
Red Hat JBoss Fuse Documentation Team

Red Hat JBoss Fuse
6.2.1
Fuse Integration Services 1.0 for
OpenShift

Installing and developing with Red Hat JBoss Fuse Integration Services for
OpenShift

Red Hat JBoss Fuse 6.2.1 Fuse Integration Services 1.0 for OpenShift

Installing and developing with Red Hat JBoss Fuse Integration Services for
OpenShift

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
Guide to using Fuse Integration Services 1.0 for OpenShift

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. WHAT IS JBOSS FUSE INTEGRATION SERVICES?

CHAPTER 2. BEFORE YOU BEGIN
2.1. COMPARISON: FUSE AND FUSE INTEGRATION SERVICES
2.2. VERSION COMPATIBILITY AND SUPPORT
2.3. INITIAL SETUP

CHAPTER 3. GET STARTED
3.1. MAVEN ARCHETYPES CATALOG
3.2. CREATE AN APPLICATION FROM THE MAVEN ARCHETYPE CATALOG
3.3. FABRIC8 MAVEN WORKFLOW
3.4. OPENSHIFT SOURCE-TO-IMAGE (S2I) WORKFLOW
3.5. DEVELOPING APPLICATIONS

3
3

4
4
4
4

5
5
6
6

10
12

Table of Contents

1

Red Hat JBoss Fuse 6.2.1 Fuse Integration Services 1.0 for OpenShift

2

CHAPTER 1. INTRODUCTION

1.1. WHAT IS JBOSS FUSE INTEGRATION SERVICES?

Red Hat JBoss Fuse Integration Services provides a set of tools and containerized xPaaS images
that enable development, deployment, and management of integration microservices within
OpenShift.

Important

There are significant differences in supported configurations and functionality in Fuse
Integration Services compared to the standalone JBoss Fuse product.

CHAPTER 1. INTRODUCTION

3

CHAPTER 2. BEFORE YOU BEGIN

2.1. COMPARISON: FUSE AND FUSE INTEGRATION SERVICES

There are several major functionality differences:

Fuse Management Console is not included as Fuse administration views have been integrated
directly within the OpenShift Web Console.

An application deployment with Fuse Integration Services consists of an application and all
required runtime components packaged inside a Docker image. Applications are not deployed to
a runtime as with Fuse, the application image itself is a complete runtime environment deployed
and managed through OpenShift.

Patching in an OpenShift environment is different from standalone Fuse since each application
image is a complete runtime environment. To apply a patch, the application image is rebuilt and
redeployed within OpenShift. Core OpenShift management capabilities allow for rolling upgrades
and side-by-side deployment to maintain availability of your application during upgrade.

Provisioning and clustering capabilities provided by Fabric in Fuse have been replaced with
equivalent functionality in Kubernetes and OpenShift. There is no need to create or configure
individual child containers as OpenShift automatically does this for you as part of deploying and
scaling your application.

Messaging services are created and managed using the A-MQ for OpenShift image and not
included directly within Fuse. Fuse Integration Services provides an enhanced version of the
camel-amq component to allow for seamless connectivity to messaging services in OpenShift
through Kubernetes.

Live updates to running Karaf instances using the Karaf shell is strongly discouraged as updates
will not be preserved if an application container is restarted or scaled up. This is a fundamental
tenet of immutable architecture and essential to achieving scalability and flexibility within
OpenShift.

Additional details on technical differences and support scope are documented in an associated KCS
article.

2.2. VERSION COMPATIBILITY AND SUPPORT

See the xPaaS part of the OpenShift and Atomic Platform Tested Integrations page for details about
OpenShift image version compatibility.

2.3. INITIAL SETUP

The instructions in this guide follow on from and assume an OpenShift instance similar to that
created in the OpenShift Primer.

Red Hat JBoss Fuse 6.2.1 Fuse Integration Services 1.0 for OpenShift

4

https://access.redhat.com/articles/2112371
https://access.redhat.com/articles/2176281
https://access.redhat.com/documentation/en/red-hat-xpaas/0/openshift-primer/openshift-primer

CHAPTER 3. GET STARTED

You can start using Fuse Integration Services by creating an application and deploying it to
OpenShift using one of the following application development workflows:

Fabric8 Maven Workflow

OpenShift Source-to-Image (S2I) Workflow

Both workflows begin with creating a new project from a Maven archetype.

3.1. MAVEN ARCHETYPES CATALOG

The Maven Archetype catalog includes the following examples:

cdi-camel-http-archetype Creates a new Camel route using CDI in a
standalone Java Container calling the remote
camel-servlet quickstart

cdi-cxf-archetype Creates a new CXF JAX-RS using CDI running in a
standalone Java Container

cdi-camel-archetype Creates a new Camel route using CDI in a
standalone Java Container

cdi-camel-jetty-archetype Creates a new Camel route using CDI in a
standalone Java Container using Jetty as HTTP
server

java-simple-mainclass-archetype Creates a new Simple standalone Java Container
(main class)

java-camel-spring-archetype Creates a new Camel route using Spring XML in a
standalone Java container

karaf-cxf-rest-archetype Creates a new RESTful WebService Example
using JAX-RS

karaf-camel-rest-sql-archetype Creates a new Camel Example using Rest DSL
with SQL Database

CHAPTER 3. GET STARTED

5

karaf-camel-log-archetype Creates a new Camel Log Example

Begin by selecting the archetype which matches the type of application you would like to create.

3.2. CREATE AN APPLICATION FROM THE MAVEN ARCHETYPE
CATALOG

You must configure the Maven repositories, which hold the archetypes and artifacts you may need,
before creating a sample project:

JBoss Fuse repository:
https://repo.fusesource.com/nexus/content/groups/public/

RedHat GA repository: https://maven.repository.redhat.com/ga

Add above repositories to the dependency repositories section as well as plugin repositories section
of your .m2/settings.xml file. For more information on adding maven repositories, see
Preparing to use Maven section.

Use the maven archetype catalog to create a sample project with the required resources. The
command to create a sample project is:

$ mvn archetype:generate \
 -
DarchetypeCatalog=https://repo.fusesource.com/nexus/content/groups/publ
ic/archetype-catalog.xml \
 -DarchetypeGroupId=io.fabric8.archetypes \
 -DarchetypeVersion=2.2.0.redhat-079 \
 -DarchetypeArtifactId=<archetype-name>

Note

Replace <archetype-name> with the name of the archetype that you want to use. For
example, karaf-camel-log-archetype creates a new Camel log example.

This will create a maven project with all required dependencies. Maven properties and plug-ins that
are used to create Docker images are added to the pom.xml file.

3.3. FABRIC8 MAVEN WORKFLOW

Creates a new project based off a Maven application template created through Archetype catalog.
This catalog provides examples of Java and Karaf projects and supports S2I and Maven deployment
workflows.

1. Set the following environment variables to communicate with OpenShift and a Docker
daemon:

Red Hat JBoss Fuse 6.2.1 Fuse Integration Services 1.0 for OpenShift

6

https://repo.fusesource.com/nexus/content/groups/public/
https://maven.repository.redhat.com/ga
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html-single/Deploying_into_Apache_Karaf/index.html#Build-GenerateMaven

DOCKER_HOST Specifies the connection to a
Docker daemon used to build
an application Docker image

tcp://10.1.2.2:2375

KUBERNETES_MASTER Specifies the URL for
contacting the OpenShift API
server

https://10.1.2.2:844
3

KUBERNETES_DOMAIN Domain used for creating
routes. Your OpenShift API
server must be mapped to all
hosts of this domain.

openshift.dev

2. Login to OpenShift using CLI and select the project to which to deploy.

$ oc login

$ oc project <projectname>

3. Create a sample project as described in Create an Application from the Maven Archetype
Catalog.

4. Build and push the project to OpenShift. You can use following maven goals for building and
pushing docker images.

docker:build Builds the docker image for your maven
project.

docker:push Pushes the locally built docker image to the
global or a local docker registry. This step is
optional when developing on a single node
OpenShift cluster.

fabric8:json Generates kubernetes json file for your maven
project. This goal is bound to the package
phase and doesn’t need to be called explicitly
when running mvn install

fabric8:apply Applies the kubernetes json file to the current
Kubernetes environment and namespace.

CHAPTER 3. GET STARTED

7

There are few pre-configured maven profiles that you can use to build the project. These
profiles are combinations of above maven goals that simplify the build process.

mvn -Pf8-build Comprises of clean, install,
docker:build, and fabric8:json.
This will build dockerfile and JSON template
for a project.

mvn -Pf8-local-deploy Comprises of clean, install,
docker:build, fabric8:json, and
fabric8:apply. This will create docker
and JSON templates and then apply them to
OpenShift.

mvn -Pf8-deploy Comprises of clean, docker:build,
fabric8:json, docker:push, and
fabric8:apply. This will create docker
and JSON templates, push them to docker
registry and apply to OpenShift.

a. To deploy the application use -Pf8-deploy and fabric8:json goals which
create docker and JSON templates, push them to docker registry and apply to
OpenShift.

$ mvn -Pf8-deploy -Ddocker.registry=registry.openshift.dev
-Ddocker.username=$(oc whoami) -Ddocker.password=$(oc
whoami -t) -Dfabric8.dockerUser=$(oc project -q)/

$ mvn fabric8:json fabric8:apply -Dfabric8.dockerUser=$(oc
get svc docker-registry -n default -o 'jsonpath=
{.spec.clusterIP}:{.spec.ports[0].port}')/$(oc project -q)/

Note

The docker-registry pod and default namespace may differ from
environment to environment. You may or may not have access to pull
information on this object (depending on cluster configuration). Hence,
this command may not work in some cases and you may have to enter
the IP:PORT information manually.

b. When you are using OpenShift cluster, you may want to push your application to an
external registry. You can use -Pf8-deploy goal to build your application and
deploy it to external registry.

Red Hat JBoss Fuse 6.2.1 Fuse Integration Services 1.0 for OpenShift

8

$ mvn -Pf8-deploy -Ddocker.registry=registry.openshift.dev
-Ddocker.username=my-registry-user -Ddocker.password=my-
registry-password -
Dfabric8.dockerUser=registry.openshift.dev/fabric8/

For more information about exposing the registry refer Exposing the registry section
of OpenShift Enterpise Installation and Configuration guide

Note

In case of local development environment, it is not required to use docker:push. You
can use -Pf8-local-deploy goal which creates docker and JSON templates and then
apply them to OpenShift.

1. Login to OpenShift Web Console. A pod is created for the newly created application. You
can view the status of this pod, deployments and services that the application is creating.

3.3.1. Authenticating Against a Registry

For multi node OpenShift setups, the image created must be pushed to the OpenShift registry. This
registry must be reachable from the outside through a route. Authentication against this registry
reuses the OpenShift authentication with oc login. Assuming that your OpenShift registry is
exposed as registry.openshift.dev:80, the project image can be deployed to the registry
with following command:

$ mvn docker:push -Ddocker.registry=registry.openshift.dev:80 \
 -Ddocker.username=$(oc whoami) \
 -Ddocker.password=$(oc whoami -t)

To push changes to the registry, the OpenShift project must exist and the users of Docker image
must be connected to the OpenShift project. All the examples uses the property
fabric8.dockerUser as Docker image user which has fabric8/ as default (note the trailing
slash). When this user is used unaltered an OpenShift project 'fabric8' must exist. This can be
created with 'oc new-project fabric8'.

3.3.2. Plug-in Configuration

Plug-ins docker-maven-plugin and fabric8-maven-plugin are responsible for creating
Docker images and OpenShift API objects which can be configured flexibly. The examples from the
archetypes introduces some extra properties which can be changed when running Maven:

docker.registry Registry to use for docker:push and -Pf8-
deploy

docker.username Username for authentication against the registry

CHAPTER 3. GET STARTED

9

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/installation-and-configuration/#exposing-the-registry

docker.password Password for authentication against the registry

docker.from Base image for the application Docker image

fabric8.dockerUser User used in the image’s name as user part. It
must contain a / as trailing part. The default value
is fabric8/.

docker.image The final Docker image name. Default value is
${fabric8.dockerUser}${project.art
ifactId}:${project.version}

3.4. OPENSHIFT SOURCE-TO-IMAGE (S2I) WORKFLOW

Applications are created through OpenShift Admin Console and CLI using application templates. If
you have a JSON or YAML file that defines a template, you can upload the template to the project
using the CLI. This saves the template to the project for repeated use by users with appropriate
access to that project. You can add the remote Git repository location to the template using template
parameters. This allows you to pull the application source from remote repository and built using
source-to-image (S2I) method.

JBoss Fuse Integration Services application templates depend on S2I builder ImageStreams,
which MUST be created ONCE. The OpenShift installer creates them automatically. For users
existing OpenShift setups, it can be achieved with the following command:

$ oc create -n openshift -f /usr/share/openshift/examples/xpaas-
streams/fis-image-streams.json

The ImageStreams may be created in a namespace other than openshift by changing it in the
command and corresponding template parameter IMAGE_STREAM_NAMESPACE when creating
applications.

3.4.1. Create an Application Using Templates

1. Create an application template using command mvn archetype:generate. To create an
application, upload the template to your current project’s template library with the following
command:

$ oc create -f quickstart-template.json -n <project>

The template is now available for selection using the web console or the CLI.

2. Login to OpenShift Web Console. In the desired project, click Add to Project to create the
objects from an uploaded template.

3. Select the template from the list of templates in your project or from the global template
library.

Red Hat JBoss Fuse 6.2.1 Fuse Integration Services 1.0 for OpenShift

10

4. Edit template parameters and then click Create. For example, template parameters for a
camel-spring quickstart are:

Parameter Description Default

APP_NAME Application Name Artifact name of the project

GIT_REPO Git repository, required

GIT_REF Git ref to build master

SERVICE_NAME Exposed Service name

BUILDER_VERSION Builder version 1.0

APP_VERSION Application version Maven project version

MAVEN_ARGS Arguments passed to mvn in
the build

package -DskipTests
-e

MAVEN_ARGS_APPEND Extra arguments passed to
mvn, e.g. for multi-module
builds use -pl
groupId:module-
artifactId -am

ARTIFACT_DIR Maven build directory target/

IMAGE_STREAM_NAMESP
ACE

Namespace in which the
JBoss Fuse ImageStreams
are installed.

BUILD_SECRET generated if empty. The
secret needed to trigger a
build.

5. After successful creation of the application, you can view the status of application by clicking
Pods tab or by running the following command:

CHAPTER 3. GET STARTED

11

$ oc get pods

For more information, see Application Templates.

3.5. DEVELOPING APPLICATIONS

3.5.1. Injecting Kubernetes Services into Applications

You can inject Kubernetes services into applications by labeling the pods and use those labels to
select the required pods to provide a logical service. These labels are simple key, value pairs.

3.5.1.1. CDI Injection

Fabric8 provides a CDI extension that you can use to inject Kubernetes resources into your
applications. To use the CDI extension, first add the dependency to the project’s pom.xml file.

<dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric8-cdi</artifactId>
 <version>{$fabric8.version}</version>
</dependency>

Next step is to identify the field that requires the service and then inject the service by adding a
@ServiceName annotation to it. For example,

@Inject
@ServiceName("my-service")
private String service.

The @PortName annotation is used to select a specific port by name when multiple ports are
defined for a service.

3.5.1.2. Using Environment Variables as Properties

You can use to access a service by using environment variables to expose the fixed IP address and
port. These are, SERVICE_HOST and SERVICE_PORT. SERVICE_HOST is the host (IP) address of
the service and SERVICE_PORT is the port of the service.

Red Hat JBoss Fuse 6.2.1 Fuse Integration Services 1.0 for OpenShift

12

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/developer-guide#templates

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. WHAT IS JBOSS FUSE INTEGRATION SERVICES?

	CHAPTER 2. BEFORE YOU BEGIN
	2.1. COMPARISON: FUSE AND FUSE INTEGRATION SERVICES
	2.2. VERSION COMPATIBILITY AND SUPPORT
	2.3. INITIAL SETUP

	CHAPTER 3. GET STARTED
	3.1. MAVEN ARCHETYPES CATALOG
	3.2. CREATE AN APPLICATION FROM THE MAVEN ARCHETYPE CATALOG
	3.3. FABRIC8 MAVEN WORKFLOW
	3.3.1. Authenticating Against a Registry
	3.3.2. Plug-in Configuration

	3.4. OPENSHIFT SOURCE-TO-IMAGE (S2I) WORKFLOW
	3.4.1. Create an Application Using Templates

	3.5. DEVELOPING APPLICATIONS
	3.5.1. Injecting Kubernetes Services into Applications
	3.5.1.1. CDI Injection
	3.5.1.2. Using Environment Variables as Properties

