
Red Hat JBoss Fuse 6.0

Configuring Web Service Endpoints

Deploy service endpoints

Last Updated: 2017-10-13

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

Deploy service endpoints

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to create Apache CXF endpoints in Red Hat JBoss Fuse.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS
1.1. CONFIGURING SERVICE PROVIDERS
1.2. CONFIGURING CONSUMER ENDPOINTS

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT
2.1. CONFIGURING A CONSUMER
2.2. CONFIGURING A SERVICE PROVIDER
2.3. USING THE HTTP TRANSPORT IN DECOUPLED MODE

CHAPTER 3. USING SOAP OVER JMS
3.1. BASIC CONFIGURATION
3.2. JMS URIS
3.3. WSDL EXTENSIONS

CHAPTER 4. USING GENERIC JMS
4.1. USING THE JMS CONFIGURATION BEAN
4.2. USING WSDL TO CONFIGURE JMS
4.3. USING A NAMED REPLY DESTINATION

CHAPTER 5. APACHE CXF LOGGING
5.1. OVERVIEW OF APACHE CXF LOGGING
5.2. SIMPLE EXAMPLE OF USING LOGGING
5.3. DEFAULT LOGGING CONFIGURATION FILE
5.4. ENABLING LOGGING AT THE COMMAND LINE
5.5. LOGGING FOR SUBSYSTEMS AND SERVICES
5.6. LOGGING MESSAGE CONTENT

CHAPTER 6. DEPLOYING WS-ADDRESSING
6.1. INTRODUCTION TO WS-ADDRESSING
6.2. WS-ADDRESSING INTERCEPTORS
6.3. ENABLING WS-ADDRESSING
6.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

CHAPTER 7. ENABLING RELIABLE MESSAGING
7.1. INTRODUCTION TO WS-RM
7.2. WS-RM INTERCEPTORS
7.3. ENABLING WS-RM
7.4. CONFIGURING WS-RM
7.5. CONFIGURING WS-RM PERSISTENCE

CHAPTER 8. ENABLING HIGH AVAILABILITY
8.1. INTRODUCTION TO HIGH AVAILABILITY
8.2. ENABLING HA WITH STATIC FAILOVER
8.3. CONFIGURING HA WITH STATIC FAILOVER

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC
9.1. LOAD BALANCING CLUSTER
9.2. FAILOVER CLUSTER

CHAPTER 10. PACKAGING AN APPLICATION
CREATING A BUNDLE
REQUIRED BUNDLE
REQUIRED PACKAGES
EXAMPLE

4
4

13

17
17

24
29

34
34
36
38

43
43
49
54

55
55
56
57
60
60
62

65
65
65
66
67

69
69
70
71

74
82

85
85
85
87

89
89

102

105
105
105
105
106

Table of Contents

1

. .

. .

. .

. .

. .

CHAPTER 11. DEPLOYING AN APPLICATION
OVERVIEW
HOT DEPLOYMENT
DEPLOYING FROM THE CONSOLE
REFRESHING AN APPLICATION
STOPPING AN APPLICATION
UNINSTALLING AN APPLICATION

APPENDIX A. APACHE CXF BINDING IDS

APPENDIX B. USING THE MAVEN OSGI TOOLING
B.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT
B.2. CONFIGURING THE BUNDLE PLUG-IN

APPENDIX C. CONDUITS
OVERVIEW
CONDUIT LIFE-CYCLE
CONDUIT WEIGHT

INDEX

107
107
107
107
107
107
108

109

110
110
113

118
118
118
118

119

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

2

Table of Contents

3

CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS

Abstract

JAX-WS endpoints are configured using one of three Spring configuration elements. The correct
element depends on what type of endpoint you are configuring and which features you wish to use. For
consumers you use the jaxws:client element. For service providers you can use either the
jaxws:endpoint element or the jaxws:server element.

The information used to define an endpoint is typically defined in the endpoint's contract. You can use
the configuration element's to override the information in the contract. You can also use the
configuration elements to provide information that is not provided in the contract.

NOTE

When dealing with endpoints developed using a Java-first approach it is likely that the
SEI serving as the endpoint's contract is lacking information about the type of binding
and transport to use.

You must use the configuration elements to activate advanced features such as WS-RM. This is done
by providing child elements to the endpoint's configuration element.

1.1. CONFIGURING SERVICE PROVIDERS

Apache CXF has two elements that can be used to configure a service provider:

Section 1.1.1, “Using the jaxws:endpoint Element”

Section 1.1.2, “Using the jaxws:server Element”

The differences between the two elements are largely internal to the runtime. The jaxws:endpoint
element injects properties into the org.apache.cxf.jaxws.EndpointImpl object created to
support a service endpoint. The jaxws:server element injects properties into the
org.apache.cxf.jaxws.support.JaxWsServerFactoryBean object created to support the
endpoint. The EndpointImpl object passes the configuration data to the
JaxWsServerFactoryBean object. The JaxWsServerFactoryBean object is used to create the
actual service object. Because either configuration element will configure a service endpoint, you can
choose based on the syntax you prefer.

1.1.1. Using the jaxws:endpoint Element

Overview

The jaxws:endpoint element is the default element for configuring JAX-WS service providers. Its
attributes and children specify all of the information needed to instantiate a service provider. Many of
the attributes map to information in the service's contract. The children are used to configure
interceptors and other advanced features.

Identifying the endpoint being configured

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

4

For the runtime to apply the configuration to the proper service provider, it must be able to identify it.
The basic means for identifying a service provider is to specify the class that implements the endpoint.
This is done using the jaxws:endpoint element's implementor attribute.

For instances where different endpoint's share a common implementation, it is possible to provide
different configuration for each endpoint. There are two approaches for distinguishing a specific
endpoint in configuration:

a combination of the serviceName attribute and the endpointName attribute

The serviceName attribute specifies the wsdl:service element defining the service's
endpoint. The endpointName attribute specifies the specific wsdl:port element defining the
service's endpoint. Both attributes are specified as QNames using the format ns:name. ns is
the namespace of the element and name is the value of the element's name attribute.

TIP

If the wsdl:service element only has one wsdl:port element, the endpointName
attribute can be omitted.

the name attribute

The name attribute specifies the QName of the specific wsdl:port element defining the
service's endpoint. The QName is provided in the format {ns}localPart. ns is the
namespace of the wsdl:port element and localPart is the value of the wsdl:port element's
name attribute.

Attributes

The attributes of the jaxws:endpoint element configure the basic properties of the endpoint. These
properties include the address of the endpoint, the class that implements the endpoint, and the bus
that hosts the endpoint.

Table 1.1, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint
Element” describes the attribute of the jaxws:endpoint element.

Table 1.1. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint
Element

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

implementor Specifies the class implementing the service. You
can specify the implementation class using either
the class name or an ID reference to a Spring bean
configuring the implementation class. This class
must be on the classpath.

CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS

5

implementorClass Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean
that is wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This
value overrides the value specified in the services
contract.

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the service is deployed.

endpointName Specifies the value of the service's wsdl:port
element's name attribute. It is specified as a QName
using the format ns:name where ns is the
namespace of the wsdl:port element.

serviceName Specifies the value of the service's wsdl:service
element's name attribute. It is specified as a QName
using the format ns:name where ns is the
namespace of the wsdl:service element.

publish Specifies if the service should be automatically
published. If this is set to false, the developer
must explicitly publish the endpoint.

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingUri Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Appendix A, Apache CXF Binding IDs.

name Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName
using the format {ns}localPart. ns is the
namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's
name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false.
Setting this to true instructs the bean factory not
to instantiate the bean.

Attribute Description

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

6

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before it can be instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs, such as
Endpoint.publish() or
Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-endpoint to its id

Makes the bean abstract

publishedEndpointUrl The URL that is placed in the address element of
the generated WSDL. If this value is not specified,
the value of the address attribute is used. This
attribute is useful when the "public" URL is not be
the same as the URL on which the service is
deployed.

Attribute Description

In addition to the attributes listed in Table 1.1, “Attributes for Configuring a JAX-WS Service Provider
Using the jaxws:endpoint Element”, you might need to use multiple xmlns:shortName attributes
to declare the namespaces used by the endpointName and serviceName attributes.

Example

Example 1.1, “Simple JAX-WS Endpoint Configuration” shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published. The example assumes that you want to use
the defaults for all other values or that the implementation has specified values in the annotations.

Example 1.1. Simple JAX-WS Endpoint Configuration

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:endpoint id="example"
 implementor="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo" />
</beans>

CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS

7

Example 1.2, “JAX-WS Endpoint Configuration with a Service Name” shows the configuration for a
JAX-WS endpoint whose contract contains two service definitions. In this case, you must specify which
service definition to instantiate using the serviceName attribute.

Example 1.2. JAX-WS Endpoint Configuration with a Service Name

The xmlns:samp attribute specifies the namespace in which the WSDL service element is defined.

1.1.2. Using the jaxws:server Element

Overview

The jaxws:server element is an element for configuring JAX-WS service providers. It injects the
configuration information into the org.apache.cxf.jaxws.support.JaxWsServerFactoryBean.
This is a Apache CXF specific object. If you are using a pure Spring approach to building your services,
you will not be forced to use Apache CXF specific APIs to interact with the service.

The attributes and children of the jaxws:server element specify all of the information needed to
instantiate a service provider. The attributes specify the information that is required to instantiate an
endpoint. The children are used to configure interceptors and other advanced features.

Identifying the endpoint being configured

In order for the runtime to apply the configuration to the proper service provider, it must be able to
identify it. The basic means for identifying a service provider is to specify the class that implements the
endpoint. This is done using the jaxws:server element's serviceBean attribute.

For instances where different endpoint's share a common implementation, it is possible to provide
different configuration for each endpoint. There are two approaches for distinguishing a specific
endpoint in configuration:

a combination of the serviceName attribute and the endpointName attribute

The serviceName attribute specifies the wsdl:service element defining the service's
endpoint. The endpointName attribute specifies the specific wsdl:port element defining the
service's endpoint. Both attributes are specified as QNames using the format ns:name. ns is
the namespace of the element and name is the value of the element's name attribute.

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">

 <jaxws:endpoint id="example2"
 implementor="org.apache.cxf.example.DemoImpl"
 serviceName="samp:demoService2"
 xmlns:samp="http://org.apache.cxf/wsdl/example" />

</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

8

TIP

If the wsdl:service element only has one wsdl:port element, the endpointName
attribute can be omitted.

the name attribute

The name attribute specifies the QName of the specific wsdl:port element defining the
service's endpoint. The QName is provided in the format {ns}localPart. ns is the
namespace of the wsdl:port element and localPart is the value of the wsdl:port element's
name attribute.

Attributes

The attributes of the jaxws:server element configure the basic properties of the endpoint. These
properties include the address of the endpoint, the class that implements the endpoint, and the bus
that hosts the endpoint.

Table 1.2, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element”
describes the attribute of the jaxws:server element.

Table 1.2. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

serviceBean Specifies the class implementing the service. You
can specify the implementation class using either
the class name or an ID reference to a Spring bean
configuring the implementation class. This class
must be on the classpath.

serviceClass Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean
that is wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This
value will override the value specified in the services
contract.

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the service is deployed.

endpointName Specifies the value of the service's wsdl:port
element's name attribute. It is specified as a QName
using the format ns:name, where ns is the
namespace of the wsdl:port element.

CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS

9

serviceName Specifies the value of the service's wsdl:service
element's name attribute. It is specified as a QName
using the format ns:name, where ns is the
namespace of the wsdl:service element.

start Specifies if the service should be automatically
published. If this is set to false, the developer
must explicitly publish the endpoint.

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingId Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Appendix A, Apache CXF Binding IDs.

name Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName
using the format {ns}localPart, where ns is the
namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's
name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false.
Setting this to true instructs the bean factory not
to instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before the endpoint can be
instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs, such as
Endpoint.publish() or
Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-endpoint to its id

Makes the bean abstract

Attribute Description

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

10

In addition to the attributes listed in Table 1.2, “Attributes for Configuring a JAX-WS Service Provider
Using the jaxws:server Element”, you might need to use multiple xmlns:shortName attributes to
declare the namespaces used by the endpointName and serviceName attributes.

Example

Example 1.3, “Simple JAX-WS Server Configuration” shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published.

Example 1.3. Simple JAX-WS Server Configuration

1.1.3. Adding Functionality to Service Providers

Overview

The jaxws:endpoint and the jaxws:server elements provide the basic configuration information
needed to instantiate a service provider. To add functionality to your service provider or to perform
advanced configuration you must add child elements to the configuration.

Child elements allow you to do the following:

Change the endpoint's logging behavior

Add interceptors to the endpoint's messaging chain

Enable WS-Addressing features

Enable reliable messaging

Elements

Table 1.3, “Elements Used to Configure JAX-WS Service Providers” describes the child elements that
jaxws:endpoint supports.

Table 1.3. Elements Used to Configure JAX-WS Service Providers

Element Description

jaxws:handlers Specifies a list of JAX-WS Handler
implementations for processing messages.

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:server id="exampleServer"
 serviceBean="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo" />
</beans>

CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS

11

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/CXFInterceptorConfig.html

jaxws:inInterceptors Specifies a list of interceptors that process inbound
requests. For more information see "Developing
Apache CXF Interceptors".

jaxws:inFaultInterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see
"Developing Apache CXF Interceptors".

jaxws:outInterceptors Specifies a list of interceptors that process
outbound replies. For more information see
"Developing Apache CXF Interceptors".

jaxws:outFaultInterceptors Specifies a list of interceptors that process
outbound fault messages. For more information see
"Developing Apache CXF Interceptors".

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactor

y interface.[a]

jaxws:dataBinding [b] Specifies the class implementing the data binding
used by the endpoint. This is specified using an
embedded bean definition.

jaxws:executor Specifies a Java executor that is used for the
service. This is specified using an embedded bean
definition.

jaxws:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxws:invoker Specifies an implementation of the
org.apache.cxf.service.Invoker
interface used by the service. [c]

jaxws:properties Specifies a Spring map of properties that are passed
along to the endpoint. These properties can be used
to control features like enabling MTOM support.

jaxws:serviceFactory Specifies a bean configuring the
JaxWsServiceFactoryBean object used to
instantiate the service.

Element Description

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

12

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/

[a] The SOAP binding is configured using the soap:soapBinding bean.

[b] The jaxws:endpoint element does not support the jaxws:dataBinding element.

[c] The Invoker implementation controls how a service is invoked. For example, it controls whether each request is
handled by a new instance of the service implementation or if state is preserved across invocations.

Element Description

1.2. CONFIGURING CONSUMER ENDPOINTS

Overview

JAX-WS consumer endpoints are configured using the jaxws:client element. The element's
attributes provide the basic information necessary to create a consumer.

To add other functionality, like WS-RM, to the consumer you add children to the jaxws:client
element. Child elements are also used to configure the endpoint's logging behavior and to inject other
properties into the endpoint's implementation.

Basic Configuration Properties

The attributes described in Table 1.4, “Attributes Used to Configure a JAX-WS Consumer” provide the
basic information necessary to configure a JAX-WS consumer. You only need to provide values for the
specific properties you want to configure. Most of the properties have sensible defaults, or they rely on
information provided by the endpoint's contract.

Table 1.4. Attributes Used to Configure a JAX-WS Consumer

Attribute Description

address Specifies the HTTP address of the endpoint where
the consumer will make requests. This value
overrides the value set in the contract.

bindingId Specifies the ID of the message binding the
consumer uses. A list of valid binding IDs is provided
in Appendix A, Apache CXF Binding IDs.

bus Specifies the ID of the Spring bean configuring the
bus managing the endpoint.

endpointName Specifies the value of the wsdl:port element's
name attribute for the service on which the
consumer is making requests. It is specified as a
QName using the format ns:name, where ns is the
namespace of the wsdl:port element.

CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS

13

serviceName Specifies the value of the wsdl:service
element's name attribute for the service on which
the consumer is making requests. It is specified as a
QName using the format ns:name where ns is the
namespace of the wsdl:service element.

username Specifies the username used for simple
username/password authentication.

password Specifies the password used for simple
username/password authentication.

serviceClass Specifies the name of the service endpoint
interface(SEI).

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the client is deployed.

name Specifies the stringified QName of the wsdl:port
element for the service on which the consumer is
making requests. It is specified as a QName using
the format {ns}localPart, where ns is the
namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's
name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false.
Setting this to true instructs the bean factory not
to instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before it can be instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs like Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-client to its id

Makes the bean abstract

Attribute Description

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

14

In addition to the attributes listed in Table 1.4, “Attributes Used to Configure a JAX-WS Consumer” , it
might be necessary to use multiple xmlns:shortName attributes to declare the namespaces used by
the endpointName and the serviceName attributes.

Adding functionality

To add functionality to your consumer or to perform advanced configuration, you must add child
elements to the configuration.

Child elements allow you to do the following:

Change the endpoint's logging behavior

Add interceptors to the endpoint's messaging chain

Enable WS-Addressing features

Enable reliable messaging

Table 1.5, “Elements For Configuring a Consumer Endpoint” describes the child element's you can use
to configure a JAX-WS consumer.

Table 1.5. Elements For Configuring a Consumer Endpoint

Element Description

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactor

y interface.[a]

jaxws:dataBinding Specifies the class implementing the data binding
used by the endpoint. You specify this using an
embedded bean definition. The class implementing
the JAXB data binding is
org.apache.cxf.jaxb.JAXBDataBinding.

jaxws:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxws:handlers Specifies a list of JAX-WS Handler
implementations for processing messages.

jaxws:inInterceptors Specifies a list of interceptors that process inbound
responses. For more information see "Developing
Apache CXF Interceptors".

jaxws:inFaultInterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see
"Developing Apache CXF Interceptors".

CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS

15

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/CXFInterceptorConfig.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/

jaxws:outInterceptors Specifies a list of interceptors that process
outbound requests. For more information see
"Developing Apache CXF Interceptors".

jaxws:outFaultInterceptors Specifies a list of interceptors that process
outbound fault messages. For more information see
"Developing Apache CXF Interceptors".

jaxws:properties Specifies a map of properties that are passed to the
endpoint.

jaxws:conduitSelector Specifies an
org.apache.cxf.endpoint.ConduitSelec
tor implementation for the client to use. A
ConduitSelector implementation will override
the default process used to select the Conduit
object that is used to process outbound requests.

[a] The SOAP binding is configured using the soap:soapBinding bean.

Element Description

Example

Example 1.4, “Simple Consumer Configuration” shows a simple consumer configuration.

Example 1.4. Simple Consumer Configuration

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:client id="bookClient"
 serviceClass="org.apache.cxf.demo.BookClientImpl"
 address="http://localhost:8080/books"/>
 ...
</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

16

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Apache_CXF_Interceptors/

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

Abstract

The Apache CXF HTTP transport is highly configurable.

2.1. CONFIGURING A CONSUMER

HTTP consumer endpoints can specify a number of HTTP connection attributes including whether the
endpoint automatically accepts redirect responses, whether the endpoint can use chunking, whether
the endpoint will request a keep-alive, and how the endpoint interacts with proxies. In addition to the
HTTP connection properties, an HTTP consumer endpoint can specify how it is secured.

A consumer endpoint can be configured using two mechanisms:

Configuration

WSDL

2.1.1. Using Configuration

Namespace

The elements used to configure an HTTP consumer endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix
http-conf. In order to use the HTTP configuration elements you must add the lines shown in
Example 2.1, “HTTP Consumer Configuration Namespace” to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements' namespace to the
xsi:schemaLocation attribute.

Example 2.1. HTTP Consumer Configuration Namespace

The conduit element

You configure an HTTP consumer endpoint using the http-conf:conduit element and its children.
The http-conf:conduit element takes a single attribute, name, that specifies the WSDL port
element corresponding to the endpoint. The value for the name attribute takes the form
portQName.http-conduit. Example 2.2, “http-conf:conduit Element” shows the http-

<beans ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"
 ...
 xsi:schemaLocation="...

http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ...">

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

17

conf:conduit element that would be used to add configuration for an endpoint that is specified by
the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> when the
endpoint's target namespace is http://widgets.widgetvendor.net.

Example 2.2. http-conf:conduit Element

The http-conf:conduit element has child elements that specify configuration information. They
are described in Table 2.1, “Elements Used to Configure an HTTP Consumer Endpoint” .

Table 2.1. Elements Used to Configure an HTTP Consumer Endpoint

Element Description

http-conf:client Specifies the HTTP connection properties such as
timeouts, keep-alive requests, content types, etc.
See the section called “The client element”.

http-conf:authorization Specifies the parameters for configuring the basic
authentication method that the endpoint uses
preemptively.

The preferred approach is to supply a Basic
Authentication Supplier object.

http-conf:proxyAuthorization Specifies the parameters for configuring basic
authentication against outgoing HTTP proxy servers.

http-conf:tlsClientParameters Specifies the parameters used to configure
SSL/TLS.

http-conf:basicAuthSupplier Specifies the bean reference or class name of the
object that supplies the basic authentication
information used by the endpoint, either
preemptively or in response to a 401 HTTP
challenge.

http-conf:trustDecider Specifies the bean reference or class name of the
object that checks the HTTP(S) URLConnection
object to establish trust for a connection with an
HTTPS service provider before any information is
transmitted.

The client element

The http-conf:client element is used to configure the non-security properties of a consumer
endpoint's HTTP connection. Its attributes, described in Table 2.2, “HTTP Consumer Configuration
Attributes”, specify the connection's properties.

...
 <http-conf:conduit name="
{http://widgets/widgetvendor.net}widgetSOAPPort.http-conduit">
 ...
 </http-conf:conduit>
...

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

18

Table 2.2. HTTP Consumer Configuration Attributes

Attribute Description

ConnectionTimeout Specifies the amount of time, in milliseconds, that
the consumer attempts to establish a connection
before it times out. The default is 30000.

0 specifies that the consumer will continue to send
the request indefinitely.

ReceiveTimeout Specifies the amount of time, in milliseconds, that
the consumer will wait for a response before it times
out. The default is 30000.

0 specifies that the consumer will wait indefinitely.

AutoRedirect Specifies if the consumer will automatically follow a
server issued redirection. The default is false.

MaxRetransmits Specifies the maximum number of times a consumer
will retransmit a request to satisfy a redirect. The
default is -1 which specifies that unlimited
retransmissions are allowed.

AllowChunking Specifies whether the consumer will send requests
using chunking. The default is true which specifies
that the consumer will use chunking when sending
requests.

Chunking cannot be used if either of the following
are true:

http-conf:basicAuthSupplier is
configured to provide credentials
preemptively.

AutoRedirect is set to true.

In both cases the value of AllowChunking is
ignored and chunking is disallowed.

Accept Specifies what media types the consumer is
prepared to handle. The value is used as the value of
the HTTP Accept property. The value of the attribute
is specified using multipurpose internet mail
extensions (MIME) types.

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

19

AcceptLanguage Specifies what language (for example, American
English) the consumer prefers for the purpose of
receiving a response. The value is used as the value
of the HTTP AcceptLanguage property.

Language tags are regulated by the International
Organization for Standards (ISO) and are typically
formed by combining a language code, determined
by the ISO-639 standard, and country code,
determined by the ISO-3166 standard, separated by
a hyphen. For example, en-US represents American
English.

AcceptEncoding Specifies what content encodings the consumer is
prepared to handle. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). The value is used as the value of
the HTTP AcceptEncoding property.

ContentType Specifies the media type of the data being sent in the
body of a message. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType property. The default is text/xml.

For web services, this should be set to text/xml. If
the client is sending HTML form data to a CGI script,
this should be set to application/x-www-
form-urlencoded. If the HTTP POST request is
bound to a fixed payload format (as opposed to
SOAP), the content type is typically set to
application/octet-stream.

Host Specifies the Internet host and port number of the
resource on which the request is being invoked. The
value is used as the value of the HTTP Host property.

This attribute is typically not required. It is only
required by certain DNS scenarios or application
designs. For example, it indicates what host the
client prefers for clusters (that is, for virtual servers
mapping to the same Internet protocol (IP) address).

Connection Specifies whether a particular connection is to be
kept open or closed after each request/response
dialog. There are two valid values:

Keep-Alive (default) — Specifies that the
consumer wants the connection kept open
after the initial request/response sequence.
If the server honors it, the connection is
kept open until the consumer closes it.

close — Specifies that the connection to
the server is closed after each
request/response sequence.

Attribute Description

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

20

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a request from a consumer to a service
provider. See Section 2.1.3, “Consumer Cache
Control Directives”.

Cookie Specifies a static cookie to be sent with all requests.

BrowserType Specifies information about the browser from which
the request originates. In the HTTP specification
from the World Wide Web consortium (W3C) this is
also known as the user-agent. Some servers optimize
based on the client that is sending the request.

Referer Specifies the URL of the resource that directed the
consumer to make requests on a particular service.
The value is used as the value of the HTTP Referer
property.

This HTTP property is used when a request is the
result of a browser user clicking on a hyperlink
rather than typing a URL. This can allow the server
to optimize processing based upon previous task
flow, and to generate lists of back-links to resources
for the purposes of logging, optimized caching,
tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services
applications.

If the AutoRedirect attribute is set to true and
the request is redirected, any value specified in the
Referer attribute is overridden. The value of the
HTTP Referer property is set to the URL of the
service that redirected the consumer’s original
request.

DecoupledEndpoint Specifies the URL of a decoupled endpoint for the
receipt of responses over a separate provider-
>consumer connection. For more information on
using decoupled endpoints see, Section 2.3, “Using
the HTTP Transport in Decoupled Mode”.

You must configure both the consumer endpoint and
the service provider endpoint to use WS-Addressing
for the decoupled endpoint to work.

ProxyServer Specifies the URL of the proxy server through which
requests are routed.

ProxyServerPort Specifies the port number of the proxy server
through which requests are routed.

Attribute Description

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

21

ProxyServerType Specifies the type of proxy server used to route
requests. Valid values are:

HTTP(default)

SOCKS

Attribute Description

Example

Example 2.3, “HTTP Consumer Endpoint Configuration” shows the configuration of an HTTP consumer
endpoint that wants to keep its connection to the provider open between requests, that will only
retransmit requests once per invocation, and that cannot use chunking streams.

Example 2.3. HTTP Consumer Endpoint Configuration

More information

For more information on HTTP conduits see Appendix C, Conduits.

2.1.2. Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP consumer endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the
prefix http-conf. In order to use the HTTP configuration elements you must add the line shown in
Example 2.4, “HTTP Consumer WSDL Element's Namespace” to the definitions element of your
endpoint's WSDL document.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:conduit name="
{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
 <http-conf:client Connection="Keep-Alive"
 MaxRetransmits="1"
 AllowChunking="false" />
 </http-conf:conduit>
</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

22

Example 2.4. HTTP Consumer WSDL Element's Namespace

The client element

The http-conf:client element is used to specify the connection properties of an HTTP consumer
in a WSDL document. The http-conf:client element is a child of the WSDL port element. It has the
same attributes as the client element used in the configuration file. The attributes are described in
Table 2.2, “HTTP Consumer Configuration Attributes” .

Example

Example 2.5, “WSDL to Configure an HTTP Consumer Endpoint” shows a WSDL fragment that
configures an HTTP consumer endpoint to specify that it does not interact with caches.

Example 2.5. WSDL to Configure an HTTP Consumer Endpoint

2.1.3. Consumer Cache Control Directives

Table 2.3, “http-conf:client Cache Control Directives” lists the cache control directives supported
by an HTTP consumer.

Table 2.3. http-conf:client Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

no-store Caches must not store either any part of a response
or any part of the request that invoked it.

max-age The consumer can accept a response whose age is
no greater than the specified time in seconds.

<definitions ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:client CacheControl="no-cache" />
 </port>
</service>

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

23

max-stale The consumer can accept a response that has
exceeded its expiration time. If a value is assigned
to max-stale, it represents the number of seconds
beyond the expiration time of a response up to
which the consumer can still accept that response. If
no value is assigned, the consumer can accept a
stale response of any age.

min-fresh The consumer wants a response that is still fresh for
at least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of
the content in a response between a provider and a
consumer.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses that
need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can
adhere to the behavior mandated by the standard
directive.

Directive Behavior

2.2. CONFIGURING A SERVICE PROVIDER

HTTP service provider endpoints can specify a number of HTTP connection attributes including if it will
honor keep alive requests, how it interacts with caches, and how tolerant it is of errors in
communicating with a consumer.

A service provider endpoint can be configured using two mechanisms:

Configuration

WSDL

2.2.1. Using Configuration

Namespace

The elements used to configure an HTTP provider endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix
http-conf. In order to use the HTTP configuration elements you must add the lines shown in
Example 2.6, “HTTP Provider Configuration Namespace” to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements' namespace to the
xsi:schemaLocation attribute.

Example 2.6. HTTP Provider Configuration Namespace

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

24

The destination element

You configure an HTTP service provider endpoint using the http-conf:destination element and
its children. The http-conf:destination element takes a single attribute, name, that specifies the
WSDL port element that corresponds to the endpoint. The value for the name attribute takes the form
portQName.http-destination. Example 2.7, “http-conf:destination Element” shows the
http-conf:destination element that is used to add configuration for an endpoint that is specified
by the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> when the
endpoint's target namespace is http://widgets.widgetvendor.net.

Example 2.7. http-conf:destination Element

The http-conf:destination element has a number of child elements that specify configuration
information. They are described in Table 2.4, “Elements Used to Configure an HTTP Service Provider
Endpoint”.

Table 2.4. Elements Used to Configure an HTTP Service Provider Endpoint

Element Description

http-conf:server Specifies the HTTP connection properties. See the
section called “The server element”.

http-conf:contextMatchStrategy Specifies the parameters that configure the context
match strategy for processing HTTP requests.

http-conf:fixedParameterOrder Specifies whether the parameter order of an HTTP
request handled by this destination is fixed.

The server element

<beans ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"
 ...
 xsi:schemaLocation="...

http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ...">

...
 <http-conf:destination name="
{http://widgets/widgetvendor.net}widgetSOAPPort.http-destination">
 ...
 </http-conf:destination>
...

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

25

The http-conf:server element is used to configure the properties of a service provider endpoint's
HTTP connection. Its attributes, described in Table 2.5, “HTTP Service Provider Configuration
Attributes”, specify the connection's properties.

Table 2.5. HTTP Service Provider Configuration Attributes

Attribute Description

ReceiveTimeout Sets the length of time, in milliseconds, the service
provider attempts to receive a request before the
connection times out. The default is 30000.

0 specifies that the provider will not timeout.

SuppressClientSendErrors Specifies whether exceptions are to be thrown when
an error is encountered on receiving a request. The
default is false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be thrown when
an error is encountered on sending a response to a
consumer. The default is false; exceptions are
thrown on encountering errors.

HonorKeepAlive Specifies whether the service provider honors
requests for a connection to remain open after a
response has been sent. The default is false; keep-
alive requests are ignored.

RedirectURL Specifies the URL to which the client request should
be redirected if the URL specified in the client
request is no longer appropriate for the requested
resource. In this case, if a status code is not
automatically set in the first line of the server
response, the status code is set to 302 and the
status description is set to Object Moved. The
value is used as the value of the HTTP RedirectURL
property.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a response from a service provider to a
consumer. See Section 2.2.3, “Service Provider
Cache Control Directives”.

ContentLocation Sets the URL where the resource being sent in a
response is located.

ContentType Specifies the media type of the information being
sent in a response. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType location.

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

26

ContentEncoding Specifies any additional content encodings that have
been applied to the information being sent by the
service provider. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values
include zip, gzip, compress, deflate, and
identity. This value is used as the value of the
HTTP ContentEncoding property.

The primary use of content encodings is to allow
documents to be compressed using some encoding
mechanism, such as zip or gzip. Apache CXF
performs no validation on content codings. It is the
user’s responsibility to ensure that a specified
content coding is supported at application level.

ServerType Specifies what type of server is sending the
response. Values take the form program-
name/version; for example, Apache/1.2.5.

Attribute Description

Example

Example 2.8, “HTTP Service Provider Endpoint Configuration” shows the configuration for an HTTP
service provider endpoint that honors keep-alive requests and suppresses all communication errors.

Example 2.8. HTTP Service Provider Endpoint Configuration

2.2.2. Using WSDL

Namespace

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:destination name="
{http://apache.org/hello_world_soap_http}SoapPort.http-destination">
 <http-conf:server SuppressClientSendErrors="true"
 SuppressClientReceiveErrors="true"
 HonorKeepAlive="true" />
 </http-conf:destination>
</beans>

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

27

The WSDL extension elements used to configure an HTTP provider endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the
prefix http-conf. To use the HTTP configuration elements you must add the line shown in
Example 2.9, “HTTP Provider WSDL Element's Namespace” to the definitions element of your
endpoint's WSDL document.

Example 2.9. HTTP Provider WSDL Element's Namespace

The server element

The http-conf:server element is used to specify the connection properties of an HTTP service
provider in a WSDL document. The http-conf:server element is a child of the WSDL port element.
It has the same attributes as the server element used in the configuration file. The attributes are
described in Table 2.5, “HTTP Service Provider Configuration Attributes” .

Example

Example 2.10, “WSDL to Configure an HTTP Service Provider Endpoint” shows a WSDL fragment that
configures an HTTP service provider endpoint specifying that it will not interact with caches.

Example 2.10. WSDL to Configure an HTTP Service Provider Endpoint

2.2.3. Service Provider Cache Control Directives

Table 2.6, “http-conf:server Cache Control Directives” lists the cache control directives supported
by an HTTP service provider.

Table 2.6. http-conf:server Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

<definitions ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:server CacheControl="no-cache" />
 </port>
</service>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

28

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user. If
specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies to
the entire response.

no-store Caches must not store any part of the response or
any part of the request that invoked it.

no-transform Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-revalidate Caches must revalidate expired entries that relate
to a response before that entry can be used in a
subsequent response.

proxy-revalidate Does the same as must-revalidate, except that it can
only be enforced on shared caches and is ignored by
private unshared caches. When using this directive,
the public cache directive must also be used.

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.

s-max-age Does the same as max-age, except that it can only
be enforced on shared caches and is ignored by
private unshared caches. The age specified by s-
max-age overrides the age specified by max-age.
When using this directive, the proxy-revalidate
directive must also be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can
adhere to the behavior mandated by the standard
directive.

Directive Behavior

2.3. USING THE HTTP TRANSPORT IN DECOUPLED MODE

Overview

In normal HTTP request/response scenarios, the request and the response are sent using the same
HTTP connection. The service provider processes the request and responds with a response containing
the appropriate HTTP status code and the contents of the response. In the case of a successful request,
the HTTP status code is set to 200.

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

29

In some instances, such as when using WS-RM or when requests take an extended period of time to
execute, it makes sense to decouple the request and response message. In this case the service
providers sends the consumer a 202 Accepted response to the consumer over the back-channel of
the HTTP connection on which the request was received. It then processes the request and sends the
response back to the consumer using a new decoupled server->client HTTP connection. The consumer
runtime receives the incoming response and correlates it with the appropriate request before
returning to the application code.

Configuring decoupled interactions

Using the HTTP transport in decoupled mode requires that you do the following:

1. Configure the consumer to use WS-Addressing.

See the section called “Configuring an endpoint to use WS-Addressing” .

2. Configure the consumer to use a decoupled endpoint.

See the section called “Configuring the consumer” .

3. Configure any service providers that the consumer interacts with to use WS-Addressing.

See the section called “Configuring an endpoint to use WS-Addressing” .

Configuring an endpoint to use WS-Addressing

Specify that the consumer and any service provider with which the consumer interacts use WS-
Addressing.

You can specify that an endpoint uses WS-Addressing in one of two ways:

Adding the wswa:UsingAddressing element to the endpoint's WSDL port element as
shown in Example 2.11, “Activating WS-Addressing using WSDL” .

Example 2.11. Activating WS-Addressing using WSDL

Adding the WS-Addressing policy to the endpoint's WSDL port element as shown in
Example 2.12, “Activating WS-Addressing using a Policy” .

Example 2.12. Activating WS-Addressing using a Policy

...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wswa:UsingAddressing
xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>
 </port>
</service>
...

...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

30

NOTE

The WS-Addressing policy supersedes the wswa:UsingAddressing WSDL element.

Configuring the consumer

Configure the consumer endpoint to use a decoupled endpoint using the DecoupledEndpoint
attribute of the http-conf:conduit element.

Example 2.13, “Configuring a Consumer to Use a Decoupled HTTP Endpoint” shows the configuration
for setting up the endpoint defined in Example 2.11, “Activating WS-Addressing using WSDL” to use use
a decoupled endpoint. The consumer now receives all responses at
http://widgetvendor.net/widgetSellerInbox.

Example 2.13. Configuring a Consumer to Use a Decoupled HTTP Endpoint

How messages are processed

Using the HTTP transport in decoupled mode adds extra layers of complexity to the processing of
HTTP messages. While the added complexity is transparent to the implementation level code in an
application, it might be important to understand what happens for debugging reasons.

 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy">
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 </wsp:Policy>
 </port>
</service>
...

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"

xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http:conduit name="
{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
 <http:client
DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />
 </http:conduit>
</beans>

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

31

Figure 2.1, “Message Flow in for a Decoupled HTTP Transport” shows the flow of messages when using
HTTP in decoupled mode.

Figure 2.1. Message Flow in for a Decoupled HTTP Transport

A request starts the following process:

1. The consumer implementation invokes an operation and a request message is generated.

2. The WS-Addressing layer adds the WS-A headers to the message.

When a decoupled endpoint is specified in the consumer's configuration, the address of the
decoupled endpoint is placed in the WS-A ReplyTo header.

3. The message is sent to the service provider.

4. The service provider receives the message.

5. The request message from the consumer is dispatched to the provider's WS-A layer.

6. Because the WS-A ReplyTo header is not set to anonymous, the provider sends back a
message with the HTTP status code set to 202, acknowledging that the request has been
received.

7. The HTTP layer sends a 202 Accepted message back to the consumer using the original
connection's back-channel.

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

32

8. The consumer receives the 202 Accepted reply on the back-channel of the HTTP connection
used to send the original message.

When the consumer receives the 202 Accepted reply, the HTTP connection closes.

9. The request is passed to the service provider's implementation where the request is
processed.

10. When the response is ready, it is dispatched to the WS-A layer.

11. The WS-A layer adds the WS-Addressing headers to the response message.

12. The HTTP transport sends the response to the consumer's decoupled endpoint.

13. The consumer's decoupled endpoint receives the response from the service provider.

14. The response is dispatched to the consumer's WS-A layer where it is correlated to the proper
request using the WS-A RelatesTo header.

15. The correlated response is returned to the client implementation and the invoking call is
unblocked.

CHAPTER 2. CONFIGURING THE HTTP TRANSPORT

33

CHAPTER 3. USING SOAP OVER JMS

Abstract

Apache CXF implements the W3C standard SOAP/JMS transport. This standard is intended to provide
a more robust alternative to SOAP/HTTP services. Apache CXF applications using this transport
should be able to interoperate with applications that also implement the SOAP/JMS standard. The
transport is configured directly in an endpoint's WSDL.

3.1. BASIC CONFIGURATION

Overview

The SOAP over JMS protocol is defined by the World Wide Web Consortium(W3C) as a way of providing
a more reliable transport layer to the customary SOAP/HTTP protocol used by most services. The
Apache CXF implementation is fully compliant with the specification and should be compatible with
any framework that is also compliant.

This transport uses JNDI to find the JMS destinations. When an operation is invoked, the request is
packaged as a SOAP message and sent in the body of a JMS message to the specified destination.

To use the SOAP/JMS transport:

1. Specify that the transport type is SOAP/JMS.

2. Specify the target destination using a JMS URI.

3. Optionally, configure the JNDI connection.

4. Optionally, add additional JMS configuration.

Specifying the JMS transport type

You configure a SOAP binding to use the JMS transport when specifying the WSDL binding. You set the
soap:binding element's transport attribute to http://www.w3.org/2010/soapjms/.
Example 3.1, “SOAP over JMS binding specification” shows a WSDL binding that uses SOAP/JMS.

Example 3.1. SOAP over JMS binding specification

Specifying the target destination

You specify the address of the JMS target destination when specifying the WSDL port for the endpoint.
The address specification for a SOAP/JMS endpoint uses the same soap:address element and
attribute as a SOAP/HTTP endpoint. The difference is the address specification. JMS endpoints use a

<wsdl:binding ... >
 <soap:binding style="document"
 transport="http://www.w3.org/2010/soapjms/" />
 ...
</wsdl:binding>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

34

http://www.w3.org/TR/soapjms/

JMS URI as defined in the URI Scheme for JMS 1.0 . Example 3.2, “JMS URI syntax” shows the syntax
for a JMS URI.

Example 3.2. JMS URI syntax

Table 3.1, “JMS URI variants” describes the available variants for the JMS URI.

Table 3.1. JMS URI variants

Variant Description

jndi Specifies that the destination is a JNDI name for the
target destination. When using this variant, you must
provide the configuration for accessing the JNDI
provider.

topic Specifies that the destination is the name of the
topic to be used as the target destination. The string
provided is passed into
Session.createTopic() to create a
representation of the destination.

queue Specifies that the destination is the name of the
queue to be used as the target destination. The
string provided is passed into
Session.createQueue() to create a
representation of the destination.

The options portion of a JMS URI are used to configure the transport and are discussed in Section 3.2,
“JMS URIs”.

Example 3.3, “SOAP/JMS endpoint address” shows the WSDL port entry for a SOAP/JMS endpoint
whose target destination is looked up using JNDI.

Example 3.3. SOAP/JMS endpoint address

For working with SOAP/JMS services in Java see chapter "Using SOAP over JMS" in "Developing
Applications Using JAX-WS".

Configuring JNDI and the JMS transport

The SOAP/JMS provides several ways to configure the JNDI connection and the JMS transport:

jms:variant:destination?options

<wsdl:port ... >
 ...
 <soap:address
location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
</wsdl:port>

CHAPTER 3. USING SOAP OVER JMS

35

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Developing_Applications_Using_JAX-WS/SoapOverJmsJava.html

Using the JMS URI

Using WSDL extensions

3.2. JMS URIS

Overview

When using SOAP/JMS, a JMS URI is used to specify the endpoint's target destination. The JMS URI
can also be used to configure JMS connection by appending one or more options to the URI. These
options are detailed in the IETF standard, URI Scheme for Java Message Service 1.0 . They can be used
to configure the JNDI system, the reply destination, the delivery mode to use, and other JMS
properties.

Syntax

As shown in Example 3.2, “JMS URI syntax” , you can append one or more options to the end of a JMS
URI by separating them from the destination's address with a question mark(?). Multiple options are
separated by an ampersand(&). Example 3.4, “Syntax for JMS URI options” shows the syntax for using
multiple options in a JMS URI.

Example 3.4. Syntax for JMS URI options

JMS properties

Table 3.2, “JMS properties settable as URI options” shows the URI options that affect the JMS
transport layer.

Table 3.2. JMS properties settable as URI options

Property Default Description

deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

jmsAddress?option1=value1&option2=value2&...optionN=valueN

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

36

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

replyToName Explicitly specifies the reply
destination to appear in the
JMSReplyTo header. Setting
this property is recommended for
applications that have request-
reply semantics because the JMS
provider will assign a temporary
reply queue if one is not explicitly
set.

The value of this property has an
interpretation that depends on
the variant specified in the JMS
URI:

jndi variant—the JNDI
name of the destination

queue or topic
variants—the actual
name of the destination

priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

timeToLive 0 Time (in milliseconds) after which
the message will be discarded by
the JMS provider. A value of 0
represents an infinite lifetime
(the default).

Property Default Description

JNDI properties

Table 3.3, “JNDI properties settable as URI options” shows the URI options that can be used to
configure JNDI for this endpoint.

Table 3.3. JNDI properties settable as URI options

Property Description

jndiConnectionFactoryName Specifies the JNDI name of the JMS connection
factory.

jndiInitialContextFactory Specifies the fully qualified Java class name of the
JNDI provider (which must be of
javax.jms.InitialContextFactory type).
Equivalent to setting the
java.naming.factory.initial Java system
property.

CHAPTER 3. USING SOAP OVER JMS

37

jndiURL Specifies the URL that initializes the JNDI provider.
Equivalent to setting the
java.naming.provider.url Java system
property.

Property Description

Additional JNDI properties

The properties, java.naming.factory.initial and java.naming.provider.url, are standard
properties, which are required to initialize any JNDI provider. Sometimes, however, a JNDI provider
might support custom properties in addition to the standard ones. In this case, you can set an arbitrary
JNDI property by setting a URI option of the form jndi-PropertyName.

For example, if you were using SUN's LDAP implementation of JNDI, you could set the JNDI property,
java.naming.factory.control, in a JMS URI as shown in Example 3.5, “Setting a JNDI property in
a JMS URI”.

Example 3.5. Setting a JNDI property in a JMS URI

Example

If the JMS provider is not already configured, it is possible to provide the requisite JNDI configuration
details in the URI using options (see Table 3.3, “JNDI properties settable as URI options”). For example,
to configure an endpoint to use the Apache ActiveMQ JMS provider and connect to the queue called
test.cxf.jmstransport.queue, use the URI shown in Example 3.6, “JMS URI that configures a
JNDI connection”.

Example 3.6. JMS URI that configures a JNDI connection

3.3. WSDL EXTENSIONS

Overview

You can specify the basic configuration of the JMS transport by inserting WSDL extension elements
into the contract, either at binding scope, service scope, or port scope. The WSDL extensions enable
you to specify the properties for bootstrapping a JNDI InitialContext, which can then be used to

jms:queue:FOO.BAR?jndi-
java.naming.factory.control=com.sun.jndi.ldap.ResponseControlFactory

jms:jndi:dynamicQueues/test.cxf.jmstransport.queue
?
jndiInitialContextFactory=org.apache.activemq.jndi.ActiveMQInitialContex
tFactory
&jndiConnectionFactoryName=ConnectionFactory
&jndiURL=tcp://localhost:61616

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

38

look up JMS destinations. You can also set some properties that affect the behavior of the JMS
transport layer.

SOAP/JMS namespace

the SOAP/JMS WSDL extensions are defined in the http://www.w3.org/2010/soapjms/
namespace. To use them in your WSDL contracts add the following setting to the wsdl:definitions
element:

WSDL extension elements

Table 3.4, “SOAP/JMS WSDL extension elements” shows all of the WSDL extension elements you can
use to configure the JMS transport.

Table 3.4. SOAP/JMS WSDL extension elements

Element Default Description

soapjms:jndiInitialCont
extFactory

 Specifies the fully qualified Java
class name of the JNDI provider.
Equivalent to setting the
java.naming.factory.ini
tial Java system property.

soapjms:jndiURL Specifies the URL that initializes
the JNDI provider. Equivalent to
setting the
java.naming.provider.ur
l Java system property.

soapjms:jndiContextPara
meter

 Enables you to specify an
additional property for creating
the JNDI InitialContext.
Use the name and value
attributes to specify the property.

soapjms:jndiConnectionF
actoryName

 Specifies the JNDI name of the
JMS connection factory.

<wsdl:definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >

CHAPTER 3. USING SOAP OVER JMS

39

soapjms:deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

soapjms:replyToName Explicitly specifies the reply
destination to appear in the
JMSReplyTo header. Setting
this property is recommended for
SOAP invocations that have
request-reply semantics. If this
property is not set the JMS
provider allocates a temporary
queue with an automatically
generated name.

The value of this property has an
interpretation that depends on
the variant specified in the JMS
URI, as follows:

jndi variant—the JNDI
name of the destination.

queue or topic
variants—the actual
name of the destination.

soapjms:priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

soapjms:timeToLive 0 Time, in milliseconds, after which
the message will be discarded by
the JMS provider. A value of 0
represents an infinite lifetime.

Element Default Description

Configuration scopes

The WSDL elements placement in the WSDL contract effect the scope of the configuration changes on
the endpoints defined in the contract. The SOAP/JMS WSDL elements can be placed as children of
either the wsdl:binding element, the wsdl:service element, or the wsdl:port element. The
parent of the SOAP/JMS elements determine which of the following scopes the configuration is placed
into.

Binding scope

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

40

You can configure the JMS transport at the binding scope by placing extension elements inside the
wsdl:binding element. Elements in this scope define the default configuration for all endpoints
that use this binding. Any settings in the binding scope can be overridden at the service scope or
the port scope.

Service scope

You can configure the JMS transport at the service scope by placing extension elements inside a
wsdl:service element. Elements in this scope define the default configuration for all endpoints in
this service. Any settings in the service scope can be overridden at the port scope.

Port scope

You can configure the JMS transport at the port scope by placing extension elements inside a
wsdl:port element. Elements in the port scope define the configuration for this port. They
override any defaults defined at the service scope or at the binding scope.

Example

Example 3.7, “WSDL contract with SOAP/JMS configuration” shows a WSDL contract for a SOAP/JMS
service. It configures the JNDI layer in the binding scope, the message delivery details in the service
scope, and the reply destination in the port scope.

Example 3.7. WSDL contract with SOAP/JMS configuration

1

2

3

4

5

<wsd;definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >

 ...
 <wsdl:binding name="JMSGreeterPortBinding"
type="tns:JMSGreeterPortType">
 ...

 <soapjms:jndiInitialContextFactory>
 org.apache.activemq.jndi.ActiveMQInitialContextFactory

 </soapjms:jndiInitialContextFactory>
 <soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>
 <soapjms:jndiConnectionFactoryName>
 ConnectionFactory
 </soapjms:jndiConnectionFactoryName>
 ...
 </wsdl:binding>
 ...
 <wsdl:service name="JMSGreeterService">
 ...

 <soapjms:deliveryMode>NON_PERSISTENT</soapjms:deliveryMode>
 <soapjms:timeToLive>60000</soapjms:timeToLive>

 ...
 <wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">

 <soap:address
location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
 <soapjms:replyToName>
 dynamicQueues/greeterReply.queue

 </soapjms:replyToName>
 ...
 </wsdl:port>

CHAPTER 3. USING SOAP OVER JMS

41

1

2

3

4

5

The WSDL in Example 3.7, “WSDL contract with SOAP/JMS configuration” does the following:

Declare the namespace for the SOAP/JMS extensions.

Configure the JNDI connections in the binding scope.

Configure the JMS delivery style to non-persistent and each message to live for one minute.

Specify the target destination.

Configure the JMS transport so that reply messages are delivered on the greeterReply.queue
queue.

 ...
 </wsdl:service>
 ...
</wsdl:definitions>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

42

CHAPTER 4. USING GENERIC JMS

Abstract

Apache CXF provides a generic implementation of a JMS transport. The generic JMS transport is not
restricted to using SOAP messages and allows for connecting to any application that uses JMS.

The Apache CXF generic JMS transport can connect to any JMS provider and work with applications
that exchange JMS messages with bodies of either TextMessage or ByteMessage.

There are two ways to enable and configure the JMS transport:

JMS configuration bean

WSDL

4.1. USING THE JMS CONFIGURATION BEAN

Overview

To simplify JMS configuration and make it more powerful, Apache CXF uses a single JMS configuration
bean to configure JMS endpoints. The bean is implemented by the
org.apache.cxf.transport.jms.JMSConfiguration class. It can be used to either configure
endpoint's directly or to configure the JMS conduits and destinations.

Configuration namespace

The JMS configuration bean uses the Spring p-namespace to make the configuration as simple as
possible. To use this namespace you need to declare it in the configuration's root element as shown in
Example 4.1, “Declaring the Spring p-namespace” .

Example 4.1. Declaring the Spring p-namespace

Specifying the configuration

You specify the JMS configuration by defining a bean of class
org.apache.cxf.transport.jms.JMSConfiguration. The properties of the bean provide the
configuration settings for the transport.

Table 4.1, “General JMS Configuration Properties” lists properties that are common to both providers
and consumers.

Table 4.1. General JMS Configuration Properties

<beans ...
 xmlns:p="http://www.springframework.org/schema/p"
 ... >
 ...
</beans>

CHAPTER 4. USING GENERIC JMS

43

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-p-namespace

Property Default Description

connectionFactory-ref Specifies a reference to a bean
that defines a JMS
ConnectionFactory.

wrapInSingleConnectionF
actory

true Specifies whether to wrap the
ConnectionFactory with a
Spring
SingleConnectionFactory
. Doing so can improve the
performance of the JMS transport
when the specified connection
factory does not pool
connections.

reconnectOnException false Specifies whether to create a
new connection in the case of an
exception. This property is only
used when wrapping the
connection factory with a Spring
SingleConnectionFactory
.

targetDestination Specifies the JNDI name or
provider specific name of a
destination.

replyDestination Specifies the JMS name of the
JMS destinations where replies
are sent. This attribute allows you
to use a user defined destination
for replies. For more details see
Section 4.3, “Using a Named
Reply Destination”.

destinationResolver Specifies a reference to a Spring
DestinationResolver. This
allows you to define how
destination names are resolved.
By default a
DynamicDestinationResol
ver is used. It resolves
destinations using the JMS
providers features. If you
reference a
JndiDestinationResolver
you can resolve the destination
names using JNDI.

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

44

transactionManager Specifies a reference to a Spring
transaction manager. This allows
the service to participate in JTA
Transactions.

taskExecutor Specifies a reference to a Spring
TaskExecutor. This is used in
listeners to decide how to handle
incoming messages. By default
the transport uses the Spring
SimpleAsyncTaskExecutor
.

useJms11 false Specifies whether JMS 1.1
features are available.

messageIdEnabled true Specifies whether the JMS
transport wants the JMS broker
to provide message IDs. Setting
this to false causes the
endpoint to call its message
producer's
setDisableMessageID()
method with a value of true. The
JMS broker is then given a hint
that it does not need to generate
message IDs or add them to the
messages from the endpoint. The
JMS broker can choose to accept
the hint or ignore it.

messageTimestampEnabled true Specifies whether the JMS
transport wants the JMS broker
to provide message time stamps.
Setting this to false causes the
endpoint to call its message
producer's
setDisableMessageTimest
amp() method with a value of
true. The JMS broker is then
given a hint that it does not need
to generate time stamps or add
them to the messages from the
endpoint. The JMS broker can
choose to accept the hint or
ignore it.

Property Default Description

CHAPTER 4. USING GENERIC JMS

45

cacheLevel 3 Specifies the level of caching
allowed by the listener. Valid
values are 0(CACHE_NONE),
1(CACHE_CONNECTION),
2(CACHE_SESSION),
3(CACHE_CONSUMER),
4(CACHE_AUTO).

pubSubNoLocal false Specifies whether to receive
messages produced from the
same connection.

receiveTimeout 0 Specifies, in milliseconds, the
amount of time to wait for
response messages. 0 means wait
indefinitely.

explicitQosEnabled false Specifies whether the QoS
settings like priority, persistence,
and time to live are explicitly set
for each message or if they are
allowed to use default values.

deliveryMode 1 Specifies if a message is
persistent. The two values are:

1(NON_PERSISTENT)—
messages will be kept
memory

2(PERSISTENT)—
messages will be
persisted to disk

priority 4 Specifies the message's priority
for the messages. JMS priority
values can range from 0 to 9. The
lowest priority is 0 and the
highest priority is 9.

timeToLive 0 Specifies, in milliseconds, the
message will be available after it
is sent. 0 specifies an infinite time
to live.

sessionTransacted false Specifies if JMS transactions are
used.

Property Default Description

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

46

concurrentConsumers 1 Specifies the minimum number of
concurrent consumers created by
the listener.

maxConcurrentConsumers 1 Specifies the maximum number of
concurrent consumers by
listener.

messageSelector Specifies the string value of the
selector. For more information on
the syntax used to specify
message selectors, see the JMS
1.1 specification.

subscriptionDurable false Specifies whether the server uses
durrable subscriptions.

durableSubscriptionName Specifies the string used to
register the durable subscription.

messageType text Specifies how the message data
will be packaged as a JMS
message. text specifies that the
data will be packaged as a
TextMessage. binary
specifies that the data will be
packaged as an ByteMessage.

pubSubDomain false Specifies whether the target
destination is a topic.

jmsProviderTibcoEms false Specifies if your JMS provider is
Tibco EMS. This causes the
principal in the security context
to be populated from the
JMS_TIBCO_SENDER header.

useMessageIDAsCorrelati
onID

false Specifies whether JMS will use
the message ID to correlate
messages. If not, the client will
set a generated correlation ID.

Property Default Description

As shown in Example 4.2, “JMS configuration bean” , the bean's properties are specified as attributes
to the bean element. They are all declared in the Spring p namespace.

Example 4.2. JMS configuration bean

<bean id="jmsConfig"
 class="org.apache.cxf.transport.jms.JMSConfiguration"

CHAPTER 4. USING GENERIC JMS

47

Applying the configuration to an endpoint

The JMSConfiguration bean can be applied directly to both server and client endpoints using the
Apache CXF features mechanism. To do so:

1. Set the endpoint's address attribute to jms://.

2. Add a jaxws:feature element to the endpoint's configuration.

3. Add a bean of type org.apache.cxf.transport.jms.JMSConfigFeature to the feature.

4. Set the bean element's p:jmsConfig-ref attribute to the ID of the JMSConfiguration
bean.

Example 4.3, “Adding JMS configuration to a JAX-WS client” shows a JAX-WS client that uses the JMS
configuration from Example 4.2, “JMS configuration bean” .

Example 4.3. Adding JMS configuration to a JAX-WS client

Applying the configuration to the transport

The JMSConfiguration bean can be applied to JMS conduits and JMS destinations using the
jms:jmsConfig-ref element. The jms:jmsConfig-ref element's value is the ID of the
JMSConfiguration bean.

Example 4.4, “Adding JMS configuration to a JMS conduit” shows a JMS conduit that uses the JMS
configuration from Example 4.2, “JMS configuration bean” .

Example 4.4. Adding JMS configuration to a JMS conduit

 p:connectionFactory-ref="connectionFactory"
 p:targetDestination="dynamicQueues/greeter.request.queue"
 p:pubSubDomain="false" />

<jaxws:client id="CustomerService"
 xmlns:customer="http://customerservice.example.com/"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint"
 address="jms://"

serviceClass="com.example.customerservice.CustomerService">
 <jaxws:features>
 <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>
 </jaxws:features>
</jaxws:client>

<jms:conduit name="
{http://cxf.apache.org/jms_conf_test}HelloWorldQueueBinMsgPort.jms-
conduit">

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

48

4.2. USING WSDL TO CONFIGURE JMS

The WSDL extensions for defining a JMS endpoint are defined in the namespace
http://cxf.apache.org/transports/jms. In order to use the JMS extensions you will need to add the line
shown in Example 4.5, “JMS WSDL extension namespace” to the definitions element of your contract.

Example 4.5. JMS WSDL extension namespace

4.2.1. Basic JMS configuration

Overview

The JMS address information is provided using the jms:address element and its child, the
jms:JMSNamingProperties element. The jms:address element’s attributes specify the
information needed to identify the JMS broker and the destination. The jms:JMSNamingProperties
element specifies the Java properties used to connect to the JNDI service.

IMPORTANT

Information specified using the JMS feature will override the information in the
endpoint's WSDL file.

Specifying the JMS address

The basic configuration for a JMS endpoint is done by using a jms:address element as the child of
your service’s port element. The jms:address element used in WSDL is identical to the one used in
the configuration file. Its attributes are listed in Table 4.2, “JMS endpoint attributes” .

Table 4.2. JMS endpoint attributes

Attribute Description

destinationStyle Specifies if the JMS destination is a JMS queue or a
JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting to the
JMS destination.

jmsDestinationName Specifies the JMS name of the JMS destination to
which requests are sent.

 ...
 <jms:jmsConfig-ref>jmsConf</jms:jmsConfig-ref>
</jms:conduit>

xmlns:jms="http://cxf.apache.org/transports/jms"

CHAPTER 4. USING GENERIC JMS

49

jmsReplyDestinationName Specifies the JMS name of the JMS destinations
where replies are sent. This attribute allows you to
use a user defined destination for replies. For more
details see Section 4.3, “Using a Named Reply
Destination”.

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which requests are sent.

jndiReplyDestinationName Specifies the JNDI name bound to the JMS
destinations where replies are sent. This attribute
allows you to use a user defined destination for
replies. For more details see Section 4.3, “Using a
Named Reply Destination”.

connectionUserName Specifies the user name to use when connecting to a
JMS broker.

connectionPassword Specifies the password to use when connecting to a
JMS broker.

Attribute Description

The jms:address WSDL element uses a jms:JMSNamingProperties child element to specify
additional information needed to connect to a JNDI provider.

Specifying JNDI properties

To increase interoperability with JMS and JNDI providers, the jms:address element has a child
element, jms:JMSNamingProperties, that allows you to specify the values used to populate the
properties used when connecting to the JNDI provider. The jms:JMSNamingProperties element
has two attributes: name and value. name specifies the name of the property to set. value attribute
specifies the value for the specified property. jms:JMSNamingProperties element can also be used
for specification of provider specific properties.

The following is a list of common JNDI properties that can be set:

1. java.naming.factory.initial

2. java.naming.provider.url

3. java.naming.factory.object

4. java.naming.factory.state

5. java.naming.factory.url.pkgs

6. java.naming.dns.url

7. java.naming.authoritative

8. java.naming.batchsize

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

50

9. java.naming.referral

10. java.naming.security.protocol

11. java.naming.security.authentication

12. java.naming.security.principal

13. java.naming.security.credentials

14. java.naming.language

15. java.naming.applet

For more details on what information to use in these attributes, check your JNDI provider’s
documentation and consult the Java API reference material.

Example

Example 4.6, “JMS WSDL port specification” shows an example of a JMS WSDL port specification.

Example 4.6. JMS WSDL port specification

4.2.2. JMS client configuration

Overview

JMS consumer endpoints specify the type of messages they use. JMS consumer endpoint can use
either a JMS ByteMessage or a JMS TextMessage.

When using an ByteMessage the consumer endpoint uses a byte[] as the method for storing data into
and retrieving data from the JMS message body. When messages are sent, the message data, including
any formating information, is packaged into a byte[] and placed into the message body before it is
placed on the wire. When messages are received, the consumer endpoint will attempt to unmarshall
the data stored in the message body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a string as the method for storing and
retrieving data from the message body. When messages are sent, the message information, including
any format-specific information, is converted into a string and placed into the JMS message body.

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

CHAPTER 4. USING GENERIC JMS

51

When messages are received the consumer endpoint will attempt to unmarshall the data stored in the
JMS message body as if it were packed into a string.

When native JMS applications interact with Apache CXF consumers, the JMS application is responsible
for interpreting the message and the formatting information. For example, if the Apache CXF contract
specifies that the binding used for a JMS endpoint is SOAP, and the messages are packaged as
TextMessage, the receiving JMS application will get a text message containing all of the SOAP
envelope information.

Specifying the message type

The type of messages accepted by a JMS consumer endpoint is configured using the optional
jms:client element. The jms:client element is a child of the WSDL port element and has one
attribute:

Table 4.3. JMS Client WSDL Extensions

messageType Specifies how the message data will be packaged as
a JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies
that the data will be packaged as an ByteMessage.

Example

Example 4.7, “WSDL for a JMS consumer endpoint” shows the WSDL for configuring a JMS consumer
endpoint.

Example 4.7. WSDL for a JMS consumer endpoint

4.2.3. JMS provider configuration

Overview

JMS provider endpoints have a number of behaviors that are configurable. These include:

how messages are correlated

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 <jms:client messageType="binary" />
 </port>
</service>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

52

the use of durable subscriptions

if the service uses local JMS transactions

the message selectors used by the endpoint

Specifying the configuration

Provider endpoint behaviors are configured using the optional jms:server element. The
jms:server element is a child of the WSDL wsdl:port element and has the following attributes:

Table 4.4. JMS provider endpoint WSDL extensions

Attribute Description

useMessageIDAsCorrealationID Specifies whether JMS will use the message ID to
correlate messages. The default is false.

durableSubscriberName Specifies the name used to register a durable
subscription.

messageSelector Specifies the string value of a message selector to
use. For more information on the syntax used to
specify message selectors, see the JMS 1.1
specification.

transactional Specifies whether the local JMS broker will create
transactions around message processing. The
default is false. [a]

[a] Currently, setting the transactional attribute to true is not supported by the runtime.

Example

Example 4.8, “WSDL for a JMS provider endpoint” shows the WSDL for configuring a JMS provider
endpoint.

Example 4.8. WSDL for a JMS provider endpoint

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 <jms:server messageSelector="cxf_message_selector"
 useMessageIDAsCorrelationID="true"

CHAPTER 4. USING GENERIC JMS

53

4.3. USING A NAMED REPLY DESTINATION

Overview

By default, Apache CXF endpoints using JMS create a temporary queue for sending replies back and
forth. If you prefer to use named queues, you can configure the queue used to send replies as part of an
endpoint's JMS configuration.

Setting the reply destination name

You specify the reply destination using either the jmsReplyDestinationName attribute or the
jndiReplyDestinationName attribute in the endpoint's JMS configuration. A client endpoint will
listen for replies on the specified destination and it will specify the value of the attribute in the
ReplyTo field of all outgoing requests. A service endpoint will use the value of the
jndiReplyDestinationName attribute as the location for placing replies if there is no destination
specified in the request’s ReplyTo field.

Example

Example 4.9, “JMS Consumer Specification Using a Named Reply Queue” shows the configuration for a
JMS client endpoint.

Example 4.9. JMS Consumer Specification Using a Named Reply Queue

 transactional="true"
 durableSubscriberName="cxf_subscriber" />
 </port>
</service>

<jms:conduit name="
{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
 <jms:address destinationStyle="queue"
 jndiConnectionFactoryName="myConnectionFactory"
 jndiDestinationName="myDestination"
 jndiReplyDestinationName="myReplyDestination" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.apache.cxf.transport.jms.MyInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </jms:conduit>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

54

CHAPTER 5. APACHE CXF LOGGING

Abstract

This chapter describes how to configure logging in the Apache CXF runtime.

5.1. OVERVIEW OF APACHE CXF LOGGING

Overview

Apache CXF uses the Java logging utility, java.util.logging. Logging is configured in a logging
configuration file that is written using the standard java.util.Properties format. To run logging
on an application, you can specify logging programmatically or by defining a property at the command
that points to the logging configuration file when you start the application.

Default logging.properties file

Apache CXF comes with a default logging.properties file, which is located in your InstallDir/etc
directory. This file configures both the output destination for the log messages and the message level
that is published. The default configuration sets the loggers to print message flagged with the WARNING
level to the console. You can either use the default file without changing any of the configuration
settings or you can change the configuration settings to suit your specific application.

Logging feature

Apache CXF includes a logging feature that can be plugged into your client or your service to enable
logging. Example 5.1, “Configuration for Enabling Logging” shows the configuration to enable the
logging feature.

Example 5.1. Configuration for Enabling Logging

For more information, see Section 5.6, “Logging Message Content”.

Where to begin?

To run a simple example of logging follow the instructions outlined in a Section 5.2, “Simple Example of
Using Logging”.

For more information on how logging works in Apache CXF, read this entire chapter.

More information on java.util.logging

<jaxws:endpoint...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

CHAPTER 5. APACHE CXF LOGGING

55

The java.util.logging utility is one of the most widely used Java logging frameworks. There is a
lot of information available online that describes how to use and extend this framework. As a starting
point, however, the following documents gives a good overview of java.util.logging:

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html

5.2. SIMPLE EXAMPLE OF USING LOGGING

Changing the log levels and output destination

To change the log level and output destination of the log messages in the wsdl_first sample
application, complete the following steps:

1. Run the sample server as described in the Running the demo using java section of the
README.txt file in the InstallDir/samples/wsdl_first directory. Note that the
server start command specifies the default logging.properties file, as follows:

Platform Command

Windows start java -
Djava.util.logging.config.file=%
CXF_HOME%\etc\logging.properties
demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$
CXF_HOME/etc/logging.properties
demo.hw.server.Server &

The default logging.properties file is located in the InstallDir/etc directory. It
configures the Apache CXF loggers to print WARNING level log messages to the console. As a
result, you see very little printed to the console.

2. Stop the server as described in the README.txt file.

3. Make a copy of the default logging.properties file, name it mylogging.properties file,
and save it in the same directory as the default logging.properties file.

4. Change the global logging level and the console logging levels in your
mylogging.properties file to INFO by editing the following lines of configuration:

5. Restart the server using the following command:

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

56

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html

Platform Command

Windows start java -
Djava.util.logging.config.file=%
CXF_HOME%\etc\mylogging.properti
es demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$
CXF_HOME/etc/mylogging.propertie
s demo.hw.server.Server &

Because you configured the global logging and the console logger to log messages of level
INFO, you see a lot more log messages printed to the console.

5.3. DEFAULT LOGGING CONFIGURATION FILE

The default logging configuration file, logging.properties, is located in the InstallDir/etc
directory. It configures the Apache CXF loggers to print WARNING level messages to the console. If this
level of logging is suitable for your application, you do not have to make any changes to the file before
using it. You can, however, change the level of detail in the log messages. For example, you can change
whether log messages are sent to the console, to a file or to both. In addition, you can specify logging
at the level of individual packages.

NOTE

This section discusses the configuration properties that appear in the default
logging.properties file. There are, however, many other java.util.logging
configuration properties that you can set. For more information on the
java.util.logging API, see the java.util.logging javadoc at:
http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html.

5.3.1. Configuring Logging Output

The Java logging utility, java.util.logging, uses handler classes to output log messages. Table 5.1,
“Java.util.logging Handler Classes” shows the handlers that are configured in the default
logging.properties file.

Table 5.1. Java.util.logging Handler Classes

Handler Class Outputs to

ConsoleHandler Outputs log messages to the console

FileHandler Outputs log messages to a file

IMPORTANT

The handler classes must be on the system classpath in order to be installed by the Java
VM when it starts. This is done when you set the Apache CXF environment.

CHAPTER 5. APACHE CXF LOGGING

57

http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html

1

2

Configuring the console handler

Example 5.2, “Configuring the Console Handler” shows the code for configuring the console logger.

Example 5.2. Configuring the Console Handler

The console handler also supports the configuration properties shown in Example 5.3, “Console
Handler Properties”.

Example 5.3. Console Handler Properties

The configuration properties shown in Example 5.3, “Console Handler Properties” can be explained as
follows:

The console handler supports a separate log level configuration property. This allows you to limit
the log messages printed to the console while the global logging setting can be different (see
Section 5.3.2, “Configuring Logging Levels”). The default setting is WARNING.

Specifies the java.util.logging formatter class that the console handler class uses to format
the log messages. The default setting is the java.util.logging.SimpleFormatter.

Configuring the file handler

Example 5.4, “Configuring the File Handler” shows code that configures the file handler.

Example 5.4. Configuring the File Handler

The file handler also supports the configuration properties shown in Example 5.5, “File Handler
Configuration Properties”.

Example 5.5. File Handler Configuration Properties

handlers= java.util.logging.ConsoleHandler

1

2

java.util.logging.ConsoleHandler.level = WARNING
java.util.logging.ConsoleHandler.formatter =
java.util.logging.SimpleFormatter

handlers= java.util.logging.FileHandler

1
2

3

4

java.util.logging.FileHandler.pattern = %h/java%u.log
java.util.logging.FileHandler.limit = 50000

java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter =

java.util.logging.XMLFormatter

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

58

1

2

3

4

The configuration properties shown in Example 5.5, “File Handler Configuration Properties” can be
explained as follows:

Specifies the location and pattern of the output file. The default setting is your home directory.

Specifies, in bytes, the maximum amount that the logger writes to any one file. The default setting
is 50000. If you set it to zero, there is no limit on the amount that the logger writes to any one file.

Specifies how many output files to cycle through. The default setting is 1.

Specifies the java.util.logging formatter class that the file handler class uses to format the
log messages. The default setting is the java.util.logging.XMLFormatter.

Configuring both the console handler and the file handler

You can set the logging utility to output log messages to both the console and to a file by specifying
the console handler and the file handler, separated by a comma, as shown in Example 5.6, “Configuring
Both Console Logging and File Logging”.

Example 5.6. Configuring Both Console Logging and File Logging

5.3.2. Configuring Logging Levels

Logging levels

The java.util.logging framework supports the following levels of logging, from the least verbose
to the most verbose:

SEVERE

WARNING

INFO

CONFIG

FINE

FINER

FINEST

Configuring the global logging level

To configure the types of event that are logged across all loggers, configure the global logging level as
shown in Example 5.7, “Configuring Global Logging Levels” .

Example 5.7. Configuring Global Logging Levels

handlers= java.util.logging.FileHandler,
java.util.logging.ConsoleHandler

CHAPTER 5. APACHE CXF LOGGING

59

Configuring logging at an individual package level

The java.util.logging framework supports configuring logging at the level of an individual
package. For example, the line of code shown in Example 5.8, “Configuring Logging at the Package
Level” configures logging at a SEVERE level on classes in the com.xyz.foo package.

Example 5.8. Configuring Logging at the Package Level

5.4. ENABLING LOGGING AT THE COMMAND LINE

Overview

You can run the logging utility on an application by defining a java.util.logging.config.file
property when you start the application. You can either specify the default logging.properties file
or a logging.properties file that is unique to that application.

Specifying the log configuration file on application start-up

To specify logging on application start-up add the flag shown in Example 5.9, “Flag to Start Logging on
the Command Line” when starting the application.

Example 5.9. Flag to Start Logging on the Command Line

5.5. LOGGING FOR SUBSYSTEMS AND SERVICES

You can use the com.xyz.foo.level configuration property described in the section called
“Configuring logging at an individual package level” to set fine-grained logging for specified Apache
CXF logging subsystems.

Apache CXF logging subsystems

Table 5.2, “Apache CXF Logging Subsystems” shows a list of available Apache CXF logging
subsystems.

Table 5.2. Apache CXF Logging Subsystems

Subsystem Description

org.apache.cxf.aegis Aegis binding

.level= WARNING

com.xyz.foo.level = SEVERE

-Djava.util.logging.config.file=myfile

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

60

org.apache.cxf.binding.coloc colocated binding

org.apache.cxf.binding.http HTTP binding

org.apache.cxf.binding.jbi JBI binding

org.apache.cxf.binding.object Java Object binding

org.apache.cxf.binding.soap SOAP binding

org.apache.cxf.binding.xml XML binding

org.apache.cxf.bus Apache CXF bus

org.apache.cxf.configuration configuration framework

org.apache.cxf.endpoint server and client endpoints

org.apache.cxf.interceptor interceptors

org.apache.cxf.jaxws Front-end for JAX-WS style message exchange,
JAX-WS handler processing, and interceptors
relating to JAX-WS and configuration

org.apache.cxf.jbi JBI container integration classes

org.apache.cxf.jca JCA container integration classes

org.apache.cxf.js JavaScript front-end

org.apache.cxf.transport.http HTTP transport

org.apache.cxf.transport.https secure version of HTTP transport, using HTTPS

org.apache.cxf.transport.jbi JBI transport

org.apache.cxf.transport.jms JMS transport

org.apache.cxf.transport.local transport implementation using local file system

org.apache.cxf.transport.servlet HTTP transport and servlet implementation for
loading JAX-WS endpoints into a servlet container

org.apache.cxf.ws.addressing WS-Addressing implementation

Subsystem Description

CHAPTER 5. APACHE CXF LOGGING

61

org.apache.cxf.ws.policy WS-Policy implementation

org.apache.cxf.ws.rm WS-ReliableMessaging (WS-RM) implementation

org.apache.cxf.ws.security.wss4j WSS4J security implementation

Subsystem Description

Example

The WS-Addressing sample is contained in the InstallDir/samples/ws_addressing directory.
Logging is configured in the logging.properties file located in that directory. The relevant lines of
configuration are shown in Example 5.10, “Configuring Logging for WS-Addressing”.

Example 5.10. Configuring Logging for WS-Addressing

The configuration in Example 5.10, “Configuring Logging for WS-Addressing” enables the snooping of
log messages relating to WS-Addressing headers, and displays them to the console in a concise form.

For information on running this sample, see the README.txt file located in the
InstallDir/samples/ws_addressing directory.

5.6. LOGGING MESSAGE CONTENT

You can log the content of the messages that are sent between a service and a consumer. For example,
you might want to log the contents of SOAP messages that are being sent between a service and a
consumer.

Configuring message content logging

To log the messages that are sent between a service and a consumer, and vice versa, complete the
following steps:

1. Add the logging feature to your endpoint's configuration.

2. Add the logging feature to your consumer's configuration.

3. Configure the logging system log INFO level messages.

Adding the logging feature to an endpoint

Add the logging feature your endpoint's configuration as shown in Example 5.11, “Adding Logging to
Endpoint Configuration”.

Example 5.11. Adding Logging to Endpoint Configuration

java.util.logging.ConsoleHandler.formatter =
demos.ws_addressing.common.ConciseFormatter
...
org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

62

The example XML shown in Example 5.11, “Adding Logging to Endpoint Configuration” enables the
logging of SOAP messages.

Adding the logging feature to a consumer

Add the logging feature your client's configuration as shown in Example 5.12, “Adding Logging to
Client Configuration”.

Example 5.12. Adding Logging to Client Configuration

The example XML shown in Example 5.12, “Adding Logging to Client Configuration” enables the
logging of SOAP messages.

Set logging to log INFO level messages

Ensure that the logging.properties file associated with your service is configured to log INFO
level messages, as shown in Example 5.13, “Setting the Logging Level to INFO” .

Example 5.13. Setting the Logging Level to INFO

Logging SOAP messages

To see the logging of SOAP messages modify the wsdl_first sample application located in the
InstallDir/samples/wsdl_first directory, as follows:

1. Add the jaxws:features element shown in Example 5.14, “Endpoint Configuration for
Logging SOAP Messages” to the cxf.xml configuration file located in the wsdl_first sample's
directory:

Example 5.14. Endpoint Configuration for Logging SOAP Messages

<jaxws:endpoint ...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

<jaxws:client ...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:client>

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

<jaxws:endpoint name="
{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">

CHAPTER 5. APACHE CXF LOGGING

63

2. The sample uses the default logging.properties file, which is located in the
InstallDir/etc directory. Make a copy of this file and name it mylogging.properties.

3. In the mylogging.properties file, change the logging levels to INFO by editing the .level
and the java.util.logging.ConsoleHandler.level configuration properties as follows:

4. Start the server using the new configuration settings in both the cxf.xml file and the
mylogging.properties file as follows:

Platform Command

Windows start java -
Djava.util.logging.config.file=%
CXF_HOME%\etc\mylogging.properti
es demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$
CXF_HOME/etc/mylogging.propertie
s demo.hw.server.Server &

5. Start the hello world client using the following command:

Platform Command

Windows java -
Djava.util.logging.config.file=%
CXF_HOME%\etc\mylogging.properti
es demo.hw.client.Client
.\wsdl\hello_world.wsdl

UNIX java -
Djava.util.logging.config.file=$
CXF_HOME/etc/mylogging.propertie
s demo.hw.client.Client
./wsdl/hello_world.wsdl

The SOAP messages are logged to the console.

 <jaxws:properties>
 <entry key="schema-validation-enabled" value="true" />
 </jaxws:properties>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

64

CHAPTER 6. DEPLOYING WS-ADDRESSING

Abstract

Apache CXF supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy
WS-Addressing in the Apache CXF runtime environment.

6.1. INTRODUCTION TO WS-ADDRESSING

Overview

WS-Addressing is a specification that allows services to communicate addressing information in a
transport neutral way. It consists of two parts:

A structure for communicating a reference to a Web service endpoint

A set of Message Addressing Properties (MAP) that associate addressing information with a
particular message

Supported specifications

Apache CXF supports both the WS-Addressing 2004/08 specification and the WS-Addressing
2005/03 specification.

Further information

For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

6.2. WS-ADDRESSING INTERCEPTORS

Overview

In Apache CXF, WS-Addressing functionality is implemented as interceptors. The Apache CXF runtime
uses interceptors to intercept and work with the raw messages that are being sent and received. When
a transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the WS-Addressing interceptors are added to the application's interceptor chain,
any WS-Addressing information included with a message is processed.

WS-Addressing Interceptors

The WS-Addressing implementation consists of two interceptors, as described in Table 6.1, “WS-
Addressing Interceptors”.

Table 6.1. WS-Addressing Interceptors

Interceptor Description

CHAPTER 6. DEPLOYING WS-ADDRESSING

65

http://www.w3.org/Submission/ws-addressing/

org.apache.cxf.ws.addressing.MAPAggr
egator

A logical interceptor responsible for aggregating the
Message Addressing Properties (MAPs) for outgoing
messages.

org.apache.cxf.ws.addressing.soap.MA
PCodec

A protocol-specific interceptor responsible for
encoding and decoding the Message Addressing
Properties (MAPs) as SOAP headers.

Interceptor Description

6.3. ENABLING WS-ADDRESSING

Overview

To enable WS-Addressing the WS-Addressing interceptors must be added to the inbound and
outbound interceptor chains. This is done in one of the following ways:

Apache CXF Features

RMAssertion and WS-Policy Framework

Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a Feature

WS-Addressing can be enabled by adding the WS-Addressing feature to the client and the server
configuration as shown in Example 6.1, “client.xml—Adding WS-Addressing Feature to Client
Configuration” and Example 6.2, “server.xml—Adding WS-Addressing Feature to Server Configuration”
respectively.

Example 6.1. client.xml—Adding WS-Addressing Feature to Client Configuration

Example 6.2. server.xml—Adding WS-Addressing Feature to Server Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:client ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:client>
</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

66

6.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

Overview

The Apache CXF WS-Addressing feature element is defined in the namespace
http://cxf.apache.org/ws/addressing. It supports the two attributes described in Table 6.2,
“WS-Addressing Attributes”.

Table 6.2. WS-Addressing Attributes

Attribute Name Value

allowDuplicates A boolean that determines if duplicate MessageIDs
are tolerated. The default setting is true.

usingAddressingAdvisory A boolean that indicates if the presence of the
UsingAddressing element in the WSDL is
advisory only; that is, its absence does not prevent
the encoding of WS-Addressing headers.

Configuring WS-Addressing attributes

Configure WS-Addressing attributes by adding the attribute and the value you want to set it to the WS-
Addressing feature in your server or client configuration file. For example, the following configuration
extract sets the allowDublicates attribute to false on the server endpoint:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing" ...>
 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing allowDuplicates="false"/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

CHAPTER 6. DEPLOYING WS-ADDRESSING

67

Using a WS-Policy assertion embedded in a feature

In Example 6.3, “Using the Policies to Configure WS-Addressing” an addressing policy assertion to
enable non-anonymous responses is embedded in the policies element.

Example 6.3. Using the Policies to Configure WS-Addressing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:policy="http://cxf.apache.org/policy-config"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-
policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint name="
{http://cxf.apache.org/greeter_control}GreeterPort"
 createdFromAPI="true">
 <jaxws:features>
 <policy:policies>
 <wsp:Policy
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 <policy:policies>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

68

CHAPTER 7. ENABLING RELIABLE MESSAGING

Abstract

Apache CXF supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and
configure WS-RM in Apache CXF.

7.1. INTRODUCTION TO WS-RM

Overview

WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery of messages in a
distributed environment. It enables messages to be delivered reliably between distributed applications
in the presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have been delivered across a
network exactly once, and in the correct order.

How WS-RM works

WS-RM ensures the reliable delivery of messages between a source and a destination endpoint. The
source is the initial sender of the message and the destination is the ultimate receiver, as shown in
Figure 7.1, “Web Services Reliable Messaging” .

Figure 7.1. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM destination. This
contains a reference for the endpoint that receives acknowledgements (the wsrm:AcksTo
endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message back to the RM
source. This message contains the sequence ID for the RM sequence session.

CHAPTER 7. ENABLING RELIABLE MESSAGING

69

3. The RM source adds an RM Sequence header to each message sent by the application source.
This header contains the sequence ID and a unique message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM source by sending
messages that contain the RM SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in an exactly-once-in-
order fashion.

7. The RM source retransmits a message that it has not yet received an acknowledgement.

The first retransmission attempt is made after a base retransmission interval. Successive
retransmission attempts are made, by default, at exponential back-off intervals or,
alternatively, at fixed intervals. For more details, see Section 7.4, “Configuring WS-RM”.

This entire process occurs symmetrically for both the request and the response message; that is, in
the case of the response message, the server acts as the RM source and the client acts as the RM
destination.

WS-RM delivery assurances

WS-RM guarantees reliable message delivery in a distributed environment, regardless of the transport
protocol used. Either the source or the destination endpoint logs an error if reliable delivery can not be
assured.

Supported specifications

Apache CXF supports the 2005/02 version of the WS-RM specification, which is based on the WS-
Addressing 2004/08 specification.

Further information

For detailed information on WS-RM, see the specification at
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf.

7.2. WS-RM INTERCEPTORS

Overview

In Apache CXF, WS-RM functionality is implemented as interceptors. The Apache CXF runtime uses
interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the application's interceptor chain includes the WS-RM interceptors, the
application can participate in reliable messaging sessions. The WS-RM interceptors handle the
collection and aggregation of the message chunks. They also handle all of the acknowledgement and
retransmission logic.

Apache CXF WS-RM Interceptors

The Apache CXF WS-RM implementation consists of four interceptors, which are described in Table 7.1,
“Apache CXF WS-ReliableMessaging Interceptors”.

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

70

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

Table 7.1. Apache CXF WS-ReliableMessaging Interceptors

Interceptor Description

org.apache.cxf.ws.rm.RMOutIntercepto
r

Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties—ID and message number—for an
application message.

org.apache.cxf.ws.rm.RMInInterceptor Responsible for intercepting and processing RM
protocol messages and
SequenceAcknowledgement messages that are
piggybacked on application messages.

org.apache.cxf.ws.rm.soap.RMSoapInte
rceptor

Responsible for encoding and decoding the
reliability properties as SOAP headers.

org.apache.cxf.ws.rm.RetransmissionI
nterceptor

Responsible for creating copies of application
messages for future resending.

Enabling WS-RM

The presence of the WS-RM interceptors on the interceptor chains ensures that WS-RM protocol
messages are exchanged when necessary. For example, when intercepting the first application
message on the outbound interceptor chain, the RMOutInterceptor sends a CreateSequence
request and waits to process the original application message until it receives the
CreateSequenceResponse response. In addition, the WS-RM interceptors add the sequence headers
to the application messages and, on the destination side, extract them from the messages. It is not
necessary to make any changes to your application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Section 7.3, “Enabling WS-RM”.

Configuring WS-RM Attributes

You control sequence demarcation and other aspects of the reliable exchange through configuration.
For example, by default Apache CXF attempts to maximize the lifetime of a sequence, thus reducing
the overhead incurred by the out-of-band WS-RM protocol messages. To enforce the use of a separate
sequence per application message configure the WS-RM source’s sequence termination policy (setting
the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see Section 7.4, “Configuring WS-RM”.

7.3. ENABLING WS-RM

Overview

CHAPTER 7. ENABLING RELIABLE MESSAGING

71

To enable reliable messaging, the WS-RM interceptors must be added to the interceptor chains for
both inbound and outbound messages and faults. Because the WS-RM interceptors use WS-
Addressing, the WS-Addressing interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

Explicitly, by adding them to the dispatch chains using Spring beans

Implicitly, using WS-Policy assertions, which cause the Apache CXF runtime to transparently
add the interceptors on your behalf.

Spring beans—explicitly adding interceptors

To enable WS-RM add the WS-RM and WS-Addressing interceptors to the Apache CXF bus, or to a
consumer or service endpoint using Spring bean configuration. This is the approach taken in the WS-
RM sample that is found in the InstallDir/samples/ws_rm directory. The configuration file, ws-
rm.cxf, shows the WS-RM and WS-Addressing interceptors being added one-by-one as Spring beans
(see Example 7.1, “Enabling WS-RM Using Spring Beans”).

Example 7.1. Enabling WS-RM Using Spring Beans

1

2

3

4

5

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/
 beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="mapAggregator"
class="org.apache.cxf.ws.addressing.MAPAggregator"/>

 <bean id="mapCodec"
class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>

 <bean id="rmLogicalOut"
class="org.apache.cxf.ws.rm.RMOutInterceptor">

 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">
 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmCodec"
class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">

 <property name="inInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

 <property name="inFaultInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

72

1

2

3

4

5

6

7

The code shown in Example 7.1, “Enabling WS-RM Using Spring Beans” can be explained as follows:

A Apache CXF configuration file is a Spring XML file. You must include an opening Spring beans
element that declares the namespaces and schema files for the child elements that are
encapsulated by the beans element.

Configures each of the WS-Addressing interceptors—MAPAggregator and MAPCodec. For more
information on WS-Addressing, see Chapter 6, Deploying WS-Addressing.

Configures each of the WS-RM interceptors—RMOutInterceptor, RMInInterceptor, and
RMSoapInterceptor.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound faults.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound
messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound faults.

WS-Policy framework—implicitly adding interceptors

The WS-Policy framework provides the infrastructure and APIs that allow you to use WS-Policy. It is
compliant with the November 2006 draft publications of the Web Services Policy 1.5—Framework and
Web Services Policy 1.5—Attachment specifications.

To enable WS-RM using the Apache CXF WS-Policy framework, do the following:

1. Add the policy feature to your client and server endpoint. Example 7.2, “Configuring WS-RM
using WS-Policy” shows a reference bean nested within a jaxws:feature element. The
reference bean specifies the AddressingPolicy, which is defined as a separate element
within the same configuration file.

6

7

 <property name="outInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

 <property name="outFaultInterceptors">
 <list>

 <ref bean="mapAggregator">
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 </bean>
</beans>

CHAPTER 7. ENABLING RELIABLE MESSAGING

73

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

Example 7.2. Configuring WS-RM using WS-Policy

2. Add a reliable messaging policy to the wsdl:service element—or any other WSDL element
that can be used as an attachment point for policy or policy reference elements—to your WSDL
file, as shown in Example 7.3, “Adding an RM Policy to Your WSDL File” .

Example 7.3. Adding an RM Policy to Your WSDL File

7.4. CONFIGURING WS-RM

You can configure WS-RM by:

Setting Apache CXF-specific attributes that are defined in the Apache CXF WS-RM manager
namespace, http://cxf.apache.org/ws/rm/manager.

<jaxws:client>
 <jaxws:features>
 <ref bean="AddressingPolicy"/>
 </jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy"
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
</wsp:Policy>

<wsp:Policy wsu:Id="RM"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
 </wsrmp:RMAssertion>
</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">
 <wsdl:port binding="tns:GreeterSOAPBinding"
name="GreeterPort">
 <soap:address
location="http://localhost:9020/SoapContext/GreeterPort"/>
 <wsp:PolicyReference URI="#RM"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>
 </wsdl:port>
</wsdl:service>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

74

Setting standard WS-RM policy attributes that are defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace.

7.4.1. Configuring Apache CXF-Specific WS-RM Attributes

Overview

To configure the Apache CXF-specific attributes, use the rmManager Spring bean. Add the following to
your configuration file:

The http://cxf.apache.org/ws/rm/manager namespace to your list of namespaces.

An rmManager Spring bean for the specific attribute that your want to configure.

Example 7.4, “Configuring Apache CXF-Specific WS-RM Attributes” shows a simple example.

Example 7.4. Configuring Apache CXF-Specific WS-RM Attributes

Children of the rmManager Spring bean

Table 7.2, “Children of the rmManager Spring Bean” shows the child elements of the rmManager
Spring bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

Table 7.2. Children of the rmManager Spring Bean

Element Description

RMAssertion An element of type RMAssertion

deliveryAssurance An element of type DeliveryAssuranceType that
describes the delivery assurance that should apply

sourcePolicy An element of type SourcePolicyType that allows
you to configure details of the RM source

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/schemas/configuration/wsrm-manager.xsd">
...
<wsrm-mgr:rmManager>
<!--
 ...Your configuration goes here
-->
</wsrm-mgr:rmManager>

CHAPTER 7. ENABLING RELIABLE MESSAGING

75

destinationPolicy An element of type DestinationPolicyType that
allows you to configure details of the RM destination

Element Description

Example

For an example, see the section called “Maximum unacknowledged messages threshold” .

7.4.2. Configuring Standard WS-RM Policy Attributes

Overview

You can configure standard WS-RM policy attributes in one of the following ways:

RMAssertion in rmManager Spring bean

Policy within a feature

WSDL file

External attachment

WS-Policy RMAssertion Children

Table 7.3, “Children of the WS-Policy RMAssertion Element” shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 7.3. Children of the WS-Policy RMAssertion Element

Name Description

InactivityTimeout Specifies the amount of time that must pass without
receiving a message before an endpoint can
consider an RM sequence to have been terminated
due to inactivity.

BaseRetransmissionInterval Sets the interval within which an acknowledgement
must be received by the RM Source for a given
message. If an acknowledgement is not received
within the time set by the
BaseRetransmissionInterval, the RM
Source will retransmit the message.

ExponentialBackoff Indicates the retransmission interval will be adjusted
using the commonly known exponential backoff
algorithm (Tanenbaum).

For more information, see Computer Networks ,
Andrew S. Tanenbaum, Prentice Hall PTR, 2003.

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

76

AcknowledgementInterval In WS-RM, acknowledgements are sent on return
messages or sent stand-alone. If a return message is
not available to send an acknowledgement, an RM
Destination can wait for up to the acknowledgement
interval before sending a stand-alone
acknowledgement. If there are no unacknowledged
messages, the RM Destination can choose not to
send an acknowledgement.

Name Description

More detailed reference information

For more detailed reference information, including descriptions of each element’s sub-elements and
attributes, please refer to http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager Spring bean

You can configure standard WS-RM policy attributes by adding an RMAssertion within a Apache CXF
rmManager Spring bean. This is the best approach if you want to keep all of your WS-RM configuration
in the same configuration file; that is, if you want to configure Apache CXF-specific attributes and
standard WS-RM policy attributes in the same file.

For example, the configuration in Example 7.5, “Configuring WS-RM Attributes Using an RMAssertion
in an rmManager Spring Bean” shows:

A standard WS-RM policy attribute, BaseRetransmissionInterval, configured using an
RMAssertion within an rmManager Spring bean.

An Apache CXF-specific RM attribute, intraMessageThreshold, configured in the same
configuration file.

Example 7.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring
Bean

Policy within a feature

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
 <wsrm-mgr:destinationPolicy>
 <wsrm-mgr:acksPolicy intraMessageThreshold="0" />
 </wsrm-mgr:destinationPolicy>
</wsrm-mgr:rmManager>
</beans>

CHAPTER 7. ENABLING RELIABLE MESSAGING

77

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

You can configure standard WS-RM policy attributes within features, as shown in Example 7.6,
“Configuring WS-RM Attributes as a Policy within a Feature”.

Example 7.6. Configuring WS-RM Attributes as a Policy within a Feature

WSDL file

If you use the WS-Policy framework to enable WS-RM, you can configure standard WS-RM policy
attributes in a WSDL file. This is a good approach if you want your service to interoperate and use WS-
RM seamlessly with consumers deployed to other policy-aware Web services stacks.

For an example, see the section called “WS-Policy framework—implicitly adding interceptors” where
the base retransmission interval is configured in the WSDL file.

External attachment

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-
policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
 <jaxws:endpoint name="
{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">
 <jaxws:features>
 <wsp:Policy>
 <wsrm:RMAssertion
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:AcknowledgementInterval Milliseconds="200"
/>
 </wsrm:RMAssertion>
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

78

You can configure standard WS-RM policy attributes in an external attachment file. This is a good
approach if you cannot, or do not want to, change your WSDL file.

Example 7.7, “Configuring WS-RM in an External Attachment” shows an external attachment that
enables both WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific EPR.

Example 7.7. Configuring WS-RM in an External Attachment

7.4.3. WS-RM Configuration Use Cases

Overview

This subsection focuses on configuring WS-RM attributes from a use case point of view. Where an
attribute is a standard WS-RM policy attribute, defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace, only the example of setting it in an
RMAssertion within an rmManager Spring bean is shown. For details of how to set such attributes as
a policy within a feature; in a WSDL file, or in an external attachment, see Section 7.4.2, “Configuring
Standard WS-RM Policy Attributes”.

The following use cases are covered:

Base retransmission interval

Exponential backoff for retransmission

Acknowledgement interval

Maximum unacknowledged messages threshold

Maximum length of an RM sequence

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsp:PolicyAttachment>
 <wsp:AppliesTo>
 <wsa:EndpointReference>

<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wsp:Policy>
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval
Milliseconds="30000"/>
 </wsrmp:RMAssertion>
 </wsp:Policy>
 </wsp:PolicyAttachment>
</attachments>/

CHAPTER 7. ENABLING RELIABLE MESSAGING

79

http://schemas.xmlsoap.org/ws/2005/02/rm/policy

Message delivery assurance policies

Base retransmission interval

The BaseRetransmissionInterval element specifies the interval at which an RM source
retransmits a message that has not yet been acknowledged. It is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd schema file. The default value is 3000
milliseconds.

Example 7.8, “Setting the WS-RM Base Retransmission Interval” shows how to set the WS-RM base
retransmission interval.

Example 7.8. Setting the WS-RM Base Retransmission Interval

Exponential backoff for retransmission

The ExponentialBackoff element determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals.

The presence of the ExponentialBackoff element enables this feature. An exponential backoff ratio
of 2 is used by default.

Example 7.9, “Setting the WS-RM Exponential Backoff Property” shows how to set the WS-RM
exponential backoff for retransmission.

Example 7.9. Setting the WS-RM Exponential Backoff Property

Acknowledgement interval

The AcknowledgementInterval element specifies the interval at which the WS-RM destination
sends asynchronous acknowledgements. These are in addition to the synchronous acknowledgements

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:ExponentialBackoff="4"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

80

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

that it sends on receipt of an incoming message. The default asynchronous acknowledgement interval
is 0 milliseconds. This means that if the AcknowledgementInterval is not configured to a specific
value, acknowledgements are sent immediately (that is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both of the following
conditions are met:

The RM destination is using a non-anonymous wsrm:acksTo endpoint.

The opportunity to piggyback an acknowledgement on a response message does not occur
before the expiry of the acknowledgement interval.

Example 7.10, “Setting the WS-RM Acknowledgement Interval” shows how to set the WS-RM
acknowledgement interval.

Example 7.10. Setting the WS-RM Acknowledgement Interval

Maximum unacknowledged messages threshold

The maxUnacknowledged attribute sets the maximum number of unacknowledged messages that can
accrue per sequence before the sequence is terminated.

Example 7.11, “Setting the WS-RM Maximum Unacknowledged Message Threshold” shows how to set
the WS-RM maximum unacknowledged messages threshold.

Example 7.11. Setting the WS-RM Maximum Unacknowledged Message Threshold

Maximum length of an RM sequence

The maxLength attribute sets the maximum length of a WS-RM sequence. The default value is 0, which
means that the length of a WS-RM sequence is unbound.

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

CHAPTER 7. ENABLING RELIABLE MESSAGING

81

When this attribute is set, the RM endpoint creates a new RM sequence when the limit is reached, and
after receiving all of the acknowledgements for the previously sent messages. The new message is sent
using a newsequence.

Example 7.12, “Setting the Maximum Length of a WS-RM Message Sequence” shows how to set the
maximum length of an RM sequence.

Example 7.12. Setting the Maximum Length of a WS-RM Message Sequence

Message delivery assurance policies

You can configure the RM destination to use the following delivery assurance policies:

AtMostOnce — The RM destination delivers the messages to the application destination only
once. If a message is delivered more than once an error is raised. It is possible that some
messages in a sequence may not be delivered.

AtLeastOnce — The RM destination delivers the messages to the application destination at
least once. Every message sent will be delivered or an error will be raised. Some messages
might be delivered more than once.

InOrder — The RM destination delivers the messages to the application destination in the
order that they are sent. This delivery assurance can be combined with the AtMostOnce or
AtLeastOnce assurances.

Example 7.13, “Setting the WS-RM Message Delivery Assurance Policy” shows how to set the WS-RM
message delivery assurance.

Example 7.13. Setting the WS-RM Message Delivery Assurance Policy

7.5. CONFIGURING WS-RM PERSISTENCE

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:deliveryAssurance>
 <wsrm-mgr:AtLeastOnce />
 </wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

82

Overview

The Apache CXF WS-RM features already described in this chapter provide reliability for cases such as
network failures. WS-RM persistence provides reliability across other types of failure such as an RM
source or an RM destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in persistent storage. This
enables the endpoints to continue sending and receiving messages when they are reincarnated.

Apache CXF enables WS-RM persistence in a configuration file. The default WS-RM persistence store is
JDBC-based. For convenience, Apache CXF includes Derby for out-of-the-box deployment. In addition,
the persistent store is also exposed using a Java API.

IMPORTANT

WS-RM persistence is supported for oneway calls only, and it is disabled by default.

How it works

Apache CXF WS-RM persistence works as follows:

At the RM source endpoint, an outgoing message is persisted before transmission. It is evicted
from the persistent store after the acknowledgement is received.

After a recovery from crash, it recovers the persisted messages and retransmits until all the
messages have been acknowledged. At that point, the RM sequence is closed.

At the RM destination endpoint, an incoming message is persisted, and upon a successful
store, the acknowledgement is sent. When a message is successfully dispatched, it is evicted
from the persistent store.

After a recovery from a crash, it recovers the persisted messages and dispatches them. It also
brings the RM sequence to a state where new messages are accepted, acknowledged, and
delivered.

Enabling WS-persistence

To enable WS-RM persistence, you must specify the object implementing the persistent store for WS-
RM. You can develop your own or you can use the JDBC based store that comes with Apache CXF.

The configuration shown in Example 7.14, “Configuration for the Default WS-RM Persistence Store”
enables the JDBC-based store that comes with Apache CXF.

Example 7.14. Configuration for the Default WS-RM Persistence Store

Configuring WS-persistence

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

CHAPTER 7. ENABLING RELIABLE MESSAGING

83

The JDBC-based store that comes with Apache CXF supports the properties shown in Table 7.4, “JDBC
Store Properties”.

Table 7.4. JDBC Store Properties

Attribute Name Type Default Setting

driverClassName String org.apache.derby.jdbc.E
mbeddedDriver

userName String null

passWord String null

url String jdbc:derby:rmdb;create=true

The configuration shown in Example 7.15, “Configuring the JDBC Store for WS-RM Persistence”
enables the JDBC-based store that comes with Apache CXF, while setting the driverClassName and url
to non-default values.

Example 7.15. Configuring the JDBC Store for WS-RM Persistence

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
 <property name="driverClassName" value="com.acme.jdbc.Driver"/>
 <property name="url" value="jdbc:acme:rmdb;create=true"/>
</bean>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

84

CHAPTER 8. ENABLING HIGH AVAILABILITY

Abstract

This chapter explains how to enable and configure high availability in the Apache CXF runtime.

8.1. INTRODUCTION TO HIGH AVAILABILITY

Overview

Scalable and reliable applications require high availability to avoid any single point of failure in a
distributed system. You can protect your system from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the same service. Together these
act as a single logical service. Clients invoke requests on the replicated service, and Apache CXF
delivers the requests to one of the member replicas. The routing to a replica is transparent to the
client.

HA with static failover

Apache CXF supports high availability (HA) with static failover in which replica details are encoded in
the service WSDL file. The WSDL file contains multiple ports, and can contain multiple hosts, for the
same service. The number of replicas in the cluster remains static as long as the WSDL file remains
unchanged. Changing the cluster size involves editing the WSDL file.

8.2. ENABLING HA WITH STATIC FAILOVER

Overview

To enable HA with static failover, you must do the following:

1. Encode replica details in your service WSDL file

2. Add the clustering feature to your client configuration

Encode replica details in your service WSDL file

You must encode the details of the replicas in your cluster in your service WSDL file. Example 8.1,
“Enabling HA with Static Failover—WSDL File” shows a WSDL file extract that defines a service cluster
of three replicas.

Example 8.1. Enabling HA with Static Failover—WSDL File

1
2

3

<wsdl:service name="ClusteredService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica1">
 <soap:address

location="http://localhost:9001/SoapContext/Replica1"/>
 </wsdl:port>

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica2">
 <soap:address

CHAPTER 8. ENABLING HIGH AVAILABILITY

85

1

2

3

4

The WSDL extract shown in Example 8.1, “Enabling HA with Static Failover—WSDL File” can be
explained as follows:

Defines a service, ClusterService, which is exposed on three ports:

1. Replica1

2. Replica2

3. Replica3

Defines Replica1 to expose the ClusterService as a SOAP over HTTP endpoint on port 9001.

Defines Replica2 to expose the ClusterService as a SOAP over HTTP endpoint on port 9002.

Defines Replica3 to expose the ClusterService as a SOAP over HTTP endpoint on port 9003.

Add the clustering feature to your client configuration

In your client configuration file, add the clustering feature as shown in Example 8.2, “Enabling HA with
Static Failover—Client Configuration”.

Example 8.2. Enabling HA with Static Failover—Client Configuration

4

location="http://localhost:9002/SoapContext/Replica2"/>
 </wsdl:port>

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica3">
 <soap:address

location="http://localhost:9003/SoapContext/Replica3"/>
 </wsdl:port>

</wsdl:service>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:clustering="http://cxf.apache.org/clustering"
 xsi:schemaLocation="http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:client name="
{http://apache.org/hello_world_soap_http}Replica1"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

86

8.3. CONFIGURING HA WITH STATIC FAILOVER

Overview

By default, HA with static failover uses a sequential strategy when selecting a replica service if the
original service with which a client is communicating becomes unavailable, or fails. The sequential
strategy selects a replica service in the same sequential order every time it is used. Selection is
determined by Apache CXF’s internal service model and results in a deterministic failover pattern.

Configuring a random strategy

You can configure HA with static failover to use a random strategy instead of the sequential strategy
when selecting a replica. The random strategy selects a random replica service each time a service
becomes unavailable, or fails. The choice of failover target from the surviving members in a cluster is
entirely random.

To configure the random strategy, add the configuration shown in Example 8.3, “Configuring a Random
Strategy for Static Failover” to your client configuration file.

Example 8.3. Configuring a Random Strategy for Static Failover

{http://apache.org/hello_world_soap_http}Replica2"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="
{http://apache.org/hello_world_soap_http}Replica3"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

</beans>

1

2

<beans ...>
 <bean id="Random"
class="org.apache.cxf.clustering.RandomStrategy"/>

 <jaxws:client name="
{http://apache.org/hello_world_soap_http}Replica3"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover>

 <clustering:strategy>
 <ref bean="Random"/>

 </clustering:strategy>
 </clustering:failover>
 </jaxws:features>
 </jaxws:client>

CHAPTER 8. ENABLING HIGH AVAILABILITY

87

1

2

The configuration shown in Example 8.3, “Configuring a Random Strategy for Static Failover” can be
explained as follows:

Defines a Random bean and implementation class that implements the random strategy.

Specifies that the random strategy is used when selecting a replica.

</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

88

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

Abstract

When all of your servers and clients are deployed within the same fabric, you can use an alternative
mechanism for implementing high availability cluster, which works by exploiting the fabric registry.
Because all the parts of the application must be deployed on the same fabric, this mechanism is
suitable for deployment on a LAN.

9.1. LOAD BALANCING CLUSTER

9.1.1. Introduction to Load Balancing

Overview

The fabric load balancing mechanism exploits the fact that fabric provides a distributed fabric registry,
which is accessible to all of the container in the fabric. This makes it possible to use the fabric registry
as a discovery mechanism for locating WS endpoints in the fabric. By storing all of the endpoint
addresses belonging to a particular cluster under the same registry node, any WS clients in the fabric
can easily discover the location of the endpoints in the cluster.

Fuse Fabric

A fabric is a distributed collection of containers that share a common database of configuration
settings (the fabric registry). Every container in the fabric has a fabric agent deployed in it, which
manages the container and redeploys applications to the container whenever a new profile is assigned
to the container (a profile is the basic deployment unit in a fabric).

Load-balancing cluster

Figure 9.1, “Fabric Load Balancing for Apache CXF” gives an overview of the fabric load balancing
mechanism for Apache CXF endpoints.

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

89

Figure 9.1. Fabric Load Balancing for Apache CXF

In this example, two WS servers are created, with the URIs, http://localhost:8185/Foo and
http://localhost:8186/Foo. For both of these servers, the load balancer feature is configured to
store the cluster endpoints under the path, demo/lb, in the fabric registry.

Now, when the WS client starts, it is configured to look up the cluster path, demo/lb, in the fabric
registry. Because the demo/lb path is associated with multiple endpoint addresses, fabric implements
a random load balancing algorithm to choose one of the available URIs to connect to.

FabricLoadBalancerFeature

The fabric load balancer feature is implemented by the following class:

The FabricLoadBalancerFeature class exposes the following bean properties:

fabricPath

This property specifies a node in the fabric registry (specified relative to the base node,
/fabric/cxf/endpoints) that is used to store the data for a particular endpoint cluster.

zkClient

A proxy reference to the OSGi service exposed by the fabric agent (of type,
org.linkedin.zookeeper.client.IZKClient).

org.fusesource.fabric.cxf.FabricLoadBalancerFeature

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

90

maximumConnectionTimeout

The maximum length of time to attempt to connect to the fabric agent, specified in milliseconds.
The default is 10000 (10 seconds).

connectionRetryTime

How long to wait between connection attempts, specified in milliseconds. The default is 100.

loadBalanceStrategy

By implementing a bean of type org.fusesource.fabric.cxf.LoadBalanceStrategy and
setting this property, you can customise the load balancing algorithm used by the load balancing
feature.

Prerequisites

To use the fabric load balancer feature in your application, your project must satisfy the following
prerequisites:

the section called “Maven dependency” .

the section called “OSGi package import” .

the section called “Fabric deployment” .

the section called “Required feature” .

Maven dependency

The fabric load balancer feature requires the fabric-cxf Maven artifact. Add the following
dependency to your project's POM file:

OSGi package import

If you are packaging your project as an OSGi bundle, you must add org.fusesource.fabric.cxf to
the list of imported packages. For example, using the Maven bundle plug-in, you can specify this
package import by adding org.fusesource.fabric.cxf to the comma-separated list in the
Import-Package element, as follows:

<dependency>
 <groupId>org.fusesource.fabric</groupId>
 <artifactId>fabric-cxf</artifactId>
 <version>6.0.0.redhat-024</version>
</dependency>

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.2.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-
SymbolicName>

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

91

Fabric deployment

When you come to deploy your application into a Red Hat JBoss Fuse container, you must deploy it into
a fabric. The fabric load balancer feature is not supported in a standalone container.

Required feature

The fabric load balancer requires the fabric-cxf Apache Karaf feature to be installed in the
container. In the context of a fabric, this means you must add the fabric-cxf feature to the relevant
deployment profile. For example, if you are using the cxf-lb-server profile to deploy a load-
balancing WS server, you can add the fabric-cxf feature by entering the following console
command:

9.1.2. Configure the Server

Overview

To configure a WS server to use fabric load balancing, you must configure a fabric load balancer
feature and install it in the default Apache CXF bus instance. This section describes how to configure
the load balancer feature in Spring XML and in blueprint XML.

Prerequisites

For the basic prerequisites to build a fabric load-balancing WS server, see the section called
“Prerequisites”.

Spring XML

The following fragment from a Spring XML file shows how to add the fabric load balancer feature,
FabricLoadBalancerFeature, to an Apache CXF bus. Any Apache CXF endpoints subsequently
created on this bus will automatically have the load-balancer feature enabled.

 <Import-Package>
 ...
 org.fusesource.fabric.cxf,
 *
 </Import-Package>
 ...
 </instructions>
 </configuration>
</plugin>

JBossFuse:karaf@root> profile-edit -f fabric-cxf cxf-lb-server

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 ...
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 ...
 xmlns:cxfcore="http://cxf.apache.org/core"
>
 ...
 <!-- Reference the fabric agent -->

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

92

The following beans are used to install the fabric load-balancer feature:

IZKClient OSGi service reference

The IZKClient reference is a proxy of the local fabric agent, which it accesses through the
org.linkedin.zookeeper.client.IZKClient interface. This reference is needed in order to
integrate the load balancer feature with the underlying fabric.

FabricLoadBalancerFeature bean

The FabricLoadBalancerFeature bean is initialised with the following properties:

zkClient

A reference to the fabric agent proxy, IZKClient.

fabricPath

The path of a node in the fabric registry, where the cluster data is stored (for example, the
addresses of the endpoints in the load-balancing cluster). The node path is specified relative to
the base node, /fabric/cxf/endpoints.

Apache CXF bus

The cxfcore:bus element installs the fabric load balancer feature in the default bus instance.

Blueprint XML

The following fragment from a blueprint XML file shows how to add the fabric load balancer feature,
FabricLoadBalancerFeature, to an Apache CXF bus. Any Apache CXF endpoints subsequently
created on this bus will automatically have the load-balancer feature enabled.

 <osgi:reference id="IZKClient"
 interface="org.linkedin.zookeeper.client.IZKClient" />

 <!-- Configure the Fabric load balancer feature -->
 <bean id="fabricLoadBalancerFeature"
 class="org.fusesource.fabric.cxf.FabricLoadBalancerFeature">
 <property name="zkClient" ref="IZKClient" />
 <property name="fabricPath" value="ZKPath" />
 </bean>

 <!-- Add the feature to the bus -->
 <cxfcore:bus>
 <cxfcore:features>
 <ref bean="fabricLoadBalancerFeature" />
 </cxfcore:features>
 </cxfcore:bus>
 ...
</beans>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 ...
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

93

The following beans are used to install the fabric load-balancer feature:

IZKClient reference

The IZKClient reference is a proxy of the local fabric agent, which it accesses through the
org.linkedin.zookeeper.client.IZKClient interface. This reference is needed in order to
integrate the load balancer feature with the underlying fabric.

FabricLoadBalancerFeature bean

The FabricLoadBalancerFeature bean is initialised with the following properties:

zkClient

A reference to the fabric agent proxy, IZKClient.

fabricPath

The path of a node in the fabric registry, where the cluster data is stored (for example, the
addresses of the endpoints in the load-balancing cluster). The node path is specified relative to
the base node, /fabric/cxf/endpoints.

Apache CXF bus

The cxf:bus element installs the fabric load balancer feature in the default bus instance.

Example using Spring XML

Example 9.1, “WS Server with Fabric Load Balancer Feature” shows a complete Spring XML example of
a WS endpoint configured to use the fabric load balancing feature.

>
 ...
 <!-- Reference the fabric agent -->
 <reference id="org.linkedin.zookeeper.client.IZKClient"
 interface="org.linkedin.zookeeper.client.IZKClient" />

 <!-- Create the Fabric load balancer feature -->
 <bean id="fabricLoadBalancerFeature"
 class="org.fusesource.fabric.cxf.FabricLoadBalancerFeature">
 <property name="zkClient"
ref="org.linkedin.zookeeper.client.IZKClient" />
 <property name="fabricPath" value="ZKPath" />
 </bean>

 <!-- setup the feature on the bus to help publish the services to the
fabric-->
 <cxf:bus bus="cxf">
 <cxf:features>
 <ref component-id="fabricLoadBalancerFeature"/>
 </cxf:features>
 </cxf:bus>
 ...
</blueprint>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

94

Example 9.1. WS Server with Fabric Load Balancer Feature

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:osgix="http://www.springframework.org/schema/osgi-compendium"
 xmlns:ctx="http://www.springframework.org/schema/context"
 xmlns:cxfcore="http://cxf.apache.org/core"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-
context.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.springframework.org/schema/osgi-compendium
 http://www.springframework.org/schema/osgi-
compendium/spring-osgi-compendium.xsd
 http://cxf.apache.org/core
 http://cxf.apache.org/schemas/core.xsd
">

 <!-- Configuration Admin entry -->
 <osgix:cm-properties id="cmProps"
 persistent-id="org.fusesource.example.fabric.lb">
 <prop key="portNumber">8191</prop>
 </osgix:cm-properties>

 <!-- placeholder configurer -->
 <ctx:property-placeholder properties-ref="cmProps" />

 <!-- Create the WS endpoint -->
 <jaxws:endpoint id="HTTPEndpoint"
 implementor="org.fusesource.example.PersonImpl"
 address="http://localhost:${portNumber}/PersonServiceCF"/>

 <!-- Reference the fabric agent -->
 <osgi:reference id="IZKClient"
 interface="org.linkedin.zookeeper.client.IZKClient" />

 <!-- Configure the Fabric load balancer feature -->
 <bean id="fabricLoadBalancerFeature"
 class="org.fusesource.fabric.cxf.FabricLoadBalancerFeature">
 <property name="zkClient" ref="IZKClient" />
 <property name="fabricPath" value="demo/lb" />
 </bean>

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

95

The preceding Spring XML configuration consists of the following main sections:

Setting up OSGi Configuration Admin—the osgix:cm-properties element and the
ctx:property-placeholder element set up the OSGi Configuration Admin service,
enabling you to substitute the WS endpoint's IP port number using the placeholder,
${portNumber}.

Use of the OSGi Configuration Admin service is optional, but it provides a convenient way of
creating a cluster of WS servers listening on different ports. With the configuration shown here,
you can deploy the same server bundle into different container instances, using the OSGi
Configuration Admin service to customise the IP port of each deployed server instance.

Creating the WS endpoint—create the WS endpoint in the usual way, using the
jaxws:endpoint element. By default, this endpoint is automatically associated with the
default bus instance, which has load balancing enabled. The only unusual aspect of this
endpoint definition is that the OSGi Configuration Admin service is used to define the port
number in the endpoint's address (through the ${portNumber} placeholder).

Enabling the fabric load balancing feature—the fabric load balancing feature is installed in the
default bus instance, as previously described. In this example, the fabricPath property is set
to the value, demo/lb.

Creating fabric profiles for the example

To deploy the WS endpoint in a fabric, you need to create the appropriate profiles. Because you want
to create a cluster of WS endpoints, it makes sense to define multiple profiles, where each WS endpoint
gets its own profile. For example, you could define the following set of profiles for deployment:

cxf-lb-server

A base profile, containing details common to all of the cluster endpoints.

cxf-lb-server-8185

A profile that inherits from cxf-lb-server and sets the portNumber property to 8185.

cxf-lb-server-8186

A profile that inherits from cxf-lb-server and sets the portNumber property to 8186.

Assuming that the example server bundle (containing the WS endpoint implementation) is stored in
the local Maven repository and has the Maven coordinates, org.fusesource.example/cxf-lb-
server/1.0-SNAPSHOT, you can create the cxf-lb-server base profile by entering the following
console commands:

 <!-- Add the feature to the bus -->
 <cxfcore:bus>
 <cxfcore:features>
 <ref bean="fabricLoadBalancerFeature" />
 </cxfcore:features>
 </cxfcore:bus>

</beans>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

96

You can then create the cxf-lb-server-8185 profile and the cxf-lb-server-8186 profile as
follows:

The cxf-lb-server-8185 profile and the cxf-lb-server-8186 profile are now ready to be
deployed to the container of your choice, using the fabric:container-change-profile
command.

9.1.3. Configure the Client

Overview

To configure a WS client to use fabric load balancing, you must install the fabric load balancer feature
directly in the client proxy instance. This section describes how to configure the load balancer feature
in Spring XML, blueprint XML, and by programming in Java.

Prerequisites

For the basic prerequisites to build a fabric load-balancing WS client, see the section called
“Prerequisites”.

Spring XML

The following fragment from a Spring XML file shows how to add the fabric load balancer feature,
FabricLoadBalancerFeature, directly into a WS client proxy instance.

JBossFuse:karaf@root> profile-create --parents cxf cxf-lb-server
JBossFuse:karaf@root> profile-edit -f fabric-cxf cxf-lb-server
JBossFuse:karaf@root> profile-edit -b mvn:org.fusesource.example/cxf-lb-
server/1.0-SNAPSHOT cxf-lb-server

JBossFuse:karaf@root> profile-create --parents cxf-lb-server cxf-lb-
server-8185
JBossFuse:karaf@root> profile-create --parents cxf-lb-server cxf-lb-
server-8186
JBossFuse:karaf@root> profile-edit -p
org.fusesource.example.fabric.lb/portNumber=8185 cxf-lb-server-8185
JBossFuse:karaf@root> profile-edit -p
org.fusesource.example.fabric.lb/portNumber=8186 cxf-lb-server-8186

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 ...
>
 <!-- Create a client proxy, with load balancing enabled -->
 <jaxws:client id="ClientProxyBeanID"
 address="http://dummyaddress"
 serviceClass="SEI">
 <jaxws:features>
 <ref bean="fabricLoadBalancerFeature" />
 </jaxws:features>

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

97

The fabric load balancer feature is installed directly into the WS client proxy by inserting it as a child of
the jaxws:features element (or, as in this case, by inserting a bean reference to the actual
instance). The following beans are used to initialise the fabric load-balancer feature:

IZKClient OSGi service reference

The IZKClient reference is a proxy of the local fabric agent, which it accesses through the
org.linkedin.zookeeper.client.IZKClient interface. This reference is needed in order to
integrate the load balancer feature with the underlying fabric.

FabricLoadBalancerFeature bean

The FabricLoadBalancerFeature bean is initialised with the following properties:

zkClient

A reference to the fabric agent proxy, IZKClient.

fabricPath

The path of a node in the fabric registry, where the cluster data is stored (for example, the
addresses of the endpoints in the load-balancing cluster). The node path is specified relative to
the base node, /fabric/cxf/endpoints.

Blueprint XML

The following fragment from a blueprint XML file shows how to add the fabric load balancer feature,
FabricLoadBalancerFeature, directly into a WS client proxy instance.

 </jaxws:client>
 ...
 <!-- Reference the fabric agent -->
 <osgi:reference id="IZKClient"
 interface="org.linkedin.zookeeper.client.IZKClient" />

 <!-- Configure the Fabric load balancer feature -->
 <bean id="fabricLoadBalancerFeature"
 class="org.fusesource.fabric.cxf.FabricLoadBalancerFeature">
 <property name="zkClient" ref="IZKClient" />
 <property name="fabricPath" value="ZKPath" />
 </bean>
 ...
</beans>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 ...
 xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 <!-- Create a client proxy, with load balancing enabled -->
 <jaxws:client id="ClientProxyBeanID"
 address="http://dummyaddress"
 serviceClass="SEI">
 <jaxws:features>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

98

The fabric load balancer feature is installed directly into the WS client proxy by inserting it as a child of
the jaxws:features element (or, as in this case, by inserting a bean reference to the actual
instance). The following beans are used to initialise the fabric load-balancer feature:

IZKClient reference

The IZKClient reference is a proxy of the local fabric agent, which it accesses through the
org.linkedin.zookeeper.client.IZKClient interface. This reference is needed in order to
integrate the load balancer feature with the underlying fabric.

FabricLoadBalancerFeature bean

The FabricLoadBalancerFeature bean is initialised with the following properties:

zkClient

A reference to the fabric agent proxy, IZKClient.

fabricPath

The path of a node in the fabric registry, where the cluster data is stored (for example, the
addresses of the endpoints in the load-balancing cluster). The node path is specified relative to
the base node, /fabric/cxf/endpoints.

Java

As an alternative to using XML configuration, you can enable the fabric load balancing feature on the
client side by programming directly in Java. The following example shows how to enable fabric load
balancing on a proxy for the Hello Web service.

 <ref component-id="fabricLoadBalancerFeature" />
 </jaxws:features>
 </jaxws:client>
 ...
 <reference id="org.linkedin.zookeeper.client.IZKClient"
 interface="org.linkedin.zookeeper.client.IZKClient" />

 <!-- Create the Fabric load balancer feature -->
 <bean id="fabricLoadBalancerFeature"
 class="org.fusesource.fabric.cxf.FabricLoadBalancerFeature">
 <property name="zkClient"
ref="org.linkedin.zookeeper.client.IZKClient" />
 <property name="fabricPath" value="ZKPath" />
 </bean>
 ...
</blueprint>

// Java
package org.fusesource.fabric.demo.cxf.client;

import org.apache.cxf.feature.AbstractFeature;
import org.apache.cxf.frontend.ClientProxyFactoryBean;
import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
import org.fusesource.fabric.cxf.FabricLoadBalancerFeature;
import org.fusesource.fabric.demo.cxf.Hello;

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

99

In this example, the fabricPath property is set to the value, demo/lb (which matches the example
value used by the server in Example 9.1, “WS Server with Fabric Load Balancer Feature”).

The address that the client proxy accesses is set to a dummy value, http://dummyaddress, because
this value is not used. When the client is initialized, the load balancer feature substitutes the address
value retrieved from the demo/lb node of the fabric registry.

Example using Spring XML

Example 9.2, “Client Proxy with Fabric Load Balancer Feature” shows a detailed Spring XML example
of how to configure a WS client proxy with the fabric load balancer feature.

Example 9.2. Client Proxy with Fabric Load Balancer Feature

import java.util.ArrayList;
import java.util.List;

public class Client {

 private Hello hello;

 public void initializeHelloProxy() {
 // The feature will try to create a zookeeper client itself
 // by checking the system property of zookeeper.url
 FabricLoadBalancerFeature feature = new
FabricLoadBalancerFeature();
 // Feature will use this path to locate the service
 feature.setFabricPath("demo/lb");

 ClientProxyFactoryBean clientFactory = new
JaxWsProxyFactoryBean();
 clientFactory.setServiceClass(ClientProxyFactoryBean.class);
 // The address is not the actual address that the client will
access
 clientFactory.setAddress("http://dummyaddress");

 List<AbstractFeature> features = new ArrayList<AbstractFeature>();
 features.add(feature);
 // we need to setup the feature on the client factory
 clientFactory.setFeatures(features);

 // Create the proxy of Hello
 hello = clientFactory.create(Hello.class);
 }

 public static void main(String args[]) {
 initializeHelloProxy();
 ...
 }
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

100

Creating a fabric profile for the client

To deploy the WS client in a fabric, you need to create a profile for it. Assuming that the example client
bundle is stored in the local Maven repository and has the Maven coordinates,
org.fusesource.example/cxf-lb-client/1.0-SNAPSHOT, you can create the cxf-lb-
client profile by entering the following console commands:

 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:cxfcore="http://cxf.apache.org/core"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://cxf.apache.org/core
 http://cxf.apache.org/schemas/core.xsd
">

 <!-- Create a client proxy, with load balancing enabled -->
 <jaxws:client id="personServiceProxy"
 address="http://dummyaddress"
 serviceClass="org.fusesource.example.Person">
 <jaxws:features>
 <ref bean="fabricLoadBalancerFeature" />
 </jaxws:features>
 </jaxws:client>

 <!-- Inject the client proxy into a bean... -->
 <!-- (not shown) -->

 <!-- Reference the fabric agent -->
 <osgi:reference id="IZKClient"
 interface="org.linkedin.zookeeper.client.IZKClient" />

 <!-- Configure the Fabric load balancer feature -->
 <bean id="fabricLoadBalancerFeature"
 class="org.fusesource.fabric.cxf.FabricLoadBalancerFeature">
 <property name="zkClient" ref="IZKClient" />
 <property name="fabricPath" value="demo/lb" />
 </bean>

</beans>

JBossFuse:karaf@root> profile-create --parents cxf cxf-lb-client
JBossFuse:karaf@root> profile-edit -f fabric-cxf cxf-lb-client
JBossFuse:karaf@root> profile-edit -b mvn:org.fusesource.example/cxf-lb-
client/1.0-SNAPSHOT cxf-lb-client

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

101

The cxf-lb-client profile is now ready to be deployed to the container of your choice, using the
fabric:container-change-profile command.

9.2. FAILOVER CLUSTER

Overview

A failover cluster in Fuse Fabric is based on an ordered list of WS endpoints that are registered under a
particular node in the fabric registry. A client detects the failure of a master endpoint by catching the
exception that occurs when it tries to make an invocation. When that happens, the client automatically
moves to the next available endpoint in the cluster.

Failover cluster

Figure 9.2, “Fabric Failover for Apache CXF” gives an overview of the fabric failover mechanism for
Apache CXF endpoints.

Figure 9.2. Fabric Failover for Apache CXF

In this example, two WS servers are created, with the URIs, http://localhost:8185/Foo and
http://localhost:8186/Foo. In both servers, the failover feature is configured to store the cluster
endpoints under the path, demo/fo, in the fabric registry. The cluster endpoints stored under
demo/fo are ordered. The first endpoint in the cluster is the master and all of the other endpoints are
slaves.

The failover algorithm works as follows:

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

102

1. When the WS client starts, it is configured to look up the cluster path, demo/fo, in the fabric
registry. The failover feature initially returns the first address registered under demo/fo (the
master).

2. At some point, the master server could fail. The client determines whether the master has
failed by catching the exception that occurs when it tries to make an invocation: if the caught
exception matches one of the exceptions in a specified list (by default, just the
java.io.IOException), the master is deemed to have failed and the client now ignores the
corresponding address entry under demo/fo.

3. The client selects the next address entry under demo/fo and attempts to connect to that
server. Assuming that this server is healthy, it is effectively the new master.

4. At some point in the future, if the failed old master is restarted successfully, it creates a new
address entry under demo/fo after the existing entries, and is then available to clients, in case
the other server (or servers) fail.

FabricFailOverFeature

The fabric failover feature is implemented by the following class:

The FabricFailOverFeature class exposes the following bean properties:

fabricPath

This property specifies a node in the fabric registry (specified relative to the base node,
/fabric/cxf/endpoints) that is used to store the data for a particular endpoint cluster.

zkClient

A proxy reference to the OSGi service exposed by the fabric agent (of type,
org.linkedin.zookeeper.client.IZKClient).

maximumConnectionTimeout

The maximum length of time to attempt to connect to the fabric agent, specified in milliseconds.
The default is 10000 (10 seconds).

connectionRetryTime

How long to wait between connection attempts, specified in milliseconds. The default is 100.

exceptions

A semicolon-separated list of exceptions that signal to the client that a server has failed. If not set,
this property defaults to java.io.IOException.

For example, you could set the exceptions property to a value like the following:

Spring XML

org.fusesource.fabric.cxf.FabricFailOverFeature

java.io.IOException;javax.xml.ws.soap.SOAPFaultException

CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

103

The configuration of WS servers and WS clients in the failover case is similar to the load balancing case
(see Section 9.1.2, “Configure the Server” and Section 9.1.3, “Configure the Client”), except that
instead of instantiating and referencing a FabricLoadBalancerFeature bean, you must instantiate
and reference a FabricFailOverFeature bean.

For example, in Spring XML you can create a FabricFailOverFeature bean instance as follows:

Remember to customise the value of the fabricPath property and to reference the appropriate bean
ID (failoverFeature in the preceding example).

Blueprint XML

In blueprint XML you can create a FabricFailOverFeature bean instance as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 ...
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 ...
 xmlns:cxfcore="http://cxf.apache.org/core"
>
 ...
 <!-- Reference the fabric agent -->
 <osgi:reference id="IZKClient"
 interface="org.linkedin.zookeeper.client.IZKClient" />

 <!-- Configure the Fabric load balancer feature -->
 <bean id="failoverFeature"
 class="org.fusesource.fabric.cxf.FabricFailOverFeature">
 <property name="zkClient" ref="IZKClient" />
 <property name="fabricPath" value="ZKPath" />
 </bean>
 ...
</beans>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 ...
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <!-- Reference the fabric agent -->
 <reference id="org.linkedin.zookeeper.client.IZKClient"
 interface="org.linkedin.zookeeper.client.IZKClient" />

 <!-- Create the Fabric load balancer feature -->
 <bean id="failoverFeature"
 class="org.fusesource.fabric.cxf.FabricFailOverFeature">
 <property name="zkClient"
ref="org.linkedin.zookeeper.client.IZKClient" />
 <property name="fabricPath" value="ZKPath" />
 </bean>
 ...
</blueprint>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

104

CHAPTER 10. PACKAGING AN APPLICATION

Abstract

Applications must be packed as an OSGi bundle before they can be deployed into Red Hat JBoss Fuse.
You will not need to include any Apache CXF specific packages in your bundle. The Apache CXF
packages are included in JBoss Fuse. You need to ensure you import the required packages when
building your bundle.

CREATING A BUNDLE

To deploy a Apache CXF application into Red Hat JBoss Fuse, you need to package it as an OSGi
bundle. There are several tools available for assisting in the process. JBoss Fuse uses the Maven
bundle plug-in whose use is described in Appendix B, Using the Maven OSGi Tooling.

REQUIRED BUNDLE

The Apache CXF runtime components are included in JBoss Fuse as an OSGi bundle called
org.apache.cxf.cxf-bundle. This bundle needs to be installed in the JBoss Fuse container before
your application's bundle can be started.

To inform the container of this dependency, you use the OSGi manifest's Required-Bundle property.

REQUIRED PACKAGES

In order for your application to use the Apache CXF components, you need to import their packages
into the application's bundle. Because of the complex nature of the dependencies in Apache CXF, you
cannot rely on the Maven bundle plug-in, or the bnd tool, to automatically determine the needed
imports. You will need to explicitly declare them.

You need to import the following packages into your bundle:

javax.jws

javax.wsdl

META-INF.cxf

META-INF.cxf.osgi

org.apache.cxf.bus

org.apache.cxf.bus.spring

org.apache.cxf.bus.resource

org.apache.cxf.configuration.spring

org.apache.cxf.resource

org.apache.servicemix.cxf.transport.http_osgi

org.springframework.beans.factory.config

CHAPTER 10. PACKAGING AN APPLICATION

105

EXAMPLE

Example 10.1, “Apache CXF Application Manifest” shows a manifest for a Apache CXF application's
OSGi bundle.

Example 10.1. Apache CXF Application Manifest

Manifest-Version: 1.0
Built-By: FinnMcCumial
Created-By: Apache Maven Bundle Plugin
Bundle-License: http://www.apache.org/licenses/LICENSE-2.0.txt
Import-Package: javax.jws,javax.wsdl,META-INF.cxf,META-INF.cxf.osgi,
org.apache.cxf.bus,org.apache.cxf.bus.spring,org.apache.bus.resource,
org.apache.cxf.configuration.spring, org.apache.cxf.resource,
org.apache.servicemix.cxf.transport.http_cxf,
org.springframework.beans.factory.config
Bnd-LastModified: 1222079507224
Bundle-Version: 4.0.0.fuse
Bundle-Name: Fuse CXF Example
Bundle-Description: This is a sample CXF manifest.
Build-Jdk: 1.5.0_08
Private-Package: org.apache.servicemix.examples.cxf
Required-Bundle: org.apache.cxf.cxf-bundle
Bundle-ManifestVersion: 2
Bundle-SymbolicName: cxf-wsdl-first-osgi
Tool: Bnd-0.0.255

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

106

CHAPTER 11. DEPLOYING AN APPLICATION

Abstract

Red Hat JBoss Fuse will automatically install and deploy your application. You can also manually
control the state of your application using the console.

OVERVIEW

There are two ways to deploy your application into Red Hat JBoss Fuse:

1. Rely on the hot deployment mechanism.

2. Use the console.

You can also start and stop a deployed application using the console.

HOT DEPLOYMENT

The easiest way to deploy an application is to place it in the hot deployment folder. By default, the hot
deployment folder is InstallDir/deploy. Any bundle placed in this folder is installed into the container.
If its dependencies can be resolved, the bundle is activated.

One the bundle is installed in the container, you can manage it using the console.

DEPLOYING FROM THE CONSOLE

The easiest way to deploy an application from the console is to install it and start it in one step. This is
done using the osgi install -s command. It takes the location of the bundle as a URI. So the
command:

servicemix>osgi install -s file:/home/finn/ws/widgetapp.jar

Installs and attempts to start the bundle widgetapp.jar which is located in /home/finn/ws.

You can use the osgi install command without the -s flag. That will install the bundle without
attempting to start it. You will then have to manually start the bundle using the osgi start
command.

The osgi start command uses the bundle ID to determine which bundle to activate. [1]

REFRESHING AN APPLICATION

If you make changes to your application and want to redeploy it, you can do so by replacing the
installed bundle with a new version and using the osgi refresh command. This command instructs
the container to stop the running instance of your application, reload the bundle, and restart it.

The osgi refresh command uses a bundle ID to determine which bundle to refresh. [1]

STOPPING AN APPLICATION

CHAPTER 11. DEPLOYING AN APPLICATION

107

If you want to temporarily deactivate your application you can use the osgi stop command. The
osgi stop moves your application's bundle from the active state to the resolved state. This means
that it can be easily restarted using the osgi start command.

The osgi stop command uses a bundle ID to determine which bundle to stop. [1]

UNINSTALLING AN APPLICATION

When you want to permanently remove an application from the container you need to uninstall it.
Bundles can only be installed when they are not active. This means that you have to stop your
application using the osgi stop command before trying to unistall it.

Once the application's bundle is stopped, you can use the osgi uninstall command to remove the
bundle from the container. This does not delete the physical bundle. It just removes the bundle from
the container's list of installed bundles.

The osgi stop command uses a bundle ID to determine which bundle to unistall. [1]

[1] You can get a list of the bundle IDs using the osgi list command.

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

108

APPENDIX A. APACHE CXF BINDING IDS

Table A.1. Binding IDs for Message Bindings

Binding ID

CORBA http://cxf.apache.org/bindings/corba

HTTP/REST http://apache.org/cxf/binding/http

SOAP 1.1 http://schemas.xmlsoap.org/wsdl/soap
/http

SOAP 1.1 w/ MTOM http://schemas.xmlsoap.org/wsdl/soap
/http?mtom=true

SOAP 1.2 http://www.w3.org/2003/05/soap/bindi
ngs/HTTP/

SOAP 1.2 w/ MTOM http://www.w3.org/2003/05/soap/bindi
ngs/HTTP/?mtom=true

XML http://cxf.apache.org/bindings/xform
at

APPENDIX A. APACHE CXF BINDING IDS

109

APPENDIX B. USING THE MAVEN OSGI TOOLING

Abstract

Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The
Maven bundle plug-in makes the job easier by automating the process and providing a number of
shortcuts for specifying the contents of the bundle manifest.

The Red Hat JBoss Fuse OSGi tooling uses the Maven bundle plug-in from Apache Felix. The bundle
plug-in is based on the bnd tool from Peter Kriens. It automates the construction of OSGi bundle
manifests by introspecting the contents of the classes being packaged in the bundle. Using the
knowledge of the classes contained in the bundle, the plug-in can calculate the proper values to
populate the Import-Packages and the Export-Package properties in the bundle manifest. The plug-in
also has default values that are used for other required properties in the bundle manifest.

To use the bundle plug-in, do the following:

1. Add the bundle plug-in to your project's POM file.

2. Configure the plug-in to correctly populate your bundle's manifest.

B.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT

Overview

A Maven project for building an OSGi bundle can be a simple single level project. It does not require any
sub-projects. However, it does require that you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

NOTE

There are several Maven archetypes you can use to set up your project with the
appropriate settings.

Directory structure

A project that constructs an OSGi bundle can be a single level project. It only requires that you have a
top-level POM file and a src folder. As in all Maven projects, you place all Java source code in the
src/java folder, and you place any non-Java resources in the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint configuration files, and WSDL
contracts.

NOTE

Red Hat JBoss Fuse OSGi projects that use Apache CXF, Apache Camel, or another
Spring configured bean also include a beans.xml file located in the
src/resources/META-INF/spring folder.

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

110

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

1

2

3

4

5

Adding a bundle plug-in

Before you can use the bundle plug-in you must add a dependency on Apache Felix. After you add the
dependency, you can add the bundle plug-in to the plug-in portion of the POM.

Example B.1, “Adding an OSGi bundle plug-in to a POM” shows the POM entries required to add the
bundle plug-in to your project.

Example B.1. Adding an OSGi bundle plug-in to a POM

The entries in Example B.1, “Adding an OSGi bundle plug-in to a POM” do the following:

Adds the dependency on Apache Felix

Adds the bundle plug-in to your project

Configures the plug-in to use the project's artifact ID as the bundle's symbolic name

Configures the plug-in to include all Java packages imported by the bundled classes; also imports
the org.apache.camel.osgi package

Configures the plug-in to bundle the listed class, but not to include them in the list of exported
packages

1

2

3
4

5

...
<dependencies>

 <dependency>
 <groupId>org.apache.felix</groupId>

 <artifactId>org.osgi.core</artifactId>
 <version>1.0.0</version>
 </dependency>
...
</dependencies>
...
<build>
 <plugins>

 <plugin>
 <groupId>org.apache.felix</groupId>

 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>

 <Import-Package>*,org.apache.camel.osgi</Import-Package>
 <Private-

Package>org.apache.servicemix.examples.camel</Private-Package>
 </instructions>

 </configuration>
 </plugin>
 </plugins>
</build>
...

APPENDIX B. USING THE MAVEN OSGI TOOLING

111

NOTE

Edit the configuration to meet the requirements of your project.

For more information on configuring the bundle plug-in, see Section B.2, “Configuring the Bundle Plug-
In”.

Activating a bundle plug-in

To have Maven use the bundle plug-in, instruct it to package the results of the project as a bundle. Do
this by setting the POM file's packaging element to bundle.

Useful Maven archetypes

There are several Maven archetypes to generate a project that is preconfigured to use the bundle plug-
in:

the section called “Spring OSGi archetype”

the section called “Apache CXF code-first archetype”

the section called “Apache CXF wsdl-first archetype”

the section called “Apache Camel archetype”

Spring OSGi archetype

The Spring OSGi archetype creates a generic project for building an OSGi project using Spring DM, as
shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.springframework.osgi -
DarchetypeArtifactId=spring-osgi-bundle-archetype -DarchetypeVersion=1.12
-DgroupId=groupId -DartifactId=artifactId -Dversion=version

Apache CXF code-first archetype

The Apache CXF code-first archetype creates a project for building a service from Java, as shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=spring-osgi-bundle-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-
archetype/2008.01.0.3-fuse

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

112

Apache CXF wsdl-first archetype

The Apache CXF wsdl-first archetype creates a project for creating a service from WSDL, as shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

Apache Camel archetype

The Apache Camel archetype creates a project for building a route that is deployed into JBoss Fuse, as
shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-camel-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

B.2. CONFIGURING THE BUNDLE PLUG-IN

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in's instructions element.

Configuration properties

Some of the commonly used configuration properties are:

Bundle-SymbolicName

Bundle-Name

Bundle-Version

Export-Package

Private-Package

org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-
archetype/2008.01.0.3-fuse

org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2008.01.0.3-
fuse

APPENDIX B. USING THE MAVEN OSGI TOOLING

113

Import-Package

Setting a bundle's symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupId + "."
+ artifactId, with the following exceptions:

If groupId has only one section (no dots), the first package name with classes is returned.

For example, if the group Id is commons-logging:commons-logging, the bundle's symbolic
name is org.apache.commons.logging.

If artifactId is equal to the last section of groupId, then groupId is used.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle's symbolic name is org.apache.maven.

If artifactId starts with the last section of groupId, that portion is removed.

For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven-core, the bundle's symbolic name is
org.apache.maven.core.

To specify your own value for the bundle's symbolic name, add a Bundle-SymbolicName child in the
plug-in's instructions element, as shown in Example B.2.

Example B.2. Setting a bundle's symbolic name

Setting a bundle's name

By default, a bundle's name is set to ${project.name}.

To specify your own value for the bundle's name, add a Bundle-Name child to the plug-in's
instructions element, as shown in Example B.3.

Example B.3. Setting a bundle's name

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
 ...
 </instructions>
 </configuration>
</plugin>

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

114

Setting a bundle's version

By default, a bundle's version is set to ${project.version}. Any dashes (-) are replaced with dots
(.) and the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes
4.2.0.SNAPSHOT.

To specify your own value for the bundle's version, add a Bundle-Version child to the plug-in's
instructions element, as shown in Example B.4.

Example B.4. Setting a bundle's version

Specifying exported packages

By default, the OSGi manifest's Export-Package list is populated by all of the packages in your local
Java source code (under src/main/java), except for the deault package, ., and any packages
containing .impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages
listed in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export-Package child to the plug-
in's instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and
that are to be exported. The package names can be specified using the * wildcard symbol. For example,
the entry com.fuse.demo.* includes all packages on the project's classpath that start with
com.fuse.demo.

 <Bundle-Name>JoeFred</Bundle-Name>
 ...
 </instructions>
 </configuration>
</plugin>

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Version>1.0.3.1</Bundle-Version>
 ...
 </instructions>
 </configuration>
</plugin>

APPENDIX B. USING THE MAVEN OSGI TOOLING

115

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
!com.fuse.demo.private excludes the package com.fuse.demo.private.

When excluding packages, the order of entries in the list is important. The list is processed in order
from the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

However, if you list the packages using com.fuse.demo.*,!com.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.

Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the
Export-Package element, the Export-Package element takes precedence. The
package is added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify
a list of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project's classpath that are to be included in the bundle. These packages are packaged in the bundle,
but not exported (unless they are also selected by the Export-Package instruction).

Example B.5 shows the configuration for including a private package in a bundle

Example B.5. Including a private package in a bundle

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest's Import-Package property with a list of
all the packages referred to by the contents of the bundle.

!com.fuse.demo.private,com.fuse.demo.*

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
 ...
 </instructions>
 </configuration>
</plugin>

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

116

While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also
result in unwanted packages being imported.

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-
in's instructions element. The syntax for the package list is the same as for the Export-Package
element and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan
the bundle's contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example B.6 shows the configuration for specifying the packages imported by a bundle

Example B.6. Specifying the packages imported by a bundle

More information

For more information on configuring a bundle plug-in, see:

"Managing OSGi Dependencies"

Apache Felix documentation

Peter Kriens' aQute Software Consultancy web site

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Import-Package>javax.jws,
 javax.wsdl,
 org.apache.cxf.bus,
 org.apache.cxf.bus.spring,
 org.apache.cxf.bus.resource,
 org.apache.cxf.configuration.spring,
 org.apache.cxf.resource,
 org.springframework.beans.factory.config,
 *
 </Import-Package>
 ...
 </instructions>
 </configuration>
</plugin>

APPENDIX B. USING THE MAVEN OSGI TOOLING

117

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Managing_OSGi_Dependencies/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

APPENDIX C. CONDUITS

Abstract

Conduits are a low-level piece of the transport architecture that are used to implement outbound
connections. Their behavior and life-cycle can effect system performance and processing load.

OVERVIEW

Conduits manage the client-side, or outbound, transport details in the Apache CXF runtime. They are
responsible for opening ports, establishing outbound connections, sending messages, and listening for
any responses between an application and a single external endpoint. If an application connects to
multiple endpoints, it will have one conduit instance for each endpoint.

Each transport type implements its own conduit using the Conduit interface. This allows for a
standardized interface between the application level functionality and the transports.

In general, you only need to worry about the conduits being used by your application when configuring
the client-side transport details. The underlying semantics of how the runtime handles conduits is,
generally, not something a developer needs to worry about.

However, there are cases when an understanding of conduit's can prove helpful:

Implementing a custom transport

Advanced application tuning to manage limited resources

CONDUIT LIFE-CYCLE

Conduits are managed by the client implementation object. Once created, a conduit lives for the
duration of the client implementation object. The conduit's life-cycle is:

1. When the client implementation object is created, it is given a reference to a
ConduitSelector object.

2. When the client needs to send a message is request's a reference to a conduit from the conduit
selector.

If the message is for a new endpoint, the conduit selector creates a new conduit and passes it
to the client implementation. Otherwise, it passes the client a reference to the conduit for the
target endpoint.

3. The conduit sends messages when needed.

4. When the client implementation object is destroyed, all of the conduits associated with it are
destroyed.

CONDUIT WEIGHT

The weight of a conduit object depends on the transport implementation. HTTP conduits are extremely
light weight. JMS conduits are heavy because they are associated with the JMS Session object and
one or more JMSListenerContainer objects.

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

118

INDEX
A

AcknowledgementInterval, Acknowledgement interval

application source, How WS-RM works

AtLeastOnce, Message delivery assurance policies

AtMostOnce, Message delivery assurance policies

B

BaseRetransmissionInterval, Base retransmission interval

Bundle-Name, Setting a bundle's name

Bundle-SymbolicName, Setting a bundle's symbolic name

Bundle-Version, Setting a bundle's version

bundles

exporting packages, Specifying exported packages

importing packages, Specifying imported packages

name, Setting a bundle's name

private packages, Specifying private packages

symbolic name, Setting a bundle's symbolic name

version, Setting a bundle's version

C

configuration

HTTP consumer connection properties, The client element

HTTP consumer endpoint, Using Configuration

HTTP service provider connection properties, The server element

HTTP service provider endpoint, Using Configuration

CreateSequence, How WS-RM works

CreateSequenceResponse, How WS-RM works

D

driverClassName, Configuring WS-persistence

E

ExponentialBackoff, Exponential backoff for retransmission

Export-Package, Specifying exported packages

INDEX

119

H

high availability

client configuration, Add the clustering feature to your client configuration

configuring random strategy, Configuring a random strategy

configuring static failover, Overview

enabling static failover, Overview

static failover, HA with static failover

http-conf:authorization, The conduit element

http-conf:basicAuthSupplier, The conduit element

http-conf:client, The client element

Accept, The client element

AcceptEncoding, The client element

AcceptLanguage, The client element

AllowChunking, The client element

AutoRedirect, The client element

BrowserType, The client element

CacheControl, The client element, Consumer Cache Control Directives

Connection, The client element

ConnectionTimeout, The client element

ContentType, The client element

Cookie, The client element

DecoupledEndpoint, The client element, Configuring the consumer

Host, The client element

MaxRetransmits, The client element

ProxyServer, The client element

ProxyServerPort, The client element

ProxyServerType, The client element

ReceiveTimeout, The client element

Referer, The client element

http-conf:conduit, The conduit element

name attribute, The conduit element

http-conf:contextMatchStrategy, The destination element

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

120

http-conf:destination, The destination element

name attribute, The destination element

http-conf:fixedParameterOrder, The destination element

http-conf:proxyAuthorization, The conduit element

http-conf:server, The destination element , The server element

CacheControl, The server element, Service Provider Cache Control Directives

ContentEncoding, The server element

ContentLocation, The server element

ContentType, The server element

HonorKeepAlive, The server element

ReceiveTimeout, The server element

RedirectURL, The server element

ServerType, The server element

SuppressClientReceiveErrors, The server element

SuppressClientSendErrors, The server element

http-conf:tlsClientParameters, The conduit element

http-conf:trustDecider, The conduit element

I

Import-Package, Specifying imported packages

InOrder, Message delivery assurance policies

J

jaxws:binding, Elements, Adding functionality

jaxws:client

abstract, Basic Configuration Properties

address, Basic Configuration Properties

bindingId, Basic Configuration Properties

bus, Basic Configuration Properties

createdFromAPI, Basic Configuration Properties

depends-on, Basic Configuration Properties

endpointName, Basic Configuration Properties

name, Basic Configuration Properties

password, Basic Configuration Properties

INDEX

121

serviceClass, Basic Configuration Properties

serviceName, Basic Configuration Properties

username, Basic Configuration Properties

wsdlLocation, Basic Configuration Properties

jaxws:conduitSelector, Adding functionality

jaxws:dataBinding, Elements, Adding functionality

jaxws:endpoint

abstract, Attributes

address, Attributes

bindingUri, Attributes

bus, Attributes

createdFromAPI, Attributes

depends-on, Attributes

endpointName, Attributes

id, Attributes

implementor, Attributes

implementorClass, Attributes

name, Attributes

publish, Attributes

publishedEndpointUrl, Attributes

serviceName, Attributes

wsdlLocation, Attributes

jaxws:exector, Elements

jaxws:features, Elements, Adding functionality

jaxws:handlers, Elements, Adding functionality

jaxws:inFaultInterceptors, Elements, Adding functionality

jaxws:inInterceptors, Elements, Adding functionality

jaxws:invoker, Elements

jaxws:outFaultInterceptors, Elements, Adding functionality

jaxws:outInterceptors, Elements, Adding functionality

jaxws:properties, Elements, Adding functionality

jaxws:server

abstract, Attributes

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

122

address, Attributes

bindingId, Attributes

bus, Attributes

createdFromAPI, Attributes

depends-on, Attributes

endpointName, Attributes

id, Attributes

name, Attributes

publish, Attributes

serviceBean, Attributes

serviceClass, Attributes

serviceName, Attributes

wsdlLocation, Attributes

jaxws:serviceFactory, Elements

JMS

specifying the message type, Specifying the message type

JMS destination

specifying, Specifying the JMS address

jms:address, Specifying the JMS address

connectionPassword attribute, Specifying the JMS address

connectionUserName attribute, Specifying the JMS address

destinationStyle attribute, Specifying the JMS address

jmsDestinationName attribute, Specifying the JMS address

jmsiReplyDestinationName attribute, Using a Named Reply Destination

jmsReplyDestinationName attribute, Specifying the JMS address

jndiConnectionFactoryName attribute, Specifying the JMS address

jndiDestinationName attribute, Specifying the JMS address

jndiReplyDestinationName attribute, Specifying the JMS address , Using a Named Reply
Destination

jms:client, Specifying the message type

messageType attribute, Specifying the message type

jms:JMSNamingProperties, Specifying JNDI properties

INDEX

123

jms:server, Specifying the configuration

durableSubscriberName, Specifying the configuration

messageSelector, Specifying the configuration

transactional, Specifying the configuration

useMessageIDAsCorrealationID, Specifying the configuration

JMSConfiguration, Specifying the configuration

JNDI

specifying the connection factory, Specifying the JMS address

M

Maven archetypes, Useful Maven archetypes

Maven tooling

adding the bundle plug-in, Adding a bundle plug-in

maxLength, Maximum length of an RM sequence

maxUnacknowledged, Maximum unacknowledged messages threshold

N

named reply destination

specifying in WSDL, Specifying the JMS address

using, Using a Named Reply Destination

O

osgi install, Deploying from the console

osgi refresh, Refreshing an application

osgi start, Deploying from the console

osgi stop, Stopping an application

osgi uninstall, Uninstalling an application

P

passWord, Configuring WS-persistence

Private-Package, Specifying private packages

R

random strategy, Configuring a random strategy

replicated services, Overview

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

124

RMAssertion, WS-Policy RMAssertion Children

S

Sequence, How WS-RM works

SequenceAcknowledgment, How WS-RM works

static failover, HA with static failover

configuring, Overview

enabling, Overview

U

userName, Configuring WS-persistence

W

WS-Addressing

using, Configuring an endpoint to use WS-Addressing

WS-RM

AcknowledgementInterval, Acknowledgement interval

AtLeastOnce, Message delivery assurance policies

AtMostOnce, Message delivery assurance policies

BaseRetransmissionInterval, Base retransmission interval

configuring, Configuring WS-RM

destination, How WS-RM works

driverClassName, Configuring WS-persistence

enabling, Enabling WS-RM

ExponentialBackoff, Exponential backoff for retransmission

externaL attachment, External attachment

initial sender, How WS-RM works

InOrder, Message delivery assurance policies

interceptors, Apache CXF WS-RM Interceptors

maxLength, Maximum length of an RM sequence

maxUnacknowledged, Maximum unacknowledged messages threshold

passWord, Configuring WS-persistence

rmManager, Children of the rmManager Spring bean

source, How WS-RM works

INDEX

125

ultimate receiver, How WS-RM works

url, Configuring WS-persistence

userName, Configuring WS-persistence

wsam:Addressing, Configuring an endpoint to use WS-Addressing

WSDL extensors

jms:address (see jms:address)

jms:client (see jms:client)

jms:JMSNamingProperties (see jms:JMSNamingProperties)

jms:server (see jms:server)

wsrm:AcksTo, How WS-RM works

wswa:UsingAddressing, Configuring an endpoint to use WS-Addressing

Red Hat JBoss Fuse 6.0 Configuring Web Service Endpoints

126

	Table of Contents
	CHAPTER 1. CONFIGURING JAX-WS ENDPOINTS
	1.1. CONFIGURING SERVICE PROVIDERS
	1.1.1. Using the jaxws:endpoint Element
	Overview
	Identifying the endpoint being configured
	Attributes
	Example

	1.1.2. Using the jaxws:server Element
	Overview
	Identifying the endpoint being configured
	Attributes
	Example

	1.1.3. Adding Functionality to Service Providers
	Overview
	Elements

	1.2. CONFIGURING CONSUMER ENDPOINTS
	Overview
	Basic Configuration Properties
	Adding functionality
	Example

	CHAPTER 2. CONFIGURING THE HTTP TRANSPORT
	2.1. CONFIGURING A CONSUMER
	2.1.1. Using Configuration
	Namespace
	The conduit element
	The client element
	Example
	More information

	2.1.2. Using WSDL
	Namespace
	The client element
	Example

	2.1.3. Consumer Cache Control Directives

	2.2. CONFIGURING A SERVICE PROVIDER
	2.2.1. Using Configuration
	Namespace
	The destination element
	The server element
	Example

	2.2.2. Using WSDL
	Namespace
	The server element
	Example

	2.2.3. Service Provider Cache Control Directives

	2.3. USING THE HTTP TRANSPORT IN DECOUPLED MODE
	Overview
	Configuring decoupled interactions
	Configuring an endpoint to use WS-Addressing
	Configuring the consumer
	How messages are processed

	CHAPTER 3. USING SOAP OVER JMS
	3.1. BASIC CONFIGURATION
	Overview
	Specifying the JMS transport type
	Specifying the target destination
	Configuring JNDI and the JMS transport

	3.2. JMS URIS
	Overview
	Syntax
	JMS properties
	JNDI properties
	Additional JNDI properties
	Example

	3.3. WSDL EXTENSIONS
	Overview
	SOAP/JMS namespace
	WSDL extension elements
	Configuration scopes
	Example

	CHAPTER 4. USING GENERIC JMS
	4.1. USING THE JMS CONFIGURATION BEAN
	Overview
	Configuration namespace
	Specifying the configuration
	Applying the configuration to an endpoint
	Applying the configuration to the transport

	4.2. USING WSDL TO CONFIGURE JMS
	4.2.1. Basic JMS configuration
	Overview
	Specifying the JMS address
	Specifying JNDI properties
	Example

	4.2.2. JMS client configuration
	Overview
	Specifying the message type
	Example

	4.2.3. JMS provider configuration
	Overview
	Specifying the configuration
	Example

	4.3. USING A NAMED REPLY DESTINATION
	Overview
	Setting the reply destination name
	Example

	CHAPTER 5. APACHE CXF LOGGING
	5.1. OVERVIEW OF APACHE CXF LOGGING
	Overview
	Default logging.properties file
	Logging feature
	Where to begin?
	More information on java.util.logging

	5.2. SIMPLE EXAMPLE OF USING LOGGING
	Changing the log levels and output destination

	5.3. DEFAULT LOGGING CONFIGURATION FILE
	5.3.1. Configuring Logging Output
	Configuring the console handler
	Configuring the file handler
	Configuring both the console handler and the file handler

	5.3.2. Configuring Logging Levels
	Logging levels
	Configuring the global logging level
	Configuring logging at an individual package level

	5.4. ENABLING LOGGING AT THE COMMAND LINE
	Overview
	Specifying the log configuration file on application start-up

	5.5. LOGGING FOR SUBSYSTEMS AND SERVICES
	Apache CXF logging subsystems
	Example

	5.6. LOGGING MESSAGE CONTENT
	Configuring message content logging
	Adding the logging feature to an endpoint
	Adding the logging feature to a consumer
	Set logging to log INFO level messages
	Logging SOAP messages

	CHAPTER 6. DEPLOYING WS-ADDRESSING
	6.1. INTRODUCTION TO WS-ADDRESSING
	Overview
	Supported specifications
	Further information

	6.2. WS-ADDRESSING INTERCEPTORS
	Overview
	WS-Addressing Interceptors

	6.3. ENABLING WS-ADDRESSING
	Overview
	Adding WS-Addressing as a Feature

	6.4. CONFIGURING WS-ADDRESSING ATTRIBUTES
	Overview
	Configuring WS-Addressing attributes
	Using a WS-Policy assertion embedded in a feature

	CHAPTER 7. ENABLING RELIABLE MESSAGING
	7.1. INTRODUCTION TO WS-RM
	Overview
	How WS-RM works
	WS-RM delivery assurances
	Supported specifications
	Further information

	7.2. WS-RM INTERCEPTORS
	Overview
	Apache CXF WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM Attributes

	7.3. ENABLING WS-RM
	Overview
	Spring beans—explicitly adding interceptors
	WS-Policy framework—implicitly adding interceptors

	7.4. CONFIGURING WS-RM
	7.4.1. Configuring Apache CXF-Specific WS-RM Attributes
	Overview
	Children of the rmManager Spring bean
	Example

	7.4.2. Configuring Standard WS-RM Policy Attributes
	Overview
	WS-Policy RMAssertion Children
	More detailed reference information
	RMAssertion in rmManager Spring bean
	Policy within a feature
	WSDL file
	External attachment

	7.4.3. WS-RM Configuration Use Cases
	Overview
	Base retransmission interval
	Exponential backoff for retransmission
	Acknowledgement interval
	Maximum unacknowledged messages threshold
	Maximum length of an RM sequence
	Message delivery assurance policies

	7.5. CONFIGURING WS-RM PERSISTENCE
	Overview
	How it works
	Enabling WS-persistence
	Configuring WS-persistence

	CHAPTER 8. ENABLING HIGH AVAILABILITY
	8.1. INTRODUCTION TO HIGH AVAILABILITY
	Overview
	HA with static failover

	8.2. ENABLING HA WITH STATIC FAILOVER
	Overview
	Encode replica details in your service WSDL file
	Add the clustering feature to your client configuration

	8.3. CONFIGURING HA WITH STATIC FAILOVER
	Overview
	Configuring a random strategy

	CHAPTER 9. ENABLING HIGH AVAILABILITY IN FUSE FABRIC
	9.1. LOAD BALANCING CLUSTER
	9.1.1. Introduction to Load Balancing
	Overview
	Fuse Fabric
	Load-balancing cluster
	FabricLoadBalancerFeature
	Prerequisites
	Maven dependency
	OSGi package import
	Fabric deployment
	Required feature

	9.1.2. Configure the Server
	Overview
	Prerequisites
	Spring XML
	Blueprint XML
	Example using Spring XML
	Creating fabric profiles for the example

	9.1.3. Configure the Client
	Overview
	Prerequisites
	Spring XML
	Blueprint XML
	Java
	Example using Spring XML

	Creating a fabric profile for the client

	9.2. FAILOVER CLUSTER
	Overview
	Failover cluster
	FabricFailOverFeature
	Spring XML
	Blueprint XML

	CHAPTER 10. PACKAGING AN APPLICATION
	CREATING A BUNDLE
	REQUIRED BUNDLE
	REQUIRED PACKAGES
	EXAMPLE

	CHAPTER 11. DEPLOYING AN APPLICATION
	OVERVIEW
	HOT DEPLOYMENT
	DEPLOYING FROM THE CONSOLE
	REFRESHING AN APPLICATION
	STOPPING AN APPLICATION
	UNINSTALLING AN APPLICATION

	APPENDIX A. APACHE CXF BINDING IDS
	APPENDIX B. USING THE MAVEN OSGI TOOLING
	B.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT
	Overview
	Directory structure
	Adding a bundle plug-in
	Activating a bundle plug-in
	Useful Maven archetypes
	Spring OSGi archetype
	Apache CXF code-first archetype
	Apache CXF wsdl-first archetype
	Apache Camel archetype

	B.2. CONFIGURING THE BUNDLE PLUG-IN
	Overview
	Configuration properties
	Setting a bundle's symbolic name
	Setting a bundle's name
	Setting a bundle's version
	Specifying exported packages
	Specifying private packages
	Specifying imported packages
	More information

	APPENDIX C. CONDUITS
	OVERVIEW
	CONDUIT LIFE-CYCLE
	CONDUIT WEIGHT

	INDEX

