
Red Hat JBoss Fuse 6.2.1

Configuring and Running JBoss Fuse

Managing the runtime container

Last Updated: 2017-09-20

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

Managing the runtime container

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information and instructions for starting/stopping Red Hat JBoss Fuse, using
remote and child instances of the runtime, configuring Red Hat JBoss Fuse, configuring logging
for the entire runtime or per component application, configuring where persistent data (messages,
log files, OSGi bundles, transaction logs) is stored, and configuring failover deployments.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. CONFIGURING THE INITIAL FEATURES IN A STANDALONE CONTAINER
OVERVIEW
MODIFYING THE DEFAULT INSTALLED FEATURES
MODIFYING THE DEFAULT SET OF FEATURE URLS

CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM SERVICE
2.1. INSTALLING RED HAT JBOSS FUSE AS A SERVICE IN STANDALONE MODE
2.2. INSTALLING RED HAT JBOSS FUSE AS A SERVICE IN FABRIC MODE

CHAPTER 3. BASIC SECURITY
3.1. CONFIGURING BASIC SECURITY
3.2. DISABLING BROKER SECURITY

CHAPTER 4. STARTING AND STOPPING JBOSS FUSE
4.1. STARTING JBOSS FUSE
4.2. STOPPING JBOSS FUSE

CHAPTER 5. CREATING A NEW FABRIC
STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER
PROCEDURE
FABRIC CREATION PROCESS
EXPANDING A FABRIC

CHAPTER 6. JOINING A FABRIC
OVERVIEW
JOINING A FABRIC AS A MANAGED CONTAINER
JOINING A FABRIC AS AN NON-MANAGED CONTAINER
HOW TO JOIN A FABRIC
HOW TO DISCOVER THE URL OF A FABRIC SERVER

CHAPTER 7. SHUTTING DOWN A FABRIC
OVERVIEW
SHUTTING DOWN A MANAGED CONTAINER
SHUTTING DOWN A FABRIC SERVER
SHUTTING DOWN AN ENTIRE FABRIC
NOTE ON SHUTTING DOWN A COMPLETE FABRIC

CHAPTER 8. USING REMOTE CONNECTIONS TO MANAGE A CONTAINER
8.1. CONFIGURING A CONTAINER FOR REMOTE ACCESS
8.2. CONNECTING AND DISCONNECTING REMOTELY
8.3. STOPPING A REMOTE CONTAINER

CHAPTER 9. MANAGING CHILD CONTAINERS
9.1. STANDALONE CHILD CONTAINERS
9.2. FABRIC CHILD CONTAINERS

CHAPTER 10. DEPLOYING A NEW BROKER INSTANCE
OVERVIEW
STANDALONE CONTAINERS
EXAMPLE

CHAPTER 11. CONFIGURING JBOSS FUSE
11.1. INTRODUCING JBOSS FUSE CONFIGURATION
11.2. SETTING OSGI FRAMEWORK AND INITIAL CONTAINER PROPERTIES

5
5
5
5

6
6

14

19
19
22

23
23
25

28
28
28
30
30

32
32
32
32
32
34

35
35
35
35
35
36

38
38
38
46

47
47
50

53
53
53
54

55
55
58

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

11.3. CONFIGURING STANDALONE CONTAINERS USING THE COMMAND CONSOLE
11.4. CONFIGURING FABRIC CONTAINERS

CHAPTER 12. CONFIGURING THE HOT DEPLOYMENT SYSTEM
OVERVIEW
SPECIFYING THE HOT DEPLOYMENT FOLDER
SPECIFYING THE SCAN INTERVAL
EXAMPLE

CHAPTER 13. CONFIGURING JMX
OVERVIEW
CHANGING THE RMI PORT AND JMX URL
SETTING THE JMX USERNAME AND PASSWORD
TROUBLESHOOTING ON LINUX PLATFORMS

CHAPTER 14. CONFIGURING JAAS SECURITY
14.1. ALTERNATIVE JAAS REALMS
14.2. JAAS CONSOLE COMMANDS
14.3. STANDALONE REALM PROPERTIES FILE

CHAPTER 15. SECURING FABRIC CONTAINERS
DEFAULT AUTHENTICATION SYSTEM
MANAGING USERS
OBFUSCATING STORED PASSWORDS
ENABLING LDAP AUTHENTICATION

CHAPTER 16. LOGGING
16.1. LOGGING OVERVIEW
16.2. LOGGING CONFIGURATION
16.3. LOGGING PER APPLICATION
16.4. LOG COMMANDS

CHAPTER 17. PERSISTENCE
OVERVIEW
THE DATA FOLDER
CHANGING THE BUNDLE CACHE LOCATION
FLUSHING THE BUNDLE CACHE
CHANGING THE GENERATED-BUNDLE CACHE LOCATION
ADJUSTING THE BUNDLE CACHE BUFFER

CHAPTER 18. FAILOVER DEPLOYMENTS
18.1. USING A SIMPLE LOCK FILE SYSTEM
18.2. USING A JDBC LOCK SYSTEM
18.3. CONTAINER-LEVEL LOCKING

CHAPTER 19. APPLYING PATCHES
19.1. PATCHING OVERVIEW
19.2. FINDING THE RIGHT PATCHES TO APPLY
19.3. INSTALLING A ROLLUP PATCH AS A NEW INSTALLATION
19.4. PATCHING A STANDALONE CONTAINER
19.5. PATCHING A CUSTOM ASSEMBLY
19.6. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH
19.7. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL PATCH

CHAPTER 20. FABRIC MAVEN PROXIES
20.1. CLUSTER OF FABRIC MAVEN PROXIES

59
61

64
64
64
64
64

66
66
66
66
66

68
68
69
71

73
73
73
73
74

75
75
75
77
78

80
80
80
80
81
81
81

82
82
82
85

87
87
87
89
89
94
95

102

105
105

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

2

. .

. .

. .

. .

20.2. HOW A MANAGED CONTAINER RESOLVES ARTIFACTS
20.3. HOW A MAVEN PROXY RESOLVES ARTIFACTS
20.4. CONFIGURING MAVEN PROXIES DIRECTLY
20.5. CONFIGURING MAVEN PROXIES AND HTTP PROXIES THROUGH SETTINGS.XML
20.6. AUTOMATED DEPLOYMENT
20.7. FABRIC MAVEN CONFIGURATION REFERENCE

CHAPTER 21. MAVEN INDEXER PLUGIN

CHAPTER 22. WELCOME BANNER

CHAPTER 23. BRANDING JBOSS FUSE CONSOLE

INDEX

108
111
113
115
118
119

124

125

126

128

Table of Contents

3

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

4

CHAPTER 1. CONFIGURING THE INITIAL FEATURES IN A
STANDALONE CONTAINER

Abstract

If you are using a standalone container, you can change the features it automatically loads the first
time it is started.

OVERVIEW

The first time you start a standalone container, the container looks in the
etc/org.apache.karaf.features.cfg file to discover the feature URLs (feature repository
locations) and to determine which features it will load. By default, Red Hat JBoss Fuse loads a large
number of features and you may not need all of them. You may also decide you need features that are
not included in the default configuration.

WARNING

The features loaded by a Fabric Container are controlled by the container's
profiles. Changing the values as described below will have no effect on a Fabric
container.

The values in etc/org.apache.karaf.features.cfg are only used the first time the container is
started. On subsequent start-ups, the container uses the contents of the InstallDir/data directory
to determine what to load. If you need to adjust the features loaded into a container, you can delete the
data directory, but this will also destroy any state or persistence information stored by the container.

For more on features and how they are used in Red Hat JBoss Fuse, see chapter "Deploying Features"
in "Deploying into Apache Karaf".

MODIFYING THE DEFAULT INSTALLED FEATURES

By default, JBoss Fuse installs a large number of features, including some that you may not want to
deploy.

You can change the initial set of installed features by editing the featuresBoot property.

MODIFYING THE DEFAULT SET OF FEATURE URLS

JBoss Fuse registers a number of URLs that point to feature repositories on start-up. You can change
the initial set of feature URLs by editing the featureRepositories property.

CHAPTER 1. CONFIGURING THE INITIAL FEATURES IN A STANDALONE CONTAINER

5

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Deploying_into_Apache_Karaf/DeployFeatures.html

CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM
SERVICE

Abstract

You can install JBoss Fuse as a system service in standalone mode or in fabric mode. The process,
which varies between the two modes, involves installing and configuring the wrapper feature.

2.1. INSTALLING RED HAT JBOSS FUSE AS A SERVICE IN
STANDALONE MODE

Abstract

To install JBoss Fuse as a system service in standalone mode, you generate a service wrapper,
configure the wrapper for your system, and then install and start the service. You can set optional
environment variables that control aspects of the script that installs and removes the service.

2.1.1. Generating the Service Wrapper

Overview

The Red Hat JBoss Fuse console wrapper feature generates a wrapper around the JBoss Fuse
runtime instance. You use the wrapper to install the Apache Karaf container as a system service. The
wrapper feature is not installed by default in the console, so before you can generate the service
wrapper you must install the wrapper feature.

After the feature is installed the console gains a wrapper:install command. Running this command
generates a generic service wrapper in the JBoss Fuse installation.

Generating the service wrapper

1. Start JBoss Fuse in console mode with the fuse command.

2. Enter features:install wrapper.

The features:install command locates the required libraries to provision the wrapper
feature and deploys it into the runtime instance.

3. Generate the wrapper with the wrapper:install command in the following format:

The Table 2.1, “Wrapper Install Options” table describes the wrapper:install options.

Table 2.1. Wrapper Install Options

 wrapper:install -n <serviceName> -d <displayName> -D
<<description>

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

6

Option Default Description

-s AUTO_START (Windows only) Specifies the
mode in which the service is
installed. Valid values are
AUTO_START or
DEMAND_START.

-n karaf Specifies the service name
that will be used when
installing the service.

-d Specifies the display name of
the service.

-D Specifies the description of the
service.

-i --include Specifies an include statement
for the JSW wrapper
configuration. To specify
multiple include statement,
enter this option multiple
times.

-e --env Specifies environment variable
and values. To set multiple
environment variable and
values, enter this option
multiple times.

Results

The wrapper:install command generates the following wrapper files:

bin\ServiceName-wrapper[.exe]—the executable file for the wrapper.

bin\ServiceName-service[.bat]—the script used to install and remove the service.

etc\ServiceName-wrapper.conf—the wrapper configuration file.

The command also creates the following libraries that the service wrapper requires:

lib\libwrapper.so

lib\karaf-wrapper.jar

lib\karaf-wrapper-main.jar

2.1.2. Configuring the Batch Script

CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM SERVICE

7

Overview

You can set optional environment variables in the ServiceName-service[.bat] file to control the
script execution priority and system user assignment.

RUN_AS_USER

You can set the RUN_AS_USER variable to instruct the script to run from a specific user account. For
example, to run the script as the user mquser, uncomment the line #RUN_AS_USER and set the value
as follows:

IMPORTANT

Make sure that the specified user has the required privileges to write the PID file and
wrapper.log files. If you attempt to run the script from a user that cannot write the log
file, the wrapper will exit without logging an error message.

IMPORTANT

The RUN_AS_USER variable must not be used with Solaris.

PRIORITY

If you run the script on a UNIX or LINUX operating system, you can se the PRIORITY environment
variable to control the nice level of the service.

2.1.3. Configuring the Service Wrapper

Overview

You can configure the service wrapper in the ServiceName-wrapper.conf file, which is located
under the InstallDir/etc/ directory.

For example, you might want to change any of the following settings:

default environment settings

properties passed to the JVM

Classpath

JMX settings

logging settings

Default environment settings

The following environment variables determine the broker environment:

JAVA_HOME

Location of the Java runtime installation.

RUN_AS_USER=mquser

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

8

NOTE

On Windows, you can set JAVA_HOME either as a system variable only in the registry
or in ServiceName-wrapper.conf. You cannot set the variable as a regular
environment variable in the Environment Variables list.

KARAF_HOME

Location of the Red Hat JBoss Fuse installation.

KARAF_BASE

Location of the configuration data and OSGi data for the broker instance.

NOTE

Runtime OSGi data is stored in sub-directories of this directory.

KARAF_DATA

Location of the logging and persistance data for the broker instance.

Example 2.1, “Default Environment Settings” describes the default environment variable values.

Example 2.1. Default Environment Settings

JVM parameters

If you want to pass parameters to the JVM, you set the wrapper properties in the following format:

The parameter sequence number must be unique for each parameter.

You can also set Java system properties in the following format:

Example 2.2, “Default Java System Properties” shows the default Java properties.

Example 2.2. Default Java System Properties

set.default.KARAF_HOME=InstallDir
set.default.KARAF_BASE=InstallDir
set.default.KARAF_DATA=InstallDir\data

wrapper.java.additional.<param_sequence_number>

wrapper.java.additional.<n>=-DPropName=PropValue

JVM
note that n is the parameter number starting from 1.
wrapper.java.additional.1=-Dkaraf.home="%KARAF_HOME%"
wrapper.java.additional.2=-Dkaraf.base="%KARAF_BASE%"
wrapper.java.additional.3=-Dkaraf.data="%KARAF_DATA%"

CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM SERVICE

9

Additional classpath entries

You add classpath entries with the syntax format:

The sequence number must be unique for each classpath entry.

Example 2.3, “Default Wrapper Classpath” shows the default classpath entries.

Example 2.3. Default Wrapper Classpath

JMX configuration properties

The default service wrapper configuration does not enable JMX. However, it includes template
properties that you can set to enable JMX. For example, you can change the settings to use a different
port or secure the JMX connection.

Example 2.4, “Wrapper JMX Properties” shows the JMX template properties.

Example 2.4. Wrapper JMX Properties

1. Locate the following line: # Uncomment to enable jmx

2. Remove the prefix # from each of the properties.

3. Replace the n in each property with a sequence number. Make sure that the number adheres to
the sequence of all parameters and properties in the configuration file.

wrapper.java.additional.4=-Dcom.sun.managment.jmxremote
wrapper.java.additional.5=-Dkaraf.startLocalConsole=false
wrapper.java.additional.6=-Dkaraf.startRemoteShell=true
wrapper.java.additional.7=-
Djava.endorsed.dirs="%JAVA_HOME%/jre/lib/endorsed;%JAVA_HOME%/lib/endors
ed;%KARAF_HOME%/lib/endorsed"
wrapper.java.additional.8=-
Djava.ext.dirs="%JAVA_HOME%/jre/lib/ext;%JAVA_HOME%/lib/ext;%KARAF_HOME%
/lib/ext"

 wrapper.java.classpath.<n>

wrapper.java.classpath.1=%KARAF_BASE%/lib/karaf-wrapper.jar
wrapper.java.classpath.2=%KARAF_HOME%/lib/karaf.jar
wrapper.java.classpath.3=%KARAF_HOME%/lib/karaf-jaas-boot.jar
wrapper.java.classpath.4=%KARAF_BASE%/lib/karaf-wrapper-main.jar

#wrapper.java.additional.n=-Dcom.sun.management.jmxremote.port=1616
#wrapper.java.additional.n=-
Dcom.sun.management.jmxremote.authenticate=false
#wrapper.java.additional.n=-Dcom.sun.management.jmxremote.ssl=false

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

10

Logging configuration

You can set logging properties to control the level, frequency, and behavior of the wrapper logs.

Table 2.2, “Wrapper Logging Properties” lists the default logging properties.

Table 2.2. Wrapper Logging Properties

Property Description

wrapper.console.format Specifies how the logging information sent to the
console is formated. The format consists of the
following tokens:

L—log level

P—prefix

D—thread name

T—time

Z—time in milliseconds

U—approximate uptime in seconds (based
on internal tick counter)

M—message

wrapper.console.loglevel Specifies the logging level displayed on the console.

wrapper.logfile Specifies the file used to store the log.

wrapper.logfile.format Specifies how the logging information sent to the log
file is formated.

wrapper.console.loglevel Specifies the logging level sent to the log file.

wrapper.console.maxsize Specifies the maximum size, in bytes, that the log file
can grow to before the log is archived. The default
value of 0 disables log rolling.

wrapper.console.maxfiles Specifies the maximum number of archived log files
which will be allowed before old files are deleted. The
default value of 0 implies no limit.

wrapper.syslog.loglevel Specifies the logging level for the sys/event log
output.

2.1.4. Installing and Starting the Service

Overview

CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM SERVICE

11

The operating system determines the exact steps to complete the installation of Red Hat JBoss Fuse
as a service. The wrapper:install command contains basic instructions for your operating system.

Windows

Installing the service

Run the following command:

By default, the service will start when Windows starts. If you specified the DEMAND_START option,
you need to start the service manually.

Uninstalling the service

Run the following command:

Starting the service

Run the following command:

You can also start the service from the Windows Service dialog box.

Stopping the service

Run the following command:

You can also stop the service from the Windows Service dialog box.

Red Hat Enterprise Linux

Installing the service

Run the following commands:

By default, the service will start when Red Hat Enterprise Linux starts.

Uninstalling the service

Run the following command:

InstallDir\bin\ServiceName-service.bat install

InstallDir\bin\ServiceName-service.bat remove

net start "ServiceName"

net stop "ServiceName"

ln -s InstallDir/bin/ServiceName-service /etc/init.d/
chkconfig ServiceName-service --add
chkconfig ServiceName-service on

#service ServiceName-service stop
chkconfig ServiceName-service --del
rm /etc/init.d/ServiceName-service

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

12

Starting the service

Run the following command:

Stopping the service

Run the following command:

Ubuntu Linux

Installing the service

Run the following commands:

By default, the service will start when Red Hat Enterprise Linux starts.

Uninstalling the service

Run the following command:

Starting the service

Run the following command:

Stopping the service

Run the following command:

Solaris

Installing the service

Create Symbolic Links in /etc/init.d:

service ServiceName-service start

service ServiceName-service stop

ln -s InstallDir/bin/ServiceName-service /etc/init.d/
update-rc.d ServiceName-service defaults

#/etc/init.d/ServiceName-service stop
rm /etc/init.d/ServiceName-service

/etc/init.d/ServiceName-service startservice ServiceName-service start

/etc/init.d/ServiceName-service stop

ln -s InstallDir/bin/ServiceName-service /etc/init.d/ServiceName-
service

ln -s ln /etc/init.d/ServiceName-service /etc/rcn.d/SxxServiceName-
service

CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM SERVICE

13

NOTE

In SxxServiceName, the xx is the sequence number of execution for the service in the
rc directory.

By default, the service will start when Solaris starts.

Uninstalling the service

Run the following command:

Starting the service

Run the following command:

Stopping the service

Run the following command:

2.2. INSTALLING RED HAT JBOSS FUSE AS A SERVICE IN FABRIC
MODE

Abstract

In fabric mode, you can install Red Hat JBoss Fuse as a system service in either a fabric ensemble
container or in a child container. To do so, you must be logged into a running Fuse Fabric. If you have
not created a fabric, see chapter "Creating a New Fabric" in "Fabric Guide" for instructions.

2.2.1. Installing JBoss Fuse as a System Service in a Fabric Ensemble Container

Installing JBoss Fuse as a system service in a fabric ensemble container involves performing these
tasks in fabric mode:

Creating a profile and adding the wrapper feature to it

Deploying the wrapper-containing profile to an ensemble container

Installing the wrapper

Starting/stopping the service

Procedure

Follow this procedure if you are installing JBoss Fuse on the default ensemble container root.

#/etc/init.d/ServiceName-service stop
rm /etc/init.d/ServiceName-service

#/etc/init.d/ ./ServiceName-service start

/etc/init.d/ ./ServiceName-service stop

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

14

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Fabric_Guide/ESBRuntimeFabricCreate.html

1. Create a new profile (for example, myWrapper) that will contain the wrapper feature:

2. Add the wrapper feature to the new myWrapper profile:

3. Add the myWrapper profile to the root container:

4. Install the wrapper:

The wrapper:install command generates the following wrapper files:

$JBOSS_FUSE/bin/karaf-wrapper[.exe]—executable file for the wrapper

$JBOSS_FUSE/bin/karaf-service[.bat]—script for installing/uninstalling the
wrapper

$JBOSS_FUSE/etc/karaf-wrapper.conf—wrapper's configuration file

The command also creates the following Libraries that the service wrapper requires:

$JBOSS_FUSE/lib/libwrapper.jnilib

$JBOSS_FUSE/lib/karaf-wrapper.jar

$JBOSS_FUSE/lib/karaf-wrapper-main.jar

5. Follow the instructions provided by the wrapper:install command to start or stop the
service:

2.2.2. Installing JBoss Fuse as a System Service in a Child Container

Installing JBoss Fuse as a system service in a child container involves performing these tasks in fabric
mode:

Creating a profile and adding the wrapper feature to it

Creating a child container and deploying the wrapper-containing profile to it

Connecting to the child container and installing the wrapper

Adding the child container's JVM options to its wrapper configuration file

JBossFuse:karaf@root> fabric:profile-create myWrapper

JBossFuse:karaf@root> fabric:profile-edit --features wrapper/0.0.0
myWrapper

JBossFuse:karaf@root> fabric:container-add-profile root myWrapper

JBossFuse:karaf@root> wrapper:install

$JBOSS_FUSE/bin/karaf-service start

$JBOSS_FUSE/bin/karaf-service stop

CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM SERVICE

15

Starting/stopping the service

Procedure

1. Create a new profile (for example, myWrapper) that will contain the wrapper feature:

2. Add the wrapper feature to the new myWrapper profile:

3. Create a new child container (for example, child1):

4. Add the myWrapper profile to the new child container:

5. Connect to the child container:

The child container's splash screen opens, giving you administrative access to it:

Note that the console prompt has changed to JBossFuse:admin@child1>.

6. Install the wrapper:

The wrapper:install command generates the following wrapper files:

JBossFuse:karaf@root> fabric:profile-create myWrapper

JBossFuse:karaf@root> fabric:profile-edit --features wrapper/0.0.0
myWrapper

JBossFuse:karaf@root> fabric:container-create-child root child1

JBossFuse:karaf@root> fabric:container-add-profile child1 myWrapper

JBossFuse:karaf@root> fabric:container-connect child1

JBossFuse:admin@child1> wrapper:install

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

16

$JBOSS_FUSE/instances/<child1>/bin/karaf-wrapper[.exe]—executable file
for the wrapper

$JBOSS_FUSE/instances/<child1>/bin/karaf-service[.bat]—script for
installing/uninstalling the wrapper

$JBOSS_FUSE/instances/<child1>/etc/karaf-wrapper.conf—wrapper's
configuration file

The command also creates the following Libraries that the service wrapper requires:

$JBOSS_FUSE/instances/<child1>/lib/libwrapper.jnilib

$JBOSS_FUSE/instances/<child1>/lib/karaf-wrapper.jar

$JBOSS_FUSE/instances/<child1>/lib/karaf-wrapper-main.jar

The command also records each child container's JVM and fabric-related options and values in
the $JBOSS_FUSE/instances/instance.properties file, in an entry item.#.opts,
where # corresponds to a specific child instance (in this example, item.1.opts for child1):

NOTE

The JVM options listed can vary depending on the command used to create the
child instance.

7. Compare the child container's JVM and fabric-related options listed in its item.#.opts entry
in the $JBOSS_FUSE/instances/instance.properties file with the JVM and fabric-
related options contained in its $JBOSS_FUSE/instances/<child1>/etc/karaf-
wrapper.conf file.

8. Copy to the child container's $JBOSS_FUSE/instances/<child1>/etc/karaf-
wrapper.conf configuration file, any missing JVM and fabric-related options listed in its
item.#.opts entry in the $JBOSS_FUSE/instances/instance.properties file.

Make sure your entries conform to the configuration file format; for example:

JVM Parameters

CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM SERVICE

17

9. Follow the instructions provided by the wrapper:install command to start or stop the
service:

note that n is the parameter number starting from 1.
wrapper.java.additional.1=-Dkaraf.home=%KARAF_HOME%
wrapper.java.additional.2=-Dkaraf.base=%KARAF_BASE%
wrapper.java.additional.3=-Dkaraf.data=%KARAF_DATA%
wrapper.java.additional.4=-Dkaraf.etc=%KARAF_ETC%
wrapper.java.additional.5=-Dcom.sun.management.jmxremote
wrapper.java.additional.6=-Dkaraf.startLocalConsole=false
wrapper.java.additional.7=-Dkaraf.startRemoteShell=true
...

$JBOSS_FUSE/instances/<child1>/bin/karaf-service start

$JBOSS_FUSE/instances/<child1>/bin/karaf-service stop

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

18

CHAPTER 3. BASIC SECURITY

Abstract

This chapter describes the basic steps to configure security before you start Red Hat JBoss Fuse for
the first time. By default, JBoss Fuse is secure, but none of its services are remotely accessible. This
chapter explains how to enable secure access to the ports exposed by JBoss Fuse.

3.1. CONFIGURING BASIC SECURITY

Overview

The Red Hat JBoss Fuse runtime is secured against network attack by default, because all of its
exposed ports require user authentication and no users are defined initially. In other words, the Red
Hat JBoss Fuse runtime is remotely inaccessible by default.

If you want to access the runtime remotely, you must first customize the security configuration, as
described here.

Before you start the container

If you want to enable remote access to the JBoss Fuse container, you must create a secure JAAS user
before starting the container:

Create a secure JAAS user

By default, no JAAS users are defined for the container, which effectively disables remote access (it is
impossible to log on).

To create a secure JAAS user, edit the InstallDir/etc/users.properties file and add a new
user field, as follows:

Where Username and Password are the new user credentials. The Administrator role gives this
user the privileges to access all administration and management functions of the container. For more
details about JAAS, see Chapter 14, Configuring JAAS Security.

Do not define a numeric username with a leading zero. Such usernames will always cause a login
attempt to fail. This is because the Karaf shell, which the console uses, drops leading zeros when the
input appears to be a number. For example:

Username=Password,Administrator

FuseMQ:karaf@root> echo 0123
123
FuseMQ:karaf@root> echo 00.123
0.123
FuseMQ:karaf@root>

CHAPTER 3. BASIC SECURITY

19

WARNING

It is strongly recommended that you define custom user credentials with a strong
password.

Role-based access control

The JBoss Fuse container supports role-based access control, which regulates access through the JMX
protocol, the Karaf command console, and the Fuse Management console. When assigning roles to
users, you can choose from the set of standard roles, which provide the levels of access described in
Table 3.1, “Standard Roles for Access Control” .

Table 3.1. Standard Roles for Access Control

Roles Description

Monitor, Operator, Maintainer Grants read-only access to the container.

Deployer, Auditor Grants read-write access at the appropriate level for
ordinary users, who want to deploy and run
applications. But blocks access to sensitive
container configuration settings.

Administrator, SuperUser Grants unrestricted access to the container.

For more details about role-based access control, see section "Role-Based Access Control" in
"Security Guide".

Ports exposed by the JBoss Fuse container

Figure 3.1, “Ports Exposed by the JBoss Fuse Container” shows the ports exposed by the JBoss Fuse
container by default.

Figure 3.1. Ports Exposed by the JBoss Fuse Container

Console port

JMX port

OSGi Container

The following ports are exposed by the container:

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

20

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Security_Guide/RBAC.html

Console port—enables remote control of a container instance, through Apache Karaf shell
commands. This port is enabled by default and is secured both by JAAS authentication and by
SSH.

JMX port—enables management of the container through the JMX protocol. This port is enabled
by default and is secured by JAAS authentication.

Web console port—provides access to an embedded Jetty container that can host Web console
servlets. By default, the Fuse Management Console is installed in the Jetty container.

Enabling the remote console port

You can access the remote console port whenever both of the following conditions are true:

JAAS is configured with at least one set of login credentials.

The JBoss Fuse runtime has not been started in client mode (client mode disables the remote
console port completely).

For example, to log on to the remote console port from the same machine where the container is
running, enter the following command:

Where the Username and Password are the credentials of a JAAS user with Administrator
privileges. For more details, see Chapter 8, Using Remote Connections to Manage a Container.

Strengthening security on the remote console port

You can employ the following measures to strengthen security on the remote console port:

Make sure that the JAAS user credentials have strong passwords.

Customize the X.509 certificate (replace the Java keystore file,
InstallDir/etc/host.key, with a custom key pair).

Enabling the JMX port

The JMX port is enabled by default and secured by JAAS authentication. In order to access the JMX
port, you must have configured JAAS with at least one set of login credentials. To connect to the JMX
port, open a JMX client (for example, jconsole) and connect to the following JMX URI:

You must also provide valid JAAS credentials to the JMX client in order to connect.

NOTE

In general, the tail of the JMX URI has the format /karaf-ContainerName. If you
change the container name from root to some other name, you must modify the JMX
URI accordingly.

Strengthening security on the Fuse Management Console port

./client -u Username -p Password

service:jmx:rmi:///jndi/rmi://localhost:1099/karaf-root

CHAPTER 3. BASIC SECURITY

21

The Fuse Management Console is already secured by JAAS authentication. To add SSL security, see
chapter "Securing the Jetty HTTP Server" in "Security Guide" .

3.2. DISABLING BROKER SECURITY

Overview

Prior to Fuse ESB Enterprise version 7.0.2, the Apache ActiveMQ broker was insecure (JAAS
authentication not enabled). This section explains how to revert the Apache ActiveMQ broker to an
insecure mode of operation, so that it is unnecessary to provide credentials when connecting to the
broker.

WARNING

After performing the steps outlined in this section, the broker has no protection
against hostile clients. This type of configuration is suitable only for use on
internal, trusted networks.

Standalone server

These instructions assume that you are running Red Hat JBoss Fuse in standalone mode (that is,
running in an OSGi container, but not using Fuse Fabric). In your installation of JBoss Fuse, open the
InstallDir/etc/broker.xml file using a text editor and look for the following lines:

To disable JAAS authentication, delete (or comment out) the jaasAuthenticationPlugin element.
The next time you start up the Red Hat JBoss Fuse container (using the InstallDir/bin/fusemq
script), the broker will run with unsecured ports.

...
<plugins>
 <jaasAuthenticationPlugin configuration="karaf" />
</plugins>
...

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

22

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Security_Guide/WebConsole.html

CHAPTER 4. STARTING AND STOPPING JBOSS FUSE

Abstract

Red Hat JBoss Fuse provides simple command-line tools for starting and stopping the server.

4.1. STARTING JBOSS FUSE

Abstract

The default way for deploying the Red Hat JBoss Fuse runtime is to deploy it as a standalone server
with an active console. You can also deploy the runtime as a background process without a console.

Overview

The default way for deploying the Red Hat JBoss Fuse runtime is to deploy it as a standalone server
with an active console. You can also deploy the runtime to run as a background process without a
console.

Setting up your environment

You can start the JBoss Fuse runtime directly from the bin subdirectory of your installation, without
modifying your environment. However, if you want to start it in a different folder you will need to add
the bin directory of your JBoss Fuse installation to the PATH environment variable, as follows:

Windows

set PATH=%PATH%;InstallDir\bin

Linux/UNIX

export PATH=$PATH,InstallDir/bin

Launching the runtime in console mode

If you are launching the JBoss Fuse runtime from the installation directory use the following
command:

Windows

bin\fuse.bat

Linux/UNIX

./bin/fuse

If JBoss Fuse starts up correctly you should see the following on the console:

 _ ____ ______
 | | _ \ | ____|
 | | |_) | ___ ___ ___ | |__ _ _ ___ ___

CHAPTER 4. STARTING AND STOPPING JBOSS FUSE

23

 _ | | _ / _ \/ __/ __| | __| | | / __|/ _ \
| |__| | |_) | (_) __ __ \ | | | |_| __ \ __/
 ____/|____/ ___/|___/___/ |_| __,_|___/___|

 JBoss Fuse (6.2.1.redhat-084)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss Fuse.

JBossFuse:karaf@root>

NOTE

Since version JBoss Fuse 6.2.1, launching in console mode creates two processes: the
parent process ./bin/karaf, which is executing the Karaf console; and the child
process, which is executing the Karaf server in a java JVM. The shutdown behaviour
remains the same as before, however. That is, you can shut down the server from the
console using either Ctrl-D or osgi:shutdown, which kills both processes.

Launching the runtime in server mode

Launching in server mode runs Red Hat JBoss Fuse in the background, without a local console. You
would then connect to the running instance using a remote console. See Section 8.2, “ Connecting and
Disconnecting Remotely” for details.

To launch JBoss Fuse in server mode, run the following

Windows

bin\start.bat

Linux/UNIX

./bin/start

Launching the runtime in client mode

In production environments you might want to have a runtime instance accessible using only a local
console. In other words, you cannot connect to the runtime remotely through the SSH console port.
You can do this by launching the runtime in client mode, using the following command:

Windows

bin\fuse.bat client

Linux/UNIX

./bin/fuse client

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

24

NOTE

Launching in client mode suppresses only the SSH console port (usually port 8101).
Other Karaf server ports (for example, the JMX management RMI ports) are opened as
normal.

4.2. STOPPING JBOSS FUSE

Abstract

You can stop an instance of Red Hat JBoss Fuse either from within a console, or using a stop script.

Stopping an instance from a local console

If you launched the Karaf instance by running fuse or fuse client, you can stop it by doing one of
the following at the karaf> prompt:

Type shutdown

Press Ctrl+D

Stopping an instance running in server mode

You can stop a locally running Karaf instance (root container), by invoking the stop(.bat) from the
InstallDir/bin directory, as follows:

Windows

bin\stop.bat

Linux/UNIX

./bin/stop

The shutdown mechanism invoked by the Karaf stop script is similar to the shutdown mechanism
implemented in Apache Tomcat. The Karaf server opens a dedicated shutdown port (not the same as
the SSH port) to receive the shutdown notification. By default, the shutdown port is chosen randomly,
but you can configure it to use a specific port if you prefer.

You can optionally customize the shutdown port by setting the following properties in the
InstallDir/etc/config.properties file:

karaf.shutdown.port

Specifies the TCP port to use as the shutdown port. Setting this property to -1 disables the port.
Default is 0 (for a random port).

karaf.shutdown.host

Specifies the hostname to which the shutdown port is bound. This setting could be useful on a
multi-homed host. Defaults to localhost.

CHAPTER 4. STARTING AND STOPPING JBOSS FUSE

25

NOTE

If you wanted to use the bin/stop script to shut down the Karaf server running on a
remote host, you would need to set this property to the hostname (or IP address) of
the remote host. But beware that this setting also affects the Karaf server located on
the same host as the etc/config.properties file.

karaf.shutdown.port.file

After the Karaf instance starts up, it writes the current shutdown port to the file specified by this
property. The stop script reads the file specified by this property to discover the value of the
current shutdown port. Defaults to ${karaf.data}/port.

NOTE

If you wanted to use the bin/stop script to shut down the Karaf server running on a
remote host, you would need to set this property equal to the remote host's
shutdown port. But beware that this setting also affects the Karaf server located on
the same host as the etc/config.properties file.

karaf.shutdown.command

Specifies the UUID value that must be sent to the shutdown port in order to trigger shutdown. This
provides an elementary level of security, as long as the UUID value is kept a secret. For example,
the etc/config.properties file could be read-protected to prevent this value from being read
by ordinary users.

When Apache Karaf is started for the very first time, a random UUID value is automatically
generated and this setting is written to the end of the etc/config.properties file.
Alternatively, if karaf.shutdown.command is already set, the Karaf server uses the pre-existing
UUID value (which enables you to customize the UUID setting, if required).

NOTE

If you wanted to use the bin/stop script to shut down the Karaf server running on a
remote host, you would need to set this property to be equal to the value of the
remote host's karaf.shutdown.command. But beware that this setting also affects
the Karaf server located on the same host as the etc/config.properties file.

Stopping a child container instance

Apache Karaf enables you to create and manage child container instances using the admin family of
console commands (for example, using admin:create, admin:start, admin:stop, and so on). To
stop the ChildContainerName child container running on your local host, invoke the admin(.bat)
script from the command line, as follows:

Windows

bin\admin.bat stop ChildContainerName

Linux/UNIX

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

26

./bin/admin stop ChildContainerName

Stopping a remote instance

You can stop a container instance running on a remote host as described in Section 8.3, “Stopping a
Remote Container”.

CHAPTER 4. STARTING AND STOPPING JBOSS FUSE

27

CHAPTER 5. CREATING A NEW FABRIC

Abstract

When there are no existing fabric's to join, or you want to start a new fabric, you can create a new one
from a standalone container.

STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER

The IP address and hostname associated with the Fabric Servers in the Fabric ensemble are of critical
importance to the fabric. Because these IP addresses and hostnames are used for configuration and
service discovery (through the Zookeeper registry), they must not change during the lifetime of the
fabric.

You can take either of the following approaches to specifying the IP address:

For simple examples and tests (with a single Fabric Server) you can work around the static IP
requirement by using the loopback address, 127.0.0.1.

For distributed tests (multiple Fabric Servers) and production deployments, you must assign a
static IP address to each of the Fabric Server hosts.

WARNING

Beware of volatile IP addresses resulting from VPN connections, WiFi connections,
and even LAN connections. If a Fabric Server binds to one of these volatile IP
addresses, it will cease to function after the IP address has gone away. It is
recommended that you always use the --resolver manualip --manual-ip
StaticIPAddress options to specify the static IP address explicitly, when
creating a new Fabric Server.

PROCEDURE

To create a new fabric:

1. (Optional) Customise the name of the root container by editing the
InstallDir/etc/system.properties file and specifying a different name for this
property:

NOTE

For the first container in your fabric, this step is optional. But at some later
stage, if you want to join a root container to the fabric, you might need to
customise the container's name to prevent it from clashing with any existing
root containers in the fabric.

karaf.name=root

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

28

2. Any existing users in the InstallDir/etc/users.properties file are automatically used
to initialize the fabric's user data, when you create the fabric. You can populate the
users.properties file, by adding one or more lines of the following form:

But there must not be any users in this file that have administrator privileges
(Administrator, SuperUser, or admin roles). If the
InstallDir/etc/users.properties already contains users with administrator privileges,
you should delete those users before creating the fabric.

WARNING

If you leave some administrator credentials in the users.properties
file, this represents a security risk because the file could potentially be
accessed by other containers in the fabric.

NOTE

The initialization of user data from users.properties happens only once, at
the time the fabric is created. After the fabric has been created, any changes
you make to users.properties will have no effect on the fabric's user data.

3. If you use a VPN (virtual private network) on your local machine, it is advisable to log off VPN
before you create the fabric and to stay logged off while you are using the local container.

NOTE

A local Fabric Server is permanently associated with a fixed IP address or
hostname. If VPN is enabled when you create the fabric, the underlying Java
runtime is liable to detect and use the VPN hostname instead of your permanent
local hostname. This can also be an issue with multi-homed machines.

4. Start up your local container.

In JBoss Fuse, start the local container as follows:

5. Create a new fabric by entering the following command:

The current container, named root by default, becomes a Fabric Server with a registry service

Username=Password[,RoleA][,RoleB]...

cd InstallDir/bin
./fuse

JBossFuse:karaf@root> fabric:create --new-user AdminUser --new-user-
password AdminPass --new-user-role Administrator --zookeeper-
password ZooPass --resolver manualip --manual-ip StaticIPAddress --
wait-for-provisioning

CHAPTER 5. CREATING A NEW FABRIC

29

installed. Initially, this is the only container in the fabric. The --new-user, --new-user-
password, and --new-user-role options specify the credentials for a new
Administrator user. The Zookeeper password is used to protect sensitive data in the Fabric
registry service (all of the nodes under /fabric). The --manual-ip option specifies the
Fabric Server's static IP address StaticIPAddress (see the section called “Static IP address
required for Fabric Server”).

For more details on fabric:create see section "fabric:create" in "Console Reference" .

For more details about resolver policies, see section "fabric:container-resolver-list" in
"Console Reference" and section "fabric:container-resolver-set" in "Console Reference" .

FABRIC CREATION PROCESS

Several things happen when a fabric is created from a standalone container:

1. The container installs the requisite OSGi bundles to become a Fabric Server.

2. The Fabric Server starts a registry service, which listens on TCP port 2181 (which makes fabric
configuration data available to all of the containers in the fabric).

NOTE

You can customize the value of the registry service port by specifying the --
zookeeper-server-port option.

3. The Fabric Server installs a new JAAS realm (based on the ZooKeeper login module), which
overrides the default JAAS realm and stores its user data in the ZooKeeper registry.

4. The new Fabric Ensemble consists of a single Fabric Server (the current container).

5. A default set of profiles is imported from InstallDir/fabric/import (can optionally be
overridden).

6. After the standalone container is converted into a Fabric Server, the previously installed OSGi
bundles and Karaf features are completely cleared away and replaced by the default Fabric
Server configuration. For example, some of the shell command sets that were available in the
standalone container are no longer available in the Fabric Server.

EXPANDING A FABRIC

You can expand a fabric by creating new managed containers. Fabric supports the container provider
plug-in mechanism, which makes it possible to define how to create new containers in different
contexts. Currently, Fabric makes container providers available for the following kinds of container:

Child container, created on the local machine as a child process in its own JVM.

Instructions on creating a child container are found in Child Containers.

SSH container, created on any remote machine for which you have ssh access.

Instructions on creating a SSH container are found in SSH Containers.

Cloud container, created on compute instance in the cloud.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

30

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/ConsoleFabricCreate.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/ConsoleFabricContainerResolverList.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/ConsoleFabricContainerResolverSet.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Fabric_Guide/Chapter-Fabric_Container.html#ContChild
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Fabric_Guide/ContSSH.html

Instructions on creating a cloud container are found in Cloud Containers.

Fabric provides container creation commands that make it easy to create new containers. Using these
commands, Fabric can automatically install JBoss Fuse on a remote host (uploading whatever
dependencies are needed), start up the remote container process, and join the container to the
existing fabric, so that it becomes a fully-fledged managed container in the fabric.

CHAPTER 5. CREATING A NEW FABRIC

31

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Fabric_Guide/ContCloud.html

CHAPTER 6. JOINING A FABRIC

OVERVIEW

Any standalone container can be joined to an existing fabric using the fabric:join console
command. You need to supply the URL of one of the Fuse Servers in the fabric and the standalone
container is then added to the fabric. The container can join the fabric as either a managed container
or a non-managed container:

A managed container is a full member of the fabric and is managed by a Fabric Agent. The agent
configures the container based on information provided by the fabric's ensemble. The
ensemble knows which profiles are associated with the container and the agent determines
what to install based on the contents of the profiles.

A non-managed container is not managed by a Fabric Agent. Its configuration remains intact
after it joins the fabric and is controlled as if the container were a standalone container.
Joining the fabric in this manner registers the container with the fabric's ensemble and allows
clients to locate the services running in the container using the fabric's discovery mechanism.

JOINING A FABRIC AS A MANAGED CONTAINER

The default behavior of the fabric:join command is to wipe out the container's configuration and
replace it with the fabric profile. If you want to preserve the previous configuration of the container,
however, you must ensure that the fabric has an appropriately configured profile, which you can deploy
into the container after it joins the fabric.

The fabric:join command's -p option enables you to specify a profile to install into the container
once the agent is installed.

For details of how to create and edit a profile, see , section "fabric:profile-create" in "Console
Reference", and section "fabric:profile-edit" in "Console Reference" .

JOINING A FABRIC AS AN NON-MANAGED CONTAINER

When a container joins a fabric as a non-managed container, its deployment mechanisms continue to
function like a standalone container (based on osgi:install, features:install, and hot
deployment), because a Fabric Agent does not take control of its configuration. The agent only
registers the container with the fabric's ensemble and keeps the registry entries for it up to date. This
enables the newly joined container to discover services running in the container (through Fabric's
discovery mechanisms) and to administer these services.

Joining a fabric as an non-managed container is a convenient approach to take when you want to use
your local container as a console to administer a fabric. For example, this is an approach that is
typically taken with the Fuse Management Console (FMC).

HOW TO JOIN A FABRIC

To join a container to a fabric, perform the following steps:

1. Get the registry service URL for one of the Fabric Servers in the existing fabric. The registry
service URL has the following format:

Hostname[:IPPort]

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

32

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/ConsoleFabricProfileCreate.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/ConsoleFabricProfileEdit.html

Normally, it is sufficient to specify just the hostname, Hostname, because the registry service
uses the fixed port number, 2182, by default. In exceptional cases, you can discover the
registry service port by following the instructions in the section called “How to discover the
URL of a Fabric Server”.

2. Get the ZooKeeper password for the fabric. An administrator can access the fabric's
ZooKeeper password at any time, by entering the following console command (while logged
into one of the Fabric Containers):

3. Connect to the standalone container's command console.

4. Join a container in one of the following ways:

Join as a managed container, with a default profile—uses the fabric profile.

Join as a managed container, specifying a custom profile—uses a custom profile.

Join as a non-managed container—preserves the existing container configuration.

Where you can specify the following values:

ZooPass

The existing fabric's ZooKeeper password.

URL

The URL for one of the fabric's registry services (usually just the hostname where a Fabric
Server is running).

ContainerName

The new name of the container when it registers itself with the fabric.

WARNING

If the container your're adding to the fabric has the same name as a
container already registered with the fabric, both containers will be
reset and will always share the same configuration.

JBossFuse:karaf@root> fabric:ensemble-password

JBossFuse:karaf@root> fabric:join --zookeeper-password ZooPass
URL ContainerName

JBossFuse:karaf@root> fabric:join --zookeeper-password ZooPass -p
Profile URL ContainerName

JBossFuse:karaf@root> fabric:join -n --zookeeper-password ZooPass
URL ContainerName

CHAPTER 6. JOINING A FABRIC

33

Profile

The name of the custom profile to install into the container after it joins the fabric
(managed container only).

5. If you joined the container as a managed container, you can subsequently deploy a different
profile into the container using the fabric:container-change-profile console
command.

HOW TO DISCOVER THE URL OF A FABRIC SERVER

If you suspect that a Fabric Server is not using the default TCP port, 2181, for its registry service, you
can discover the port as follows:

1. Connect to the command console of one of the containers in the fabric.

2. Enter the following sequence of console commands:

The zookeeper.url property holds a comma-separated list of Fabric Server URLs. You can
use any one of these URLs to join the fabric.

JBossA-MQ:karaf@root> config:edit io.fabric8.zookeeper
JBossA-MQ:karaf@root> config:proplist
 service.pid = io.fabric8.zookeeper
 zookeeper.url =
myhostA:2181,myhostB:2181,myhostC:2181,myhostC:2182,myhostC:2183
 fabric.zookeeper.pid = io.fabric8.zookeeper
JBossA-MQ:karaf@root> config:cancel

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

34

CHAPTER 7. SHUTTING DOWN A FABRIC

OVERVIEW

This chapter describes how to shut down part or all of a fabric.

SHUTTING DOWN A MANAGED CONTAINER

You can shut down a managed container from the console at any time. Invoke the
fabric:container-stop command and specify the name of the managed container, for example:

NOTE

The -f flag is required when shutting down a container that belongs to the ensemble.

The fabric:container-stop command looks up the container name in the registry and retrieves
the data it needs to shut down that container. This approach works no matter where the container is
deployed: whether on a remote host or in a cloud.

SHUTTING DOWN A FABRIC SERVER

Occasionally, you might want to shut down a Fabric Server for maintenance reasons. It is possible to do
this without disabling the fabric, as long as more than half of the Fabric Servers in the ensemble remain up
and running. For example, suppose you have an ensemble that consists of three servers, registry1,
registry2, and registry3. You can shut down only one of these Fabric Servers at a time by using
the fabric:container-stop command, for example:

After performing the necessary maintenance, you can restart the Fabric Server as follows:

SHUTTING DOWN AN ENTIRE FABRIC

In a production environment, it is rarely necessary to shut down an entire fabric. A fabric provides
redundancy by enabling you to shut down part of the fabric and restart that part without having to shut
down the whole fabric. You can even apply patches to a fabric without shutting down containers.

Red Hat recommends that you minimize the number of times you shut down a complete fabric. This is
because shutting down and restarting an entire fabric requires execution of the fabric:ensemble-
remove and fabric:ensemble-add commands. Each time you execute one of these commands, it
creates a new ensemble. This new ensemble URL is propagated to all containers in the fabric and all
containers need to reconnect to the new ensemble. There is a risk for TCP port numbers to be
reallocated, which means that your network configuration might become out-of-date because services
might start up on different ports.

fabric:container-stop -f ManagedContainerName

fabric:container-stop -f registry3

fabric:container-start registry3

CHAPTER 7. SHUTTING DOWN A FABRIC

35

However, if you must shut down an entire fabric, follow the steps below. These steps show examples
that reflect this configuration:

Three Fabric Servers (ensemble servers): registry1, registry2, registry3.

Four managed containers: managed1, managed2, managed3, managed4.

To shut down a complete fabric:

1. Use the client console utility to log on to one of the Fabric Servers in the ensemble. For
example, to log on to the registry1 server, enter a command in the following format:

Replace AdminUser and AdminPass with the credentials of a user with administration
privileges. Replace Registry1Host with name of the host where registry1 is running. It is
assumed that the registry1 server is listening for console connections on the default TCP
port (that is, 8101)

2. Ensure that all managed containers in the fabric are running. Execution of
fabric:container-list should display true in the alive column for each container. This
is required for execution of the fabric:ensemble-remove command, which is the next step.

3. Remove all but one of the Fabric Servers from the ensemble. For example, if you logged on to
registry1, enter:

4. Shut down all managed containers in the fabric, except the container on the Fabric Server you
are logged into. In the following example, the first command shuts down managed1,
managed2, managed3 and managed4:

5. Shut down the last container that is still running. This is the container that is on the Fabric
Server you are logged in to. For example:

After you complete the work that required the fabric to be shut down, you restart the fabric by
recreating it. For example:

1. Use the client console utility to log in to the registry1 container host.

2. Start all containers in the fabric.

3. Add the other Fabric Servers, for example:

NOTE ON SHUTTING DOWN A COMPLETE FABRIC

./client -u AdminUser -p AdminPass -h Registry1Host

fabric:ensemble-remove registry2 registry3

fabric:container-stop -f managed*
fabric:container-stop -f registry2
fabric:container-stop -f registry3

shutdown -f

fabric:ensemble-add registry2 registry3

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

36

If you are logged on to a container that is connected to a fabric, you might be tempted to shut down
the complete fabric by stopping the containers on the Fabric Servers. For example:

This does not work because a fabric requires a quorum (a simple majority) of Fabric Servers to be
running in order to stop a container that is in the fabric. In this example, the third invocation of
fabric:container-stop fails and throws an error because only one Fabric Server is still running. At
least two Fabric Servers must be running to stop a container. With only one Fabric Server running, the
registry shuts down and refuses service requests because a quorum of Fabric Servers is no longer
available. The fabric:container-stop command needs the registry to be running so it can retrieve
details about the container it is trying to shut down.

The correct way to shut down a complete fabric is to follow the steps in the previous section. That is,
remove all Fabric Servers except one and then stop all containers.

fabric:container-stop -f registry1
fabric:container-stop -f registry2
fabric:container-stop -f registry3

CHAPTER 7. SHUTTING DOWN A FABRIC

37

CHAPTER 8. USING REMOTE CONNECTIONS TO MANAGE A
CONTAINER

Abstract

It does not always make sense to use a local console to manage a container. Red Hat JBoss Fuse has a
number of ways of remotely managing a container. You can use a remote container's command console
or start a remote client.

8.1. CONFIGURING A CONTAINER FOR REMOTE ACCESS

Overview

When you start the Red Hat JBoss Fuse runtime in default mode or in server mode, it enables a remote
console that can be accessed over SSH from any other JBoss Fuse console. The remote console
provides all of the functionality of the local console and allows a remote user complete control over the
container and the services running inside of it.

NOTE

When run in client mode the JBoss Fuse runtime disables the remote console.

Configuring a standalone container for remote access

The SSH hostname and port number are configured in the
InstallDir/etc/org.apache.karaf.shell.cfg configuration file. Example 8.1, “Changing the
Port for Remote Access” shows a sample configuration that changes the port used to 8102.

Example 8.1. Changing the Port for Remote Access

Configuring a fabric container for remote access

The SSH hostname and port number are set at the time a container is created. It is not possible to
change the SSH address of a fuse container after the container has been created.

8.2. CONNECTING AND DISCONNECTING REMOTELY

Abstract

There are two alternative ways of connecting to a remote container. If you are already running an Red
Hat JBoss Fuse command shell, you can invoke a console command to connect to the remote
container. Alternatively, you can run a utility directly on the command-line to connect to the remote
container.

sshPort=8102
sshHost=0.0.0.0

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

38

8.2.1. Connecting to a Standalone Container from a Remote Container

Overview

Any container's command console can be used to access a remote container. Using SSH, the local
container's console connects to the remote container and functions as a command console for the
remote container.

Using the ssh:ssh console command

You connect to a remote container's console using the ssh:ssh console command.

Example 8.2. ssh:ssh Command Syntax

ssh:ssh { -l username } { -P password } { -p port } { hostname }

-l username

The username used to connect to the remote container. Use valid JAAS login credentials that have
admin privileges (see Chapter 14, Configuring JAAS Security).

-P password

The password used to connect to the remote container.

-p port

The SSH port used to access the desired container's remote console.

By default this value is 8101. See the section called “Configuring a standalone container for remote
access” for details on changing the port number.

 hostname

The hostname of the machine that the remote container is running on. See the section called
“Configuring a standalone container for remote access” for details on changing the hostname.

WARNING

We recommend that you customize the username and password in the
etc/users.properties file. See Chapter 14, Configuring JAAS Securityfor
details.

NOTE

If your remote container is deployed on an Oracle VM Server for SPARC instance, it is
likely that the default SSH port value, 8101, is already occupied by the Logical Domains
Manager daemon. In this case, you will need to reconfigure the container's SSH port, as
described in the section called “Configuring a standalone container for remote access” .

CHAPTER 8. USING REMOTE CONNECTIONS TO MANAGE A CONTAINER

39

Example 8.3. Connecting to a Remote Console

JBossFuse:karaf@root>ssh:ssh -l smx -P smx -p 8108 hostname

To confirm that you have connected to the correct container, type shell:info at the prompt.
Information about the currently connected instance is returned, as shown in Example 8.4, “Output of
the shell:info Command”.

Example 8.4. Output of the shell:info Command

Karaf Karaf version 2.2.5.fuse-beta-7-052 Karaf home /Volumes/ESB/jboss-
fuse-full-6.0.0.redhat-0XX Karaf base /Volumes/ESB/jboss-fuse-full-
6.0.0.redhat-0XX/instances/child1 OSGi Framework
org.apache.felix.framework - 4.0.3.fuse-beta-7-052 JVM Java Virtual
Machine Java HotSpot(TM) 64-Bit Server VM version 20.6-b01-415 Version
1.6.0_31 Vendor Apple Inc. Uptime 6 minutes Total compile time 24.048
seconds Threads Live threads 62 Daemon threads 43 Peak 287 Total started
313 Memory Current heap size 78,981 kbytes Maximum heap size 466,048
kbytes Committed heap size 241,920 kbytes Pending objects 0 Garbage
collector Name = 'PS Scavenge', Collections = 11, Time = 0.271 seconds
Garbage collector Name = 'PS MarkSweep', Collections = 1, Time = 0.117
seconds Classes Current classes loaded 5,720 Total classes loaded 5,720
Total classes unloaded 0 Operating system Name Mac OS X version 10.7.3
Architecture x86_64 Processors 2

Disconnecting from a remote console

To disconnect from a remote console, enter logout or press Ctrl+D at the prompt.

You will be disconnected from the remote container and the console will once again manage the local
container.

8.2.2. Connecting to a Fabric Container From another Fabric Container

Overview

When containers are deployed into a fabric, they are all connected to each other. You can easily
connect to any container's command console from any of its peers. When connecting using fabric, you
do not need to know any of the location details for the container you want to connect to. The fabric's
runtime registry stores all of the location details needed to establish the remote connection.

Using the fabric:container-connect command

In the context of a fabric, you should connect to a remote runtime's console using the
fabric:container-connect command.

Example 8.5. fabric:container-connect Command Syntax

fabric:container-connect { -u username } { -p password } { containerName }

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

40

-u username

The username used to connect to the remote console. The default value is admin.

-p password

The password used to connect to the remote console. The default value is admin.

 containerName

The name of the container.

WARNING

We recommend that you change the default administrator username and
password. See Chapter 14, Configuring JAAS Security for details.

Example 8.6. Connecting to a Remote Container

JBossFuse:karaf@root>fabric:container-connect -u admin -p admin
containerName

To confirm that you have connected to the correct container, type shell:info at the prompt.
Information about the currently connected instance is returned, as shown in Example 8.7, “Output of
the shell:info Command”.

Example 8.7. Output of the shell:info Command

Karaf Karaf version 2.3.0.fuse-71-044 Karaf home
/Volumes/SAMSUNG/Programs/ESB/jboss-fuse-full-6.0.0.redhat-0XX Karaf
base /Volumes/SAMSUNG/Programs/ESB/jboss-fuse-full-6.0.0.redhat-
0XX/instances/child1 OSGi Framework org.apache.felix.framework -
4.0.3.fuse-71-044 JVM Java Virtual Machine Java HotSpot(TM) 64-Bit
Server VM version 20.8-b03-424 Version 1.6.0_33 Vendor Apple Inc. Uptime
7 minutes Total compile time 5.336 seconds Threads Live threads 42
Daemon threads 31 Peak 96 Total started 123 Memory Current heap size
32,832 kbytes Maximum heap size 466,048 kbytes Committed heap size
104,960 kbytes Pending objects 0 Garbage collector Name = 'PS Scavenge',
Collections = 7, Time = 0.063 seconds Garbage collector Name = 'PS
MarkSweep', Collections = 1, Time = 0.060 seconds Classes Current
classes loaded 4,019 Total classes loaded 4,019 Total classes unloaded 0
Operating system Name Mac OS X version 10.7.4 Architecture x86_64
Processors 2

Disconnecting from a remote console

To disconnect from a remote console, enter logout or press Ctrl+D at the prompt.

CHAPTER 8. USING REMOTE CONNECTIONS TO MANAGE A CONTAINER

41

You will be disconnected from the remote container and the console will once again manage the local
container.

8.2.3. Connecting to a Container Using the Client Command-Line Utility

Using the remote client

The remote client allows you to securely connect to a remote Red Hat JBoss Fuse container without
having to launch a full JBoss Fuse container locally.

For example, to quickly connect to a JBoss Fuse instance running in server mode on the same
machine, open a command prompt and run the client[.bat] script (which is located in the
InstallDir/bin directory), as follows:

client

More usually, you would provide a hostname, port, username, and password to connect to a remote
instance. If you were using the client within a larger script, for example in a test suite, you could append
console commands as follows:

client -a 8101 -h hostname -u username -p password shell:info

Alternatively, if you omit the -p option, you will be prompted to enter a password.

For a standalone container, use any valid JAAS user credentials that have admin privileges.

For a container in a fabric, the default username and password is admin and admin.

To display the available options for the client, type:

client --help

Example 8.8. Karaf Client Help

Apache Felix Karaf client -a [port] specify the port to connect to -h
[host] specify the host to connect to -u [user] specify the user name -p
[password] specify the password --help shows this help message -v raise
verbosity -r [attempts] retry connection establishment (up to attempts
times) -d [delay] intra-retry delay (defaults to 2 seconds) [commands]
commands to run If no commands are specified, the client will be put in
an interactive mode

Disconnecting from a remote client console

If you used the remote client to open a remote console, as opposed to using it to pass a command, you
will need to disconnect from it. To disconnect from the remote client's console, enter logout or press
Ctrl+D at the prompt.

The client will disconnect and exit.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

42

8.2.4. Connecting to a Container Using the SSH Command-Line Utility

Overview

You can also use the ssh command-line utility (a standard utility on UNIX-like operating systems) to
log in to the Red Hat JBoss Fuse container, where the authentication mechanism is based on public key
encryption (the public key must first be installed in the container). For example, given that the
container is configured to listen on TCP port 8101, you could log in as follows:

IMPORTANT

Key-based login is currently supported only on standalone containers, not on Fabric
containers.

Prerequisites

To use key-based SSH login, the following prerequisites must be satisfied:

The container must be standalone (Fabric is not supported) with the
PublickeyLoginModule installed.

You must have created an SSH key pair (see the section called “Creating a new SSH key pair”).

You must install the public key from the SSH key pair into the container (see the section called
“Installing the SSH public key in the container”).

Default key location

The ssh command automatically looks for the private key in the default key location. It is
recommended that you install your key in the default location, because it saves you the trouble of
specifying the location explicitly.

On a *NIX operating system, the default locations for an RSA key pair are:

On a Windows operating system, the default locations for an RSA key pair are:

NOTE

Red Hat JBoss Fuse supports only RSA keys. DSA keys do not work.

Creating a new SSH key pair

Generate an RSA key pair using the ssh-keygen utility. Open a new command prompt and enter the
following command:

ssh -p 8101 jdoe@localhost

~/.ssh/id_rsa
~/.ssh/id_rsa.pub

C:\Documents and Settings\Username\.ssh\id_rsa
C:\Documents and Settings\Username\.ssh\id_rsa.pub

CHAPTER 8. USING REMOTE CONNECTIONS TO MANAGE A CONTAINER

43

The preceding command generates an RSA key with a key length of 2048 bits. You will then be
prompted to specify the file name for the key pair:

Type return to save the key pair in the default location. You will then be prompted for a pass phrase:

You can optionally enter a pass phrase here or type return twice to select no pass phrase.

NOTE

If you want to use the same key pair for running Fabric console commands, it is
recommended that you select no pass phrase, because Fabric does not support using
encrypted private keys.

Installing the SSH public key in the container

To use the SSH key pair for logging into the Red Hat JBoss Fuse container, you must install the SSH
public key in the container by creating a new user entry in the InstallDir/etc/keys.properties
file. Each user entry in this file appears on a single line, in the following format:

For example, given that your public key file, ~/.ssh/id_rsa.pub, has the following contents:

You can create the jdoe user with the admin role by adding the following entry to the
InstallDir/etc/keys.properties file (on a single line):

ssh-keygen -t rsa -b 2048

Generating public/private rsa key pair.
Enter file in which to save the key (/Users/Username/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Username=PublicKey,Role1,Role2,...

ssh-rsa
AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH7WT
2NWPq/xfW6MPbLm1Vs14E7
gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnfqimFQ8E+4P208UewwI1VBNaFpEy9n
Xzrith1yrv8iIDGZ3RSAHHAAAAFQCX
YFCPFSMLzLKSuYKi64QL8Fgc9QAAAnEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0Hgm
dRWVeOutRZT+ZxBxCBgLRJFnEj6Ewo
FhO3zwkyjMim4TwWeotifI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWu
WfBpKLZl6Ae1UlZAFMO/7PSSoAAACB
AKKSU2PFl/qOLxIwmBZPPIcJshVe7bVUpFvyl3BbJDow8rXfskl8wO63OzP/qLmcJM0+JbcRU/
53Jj7uyk31drV2qxhIOsLDC9dGCWj4
7Y7TyhPdXh/0dthTRBy6bqGtRPxGa7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx
jdoe@doemachine.local

jdoe=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AI
lH7WT2NWPq/xfW6MPbLm1Vs14E7
gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnfqimFQ8E+4P208UewwI1VBNaFpEy9n
Xzrith1yrv8iIDGZ3RSAHHAAAAFQCX
YFCPFSMLzLKSuYKi64QL8Fgc9QAAAnEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0Hgm
dRWVeOutRZT+ZxBxCBgLRJFnEj6Ewo

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

44

IMPORTANT

Do not insert the entire contents of the id_rsa.pub file here. Insert just the block of
symbols which represents the public key itself.

Checking that public key authentication is supported

After starting the container, you can check whether public key authentication is supported by running
the jaas:realms console command, as follows:

You should see that the PublickeyLoginModule is installed. With this configuration you can log in to
the container using either username/password credentials or public key credentials.

Logging in using key-based SSH

You are now ready to login to the container using the key-based SSH utility. For example:

$ ssh -p 8101 jdoe@localhost
 _ ____ ______
 | | _ \ | ____|
 | | |_) | ___ ___ ___ | |__ _ _ ___ ___
 _ | | _ / _ \/ __/ __| | __| | | / __|/ _ \
| |__| | |_) | (_) __ __ \ | | | |_| __ \ __/
 ____/|____/ ___/|___/___/ |_| __,_|___/___|

 JBoss Fuse (6.2.1.redhat-084)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss Fuse.

JBossFuse:karaf@root>

NOTE

If you are using an encrypted private key, the ssh utility will prompt you to enter the
pass phrase.

FhO3zwkyjMim4TwWeotifI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWu
WfBpKLZl6Ae1UlZAFMO/7PSSoAAACB
AKKSU2PFl/qOLxIwmBZPPIcJshVe7bVUpFvyl3BbJDow8rXfskl8wO63OzP/qLmcJM0+JbcRU/
53Jj7uyk31drV2qxhIOsLDC9dGCWj4
7Y7TyhPdXh/0dthTRBy6bqGtRPxGa7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx,admin

Index Realm Module Class
 1 karaf
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
 2 karaf
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule

CHAPTER 8. USING REMOTE CONNECTIONS TO MANAGE A CONTAINER

45

8.3. STOPPING A REMOTE CONTAINER

Using the remote console

If you have connected to a remote console using the ssh:ssh command, the fabric:container-
connect command, or the remote client, you can stop the remote instance using the osgi:shutdown
command.

NOTE

Pressing Ctrl+D in a remote console simply closes the remote connection and returns
you to the local shell.

Using the fabric:container-stop console command

If your containers are deployed in a fabric, you can stop any container in the fabric using the
fabric:container-stop command. For example, to shut down the container called child1, you
would enter the following console command:

JBossFuse:karaf@root> fabric:container-stop child1

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

46

CHAPTER 9. MANAGING CHILD CONTAINERS

Abstract

A child container is a container that shares a common Red Hat JBoss Fuse runtime with a parent
container, but has its own configuration files, runtime information, logs and temporary files. The child
container functions as an independent container into which you can deploy bundles.

9.1. STANDALONE CHILD CONTAINERS

Using the admin console commands

The admin console commands allow you to create and manage instances of the JBoss Fuse runtime
on the same machine. Each new runtime is a child instance of the runtime that created it. You can
easily manage the children using names instead of network addresses. For details on the admin
commands, see chapter "Admin Console Commands" in "Console Reference" .

Installing the admin console commands

The admin commands are not installed by default. To install the command set, install the admin
feature with the following command:

Cloning a container

When you clone a container using the admin:clone command, you create a new child container which
is an exact copy of the parent container in its current state. For example, if you clone the root
container, the child gets the same configuration as the root container. Note that the child container
has the same port numbers as the parent by default. After cloning, therefore, it is a good idea to
customize the child's port numbers, to avoid clashes.

In the case of the SSH port, it is possible to customize the port when you create the child, by specifying
the -s option. For example, to create a new child with the SSH port number of 8102:

Creating a Karaf child container

The admin:create command creates a new Apache Karaf child container. That is, the new child
container is not a full JBoss Fuse container, and is missing many of the standard bundles, features, and
feature repositories that are normally available in a JBoss Fuse container. What you get is effectively a
plain Apache Karaf container with JBoss Fuse branding. Additional feature repositories or features
that you require will have to be added to the child manually.

As shown in Example 9.1, “Creating a Runtime Instance” , admin:create causes the container to
create a new child container in the active container's instances/containerName directory. The
child container is assigned an SSH port number based on an incremental count starting at 8101.

Example 9.1. Creating a Runtime Instance

JBossFuse:karaf@root> features:install admin

JBossFuse:karaf@root> admin:clone -s 8102 root cloned

CHAPTER 9. MANAGING CHILD CONTAINERS

47

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/Consoleadmin.html

JBossFuse:karaf@root> admin:create finn
Creating new instance on SSH port 8102 and RMI ports 1100/44445 at:
 /home/jdoe/apps/fuse/jboss-fuse-6.2.1.redhat-084/instances/finn

Changing a child's SSH port

You can change the SSH port number assigned to a child container using the admin:change-port
command. The syntax for the command is:

admin:change-port { containerName } { portNumber }

IMPORTANT

You can only use the admin:change-port command on stopped containers.

Starting child containers

New containers are created in the stopped state. To start a child container and make it ready to host
applications, use the admin:start command. This command takes a single argument, containerName,
that identifies the child you want started.

Listing all child containers

To see a list of all the JBoss Fuse containers running under a particular installation, use the
admin:list command:

Example 9.2. Listing Instances

JBossFuse:karaf@root> admin:list
 Port State Pid Name
[8107] [Started] [10628] harry
[8101] [Started] [20076] root
[8106] [Started] [15924] dick
[8105] [Started] [18224] tom

Connecting to a child container

You can connect to a started child container's remote console using the admin:connect
command.As shown in Example 9.3, “Admin connect Command”, this command takes three arguments:

Example 9.3. Admin connect Command

admin:connect { containerName } { -u username } { -p password }

containerName

The name of the child to which you want to connect.

-u username

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

48

The username used to connect to the child's remote console. Use valid JAAS user credentials that
have admin privileges (see Chapter 14, Configuring JAAS Security).

-p password

This argument specifies the password used to connect to the child's remote console.

Once you are connected to the child container., the prompt changes to display the name of the current
instance, as shown:

JBossFuse:karaf@harry>

Stopping a child container

To stop a child container, from within the container itself, type osgi:shutdown or simply shutdown.

To stop a child container remotely—in other words, from a parent or sibling instance—type admin:stop
containerName.

Destroying a child container

You can permanently delete a stopped child container using the admin:destroy containerName
command.

IMPORTANT

You can only remove stopped children.

Changing the JVM options on a child container

To change the Java options in a child instance, use the admin:change-opts command. For example,
you could change the amamount of memory allocated to the child container's JVM, as follows:

These changes will take effect when you restart the child container.

Using the admin script

You can also use manage a JBoss Fuse container running in server mode without starting a new
instance of the runtime. The admin script in the InstallDir/bin directory provides the all of the
admin console commands except for admin:connect.

Example 9.4. The admin Script

admin.bat: Ignoring predefined value for KARAF_HOME
Available commands:
 change-port - Changes the port of an existing container instance.
 create - Creates a new container instance.
 destroy - Destroys an existing container instance.
 list - List all existing container instances.

JBossFuse:karaf@harry> admin:change-opts tom "-server -Xms128M -Xmx1345m -
Dcom.sun.management.jmxremote"

CHAPTER 9. MANAGING CHILD CONTAINERS

49

 start - Starts an existing container instance.
 stop - Stops an existing container instance.
Type 'command --help' for more help on the specified command.

For example, to list all of the JBoss Fuse containers on your host machine, type:

Windows

admin.bat list

Linux or UNIX

./admin list

9.2. FABRIC CHILD CONTAINERS

Creating child containers

You create a new child container using the fabric:container-create-child console command,
which has the following syntax:

Where parent is the name of an existing container in the fabric and child is the name of the new child
container. If you create multiple child containers (by specifying the optional number argument), the
new child instances are named child1, child2, and so on.

For example, assuming the container, root, already belongs to your fabric, you can create two new
child containers as follows:

Listing all container instances

To list all of the containers in the current fabric (including child instances), use the
fabric:container-list console command. For example:

karaf@root> fabric:container-create-child parent child [number]

karaf@root> fabric:container-create-child root child 2
The following containers have been created successfully:
 child1
 child2

JBossFuse:karaf@root> fabric:container-list
[id] [version] [alive] [profiles]
[provision status]
root 1.0 true fabric, fabric-
ensemble-0000-1
 child1 1.0 true default
success
 child2 1.0 true default
success

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

50

Assigning a profile to a child container

By default, a child is assigned the default profile when it is created. To assign a new profile (or
profiles) to a child container after it has been created, use the fabric:container-change-
profile console command.

NOTE

You can assign a profile other than default to a newly created container by using the
fabric:container-create-child command's --profile argument.

For example, to assign the example-camel profile to the child1 container, enter the following
console command:

The command removes the profiles currently assigned to child1 and replaces them with the specified
list of profiles (where in this case, there is just one profile in the list, example-camel).

Connecting to a child container

To connect to a child container, use the fabric:container-connect console command. For
example, to connect to child1, enter the following console command:

JBossFuse:karaf@root>fabric:container-connect -u admin -p admin child1

You should see output like the following in your console window:

Connecting to host YourHost on port 8102
Connected
 _ ____ ______
 | | _ \ | ____|
 | | |_) | ___ ___ ___ | |__ _ _ ___ ___
 _ | | _ < / _ \/ __/ __| | __| | | / __|/ _ \
| |__| | |_) | (_) __ __ \ | | | |_| __ \ __/
 ____/|____/ ___/|___/___/ |_| __,_|___/___|

 JBoss Fuse (6.0.0.redhat-xxx)
 http://www.redhat.com/products/jbossenterprisemiddleware/fuse/

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss Fuse.

JBossFuse:admin@child1>

To terminate the session, enter Ctrl-D.

Starting a child container

To start a child container that was previously stopped, use the fabric:container-start command,
providing the child container's name as the command argument—for example, to restart child1:

JBossFuse:karaf@root> fabric:container-change-profile child1 example-camel

CHAPTER 9. MANAGING CHILD CONTAINERS

51

JBossFuse:karaf@root>fabric:container-start child1

This command starts up the child in a separate JVM.

Stopping a child container

To stop a child instance, use the fabric:container-stop command, providing the child container's
name as the command argument—for example, to stop child1:

JBossFuse:karaf@root>fabric:container-stop child1

This command kills the JVM process that hosts the child1 container.

Destroying a child container

To completely destroy a child container use the fabric:container-delete command. For
example, to destroy the child1 container instance, enter the following console command:

JBossFuse:karaf@root> fabric:container-delete child1

Destroying a child container does the following:

stops the child's JVM process

physically removes all files related to the child container

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

52

CHAPTER 10. DEPLOYING A NEW BROKER INSTANCE

Abstract

Red Hat JBoss Fuse supports the deployment of multiple JMS brokers in a container. Doing so involves
creating a new set of broker configurations and deploying them to the container.

OVERVIEW

Deploying a new broker instance involves creating a new OSGi broker configuration and deploying it
into the container. In a standalone container this can be done from the command console using the
config command shell. For containers deployed in a fabric, you need to either create a profile for the
new broker, or modify an existing profile to include the new broker configuration.

You will also likely want to create a new Apache ActiveMQ template configuration file that allows you
to modify the desired settings. This will involve creating a new Apache ActiveMQ XML file and making it
accessible to container.

STANDALONE CONTAINERS

To deploy a new broker into a standalone container:

1. Create a template Apache ActiveMQ XML configuration file in a location that is accessible to
the container.

2. In the JBoss Fuse command console, use the config:edit command to create a new OSGi
configuration file.

IMPORTANT

The PID must start with io.fabric8.mq.fabric.server-.

3. Use the config:propset command to associate your template XML configuration with the
broker OSGi configuration as shown in Example 10.1, “Specifying a Broker's Template XML
Configuration”.

Example 10.1. Specifying a Broker's Template XML Configuration

JBossFuse:karaf@root> config:propset config configFile

4. Use the config:propset command to set the required properties.

The properties that need to be set will depend on the properties you specified using property
place holders in the template XML configuration and the broker's network settings.

For information on using config:propset see section "config:propset, propset" in "Console
Reference".

5. Save the new OSGi configuration using the config:update command.

Once the new OSGi configuration is saved the new broker instance will start.

CHAPTER 10. DEPLOYING A NEW BROKER INSTANCE

53

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/ConsoleconfigPropset.html

NOTE

If you want to simply deploy a second broker that uses the default configuration
template skip Step 1. You will need set the config property to
${karaf.base}/etc/broker.xml. You will also need to provide values for the data
property, the broker-name property, and the openwire-port property.

EXAMPLE

If you wanted to deploy a new instance of the default broker called myBroker that stores its data in
InstallDir/data/myBroker and opens a port at 61617, you would do the following:

1. Open the JBoss Fuse command console.

2. In the JBoss Fuse command console, use the config:edit command to create a new OSGi
configuration file:

JBossFuse:karaf@root> config:edit io.fabric8.mq.fabric.server-
myBroker

3. Use the config:propset command to associate your template XML configuration with the
broker OSGi configuration:

JBossFuse:karaf@root> config:propset config
${karaf.base}/etc/broker.xml

4. Use the config:propset command to specify the new broker's data directory:

JBossFuse:karaf@root> config:propset data ${karaf.data}/myBroker

5. Use the config:propset command to specify the new broker's name:

JBossFuse:karaf@root> config:propset broker-name myBroker

6. Use the config:propset command to specify the new broker's openwire port:

JBossFuse:karaf@root> config:propset openwire-port 61617

7. Save the new OSGi configuration using the config:update command.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

54

CHAPTER 11. CONFIGURING JBOSS FUSE

Abstract

Red Hat JBoss Fuse uses the OSGi Configuration Admin service to manage the configuration of OSGi
services. How you feed information to the configuration service depends on how the container is
deployed.

11.1. INTRODUCING JBOSS FUSE CONFIGURATION

OSGi configuration

The OSGi Configuration Admin service specifies the configuration information for deployed services
and ensures that the services receive that data when they are active.

A configuration is a list of name-value pairs read from a .cfg file in the InstallDir/etc directory.
The file is interpreted using the Java properties file format. The filename is mapped to the persistent
identifier (PID) of the service that is to be configured. In OSGi, a PID is used to identify a service across
restarts of the container.

Configuration files

You can configure the Red Hat JBoss Fuse runtime using the following files:

Table 11.1. JBoss Fuse Configuration Files

Filename Description

broker.xml Configures the default Apache ActiveMQ broker in a
Fabric (used in combination with the
io.fabric8.mq.fabric.server-
default.cfg file).

config.properties The main configuration file for the container See
Section 11.2, “Setting OSGi Framework and Initial
Container Properties” for details.

keys.properties Lists the users who can access the JBoss Fuse
runtime using the SSH key-based protocol. The file's
contents take the format username=publicKey,role

org.apache.aries.transaction.cfg Configures the transaction feature

org.apache.felix.fileinstall-
deploy.cfg

Configures a watched directory and polling interval
for hot deployment.

org.apache.karaf.features.cfg Configures a list of feature repositories to be
registered and a list of features to be installed when
JBoss Fuse starts up for the first time.

CHAPTER 11. CONFIGURING JBOSS FUSE

55

org.apache.karaf.features.obr.cfg Configures the default values for the features OSGi
Bundle Resolver (OBR).

org.apache.karaf.jaas.cfg Configures options for the Karaf JAAS login module.
Mainly used for configuring encrypted passwords
(disabled by default).

org.apache.karaf.log.cfg Configures the output of the log console
commands. See Section 16.2, “Logging
Configuration”.

org.apache.karaf.management.cfg Configures the JMX system. See Chapter 13,
Configuring JMX for details.

org.apache.karaf.shell.cfg Configures the properties of remote consoles. For
more information see Section 8.1, “Configuring a
Container for Remote Access”.

org.apache.servicemix.jbi.cfg Configures the shutdown timeout for the JBI
container.

org.apache.servicemix.nmr.cfg Configures the default thread pool settings for JBI.
See Configuring JBI Component Thread Pools.

org.apache.servicemix.components.Na
me.cfg

Configures the thread pool settings specifically for
the Name JBI component. See Configuring JBI
Component Thread Pools.

org.fusesource.bai.agent.cfg Configures the Fuse BAI (Business Activity Insight)
feature, if it is installed.

io.fabric8.maven.cfg Configures the Maven repositories used by the
Fabric Maven Proxy when downloading artifacts,
(The Fabric Maven Proxy is used for provisioning
new containers on a remote host.)

io.fabric8.mq.fabric.server-
default.cfg

Configures the default Apache ActiveMQ broker in a
Fabric (used in combination with the broker.xml
file).

org.jclouds.shell.cfg Configures options for formatting the output of
jclouds:* console commands.

org.ops4j.pax.logging.cfg Configures the logging system. For more, see
Section 16.2, “Logging Configuration”.

org.ops4j.pax.url.mvn.cfg Configures additional URL resolvers.

org.ops4j.pax.web.cfg Configures the default Jetty container (Web server).
See Securing the Web Console.

Filename Description

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

56

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Security_Guide/WebConsole.html

startup.properties Specifies which bundles are started in the container
and their start-levels. Entries take the format
bundle=start-level.

system.properties Specifies Java system properties. Any properties set
in this file are available at runtime using
System.getProperties(). See Setting System
and Config Properties for more.

users.properties Lists the users who can access the JBoss Fuse
runtime either remotely or via the web console. The
file's contents take the format
username=password,role

setenv or setenv.bat This file is in the /bin directory. It is used to set
JVM options. The file's contents take the format
JAVA_MIN_MEM=512M, where 512M is the minimum
size of Java memory. See Setting Java Options for
more information.

Filename Description

Configuration file naming convention

The file naming convention for configuration files depends on whether the configuration is intended for
an OSGi Managed Service or for an OSGi Managed Service factory.

The configuration file for an OSGi Managed Service obeys the following naming convention:

Where <PID> is the persistent ID of the OSGi Managed Service (as defined in the OSGi Configuration
Admin specification). A persistent ID is normally dot-delimited—for example, org.ops4j.pax.web.

The configuration file for an OSGi Managed Service Factory obeys the following naming convention:

Where <PID> is the persistent ID of the OSGi Managed Service Factory. In the case of a managed
service factory's <PID>, you can append a hyphen followed by an arbitrary instance ID,
<InstanceID>. The managed service factory then creates a unique service instance for each
<InstanceID> that it finds.

JBI component configuration

In addition to the container's configuration files, the InstallDir/etc folder may contain a number of
configuration files for the JBI components that ship with Red Hat JBoss Fuse.

<PID>.cfg

<PID>-<InstanceID>.cfg

CHAPTER 11. CONFIGURING JBOSS FUSE

57

The component configuration files are named using the scheme
org.apache.servicemix.components.ComponentName.cfg. For example, you would configure
the JMS component using a file called org.apache.servicemix.components.jms.cfg.

The contents of a component's configuration file is largely component specific. However, each
component configuration file contains properties for configuring the thread pool used by the
component to process message exchanges. See ??? for details.

Setting Java Options

Java Options can be set using the /bin/setenv file in Linux, or the bin/setenv.bat file for
Windows. Use this file to directly set a group of Java options: JAVA_MIN_MEM, JAVA_MAX_MEM,
JAVA_PERM_MEM, JAVA_MAX_PERM_MEM. Other Java options can be set using the
EXTRA_JAVA_OPTS variable.

For example, to allocate minimum memory for the JVM use

To set a Java option other than the direct options, use

For example,

11.2. SETTING OSGI FRAMEWORK AND INITIAL CONTAINER
PROPERTIES

Overview

There are a number of configuration properties that are set when a container is bootstrapped. These
properties include the container's name, the default features repository used by the container, the
OSGi framework provider, and other settings. These properties are specified in two property files in
the etc folder:

config.properties—specifies the bootstrap properties for the OSGi framework

system.properties—specifies properties to configure container functions

OSGi framework properties

The etc/config.properties file contains the properties used to specify which OSGi framework
implementation to load and properties for configuring the framework's behaviors. Table 11.2,
“Properties for the OSGi Framework” describes the key properties to set.

Table 11.2. Properties for the OSGi Framework

Property Description

JAVA_MIN_MEM=512M # Minimum memory for the JVM

EXTRA_JAVA_OPTS="Java option"

EXTRA_JAVA_OPTS="-XX:+UseG1GC"

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

58

karaf.framework Specifies the OSGi framework that Red Hat JBoss
Fuse uses. The default framework is Apache Felix
which is specified using the value felix.

karaf.framework.felix Specifies the path to the Apache Felix JAR on the
file system.

Property Description

IMPORTANT

JBoss Fuse only supports the Apache Felix OSGi implementation.

Initial container properties

The etc/system.properties file contains properties that configure how various aspects of the
container behave including:

the container's name

the default feature repository used by the container

the default port used by the OSGi HTTP service

the initial message broker configuration

Table 11.3, “Container Properties” describes some of the common properties.

Table 11.3. Container Properties

Property Description

karaf.name Specifies the name of this container. The default is
root.

karaf.default.repository Specifies the location of the feature repository the
container will use by default. The default setting is
the local feature repository installed with JBoss
Fuse.

org.osgi.service.http.port Specifies the default port for the OSGi HTTP Service.

11.3. CONFIGURING STANDALONE CONTAINERS USING THE
COMMAND CONSOLE

Overview

The command console's config shell provides commands for editing the configuration of a standalone
container. The commands allow you to inspect the container's configuration, add new PIDs, and edit
the properties of any PID used by the container. These configuration changes are applied directly to

CHAPTER 11. CONFIGURING JBOSS FUSE

59

the container and will persist across container restarts.

For more details on the config commands see chapter "Config Console Commands" in "Console
Reference".

Listing the current configuration

The config:list command will show all of the PIDs currently in use by the container. As shown in
Example 11.1, “Output of the config:list Command”, the output from config:list contains all of
the PIDs and all of the properties for each of the PIDs.

Example 11.1. Output of the config:list Command

...
--
Pid: org.ops4j.pax.logging BundleLocation:
mvn:org.ops4j.pax.logging/pax-logging-service/1.4 Properties:
log4j.appender.out.layout.ConversionPattern = %d{ABSOLUTE} | %-5.5p | %-
16.16 t | %-32.32c{1} | %-32.32C %4L | %m%n felix.fileinstall.filename =
org.ops4j.pax.logging.cfg service.pid = org.ops4j.pax.logging
log4j.appender.stdout.layout.ConversionPattern = %d{ABSOLUTE} | %-5.5p |
%-16 .16t | %-32.32c{1} | %-32.32C %4L | %m%n log4j.appender.out.layout
= org.apache.log4j.PatternLayout log4j.rootLogger = INFO, out,
osgi:VmLogAppender log4j.appender.stdout.layout =
org.apache.log4j.PatternLayout log4j.appender.out.file =
C:\apache\apache-servicemix-6.2.1.redhat-084/data/log/karaf.log
log4j.appender.stdout = org.apache.log4j.ConsoleAppender
log4j.appender.out.append = true log4j.appender.out =
org.apache.log4j.FileAppender --
------------------------ Pid: org.ops4j.pax.web BundleLocation:
mvn:org.ops4j.pax.web/pax-web-runtime/0.7.1 Properties:
org.apache.karaf.features.configKey = org.ops4j.pax.web service.pid =
org.ops4j.pax.web org.osgi.service.http.port = 8181 -------------------

...

Listing the container's configuration is a good idea before editing a container's configuration. You can
use the output to ensure that you know the exact PID to change.

Editing the configuration

Editing a container's configuration involves a number of commands and must be done in the proper
sequence. Not following the proper sequence can lead to corrupt configurations or the loss of changes.

To edit a container's configuration:

1. Start an editing session by typing config:edit PID.

PID is the PID for the configuration you are editing. It must be entered exactly. If it does not
match the desired PID, the container will create a new PID with the specified name.

2. Remind yourself of the available properties in a particular configuration by typing
config:proplist.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

60

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/Consoleconfig.html

3. Use one of the editing commands to change the properties in the configuration.

The editing commands include:

config:propappend—appends a new property to the configuration

config:propset—set the value for a configuration property

config:propdel—delete a property from the configuration

4. Update the configuration in memory and save it to disk by typing config:update.

NOTE

To exit the configuration, without saving your changes, type config:cancel.

Example 11.2, “Editing a Configuration” shows a configuration editing session that changes a
container's logging behavior.

Example 11.2. Editing a Configuration

JBossFuse:karaf@root> config:edit org.apache.karaf.log
JBossFuse:karaf@root> config:proplist
 service.pid = org.apache.karaf.log size = 500
felix.fileinstall.filename = org.apache.karaf.log.cfg pattern =
%d{ABSOLUTE} | %-5.5p | %-16.16t | %-32.32c{1} | %-32.32C %4L | %m%n
JBossFuse:karaf@root> config:propset size 300
JBossFuse:karaf@root> config:update

11.4. CONFIGURING FABRIC CONTAINERS

Overview

When a container is part of a fabric, it does not manage its configuration. The container's configuration
is managed by the Fabric Agent. The agent runs along with the container and updates the container's
configuration based on information from the fabric's registry.

Because the configuration is managed by the Fabric Agent, any changes to the container's
configuration needs to be done by updating the fabric's registry. In a fabric, container configuration is
determined by one or more profiles that are deployed into the container. To change a container's
configuration, you must update the profile(s) deployed into the container using either the console's
fabric: shell or the management console.

Profiles

All configuration in a fabric is stored as profiles in the Fabric Registry. One or more profiles are
assigned to containers that are part of the fabric. A profile is a collection of configuration that
specifies:

the Apache Karaf features to be deployed

OSGi bundles to be deployed

CHAPTER 11. CONFIGURING JBOSS FUSE

61

the feature repositories to be scanned for features

properties that configure the container's runtime behavior

The configuration profiles are collected into versions. Versions are typically used to make updates to
an existing profile without effecting deployed containers. When a container is configured it is assigned
a profile version from which it draws the profiles. Therefore, when you create a new version and edit
the profiles in the new version, the profiles that are in use are not changed. When you are ready to test
the changes, you can roll them out incrementally by moving containers to a new version one at a time.

When a container joins a fabric, a Fabric Agent is deployed with the container and takes control of the
container's configuration. The agent will ask the Fabric Registry what version and profile(s) are
assigned to the container and configure the container based on the profiles. The agent will download
and install of the specified bundles and features. It will also set all of the specified configuration
properties.

Best practices

Editing a profile makes changes to the copy in the Fabric Registry and all of the Fabric Agents are
alerted when changes are made. If a running container is using a profile that is changed, its agent will
automatically apply the new settings. If the update is benign having the change rolled out to the entire
fabric is not an issue. If, on the other hand, the change causes issues, the entire fabric could become
unstable.

To avoid having untested changes infecting an entire fabric, you should always make a new version
before editing a profile. This isolates the changes in a version that is not running on any containers and
provides a quick backup in case the changes are bad.

Once the profile changes have been made, you should test them out by upgrading only a few containers
to the new version to see how they behave. As you become confident that the changes are good, you
can then upgrade more containers.

Making changes using the command console

The command console's fabric shell has commands for managing profiles and versions in a fabric.
These commands include:

fabric:version-create—create a new version

fabric:profile-create—create a new profile

fabric:profile-edit—edit the properties in a profile

fabric:container-change-profile—change the profiles assigned to a container

Example 11.3, “Editing Fabric Profile” shows a session for updating a profile using the command
console.

Example 11.3. Editing Fabric Profile

JBossFuse:karaf@root> fabric:version-create
Created version: 1.1 as copy of: 1.0
JBossFuse:karaf@root> fabric:profile-edit -p
org.apache.karaf.log/size=300 NEBroker

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

62

The change made in Example 11.3, “Editing Fabric Profile” is not applied to any running containers
because it is made in a new version. In order to apply the change you need to update one or more
containers using the fabric:container-upgrade command.

See chapter "Fabric Console Commands" in "Console Reference" for more information.

Using the management console

The management console simplifies the process of configuring containers in a fabric by providing an
easy to use Web-based interface and reducing the number of steps required to make the changes. For
more information on using the management console see Using the Management Console.

CHAPTER 11. CONFIGURING JBOSS FUSE

63

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Console_Reference/Consolefabric.html

CHAPTER 12. CONFIGURING THE HOT DEPLOYMENT SYSTEM

Abstract

Standalone containers scan a directory for OSGi bundles and JBI artifacts to automatically load. You
can change the location of this folder and the interval at which the folder is scanned.

OVERVIEW

Standalone containers will automatically load and deploy OSGi bundles and JBI artifacts from a pre-
configured folder. It scans the folder once a second for new bundles or JBI artifacts. You can change
the folder a container scans and the scan interval by editing properties in the
org.apache.felix.fileinstall-deploy PID.

IMPORTANT

The hot deployment system is not not enabled for fabric containers.

IMPORTANT

The hot deployment system works only while the Karaf container is running. In
particular, deleting files from the hot deploy directory is not effective while the
container is shut down.

SPECIFYING THE HOT DEPLOYMENT FOLDER

By default, a container scans the deploy folder that is relative to the folder from which you launched
the container. You change the folder the container monitors by setting the felix.fileinstall.dir property
in the rg.apache.felix.fileinstall-deploy PID. The value is the absolute path of the folder to
monitor. If you set the value to /home/joe/deploy, the container will monitor a folder in Joe's home
directory.

SPECIFYING THE SCAN INTERVAL

By default containers scan the hot deployment folder every 1000 milliseconds. To change the interval
between scans of the hot deployment folders, you change the felix.fileinstall.poll property in the
org.apache.felix.fileinstall-deploy PID. The value is specified in milliseconds.

EXAMPLE

Example 12.1, “Configuring the Hot Deployment Folders” shows a configuration editing session that
sets /home/smx/jbideploy as the hot deployment folder and sets the scan interval to half a second.

Example 12.1. Configuring the Hot Deployment Folders

JBossFuse:karaf@root> config:edit org.apache.felix.fileinstall-deploy
JBossFuse:karaf@root> config:propset felix.fileinstall.dir
/home/smx/jbideploy
JBossFuse:karaf@root> config:propset felix.fileinstall.poll 500
JBossFuse:karaf@root> config:update

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

64

CHAPTER 12. CONFIGURING THE HOT DEPLOYMENT SYSTEM

65

CHAPTER 13. CONFIGURING JMX

Abstract

Red Hat JBoss Fuse uses JMX for its underlying management features. You can configure the JMX
RMI port, the JMX URL, and the credentials used to access the JMX features.

OVERVIEW

Red Hat JBoss Fuse uses JMX for reporting runtime metrics and providing some limited management
capabilities. You can configure how the JMX management features are accessed by changing the
properties in the org.apache.karaf.management PID.

CHANGING THE RMI PORT AND JMX URL

Two of the most commonly changed parts of a container's JMX configuration are the RMI port and the
JMX URL. You can set these using the properties described in Table 13.1, “JMX Access Properties”.

Table 13.1. JMX Access Properties

Property Description

rmiRegistryPort Specifies the RMI registry port. The default value is
1099.

serviceUrl Specifies the the URL used to connect to the JMX
server. The default URL is
service:jmx:rmi:///jndi/rmi://localhost:1099/karaf-
KarafName, where KarafName is the container's
name (by default, root).

SETTING THE JMX USERNAME AND PASSWORD

In a standalone container, use any valid JAAS user credentials (see the section called “Create a secure
JAAS user”).

In a fabric, the default username is admin and the default password is admin.

You can change the username and password used to connect to the JMX server by configuring the
JAAS security system as described in Chapter 14, Configuring JAAS Security.

TROUBLESHOOTING ON LINUX PLATFORMS

On Linux platforms, if you have trouble getting a remote JConsole instance to connect to the JMX
server, check the following points:

Check that the hostname resolves to the correct IP address. For example, if the hostname -i
command returns 127.0.0.1, JConsole will not be able to connect to the JMX server. To fix this,
edit the /etc/hosts file so that the hostname resolves to the correct IP address.

Check whether the Linux machine is configured to accept packets from the host where

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

66

JConsole is running (packet filtering is built in the Linux kernel). You can enter the command,
/sbin/iptables --list, to determine whether an external client is allowed to connect to
the JMX server.

Use the following command to add a rule to allow an external client such as JConsole to
connect:

Where JconsoleHost is either the hostname or the IP address of the host on which JConsole is
running and JMXRemotePort is the TCP port exposed by the JMX server.

/usr/sbin/iptables -I INPUT -s JconsoleHost -p tcp --destination-
port JMXRemotePort -j ACCEPT

CHAPTER 13. CONFIGURING JMX

67

CHAPTER 14. CONFIGURING JAAS SECURITY

14.1. ALTERNATIVE JAAS REALMS

Overview

The Java Authentication and Authorization Service (JAAS) is a pluggable authentication service, which
is implemented by a login module. A particular instance of a JAAS service is known as a JAAS realm
and is identified by a realm name.

Applications integrated with JAAS must be configured to use a specific realm, by specifying the realm
name.

Default realm

The default realm in Red Hat JBoss Fuse is identified by the karaf realm name. The standard
administration services in JBoss Fuse (SSH remote console, JMX port, and so on) are all configured to
use the karaf realm by default.

Available realm implementations

JBoss Fuse provides the following alternative JAAS realm implementations:

the section called “Standalone JAAS realm” .

the section called “Fabric JAAS realm” .

the section called “LDAP JAAS realm” .

Standalone JAAS realm

In a standalone container, the karaf realm installs four JAAS login modules, which are used in parallel:

PropertiesLoginModule

Authenticates username/password credentials and stores the secure user data in the
InstallDir/etc/users.properties file.

PublickeyLoginModule

Authenticates SSH key-based credentials (consisting of a username and a public/private key pair).
Secure user data is stored in the InstallDir/etc/keys.properties file.

FileAuditLoginModule

Provides an audit trail of successful/failed login attempts, which are logged to an audit file. Does
not perform user authentication.

EventAdminAuditLoginModule

Provides an audit trail of successful/failed login attempts, which are logged to the OSGi Event
Admin service. Does not perform user authentication.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

68

Fabric JAAS realm

In a fabric, a karaf realm based on the ZookeeperLoginModule login module is automatically
installed in every container (the fabric-jaas feature is included in the default profile) and is
responsible for securing the SSH remote console and other administrative services. The Zookeeper
login module stores the secure user data in the Fabric Registry.

NOTE

In containers where the standalone JAAS realm and the Fabric JAAS realm are both
installed, the Fabric JAAS realm takes precedence, because it defines a karaf realm
with a higher rank.

LDAP JAAS realm

It is also possible to configure a container to use an LDAP login module with JAAS. For details of how
to set this up, see LDAP Authentication Tutorial .

14.2. JAAS CONSOLE COMMANDS

Editing user data from the console

Red Hat JBoss Fuse provides a set of jaas:* console commands, which you can use to edit JAAS user
data from the console. This works both for standalone JAAS realms and for Fabric JAAS realms.

NOTE

The jaas:* console commands are not compatible with the LDAP JAAS module.

Standalone realm configuration

A standalone container (which uses the JAAS PropertiesLoginModule and the
PublickeyLoginModule) maintains its own database of secure user data, independently of any other
containers. To configure the user data for a standalone container, you must log into the specific
container (see Connecting and Disconnecting Remotely) whose data you want to modify. Each
standalone container must be configured separately.

To start editing the standalone JAAS user data, you must first specify the JAAS realm that you want to
modify. To see the available realms, enter the jaas:realms command, as follows:

All of these login modules are active in the default karaf JAAS realm. Enter the following console
command to start editing the properties login module in the karaf realm:

JBossFuse:karaf@root> jaas:realms
Index Realm Module Class
 1 karaf
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
 2 karaf
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule
 3 karaf
org.apache.karaf.jaas.modules.audit.FileAuditLoginModule
 4 karaf
org.apache.karaf.jaas.modules.audit.EventAdminAuditLoginModule

CHAPTER 14. CONFIGURING JAAS SECURITY

69

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Security_Guide/FESBLDAPTutorial.html

Fabric realm configuration

A container in a fabric (which uses the JAAS ZookeeperLoginModule by default) shares its secure
user data with all of the other containers in the fabric and the user data is stored in the Fabric
Registry. To configure the user data for a fabric, you can log into any of the containers. Because the
user data is shared in the registry, any modifications you make are instantly propagated to all of the
containers in the fabric.

To start editing the fabric JAAS user data, you must first specify the JAAS login module you want to
modify. In the context of fabric, you must modify the Zookeeper login module. For example, if you
enter the jaas:realms console command, you might see a listing similar to this:

The ZookeeperLoginModule login module has the highest priority and is used by the fabric (you
cannot see this from the listing, but its realm is defined to have a higher rank than the other modules).
In this example, the ZookeeperLoginModule has the index 1, but it might have a different index
number in your container.

Enter the following console command to start editing the fabric's JAAS realm (specifying the index of
the ZookeeperLoginModule):

Adding a new user to the JAAS realm

For example, consider how to add a new user, jdoe, to the JAAS realm.

First of all, start to manage the relevant JAAS realm as follows:

1. List the available realms and login modules by entering the following command:

2. Choose the login module to edit by specifying its index, Index, using a command of the
following form:

Add the user, jdoe, with password, secret, by entering the following console command:

Add the admin role to jdoe, by entering the following console command:

JBossFuse:karaf@root> jaas:manage --index 1

Index Realm Module Class
 1 karaf io.fabric8.jaas.ZookeeperLoginModule
 2 karaf
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
 3 karaf
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule

JBossFuse:karaf@root> jaas:manage --index 1

JBossFuse:karaf@root> jaas:realms

JBossFuse:karaf@root> jaas:manage --index Index

JBossFuse:karaf@root> jaas:useradd jdoe secret

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

70

As a matter of fact, these changes are not applied right away. Initially, the changes are queued in a list
of pending operations. To see this list, enter the jaas:pending console command, as follows:

Now you can apply the changes by invoking jaas:update, as follows:

The new user entry is then persisted (either by writing to the remote container's
etc/users.properties file, in the case of a standalone container, or by storing the user data in the
Fabric Registry, in the case of a fabric).

Canceling pending changes

If you decide that you do not want to make the changes permanent after all, instead of invoking the
jaas:update command, you could abort the pending changes using the jaas:cancel command, as
follows:

14.3. STANDALONE REALM PROPERTIES FILE

Overview

The default JAAS realm used by a standalone container is implemented by the
PropertiesLoginModule JAAS module. This login module stores its user data in a Java properties
file in the following location:

Format of users.properties entries

Each entry in the etc/users.properties file has the following format (on its own line):

Changing the default username and password

The etc/users.properties file initially contains a commented out entry for a single user, admin,
with password admin and role admin. It is strongly recommended that you create a new user entry that
is different from the admin user example.

For example, you could create a new user in the following format:

JBossFuse:karaf@root> jaas:roleadd jdoe admin

JBossFuse:karaf@root> jaas:pending
Jaas Realm:karaf Jaas
Module:org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
UserAddCommand{username='jdoe', password='secret'}
RoleAddCommand{username='jdoe', role='admin'}

JBossFuse:karaf@root> jaas:update

JBossFuse:karaf@root> jaas:cancel

InstallDir/etc/users.properties

Username=Password[,UserGroup|Role][,UserGroup|Role]...

CHAPTER 14. CONFIGURING JAAS SECURITY

71

Where the Administrator role grants full administration privileges to this user.

Username=Password,Administrator

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

72

CHAPTER 15. SECURING FABRIC CONTAINERS

Abstract

By default, fabric containers uses text-based username/password authentication. Setting up a more
robust access control system involves creating and deploying a new JAAS realm to the containers in
the fabric.

DEFAULT AUTHENTICATION SYSTEM

By default, Fabric uses a simple text-based authentication system (implemented by the JAAS login
module, io.fabric8.jaas.ZookeeperLoginModule). This system allows you to define user
accounts and assign passwords and roles to the users. Out of the box, the user credentials are stored in
the Fabric registry, unencrypted.

MANAGING USERS

You can manage users in the default authentication system using the jaas:* family of console
commands. First of all you need to attach the jaas:* commands to the ZookeeperLoginModule
login module, as follows:

Which attaches the jaas:* commands to the ZookeeperLoginModule login module. You can then
add users and roles, using the jaas:useradd and jaas:roleadd commands. Finally, when you are
finished editing the user data, you must commit the changes by entering the jaas:update command,
as follows:

Alternatively, you can abort the pending changes by entering jaas:cancel.

OBFUSCATING STORED PASSWORDS

By default, the JAAS ZookeeperLoginModule stores passwords in plain text. You can provide
additional protection to passwords by storing them in an obfuscated format. This can be done by
adding the appropriate configuration properties to the io.fabric8.jaas PID and ensuring that they
are applied to all of the containers in the fabric.

For more details, see section "Using Encrypted Property Placeholders" in "Security Guide" .

JBossFuse:karaf@root> jaas:realms
Index Realm Module Class
 1 karaf
org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
 2 karaf
org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule
 3 karaf io.fabric8.jaas.ZookeeperLoginModule
JBossFuse:karaf@root> jaas:manage --index 3

JBossFuse:karaf@root> jaas:update

CHAPTER 15. SECURING FABRIC CONTAINERS

73

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Security_Guide/FMQSecurityEncryptProperties.html

NOTE

Although message digest algorithms are not easy to crack, they are not invulnerable to
attack (for example, see the Wikipedia article on cryptographic hash functions). Always
use file permissions to protect files containing passwords, in addition to using password
encryption.

ENABLING LDAP AUTHENTICATION

Fabric supports LDAP authentication (implemented by the Apache Karaf LDAPLoginModule), which
you can enable by adding the requisite configuration to the default profile.

For details of how to enable LDAP authentication in a fabric, see chapter "LDAP Authentication
Tutorial" in "Security Guide".

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

74

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Security_Guide/FESBLDAPTutorial.html

CHAPTER 16. LOGGING

Abstract

The Red Hat JBoss Fuse runtime uses OPS4j Pax Logging as its logging mechanism. It is easily
configured using the standard OSGi Admin mechanism and can be easily integrated with applications
deployed in a container. The command console provides commands to manage the logs.

16.1. LOGGING OVERVIEW

Red Hat JBoss Fuse uses the OPS4j Pax Logging system. Pax Logging is an open source OSGi logging
service that extends the standard OSGi logging service to make it more appropriate for use in
enterprise applications. It uses Apache Log4j as the back-end logging service. Pax Logging has its own
API, but it also supports the following APIs:

Apache Log4j

Apache Commons Logging

SLF4J

Java Util Logging

For more information on OPS4j Pax Logging see
http://team.ops4j.org/wiki/display/paxlogging/Pax+Logging.

16.2. LOGGING CONFIGURATION

Overview

The logging system is configured by a combination of two OSGi Admin PIDs and one configuration file:

etc/system.properties—the configuration file that sets the logging level during the
container’s boot process. The file contains a single property,
org.ops4j.pax.logging.DefaultServiceLog.level, that is set to ERROR by default.

org.ops4j.pax.logging—the PID used to configure the logging back end service. It sets the
logging levels for all of the defined loggers and defines the appenders used to generate log
output. It uses standard Log4j configuration. By default, it sets the root logger's level to INFO
and defines two appenders: one for the console and one for the log file.

NOTE

The console's appender is disabled by default. To enable it, add
log4j.appender.stdout.append=true to the configuration For example,
to enable the console appender in a standalone container, you would use the
following commands:

JBossFuse:karaf@root> config:edit org.ops4j.pax.logging
JBossFuse:karaf@root> config:propappend
log4j.appender.stdout.append true
JBossFuse:karaf@root> config:update

CHAPTER 16. LOGGING

75

http://team.ops4j.org/wiki/display/paxlogging/Pax+Logging

org.apache.karaf.log.cfg—configures the output of the log console commands.

The most common configuration changes you will make are changing the logging levels, changing the
threshold for which an appender writes out log messages, and activating per bundle logging.

Changing the log levels

The default logging configuration sets the logging levels so that the log file will provide enough
information to monitor the behavior of the runtime and provide clues about what caused a problem.
However, the default configuration will not provide enough information to debug most problems.

The most useful logger to change when trying to debug an issue with Red Hat JBoss Fuse is the root
logger. You will want to set its logging level to generate more fine grained messages. To do so you
change the value of the org.ops4j.pax.logging PID's log4j.rootLogger property so that the
logging level is one of the following:

TRACE

DEBUG

INFO

WARN

ERROR

FATAL

NONE

Example 16.1, “Changing Logging Levels” shows the commands for setting the root loggers log level in
a standalone container.

Example 16.1. Changing Logging Levels

JBossFuse:karaf@root> config:edit org.ops4j.pax.logging
JBossFuse:karaf@root> config:propset log4j.rootLogger "DEBUG, out,
osgi:VmLogAppender"
JBossFuse:karaf@root> config:update

Changing the appenders' thresholds

When debugging a problem in JBoss Fuse you may want to limit the amount of logging information that
is displayed on the console, but not the amount written to the log file. This is controlled by setting the
thresholds for each of the appenders to a different level. Each appender can have a
log4j.appender.appenderName.threshold property that controls what level of messages are
written to the appender. The appender threshold values are the same as the log level values.

Example 16.2, “Changing the Log Information Displayed on the Console” shows an example of setting
the root logger to DEBUG but limiting the information displayed on the console to WARN.

Example 16.2. Changing the Log Information Displayed on the Console

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

76

JBossFuse:karaf@root> config:edit org.ops4j.pax.logging
JBossFuse:karaf@root> config:propset log4j.rootLogger "DEBUG, out,
osgi:VmLogAppender"
JBossFuse:karaf@root> config:propappend log4j.appender.stdout.threshold
WARN
JBossFuse:karaf@root> config:update

Logging per bundle

It is possible to reconfigure JBoss Fuse logging so that it writes one log file for each bundle, instead of
writing all of the log messages into a single log file. This feature is enabled by adding the Log4j sift
appender to the Log4j root logger as shown in Example 16.3, “Enabling Per Bundle Logging” .

Example 16.3. Enabling Per Bundle Logging

JBossFuse:karaf@root> config:edit org.ops4j.pax.logging
JBossFuse:karaf@root> config:propset log4j.rootLogger "INFO, out, sift,
osgi:VmLogAppender"
JBossFuse:karaf@root> config:update

After restarting the container, you can see that each BundleName bundle now has its own log file,
located at data/log/BundleName.log.

This is the behavior you will see with the default sift appender settings. You can edit this behavior
using the sift appender configuration settings in org.ops4j.pax.logging.cfg.

Logging History

When JBoss Fuse is stopped, the Karaf log is saved in ~/.karaf/karaf.history. JBoss Fuse can be
configured to prevent the history from being saved each time.

Procedure 16.1. Stop JBoss Fuse saving Logging History on shutdown.

1. Stop JBoss Fuse.

2. Edit $FUSE_HOME/etc/system.properties.

3. Uncomment the line that says # karaf.shell.history.maxSize = 0 .

4. Restart JBoss Fuse

~/.karaf/karaf.history will still be created, but it will always have a size of 0, and will be empty.

16.3. LOGGING PER APPLICATION

Overview

Using Mapped Diagnostic Context (MDC) logging, you create a separate log file for each of your
applications. The basic idea of MDC logging is that you associate each logging message with a
particular context (for example, by associating it with a set of key-value pairs). Later on, when it comes

CHAPTER 16. LOGGING

77

to writing the log stream, you can use the context data to sort or filter the logging messages in various
ways.

NOTE

MDC logging is supported only by log4j and slf4j.

Application key

To use MDC logging, you must define a unique MDC key for each of your applications. The MDC key is a
string that is associated with one application or logging context. At runtime, you can then use the
application key to sort logging messages and write them into separate files for each application key.

Enabling per application logging

To enable per application logging:

1. In each of your applications, edit the Java source code to define a unique application key.

If you are using slf4j, add the following static method call to your application:

If you are using log4j, add the following static method call to your application:

2. Edit the etc/org.ops4j.pax.logging PID to customize the sift appender.

a. Set log4j.appender.sift.key to app.name.

b. Set log4j.appender.sift.appender.file to =${karaf.data}/log/$\\
{app.name\\}.log.

3. Edit the etc/org.ops4j.pax.logging PID to add the sift appender to the root logger.

JBossFuse:karaf@root> config:edit org.ops4j.pax.logging
JBossFuse:karaf@root> config:propset log4j.rootLogger "INFO, out,
sift, osgi:VmLogAppender"
JBossFuse:karaf@root> config:update

16.4. LOG COMMANDS

The Red Hat JBoss Fuse console provides the following commands for managing logging output:

log:display

Displays the most recent log entries. By default, the number of entries returned and the pattern of
the output depends on the size and pattern properties in the org.apache.karaf.log.cfg file.
You can override these using the -p and -d arguments.

log:display-exception

Displays the most recently logged exception.

org.slf4j.MDC.put("app.name","MyFooApp");

org.apache.log4j.MDC.put("app.name","MyFooApp");

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

78

log:get

Displays the current log level.

log:set

Sets the log level.

log:tail

Continuously display log entries .

log:clear

Clear log entries.

CHAPTER 16. LOGGING

79

CHAPTER 17. PERSISTENCE

Abstract

The Red Hat JBoss Fuse container caches information about its state and the artifacts deployed to it. It
uses this data to make startup faster. You can configure how this information is stored on your file
system.

OVERVIEW

Red Hat JBoss Fuse containers store all of their persistent caches relative to its start location. It will
create a data folder in the directory from which you launch the container. This folder is populated by
folders storing information about the message broker used by the container, the OSGi framework, and
the JBI container.

THE DATA FOLDER

The data folder is used by the JBoss Fuse runtime to store persistent state information. It contains
the following folders:

amq

Contains persistent data needed by any Apache ActiveMQ brokers that are started by the
container.

cache

The OSGi bundle cache. The cache contains a directory for each bundle, where the directory name
corresponds to the bundle identifier number.

generated-bundles

Contains bundles that are generated by the container. Typically these are to support deployed JBI
artifacts.

log

Contains the log files.

maven

A temporary directory used by the Fabric Maven Proxy when uploading files.

txlog

Contains the log files used by the transaction management system. You can set the location of this
directory in the org.apache.aries.transaction.cfg file

CHANGING THE BUNDLE CACHE LOCATION

By default, the bundle cache is stored in InstallDir/data/cache.

To specify an alternative location, modify the org.osgi.framework.storage property in
config.properties.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

80

If you use a relative path, the cache location is added to the root of the JBoss Fuse installation
directory.

FLUSHING THE BUNDLE CACHE

You can configure JBoss Fuse to flush the bundle cache every time the runtime starts by setting the
org.osgi.framework.storage.clean property to onFirstInit in config.properties. This property is set
to none by default.

CHANGING THE GENERATED-BUNDLE CACHE LOCATION

The generated-bundle cache is where the container caches bundles it creates to support JARs that are
not supplied as OSGi bundles.

You can configure the location of this cache by changing the felix.fileinstall.tmpdir property in the
org.apache.felix.fileinstall-deploy.cfg file.

ADJUSTING THE BUNDLE CACHE BUFFER

The felix.cache.bufsize property controls the size of the buffer used to copy bundles into the bundle
cache. Its default value is 4096 bytes.

You can adjust this property by editing its value in the config.properties configuration file. The
value is specified in bytes.

CHAPTER 17. PERSISTENCE

81

CHAPTER 18. FAILOVER DEPLOYMENTS

Abstract

Red Hat JBoss Fuse provides failover capability using either a simple lock file system or a JDBC locking
mechanism. In both cases, a container-level lock system allows bundles to be preloaded into the slave
kernel instance in order to provide faster failover performance.

18.1. USING A SIMPLE LOCK FILE SYSTEM

Overview

When you first start Red Hat JBoss Fuse a lock file is created at the root of the installation directory.
You can set up a master/slave system whereby if the master instance fails, the lock is passed to a slave
instance that resides on the same host machine.

Configuring a lock file system

To configure a lock file failover deployment, edit the etc/system.properties file on both the
master and the slave installation to include the properties in Example 18.1, “Lock File Failover
Configuration”.

Example 18.1. Lock File Failover Configuration

karaf.lock—specifies whether the lock file is written.

karaf.lock.class—specifies the Java class implementing the lock. For a simple file lock it should
always be org.apache.karaf.main.SimpleFileLock.

karaf.lock.dir—specifies the directory into which the lock file is written. This must be the same
for both the master and the slave installation.

karaf.lock.delay—specifies, in milliseconds, the delay between attempts to reaquire the lock.

18.2. USING A JDBC LOCK SYSTEM

Overview

The JDBC locking mechanism is intended for failover deployments where Red Hat JBoss Fuse
instances exist on separate machines.

In this scenario, the master instance holds a lock on a locking table hosted on a database. If the master
loses the lock, a waiting slave process gains access to the locking table and fully starts its container.

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.SimpleFileLock
karaf.lock.dir=PathToLockFileDirectory
karaf.lock.delay=10000

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

82

Adding the JDBC driver to the classpath

In a JDBC locking system, the JDBC driver needs to be on the classpath for each instance in the
master/slave setup. Add the JDBC driver to the classpath as follows:

1. Copy the JDBC driver JAR file to the ESBInstallDir/lib directory for each Red Hat JBoss
Fuse instance.

2. Modify the bin/karaf start script so that it includes the JDBC driver JAR in its CLASSPATH
variable.

For example, given the JDBC JAR file, JDBCJarFile.jar, you could modify the start script as
follows (on a *NIX operating system):

NOTE

If you are adding a MySQL driver JAR or a PostgreSQL driver JAR, you must
rename the driver JAR by prefixing it with the karaf- prefix. Otherwise,
Apache Karaf will hang and the log will tell you that Apache Karaf was unable to
find the driver.

Configuring a JDBC lock system

To configure a JDBC lock system, update the etc/system.properties file for each instance in the
master/slave deployment as shown

Example 18.2. JDBC Lock File Configuration

In the example, a database named sample will be created if it does not already exist. The first Red Hat

 ...
 # Add the jars in the lib dir
 for file in "$KARAF_HOME"/lib/karaf*.jar
 do
 if [-z "$CLASSPATH"]; then
 CLASSPATH="$file"
 else
 CLASSPATH="$CLASSPATH:$file"
 fi
 done
 CLASSPATH="$CLASSPATH:$KARAF_HOME/lib/JDBCJarFile.jar"

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.DefaultJDBCLock
karaf.lock.level=50
karaf.lock.delay=10000
karaf.lock.jdbc.url=jdbc:derby://dbserver:1527/sample
karaf.lock.jdbc.driver=org.apache.derby.jdbc.ClientDriver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

CHAPTER 18. FAILOVER DEPLOYMENTS

83

JBoss Fuse instance to acquire the locking table is the master instance. If the connection to the
database is lost, the master instance tries to gracefully shutdown, allowing a slave instance to become
master when the database service is restored. The former master will require manual restart.

Configuring JDBC locking on Oracle

If you are using Oracle as your database in a JDBC locking scenario, the karaf.lock.class property in
the etc/system.properties file must point to org.apache.karaf.main.OracleJDBCLock.

Otherwise, configure the system.properties file as normal for your setup, as shown:

Example 18.3. JDBC Lock File Configuration for Oracle

NOTE

The karaf.lock.jdbc.url requires an active Oracle system ID (SID). This means you must
manually create a database instance before using this particular lock.

Configuring JDBC locking on Derby

If you are using Derby as your database in a JDBC locking scenario, the karaf.lock.class property in the
etc/system.properties file should point to org.apache.karaf.main.DerbyJDBCLock. For example,
you could configure the system.properties file as shown:

Example 18.4. JDBC Lock File Configuration for Derby

Configuring JDBC locking on MySQL

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.OracleJDBCLock
karaf.lock.jdbc.url=jdbc:oracle:thin:@hostname:1521:XE
karaf.lock.jdbc.driver=oracle.jdbc.OracleDriver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.DerbyJDBCLock
karaf.lock.jdbc.url=jdbc:derby://127.0.0.1:1527/dbname
karaf.lock.jdbc.driver=org.apache.derby.jdbc.ClientDriver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

84

If you are using MySQL as your database in a JDBC locking scenario, the karaf.lock.class property in
the etc/system.properties file must point to org.apache.karaf.main.MySQLJDBCLock. For
example, you could configure the system.properties file as shown:

Example 18.5. JDBC Lock File Configuration for MySQL

Configuring JDBC locking on PostgreSQL

If you are using PostgreSQL as your database in a JDBC locking scenario, the karaf.lock.class property
in the etc/system.properties file must point to org.apache.karaf.main.PostgreSQLJDBCLock. For
example, you could configure the system.properties file as shown:

Example 18.6. JDBC Lock File Configuration for PostgreSQL

JDBC lock classes

The following JDBC lock classes are currently provided by Apache Karaf:

18.3. CONTAINER-LEVEL LOCKING

Overview

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.MySQLJDBCLock
karaf.lock.jdbc.url=jdbc:mysql://127.0.0.1:3306/dbname
karaf.lock.jdbc.driver=com.mysql.jdbc.Driver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=30

karaf.lock=true
karaf.lock.class=org.apache.karaf.main.PostgreSQLJDBCLock
karaf.lock.jdbc.url=jdbc:postgresql://127.0.0.1:5432/dbname
karaf.lock.jdbc.driver=org.postgresql.Driver
karaf.lock.jdbc.user=user
karaf.lock.jdbc.password=password
karaf.lock.jdbc.table=KARAF_LOCK
karaf.lock.jdbc.clustername=karaf
karaf.lock.jdbc.timeout=0

org.apache.karaf.main.DefaultJDBCLock
org.apache.karaf.main.DerbyJDBCLock
org.apache.karaf.main.MySQLJDBCLock
org.apache.karaf.main.OracleJDBCLock
org.apache.karaf.main.PostgreSQLJDBCLock

CHAPTER 18. FAILOVER DEPLOYMENTS

85

Container-level locking allows bundles to be preloaded into the slave kernel instance in order to
provide faster failover performance. Container-level locking is supported in both the simple file and
JDBC locking mechanisms.

Configuring container-level locking

To implement container-level locking, add the following to the etc/system.properties file on each
system in the master/slave setup:

Example 18.7. Container-level Locking Configuration

The karaf.lock.level property tells the Red Hat JBoss Fuse instance how far up the boot process to
bring the OSGi container. Bundles assigned the same start level or lower will then also be started in
that JBoss Fuse instance.

Bundle start levels are specified in etc/startup.properties, in the format BundleName.jar=level.
The core system bundles have levels below 50, where as user bundles have levels greater than 50.

Table 18.1. Bundle Start Levels

Start Level Behavior

1 A 'cold' standby instance. Core bundles are not
loaded into container. Slaves will wait until lock
acquired to start server.

<50 A 'hot' standby instance. Core bundles are loaded
into the container. Slaves will wait until lock
acquired to start user level bundles. The console will
be accessible for each slave instance at this level.

>50 This setting is not recommended as user bundles will
be started.

Avoiding port conflicts

When using a 'hot' spare on the same host you need to set the JMX remote port to a unique value to
avoid bind conflicts. You can edit the servicemix start script (or the karaf script on a child instance)
to include the following:

karaf.lock=true
karaf.lock.level=50
karaf.lock.delay=10000

DEFAULT_JAVA_OPTS="-server $DEFAULT_JAVA_OPTS -
Dcom.sun.management.jmxremote.port=1100 -
Dcom.sun.management.jmxremote.authenticate=false"

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

86

CHAPTER 19. APPLYING PATCHES

Abstract

Red Hat JBoss Fuse supports incremental patching. FuseSource will supply you with easy to install
patches that only make targeted changes to a deployed container.

19.1. PATCHING OVERVIEW

Patching enables you apply fixes to a broker without needing to reinstall an updated version of Red Hat
JBoss Fuse. It also allows you to back out the patch, if it causes problems with your deployed
applications.

Patches are ZIP files that contain the artifacts needed to update a targeted set of bundles in a
container. The artifacts are typically one or more bundles. They can, however, include configuration
files and feature descriptors.

You get a patch file in one of the following ways:

Customer Support sends you a patch.

Customer Support sends you a link to download a patch.

Download a patch directly from the Red Hat customer portal.

The process of applying a patch to a container depends on how the container is deployed:

Standalone (standard process)—using commands from the Karaf console's patch shell. This
approach is non-destructive and reversible.

Fabric—patching a fabric requires applying the patch to a profile and then applying the profile
to a container.

19.2. FINDING THE RIGHT PATCHES TO APPLY

Abstract

This section explains how to find the patches for a specific version of JBoss Fuse on the Red Hat
Customer Portal and how to figure out which patches to apply, and in what order.

Locate the patches on the customer portal

If you have a subscription for JBoss Fuse, you can download the latest patches directly from the Red
Hat Customer Portal. Locate the patches as follows:

1. Login to the Red Hat Customer Portal using your customer account. This account must be
associated with an appropriate Red Hat software subscription, otherwise you will not be able to
see the patch downloads for JBoss Fuse.

2. Navigate to the customer portal Software Downloads page.

CHAPTER 19. APPLYING PATCHES

87

https://access.redhat.com/login
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

3. In the Product dropdown menu, select the appropriate product (for example, A-MQ or Fuse),
and then select the version, 6.2.1, from the Version dropdown menu. A table of downloads
now appears, which has three tabs: Releases, Patches, and Security Advisories.

4. Click the Releases tab to view the GA product releases.

5. Click the Patches tab the rollup patches, and the regular incremental patches (with no
security-related fixes).

6. Click the Security Advisories tab to view the incremental patches with security-related
fixes.

NOTE

To see the complete set of patches, you must look under the Releases tab, the
Patches tab and the Security Advisories tab.

Types of patch

The following types of patch can be made available for download:

Rollup patches

Incremental patches

Rollup patches

A rollup patch is a cumulative patch that incorporates all of the fixes from the preceding patches.
Moreover, each rollup patch is regression tested and establishes a new baseline for the application of
future patches.

Since JBoss Fuse 6.2.1, a rollup patch file is dual-purpose, as follows:

Each rollup patch file is a complete new build of the official target distribution. This means you
can unzip the rollup patch file to obtain a completely new installation of JBoss Fuse, just as if it
was a fresh download of the product (which, in fact, it is). See Section 19.3, “Installing a Rollup
Patch as a New Installation”.

You can also treat the rollup patch as a regular patch, using it to upgrade an existing
installation. That is, you can provide the rollup patch file as an argument to the standalone
patch console commands (for example, patch:add and patch:install) or the Fabric patch
console command, patch:fabric-install.

Incremental patches

Incremental patches are patches released either directly after GA or after a rollup patch, and they are
intended to be applied on top of the corresponding build of JBoss Fuse. The main purpose of an
incremental patch is to update some of the bundles in an existing distribution.

Which patches are needed to update the GA product to the latest patch level?

To figure out which patches are needed to update the GA product to the latest patch level, you need to
pay attention to the type of patches that have been released so far:

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

88

1. If the only patches released so far are patches with GA baseline (Patch 1, Patch 2, and so on),
apply the latest of these patches directly to the GA product.

2. If a rollup patch has been released and no patches have been released after the latest rollup
patch, simply apply the latest rollup patch to the GA product.

3. If the latest patch is a patch with a rollup baseline, you must apply two patches to the GA
product, as follows:

a. Apply the latest rollup patch, and then

b. Apply the latest patch with a rollup baseline.

Which patches to apply, if you only want to install regression-tested patches?

If you prefer to install only patches that have been regression tested, install the latest rollup patch.

19.3. INSTALLING A ROLLUP PATCH AS A NEW INSTALLATION

A rollup patch is a new build

Since JBoss Fuse 6.2.1, a rollup patch file is a complete new build of the official target distribution. In
other words, it is just like the original GA distribution, except that it includes later build artifacts.

Installing the new build

To install a new build, corresponding to a rollup patch level, perform the following steps:

1. Identify which rollup patch you need to install and download it from the Customer Portal. For
more details, see Section 19.2, “Finding the Right Patches to Apply” .

2. Unzip the rollup patch file to a convenient location, just as you would with a regular GA
distribution. This is your new installation of JBoss Fuse.

Comparison with patch process

Compared with the conventional patch process, installing a new build has the following advantages
and limitations:

This approach is only for creating a completely new installation of JBoss Fuse. If your existing
installation already has a lot of custom configuration, this might not be the most convenient
approach to use.

The new build includes only the artifacts and configuration for the new patch level. There is
thus no concept of rolling back to the GA version.

If you create a new fabric (using fabric:create), the default fabric profiles are already at
the new patch level (same as the standalone container). It is therefore not necessary to patch
the fabric.

19.4. PATCHING A STANDALONE CONTAINER

Abstract

CHAPTER 19. APPLYING PATCHES

89

You apply patches to a standalone container using the command console's patch shell. You can apply
and roll back patches as needed.

Overview

When patching a standalone container, you can apply either an incremental patch or a rollup patch.
There are very significant differences between the two kinds of patch and the way they are applied.
Although the same commands are used in both cases, the internal processes are different (the patch
commands auto-detect the patch type).

IMPORTANT

The instructions in this section apply only to JBoss Fuse versions 6.2.1 and later, which
support the new patching mechanism.

Incremental patch

An incremental patch is used mainly to update the bundle JARs in the container. This type of patch is
suitable for delivering hot fixes to the JBoss Fuse installation, but it has its limitations. An incremental
patch:

Updates bundle JARs.

Patches only the current container instance (under the data/ directory). Hence, patches are
not preserved after deleting a container instance.

Updates any feature dependencies installed in the current container instance, but does not
update the feature files themselves.

Might update some configuration files, but is not suitable for updating most configuration files.

Supports patch rollback.

After applying the patch, and creating a new fabric using fabric:create, the new Fabric
reverts to the unpatched configuration.

After applying an incremental patch to a standalone container, meta-data about the patch is written to
the etc/startup.properties and etc/overrides.properties files. With these files, the Karaf
installation is able to persist the patch even after deleting the root container instance (that is, after
removing the root container's data/ directory).

NOTE

Removing the data/cache directory uninstalls any bundles, features, or feature
repositories that were installed into the container using Karaf console commands.
However, any patches that have been applied will remain installed, as long as the
etc/startup.properties and etc/overrides.properties files are preserved.

Rollup patch

A rollup patch can make updates to any installation files including bundle JARs and static files
(including, for example, configuration files under the etc/ directory). A rollup patch:

Updates any files, including bundle JARs, configuration files, and any static files.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

90

Patches both the current container instance (under the data/ directory) and the underlying
installation. Hence, patches are preserved after deleting a container instance.

Updates all of the files related to Karaf features, including the features repository files and the
features themselves. Hence, any features installed after the rollup patch will reference the
correct patched dependencies.

If necessary, updates configuration files (for example, files under etc/), automatically merging
any configuration changes you have made with the configuration changes made by the patch.
If merge conflicts occur, see the patch log for details of how they are handled.

Tracks all of the changes made to the installation (including to static files), so that it is possible
to roll back the patch.

NOTE

The rollup patching mechanism uses an internal git repository (located under
patches/.management/history) to track the changes made.

After applying the patch, and creating a new fabric using fabric:create, the new Fabric is
created with the patched configuration.

Patching the patch mechanism

Before upgrading JBoss Fuse with a rollup patch, you must patch the patch mechanism to a higher
level. Since the original GA version of JBoss Fuse 6.2.1 was released, significant improvements have
been made to the patch mechanism. If you were to upgrade straight to the latest rollup patch version
of JBoss Fuse, the improved patch mechanism would become available after you completed the
upgrade. But at that stage, it would be too late to benefit from the improvements in the patch
mechanism.

To circumvent this bootstrap problem, the improved patch mechanism is made available as a separate
download, so that you can patch the patch mechanism itself, before you upgrade to the new patch
level. To patch the patch mechanism, proceed as follows:

1. Download the appropriate patch management package. From the JBoss Fuse 6.2.0 Software
Downloads page, select a package named Red Hat JBoss Fuse 6.2.1 Rollup N on
Karaf Update Installer, where N is the number of the particular rollup patch you are
about to install.

IMPORTANT

The rollup number, N, of the downloaded patch management package must
match the rollup number of the rollup patch you are about to install.

NOTE

Surprisingly, the 6.2.1 patch management packages are made available from the
6.2.0 Software Downloads page. This is because the 6.2.1 patch management
packages can also be used when upgrading from version 6.2.0.

2. Install the patch management package, patch-management-for-fuse-
620-TargetVersion.zip, on top of your 6.2.1 installation. Use an archive utility to extract
the contents on top of the existing Karaf container installation (installing files under the

CHAPTER 19. APPLYING PATCHES

91

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.fuse&downloadType=patches&version=6.2.0

system/ and patches/ subdirectories).

NOTE

It does not matter whether the container is running or not when you extract
these files.

3. Start the container, if it is not already running.

4. Uninstall the existing patch commands from the container as follows. Remove the patch
features as follows:

But this is not sufficient to remove all of the patch bundles. Check for any remaining patch
bundles as follows:

You can remove this system bundle, as follows:

Finally, you should remove the features URL for the old patch mechanism version, as follows:

Check the version of patch-features that you have, because it might be different from
1.2.0.redhat-621084.

5. Install the new patch commands as follows. Add the features URL for the new patch
commands, as follows:

Where you must replace 1.2.0.redhat-621xxx with the actual build version of the patch
commands you are installing (for example, the build version xxx can be taken from the last
three digits of the TargetVersion in the downloaded patch management package file name).

Install the new patch features, as follows:

JBossFuse:karaf@root> features:uninstall patch patch-core

JBossFuse:karaf@root> list -t 0 -l | grep patch

[1] [Active] [] [] [2]
mvn:io.fabric8.patch/patch-management/1.2.0.redhat-621084

JBossFuse:karaf@root> uninstall 1
You are about to access system bundle 1. Do you wish to continue
(yes/no): yes
JBossFuse:karaf@root> list -t 0 -l | grep patch

JBossFuse:karaf@root> features:listurl | grep patch
 true mvn:io.fabric8.patch/patch-features/1.2.0.redhat-
621084/xml/features
JBossFuse:karaf@root> features:removeurl mvn:io.fabric8.patch/patch-
features/1.2.0.redhat-621084/xml/features

JBossFuse:karaf@root> features:addurl mvn:io.fabric8.patch/patch-
features/1.2.0.redhat-621xxx/xml/features

JBossFuse:karaf@root> features:install patch-core patch

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

92

Check that the requisite patch bundles are now installed:

Applying a patch

To apply a patch to a standalone container:

1. Make a full backup of your JBoss Fuse installation before attempting to apply the patch.

2. (Rollup patch only) Before applying the rollup patch to your container, you must patch the
patch mechanism, as described in the section called “Patching the patch mechanism” .

3. (Rollup patch only) Remove the lib/endorsed/org.apache.karaf.exception-
2.4.0.redhat-621xxx.jar file (where the build number, xxx, depends on the build being
patched).

4. Before you proceed to install the patch, make sure to read the text of the README file that
comes with the patch, as there might be additional manual steps required to install a particular
patch.

5. Start the container, if it is not already running. If the container is running in the background (or
remotely), connect to the container using the SSH console client, /bin/client.

6. Add the patch to the container's environment using the patch:add command. For example, to
add the patch.zip patch file:

7. Simulate installing the patch using the patch:simulate command.

This will generate a log of the changes that will be made to the container when the patch is
installed, but will not make any actual changes to the container. Review the simulation log to
understand the changes that will be made to the container.

8. Invoke the patch:list command to display a list of all added patches. From this list, you can
get the ID, PatchID, of the patch you want to install.

9. Apply the patch to the container using the patch:install command:

NOTE

Make sure that the container has fully started before you run patch:install.

JBossFuse:karaf@root> list -t 0 -l | grep patch
[265] [Active] [] [] [80]
mvn:io.fabric8.patch/patch-core/1.2.0.redhat-621xxx
[266] [Active] [] [] [2]
mvn:io.fabric8.patch/patch-management/1.2.0.redhat-621xxx
[267] [Active] [] [] [80]
mvn:io.fabric8.patch/patch-commands/1.2.0.redhat-621xxx

patch:add file://patch.zip

patch:install PatchID

CHAPTER 19. APPLYING PATCHES

93

In some cases the container will need to restart to apply the patch (for example, if static files
are patched). In these cases, the container restarts automatically.

10. (Windows only) On Windows operating systems, the container cannot restart automatically.
You typically see an error message like the following:

In this case, you just need to restart the container manually.

11. Validate the patch, by searching for one of the patched artifacts. For example, if you had just
upgraded JBoss Fuse 6.2.1 to the patch with build number 621423, you could search for
bundles with this build number, as follows:

After applying a rollup patch, you will also see the new version and build number in the
Welcome banner when you restart the container.

Rolling back a patch

Occasionally a patch will not work or will introduce new issues to a container. In these cases, you can
easily back the patch out of the system and restore it to pre-patch behaviour using the
patch:rollback command, as follows:

1. Invoke the patch:list command to obtain the patch ID, PatchID, of the most recently
installed patch.

2. Invoke the patch:rollback command, as follows:

In some cases the container will need to restart to roll back the patch. In these cases, the
container restarts automatically. Due to the highly dynamic nature of the OSGi runtime, during
the restart you might see some occasional errors related to incompatible classes. These are
related to OSGi services that have just started or stopped. These errors can be safely ignored.

Adding features to an incrementally patched container

Since JBoss Fuse 6.1, it is possible to add Karaf features to an already patched standalone container
without performing any special steps.

19.5. PATCHING A CUSTOM ASSEMBLY

Rollup patch jboss-fuse-full-6.2.1.redhat-xxx installed. Restarting
Karaf..
JBossA-MQ:karaf@root>
Restarting JVM...
Updating libs...
 1 dir(s) moved.
Karaf can't startup, make sure the log file can be accessed and
written by the user starting Karaf : java.io.IOException: Unable to
delete file: ...

JBoss Fuse:karaf@root> osgi:list -s -t 0 | grep -i 621084
[6] [Active] [] [] [10]
org.apache.felix.configadmin (1.2.0.redhat-621084)

patch:rollback PatchID

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

94

Overview

Red Hat does not provide patches specifically for a custom assembly. Nevertheless, it is possible to
generate a patched custom assembly by following the instructions in this section.

Custom assembly

A custom assembly is a custom distribution of the Karaf container based on JBoss Fuse, which can be
generated using the quickstart/custom template. The custom assembly deploys a customized set
of Karaf features and can be used to cut down the size of a JBoss Fuse deployment.

Inverting the patching procedure

Red Hat does not release patches for specific custom assemblies. Because there is an endless variety
of possible custom assemblies, it is not practical to release patches for specific custom assemblies.
Nevertheless, it is possible to produce a patched custom assembly. The trick is to invert the procedure
for producing a patch: instead of starting with a custom assembly and attempting to apply a rollup
patch to this assembly, what you must do is start with the rollup patch (which is also a product
distribution) and follow the procedure for generating a custom assembly in the unpacked rollup patch.

A rollup patch is a JBoss Fuse distribution

It is crucial to understand that a rollup patch is also a JBoss Fuse distribution (under the new patching
system). In other words, if you unpack a rollup patch archive file, you will discover that it has the
identical directory layout to a full release. Not only that, but it has all of the files you would expect to
find in a full release. In other words, the rollup patch is equivalent to a pre-patched container.

Generating a patched custom assembly

To generate a patched custom assembly, you need the latest rollup patch from the Red Hat Customer
Portal (for details of how to find the right patch, see Section 19.2, “Finding the Right Patches to
Apply”). Follow the steps for generating a patched custom assembly, as described in appendix
"Generating a Custom Assembly or an Offline Repository" in "Installation on Apache Karaf".

19.6. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH

Abstract

Follow the procedures described in this section to patch a Fabric container with a rollup patch.

Overview

A rollup patch updates bundle JARs, other Maven artifacts, libraries, and static files in a Fabric. The
following aspects of the fabric are affected:

Distribution of patched artifacts

Profiles

Configuration of the underlying container

CHAPTER 19. APPLYING PATCHES

95

https://access.redhat.com/login
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Installation_on_Apache_Karaf/Locate-CustomRepo.html

IMPORTANT

The instructions in this section apply only to JBoss Fuse versions 6.2.1 and later, which
support the new patching mechanism.

Distribution of patch artifacts

When patching an entire fabric of containers, you need to consider how the patch artifacts are
distributed to the containers in the fabric. You can adopt one of the following approaches:

Through the Maven proxy (default approach)—when you add a rollup patch to your root
container (using the patch:add command), the patch artifacts are installed into the root
container's system/ directory, whose directory structure is laid out like a Maven repository.
The root container can then serve up these patch artifacts to remote containers by behaving
as a Maven proxy, enabling remote containers to download the required Maven artifacts (this
process is managed by the Fabric agent running on each Fabric container). Alternatively, if you
have installed the rollup patch to a container that is not hosting the Maven proxy, you can
ensure that the patch artifacts are uploaded to the Maven proxy by invoking the
patch:fabric-install command with the --upload option.

The Maven proxy approach sufferes from a potential drawback, however. If the Fabric
ensemble consists of multiple containers, it can happen that the Maven proxy fails over to a
different ensemble container (not the original root container). This can result in the patch
artifacts suddenly becoming unavailable to other containers in the fabric. If this occurs during
the patching procedure, it will cause problems.

For more details, see chapter "Fabric Maven Proxies" in "Fabric Guide" .

Through a local repository (recommended approach)—to overcome the limitations of the Maven
proxy approach, we recommend that you make the patch artifacts available directly to all of
the containers in the Fabric by setting up a local repository on the file system. Assuming that
you have a networked file system, all containers will be able to access the patch artifacts
directly.

For example, you might set up a local repository of patch artifacts, as follows:

1. Given a rollup patch file, extract the contents of the system/ directory from the rollup
patch file into the repositories/ subdirectory of a local Maven repository (which could
be ~/.m2/repositories or any other location).

2. Configure the Fabric agent and the Maven proxy to pick up artifacts from the local
repository by editing the current version of the default profile, as follows:

Replace PathToRepository by the actual location of the local repository on your file
system.

profile-edit --append --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.defaultRepositories
file:///PathToRepository default

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

96

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Fabric_Guide/FabricMavenProxy.html

NOTE

Make sure that you make the edits to the default profile for all relevant
profile versions. If some of your containers are using a non-default profile
version, repeat the profile-edit commands while specifying the profile
version explicitly as the last parameter.

Profiles

The rollup patching process updates all of the standard profiles, so that they reference the patched
dependencies. Any custom profiles that you created yourself remain unaffected by these updates.
However, in cases where you have already made some changes directly to the standard profiles (such
as default, fabric, karaf, and so on), the patching mechanism attempts to merge your changes
with the changes introduced by the patch.

IMPORTANT

In the case where you have modified standard profiles, it is recommended that you verify
your custom changes are preserved after patching. This is particularly important with
respect to any changes made to the location of Maven repositories (which are usually
configured in the default profile).

Configuration of the underlying container

If required, the rollup patching mechanism is capable of patching the underlying container (that is, files
located under etc/, lib/, and so on). When a Fabric container is upgraded to a patched version (for
example, using the fabric:container-upgrade command), the container's Fabric agent checks
whether the underlying container must be patched. If yes, the Fabric agent triggers the patching
mechanism to update the underlying container. Moreover, if certain critical files are updated (for
example, lib/karaf.jar), the container status changes to requires full restart after the
container is upgraded. This status indicates that a full manual restart is required (an automatic restart
is not possible in this case).

io.fabric.version in the default profile

The io.fabric.version resource in the default profile plays a key role in the patching
mechanism. This resource defines the version and build of JBoss Fuse and of all of its main
components. When upgrading (or rolling back) a Fabric container to a new version, the Fabric agent
checks the version and build of JBoss Fuse as defined in the io.fabric.version resource. If the
JBoss Fuse version changes between the original profile version and the upgraded profile version, the
Fabric agent knows that an upgrade of the underlying container is required when upgrading to this
profile version.

Patching the patch mechanism

Before upgrading JBoss Fuse with a rollup patch, you must patch the patch mechanism to a higher
level. Since the original GA version of JBoss Fuse 6.2.1 was released, significant improvements have
been made to the patch mechanism. If you were to upgrade straight to the latest rollup patch version
of JBoss Fuse, the improved patch mechanism would become available after you completed the
upgrade. But at that stage, it would be too late to benefit from the improvements in the patch
mechanism.

CHAPTER 19. APPLYING PATCHES

97

To circumvent this bootstrap problem, the improved patch mechanism is made available as a separate
download, so that you can patch the patch mechanism itself, before you upgrade to the new patch
level. To patch the patch mechanism, proceed as follows:

1. Download the appropriate patch management package. From the JBoss Fuse 6.2.0 Software
Downloads page, select a package named Red Hat JBoss Fuse 6.2.1 Rollup N on
Karaf Update Installer, where N is the number of the particular rollup patch you are
about to install.

IMPORTANT

The rollup number, N, of the downloaded patch management package must
match the rollup number of the rollup patch you are about to install.

NOTE

The 6.2.1 patch management packages are made available from the 6.2.0
Software Downloads page. This is because the 6.2.1 patch management
packages can also be used when upgrading from version 6.2.0.

2. Install the patch management package, patch-management-for-fuse-
620-TargetVersion.zip, on top of every Karaf container installation (root container, SSH
containers, and so on). Use an archive utility to extract the contents on top of the existing
container installation (installing files under the system/ and patches/ subdirectories).

NOTE

It does not matter whether the container is running or not when you extract
these files.

3. Start the root container, if it is not already running.

4. Create a new version, using the fabric:version-create command (where we assume that
the current profile version is 1.0):

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3 [.description]. If you abandon the default naming convention
and use a textual name instead (for example, Patch051312), the next version
you create will be based, not on the last version (Patch051312), but on the
highest-numbered version determined by dot syntax.

5. Update the patch property in the io.fabric8.version PID in the version 1.0.1 of the
default profile, by entering the following Karaf console command:

JBossFuse:karaf@root> fabric:version-create --parent 1.0 1.0.1
Created version: 1.0.1 as copy of: 1.0

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

98

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.fuse&downloadType=patches&version=6.2.0

Where you must replace 1.2.0.redhat-621xxx with the actual build version of the patch
commands you are installing (for example, the build version xxx can be taken from the last
three digits of the TargetVersion in the downloaded patch management package file name).

6. Reconfigure the Fabric agent so that the version of the patch mechanism it uses is determined
by the patch version property (set in the previous step). Enter the following console
command:

7. Upgrade the root container to use the new patching mechanism, as follows:

8. Likewise, for all other containers in your fabric that need to be patched (SSH, child, and so on),
provision them with the new patching mechanism by upgrading them to profile version 1.0.1.
For example:

Applying a rollup patch

To apply a rollup patch to a Fabric container:

1. Before applying the rollup patch to your fabric, you must patch the patch mechanism, as
described in the section called “Patching the patch mechanism” .

2. For every top-level container (that is, any container that is not a child container), perform
these steps, one container at a time:

1. In the Karaf installation, remove the lib/endorsed/org.apache.karaf.exception-
2.4.0.redhat-621xxx.jar file (where the build number, xxx, depends on the build
being patched).

2. Restart the container.

3. Add the patch to the root container's environment using the patch:add command. For
example, to add the patch.zip patch file:

profile-edit --pid io.fabric8.version/patch=1.2.0.redhat-621xxx
default 1.0.1

profile-edit --pid 'io.fabric8.agent/repository.fabric8-
patch=mvn:io.fabric8.patch/patch-
features/${version:patch}/xml/features' default 1.0.1

container-upgrade 1.0.1 root

container-upgrade 1.0.1 container1 container2 container3

JBossFuse:karaf@root> patch:add file://patch.zip
[name] [installed] [description]
PatchID false Description

CHAPTER 19. APPLYING PATCHES

99

IMPORTANT

If you have decided to use a local repository to distribute the patch artifacts
(recommended), set up the local repository now—see the section called
“Distribution of patch artifacts”.

4. Create a new version, using the fabric:version-create command:

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3 [.description]. If you abandon the default naming convention
and use a textual name instead (for example, Patch051312), the next version
you create will be based, not on the last version (Patch051312), but on the
highest-numbered version determined by dot syntax.

5. Apply the patch to the new version, using the patch:fabric-install command. Note that
in order to run this command you must provide the credentials, Username and Password, of a
user with Administrator privileges. For example, to apply the PatchID patch to version
1.1:

NOTE

When you invoke the patch:fabric-install command with the --upload
option, Fabric looks up the ZooKeeper registry to discover the URL of the
currently active Maven proxy, and uploads all of the patch artifacts to this URL.
Using this approach it is possible to make the patch artifacts available through
the Maven proxy, even if the container you are currently logged into is not
hosting the Maven proxy.

6. Synchronize the patch information across the fabric, to ensure that the profile changes in
version 1.1 are propagated to all containers in the fabric (particularly remote SSH
containers). Enter the following console command:

7. Upgrade each existing container in the fabric using the fabric:container-upgrade
command (but leaving the root container, where you installed the patch, until last). For
example, to upgrade a container named remote, enter the following command:

JBossFuse:karaf@root> fabric:version-create 1.1
Created version: 1.1 as copy of: 1.0.1

patch:fabric-install --username Username --password Password --
upload --version 1.1 PatchID

patch:fabric-synchronize

JBossFuse:karaf@root> fabric:container-upgrade 1.1 remote
Upgraded container remote from version 1.0.1 to 1.1

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

100

At this point, not only does the Fabric agent download and install the patched bundles into the
specified container, but the agent also applies the patch to the underlying container (updating any
static files in the container, if necessary). If necessary, the agent will then restart the target
container automatically or set the container status to requires full restart (if an
automatic restart is not possible), so that any changes made to the static files are applied to
the running container.

IMPORTANT

It is recommended that you upgrade only one or two containers to the patched
profile version, to ensure that the patch does not introduce any new issues.

8. If the current status of the upgraded container is requires full restart, you must now
use one of the standard mechanisms to stop and restart the container manually. In some cases,
it will be possible to do this using Fabric commands from the console of the root container.

For example, you could stop the remote container as follows:

And restart the remote container as follows:

9. Upgrade the root container last (that is, the container that you originally installed the patch
on):

10. (Windows only) If the root container status has changed to requires full restart and it is
running on a Windows operating system, you must first shut down all of the root container's
child containers (if any) before manually restarting the root container.

For example, if the root container has three child containers, child1, child2, and child3,
you would first shut them down, as follows:

You can then shut down the root container with the shutdown command:

Rolling back a rollup patch

To roll back a rollup patch on a Fabric container, use the fabric:container-rollback command.
For example, assuming that 1.0 is an unpatched profile version, you can roll the remote container
back to the unpatched version 1.0 as follows:

At this point, not only does the Fabric agent roll back the installed profiles to an earlier version, but the

fabric:container-stop remote

fabric:container-start remote

fabric:container-upgrade 1.1 root

fabric:container-stop child1 child2 child3

shutdown

fabric:container-rollback 1.0 remote

CHAPTER 19. APPLYING PATCHES

101

agent also rolls back the patch on the underlying container (restoring any static files to the state they
were in before the patch was applied, if necessary). If necessary, the agent will then restart the target
container automatically or set the container status to requires full restart (if an automatic
restart is not possible), so that any changes made to the static files are applied to the running
container.

WARNING

Rolling back the patch level from version 6.2.1 to 6.2.0 is not supported in JBoss
Fuse Fabric. This is a special case, because the version 6.2.0 Fabric agent does not
support the new patching mechanism.

19.7. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL
PATCH

Abstract

Follow the procedures described in this section to patch a Fabric container with an incremental patch.

Overview

An incremental patch makes updates only to the bundle JARs in a Fabric. The following aspects of the
fabric are affected:

Distribution of patched artifacts through Maven proxy

Profiles

Distribution of patched artifacts through Maven proxy

When you install the incremental patch on your local container, the patch artifacts are installed into
the local system/ directory, whose directory structure is laid out like a Maven repository. The local
container distributes these patch artifacts to remote containers by behaving as a Maven proxy,
enabling remote containers to upload bundle JARs as needed (this process is managed by the Fabric
agent running on each Fabric container). For more details, see chapter "Fabric Maven Proxies" in
"Fabric Guide".

Profiles

The incremental patching process defines bundle overrides, so that profiles switch to use the patched
dependencies (bundle JARs). This mechanism works as follows:

1. The patch mechanism creates a new profile, patch-PatchProfileID, which defines bundle
overrides for all of the patched bundles.

2. The new patch profile, patch-PatchProfileID, is inserted as the parent of the default
profile (at the base of the entire profile tree).

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

102

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Fabric_Guide/FabricMavenProxy.html

3. All of the profiles that inherit from default now use the bundle versions defined by the
overrides in patch-PatchProfileID. The contents of the existing profiles themselves are
not modified in any way.

Is it necessary to patch the underlying container?

Usually, when patching a fabric with an incremental patch, it is not necessary to patch the underlying
container as well. Fabric has its own mechanisms for distributing patch artifacts (for example, using a
git repository for the profile data, and Apache Maven for the OSGi bundles), which are independent of
the underlying container installation.

In exceptional cases, however, it might be necessary to patch the underlying container (for example, if
there was an issue with the fabric:create command). Always read the patch README file to find out
whether there are any special steps required to install a particular patch. In these cases, however, it is
more likely that the patch would be distributed in the form of a rollup patch, which has the capability to
patch the underlying container automatically—see Section 19.6, “Patching a Fabric Container with a
Rollup Patch”.

Applying an incremental patch

To apply an incremental patch to a Fabric container:

1. Before you proceed to install the incremental patch, make sure to read the text of the README
file that comes with the patch, as there might be additional manual steps required to install a
particular incremental patch.

2. Create a new version, using the fabric:version-create command:

IMPORTANT

Version names are important! The tooling sorts version names based on the
numeric version string, according to major.minor numbering, to determine the
version on which to base a new one. You can safely add a text description to a
version name as long as you append it to the end of the generated default name
like this: 1.3 <.description > .If you abandon the default naming
convention and use a textual name instead (for example, Patch051312), the next
version you create will be based, not on the last version (Patch051312), but on
the highest-numbered version determined by dot syntax.

3. Apply the patch to the new version, using the fabric:patch-apply command. For example,
to apply the activemq.zip patch file to version 1.1:

4. Upgrade a container using the fabric:container-upgrade command, specifying which
container you want to upgrade. For example, to upgrade the child1 container, enter the
following command:

JBossFuse:karaf@root> fabric:version-create 1.1
Created version: 1.1 as copy of: 1.0

JBossFuse:karaf@root> fabric:patch-apply --version 1.1
file:///patches/activemq.zip

CHAPTER 19. APPLYING PATCHES

103

IMPORTANT

It is recommended that you upgrade only one or two containers to the patched
profile version, to ensure that the patch does not introduce any new issues.
Upgrade the root container (the one that you applied the patch to, using the
fabric:patch-apply command) last.

5. You can check that the new patch profile has been created using the fabric:profile-list
command, as follows:

Where we presume that the patch was applied to profile version 1.1.

TIP

If you want to avoid specifying the profile version (with --version) every time you invoke a
profile command, you can change the default profile version using the fabric:version-
set-default Version command.

You can also check whether specific JARs are included in the patch, for example:

Rolling back an incremental patch

To roll back an incremental patch on a Fabric container, use the fabric:container-rollback
command. For example, assuming that 1.0 is an unpatched profile version, you can roll the child1
container back to the unpatched version 1.0 as follows:

JBossFuse:karaf@root> fabric:container-upgrade 1.1 child1
Upgraded container child1 from version 1.0 to 1.1

BossFuse:karaf@root> fabric:profile-list --version 1.1 | grep patch
default 0 patch-
activemq-patch
patch-activemq-patch

JBossFuse:karaf@root> list | grep -i activemq
[131] [Active] [Created] [] [50] activemq-osgi
(5.9.0.redhat-61037X)
[139] [Active] [Created] [] [50] activemq-
karaf (5.9.0.redhat-61037X)
[207] [Active] [] [] [60] activemq-
camel (5.9.0.redhat-61037X)

fabric:container-rollback 1.0 child1

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

104

CHAPTER 20. FABRIC MAVEN PROXIES

Abstract

Container hosts often have limited or no access to the Internet, which can make it difficult for Fabric
containers to download and install Maven artifacts. This problem can be mitigated using a Maven proxy,
which serves as a central cache of Maven artifacts for the Fabric containers. Managed containers try to
download from the Maven proxy, before trying to download from the Internet. This chapter explains
how the Maven proxy works and how to customize the configuration of the Maven proxy to suit your
network environment.

20.1. CLUSTER OF FABRIC MAVEN PROXIES

Overview

Fabric Maven proxies are deployed only on Fabric servers (ensemble members), not on regular
managed containers. So, if there is just a single Fabric server in your fabric, there will be just one
Maven proxy. But if your Fabric ensemble consists of multiple servers (for example, three or five), a
Maven proxy is deployed on each server, and this cluster of Maven proxies is configured automatically
as a master-slave cluster.

Figure 20.1, “Maven Proxy Cluster” shows the outline of a Maven proxy cluster consisting of three
Fabric servers (which constitute the Fabric ensemble).

Figure 20.1. Maven Proxy Cluster

Master-slave cluster

Each Maven proxy is deployed inside a Fabric server (a container that belongs to the Fabric ensemble)
and the Maven proxies together are organized as a master-slave cluster. This means that one of the
Maven proxies in the cluster is elected to be the master, while all of the other Maven proxies remain as

CHAPTER 20. FABRIC MAVEN PROXIES

105

slaves. Only the master proxy is available to serve up Maven artifacts, while the slave proxies remain in
a suspended state.

The master-slave architecture is implemented with the help of Apache Zookeeper distributed locking.
At start-up time, each of the Maven proxies attempts to acquire a Zookeeper lock: the proxy that
succeeds becomes the master, while the remaining proxies remain as slaves.

Maven proxy

A Maven proxy is a HTTP Web server that behaves very much like a standard Maven repository, such
as Maven Central.

The purpose of the Maven proxy is to serve Maven artifacts on the local network. It has its own local
cache of Maven artifacts, which it can serve up quickly. But if necessary, the Maven proxy can also
download artifacts from remote repositories (in a proxy role). This architecture offers a number of
advantages:

The Maven proxy builds up a large cache over time, which can be served up quickly to other
containers in the Fabric.

It is not necessary for every container to download Maven artifacts from remote repositories—
the Maven proxy performs this service for the other containers.

In a network with limited Internet access, you can arrange to deploy the Maven proxy on a host
with Internet access, while the other containers in the fabric are deployed on hosts without
Internet access.

Managed container

A managed container is a regular Fabric container (not part of the Fabric ensemble), whose contents
are managed by a Fabric8 agent. The Fabric8 agent is responsible for ensuring that the bundles
deployed in the container are consistent with what is specified in this container's Fabric profiles.
Whenever necessary, the Fabric8 agent will contact the Maven proxy to download new Maven artifacts
for deploying inside the container.

Resolving a Maven artifact

The Fabric8 agent attempts to locate a Maven artifact roughly as follows:

1. The Fabric8 agent searches its local Maven repository for the artifact.

2. If that fails, the Fabric8 agent contacts the Maven proxy to request the artifact.

3. If that fails, the Fabric8 agent attempts to contact remote Maven repositories directly to
request the artifact.

For a more detailed outline of this process, see Section 20.2, “How a Managed Container Resolves
Artifacts”.

Endpoint discovery

Before the Fabric8 agent can connect to the Maven proxy, it needs to discover the HTTP address of the
current master instance (only the master instance is usable, because the slave instances are dormant).
The discovery mechanism is based on the Apache Zookeeper registry: by querying Zookeeper, the
Fabric8 agent can discover the URL of the current master instance.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

106

Which Fabric server is the current master?

You can query Zookeeper manually (using console commands) to discover the URL of the current
Maven proxy master instance. To discover the URLs for the current Maven proxy master, invoke the
fabric:cluster-list console command, as follows:

The preceding example is trivial, because there is only one Fabric server (the root container) in this
Fabric ensemble. This command returns two URLs: one for downloading artifacts
(http://127.0.0.1:8181/maven/download), and another for uploading artifacts
(http://127.0.0.1:8181/maven/upload). For more details about uploading artifacts, see
Section 20.6, “Automated Deployment” .

What happens during failover?

Normally, the master instance remains the master instance for as long as the Maven proxy is deployed
and running in its container. However, if the container hosting the master Maven proxy gets shut down
(for whatever reason), the master instance releases the Zookeeper lock, and one of the slave instances
has the opportunity to be promoted to master. Each of the slave instances retries the Zookeeper lock
at regular time intervals and the first slave that retries the lock will acquire the lock and become the
new master.

When the cluster fails over and a former slave becomes the new master, this has important
consequences:

The URLs for the master Maven proxy are changed. Clients must now connect to a different
URL to connect to the Maven proxy. For Fabric8 agents, this failover is transparent, because
the Fabric8 agent automatically rediscovers the new URLs.

If you have been automatically uploading artifacts to the Maven proxy as part of your build
process (see Section 20.6, “Automated Deployment”), you will need to reconfigure the upload
URL. In this case, failover is not transparent.

It is likely that the new master has a much smaller cache of Maven artifacts than the old
master. This could result in noticeable delays, because many previously cached artifacts have
to be downloaded again.

No replication

Within the Maven proxy cluster, there is no automatic replication of artifacts between different Maven
proxies in the cluster. You will probably notice the effects of this, when the cluster fails over to a new
Maven proxy.

Managing the Maven artifact data

Although Fabric does not support replication of the local Maven caches, there are some strategies you

JBossFuse:karaf@root> cluster-list servlets/io.fabric8.fabric-maven-proxy
[cluster] [masters] [slaves] [services]
[]
1.2.0.redhat-621084/maven/download
 root root -
http://127.0.0.1:8181/maven/download
1.2.0.redhat-621084/maven/upload
 root root -
http://127.0.0.1:8181/maven/upload

CHAPTER 20. FABRIC MAVEN PROXIES

107

can adopt to compensate for this. The Maven proxy caches its artifacts in the local Maven repository
(normally in UserHome/.m2/repository). You could simply do a manual copy of the contents of the
local Maven repository from one Maven proxy host to another. Or for a more sophisticated approach,
you can try storing the local Maven repository on a networked file system.

20.2. HOW A MANAGED CONTAINER RESOLVES ARTIFACTS

Overview

Maven proxies play a critically important role in the way managed containers resolve Maven artifacts.
When a managed container fails to locate a needed artifact locally (in its system/ directory or in its
local Maven repository) it tries to download the missing artifact from the fabric's Maven proxy server
(master instance). In other words, downloading from the Maven proxy is the primary mechanism for
managed containers to obtain new artifacts.

The process for resolving artifacts in a managed container is controlled by the Fabric8 agent, which
detects when new artifacts need to be deployed (for example, as a result of editing a Fabric profile) and
then calls into the Eclipse Aether layer to resolve the artifacts.

Fabric profiles drive bundle provisioning

In the context of Fabric, it is the Fabric profiles that drive provisioning of OSGi bundles and other
resource. Provisioning is triggered whenever you edit and save properties from a current bundle—for
example by adding a bundle.BundleName entry to the profile's agent properties. Provisioning can
also be triggered when you edit other resources (not directly associated with OSGi Config Admin) in a
profile—for example, by referencing a resource through a checksum property resolver (see ???).

In some cases, you might not want provisioning to be triggered right away. A more controlled way to
roll out profile updates is to take advantage of profile versioning—see ??? for details.

Fabric8 agent

After provisioning has been triggered in a managed container, the Fabric8 agent automatically scans
the changed profiles to check for any OSGi bundles or Karaf features that were added to (or deleted
from) the profile. If there are any new bundles referenced using the mvn URL scheme, the Fabric8 agent
is responsible for locating these new bundles through Maven. In the context of Fabric, the Fabric8
agent effectively plays the same role that the Pax URL Aether component plays in a standalone (non-
Fabric) container.

In order to locate a Maven artifact, the Fabric8 agent parses the mvn URL, reads the relevant Maven
configuration properties, and calls directly into the Eclipse Aether layer to resolve the referenced
artifact.

Eclipse Aether layer

The Eclipse Aether layer is fundamental to Maven artifact resolution in Apache Karaf. Ultimately,
resolution of Maven artifacts for the Karaf container is always performed by the Aether layer. Note that
the Aether layer itself is stateless: the parameters required to perform resolution of a Maven artifact
are passed to the Aether layer with every invocation.

Provisioning a managed container

Figure 20.2, “Provisioning a Managed Container” shows an outline of the process for resolving a Maven
URL at run time in a managed container.

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

108

https://eclipse.org/aether/

Figure 20.2. Provisioning a Managed Container

Provisioning steps

The steps followed to locate the required Maven artifacts are:

1. Provisioning of a profile is triggered when the properties of a current profile are updated. In
particular, whenever new bundles or features are added to a profile, the Fabric8 agent is
responsible for resolving the new Maven artifacts (referenced through the mvn URL protocol).

2. The Fabric8 agent reads its Maven configuration from the io.fabric8.agent PID in the
default profile (and possibly also from a Maven settings.xml file, if so configured).

3. The Fabric8 agent contacts Zookeeper to discover the repository URL of the Fabric8 Maven
proxy (master instance)—see Section 20.1, “Cluster of Fabric Maven Proxies” . The Fabric8 agent
then inserts the discovered Maven proxy URL at the head of the list of remote Maven repositories.

The Fabric8 agent parses the requested Maven URL and combines this information with the
specified configuration—including the discovered Maven proxy URL—in order to invoke the
Eclipse Aether library.

4. When the Aether library is invoked, the first step is to look up any local Maven repositories to
try and find the Maven artifact. The following local repositories are configured by default:

InstallDir/system

The JBoss Fuse system directory, which contains all of the Maven artifacts that are bundled
with the JBoss Fuse distribution.

UserHome/.m2/repository

The user's own local Maven repository in the user's home directory, UserHome.

If the Maven artifact is found locally, skip straight to step 8.

CHAPTER 20. FABRIC MAVEN PROXIES

109

5. If the Maven artifact cannot be found in one of the local repositories, Aether next tries to
download the artifact from the Maven proxy. If the Maven artifact is found in the Maven proxy,
skip straight to step 7.

NOTE

If you configure the Fabric8 agent to use a HTTP proxy, the Maven proxy would
also be accessed through the HTTP proxy. To bypass the HTTP proxy in this
case, you could configure the Maven proxy host to be a HTTP non-proxy host—
see the section called “Configuring a HTTP proxy” .

6. Aether next tries to look up the specified remote repositories (using the list of remote
repositories specified in the Fabric8 agent configuration). Because the remote repositories are
located on the Internet (accessed through the HTTP protocol), it is necessary to have Internet
access in order for this step to succeed.

NOTE

If your local network requires you to use a HTTP proxy to access the Internet, it
is possible to configure Fabric8 to use a HTTP proxy. For example, see the
section called “Configuring a HTTP proxy” for details.

7. If the Maven artifact is found in the Maven proxy or in a remote repository, Aether
automatically installs the artifact into the user's local Maven repository, so that another
remote lookup will not be required.

8. Finally, assuming that the Maven artifact has been successfully resolved, Karaf installs the
artifact in the Karaf bundle cache, InstallDir/data/cache, and loads the artifact (usually,
an OSGi bundle) into the container runtime. At this point, the artifact is effectively installed in
the container.

io.fabric8.agent configuration

The resolution of Maven artifacts in a managed container is configured by setting properties from the
io.fabric8.agent PID (also known as agent properties). The Maven properties are normally set in
the default profile, which ensures that the same settings are used throughout the entire fabric
(recommended).

For example, you can see how the Maven properties are set in the default profile using the
fabric:profile-display command, as follows:

JBossFuse:karaf@root> profile-display default
...
Agent Properties :
 ...
 org.ops4j.pax.url.mvn.globalUpdatePolicy = always
 org.ops4j.pax.url.mvn.defaultRepositories =
file:${runtime.home}/${karaf.default.repository}@snapshots@id=karaf-
default,
 file:${runtime.data}/maven/upload@snapshots@id=fabric-upload
 org.ops4j.pax.url.mvn.repositories =
file:${runtime.home}/${karaf.default.repository}@snapshots@id=karaf-
default,
 file:${runtime.data}/maven/upload@snapshots@id=fabric-upload,

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

110

The properties prefixed by org.ops4j.pax.url.mvn.* are the Maven properties used by the
Fabric8 agent.

IMPORTANT

The org.ops4j.pax.url.mvn.* properties are not related to the Pax URL Aether
component. There is some potential for confusion here, because the Fabric8 agent uses
the same property names as Pax URL Aether. These properties are read by the Fabric8
agent, however, not by Pax URL Aether (and are associated with the
io.fabric8.agent PID, not the org.ops4j.pax.url.mvn PID).

20.3. HOW A MAVEN PROXY RESOLVES ARTIFACTS

Overview

A Maven proxy is essentially a Web server that is configured to behave like a standard Maven
repository server. Remember that the purpose of the Maven proxy is to serve artifacts to remote HTTP
clients, not to install artifacts locally. So, although Maven proxy configuration properties have similar
names to the managed container case, they ultimately serve quite a different purpose.

Fabric8 Maven proxy server

The Fabric8 Maven proxy server is a HTTP server, implemented as a servlet inside the container's
default Jetty container. Hence, the Maven proxy server shares the same port number, 8181, as many of
the other Karaf container services. On a given host, Host, the Maven proxy can be accessed through
the following URL:

The Fabric8 Maven proxy server is configured by setting properties from the
io.fabric8.maven.proxy PID. By default, some of these properties are set in the default profile
and some are set in the fabric profile.

io.fabric8.maven bundle layer

 http://repo1.maven.org/maven2@id=central,

https://repo.fusesource.com/nexus/content/groups/public@id=fusepublic,

https://repository.jboss.org/nexus/content/repositories/public@id=jbosspub
lic,

https://repo.fusesource.com/nexus/content/repositories/releases@id=jbossre
leases,

https://repo.fusesource.com/nexus/content/groups/ea@id=jbossearlyaccess,

http://repository.springsource.com/maven/bundles/release@id=ebrreleases,

http://repository.springsource.com/maven/bundles/external@id=ebrexternal
 ...

http://Host:8181/maven/download

CHAPTER 20. FABRIC MAVEN PROXIES

111

The io.fabric8.maven bundle layer offers similar functionality to the Pax URL Aether component
(from a standalone Karaf container).

The io.fabric8.maven bundle is configured by setting properties from the io.fabric8.maven
PID and these properties are normally set in the default profile (recommended).

Serving artifacts through the Maven proxy

Figure 20.3, “Maven Proxy Serving an Artifact” shows how a Maven proxy processes a HTTP download
request, by locating the requested Maven artifact and then returning it to the client.

Figure 20.3. Maven Proxy Serving an Artifact

Steps to serve artifacts

The steps to serve the required Maven artifacts are, as follows:

1. Resolution of a Maven artifact is triggered when a managed container sends a request to the
Maven proxy server.

2. The Maven proxy server parses the incoming HTTP request and then makes a call to the
io.fabric8.maven layer, asking it to resolve the requested Maven artifact.

3. The io.fabric8.maven layer reads its Maven configuration from the io.fabric8.maven
PID in the default profile (and possibly also from a Maven settings.xml file, if so
configured).

4. When the Aether library is invoked, the first step is to look up any local Maven repositories to
try and find the Maven artifact. The following local repositories are configured by default:

InstallDir/system

The JBoss Fuse system directory, which contains all of the Maven artifacts that are bundled
with the JBoss Fuse distribution.

InstallDir/data/maven/upload

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

112

The Maven proxy's upload directory, which is used to store artifacts that have been directly
uploaded to the Maven proxy—see Section 20.6, “Automated Deployment” .

UserHome/.m2/repository

The user's own local Maven repository in the user's home directory, UserHome.

If the Maven artifact is found locally, skip straight to step 7.

5. Aether next tries to look up the specified remote repositories. Because the remote
repositories are located on the Internet (accessed through the HTTP protocol), it is necessary
to have Internet access in order for this step to succeed.

NOTE

If your local network requires you to use a HTTP proxy to access the Internet, it
is possible to configure Fabric8 to use a HTTP proxy. For example, see the
section called “Configuring a HTTP proxy” for details.

6. If the Maven artifact is found in a remote repository, Aether automatically installs the artifact
into the local Maven repository, UserHome/.m2/repository, so that another remote lookup
will not be required.

7. The Maven proxy server returns the successfully located Maven artifact to the client (or an
error message, if the artifact could not be found).

20.4. CONFIGURING MAVEN PROXIES DIRECTLY

Overview

The default approach to configuring the Maven proxy settings is to edit the properties from the
io.fabric8.agent PID and the io.fabric8.maven PID. Because these properties are set in a
profile, they are immediately available to all containers in a fabric.

NOTE

In order to use the direct configuration approach, you must at least set the
org.ops4j.pax.url.mvn.repositories property in the io.fabric8.agent PID.
If this property is not set, the Fabric8 agent falls back to reading configuration from the
Maven settings.xml file.

NOTE

If you also need to configure a HTTP proxy, it is recommended that you take the
approach of configuring through the Maven settings.xml file. See Section 20.5,
“Configuring Maven Proxies and HTTP Proxies through settings.xml”.

Tools for editing configuration

The examples in the following sections show how to modify Maven proxy configuration using Karaf
console commands (for example, by invoking fabric:profile-edit). It is worth recalling, however,
that there are several different tools you can use to modify the settings in a fabric:

CHAPTER 20. FABRIC MAVEN PROXIES

113

Karaf console—use the fabric:* family of commands (for example, fabric:profile-edit).

Fuse Management Console (Hawtio)—you can edit profile settings through the Profile tab or
the Wiki tab in the Fabric perspective of the Hawtio console,
http://localhost:8181/hawtio/login.

Git configuration—you can edit profile settings by cloning the Git profile repository. See ??? for
details.

Rolling out configuration changes

The examples in the following sections show the form of command for editing the current version of the
profile, which causes the changes to take effect immediately in the current fabric. If you prefer to have
a more controlled rollout of configuration changes, however, you should use profile versioning to roll
out the changes (see ???).

For example, instead of adding a remote repository to the current version of the default profile, as
follows:

You could implement a phased rollout using versions, as follows (assuming the current version is 1.0):

You can now upgrade a specific container to version 1.1, using the following command:

Adding a remote Maven repository

To add another remote Maven repository to the list of remote repositories used by the Maven proxy,
add the relevant repository URL to the comma-separated list of repository URLs in the
org.ops4j.pax.url.mvn.repositories property of the io.fabric8.agent PID in the
default profile (not forgetting to specify the mandatory @id suffix in the repository URL).

For example, to add the http://foo/bar Maven repository to the list of remote repositories, enter
the following console command:

Note the following points about this configuration approach:

The preceding setting simultaneously updates the
io.fabric8.maven/io.fabric8.maven.repositories property (which, by default, is
configured to copy the contents of the

profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories='http://foo/bar@id=myf
oo' --append default

version-create 1.1
profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories='http://foo/bar@id=myf
oo' --append default 1.1

container-upgrade 1.1 mycontainer

profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories='http://foo/bar@id=myf
oo' --append default

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

114

mdash

io.fabric8.agent/org.ops4j.pax.url.mvn.repositories property). This is the
property that actually configures the Maven proxy.

By editing this property in the default profile (which is normally the base profile of every
profile), you ensure that this setting is propagated to all containers and to all Maven proxies in
the Fabric.

The preceding command immediately changes the configuration of all containers at the
current version. If you prefer to implement a phased rollout of the new configuration, use
profile versions, as described in ???.

NOTE

The @id option specifies the name of the repository and is required. You can choose an
arbitrary value for this ID.

20.5. CONFIGURING MAVEN PROXIES AND HTTP PROXIES THROUGH
SETTINGS.XML

Overview

You can optionally configure the Maven proxy using a standard Maven settings.xml file. For
example, this approach is particularly convenient in a development environment, because it makes it
possible to store your build time settings and your run time settings in one place.

Enabling the settings.xml configuration approach

To configure Fabric to read its Maven configuration from a Maven settings.xml file, perform the
following steps:

1. Delete the org.ops4j.pax.url.mvn.repositories property setting from the
io.fabric8.agent PID in the default profile, using the following console command:

When the repositories setting is absent, Fabric implicitly switches to the settings.xml
configuration approach.

NOTE

This step simultaneously clears both the repositories list used by the Fabric8
agent and the repositories list used by the Maven proxy server (because the
Maven proxy's repository list is normally copied straight from the Fabric8
agent's repository list).

2. Set the io.fabric8.maven.settings property from the io.fabric8.maven PID in the
default profile to the location of the Maven settings.xml file. For example, if your
settings.xml file is stored in the location, /home/fuse/settings.xml, you would set the
io.fabric8.maven.settings property as follows:

profile-edit --delete --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories default

CHAPTER 20. FABRIC MAVEN PROXIES

115

NOTE

The effect of this setting is to configure the Maven proxy server to takes its
Maven configuration from the specified settings.xml file. The Fabric8 agent
is not affected by this setting.

3. In order to configure the Fabric8 agent with the Maven settings.xml, set the
org.ops4j.pax.url.mvn.settings property from the io.fabric8.agent PID in the
default profile to the location of the Maven settings.xml file. For example, if your
settings.xml file is stored in the location, /home/fuse/settings.xml, you would set the
org.ops4j.pax.url.mvn.settings property as follows:

IMPORTANT

If you configure a HTTP proxy in your settings.xml file, it is essential to
configure the ensemble hosts (where the Maven proxies are running) as HTTP
non-proxy hosts. Otherwise, the Fabric8 agent tries to connect to the local
Maven proxy through the HTTP proxy (which is an error).

Adding a remote Maven repository

To add a new remote Maven repository to your settings.xml file, open the settings.xml file in a
text editor and add a new repository XML element. For example, to create an entry for the JBoss
Fuse public Maven repository, add a repository element as shown:

profile-edit --pid
io.fabric8.maven/io.fabric8.maven.settings='/home/fuse/settings.xml'
default

profile-edit --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.settings='/home/fuse/settings
.xml' default

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <profiles>
 <profile>
 <id>my-fuse-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <!--
 | Add new remote Maven repositories here
 -->
 <repository>
 <id>jboss-fuse-public-repository</id>

<url>https://repo.fusesource.com/nexus/content/groups/public/</url>

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

116

The preceding example additionally specifies that release artifacts can be downloaded, but snapshot
artifacts cannot be downloaded from the repository.

Configuring a HTTP proxy

To configure a HTTP proxy (which will be used when connecting to remote Maven repositories), open
the settings.xml file in a text editor and add a new proxy XML element as a child of the proxies
XML element. The definition of the proxy follows the standard Maven syntax. For example, to create a
proxy for the HTTP (insecure) protocol with host, 192.0.2.0, and port, 8080, add a proxy element as
follows:

You must remember to add the ensemble hosts (where the Maven proxy servers are running) to the
list of HTTP non-proxy hosts in the nonProxyHosts element. This ensures that the Fabric8 agents do
not attempt to connect to the Maven proxies through the HTTP proxy, but make a direct connection
instead. In the preceding example, the ensemble host names are ensemble1, ensemble2, and
ensemble3.

You can also add a proxy for secure HTTPS connections by adding a proxy element configured with
the https protocol.

Alternative approaches to configuring a HTTP proxy

There are some alternative approaches you can use to configure a HTTP proxy, but generally these
other approaches are not as convenient as editing the settings.xml file. For example, you could

 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 ...
 </repositories>
 </profiles>
 ...
</settings>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
 ...
 <proxies>
 <proxy>
 <id>fuse-proxy-1</id>
 <active>true</active>
 <protocol>http</protocol>
 <host>192.0.2.0</host>
 <port>8080</port>
 <nonProxyHosts>ensemble1|ensemble2|ensemble3</nonProxyHosts>
 </proxy>
 </proxies>
 ...
</settings>

CHAPTER 20. FABRIC MAVEN PROXIES

117

take the approach of setting the http.proxyHost and http.proxyPort system properties in the
InstallDir/etc/system.properties file (just like the approach for a standalone, non-Fabric
container):

This configuration suffers from the disadvantage that it also affects the Fabric8 agents, preventing
them from accessing the Maven proxy server directly (on the internal network). In order to
compensate for this, you would need to configure the list of non-proxy hosts to include the hosts
where the Fabric servers (ensemble servers) are running, for example:

Reference

For a detailed description of the syntax of the Maven settings.xml file, see the Maven Settings
Reference. But please note that not all of the features documented there are necessarily supported by
Fabric.

20.6. AUTOMATED DEPLOYMENT

Overview

The Maven proxy supports not just downloading artifacts, but also uploading artifacts. Hence, if you
want to make an artifact available to all of the containers in the fabric, a simple way of doing this is to
upload the artifact to the Maven proxy. For ultimate convenience in a development environment, you
can automate the deployment step by installing the Fabric8 Maven plug-in in your project POM file.

Discover the upload URL of the current master

To discover the upload URL of the current Maven proxy master instance, invoke the
fabric:cluster-list command, as follows:

In this example, the upload URL of the current master is http://127.0.0.1:8181/maven/upload.

Manually deploy a Maven project

You can build a Maven project and upload the resulting artifact directly to the Maven proxy server, by
invoking mvn deploy with the altDeploymentRepository command-line option. The value of
altDeploymentRepository is specified in the following format:

http.proxyHost=192.0.2.0
http.proxyPort=8080

http.nonProxyHosts=ensemblehost1|ensemblehost2|ensemblehost3

JBossFuse:karaf@root> cluster-list servlets/io.fabric8.fabric-maven-proxy
[cluster] [masters] [slaves] [services]
[]
1.2.0.redhat-621084/maven/download
 root root -
http://127.0.0.1:8181/maven/download
1.2.0.redhat-621084/maven/upload
 root root -
http://127.0.0.1:8181/maven/upload

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

118

https://maven.apache.org/settings.html

Where the format segments can be explained as follows:

ID

Can be used to pick up the relevant credentials from the settings.xml file (from the matching
settings/servers/server/id element). Otherwise, the credentials must be specified in the
repository URL. If necessary, you can simply specify a dummy value for the ID.

Layout

Can be either default (for Maven3 or Maven2) or legacy (for Maven1, which is not compatible
with JBoss Fuse).

RepositoryURL

The Maven proxy upload URL. For example,
http://User:Password@localhost:8181/maven/upload/.

For example, to deploy a Maven project to a Maven proxy server running on the localhost (127.0.0.1),
authenticating with the admin/admin credentials, enter a command like the following:

Automatically deploy a Maven project

When working in a build environment, the most convenient way to interact with the Maven proxy server
is to configure the Fabric8 Maven plug-in. The Fabric8 Maven plug-in can automatically deploy your
project to the local Maven proxy and, in addition, has the capability to create or update a Fabric profile
for your application. For more details, see ???.

20.7. FABRIC MAVEN CONFIGURATION REFERENCE

Overview

This section provides a configuration reference for the Maven proxy configuration settings, which
includes properties from the io.fabric8.agent PID, the io.fabric8.maven PID, and the
io.fabric8.maven.proxy PID.

Repository URL syntax

You can specify a repository location using a URL with a file:, http:, or https: scheme, optionally
appending one or more of the following suffixes:

@snapshots

Allow snapshot versions to be read from the repository.

@noreleases

Do not allow release versions to be read from the repository.

ID::Layout::RepositoryURL

mvn deploy -
DaltDeploymentRepository=releaseRepository::default::http://admin:admin@12
7.0.0.1:8181/maven/upload/

CHAPTER 20. FABRIC MAVEN PROXIES

119

@id=RepoName

(Required) Specifies the repository name. This setting is required by the Aether handler.

@multi

Marks the path as a parent directory of multiple repository directories. At run time the parent
directory is scanned for subdirectories and each subdirectory is used as a remote repository.

@update=UpdatePolicy

Specifies the Maven updatePolicy, overriding the value of
org.ops4j.pax.url.mvn.globalUpdatePolicy.

@releasesUpdate=UpdatePolicy

Specifies the Maven updatePolicy specifically for release artifacts (overriding the value of
@update).

@snapshotsUpdate=UpdatePolicy

Specifies the Maven updatePolicy specifically for snapshot artifacts (overriding the value of
@update).

@checksum=ChecksumPolicy

Specifies the Maven checksumPolicy, which specifies how to react if a downloaded Maven artifact
has a missing or incorrect checksum. The policy value can be: ignore, fail, or warn.

@releasesChecksum=ChecksumPolicy

Specifies the Maven checksumPolicy specifically for release artifacts (overriding the value of
@checksum).

@snapshotsChecksum=ChecksumPolicy

Specifies the Maven checksumPolicy specifically for snapshot artifacts (overriding the value of
@checksum).

For example:

io.fabric8.agent PID

The io.fabric8.agent PID configures the Fabric8 agent. The io.fabric8.agent PID supports
the following properties relating specifically to Maven configuration:

org.ops4j.pax.url.mvn.defaultRepositories

Specifies a list of default (local) Maven repositories that are checked before looking up the remote
repositories. Specified as a comma-separated list of file: repository URLs, where each repository
URL has the syntax defined in the section called “Repository URL syntax” .

org.ops4j.pax.url.mvn.globalUpdatePolicy

https://repo.example.org/maven/repository@id=example.repo

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

120

Specifies the Maven updatePolicy, which determines how often Aether attempts to update local
Maven artifacts from remote repositories. Can take the following values:

always—always resolve the latest SNAPSHOT from remote Maven repositories.

never—never check for newer remote SNAPSHOTS.

daily—check on the first run of the day (local time).

interval:Mins—check every Mins minutes.

The default profile sets this property to always. If not set, default is daily.

org.ops4j.pax.url.mvn.repositories

Specifies a list of remote Maven repositories that can be searched for Maven artifacts. This property
can be used in any of the following ways:

Use this property and disable settings.xml

Normally, the org.ops4j.pax.url.mvn.repositories property is set as a comma-
separated list of repository URLs, where the \ character can be used for line continuation.
In this case, any Maven settings.xml file is ignored (that is, the
org.ops4j.pax.url.mvn.settings property setting is ignored). For example, this
property is set as follows in the default profile:

Use settings.xml and disable this property

If you want to use a Maven settings.xml file to configure the list of remote repositories
instead of this property, you must remove the org.ops4j.pax.url.mvn.repositories
property settings from the profile. For example, assuming that this property is set in the

org.ops4j.pax.url.mvn.repositories=
file:${runtime.home}/${karaf.default.repository}@snapshots@id=kara
f-default, \
 file:${runtime.data}/maven/upload@snapshots@id=fabric-
upload, \
 http://repo1.maven.org/maven2@id=central, \

https://repo.fusesource.com/nexus/content/groups/public@id=fusepub
lic, \

https://repository.jboss.org/nexus/content/repositories/public@id=
jbosspublic, \

https://repo.fusesource.com/nexus/content/repositories/releases@id
=jbossreleases, \

https://repo.fusesource.com/nexus/content/groups/ea@id=jbossearlya
ccess, \

http://repository.springsource.com/maven/bundles/release@id=ebrrel
eases, \

http://repository.springsource.com/maven/bundles/external@id=ebrex
ternal

CHAPTER 20. FABRIC MAVEN PROXIES

121

default profile, you can delete it with the following command:

Use both this property and settings.xml

You can combine the remote repositories specified in this setting and the remote
repositories configured in a settings.xml file by using a special syntax for the list of
repository URLs. In this case, you must specify a space-separated list of repository URLs,
where each repository URL is prefixed by the + character, and the repository URLs are
listed on a single line (the \ line continuation character is not supported in this syntax). For
example:

org.ops4j.pax.url.mvn.settings

Specifies a path on the file system to override the default location of the Maven settings.xml file.
The Fabric8 agent resolves the location of the Maven settings.xml file in the following order:

1. The location specified by org.ops4j.pax.url.mvn.settings.

2. ${user.home}/.m2/settings.xml

3. ${maven.home}/conf/settings.xml

4. M2_HOME/conf/settings.xml

NOTE

All settings.xml files are ignored, if the
org.ops4j.pax.url.mvn.repositories property is set.

io.fabric8.maven PID

The io.fabric8.maven PID configures the io.fabric8.maven bundle (which is used by the Maven
proxy server) and supports the following properties:

io.fabric8.maven.proxies

This option is obsolete and no longer works. In older Fabric8 releases it was used to configure a
HTTP proxy port.

io.fabric8.maven.repositories

Specifies a list of remote Maven repositories that can be searched for Maven artifacts. This setting
is normally copied from org.ops4j.pax.url.mvn.repositories.

io.fabric8.maven.useFallbackRepositories

profile-edit --delete --pid
io.fabric8.agent/org.ops4j.pax.url.mvn.repositories default

org.ops4j.pax.url.mvn.repositories =
+file://${runtime.data}/maven/upload@snapshots@id=fabric-upload
+file://${runtime.home}/${karaf.default.repository}@snapshots@id=k
araf-default

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

122

This option is deprecated and should always be set to false.

The default profile sets this property to false.

io.fabric8.maven.proxy PID

The io.fabric8.maven.proxy PID configures the Fabric8 Maven proxy server and supports the
following properties:

appendSystemRepos

The fabric profile sets this property to false.

role

Specifies a comma-separated list of security roles that are allowed to access the Maven proxy
server. For details of role-based access control, see section "Role-Based Access Control" in
"Security Guide".

The default profile sets this property to the following list:

updatePolicy

Specifies the Maven updatePolicy.

The fabric profile sets this property to always.

uploadRepository

Specifies the location of the directory used to store artifacts uploaded to the Maven proxy server.

The fabric profile sets this property to ${runtime.data}/maven/upload.

admin,manager,viewer,Monitor,Operator,Maintainer,Deployer,Auditor,Admini
strator,SuperUser

CHAPTER 20. FABRIC MAVEN PROXIES

123

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2.1/html/Security_Guide/RBAC.html

CHAPTER 21. MAVEN INDEXER PLUGIN
The Maven Indexer Plugin is required for the Maven plugin to enable it to quickly search Maven Central
for artifacts.

To Deploy the Maven Indexer plugin use the following commands:

Procedure 21.1. Deploy the Maven Indexer Plugin

1. In the Container perspective go to the Karaf console and enter the following command to
install the Maven Indexer plugin:

features:install hawtio-maven-indexer

In the Fabric perspective go to the Karaf console and add add the feature to a profile:

fabric:profile-edit --features hawtio-maven-indexer jboss-fuse-full

2. For both perspectives, the rest of the commands are the same. Enter the following commands
to configure the Maven Indexer plugin:

config:edit io.hawt.maven.indexer
config:proplist
config:propset repositories 'https://maven.oracle.com'
config:proplist
config:update

3. Wait for the Maven Indexer plugin to be deployed. This may take a few minutes. Look out for
messages like those shown below to appear on the log tab.

When the Maven Indexer plugin has been deployed, use the following commands to add further
external Maven repositories to the Maven Indexer plugin configuration:

config:edit io.hawt.maven.indexer
config:proplist
config:propset repositories external repository
config:proplist
config:update

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

124

CHAPTER 22. WELCOME BANNER
A banner is available on the JBoss Fuse console which can be used to display extra information. This
banner is only visible when logging in using SSH.

To enable the welcome banner, edit Fuse install dir/etc/org.apache.karaf.shell.cfg.
Uncomment welcomBanner =

Specify an additional welcome banner to be displayed when a user logs
into the server.
#
welcomeBanner =

Add your text to the welcome banner.

welcomeBanner = \
@@@ \n\
Hello and welcome to my secure server. \n\
More information here ...\n\
 ... \n\
@@@\n

The banner will appear after the login credentials have been entered.

Figure 22.1. Log in screen for the Management Console

CHAPTER 22. WELCOME BANNER

125

CHAPTER 23. BRANDING JBOSS FUSE CONSOLE
When you start JBoss Fuse, you are welcomed by a default message on JBoss Fuse console. You can
customize the JBoss Fuse console with your own brand. You can define your own welcome message to
be displayed when you start the console and also the prompt displayed to the users. There are two
ways to customize:

Adding a branding.properties file to Fuse install dir/etc directory

Procedure 23.1. Adding a branding.properties file to Fuse install dir/etc
directory

1. Create a branding.properties file with your message. A sample file is given below:

2. Copy the branding.properties file to Fuse install dir/etc directory.

3. Navigate to Fuse install dir/bin directory. Open the terminal and enter the
command ./fuse to start the JBoss Fuse server. You will see your branded message on
the JBoss Fuse console.

Creating a branding bundle

At the startup, JBoss Fuse is looking for a bundle which exports the
org.apache.karaf.branding package, containing a branding.properties file. This
branding bundle contains a file which stores your customized brand.

You can create a simple branding bundle using Maven. Copy your branding.properties file
to the maven project resources directory, for example,

{
}
welcome = \
\u001B[31m _ ____ ______\u001B[0m\n\
\u001B[31m | | _ \\ | ____|
\u001B[0m\n\
\u001B[31m | | |_) | ___ ___ ___ | |__ _ _ ___
___\u001B[0m\n\
\u001B[31m _ | | _ < / _ \\/ __/ __| | __| | | / __|/ _
\\\u001B[0m\n\
\u001B[31m| |__| | |_) | (_) __ __ \\ | | | |_| __ \\
__/\u001B[0m\n\
\u001B[31m ____/|____/ ___/|___/___/ |_|
__,_|___/___|\u001B[0m\n\
\n\
\u001B[1m JBoss Fuse\u001B[0m (6.2.0.redhat-133)\n\
\n\
Open a browser to http://localhost:8181 to access the management
console\n\
\n\
Hit '<ctrl-d>' or 'osgi:shutdown' to shutdown JBoss Fuse.\n
prompt =
\u001B[31mJBossFuse\u001B[0m:\u001B[34m${USER}\u001B[0m\u001B[1m@
\u001B[0m\u001B[36m${APPLICATION}\u001B[0m>\u0020
{
}

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

126

src/main/resources/org/apache/karaf/branding/ directory. Then using your
project's pom.xml file you can generate the branding bundle as per the steps given below:

Procedure 23.2. Creating a branding bundle

1. Create branding.properties file as shown above. Copy this file to project resources
directory, for example,
src/main/resources/org/apache/karaf/branding/branding.properties
directory.

2. A sample pom.xml file can be as follows:

3. Open a terminal and navigate to directory where you have saved the pom.xml file. Run
mvn clean install command to create a branding bundle.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>branding.console</groupId>
 <artifactId>my.brand</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>bundle</packaging>
 <name>My Brand</name>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.4.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>manual</bundle-
SymbolicName>
 <Import-Package>*</Import-Package>
 <Private-Package>!*</Private-Package>
 <Export-Package>
 org.apache.karaf.branding
 </Export-Package>
 <Spring-Context>*;public-
context:=false</Spring-Context>
 </instructions>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </project>

CHAPTER 23. BRANDING JBOSS FUSE CONSOLE

127

4. Copy generated branded bundle from the project's /target directory to Fuse install
dir/lib directory.

5. In order for JBoss Fuse to use this branding bundle instead of default one, add the
following line to Fuse install dir/etc/custom.properties file:

org.osgi.framework.system.packages.extra = \
org.apache.karaf.branding

6. Save your changes. Navigate to Fuse install dir/bindirectory and run ./fuse to
start JBoss Fuse server. You can see your branded console after the startup.

INDEX
A

admin commands, Using the admin console commands

B

broker

deploying

standalone container, Standalone containers

bundle cache, Changing the bundle cache location

C

child containers, Managing Child Containers

config shell, Standalone containers

config.properties, OSGi framework properties , Overview

config:list, Listing the current configuration

configuration

Java Options

setenv, Setting Java Options

JBI, JBI component configuration

OSGi, Introducing JBoss Fuse Configuration

F

fabric:container-stop, Shutting Down a Fabric

fabric:container-upgrade, Applying a rollup patch, Applying an incremental patch

fabric:join, Joining a Fabric

failover, Failover Deployments

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

128

featureRepositories, Modifying the default set of feature URLs

featuresBoot, Modifying the default installed features

felix.cache.bufsize, Adjusting the bundle cache buffer

felix.fileinstall.dir, Specifying the hot deployment folder

felix.fileinstall.poll, Specifying the scan interval

felix.fileinstall.tmpdir, Changing the generated-bundle cache location

G

generated bundle cache, Changing the generated-bundle cache location

H

hot deployment

folder, Specifying the hot deployment folder

monitor interval, Specifying the scan interval

J

Java Options

configuration

setenv, Setting Java Options

JBI

configuration, JBI component configuration

JDBC lock, Using a JDBC Lock System

JMX configuration

url, Changing the RMI port and JMX URL

K

karaf.default.repository, Initial container properties

karaf.framework, OSGi framework properties

karaf.framework.felix, OSGi framework properties

karaf.name, Initial container properties

KARAF_BASE, Default environment settings

KARAF_DATA, Default environment settings

KARAF_HOME, Default environment settings

INDEX

129

L

launching

client mode, Launching the runtime in client mode

default mode, Launching the runtime in console mode

server mode, Launching the runtime in server mode

lock file, Using a Simple Lock File System

logging

commands, Log Commands

O

org.apache.felix.fileinstall-deploy, Overview

org.apache.karaf.log, Overview

org.ops4j.pax.logging, Overview

org.ops4j.pax.logging.DefaultServiceLog.level, Overview

org.osgi.framework.storage, Changing the bundle cache location

org.osgi.framework.storage.clean, Flushing the bundle cache

org.osgi.service.http.port, Initial container properties

OSGi

configuration, Introducing JBoss Fuse Configuration

OSGi configuration

creating, Standalone containers

OSGi framework

configuring, OSGi framework properties

P

patch:add, Applying a patch

patch:install, Applying a patch

patch:list, Applying a patch, Rolling back a patch

patch:rollback, Rolling back a patch

patch:simulate, Applying a patch

patching

fabric

command console, Applying a rollup patch, Applying an incremental patch

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

130

standalone, Applying a patch

rollback, Rolling back a patch

R

remote client, Using the remote client

remote console

address, Configuring a standalone container for remote access

container-connect, Using the fabric:container-connect command

ssh, Using the ssh:ssh console command

remoteShellLocation, Configuring a standalone container for remote access

RMI port, Changing the RMI port and JMX URL

RMI registry

port number, Changing the RMI port and JMX URL

rmiRegistryPort, Changing the RMI port and JMX URL

S

security, Configuring JAAS Security

service wrapper

classpath, Additional classpath entries

JMX configuration, JMX configuration properties

JVM properties, JVM parameters

logging, Logging configuration

serviceUrl, Changing the RMI port and JMX URL

standalone

initial features, Configuring the Initial Features in a Standalone Container

starting, Starting JBoss Fuse

stopping, Stopping JBoss Fuse

remote container, Stopping a Remote Container

system service

Redhat, Red Hat Enterprise Linux

Solaris, Solaris

Ubuntu, Ubuntu Linux

INDEX

131

Windows, Windows

system.properties, Initial container properties

Red Hat JBoss Fuse 6.2.1 Configuring and Running JBoss Fuse

132

	Table of Contents
	CHAPTER 1. CONFIGURING THE INITIAL FEATURES IN A STANDALONE CONTAINER
	OVERVIEW
	MODIFYING THE DEFAULT INSTALLED FEATURES
	MODIFYING THE DEFAULT SET OF FEATURE URLS

	CHAPTER 2. INSTALLING RED HAT JBOSS FUSE AS A SYSTEM SERVICE
	2.1. INSTALLING RED HAT JBOSS FUSE AS A SERVICE IN STANDALONE MODE
	2.1.1. Generating the Service Wrapper
	Overview
	Generating the service wrapper
	Results

	2.1.2. Configuring the Batch Script
	Overview
	RUN_AS_USER
	PRIORITY

	2.1.3. Configuring the Service Wrapper
	Overview
	Default environment settings
	JVM parameters
	Additional classpath entries
	JMX configuration properties
	Logging configuration

	2.1.4. Installing and Starting the Service
	Overview
	Windows
	Red Hat Enterprise Linux
	Ubuntu Linux
	Solaris

	2.2. INSTALLING RED HAT JBOSS FUSE AS A SERVICE IN FABRIC MODE
	2.2.1. Installing JBoss Fuse as a System Service in a Fabric Ensemble Container
	Procedure

	2.2.2. Installing JBoss Fuse as a System Service in a Child Container
	Procedure

	CHAPTER 3. BASIC SECURITY
	3.1. CONFIGURING BASIC SECURITY
	Overview
	Before you start the container
	Create a secure JAAS user
	Role-based access control
	Ports exposed by the JBoss Fuse container
	Enabling the remote console port
	Strengthening security on the remote console port
	Enabling the JMX port
	Strengthening security on the Fuse Management Console port

	3.2. DISABLING BROKER SECURITY
	Overview
	Standalone server

	CHAPTER 4. STARTING AND STOPPING JBOSS FUSE
	4.1. STARTING JBOSS FUSE
	Overview
	Setting up your environment
	Launching the runtime in console mode
	Launching the runtime in server mode
	Launching the runtime in client mode

	4.2. STOPPING JBOSS FUSE
	Stopping an instance from a local console
	Stopping an instance running in server mode
	Stopping a child container instance
	Stopping a remote instance

	CHAPTER 5. CREATING A NEW FABRIC
	STATIC IP ADDRESS REQUIRED FOR FABRIC SERVER
	PROCEDURE
	FABRIC CREATION PROCESS
	EXPANDING A FABRIC

	CHAPTER 6. JOINING A FABRIC
	OVERVIEW
	JOINING A FABRIC AS A MANAGED CONTAINER
	JOINING A FABRIC AS AN NON-MANAGED CONTAINER
	HOW TO JOIN A FABRIC
	HOW TO DISCOVER THE URL OF A FABRIC SERVER

	CHAPTER 7. SHUTTING DOWN A FABRIC
	OVERVIEW
	SHUTTING DOWN A MANAGED CONTAINER
	SHUTTING DOWN A FABRIC SERVER
	SHUTTING DOWN AN ENTIRE FABRIC
	NOTE ON SHUTTING DOWN A COMPLETE FABRIC

	CHAPTER 8. USING REMOTE CONNECTIONS TO MANAGE A CONTAINER
	8.1. CONFIGURING A CONTAINER FOR REMOTE ACCESS
	Overview
	Configuring a standalone container for remote access
	Configuring a fabric container for remote access

	8.2. CONNECTING AND DISCONNECTING REMOTELY
	8.2.1. Connecting to a Standalone Container from a Remote Container
	Overview
	Using the ssh:ssh console command
	Disconnecting from a remote console

	8.2.2. Connecting to a Fabric Container From another Fabric Container
	Overview
	Using the fabric:container-connect command
	Disconnecting from a remote console

	8.2.3. Connecting to a Container Using the Client Command-Line Utility
	Using the remote client
	Disconnecting from a remote client console

	8.2.4. Connecting to a Container Using the SSH Command-Line Utility
	Overview
	Prerequisites
	Default key location
	Creating a new SSH key pair
	Installing the SSH public key in the container
	Checking that public key authentication is supported
	Logging in using key-based SSH

	8.3. STOPPING A REMOTE CONTAINER
	Using the remote console
	Using the fabric:container-stop console command

	CHAPTER 9. MANAGING CHILD CONTAINERS
	9.1. STANDALONE CHILD CONTAINERS
	Using the admin console commands
	Installing the admin console commands
	Cloning a container
	Creating a Karaf child container
	Changing a child's SSH port
	Starting child containers
	Listing all child containers
	Connecting to a child container
	Stopping a child container
	Destroying a child container
	Changing the JVM options on a child container
	Using the admin script

	9.2. FABRIC CHILD CONTAINERS
	Creating child containers
	Listing all container instances
	Assigning a profile to a child container
	Connecting to a child container
	Starting a child container
	Stopping a child container
	Destroying a child container

	CHAPTER 10. DEPLOYING A NEW BROKER INSTANCE
	OVERVIEW
	STANDALONE CONTAINERS
	EXAMPLE

	CHAPTER 11. CONFIGURING JBOSS FUSE
	11.1. INTRODUCING JBOSS FUSE CONFIGURATION
	OSGi configuration
	Configuration files
	Configuration file naming convention
	JBI component configuration
	Setting Java Options

	11.2. SETTING OSGI FRAMEWORK AND INITIAL CONTAINER PROPERTIES
	Overview
	OSGi framework properties
	Initial container properties

	11.3. CONFIGURING STANDALONE CONTAINERS USING THE COMMAND CONSOLE
	Overview
	Listing the current configuration
	Editing the configuration

	11.4. CONFIGURING FABRIC CONTAINERS
	Overview
	Profiles
	Best practices
	Making changes using the command console
	Using the management console

	CHAPTER 12. CONFIGURING THE HOT DEPLOYMENT SYSTEM
	OVERVIEW
	SPECIFYING THE HOT DEPLOYMENT FOLDER
	SPECIFYING THE SCAN INTERVAL
	EXAMPLE

	CHAPTER 13. CONFIGURING JMX
	OVERVIEW
	CHANGING THE RMI PORT AND JMX URL
	SETTING THE JMX USERNAME AND PASSWORD
	TROUBLESHOOTING ON LINUX PLATFORMS

	CHAPTER 14. CONFIGURING JAAS SECURITY
	14.1. ALTERNATIVE JAAS REALMS
	Overview
	Default realm
	Available realm implementations
	Standalone JAAS realm
	Fabric JAAS realm
	LDAP JAAS realm

	14.2. JAAS CONSOLE COMMANDS
	Editing user data from the console
	Standalone realm configuration
	Fabric realm configuration
	Adding a new user to the JAAS realm
	Canceling pending changes

	14.3. STANDALONE REALM PROPERTIES FILE
	Overview
	Format of users.properties entries
	Changing the default username and password

	CHAPTER 15. SECURING FABRIC CONTAINERS
	DEFAULT AUTHENTICATION SYSTEM
	MANAGING USERS
	OBFUSCATING STORED PASSWORDS
	ENABLING LDAP AUTHENTICATION

	CHAPTER 16. LOGGING
	16.1. LOGGING OVERVIEW
	16.2. LOGGING CONFIGURATION
	Overview
	Changing the log levels
	Changing the appenders' thresholds
	Logging per bundle
	Logging History

	16.3. LOGGING PER APPLICATION
	Overview
	Application key
	Enabling per application logging

	16.4. LOG COMMANDS

	CHAPTER 17. PERSISTENCE
	OVERVIEW
	THE DATA FOLDER
	CHANGING THE BUNDLE CACHE LOCATION
	FLUSHING THE BUNDLE CACHE
	CHANGING THE GENERATED-BUNDLE CACHE LOCATION
	ADJUSTING THE BUNDLE CACHE BUFFER

	CHAPTER 18. FAILOVER DEPLOYMENTS
	18.1. USING A SIMPLE LOCK FILE SYSTEM
	Overview
	Configuring a lock file system

	18.2. USING A JDBC LOCK SYSTEM
	Overview
	Adding the JDBC driver to the classpath
	Configuring a JDBC lock system
	Configuring JDBC locking on Oracle
	Configuring JDBC locking on Derby
	Configuring JDBC locking on MySQL
	Configuring JDBC locking on PostgreSQL
	JDBC lock classes

	18.3. CONTAINER-LEVEL LOCKING
	Overview
	Configuring container-level locking
	Avoiding port conflicts

	CHAPTER 19. APPLYING PATCHES
	19.1. PATCHING OVERVIEW
	19.2. FINDING THE RIGHT PATCHES TO APPLY
	Locate the patches on the customer portal
	Types of patch
	Rollup patches
	Incremental patches
	Which patches are needed to update the GA product to the latest patch level?
	Which patches to apply, if you only want to install regression-tested patches?

	19.3. INSTALLING A ROLLUP PATCH AS A NEW INSTALLATION
	A rollup patch is a new build
	Installing the new build
	Comparison with patch process

	19.4. PATCHING A STANDALONE CONTAINER
	Overview
	Incremental patch
	Rollup patch
	Patching the patch mechanism
	Applying a patch
	Rolling back a patch
	Adding features to an incrementally patched container

	19.5. PATCHING A CUSTOM ASSEMBLY
	Overview
	Custom assembly
	Inverting the patching procedure
	A rollup patch is a JBoss Fuse distribution
	Generating a patched custom assembly

	19.6. PATCHING A FABRIC CONTAINER WITH A ROLLUP PATCH
	Overview
	Distribution of patch artifacts
	Profiles
	Configuration of the underlying container
	io.fabric.version in the default profile
	Patching the patch mechanism
	Applying a rollup patch
	Rolling back a rollup patch

	19.7. PATCHING A FABRIC CONTAINER WITH AN INCREMENTAL PATCH
	Overview
	Distribution of patched artifacts through Maven proxy
	Profiles
	Is it necessary to patch the underlying container?
	Applying an incremental patch
	Rolling back an incremental patch

	CHAPTER 20. FABRIC MAVEN PROXIES
	20.1. CLUSTER OF FABRIC MAVEN PROXIES
	Overview
	Master-slave cluster
	Maven proxy
	Managed container
	Resolving a Maven artifact
	Endpoint discovery
	Which Fabric server is the current master?
	What happens during failover?
	No replication
	Managing the Maven artifact data

	20.2. HOW A MANAGED CONTAINER RESOLVES ARTIFACTS
	Overview
	Fabric profiles drive bundle provisioning
	Fabric8 agent
	Eclipse Aether layer
	Provisioning a managed container
	Provisioning steps
	io.fabric8.agent configuration

	20.3. HOW A MAVEN PROXY RESOLVES ARTIFACTS
	Overview
	Fabric8 Maven proxy server
	io.fabric8.maven bundle layer
	Serving artifacts through the Maven proxy
	Steps to serve artifacts

	20.4. CONFIGURING MAVEN PROXIES DIRECTLY
	Overview
	Tools for editing configuration
	Rolling out configuration changes
	Adding a remote Maven repository

	20.5. CONFIGURING MAVEN PROXIES AND HTTP PROXIES THROUGH SETTINGS.XML
	Overview
	Enabling the settings.xml configuration approach
	Adding a remote Maven repository
	Configuring a HTTP proxy
	Alternative approaches to configuring a HTTP proxy
	Reference

	20.6. AUTOMATED DEPLOYMENT
	Overview
	Discover the upload URL of the current master
	Manually deploy a Maven project
	Automatically deploy a Maven project

	20.7. FABRIC MAVEN CONFIGURATION REFERENCE
	Overview
	Repository URL syntax
	io.fabric8.agent PID
	io.fabric8.maven PID
	io.fabric8.maven.proxy PID

	CHAPTER 21. MAVEN INDEXER PLUGIN
	CHAPTER 22. WELCOME BANNER
	CHAPTER 23. BRANDING JBOSS FUSE CONSOLE
	INDEX

