly to the fabric's system repository by adding a repository
element defining the Maven proxy's repository to the POM's distributionManagement
element. Example 4.3, “Adding a Fabric Maven Proxy to a POM” shows a POM entry for
connecting to a fabric's repository when one of the Fabric Servers is running on the local
machine.

<repository>
<id>fabric-maven-proxy</id>
<name>FMC Maven Proxy</name>

<url>http://username:password@localhost:8107/maven/upload/</url>
</repository>

<distributionManagement>
</distributionManagement>

‘ Example 4.3. Adding a Fabric Maven Proxy to a POM

You will need to modify the url element to include the connection details for your
environment:

o The username and password are the credentials used access the Fabric Server to which
you are trying to connect.

o The hostname, localhost in Example 4.3, “Adding a Fabric Maven Proxy to a POM” , is
the address of the machine hosting the Fabric Server.

o The port number, 8107 in Example 4.3, “Adding a Fabric Maven Proxy to a POM” , is the
port number exposed by the Fabric Server. 8107 is the default setting.

o The path, /maven/upload/ in Example 4.3, “Adding a Fabric Maven Proxy to a POM” , is
the same for all Fabric Servers.

32

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Configuring_and_Running_JBoss_Fuse/FESBFabricMavenProxyConfig.html

CHAPTER 4. LOCATING DEPENDENCIES

NOTE

The Red Hat JBoss Fuse Plugins for Eclipse can also be used to upload artifacts
to a fabric's system repository. Red Hat JBoss Fuse Plugins for Eclipse will also
generate a profile for deploying the application to a container.

e |oad the application's artifacts to a custom repository and configure the fabric's Maven proxy
to include the custom repository

This is a good option if an application is going to be used in multiple fabrics because you will
not need to install the application into a separate repository for each fabric used. All of the
fabrics will use a single, centrally located version of the application.

To configure the fabric's Maven proxy see chapter "Configuring a Fabric's Maven Proxy" in
"Configuring and Running JBoss Fuse".

4.5. GENERATING A CUSTOM OFFLINE REPOSITORY

Use case for a custom offline repository

When you move from the development phase of a project to the deployment phase, it is typically more
convenient to pre-install all of the artifacts required by your application, rather than downloading them
from the Internet on demand. In this case, the ideal solution is to create a custom offline repository,
which contains the artifacts needed for your deployment. Creating a custom offline repository by hand,
however, would be difficult, because it would need to include all of the transitive dependencies
associated with your application bundles and features.

The ideal way to create a custom offline repository is to generate it, with the help of the Apache Karaf
features-maven-plugin plug-in.

features-maven-plugin Maven plug-in

The features-maven-plugin plug-in from Apache Karaf is a utility that is used internally by the
Apache Karaf developer community and the Red Hat JBoss Fuse development team to create
distributions of the Apache Karaf OSGi container. Some of the goals of this plug-in are also useful for
application developers, however, and this section explains how you can use the add-features-to-
repo goal to generate your own custom offline repository.

IMPORTANT

At present, only the add-features-to-repo goal of the features-maven-plugin
plug-in is supported.

Steps to generate a custom repository

To generate and install a custom offline repository for specific Apache Karaf features, perform the
following steps:

1. Create a POM file.
2. Add the features-maven-plugin.

3. Specify the features to download.

33

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Configuring_and_Running_JBoss_Fuse/FESBFabricMavenProxyConfig.html

Red Hat JBoss Fuse 6.2 Deploying into the Container

4. Specify the feature repositories.
5. Specify the Red Hat JBoss Fuse system repository .
6. Specify the remote repositories.
7. Generate the offline repository.

8. Install the offline repository.

Create a POM file

In a convenient location—for example, ProjectDir—create a new directory, ProjectDir/custom-
repo to hold the Maven project. Using a text editor, create the project's POM file, pom.xml,in the
custom-repo directory and add the following contents to the file:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>org.acme.offline-repo</groupIld>
<artifactId>custom-repo</artifactId>
<version>1.0.0</version>

<name>Generate offline features repository</name>

</project>

This is the bare bones of a Maven POM, which will be added to in the following steps. There is no need
to specify a Maven package type here (it defaults to jar), because no package will be generated for
this project.

Add the features-maven-plugin

Continue editing the pom. xml and add the features-maven-pluginas shown (where the build
element is inserted as a child of the project element):

<project ...>
<build>
<plugins>
<plugin>
<groupIld>org.apache.karaf.tooling</groupId>

<artifactId>features-maven-plugin</artifactId>
<version>2.2.1</version>

<executions>
<execution>
<id>add-features-to-repo</id>
<phase>generate-resources</phase>
<goals>
<goal>add-features-to-repo</goal>

34

CHAPTER 4. LOCATING DEPENDENCIES

</goals>
<configuration>
<descriptors>
<!-- List the URLs of required feature repositories here -->
</descriptors>
<features>
<!-- List features you want in the offline repo here -->
</features>
<repository>target/features-repo</repository>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

</project>

Subsequent steps will explain how to specify the descriptor list (of features repositories) and the
features list.

Specify the features to download

In this example scenario, it is assumed that you want to make the camel - jms feature and the camel -
quartz feature available in offline mode. List all of the features you want to download and store in the
offline repository in the features element, which is a child of the configuration element of the
features-maven-plugin.

To make the camel - jms and camel-quartz features available offline, add the following features
element as a child of the feature-maven-plugin's configuration element:

<features>
<feature>camel-jms</feature>
<feature>camel-quartz</feature>
</features>

Specify the feature repositories

A feature repositoryis a location that stores feature descriptor files. Generally, because features can
depend recursively on other features and because of the complexity of the dependency chains, the
project normally requires access to all of the standard Red Hat JBoss Fuse feature repositories.

To see the full list of standard feature repositories used by your installation of JBoss Fuse, open the
etc/org.apache.karaf.features.cfg configuration file and look at the featuresRepository
setting, which is a comma-separated list of feature repositories, like the following:

#

Comma separated list of feature repositories to register by default
#
featuresRepositories=mvn:org.apache.karaf/apache-karaf/2.1.3-fuse-00-
00/xml/features,
mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.4.0-fuse-00-
00/xml/features, mvn

35

Red Hat JBoss Fuse 6.2 Deploying into the Container

:org.apache.servicemix/apache-servicemix/4.3.1-fuse-00-
00/xml/features,mvn:org.apache
.camel.karaf/apache-camel/2.6.0-fuse-00-

00/xml/features, mvn:org.apache.servicemix/ode
-jbi-karaf/1.3.4/xml/features, mvn:org.apache.activemqg/activemq-
karaf/5.4.2-fuse-01-00

/xml/features

Now, add the listed feature repositories to the configuration of the features-maven-pluginin your
POM file. Open the project's pom. xml file and add a descriptor element (as a child of the
descriptors element) for each of the standard feature repositories. For example, given the
preceding value of the featuresRepositories list, you would define the features-maven-
plugin descriptors list in pom.xml as follows:

<descriptors>
<!-- List taken from featuresRepositories in
etc/org.apache.karaf.features.cfg -->
<descriptor>mvn:org.apache.karaf/apache-karaf/2.1.3-fuse-00-
00/xml/features</descriptor>
<descriptor>mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.4.0-
fuse-00-00/xml/features</descriptor>
<descriptor>mvn:org.apache.servicemix/apache-servicemix/4.3.1-fuse-00-
00/xml/features</descriptor>
<descriptor>mvn:org.apache.camel.karaf/apache-camel/2.6.0-fuse-00-
00/xml/features</descriptor>
<descriptor>mvn:org.apache.servicemix/ode-jbi-
karaf/1.3.4/xml/features</descriptor>
<descriptor>mvn:org.apache.activemqg/activemq-karaf/5.4.2-fuse-01-
00/xml/features</descriptor>
</descriptors>

Specify the Red Hat JBoss Fuse system repository

Add the Red Hat JBoss Fuse system repository, EshInstallDir/system, to the list of repositories in
the pom. xml file. This is necessary for two reasons: first of all, it saves you from downloading Maven
artificats that are already locally available from your JBoss Fuse installation; and secondly, some of the
artifacts in the system repository might not be available from any of the other repositories.

Using a text editor, open pom.xml and add the following repositories element as a child of the
project element, customizing the file URL to point at your local system repository

36

<project ...>

<repositories>
<repository>
<id>esb.system.repo</id>
<name>Red Hat JBoss Fuse internal system repo</name>
<url>file:///E:/Programs/FUSE/apache-servicemix-6.2.0.redhat-
133/system</url>
<snapshots>
<enabled>false</enabled>

</snapshots>
<releases>

CHAPTER 4. LOCATING DEPENDENCIES

<enabled>true</enabled>
</releases>
</repository>
</repositories>

</project>

Specify the remote repositories

Generally, the project requires access to all of the standard JBoss Fuse remote repositories. To see the
full list of standard remote repositories, open the etc/org.ops4j.pax.url.mvn.cfg configuration
file and look at the org.ops4j.pax.url.mvn.repositories setting, which is a comma-separated

list of URLs like the following:

org.ops4j.pax.url.mvn.repositories= \
http://repol.maven.org/maven2, \
http://repo.fusesource.com/maven2, \
http://repo.fusesource.com/maven2-snapshot@snapshots@noreleases, \
http://repo.fusesource.com/nexus/content/repositories/releases, \

http://repo.fusesource.com/nexus/content/repositories/snapshots@snapshots@
noreleases, \
http://repository.apache.org/content/groups/snapshots-
group@snapshots@noreleases, \
http://repository.ops4j.org/maven2, \
http://svn.apache.org/repos/asf/servicemix/m2-repo, \
http://repository.springsource.com/maven/bundles/release, \
http://repository.springsource.com/maven/bundles/external

Each entry in this list must be converted into a repository element, which is then inserted as a child
element of the respositories element in the project's pom.xml file. The preceding repository URLs
have slightly different formats and must be converted as follows:

RepoURL

The value of the repository URL, RepoURL, is inserted directly into the url child element of the
repository element. For example, the http://repol.maven.org/maven2 repository URL
translates to the following repository element:

<repository>
<!-- 'id' can be whatever you like -->
<id>repol.maven.org</id>
<!-- 'name' can be whatever you like -->
<name>Maven central</name>
<url>http://repol.maven.org/maven2</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository>

RepoURL@snapshots

37

Red Hat JBoss Fuse 6.2 Deploying into the Container

The @snapshots suffix indicates that downloading snapshots should be enabled for this repository.
When specifying the value of the url element, remove the @snapshots suffix from the URL.
Change the snapshots/enabled flag to true, as shown in the following example:

<repository>
<id>IdOofRepo</id>
<name>LongNameOfRepo</name>
<url>RepoURL</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>true</enabled>
</releases>
</repository>

RepoURL@snapshots@noreleases

The combination of the @snapshots suffix and the @noreleases suffix indicates that
downloading snapshots should be enabled and downloading releases should be disabled for this
repository. When specifying the value of the url element, remove both suffixes from the URL.
Change the snapshots/enabled flag to true and change the releases/enabled flag to
false, as shown in the following example:

<repository>
<id>IdOfRepo</id>
<name>LongNameOfRepo</name>
<url>RepoURL</url>
<snapshots>
<enabled>true</enabled>
</snapshots>
<releases>
<enabled>false</enabled>
</releases>
</repository>

Generate the offline repository

To generate the custom offline repository, open a new command prompt, change directory to
ProjectDir/custom-repo, and enter the following Maven command:

I mvn generate-resources

Assuming that the Maven build completes successfully, the custom offline repository should now be
available in the following location:

I ProjectDir/custom-repo/target/features-repo

Install the offline repository

38

CHAPTER 4. LOCATING DEPENDENCIES

To install the custom offline repository in the JBoss Fuse container, edit the
etc/org.ops4j.pax.url.mvn.cfgfile and append the offline repository directory to the list of
default repositories, as follows:

org.ops4j.pax.url.mvn.defaultRepositories=file:${karaf.home}/${karaf.defau
1lt.repository}@snapshots, file:ProjectDir/custom-repo/target/features-
repo@snapshots

The @snapshots suffix can be added to the offline repository URL, if there is a possibility that some of
the artifacts in it are snapshot versions.

39

Red Hat JBoss Fuse 6.2 Deploying into the Container

PART Il. OSGI BUNDLE DEPLOYMENT MODEL

Abstract

The OSGi bundle is the underlying unit of deployment for the Red Hat JBoss Fuse container. You can
either package and deploy your applications directly as bundles or use one of the alternative
deployment models (WAR).

40

CHAPTER 5. INTRODUCTION TO OSGlI

CHAPTER 5. INTRODUCTION TO OSGI

Abstract

The OSGi specification supports modular application development by defining a runtime framework
that simplifies building, deploying, and managing complex applications.

5.1.RED HAT JBOSS FUSE

Overview
Red Hat JBoss Fuse has the following layered architecture:
e Technology layer—includes technologies such as JAX-WS, JAX-RS, JMS, Spring, and JEE
e the section called “Red Hat JBoss Fuse” —a wrapper layer around the OSGi container
implementation, which provides support for deploying the OSGi container as a runtime server.
Runtime features provided by the JBoss Fuse include hot deployment, management, and

administration features.

e OSGi framework —implements OSGi functionality, including managing dependencies and
bundle lifecycles

Red Hat JBoss Fuse

Figure 5.1 shows the architecture of JBoss Fuse.

Figure 5.1. Red Hat JBoss Fuse Architecture

Red Hat JBoss Fuse

4 ™
Console J [Logging J [DeploymantJ [FAB J [Pruvisiuning} E:::nﬂguratiuﬂ [Blueprint J [Springl.‘.lhnl
\ w

Service

Bundles .
Lifecycle

Security

Module

Execution Environment

OSGi Framework

JBoss Fuse is based on Apache Karaf, a powerful, lightweight, OSGi-based runtime container for

41

http://karaf.apache.org/

Red Hat JBoss Fuse 6.2 Deploying into the Container

deploying and managing bundles to facilitate componentization of applications. JBoss Fuse also
provides native OS integration and can be integrated into the operating system as a service so that the
lifecycle is bound to the operating system.

As shown in Figure 5.1, JBoss Fuse extends the OSGi layers with:

e Console—an extensible Gogo console manages services, installs and manages applications and
libraries, and interacts with the JBoss Fuse runtime. It provides console commands to
administer instances of JBoss Fuse. See the "Console Reference".

e Logging—a powerful, unified logging subsystem provides console commands to display, view
and change log levels. See "Configuring and Running JBoss Fuse".

e Deployment—supports both manual deployment of OSGi bundles using the osgi:install
and osgi:start commands and hot deployment of applications. When a JAR file, WAR file, or
OSGi bundle is copied into the hot deployment folder InstallDir/deploy, it's automatically
installed on-the-fly inside the Red Hat JBoss Fuse runtime. When you update or delete these
files or bundles, the changes are made automatically. See Section 7.1, “Hot Deployment”.

e Provisioning—provides multiple mechanisms for installing applications and libraries. See
Chapter 8, Deploying Features.

e Configuration—the properties files stored in the InstallDir/etc folder are continuously
monitored, and changes to them are automatically propagated to the relevant services at
configurable intervals.

e Spring DM—simplifies building Spring applications that run in an OSGi framework. When a
Spring configuration file is copied to the hot deployment folder, Red Hat JBoss Fuse generates
and OSGi bundle on-the-fly and instantiates the Spring application context.

e Blueprint—is essentially a standardized version of Spring DM. It is a dependency injection
framework that simplifies interaction with the OSGi container—for example, providing standard
XML elements to import and export OSGi services.

5.2. 0SGI FRAMEWORK

Overview

The OSGi Alliance is an independent organization responsible for defining the features and capabilities
of the OSGi Service Platform Release 4. The OSGi Service Platform is a set of open specifications that
simplify building, deploying, and managing complex software applications.

OSGi technology is often referred to as the dynamic module system for Java. OSGi is a framework for
Java that uses bundles to modularly deploy Java components and handle dependencies, versioning,
classpath control, and class loading. OSGi's lifecycle management allows you to load, start, and stop
bundles without shutting down the JVM.

OSGi provides the best runtime platform for Java, a superior class loading architecture, and a reqistry
for services. Bundles can export services, run processes, and have their dependencies managed. Each
bundle can have its requirements managed by the OSGi container.

JBoss Fuse uses Apache Felix as its default OSGi implementation. The framework layers form the

container where you install bundles. The framework manages the installation and updating of bundles
in a dynamic, scalable manner, and manages the dependencies between bundles and services.

42

http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Console_Reference/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Configuring_and_Running_JBoss_Fuse/
http://www.osgi.org/Main/HomePage/
http://www.osgi.org/Specifications/HomePage?section=2
http://felix.apache.org/

CHAPTER 5. INTRODUCTION TO OSGlI

OSGi architecture

As shown in Figure 5.1, “Red Hat JBoss Fuse Architecture”, the OSGi framework contains the following:
e Bundles — Logical modules that make up an application. See Section 5.4, “OSGi Bundles”.

e Service layer — Provides communication among modules and their contained components.
This layer is tightly integrated with the lifecycle layer. See Section 5.3, “OSGi Services”.

e Lifecycle layer — Provides access to the underlying OSGi framework. This layer handles the
lifecycle of individual bundles so you can manage your application dynamically, including
starting and stopping bundles.

e Module layer — Provides an API to manage bundle packaging, dependency resolution, and
class loading.

e Execution environment — A configuration of a JVM. This environment uses profiles that define
the environment in which bundles can work.

e Security layer — Optional layer based on Java 2 security, with additional constraints and
enhancements.

Each layer in the framework depends on the layer beneath it. For example, the lifecycle layer requires
the module layer. The module layer can be used without the lifecycle and service layers.

5.3. 0SGI SERVICES

Overview

An OSGi service is a Java class or service interface with service properties defined as name/value
pairs. The service properties differentiate among service providers that provide services with the same
service interface.

An OSGi service is defined semantically by its service interface, and it is implemented as a service
object. A service's functionality is defined by the interfaces it implements. Thus, different applications
can implement the same service.

Service interfaces allow bundles to interact by binding interfaces, not implementations. A service
interface should be specified with as few implementation details as possible.
OSGi service registry

In the OSGi framework, the service layer provides communication between bundles and their
contained components using the publish, find, and bind service model. The service layer contains a
service registry where:

e Service providers register services with the framework to be used by other bundles

e Service requesters find services and bind to service providers
Services are owned by, and run within, a bundle. The bundle registers an implementation of a service
with the framework service registry under one or more Java interfaces. Thus, the service’s

functionality is available to other bundles under the control of the framework, and other bundles can
look up and use the service. Lookup is performed using the Java interface and service properties.

43

Red Hat JBoss Fuse 6.2 Deploying into the Container

Each bundle can register multiple services in the service registry using the fully qualified name of its
interface and its properties. Bundles use names and properties with LDAP syntax to query the service
registry for services.

A bundle is responsible for runtime service dependency management activities including publication,
discovery, and binding. Bundles can also adapt to changes resulting from the dynamic availability
(arrival or departure) of the services that are bound to the bundle.

Event notification

Service interfaces are implemented by objects created by a bundle. Bundles can:
o Register services
e Search for services
e Receive notifications when their registration state changes

The OSGi framework provides an event notification mechanism so service requesters can receive
notification events when changes in the service registry occur. These changes include the publication
or retrieval of a particular service and when services are registered, modified, or unregistered.

Service invocation model

When a bundle wants to use a service, it looks up the service and invokes the Java object as a normal
Java call. Therefore, invocations on services are synchronous and occur in the same thread. You can
use callbacks for more asynchronous processing. Parameters are passed as Java object references.

No marshalling or intermediary canonical formats are required as with XML. OSGi provides solutions
for the problem of services being unavailable.

OSGi framework services

In addition to your own services, the OSGi framework provides the following optional services to
manage the operation of the framework:

e Package Admin service—allows a management agent to define the policy for managing Java
package sharing by examining the status of the shared packages. It also allows the
management agent to refresh packages and to stop and restart bundles as required. This
service enables the management agent to make decisions regarding any shared packages
when an exporting bundle is uninstalled or updated.

The service also provides methods to refresh exported packages that were removed or
updated since the last refresh, and to explicitly resolve specific bundles. This service can also
trace dependencies between bundles at runtime, allowing you to see what bundles might be
affected by upgrading.

e Start Level service—enables a management agent to control the starting and stopping order of
bundles. The service assigns each bundle a start level. The management agent can modify the
start level of bundles and set the active start level of the framework, which starts and stops the
appropriate bundles. Only bundles that have a start level less than, or equal to, this active start
level can be active.

o URL Handlers service—dynamically extends the Java runtime with URL schemes and content
handlers enabling any component to provide additional URL handlers.

o Permission Admin service —enables the OSGi framework management agent to administer the

44

CHAPTER 5. INTRODUCTION TO OSGlI

permissions of a specific bundle and to provide defaults for all bundles. A bundle can have a
single set of permissions that are used to verify that it is authorized to execute privileged code.
You can dynamically manipulate permissions by changing policies on the fly and by adding new
policies for newly installed components. Policy files are used to control what bundles can do.

e Conditional Permission Admin service —extends the Permission Admin service with
permissions that can apply when certain conditions are either true or false at the time the
permission is checked. These conditions determine the selection of the bundles to which the
permissions apply. Permissions are activated immediately after they are set.

The OSGi framework services are described in detail in separate chapters in the OSGi Service Platform
Release 4 specification available from the release 4 download page on the OSGi Alliance web site.

OSGi Compendium services

In addition to the OSGi framework services, the OSGi Alliance defines a set of optional, standardized
compendium services. The OSGi compendium services provide APlIs for tasks such as logging and
preferences. These services are described in the OSGi Service Platform, Service Compendiumavailable
from the release 4 download page on the OSGi Alliance Web site.

The Configuration Admin compendium service is like a central hub that persists configuration
information and distributes it to interested parties. The Configuration Admin service specifies the
configuration information for deployed bundles and ensures that the bundles receive that data when
they are active. The configuration data for a bundle is a list of name-value pairs. See the section called
“Red Hat JBoss Fuse”.

5.4. 0OSGI BUNDLES

Overview

With OSGi, you modularize applications into bundles. Each bundle is a tightly coupled, dynamically
loadable collection of classes, JARs, and configuration files that explicitly declare any external
dependencies. In OSGi, a bundle is the primary deployment format. Bundles are applications that are
packaged in JARs, and can be installed, started, stopped, updated, and removed.

OSGi provides a dynamic, concise, and consistent programming model for developing bundles.
Development and deployment are simplified by decoupling the service's specification (Java interface)
from its implementation.

The OSGi bundle abstraction allows modules to share Java classes. This is a static form of reuse. The
shared classes must be available when the dependent bundle is started.

A bundle is a JAR file with metadata in its OSGi manifest file. A bundle contains class files and,
optionally, other resources and native libraries. You can explicitly declare which packages in the
bundle are visible externally (exported packages) and which external packages a bundle requires
(imported packages).

The module layer handles the packaging and sharing of Java packages between bundles and the hiding
of packages from other bundles. The OSGi framework dynamically resolves dependencies among

bundles. The framework performs bundle resolution to match imported and exported packages. It can
also manage multiple versions of a deployed bundle.

Class Loading in OSGi

45

http://www.osgi.org/Release4/HomePage/
http://www.osgi.org/Release4/HomePage/

Red Hat JBoss Fuse 6.2 Deploying into the Container

OSGi uses a graph model for class loading rather than a tree model (as used by the JVM). Bundles can
share and re-use classes in a standardized way, with no runtime class-loading conflicts.

Each bundle has its own internal classpath so that it can serve as an independent unit if required.
The benefits of class loading in OSGi include:

e Sharing classes directly between bundles. There is no requirement to promote JARs to a
parent class-loader.

e You can deploy different versions of the same class at the same time, with no conflict.

46

CHAPTER 6. BUILDING AN OSGI BUNDLE

CHAPTER 6. BUILDING AN OSGI BUNDLE

Abstract

This chapter describes how to build an OSGi bundle using Maven. For building bundles, the Maven
bundle plug-in plays a key role, because it enables you to automate the generation of OSGi bundle
headers (which would otherwise be a tedious task). Maven archetypes, which generate a complete
sample project, can also provide a starting point for your bundle projects.

6.1. GENERATING A BUNDLE PROJECT

Generating bundle projects with Maven archetypes

To help you get started quickly, you can invoke a Maven archetype to generate the initial outline of a
Maven project (a Maven archetype is analogous to a project wizard). The following Maven archetypes
can generate projects for building OSGi bundles:

o the section called “Apache CXF karaf-soap-archetype archetype”.

e the section called “Apache Camel archetype”.

Apache CXF karaf-soap-archetype archetype

The Apache CXF karaf-soap-archetype archetype creates a project for building a service from Java. To
generate a Maven project with the coordinates, Groupld: Artifactid: Version, enter the following
command:

mvn archetype:generate \
-DarchetypeGroupId=io.fabric8.archetypes \
-DarchetypeArtifactId=karaf-soap-archetype \
-DarchetypeVersion=1.2.0.redhat-133 \
-DgroupId=GroupId \
-DartifactId=ArtifactId \
-Dversion=Version \
-Dfabric8-profile=ProfileName

NOTE

The backslash character, \, indicates line continuation on Linux and UNIX operating
systems. On Windows platforms, you must omit the backslash character and put all of
the arguments on a single line.

Apache Camel archetype

The Apache Camel OSGi archetype creates a project for building a route that can be deployed into the
OSGi container. To generate a Maven project with the coordinates, Groupld: Artifactld: Version, enter
the following command:

mvn archetype:generate \
-DarchetypeGroupId=org.apache.camel.archetypes \
-DarchetypeArtifactId=camel-archetype-blueprint \

47

Red Hat JBoss Fuse 6.2 Deploying into the Container

-DarchetypeVersion=2.15.1.redhat-620133 \
-DgroupId=GroupId \
-DartifactId=ArtifactId \
-Dversion=Version

Building the bundle

By default, the preceding archetypes create a project in a new directory, whose names is the same as
the specified artifact ID, Artifactld. To build the bundle defined by the new project, open a command
prompt, go to the project directory (that is, the directory containing the pom. xml file), and enter the
following Maven command:

I mvn install

The effect of this command is to compile all of the Java source files, to generate a bundle JAR under
the Artifactid/target directory, and then to install the generated JAR in the local Maven repository.

6.2. MODIFYING AN EXISTING MAVEN PROJECT

Overview

If you already have a Maven project and you want to modify it so that it generates an OSGi bundle,
perform the following steps:

1. the section called “Change the package type to bundle”.
2. the section called “Add the bundle plug-in to your POM” .
3. the section called “Customize the bundle plug-in” .

4. the section called “Customize the JDK compiler version” .

Change the package type to bundle

Configure Maven to generate an OSGi bundle by changing the package type to bundle in your
project's pom.xml file. Change the contents of the packagingelementto bundle, as shown in the
following example:

<project ... >
;béckaging>bundle</packaging>
</b}6ject>
The effect of this setting is to select the Maven bundle plug-in,maven-bundle-plugin, to perform

packaging for this project. This setting on its own, however, has no effect until you explicitly add the
bundle plug-in to your POM.

Add the bundle plug-in to your POM

To add the Maven bundle plug-in, copy and paste the following sample plugin element into the
project/build/plugins section of your project's pom.xml file:

48

CHAPTER 6. BUILDING AN OSGI BUNDLE

<project ... >
<build>
<defaultGoal>install</defaultGoal>
<plugins>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>2.3.7</version>
<extensions>true</extensions>
<configuration>
<instructions>
<Bundle-SymbolicName>${project.groupId}.${project.artifactId}
</Bundle-SymbolicName>
<Import-Package>*</Import-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>
Where the bundle plug-in is configured by the settings in the instructions element.

Customize the bundle plug-in

For some specific recommendations on configuring the bundle plug-in for Apache CXF, see Section 6.3,
“Packaging a Web Service in a Bundle”.

For an in-depth discussion of bundle plug-in configuration, in the context of the OSGi framework and
versioning policy, see "Managing OSGi Dependencies".

Customize the JDK compiler version

It is almost always necessary to specify the JDK version in your POM file. If your code uses any modern
features of the Java language—such as generics, static imports, and so on—and you have not
customized the JDK version in the POM, Maven will fail to compile your source code. It is not sufficient
to set the JAVA_HOME and the PATH environment variables to the correct values for your JDK, you
must also modify the POM file.

To configure your POM file, so that it accepts the Java language features introduced in JDK 1.7, add
the following maven-compiler-plugin plug-in settings to your POM (if they are not already
present):

<project ... >
<build>
<defaultGoal>install</defaultGoal>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>

49

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Managing_OSGi_Dependencies/

Red Hat JBoss Fuse 6.2 Deploying into the Container

<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
</plugins>
</build>

</6}6ject>
6.3. PACKAGING A WEB SERVICE IN A BUNDLE

Overview

This section explains how to modify an existing Maven project for a Apache CXF application, so that
the project generates an OSGi bundle suitable for deployment in the Red Hat JBoss Fuse OSGi
container. To convert the Maven project, you need to modify the project's POM file and the project's
Spring XML file(s) (located in META-INF/spring).

Modifying the POM file to generate a bundie

To configure a Maven POM file to generate a bundle, there are essentially two changes you need to
make: change the POM's package type to bundle; and add the Maven bundle plug-in to your POM. For
details, see Section 6.1, “Generating a Bundle Project”.

Mandatory import packages

In order for your application to use the Apache CXF components, you need to import their packages
into the application's bundle. Because of the complex nature of the dependencies in Apache CXF, you
cannot rely on the Maven bundle plug-in, or the bnd tool, to automatically determine the needed
imports. You will need to explicitly declare them.

You need to import the following packages into your bundle:

javax.jws

javax.wsdl

javax.xml.bind
javax.xml.bind.annotation
javax.xml.namespace

javax.xml.ws

org.apache.cxf.bus
org.apache.cxf.bus.spring
org.apache.cxf.bus.resource
org.apache.cxf.configuration.spring
org.apache.cxf.resource
org.apache.cxf.jaxws
org.springframework.beans.factory.config

Sample Maven bundle plug-in instructions

Example 6.1, “Configuration of Mandatory Import Packages” shows how to configure the Maven bundle
plug-in in your POM to import the mandatory packages. The mandatory import packages appear as a
comma-separated list inside the Import -Package element. Note the appearance of the wildcard, *,

50

CHAPTER 6. BUILDING AN OSGI BUNDLE

<Import-Package>

as the last element of the list. The wildcard ensures that the Java source files from the current bundle
javax.jws,
javax.wsdl,

are scanned to discover what additional packages need to be imported.
javax.xml.bind,

Example 6.1. Configuration of Mandatory Import Packages
<project ... >
<build>
<plugins>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<extensions>true</extensions>
javax.xml.bind.annotation,

<configuration>
<instructions>

javax.xml.namespace,
javax.xml.ws,
org.apache.cxf.bus,
org.apache.cxf.bus.spring,
org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,
org.apache.cxf.jaxws,
org.springframework.beans.factory.config,

*
</Import-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>

Add a code generation plug-in

A Web services project typically requires code to be generated. Apache CXF provides two Maven plug-
ins for the JAX-WS front-end, which enable tyou to integrate the code generation step into your build.
The choice of plug-in depends on whether you develop your service using the Java-first approach or
the WSDL-first approach, as follows:

e Java-first approach—use the cxf-java2ws-plugin plug-in.

e WSDL-first approach—use the cxf -codegen-plugin plug-in.

OSGi configuration properties

51

Red Hat JBoss Fuse 6.2 Deploying into the Container

The OSGi Configuration Admin service defines a mechanism for passing configuration settings to an
OSGi bundle. You do not have to use this service for configuration, but it is typically the most
convenient way of configuring bundle applications. Both Spring DM and Blueprint provide support for
OSGi configuration, enabling you to substitute variables in a Spring XML file or a Blueprint file using
values obtained from the OSGi Configuration Admin service.

For details of how to use OSGi configuration properties, see Section 6.4, “Configuring the Bundle Plug-
In” and the section called “Add OSGi configurations to the feature”.

6.4. CONFIGURING THE BUNDLE PLUG-IN

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in's instructions element.

Configuration properties

Some of the commonly used configuration properties are:
e Bundle-SymbolicName
e Bundle-Name
e Bundle-Version
e Export-Package
e Private-Package

e |mport-Package

Setting a bundle's symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupid + "."
+ artifactld, with the following exceptions:

e If groupldhas only one section (no dots), the first package name with classes is returned.

For example, if the group Id is commons -1ogging: commons-1ogging, the bundle's symbolic
name isorg.apache.commons.logging.

e |f artifactldis equal to the last section of groupld, then groupldis used.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle's symbolic name is org.apache.maven.

e |f artifactld starts with the last section of groupld, that portion is removed.
For example, if the POM specifies the group ID and artifact ID as

org.apache.maven:maven-core, the bundle's symbolic name is
org.apache.maven.core.

52

CHAPTER 6. BUILDING AN OSGI BUNDLE

To specify your own value for the bundle's symbolic name, add a Bundle-SymbolicName child in the
plug-in's instructions element, as shown in Example 6.2.

<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>

</instructions>

</configuration>

<plugin>
<groupId>org.apache.felix</groupId>
</plugin>

| Example 6.2. Setting a bundle's symbolic name

Setting a bundle's name

By default, a bundle's name is set to ${project.name}.

To specify your own value for the bundle's name, add a Bundle-Name child to the plug-in's
instructions element, as shownin Example 6.3.

Example 6.3. Setting a bundle's name
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-Name>JoeFred</Bundle-Name>
</instructions>

</configuration>
</plugin>

Setting a bundle's version

By default, a bundle's version is set to ${project.version}. Any dashes (-) are replaced with dots
(.) and the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes
4.2.0.SNAPSHOT.

To specify your own value for the bundle's version, add a Bundle-Version child to the plug-in's
instructions element, as shownin Example 6.4.

Example 6.4. Setting a bundle's version
<artifactId>maven-bundle-plugin</artifactId>

<plugin>
<groupId>org.apache.felix</groupId>

53

Red Hat JBoss Fuse 6.2 Deploying into the Container

</instructions>
</configuration>

<configuration>
<instructions>
<Bundle-Version>1.0.3.1</Bundle-Version>
</plugin>

Specifying exported packages

By default, the OSGi manifest's Export-Package list is populated by all of the packages in your local
Java source code (under src/main/java), except for the deault package, ., and any packages
containing .impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages
listed in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export -Package child to the plug-
in's instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and
that are to be exported. The package names can be specified using the * wildcard symbol. For example,
the entry com. fuse.demo. * includes all packages on the project's classpath that start with
com.fuse.demo.

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
Icom.fuse.demo.private excludes the package com.fuse.demo.private.

When excluding packages, the order of entries in the list is important. The list is processed in order
from the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

I Icom.fuse.demo.private, com.fuse.demo.*

However, if you list the packages using com.fuse.demo.*,!lcom.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.
Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

54

CHAPTER 6. BUILDING AN OSGI BUNDLE

IMPORTANT

If a package matches an entry in both the Private-Package element and the
Export-Package element, the Export-Package element takes precedence. The
package is added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify
a list of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project's classpath that are to be included in the bundle. These packages are packaged in the bundle,
but not exported (unless they are also selected by the Export -Package instruction).

Example 6.5 shows the configuration for including a private package in a bundle

<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>

</instructions>
</configuration>

<plugin>
<groupId>org.apache.felix</groupId>
</plugin>

| Example 6.5. Including a private package in a bundle

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest's Import-Package property with a list of
all the packages referred to by the contents of the bundle.

While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also
result in unwanted packages being imported.

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-
in's instructions element. The syntax for the package list is the same as for the Export-Package
element and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan
the bundle's contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example 6.6 shows the configuration for specifying the packages imported by a bundle

Example 6.6. Specifying the packages imported by a bundle

<plugin>
<groupId>org.apache.felix</groupId>

55

Red Hat JBoss Fuse 6.2 Deploying into the Container
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Import-Package>javax.jws,
javax.wsdl,
org.apache.cxf.bus,
org.apache.cxf.bus.spring,
org.apache.cxf.bus.resource,
org.apache.cxf.configuration.spring,
org.apache.cxf.resource,
org.springframework.beans.factory.config,
*
</Import-Package>
</instructions>

</configuration>
</plugin>

More information

For more information on configuring a bundle plug-in, see:
e "Managing OSGi Dependencies"
o Apache Felix documentation

o Peter Kriens' aQute Software Consultancy web site

56

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Managing_OSGi_Dependencies/
http://felix.apache.org/documentation/subprojects/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

Abstract

Apache Karaf provides two different approaches for deploying a single OSGi bundle: hot deployment or
manual deployment. If you need to deploy a collection of related bundles, on the other hand, it is
recommended that you deploy them together as a feature, rather than singly (see Chapter 8, Deploying
Features).

71.HOT DEPLOYMENT

Hot deploy directory

JBoss Fuse monitors JAR files in the InstallDir/deploy directory and hot deploys everything in
this directory. Each time a JAR file is copied to this directory, it is installed in the runtime and also
started. You can subsequently update or delete the JARs, and the changes are handled automatically.

For example, if you have just built the bundle, ProjectDir/target/foo-1.0-SNAPSHOT. jar, you can
deploy this bundle by copying it to the InstallDir/deploy directory as follows (assuming you are
working on a UNIX platform):

I % cp ProjectDir/target/foo-1.0-SNAPSHOT. jar InstallDir/deploy

7.2. MANUAL DEPLOYMENT

Overview

You can manually deploy and undeploy bundles by issuing commands at the Red Hat JBoss Fuse
console.

Installing a bundle

Use the osgi:install command to install one or more bundles in the OSGi container. This command
has the following syntax:

I osgi:install [-s] [--start] [--help] UrlList

Where UrlListis a whitespace-separated list of URLs that specify the location of each bundle to deploy.
The following command arguments are supported:

-S

Start the bundle after installing.

--start

Same as -S.

--help

Show and explain the command syntax.

57

Red Hat JBoss Fuse 6.2 Deploying into the Container

For example, to install and start the bundle, ProjectDir/target/foo-1.0-SNAPSHOT. jar, enter the
following command at the Karaf console prompt:

I osgi:install -s file:ProjectDir/target/foo-1.0-SNAPSHOT. jar

NOTE

On Windows platforms, you must be careful to use the correct syntax for the file URL
in this command. See Section A.1, “File URL Handler” for details.

Uninstalling a bundle

To uninstall a bundle, you must first obtain its bundle ID using the 0sgi:1list command. You can then
uninstall the bundle using the 0sgi:uninstall command (which takes the bundle ID as its
argument).

For example, if you have already installed the bundle named A Camel 0SGi Service Unit,
entering osgi:list at the console prompt might produce output like the following:

[175] [Active 11] [Started] [60] ServiceMix :: FTP

(2009.02.0.psc-01-00RCL)
[181] [Resolved 11 11 11 60] A Camel 0SGi

Service Unit (1.0.0.SNAPSHOT)
You can now uninstall the bundle with the ID, 181, by entering the following console command:

I osgi:uninstall 181

URL schemes for locating bundles

When specifying the location URL to the osgi:install command, you can use any of the URL
schemes supported by Red Hat JBoss Fuse, which includes the following scheme types:

e Section A.1, “File URL Handler”.
e .Section A.2, “HTTP URL Handler”.

e Section A.3, “Mvn URL Handler”.
7.3.LIFECYCLE MANAGEMENT

Bundle lifecycle states

Applications in an OSGi environment are subject to the lifecycle of its bundles. Bundles have six
lifecycle states:

1. Installed — All bundles start in the installed state. Bundles in the installed state are waiting for
all of their dependencies to be resolved, and once they are resolved, bundles move to the
resolved state.

2. Resolved —Bundles are moved to the resolved state when the following conditions are met:

58

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

e The runtime environment meets or exceeds the environment specified by the bundle.

e All of the packages imported by the bundle are exposed by bundles that are either in the
resolved state or that can be moved into the resolved state at the same time as the
current bundle.

e All of the required bundles are either in the resolved state or they can be resolved at the
same time as the current bundle.

IMPORTANT

All of an application's bundles must be in the resolved state before the
application can be started.

If any of the above conditions ceases to be satisfied, the bundle is moved back into the
installed state. For example, this can happen when a bundle that contains an imported package
is removed from the container.

3. Starting— The starting state is a transitory state between the resolved state and the active
state. When a bundle is started, the container must create the resources for the bundle. The
container also calls the start () method of the bundle's bundle activator when one is
provided.

4. Active —Bundles in the active state are available to do work. What a bundle does in the active
state depends on the contents of the bundle. For example, a bundle containing a JAX-WS
service provider indicates that the service is available to accept requests.

5. Stopping — The stopping state is a transitory state between the active state and the resolved
state. When a bundle is stopped, the container must clean up the resources for the bundle. The
container also calls the stop () method of the bundle's bundle activator when one is provided.

6. Uninstalled — When a bundle is uninstalled it is moved from the resolved state to the
uninstalled state. A bundle in this state cannot be transitioned back into the resolved state or
any other state. It must be explicitly re-installed.

The most important lifecycle states for application developers are the starting state and the stopping
state. The endpoints exposed by an application are published during the starting state. The published
endpoints are stopped during the stopping state.

Installing and resolving bundles

When you install a bundle using the osgi:install command (without the -s flag), the kernel installs
the specified bundle and attempts to put it into the resolved state. If the resolution of the bundle fails
for some reason (for example, if one of its dependencies is unsatisfied), the kernel leaves the bundle in
the installed state.

At a later time (for example, after you have installed missing dependencies) you can attempt to move
the bundle into the resolved state by invoking the osgi: resolve command, as follows:

I osgi:resolve 181

Where the argument (181, in this example) is the ID of the bundle you want to resolve.

Starting and stopping bundles

59

Red Hat JBoss Fuse 6.2 Deploying into the Container

You can start one or more bundles (from either the installed or the resolved state) using the
osgi:start command. For example, to start the bundles with IDs, 181,185, and 186, enter the
following console command:

I osgi:start 181 185 186

You can stop one or more bundles using the osgi: stop command. For example, to stop the bundles
with IDs, 181,185, and 186, enter the following console command:

I osgi:stop 181 185 186

You can restart one or more bundles (that is, moving from the started state to the resolved state, and
then back again to the started state) using the osgi:restart command. For example, to restart the
bundles with IDs, 181,185, and 186, enter the following console command:

I osgi:restart 181 185 186

Bundle start level

A start levelis associated with every bundle. The start level is a positive integer value that controls the
order in which bundles are activated/started. Bundles with a low start level are started before bundles
with a high start level. Hence, bundles with the start level, 1, are started first and bundles belonging to
the kernel tend to have lower start levels, because they provide the prerequisites for running most
other bundles.

Typically, the start level of user bundles is 60 or higher.

Specifying a bundle's start level

Use the osgi:bundle-level command to set the start level of a particular bundle. For example, to
configure the bundle with ID, 181, to have a start level of 70, enter the following console command:

I osgi:bundle-level 181 70

System start level

The OSGi container itself has a start level associated with it and this system start leveldetermines
which bundles can be active and which cannot: only those bundles whose start level is less than or equal
to the system start level can be active.

To discover the current system start level, enter osgi:start-1level in the console, as follows:

JBossFuse:karaf@root> osgi:start-level
Level 100

If you want to change the system start level, provide the new start level as an argument to the
osgi:start-level command, as follows:

I osgi:start-level 200

7.4. TROUBLESHOOTING DEPENDENCIES

60

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

Missing dependencies

The most common issue that can arise when you deploy an OSGi bundle into the Red Hat JBoss Fuse
container is that one or more dependencies are missing. This problem shows itself when you try to
resolve the bundle in the OSGi container, usually as a side effect of starting the bundle. The bundle

fails to resolve (or start) and a ClassNotFound error is logged (to view the log, use the log:display
console command or look at the log file in the InstallDir/data/logdirectory).

There are two basic causes of a missing dependency: either a required feature or bundle is not installed
in the container; or your bundle's Import-Package header is incomplete.

Required features or bundles are not installed

Evidently, all features and bundles required by your bundle must already be installed in the OSGi
container, before you attempt to resolve your bundle. In particular, because Apache Camel has a
modular architecture, where each component is installed as a separate feature, it is easy to forget to
install one of the required components.

NOTE

Consider packaging your bundle as a feature. Using a feature, you can package your
bundle together with all of its dependencies and thus ensure that they are all installed
simultaneously. For details, see Chapter 8, Deploying Features.

Import-Package header is incomplete

If all of the required features and bundles are already installed and you are still getting a
ClassNotFound error, this means that the Import-Package header in your bundle's MANIFEST.MF
file is incomplete. The maven-bundle-plugin (see Section 6.2, “Modifying an Existing Maven
Project”) is a great help when it comes to generating your bundle's Import-Package header, but you
should note the following points:

e Make sure that you include the wildcard, *, in the Import-Package element of the Maven
bundle plug-in configuration. The wildcard directs the plug-in to scan your Java source code
and automatically generates a list of package dependencies.

e The Maven bundle plug-in is not able to figure out dynamic dependencies. For example, if your
Java code explicitly calls a class loader to load a class dynamically, the bundle plug-in does not
take this into account and the required Java package will not be listed in the generated
Import-Package header.

e If you define a Spring XML file (for example, in the META-INF/spring directory), the Maven
bundle plug-in is not able to figure out dependencies arising from the Spring XML
configuration. Any dependencies arising from Spring XML must be added manually to the
bundle plug-in's Import-Package element.

o If you define a blueprint XML file (for example, in the 0SGI-INF/blueprint directory), any

dependencies arising from the blueprint XML file are automatically resolved at run time This is
an important advantage of blueprint over Spring.

How to track down missing dependencies

To track down missing dependencies, perform the following steps:

1. Perform a quick check to ensure that all of the required bundles and features are actually

61

Red Hat JBoss Fuse 6.2 Deploying into the Container

62

installed in the OSGi container. You can use osgi:1list to check which bundles are installed
and features:1list to check which features are installed.

. Install (but do not start) your bundle, using the osgi:install console command. For

example:

I JBossFuse:karaf@root> osgi:install MyBundleURL

. Use thedev:dynamic-import console command to enable dynamic imports on the bundle

you just installed. For example, if the bundle ID of your bundle is 218, you would enable dynamic
imports on this bundle by entering the following command:

I JBossFuse: karaf@root> dev:dynamic-import 218

This setting allows OSGi to resolve dependencies using any of the bundles already installed in
the container, effectively bypassing the usual dependency resolution mechanism (based on the
Import-Package header). Thisis not recommemded for normal deployment, because it
bypasses version checks: you could easily pick up the wrong version of a package, causing
your application to malfunction.

. You should now be able to resolve your bundle. For example, if your bundle ID is 218, enter the

followng console command:

I JBossFuse: karaf@root> osgi:resolve 218

. Assuming your bundle is now resolved (check the bundle status using osgi:1list), you can

get a complete list of all the packages wired to your bundle using the package: imports
command. For example, if your bundle ID is 218, enter the following console command:

I JBossFuse: karaf@root> package:imports 218

You should see a list of dependent packages in the console window (where the package names
are highlighted in this example):

Spring Beans (67): org.springframework.beans.factory.xml;
version=3.0.5.RELEASE

Apache ServiceMix :: Specs :: JAXB API 2.2 (87):
javax.xml.bind.annotation; version=2.2.1

Apache ServiceMix :: Specs :: JAXB API 2.2 (87): javax.xml.bind;
version=2.2.1

Web Services Metadata 2.0 (104): javax.jws; version=2.0.0
Apache ServiceMix :: Specs :: JAXWS API 2.2 (105):
javax.xml.ws.handler; version=2.2.0

Apache ServiceMix :: Specs :: JAXWS API 2.2 (105): javax.xml.ws;
version=2.2.0

Apache CXF Bundle Jar (125): org.apache.cxf.helpers;
version=2.4.2.fuse-00-08

Apache CXF Bundle Jar (125): org.apache.cxf.transport.jms.wsdl11;
version=2.4.2.fuse-00-08

. Unpack your bundle JAR file and look at the packages listed under the Import-Package

header in the META-INF/MANIFEST .MF file. Compare this list with the list of packages found

CHAPTER 7. DEPLOYING AN OSGI BUNDLE

in the previous step. Now, compile a list of the packages that are missing from the manifest's
Import-Package header and add these package names to the Import-Package element of
the Maven bundle plug-in configuration in your project's POM file.

. To cancel the dynamic import option, you must uninstall the old bundle from the OSGi
container. For example, if your bundle ID is 218, enter the following command:

I JBossFuse:karaf@root> osgi:uninstall 218

. You can now rebuild your bundle with the updated list of imported packages and test it in the
OSGi container.

63

Red Hat JBoss Fuse 6.2 Deploying into the Container

CHAPTER 8. DEPLOYING FEATURES

Abstract

Because applications and other tools typically consist of multiple OSGi bundles, it is often convenient
to aggregate inter-dependent or related bundles into a larger unit of deployment. Red Hat JBoss Fuse
therefore provides a scalable unit of deployment, the feature, which enables you to deploy multiple
bundles (and, optionally, dependencies on other features) in a single step.

8.1.CREATING A FEATURE

Overview

Essentially, a feature is created by adding a new feature element to a special kind of XML file, known
as a feature repository. To create a feature, perform the following steps:

1. the section called “Create a custom feature repository” .

2. the section called “Add a feature to the custom feature repository” .

3. the section called “Add the local repository URL to the features service” .
4. the section called “Add dependent features to the feature” .

5. the section called “Add OSGi configurations to the feature”.

Create a custom feature repository

If you have not already defined a custom feature repository, you can create one as follows. Choose a
convenient location for the feature repository on your file system—for example,
C:\Projects\features.xml-and use your favorite text editor to add the following lines to it:

<?xml version="1.0" encoding="UTF-8"?>
<features name="CustomRepository">
</features>

Where you must specify a name for the repository, CustomRepository, by setting the name attribute.

NOTE

In contrast to a Maven repository or an OBR, a feature repository does not provide a
storage location for bundles. A feature repository merely stores an aggregate of
references to bundles. The bundles themselves are stored elsewhere (for example, in
the file system or in a Maven repository).

Add a feature to the custom feature repository

To add a feature to the custom feature repository, insert a new feature element as a child of the root
features element. You must give the feature a name and you can list any number of bundles
belonging to the feature, by inserting bundle child elements. For example, to add a feature named
example-camel-bundle containing the single bundle, C:\Projects\camel-
bundle\target\camel-bundle-1.0-SNAPSHOT. jar, add a feature element as follows:

64

CHAPTER 8. DEPLOYING FEATURES

<?xml version="1.0" encoding="UTF-8"7?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle">
<bundle>file:C:/Projects/camel-bundle/target/camel-bundle-1.0-
SNAPSHOT. jar</bundle>
</feature>
</features>

The contents of the bundle element can be any valid URL, giving the location of a bundle (see
Appendix A, URL Handlers). You can optionally specify a version attribute on the feature element, to
assign a non-zero version to the feature (you can then specify the version as an optional argument to
the features:install command).

To check whether the features service successfully parses the new feature entry, enter the following
pair of console commands:

JBossFuse: karaf@root> features:refreshurl
JBossFuse:karaf@root> features:list

[uninstalled] [0.0.0] example-camel-bundle
MyFeaturesRepo

The features:1list command typically produces a rather long listing of features, but you should be
able to find the entry for your new feature (in this case, example-camel-bundle) by scrolling back
through the listing. The features:refreshUrl command forces the kernel to reread all the feature
repositories: if you did not issue this command, the kernel would not be aware of any recent changes
that you made to any of the repositories (in particular, the new feature would not appear in the listing).

To avoid scrolling through the long list of features, you can grep for the example-camel-bundle
feature as follows:

JBossFuse:karaf@root> features:1list | grep example-camel-bundle
[uninstalled] [0.0.0] example-camel-bundle
MyFeaturesRepo

Where the grep command (a standard UNIX pattern matching utility) is built into the shell, so this
command also works on Windows platforms.
Add the local repository URL to the features service

In order to make the new feature repository available to Apache Karaf, you must add the feature
repository using the features:addUr1l console command. For example, to make the contents of the
repository, C:\Projects\features.xml, available to the kernel, you would enter the following
console command:

I features:addUrl file:C:/Projects/features.xml

Where the argument to features:addUrl can be specified using any of the supported URL formats
(see Appendix A, URL Handlers).

You can check that the repository's URL is registered correctly by entering the features:listUrl
console command, to get a complete listing of all registered feature repository URLs, as follows:

65

Red Hat JBoss Fuse 6.2 Deploying into the Container

JBossFuse:karaf@root> features:listUrl
mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.1.0-fuse-01-
00/xml/features
mvn:org.apache.servicemix.camel/features/6.2.0.redhat-133/xml/features
file:C:/Projects/features.xml
mvn:org.apache.ode/ode-jbi-karaf/1.3.3-fuse-01-00/xml/features
mvn:org.apache.felix.karaf/apache-felix-karaf/1.2.0-fuse-01-
00/xml/features
mvn:org.apache.servicemix/apache-servicemix/6.2.0.redhat-133/xml/features

Add dependent features to the feature

If your feature depends on other features, you can specify these dependencies by adding feature
elements as children of the original feature element. Each child feature element contains the name
of a feature on which the current feature depends. When you deploy a feature with dependent features,
the dependency mechanism checks whether or not the dependent features are installed in the
container. If not, the dependency mechanism automatically installs the missing dependencies (and any
recursive dependencies).

For example, for the custom Apache Camel feature, example-camel-bundle, you can specify
explicitly which standard Apache Camel features it depends on. This has the advantage that the
application could now be successfully deployed and run, even if the OSGi container does not have the
required features pre-deployed. For example, you can define the example-camel-bundle feature
with Apache Camel dependencies as follows:

<?xml version="1.0" encoding="UTF-8"7?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle'">
<bundle>file:C:/Projects/camel-bundle/target/camel-bundle-1.0-
SNAPSHOT. jar</bundle>
<feature version="6.2.0.redhat-133">camel-core</feature>
<feature version="6.2.0.redhat-133">camel-spring-osgi</feature>
<feature version="6.2.0.redhat-133">servicemix-camel</feature>
</feature>
</features>

Specifying the version attribute is optional. When present, it enables you to select the specified
version of the feature.

Add OSGi configurations to the feature

If your application uses the OSGi Configuration Admin service, you can specify configuration settings for
this service using the config child element of your feature definition. For example, to specify that the
prefix property has the value, MyTransform, add the following config child element to your
feature's configuration:

<?xml version="1.0" encoding="UTF-8"7?>
<features name="MyFeaturesRepo">
<feature name="example-camel-bundle">
<config name="org.fusesource.fuseesh.example'>
prefix=MyTransform
</config>
</feature>
</features>

66

CHAPTER 8. DEPLOYING FEATURES

Where the name attribute of the config element specifies the persistent ID of the property settings
(where the persistent ID acts effectively as a name scope for the property names). The content of the
config element is parsed in the same way as a Java properties file.

The settings in the config element can optionally be overriden by the settings in the Java properties
file located in the InstallDir/etc directory, which is named after the persistent ID, as follows:

I InstallDir/etc/org.fusesource.fuseesb.example.cfg

As an example of how the preceding configuration properties can be used in practice, consider the
following Blueprint XML file that accesses the OSGi configuration properties:

<?xml version="1.0" encoding="UTF-8"?>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-

cm/vi.1.0">

<!-- o0sgi blueprint property placeholder -->
<cm:property-placeholder id="placeholder"
persistent-

id="org.fusesource.fuseesh.example">
<cm:default-properties>
<cm:property name="prefix" value="DefaultValue"/>
</cm:default-properties>
</cm:property-placeholder>

<bean id="myTransform"
class="org.fusesource.fuseesb.example.MyTransform">
<property name="prefix" value="${prefix}"/>
</bean>

</blueprint>

When this Blueprint XML file is deployed in the example-camel-bundle bundle, the property
reference, ${prefix},is replaced by the value, MyTransform, which is specified by the config
element in the feature repository.

Automatically deploy an OSGi configuration

By adding a configfile element to a feature, you can ensure that an OSGi configuration file gets
added to the Installbir/etc directory at the same time that the feature is installed. This means
that you can conveniently install a feature and its associated configuration at the same time.

For example, given that the org. fusesource. fuseesbh.example.cfg configuration file is archived
in a Maven repository at mvn:org. fusesource. fuseesb.example/configadmin/1.0/cfg, you
could deploy the configuration file by adding the following element to the feature:

<configfile finalname="etc/org.fusesource.fuseesbh.example.cfg">
mvn:org.fusesource.fuseesb.example/configadmin/1.0/cfqg
</configfile>

67

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/Properties.html#load%28java.io.InputStream%29

Red Hat JBoss Fuse 6.2 Deploying into the Container

8.2. DEPLOYING A FEATURE

Overview

You can deploy a feature in one of the following ways:
e Install at the console, using features:install.
e Use hot deployment.

e Modify the boot configuration (first boot only!).

Installing at the console

After you have created a feature (by adding an entry for it in a feature repository and registering the
feature repository), it is relatively easy to deploy the feature using the features:install console
command. For example, to deploy the example-camel-bundle feature, enter the following pair of
console commands:

JBossFuse:karaf@root> features:refreshurl
JBossFuse:karaf@root> features:install example-camel-bundle

It is recommended that you invoke the features:refreshUrl command before calling
features:install,in case any recent changes were made to the features in the feature repository
which the kernel has not picked up yet. The features:install command takes the feature name as
its argument (and, optionally, the feature version as its second argument).

NOTE

Features use a flat namespace. So when naming your features, be careful to avoid name
clashes with existing features.

Uninstalling at the console

To uninstall a feature, invoke the features:uninstall command as follows:

I JBossFuse:karaf@root> features:uninstall example-camel-bundle

NOTE

After uninstalling, the feature will still be visible when you invoke features:1list, but
its status will now be flagged as [uninstalled].

Hot deployment

You can hot deploy all of the features in a feature repository simply by copying the feature repository
file into the Installbir/deploy directory.

As it is unlikely that you would want to hot deploy an entire feature repository at once, it is often more

convenient to define a reduced feature repository or feature descriptor, which references only those
features you want to deploy. The feature descriptor has exactly the same syntax as a feature

68

CHAPTER 8. DEPLOYING FEATURES

repository, but it is written in a different style. The difference is that a feature descriptor consists only
of references to existing features from a feature repository.

For example, you could define a feature descriptor to load the example-camel-bundle feature as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<features name="CustomDescriptor">
<repository>RepositoryURL</repository>
<feature name="hot-example-camel-bundle">
<feature>example-camel-bundle</feature>
</feature>
</features>

The repository element specifies the location of the custom feature repository, RepositoryURL (where
you can use any of the URL formats described in Appendix A, URL Handlers). The feature, hot -
example-camel-bundle,is just a reference to the existing feature, example-camel-bundle.

Adding a feature to the boot configuration

If you want to provision copies of Apache Karaf for deployment on multiple hosts, you might be
interested in adding a feature to the boot configuration, which determines the collection of features
that are installed when Apache Karaf boots up for the very first time.

The configuration file, /etc/org.apache.felix. karaf.features.cfg,in your install directory
contains the following settings:

#

Comma separated list of features repositories to register by default
#

featuresRepositories=mvn:org.apache.felix.karaf/apache-felix-
karaf/1.1.0.3-fuse-SNAPSHOT/xml/features,
mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/1.1.0-fuse-
SNAPSHOT/xml/features,
mvn:org.apache.servicemix/apache-servicemix/4.2.0-fuse-
SNAPSHOT/xml/features,
mvn:org.apache.camel.karaf/apache-camel/2.x-fuse-SNAPSHOT/xml/features,
mvn:org.apache.ode/ode-jbi-karaf/1.3.3-fuse-SNAPSHOT/xml/features

#
Comma separated list of features to install at startup
#

Will put these back in when we decide to include these components
servicemix-smpp, servicemix-snmp, servicemix-vfs,

featuresBoot=activemq, activemqg-broker, camel, jbi-cluster,web, servicemix-
cxf-bc, servicemix-file,

servicemix-ftp, servicemix-http, servicemix-jms, servicemix-mail, servicemix-
bean, servicemix-camel,

servicemix-cxf-se, servicemix-drools, servicemix-eip, servicemix-
osworkflow, servicemix-quartz,

servicemix-scripting, servicemix-validation, servicemix-saxon, servicemix-
wsn2005, camel-cxf,camel-jms

69

Red Hat JBoss Fuse 6.2 Deploying into the Container

This configuration file has two properties:

e featuresRepositories—Comma separated list of feature repositories to load at startup.
e featuresBoot—Comma separated list of features to install at startup.

You can modify the configuration to customize the features that are installed as JBoss Fuse starts up.
You can also modify this configuration file, if you plan to distribute JBoss Fuse with pre-installed
features.

IMPORTANT

This method of adding a feature is only effective the first time a particular Apache Karaf
instance boots up. Any changes made subsequently to the featuresRepositories
setting and the featuresBoot setting are ignored, even if you restart the container.

You could force the container to revert back to its initial state, however, by deleting the
complete contents of the InstallDir/data/cache (thereby losing all of the

container's custom settings).

70

CHAPTER 9. DEPLOYING A PLAIN JAR

CHAPTER 9. DEPLOYING A PLAIN JAR

Abstract

This chapter explains how to deal with plain JAR files (typically libraries) that contain no deployment
metadata whatsoever. That is, a plain JAR is neither a WAR, nor an OSGi bundle.

If the plain JAR occurs as a dependency of a bundle, you must add bundle headers to the JAR.. If the
JAR exposes a public API, typically the best solution is to convert the existing JAR into a bundle,
enabling the JAR to be shared with other bundles. This chapter describes how to perform the
conversion process automatically, using the open source Bnd tool.

9.1. BUNDLE TOOL (BND)

About the bnd tool

The Bnd tool is a an open source utility for creating and diagnosing OSGi bundles. It has been
developed by Peter Kriens and is freely downloadable from the aQute Web site (subject to an Apache
version 2.0 open source license). The key feature of the Bnd tool is that it automatically generates
Manifest headers for the OSGi bundle, thus relieving you of this tedious task. The main tasks that Bnd
can perform are:

e Print the manifiest and show the package dependencies of a JAR file or bundle file.
e Wrap avanilla JAR file, converting it into a bundle.

e Build a bundle from the class path, based on specifications in a . bnd file.

e Validate manifest entries.

You have the option of invoking Bnd in any of the following ways: from the command line; as an Ant
task; or through the Maven bundle plug-in, maven-bundle-plugin. In fact, the approach to building
bundles described in Chapter 3, Building with Maven is based on the Maven bundle plug-in and
therefore, implicitly, is also based on the Bnd tool.

Downloading and installing bnd

You can download Bnd from the aQute Web site at the following location:
I http://www.aqute.biz/Bnd/Bnd

Download the Bnd JAR file, bnd-Version. jar, to a convenient location. There is no installation
involved: the JAR file is all that you need to use the Bnd tool. For convenience, however, it is advisable
to rename the JAR file to bnd. jar, so you won't have to do so much typing when you invoke it from
the command line (for example, asin java -jar bnd.jar Cmd Options)

References

To learn more about the Bnd tool, consult the following references:

e Bnd tool documentation.

I

http://www.aqute.biz/Bnd/Bnd
http://www.aqute.biz/Bnd/Bnd

Red Hat JBoss Fuse 6.2 Deploying into the Container

o Creating OSGi bundles (SpringSource blog).
9.2. CONVERTING A JAR USING BND

Overview

This section describes how to convert a vanilla JAR file into an OSGi bundle using the Bnd tool's wrap
command. You can choose either to perform the conversion with default settings (which works in most
cases) or to perform a custom conversion with the help of a Bnd properties file.

Sample JAR file

To demonstrate how to convert a plain JAR into a bundle, we will consider the example of the
commons-logging-Version.jar, which is available from the Apache Commons project and can be
downloaded from the following location:

I http://commons.apache.org/downloads/download_logging.cgi

NOTE

Actually, this is a rather artificial example, because the Apache Commons logging API is
not intended to be deployed as an OSGi bundle (which is why it does not have the
requisite Manifest headers in the first place). Most of the other JARs from Apache
Commons are already provided as bundles.

Bnd print command

The Bnd print command is a useful diagnostic tool that displays most of the information about a JAR
that is relevant to bundle creation. For example, to print the Manifest headers and package
dependencies of the commons logging JAR, you can invoke the Bnd print command as follows:

I java -jar bnd.jar print commons-logging-1.1.1.jar
The preceding command produces the following output:

[MANIFEST commons-logging-1.1.1.jar]

Archiver-Version Plexus Archiver

Build-Jdk 1.4.2_16

Built-By dlgol

Created-By Apache Maven
Extension-Name org.apache.commons.logging
Implementation-Title Commons Logging
Implementation-Vendor Apache Software Foundation
Implementation-Vendor-Id org.apache
Implementation-Version 1.1.1

Manifest-Version 1.0

Specification-Title Commons Logging
Specification-Vendor Apache Software Foundation
Specification-Version 1.0

X-Compile-Source-JDK 1.2

X-Compile-Target-JDK 1.1

[IMPEXP]

72

http://blog.springsource.com/2008/02/18/creating-osgi-bundles/
http://commons.apache.org/

CHAPTER 9. DEPLOYING A PLAIN JAR

[USES]
org.apache.commons.logging org.apache.commons.logging.impl
org.apache.commons.logging.impl javax.servlet

org.apache.avalon.framework.logger
org.apache.commons.logging
org.apache.log
org.apache.log4j
One error
1 : Unresolved references to [javax.servlet,
org.apache.avalon.framework.logger,
org.apache.log, org.apache.log4j] by class(es) on the Bundle-
Classpath[Jar:comm
ons-logging-1.1.1.jar]:
[org/apache/commons/logging/impl/AvalonLogger.class, org
/apache/commons/logging/impl/ServletContextCleaner.class,
org/apache/commons/log
ging/impl/LogKitLogger.class,
org/apache/commons/logging/impl/Log4JLogger.class]

From this output, you can see that the JAR does not define any bundle manifest headers. The output
consists of the following sections:

[MANIFEST JarFileName]

Lists all of the header settings from the JAR file's META-INF/Manifest .mf file.

[IMPEXP]

Lists any Java packages that are imported or exported through the Import-Package or Export-
Package Manifest headers.

[USES]

Shows the JAR's package dependencies. The left column lists all of the packages defined in the
JAR, while the right column lists the dependent packages for each of the packages in the left
column.

Errors

Lists any errors—for example, any unresolved dependencies.

Bnd wrap command

To convert the plain commons logging JAR into an OSGi bundle, invoke the Bnd wrap command as
follows:

I java -jar bnd.jar wrap commons-logging-1.1.1.jar

The result of running this command is a bundle file, commons-1logging-1.1.1.bar, which consists of
the original JAR augmented by the Manifest headers required by a bundle.

Checking the new bundle headers

73

Red Hat JBoss Fuse 6.2 Deploying into the Container

To display the Manifest headers and package dependencies of the newly created bundle JAR, enter the
following Bnd print command:

I java -jar bnd.jar print commons-logging-1.1.1.bar

The preceding command should produce output like the following:

74

[MANIFEST commons-logging-1.1.1-bnd.jar]

Archiver-Version
Bnd-LastModified
Build-Jdk

Built-By
Bundle-ManifestVersion
Bundle-Name
Bundle-SymbolicName
Bundle-Version
Created-By
Export-Package

org.apache.commons.logging;uses:="org.ap

Plexus Archiver

1263987809524

1.4.2_16

dlgol

2

commons-logging-1.1.1
commons-logging-1.1.1

(C]

1.5.0_08 (Sun Microsystems Inc.)

ache.commons.logging.impl", org.apache.commons.logging.impl;uses:="org.apac

he.ava

lon.framework.logger, org.apache.commons.logging, org.apache.log4j,org.apach

e.log,

javax.servlet"
Extension-Name
Implementation-Title
Implementation-Vendor
Implementation-Vendor-Id
Implementation-Version
Import-Package

org.apache.commons.logging
Commons Logging

Apache Software Foundation
org.apache

1.1.1

javax.servlet;resolution:=optional,org.a
pache.avalon.framework.logger;resolution:=optional, org.apache.commons.logg

ing;re

solution:=optional, org.apache.commons.logging.impl;resolution:=optional, or

g.apac

he.log;resolution:=optional, org.apache.log4j;resolution:=optional

Manifest-Version
Originally-Created-By
Specification-Title
Specification-Vendor
Specification-Version
Tool
X-Compile-Source-JDK
X-Compile-Target-JDK

[IMPEXP]

Import-Package
javax.servlet
org.apache.avalon. framework.logger
org.apache.log
org.apache.log4j

Export-Package
org.apache.commons.logging
org.apache.commons.logging.impl

1.0

Apache Maven

Commons Logging

Apache Software Foundation
1.0

Bnd-0.0.384

1.2

1.1

{resolution:=optional}
{resolution:=optional}
{resolution:=optional}
{resolution:=optional}

CHAPTER 9. DEPLOYING A PLAIN JAR

[USES]
org.apache.commons.logging org.apache.commons.logging.impl
org.apache.commons.logging.impl javax.servlet

org.apache.avalon.framework.logger
org.apache.commons.logging
org.apache.log
org.apache.log4j

Default property file

By default, the Bnd wrap command behaves as if it was configured to use the following Bnd property
file:

Export-Package: *
Import-Package: AllReferencedPackages

The result of this configuration is that the new bundle imports all of the packages referenced by the
JAR (which is almost always what you need) and all of the packages defined in the JAR are exported.
Sometimes you might want to hide some of the packages in the JAR, however, in which case you would
need to define a custom property file.

Defining a custom property file

If you want to have more control over the way the Bnd wrap command generates a bundle, you can
define a Bnd properties file to control the conversion process. For a detailed description of the syntax
and capabilities of the Bnd properties file, see the Bnd tool documentation.

For example, in the case of the commons logging JAR, you might decide to hide the
org.apache.commons.logging.impl package, while exporting the
org.apache.commons.logging package. You could do this by creating a Bnd properties file called
commons-logging-1.1.1.bnd and inserting the following lines using a text editor:

version=1.1.1

Export-Package: org.apache.commons.logging;version=${version}
Private-Package: org.apache.commons.logging.impl
Bundle-Version: ${version}

Notice how a version number is assigned to the exported package by substituting the version
variable (any properties starting with a lowercase letter are interpreted as variables).
Wrapping with the custom property file

To wrap a JAR file using the custom property file, specify the Bnd properties file using the -
properties option of the wrap command. For example, to wrap the vanilla commons logging JAR
using the instructions contained in the commons-1logging-1.1.1.bnd properties file, enter the
following command:

java -jar bnd.jar wrap -properties commons-logging-1.1.1.bnd commons-
logging-1.1.1.jar

9.3. CONVERTING A JAR USING THE WRAP SCHEME

75

http://www.aqute.biz/Code/Bnd

Red Hat JBoss Fuse 6.2 Deploying into the Container

Overview

You also have the option of converting a JAR into a bundle using the wrap scheme, which can be
prefixed to any existing URL format. The wrap scheme is also based on the Bnd utility.

Syntax

The wrap scheme has the following basic syntax:
I wrap:LocationURL

The wrap scheme can prefix any URL that locates a JAR. The locating part of the URL, LocationURL, is
used to obtain the (non-bundlized) JAR and the URL handler for the wrap scheme then converts the
JAR automatically into a bundle.

NOTE

The wrap scheme also supports a more elaborate syntax, which enables you to
customize the conversion by specifying a Bnd properties file or by specifying individual
Bnd properties in the URL. Typically, however, the wrap scheme is used just with its
default settings.

Default properties

Because the wrap scheme is based on the Bnd utility, it uses exactly the same default properties to
generate the bundle as Bnd does—see the section called “Default property file”.

Wrap and install

The following example shows how you can use a single console command to download the plain
commons -logging JAR from a remote Maven repository, convert it into an OSGi bundle on the fly,
and then install it and start it in the OSGi container:

JBossFuse:karaf@root> osgi:install -s wrap:mvn:commons-logging/commons-
logging/1.1.1

Feature example

Example 9.1, “The example-jpa-osgi Feature” shows how the example-jpa-osgi feature combines
the mvn scheme and the wrap scheme in order to download the plain HyperSQL JAR file and convert it
to an OSGi bundle on the fly.

<feature version="6.2.0.redhat-133">jpa-hibernate</feature>
<bundle>wrap:mvn:hsqldb/hsqldb/1.8.0.7</bundle>
<bundle>mvn:org.apache.servicemix.examples.jpa-osgi/wsdl-first-
cxfbc-bundle/6.2.0.redhat-133</bundle>
<bundle>mvn:org.apache.servicemix.examples.jpa-osgi/wsdl-first-
cxfse-bundle/6.2.0.redhat-133</bundle>

Example 9.1. The example-jpa-osgi Feature
</feature>

‘ <feature name="examples-jpa-osgi" version="6.2.0.redhat-133">

76

CHAPTER 9. DEPLOYING A PLAIN JAR

Reference

The wrap scheme is provided by the Pax project, which is the umbrella project for a variety of open
source OSGi utilities. For full documentation on the wrap scheme, see the Wrap Protocol reference

page.

77

http://team.ops4j.org/wiki/display/ops4j/Pax
http://team.ops4j.org/wiki/display/paxurl/Wrap+Protocol

Red Hat JBoss Fuse 6.2 Deploying into the Container

CHAPTER 10. OSGI BUNDLE TUTORIALS

Abstract

This chapter presents tutorials for Apache Camel and Apache CXF applications. Each tutorial describes
how to generate, build, run, and deploy an application as an OSGi bundle.

10.1. GENERATING AND RUNNING AN EIP BUNDLE

Overview

This section explains how to generate, build, and run a complete Apache Camel example as an OSGi
bundle, where the starting point code is generated with the help of a Maven archetype.

Prerequisites

In order to generate a project using an Red Hat JBoss Fuse Maven archetype, you must have the
following prerequisites:

e Maven installation-Maven is a free, open source build tool from Apache. You can download the
latest version from http://maven.apache.org/download.html (minimum is 3.x).

e Internet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your
build machine must be connected to the Internet.

e fusesource Maven repository is configured-in order to locate the archetypes, Maven's
settings.xml file must be configured with the location of the fusesource Maven
repository. For details of how to set this up, see the section called “Adding the Red Hat JBoss
Fuse repository”.

Generating an EIP bundie

The karaf-camel-cbr-archetype archetype creates a router project, which is configured to deploy
as a bundle. To generate a Maven project with the coordinates, org. fusesource.example:camel-
bundle, enter the following command:

mvn archetype:generate \
-DarchetypeGroupId=io.fabric8.archetypes \
-DarchetypeArtifactId=karaf-camel-cbhr-archetype \
-DarchetypeVersion=1.2.0.redhat-133 \
-DgroupId=org.fusesource.example \
-DartifactId=camel-bundle \
-Dversion=1.0-SNAPSHOT \
-Dfabric8-profile=camel-bundle-profile

NOTE
The backslash character, \, indicates line continuation on Linux and UNIX operating

systems. On Windows platforms, you must omit the backslash character and put all of
the arguments on a single line.

78

http://maven.apache.org/download.html

CHAPTER 10. OSGI BUNDLE TUTORIALS

The result of this command is a directory, ProjectDir/camel-bundle, containing the files for the
generated bundle project.

Running the EIP bundle

To install and run the generated camel-bundle project, perform the following steps:

1. Build the project-open a command prompt and change directory to ProjectDir/camel-
bundle. Use Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDir/camel-bundle/target directory
should contain the bundle file, camel-bundle. jar and the bundle will also be installed in the
local Maven repository.

2. Install prerequisite features (optional)-by default, the camel-core feature and some related
features are pre-installed in the OSGi container. But many of the Apache Camel components
are not installed by default. To check which features are available and whether or not they are
installed, enter the following console command:

I JBossFuse:karaf@root> features:list

Apache Camel features are identifiable by the camel - prefix. For example, if one of your
routes requires the HTTP component, you can make sure that it is installed in the OSGi
container by issuing the following console command:

I JBossFuse:karaf@root> features:install camel-http

3. Install and start the camel-bundle bundle-at the Red Hat JBoss Fuse console, enter the following
command to install the bundle from the local Maven repository (see Section A.3, “Mvn URL
Handler”):

JBossFuse:karaf@root> osgi:install -s
mvn:org.fusesource.example/camel-bundle/1.0-SNAPSHOT

4. Provide the route with file data to process-after the route has started, you should find the
following directory under your JBoss Fuse installation:

I InstallDir/work/cbr/input

To initiate content routing in this example, copy the provided data files from the
ProjectDir/camel-bundle/src/main/fabric8/data directory into the
InstallDir/work/cbr/input directory.

5. View the output-after a second or two, the data files disappear from the work/cbr/input
directory, as the route moves the data files into various sub-directories of the

work/cbr/output directory.

6. Stop the camel-bundle bundle-to stop the camel -bundle bundle, you first need to discover
the relevant bundle number. To find the bundle number, enter the following console command:

I JBossFuse: karaf@root> osgi:list

79

Red Hat JBoss Fuse 6.2 Deploying into the Container

At the end of the listing, you should see an entry like the following:

[265] [Active] [Created 11 11 80] JBoss Fuse
Quickstart: camel-cbr (1.0.0.SNAPSHOT)

Where, in this example, the bundle number is 265. To stop this bundle, enter the following

console command:

I JBossFuse: karaf@root> osgi:stop 265

10.2. GENERATING AND RUNNING A WEB SERVICES BUNDLE

Overview

This section explains how to generate, build, and run a complete Apache CXF example as a bundle in
the OSGi container, where the starting point code is generated with the help of a Maven archetype.

Prerequisites

In order to generate a project using a Red Hat JBoss Fuse Maven archetype, you must have the
following prerequisites:

e Maven installation-Maven is an open source build tool from Apache. You can download the
latest version from http://maven.apache.org/download.html (minimum is 3.x).

e Internet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your
build machine must be connected to the Internet.

e fusesource Maven repository is configured-in order to locate the archetypes, Maven's
settings.xml file must be configured with the location of the fusesource Maven
repository. For details of how to set this up, see the section called “Adding the Red Hat JBoss
Fuse repository”.

Generating a Web services bundle

The karaf-soap-archetype archetype creates a project for building a Java-first JAX-WS
application that can be deployed into the OSGi container. To generate a Maven project with the
coordinates, org. fusesource.example:cxf-code-first-bundle, enter the following command:

mvn archetype:generate \
-DarchetypeGroupId=io.fabric8.archetypes \
-DarchetypeArtifactId=karaf-soap-archetype \
-DarchetypeVersion=1.2.0.redhat-133 \
-DgroupId=org.fusesource.example \
-DartifactId=cxf-code-first-bundle \
-Dversion=1.0-SNAPSHOT \
-Dfabric8-profile=cxf-code-first-bundle-profile

80

http://maven.apache.org/download.html

CHAPTER 10. OSGI BUNDLE TUTORIALS

NOTE

The backslash character, \, indicates line continuation on Linux and UNIX operating
systems. On Windows platforms, you must omit the backslash character and put all of
the arguments on a single line.

The result of this command is a directory, ProjectDir/cxf-code-first-bundle, containing the
files for the generated bundle project.

Modifying the bundle instructions

Typically, you will need to modify the instructions for the Maven bundle plug-in in the POM file. In

particular, the default Import-Package element generated by the servicemix-cxf-code-first-

osgi-bundle archetype is not configured to scan the project's Java source files. In most cases,

however, you would want the Maven bundle plug-in to perform this automatic scanning in order to

ensure that the bundle imports all of the packages needed by your code.

To enable the Import-Package scanning feature, simply add the wildcard, *, as the last item in the

comma-separated list inside the Import-Package element, as shown in the following example:
<Import-Package>javax.jws;version="[0,3)",

javax.wsdl,

javax.xml.namespace,

Example 10.1. Import-Package Instruction with Wildcard
<project ... >
<build>
<plugins>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<version>${version.maven-bundle-plugin}</version>
<extensions>true</extensions>
<configuration>
<instructions>

org.apache.cxf.helpers,

org.osgi.service.blueprint,

io.fabric8.cxf.endpoint,

org.apache.cxf.transport.http,

*

</Import-Package>

<Import-
Service>org.apache.aries.blueprint.NamespaceHandler;

osgi.service.blueprint.namespace=http://cxf.apache.org/transports/http/c
onfiguration</Import-Service>
<Export-Package>org.fusesource.example</Export-Package>
</instructions>
</configuration>
</plugin>
</plugins>
</build>

</project>

81

Red Hat JBoss Fuse 6.2 Deploying into the Container

Running the Web services bundle

To install and run the generated cxf-code-first-bundle project, perform the following steps:

82

1. Build the project-open a command prompt and change directory to ProjectDir/cxf-code-

first-bundle. Use Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDir/cxf-code-first-bundle/target
directory should contain the bundle file, cxf-code-first-bundle. jar.

. Install and start the cxf-code-first-bundle bundle-at the Red Hat JBoss Fuse console, enter the

following command to install the bundle from your local Maven repository:

JBossFuse:karaf@root> osgi:install -s
mvn:org.fusesource.example/cxf-code-first-bundle/1.0-SNAPSHOT

. Test the Web serivce-to test the Web service deployed in the previous step, you can use a web

browser to query the service's WSDL. Open your favourite web browser and navigate to the
following URL:

I http://localhost:8181/cxf/HellowWorld?wsdl

When the web service receives the query, 2wsdl, it returns a WSDL description of the running
service.

. Stop the cxf-code-first-bundle bundle-to stop the cxf-code-first-bundle bundle, you first

need to discover the relevant bundle number. To find the bundle number, enter the following
console command:

I JBossFuse: karaf@root> osgi:list
At the end of the listing, you should see an entry like the following:

[266] [Active] [Created 11 11 80] JBoss Fuse
Quickstart: soap (1.0.0.SNAPSHOT)

Where, in this example, the bundle number is 266. To stop this bundle, enter the following
console command:

I JBossFuse: karaf@root> osgi:stop 266

PART Ill. WAR DEPLOYMENT MODEL

PART Ill. WAR DEPLOYMENT MODEL

Abstract

The Web application ARchive (WAR) is a tried and tested model for packaging and deploying
applications. This approach is simple and reliable, thought not as flexible as the OSGi bundle model.

83

Red Hat JBoss Fuse 6.2 Deploying into the Container

CHAPTER 11. BUILDING A WAR

Abstract

This chapter describes how to build and package a WAR using Maven.

11.1. MODIFYING AN EXISTING MAVEN PROJECT

Overview

If you already have a Maven project and you want to modify it so that it generates a WAR, perform the
following steps:

1. the section called “Change the package type to WAR”.
2. the section called “Customize the JDK compiler version” .
3. the section called “Store resources under webapp/WEB-INF”.

4. the section called “Customize the Maven WAR plug-in” .

Change the package type to WAR

Configure Maven to generate a WAR by changing the package type towar in your project's pom.xml
file. Change the contents of the packaging element to war, as shown in the following example:

<project ... >
;[.){;IC kaging>war</packaging>
</6}6ject>
The effect of this setting is to select the Maven WAR plug-in, maven-war -plugin, to perform
packaging for this project.

Customize the JDK compiler version

It is almost always necessary to specify the JDK version in your POM file. If your code uses any modern
features of the Java language—such as generics, static imports, and so on—and you have not
customized the JDK version in the POM, Maven will fail to compile your source code. It is not sufficient
to set the JAVA_HOME and the PATH environment variables to the correct values for your JDK, you
must also modify the POM file.

To configure your POM file, so that it accepts the Java language features introduced in JDK 1.7, add
the following maven-compiler-plugin plug-in settings to your POM (if they are not already
present):

<project ... >
<pbuild>
<defaultGoal>install</defaultGoal>
<plugins>

84

CHAPTER 11. BUILDING A WAR

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.7</source>
<target>1.7</target>
</configuration>
</plugin>
</plugins>
</build>

</project>

Store resources under webapp/WEB-INF

Resource files for the Web application are stored under the /WEB- INF directory in the standard WAR
directory layout. In order to ensure that these resources are copied into the root of the generated
WAR package, store the WEB-INF directory under ProjectDir/src/main/webapp in the Maven
directory tree, as follows:

ProjectDir/
pom.xml
src/
main/
webapp/
WEB-INF/
web . xml
classes/
lib/

In particular, note that the web . xml file is stored at ProjectDir/src/main/webapp/WEB-
INF/web.xml.

Customize the Maven WAR plug-in

It is possible to customize the Maven WAR plug-in by adding an entry to the plugins section of the
pom.xml file. Most of the configuration options are concerned with adding additonal resources to the
WAR package. For example, to include all of the resources under the src/main/resources directory
(specified relative to the location of pom.xml) in the WAR package, you could add the following WAR
plug-in configuration to your POM:

<project ...>
<build>

<plugins>

<plugin>

<artifactId>maven-war-plugin</artifactId>
<version>2.1.1</version>

<configuration>
<!-- Optionally specify where the web.xml file comes from -->
<webXml>src/main/webapp/WEB-INF/web.xml</webXml>
<!-- Optionally specify extra resources to include -->

85

Red Hat JBoss Fuse 6.2 Deploying into the Container

<webResources>
<resource>
<directory>src/main/resources</directory>
<targetPath>WEB-INF</targetPath>
<includes>
<include>**/*</include>
</includes>
</resource>
</webResources>
</configuration>
</plugin>

</plugins>
</build>
</project>

The preceding plug-in configuration customizes the following settings:

webXml

Specifies where to find the web . xml file in the current Maven project, relative to the location of
pom.xml. The defaultis src/main/webapp/WEB-INF/web.xml.

webResources

Specifies additional resource files that are to be included in the generated WAR package. It can
contain the following sub-elements:

e webResources/resource—each resource elements specifies a set of resource files to
include in the WAR.

e webResources/resource/directory-specifies the base directory from which to copy
resource files, where this directory is specified relative to the location of pom. xml.

e webResources/resource/targetPath—specifies where to put the resource files in the
generated WAR package.

e webResources/resource/includes—uses an Ant-style wildcard pattern to specify
explicitly which resources should be included in the WAR.

e webResources/resource/excludes—uses an Ant-style wildcard pattern to specify

explicitly which resources should be excluded from the WAR (exclusions have priority over
inclusions).

For complete details of how to configure the Maven WAR plug-in, see
http://maven.apache.org/plugins/maven-war-plugin/index.html.

NOTE

Do not use version 2.1 of the maven-war -plugin plug-in, which has a bug that causes
two copies of the web . xml file to be inserted into the generated .war file.

Building the WAR

86

http://maven.apache.org/plugins/maven-war-plugin/index.html

CHAPTER 11. BUILDING A WAR

To build the WAR defined by the Maven project, open a command prompt, go to the project directory
(that is, the directory containing the pom. xml file), and enter the following Maven command:

I mvn install

The effect of this command is to compile all of the Java source files, to generate a WAR under the
ProjectDir/target directory, and then to install the generated WAR in the local Maven repository.

11.2. BOOTSTRAPPING A CXF SERVLET IN A WAR

Overview

A simple way to bootstrap Apache CXF in a WAR is to configure web . xml to use the standard CXF
servlet,org.apache.cxf.transport.servlet.CXFServlet.

Example

For example, the following web . xm1 file shows how to configure the CXF servlet, where all Web service
addresses accessed through this servlet would be prefixed by /services/ (as specified by the value
of servlet-mapping/url-pattern):

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<display-name>cxf</display-name>
<description>cxf</description>

<servlet>
<servlet-name>cxf</servlet-name>
<display-name>cxf</display-name>
<description>Apache CXF Endpoint</description>
<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-
class>
<load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>cxf</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

<session-config>
<session-timeout>60</session-timeout>

</session-config>

</web-app>

cxf-serviet.xml file

87

Red Hat JBoss Fuse 6.2 Deploying into the Container

In addition to configuring the web . xml file, it is also necessary to configure your Web services by
defining a cxf-servlet.xml file, which must be copied into the root of the generated WAR.

Alternatively, if you do not want to put cxf-servlet.xml in the default location, you can customize
its name and location, by setting the contextConfigLocation context parameter in the web.xml
file. For example, to specify that Apache CXF configuration is located in WEB-INF/cxf-
servlet.xml, set the following context parameter in web . xml:

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>WEB-INF/cxf-servlet.xml</param-value>
</context-param>

</web-app>

Reference

For full details of how to configure the CXF servlet, see.
11.3. BOOTSTRAPPING A SPRING CONTEXT IN A WAR

Overview

You can bootstrap a Spring context in a WAR using Spring's ContextLoaderListener class.

Bootstrapping a Spring context in a WAR

For example, the following web . xm1 file shows how to boot up a Spring application context that is
initialized by the XML file, /WEB-INF/applicationContext.xml (which is the location of the
context file in the generated WAR package):

<?xml version="1.0" encoding="IS0-8859-1"?>

<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

<display-name>Camel Routes</display-name>

<!-- location of spring xml files -->

<context-param>
<param-name>contextConfiglLocation</param-name>
<param-value>/WEB-INF/applicationContext.xml</param-value>

</context-param>

<!-- the listener that kick-starts Spring -->

88

http://static.springsource.org/spring/docs/3.0.5.RELEASE/reference/web-integration.html

CHAPTER 11. BUILDING A WAR

<listener>
<listener-
class>org.springframework.web.context.ContextLoaderListener</listener -
class>
</listener>

</web-app>

Maven dependency

In order to access the ContextLoaderListener class from the Spring framework, you must add the
following dependency to your project's pom. xml file:

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>${spring-version}</version>
</dependency>

Where the spring-version property specifies the version of the Spring framework you are using.

89

Red Hat JBoss Fuse 6.2 Deploying into the Container

CHAPTER 12. DEPLOYING A WAR

Abstract

This chapter explains how to deploy a Web archive (WAR) file as a bundle in the OSGi container.
Conversion to a bundle is performed automatically by the PAX War URL, which is based on the open
source Bnd tool. The presence of aweb . xml file in the bundle signals to the container that the bundle
should be deployed as a Web application.

12.1. CONVERTING THE WAR USING THE WAR SCHEME

Overview

To convert a WAR file into a bundle suitable for deployment in the OSGi container, add the war: prefix
tothe WAR URL. The PAX War URL handler acts as a wrapper, which adds the requisite manifest
headers to the WAR file.

Syntax
The war scheme has the following basic syntax:
I war:LocationURL [?0ptions]

The location URL, LocationURL, can be any of the location URLs described in Appendix A, URL Handlers
(for example,anmvn: ora file: URL). Options can be appended to the URL in the following format:

I ?0ption=Value&Option=Value&. . .
Or if the war URL appears in an XML file:

I ?0ption=Value&Option=Value& . ..

Prerequisite

The Apache Karaf war feature is required to convert and deploy WARs using the war: scheme. It can be
installed from the container's command console using features:install war.

Deploying a WAR file

If the WAR file is stored in a Maven repository, you can deploy it into the OSGi container using the
osgi:install command, taking a war :mvn: URL as its argument. For example, to deploy the
wicket-example WAR file from a Maven repository, where the application should be accessible from the
wicket Web application context, enter the following console command:

JBossFuse: karaf@root> install war:mvn:org.apache.wicket/wicket-
examples/1.4.7/war?Web-ContextPath=wicket

Alternatively, if the WAR file is stored on the filesystem, you can deploy it into the OSGi container by
specifying awar:file: URL. For example, to deploy the WAR file, wicket-example-1.4.6.war,
enter the following console command:

90

CHAPTER 12. DEPLOYING A WAR

JBossFuse: karaf@root> install war:file://wicket-examples-1.4.7.war?wWeb-
ContextPath=wicket

Accessing the Web application

The WAR file is automatically installed into a Web container, which listens on the IP port 8181 by
default, and the Web container uses the Web application context specified by the Web-ContextPath
option. For example, the wicket -example WAR deployed in the preceding examples, would be
accessible from the following URL:

I http://localhost:8181/wicket

Default conversion parameters

The PAX War URL handler converts a WAR file to a special kind of OSGi bundle, which includes
additional Manifest headers to support WAR deployment (for example, the Web-ContextPath
Manifest header). By default, the deployed WAR is configured as an isolated bundle (neither importing
nor exporting any packages). This mimics the deployment model of a WAR inside a J2EE container,
where the WAR is completely self-contained, including all of the JAR files it needs.

For details of the default conversion parameters, see Table A.2, “Default Instructions for Wrapping a
WAR File”.
Customizing the conversion parameters

The PAX War URL handler is layered over Bnd. If you want to customize the bundle headers in the
Manifest file, you can either add a Bnd instruction as a URL option or you can specify a Bnd instructions
file for the War URL handler to use—for details, see Section A.5, “War URL Handler”.

In particular, you might sometimes find it necessary to customize the entry for the Bundle-
ClassPath, because the default value of Bundle-ClassPath does not include all of the resources in
the WAR file (see Table A.2, “Default Instructions for Wrapping a WAR File”).

References

Support for running WARs in the OSGi container is provided by the PAX WAR Extender, which
monitors each bundle as it starts and, if the bundle contains a web . xm1l file, automatically deploys the

WAR in a Web container. The War Protocol page has the original reference documentation for the War
URL handler.

12.2. CONFIGURING THE WEB CONTAINER

Overview

Red Hat JBoss Fuse automatically deploys WAR files into a Web container, which is implemented by
the PAX Web library . You can configure the Web container through the OSGi Configuration Admin
service.

Configuration file

The Web container uses the following configuration file:

91

http://team.ops4j.org/wiki/display/paxweb/WAR+Extender
http://team.ops4j.org/wiki/display/paxurl/War+Protocol
http://team.ops4j.org/wiki/display/paxweb/Pax+Web

Red Hat JBoss Fuse 6.2 Deploying into the Container

I EsbInstallDir/etc/org.ops4j.pax.web.cfg

You must create this file, if it does not already exist in the EshInstallDir/etc/ directory.

Customizing the HTTP port

By default, the Web container listens on the IP port, 8181. You can change this value by editing the
etc/org.ops4j.pax.web.cfgfile and setting the value of the org.osgi.service.http.port
property, as follows:

Configure the Web container
org.osgi.service.http.port=8181

Enabling SSL/TLS security

The Web container is also used for deploying the Fuse Management Console. The instructions for
securing the Web container with SSL/TLS are identical to the instructions for securing the Fuse
Management Console with SSL/TLS. See chapter "Securing the Jetty HTTP Server" in "Security
Guide" for details.

' WARNING
A If you are planning to enable SSL/TLS security, you must ensure that you explicitly

disable the SSLv3 protocol, in order to safequard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

Reference

The properties that you can set in the Web container's configuration file are defined by the PAX Web
library. You can set the following kinds of property:

e Basic
e SSL

e JSP

92

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Security_Guide/WebConsole.html
https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613
http://team.ops4j.org/wiki/display/paxweb/Basic+Configuration
https://ops4j1.jira.com/wiki/display/paxweb/SSL+Configuration
http://team.ops4j.org/wiki/display/paxweb/JSP+Configuration

PART IV. OSGI SERVICE LAYER

PART IV. OSGI SERVICE LAYER

Abstract

In Red Hat JBoss Fuse, the natural way to communicate between deployed bundles is to use 0OSGi
services. An OSGi service exposes Java methods that can be invoked by other bundles in the container.

93

Red Hat JBoss Fuse 6.2 Deploying into the Container

CHAPTER 13. OSGI SERVICES

Abstract

The OSGi core framework defines the OSGi Service Layer, which provides a simple mechanism for
bundles to interact by registering Java objects as services in the OSGi service registry. One of the
strengths of the OSGi service model is that any Java object can be offered as a service: there are no
particular constraints, inheritance rules, or annotations that must be applied to the service class. This
chapter describes how to deploy an OSGi service using the OSGi blueprint container.

13.1. THE BLUEPRINT CONTAINER

Abstract

The blueprint containeris a dependency injection framework that simplifies interaction with the OSGi
container. In particular, the blueprint container supports a configuration-based approach to using the
OSGi service registry—for example, providing standard XML elements to import and export OSGi
services.

13.1.1. Blueprint Configuration

Location of blueprint files in a JAR file

Relative to the root of the bundle JAR file, the standard location for blueprint configuration files is the
following directory:

I OSGI-INF/blueprint

Any files with the suffix, . xm1, under this directory are interpreted as blueprint configuration files; in
other words, any files that match the pattern, 0SGI-INF/blueprint/*.xml.

Location of blueprint files in a Maven project

In the context of a Maven project, ProjectDir, the standard location for blueprint configuration files is
the following directory:

I ProjectDir/src/main/resources/0SGI-INF/blueprint

Blueprint namespace and root element

Blueprint configuration elements are associated with the following XML namespace:
I http://www.osgi.org/xmlns/blueprint/v1.0.0

The root element for blueprint configuration is blueprint, so a blueprint XML configuration file
normally has the following outline form:

<?xml version="1.0" encoding="UTF-8"7?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

94

CHAPTER 13. OSGI SERVICES
I </blueprint>

NOTE

In the blueprint root element, there is no need to specify the location of the blueprint
schema using an xsi:schemaLocation attribute, because the schema location is
already known to the blueprint framework.

Blueprint Manifest configuration

There are a few aspects of blueprint configuration that are controlled by headers in the JAR's manifest
file, META-INF/MANIFEST.MF, as follows:

o the section called “Custom Blueprint file locations”.

e the section called “Mandatory dependencies”.

Custom Blueprint file locations

If you need to place your blueprint configuration files in a non-standard location (that is, somewhere
other than 0SGI-INF/blueprint/*.xml), you can specify a comma-separated list of alternative
locations in the Bundle-Blueprint header in the manifest file—for example:

I Bundle-Blueprint: lib/account.xml, security.bp, cnf/*.xml

Mandatory dependencies

Dependencies on an OSGi service are mandatory by default (although this can be changed by setting
the availability attribute to optional ona reference elementora reference-list element).
Declaring a dependency to be mandatory means that the bundle cannot function properly without that
dependency and the dependency must be available at all times.

Normally, while a blueprint container is initializing, it passes through a grace period, during which time it
attempts to resolve all mandatory dependencies. If the mandatory dependencies cannot be resolved in
this time (the default timeout is 5 minutes), container initialization is aborted and the bundle is not
started. The following settings can be appended to the Bundle-SymbolicName manifest header to
configure the grace period:

blueprint.graceperiod

If true (the default), the grace period is enabled and the blueprint container waits for mandatory
dependencies to be resolved during initialization; if false, the grace period is skipped and the
container does not check whether the mandatory dependencies are resolved.

blueprint.timeout

Specifies the grace period timeout in milliseconds. The default is 300000 (5 minutes).

For example, to enable a grace period of 10 seconds, you could define the following Bundle -
SymbolicName header in the manifest file:

95

Red Hat JBoss Fuse 6.2 Deploying into the Container

Bundle-SymbolicName: org.fusesource.example.osgi-client;
blueprint.graceperiod:=true;
blueprint.timeout:= 10000

The value of the Bundle-SymbolicName header is a semi-colon separated list, where the first item is
the actual bundle symbolic name, the second item, blueprint.graceperiod:=true, enables the
grace period and the third item, blueprint. timeout:= 10000, specifies a10 second timeout.

13.1.2. Defining a Service Bean

Overview

Similarly to the Spring container, the blueprint container enables you to instantiate Java classes using
abean element. You can create all of your main application objects this way. In particular, you can use
the bean element to create a Java object that represents an OSGi service instance.

Blueprint bean element

The blueprint bean element is defined in the blueprint schema namespace,
http://www.osgi.org/xmlns/blueprint/v1.0.0. The blueprint
{http://www.0sgi.org/xmlns/blueprint/v1.0.0}bean element should not be confused with
the Spring {http://www.springframework.org/schema/beans}bean selement, which has a
similar syntax but is defined in a different namespace.

NOTE

The Spring DM specification version 2.0 or later, allows you to mix both kinds of bean
element under the beans root element, (as long as you define each bean elements
using the appropriate namespace prefix).

Sample beans

The blueprint bean element enables you to create objects using a similar syntax to the conventional
Spring bean element. One significant difference, however, is that blueprint constructor arguments are
specified using the argument child element, in contrast to Spring's constructor-arg child element.
The following example shows how to create a few different types of bean using blueprint's bean
element:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<bean id="label" class="java.lang.String">
<argument value="LABEL_VALUE"/>
</bean>

<bean id="myList" class="java.util.ArraylList">
<argument type="int" value="10"/>
</bean>

<bean id="account" class="org.fusesource.example.Account">

<property name="accountName" value="john.doe"/>
<property name="balance" value="10000"/>

96

CHAPTER 13. OSGI SERVICES

</bean>

</blueprint>
Where the Account class referenced by the last bean example could be defined as follows:

// Java
package org.fusesource.example;

public class Account

{
private String accountName;
private int balance;

public Account () { }

public void setAccountName(String name) {
this.accountName = name;

}

public void setBalance(int bal) {
this.balance = bal;

}

Differences between Blueprint and Spring

Althought the syntax of the blueprint bean element and the Spring bean element are similar, there are
a few differences, as you can see from Table 13.1, “Comparison of Spring bean with Blueprint bean”. In
this table, the XML tags (identifiers enclosed in angle brackets) refer to child elements of bean and the
plain identifiers refer to attributes.

Table 13.1. Comparison of Spring bean with Blueprint bean

Spring DM Attributes/Tags Blueprint Attributes/Tags

id id

name/<alias> N/A

class class

scope scope=("singleton" |"prototype")
lazy-init=("true"|"false") activation=("eager"|"lazy")
depends-on depends-on

init-method init-method

97

Red Hat JBoss Fuse 6.2 Deploying into the Container

Spring DM Attributes/Tags Blueprint Attributes/Tags

destroy-method destroy-method
factory-method factory-bean
factory-bean factory-ref
<constructor-arg> <argument>
<property> <property>

Where the default value of the blueprint scope attribute is singleton and the default value of the
blueprint activation attribute is eager.
References
For more details on defining blueprint beans, consult the following references:
e Spring Dynamic Modules Reference Guide v2.0 (see the blueprint chapters).

e Section 121 Blueprint Container Specification, from the OSGi Compendium Services R4.2
specification.

13.1.3. Exporting a Service

Overview

This section describes how to export a Java object to the OSGi service registry, thus making it
accessible as a service to other bundles in the OSGi container.

Exporting with a single interface

To export a service to the OSGi service registry under a single interface name, define a service
element that references the relevant service bean, using the ref attribute, and specifies the published
interface, using the interface attribute.

For example, you could export an instance of the SavingsAccountImpl class under the
org.fusesource.example.Account interface name using the blueprint configuration code shown
in Example 13.1, “Sample Service Export with a Single Interface” .

<bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
<service ref="savings" interface="org.fusesource.example.Account"/>

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0">
</blueprint>

| Example 13.1. Sample Service Export with a Single Interface

98

http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/
http://www.osgi.org/Release4/Download

CHAPTER 13. OSGI SERVICES

Where the ref attribute specifies the ID of the corresponding bean instance and the interface
attribute specifies the name of the public Java interface under which the service is registered in the
OSGi service registry. The classes and interfaces used in this example are shown in Example 13.2,
“Sample Account Classes and Interfaces”

Example 13.2. Sample Account Classes and Interfaces
// Java
package org.fusesource.example
public interface Account { ... }

public interface SavingsAccount { ... }
public interface CheckingAccount { ... }

public class SavingsAccountImpl implements SavingsAccount

{
}

public class CheckingAccountImpl implements CheckingAccount

{
¥

Exporting with multiple interfaces

To export a service to the OSGi service registry under multiple interface names, define a service
element that references the relevant service bean, using the ref attribute, and specifies the published
interfaces, using the interfaces child element.

For example, you could export an instance of the SavingsAccountImpl class under the list of public
Javainterfaces, org. fusesource.example.Account and
org.fusesource.example.SavingsAccount, using the following blueprint configuration code:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
<service ref="savings">
<interfaces>
<value>org.fusesource.example.Account</value>
<value>org.fusesource.example.SavingsAccount</value>
</interfaces>
</service>

</blueprint>

NOTE

The interface attribute and the interfaces element cannot be used simultaneously
in the same service element. You must use either one or the other.

99

Red Hat JBoss Fuse 6.2 Deploying into the Container

Exporting with auto-export

If you want to export a service to the OSGi service registry under all of its implemented public Java
interfaces, there is an easy way of accomplishing this using the auto-export attribute.

For example, to export an instance of the SavingsAccountImpl class under all of its implemented
public interfaces, use the following blueprint configuration code:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<bean id="savings" class="org.fusesource.example.SavingsAccountImpl"/>
<service ref="savings" auto-export="interfaces"/>

</blueprint>

Where the interfaces value of the auto-export attribute indicates that blueprint should register
all of the public interfaces implemented by SavingsAccountImpl. The auto-export attribute can
have the following valid values:

disabled

Disables auto-export. This is the default.

interfaces

Registers the service under all of its implemented public Java interfaces.

class-hierarchy

Registers the service under its own type (class) and under all super-types (super-classes), except
for the Object class.

all-classes

Like the class-hierarchy option, but including all of the implemented public Java interfaces as
well.

Setting service properties

The OSGi service registry also allows you to associate service properties with a registered service.
Clients of the service can then use the service properties to search for or filter services. To associate
service properties with an exported service, add a service-properties child element that contains
one or more bheans:entry elements (one beans:entry element for each service property).

For example, to associate the bank .name string property with a savings account service, you could
use the following blueprint configuration:

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0"
xmlns:beans="http://www.springframework.org/schema/beans"
>

<service ref="savings" auto-export="interfaces">
<service-properties>
<beans:entry key="bank.name" value="HighStreetBank"/>
</service-properties>
</service>

100

CHAPTER 13. OSGI SERVICES

I </blueprint>

Where the bank . name string property has the value, HighStreetBank. It is possible to define service
properties of type other than string: that is, primitive types, arrays, and collections are also supported.

For details of how to define these types, see Controlling the Set of Advertised Properties. in the Spring
Reference Guide.

NOTE

Strictly speaking, the entry element ought to belong to the blueprint namespace. The
use of the beans:entry element in Spring's implementation of blueprint is non-
standard.

Default service properties

There are two service properties that might be set automatically when you export a service using the
service element, as follows:

e o0sgi.service.blueprint.compname—is always set to the id of the service's bean
element, unless the bean is inlined (that is, the bean is defined as a child element of the
service element). Inlined beans are always anonymous.

e service.ranking-is automatically set, if the ranking attribute is non-zero.

Specifying a ranking attribute

If a bundle looks up a service in the service registry and finds more than one matching service, you can
use ranking to determine which of the services is returned. The rule is that, whenever a lookup matches
multiple services, the service with the highest rank is returned. The service rank can be any non-
negative integer, with 0 being the default. You can specify the service ranking by setting the ranking
attribute on the service element—for example:

<service ref="savings" interface="org.fusesource.example.Account"
ranking="10"/>

Specifying a registration listener

If you want to keep track of service registration and unregistration events, you can define a registration
listener callback bean that receives registration and unregistration event notifications. To define a
registration listener, add a registration-listener child elementto a service element.

For example, the following blueprint configuration defines a listener bean, 1istenerBean, which is
referenced by aregistration-listener element, so that the listener bean receives callbacks
whenever an Account service is registered or unregistered:

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0" ...>
<bean id="listenerBean" class="org.fusesource.example.Listener"/>
<service ref="savings" auto-export="interfaces">
<registration-listener

ref="1listenerBean"
registration-method="register"

101

http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/service-registry.html#service-registry:export:props

Red Hat JBoss Fuse 6.2 Deploying into the Container

unregistration-method="unregister"/>
</service>

</blueprint>

Where the registration-listener element's ref attribute references the id of the listener bean,
the registration-method attribute specifies the name of the listener method that receives the
registration callback, and unregistration-method attribute specifies the name of the listener
method that receives the unregistration callback.

The following Java code shows a sample definition of the Listener class that receives notifications of
registration and unregistration events:

// Java
package org.fusesource.example;

public class Listener

{
{

public void register(Account service, java.util.Map serviceProperties)

}

public void unregister(Account service, java.util.Map
serviceProperties) {

}

The method names, register and unregister, are specified by the registration-method and
unregistration-method attributes respectively. The signatures of these methods must conform to
the following syntax:

e First method argument-any type T that is assignable from the service object's type. In other
words, any supertype class of the service class or any interface implemented by the service
class. This argument contains the service instance, unless the service bean declares the scope
to be prototype, in which case this argument is null (when the scope is prototype, no
service instance is available at registration time).

o Second method argument—must be of either java.util.Map type or
java.util.Dictionary type. This map contains the service properties associated with this
service registration.

13.1.4. Importing a Service

Overview

This section describes how to obtain and use references to OSGi services that have been exported to
the OSGi service registry. Essentially, you can use either the reference element or the reference-
list element to import an OSGi service. The key difference between these elements is not (as you
might at first be tempted to think) that reference returns a single service reference, while
reference-1list returns a list of service references. Rather, the real difference is that the
reference element is suitable for accessing stateless services, while the reference-1list element
is suitable for accessing stateful services.

102

CHAPTER 13. OSGI SERVICES

Managing service references
The following models for obtaining OSGi services references are supported:
e the section called “Reference manager”.

o the section called “Reference list manager”.

Reference manager

A reference managerinstance is created by the blueprint reference element. This element returns a
single service reference and is the preferred approach for accessing stateless services. Figure 13.1,
“Reference to Stateless Service” shows an overview of the model for accessing a stateless service
using the reference manager.

Figure 13.1. Reference to Stateless Service

Injected Proxy Backing
beans services

Beans in the client blueprint container get injected with a proxy object (the provided object), which is
backed by a service object (the backing service) from the OSGi service registry. This model explicitly
takes advantage of the fact that stateless services are interchangeable, in the following ways:

e If multiple services instances are found that match the criteria in the reference element, the
reference manager can arbitrarily choose one of them as the backing instance (because they
are interchangeable).

e If the backing service disappears, the reference manager can immediately switch to using one
of the other available services of the same type. Hence, there is no guarantee, from one
method invocation to the next, that the proxy remains connected to the same backing service.

The contract between the client and the backing service is thus stateless, and the client must not
assume that it is always talking to the same service instance. If no matching service instances are
available, the proxy will wait for a certain length of time before throwing the ServiceUnavailable
exception. The length of the timeout is configurable by setting the timeout attribute on the
reference element.

Reference list manager

103

Red Hat JBoss Fuse 6.2 Deploying into the Container

A reference list managerinstance is created by the blueprint reference-1ist element. This element
returns a list of service references and is the preferred approach for accessing stateful services.
Figure 13.2, “List of References to Stateful Services” shows an overview of the model for accessing a
stateful service using the reference list manager.

Figure 13.2. List of References to Stateful Services

Injected Backing

Proxy list

beans services
*|-————- -i i
*—-————- — . i .
L i L]
L ! L

Beans in the client blueprint container get injected with a java.util.List object (the provided
object), which contains a list of proxy objects. Each proxy is backed by a unique service instance in the
OSGi service registry. Unlike the stateless model, backing services are not considered to be
interchangeable here. In fact, the lifecycle of each proxy in the list is tightly linked to the lifecycle of
the corresponding backing service: when a service gets registered in the OSGi registry, a
corresponding proxy is synchronously created and added to the proxy list; and when a service gets
unregistered from the OSGi registry, the corresponding proxy is synchronously removed from the
proxy list.

The contract between a proxy and its backing service is thus stateful, and the client may assume when
it invokes methods on a particular proxy, that it is always communicating with the same backing
service. It could happen, however, that the backing service becomes unavailable, in which case the
proxy becomes stale. Any attempt to invoke a method on a stale proxy will generate the
ServiceUnavailable exception.

Matching by interface (stateless)

The simplest way to obtain a stateles service reference is by specifying the interface to match, using
the interface attribute on the reference element. The service is deemed to match, if the
interface attribute value is a super-type of the service or if the attribute value is a Java interface
implemented by the service (the interface attribute can specify either a Java class or a Java
interface).

For example, to reference a stateless SavingsAccount service (see Example 13.1, “Sample Service
Export with a Single Interface”), define a reference element as follows:

104

CHAPTER 13. OSGI SERVICES

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"/>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAccount" ref="savingsRef'"/>
</bean>

</blueprint>

Where the reference element creates a reference manager bean with the ID, savingsRef. To use
the referenced service, inject the savingsRef bean into one of your client classes, as shown.

The bean property injected into the client class can be any type that is assignable from
SavingsAccount. For example, you could define the Client class as follows:

package org.fusesource.example.client;
import org.fusesource.example.SavingsAccount;

public class Client {
SavingsAccount savingsAccount;

// Bean properties
public SavingsAccount getSavingsAccount() {
return savingsAccount;

}

public void setSavingsAccount(SavingsAccount savingsAccount) {
this.savingsAccount = savingsAccount;

}

Matching by interface (stateful)

The simplest way to obtain a stateful service reference is by specifying the interface to match, using
the interface attribute on the reference-1list element. The reference list manager then obtains a
list of all the services, whose interface attribute value is either a super-type of the service or a Java
interface implemented by the service (the interface attribute can specify either a Java class or a
Java interface).

For example, to reference a stateful SavingsAccount service (see Example 13.1, “Sample Service
Export with a Single Interface”), define a reference-1ist element as follows:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<reference-list id="savingsListRef"
interface="org.fusesource.example.SavingsAccount"/>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAccountList" ref="savingsListRef"/>

105

Red Hat JBoss Fuse 6.2 Deploying into the Container

</bean>

</blueprint>

Where the reference-1ist element creates a reference list manager bean with the ID,
savingsListRef. To use the referenced service list, inject the savingsListRef bean reference into
one of your client classes, as shown.

By default, the savingsAccountList bean property is a list of service objects (for example,
java.util.List<SavingsAccount>). You could define the client class as follows:

package org.fusesource.example.client;
import org.fusesource.example.SavingsAccount;

public class Client {
java.util.List<SavingsAccount> accountList;

// Bean properties
public java.util.List<SavingsAccount> getSavingsAccountList() {
return accountlList;

}

public void setSavingsAccountList(
java.util.List<SavingsAccount> accountlList

) {
}

this.accountList = accountList;

Matching by interface and component name

To match both the interface and the component name (bean ID) of a stateless service, specify both the
interface attribute and the component -name attribute on the reference element, as follows:

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
component -name="savings"/>

To match both the interface and the component name (bean ID) of a stateful service, specify both the
interface attribute and the component -name attribute on the reference-1list element, as
follows:

<reference-list id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
component -name="savings"/>

Matching service properties with a filter

You can select services by matching service properties against a filter. The filter is specified using the
filter attribute on the reference element or on the reference-1ist element. The value of the
filter attribute must be an LDAP filter expression For example, to define a filter that matches when

106

CHAPTER 13. OSGI SERVICES

the bank . name service property equals HighStreetBank, you could use the following LDAP filter
expression:

I (bank.name=HighStreetBank)

To match two service property values, you can use & conjunction, which combines expressions with a
logical and.For example, to require that the foo property is equal to FoovValue and the bar property
is equal to BarValue, you could use the following LDAP filter expression:

I (&(foo=FooValue) (bar=BarVvalue))

For the complete syntax of LDAP filter expressions, see section 3.2.7 of the OSGi Core Specification.

Filters can also be combined with the interface and component -name settings, in which case all of
the specified conditions are required to match.

For example, to match a stateless service of SavingsAccount type, with a bank.name service
property equal to HighStreetBank, you could define a reference element as follows:

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
filter="(bank.name=HighStreetBank)"/>

To match a stateful service of SavingsAccount type, with a bank.name service property equal to
HighStreetBank, you could define a reference-1ist element as follows:

<reference-list id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
filter="(bank.name=HighStreetBank)"/>

Specifying whether mandatory or optional

By default, a reference to an OSGi service is assumed to be mandatory (see the section called
“Mandatory dependencies”). It is possible, however, to customize the dependency behavior of a
referenceelement ora reference-list element by setting the availability attribute on the
element. There are two possible values of the availability attribute: mandatory (the default),
means that the dependency must be resolved during a normal blueprint container initialization; and
optional, means that the dependency need not be resolved during initialization.

The following example of a reference element shows how to declare explicitly that the referenceis a
mandatory dependency:

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
availability="mandatory"/>

Specifying a reference listener

To cope with the dynamic nature of the OSGi environment—for example, if you have declared some of
your service references to have optional availability—it is often useful to track when a backing
service gets bound to the registry and when it gets unbound from the registry. To receive notifications

107

Red Hat JBoss Fuse 6.2 Deploying into the Container

of service binding and unbinding events, you can define areference-1listener element as the child
of either the reference element or the reference-list element.

For example, the following blueprint configuration shows how to define a reference listener as a child of
the reference manager with the ID, savingsRef:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<reference id="savingsRef"
interface="org.fusesource.example.SavingsAccount"
>
<reference-listener bind-method="onBind" unbind-method="onUnbind">
<bean class="org.fusesource.example.client.Listener"/>
</reference-listener>
</reference>

<bean id="client" class="org.fusesource.example.client.Client">
<property name="savingsAcc" ref="savingsRef"/>

</bean>

</blueprint>

The preceding configuration registers an instance of
org.fusesource.example.client.Listener type as a callback that listens for bind and
unbind events. Events are generated whenever the savingsRef reference manager's backing
service binds or unbinds.

The following example shows a sample implementation of the Listener class:

package org.fusesource.example.client;
import org.osgi.framework.ServiceReference;
public class Listener {

public void onBind(ServiceReference ref) {
System.out.println("Bound service: " + ref);

}

public void onUnbind(ServiceReference ref) {
System.out.println("Unbound service: " + ref);

}

The method names, onBind and onUnbind, are specified by the bind-method and unbind-method
attributes respectively. Both of these callback methods take an
org.osgi.framework.ServiceReference argument.

13.2. PUBLISHING AN OSGI SERVICE

Overview

108

CHAPTER 13. OSGI SERVICES

This section explains how to generate, build, and deploy a simple OSGi service in the OSGi container.
The service is a simple Hello World Java class and the OSGi configuration is defined using a blueprint
configuration file.

Prerequisites

In order to generate a project using the Maven Quickstart archetype, you must have the following
prerequisites:

e Maven installation-Maven is a free, open source build tool from Apache. You can download the
latest version from http://maven.apache.org/download.html (minimum is 2.0.9).

e Internet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your
build machine must be connected to the Internet.

Generating a Maven project

Themaven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.fusesource.example:osgi-service, enter the following command:

mvn archetype:create
-DarchetypeArtifactId=maven-archetype-quickstart
-DgroupId=org.fusesource.example
-DartifactId=osgi-service

The result of this command is a directory, ProjectDir/osgi-service, containing the files for the
generated project.

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID of an
existing product! This could lead to clashes between your project's packages and the
packages from the existing product (because the group ID is typically used as the root
of a project's Java package names).

Customizing the POM file

You must customize the POM file in order to generate an OSGi bundle, as follows:
1. Follow the POM customization steps described in Section 6.1, “Generating a Bundle Project”.

2. In the configuration of the Maven bundle plug-in, modify the bundle instructions to export the
org.fusesource.example.service package, as follows:

<project ... >
;Bﬁild>

;ﬁiugins>

;6iugin>

<groupId>org.apache.felix</groupId>

109

http://maven.apache.org/download.html

Red Hat JBoss Fuse 6.2 Deploying into the Container

<artifactId>maven-bundle-plugin</artifactId>

<extensions>true</extensions>

<configuration>
<instructions>

<Bundle-SymbolicName>${pom.groupId}.${pom.artifactId}
</Bundle-SymbolicName>
<Export-Package>org.fusesource.example.service</Export-Package>

</instructions>

</configuration>

</plugin>
</plugins>
</build>

</project>

Writing the service interface

Create the ProjectDir/osgi-service/src/main/java/org/fusesource/example/service
sub-directory. In this directory, use your favorite text editor to create the file, HelloWorldSvc. java,
and add the code from Example 13.3, “The HelloWorldSvc Interface” toit.

public interface HelloWorldSvc

{
public void sayHello();

(o

Example 13.3. The HelloWorldSvc Interface
// Java
package org.fusesource.example.service;

Writing the service class

Create the ProjectDir/osgi-
service/src/main/java/org/fusesource/example/service/impl sub-directory. In this
directory, use your favorite text editor to create the file, HellowWorldSvcImpl. java, and add the
code from Example 13.4, “The HelloWorldSvclmpl Class” to it.

Example 13.4. The HelloWorldSvclimpl Class
package org.fusesource.example.service.impl;
import org.fusesource.example.service.HelloWorldSvc;

public class HellowWorldSvcImpl implements HelloWorldSvc {
publlc void sayHello()

System.out.println("Hello World!");

110

CHAPTER 13. OSGI SERVICES

}
¥

Writing the blueprint file

The blueprint configuration file is an XML file stored under the 0SGI -INF/blueprint directory on
the class path. To add a blueprint file to your project, first create the following sub-directories:

ProjectDir/osgi-service/src/main/resources
ProjectDir/osgi-service/src/main/resources/0SGI-INF
ProjectDir/osgi-service/src/main/resources/0SGI-INF/blueprint

Where the src/main/resources is the standard Maven location for all JAR resources. Resource
files under this directory will automatically be packaged in the root scope of the generated bundle

JAR.

Example 13.5, “Blueprint File for Exporting a Service” shows a sample blueprint file that creates a
HelloWorldSvc bean, using the bean element, and then exports the bean as an OSGi service, using
the service element.

Under the ProjectDir/osgi-service/src/main/resources/0SGI-INF/blueprint directory,
use your favorite text editor to create the file,config.xml, and add the XML code from Example 13.5,
“Blueprint File for Exporting a Service”.

<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0">

<bean id="hello"
class="org.fusesource.example.service.impl.HelloWorldSvcImpl"/>

<service ref="hello"
interface="org.fusesource.example.service.HellowWorldSvc"/>

<?xml version="1.0" encoding="UTF-8"?>
</blueprint>

| Example 13.5. Blueprint File for Exporting a Service

Running the service bundle

Toinstall and run the osgi-service project, perform the following steps:

1. Build the project-open a command prompt and change directory to ProjectDir/osgi-
service. Use Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDir/osgi-service/target directory
should contain the bundle file, 0sgi-service-1.0-SNAPSHOT. jar.

2. Install and start the osgi-service bundle-at the Red Hat JBoss Fuse console, enter the following

m

Red Hat JBoss Fuse 6.2 Deploying into the Container

command:

JBossFuse: karaf@root> osgi:install -s file:ProjectDir/osgi-
service/target/osgi-service-1.0-SNAPSHOT. jar

Where ProjectDir is the directory containing your Maven projects and the -s flag directs the
container to start the bundle right away. For example, if your project directory is
C:\Projects on a Windows machine, you would enter the following command:

JBossFuse:karaf@root> osgi:install -s file:C:/Projects/osgi-
service/target/osgi-service-1.0-SNAPSHOT. jar

NOTE

On Windows machines, be careful how you format the file URL—for details of
the syntax understood by the file URL handler, see Section A.1, “File URL
Handler”.

. Check that the service has been created-to check that the bundle has started successfully, enter

the following Red Hat JBoss Fuse console command:
I JBossFuse: karaf@root> osgi:list
Somewhere in this listing, you should see a line for the 0sgi-service bundle, for example:

[236] [Active] [Created 11 11 60] osgi-service
(1.0.0.SNAPSHOT)

To check that the service is registered in the OSGi service registry, enter a console command
like the following:

I JBossFuse: karaf@root> osgi:ls 236

Where the argument to the preceding command is the osgi-service bundle ID. You should
see some output like the following at the console:

osgi-service (236) provides:

osgi.service.blueprint.compname = hello

objectClass = org.fusesource.example.service.HellowWorldSvc
service.id = 272

osgi.blueprint.container.version = 1.0.0.SNAPSHOT
0sgi.blueprint.container.symbolicname = org.fusesource.example.osgi-
service

objectClass =
org.osgi.service.blueprint.container.BlueprintContainer

service.id = 273

13.3. ACCESSING AN OSGI SERVICE

112

CHAPTER 13. OSGI SERVICES

Overview

This section explains how to generate, build, and deploy a simple OSGi client in the OSGi container. The
client finds the simple Hello World service in the OSGi registry and invokes the sayHello () method
onit.

Prerequisites

In order to generate a project using the Maven Quickstart archetype, you must have the following
prerequisites:

e Maven installation-Maven is a free, open source build tool from Apache. You can download the
latest version from http://maven.apache.org/download.html (minimum is 2.0.9).

e Internet connection—whilst performing a build, Maven dynamically searches external
repositories and downloads the required artifacts on the fly. In order for this to work, your
build machine must be connected to the Internet.

Generating a Maven project

Themaven-archetype-quickstart archetype creates a generic Maven project, which you can then
customize for whatever purpose you like. To generate a Maven project with the coordinates,
org.fusesource.example:osgi-client, enter the following command:

mvn archetype:create
-DarchetypeArtifactId=maven-archetype-quickstart
-DgroupId=org.fusesource.example
-DartifactId=osgi-client

The result of this command is a directory, ProjectDir/osgi-client, containing the files for the
generated project.

NOTE

Be careful not to choose a group ID for your artifact that clashes with the group ID of an
existing product! This could lead to clashes between your project's packages and the
packages from the existing product (because the group ID is typically used as the root
of a project's Java package names).

Customizing the POM file

You must customize the POM file in order to generate an OSGi bundle, as follows:
1. Follow the POM customization steps described in Section 6.1, “Generating a Bundle Project”.

2. Because the client uses the HelloWorldSvc Java interface, which is defined in the osgi-
service bundle, it is necessary to add a Maven dependency on the osgi-service bundle.
Assuming that the Maven coordinates of the osgi-service bundle are
org.fusesource.example:osgi-service:1.0-SNAPSHOT, you should add the following
dependency to the client's POM file:

<project ... >

<dependencies>

113

http://maven.apache.org/download.html

Red Hat JBoss Fuse 6.2 Deploying into the Container

<dependency>
<groupId>org.fusesource.example</groupIld>
<artifactId>osgi-service</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
</dependencies>

</project>

Writing the Blueprint file

To add a blueprint file to your client project, first create the following sub-directories:

ProjectDir/osgi-client/src/main/resources
ProjectDir/osgi-client/src/main/resources/0SGI-INF
ProjectDir/osgi-client/src/main/resources/0SGI-INF/blueprint

Under the ProjectDir/osgi-client/src/main/resources/0SGI-INF/blueprint directory,
use your favorite text editor to create the file,config.xml, and add the XML code from Example 13.6,
“Blueprint File for Importing a Service”.

Example 13.6. Blueprint File for Importing a Service
<?xml version="1.0" encoding="UTF-8"7?>
<blueprint xmlns="http://www.o0sgi.org/xmlns/blueprint/v1.0.0">
<reference id="helloWorld"
interface="org.fusesource.example.service.HellowWorldSvc"/>

<bean id="client"
class="org.fusesource.example.client.Client"
init-method="init">
<property name="helloWorldSvc" ref="helloworld"/>
</bean>

</blueprint>

Where the reference element creates a reference manager that finds a service of HelloWorldSvc
type in the OSGi registry. The bean element creates an instance of the Client class and injects the
service reference as the bean property, helloWorldSvc. In addition, the init-method attribute
specifies that the Client.init () method is called during the bean initialization phase (that is, after
the service reference has been injected into the client bean).

Writing the client class

Under the ProjectDir/osgi-client/src/main/java/org/fusesource/example/client
directory, use your favorite text editor to create the file,Client. java, and add the Java code from
Example 13.7, “The Client Class”.

I Example 13.7. The Client Class

114

CHAPTER 13. OSGI SERVICES

// Bean properties
public HelloWorldSvc getHelloWorldSvc() {
return helloWorldSvc;

}

public void setHelloWorldSvc(HelloWorldSvc helloWorldSvc) {
this.hellowWorldSvc = helloWorldSvc;

}

public void init() {
System.out.println("0SGi client started.");
if (hellowWorldSvc != null) {
System.out.println("Calling sayHello()");
helloWorldSvc.sayHello(); // Invoke the 0SGi service!

// Java
package org.fusesource.example.client;
import org.fusesource.example.service.HelloWorldSvc;
public class Client {
HellowWorldSvc helloworldSvc;
}

The Client class defines a getter and a setter method for the helloWorldSvc bean property, which
enables it to receive the reference to the Hello World service by injection. The init () method is
called during the bean initialization phase, after property injection, which means that it is normally
possible to invoke the Hello World service within the scope of this method.

Running the client bundle

Toinstall and run the osgi-client project, perform the following steps:

1. Build the project-open a command prompt and change directory to ProjectDir/osgi-
client. Use Maven to build the demonstration by entering the following command:

I mvn install

If this command runs successfully, the ProjectDir/osgi-client/target directory should
contain the bundle file, o0sgi-client-1.0-SNAPSHOT. jar.

2. Install and start the osgi-service bundle-at the Red Hat JBoss Fuse console, enter the following

command:

JBossFuse: karaf@root> osgi:install -s file:ProjectDir/osgi-
client/target/osgi-client-1.0-SNAPSHOT. jar

Where ProjectDir is the directory containing your Maven projects and the -s flag directs the
container to start the bundle right away. For example, if your project directory is
C:\Projects on a Windows machine, you would enter the following command:

115

Red Hat JBoss Fuse 6.2 Deploying into the Container

JBossFuse:karaf@root> osgi:install -s file:C:/Projects/osgi-
client/target/osgi-client-1.0-SNAPSHOT. jar

NOTE

On Windows machines, be careful how you format the file URL—for details of
the syntax understood by the file URL handler, see Section A.1, “File URL
Handler”.

3. Client output—f the client bundle is started successfully, you should immediately see output like
the following in the console:

Bundle ID: 239

0SGi client started.
Calling sayHello()
Hello World!

13.4. INTEGRATION WITH APACHE CAMEL

Overview

Apache Camel provides a simple way to invoke OSGi services using the Bean language. This feature is
automatically available whenever a Apache Camel application is deployed into an OSGi container and
requires no special configuration.

Registry chaining

When a Apache Camel route is deployed into the OSGi container, the CamelContext automatically
sets up aregistry chain for resolving bean instances: the registry chain consists of the OSGi registry,
followed by the blueprint (or Spring) registry. Now, if you try to reference a particular bean class or
bean instance, the registry resolves the bean as follows:

1. Look up the bean in the OSGi registry first. If a class name is specified, try to match this with
the interface or class of an OSGi service.

2. If no match is found in the OSGi registry, fall back on the blueprint registry (or the Spring
registry, if you are using the Spring-DM container).

Sample OSGi service interface

Consider the OSGi service defined by the following Java interface, which defines the single method,
getGreeting():

// Java
package org.fusesource.example.hello.boston;

public interface HelloBoston {
public String getGreeting();

}

Sample service export

116

CHAPTER 13. OSGI SERVICES

When defining the bundle that implements the Hel1loBoston OSGi service, you could use the
following blueprint configuration to export the service:

<?xml version="1.0" encoding="UTF-8"7?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

<bean id="hello"
class="org.fusesource.example.hello.boston.HelloBostonImpl"/>

<service ref="hello"
interface="org.fusesource.example.hello.boston.HelloBoston"/>

</blueprint>

Where it is assumed that the HelloBoston interface is implemented by the HelloBostonImpl class
(not shown).

Invoking the OSGi service from Java DSL

After you have deployed the bundle containing the Hel1loBoston OSGi service, you can invoke the
service from a Apache Camel application using the Java DSL. In the Java DSL, you invoke the OSGi
service through the Bean language, as follows:

from("timer:foo?period=5000")
.bean(org.fusesource.example.hello.boston.HelloBoston.class,
"getGreeting")
.log("The message contains: ${body}")

In the bean command, the first argument is the OSGi interface or class, which must match the
interface exported from the OSGi service bundle. The second argument is the name of the bean
method you want to invoke. For full details of the bean command syntax, see section "Bean
Integration" in "Apache Camel Development Guide".

NOTE

When you use this approach, the OSGi service is implicitly imported. It is not necessary
to import the OSGi service explicitly in this case.

Invoking the OSGi service from XML DSL

In the XML DSL, you can also use the Bean language to invoke the Hel1loBoston OSGi service, but the
syntax is slightly different. In the XML DSL, you invoke the OSGi service through the Bean language,
using the method element, as follows:

<beans ...>
<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="timer:foo?period=5000"/>
<setBody>

<method ref="org.fusesource.example.hello.boston.HelloBoston"
method="getGreeting"/>
</setBody>
<log message="The message contains: ${body}"/>

17

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Development_Guide/BasicPrinciples-BeanIntegration.html

Red Hat JBoss Fuse 6.2 Deploying into the Container

</route>
</camelContext>
</beans>

NOTE

When you use this approach, the OSGi service is implicitly imported. It is not necessary
to import the OSGi service explicitly in this case.

118

CHAPTER 14. JMS BROKER

CHAPTER 14. JMS BROKER

Abstract

Red Hat JBoss Fuse supports the deployment of JMS brokers. By default, it deploys an Apache
ActiveMQ JMS broker. It includes all of the required bundles to deploy additional Apache ActiveMQ
instances by deploying a new broker configuration.

14.1. WORKING WITH THE DEFAULT BROKER

Abstract

Red Hat JBoss Fuse starts up with a message broker by default. You can use this broker as it is for
your application, or you can update its configuration to suite the needs of your application.

Overview

When you deploy a Red Hat JBoss Fuse instance, whether as a standalone container or as a part of a
fabric, the default behavior is for a Apache ActiveMQ instance to be started in the container. The
default broker creates an Openwire port that listens on port 61616. The broker remains installed in
the container and activates whenever you restart the container.

Broker configuration

The default broker's configuration is controlled by two files:

e etc/broker.xml-a standard Apache ActiveMQ configuration file that serves as a template
for the default broker's configuration. It contains property place holders, specified using the
syntax ${propName}, that allow you to set the values of the actual property using the OSGi
Admin service.

e etc/io.fabric8.mq.fabric.server-default.cfg—the OSGi configuration file that
specifies the values for the properties in the broker's template configuration file.

For details on how to edit the default broker's configuration see the JBoss A-MQ documentation.

Broker data

The default broker's data is stored in data/activemq. You can change this location using the
config command to change the broker's data property as shown in Example 14.1, “Configuring the
Default Broker's Data Directory”.

1c5f-40e3-987e-024c1faclc3f
JBossFuse: karaf@root> config:propset data dataStore

JBossFuse: karaf@root> config:edit io.fabric8.mq.fabric.server.3e3d0055-
JBossFuse: karaf@root> config:exit

‘ Example 14.1. Configuring the Default Broker's Data Directory

119

Red Hat JBoss Fuse 6.2 Deploying into the Container

Disabling the default broker

If you decide that you don't want to use the default broker, you can disable it by removing it's OSGi
configuration file:

1. From the JBoss Fuse command console, delete the configuration PID using the
config:delete command as shown in Example 14.2, “Deleting the Default Broker

Configuration”.

Example 14.2. Deleting the Default Broker Configuration

JBossFuse: karaf@root> config:delete
io.fabric8.mq.fabric.server.xxx

xxx is the system generated ID for the broker. You can find this value using the config:list
command.

2. From the system terminal, delete the actual configuration file
etc/io.fabric8.mq.fabric.server-default.cfg.

It is important to do both steps. Step 1 removes the broker from the running container and its cached
deployment information. Step 2 removes the broker's configuration from the file system and ensures
that it will not be automatically reloaded if the container is restarted.

14.2. JMS ENDPOINTS IN A ROUTER APPLICATION

Overview

The following example shows how you can integrate a JMS broker into a router application. The
example generates messages using a timer; sends the messages through the camel. timer queuein
the JMS broker; and then writes the messages to a specific directory in the file system.

Prerequisites

In order to run the sample router application, you need to have the activemq-camel feature installed
in the OSGi container. The activemq-camel component is needed for defining Apache ActiveMQ-
based JMS endpoints in Apache Camel. This feature is not installed by default, so you must install it
using the following console command:

I JBossFuse:karaf@root> features:install activemqg-camel

You also need the activemq feature, but this feature is normally available, because Red Hat JBoss
Fuse installs it by default.

TIP

Most of the Apache Camel components are not installed by default. Whenever you are about to define
an endpoint in a Apache Camel route, remember to check whether the corresponding component
feature is installed. Apache Camel component features generally have the same name as the
corresponding Apache Camel component artifact ID, camel - ComponentName.

120

CHAPTER 14. JMS BROKER

Router configuration

Example 14.3, “Sample Route with JMS Endpoints” gives an example of a Apache Camel route defined
using the Spring XML DSL. Messages generated by the timer endpoint are propagated through the
JMS broker and then written out to the file system.

Example 14.3. Sample Route with JMS Endpoints
<?xml version="1.0"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:camel="http://camel.apache.org/schema/spring">

<bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent'">
<property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="timer://MyTimer?fixedRate=true&period=4000"/>
<setBody><constant>Hello World!</constant></setBody>
<to uri="activemq:camel.timer"/>
</route>
<route>
<from uri="activemqg:camel.timer"/>
<to uri="file:C:/temp/sandpit/timer"/>
</route>
</camelContext>

</beans>

Camel activemg component

In general, it is necessary to create a custom instance of the Apache Camel activemq component,
because you need to specify the connection details for connecting to the broker. The preceding
example uses Spring syntax to instantiate the activemq bean which connects to the broker URL,
tcp://localhost:61616. The broker URL must correspond to one of the transport connectors
defined in the broker configuration file, deploy/test -broker . xml.

Sample routes

Example 14.3, “Sample Route with JMS Endpoints” defines two routes, as follows:

1. The first route uses a timer endpoint to generate messages at four-second intervals. The
setBody element places a dummy string in the body of the message (which would otherwise
be null). The messages are then sent to the camel. timer queue on the broker (the
activemq:camel. timer endpoint).

121

Red Hat JBoss Fuse 6.2 Deploying into the Container

NOTE

The activemq scheme in activemq:camel. timer is resolved by looking up
activemq in the bean registry, which resolves to the locally instantiated bean
with ID, activemq.

2. The second route pulls messages off the camel. timer queue and then writes the messages
to the specified directory, C:\temp\sandpit\timer,in the file system.

Steps to run the example

To run the sample router application, perform the following steps:

1. Using your favorite text editor, copy and paste the router configuration from Example 14.3,
“Sample Route with JMS Endpoints” into a file called camel-timer .xml.

Edit the file endpoint in the second route, in order to change the target directory to a suitable
location on your file system:

<route>
<from uri="activemqg:camel.timer"/>
<to uri="file:YourDirectoryHere!"/>
</route>

2. Start up a local instance of the Red Hat JBoss Fuse runtime by entering the following at a
command prompt:

I servicemix

3. Make sure the requisite features are installed in the OSGi container. To install the activemq-
camel feature, enter the following command at the console:

I JBossFuse:karaf@root> features:install activemqg-camel

To ensure that the activemq-broker feature is not installed, enter the following command
at the console:

I JBossFuse: karaf@root> features:uninstall activemqg-broker

4. Use one of the following alternatives to obtain a broker instance for this demonstration:

e Use the default broker~assuming you have not disabled the default broker, you can use it for
this demonstration, because it is listening on the correct port, 61616.

e Create a new broker instance using the console-if you prefer not to use the default broker,
you can disable it (as described in Section 14.1, “Working with the Default Broker”) and
then create a new JMS broker instance by entering the following command at the console:

I JBossFuse: karaf@root> activemq:create-broker --name test
After executing this command, you should see the broker configuration file, test -

broker.xml,in the InstallDir/deploy directory.

122

CHAPTER 14. JMS BROKER

5. Hot deploy the router configuration you created in step 1. Copy the camel - timer . xml file
into the InstallDir/deploy directory.

6. Within a few seconds, you should start to see files appearing in the target directory (which is
C:\temp\sandpit\timer, by default). The file component automatically generates a unique
filename for each message that it writes.

It is also possible to monitor activity in the JMS broker by connecting to the Red Hat JBoss
Fuse runtime's JMX port. To monitor the broker using JMX, perform the following steps:

a. To monitor the JBoss Fuse runtime, start a JConsole instance (a standard Java utility) by
entering the following command:

I jconsole

b. Initially,a JConsole: Connect to Agent dialog prompts you to connect to a JMX port.
From the Local tab, select the org.apache.felix.karaf.main.Bootstrap entry
and click Connect.

c. Inthe main JConsole window, click on the MBeans tab and then drill down to
org.apache.activemq|test|Queue in the MBean tree (assuming that test is the
name of your broker).

d. Under the Queue folder, you should see the camel. timer queue. Click on the
camel. timer queue to view statistics on the message throughput of this queue.

7. To shut down the router application, delete the camel-timer .xml file from the
InstallDir/deploy directory.

123

Red Hat JBoss Fuse 6.2 Deploying into the Container

APPENDIX A. URL HANDLERS

Abstract

There are many contexts in Red Hat JBoss Fuse where you need to provide a URL to specify the
location of a resource (for example, as the argument to a console command). In general, when
specifying a URL, you can use any of the schemes supported by JBoss Fuse's built-in URL handlers.
This appendix describes the syntax for all of the available URL handlers.

A1 . FILE URL HANDLER

Syntax

A file URL has the syntax, file: PathName, where PathName is the relative or absolute pathname of a
file that is available on the Classpath. The provided PathName is parsed by Java's built-in file URL
handler. Hence, the PathName syntax is subject to the usual conventions of a Java pathname: in
particular, on Windows, each backslash must either be escaped by another backslash or replaced by a
forward slash.

Examples

For example, consider the pathname, C:\Projects\camel-bundle\target\foo-1.0-
SNAPSHOT . jar, on Windows. The following example shows the correct alternatives for the file URL on
Windows:

file:C:/Projects/camel-bundle/target/foo-1.0-SNAPSHOT. jar
file:C:\\Projects\\camel-bundle\\target\\foo-1.0-SNAPSHOT. jar

The following example shows some incorrect alternatives for the file URL on Windows:

file:C:\Projects\camel-bundle\target\foo-1.0-SNAPSHOT. jar // WRONG!
file://C:/Projects/camel-bundle/target/foo-1.0-SNAPSHOT. jar // WRONG!
file://C:\\Projects\\camel-bundle\\target\\foo-1.0-SNAPSHOT.jar // WRONG!

A.2. HTTP URL HANDLER

Syntax

A HTTP URL has the standard syntax, http:Host[:Port]/[Path][#AnchorName][?Query]. You
can also specify a secure HTTP URL using the https scheme. The provided HTTP URL is parsed by
Java's built-in HTTP URL handler, so the HTTP URL behaves in the normal way for a Java application.

A.3. MVN URL HANDLER

Overview

If you use Maven to build your bundles or if you know that a particular bundle is available from a Maven
repository, you can use the Mvn handler scheme to locate the bundle.

124

APPENDIX A. URL HANDLERS

NOTE

To ensure that the Mvn URL handler can find local and remote Maven artifacts, you
might find it necessary to customize the Mvn URL handler configuration. For details, see
the section called “Configuring the Mvn URL handler” .

Syntax

An Mvn URL has the following syntax:

mvn:[repositoryUrl!]groupId/artifactId[/[version][/[packaging]
[/[classifier]]]]

Where repositoryUrl optionally specifies the URL of a Maven repository. The groupld, artifactld, version,
packaging, and classifier are the standard Maven coordinates for locating Maven artifacts (see the
section called “Maven coordinates”).

Omitting coordinates

When specifying an Mvn URL, only the groupld and the artifactld coordinates are required. The
following examples reference a Maven bundle with the groupld, org. fusesource.example, and with
the artifactld, bundle-demo:

mvn:org.fusesource.example/bundle-demo
mvn:org.fusesource.example/bundle-demo/1.1

When the versionis omitted, as in the first example, it defaults to LATEST, which resolves to the latest
version based on the available Maven metadata.

In order to specify a classifier value without specifying a packaging or a versionvalue, it is permissible to
leave gaps in the Mvn URL. Likewise, if you want to specify a packaging value without a version value.
For example:

mvn:groupId/artifactId///classifier
mvn:groupId/artifactId/version//classifier
mvn:groupId/artifactId//packaging/classifier
mvn:groupId/artifactId//packaging

Specifying a version range

When specifying the version value in an Mvn URL, you can specify a version range (using standard
Maven version range syntax) in place of a simple version number. You use square brackets—[and]—to
denote inclusive ranges and parentheses—(and)—to denote exclusive ranges. For example, the range,
[1.0.4,2.0), matches any version, v, that satisfies 1.0.4 <= v < 2.0. You can use this version
range in an Mvn URL as follows:

I mvn:org.fusesource.example/bundle-demo/[1.0.4,2.0)

Configuring the Mvn URL handler

Before using Mvn URLs for the first time, you might need to customize the Mvn URL handler settings,
as follows:

125

Red Hat JBoss Fuse 6.2 Deploying into the Container

1. the section called “Check the Mvn URL settings”.
2. the section called “Edit the configuration file” .

3. the section called “Customize the location of the local repository” .

Check the Mvn URL settings

The Mvn URL handler resolves a reference to a local Maven repository and maintains a list of remote
Maven repositories. When resolving an Mvn URL, the handler searches first the local repository and
then the remote repositories in order to locate the specified Maven artifiact. If there is a problem with
resolving an Mvn URL, the first thing you should do is to check the handler settings to see which local
repository and remote repositories it is using to resolve URLs.

To check the Mvn URL settings, enter the following commands at the console:

JBossFuse:karaf@root> config:edit org.ops4j.pax.url.mvn
JBossFuse: karaf@root> config:proplist

The config:edit command switches the focus of the config utility to the properties belonging to
the org.ops4j.pax.url.mvn persistent ID. The config:proplist command outputs all of the
property settings for the current persistent ID. With the focus on org.ops4j .pax.url.mvn, you
should see a listing similar to the following:

org.ops4j.pax.url.mvn.localRepository = file:E:/Data/.m2/repository
service.pid = org.ops4j.pax.url.mvn
org.ops4j.pax.url.mvn.defaultRepositories =
file:E:/Programs/FUSE/apache-serv
icemix-4.2.0-fuse-SNAPSHOT/system@snapshots
felix.fileinstall.filename = org.ops4j.pax.url.mvn.cfg
org.ops4j.pax.url.mvn.repositories = http://repol.maven.org/maven2,
http://re
po.fusesource.com/maven2, http://repo.fusesource.com/maven2-
snapshot@snapshots@n
oreleases, http://repository.apache.org/content/groups/snapshots-
group@snapshots
@noreleases, http://repository.ops4j.org/maven2,
http://svn.apache.org/repos/asf
/servicemix/m2-repo,
http://repository.springsource.com/maven/bundles/release, h
ttp://repository.springsource.com/maven/bundles/external

Where the localRepository setting shows the local repository location currently used by the

handler and the repositories setting shows the remote repository list currently used by the
handler.

Edit the configuration file

To customize the property settings for the Mvn URL handler, edit the following configuration file:

I InstallDir/etc/org.ops4j.pax.url.mvn.cfg

126

APPENDIX A. URL HANDLERS

The settings in this file enable you to specify explicitly the location of the local Maven repository,
remove Maven repositories, Maven proxy server settings, and more. Please see the comments in the
configuration file for more details about these settings.

Customize the location of the local repository

In particular, if your local Maven repository is in a non-default location, you might find it necessary to
configure it explicitly in order to access Maven artifacts that you build locally. In your
org.ops4j.pax.url.mvn.cfg configuration file,uncomment the
org.ops4j.pax.url.mvn.localRepository property and set it to the location of your local
Maven repository. For example:

Path to the local maven repository which is used to avoid downloading
artifacts when they already exist locally.

The value of this property will be extracted from the settings.xml file
above, or defaulted to:

System.getProperty("user.home") + "/.m2/repository"

org.ops4j.pax.url.mvn.localRepository=file:E:/Data/.m2/repository

Reference

For more details about the mvn URL syntax, see the original Pax URL Mvn Protocol documentation.

A.4. WRAP URL HANDLER

Overview

If you need to reference a JAR file that is not already packaged as a bundle, you can use the Wrap URL
handler to convert it dynamically. The implementation of the Wrap URL handler is based on Peter
Krien's open source Bnd utility.

Syntax

A Wrap URL has the following syntax:
I wrap:locationURL[,instructionsURL] [$instructions]

The locationURL can be any URL that locates a JAR (where the referenced JAR is not formatted as a
bundle). The optional instructionsURL references a Bnd properties file that specifies how the bundle
conversion is performed. The optional instructions is an ampersand, &, delimited list of Bnd properties
that specify how the bundle conversion is performed.

Default instructions

In most cases, the default Bnd instructions are adequate for wrapping an API JAR file. By default, Wrap
adds manifest headers to the JAR's META-INF/Manifest .mf file as shownin Table A.1, “Default
Instructions for Wrapping a JAR”.

Table A.1. Default Instructions for Wrapping a JAR

127

http://team.ops4j.org/wiki/display/paxurl/Mvn+Protocol

Red Hat JBoss Fuse 6.2 Deploying into the Container

Manifest Header Default Value

Import-Package *,resolution:=optional
Export-Package All packages from the wrapped JAR.
Bundle-SymbolicName The name of the JAR file, where any characters not
inthe set [a-zA-Z0-9_-] are replaced by
underscore, _.
Examples

The following Wrap URL locates version 1.1 of the commons -1ogging JAR in a Maven repository and
converts it to an OSGi bundle using the default Bnd properties:

I wrap:mvn:commons-logging/commons-logging/1.1

The following Wrap URL uses the Bnd properties from the file, E: \Data\Examples\commons-
logging-1.1.bnd:

wrap:mvn:commons-logging/commons-
logging/1.1,file:E:/Data/Examples/commons-logging-1.1.bnd

The following Wrap URL specifies the Bundle-SymbolicName property and the Bundle-Version

property explicitly:

wrap:mvn:commons-logging/commons-logging/1.1$Bundle-SymbolicName=apache-
comm-log&Bundle-Version=1.1

If the preceding URL is used as a command-line argument, it might be necessary to escape the dollar
sign, \$, to prevent it from being processed by the command line, as follows:

wrap:mvn:commons-logging/commons-logging/1.1\$Bundle-SymbolicName=apache-
comm-log&Bundle-Version=1.1

Reference

For more details about the wrap URL handler, see the following references:

e The Bnd tool documentation, for more details about Bnd properties and Bnd instruction files.

e The original Pax URL Wrap Protocol documentation.

A.5. WAR URL HANDLER

Overview

If you need to deploy a WAR file in an OSGi container, you can automatically add the requisite manifest
headers to the WAR file by prefixing the WAR URL with war :, as described here.

128

http://www.aqute.biz/Bnd/Bnd
http://team.ops4j.org/wiki/display/paxurl/Wrap+Protocol

APPENDIX A. URL HANDLERS

Syntax

A War URL is specified using either of the following syntaxes:

war :warURL
warref:instructionsURL

The first syntax, using the war scheme, specifies a WAR file that is converted into a bundle using the
default instructions. The warURL can be any URL that locates a WAR file.

The second syntax, using the warref scheme, specifies a Bnd properties file, instructionsURL, that
contains the conversion instructions (including some instructions that are specific to this handler). In
this syntax, the location of the referenced WAR file does not appear explicitly in the URL. The WAR file
is specified instead by the (mandatory) WAR-URL property in the properties file.

WAR-specific properties/instructions

Some of the properties in the .bnd instructions file are specific to the War URL handler, as follows:

WAR-URL

(Mandatory) Specifies the location of the War file that is to be converted into a bundle.

Web-ContextPath

Specifies the piece of the URL path that is used to access this Web application, after it has been
deployed inside the Web container.

NOTE

L

Earlier versions of PAX Web used the property, Webapp-Context, which is now
deprecated.

Default instructions

By default, the War URL handler adds manifest headers to the WAR's META-INF/Manifest .mf file as
shown in Table A.2, “Default Instructions for Wrapping a WAR File” .

Table A.2. Default Instructions for Wrapping a WAR File

Manifest Header Default Value

Import-Package javax.*,org.xml.*, org.w3c.*

Export-Package No packages are exported.

Bundle-SymbolicName The name of the WAR file, where any characters not
inthe set [a-zA-Z0-9_-\.] are replaced by
period, ..

Web-ContextPath No default value. But the WAR extender will use the

value of Bundle-SymbolicName by default.

129

Red Hat JBoss Fuse 6.2 Deploying into the Container

Manifest Header Default Value

Bundle-ClassPath In addition to any class path entries specified
explicitly, the following entries are added
automatically:

[)
e WEB-INF/classes

e All of the JARs from the WEB-INF/11ib
directory.

Examples

The following War URL locates version 1.4.7 of the wicket -examples WAR in a Maven repository and
converts it to an OSGi bundle using the default instructions:

I war:mvn:org.apache.wicket/wicket-examples/1.4.7/war

The following Wrap URL specifies the Web-ContextPath explicitly:

I war:mvn:org.apache.wicket/wicket-examples/1.4.7/war?Web-ContextPath=wicket
The following War URL converts the WAR file referenced by the WAR-URL property in the wicket -
examples-1.4.7.bnd file and then converts the WAR into an OSGi bundle using the other

instructions in the . bnd file:

I warref:file:E:/Data/Examples/wicket-examples-1.4.7.bnd

Reference

For more details about the war URL syntax, see the original Pax URL War Protocol documentation.

130

http://team.ops4j.org/wiki/display/paxurl/War+Protocol

APPENDIX B. OSGI BEST PRACTICES

APPENDIX B. OSGI BEST PRACTICES

Abstract

The combination of Maven and the OSGi framework provides a sophisticated framework for building
and deploying enterprise applications. In order to use this framework effectively, however, it is
necessary to adopt certain conventions and best practices. The practices described in this appendix
are intended to optimize the manageability and scalability of your OSGi applications.

B.1. OSGI TOOLING

Overview

The following best practices are recommended for OSGi related tools and utilities:

e the section called “Use the Maven bundle plug-in to generate the Manifest” .

the section called “Avoid using the OSGi API directly” .

the section called “Prefer Blueprint over Spring-DM” ..

the section called “Use Apache Karaf features to group bundles together” .

the section called “Use the OSGi Configuration Admin service” .

the section called “Use PAX-Exam for testing” .

Use the Maven bundle plug-in to generate the Manifest

Even for a moderately sized bundle project, it is usually impractical to create and maintain a bundle
Manifest by hand. The Maven bundle plug-in is the most effective tool for automating the generation of
bundle Manifests in a Maven project. See Section B.2, “Building OSGi Bundles”.

Avoid using the OSGi API directly

Avoid using the OSGi Java API directly. Prefer a higher level technology, for example: Blueprint (from
the OSGi Compendium Specification), Spring-DM, Declarative Services (DS), iPojo, and so on.

Prefer Blueprint over Spring-DM

The Blueprint container is now the preferred framework for instantiating, reqgistering, and referencing
OSGi services, because this container has now been adopted as an OSGi standard. This ensures
greater portability for your OSGi service definitions in the future.

Spring Dynamic Modules (Spring-DM) provided much of the original impetus for the definition of the

Blueprint standard, but should now be regarded as obsolescent. Using the Blueprint container does not
prevent you from using the Spring framework: the latest version of Spring is compatible with Blueprint.

Use Apache Karaf features to group bundles together

When an application is composed of a large number of bundles, it becomes essential to group bundles
together in order to deploy them efficiently. Apache Karaf features is a mechanism that is designed just

131

http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://www.osgi.org/Specifications/HomePage
http://docs.spring.io/osgi/docs/2.0.0.M1/reference/html/
http://www.osgi.org/Specifications/HomePage
http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html

Red Hat JBoss Fuse 6.2 Deploying into the Container

for this purpose. It is easy to use and supported by a variety of different tools. See Chapter 8, Deploying
Features for details.

Use the OSGi Configuration Admin service

The OSGi Configuration Admin service is the preferred mechanism for providing configuration
properties to your application. This configuration mechanism enjoys better tooling support than other
approaches. For example, in Red Hat JBoss Fuse the OSGi Configuration Admin service is supported in
the following ways:

e Properties integrated with Spring XML files.

e Properties automatically read from configuration files, etc/persistendId.cfg

o Properties can be set in feature repositories.

Use PAX-Exam for testing

In order for testing to be really effective, you should run at least some of your tests in an OSGi
container. This requires you to start an OSGi container, configure its environment, install prerequisite
bundles, and install the actual test. Performing these steps manually for every test would make testing
prohibitively difficult and time-consuming. Pax-Exam solves this problem by providing a testing
framework that is capable of automatically initializing an OSGi container before running tests in the
container.

See Appendix C, Pax-Exam Testing Framework for more details.

B.2. BUILDING OSGI BUNDLES

Overview

The following best practices are recommended when building OSGi bundles using Maven:
o the section called “Use package prefix as the bundle symbolic name” .
e the section called “Artifact ID should be derived from the bundle symbolic name”

o the section called “Always export packages with a version” .

e the section called “Use naming convention for private packages” .

o the section called “Import packages with version ranges” .

o the section called “Avoid importing packages that you export”.

e the section called “Use optional imports with caution” .

e the section called “Avoid using the Require-Bundle header” .

Use package prefix as the bundle symbolic name

Use your application's package prefix as the bundle symbolic name. For example, if all of your Java
source code is located in sub-packages of org. fusesource.fooProject, use
org.fusesource.fooProject as the bundle symbolic name.

132

APPENDIX B. OSGI BEST PRACTICES

Artifact ID should be derived from the bundle symbolic name

It makes sense to identify a Maven artifact with an OSGi bundle. To show this relationship as clearly as
possible, you should use base the artifact ID on the bundle symbolic name. Two conventions are
commonly used:

e The artifact ID is identical to the bundle symbolic name-this enables you to define the bundle
symbolic name in terms of the artifact ID, using the following Maven bundle instruction:

I <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>

e The bundle symbolic name is composed of the group ID and the artifact ID, joined by a dethis
enables you to define the bundle symbolic name in terms of the group ID and the artifact ID,
using the following Maven bundle instruction:

<Bundle-SymbolicName>${project.groupId}.${project.artifactId}
</Bundle-SymbolicName>

NOTE

Properties of the form project. * can be used to reference the value of anyelementin
the current POM. To construct the name of a POM property, take the XPath name of any
POM element (for example, project/artifactId) and replace occurrences of / with
the . character. Hence, ${project.artifactId} references the artifactId
element from the current POM.

Always export packages with a version

One of the key advantages of the OSGi framework is its ability to manage bundle versions and the
possibility of deploying multiple versions of a bundle in the same container. In order to take advantage
of this capability, however, it is essential that you associate a version with any packages that you
export.

For example, you can configure the maven-bundle-plugin plug-in to export packages with the
current artifact version (given by the project.version property) as follows:

<Export-Package>
${project.artifactId}*;version=${project.version}
</Export-Package>

Notice how this example exploits the convention that packages use the artifact ID,
project.artifactId, as their package prefix. The combination of package prefix and wildcard,
${project.artifactId}*, enables you to reference all of the source code in your bundle.

Use naming convention for private packages

If you define any private packages in your bundle (packages that you do not want to export), it is
recommended that you identify these packages using a strict naming convention. For example, if your
bundle includes implementation classes that you do not want to export, you should place these classes
in packages prefixed by ${project.artifactId}.implor ${project.artifactId}.internal.

133

Red Hat JBoss Fuse 6.2 Deploying into the Container

NOTE

If you do not specify any Export-Package instruction, the default behavior of the
Maven bundle plug-in is to exclude any packages that contain a path segment equal to
implor internal.

To ensure that the private packages are not exported, you can add an entry of the form

! PackagePattern to the Maven bundle plug-in's export instructions. The effect of this entry is to
exclude any matching packages. For example, to exclude any packages prefixed by
${project.artifactId}.impl, you could add the following instruction to the Maven bundle plug-in
configuration:

<Export-Package>
'${project.artifactId}.impl.*,
${project.artifactId}*;version=${project.version}
</Export-Package>

NOTE

The order of entries in the Export -Package element is significant. The first match in
the list determines whether a package is included or excluded. Hence, in order for
exclusions to be effective, they should appear at the start of the list.

Import packages with version ranges

In order to benefit from OSGi version management capabilities, it is important to restrict the range of
acceptable versions for imported packages. You can use either of the following approaches:

o Manual version ranges-you can manually specify the version range for an imported package
using the version qualifier, as shown in the following example:

<Import-Package>
org.springframework.*;version="[2.5,4)",

org.apache.commons.logging. *;version="[1.1,2)",
*

</Import-Package>

Version ranges are specified using the standard OSGi version range syntax, where square
brackets—that is, [and]—denote inclusive ranges and parentheses—thatis, (and)—denote
exclusive ranges. Hence the range, [2.5, 4), means that the version, v, is restricted to the
range, 2.5 <= v < 4. Note the special case of arange written as a simple number—for
example, version="2.5", which is equivalent to the range, [2.5, infinity).

e Automatic version ranges-if packages are imported from a Maven dependency and if the
dependency is packaged as an OSGi bundle, the Maven bundle plug-in automatically adds the
version range to the import instructions.

The default behavior is as follows. If your POM depends on a bundle that is identified as version
1.2.4.8, the generated manifest will import version 1.2 of the bundle's exported packages (that
is, the imported version number is truncated to the first two parts, major and minor).

It is also possible to customize how imported version ranges are generated from the bundle
dependency. When setting the version property, you can use the ${@} macro (which returns
the original export version) and the ${version} macro (which modifies a version number) to

134

APPENDIX B. OSGI BEST PRACTICES

generate a version range. For example, consider the following version settings:

*,version="${@}"

If a particular package has export version1.2.4. 8, the generated import version resolves
tol1.2.4.8.

*:version="${version;==;${@}}"

If a particular package has export version1.2.4. 8, the generated import version resolves
to1.2.

*,version="[${version;==;${@}}, ${version;=+;${@}})"

If a particular package has export version1.2.4.8, the generated import version range
resolvesto [1.2,1.3).

*;version="[${version;==;${@}}, ${version;+;${@}})"

If a particular package has export version1.2.4.8, the generated import version range
resolvesto [1.2, 2).

The middle part of the version macro—for example, == or =+—formats the returned version
number. The equals sign, =, returns the corresponding version part unchanged; the plus sign, +,
returns the corresponding version part plus one; and the minus sign, -, returns the
corresponding version part minus one. For more details, consult the Bnd documentation for the
version macro and the -versionpolicy option.

NOTE

In practice, you are likely to find that the majority of imported packages can be
automatically versioned by Maven. It is, typically, only occasionally necessary to specify
a version manually.

Avoid importing packages that you export

Normally, it is not good practice to import the packages that you export (though there are exceptions
to this rule). Here are some guidelines to follow:

If the bundle is a pure library (providing interfaces and classes, but not instantiating any
classes or OSGi services), do not import the packages that you export.

If the bundle is a pure API (providing interfaces and abstract classes, but no implementation
classes), do not import the packages that you export.

If the bundle is a pure implementation (implementing and registering an OSGi service, but not
providing any API), you do not need to export any packages at all.

NOTE

The registered OSGi service must be accessible through an APl interface or
class, but it is presumed that this APl is provided in a separate API bundle. The
implementation bundle therefore needs to import the corresponding API
packages.

135

http://bnd.bndtools.org/chapters/850-macros.html
http://www.aqute.biz/Bnd/Versioning

Red Hat JBoss Fuse 6.2 Deploying into the Container

e A special case arises, if an implementation and its corresponding APl are combined into the

same bundle. In this case, the APl packages must be listed amongst the export packages and
amongst the import packages. This configuration is interpreted in a special way by the OSGi
framework: it actually means that the API packages will either be exported orimported at run
time (but not both).

The reason for this special configuration is that, in a complex OSGi application, it is possible
that an API package might be provided by more than one bundle. But you do not want multiple
copies of an API to be exported into OSGi, because that can lead to technical problems like
class cast exceptions. When a package is listed both in the exports and in the imports, the OSGi
resolver proceeds as follows:

1. First of all, the resolver checks whether the package has already been exported from
another bundle. If so, the resolver imports the package, but does not export it.

2. Otherwise, the resolver uses the local APl package and exports this package, but it does
not import the package.

Assuming you want to avoid importing the packages that you export, there are two alternative
approaches you can take, as follows:

o (Recommended) The most effective way of suppressing the import of exported packages is to

append the -noimport:=true setting to package patterns in the Export-Package
instruction. For example:

<Export-Package>
${project.artifactId}*;version=${project.version};-noimport:=true
</Export-Package>

The marked packages are now not imported, irrespective of what is contained in the Import-
Package instruction.

An alternative way of avoiding the import is to add one or more package exclusions to the
Maven bundle plug-in's Import-Package element (this was the only possibility in earlier
versions of the Maven bundle plug-in). For example, the following Import -Package element
instructs the Maven bundle plug-in to exclude all packages prefixed by the artifact ID,
${project.artifactId}:

<Import-Package>
I${project.artifactIid}*,
org.springframework.*;version="[2.5,4)",
org.apache.commons.logging. *;version="[1.1,2)",

*

</Import-Package>

Use optional imports with caution

When an imported package is specified with optional resolution, this allows the bundle to be resolved
without resolving the optional package. This affects the resolution order of the bundles which, in turn,
can affect the runtime behavior. You should therefore be careful with optional imports, in case they
have some unintended side effects.

A package is optional when it appears in the Import -Package manifest header with the
resolution:="optional" setting appended to it. For example, the following example shows an
Import-Package instruction for the Maven bundle plug-in that specifies an optional import:

136

APPENDIX B. OSGI BEST PRACTICES

<Import-Package>
org.springframework.*;version="[2.5,4)",
org.apache.commons.logging.*;version="[1.1,2)";resolution:="optional",
*

</Import-Package>

Avoid using the Require-Bundle header

Avoid using the Require-Bundle header, if possible. The trouble with using the Require-Bundle
header is that it forces the OSGi resolver to use packages from the specified bundle. Importing at the
granularity of packages, on the other hand, allows the resolver to be more flexible, because there are
fewer constraints: if a package is already available and resolved from another bundle, the resolver
could use that package instead.

B.3. SAMPLE POM FILE

POM file

Example B.1, “Sample POM File lllustrating Best Practices” shows a sample POM that illustrates the
best practices for building an OSGi bundle using Maven.

Example B.1. Sample POM File lllustrating Best Practices
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.fusesource</groupld>
<artifactId>org.fusesource.fooProject</artifactId>
<packaging>bundle</packaging>
<version>1.0-SNAPSHOT</version>

<name>A fooProject 0SGi Bundle</name>
<url>http://www.myorganization.org</url>

<dependencies>...</dependencies>

<build>
<plugins>
<plugin>
<groupId>org.apache.felix</groupId>
<artifactId>maven-bundle-plugin</artifactId>
<configuration>
<instructions>
<Bundle-SymbolicName>${project.artifactId}</Bundle-
SymbolicName>
<Export-Package>
I${project.artifactId}.impl.*,
${project.artifactId}*;version=${project.version}; -
noimport:=true
</Export-Package>

137

Red Hat JBoss Fuse 6.2 Deploying into the Container

<Import-Package>
org.springframework.*;version="[2.5,4)",
org.apache.commons.logging.*;version="[1.1,2)",
*

</Import-Package>

</instructions>
</configuration>
</plugin>

</plugins>
</build>

</project>

138

APPENDIX C. PAX-EXAM TESTING FRAMEWORK

APPENDIX C. PAX-EXAM TESTING FRAMEWORK

Abstract

When it is time to start testing your application bundles in the OSGi container, it is recommended that
you perform the testing using the Pax-Exam testing framework.

C.1.INTRODUCTION TO PAX-EXAM

Overview

Pax-Exam is an automated testing framework for running tests in an OSGi container. Consider the
manual steps that would be needed to run tests in an OSGi container:

1. Set up the environment and initial options for the OSGi container.

2. Start the OSGi container.

3. Install the prerequisite bundles into the OSGi container (provisioning).
4. Install and run the test classes.

Using Pax-Exam you can automate and simplify this testing procedure. Initialization options and
provisioning options are performed by a configuration method in the test class. The Pax-Exam
framework takes care of starting the OSGi container and before running the test class bundle.

This section gives a brief introduction to the Pax-Exam testing framework and explains how to write a
basic example using Apache Karaf.
JUnit 4 framework

JUnit 4 is the latest version of the JUnit Java testing suite. What distinguishes JUnit 4 from earlier
versions is that JUnit 4 defines a test by applying Java annotations (in contrast to earlier versions of
JUnit, which used inherited classes and naming conventions).

The simplest JUnit tests require just two steps:

1. Specify which methods are the test methods by annotating them with the @org. junit.Test
annotation.

2. At any point in the test method, define an assertion by calling assertTrue () with a boolean
argument (you also need to include a static import of org. junit.Assert.assertTrue() in
the file). The test succeeds, if the specified assertions all evaluate to true.

Integration with Pax-Exam

To integrate JUnit 4 with Pax-Exam, perform the following steps:

1. Customize JUnit to run the test in the Pax-Exam test runner class—JUnit allows you to
delegate control over a test run to a custom runner class (by defining a runner class that
inherits from org. junit.runner.Runner). In order to integrate JUnit with Pax-Exam, add a
@RunWith annotation to the test class as follows:

139

http://www.junit.org

Red Hat JBoss Fuse 6.2 Deploying into the Container

import org.junit.runner.RunWith;
import org.ops4j.pax.exam.junit.JUnit4TestRunner;

@RunWith(JUnit4TestRunner.class)
public class MyTest {

}

2. Add a Pax-Exam configuration method to the test class—in order to run a test in an OSGi
framework, you need to initialize the OSGi container properly and install any prerequisite
bundles. These essential steps are performed by returning the appropriate options from the
Pax-Exam configuration method. This method is identified by the @Configuration
annotation as follows:

import org.ops4j.pax.exam.junit.Configuration;

@Configuration
public static Option[] configuration() throws Exception {

}

3. Use the Pax-Exam fluent API to configure the OSGi framework—there are a fairly large number
of settings and options that you can return from the Pax-Exam configuration method. In order
to define these options efficiently, Pax-Exam provides a fluent API, which is defined mainly by
the following classes:

org.ops4j.pax.exam.CoreOptions

Provides basic options for setting up the OSGi container. For example, this class provides
options to set Java system properties (systemProperty()), define URLs (as a string,
url(), orasan Mvn URL, maven()), and select OSGi frameworks (for example, felix()
or equinox()).

org.ops4j.pax.exam.OptionUtils

Provides utilities for manipulating arrays of options and composite options.

org.ops4j.pax.exam.container .def.PaxRunnerOptions

Provides options for starting the OSGi container and for provisioning features and bundles.
For example, the scanFeatures() and scanBundle() methods can be used to find and
install features and bundles in the OSGi container before running the test.

Integration with Apache Karaf

Theoretically, Pax-Exam provides all of the features that are needed to run an OSGi framework
embedded in Apache Karaf. In practice, however, there are a lot of Java system properties and
configuration options that need to be set in order to initialize Apache Karaf. It would be a nuisance, if
all of these properties and options needed to be specified explicitly in the Pax-Exam configuration
method.

In order to simplify running Pax-Exam in Apache Karaf, helper classes are provided, which
automatically take care of initializing the OSGi framework for you. The following classes are provided:

org.apache.karaf.testing.AbstractIntegrationTest

140

APPENDIX C. PAX-EXAM TESTING FRAMEWORK

Provides some helper methods, particularly the getOsgiService() methods which make it easy
to find an OSGi service, by specifying the Java type of the service or by specifying service
properties.

org.apache.karaf.testing.Helper

Provides the Helper .getDefaultOptions () method, which configures all of the settings needed
to start up Apache Karaf in a default configuration.

Maven dependencies
Example C.1, “Pax-Exam and Related Maven Dependencies” shows the Maven dependencies you need
in order to run the Pax-Exam testing framework. You must specify dependencies on JUnit 4, Pax-
Exam, and Apache Karaf tooling.
Example C.1. Pax-Exam and Related Maven Dependencies
<project ...>
<properties>
<junit-version>4.4</junit-version>
<pax-exam-version>1.2.0</pax-exam-version>
<felix.karaf.version>1.4.0-fuse-01-00</felix.karaf.version>
</properties>
<dependencies>
<!-- Pax-Exam dependencies -->
<dependency>
<groupId>org.ops4j.pax.exam</groupId>
<artifactId>pax-exam</artifactId>
<version>${pax-exam-version}</version>
</dependency>
<dependency>
<groupId>org.ops4j.pax.exam</groupId>
<artifactId>pax-exam-junit</artifactId>
<version>${pax-exam-version}</version>
</dependency>
<dependency>
<groupId>org.ops4j.pax.exam</groupId>
<artifactId>pax-exam-container-default</artifactId>
<version>${pax-exam-version}</version>
</dependency>
<dependency>
<groupId>org.ops4j.pax.exam</groupId>
<artifactId>pax-exam-junit-extender-impl</artifactId>

<version>${pax-exam-version}</version>
</dependency>

<!-- JUnit dependencies -->
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>${junit-version}</version>
</dependency>

141

Red Hat JBoss Fuse 6.2 Deploying into the Container

<!-- Apache Karaf integration -->

<dependency>
<groupId>org.apache.karaf.tooling</groupId>
<version>${felix.karaf.version}</version>

<artifactId>org.apache.karaf.tooling.testing</artifactId>
<scope>test</scope>

</dependency>
</dependencies>

</project>

This example uses custom properties to specify the versions of the various Maven artifacts.

References

To learn more about using the Pax-Exam testing framework, consult the following references:
e JUnit 4 testing framework on the JUnit Web site.
e The Pax-Exam reference guide on the Pax-Exam Web site.

e Source code for the sample FeatureTest class.

C.2. SAMPLE PAX-EXAM TEST CLASS

Sample test class

Example C.2, “FeaturesText Class” shows an example of how to write a test class for Apache Karafin
the Pax-Exam testing framework. The FeaturesText class configures the Apache Karaf environment,
installs the obr and wrapper features, and then runs a test against the two features (where the obr
and wrapper features implement particular sets of commands in the command console).

Example C.2. FeaturesText Class
// Java
/*
* Licensed to the Apache Software Foundation (ASF)
*/. ..
package org.apache.karaf.shell.itests;

*
import org.apache.karaf.testing.AbstractIntegrationTest;
import org.apache.karaf.testing.Helper;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.ops4j.pax.exam.Option;
import org.ops4j.pax.exam.junit.Configuration;
import org.ops4j.pax.exam.junit.JUnit4TestRunner;
import org.osgi.service.blueprint.container.BlueprintContainer;
import org.osgi.service.command.CommandProcessor;
import org.osgi.service.command.CommandSession;

142

http://www.junit.org/
http://team.ops4j.org/wiki/display/paxexam/Documentation
http://team.ops4j.org/wiki/display/paxexam/Pax+Exam
http://svn.apache.org/repos/asf/karaf/attic/karaf/trunk/itests/src/test/java/org/apache/karaf/itests/FeatureTest.java

APPENDIX C. PAX-EXAM TESTING FRAMEWORK

import static org.junit.Assert.assertNotNull;

import static org.ops4j.pax.exam.CoreOptions.felix;

import static org.ops4j.pax.exam.CoreOptions.maven;

import static org.ops4j.pax.exam.CoreOptions.systemProperty;

import static org.ops4j.pax.exam.CoreOptions.waitForFrameworkStartup;
import static org.ops4j.pax.exam.OptionUtils.combine;

import static
org.ops4j.pax.exam.container.def.PaxRunnerOptions.scanFeatures;

import static
org.ops4j.pax.exam.container.def.PaxRunnerOptions.workingDirectory;

RunWith(JUnit4TestRunner.class)
epublic class FeaturesTest extends AbstractIntegrationTest {

9 @Test

public void testFeatures() throws Exception {

// Make sure the command services are available

assertNotNull(getOsgiService(BlueprintContainer.class,
"osgi.blueprint.container.symbolicname=org.apache.karaf.shell.obr",
20000));

assertNotNull(getOsgiService(BlueprintContainer.class,
"osgi.blueprint.container.symbolicname=org.apache.karaf.shell.wrapper",
20000));

// Run some commands to make sure they are installed properly

CommandProcessor cp = getOsgiService(CommandProcessor.class);

CommandSession cs = cp.createSession(System.in, System.out,
System.err);

cs.execute("obr:listUrl");

cs.execute("wrapper:install --help");

cs.close();

6 @Configuration
public static Option[] configuration() throws Exception{

6 return combine(
// Default karaf environment
ﬂ Helper.getDefaultOptions(

// this is how you set the default log level when
using pax logging (logProfile)

systemProperty("org.ops4j.pax.logging.DefaultServicelLog.level").value("D
EBUG")),

// add two features
e scanFeatures(

maven().groupId("org.apache.karaf").artifactId("apache-felix-

karaf").type("xml").classifier("features").versionAsInProject(),
"obr", "wrapper"

)
workingDirectory("target/paxrunner/features/"),

€!> waitForFrameworkStartup(),

143

Red Hat JBoss Fuse 6.2 Deploying into the Container

o

144

// Test on the felix 0SGi framework

@ felix()

);

The @RunWith annotation instructs JUnit 4 to run the following test with the Pax-Exam test
runner class, JUnit4TestRunner. This is the key step to integrate JUnit 4 with the Pax-Exam
testing framework.

In order to integrate this JUnit test properly with Apache Karaf, you are required to derive this
test class from org.apache.karaf.testing.AbstractIntegrationTest.

The AbstractIntegrationTest base class also provides some helper methods that access the
bundle context: getOsgiService () methods, for obtaining a reference to an OSGi service, and
the getInstalledBundle() method, for obtaining a reference to an
org.osgi.framework.bundle object.

The @Test annotation is a standard JUnit 4 annotation that identifies the following method as a
test method that is to be executed in the testing framework.

This line gives an example of how to use the getOsgiService() helper method to obtain an
OSGi service from the OSGi container. In this example, the service is identified by specifying its
Java type,org.osgi.service.command.CommandProcessor. The CommandProcessor
service is the Apache Karaf service that has the capability to process console commands.

The @Configuration annotation is a Pax-Exam-specific annotation that marks the following the
method as the configuration method that sets Pax-Exam testing options. The configuration
method must be declared as public static and must have areturn value of type,
org.ops4j.pax.exam.Option[].

The OptionUtils.combine() method combines a given options array (of Option[] type)in
the first argument with the options in the remaining arguments, returning an options array that
contains all of the options.

The getDefaultOptions() method from the org.apache.karaf.testing.Helper class
returns an options array containing all of the system property settings and option settings
required to initialize Apache Karaf for the Pax-Exam testing framework.

If there are any Java system properties in the Apache Karaf environment that you would like to
customize, you can pass the properties as optional arguments to the getDefaultOptions()
method. In the example shown here, the system property for the Pax logging level is set to DEBUG.

The Pax-Exam framework supports the concept of Apache Karaf features (see Chapter 8,
Deploying Features). You can use the PaxRunnerOptions.scanFeatures() method to install
specific features in the OSGi container before the test is run.

The location of the relevant features repositoryis specified by passing a Pax URL as the first
argument to scanFeatures(). In this example, the URL is constructed by creating a Pax Mvn
URL (see Section A.3, “Mvn URL Handler”) with the fluent API from the CoreOptions class.
Subsequent arguments specify which features to install—in this example, the obr and wrapper
features.

INDEX

Q TheworkingDirectory() option specifies the directory where the Pax Runner provisioning
module looks for OSGi bundles.

@ The waitForFrameworkStartup() specifies that the testing framework should wait for a
default length of time (five minutes) for the OSGi framework to start up before timing out. To
specify the timeout explicitly, you could use the waitForFrameworkStartupFor (long
millis) method instead, where the timeout is specified in milliseconds.

m The felix () option is used to specify that the test should be run in the Felix OSGI framework.

INDEX
A
artifacts
loading to a fabric, Loading artifacts into the fabric's repository
B

broker.xml, Broker configuration

Bundle-Name, Setting a bundle's name
Bundle-SymbolicName, Setting a bundle's symbolic name
Bundle-Version, Setting a bundle's version

bundles, OSGi Bundles

exporting packages, Specifying exported packages
importing packages, Specifying imported packages
lifecycle states, Bundle lifecycle states

name, Setting a bundle's name

private packages, Specifying private packages
symbolic name, Setting a bundle's symbolic name

version, Setting a bundle's version

C

class loading, Class Loading in OSGi

Conditional Permission Admin service, OSGi framework services
Configuration Admin service, 0SGi Compendium services

console, Red Hat JBoss Fuse

D

default broker

configuration, Broker configuration

145

Red Hat JBoss Fuse 6.2 Deploying into the Container

data directory, Broker data

disabling, Disabling the default broker

default repositories, Default repositories

E

execution environment, OSGi architecture

Export-Package, Specifying exported packages

F

fabric

loading artifacts, Loading artifacts into the fabric's repository

locating artifacts, Procedure for locating artifacts

|
Import-Package, Specifying imported packages

io.fabric8.mq.fabric.server-default.cfg, Broker configuration

J

JBoss Fuse, Red Hat JBoss Fuse

console, Red Hat JBoss Fuse

L
lifecycle layer, OSGi architecture

lifecycle states, Bundle lifecycle states

M

Maven

installing to a fabric, Loading artifacts into the fabric's repository
local repository, Local repository

remote repositories, Remote repositories

module layer, OSGi architecture

o

org.ops4j.pax.url.mvn.localRepository.localRepository, Local repository
org.ops4j.pax.url.mvn.localRepository.settings, Local repository

org.ops4j.pax.url.mvn.repositories, Default repositories, Remote repositories

146

0SGi Compendium services, 0SGi Compendium services

Configuration Admin service, 0SGi Compendium services

0SGi framework, OSGi Framework

bundles, OSGi architecture

execution environment, OSGi architecture
lifecycle layer, OSGi architecture

module layer, OSGi architecture

security layer, OSGi architecture

service layer, OSGi architecture

0OSGi framework services, OSGi framework services

Conditional Permission Admin service, OSGi framework services

Package Admin service, OSGi framework services

Permission Admin service, OSGi framework services

Start Level service, 0SGi framework services

URL Handlers service, OSGi framework services

OSGi service registry, OSGi service registry

OSGi services, OSGi Services

service invocation model, Service invocation model

service registry, OSGi service registry

P

Package Admin service, OSGi framework services
Permission Admin service, OSGi framework services

Private-Package, Specifying private packages

R

remote repositories, Remote repositories

repositories

default, Default repositories

remote, Remote repositories

S

security layer, OSGi architecture

INDEX

147

Red Hat JBoss Fuse 6.2 Deploying into the Container

service layer, OSGi architecture

Start Level service, O0SGi framework services

U

URL Handlers service, OSGi framework services

148

	Table of Contents
	PART I. THE RED HAT JBOSS FUSE CONTAINER
	CHAPTER 1. RED HAT JBOSS FUSE OVERVIEW
	1.1. RED HAT JBOSS FUSE CONTAINER ARCHITECTURE
	Overview
	Deployment models
	Spring framework
	Blueprint framework
	OSGi core framework
	Red Hat JBoss Fuse kernel

	1.2. DEPLOYMENT MODELS
	Overview
	OSGi bundle deployment model
	WAR deployment model

	1.3. DEPENDENCY INJECTION FRAMEWORKS
	Dependency injection
	OSGi framework extensions
	Activating a framework
	Blueprint XML file location
	Spring XML file location

	1.4. SYNCHRONOUS COMMUNICATION
	Overview
	OSGi services
	OSGi registry
	Dynamic interaction between bundles

	1.5. ASYNCHRONOUS COMMUNICATION
	JMS broker

	1.6. FUSE FABRIC
	Overview
	Bundle deployment
	Things to consider

	CHAPTER 2. DEPENDENCY INJECTION FRAMEWORKS
	2.1. SPRING AND BLUEPRINT FRAMEWORKS
	Overview
	Prefer Blueprint over Spring-DM
	Configuration files
	Prerequisites for blueprint configuration
	Spring configuration file
	Blueprint configuration file

	2.2. HOT DEPLOYMENT
	Types of configuration file
	Hot deploy directory
	Prerequisites
	Default bundle version
	Customizing the bundle version
	Specifying the bundle version in a Spring XML file
	Specifying the bundle version in a Blueprint XML file

	2.3. USING OSGI CONFIGURATION PROPERTIES
	Overview
	Persistent ID
	Blueprint example
	Using multiple property placeholders in Blueprint

	CHAPTER 3. BUILDING WITH MAVEN
	3.1. MAVEN DIRECTORY STRUCTURE
	Overview
	Standard directory layout
	pom.xml file
	src and target directories
	main and test directories
	java directory
	resources directory
	Spring integration
	Blueprint container

	3.2. PREPARING TO USE MAVEN
	Overview
	Prerequisites
	Adding the Red Hat JBoss Fuse repository
	Artifacts
	Maven coordinates

	CHAPTER 4. LOCATING DEPENDENCIES
	4.1. UNDERSTANDING WHERE RED HAT JBOSS FUSE BUNDLES ARE STORED
	Overview
	Core Red Hat JBoss Fuse features
	Optional Red Hat JBoss Fuse features
	Custom offline repository

	4.2. LOCATING MAVEN ARTIFACTS AT BUILD TIME
	Overview
	Procedure for locating artifacts
	Configuration
	Local repository
	Internal repositories
	Remote repositories

	4.3. LOCATING MAVEN ARTIFACTS AT RUN TIME
	Overview
	Procedure for locating artifacts
	Default repositories
	Local repository
	Remote repositories

	4.4. LOCATING ARTIFACTS IN A FABRIC
	Overview
	Procedure for locating artifacts
	Loading artifacts into the fabric's repository

	4.5. GENERATING A CUSTOM OFFLINE REPOSITORY
	Use case for a custom offline repository
	features-maven-plugin Maven plug-in
	Steps to generate a custom repository
	Create a POM file
	Add the features-maven-plugin
	Specify the features to download
	Specify the feature repositories
	Specify the Red Hat JBoss Fuse system repository
	Specify the remote repositories
	Generate the offline repository
	Install the offline repository

	PART II. OSGI BUNDLE DEPLOYMENT MODEL
	CHAPTER 5. INTRODUCTION TO OSGI
	5.1. RED HAT JBOSS FUSE
	Overview
	Red Hat JBoss Fuse

	5.2. OSGI FRAMEWORK
	Overview
	OSGi architecture

	5.3. OSGI SERVICES
	Overview
	OSGi service registry
	Event notification
	Service invocation model
	OSGi framework services
	OSGi Compendium services

	5.4. OSGI BUNDLES
	Overview
	Class Loading in OSGi

	CHAPTER 6. BUILDING AN OSGI BUNDLE
	6.1. GENERATING A BUNDLE PROJECT
	Generating bundle projects with Maven archetypes
	Apache CXF karaf-soap-archetype archetype
	Apache Camel archetype
	Building the bundle

	6.2. MODIFYING AN EXISTING MAVEN PROJECT
	Overview
	Change the package type to bundle
	Add the bundle plug-in to your POM
	Customize the bundle plug-in
	Customize the JDK compiler version

	6.3. PACKAGING A WEB SERVICE IN A BUNDLE
	Overview
	Modifying the POM file to generate a bundle
	Mandatory import packages
	Sample Maven bundle plug-in instructions
	Add a code generation plug-in
	OSGi configuration properties

	6.4. CONFIGURING THE BUNDLE PLUG-IN
	Overview
	Configuration properties
	Setting a bundle's symbolic name
	Setting a bundle's name
	Setting a bundle's version
	Specifying exported packages
	Specifying private packages
	Specifying imported packages
	More information

	CHAPTER 7. DEPLOYING AN OSGI BUNDLE
	7.1. HOT DEPLOYMENT
	Hot deploy directory

	7.2. MANUAL DEPLOYMENT
	Overview
	Installing a bundle
	Uninstalling a bundle
	URL schemes for locating bundles

	7.3. LIFECYCLE MANAGEMENT
	Bundle lifecycle states
	Installing and resolving bundles
	Starting and stopping bundles
	Bundle start level
	Specifying a bundle's start level
	System start level

	7.4. TROUBLESHOOTING DEPENDENCIES
	Missing dependencies
	Required features or bundles are not installed
	Import-Package header is incomplete
	How to track down missing dependencies

	CHAPTER 8. DEPLOYING FEATURES
	8.1. CREATING A FEATURE
	Overview
	Create a custom feature repository
	Add a feature to the custom feature repository
	Add the local repository URL to the features service
	Add dependent features to the feature
	Add OSGi configurations to the feature
	Automatically deploy an OSGi configuration

	8.2. DEPLOYING A FEATURE
	Overview
	Installing at the console
	Uninstalling at the console
	Hot deployment
	Adding a feature to the boot configuration

	CHAPTER 9. DEPLOYING A PLAIN JAR
	9.1. BUNDLE TOOL (BND)
	About the bnd tool
	Downloading and installing bnd
	References

	9.2. CONVERTING A JAR USING BND
	Overview
	Sample JAR file
	Bnd print command
	Bnd wrap command
	Checking the new bundle headers
	Default property file
	Defining a custom property file
	Wrapping with the custom property file

	9.3. CONVERTING A JAR USING THE WRAP SCHEME
	Overview
	Syntax
	Default properties
	Wrap and install
	Feature example
	Reference

	CHAPTER 10. OSGI BUNDLE TUTORIALS
	10.1. GENERATING AND RUNNING AN EIP BUNDLE
	Overview
	Prerequisites
	Generating an EIP bundle
	Running the EIP bundle

	10.2. GENERATING AND RUNNING A WEB SERVICES BUNDLE
	Overview
	Prerequisites
	Generating a Web services bundle
	Modifying the bundle instructions
	Running the Web services bundle

	PART III. WAR DEPLOYMENT MODEL
	CHAPTER 11. BUILDING A WAR
	11.1. MODIFYING AN EXISTING MAVEN PROJECT
	Overview
	Change the package type to WAR
	Customize the JDK compiler version
	Store resources under webapp/WEB-INF
	Customize the Maven WAR plug-in
	Building the WAR

	11.2. BOOTSTRAPPING A CXF SERVLET IN A WAR
	Overview
	Example
	cxf-servlet.xml file
	Reference

	11.3. BOOTSTRAPPING A SPRING CONTEXT IN A WAR
	Overview
	Bootstrapping a Spring context in a WAR
	Maven dependency

	CHAPTER 12. DEPLOYING A WAR
	12.1. CONVERTING THE WAR USING THE WAR SCHEME
	Overview
	Syntax
	Prerequisite
	Deploying a WAR file
	Accessing the Web application
	Default conversion parameters
	Customizing the conversion parameters
	References

	12.2. CONFIGURING THE WEB CONTAINER
	Overview
	Configuration file
	Customizing the HTTP port
	Enabling SSL/TLS security
	Reference

	PART IV. OSGI SERVICE LAYER
	CHAPTER 13. OSGI SERVICES
	13.1. THE BLUEPRINT CONTAINER
	13.1.1. Blueprint Configuration
	Location of blueprint files in a JAR file
	Location of blueprint files in a Maven project
	Blueprint namespace and root element
	Blueprint Manifest configuration
	Custom Blueprint file locations
	Mandatory dependencies

	13.1.2. Defining a Service Bean
	Overview
	Blueprint bean element
	Sample beans
	Differences between Blueprint and Spring
	References

	13.1.3. Exporting a Service
	Overview
	Exporting with a single interface
	Exporting with multiple interfaces
	Exporting with auto-export
	Setting service properties
	Default service properties
	Specifying a ranking attribute
	Specifying a registration listener

	13.1.4. Importing a Service
	Overview
	Managing service references
	Reference manager
	Reference list manager
	Matching by interface (stateless)
	Matching by interface (stateful)
	Matching by interface and component name
	Matching service properties with a filter
	Specifying whether mandatory or optional
	Specifying a reference listener

	13.2. PUBLISHING AN OSGI SERVICE
	Overview
	Prerequisites
	Generating a Maven project
	Customizing the POM file
	Writing the service interface
	Writing the service class
	Writing the blueprint file
	Running the service bundle

	13.3. ACCESSING AN OSGI SERVICE
	Overview
	Prerequisites
	Generating a Maven project
	Customizing the POM file
	Writing the Blueprint file
	Writing the client class
	Running the client bundle

	13.4. INTEGRATION WITH APACHE CAMEL
	Overview
	Registry chaining
	Sample OSGi service interface
	Sample service export
	Invoking the OSGi service from Java DSL
	Invoking the OSGi service from XML DSL

	CHAPTER 14. JMS BROKER
	14.1. WORKING WITH THE DEFAULT BROKER
	Overview
	Broker configuration
	Broker data
	Disabling the default broker

	14.2. JMS ENDPOINTS IN A ROUTER APPLICATION
	Overview
	Prerequisites
	Router configuration
	Camel activemq component
	Sample routes
	Steps to run the example

	APPENDIX A. URL HANDLERS
	A.1. FILE URL HANDLER
	Syntax
	Examples

	A.2. HTTP URL HANDLER
	Syntax

	A.3. MVN URL HANDLER
	Overview
	Syntax
	Omitting coordinates
	Specifying a version range
	Configuring the Mvn URL handler
	Check the Mvn URL settings
	Edit the configuration file
	Customize the location of the local repository
	Reference

	A.4. WRAP URL HANDLER
	Overview
	Syntax
	Default instructions
	Examples
	Reference

	A.5. WAR URL HANDLER
	Overview
	Syntax
	WAR-specific properties/instructions
	Default instructions
	Examples
	Reference

	APPENDIX B. OSGI BEST PRACTICES
	B.1. OSGI TOOLING
	Overview
	Use the Maven bundle plug-in to generate the Manifest
	Avoid using the OSGi API directly
	Prefer Blueprint over Spring-DM
	Use Apache Karaf features to group bundles together
	Use the OSGi Configuration Admin service
	Use PAX-Exam for testing

	B.2. BUILDING OSGI BUNDLES
	Overview
	Use package prefix as the bundle symbolic name
	Artifact ID should be derived from the bundle symbolic name
	Always export packages with a version
	Use naming convention for private packages
	Import packages with version ranges
	Avoid importing packages that you export
	Use optional imports with caution
	Avoid using the Require-Bundle header

	B.3. SAMPLE POM FILE
	POM file

	APPENDIX C. PAX-EXAM TESTING FRAMEWORK
	C.1. INTRODUCTION TO PAX-EXAM
	Overview
	JUnit 4 framework
	Integration with Pax-Exam
	Integration with Apache Karaf
	Maven dependencies
	References

	C.2. SAMPLE PAX-EXAM TEST CLASS
	Sample test class

	INDEX

