
Red Hat JBoss Enterprise Application
Platform 7.2

Developing Hibernate Applications

For Use with Red Hat JBoss Enterprise Application Platform 7.2

Last Updated: 2019-09-26

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate
Applications

For Use with Red Hat JBoss Enterprise Application Platform 7.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information for developers and administrators who want to develop and
deploy JPA/Hibernate applications with Red Hat JBoss Enterprise Application Platform.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. ABOUT HIBERNATE CORE
1.2. HIBERNATE ENTITYMANAGER

CHAPTER 2. HIBERNATE CONFIGURATION
2.1. HIBERNATE CONFIGURATION
2.2. SECOND-LEVEL CACHES

2.2.1. About Second-level Caches
2.2.2. Configure a Second-level Cache for Hibernate

Configuring a Second-level Cache for Hibernate Using Hibernate Native Applications

CHAPTER 3. HIBERNATE ANNOTATIONS
3.1. HIBERNATE ANNOTATIONS

CHAPTER 4. HIBERNATE QUERY LANGUAGE
4.1. ABOUT HIBERNATE QUERY LANGUAGE

Introduction to JPQL
Introduction to HQL

4.2. ABOUT HQL STATEMENTS
About the UPDATE and DELETE Statements
About the INSERT Statement

4.3. ABOUT HQL ORDERING
4.4. ABOUT COLLECTION MEMBER REFERENCES
4.5. ABOUT QUALIFIED PATH EXPRESSIONS
4.6. ABOUT HQL FUNCTIONS

4.6.1. About HQL Standardized Functions
4.6.2. About HQL Non-Standardized Functions
4.6.3. About the Concatenation Operation

4.7. ABOUT DYNAMIC INSTANTIATION
4.8. ABOUT HQL PREDICATES

HQL Predicates
4.9. ABOUT RELATIONAL COMPARISONS
4.10. BYTECODE ENHANCEMENT

4.10.1. Lazy Attribute Loading

CHAPTER 5. HIBERNATE SERVICES
5.1. ABOUT HIBERNATE SERVICES
5.2. ABOUT SERVICE CONTRACTS
5.3. TYPES OF SERVICE DEPENDENCIES

5.3.1. The Service Registry
5.3.1.1. About the ServiceRegistry

5.3.2. Custom Services
5.3.2.1. About Custom Services

5.3.3. The Boot-Strap Registry
5.3.3.1. About the Boot-strap Registry

Using BootstrapServiceRegistryBuilder
5.3.3.2. BootstrapRegistry Services

5.3.4. SessionFactory Registry
5.3.4.1. SessionFactory Services

5.3.5. Integrators
5.3.5.1. Integrator Use Cases

6
6
6

8
8
8
8
9
9

10
10

17
17
17
17
17
19

20
21
22
22
24
24
24
25
25
26
26
28
30
30

32
32
32
32
32
32
33
33
34
34
34
34
35
35
36
36

Table of Contents

1

. .

. .

CHAPTER 6. HIBERNATE ENVERS
6.1. ABOUT HIBERNATE ENVERS
6.2. ABOUT AUDITING PERSISTENT CLASSES
6.3. AUDITING STRATEGIES

6.3.1. About Auditing Strategies
6.3.2. Set the Auditing Strategy

Define an Auditing Strategy
6.3.3. Adding Auditing Support to a JPA Entity

6.4. CONFIGURATION
6.4.1. Configure Envers Parameters
6.4.2. Enable or Disable Auditing at Runtime
6.4.3. Configure Conditional Auditing
6.4.4. Envers Configuration Properties

6.5. QUERYING AUDIT INFORMATION
6.5.1. Retrieve Auditing Information Through Queries
6.5.2. Traversing Entity Associations Using Properties of Referenced Entities

6.6. PERFORMANCE TUNING
6.6.1. Alternative Batch Loading Algorithms
6.6.2. Second Level Caching of Object References for Non-mutable Data

CHAPTER 7. HIBERNATE SEARCH
7.1. GETTING STARTED WITH HIBERNATE SEARCH

7.1.1. About Hibernate Search
7.1.2. Overview
7.1.3. About the Directory Provider
7.1.4. About the Worker
7.1.5. Back End Setup and Operations

7.1.5.1. Back End
7.1.5.2. Lucene
7.1.5.3. JMS

7.1.6. Reader Strategies
7.1.6.1. The Shared Strategy
7.1.6.2. The Not-shared Strategy
7.1.6.3. Custom Reader Strategies

7.2. CONFIGURATION
7.2.1. Minimum Configuration
7.2.2. Configuring the IndexManager

7.2.2.1. Directory-based
7.2.2.2. Near Real Time
7.2.2.3. Custom

7.2.3. DirectoryProvider Configuration
Directory Providers and Their Properties

7.2.4. Worker Configuration
7.2.4.1. JMS Master/Slave Back End
7.2.4.2. Slave Nodes
7.2.4.3. Master Node

7.2.5. Tuning Lucene Indexing
7.2.5.1. Tuning Lucene Indexing Performance
7.2.5.2. The Lucene IndexWriter
7.2.5.3. Performance Option Configuration
7.2.5.4. Tuning the Indexing Speed
7.2.5.5. Control Segment Size

7.2.6. LockFactory Configuration

38
38
38
38
38
39
39
39
40
40
41
41

42
44
44
47
48
48
50

51
51
51
51
51
52
52
52
52
53
54
54
55
55
55
55
55
55
55
56
56
57
59
62
63
63
64
64
68
68
71
72
72

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

2

7.2.7. Index Format Compatibility
7.3. HIBERNATE SEARCH FOR YOUR APPLICATION

7.3.1. First Steps with Hibernate Search
7.3.2. Enable Hibernate Search Using Maven
7.3.3. Add Annotations
7.3.4. Indexing
7.3.5. Searching
7.3.6. Analyzer

7.4. MAPPING ENTITIES TO THE INDEX STRUCTURE
7.4.1. Mapping an Entity

7.4.1.1. Basic Mapping
7.4.1.2. @Indexed
7.4.1.3. @Field
7.4.1.4. @NumericField
7.4.1.5. @Id
7.4.1.6. Mapping Properties Multiple Times
7.4.1.7. Embedded and Associated Objects
7.4.1.8. Limiting Object Embedding to Specific Paths

7.4.2. Boosting
7.4.2.1. Static Index Time Boosting
7.4.2.2. Dynamic Index Time Boosting

7.4.3. Analysis
7.4.3.1. Default Analyzer and Analyzer by Class
7.4.3.2. Named Analyzers
7.4.3.3. Available Analyzers
7.4.3.4. Dynamic Analyzer Selection
7.4.3.5. Retrieving an Analyzer

7.4.4. Bridges
7.4.4.1. Built-in Bridges
7.4.4.2. Custom Bridges

7.4.4.2.1. StringBridge
7.4.4.2.2. Parameterized Bridge
7.4.4.2.3. Type Aware Bridge
7.4.4.2.4. Two-Way Bridge
7.4.4.2.5. FieldBridge
7.4.4.2.6. ClassBridge

7.5. QUERYING
7.5.1. Building Queries

7.5.1.1. Building a Lucene Query Using the Lucene API
7.5.1.2. Building a Lucene Query
7.5.1.3. Keyword Queries
7.5.1.4. Fuzzy Queries
7.5.1.5. Wildcard Queries
7.5.1.6. Phrase Queries
7.5.1.7. Range Queries
7.5.1.8. Combining Queries
7.5.1.9. Query Options
7.5.1.10. Build a Hibernate Search Query

7.5.1.10.1. Generality
7.5.1.10.2. Pagination
7.5.1.10.3. Sorting
7.5.1.10.4. Fetching Strategy
7.5.1.10.5. Projection

73
74
74
74
75
77
78
79
80
80
80
80
81

82
83
84
85
88
90
90
91

92
92
93
95
96
98
99
99

100
100
101
102
102
103
104
105
107
107
107
107
110
110
110
111
111

112
113
113
113
113
114
114

Table of Contents

3

. .

7.5.1.10.6. Customizing Object Initialization Strategies
7.5.1.10.7. Limiting the Time of a Query
7.5.1.10.8. Raise an Exception on Time Limit

7.5.2. Retrieving the Results
7.5.2.1. Performance Considerations
7.5.2.2. Result Size
7.5.2.3. ResultTransformer
7.5.2.4. Understanding Results
7.5.2.5. Filters
7.5.2.6. Using Filters in a Sharded Environment

7.5.3. Faceting
7.5.3.1. Creating a Faceting Request
7.5.3.2. Applying a Faceting Request
7.5.3.3. Restricting Query Results

7.5.4. Optimizing the Query Process
7.5.4.1. Caching Index Values: FieldCache

7.6. MANUAL INDEX CHANGES
7.6.1. Adding Instances to the Index
7.6.2. Deleting Instances from the Index
7.6.3. Rebuilding the Index

7.6.3.1. Using flushToIndexes()
7.6.3.2. Using a MassIndexer

7.7. INDEX OPTIMIZATION
7.7.1. Automatic Optimization
7.7.2. Manual Optimization
7.7.3. Adjusting Optimization

7.8. ADVANCED FEATURES
7.8.1. Accessing the SearchFactory
7.8.2. Using an IndexReader
7.8.3. Accessing a Lucene Directory
7.8.4. Sharding Indexes
7.8.5. Customizing Lucene’s Scoring Formula
7.8.6. Exception Handling Configuration
7.8.7. Disable Hibernate Search

7.9. MONITORING
Access to Statistics via JMX
Monitoring Indexing

APPENDIX A. REFERENCE MATERIAL
A.1. HIBERNATE PROPERTIES

115
116
117
118
118
118
119
119

120
123
125
127
128
129
129
130
131
131
131
132
132
133
135
135
136
136
137
137
137
137
138
139
140
141
141

142
142

143
143

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

4

Table of Contents

5

CHAPTER 1. INTRODUCTION

1.1. ABOUT HIBERNATE CORE

Hibernate Core is an object-relational mapping framework for the Java language. It provides a
framework for mapping an object-oriented domain model to a relational database, allowing applications
to avoid direct interaction with the database. Hibernate solves object-relational impedance mismatch
problems by replacing direct, persistent database accesses with high-level object handling functions.

1.2. HIBERNATE ENTITYMANAGER

Hibernate EntityManager implements the programming interfaces and lifecycle rules as defined by the
Java Persistence 2.1 specification . Together with Hibernate Annotations, this wrapper implements a
complete (and standalone) JPA persistence solution on top of the mature Hibernate Core. You may use
a combination of all three together, annotations without JPA programming interfaces and lifecycle, or
even pure native Hibernate Core, depending on the business and technical needs of your project. You
can at all times fall back to Hibernate native APIs, or if required, even to native JDBC and SQL. It
provides JBoss EAP with a complete Java Persistence solution.

JBoss EAP is 100% compliant with the Java Persistence 2.1 specification. Hibernate also provides
additional features to the specification. To get started with JPA and JBoss EAP, see the bean-
validation, greeter, and kitchensink quickstarts that ship with JBoss EAP. For information about how to
download and run the quickstarts, see Using the Quickstart Examples in the JBoss EAP Getting Started
Guide.

Persistence in JPA is available in containers like EJB 3 or the more modern CDI, Java Context and
Dependency Injection, as well as in standalone Java SE applications that execute outside of a particular
container. The following programming interfaces and artifacts are available in both environments.

IMPORTANT

If you plan to use a security manager with Hibernate, be aware that Hibernate supports it
only when EntityManagerFactory is bootstrapped by the JBoss EAP server. It is not
supported when the EntityManagerFactory or SessionFactory is bootstrapped by the
application. See Java Security Manager in How to Configure Server Security for more
information about security managers.

EntityManagerFactory

An entity manager factory provides entity manager instances, all instances are configured to connect
to the same database, to use the same default settings as defined by the particular implementation,
etc. You can prepare several entity manager factories to access several data stores. This interface is
similar to the SessionFactory in native Hibernate.

EntityManager

The EntityManager API is used to access a database in a particular unit of work. It is used to create
and remove persistent entity instances, to find entities by their primary key identity, and to query
over all entities. This interface is similar to the Session in Hibernate.

Persistence context

A persistence context is a set of entity instances in which for any persistent entity identity there is a
unique entity instance. Within the persistence context, the entity instances and their lifecycle is
managed by a particular entity manager. The scope of this context can either be the transaction, or
an extended unit of work.

Persistence unit

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

6

https://www.jcp.org/en/jsr/detail?id=338
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/getting_started_guide/#using_the_quickstart_examples
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/how_to_configure_server_security/#java_security_manager

The set of entity types that can be managed by a given entity manager is defined by a persistence
unit. A persistence unit defines the set of all classes that are related or grouped by the application,
and which must be collocated in their mapping to a single data store.

Container-managed entity manager

An entity manager whose lifecycle is managed by the container.

Application-managed entity manager

An entity manager whose lifecycle is managed by the application.

JTA entity manager

Entity manager involved in a JTA transaction.

Resource-local entity manager

Entity manager using a resource transaction (not a JTA transaction).

CHAPTER 1. INTRODUCTION

7

CHAPTER 2. HIBERNATE CONFIGURATION

2.1. HIBERNATE CONFIGURATION

The configuration for entity managers both inside an application server and in a standalone application
reside in a persistence archive. A persistence archive is a JAR file which must define a persistence.xml
file that resides in the META-INF/ folder.

You can connect to the database using the persistence.xml file. There are two ways of doing this:

Specifying a data source which is configured in the datasources subsystem in JBoss EAP.
The jta-data-source points to the JNDI name of the data source this persistence unit maps to.
The java:jboss/datasources/ExampleDS here points to the H2 DB embedded in the JBoss
EAP.

Example of object-relational-mapping in the persistence.xml File

Explicitly configuring the persistence.xml file by specifying the connection properties.

Example of Specifying Connection Properties in the persistence.xml file

For the complete list of connection properties, see Connection Properties Configurable in the
persistence.xml File.

There are a number of properties that control the behavior of Hibernate at runtime. All are optional and
have reasonable default values. These Hibernate properties are all used in the persistence.xml file. For
the complete list of all configurable Hibernate properties, see Hibernate Properties.

2.2. SECOND-LEVEL CACHES

2.2.1. About Second-level Caches

A second-level cache is a local data store that holds information persisted outside the application
session. The cache is managed by the persistence provider, improving runtime by keeping the data
separate from the application.

JBoss EAP supports caching for the following purposes:

<persistence>
 <persistence-unit name="myapp">
 <provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <properties>

 </properties>
 </persistence-unit>
</persistence>

<property name="javax.persistence.jdbc.driver" value="org.hsqldb.jdbcDriver"/>
<property name="javax.persistence.jdbc.user" value="sa"/>
<property name="javax.persistence.jdbc.password" value=""/>
<property name="javax.persistence.jdbc.url" value="jdbc:hsqldb:."/>

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

8

Web Session Clustering

Stateful Session Bean Clustering

SSO Clustering

Hibernate/JPA Second-level Cache

WARNING

Each cache container defines a repl and a dist cache. These caches should not be
used directly by user applications.

2.2.2. Configure a Second-level Cache for Hibernate

The configuration of Infinispan to act as the second-level cache for Hibernate can be done in two ways:

It is recommended to configure the second-level cache through JPA applications, using the
persistence.xml file, as explained in the JBoss EAP Development Guide.

Alternatively, you can configure the second-level cache through Hibernate native applications,
using the hibernate.cfg.xml file, as explained below.

Configuring a Second-level Cache for Hibernate Using Hibernate Native Applications

1. Create the hibernate.cfg.xml file in the deployment’s class path.

2. Add the following XML to the hibernate.cfg.xml file. The XML needs to be within the
<session-factory> tag:

3. In order to use the Hibernate native APIs within your application, you must add the following
dependencies to the MANIFEST.MF file:

Dependencies: org.infinispan,org.hibernate

<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.use_query_cache">true</property>
<property
name="hibernate.cache.region.factory_class">org.jboss.as.jpa.hibernate5.infinispan.Infinispan
RegionFactory</property>

CHAPTER 2. HIBERNATE CONFIGURATION

9

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html-single/development_guide/#configure_second_level_cache_persistence_unit

CHAPTER 3. HIBERNATE ANNOTATIONS

3.1. HIBERNATE ANNOTATIONS

The org.hibernate.annotations package contains some annotations which are offered by Hibernate, on
top of the standard JPA annotations.

Table 3.1. General Annotations

Annotation Description

Check Arbitrary SQL check constraints which can be
defined at the class, property or collection level.

Immutable Mark an Entity or a Collection as immutable. No
annotation means the element is mutable.

An immutable entity may not be updated by the
application. Updates to an immutable entity will be
ignored, but no exception is thrown.

@Immutable placed on a collection makes the
collection immutable, meaning additions and
deletions to and from the collection are not allowed.
A HibernateException is thrown in this case.

Table 3.2. Caching Entities

Annotation Description

Cache Add caching strategy to a root entity or a collection.

Table 3.3. Collection Related Annotations

Annotation Description

MapKeyType Defines the type of key of a persistent map.

ManyToAny Defines a ToMany association pointing to different
entity types. Matching the entity type is done
through a metadata discriminator column. This kind
of mapping should be only marginal.

OrderBy Order a collection using SQL ordering (not HQL
ordering).

OnDelete Strategy to use on collections, arrays and on joined
subclasses delete. OnDelete of secondary tables is
currently not supported.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

10

Persister Specify a custom persister.

Sort Collection sort (Java level sorting).

Where Where clause to add to the element Entity or target
entity of a collection. The clause is written in SQL.

WhereJoinTable Where clause to add to the collection join table. The
clause is written in SQL.

Annotation Description

Table 3.4. Custom SQL for CRUD Operations

Annotation Description

Loader Overwrites Hibernate default FIND method.

SQLDelete Overwrites the Hibernate default DELETE method.

SQLDeleteAll Overwrites the Hibernate default DELETE ALL
method.

SQLInsert Overwrites the Hibernate default INSERT INTO
method.

SQLUpdate Overwrites the Hibernate default UPDATE method.

Subselect Maps an immutable and read-only entity to a given
SQL subselect expression.

Synchronize Ensures that auto-flush happens correctly and that
queries against the derived entity do not return stale
data. Mostly used with Subselect.

Table 3.5. Entity

Annotation Description

Cascade Apply a cascade strategy on an association.

CHAPTER 3. HIBERNATE ANNOTATIONS

11

Entity Adds additional metadata that may be needed
beyond what is defined in the standard @Entity.

mutable: whether this entity is mutable or
not

dynamicInsert: allow dynamic SQL for
inserts

dynamicUpdate: allow dynamic SQL for
updates

selectBeforeUpdate: Specifies that
Hibernate should never perform an SQL
UPDATE unless it is certain that an object is
actually modified.

polymorphism: whether the entity
polymorphism is of
PolymorphismType.IMPLICIT (default) or
PolymorphismType.EXPLICIT

optimisticLock: optimistic locking
strategy (OptimisticLockType.VERSION,
OptimisticLockType.NONE,
OptimisticLockType.DIRTY or
OptimisticLockType.ALL)

NOTE

The annotation "Entity" is
deprecated and scheduled
for removal in future
releases. Its individual
attributes or values should
become annotations.

Polymorphism Used to define the type of polymorphism Hibernate
will apply to entity hierarchies.

Proxy Lazy and proxy configuration of a particular class.

Table Complementary information to a table either primary
or secondary.

Tables Plural annotation of Table.

Target Defines an explicit target, avoiding reflection and
generics resolving.

Tuplizer Defines a tuplizer for an entity or a component.

Annotation Description

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

12

Tuplizers Defines a set of tuplizers for an entity or a
component.

Annotation Description

Table 3.6. Fetching

Annotation Description

BatchSize Batch size for SQL loading.

FetchProfile Defines the fetching strategy profile.

FetchProfiles Plural annotation for @FetchProfile.

LazyGroup Specifies that an entity attribute should be fetched
along with all the other attributes belonging to the
same group. In order to load entity attributes lazily,
bytecode enhancement is needed. By default, all
non-collection attributes are loaded in one group
named DEFAULT. This annotation allows defining
different groups of attributes to be initialized
together when accessing one attribute in the group.

Table 3.7. Filters

Annotation Description

Filter Adds filters to an entity or a target entity of a
collection.

FilterDef Filter definition.

FilterDefs Array of filter definitions.

FilterJoinTable Adds filters to a join table collection.

FilterJoinTables Adds multiple @FilterJoinTable to a collection.

Filters Adds multiple @Filter.

ParamDef A parameter definition.

Table 3.8. Primary Keys

CHAPTER 3. HIBERNATE ANNOTATIONS

13

Annotation Description

Generated This annotated property is generated by the
database.

GenericGenerator Generator annotation describing any kind of
Hibernate generator in a detyped manner.

GenericGenerators Array of generic generator definitions.

NaturalId Specifies that a property is part of the natural id of
the entity.

Parameter Key/value pattern.

RowId Support for ROWID mapping feature of Hibernate.

Table 3.9. Inheritance

Annotation Description

DiscriminatorFormula Discriminator formula to be placed at the root entity.

DiscriminatorOptions Optional annotation to express Hibernate specific
discriminator properties.

MetaValue Maps a given discriminator value to the
corresponding entity type.

Table 3.10. Mapping JP-QL/HQL Queries

Annotation Description

NamedNativeQueries Extends NamedNativeQueries to hold Hibernate
NamedNativeQuery objects.

NamedNativeQuery Extends NamedNativeQuery with Hibernate
features.

NamedQueries Extends NamedQueries to hold Hibernate
NamedQuery objects.

NamedQuery Extends NamedQuery with Hibernate features.

Table 3.11. Mapping Simple Properties

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

14

Annotation Description

AccessType Property access type.

Columns Support an array of columns. Useful for component
user type mappings.

ColumnTransformer Custom SQL expression used to read the value from
and write a value to a column. Use for direct object
loading/saving as well as queries. The write
expression must contain exactly one '?' placeholder
for the value.

ColumnTransformers Plural annotation for @ColumnTransformer.
Useful when more than one column is using this
behavior.

Table 3.12. Property

Annotation Description

Formula To be used as a replacement for @Column in most
places. The formula has to be a valid SQL fragment.

Index Defines a database index.

JoinFormula To be used as a replacement for @JoinColumn in
most places. The formula has to be a valid SQL
fragment.

Parent Reference the property as a pointer back to the
owner (generally the owning entity).

Type Hibernate type.

TypeDef Hibernate type definition.

TypeDefs Hibernate type definition array.

Table 3.13. Single Association Related Annotations

Annotation Description

Any Defines a ToOne association pointing to several
entity types. Matching the according entity type is
done through a metadata discriminator column. This
kind of mapping should be only marginal.

CHAPTER 3. HIBERNATE ANNOTATIONS

15

AnyMetaDef Defines @Any and @ManyToAny metadata.

AnyMetaDefs Defines @Any and @ManyToAny set of metadata.
Can be defined at the entity level or the package
level.

Fetch Defines the fetching strategy used for the given
association.

LazyCollection Defines the lazy status of a collection.

LazyToOne Defines the lazy status of a ToOne association (i.e.
OneToOne or ManyToOne).

NotFound Action to do when an element is not found on an
association.

Annotation Description

Table 3.14. Optimistic Locking

Annotation Description

OptimisticLock Whether or not a change of the annotated property
will trigger an entity version increment. If the
annotation is not present, the property is involved in
the optimistic lock strategy (default).

OptimisticLocking Used to define the style of optimistic locking to be
applied to an entity. In a hierarchy, only valid on the
root entity.

Source Optional annotation in conjunction with Version and
timestamp version properties. The annotation value
decides where the timestamp is generated.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

16

CHAPTER 4. HIBERNATE QUERY LANGUAGE

4.1. ABOUT HIBERNATE QUERY LANGUAGE

Introduction to JPQL
The Java Persistence Query Language (JPQL) is a platform-independent object-oriented query
language defined as part of the Java Persistence API (JPA) specification. JPQL is used to make queries
against entities stored in a relational database. It is heavily inspired by SQL, and its queries resemble
SQL queries in syntax, but operate against JPA entity objects rather than directly with database tables.

Introduction to HQL
The Hibernate Query Language (HQL) is a powerful query language, similar in appearance to SQL.
Compared with SQL, however, HQL is fully object-oriented and understands notions like inheritance,
polymorphism and association.

HQL is a superset of JPQL. An HQL query is not always a valid JPQL query, but a JPQL query is always
a valid HQL query.

Both HQL and JPQL are non-type-safe ways to perform query operations. Criteria queries offer a type-
safe approach to querying.

4.2. ABOUT HQL STATEMENTS

Both HQL and JPQL allow SELECT, UPDATE, and DELETE statements. HQL additionally allows
INSERT statements, in a form similar to a SQL INSERT-SELECT.

The following table shows the syntax in Backus-Naur Form (BNF) notation for the various HQL
statements.

Table 4.1. HQL Statements

Statement Description

SELECT The BNF for SELECT statements in HQL is:

select_statement :: =
 [select_clause]
 from_clause
 [where_clause]
 [groupby_clause]
 [having_clause]
 [orderby_clause]

CHAPTER 4. HIBERNATE QUERY LANGUAGE

17

UPDATE The BNF for UPDATE statement in HQL is the same
as it is in JPQL.

update_statement ::= update_clause
[where_clause]

update_clause ::= UPDATE entity_name
[[AS] identification_variable]
 SET update_item {, update_item}*

update_item ::= [identification_variable.]
{state_field | single_valued_object_field}
 = new_value

new_value ::= scalar_expression |
 simple_entity_expression |
 NULL

DELETE The BNF for DELETE statements in HQL is the
same as it is in JPQL.

delete_statement ::= delete_clause
[where_clause]

delete_clause ::= DELETE FROM
entity_name [[AS] identification_variable]

INSERT The BNF for INSERT statement in HQL is:

insert_statement ::= insert_clause
select_statement

insert_clause ::= INSERT INTO entity_name
(attribute_list)

attribute_list ::= state_field[, state_field]*

There is no JPQL equivalent to this.

Statement Description

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

18

WARNING

Hibernate allows the use of Data Manipulation Language (DML) to bulk insert,
update and delete data directly in the mapped database through the Hibernate
Query Language (HQL).

Using DML may violate the object/relational mapping and may affect object state.
Object state stays in memory and by using DML, the state of an in-memory object is
not affected, depending on the operation that is performed on the underlying
database. In-memory data must be used with care if DML is used.

About the UPDATE and DELETE Statements
The pseudo-syntax for UPDATE and DELETE statements is:

(UPDATE | DELETE) FROM? EntityName (WHERE where_conditions)?.

NOTE

The FROM keyword and the WHERE Clause are optional. The FROM clause is
responsible for defining the scope of object model types available to the rest of the
query. It also is responsible for defining all the identification variables available to the rest
of the query. The WHERE clause allows you to refine the list of instances returned.

The result of execution of a UPDATE or DELETE statement is the number of rows that
are actually affected (updated or deleted).

Example: Bulk Update Statement

Example: Bulk Delete Statement

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlUpdate = "update Company set name = :newName where name = :oldName";
int updatedEntities = s.createQuery(hqlUpdate)
 .setString("newName", newName)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlDelete = "delete Company where name = :oldName";
int deletedEntities = s.createQuery(hqlDelete)
 .setString("oldName", oldName)
 .executeUpdate();
tx.commit();
session.close();

CHAPTER 4. HIBERNATE QUERY LANGUAGE

19

The int value returned by the Query.executeUpdate() method indicates the number of entities within
the database that were affected by the operation.

Internally, the database might use multiple SQL statements to execute the operation in response to a
DML Update or Delete request. This might be because of relationships that exist between tables and
the join tables that need to be updated or deleted.

For example, issuing a delete statement, as in the example above, may actually result in deletes being
executed against not just the Company table for companies that are named with oldName, but also
against joined tables. Therefore a Company table in a bidirectional, many-to-many relationship with an
Employee table would also lose rows from the corresponding join table, Company_Employee, as a
result of the successful execution of the previous example.

The deletedEntries value above will contain a count of all the rows affected due to this operation,
including the rows in the join tables.

IMPORTANT

Care should be taken when executing bulk update or delete operations because they may
result in inconsistencies between the database and the entities in the active persistence
context. In general, bulk update and delete operations should only be performed within a
transaction in a new persistence context or before fetching or accessing entities whose
state might be affected by such operations.

About the INSERT Statement
HQL adds the ability to define INSERT statements. There is no JPQL equivalent to this. The Backus-
Naur Form (BNF) for an HQL INSERT statement is:

insert_statement ::= insert_clause select_statement

insert_clause ::= INSERT INTO entity_name (attribute_list)

attribute_list ::= state_field[, state_field]*

The attribute_list is analogous to the column specification in the SQL INSERT statement. For entities
involved in mapped inheritance, only attributes directly defined on the named entity can be used in the
attribute_list. Superclass properties are not allowed and subclass properties do not make sense. In other
words, INSERT statements are inherently non-polymorphic.

WARNING

The select_statement can be any valid HQL select query, with the caveat that the
return types must match the types expected by the insert. Currently, this is checked
during query compilation rather than allowing the check to relegate to the database.
This can cause problems with Hibernate Types that are equivalent as opposed to
equal. For example, this might cause mismatch issues between an attribute mapped
as an org.hibernate.type.DateType and an attribute defined as a
org.hibernate.type.TimestampType, even though the database might not make a
distinction or might be able to handle the conversion.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

20

For the id attribute, the insert statement gives you two options. You can either explicitly specify the id
property in the attribute_list, in which case its value is taken from the corresponding select expression,
or omit it from the attribute_list in which case a generated value is used. This latter option is only
available when using id generators that operate "in the database"; attempting to use this option with any
"in memory" type generators will cause an exception during parsing.

For optimistic locking attributes, the insert statement again gives you two options. You can either
specify the attribute in the attribute_list in which case its value is taken from the corresponding select
expressions, or omit it from the attribute_list in which case the seed value defined by the
corresponding org.hibernate.type.VersionType is used.

Example: INSERT Query Statements

Example: Bulk Insert Statement

If you do not supply the value for the id attribute using the SELECT statement, an identifier is
generated for you, as long as the underlying database supports auto-generated keys. The return value
of this bulk insert operation is the number of entries actually created in the database.

4.3. ABOUT HQL ORDERING

The results of the query can also be ordered. The ORDER BY clause is used to specify the selected
values to be used to order the result. The types of expressions considered valid as part of the order-by
clause include:

state fields

component/embeddable attributes

scalar expressions such as arithmetic operations, functions, etc.

identification variable declared in the select clause for any of the previous expression types

HQL does not mandate that all values referenced in the order-by clause must be named in the select
clause, but it is required by JPQL. Applications desiring database portability should be aware that not all
databases support referencing values in the order-by clause that are not referenced in the select clause.

Individual expressions in the order-by can be qualified with either ASC (ascending) or DESC
(descending) to indicate the desired ordering direction.

Example: Order By

String hqlInsert = "insert into DelinquentAccount (id, name) select c.id, c.name from Customer c
where ...";
int createdEntities = s.createQuery(hqlInsert).executeUpdate();

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqlInsert = "insert into Account (id, name) select c.id, c.name from Customer c where ...";
int createdEntities = s.createQuery(hqlInsert)
 .executeUpdate();
tx.commit();
session.close();

CHAPTER 4. HIBERNATE QUERY LANGUAGE

21

// legal because p.name is implicitly part of p
select p
from Person p
order by p.name

select c.id, sum(o.total) as t
from Order o
 inner join o.customer c
group by c.id
order by t

4.4. ABOUT COLLECTION MEMBER REFERENCES

References to collection-valued associations actually refer to the values of that collection.

Example: Collection References

select c
from Customer c
 join c.orders o
 join o.lineItems l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

// alternate syntax
select c
from Customer c,
 in(c.orders) o,
 in(o.lineItems) l
 join l.product p
where o.status = 'pending'
 and p.status = 'backorder'

In the example, the identification variable o actually refers to the object model type Order which is the
type of the elements of the Customer#orders association.

The example also shows the alternate syntax for specifying collection association joins using the IN
syntax. Both forms are equivalent. Which form an application chooses to use is simply a matter of taste.

4.5. ABOUT QUALIFIED PATH EXPRESSIONS

It was previously stated that collection-valued associations actually refer to the values of that collection.
Based on the type of collection, there are also available a set of explicit qualification expressions.

Table 4.2. Qualified Path Expressions

Expression Description

VALUE Refers to the collection value. Same as not specifying
a qualifier. Useful to explicitly show intent. Valid for
any type of collection-valued reference.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

22

INDEX According to HQL rules, this is valid for both Maps
and Lists which specify a
javax.persistence.OrderColumn annotation to refer
to the Map key or the List position (aka the
OrderColumn value). JPQL however, reserves this for
use in the List case and adds KEY for the MAP case.
Applications interested in JPA provider portability
should be aware of this distinction.

KEY Valid only for Maps. Refers to the map’s key. If the
key is itself an entity, can be further navigated.

ENTRY Only valid only for Maps. Refers to the Map’s logical
java.util.Map.Entry tuple (the combination of its key
and value). ENTRY is only valid as a terminal path
and only valid in the select clause.

Expression Description

Example: Qualified Collection References

// Product.images is a Map<String,String> : key = a name, value = file path

// select all the image file paths (the map value) for Product#123
select i
from Product p
 join p.images i
where p.id = 123

// same as above
select value(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names (the map key) for Product#123
select key(i)
from Product p
 join p.images i
where p.id = 123

// select all the image names and file paths (the 'Map.Entry') for Product#123
select entry(i)
from Product p
 join p.images i
where p.id = 123

// total the value of the initial line items for all orders for a customer
select sum(li.amount)
from Customer c
 join c.orders o

CHAPTER 4. HIBERNATE QUERY LANGUAGE

23

 join o.lineItems li
where c.id = 123
 and index(li) = 1

4.6. ABOUT HQL FUNCTIONS

HQL defines some standard functions that are available regardless of the underlying database in use.
HQL can also understand additional functions defined by the dialect and the application.

4.6.1. About HQL Standardized Functions

The following functions are available in HQL regardless of the underlying database in use.

Table 4.3. HQL Standardized Functions

Function Description

BIT_LENGTH Returns the length of binary data.

CAST Performs an SQL cast. The cast target should name
the Hibernate mapping type to use.

EXTRACT Performs an SQL extraction on datetime values. An
extraction returns a part of the date/time value, for
example, the year. See the abbreviated forms below.

SECOND Abbreviated extract form for extracting the second.

MINUTE Abbreviated extract form for extracting the minute.

HOUR Abbreviated extract form for extracting the hour.

DAY Abbreviated extract form for extracting the day.

MONTH Abbreviated extract form for extracting the month.

YEAR Abbreviated extract form for extracting the year.

STR Abbreviated form for casting a value as character
data.

4.6.2. About HQL Non-Standardized Functions

Hibernate dialects can register additional functions known to be available for that particular database
product. They would only be available when using that database or dialect. Applications that aim for
database portability should avoid using functions in this category.

Application developers can also supply their own set of functions. This would usually represent either
custom SQL functions or aliases for snippets of SQL. Such function declarations are made by using the
addSqlFunction method of org.hibernate.cfg.Configuration.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

24

4.6.3. About the Concatenation Operation

HQL defines a concatenation operator in addition to supporting the concatenation (CONCAT) function.
This is not defined by JPQL, so portable applications should avoid using it. The concatenation operator
is taken from the SQL concatenation operator (||).

Example: Concatenation Operation Example

select 'Mr. ' || c.name.first || ' ' || c.name.last
from Customer c
where c.gender = Gender.MALE

4.7. ABOUT DYNAMIC INSTANTIATION

There is a particular expression type that is only valid in the select clause. Hibernate calls this "dynamic
instantiation". JPQL supports some of this feature and calls it a "constructor expression".

Example: Dynamic Instantiation Example - Constructor

select new Family(mother, mate, offspr)
from DomesticCat as mother
 join mother.mate as mate
 left join mother.kittens as offspr

So rather than dealing with the Object[] here we are wrapping the values in a type-safe java object that
will be returned as the results of the query. The class reference must be fully qualified and it must have a
matching constructor.

The class here does not need to be mapped. If it does represent an entity, the resulting instances are
returned in the NEW state (not managed!).

This is the part JPQL supports as well. HQL supports additional "dynamic instantiation" features. First,
the query can specify to return a List rather than an Object[] for scalar results:

Example: Dynamic Instantiation Example - List

select new list(mother, offspr, mate.name)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

The results from this query will be a List<List> as opposed to a List<Object[]>.

HQL also supports wrapping the scalar results in a Map.

Example: Dynamic Instantiation Example - Map

select new map(mother as mother, offspr as offspr, mate as mate)
from DomesticCat as mother
 inner join mother.mate as mate
 left outer join mother.kittens as offspr

select new map(max(c.bodyWeight) as max, min(c.bodyWeight) as min, count(*) as n)
from Cat cxt

CHAPTER 4. HIBERNATE QUERY LANGUAGE

25

The results from this query will be a List<Map<String,Object>> as opposed to a List<Object[]>. The keys
of the map are defined by the aliases given to the select expressions.

4.8. ABOUT HQL PREDICATES

Predicates form the basis of the where clause, the having clause and searched case expressions. They
are expressions which resolve to a truth value, generally TRUE or FALSE, although boolean
comparisons involving NULL values generally resolve to UNKNOWN.

HQL Predicates

Null Predicate
Check a value for null. Can be applied to basic attribute references, entity references and
parameters. HQL additionally allows it to be applied to component/embeddable types.

Example: NULL Check

// select everyone with an associated address
select p
from Person p
where p.address is not null

// select everyone without an associated address
select p
from Person p
 where p.address is null

Like Predicate
Performs a like comparison on string values. The syntax is:

like_expression ::=
 string_expression
 [NOT] LIKE pattern_value
 [ESCAPE escape_character]

The semantics follow that of the SQL like expression. The pattern_value is the pattern to
attempt to match in the string_expression. Just like SQL, pattern_value can use _
(underscore) and % (percent) as wildcards. The meanings are the same. The _ matches any
single character. The % matches any number of characters.

The optional escape_character is used to specify an escape character used to escape the
special meaning of _ and % in the pattern_value. This is useful when needing to search on
patterns including either _ or %.

Example: LIKE Predicate

select p
from Person p
where p.name like '%Schmidt'

select p
from Person p
where p.name not like 'Jingleheimmer%'

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

26

// find any with name starting with "sp_"
select sp
from StoredProcedureMetadata sp
where sp.name like 'sp|_%' escape '|'

Between Predicate
Analogous to the SQL BETWEEN expression. Perform an evaluation that a value is within the
range of 2 other values. All the operands should have comparable types.

Example: BETWEEN Predicate

select p
from Customer c
 join c.paymentHistory p
where c.id = 123
 and index(p) between 0 and 9

select c
from Customer c
where c.president.dateOfBirth
 between {d '1945-01-01'}
 and {d '1965-01-01'}

select o
from Order o
where o.total between 500 and 5000

select p
from Person p
where p.name between 'A' and 'E'

IN Predicate
The IN predicate performs a check that a particular value is in a list of values. Its syntax is:

in_expression ::= single_valued_expression
 [NOT] IN single_valued_list

single_valued_list ::= constructor_expression |
 (subquery) |
 collection_valued_input_parameter

constructor_expression ::= (expression[, expression]*)

The types of the single_valued_expression and the individual values in the
single_valued_list must be consistent. JPQL limits the valid types here to string, numeric, date,
time, timestamp, and enum types. In JPQL, single_valued_expression can only refer to:

"state fields", which is its term for simple attributes. Specifically this excludes association
and component/embedded attributes.

entity type expressions.
In HQL, single_valued_expression can refer to a far more broad set of expression types.
Single-valued association are allowed. So are component/embedded attributes, although
that feature depends on the level of support for tuple or "row value constructor syntax" in

CHAPTER 4. HIBERNATE QUERY LANGUAGE

27

the underlying database. Additionally, HQL does not limit the value type in any way, though
application developers should be aware that different types may incur limited support
based on the underlying database vendor. This is largely the reason for the JPQL
limitations.

The list of values can come from a number of different sources. In the
constructor_expression and collection_valued_input_parameter, the list of values must
not be empty; it must contain at least one value.

Example: IN Predicate

select p
from Payment p
where type(p) in (CreditCardPayment, WireTransferPayment)

select c
from Customer c
where c.hqAddress.state in ('TX', 'OK', 'LA', 'NM')

select c
from Customer c
where c.hqAddress.state in ?

select c
from Customer c
where c.hqAddress.state in (
 select dm.state
 from DeliveryMetadata dm
 where dm.salesTax is not null
)

// Not JPQL compliant!
select c
from Customer c
where c.name in (
 ('John','Doe'),
 ('Jane','Doe')
)

// Not JPQL compliant!
select c
from Customer c
where c.chiefExecutive in (
 select p
 from Person p
 where ...
)

4.9. ABOUT RELATIONAL COMPARISONS

Comparisons involve one of the comparison operators - =, >, >=, <, ⇐, <>. HQL also defines != as a
comparison operator synonymous with <>. The operands should be of the same type.

Example: Relational Comparison Examples

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

28

// numeric comparison
select c
from Customer c
where c.chiefExecutive.age < 30

// string comparison
select c
from Customer c
where c.name = 'Acme'

// datetime comparison
select c
from Customer c
where c.inceptionDate < {d '2000-01-01'}

// enum comparison
select c
from Customer c
where c.chiefExecutive.gender = com.acme.Gender.MALE

// boolean comparison
select c
from Customer c
where c.sendEmail = true

// entity type comparison
select p
from Payment p
where type(p) = WireTransferPayment

// entity value comparison
select c
from Customer c
where c.chiefExecutive = c.chiefTechnologist

Comparisons can also involve subquery qualifiers - ALL, ANY, SOME. SOME and ANY are synonymous.

The ALL qualifier resolves to true if the comparison is true for all of the values in the result of the
subquery. It resolves to false if the subquery result is empty.

Example: ALL Subquery Comparison Qualifier Example

// select all players that scored at least 3 points
// in every game.
select p
from Player p
where 3 > all (
 select spg.points
 from StatsPerGame spg
 where spg.player = p
)

The ANY/SOME qualifier resolves to true if the comparison is true for at least one of the values in the
result of the subquery. It resolves to false if the subquery result is empty.

CHAPTER 4. HIBERNATE QUERY LANGUAGE

29

4.10. BYTECODE ENHANCEMENT

4.10.1. Lazy Attribute Loading

Lazy attribute loading is a bytecode enhancement which allows you to tell Hibernate that only certain
parts of an entity should be loaded upon fetching from the database, and when the other remaining
parts should be loaded as well. This is different from proxy-based idea of lazy loading which is entity-
centric where the entity’s state is loaded at once as needed. With bytecode enhancement, individual
attributes or groups of attributes are loaded as needed.

Lazy attributes can be designated to be loaded together and this is called a lazy group. By default, all
singular attributes are part of a single group. When one lazy singular attribute is accessed, all lazy
singular attributes are loaded. Contrary to lazy singular group, lazy plural attributes are each a discrete
lazy group. This behavior is explicitly controllable through the @org.hibernate.annotations.LazyGroup
annotation.

@Entity
public class Customer {

 @Id
 private Integer id;

 private String name;

 @Basic(fetch = FetchType.LAZY)
 private UUID accountsPayableXrefId;

 @Lob
 @Basic(fetch = FetchType.LAZY)
 @LazyGroup("lobs")
 private Blob image;

 public Integer getId() {
 return id;
 }

 public void setId(Integer id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public UUID getAccountsPayableXrefId() {
 return accountsPayableXrefId;
 }

 public void setAccountsPayableXrefId(UUID accountsPayableXrefId) {
 this.accountsPayableXrefId = accountsPayableXrefId;
 }

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

30

In the example above, there are two lazy attributes: accountsPayableXrefId and image. Each of these
attributes is part of a different fetch group. The accountsPayableXrefId attribute is a part of the
default fetch group, which means that accessing accountsPayableXrefId will not force the loading of
the image attribute, and vice versa.

 public Blob getImage() {
 return image;
 }

 public void setImage(Blob image) {
 this.image = image;
 }
}

CHAPTER 4. HIBERNATE QUERY LANGUAGE

31

CHAPTER 5. HIBERNATE SERVICES

5.1. ABOUT HIBERNATE SERVICES

Services are classes that provide Hibernate with pluggable implementations of various types of
functionality. Specifically they are implementations of certain service contract interfaces. The interface
is known as the service role; the implementation class is known as the service implementation. Generally
speaking, users can plug in alternate implementations of all standard service roles (overriding); they can
also define additional services beyond the base set of service roles (extending).

5.2. ABOUT SERVICE CONTRACTS

The basic requirement for a service is to implement the marker interface org.hibernate.service.Service.
Hibernate uses this internally for some basic type safety.

Optionally, the service can also implement the org.hibernate.service.spi.Startable and
org.hibernate.service.spi.Stoppable interfaces to receive notifications of being started and stopped.
Another optional service contract is org.hibernate.service.spi.Manageable which marks the service as
manageable in JMX provided the JMX integration is enabled.

5.3. TYPES OF SERVICE DEPENDENCIES

Services are allowed to declare dependencies on other services using either of the following approaches:

@org.hibernate.service.spi.InjectService

Any method on the service implementation class accepting a single parameter and annotated with
@InjectService is considered requesting injection of another service.
By default the type of the method parameter is expected to be the service role to be injected. If the
parameter type is different than the service role, the serviceRole attribute of the InjectService
should be used to explicitly name the role.

By default injected services are considered required, that is the startup will fail if a named dependent
service is missing. If the service to be injected is optional, the required attribute of the InjectService
should be declared as false. The default is true.

org.hibernate.service.spi.ServiceRegistryAwareService

The second approach is a pull approach where the service implements the optional service interface
org.hibernate.service.spi.ServiceRegistryAwareService which declares a single injectServices
method.
During startup, Hibernate will inject the org.hibernate.service.ServiceRegistry itself into services
which implement this interface. The service can then use the ServiceRegistry reference to locate
any additional services it needs.

5.3.1. The Service Registry

5.3.1.1. About the ServiceRegistry

The central service API, aside from the services themselves, is the org.hibernate.service.ServiceRegistry
interface. The main purpose of a service registry is to hold, manage and provide access to services.

Service registries are hierarchical. Services in one registry can depend on and utilize services in that

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

32

Service registries are hierarchical. Services in one registry can depend on and utilize services in that
same registry as well as any parent registries.

Use org.hibernate.service.ServiceRegistryBuilder to build a org.hibernate.service.ServiceRegistry
instance.

Example Using ServiceRegistryBuilder to Create a ServiceRegistry

5.3.2. Custom Services

5.3.2.1. About Custom Services

Once a org.hibernate.service.ServiceRegistry is built it is considered immutable; the services
themselves might accept reconfiguration, but immutability here means adding or replacing services. So
another role provided by the org.hibernate.service.ServiceRegistryBuilder is to allow tweaking of the
services that will be contained in the org.hibernate.service.ServiceRegistry generated from it.

There are two means to tell a org.hibernate.service.ServiceRegistryBuilder about custom services.

Implement a org.hibernate.service.spi.BasicServiceInitiator class to control on-demand
construction of the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder using its addInitiator method.

Just instantiate the service class and add it to the
org.hibernate.service.ServiceRegistryBuilder using its addService method.

Either approach is valid for extending a registry, such as adding new service roles, and overriding
services, such as replacing service implementations.

Example: Use ServiceRegistryBuilder to Replace an Existing Service with a Custom Service

ServiceRegistryBuilder registryBuilder =
 new ServiceRegistryBuilder(bootstrapServiceRegistry);
 ServiceRegistry serviceRegistry = registryBuilder.buildServiceRegistry();

ServiceRegistryBuilder registryBuilder =
 new ServiceRegistryBuilder(bootstrapServiceRegistry);
registryBuilder.addService(JdbcServices.class, new MyCustomJdbcService());
ServiceRegistry serviceRegistry = registryBuilder.buildServiceRegistry();

public class MyCustomJdbcService implements JdbcServices{

 @Override
 public ConnectionProvider getConnectionProvider() {
 return null;
 }

 @Override
 public Dialect getDialect() {
 return null;
 }

 @Override
 public SqlStatementLogger getSqlStatementLogger() {
 return null;

CHAPTER 5. HIBERNATE SERVICES

33

5.3.3. The Boot-Strap Registry

5.3.3.1. About the Boot-strap Registry

The boot-strap registry holds services that absolutely have to be available for most things to work. The
main service here is the ClassLoaderService which is a perfect example. Even resolving configuration
files needs access to class loading services i.e. resource look ups. This is the root registry, no parent, in
normal use.

Instances of boot-strap registries are built using the
org.hibernate.service.BootstrapServiceRegistryBuilder class.

Using BootstrapServiceRegistryBuilder

Example: Using BootstrapServiceRegistryBuilder

5.3.3.2. BootstrapRegistry Services

 }

 @Override
 public SqlExceptionHelper getSqlExceptionHelper() {
 return null;
 }

 @Override
 public ExtractedDatabaseMetaData getExtractedMetaDataSupport() {
 return null;
 }

 @Override
 public LobCreator getLobCreator(LobCreationContext lobCreationContext) {
 return null;
 }

 @Override
 public ResultSetWrapper getResultSetWrapper() {
 return null;
 }
}

BootstrapServiceRegistry bootstrapServiceRegistry =
 new BootstrapServiceRegistryBuilder()
 // pass in org.hibernate.integrator.spi.Integrator instances which are not
 // auto-discovered (for whatever reason) but which should be included
 .with(anExplicitIntegrator)
 // pass in a class loader that Hibernate should use to load application classes
 .with(anExplicitClassLoaderForApplicationClasses)
 // pass in a class loader that Hibernate should use to load resources
 .with(anExplicitClassLoaderForResources)
 // see BootstrapServiceRegistryBuilder for rest of available methods
 ...
 // finally, build the bootstrap registry with all the above options
 .build();

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

34

org.hibernate.service.classloading.spi.ClassLoaderService

Hibernate needs to interact with class loaders. However, the manner in which Hibernate, or any
library, should interact with class loaders varies based on the runtime environment that is hosting the
application. Application servers, OSGi containers, and other modular class loading systems impose
very specific class loading requirements. This service provides Hibernate an abstraction from this
environmental complexity. And just as importantly, it does so in a single-swappable-component
manner.
In terms of interacting with a class loader, Hibernate needs the following capabilities:

the ability to locate application classes

the ability to locate integration classes

the ability to locate resources, such as properties files and XML files

the ability to load java.util.ServiceLoader

NOTE

Currently, the ability to load application classes and the ability to load
integration classes are combined into a single load class capability on the
service. That may change in a later release.

org.hibernate.integrator.spi.IntegratorService

Applications, add-ons and other modules need to integrate with Hibernate. The previous approach
required a component, usually an application, to coordinate the registration of each individual
module. This registration was conducted on behalf of each module’s integrator.
This service focuses on the discovery aspect. It leverages the standard Java java.util.ServiceLoader
capability provided by the org.hibernate.service.classloading.spi.ClassLoaderService in order to
discover implementations of the org.hibernate.integrator.spi.Integrator contract.

Integrators would simply define a file named /META-
INF/services/org.hibernate.integrator.spi.Integrator and make it available on the class path.

This file is used by the java.util.ServiceLoader mechanism. It lists, one per line, the fully qualified
names of classes which implement the org.hibernate.integrator.spi.Integrator interface.

5.3.4. SessionFactory Registry

While it is best practice to treat instances of all the registry types as targeting a given
org.hibernate.SessionFactory, the instances of services in this group explicitly belong to a single
org.hibernate.SessionFactory.

The difference is a matter of timing in when they need to be initiated. Generally they need access to the
org.hibernate.SessionFactory to be initiated. This special registry is
org.hibernate.service.spi.SessionFactoryServiceRegistry.

5.3.4.1. SessionFactory Services

org.hibernate.event.service.spi.EventListenerRegistry

Description

Service for managing event listeners.

CHAPTER 5. HIBERNATE SERVICES

35

Initiator

org.hibernate.event.service.internal.EventListenerServiceInitiator

Implementations

org.hibernate.event.service.internal.EventListenerRegistryImpl

5.3.5. Integrators

The org.hibernate.integrator.spi.Integrator is intended to provide a simple means for allowing
developers to hook into the process of building a functioning SessionFactory. The
org.hibernate.integrator.spi.Integrator interface defines two methods of interest:

integrate allows us to hook into the building process

disintegrate allows us to hook into a SessionFactory shutting down.

NOTE

There is a third method defined in org.hibernate.integrator.spi.Integrator, an
overloaded form of integrate, accepting a
org.hibernate.metamodel.source.MetadataImplementor instead of
org.hibernate.cfg.Configuration.

In addition to the discovery approach provided by the IntegratorService, applications can
manually register Integrator implementations when building the
BootstrapServiceRegistry.

5.3.5.1. Integrator Use Cases

The main use cases for an org.hibernate.integrator.spi.Integrator are registering event listeners and
providing services, see org.hibernate.integrator.spi.ServiceContributingIntegrator.

Example: Registering Event Listeners

public class MyIntegrator implements org.hibernate.integrator.spi.Integrator {

 public void integrate(
 Configuration configuration,
 SessionFactoryImplementor sessionFactory,
 SessionFactoryServiceRegistry serviceRegistry) {
 // As you might expect, an EventListenerRegistry is the thing with which event listeners are
registered It is a
 // service so we look it up using the service registry
 final EventListenerRegistry eventListenerRegistry =
serviceRegistry.getService(EventListenerRegistry.class);

 // If you wish to have custom determination and handling of "duplicate" listeners, you would have
to add an
 // implementation of the org.hibernate.event.service.spi.DuplicationStrategy contract like this
 eventListenerRegistry.addDuplicationStrategy(myDuplicationStrategy);

 // EventListenerRegistry defines 3 ways to register listeners:
 // 1) This form overrides any existing registrations with
 eventListenerRegistry.setListeners(EventType.AUTO_FLUSH, myCompleteSetOfListeners);
 // 2) This form adds the specified listener(s) to the beginning of the listener chain

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

36

http://docs.jboss.org/hibernate/orm/5.2/javadocs/org/hibernate/integrator/spi/ServiceContributingIntegrator.html

 eventListenerRegistry.prependListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledFirst);
 // 3) This form adds the specified listener(s) to the end of the listener chain
 eventListenerRegistry.appendListeners(EventType.AUTO_FLUSH,
myListenersToBeCalledLast);
 }
}

CHAPTER 5. HIBERNATE SERVICES

37

CHAPTER 6. HIBERNATE ENVERS

6.1. ABOUT HIBERNATE ENVERS

Hibernate Envers is an auditing and versioning system, providing JBoss EAP with a means to track
historical changes to persistent classes. Audit tables are created for entities annotated with @Audited,
which store the history of changes made to the entity. The data can then be retrieved and queried.

Envers allows developers to:

audit all mappings defined by the JPA specification

audit all hibernate mappings that extend the JPA specification

audit entities mapped by or using the native Hibernate API

log data for each revision using a revision entity

query historical data

6.2. ABOUT AUDITING PERSISTENT CLASSES

Auditing of persistent classes is done in JBoss EAP through Hibernate Envers and the @Audited
annotation. When the annotation is applied to a class, a table is created, which stores the revision history
of the entity.

Each time a change is made to the class, an entry is added to the audit table. The entry contains the
changes to the class, and is given a revision number. This means that changes can be rolled back, or
previous revisions can be viewed.

6.3. AUDITING STRATEGIES

6.3.1. About Auditing Strategies

Auditing strategies define how audit information is persisted, queried and stored. There are currently
two audit strategies available with Hibernate Envers:

Default Audit Strategy

This strategy persists the audit data together with a start revision. For each row that is
inserted, updated or deleted in an audited table, one or more rows are inserted in the audit
tables, along with the start revision of its validity.

Rows in the audit tables are never updated after insertion. Queries of audit information use
subqueries to select the applicable rows in the audit tables, which are slow and difficult to
index.

Validity Audit Strategy

This strategy stores the start revision, as well as the end revision of the audit information. For
each row that is inserted, updated or deleted in an audited table, one or more rows are
inserted in the audit tables, along with the start revision of its validity.

At the same time, the end revision field of the previous audit rows (if available) is set to this

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

38

revision. Queries on the audit information can then use between start and end revision ,
instead of subqueries. This means that persisting audit information is a little slower because
of the extra updates, but retrieving audit information is a lot faster.

This can also be improved by adding extra indexes.

For more information on auditing, see About Auditing Persistent Classes. To set the auditing strategy
for the application, see Set the Auditing Strategy.

6.3.2. Set the Auditing Strategy

There are two audit strategies supported by JBoss EAP:

The default audit strategy

The validity audit strategy

Define an Auditing Strategy
Configure the org.hibernate.envers.audit_strategy property in the persistence.xml file of the
application. If the property is not set in the persistence.xml file, then the default audit strategy is used.

Set the Default Audit Strategy

Set the Validity Audit Strategy

6.3.3. Adding Auditing Support to a JPA Entity

JBoss EAP uses entity auditing, through About Hibernate Envers, to track the historical changes of a
persistent class. This section covers adding auditing support for a JPA entity.

Add Auditing Support to a JPA Entity

1. Configure the available auditing parameters to suit the deployment. See Configure Envers
Parameters for details.

2. Open the JPA entity to be audited.

3. Import the org.hibernate.envers.Audited interface.

4. Apply the @Audited annotation to each field or property to be audited, or apply it once to the
whole class.

Example: Audit Two Fields

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.DefaultAuditStrategy"/>

<property name="org.hibernate.envers.audit_strategy"
value="org.hibernate.envers.strategy.ValidityAuditStrategy"/>

import org.hibernate.envers.Audited;

import javax.persistence.Entity;

CHAPTER 6. HIBERNATE ENVERS

39

Example: Audit an Entire Class

Once the JPA entity has been configured for auditing, a table called _AUD will be created to store the
historical changes.

6.4. CONFIGURATION

6.4.1. Configure Envers Parameters

import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
public class Person {
 @Id
 @GeneratedValue
 private int id;

 @Audited
 private String name;

 private String surname;

 @ManyToOne
 @Audited
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

import org.hibernate.envers.Audited;

import javax.persistence.Entity;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import javax.persistence.Column;

@Entity
@Audited
public class Person {
 @Id
 @GeneratedValue
 private int id;

 private String name;

 private String surname;

 @ManyToOne
 private Address address;

 // add getters, setters, constructors, equals and hashCode here
}

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

40

JBoss EAP uses entity auditing, through Hibernate Envers, to track the historical changes of a
persistent class.

Configuring the Available Envers Parameters

1. Open the persistence.xml file for the application.

2. Add, remove or configure Envers properties as required. For a list of available properties, see
Envers Configuration Properties.

Example: Envers Parameters

6.4.2. Enable or Disable Auditing at Runtime

Enable or Disable Entity Version Auditing at Runtime

1. Subclass the AuditEventListener class.

2. Override the following methods that are called on Hibernate events:

onPostInsert

onPostUpdate

onPostDelete

onPreUpdateCollection

onPreRemoveCollection

onPostRecreateCollection

3. Specify the subclass as the listener for the events.

4. Determine if the change should be audited.

5. Pass the call to the superclass if the change should be audited.

6.4.3. Configure Conditional Auditing

Hibernate Envers persists audit data in reaction to various Hibernate events, using a series of event

<persistence-unit name="mypc">
 <description>Persistence Unit.</description>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source>
 <shared-cache-mode>ENABLE_SELECTIVE</shared-cache-mode>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop" />
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.cache.use_second_level_cache" value="true" />
 <property name="hibernate.cache.use_query_cache" value="true" />
 <property name="hibernate.generate_statistics" value="true" />
 <property name="org.hibernate.envers.versionsTableSuffix" value="_V" />
 <property name="org.hibernate.envers.revisionFieldName" value="ver_rev" />
 </properties>
</persistence-unit>

CHAPTER 6. HIBERNATE ENVERS

41

Hibernate Envers persists audit data in reaction to various Hibernate events, using a series of event
listeners. These listeners are registered automatically if the Envers JAR is in the class path.

Implement Conditional Auditing

1. Set the hibernate.listeners.envers.autoRegister Hibernate property to false in the
persistence.xml file.

2. Subclass each event listener to be overridden. Place the conditional auditing logic in the
subclass, and call the super method if auditing should be performed.

3. Create a custom implementation of org.hibernate.integrator.spi.Integrator, similar to
org.hibernate.envers.event.EnversIntegrator. Use the event listener subclasses created in
step two, rather than the default classes.

4. Add a META-INF/services/org.hibernate.integrator.spi.Integrator file to the JAR. This file
should contain the fully qualified name of the class implementing the interface.

6.4.4. Envers Configuration Properties

Table 6.1. Entity Data Versioning Configuration Parameters

Property Name Default Value Description

org.hibernate.envers.audit_tab
le_prefix

 A string that is prepended to the name of
an audited entity, to create the name of
the entity that will hold the audit
information.

org.hibernate.envers.audit_tab
le_suffix

_AUD A string that is appended to the name of
an audited entity to create the name of
the entity that will hold the audit
information. For example, if an entity with
a table name of Person is audited,
Envers will generate a table called
Person_AUD to store the historical
data.

org.hibernate.envers.revision_
field_name

REV The name of the field in the audit entity
that holds the revision number.

org.hibernate.envers.revision_
type_field_name

REVTYPE The name of the field in the audit entity
that holds the type of revision. The
current types of revisions possible are:
add, mod and del for inserting,
modifying or deleting respectively.

org.hibernate.envers.revision_
on_collection_change

true This property determines if a revision
should be generated if a relation field
that is not owned changes. This can either
be a collection in a one-to-many relation,
or the field using the mappedBy
attribute in a one-to-one relation.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

42

org.hibernate.envers.do_not_a
udit_optimistic_locking_field

true When true, properties used for optimistic
locking (annotated with @Version) will
automatically be excluded from auditing.

org.hibernate.envers.store_dat
a_at_delete

false This property defines whether or not
entity data should be stored in the
revision when the entity is deleted,
instead of only the ID, with all other
properties marked as null. This is not
usually necessary, as the data is present in
the last-but-one revision. Sometimes,
however, it is easier and more efficient to
access it in the last revision. However, this
means the data the entity contained
before deletion is stored twice.

org.hibernate.envers.default_s
chema

null (same as normal
tables)

The default schema name used for audit
tables. Can be overridden using the
@AuditTable(schema="… ")
annotation. If not present, the schema will
be the same as the schema of the normal
tables.

org.hibernate.envers.default_c
atalog

null (same as normal
tables)

The default catalog name that should be
used for audit tables. Can be overridden
using the @AuditTable(catalog="… ")
annotation. If not present, the catalog will
be the same as the catalog of the normal
tables.

org.hibernate.envers.audit_str
ategy

org.hibernate.envers
.strategy.DefaultAudi
tStrategy

This property defines the audit strategy
that should be used when persisting audit
data. By default, only the revision where
an entity was modified is stored.
Alternatively,
org.hibernate.envers.strategy.Valid
ityAuditStrategy stores both the start
revision and the end revision. Together,
these define when an audit row was valid.

org.hibernate.envers.audit_str
ategy_validity_end_rev_field_
name

REVEND The column name that will hold the end
revision number in audit entities. This
property is only valid if the validity audit
strategy is used.

Property Name Default Value Description

CHAPTER 6. HIBERNATE ENVERS

43

org.hibernate.envers.audit_str
ategy_validity_store_revend_ti
mestamp

false This property defines whether the
timestamp of the end revision, where the
data was last valid, should be stored in
addition to the end revision itself. This is
useful to be able to purge old audit
records out of a relational database by
using table partitioning. Partitioning
requires a column that exists within the
table. This property is only evaluated if
the ValidityAuditStrategy is used.

org.hibernate.envers.audit_str
ategy_validity_revend_timesta
mp_field_name

REVEND_TSTMP Column name of the timestamp of the
end revision at which point the data was
still valid. Only used if the
ValidityAuditStrategy is used, and
org.hibernate.envers.audit_strateg
y_validity_store_revend_timestamp
evaluates to true.

Property Name Default Value Description

6.5. QUERYING AUDIT INFORMATION

6.5.1. Retrieve Auditing Information Through Queries

Hibernate Envers provides the functionality to retrieve audit information through queries.

NOTE

Queries on the audited data will be, in many cases, much slower than corresponding
queries on live data, as they involve correlated subselects.

Querying for Entities of a Class at a Given Revision

The entry point for this type of query is:

Constraints can then be specified, using the AuditEntity factory class. The query below only selects
entities where the name property is equal to John:

The queries below only select entities that are related to a given entity:

The results can then be ordered, limited, and have aggregations and projections (except grouping) set.

AuditQuery query = getAuditReader()
 .createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber);

query.add(AuditEntity.property("name").eq("John"));

query.add(AuditEntity.property("address").eq(relatedEntityInstance));
// or
query.add(AuditEntity.relatedId("address").eq(relatedEntityId));

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

44

The results can then be ordered, limited, and have aggregations and projections (except grouping) set.
The example below is a full query.

Query Revisions where Entities of a Given Class Changed

The entry point for this type of query is:

Constraints can be added to this query in the same way as the previous example. There are additional
possibilities for this query:

AuditEntity.revisionNumber()

Specify constraints, projections and order on the revision number in which the audited entity was
modified.

AuditEntity.revisionProperty(propertyName)

Specify constraints, projections and order on a property of the revision entity, corresponding to the
revision in which the audited entity was modified.

AuditEntity.revisionType()

Provides accesses to the type of the revision (ADD, MOD, DEL).

The query results can then be adjusted as necessary. The query below selects the smallest revision
number at which the entity of the MyEntity class, with the entityId ID has changed, after revision
number 42:

Queries for revisions can also minimize/maximize a property. The query below selects the revision at
which the value of the actualDate for a given entity was larger than a given value, but as small as
possible:

List personsAtAddress = getAuditReader().createQuery()
 .forEntitiesAtRevision(Person.class, 12)
 .addOrder(AuditEntity.property("surname").desc())
 .add(AuditEntity.relatedId("address").eq(addressId))
 .setFirstResult(4)
 .setMaxResults(2)
 .getResultList();

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true);

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.id().eq(entityId))
 .add(AuditEntity.revisionNumber().gt(42))
 .getSingleResult();

Number revision = (Number) getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 // We are only interested in the first revision
 .setProjection(AuditEntity.revisionNumber().min())
 .add(AuditEntity.property("actualDate").minimize()
 .add(AuditEntity.property("actualDate").ge(givenDate))
 .add(AuditEntity.id().eq(givenEntityId)))
 .getSingleResult();

CHAPTER 6. HIBERNATE ENVERS

45

The minimize() and maximize() methods return a criteria, to which constraints can be added, which
must be met by the entities with the maximized/minimized properties.

There are two boolean parameters passed when creating the query.

selectEntitiesOnly

This parameter is only valid when an explicit projection is not set.
If true, the result of the query will be a list of entities that changed at revisions satisfying the
specified constraints.
If false, the result will be a list of three element arrays. The first element will be the changed entity
instance. The second will be an entity containing revision data. If no custom entity is used, this will be
an instance of DefaultRevisionEntity. The third element array will be the type of the revision (ADD,
MOD, DEL).

selectDeletedEntities

This parameter specifies if revisions in which the entity was deleted must be included in the results. If
true, the entities will have the revision type DEL, and all fields, except id, will have the value null.

Query Revisions of an Entity that Modified a Given Property

The query below will return all revisions of MyEntity with a given id, where the actualDate property has
been changed.

The hasChanged condition can be combined with additional criteria. The query below will return a
horizontal slice for MyEntity at the time the revisionNumber was generated. It will be limited to the
revisions that modified prop1, but not prop2.

The result set will also contain revisions with numbers lower than the revisionNumber. This means that
this query cannot be read as "Return all MyEntities changed in revisionNumber with prop1 modified and
prop2 untouched."

The query below shows how this result can be returned, using the forEntitiesModifiedAtRevision
query:

Query Entities Modified in a Given Revision

The example below shows the basic query for entities modified in a given revision. It allows entity names
and corresponding Java classes changed in a specified revision to be retrieved:

AuditQuery query = getAuditReader().createQuery()
 .forRevisionsOfEntity(MyEntity.class, false, true)
 .add(AuditEntity.id().eq(id));
 .add(AuditEntity.property("actualDate").hasChanged())

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

AuditQuery query = getAuditReader().createQuery()
 .forEntitiesModifiedAtRevision(MyEntity.class, revisionNumber)
 .add(AuditEntity.property("prop1").hasChanged())
 .add(AuditEntity.property("prop2").hasNotChanged());

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

46

There are a number of other queries that are also accessible from
org.hibernate.envers.CrossTypeRevisionChangesReader:

List<Object> findEntities(Number)

Returns snapshots of all audited entities changed (added, updated and removed) in a given revision.
Executes n+1 SQL queries, where n is a number of different entity classes modified within the
specified revision.

List<Object> findEntities(Number, RevisionType)

Returns snapshots of all audited entities changed (added, updated or removed) in a given revision
filtered by modification type. Executes n+1 SQL queries, where n is a number of different entity
classes modified within specified revision. Map<RevisionType, List<Object>>

findEntitiesGroupByRevisionType(Number)

Returns a map containing lists of entity snapshots grouped by modification operation, for example,
addition, update or removal. Executes 3n+1 SQL queries, where n is a number of different entity
classes modified within specified revision.

6.5.2. Traversing Entity Associations Using Properties of Referenced Entities

You can use the properties of a referenced entity to traverse entities in a query. This enables you to
query for one-to-one and many-to-one associations.

The examples below demonstrate some of the ways you can traverse entities in a query.

In revision number 1, find cars where the owner is age 20 or lives at address number 30, then
order the result set by car make.

In revision number 1, find the car where the owner age is equal to the owner address number.

In revision number 1, find all cars where the owner is age 20 or where there is no owner.

Set<Pair<String, Class>> modifiedEntityTypes = getAuditReader()
 .getCrossTypeRevisionChangesReader().findEntityTypes(revisionNumber);

List<Car> resultList = auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.INNER, "p")
 .traverseRelation("address", JoinType.INNER, "a")
 .up().up().add(AuditEntity.disjunction().add(AuditEntity.property("p", "age")
 .eq(20)).add(AuditEntity.property("a", "number").eq(30)))
 .addOrder(AuditEntity.property("make").asc()).getResultList();

Car result = (Car) auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.INNER, "p")
 .traverseRelation("address", JoinType.INNER, "a")
 .up().up().add(AuditEntity.property("p", "age")
 .eqProperty("a", "number")).getSingleResult();

List<Car> resultList = auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.LEFT, "p")

CHAPTER 6. HIBERNATE ENVERS

47

In revision number 1, find all cars where the make equals "car3", and where the owner is age 30 or
there is no no owner.

In revision number 1, find all cars where the make equals "car3" or where or the owner is age 10 or
where there is no owner.

6.6. PERFORMANCE TUNING

6.6.1. Alternative Batch Loading Algorithms

Hibernate allows you to load data for associations using one of four fetching strategies: join, select,
subselect and batch. Out of these four strategies, batch loading allows for the biggest performance
gains as it is an optimization strategy for select fetching. In this strategy, Hibernate retrieves a batch of
entity instances or collections in a single SELECT statement by specifying a list of primary or foreign
keys. Batch fetching is an optimization of the lazy select fetching strategy.

There are two ways to configure batch fetching: per-class level or per-collection level.

Per-class Level
When Hibernate loads data on a per-class level, it requires the batch size of the association to
pre-load when queried. For example, consider that at runtime you have 30 instances of a car
object loaded in session. Each car object belongs to an owner object. If you were to iterate
through all the car objects and request their owners, with lazy loading, Hibernate will issue 30
select statements - one for each owner. This is a performance bottleneck.

You can instead, tell Hibernate to pre-load the data for the next batch of owners before they
have been sought via a query. When an owner object has been queried, Hibernate will query
many more of these objects in the same SELECT statement.

The number of owner objects to query in advance depends upon the batch-size parameter
specified at configuration time:

This tells Hibernate to query at least 10 more owner objects in expectation of them being
needed in the near future. When a user queries the owner of car A, the owner of car B may

 .up().add(AuditEntity.or(AuditEntity.property("p", "age").eq(20),
 AuditEntity.relatedId("owner").eq(null)))
 .addOrder(AuditEntity.property("make").asc()).getResultList();

List<Car> resultList = auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.LEFT, "p")
 .up().add(AuditEntity.and(AuditEntity.property("make").eq("car3"),
AuditEntity.property("p", "age").eq(30)))
 .getResultList();

List<Car> resultList = auditReader.createQuery()
 .forEntitiesAtRevision(Car.class, 1)
 .traverseRelation("owner", JoinType.LEFT, "p")
 .up().add(AuditEntity.or(AuditEntity.property("make").eq("car3"),
AuditEntity.property("p", "age").eq(10)))
 .getResultList();

<class name="owner" batch-size="10"></class>

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

48

already have been loaded as part of batch loading. When the user actually needs the owner of
car B, instead of going to the database (and issuing a SELECT statement), the value can be
retrieved from the current session.

In addition to the batch-size parameter, Hibernate 4.2.0 has introduced a new configuration
item to improve in batch loading performance. The configuration item is called Batch Fetch
Style configuration and specified by the hibernate.batch_fetch_style parameter.

Three different batch fetch styles are supported: LEGACY, PADDED and DYNAMIC. To specify
which style to use, use org.hibernate.cfg.AvailableSettings#BATCH_FETCH_STYLE.

LEGACY: In the legacy style of loading, a set of pre-built batch sizes based on
ArrayHelper.getBatchSizes(int) are utilized. Batches are loaded using the next-smaller
pre-built batch size from the number of existing batchable identifiers.
Continuing with the above example, with a batch-size setting of 30, the pre-built batch
sizes would be [30, 15, 10, 9, 8, 7, .., 1]. An attempt to batch load 29 identifiers would result in
batches of 15, 10, and 4. There will be 3 corresponding SQL queries, each loading 15, 10 and
4 owners from the database.

PADDED - Padded is similar to LEGACY style of batch loading. It still utilizes pre-built
batch sizes, but uses the next-bigger batch size and pads the extra identifier placeholders.
As with the example above, if 30 owner objects are to be initialized, there will only be one
query executed against the database.

However, if 29 owner objects are to be initialized, Hibernate will still execute only one SQL
select statement of batch size 30, with the extra space padded with a repeated identifier.

Dynamic - While still conforming to batch-size restrictions, this style of batch loading
dynamically builds its SQL SELECT statement using the actual number of objects to be
loaded.
For example, for 30 owner objects, and a maximum batch size of 30, a call to retrieve 30
owner objects will result in one SQL SELECT statement. A call to retrieve 35 will result in
two SQL statements, of batch sizes 30 and 5 respectively. Hibernate will dynamically alter
the second SQL statement to keep at 5, the required number, while still remaining under the
restriction of 30 as the batch-size. This is different to the PADDED version, as the second
SQL will not get PADDED, and unlike the LEGACY style, there is no fixed size for the
second SQL statement - the second SQL is created dynamically.

For a query of less than 30 identifiers, this style will dynamically only load the number of
identifiers requested.

Per-collection Level
Hibernate can also batch load collections honoring the batch fetch size and styles as listed in
the per-class section above.

To reverse the example used in the previous section, consider that you need to load all the car
objects owned by each owner object. If 10 owner objects are loaded in the current session
iterating through all owners will generate 10 SELECT statements, one for every call to getCars()
method. If you enable batch fetching for the cars collection in the mapping of Owner, Hibernate
can pre-fetch these collections, as shown below.

Thus, with a batch size of five and using legacy batch style to load 10 collections, Hibernate will
execute two SELECT statements, each retrieving five collections.

<class name="Owner"><set name="cars" batch-size="5"></set></class>

CHAPTER 6. HIBERNATE ENVERS

49

6.6.2. Second Level Caching of Object References for Non-mutable Data

Hibernate automatically caches data within memory for improved performance. This is accomplished by
an in-memory cache which reduces the number of times that database lookups are required, especially
for data that rarely changes.

Hibernate maintains two types of caches. The primary cache, also called the first-level cache, is
mandatory. This cache is associated with the current session and all requests must pass through it. The
secondary cache, also called the second-level cache, is optional, and is only consulted after the primary
cache has been consulted.

Data is stored in the second-level cache by first disassembling it into a state array. This array is deep
copied, and that deep copy is put into the cache. The reverse is done for reading from the cache. This
works well for data that changes (mutable data), but is inefficient for immutable data.

Deep copying data is an expensive operation in terms of memory usage and processing speed. For large
data sets, memory and processing speed become a performance-limiting factor. Hibernate allows you to
specify that immutable data be referenced rather than copied. Instead of copying entire data sets,
Hibernate can now store the reference to the data in the cache.

This can be done by changing the value of the configuration setting
hibernate.cache.use_reference_entries to true. By default, hibernate.cache.use_reference_entries
is set to false.

When hibernate.cache.use_reference_entries is set to true, an immutable data object that does not
have any associations is not copied into the second-level cache, and only a reference to it is stored.

WARNING

When hibernate.cache.use_reference_entries is set to true, immutable data
objects with associations are still deep copied into the second-level cache.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

50

CHAPTER 7. HIBERNATE SEARCH

7.1. GETTING STARTED WITH HIBERNATE SEARCH

7.1.1. About Hibernate Search

Hibernate Search provides full-text search capability to Hibernate applications. It is especially suited to
search applications for which SQL-based solutions are not suited, including: full-text, fuzzy and
geolocation searches. Hibernate Search uses Apache Lucene as its full-text search engine, but is
designed to minimize the maintenance overhead. Once it is configured, indexing, clustering and data
synchronization is maintained transparently, allowing you to focus on meeting your business
requirements.

NOTE

The prior release of JBoss EAP included Hibernate 4.2 and Hibernate Search 4.6. JBoss
EAP 7 includes Hibernate 5 and Hibernate Search 5.5.

Hibernate Search 5.5 works with Java 7 and now builds upon Lucene 5.3.x. If you are using
any native Lucene APIs make sure to align with this version.

7.1.2. Overview

Hibernate Search consists of an indexing component as well as an index search component, both are
backed by Apache Lucene. Each time an entity is inserted, updated or removed from the database,
Hibernate Search keeps track of this event through the Hibernate event system and schedules an index
update. All these updates are handled without having to interact with the Apache Lucene APIs directly.
Instead, interaction with the underlying Lucene indexes is handled via an IndexManager. By default
there is a one-to-one relationship between IndexManager and Lucene index. The IndexManager
abstracts the specific index configuration, including the selected back end, reader strategy and the
DirectoryProvider.

Once the index is created, you can search for entities and return lists of managed entities instead of
dealing with the underlying Lucene infrastructure. The same persistence context is shared between
Hibernate and Hibernate Search. The FullTextSession class is built on top of the Hibernate Session
class so that the application code can use the unified org.hibernate.Query or javax.persistence.Query
APIs exactly the same way an HQL, JPA-QL, or native query would.

Transactional batching mode is recommended for all operations, whether or not they are JDBC-based.

NOTE

It is recommended, for both your database and Hibernate Search, to execute your
operations in a transaction, whether it is JDBC or JTA.

NOTE

Hibernate Search works perfectly fine in the Hibernate or EntityManager long
conversation pattern, known as atomic conversation.

7.1.3. About the Directory Provider

Apache Lucene, which is part of the Hibernate Search infrastructure, has the concept of a Directory for

CHAPTER 7. HIBERNATE SEARCH

51

Apache Lucene, which is part of the Hibernate Search infrastructure, has the concept of a Directory for
storage of indexes. Hibernate Search handles the initialization and configuration of a Lucene Directory
instance via a Directory Provider.

The directory_provider property specifies the directory provider to be used to store the indexes. The
default file system directory provider is filesystem, which uses the local file system to store indexes.

7.1.4. About the Worker

Updates to Lucene indexes are handled by the Hibernate Search Worker, which receives all entity
changes, queues them by context and applies them once a context ends. The most common context is
the transaction, but may be dependent on the number of entity changes or some other application
events.

For better efficiency, interactions are batched and generally applied once the context ends. Outside a
transaction, the index update operation is executed right after the actual database operation. In the
case of an ongoing transaction, the index update operation is scheduled for the transaction commit
phase and discarded in case of transaction rollback. A worker may be configured with a specific batch
size limit, after which indexing occurs regardless of the context.

There are two immediate benefits to this method of handling index updates:

Performance: Lucene indexing works better when operation are executed in batch.

ACIDity: The work executed has the same scoping as the one executed by the database
transaction and is executed if and only if the transaction is committed. This is not ACID in the
strict sense, but ACID behavior is rarely useful for full text search indexes since they can be
rebuilt from the source at any time.

The two batch modes, no scope vs transactional, are the equivalent of autocommit versus transactional
behavior. From a performance perspective, the transactional mode is recommended. The scoping
choice is made transparently. Hibernate Search detects the presence of a transaction and adjust the
scoping.

7.1.5. Back End Setup and Operations

7.1.5.1. Back End

Hibernate Search uses various back ends to process batches of work. The back end is not limited to the
configuration option default.worker.backend. This property specifies a implementation of the
BackendQueueProcessor interface which is a part of a back-end configuration. Additional settings are
required to set up a back-end, for example the JMS back-end.

7.1.5.2. Lucene

In the Lucene mode, all index updates for a node are executed by the same node to the Lucene
directories using the directory providers. Use this mode in a non-clustered environment or in clustered
environments with a shared directory store.

Figure 7.1. Lucene Back-end Configuration

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

52

Figure 7.1. Lucene Back-end Configuration

Lucene mode targets non-clustered or clustered applications where the directory manages the locking
strategy. The primary advantage of Lucene mode is simplicity and immediate visibility of changes in
Lucene queries. The Near Real Time (NRT) back end is an alternative back end for non-clustered and
non-shared index configurations.

7.1.5.3. JMS

Index updates for a node are sent to the JMS queue. A unique reader processes the queue and updates
the master index. The master index is subsequently replicated regularly to slave copies, to establish the
master and slave pattern. The master is responsible for Lucene index updates. The slaves accept read
and write operations but process read operations on local index copies. The master is solely responsible
for updating the Lucene index. Only the master applies the local changes in an update operation.

Figure 7.2. JMS Back-end Configuration

CHAPTER 7. HIBERNATE SEARCH

53

Figure 7.2. JMS Back-end Configuration

This mode targets clustered environment where throughput is critical and index update delays are
affordable. The JMS provider ensures reliability and uses the slaves to change the local index copies.

7.1.6. Reader Strategies

When executing a query, Hibernate Search uses a reader strategy to interact with the Apache Lucene
indexes. Choose a reader strategy based on the profile of the application like frequent updates, read
mostly, asynchronous index update.

7.1.6.1. The Shared Strategy

Using the shared strategy, Hibernate Search shares the same IndexReader for a given Lucene index
across multiple queries and threads provided that the IndexReader remains updated. If the
IndexReader is not updated, a new one is opened and provided. Each IndexReader is made of several
SegmentReaders. The shared strategy reopens segments that have been modified or created after the
last opening and shares the already loaded segments from the previous instance. This is the default
strategy.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

54

7.1.6.2. The Not-shared Strategy

Using the not-shared strategy, a Lucene IndexReader opens every time a query executes. Opening
and starting up a IndexReader is an expensive operation. As a result, opening an IndexReader for each
query execution is not an efficient strategy.

7.1.6.3. Custom Reader Strategies

You can write a custom reader strategy using an implementation of
org.hibernate.search.reader.ReaderProvider. The implementation must be thread safe.

7.2. CONFIGURATION

7.2.1. Minimum Configuration

Hibernate Search has been designed to provide flexibility in its configuration and operation, with default
values carefully chosen to suit the majority of use cases. At a minimum a Directory Provider must be
configured, along with its properties. The default Directory Provider is filesystem, which uses the local
file system for index storage. For details of available Directory Providers and their configuration, see
DirectoryProvider Configuration.

If you are using Hibernate directly, settings such as the DirectoryProvider must be set in the
configuration file, either hibernate.properties or hibernate.cfg.xml. If you are using Hibernate via JPA,
the configuration file is persistence.xml.

7.2.2. Configuring the IndexManager

Hibernate Search offers several implementations for this interface:

directory-based: the default implementation which uses the Lucene Directory abstraction to
manage index files.

near-real-time: avoids flushing writes to disk at each commit. This index manager is also
Directory based, but uses Lucene’s near real-time, NRT, functionality.

To specify an IndexManager other than the default, specify the following property:

hibernate.search.[default|<indexname>].indexmanager = near-real-time

7.2.2.1. Directory-based

The Directory-based implementation is the default IndexManager implementation. It is highly
configurable and allows separate configurations for the reader strategy, back ends, and directory
providers.

7.2.2.2. Near Real Time

The NRTIndexManager is an extension of the default IndexManager and leverages the Lucene NRT,
Near Real Time, feature for low latency index writes. However, it ignores configuration settings for
alternative back ends other than lucene and acquires exclusive write locks on the Directory.

The IndexWriter does not flush every change to the disk to provide low latency. Queries can read the
updated states from the unflushed index writer buffers. However, this means that if the IndexWriter is
killed or the application crashes, updates can be lost so the indexes must be rebuilt.

CHAPTER 7. HIBERNATE SEARCH

55

The Near Real Time configuration is recommended for non-clustered websites with limited data due to
the mentioned disadvantages and because a master node can be individually configured for improved
performance as well.

7.2.2.3. Custom

Specify a fully qualified class name for the custom implementation to set up a customized
IndexManager. Set up a no-argument constructor for the implementation as follows:

[default|<indexname>].indexmanager = my.corp.myapp.CustomIndexManager

The custom index manager implementation does not require the same components as the default
implementations. For example, delegate to a remote indexing service which does not expose a
Directory interface.

7.2.3. DirectoryProvider Configuration

A DirectoryProvider is the Hibernate Search abstraction around a Lucene Directory and handles the
configuration and the initialization of the underlying Lucene resources. Directory Providers and Their
Properties shows the list of the directory providers available in Hibernate Search together with their
corresponding options.

Each indexed entity is associated with a Lucene index (except of the case where multiple entities share
the same index). The name of the index is given by the index property of the @Indexed annotation. If
the index property is not specified the fully qualified name of the indexed class will be used as name
(recommended).

The DirectoryProvider and any additional options can be configured by using the prefix
hibernate.search.<indexname>. The name default (hibernate.search.default) is reserved and can be
used to define properties which apply to all indexes. Configuring Directory Providers shows how
hibernate.search.default.directory_provider is used to set the default directory provider to be the
filesystem one. hibernate.search.default.indexBase sets then the default base directory for the
indexes. As a result the index for the entity Status is created in
/usr/lucene/indexes/org.hibernate.example.Status.

The index for the Rule entity, however, is using an in-memory directory, because the default directory
provider for this entity is overridden by the property hibernate.search.Rules.directory_provider.

Finally the Action entity uses a custom directory provider CustomDirectoryProvider specified via
hibernate.search.Actions.directory_provider.

Specifying the Index Name

Configuring Directory Providers

package org.hibernate.example;

@Indexed
public class Status { ... }

@Indexed(index="Rules")
public class Rule { ... }

@Indexed(index="Actions")
public class Action { ... }

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

56

hibernate.search.default.directory_provider = filesystem
hibernate.search.default.indexBase=/usr/lucene/indexes
hibernate.search.Rules.directory_provider = ram
hibernate.search.Actions.directory_provider = com.acme.hibernate.CustomDirectoryProvider

NOTE

Using the described configuration scheme you can easily define common rules like the
directory provider and base directory, and override those defaults later on a per index
basis.

Directory Providers and Their Properties

ram

None

filesystem

File system based directory. The directory used will be <indexBase>/< indexName >

indexBase : base directory

indexName: override @Indexed.index (useful for sharded indexes)

locking_strategy : optional, see LockFactory Configuration

filesystem_access_type: allows to determine the exact type of FSDirectory implementation
used by this DirectoryProvider. Allowed values are auto (the default value, selects
NIOFSDirectory on non Windows systems, SimpleFSDirectory on Windows), simple
(SimpleFSDirectory), nio (NIOFSDirectory), mmap (MMapDirectory). See the Javadocs
for these Directory implementations before changing this setting. Even though
NIOFSDirectory or MMapDirectory can bring substantial performance boosts they also
have their issues.

filesystem-master

File system based directory. Like filesystem. It also copies the index to a source directory (aka copy
directory) on a regular basis.
The recommended value for the refresh period is (at least) 50% higher that the time to copy the
information (default 3600 seconds - 60 minutes).

Note that the copy is based on an incremental copy mechanism reducing the average copy time.

DirectoryProvider typically used on the master node in a JMS back end cluster.

The buffer_size_on_copy optimum depends on your operating system and available RAM; most
people reported good results using values between 16 and 64MB.

indexBase: base directory

indexName: override @Indexed.index (useful for sharded indexes)

sourceBase: source (copy) base directory.

source: source directory suffix (default to @Indexed.index). The actual source directory
name being <sourceBase>/<source>

refresh: refresh period in seconds (the copy will take place every refresh seconds). If a copy

CHAPTER 7. HIBERNATE SEARCH

57

refresh: refresh period in seconds (the copy will take place every refresh seconds). If a copy
is still in progress when the following refresh period elapses, the second copy operation will
be skipped.

buffer_size_on_copy: The amount of MegaBytes to move in a single low level copy
instruction; defaults to 16MB.

locking_strategy : optional, see LockFactory Configuration

filesystem_access_type: allows to determine the exact type of FSDirectory implementation
used by this DirectoryProvider. Allowed values are auto (the default value, selects
NIOFSDirectory on non Windows systems, SimpleFSDirectory on Windows), simple
(SimpleFSDirectory), nio (NIOFSDirectory), mmap (MMapDirectory). See the Javadocs
for these Directory implementations before changing this setting. Even though
NIOFSDirectory or MMapDirectory can bring substantial performance boosts, there are
also issues of which you need to be aware.

filesystem-slave

File system based directory. Like filesystem, but retrieves a master version (source) on a regular
basis. To avoid locking and inconsistent search results, 2 local copies are kept.
The recommended value for the refresh period is (at least) 50% higher that the time to copy the
information (default 3600 seconds - 60 minutes).

Note that the copy is based on an incremental copy mechanism reducing the average copy time. If a
copy is still in progress when refresh period elapses, the second copy operation will be skipped.

DirectoryProvider typically used on slave nodes using a JMS back end.

The buffer_size_on_copy optimum depends on your operating system and available RAM; most
people reported good results using values between 16 and 64MB.

indexBase: Base directory

indexName: override @Indexed.index (useful for sharded indexes)

sourceBase: Source (copy) base directory.

source: Source directory suffix (default to @Indexed.index). The actual source directory
name being <sourceBase>/<source>

refresh: refresh period in second (the copy will take place every refresh seconds).

buffer_size_on_copy: The amount of MegaBytes to move in a single low level copy
instruction; defaults to 16MB.

locking_strategy : optional, see LockFactory Configuration

retry_marker_lookup : optional, default to 0. Defines how many times Hibernate Search
checks for the marker files in the source directory before failing. Waiting 5 seconds between
each try.

retry_initialize_period : optional, set an integer value in seconds to enable the retry initialize
feature: if the slave cannot find the master index it will try again until it is found in
background, without preventing the application to start: fullText queries performed before
the index is initialized are not blocked but will return empty results. When not enabling the

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

58

option or explicitly setting it to zero it will fail with an exception instead of scheduling a retry
timer. To prevent the application from starting without an invalid index but still control an
initialization timeout, see retry_marker_lookup instead.

filesystem_access_type: allows to determine the exact type of FSDirectory implementation
used by this DirectoryProvider. Allowed values are auto (the default value, selects
NIOFSDirectory on non Windows systems, SimpleFSDirectory on Windows), simple
(SimpleFSDirectory), nio (NIOFSDirectory), mmap (MMapDirectory). See the Javadocs
for these Directory implementations before changing this setting. Even though
NIOFSDirectory or MMapDirectory can bring substantial performance boosts you need also
to be aware of the issues.

NOTE

If the built-in directory providers do not fit your needs, you can write your own directory
provider by implementing the org.hibernate.store.DirectoryProvider interface. In this
case, pass the fully qualified class name of your provider into the directory_provider
property. You can pass any additional properties using the prefix
hibernate.search.<indexname>.

7.2.4. Worker Configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker configuration.
There exist several architectural components and possible extension points. Let’s have a closer look.

Use the worker configuration to refine how Infinispan Query interacts with Lucene. Several architectural
components and possible extension points are available for this configuration.

First there is a Worker. An implementation of the Worker interface is responsible for receiving all entity
changes, queuing them by context and applying them once a context ends. The most intuitive context,
especially in connection with ORM, is the transaction. For this reason Hibernate Search will per default
use the TransactionalWorker to scope all changes per transaction. One can, however, imagine a
scenario where the context depends for example on the number of entity changes or some other
application lifecycle events.

Table 7.1. Scope Configuration

Property Description

hibernate.search.worker.scope The fully qualified class name of the Worker
implementation to use. If this property is not set,
empty or transaction the default
TransactionalWorker is used.

hibernate.search.worker.* All configuration properties prefixed with
hibernate.search.worker are passed to the
Worker during initialization. This allows adding
custom, worker specific parameters.

CHAPTER 7. HIBERNATE SEARCH

59

hibernate.search.worker.batch_size Defines the maximum number of indexing operation
batched per context. Once the limit is reached
indexing will be triggered even though the context
has not ended yet. This property only works if the
Worker implementation delegates the queued work
to BatchedQueueingProcessor, which is what the
TransactionalWorker does.

Property Description

Once a context ends it is time to prepare and apply the index changes. This can be done synchronously
or asynchronously from within a new thread. Synchronous updates have the advantage that the index is
at all times in sync with the databases. Asynchronous updates, on the other hand, can help to minimize
the user response time. The drawback is potential discrepancies between database and index states.

NOTE

The following options can be different on each index; in fact they need the indexName
prefix or use default to set the default value for all indexes.

Table 7.2. Execution Configuration

Property Description

hibernate.search.<indexName>.
worker.execution

sync: synchronous execution (default)

async: asynchronous execution

hibernate.search.<indexName>.
worker.thread_pool.size

The back end can apply updates from the same
transaction context (or batch) in parallel, using a
thread pool. The default value is 1. You can
experiment with larger values if you have many
operations per transaction.

hibernate.search.<indexName>.
worker.buffer_queue.max

Defines the maximal number of work queue if the
thread pool is starved. Useful only for asynchronous
execution. Default to infinite. If the limit is reached,
the work is done by the main thread.

So far all work is done within the same virtual machine (VM), no matter which execution mode. The total
amount of work has not changed for the single VM. Luckily there is a better approach, namely
delegation. It is possible to send the indexing work to a different server by configuring
hibernate.search.default.worker.backend. Again this option can be configured differently for each
index.

Table 7.3. Back-end Configuration

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

60

Property Description

hibernate.search.<indexName>.
worker.backend

lucene: The default back end which runs index
updates in the same VM. Also used when the
property is undefined or empty.

jms: JMS back end. Index updates are send to a
JMS queue to be processed by an indexing master.
See JMS Back-end Configuration for additional
configuration options and for a more detailed
description of this setup.

blackhole: Mainly a test/developer setting which
ignores all indexing work

You can also specify the fully qualified name of a
class implementing BackendQueueProcessor.
This way you can implement your own
communication layer. The implementation is
responsible for returning a Runnable instance which
on execution will process the index work.

Table 7.4. JMS Back-end Configuration

Property Description

hibernate.search.<indexName>. worker.jndi.* Defines the JNDI properties to initiate the
InitialContext, if necessary. JNDI is only used by the
JMS back end.

hibernate.search.<indexName>.
worker.jms.connection_factory

Mandatory for the JMS back end. Defines the JNDI
name to lookup the JMS connection factory from
(/ConnectionFactory by default in Red Hat JBoss
Enterprise Application Platform)

hibernate.search.<indexName>.
worker.jms.queue

Mandatory for the JMS back end. Defines the JNDI
name to lookup the JMS queue from. The queue will
be used to post work messages.

CHAPTER 7. HIBERNATE SEARCH

61

WARNING

As you probably noticed, some of the shown properties are correlated which means
that not all combinations of property values make sense. In fact you can end up with
a non-functional configuration. This is especially true for the case that you provide
your own implementations of some of the shown interfaces. Make sure to study the
existing code before you write your own Worker or BackendQueueProcessor
implementation.

7.2.4.1. JMS Master/Slave Back End

This section describes in greater detail how to configure the master/slave Hibernate Search
architecture.

Figure 7.3. JMS Backend Configuration

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

62

7.2.4.2. Slave Nodes

Every index update operation is sent to a JMS queue. Index querying operations are executed on a local
index copy.

JMS Slave Configuration

slave configuration

DirectoryProvider
(remote) master location
hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/mastercopy

local copy location
hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour
hibernate.search.default.refresh = 1800

appropriate directory provider
hibernate.search.default.directory_provider = filesystem-slave

Back-end configuration
hibernate.search.default.worker.backend = jms
hibernate.search.default.worker.jms.connection_factory = /ConnectionFactory
hibernate.search.default.worker.jms.queue = queue/hibernatesearch
#optional jndi configuration (check your JMS provider for more information)

Optional asynchronous execution strategy
hibernate.search.default.worker.execution = async
hibernate.search.default.worker.thread_pool.size = 2
hibernate.search.default.worker.buffer_queue.max = 50

NOTE

A file system local copy is recommended for faster search results.

7.2.4.3. Master Node

Every index update operation is taken from a JMS queue and executed. The master index is copied on a
regular basis.

Index update operations in the JMS queue are executed and the master index is copied regularly.

JMS Master Configuration

master configuration

DirectoryProvider
(remote) master location where information is copied to
hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/mastercopy

local master location
hibernate.search.default.indexBase = /Users/prod/lucenedirs

CHAPTER 7. HIBERNATE SEARCH

63

refresh every half hour
hibernate.search.default.refresh = 1800

appropriate directory provider
hibernate.search.default.directory_provider = filesystem-master

Back-end configuration
#Back-end is the default for Lucene

In addition to the Hibernate Search framework configuration, a message-driven bean has to be written
and set up to process the index works queue through JMS.

Message-driven Bean Processing the Indexing Queue

This example inherits from the abstract JMS controller class available in the Hibernate Search source
code and implements a Java EE MDB. This implementation is given as an example and can be adjusted
to make use of non Java EE message-driven beans.

7.2.5. Tuning Lucene Indexing

7.2.5.1. Tuning Lucene Indexing Performance

Hibernate Search is used to tune the Lucene indexing performance by specifying a set of parameters
which are passed through to underlying Lucene IndexWriter such as mergeFactor, maxMergeDocs,
and maxBufferedDocs. Specify these parameters either as default values applying for all indexes, on a
per index basis, or even per shard.

There are several low level IndexWriter settings which can be tuned for different use cases. These
parameters are grouped by the indexwriter keyword:

hibernate.search.[default|<indexname>].indexwriter.<parameter_name>

If no value is set for an indexwriter value in a specific shard configuration, Hibernate Search checks the

@MessageDriven(activationConfig = {
 @ActivationConfigProperty(propertyName="destinationType",
 propertyValue="javax.jms.Queue"),
 @ActivationConfigProperty(propertyName="destination",
 propertyValue="queue/hibernatesearch"),
 @ActivationConfigProperty(propertyName="DLQMaxResent", propertyValue="1")
 })
public class MDBSearchController extends AbstractJMSHibernateSearchController
 implements MessageListener {
 @PersistenceContext EntityManager em;

 //method retrieving the appropriate session
 protected Session getSession() {
 return (Session) em.getDelegate();
 }

 //potentially close the session opened in #getSession(), not needed here
 protected void cleanSessionIfNeeded(Session session)
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

64

If no value is set for an indexwriter value in a specific shard configuration, Hibernate Search checks the
index section, then at the default section.

The configuration in the following table will result in these settings applied on the second shard of the
Animal index:

max_merge_docs = 10

merge_factor = 20

ram_buffer_size = 64MB

term_index_interval = Lucene default

All other values will use the defaults defined in Lucene.

The default for all values is to leave them at Lucene’s own default. The values listed in Indexing
Performance and Behavior Properties depend for this reason on the version of Lucene you are using.
The values shown are relative to version 2.4.

NOTE

Previous versions of Hibernate Search had the notion of batch and transaction
properties. This is no longer the case as the back end will always perform work using the
same settings.

Table 7.5. Indexing Performance and Behavior Properties

Property Description Default Value

hibernate.search.[default|
<indexname>].
exclusive_index_use

Set to true when no other process will need to write
to the same index. This enables Hibernate Search to
work in exclusive mode on the index and improve
performance when writing changes to the index.

true (improved
performance,
releases locks only
at shutdown)

hibernate.search.[default|
<indexname>].max_queu
e_length

Each index has a separate "pipeline" which contains
the updates to be applied to the index. When this
queue is full adding more operations to the queue
becomes a blocking operation. Configuring this
setting does not make much sense unless the
worker.execution is configured as async.

1000

hibernate.search.[default|
<indexname>].indexwriter
.max_buffered_delete_ter
ms

Determines the minimal number of delete terms
required before the buffered in-memory delete
terms are applied and flushed. If there are
documents buffered in memory at the time, they are
merged and a new segment is created.

Disabled (flushes
by RAM usage)

hibernate.search.[default|
<indexname>].indexwriter
.max_buffered_docs

Controls the amount of documents buffered in
memory during indexing. The bigger the more RAM is
consumed.

Disabled (flushes
by RAM usage)

CHAPTER 7. HIBERNATE SEARCH

65

hibernate.search.[default|
<indexname>].indexwriter
.max_merge_docs

Defines the largest number of documents allowed in
a segment. Smaller values perform better on
frequently changing indexes, larger values provide
better search performance if the index does not
change often.

Unlimited
(Integer.MAX_VAL
UE)

hibernate.search.[default|
<indexname>].indexwriter
.merge_factor

Controls segment merge frequency and size.

Determines how often segment indexes are merged
when insertion occurs. With smaller values, less RAM
is used while indexing, and searches on unoptimized
indexes are faster, but indexing speed is slower. With
larger values, more RAM is used during indexing, and
while searches on unoptimized indexes are slower,
indexing is faster. Thus larger values (> 10) are best
for batch index creation, and smaller values (< 10) for
indexes that are interactively maintained. The value
must not be lower than 2.

10

hibernate.search.[default|
<indexname>].indexwriter
.merge_min_size

Controls segment merge frequency and size.
Segments smaller than this size (in MB) are always
considered for the next segment merge operation.
Setting this too large might result in expensive merge
operations, even though they are less frequent. See
also
org.apache.lucene.index.LogDocMergePolicy
.minMergeSize.

0 MB (actually
~1K)

hibernate.search. [default|
<indexname>].
indexwriter.merge_max_s
ize

Controls segment merge frequency and size.

Segments larger than this size (in MB) are never
merged in bigger segments.

This helps reduce memory requirements and avoids
some merging operations at the cost of optimal
search speed. When optimizing an index this value is
ignored.

See also
org.apache.lucene.index.LogDocMergePolicy
.maxMergeSize.

Unlimited

hibernate.search.[default|
<indexname>].indexwriter
.merge_max_optimize_siz
e

Controls segment merge frequency and size.

Segments larger than this size (in MB) are not
merged in bigger segments even when optimizing
the index (see merge_max_size setting as well).

Applied to
org.apache.lucene.index.LogDocMergePolicy
.maxMergeSizeForOptimize.

Unlimited

Property Description Default Value

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

66

hibernate.search.[default|
<indexname>].indexwriter
.merge_calibrate_by_dele
tes

Controls segment merge frequency and size.

Set to false to not consider deleted documents
when estimating the merge policy.

Applied to
org.apache.lucene.index.LogMergePolicy.cal
ibrateSizeByDeletes.

true

hibernate.search.[default|
<indexname>].indexwriter
.ram_buffer_size

Controls the amount of RAM in MB dedicated to
document buffers. When used together
max_buffered_docs a flush occurs for whichever
event happens first.

Generally for faster indexing performance it is best
to flush by RAM usage instead of document count
and use as large a RAM buffer as you can.

16 MB

hibernate.search.[default|
<indexname>].indexwriter
.term_index_interval

Set the interval between indexed terms.

Large values cause less memory to be used by
IndexReader, but slow random-access to terms.Small
values cause more memory to be used by an
IndexReader, and speed random-access to terms.
See Lucene documentation for more details.

128

hibernate.search.[default|
<indexname>].indexwriter
.use_compound_file

The advantage of using the compound file format is
that less file descriptors are used. The disadvantage
is that indexing takes more time and temporary disk
space. You can set this parameter to false in an
attempt to improve the indexing time, but you could
run out of file descriptors if mergeFactor is also
large.

Boolean parameter, use true or false. The default
value for this option is true.

true

hibernate.search.
enable_dirty_check

Not all entity changes require a Lucene index update.
If all of the updated entity properties (dirty
properties) are not indexed, Hibernate Search skips
the re-indexing process.

Disable this option if you use custom FieldBridges
which need to be invoked at each update event
(even though the property for which the field bridge
is configured has not changed).

This optimization will not be applied on classes using
a @ClassBridge or a @DynamicBoost.

Boolean parameter, use true or false. The default
value for this option is true.

true

Property Description Default Value

CHAPTER 7. HIBERNATE SEARCH

67

WARNING

The blackhole back end is not meant to be used in production, only as a tool to
identify indexing bottlenecks.

7.2.5.2. The Lucene IndexWriter

There are several low level IndexWriter settings which can be tuned for different use cases. These
parameters are grouped by the indexwriter keyword:

default.<indexname>.indexwriter.<parameter_name>

If no value is set for indexwriter in a shard configuration, Hibernate Search looks at the index section
and then at the default section.

7.2.5.3. Performance Option Configuration

The following configuration will result in these settings being applied on the second shard of the Animal
index:

Example performance option configuration

default.Animals.2.indexwriter.max_merge_docs = 10
default.Animals.2.indexwriter.merge_factor = 20
default.Animals.2.indexwriter.term_index_interval = default
default.indexwriter.max_merge_docs = 100
default.indexwriter.ram_buffer_size = 64

max_merge_docs = 10

merge_factor = 20

ram_buffer_size = 64MB

term_index_interval = Lucene default

All other values will use the defaults defined in Lucene.

The Lucene default values are the default setting for Hibernate Search. Therefore, the values listed in
the following table depend on the version of Lucene being used. The values shown are relative to
version 2.4. For more information about Lucene indexing performance, see the Lucene documentation.

NOTE

The back end will always perform work using the same settings.

Table 7.6. Indexing Performance and Behavior Properties

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

68

Property Description Default Value

default.
<indexname>.exclusive_i
ndex_use

Set to true when no other process will need to write
to the same index. This enables Hibernate Search to
work in exclusive mode on the index and improve
performance when writing changes to the index.

true (improved
performance,
releases locks only
at shutdown)

default.
<indexname>.max_queue
_length

Each index has a separate "pipeline" which contains
the updates to be applied to the index. When this
queue is full adding more operations to the queue
becomes a blocking operation. Configuring this
setting does not make much sense unless the
worker.execution is configured as async.

1000

default.
<indexname>.indexwriter.
max_buffered_delete_ter
ms

Determines the minimal number of delete terms
required before the buffered in-memory delete
terms are applied and flushed. If there are
documents buffered in memory at the time, they are
merged and a new segment is created.

Disabled (flushes
by RAM usage)

default.
<indexname>.indexwriter.
max_buffered_docs

Controls the amount of documents buffered in
memory during indexing. The bigger the more RAM is
consumed.

Disabled (flushes
by RAM usage)

default.
<indexname>.indexwriter.
max_merge_docs

Defines the largest number of documents allowed in
a segment. Smaller values perform better on
frequently changing indexes, larger values provide
better search performance if the index does not
change often.

Unlimited
(Integer.MAX_VAL
UE)

default.
<indexname>.indexwriter.
merge_factor

Controls segment merge frequency and size.

Determines how often segment indexes are merged
when insertion occurs. With smaller values, less RAM
is used while indexing, and searches on unoptimized
indexes are faster, but indexing speed is slower. With
larger values, more RAM is used during indexing, and
while searches on unoptimized indexes are slower,
indexing is faster. Thus larger values (> 10) are best
for batch index creation, and smaller values (< 10) for
indexes that are interactively maintained. The value
must not be lower than 2.

10

CHAPTER 7. HIBERNATE SEARCH

69

default.
<indexname>.indexwriter.
merge_min_size

Controls segment merge frequency and size.

Segments smaller than this size (in MB) are always
considered for the next segment merge operation.

Setting this too large might result in expensive merge
operations, even though they are less frequent.

See also
org.apache.lucene.index.LogDocMergePolicy
.minMergeSize.

0 MB (actually
~1K)

default.
<indexname>.indexwriter.
merge_max_size

Controls segment merge frequency and size.

Segments larger than this size (in MB) are never
merged in bigger segments.

This helps reduce memory requirements and avoids
some merging operations at the cost of optimal
search speed. When optimizing an index this value is
ignored.

See also
org.apache.lucene.index.LogDocMergePolicy
.maxMergeSize.

Unlimited

default.
<indexname>.indexwriter.
merge_max_optimize_siz
e

Controls segment merge frequency and size.

Segments larger than this size (in MB) are not
merged in bigger segments even when optimizing
the index (see merge_max_size setting as well).

Applied to
org.apache.lucene.index.LogDocMergePolicy
.maxMergeSizeForOptimize.

Unlimited

default.
<indexname>.indexwriter.
merge_calibrate_by_delet
es

Controls segment merge frequency and size.

Set to false to not consider deleted documents
when estimating the merge policy.

Applied to
org.apache.lucene.index.LogMergePolicy.cal
ibrateSizeByDeletes.

true

default.
<indexname>.indexwriter.
ram_buffer_size

Controls the amount of RAM in MB dedicated to
document buffers. When used together
max_buffered_docs a flush occurs for whichever
event happens first.

Generally for faster indexing performance it is best
to flush by RAM usage instead of document count
and use as large a RAM buffer as you can.

16 MB

Property Description Default Value

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

70

default.
<indexname>.indexwriter.
term_index_interval

Set the interval between indexed terms.

Large values cause less memory to be used by
IndexReader, but slow random-access to terms.
Small values cause more memory to be used by an
IndexReader, and speed random-access to terms.
See Lucene documentation for more details.

128

default.
<indexname>.indexwriter.
use_compound_file

The advantage of using the compound file format is
that less file descriptors are used. The disadvantage
is that indexing takes more time and temporary disk
space. You can set this parameter to false in an
attempt to improve the indexing time, but you could
run out of file descriptors if mergeFactor is also
large.

Boolean parameter, use true or false. The default
value for this option is true.

true

default.enable_dirty_chec
k

Not all entity changes require a Lucene index update.
If all of the updated entity properties (dirty
properties) are not indexed, Hibernate Search skips
the re-indexing process.

Disable this option if you use custom FieldBridges
which need to be invoked at each update event
(even though the property for which the field bridge
is configured has not changed).

This optimization will not be applied on classes using
a @ClassBridge or a @DynamicBoost.

Boolean parameter, use true or false. The default
value for this option is true.

true

Property Description Default Value

7.2.5.4. Tuning the Indexing Speed

When the architecture permits it, keep default.exclusive_index_use=true for improved index writing
efficiency.

When tuning indexing speed the recommended approach is to focus first on optimizing the object
loading, and then use the timings you achieve as a baseline to tune the indexing process. Set the
blackhole as worker back end and start your indexing routines. This back end does not disable

CHAPTER 7. HIBERNATE SEARCH

71

Hibernate Search. It generates the required change sets to the index, but discards them instead of
flushing them to the index. In contrast to setting the hibernate.search.indexing_strategy to manual,
using blackhole will possibly load more data from the database because associated entities are re-
indexed as well.

hibernate.search.[default|<indexname>].worker.backend blackhole

WARNING

The blackhole back end is not to be used in production, only as a diagnostic tool to
identify indexing bottlenecks.

7.2.5.5. Control Segment Size

The following options configure the maximum size of segments created:

merge_max_size

merge_max_optimize_size

merge_calibrate_by_deletes

Control Segment Size

//to be fairly confident no files grow above 15MB, use:
hibernate.search.default.indexwriter.ram_buffer_size = 10
hibernate.search.default.indexwriter.merge_max_optimize_size = 7
hibernate.search.default.indexwriter.merge_max_size = 7

Set the max_size for merge operations to less than half of the hard limit segment size, as merging
segments combines two segments into one larger segment.

A new segment may initially be a larger size than expected, however a segment is never created
significantly larger than the ram_buffer_size. This threshold is checked as an estimate.

7.2.6. LockFactory Configuration

The Lucene Directory can be configured with a custom locking strategy via LockingFactory for each
index managed by Hibernate Search.

Some locking strategies require a filesystem level lock, and may be used on RAM-based indexes. When
using this strategy the IndexBase configuration option must be specified to point to a filesystem
location in which to store the lock marker files.

To select a locking factory, set the hibernate.search.<index>.locking_strategy option to one the
following options:

simple

native

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

72

single

none

Table 7.7. List of Available LockFactory Implementations

Name Class Description

LockFa
ctory
Config
uration
simpl
e

org.apache.lucene.store.
SimpleFSLockFactory

Safe implementation based on Java’s File API, it
marks the usage of the index by creating a marker
file.

If for some reason you had to kill your application,
you will need to remove this file before restarting it.

native org.apache.lucene.store.
NativeFSLockFactory

As does simple this also marks the usage of the
index by creating a marker file, but this one is using
native OS file locks so that even if the JVM is
terminated the locks will be cleaned up.

This implementation has known problems on NFS,
avoid it on network shares.

native is the default implementation for the
filesystem, filesystem-master and filesystem-
slave directory providers.

single org.apache.lucene.store.
SingleInstanceLockFactory

This LockFactory does not use a file marker but is a
Java object lock held in memory; therefore it is
possible to use it only when you are sure the index is
not going to be shared by any other process.

This is the default implementation for the ram
directory provider.

none org.apache.lucene.store.NoLockFactory Changes to this index are not coordinated by a lock.

The following is an example of locking strategy configuration:

hibernate.search.default.locking_strategy = simple
hibernate.search.Animals.locking_strategy = native
hibernate.search.Books.locking_strategy = org.custom.components.MyLockingFactory

7.2.7. Index Format Compatibility

Hibernate Search does not currently offer a backwards compatible API or tool to facilitate porting
applications to newer versions. The API uses Apache Lucene for index writing and searching.
Occasionally an update to the index format may be required. In this case, there is a possibility that data
will need to be re-indexed if Lucene is unable to read the old format.

CHAPTER 7. HIBERNATE SEARCH

73

WARNING

Back up indexes before attempting to update the index format.

Hibernate Search exposes the hibernate.search.lucene_version configuration property. This property
instructs Analyzers and other Lucene classes to conform to their behavior as defined in an older version
of Lucene. See also org.apache.lucene.util.Version contained in the lucene-core.jar. If the option is
not specified, Hibernate Search instructs Lucene to use the version default. It is recommended that the
version used is explicitly defined in the configuration to prevent automatic changes when an upgrade
occurs. After an upgrade, the configuration values can be updated explicitly if required.

Force Analyzers to Be Compatible with a Lucene 3.0 Created Index

hibernate.search.lucene_version = LUCENE_30

The configured SearchFactory is global and affects all Lucene APIs that contain the relevant
parameter. If Lucene is used and Hibernate Search is bypassed, apply the same value to it for consistent
results.

7.3. HIBERNATE SEARCH FOR YOUR APPLICATION

7.3.1. First Steps with Hibernate Search

To get started with Hibernate Search for your application, follow these topics.

Enable Hibernate Search Using Maven

Indexing

Searching

Analyzer

7.3.2. Enable Hibernate Search Using Maven

Use the following configuration in your Maven project to add hibernate-search-orm dependencies:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
 <version>5.5.1.Final-redhat-1</version>
 </dependency>
 </dependencies>
</dependencyManagement>

<dependencies>
 <dependency>

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

74

7.3.3. Add Annotations

For this section, consider the example in which you have a database containing details of books. Your
application contains the Hibernate managed classes example.Book and example.Author and you want
to add free text search capabilities to your application to enable searching for books.

Example: Entities Book and Author Before Adding Hibernate Search Specific Annotations

To achieve this you have to add a few annotations to the Book and Author class. The first annotation

 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
 <scope>provided</scope>
 </dependency>
</dependencies>

package example;
...
@Entity
public class Book {

 @Id
 @GeneratedValue
 private Integer id;

 private String title;

 private String subtitle;

 @ManyToMany
 private Set<Author> authors = new HashSet<Author>();

 private Date publicationDate;

 public Book() {}

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity
public class Author {

 @Id
 @GeneratedValue
 private Integer id;

 private String name;

 public Author() {}

 // standard getters/setters follow here
 ...
}

CHAPTER 7. HIBERNATE SEARCH

75

To achieve this you have to add a few annotations to the Book and Author class. The first annotation
@Indexed marks Book as indexable. By design Hibernate Search stores an untokenized ID in the index
to ensure index unicity for a given entity. @DocumentId marks the property to use for this purpose and
is in most cases the same as the database primary key. The @DocumentId annotation is optional in the
case where an @Id annotation exists.

Next the fields you want to make searchable must be marked as such. In this example, start with title and
subtitle and annotate both with @Field. The parameter index=Index.YES will ensure that the text will
be indexed, while analyze=Analyze.YES ensures that the text will be analyzed using the default Lucene
analyzer. Usually, analyzing means chunking a sentence into individual words and potentially excluding
common words like 'a' or ‘the’. We will talk more about analyzers a little later on. The third parameter we
specify within @Field, store=Store.NO, ensures that the actual data will not be stored in the index.
Whether this data is stored in the index or not has nothing to do with the ability to search for it. From
Lucene’s perspective it is not necessary to keep the data once the index is created. The benefit of
storing it is the ability to retrieve it via projections.

Without projections, Hibernate Search will per default execute a Lucene query in order to find the
database identifiers of the entities matching the query criteria and use these identifiers to retrieve
managed objects from the database. The decision for or against projection has to be made on a case to
case basis. The default behavior is recommended since it returns managed objects whereas projections
only return object arrays. Note that index=Index.YES, analyze=Analyze.YES and store=Store.NO are
the default values for these parameters and could be omitted.

Another annotation not yet discussed is @DateBridge. This annotation is one of the built-in field
bridges in Hibernate Search. The Lucene index is purely string based. For this reason Hibernate Search
must convert the data types of the indexed fields to strings and vice-versa. A range of predefined
bridges are provided, including the DateBridge which will convert a java.util.Date into a String with the
specified resolution. For more details see Bridges.

This leaves us with @IndexedEmbedded. This annotation is used to index associated entities
(@ManyToMany, @*ToOne, @Embedded and @ElementCollection) as part of the owning entity. This
is needed since a Lucene index document is a flat data structure which does not know anything about
object relations. To ensure that the authors' name will be searchable you have to ensure that the names
are indexed as part of the book itself. On top of @IndexedEmbedded you will also have to mark all
fields of the associated entity you want to have included in the index with @Indexed. For more details
see Embedded and Associated Objects .

These settings should be sufficient for now. For more details on entity mapping see Mapping an Entity.

Example: Entities After Adding Hibernate Search Annotations

package example;
...
@Entity

public class Book {

 @Id
 @GeneratedValue
 private Integer id;

 private String title;

 private String subtitle;

 @Field(index = Index.YES, analyze=Analyze.NO, store = Store.YES)

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

76

7.3.4. Indexing

Hibernate Search will transparently index every entity persisted, updated or removed through Hibernate
Core. However, you have to create an initial Lucene index for the data already present in your database.
Once you have added the above properties and annotations it is time to trigger an initial batch index of
your books. You can achieve this by using one of the following code snippets (see also):

Example: Using the Hibernate Session to Index Data

Example: Using JPA to Index Data

After executing the above code, you should be able to see a Lucene index under
/var/lucene/indexes/example.Book. Inspect this index with Luke to help you to understand how
Hibernate Search works.

 @DateBridge(resolution = Resolution.DAY)
 private Date publicationDate;

 @ManyToMany
 private Set<Author> authors = new HashSet<Author>();

 public Book() {
 }

 // standard getters/setters follow here
 ...
}

package example;
...
@Entity
public class Author {

 @Id
 @GeneratedValue
 private Integer id;

 private String name;

 public Author() {
 }

 // standard getters/setters follow here
 ...
}

FullTextSession fullTextSession = org.hibernate.search.Search.getFullTextSession(session);
fullTextSession.createIndexer().startAndWait();

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
fullTextEntityManager.createIndexer().startAndWait();

CHAPTER 7. HIBERNATE SEARCH

77

http://code.google.com/p/luke/

7.3.5. Searching

To execute a search, create a Lucene query using either the Lucene API or the Hibernate Search query
DSL. Wrap the query in a org.hibernate.Query to get the required functionality from the Hibernate API.
The following code prepares a query against the indexed fields. Executing the code returns a list of
Books.

Example: Using a Hibernate Search Session to Create and Execute a Search

Example: Using JPA to Create and Execute a Search

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();

// create native Lucene query using the query DSL
// alternatively you can write the Lucene query using the Lucene query parser
// or the Lucene programmatic API. The Hibernate Search DSL is recommended though
QueryBuilder qb = fullTextSession.getSearchFactory()
 .buildQueryBuilder().forEntity(Book.class).get();
org.apache.lucene.search.Query query = qb
 .keyword()
 .onFields("title", "subtitle", "authors.name", "publicationDate")
 .matching("Java rocks!")
 .createQuery();

// wrap Lucene query in a org.hibernate.Query
org.hibernate.Query hibQuery =
 fullTextSession.createFullTextQuery(query, Book.class);

// execute search
List result = hibQuery.list();

tx.commit();
session.close();

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);
em.getTransaction().begin();

// create native Lucene query using the query DSL
// alternatively you can write the Lucene query using the Lucene query parser
// or the Lucene programmatic API. The Hibernate Search DSL is recommended though
QueryBuilder qb = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Book.class).get();
org.apache.lucene.search.Query query = qb
 .keyword()
 .onFields("title", "subtitle", "authors.name", "publicationDate")
 .matching("Java rocks!")
 .createQuery();

// wrap Lucene query in a javax.persistence.Query
javax.persistence.Query persistenceQuery =
 fullTextEntityManager.createFullTextQuery(query, Book.class);

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

78

7.3.6. Analyzer

Assuming that the title of an indexed book entity is Refactoring: Improving the Design of Existing
Code and that hits are required for the following queries: refactor, refactors, refactored, and
refactoring. Select an analyzer class in Lucene that applies word stemming when indexing and searching.
Hibernate Search offers several ways to configure the analyzer (see Default Analyzer and Analyzer by
Class for more information):

Set the analyzer property in the configuration file. The specified class becomes the default
analyzer.

Set the @Analyzer annotation at the entity level.

Set the @Analyzer annotation at the field level.

Specify the fully qualified class name or the analyzer to use, or see an analyzer defined by the
@AnalyzerDef annotation with the @Analyzer annotation. The Solr analyzer framework with its
factories are utilized for the latter option. For more information about factory classes, see the Solr
JavaDoc or read the corresponding section on the Solr Wiki.

In the example, a StandardTokenizerFactory is used by two filter factories: LowerCaseFilterFactory and
SnowballPorterFilterFactory. The tokenizer splits words at punctuation characters and hyphens but
keeping email addresses and internet hostnames intact. The standard tokenizer is ideal for this and
other general operations. The lowercase filter converts all letters in the token into lowercase and the
snowball filter applies language specific stemming.

If using the Solr framework, use the tokenizer with an arbitrary number of filters.

Example: Using @AnalyzerDef and the Solr Framework to Define and Use an Analyzer

// execute search
List result = persistenceQuery.getResultList();

em.getTransaction().commit();
em.close();

@Indexed
@AnalyzerDef(
 name = "customanalyzer",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = SnowballPorterFilterFactory.class,
 params = { @Parameter(name = "language", value = "English") })
 })
public class Book implements Serializable {

 @Field
 @Analyzer(definition = "customanalyzer")
 private String title;

 @Field
 @Analyzer(definition = "customanalyzer")
 private String subtitle;

 @IndexedEmbedded

CHAPTER 7. HIBERNATE SEARCH

79

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Use @AnalyzerDef to define an analyzer, then apply it to entities and properties using @Analyzer. In the
example, the customanalyzer is defined but not applied on the entity. The analyzer is only applied to
the title and subtitle properties. An analyzer definition is global. Define the analyzer for an entity and
reuse the definition for other entities as required.

7.4. MAPPING ENTITIES TO THE INDEX STRUCTURE

7.4.1. Mapping an Entity

All the metadata information required to index entities is described through annotations, so there is no
need for XML mapping files. You can still use Hibernate mapping files for the basic Hibernate
configuration, but the Hibernate Search specific configuration has to be expressed via annotations.

7.4.1.1. Basic Mapping

Let us start with the most commonly used annotations for mapping an entity.

The Lucene-based Query API uses the following common annotations to map entities:

@Indexed

@Field

@NumericField

@Id

7.4.1.2. @Indexed

Foremost we must declare a persistent class as indexable. This is done by annotating the class with
@Indexed (all entities not annotated with @Indexed will be ignored by the indexing process):

You can optionally specify the index attribute of the @Indexed annotation to change the default name
of the index.

 private Set authors = new HashSet();

 @Field(index = Index.YES, analyze = Analyze.NO, store = Store.YES)
 @DateBridge(resolution = Resolution.DAY)
 private Date publicationDate;

 public Book() {
 }

 // standard getters/setters follow here
 ...
}

@Entity
@Indexed
public class Essay {
...
}

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

80

7.4.1.3. @Field

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed.
The default (no annotation present) means that the property is ignored by the indexing process.

NOTE

Prior to Hibernate Search 5, numeric field encoding was only chosen if explicitly
requested via @NumericField. As of Hibernate Search 5 this encoding is automatically
chosen for numeric types. To avoid numeric encoding you can explicitly specify a non
numeric field bridge via @Field.bridge or @FieldBridge. The package
org.hibernate.search.bridge.builtin contains a set of bridges which encode numbers as
strings, for example org.hibernate.search.bridge.builtin.IntegerBridge.

@Field does declare a property as indexed and allows to configure several aspects of the indexing
process by setting one or more of the following attributes:

name : describe under which name, the property should be stored in the Lucene Document. The
default value is the property name (following the JavaBeans convention)

store : describe whether or not the property is stored in the Lucene index. You can store the
value Store.YES (consuming more space in the index but allowing projection, store it in a
compressed way Store.COMPRESS (this does consume more CPU), or avoid any storage
Store.NO (this is the default value). When a property is stored, you can retrieve its original value
from the Lucene Document. This is not related to whether the element is indexed or not.

index: describe whether the property is indexed or not. The different values are Index.NO,
meaning that it is not indexed and cannot be found by a query and Index.YES, meaning that the
element gets indexed and is searchable. The default value is Index.YES. Index.NO can be useful
for cases where a property is not required to be searchable, but should be available for
projection.

NOTE

Index.NO in combination with Analyze.YES or Norms.YES is not useful, since
analyze and norms require the property to be indexed

analyze: determines whether the property is analyzed (Analyze.YES) or not (Analyze.NO).
The default value is Analyze.YES.

NOTE

Whether or not you want to analyze a property depends on whether you wish to
search the element as is, or by the words it contains. It make sense to analyze a
text field, but probably not a date field.

NOTE

Fields used for sorting must not be analyzed.

norms: describes whether index time boosting information should be stored (Norms.YES) or
not (Norms.NO). Not storing it can save a considerable amount of memory, but there will not be
any index time boosting information available. The default value is Norms.YES.

CHAPTER 7. HIBERNATE SEARCH

81

termVector: describes collections of term-frequency pairs. This attribute enables the storing of
the term vectors within the documents during indexing. The default value is TermVector.NO.
The different values of this attribute are:

Value Definition

TermVector.YES Store the term vectors of each document. This produces
two synchronized arrays, one contains document terms
and the other contains the term’s frequency.

TermVector.NO Do not store term vectors.

TermVector.WITH_OFFSETS Store the term vector and token offset information. This is
the same as TermVector.YES plus it contains the starting
and ending offset position information for the terms.

TermVector.WITH_POSITIONS Store the term vector and token position information. This
is the same as TermVector.YES plus it contains the ordinal
positions of each occurrence of a term in a document.

TermVector.WITH_POSITION_OFFSE
TS

Store the term vector, token position and offset
information. This is a combination of the YES,
WITH_OFFSETS and WITH_POSITIONS.

indexNullAs : Per default null values are ignored and not indexed. However, using indexNullAs
you can specify a string which will be inserted as token for the null value. Per default this value
is set to Field.DO_NOT_INDEX_NULL indicating that null values should not be indexed. You
can set this value to Field.DEFAULT_NULL_TOKEN to indicate that a default null token
should be used. This default null token can be specified in the configuration using
hibernate.search.default_null_token. If this property is not set and you specify
Field.DEFAULT_NULL_TOKEN the string "null" will be used as default.

NOTE

When the indexNullAs parameter is used it is important to use the same token in
the search query to search for null values. It is also advisable to use this feature
only with un-analyzed fields (Analyze.NO).

WARNING

When implementing a custom FieldBridge or TwoWayFieldBridge it is up to
the developer to handle the indexing of null values (see JavaDocs of
LuceneOptions.indexNullAs()).

7.4.1.4. @NumericField

There is a companion annotation to @Field called @NumericField that can be specified in the same

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

82

scope as @Field or @DocumentId. It can be specified for Integer, Long, Float, and Double properties. At
index time the value will be indexed using a Trie structure. When a property is indexed as numeric field, it
enables efficient range query and sorting, orders of magnitude faster than doing the same query on
standard @Field properties. The @NumericField annotation accept the following parameters:

Value Definition

forField (Optional) Specify the name of the related @Field that will be indexed as
numeric. It is only mandatory when the property contains more than a
@Field declaration

precisionStep (Optional) Change the way that the Trie structure is stored in the index.
Smaller precisionSteps lead to more disk space usage and faster range and
sort queries. Larger values lead to less space used and range query
performance more close to the range query in normal @Fields. Default
value is 4.

@NumericField supports only Double, Long, Integer and Float. It is not possible to take any advantage
from similar functionality in Lucene for the other numeric types, so remaining types should use the
string encoding via the default or custom TwoWayFieldBridge.

It is possible to use a custom NumericFieldBridge assuming you can deal with the approximation during
type transformation:

Example: Defining a Custom NumericFieldBridge

7.4.1.5. @Id

Finally, the id (identifier) property of an entity is a special property used by Hibernate Search to ensure
index uniqueness of a given entity. By design, an id must be stored and must not be tokenized. To mark a
property as an index identifier, use the @DocumentId annotation. If you are using JPA and you have

public class BigDecimalNumericFieldBridge extends NumericFieldBridge {
 private static final BigDecimal storeFactor = BigDecimal.valueOf(100);

 @Override
 public void set(String name, Object value, Document document, LuceneOptions luceneOptions) {
 if (value != null) {
 BigDecimal decimalValue = (BigDecimal) value;
 Long indexedValue = Long.valueOf(decimalValue.multiply(storeFactor).longValue());
 luceneOptions.addNumericFieldToDocument(name, indexedValue, document);
 }
 }

 @Override
 public Object get(String name, Document document) {
 String fromLucene = document.get(name);
 BigDecimal storedBigDecimal = new BigDecimal(fromLucene);
 return storedBigDecimal.divide(storeFactor);
 }

}

CHAPTER 7. HIBERNATE SEARCH

83

specified @Id you can omit @DocumentId. The chosen entity identifier will also be used as the document
identifier.

Infinispan Query uses the entity’s id property to ensure the index is uniquely identified. By design, an ID
is stored and must not be converted into a token. To mark a property as index ID, use the @DocumentId
annotation.

Example: Specifying Indexed Properties

The example above defines an index with four fields: id , Abstract, text and grade . Note that by default
the field name is not capitalized, following the JavaBean specification. The grade field is annotated as
numeric with a slightly larger precision step than the default.

7.4.1.6. Mapping Properties Multiple Times

Sometimes you need to map a property multiple times per index, with slightly different indexing
strategies. For example, sorting a query by field requires the field to be un-analyzed. To search by words
on this property and still sort it, it needs to be indexed - once analyzed and once un-analyzed. @Fields
allows you to achieve this goal.

Example: Using @Fields to Map a Property Multiple Times

In this example the field summary is indexed twice, once as summary in a tokenized way, and once as

@Entity
@Indexed
public class Essay {
 ...
 @Id
 @DocumentId
 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES)
 public String getSummary() { return summary; }

 @Lob
 @Field
 public String getText() { return text; }

 @Field @NumericField(precisionStep = 6)
 public float getGrade() { return grade; }
}

@Entity
@Indexed(index = "Book")
public class Book {
 @Fields({
 @Field,
 @Field(name = "summary_forSort", analyze = Analyze.NO, store = Store.YES)
 })
 public String getSummary() {
 return summary;
 }
 ...
}

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

84

In this example the field summary is indexed twice, once as summary in a tokenized way, and once as
summary_forSort in an untokenized way.

7.4.1.7. Embedded and Associated Objects

Associated objects as well as embedded objects can be indexed as part of the root entity index. This is
useful if you expect to search a given entity based on properties of associated objects. The aim is to
return places where the associated city is Atlanta (In the Lucene query parser language, it would
translate into address.city:Atlanta). The place fields will be indexed in the Place index. The Place
index documents will also contain the fields address.id, address.street, and address.city which you will
be able to query.

Example: Indexing Associations

Because the data is denormalized in the Lucene index when using the @IndexedEmbedded technique,
Hibernate Search must be aware of any change in the Place object and any change in the Address
object to keep the index up to date. To ensure the Lucene document is updated when it is Address
changes, mark the other side of the bidirectional relationship with @ContainedIn.

NOTE

@Entity
@Indexed
public class Place {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
 @IndexedEmbedded
 private Address address;

}

@Entity
public class Address {
 @Id
 @GeneratedValue
 private Long id;

 @Field
 private String street;

 @Field
 private String city;

 @ContainedIn
 @OneToMany(mappedBy="address")
 private Set<Place> places;
 ...
}

CHAPTER 7. HIBERNATE SEARCH

85

NOTE

@ContainedIn is useful on both associations pointing to entities and on embedded
(collection of) objects.

To expand upon this, the following example demonstrates nesting @IndexedEmbedded.

Example: Nested Usage of @IndexedEmbedded and @ContainedIn

Any @*ToMany, @*ToOne and @Embedded attribute can be annotated with @IndexedEmbedded.

@Entity
@Indexed
public class Place {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String name;

 @OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
 @IndexedEmbedded
 private Address address;

}

@Entity
public class Address {
 @Id
 @GeneratedValue
 private Long id;

 @Field
 private String street;

 @Field
 private String city;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_")
 private Owner ownedBy;

 @ContainedIn
 @OneToMany(mappedBy="address")
 private Set<Place> places;
 ...
}

@Embeddable
public class Owner {
 @Field
 private String name;
 ...
}

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

86

Any @*ToMany, @*ToOne and @Embedded attribute can be annotated with @IndexedEmbedded.
The attributes of the associated class will then be added to the main entity index. The index will contain
the following fields:

id

name

address.street

address.city

address.ownedBy_name

The default prefix is propertyName., following the traditional object navigation convention. You can
override it using the prefix attribute as it is shown on the ownedBy property.

NOTE

The prefix cannot be set to an empty string.

The depth property is necessary when the object graph contains a cyclic dependency of classes (not
instances). For example, if Owner points to Place. Hibernate Search will stop including Indexed
embedded attributes after reaching the expected depth (or the object graph boundaries are reached).
A class having a self reference is an example of cyclic dependency. In our example, because depth is set
to 1, any @IndexedEmbedded attribute in Owner will be ignored.

Using @IndexedEmbedded for object associations allows you to express queries (using Lucene’s query
syntax) such as:

Return places where the name contains JBoss and where the address city is Atlanta. In Lucene
query this would be:

+name:jboss +address.city:atlanta

Return places where the name contains JBoss and where the owner’s name contains Joe. In
Lucene query this would be

+name:jboss +address.ownedBy_name:joe

This behavior mimics the relational join operation in a more efficient way (at the cost of data
duplication). Remember that, out of the box, Lucene indexes have no notion of association, the join
operation does not exist. It might help to keep the relational model normalized while benefiting from the
full text index speed and feature richness.

NOTE

An associated object can itself (but does not have to) be @Indexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other side
has to be annotated @ContainedIn (as seen in the previous example). If not, Hibernate Search has no
way to update the root index when the associated entity is updated (in our example, a Place index
document has to be updated when the associated Address instance is updated).

Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted by

CHAPTER 7. HIBERNATE SEARCH

87

Hibernate and Hibernate Search. This is especially the case when interfaces are used in lieu of their
implementation. For this reason you can override the object type targeted by Hibernate Search using
the targetElement parameter.

Example: Using the targetElement Property of @IndexedEmbedded

7.4.1.8. Limiting Object Embedding to Specific Paths

The @IndexedEmbedded annotation provides also an attribute includePaths which can be used as an
alternative to depth, or be combined with it.

When using only depth all indexed fields of the embedded type will be added recursively at the same
depth. This makes it harder to select only a specific path without adding all other fields as well, which
might not be needed.

To avoid unnecessarily loading and indexing entities you can specify exactly which paths are needed. A
typical application might need different depths for different paths, or in other words it might need to
specify paths explicitly, as shown in the example below:

Example: Using the includePaths Property of @IndexedEmbedded

@Entity
@Indexed
public class Address {
 @Id
 @GeneratedValue
 @DocumentId
 private Long id;

 @Field
 private String street;

 @IndexedEmbedded(depth = 1, prefix = "ownedBy_",)
 @Target(Owner.class)
 private Person ownedBy;
 ...
}

@Embeddable
public class Owner implements Person { ... }

@Entity
@Indexed
public class Person {

 @Id
 public int getId() {
 return id;
 }

 @Field
 public String getName() {
 return name;
 }

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

88

Using a mapping as in the example above, you would be able to search on a Person by name and/or
surname, and/or the name of the parent. It will not index the surname of the parent, so searching on
parent’s surnames will not be possible but speeds up indexing, saves space and improve overall
performance.

The @IndexedEmbeddedincludePaths will include the specified paths in addition to what you would
index normally specifying a limited value for depth. When using includePaths, and leaving depth
undefined, behavior is equivalent to setting depth=0: only the included paths are indexed.

Example: Using the includePaths Property of @IndexedEmbedded

 @Field
 public String getSurname() {
 return surname;
 }

 @OneToMany
 @IndexedEmbedded(includePaths = { "name" })
 public Set<Person> getParents() {
 return parents;
 }

 @ContainedIn
 @ManyToOne
 public Human getChild() {
 return child;
 }

 ...//other fields omitted

@Entity
@Indexed
public class Human {

 @Id
 public int getId() {
 return id;
 }

 @Field
 public String getName() {
 return name;
 }

 @Field
 public String getSurname() {
 return surname;
 }

 @OneToMany
 @IndexedEmbedded(depth = 2, includePaths = { "parents.parents.name" })
 public Set<Human> getParents() {
 return parents;
 }

 @ContainedIn

CHAPTER 7. HIBERNATE SEARCH

89

In the example above, every human will have its name and surname attributes indexed. The name and
surname of parents will also be indexed, recursively up to second line because of the depth attribute. It
will be possible to search by name or surname, of the person directly, his parents or of his grand parents.
Beyond the second level, we will in addition index one more level but only the name, not the surname.

This results in the following fields in the index:

id: as primary key

_hibernate_class: stores entity type

name: as direct field

surname: as direct field

parents.name: as embedded field at depth 1

parents.surname: as embedded field at depth 1

parents.parents.name: as embedded field at depth 2

parents.parents.surname: as embedded field at depth 2

parents.parents.parents.name: as additional path as specified by includePaths. The first
parents. is inferred from the field name, the remaining path is the attribute of includePaths

Having explicit control of the indexed paths might be easier if you are designing your application by
defining the needed queries first, as at that point you might know exactly which fields you need, and
which other fields are unnecessary to implement your use case.

7.4.2. Boosting

Lucene has the notion of boosting which allows you to give certain documents or fields more or less
importance than others. Lucene differentiates between index and search time boosting. The following
sections show you how you can achieve index time boosting using Hibernate Search.

7.4.2.1. Static Index Time Boosting

To define a static boost value for an indexed class or property you can use the @Boost annotation. You
can use this annotation within @Field or specify it directly on method or class level.

Example: Different Ways of Using @Boost

 @ManyToOne
 public Human getChild() {
 return child;
 }

 ...//other fields omitted

@Entity
@Indexed

public class Essay {
 ...

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

90

In the example above, Essay’s probability to reach the top of the search list will be multiplied by 1.7. The
summary field will be 3.0 (2 * 1.5, because @Field.boost and @Boost on a property are cumulative) more
important than the isbn field. The text field will be 1.2 times more important than the isbn field. Note that
this explanation is wrong in strictest terms, but it is simple and close enough to reality for all practical
purposes.

7.4.2.2. Dynamic Index Time Boosting

The @Boost annotation used in Static Index Time Boosting defines a static boost factor which is
independent of the state of the indexed entity at runtime. However, there are use cases in which the
boost factor may depend on the actual state of the entity. In this case you can use the @DynamicBoost
annotation together with an accompanying custom BoostStrategy.

Example: Dynamic Boost

 @Id
 @DocumentId
 public Long getId() { return id; }

 @Field(name="Abstract", store=Store.YES, boost=@Boost(2f))
 @Boost(1.5f)
 public String getSummary() { return summary; }

 @Lob
 @Field(boost=@Boost(1.2f))
 public String getText() { return text; }

 @Field
 public String getISBN() { return isbn; }
}

public enum PersonType {
 NORMAL,
 VIP
}

@Entity
@Indexed
@DynamicBoost(impl = VIPBoostStrategy.class)
public class Person {
 private PersonType type;

 //
}

public class VIPBoostStrategy implements BoostStrategy {
 public float defineBoost(Object value) {
 Person person = (Person) value;
 if (person.getType().equals(PersonType.VIP)) {
 return 2.0f;
 }
 else {
 return 1.0f;

CHAPTER 7. HIBERNATE SEARCH

91

In the example above, a dynamic boost is defined on class level specifying VIPBoostStrategy as
implementation of the BoostStrategy interface to be used at indexing time. You can place the
@DynamicBoost either at class or field level. Depending on the placement of the annotation either the
whole entity is passed to the defineBoost method or just the annotated field/property value. It is up to
you to cast the passed object to the correct type. In the example all indexed values of a VIP person
would be double as important as the values of a normal person.

NOTE

The specified BoostStrategy implementation must define a public no-arg constructor.

Of course you can mix and match @Boost and @DynamicBoost annotations in your entity. All defined
boost factors are cumulative.

7.4.3. Analysis

Analysis is the process of converting text into single terms (words) and can be considered as one of the
key features of a full-text search engine. Lucene uses the concept of Analyzers to control this process.
In the following section we cover the multiple ways Hibernate Search offers to configure the analyzers.

7.4.3.1. Default Analyzer and Analyzer by Class

The default analyzer class used to index tokenized fields is configurable through the
hibernate.search.analyzer property. The default value for this property is
org.apache.lucene.analysis.standard.StandardAnalyzer.

You can also define the analyzer class per entity, property and even per @Field (useful when multiple
fields are indexed from a single property).

Example: Different Ways of Using @Analyzer

 }
 }
}

@Entity
@Indexed
@Analyzer(impl = EntityAnalyzer.class)
public class MyEntity {
 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 private String name;

 @Field
 @Analyzer(impl = PropertyAnalyzer.class)
 private String summary;

 @Field(analyzer = @Analyzer(impl = FieldAnalyzer.class)

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

92

In this example, EntityAnalyzer is used to index tokenized property (name), except summary and body
which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

WARNING

Mixing different analyzers in the same entity is most of the time a bad practice. It
makes query building more complex and results less predictable (for the novice),
especially if you are using a QueryParser (which uses the same analyzer for the
whole query). As a rule of thumb, for any given field the same analyzer should be
used for indexing and querying.

7.4.3.2. Named Analyzers

Analyzers can become quite complex to deal with. For this reason introduces Hibernate Search the
notion of analyzer definitions. An analyzer definition can be reused by many @Analyzer declarations and
is composed of:

a name: the unique string used to refer to the definition

a list of char filters: each char filter is responsible to pre-process input characters before the
tokenization. Char filters can add, change, or remove characters; one common usage is for
characters normalization

a tokenizer: responsible for tokenizing the input stream into individual words

a list of filters: each filter is responsible to remove, modify, or sometimes even add words into
the stream provided by the tokenizer

This separation of tasks - a list of char filters, and a tokenizer followed by a list of filters - allows for easy
reuse of each individual component and lets you build your customized analyzer in a very flexible way
(like Lego). Generally speaking the char filters do some pre-processing in the character input, then the
Tokenizer starts the tokenizing process by turning the character input into tokens which are then further
processed by the TokenFilters. Hibernate Search supports this infrastructure by utilizing the Solr
analyzer framework.

Let us review a concrete example stated below. First a char filter is defined by its factory. In our example,
a mapping char filter is used, and will replace characters in the input based on the rules specified in the
mapping file. Next a tokenizer is defined. This example uses the standard tokenizer. Last but not least, a
list of filters is defined by their factories. In our example, the StopFilter filter is built reading the
dedicated words property file. The filter is also expected to ignore case.

Example: @AnalyzerDef and the Solr Framework

 private String body;
 ...
}

@AnalyzerDef(name="customanalyzer",
 charFilters = {
 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
 @Parameter(name = "mapping",

CHAPTER 7. HIBERNATE SEARCH

93

NOTE

Filters and char filters are applied in the order they are defined in the @AnalyzerDef
annotation. Order matters!

Some tokenizers, token filters or char filters load resources like a configuration or metadata file. This is
the case for the stop filter and the synonym filter. If the resource charset is not using the VM default, you
can explicitly specify it by adding a resource_charset parameter.

Example: Use a Specific Charset to Load the Property File

Once defined, an analyzer definition can be reused by an @Analyzer declaration as seen in the following
example.

Example: Referencing an Analyzer by Name

 value = "org/hibernate/search/test/analyzer/solr/mapping-chars.properties")
 })
 },
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class, params = {
 @Parameter(name="words",
 value= "org/hibernate/search/test/analyzer/solr/stoplist.properties"),
 @Parameter(name="ignoreCase", value="true")
 })
})
public class Team {
 ...
}

@AnalyzerDef(name="customanalyzer",
 charFilters = {
 @CharFilterDef(factory = MappingCharFilterFactory.class, params = {
 @Parameter(name = "mapping",
 value = "org/hibernate/search/test/analyzer/solr/mapping-chars.properties")
 })
 },
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = ISOLatin1AccentFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class, params = {
 @Parameter(name="words",
 value= "org/hibernate/search/test/analyzer/solr/stoplist.properties"),
 @Parameter(name="resource_charset", value = "UTF-16BE"),
 @Parameter(name="ignoreCase", value="true")
 })
})
public class Team {
 ...
}

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

94

Analyzer instances declared by @AnalyzerDef are also available by their name in the SearchFactory
which is quite useful when building queries.

Fields in queries must be analyzed with the same analyzer used to index the field so that they speak a
common "language": the same tokens are reused between the query and the indexing process. This rule
has some exceptions but is true most of the time. Respect it unless you know what you are doing.

7.4.3.3. Available Analyzers

Solr and Lucene come with many useful default char filters, tokenizers, and filters. You can find a
complete list of char filter factories, tokenizer factories and filter factories at
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters. Let us check a few of them.

Table 7.8. Available Char Filters

Factory Description Parameters

MappingCharFilterFactory Replaces one or more characters with one
or more characters, based on mappings
specified in the resource file

mapping: points to a
resource file containing the
mappings using the format:
"á" ⇒ "a"; "ñ" ⇒ "n"; "ø" ⇒ "o"

HTMLStripCharFilterFactory Remove HTML standard tags, keeping
the text

none

Table 7.9. Available Tokenizers

Factory Description Parameters

StandardTokenizerFactory Use the Lucene StandardTokenizer none

@Entity
@Indexed
@AnalyzerDef(name="customanalyzer", ...)
public class Team {
 @Id
 @DocumentId
 @GeneratedValue
 private Integer id;

 @Field
 private String name;

 @Field
 private String location;

 @Field
 @Analyzer(definition = "customanalyzer")
 private String description;
}

Analyzer analyzer = fullTextSession.getSearchFactory().getAnalyzer("customanalyzer");

CHAPTER 7. HIBERNATE SEARCH

95

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

HTMLStripCharFilterFactory Remove HTML tags, keep the text and
pass it to a StandardTokenizer.

none

PatternTokenizerFactory Breaks text at the specified regular
expression pattern.

pattern: the regular
expression to use for
tokenizing

group: says which pattern
group to extract into tokens

Factory Description Parameters

Table 7.10. Available Filters

Factory Description Parameters

StandardFilterFactory Remove dots from acronyms and 's from
words

none

LowerCaseFilterFactory Lowercases all words none

StopFilterFactory Remove words (tokens) matching a list of
stop words

words: points to a resource
file containing the stop words

ignoreCase: true if case
should be ignored when
comparing stop words, false
otherwise

SnowballPorterFilterFactory Reduces a word to its root in a given
language. (example: protect, protects,
protection share the same root). Using
such a filter allows searches matching
related words.

language: Danish, Dutch,
English, Finnish, French,
German, Italian, Norwegian,
Portuguese, Russian, Spanish,
Swedish and a few more

We recommend to check all the implementations of org.apache.lucene.analysis.TokenizerFactory
and org.apache.lucene.analysis.TokenFilterFactory in your IDE to see the implementations available.

7.4.3.4. Dynamic Analyzer Selection

So far all the introduced ways to specify an analyzer were static. However, there are use cases where it is
useful to select an analyzer depending on the current state of the entity to be indexed, for example in a
multilingual applications. For an BlogEntry class for example the analyzer could depend on the language
property of the entry. Depending on this property the correct language specific stemmer should be
chosen to index the actual text.

To enable this dynamic analyzer selection Hibernate Search introduces the AnalyzerDiscriminator
annotation. Following example demonstrates the usage of this annotation.

Example: Usage of @AnalyzerDiscriminator

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

96

The prerequisite for using @AnalyzerDiscriminator is that all analyzers which are going to be used
dynamically are predefined via @AnalyzerDef definitions. If this is the case, one can place the
@AnalyzerDiscriminator annotation either on the class or on a specific property of the entity for which
to dynamically select an analyzer. Via the impl parameter of the AnalyzerDiscriminator you specify a
concrete implementation of the Discriminator interface. It is up to you to provide an implementation for
this interface. The only method you have to implement is getAnalyzerDefinitionName() which gets

@Entity
@Indexed
@AnalyzerDefs({
 @AnalyzerDef(name = "en",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = EnglishPorterFilterFactory.class
)
 }),
 @AnalyzerDef(name = "de",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = GermanStemFilterFactory.class)
 })
})
public class BlogEntry {

 @Id
 @GeneratedValue
 @DocumentId
 private Integer id;

 @Field
 @AnalyzerDiscriminator(impl = LanguageDiscriminator.class)
 private String language;

 @Field
 private String text;

 private Set<BlogEntry> references;

 // standard getter/setter
 ...
}

public class LanguageDiscriminator implements Discriminator {

 public String getAnalyzerDefinitionName(Object value, Object entity, String field) {
 if (value == null || !(entity instanceof BlogEntry)) {
 return null;
 }
 return (String) value;

 }
}

CHAPTER 7. HIBERNATE SEARCH

97

called for each field added to the Lucene document. The entity which is getting indexed is also passed
to the interface method. The value parameter is only set if the AnalyzerDiscriminator is placed on
property level instead of class level. In this case the value represents the current value of this property.

An implementation of the Discriminator interface has to return the name of an existing analyzer
definition or null if the default analyzer should not be overridden. The example above assumes that the
language parameter is either 'de' or 'en' which matches the specified names in the @AnalyzerDefs.

7.4.3.5. Retrieving an Analyzer

Retrieving an analyzer can be used when multiple analyzers have been used in a domain model, in order
to benefit from stemming or phonetic approximation, etc. In this case, use the same analyzers to
building a query. Alternatively, use the Hibernate Search query DSL, which selects the correct analyzer
automatically. See

Whether you are using the Lucene programmatic API or the Lucene query parser, you can retrieve the
scoped analyzer for a given entity. A scoped analyzer is an analyzer which applies the right analyzers
depending on the field indexed. Remember, multiple analyzers can be defined on a given entity each one
working on an individual field. A scoped analyzer unifies all these analyzers into a context-aware analyzer.
While the theory seems a bit complex, using the right analyzer in a query is very easy.

NOTE

When you use programmatic mapping for a child entity, you can only see the fields
defined by the child entity. Fields or methods inherited from a parent entity (annotated
with @MappedSuperclass) are not configurable. To configure properties inherited from a
parent entity, either override the property in the child entity or create a programmatic
mapping for the parent entity. This mimics the usage of annotations where you cannot
annotate a field or method of a parent entity unless it is redefined in the child entity.

Example: Using the Scoped Analyzer When Building a Full-text Query

In the example above, the song title is indexed in two fields: the standard analyzer is used in the field title
and a stemming analyzer is used in the field title_stemmed. By using the analyzer provided by the search
factory, the query uses the appropriate analyzer depending on the field targeted.

NOTE

You can also retrieve analyzers defined via @AnalyzerDef by their definition name using
searchFactory.getAnalyzer(String).

org.apache.lucene.queryParser.QueryParser parser = new QueryParser(
 "title",
 fullTextSession.getSearchFactory().getAnalyzer(Song.class)
);

org.apache.lucene.search.Query luceneQuery =
 parser.parse("title:sky Or title_stemmed:diamond");

org.hibernate.Query fullTextQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Song.class);

List result = fullTextQuery.list(); //return a list of managed objects

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

98

7.4.4. Bridges

When discussing the basic mapping for an entity one important fact was so far disregarded. In Lucene all
index fields have to be represented as strings. All entity properties annotated with @Field have to be
converted to strings to be indexed. The reason we have not mentioned it so far is, that for most of your
properties Hibernate Search does the translation job for you thanks to set of built-in bridges. However,
in some cases you need a more fine grained control over the translation process.

7.4.4.1. Built-in Bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and its full
text representation.

null

Per default null elements are not indexed. Lucene does not support null elements. However, in some
situation it can be useful to insert a custom token representing the null value. See for more
information.

java.lang.String

Strings are indexed as are short, Short, integer, Integer, long, Long, float, Float, double,

Double, BigInteger, BigDecimal

Numbers are converted into their string representation. Note that numbers cannot be compared by
Lucene (that is, used in ranged queries) out of the box: they have to be padded.

NOTE

Using a Range query has drawbacks, an alternative approach is to use a Filter query
which will filter the result query to the appropriate range. Hibernate Search also
supports the use of a custom StringBridge as described in Custom Bridges.

java.util.Date

Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th of 2006
4:03PM and 12ms EST). You should not really bother with the internal format. What is important is
that when using a TermRangeQuery, you should know that the dates have to be expressed in GMT
time.
Usually, storing the date up to the millisecond is not necessary. @DateBridge defines the
appropriate resolution you are willing to store in the index
(@DateBridge(resolution=Resolution.DAY)). The date pattern will then be truncated accordingly.

@Entity
@Indexed
public class Meeting {
 @Field(analyze=Analyze.NO)

 private Date date;
 ...

CHAPTER 7. HIBERNATE SEARCH

99

WARNING

A Date whose resolution is lower than MILLISECOND cannot be a @DocumentId.

IMPORTANT

The default Date bridge uses Lucene’s DateTools to convert from and to String. This
means that all dates are expressed in GMT time. If your requirements are to store dates in
a fixed time zone you have to implement a custom date bridge. Make sure you
understand the requirements of your applications regarding to date indexing and
searching.

java.net.URI, java.net.URL

URI and URL are converted to their string representation.

java.lang.Class

Class are converted to their fully qualified class name. The thread context class loader is used when
the class is rehydrated.

7.4.4.2. Custom Bridges

Sometimes, the built-in bridges of Hibernate Search do not cover some of your property types, or the
String representation used by the bridge does not meet your requirements. The following paragraphs
describe several solutions to this problem.

7.4.4.2.1. StringBridge

The simplest custom solution is to give Hibernate Search an implementation of your expected Object to
String bridge. To do so you need to implement the org.hibernate.search.bridge.StringBridge
interface. All implementations have to be thread-safe as they are used concurrently.

Example: Custom StringBridge Implementation

/**
 * Padding Integer bridge.
 * All numbers will be padded with 0 to match 5 digits
 *
 * @author Emmanuel Bernard
 */
public class PaddedIntegerBridge implements StringBridge {

 private int PADDING = 5;

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > PADDING)
 throw new IllegalArgumentException("Try to pad on a number too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < PADDING ; padIndex++) {
 paddedInteger.append('0');

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

100

Given the string bridge defined in the previous example, any property or field can use this bridge thanks
to the @FieldBridge annotation:

7.4.4.2.2. Parameterized Bridge

Parameters can also be passed to the bridge implementation making it more flexible. Following example
implements a ParameterizedBridge interface and parameters are passed through the @FieldBridge
annotation.

Example: Passing Parameters to Your Bridge Implementation

The ParameterizedBridge interface can be implemented by StringBridge, TwoWayStringBridge,
FieldBridge implementations.

All implementations have to be thread-safe, but the parameters are set during initialization and no
special care is required at this stage.

 }
 return paddedInteger.append(rawInteger).toString();
 }
}

@FieldBridge(impl = PaddedIntegerBridge.class)
private Integer length;

public class PaddedIntegerBridge implements StringBridge, ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";
 private int padding = 5; //default

 public void setParameterValues(Map<String,String> parameters) {
 String padding = parameters.get(PADDING_PROPERTY);
 if (padding != null) this.padding = Integer.parseInt(padding);
 }

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > padding)
 throw new IllegalArgumentException("Try to pad on a number too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }
}

//property
@FieldBridge(impl = PaddedIntegerBridge.class,
 params = @Parameter(name="padding", value="10")
)
private Integer length;

CHAPTER 7. HIBERNATE SEARCH

101

7.4.4.2.3. Type Aware Bridge

It is sometimes useful to get the type the bridge is applied on:

the return type of the property for field/getter-level bridges.

the class type for class-level bridges.

An example is a bridge that deals with enums in a custom fashion but needs to access the actual enum
type. Any bridge implementing AppliedOnTypeAwareBridge will get the type the bridge is applied on
injected. Like parameters, the type injected needs no particular care with regard to thread-safety.

7.4.4.2.4. Two-Way Bridge

If you expect to use your bridge implementation on an id property (that is, annotated with
@DocumentId), you need to use a slightly extended version of StringBridge named
TwoWayStringBridge. Hibernate Search needs to read the string representation of the identifier and
generate the object out of it. There is no difference in the way the @FieldBridge annotation is used.

Example: Implementing a TwoWayStringBridge Usable for id Properties

IMPORTANT

public class PaddedIntegerBridge implements TwoWayStringBridge, ParameterizedBridge {

 public static String PADDING_PROPERTY = "padding";
 private int padding = 5; //default

 public void setParameterValues(Map parameters) {
 Object padding = parameters.get(PADDING_PROPERTY);
 if (padding != null) this.padding = (Integer) padding;
 }

 public String objectToString(Object object) {
 String rawInteger = ((Integer) object).toString();
 if (rawInteger.length() > padding)
 throw new IllegalArgumentException("Try to pad on a number too big");
 StringBuilder paddedInteger = new StringBuilder();
 for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {
 paddedInteger.append('0');
 }
 return paddedInteger.append(rawInteger).toString();
 }

 public Object stringToObject(String stringValue) {
 return new Integer(stringValue);
 }
}

//id property
@DocumentId
@FieldBridge(impl = PaddedIntegerBridge.class,
 params = @Parameter(name="padding", value="10")
private Integer id;

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

102

IMPORTANT

It is important for the two-way process to be idempotent (i.e., object = stringToObject(
objectToString(object))).

7.4.4.2.5. FieldBridge

Some use cases require more than a simple object to string translation when mapping a property to a
Lucene index. To give you the greatest possible flexibility you can also implement a bridge as a
FieldBridge. This interface gives you a property value and let you map it the way you want in your Lucene
Document. You can for example store a property in two different document fields. The interface is very
similar in its concept to the Hibernate UserTypes.

Example: Implementing the FieldBridge Interface

/**
 * Store the date in 3 different fields - year, month, day - to ease Range Query per
 * year, month or day (eg get all the elements of December for the last 5 years).
 * @author Emmanuel Bernard
 */
public class DateSplitBridge implements FieldBridge {
 private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

 public void set(String name, Object value, Document document, LuceneOptions luceneOptions) {
 Date date = (Date) value;
 Calendar cal = GregorianCalendar.getInstance(GMT);
 cal.setTime(date);
 int year = cal.get(Calendar.YEAR);
 int month = cal.get(Calendar.MONTH) + 1;
 int day = cal.get(Calendar.DAY_OF_MONTH);

 // set year
 luceneOptions.addFieldToDocument(
 name + ".year",
 String.valueOf(year),
 document);

 // set month and pad it if needed
 luceneOptions.addFieldToDocument(
 name + ".month",
 month < 10 ? "0" : "" + String.valueOf(month),
 document);

 // set day and pad it if needed
 luceneOptions.addFieldToDocument(
 name + ".day",
 day < 10 ? "0" : "" + String.valueOf(day),
 document);
 }
}

//property
@FieldBridge(impl = DateSplitBridge.class)
private Date date;

CHAPTER 7. HIBERNATE SEARCH

103

In the example above, the fields are not added directly to Document. Instead the addition is delegated
to the LuceneOptions helper; this helper will apply the options you have selected on @Field, like Store
or TermVector, or apply the chosen @Boost value. It is especially useful to encapsulate the complexity
of COMPRESS implementations. Even though it is recommended to delegate to LuceneOptions to add
fields to the Document, nothing stops you from editing the Document directly and ignore the
LuceneOptions in case you need to.

NOTE

Classes like LuceneOptions are created to shield your application from changes in
Lucene API and simplify your code. Use them if you can, but if you need more flexibility
you are not required to.

7.4.4.2.6. ClassBridge

It is sometimes useful to combine more than one property of a given entity and index this combination in
a specific way into the Lucene index. The @ClassBridge and @ClassBridges annotations can be
defined at the class level, as opposed to the property level. In this case the custom field bridge
implementation receives the entity instance as the value parameter instead of a particular property.
Though not shown in following example, @ClassBridge supports the termVector attribute discussed in
the Basic Mapping section.

Example: Implementing a Class Bridge

@Entity
@Indexed
(name="branchnetwork",
 store=Store.YES,
 impl = CatFieldsClassBridge.class,
 params = @Parameter(name="sepChar", value=" "))
public class Department {
 private int id;
 private String network;
 private String branchHead;
 private String branch;
 private Integer maxEmployees
 ...
}

public class CatFieldsClassBridge implements FieldBridge, ParameterizedBridge {
 private String sepChar;

 public void setParameterValues(Map parameters) {
 this.sepChar = (String) parameters.get("sepChar");
 }

 public void set(String name, Object value, Document document, LuceneOptions luceneOptions) {
 // In this particular class the name of the new field was passed
 // from the name field of the ClassBridge Annotation. This is not
 // a requirement. It just works that way in this instance. The
 // actual name could be supplied by hard coding it below.
 Department dep = (Department) value;
 String fieldValue1 = dep.getBranch();
 if (fieldValue1 == null) {
 fieldValue1 = "";

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

104

In this example, the particular CatFieldsClassBridge is applied to the department instance, the field
bridge then concatenate both branch and network and index the concatenation.

7.5. QUERYING

Hibernate Search can execute Lucene queries and retrieve domain objects managed by an
InfinispanHibernate session. The search provides the power of Lucene without leaving the Hibernate
paradigm, giving another dimension to the Hibernate classic search mechanisms (HQL, Criteria query,
native SQL query).

Preparing and executing a query consists of following four steps:

Creating a FullTextSession

Creating a Lucene query using either Hibernate QueryHibernate Search query DSL
(recommended) or using the Lucene Query API

Wrapping the Lucene query using an org.hibernate.Query

Executing the search by calling for example list() or scroll()

To access the querying facilities, use a FullTextSession. This Search-specific session wraps a regular
org.hibernate.Session in order to provide query and indexing capabilities.

Example: Creating a FullTextSession

Use the FullTextSession to build a full-text query using either the Hibernate Search query DSL or the
native Lucene query.

Use the following code when using the Hibernate Search query DSL:

 }
 String fieldValue2 = dep.getNetwork();
 if (fieldValue2 == null) {
 fieldValue2 = "";
 }
 String fieldValue = fieldValue1 + sepChar + fieldValue2;
 Field field = new Field(name, fieldValue, luceneOptions.getStore(),
 luceneOptions.getIndex(), luceneOptions.getTermVector());
 field.setBoost(luceneOptions.getBoost());
 document.add(field);
 }
}

Session session = sessionFactory.openSession();
...
FullTextSession fullTextSession = Search.getFullTextSession(session);

final QueryBuilder b = fullTextSession.getSearchFactory().buildQueryBuilder().forEntity(Myth.class
).get();

org.apache.lucene.search.Query luceneQuery =
 b.keyword()
 .onField("history").boostedTo(3)
 .matching("storm")

CHAPTER 7. HIBERNATE SEARCH

105

As an alternative, write the Lucene query using either the Lucene query parser or the Lucene
programmatic API.

Example: Creating a Lucene Query Using the QueryParser

A Hibernate query built on the Lucene query is a org.hibernate.Query. This query remains in the same
paradigm as other Hibernate query facilities, such as HQL (Hibernate Query Language), Native, and
Criteria. Use methods such as list(), uniqueResult(), iterate() and scroll() with the query.

The same extensions are available with the Hibernate Java Persistence APIs:

Example: Creating a Search Query Using the JPA API

NOTE

In these examples, the Hibernate API has been used. The same examples can also be
written with the Java Persistence API by adjusting the way the FullTextQuery is
retrieved.

 .createQuery();

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);
List result = fullTextQuery.list(); //return a list of managed objects

SearchFactory searchFactory = fullTextSession.getSearchFactory();
org.apache.lucene.queryParser.QueryParser parser =
 new QueryParser("title", searchFactory.getAnalyzer(Myth.class));
try {
 org.apache.lucene.search.Query luceneQuery = parser.parse("history:storm^3");
}
catch (ParseException e) {
 //handle parsing failure
}

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);
List result = fullTextQuery.list(); //return a list of managed objects

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =
 org.hibernate.search.jpa.Search.getFullTextEntityManager(em);

...
final QueryBuilder b = fullTextEntityManager.getSearchFactory()
 .buildQueryBuilder().forEntity(Myth.class).get();

org.apache.lucene.search.Query luceneQuery =
 b.keyword()
 .onField("history").boostedTo(3)
 .matching("storm")
 .createQuery();

javax.persistence.Query fullTextQuery = fullTextEntityManager.createFullTextQuery(luceneQuery);

List result = fullTextQuery.getResultList(); //return a list of managed objects

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

106

7.5.1. Building Queries

Hibernate Search queries are built on Lucene queries, allowing users to use any Lucene query type.
When the query is built, Hibernate Search uses org.hibernate.Query as the query manipulation API for
further query processing.

7.5.1.1. Building a Lucene Query Using the Lucene API

With the Lucene API, use either the query parser (simple queries) or the Lucene programmatic API
(complex queries). Building a Lucene query is out of scope for the Hibernate Search documentation. For
details, see the online Lucene documentation or a copy of Lucene in Action or Hibernate Search in
Action.

7.5.1.2. Building a Lucene Query

The Lucene programmatic API enables full-text queries. However, when using the Lucene programmatic
API, the parameters must be converted to their string equivalent and must also apply the correct
analyzer to the right field. A ngram analyzer for example uses several ngrams as the tokens for a given
word and should be searched as such. It is recommended to use the QueryBuilder for this task.

The Hibernate Search query API is fluent, with the following key characteristics:

Method names are in English. As a result, API operations can be read and understood as a series
of English phrases and instructions.

It uses IDE autocompletion which helps possible completions for the current input prefix and
allows the user to choose the right option.

It often uses the chaining method pattern.

It is easy to use and read the API operations.

To use the API, first create a query builder that is attached to a given indexedentitytype. This
QueryBuilder knows what analyzer to use and what field bridge to apply. Several QueryBuilders (one for
each entity type involved in the root of your query) can be created. The QueryBuilder is derived from
the SearchFactory.

The analyzer used for a given field or fields can also be overridden.

The query builder is now used to build Lucene queries. Customized queries generated using Lucene’s
query parser or Query objects assembled using the Lucene programmatic API are used with the
Hibernate Search DSL.

7.5.1.3. Keyword Queries

The following example shows how to search for a specific word:

QueryBuilder mythQB = searchFactory.buildQueryBuilder().forEntity(Myth.class).get();

QueryBuilder mythQB = searchFactory.buildQueryBuilder()
 .forEntity(Myth.class)
 .overridesForField("history","stem_analyzer_definition")
 .get();

Query luceneQuery = mythQB.keyword().onField("history").matching("storm").createQuery();

CHAPTER 7. HIBERNATE SEARCH

107

Table 7.11. Keyword Query Parameters

Parameter Description

keyword() Use this parameter to find a specific word.

onField() Use this parameter to specify in which lucene field to search the word.

matching() Use this parameter to specify the match for search string

createQuery() Creates the Lucene query object.

The value "storm" is passed through the history FieldBridge. This is useful when numbers or
dates are involved.

The field bridge value is then passed to the analyzer used to index the field history. This ensures
that the query uses the same term transformation than the indexing (lower case, ngram,
stemming and so on). If the analyzing process generates several terms for a given word, a
boolean query is used with the SHOULD logic (roughly an OR logic).

To search a property that is not of type string.

NOTE

In plain Lucene, the Date object had to be converted to its string representation, which in
this case is the year.

This conversion works for any object, provided that the FieldBridge has an objectToString method (and
all built-in FieldBridge implementations do).

The next example searches a field that uses ngram analyzers. The ngram analyzers index succession of
ngrams of words, which helps to avoid user typos. For example, the 3-grams of the word hibernate are
hib, ibe, ber, ern, rna, nat, ate.

@Indexed
public class Myth {
 @Field(analyze = Analyze.NO)
 @DateBridge(resolution = Resolution.YEAR)
 public Date getCreationDate() { return creationDate; }
 public Date setCreationDate(Date creationDate) { this.creationDate = creationDate; }
 private Date creationDate;

 ...
}

Date birthdate = ...;
Query luceneQuery = mythQb.keyword().onField("creationDate").matching(birthdate).createQuery();

@AnalyzerDef(name = "ngram",
 tokenizer = @TokenizerDef(factory = StandardTokenizerFactory.class),
 filters = {

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

108

The matching word "Sisiphus" will be lower-cased and then split into 3-grams: sis, isi, sip, iph, phu, hus.
Each of these ngram will be part of the query. The user is then able to find the Sysiphus myth (with a y).
All that is transparently done for the user.

NOTE

If the user does not want a specific field to use the field bridge or the analyzer then the
ignoreAnalyzer() or ignoreFieldBridge() functions can be called.

To search for multiple possible words in the same field, add them all in the matching clause.

To search the same word on multiple fields, use the onFields method.

Sometimes, one field should be treated differently from another field even if searching the same term,
use the andField() method for that.

 @TokenFilterDef(factory = StandardFilterFactory.class),
 @TokenFilterDef(factory = LowerCaseFilterFactory.class),
 @TokenFilterDef(factory = StopFilterFactory.class),
 @TokenFilterDef(factory = NGramFilterFactory.class,
 params = {
 @Parameter(name = "minGramSize", value = "3"),
 @Parameter(name = "maxGramSize", value = "3") })
 }
)

public class Myth {
 @Field(analyzer=@Analyzer(definition="ngram")
 public String getName() { return name; }
 public String setName(String name) { this.name = name; }
 private String name;

 ...
}

Date birthdate = ...;
Query luceneQuery = mythQb.keyword().onField("name").matching("Sisiphus")
 .createQuery();

//search document with storm or lightning in their history
Query luceneQuery =
 mythQB.keyword().onField("history").matching("storm lightning").createQuery();

Query luceneQuery = mythQB
 .keyword()
 .onFields("history","description","name")
 .matching("storm")
 .createQuery();

Query luceneQuery = mythQB.keyword()
 .onField("history")
 .andField("name")
 .boostedTo(5)

CHAPTER 7. HIBERNATE SEARCH

109

In the previous example, only field name is boosted to 5.

7.5.1.4. Fuzzy Queries

To execute a fuzzy query (based on the Levenshtein distance algorithm), start with a keyword query
and add the fuzzy flag.

The threshold is the limit above which two terms are considering matching. It is a decimal between 0
and 1 and the default value is 0.5. The prefixLength is the length of the prefix ignored by the
"fuzzyness". While the default value is 0, a nonzero value is recommended for indexes containing a huge
number of distinct terms.

7.5.1.5. Wildcard Queries

Wildcard queries are useful in circumstances where only part of the word is known. The ? represents a
single character and * represents multiple characters. Note that for performance purposes, it is
recommended that the query does not start with either ? or *.

NOTE

Wildcard queries do not apply the analyzer on the matching terms. The risk of * or ? being
mangled is too high.

7.5.1.6. Phrase Queries

So far we have been looking for words or sets of words, the user can also search exact or approximate
sentences. Use phrase() to do so.

 .andField("description")
 .matching("storm")
 .createQuery();

Query luceneQuery = mythQB
 .keyword()
 .fuzzy()
 .withThreshold(.8f)
 .withPrefixLength(1)
 .onField("history")
 .matching("starm")
 .createQuery();

Query luceneQuery = mythQB
 .keyword()
 .wildcard()
 .onField("history")
 .matching("sto*")
 .createQuery();

Query luceneQuery = mythQB
 .phrase()
 .onField("history")
 .sentence("Thou shalt not kill")
 .createQuery();

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

110

Approximate sentences can be searched by adding a slop factor. The slop factor represents the number
of other words permitted in the sentence: this works like a within or near operator.

7.5.1.7. Range Queries

A range query searches for a value in between given boundaries (included or not) or for a value below or
above a given boundary.

7.5.1.8. Combining Queries

Queries can be combined to create more complex queries. The following aggregation operators are
available:

SHOULD: the query should contain the matching elements of the subquery.

MUST: the query must contain the matching elements of the subquery.

MUST NOT: the query must not contain the matching elements of the subquery.

The subqueries can be any Lucene query including a boolean query itself.

Example: SHOULD Query

Example: MUST Query

Query luceneQuery = mythQB
 .phrase()
 .withSlop(3)
 .onField("history")
 .sentence("Thou kill")
 .createQuery();

//look for 0 <= starred < 3
Query luceneQuery = mythQB
 .range()
 .onField("starred")
 .from(0).to(3).excludeLimit()
 .createQuery();

//look for myths strictly BC
Date beforeChrist = ...;
Query luceneQuery = mythQB
 .range()
 .onField("creationDate")
 .below(beforeChrist).excludeLimit()
 .createQuery();

//look for popular myths that are preferably urban
Query luceneQuery = mythQB
 .bool()
 .should(mythQB.keyword().onField("description").matching("urban").createQuery())
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .createQuery();

CHAPTER 7. HIBERNATE SEARCH

111

Example: MUST NOT Query

7.5.1.9. Query Options

The Hibernate Search query DSL is an easy-to-use and easy-to-read query API. In accepting and
producing Lucene queries, you can incorporate query types not yet supported by the DSL.

The following is a summary of query options for query types and fields:

boostedTo (on query type and on field) boosts the whole query or the specific field to a given
factor.

withConstantScore (on query) returns all results that match the query have a constant score
equals to the boost.

filteredBy(Filter) (on query) filters query results using the Filter instance.

ignoreAnalyzer (on field) ignores the analyzer when processing this field.

ignoreFieldBridge (on field) ignores field bridge when processing this field.

Example: Combination of Query Options

//look for popular urban myths
Query luceneQuery = mythQB
 .bool()
 .must(mythQB.keyword().onField("description").matching("urban").createQuery())
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .createQuery();

//look for popular modern myths that are not urban
Date twentiethCentury = ...;
Query luceneQuery = mythQB
 .bool()
 .must(mythQB.keyword().onField("description").matching("urban").createQuery())
 .not()
 .must(mythQB.range().onField("starred").above(4).createQuery())
 .must(mythQB
 .range()
 .onField("creationDate")
 .above(twentiethCentury)
 .createQuery())
 .createQuery();

Query luceneQuery = mythQB
 .bool()
 .should(mythQB.keyword().onField("description").matching("urban").createQuery())
 .should(mythQB
 .keyword()
 .onField("name")
 .boostedTo(3)
 .ignoreAnalyzer()
 .matching("urban").createQuery())
 .must(mythQB
 .range()

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

112

7.5.1.10. Build a Hibernate Search Query

7.5.1.10.1. Generality

After building the Lucene query, wrap it within a Hibernate query. The query searches all indexed entities
and returns all types of indexed classes unless explicitly configured not to do so.

Example: Wrapping a Lucene Query in a Hibernate Query

For improved performance, restrict the returned types as follows:

Example: Filtering the Search Result by Entity Type

The first part of the second example only returns the matching Customers. The second part of the same
example returns matching Actors and Items. The type restriction is polymorphic. As a result, if the two
subclasses Salesman and Customer of the base class Person return, specify Person.class to filter based
on result types.

7.5.1.10.2. Pagination

To avoid performance degradation, it is recommended to restrict the number of returned objects per
query. A user navigating from one page to another page is a very common use case. The way to define
pagination is similar to defining pagination in a plain HQL or Criteria query.

Example: Defining Pagination for a Search Query

NOTE

It is still possible to get the total number of matching elements regardless of the
pagination via fulltextQuery.getResultSize().

7.5.1.10.3. Sorting

 .boostedTo(5).withConstantScore()
 .onField("starred").above(4).createQuery())
 .createQuery();

FullTextSession fullTextSession = Search.getFullTextSession(session);
org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

fullTextQuery = fullTextSession
 .createFullTextQuery(luceneQuery, Customer.class);

// or

fullTextQuery = fullTextSession
 .createFullTextQuery(luceneQuery, Item.class, Actor.class);

org.hibernate.Query fullTextQuery =
 fullTextSession.createFullTextQuery(luceneQuery, Customer.class);
fullTextQuery.setFirstResult(15); //start from the 15th element
fullTextQuery.setMaxResults(10); //return 10 elements

CHAPTER 7. HIBERNATE SEARCH

113

Apache Lucene contains a flexible and powerful result sorting mechanism. The default sorting is by
relevance and is appropriate for a large variety of use cases. The sorting mechanism can be changed to
sort by other properties using the Lucene Sort object to apply a Lucene sorting strategy.

Example: Specifying a Lucene Sort

NOTE

Fields used for sorting must not be tokenized. For more information about tokenizing, see
@Field.

7.5.1.10.4. Fetching Strategy

Hibernate Search loads objects using a single query if the return types are restricted to one class.
Hibernate Search is restricted by the static fetching strategy defined in the domain model. It is useful to
refine the fetching strategy for a specific use case as follows:

Example: Specifying FetchMode on a Query

In this example, the query will return all Books matching the LuceneQuery. The authors collection will be
loaded from the same query using an SQL outer join.

In a criteria query definition, the type is guessed based on the provided criteria query. As a result, it is
not necessary to restrict the return entity types.

IMPORTANT

The fetch mode is the only adjustable property. Do not use a restriction (a where clause)
on the Criteria query because the getResultSize() throws a SearchException if used in
conjunction with a Criteria with restriction.

If more than one entity is expected, do not use setCriteriaQuery.

7.5.1.10.5. Projection

In some cases, only a small subset of the properties is required. Use Hibernate Search to return a subset
of properties as follows:

Hibernate Search extracts properties from the Lucene index and converts them to their object
representation and returns a list of Object[]. Projections prevent a time consuming database round-trip.
However, they have following constraints:

The properties projected must be stored in the index (@Field(store=Store.YES)), which
increases the index size.

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(query, Book.class);
org.apache.lucene.search.Sort sort = new Sort(
 new SortField("title", SortField.STRING));

List results = query.list();

Criteria criteria =
 s.createCriteria(Book.class).setFetchMode("authors", FetchMode.JOIN);
s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

114

The properties projected must use a FieldBridge implementing
org.hibernate.search.bridge.TwoWayFieldBridge or
org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler version.

NOTE

All Hibernate Search built-in types are two-way.

Only the simple properties of the indexed entity or its embedded associations can be projected.
Therefore a whole embedded entity cannot be projected.

Projection does not work on collections or maps which are indexed via @IndexedEmbedded.

Lucene provides metadata information about query results. Use projection constants to retrieve the
metadata.

Example: Using Projection to Retrieve Metadata

Fields can be mixed with the following projection constants:

FullTextQuery.THIS: returns the initialized and managed entity (as a non projected query would
have done).

FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected.

FullTextQuery.OBJECT_CLASS: returns the class of the indexed entity.

FullTextQuery.SCORE: returns the document score in the query. Scores are handy to compare
one result against an other for a given query but are useless when comparing the result of
different queries.

FullTextQuery.ID: the ID property value of the projected object.

FullTextQuery.DOCUMENT_ID: the Lucene document ID. Be careful in using this value as a
Lucene document ID can change over time between two different IndexReader opening.

FullTextQuery.EXPLANATION: returns the Lucene Explanation object for the matching
object/document in the given query. This is not suitable for retrieving large amounts of data.
Running explanation typically is as costly as running the whole Lucene query per matching
element. As a result, projection is recommended.

7.5.1.10.6. Customizing Object Initialization Strategies

By default, Hibernate Search uses the most appropriate strategy to initialize entities matching the full
text query. It executes one or more queries to retrieve the required entities. This approach minimizes
database trips where few of the retrieved entities are present in the persistence context (the session) or

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.;
List results = query.list();
Object[] firstResult = (Object[]) results.get(0);
float score = firstResult[0];
Book book = firstResult[1];
String authorName = firstResult[2];

CHAPTER 7. HIBERNATE SEARCH

115

the second level cache.

If entities are present in the second-level cache, force Hibernate Search to look into the cache before
retrieving a database object.

Example: Check the Second-level Cache Before Using a Query

ObjectLookupMethod defines the strategy to check if an object is easily accessible (without fetching it
from the database). Other options are:

ObjectLookupMethod.PERSISTENCE_CONTEXT is used if many matching entities are already
loaded into the persistence context (loaded in the Session or EntityManager).

ObjectLookupMethod.SECOND_LEVEL_CACHE checks the persistence context and then the
second-level cache.

Set the following to search in the second-level cache:

Correctly configure and activate the second-level cache.

Enable the second-level cache for the relevant entity. This is done using annotations such as
@Cacheable.

Enable second-level cache read access for either Session, EntityManager or Query. Use
CacheMode.NORMAL in Hibernate native APIs or CacheRetrieveMode.USE in Java
Persistence APIs.

WARNING

Unless the second-level cache implementation is Infinispan, do not use
ObjectLookupMethod.SECOND_LEVEL_CACHE. Other second-level cache
providers do not implement this operation efficiently.

Customize how objects are loaded from the database using DatabaseRetrievalMethod as follows:

QUERY (default) uses a set of queries to load several objects in each batch. This approach is
recommended.

FIND_BY_ID loads one object at a time using the Session.get or EntityManager.find semantic.
This is recommended if the batch size is set for the entity, which allows Hibernate Core to load
entities in batches.

7.5.1.10.7. Limiting the Time of a Query

Limit the time a query takes in Hibernate Guide as follows:

FullTextQuery query = session.createFullTextQuery(luceneQuery, User.class);
query.initializeObjectWith(
 ObjectLookupMethod.SECOND_LEVEL_CACHE,
 DatabaseRetrievalMethod.QUERY
);

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

116

Raise an exception when arriving at the limit.

Limit to the number of results retrieved when the time limit is raised.

7.5.1.10.8. Raise an Exception on Time Limit

If a query uses more than the defined amount of time, a QueryTimeoutException is raised
(org.hibernate.QueryTimeoutException or javax.persistence.QueryTimeoutException depending on the
programmatic API).

To define the limit when using the native Hibernate APIs, use one of the following approaches:

Example: Defining a Timeout in Query Execution

The getResultSize(), iterate() and scroll() honor the timeout until the end of the method call. As a result,
Iterable or the ScrollableResults ignore the timeout. Additionally, explain() does not honor this timeout
period. This method is used for debugging and to check the reasons for slow performance of a query.

The following is the standard way to limit execution time using the Java Persistence API (JPA):

Example: Defining a Timeout in Query Execution

IMPORTANT

The example code does not guarantee that the query stops at the specified results
amount.

Query luceneQuery = ...;
FullTextQuery query = fullTextSession.createFullTextQuery(luceneQuery, User.class);

//define the timeout in seconds
query.setTimeout(5);

//alternatively, define the timeout in any given time unit
query.setTimeout(450, TimeUnit.MILLISECONDS);

try {
 query.list();
}
catch (org.hibernate.QueryTimeoutException e) {
 //do something, too slow
}

Query luceneQuery = ...;
FullTextQuery query = fullTextEM.createFullTextQuery(luceneQuery, User.class);

//define the timeout in milliseconds
query.setHint("javax.persistence.query.timeout", 450);

try {
 query.getResultList();
}
catch (javax.persistence.QueryTimeoutException e) {
 //do something, too slow
}

CHAPTER 7. HIBERNATE SEARCH

117

7.5.2. Retrieving the Results

After building the Hibernate query, it is executed the same way as an HQL or Criteria query. The same
paradigm and object semantic apply to a Lucene Query query and the common operations like list(),
uniqueResult(), iterate(), and scroll() are available.

7.5.2.1. Performance Considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on all of
them, list() or uniqueResult() are recommended. list() work best if the entity batch-size is set up
properly. Note that Hibernate Search has to process all Lucene Hits elements (within the pagination)
when using list() , uniqueResult() and iterate().

If you wish to minimize Lucene document loading, scroll() is more appropriate. Do not forget to close
the ScrollableResults object when you are done, since it keeps Lucene resources. If you expect to use
scroll, but wish to load objects in batch, you can use query.setFetchSize(). When an object is accessed,
and if not already loaded, Hibernate Search will load the next fetchSize objects in one pass.

IMPORTANT

Pagination is preferred over scrolling.

7.5.2.2. Result Size

It is sometimes useful to know the total number of matching documents:

to provide a total search results feature, as provided by Google searches. For example, "1-10 of
about 888,000,000 results"

to implement a fast pagination navigation

to implement a multi-step search engine that adds approximation if the restricted query returns
zero or not enough results

Of course it would be too costly to retrieve all the matching documents. Hibernate Search allows you to
retrieve the total number of matching documents regardless of the pagination parameters. Even more
interesting, you can retrieve the number of matching elements without triggering a single object load.

Example: Determining the Result Size of a Query

NOTE

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
//return the number of matching books without loading a single one
assert 3245 == ;

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setMaxResult(10);
List results = query.list();
//return the total number of matching books regardless of pagination
assert 3245 == ;

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

118

NOTE

Like Google, the number of results is approximation if the index is not fully up-to-date
with the database (asynchronous cluster for example).

7.5.2.3. ResultTransformer

Projection results are returned as Object arrays. If the data structure used for the object does not match
the requirements of the application, apply a ResultTransformer. The ResultTransformer builds the
required data structure after the query execution.

Example: Using ResultTransformer with Projections

Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.

7.5.2.4. Understanding Results

If the results of a query are not what you expected, the Luke tool is useful in understanding the
outcome. However, Hibernate Search also gives you access to the Lucene Explanation object for a given
result (in a given query). This class is considered fairly advanced to Lucene users but can provide a good
understanding of the scoring of an object. You have two ways to access the Explanation object for a
given result:

Use the fullTextQuery.explain(int) method

Use projection

The first approach takes a document ID as a parameter and return the Explanation object. The
document ID can be retrieved using projection and the FullTextQuery.DOCUMENT_ID constant.

WARNING

The Document ID is unrelated to the entity ID. Be careful not to confuse these
concepts.

In the second approach you project the Explanation object using the FullTextQuery.EXPLANATION
constant.

Example: Retrieving the Lucene Explanation Object Using Projection

org.hibernate.search.FullTextQuery query =
 s.createFullTextQuery(luceneQuery, Book.class);
query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(new StaticAliasToBeanResultTransformer(BookView.class, "title",
"author"));
List<BookView> results = (List<BookView>) query.list();
for(BookView view : results) {
 log.info("Book: " + view.getTitle() + ", " + view.getAuthor());
}

CHAPTER 7. HIBERNATE SEARCH

119

Use the Explanation object only when required as it is roughly as expensive as running the Lucene query
again.

7.5.2.5. Filters

Apache Lucene has a powerful feature that allows you to filter query results according to a custom
filtering process. This is a very powerful way to apply additional data restrictions, especially since filters
can be cached and reused. Use cases include:

security

temporal data (example, view only last month’s data)

population filter (example, search limited to a given category)

Hibernate Search pushes the concept further by introducing the notion of parameterizable named filters
which are transparently cached. For people familiar with the notion of Hibernate Core filters, the API is
very similar:

Example: Enabling Fulltext Filters for a Query

In this example we enabled two filters on top of the query. You can enable or disable as many filters as
you like.

Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be on any
@Indexed entity regardless of the query the filter is later applied to. This implies that filter definitions
are global and their names must be unique. A SearchException is thrown in case two different
@FullTextFilterDef annotations with the same name are defined. Each named filter has to specify its
actual filter implementation.

Example: Defining and Implementing a Filter

FullTextQuery ftQuery = s.createFullTextQuery(luceneQuery, Dvd.class)
 .setProjection(
 FullTextQuery.DOCUMENT_ID,
 ,
 FullTextQuery.THIS);
@SuppressWarnings("unchecked") List<Object[]> results = ftQuery.list();
for (Object[] result : results) {
 Explanation e = (Explanation) result[1];
 display(e.toString());
}

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("bestDriver");
fullTextQuery.enableFullTextFilter("security").setParameter("login", "andre");
fullTextQuery.list(); //returns only best drivers where andre has credentials

@FullTextFilterDefs({
 @FullTextFilterDef(name = "bestDriver", impl = BestDriversFilter.class),
 @FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class)
})
public class Driver { ... }

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

120

BestDriversFilter is an example of a simple Lucene filter which reduces the result set to drivers whose
score is 5. In this example the specified filter implements the org.apache.lucene.search.Filter directly
and contains a no-arg constructor.

If your Filter creation requires additional steps or if the filter you want to use does not have a no-arg
constructor, you can use the factory pattern:

Example: Creating a Filter Using the Factory Pattern

Hibernate Search will look for a @Factory annotated method and use it to build the filter instance. The
factory must have a no-arg constructor.

Infinispan Query uses a @Factory annotated method to build the filter instance. The factory must have a
no argument constructor.

Named filters come in handy where parameters have to be passed to the filter. For example a security
filter might want to know which security level you want to apply:

Example: Passing Parameters to a Defined Filter

Each parameter name should have an associated setter on either the filter or filter factory of the
targeted named filter definition.

Example: Using Parameters in the Actual Filter Implementation

public class BestDriversFilter extends org.apache.lucene.search.Filter {

 public DocIdSet getDocIdSet(IndexReader reader) throws IOException {
 OpenBitSet bitSet = new OpenBitSet(reader.maxDoc());
 TermDocs termDocs = reader.termDocs(new Term("score", "5"));
 while (termDocs.next()) {
 bitSet.set(termDocs.doc());
 }
 return bitSet;
 }
}

@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilterFactory.class)
public class Driver { ... }

public class BestDriversFilterFactory {

@Factory
 public Filter getFilter() {
 //some additional steps to cache the filter results per IndexReader
 Filter bestDriversFilter = new BestDriversFilter();
 return new CachingWrapperFilter(bestDriversFilter);
 }
}

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

public class SecurityFilterFactory {

CHAPTER 7. HIBERNATE SEARCH

121

Note the method annotated @Key returns a FilterKey object. The returned object has a special contract:
the key object must implement equals() / hashCode() so that two keys are equal if and only if the given
Filter types are the same and the set of parameters are the same. In other words, two filter keys are
equal if and only if the filters from which the keys are generated can be interchanged. The key object is
used as a key in the cache mechanism.

@Key methods are needed only if:

the filter caching system is enabled (enabled by default)

the filter has parameters

In most cases, using the StandardFilterKey implementation will be good enough. It delegates the
equals() / hashCode() implementation to each of the parameters equals and hashcode methods.

As mentioned before the defined filters are per default cached and the cache uses a combination of
hard and soft references to allow disposal of memory when needed. The hard reference cache keeps
track of the most recently used filters and transforms the ones least used to SoftReferences when
needed. Once the limit of the hard reference cache is reached additional filters are cached as
SoftReferences. To adjust the size of the hard reference cache, use
hibernate.search.filter.cache_strategy.size (defaults to 128). For advanced use of filter caching,
implement your own FilterCachingStrategy. The classname is defined by
hibernate.search.filter.cache_strategy.

This filter caching mechanism should not be confused with caching the actual filter results. In Lucene it is
common practice to wrap filters using the IndexReader around a CachingWrapperFilter. The wrapper will
cache the DocIdSet returned from the getDocIdSet(IndexReader reader) method to avoid expensive
recomputation. It is important to mention that the computed DocIdSet is only cachable for the same
IndexReader instance, because the reader effectively represents the state of the index at the moment it
was opened. The document list cannot change within an opened IndexReader. A different/new
IndexReader instance, however, works potentially on a different set of Documents (either from a
different index or simply because the index has changed), hence the cached DocIdSet has to be
recomputed.

 private Integer level;

 /**
 * injected parameter
 */
 public void setLevel(Integer level) {
 this.level = level;
 }

 @Key public FilterKey getKey() {
 StandardFilterKey key = new StandardFilterKey();
 key.addParameter(level);
 return key;
 }

 @Factory
 public Filter getFilter() {
 Query query = new TermQuery(new Term("level", level.toString()));
 return new CachingWrapperFilter(new QueryWrapperFilter(query));
 }
}

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

122

Hibernate Search also helps with this aspect of caching. Per default the cache flag of
@FullTextFilterDef is set to FilterCacheModeType.INSTANCE_AND_DOCIDSETRESULTS which will
automatically cache the filter instance as well as wrap the specified filter around a Hibernate specific
implementation of CachingWrapperFilter. In contrast to Lucene’s version of this class SoftReferences
are used together with a hard reference count (see discussion about filter cache). The hard reference
count can be adjusted using hibernate.search.filter.cache_docidresults.size (defaults to 5). The
wrapping behaviour can be controlled using the @FullTextFilterDef.cache parameter. There are three
different values for this parameter:

Value Definition

FilterCacheModeType.NONE No filter instance and no result is cached by Hibernate Search.
For every filter call, a new filter instance is created. This setting
might be useful for rapidly changing data sets or heavily memory
constrained environments.

FilterCacheModeType.INSTANCE_ONLY The filter instance is cached and reused across concurrent
Filter.getDocIdSet() calls. DocIdSet results are not cached. This
setting is useful when a filter uses its own specific caching
mechanism or the filter results change dynamically due to
application specific events making DocIdSet caching in both
cases unnecessary.

FilterCacheModeType.INSTANCE_AND_
DOCIDSETRESULTS

Both the filter instance and the DocIdSet results are cached.
This is the default value.

Filters should be cached in the following situations:

the system does not update the targeted entity index often (in other words, the IndexReader is
reused a lot)

the Filter’s DocIdSet is expensive to compute (compared to the time spent to execute the
query)

7.5.2.6. Using Filters in a Sharded Environment

In a sharded environment it is possible to execute queries on a subset of the available shards. This can
be done in two steps:

Query a Subset of Index Shards

1. Create a sharding strategy that does select a subset of IndexManagers depending on a filter
configuration.

2. Activate the filter at query time.

Example: Query a Subset of Index Shards

In this example the query is run against a specific customer shard if the customer filter is activated.

public class CustomerShardingStrategy implements IndexShardingStrategy {

 // stored IndexManagers in an array indexed by customerID

CHAPTER 7. HIBERNATE SEARCH

123

In this example, if the filter named customer is present, only the shard dedicated to this customer is
queried, otherwise, all shards are returned. A given sharding strategy can react to one or more filters and
depends on their parameters.

The second step is to activate the filter at query time. While the filter can be a regular filter (as defined
in) which also filters Lucene results after the query, you can make use of a special filter that will only be
passed to the sharding strategy (and is otherwise ignored).

To use this feature, specify the ShardSensitiveOnlyFilter class when declaring your filter.

 private IndexManager[] indexManagers;

 public void initialize(Properties properties, IndexManager[] indexManagers) {
 this.indexManagers = indexManagers;
 }

 public IndexManager[] getIndexManagersForAllShards() {
 return indexManagers;
 }

 public IndexManager getIndexManagerForAddition(
 Class<?> entity, Serializable id, String idInString, Document document) {
 Integer customerID = Integer.parseInt(document.getFieldable("customerID").stringValue());
 return indexManagers[customerID];
 }

 public IndexManager[] getIndexManagersForDeletion(
 Class<?> entity, Serializable id, String idInString) {
 return getIndexManagersForAllShards();
 }

 /**
 * Optimization; don't search ALL shards and union the results; in this case, we
 * can be certain that all the data for a particular customer Filter is in a single
 * shard; simply return that shard by customerID.
 */
 public IndexManager[] getIndexManagersForQuery(
 FullTextFilterImplementor[] filters) {
 FullTextFilter filter = getCustomerFilter(filters, "customer");
 if (filter == null) {
 return getIndexManagersForAllShards();
 }
 else {
 return new IndexManager[] { indexManagers[Integer.parseInt(
 filter.getParameter("customerID").toString())] };
 }
 }

 private FullTextFilter getCustomerFilter(FullTextFilterImplementor[] filters, String name) {
 for (FullTextFilterImplementor filter: filters) {
 if (filter.getName().equals(name)) return filter;
 }
 return null;
 }
 }

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

124

Note that by using the ShardSensitiveOnlyFilter, you do not have to implement any Lucene filter. Using
filters and sharding strategy reacting to these filters is recommended to speed up queries in a sharded
environment.

7.5.3. Faceting

Faceted search is a technique which allows the results of a query to be divided into multiple categories.
This categorization includes the calculation of hit counts for each category and the ability to further
restrict search results based on these facets (categories). The example below shows a faceting example.
The search results in fifteen hits which are displayed on the main part of the page. The navigation bar on
the left, however, shows the category Computers & Internet with its subcategories Programming,
Computer Science, Databases, Software, Web Development, Networking and Home Computing. For each
of these subcategories the number of books is shown matching the main search criteria and belonging
to the respective subcategory. This division of the category Computers & Internet is one concrete
search facet. Another one is for example the average customer review.

Faceted search divides the results of a query into categories. The categorization includes the calculation
of hit counts for each category and the further restricts search results based on these facets
(categories). The following example displays a faceting search results in fifteen hits displayed on the
main page.

The left side navigation bar displays the categories and subcategories. For each of these subcategories
the number of books matches the main search criteria and belongs to the respective subcategory. This
division of the category Computers & Internet is one concrete search facet. Another example is the
average customer review.

Example: Search for Hibernate Search on Amazon

In Hibernate Search, the classes QueryBuilder and FullTextQuery are the entry point into the faceting
API. The former creates faceting requests and the latter accesses the FacetManager. The
FacetManager applies faceting requests on a query and selects facets that are added to an existing
query to refine search results. The examples use the entity Cd as shown in the example below:

@Indexed
@FullTextFilterDef(name="customer", impl=ShardSensitiveOnlyFilter.class)
public class Customer {
 ...
}

FullTextQuery query = ftEm.createFullTextQuery(luceneQuery, Customer.class);
query.enableFulltextFilter("customer").setParameter("CustomerID", 5);
@SuppressWarnings("unchecked")
List<Customer> results = query.getResultList();

CHAPTER 7. HIBERNATE SEARCH

125

Example: Entity Cd

@Indexed
public class Cd {

 private int id;

 @Fields({
 @Field,
 @Field(name = "name_un_analyzed", analyze = Analyze.NO)
 })
 private String name;

 @Field(analyze = Analyze.NO)

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

126

NOTE

Prior to Hibernate Search 5.2, there was no need to explicitly use a @Facet annotation. In
Hibernate Search 5.2 it became necessary in order to use Lucene’s native faceting API.

7.5.3.1. Creating a Faceting Request

The first step towards a faceted search is to create the FacetingRequest. Currently two types of
faceting requests are supported. The first type is called discrete faceting and the second type range
faceting request. In the case of a discrete faceting request you specify on which index field you want to
facet (categorize) and which faceting options to apply. An example for a discrete faceting request can
be seen in the following example:

Example: Creating a Discrete Faceting Request

When executing this faceting request a Facet instance will be created for each discrete value for the
indexed field label. The Facet instance will record the actual field value including how often this
particular field value occurs within the original query results. orderedBy, includeZeroCounts and
maxFacetCount are optional parameters which can be applied on any faceting request. orderedBy
allows to specify in which order the created facets will be returned. The default is
FacetSortOrder.COUNT_DESC, but you can also sort on the field value or the order in which ranges
were specified. includeZeroCount determines whether facets with a count of 0 will be included in the
result (by default they are) and maxFacetCount allows to limit the maximum amount of facets returned.

NOTE

 @NumericField
 private int price;

 Field(analyze = Analyze.NO)
 @DateBridge(resolution = Resolution.YEAR)
 private Date releaseYear;

 @Field(analyze = Analyze.NO)
 private String label;

// setter/getter
...

QueryBuilder builder = fullTextSession.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Cd.class)
 .get();
FacetingRequest labelFacetingRequest = builder.facet()
 .name("labelFaceting")
 .onField("label")
 .discrete()
 .orderedBy(FacetSortOrder.COUNT_DESC)
 .includeZeroCounts(false)
 .maxFacetCount(1)
 .createFacetingRequest();

CHAPTER 7. HIBERNATE SEARCH

127

NOTE

At the moment there are several preconditions an indexed field has to meet in order to
apply faceting on it. The indexed property must be of type String, Date or a subtype of
Number and null values should be avoided. Furthermore the property has to be indexed
with Analyze.NO and in case of a numeric property @NumericField needs to be specified.

The creation of a range faceting request is quite similar except that we have to specify ranges for the
field values we are faceting on. A range faceting request can be seen below where three different price
ranges are specified. The below and above can only be specified once, but you can specify as many
from - to ranges as you want. For each range boundary you can also specify via excludeLimit whether it
is included into the range or not.

Example: Creating a Range Faceting Request

7.5.3.2. Applying a Faceting Request

A faceting request is applied to a query via the FacetManager class which can be retrieved via the
FullTextQuery class.

You can enable as many faceting requests as you like and retrieve them afterwards via getFacets()
specifying the faceting request name. There is also a disableFaceting() method which allows you to
disable a faceting request by specifying its name.

A faceting request can be applied on a query using the FacetManager, which can be retrieved via the
FullTextQuery.

Example: Applying a Faceting Request

QueryBuilder builder = fullTextSession.getSearchFactory()
 .buildQueryBuilder()
 .forEntity(Cd.class)
 .get();
FacetingRequest priceFacetingRequest = builder.facet()
 .name("priceFaceting")
 .onField("price")
 .range()
 .below(1000)
 .from(1001).to(1500)
 .above(1500).excludeLimit()
 .createFacetingRequest();

// create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Cd.class);

// retrieve facet manager and apply faceting request
FacetManager facetManager = fullTextQuery.getFacetManager();
facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cds
List<Cd> cds = fullTextQuery.list();
...

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

128

Multiple faceting requests can be retrieved using getFacets() and specifying the faceting request name.

The disableFaceting() method disables a faceting request by specifying its name.

7.5.3.3. Restricting Query Results

Last but not least, you can apply any of the returned Facets as additional criteria on your original query in
order to implement a "drill-down" functionality. For this purpose FacetSelection can be utilized.
FacetSelections are available via the FacetManager and allow you to select a facet as query criteria
(selectFacets), remove a facet restriction (deselectFacets), remove all facet restrictions
(clearSelectedFacets) and retrieve all currently selected facets (getSelectedFacets). The following
snippet shows an example.

7.5.4. Optimizing the Query Process

Query performance depends on several criteria:

The Lucene query.

The number of objects loaded: use pagination (always) or index projection (if needed).

The way Hibernate Search interacts with the Lucene readers: defines the appropriate reader
strategy.

Caching frequently extracted values from the index. See Caching Index Values: FieldCache for
more information.

// retrieve the faceting results
List<Facet> facets = facetManager.getFacets("priceFaceting");
...

// create a fulltext query
Query luceneQuery = builder.all().createQuery(); // match all query
FullTextQuery fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, clazz);

// retrieve facet manager and apply faceting request
FacetManager facetManager = fullTextQuery.getFacetManager();
facetManager.enableFaceting(priceFacetingRequest);

// get the list of Cd
List<Cd> cds = fullTextQuery.list();
assertTrue(cds.size() == 10);

// retrieve the faceting results
List<Facet> facets = facetManager.getFacets("priceFaceting");
assertTrue(facets.get(0).getCount() == 2)

// apply first facet as additional search criteria
facetManager.getFacetGroup("priceFaceting").selectFacets(facets.get(0));

// re-execute the query
cds = fullTextQuery.list();
assertTrue(cds.size() == 2);

CHAPTER 7. HIBERNATE SEARCH

129

7.5.4.1. Caching Index Values: FieldCache

The primary function of a Lucene index is to identify matches to your queries. After the query is
performed the results must be analyzed to extract useful information. Hibernate Search would typically
need to extract the class type and the primary key.

Extracting the needed values from the index has a performance cost, which in some cases might be very
low and not noticeable, but in some other cases might be a good candidate for caching.

The requirements depend on the kind of Projections being used, as in some cases the class type is not
needed as it can be inferred from the query context or other means.

Using the @CacheFromIndex annotation you can experiment with different kinds of caching of the main
metadata fields required by Hibernate Search:

It is possible to cache class types and IDs using this annotation:

CLASS: Hibernate Search will use a Lucene FieldCache to improve performance of the class
type extraction from the index.
This value is enabled by default, and is what Hibernate Search will apply if you do not specify the
@CacheFromIndex annotation.

ID: Extracting the primary identifier will use a cache. This is likely providing the best performing
queries, but will consume much more memory which in turn might reduce performance.

NOTE

Measure the performance and memory consumption impact after warmup (executing
some queries). Performance may improve by enabling Field Caches but this is not always
the case.

Using a FieldCache has two downsides to consider:

Memory usage: these caches can be quite memory hungry. Typically the CLASS cache has lower
requirements than the ID cache.

Index warmup: when using field caches, the first query on a new index or segment will be slower
than when you do not have caching enabled.

With some queries, the class type will not be needed at all, in that case even if you enabled the CLASS
field cache, this might not be used; for example if you are targeting a single class, obviously all returned
values will be of that type (this is evaluated at each query execution).

For the ID FieldCache to be used, the IDs of targeted entities must be using a TwoWayFieldBridge (as all
builting bridges), and all types being loaded in a specific query must use the fieldname for the id, and
have IDs of the same type (this is evaluated at each query execution).

import static org.hibernate.search.annotations.FieldCacheType.CLASS;
import static org.hibernate.search.annotations.FieldCacheType.ID;

@Indexed
@CacheFromIndex({ CLASS, ID })
public class Essay {
 ...

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

130

7.6. MANUAL INDEX CHANGES

As Hibernate Core applies changes to the database, Hibernate Search detects these changes and will
update the index automatically (unless the EventListeners are disabled). Sometimes changes are made
to the database without using Hibernate, as when backup is restored or your data is otherwise affected.
In these cases Hibernate Search exposes the Manual Index APIs to explicitly update or remove a single
entity from the index, rebuild the index for the whole database, or remove all references to a specific
type.

All these methods affect the Lucene Index only, no changes are applied to the database.

7.6.1. Adding Instances to the Index

Using FullTextSession.index(T entity) you can directly add or update a specific object instance to the
index. If this entity was already indexed, then the index will be updated. Changes to the index are only
applied at transaction commit.

Directly add an object or instance to the index using FullTextSession.index(T entity). The index is
updated when the entity is indexed. Infinispan Query applies changes to the index during the transaction
commit.

Example: Indexing an Entity Using FullTextSession.index(T entity)

In case you want to add all instances for a type, or for all indexed types, the recommended approach is to
use a MassIndexer: see for more details.

Use a MassIndexer to add all instances for a type (or for all indexed types). See Using a MassIndexer for
more information.

7.6.2. Deleting Instances from the Index

It is possible to remove an entity or all entities of a given type from a Lucene index without the need to
physically remove them from the database. This operation is named purging and is also done through
the FullTextSession.

The purging operation permits the removal of a single entity or all entities of a given type from a Lucene
index without physically removing them from the database. This operation is performed using the
FullTextSession.

Example: Purging a Specific Instance of an Entity from the Index

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
Object customer = fullTextSession.load(Customer.class, 8);
fullTextSession.index(customer);
tx.commit(); //index only updated at commit time

FullTextSession fullTextSession = Search.getFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
for (Customer customer : customers) {
fullTextSession.purgeAll(Customer.class);
//optionally optimize the index
//fullTextSession.getSearchFactory().optimize(Customer.class);
tx.commit(); //index is updated at commit time

CHAPTER 7. HIBERNATE SEARCH

131

It is recommended to optimize the index after such an operation.

NOTE

Methods index, purge, and purgeAll are available on FullTextEntityManager as well.

NOTE

All manual indexing methods (index, purge, and purgeAll) only affect the index, not the
database, nevertheless they are transactional and as such they will not be applied until
the transaction is successfully committed, or you make use of flushToIndexes.

7.6.3. Rebuilding the Index

If you change the entity mapping to the index, chances are that the whole Index needs to be updated;
For example if you decide to index an existing field using a different analyzer you’ll need to rebuild the
index for affected types. Also if the Database is replaced (like restored from a backup, imported from a
legacy system) you’ll want to be able to rebuild the index from existing data. Hibernate Search provides
two main strategies to choose from:

Changing the entity mapping in the indexer may require the entire index to be updated. For example, if
an existing field is to be indexed using a different analyzer, the index will need to be rebuilt for affected
types.

Additionally, if the database is replaced by restoring from a backup or being imported from a legacy
system, the index will need to be rebuilt from existing data. Infinispan Query provides two main
strategies:

Using FullTextSession.flushToIndexes() periodically, while using FullTextSession.index() on
all entities.

Use a MassIndexer.

7.6.3.1. Using flushToIndexes()

This strategy consists of removing the existing index and then adding all entities back to the index using
FullTextSession.purgeAll() and FullTextSession.index(), however there are some memory and
efficiency constraints. For maximum efficiency Hibernate Search batches index operations and
executes them at commit time. If you expect to index a lot of data you need to be careful about memory
consumption since all documents are kept in a queue until the transaction commit. You can potentially
face an OutOfMemoryException if you do not empty the queue periodically; to do this use
fullTextSession.flushToIndexes(). Every time fullTextSession.flushToIndexes() is called (or if the
transaction is committed), the batch queue is processed, applying all index changes. Be aware that, once
flushed, the changes cannot be rolled back.

Example: Index Rebuilding Using index() and flushToIndexes()

fullTextSession.setFlushMode(FlushMode.MANUAL);
fullTextSession.setCacheMode(CacheMode.IGNORE);
transaction = fullTextSession.beginTransaction();
//Scrollable results will avoid loading too many objects in memory
ScrollableResults results = fullTextSession.createCriteria(Email.class)
 .setFetchSize(BATCH_SIZE)
 .scroll(ScrollMode.FORWARD_ONLY);
int index = 0;

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

132

NOTE

hibernate.search.default.worker.batch_size has been deprecated in favor of this
explicit API which provides better control

Try to use a batch size that guarantees that your application will not be out of memory: with a bigger
batch size objects are fetched faster from database but more memory is needed.

7.6.3.2. Using a MassIndexer

Hibernate Search’s MassIndexer uses several parallel threads to rebuild the index. You can optionally
select which entities need to be reloaded or have it reindex all entities. This approach is optimized for
best performance but requires to set the application in maintenance mode. Querying the index is not
recommended when a MassIndexer is busy.

Example: Rebuild the Index Using a MassIndexer

This will rebuild the index, deleting it and then reloading all entities from the database. Although it is
simple to use, some tweaking is recommended to speed up the process.

WARNING

During the progress of a MassIndexer the content of the index is undefined. If a
query is performed while the MassIndexer is working most likely some results will be
missing.

Example: Using a Tuned MassIndexer

while(results.next()) {
 index++;
 fullTextSession.index(results.get(0)); //index each element
 if (index % BATCH_SIZE == 0) {
 fullTextSession.flushToIndexes(); //apply changes to indexes
 fullTextSession.clear(); //free memory since the queue is processed
 }
}
transaction.commit();

fullTextSession.createIndexer().startAndWait();

fullTextSession
 .createIndexer(User.class)
 .batchSizeToLoadObjects(25)
 .cacheMode(CacheMode.NORMAL)
 .threadsToLoadObjects(12)
 .idFetchSize(150)
 .progressMonitor(monitor) //a MassIndexerProgressMonitor implementation
 .startAndWait();

CHAPTER 7. HIBERNATE SEARCH

133

This will rebuild the index of all User instances (and subtypes), and will create 12 parallel threads to load
the User instances using batches of 25 objects per query. These same 12 threads will also need to
process indexed embedded relations and custom FieldBridges or ClassBridges to output a Lucene
document. The threads trigger lazy loading of additional attributes during the conversion process.
Because of this, a high number of threads working in parallel is required. The number of threads working
on actual index writing is defined by the back-end configuration of each index.

It is recommended to leave cacheMode to CacheMode.IGNORE (the default), as in most reindexing
situations the cache will be a useless additional overhead. It might be useful to enable some other
CacheMode depending on your data as it could increase performance if the main entity is relating to
enum-like data included in the index.

NOTE

The ideal of number of threads to achieve best performance is highly dependent on your
overall architecture, database design and data values. All internal thread groups have
meaningful names so they should be easily identified with most diagnostic tools, including
thread dumps.

NOTE

The MassIndexer is unaware of transactions, therefore there is no need to begin one or
commit afterward. Because it is not transactional it is not recommended to let users use
the system during its processing, as it is unlikely people will be able to find results and the
system load might be too high anyway.

Other parameters that affect indexing time and memory consumption are:

hibernate.search.[default|<indexname>].exclusive_index_use

hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

hibernate.search.[default|<indexname>].indexwriter.merge_factor

hibernate.search.[default|<indexname>].indexwriter.merge_min_size

hibernate.search.[default|<indexname>].indexwriter.merge_max_size

hibernate.search.[default|<indexname>].indexwriter.merge_max_optimize_size

hibernate.search.[default|<indexname>].indexwriter.merge_calibrate_by_deletes

hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

hibernate.search.[default|<indexname>].indexwriter.term_index_interval

Previous versions also had a max_field_length but this was removed from Lucene. It is possible to
obtain a similar effect by using a LimitTokenCountAnalyzer.

All .indexwriter parameters are Lucene specific and Hibernate Search passes these parameters
through.

The MassIndexer uses a forward only scrollable result to iterate on the primary keys to be loaded, but

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

134

The MassIndexer uses a forward only scrollable result to iterate on the primary keys to be loaded, but
MySQL’s JDBC driver will load all values in memory. To avoid this "optimization" set idFetchSize to
Integer.MIN_VALUE.

7.7. INDEX OPTIMIZATION

From time to time, the Lucene index needs to be optimized. The process is essentially a
defragmentation. Until an optimization is triggered Lucene only marks deleted documents as such, no
physical are applied. During the optimization process the deletions will be applied which also affects the
number of files in the Lucene Directory.

Optimizing the Lucene index speeds up searches but has no effect on the indexation (update)
performance. During an optimization, searches can be performed, but will most likely be slowed down. All
index updates will be stopped. It is recommended to schedule optimization:

Optimizing the Lucene index speeds up searches, but has no effect on the index update performance.
Searches can be performed during an optimization process, however they will be slower than expected.
All index updates are on hold during the optimization. It is therefore recommended to schedule
optimization:

On an idle system or when searches are least frequent.

After a large number of index modifications are applied.

MassIndexer optimizes indexes by default at the start and at the end of processing. Use
MassIndexer.optimizeAfterPurge and MassIndexer.optimizeOnFinish to change this default
behavior. See Using a MassIndexer for more information.

7.7.1. Automatic Optimization

Hibernate Search can automatically optimize an index after either:

Infinispan Query automatically optimizes the index after:

a certain amount of operations (insertion or deletion).

a certain amount of transactions.

The configuration for automatic index optimization can be defined either globally or per index:

Example: Defining Automatic Optimization Parameters

An optimization will be triggered to the Animal index as soon as either:

the number of additions and deletions reaches 1000.

the number of transactions reaches 50
(hibernate.search.Animal.optimizer.transaction_limit.max has priority over
hibernate.search.default.optimizer.transaction_limit.max).

If none of these parameters are defined, no optimization is processed automatically.

The default implementation of OptimizerStrategy can be overridden by implementing

hibernate.search.default.optimizer.operation_limit.max = 1000
hibernate.search.default.optimizer.transaction_limit.max = 100
hibernate.search.Animal.optimizer.transaction_limit.max = 50

CHAPTER 7. HIBERNATE SEARCH

135

The default implementation of OptimizerStrategy can be overridden by implementing
org.hibernate.search.store.optimization.OptimizerStrategy and setting the
optimizer.implementation property to the fully qualified name of your implementation. This
implementation must implement the interface, be a public class and have a public constructor taking no
arguments.

Example: Loading a Custom OptimizerStrategy

The keyword default can be used to select the Hibernate Search default implementation; all properties
after the .optimizer key separator will be passed to the implementation’s initialize method at start.

7.7.2. Manual Optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through the
SearchFactory:

Example: Programmatic Index Optimization

The first example optimizes the Lucene index holding Orders and the second optimizes all indexes.

NOTE

searchFactory.optimize() has no effect on a JMS back end. You must apply the optimize
operation on the Master node.

searchFactory.optimize() is applied to the master node because it does not affect the JMC back end.

7.7.3. Adjusting Optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate Search
exposes those parameters.

Further index optimization parameters include:

hibernate.search.[default|<indexname>].indexwriter.max_buffered_docs

hibernate.search.[default|<indexname>].indexwriter.max_merge_docs

hibernate.search.[default|<indexname>].indexwriter.merge_factor

hibernate.search.[default|<indexname>].indexwriter.ram_buffer_size

hibernate.search.[default|<indexname>].indexwriter.term_index_interval

hibernate.search.default.optimizer.implementation = com.acme.worlddomination.SmartOptimizer
hibernate.search.default.optimizer.SomeOption = CustomConfigurationValue
hibernate.search.humans.optimizer.implementation = default

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

searchFactory.optimize(Order.class);
// or
searchFactory.optimize();

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

136

7.8. ADVANCED FEATURES

7.8.1. Accessing the SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search. It is a
convenient way to access Lucene natively. The SearchFactory can be accessed from a FullTextSession:

Example: Accessing the SearchFactory

7.8.2. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search might cache index readers to
maximize performance, or provide other efficient strategies to retrieve an updated IndexReader
minimizing I/O operations. Your code can access these cached resources, but there are several
requirements.

Example: Accessing an IndexReader

In this example the SearchFactory determines which indexes are needed to query this entity
(considering a sharding strategy). Using the configured ReaderProvider on each index, it returns a
compound IndexReader on top of all involved indexes. Because this IndexReader is shared amongst
several clients, you must adhere to the following rules:

Never call indexReader.close(), instead use readerProvider.closeReader(reader) when
necessary, preferably in a finally block.

Don not use this IndexReader for modification operations (it is a readonly IndexReader, and any
such attempt will result in an exception).

Aside from those rules, you can use the IndexReader freely, especially to do native Lucene queries. Using
the shared IndexReaders will make most queries more efficient than by opening one directly from, for
example, the file system.

As an alternative to the method open(Class… types) you can use open(String… indexNames), allowing
you to pass in one or more index names. Using this strategy you can also select a subset of the indexes
for any indexed type if sharding is used.

Example: Accessing an IndexReader by Index Names

7.8.3. Accessing a Lucene Directory

FullTextSession fullTextSession = Search.getFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

IndexReader reader = searchFactory.getIndexReaderAccessor().open(Order.class);
try {
 //perform read-only operations on the reader
}
finally {
 searchFactory.getIndexReaderAccessor().close(reader);
}

IndexReader reader = searchFactory.getIndexReaderAccessor().open("Products.1", "Products.3");

CHAPTER 7. HIBERNATE SEARCH

137

A Directory is the most common abstraction used by Lucene to represent the index storage; Hibernate
Search does not interact directly with a Lucene Directory but abstracts these interactions via an
IndexManager: an index does not necessarily need to be implemented by a Directory.

If you know your index is represented as a Directory and need to access it, you can get a reference to the
Directory via the IndexManager. Cast the IndexManager to a DirectoryBasedIndexManager and then use
getDirectoryProvider().getDirectory() to get a reference to the underlying Directory. This is not
recommended, we would encourage to use the IndexReader instead.

7.8.4. Sharding Indexes

In some cases it can be useful to split (shard) the indexed data of a given entity into several Lucene
indexes.

WARNING

Sharding should only be implemented if the advantages outweigh the
disadvantages. Searching sharded indexes will typically be slower as all shards have
to be opened for a single search.

Possible use cases for sharding are:

A single index is so large that index update times are slowing the application down.

A typical search will only hit a subset of the index, such as when data is naturally segmented by
customer, region or application.

By default sharding is not enabled unless the number of shards is configured. To do this use the
hibernate.search.<indexName>.sharding_strategy.nbr_of_shards property.

Example: Enabling Index Sharding

In this example, five shards are enabled.

hibernate.search.<indexName>.sharding_strategy.nbr_of_shards = 5

Responsible for splitting the data into sub-indexes is the IndexShardingStrategy. The default sharding
strategy splits the data according to the hash value of the ID string representation (generated by the
FieldBridge). This ensures a fairly balanced sharding. You can replace the default strategy by
implementing a custom IndexShardingStrategy. To use your custom strategy you have to set the
hibernate.search.<indexName>.sharding_strategy property.

Example: Specifying a Custom Sharding Strategy

hibernate.search.<indexName>.sharding_strategy = my.shardingstrategy.Implementation

The IndexShardingStrategy property also allows for optimizing searches by selecting which shard to run
the query against. By activating a filter a sharding strategy can select a subset of the shards used to
answer a query (IndexShardingStrategy.getIndexManagersForQuery) and thus speed up the query
execution.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

138

Each shard has an independent IndexManager and so can be configured to use a different directory
provider and back-end configuration. The IndexManager index names for the Animal entity in the
example below are Animal.0 to Animal.4. In other words, each shard has the name of its owning index
followed by . (dot) and its index number.

Example: Sharding Configuration for Entity Animal

hibernate.search.default.indexBase = /usr/lucene/indexes
hibernate.search.Animal.sharding_strategy.nbr_of_shards = 5
hibernate.search.Animal.directory_provider = filesystem
hibernate.search.Animal.0.indexName = Animal00
hibernate.search.Animal.3.indexBase = /usr/lucene/sharded
hibernate.search.Animal.3.indexName = Animal03

In the example above, the configuration uses the default id string hashing strategy and shards the
Animal index into 5 sub-indexes. All sub-indexes are filesystem instances and the directory where each
sub-index is stored is as followed:

for sub-index 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden indexName)

for sub-index 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)

for sub-index 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)

for sub-index 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden indexName)

for sub-index 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)

When implementing a IndexShardingStrategy any field can be used to determine the sharding selection.
Consider that to handle deletions, purge and purgeAll operations, the implementation might need to
return one or more indexes without being able to read all the field values or the primary identifier. In that
case the information is not enough to pick a single index, all indexes should be returned, so that the
delete operation will be propagated to all indexes potentially containing the documents to be deleted.

7.8.5. Customizing Lucene’s Scoring Formula

Lucene allows the user to customize its scoring formula by extending
org.apache.lucene.search.Similarity. The abstract methods defined in this class match the factors of the
following formula calculating the score of query q for document d:

Extend org.apache.lucene.search.Similarity to customize Lucene’s scoring formula. The abstract
methods match the formula used to calculate the score of query q for document d as follows:

*score(q,d) = coord(q,d) · queryNorm(q) · ∑ ~t in q~ (tf(t in d) ·
idf(t) ^2^ · t.getBoost() · norm(t,d))*

Factor Description

tf(t ind) Term frequency factor for the term (t) in the document (d).

idf(t) Inverse document frequency of the term.

CHAPTER 7. HIBERNATE SEARCH

139

coord(q,d) Score factor based on how many of the query terms are found in the
specified document.

queryNorm(q) Normalizing factor used to make scores between queries comparable.

t.getBoost() Field boost.

norm(t,d) Encapsulates a few (indexing time) boost and length factors.

Factor Description

It is beyond the scope of this manual to explain this formula in more detail. See Similarity’s Javadocs for
more information.

Hibernate Search provides three ways to modify Lucene’s similarity calculation.

First you can set the default similarity by specifying the fully specified class name of your Similarity
implementation using the property hibernate.search.similarity. The default value is
org.apache.lucene.search.DefaultSimilarity.

You can also override the similarity used for a specific index by setting the similarity property

hibernate.search.default.similarity = my.custom.Similarity

Finally you can override the default similarity on class level using the @Similarity annotation.

As an example, let us assume it is not important how often a term appears in a document. Documents
with a single occurrence of the term should be scored the same as documents with multiple
occurrences. In this case your custom implementation of the method tf(float freq) should return 1.0.

WARNING

When two entities share the same index they must declare the same Similarity
implementation. Classes in the same class hierarchy always share the index, so it is
not allowed to override the Similarity implementation in a subtype.

Likewise, it does not make sense to define the similarity via the index setting and
the class-level setting as they would conflict. Such a configuration will be rejected.

7.8.6. Exception Handling Configuration

@Entity
@Indexed
@Similarity(impl = DummySimilarity.class)
public class Book {
...
}

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

140

Hibernate Search allows you to configure how exceptions are handled during the indexing process. If no
configuration is provided then exceptions are logged to the log output by default. It is possible to
explicitly declare the exception logging mechanism as follows:

The default exception handling occurs for both synchronous and asynchronous indexing. Hibernate
Search provides an easy mechanism to override the default error handling implementation.

In order to provide your own implementation you must implement the ErrorHandler interface, which
provides the handle(ErrorContext context) method. ErrorContext provides a reference to the primary
LuceneWork instance, the underlying exception and any subsequent LuceneWork instances that could
not be processed due to the primary exception.

To register this error handler with Hibernate Search you must declare the fully qualified classname of
your ErrorHandler implementation in the configuration properties:

7.8.7. Disable Hibernate Search

Hibernate Search can be partially or completely disabled as required. Hibernate Search’s indexing can
be disabled, for example, if the index is read-only, or you prefer to perform indexing manually, rather
than automatically. It is also possible to completely disable Hibernate Search, preventing indexing and
searching.

Disable Indexing

To disable Hibernate Search indexing, change the indexing_strategy configuration option to
manual, then restart JBoss EAP.

hibernate.search.indexing_strategy = manual

Disable Hibernate Search Completely

To disable Hibernate Search completely, disable all listeners by changing the autoregister_listeners
configuration option to false, then restart JBoss EAP.

hibernate.search.autoregister_listeners = false

7.9. MONITORING

Hibernate Search offers access to a Statistics object via SearchFactory.getStatistics(). It allows you,
for example, to determine which classes are indexed and how many entities are in the index. This
information is always available. However, by specifying the hibernate.search.generate_statistics

hibernate.search.error_handler = log

public interface ErrorContext {
 List<LuceneWork> getFailingOperations();
 LuceneWork getOperationAtFault();
 Throwable getThrowable();
 boolean hasErrors();
}

hibernate.search.error_handler = CustomerErrorHandler

CHAPTER 7. HIBERNATE SEARCH

141

property in your configuration you can also collect total and average Lucene query and object loading
timings.

Access to Statistics via JMX
To enable access to statistics via JMX, set the property hibernate.search.jmx_enabled to true. This
will automatically register the StatisticsInfoMBean bean, providing access to statistics using the
Statistics object. Depending on your configuration the IndexingProgressMonitorMBean bean may
also be registered.

Monitoring Indexing
If the mass indexer API is used, you can monitor indexing progress using the
IndexingProgressMonitorMBean bean. The bean is only bound to JMX while indexing is in progress.

NOTE

JMX beans can be accessed remotely using JConsole by setting the system property
com.sun.management.jmxremote to true.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

142

APPENDIX A. REFERENCE MATERIAL

A.1. HIBERNATE PROPERTIES

Table A.1. Connection Properties Configurable in the persistence.xml File

Property Name Value Description

javax.persistence.jdbc.dri
ver

org.hsqldb.jdbcDriver The class name of the JDBC driver to be
used.

javax.persistence.jdbc.us
er

sa The username.

javax.persistence.jdbc.pa
ssword

 The password.

javax.persistence.jdbc.url jdbc:hsqldb:. The JDBC connection URL.

Table A.2. Hibernate Configuration Properties

Property Name Description

hibernate.dialect The class name of a Hibernate org.hibernate.dialect.Dialect.
Allows Hibernate to generate SQL optimized for a particular
relational database.

In most cases Hibernate will be able to choose the correct
org.hibernate.dialect.Dialect implementation, based on the
JDBC metadata returned by the JDBC driver.

hibernate.show_sql Boolean. Writes all SQL statements to console. This is an
alternative to setting the log category org.hibernate.SQL to
debug.

hibernate.format_sql Boolean. Pretty print the SQL in the log and console.

hibernate.default_schema Qualify unqualified table names with the given
schema/tablespace in generated SQL.

hibernate.default_catalog Qualifies unqualified table names with the given catalog in
generated SQL.

hibernate.session_factory_name The org.hibernate.SessionFactory will be automatically bound to
this name in JNDI after it has been created. For example,
jndi/composite/name.

APPENDIX A. REFERENCE MATERIAL

143

hibernate.max_fetch_depth Sets a maximum depth for the outer join fetch tree for single-
ended associations (one-to-one, many-to-one). A 0 disables
default outer join fetching. The recommended value is between
0 and 3.

hibernate.default_batch_fetch_size Sets a default size for Hibernate batch fetching of associations.
The recommended values are 4, 8, and 16.

hibernate.default_entity_mode Sets a default mode for entity representation for all sessions
opened from this SessionFactory. Values include: dynamic-
map, dom4j, pojo.

hibernate.order_updates Boolean. Forces Hibernate to order SQL updates by the primary
key value of the items being updated. This will result in fewer
transaction deadlocks in highly concurrent systems.

hibernate.generate_statistics Boolean. If enabled, Hibernate will collect statistics useful for
performance tuning.

hibernate.use_identifier_rollback Boolean. If enabled, generated identifier properties will be reset
to default values when objects are deleted.

hibernate.use_sql_comments Boolean. If turned on, Hibernate will generate comments inside
the SQL, for easier debugging. Default value is false.

hibernate.id.new_generator_mappings Boolean. This property is relevant when using @GeneratedValue.
It indicates whether or not the new IdentifierGenerator
implementations are used for
javax.persistence.GenerationType.AUTO,
javax.persistence.GenerationType.TABLE and
javax.persistence.GenerationType.SEQUENCE. Default value is
true.

Property Name Description

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

144

hibernate.ejb.naming_strategy Chooses the org.hibernate.cfg.NamingStrategy implementation
when using Hibernate EntityManager.
hibernate.ejb.naming_strategy is no longer supported in
Hibernate 5.0. If used, a deprecation message will be logged
indicating that it is no longer supported and has been removed
in favor of the split ImplicitNamingStrategy and
PhysicalNamingStrategy.

If the application does not use EntityManager, follow the
instructions here to configure the NamingStrategy: Hibernate
Reference Documentation - Naming Strategies.

For an example on native bootstrapping using MetadataBuilder
and applying the implicit naming strategy, see
http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single
/Hibernate_User_Guide.html#bootstrap-native-metadata in the
Hibernate 5.0 documentation. The physical naming strategy can
be applied by using
MetadataBuilder.applyPhysicalNamingStrategy(). For
further details on org.hibernate.boot.MetadataBuilder, see
https://docs.jboss.org/hibernate/orm/5.0/javadocs/.

hibernate.implicit_naming_strategy Specifies the
org.hibernate.boot.model.naming.ImplicitNamingStrat
egy class to be used. hibernate.implicit_naming_strategy
can also be used to configure a custom class that implements
ImplicitNamingStrategy. Following short names are defined for
this setting:

default -
ImplicitNamingStrategyJpaCompliantImpl

jpa - ImplicitNamingStrategyJpaCompliantImpl

legacy-jpa -
ImplicitNamingStrategyLegacyJpaImpl

legacy-hbm -
ImplicitNamingStrategyLegacyHbmImpl

component-path -
ImplicitNamingStrategyComponentPathImpl

The default setting is defined by the ImplicitNamingStrategy
in the default short name. If the default setting is empty, the
fallback is to use
ImplicitNamingStrategyJpaCompliantImpl.

Property Name Description

APPENDIX A. REFERENCE MATERIAL

145

http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#naming
http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/Hibernate_User_Guide.html#bootstrap-native-metadata
https://docs.jboss.org/hibernate/orm/5.0/javadocs/

hibernate.physical_naming_strategy Pluggable strategy contract for applying physical naming rules
for database object names. Specifies the
PhysicalNamingStrategy class to be used.
PhysicalNamingStrategyStandardImpl is used by default.
hibernate.physical_naming_strategy can also be used to
configure a custom class that implements
PhysicalNamingStrategy.

Property Name Description

IMPORTANT

For hibernate.id.new_generator_mappings, new applications should keep the default
value of true. Existing applications that used Hibernate 3.3.x may need to change it to
false to continue using a sequence object or table based generator, and maintain
backward compatibility.

Table A.3. Hibernate JDBC and Connection Properties

Property Name Description

hibernate.jdbc.fetch_size A non-zero value that determines the JDBC fetch
size (calls Statement.setFetchSize()).

hibernate.jdbc.batch_size A non-zero value enables use of JDBC2 batch
updates by Hibernate. The recommended values are
between 5 and 30.

hibernate.jdbc.batch_versioned_data Boolean. Set this property to true if the JDBC driver
returns correct row counts from executeBatch().
Hibernate will then use batched DML for
automatically versioned data. Default value is to
false.

hibernate.jdbc.factory_class Select a custom org.hibernate.jdbc.Batcher. Most
applications will not need this configuration property.

hibernate.jdbc.use_scrollable_resultset Boolean. Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only necessary when
using user-supplied JDBC connections. Hibernate
uses connection metadata otherwise.

hibernate.jdbc.use_streams_for_binary Boolean. This is a system-level property. Use
streams when writing/reading binary or
serializable types to/from JDBC.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

146

hibernate.jdbc.use_get_generated_keys Boolean. Enables use of JDBC3
PreparedStatement.getGeneratedKeys() to
retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+. Set to false if
JDBC driver has problems with the Hibernate
identifier generators. By default, it tries to determine
the driver capabilities using connection metadata.

hibernate.connection.provider_class The class name of a custom
org.hibernate.connection.ConnectionProvider which
provides JDBC connections to Hibernate.

hibernate.connection.isolation Sets the JDBC transaction isolation level. Check
java.sql.Connection for meaningful values, but note
that most databases do not support all isolation
levels and some define additional, non-standard
isolations. Standard values are 1, 2, 4, 8.

hibernate.connection.autocommit Boolean. This property is not recommended for use.
Enables autocommit for JDBC pooled connections.

hibernate.connection.release_mode Specifies when Hibernate should release JDBC
connections. By default, a JDBC connection is held
until the session is explicitly closed or disconnected.
The default value auto will choose after_statement
for the JTA and CMT transaction strategies, and
after_transaction for the JDBC transaction
strategy.

Available values are auto (default), on_close,
after_transaction, after_statement.

This setting only affects the session returned from
SessionFactory.openSession. For the session
obtained through
SessionFactory.getCurrentSession, the
CurrentSessionContext implementation
configured for use controls the connection release
mode for that session.

hibernate.connection.<propertyName> Pass the JDBC property <propertyName> to
DriverManager.getConnection().

hibernate.jndi.<propertyName> Pass the property <propertyName> to the JNDI
InitialContextFactory.

Property Name Description

Table A.4. Hibernate Cache Properties

APPENDIX A. REFERENCE MATERIAL

147

Property Name Description

hibernate.cache.region.factory_class The class name of a custom CacheProvider.

hibernate.cache.use_minimal_puts Boolean. Optimizes second-level cache operation to
minimize writes, at the cost of more frequent reads.
This setting is most useful for clustered caches and, in
Hibernate3, is enabled by default for clustered cache
implementations.

hibernate.cache.use_query_cache Boolean. Enables the query cache. Individual queries
still have to be set cacheable.

hibernate.cache.use_second_level_cache Boolean. Used to completely disable the second level
cache, which is enabled by default for classes that
specify a <cache> mapping.

hibernate.cache.query_cache_factory The class name of a custom QueryCache interface.
The default value is the built-in
StandardQueryCache.

hibernate.cache.region_prefix A prefix to use for second-level cache region names.

hibernate.cache.use_structured_entries Boolean. Forces Hibernate to store data in the
second-level cache in a more human-friendly format.

hibernate.cache.default_cache_concurrency
_strategy

Setting used to give the name of the default
org.hibernate.annotations.CacheConcurrencyStrateg
y to use when either @Cacheable or @Cache is used.
@Cache(strategy="..") is used to override this
default.

Table A.5. Hibernate Transaction Properties

Property Name Description

hibernate.transaction.factory_class The classname of a TransactionFactory to use
with Hibernate Transaction API. Defaults to
JDBCTransactionFactory).

jta.UserTransaction A JNDI name used by JTATransactionFactory to
obtain the JTA UserTransaction from the
application server.

hibernate.transaction.manager_lookup_class The classname of a TransactionManagerLookup.
It is required when JVM-level caching is enabled or
when using hilo generator in a JTA environment.

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

148

hibernate.transaction.flush_before_completi
on

Boolean. If enabled, the session will be automatically
flushed during the before completion phase of the
transaction. Built-in and automatic session context
management is preferred.

hibernate.transaction.auto_close_session Boolean. If enabled, the session will be automatically
closed during the after completion phase of the
transaction. Built-in and automatic session context
management is preferred.

Property Name Description

Table A.6. Miscellaneous Hibernate Properties

Property Name Description

hibernate.current_session_context_class Supply a custom strategy for the scoping of the
"current" Session. Values include jta, thread,
managed, custom.Class.

hibernate.query.factory_class Chooses the HQL parser implementation:
org.hibernate.hql.internal.ast.ASTQueryTran
slatorFactory or
org.hibernate.hql.internal.classic.ClassicQue
ryTranslatorFactory.

hibernate.query.substitutions Used to map from tokens in Hibernate queries to
SQL tokens (tokens might be function or literal
names). For example, hqlLiteral=SQL_LITERAL,
hqlFunction=SQLFUNC.

hibernate.query.conventional_java_constant
s

Indicates whether the Java constants follow the Java
naming conventions or not. Default is false. Existing
applications may set it to true only if conventional
Java constants are being used in the applications.

Setting this to true has significant performance
improvement because then Hibernate can determine
if an alias should be treated as a Java constant
simply by checking if the alias follows the Java
naming conventions.

When this property is set to false, Hibernate
determines an alias should be treated as a Java
constant by attempting to load the alias as a class,
which is an overhead for the application. If alias fails
to load as a class, then Hibernate treats the alias as a
Java constant.

APPENDIX A. REFERENCE MATERIAL

149

hibernate.hbm2ddl.auto Automatically validates or exports schema DDL to
the database when the SessionFactory is created.
With create-drop, the database schema will be
dropped when the SessionFactory is closed
explicitly. Property value options are validate,
update, create, create-drop

hibernate.hbm2ddl.import_files Comma-separated names of the optional files
containing SQL DML statements executed during
the SessionFactory creation. This is useful for testing
or demonstrating. For example, by adding INSERT
statements, the database can be populated with a
minimal set of data when it is deployed. An example
value is /humans.sql,/dogs.sql.

File order matters, as the statements of a given file
are executed before the statements of the following
files. These statements are only executed if the
schema is created, for example if
hibernate.hbm2ddl.auto is set to create or
create-drop.

hibernate.hbm2ddl.import_files_sql_extracto
r

The classname of a custom
ImportSqlCommandExtractor. Defaults to the built-
in SingleLineSqlCommandExtractor. This is useful for
implementing a dedicated parser that extracts a
single SQL statement from each import file.
Hibernate also provides
MultipleLinesSqlCommandExtractor, which supports
instructions/comments and quoted strings spread
over multiple lines (mandatory semicolon at the end
of each statement).

hibernate.bytecode.use_reflection_optimizer Boolean. This is a system-level property, which
cannot be set in the hibernate.cfg.xml file. Enables
the use of bytecode manipulation instead of runtime
reflection. Reflection can sometimes be useful when
troubleshooting. Hibernate always requires either
cglib or javassist even if the optimizer is turned off.

hibernate.bytecode.provider Both javassist or cglib can be used as byte
manipulation engines. The default is javassist. The
value is either javassist or cglib.

Property Name Description

Table A.7. Hibernate SQL Dialects (hibernate.dialect)

RDBMS Dialect

DB2 org.hibernate.dialect.DB2Dialect

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

150

DB2 AS/400 org.hibernate.dialect.DB2400Dialect

DB2 OS390 org.hibernate.dialect.DB2390Dialect

Firebird org.hibernate.dialect.FirebirdDialect

FrontBase org.hibernate.dialect.FrontbaseDialect

H2 Database org.hibernate.dialect.H2Dialect

HypersonicSQL org.hibernate.dialect.HSQLDialect

Informix org.hibernate.dialect.InformixDialect

Ingres org.hibernate.dialect.IngresDialect

Interbase org.hibernate.dialect.InterbaseDialect

MariaDB 10 org.hibernate.dialect.MariaDB10Dialect

MariaDB Galera Cluster 10 org.hibernate.dialect.MariaDB10Dialect

Mckoi SQL org.hibernate.dialect.MckoiDialect

Microsoft SQL Server 2000 org.hibernate.dialect.SQLServerDialect

Microsoft SQL Server 2005 org.hibernate.dialect.SQLServer2005Dialect

Microsoft SQL Server 2008 org.hibernate.dialect.SQLServer2008Dialect

Microsoft SQL Server 2012 org.hibernate.dialect.SQLServer2012Dialect

Microsoft SQL Server 2014 org.hibernate.dialect.SQLServer2012Dialect

Microsoft SQL Server 2016 org.hibernate.dialect.SQLServer2012Dialect

MySQL5 org.hibernate.dialect.MySQL5Dialect

MySQL5.5 org.hibernate.dialect.MySQL55Dialect

MySQL5.7 org.hibernate.dialect.MySQL57Dialect

Oracle (any version) org.hibernate.dialect.OracleDialect

Oracle 9i org.hibernate.dialect.Oracle9iDialect

RDBMS Dialect

APPENDIX A. REFERENCE MATERIAL

151

Oracle 10g org.hibernate.dialect.Oracle10gDialect

Oracle 11g org.hibernate.dialect.Oracle10gDialect

Oracle 12c org.hibernate.dialect.Oracle12cDialect

Pointbase org.hibernate.dialect.PointbaseDialect

PostgreSQL org.hibernate.dialect.PostgreSQLDialect

PostgreSQL 9.2 org.hibernate.dialect.PostgreSQL9Dialect

PostgreSQL 9.3 org.hibernate.dialect.PostgreSQL9Dialect

PostgreSQL 9.4 org.hibernate.dialect.PostgreSQL94Dialect

Postgres Plus Advanced Server org.hibernate.dialect.PostgresPlusDialect

Progress org.hibernate.dialect.ProgressDialect

SAP DB org.hibernate.dialect.SAPDBDialect

Sybase org.hibernate.dialect.SybaseASE15Dialect

Sybase 15.7 org.hibernate.dialect.SybaseASE157Dialect

Sybase 16 org.hibernate.dialect.SybaseASE157Dialect

Sybase Anywhere org.hibernate.dialect.SybaseAnywhereDialect

RDBMS Dialect

IMPORTANT

The hibernate.dialect property should be set to the correct
org.hibernate.dialect.Dialect subclass for the application database. If a dialect is
specified, Hibernate will use sensible defaults for some of the other properties. This
means that they do not have to be specified manually.

Revised on 2019-09-26 10:38:40 UTC

Red Hat JBoss Enterprise Application Platform 7.2 Developing Hibernate Applications

152

APPENDIX A. REFERENCE MATERIAL

153

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT HIBERNATE CORE
	1.2. HIBERNATE ENTITYMANAGER

	CHAPTER 2. HIBERNATE CONFIGURATION
	2.1. HIBERNATE CONFIGURATION
	2.2. SECOND-LEVEL CACHES
	2.2.1. About Second-level Caches
	2.2.2. Configure a Second-level Cache for Hibernate
	Configuring a Second-level Cache for Hibernate Using Hibernate Native Applications

	CHAPTER 3. HIBERNATE ANNOTATIONS
	3.1. HIBERNATE ANNOTATIONS

	CHAPTER 4. HIBERNATE QUERY LANGUAGE
	4.1. ABOUT HIBERNATE QUERY LANGUAGE
	Introduction to JPQL
	Introduction to HQL

	4.2. ABOUT HQL STATEMENTS
	About the UPDATE and DELETE Statements
	About the INSERT Statement

	4.3. ABOUT HQL ORDERING
	4.4. ABOUT COLLECTION MEMBER REFERENCES
	4.5. ABOUT QUALIFIED PATH EXPRESSIONS
	4.6. ABOUT HQL FUNCTIONS
	4.6.1. About HQL Standardized Functions
	4.6.2. About HQL Non-Standardized Functions
	4.6.3. About the Concatenation Operation

	4.7. ABOUT DYNAMIC INSTANTIATION
	4.8. ABOUT HQL PREDICATES
	HQL Predicates

	4.9. ABOUT RELATIONAL COMPARISONS
	4.10. BYTECODE ENHANCEMENT
	4.10.1. Lazy Attribute Loading

	CHAPTER 5. HIBERNATE SERVICES
	5.1. ABOUT HIBERNATE SERVICES
	5.2. ABOUT SERVICE CONTRACTS
	5.3. TYPES OF SERVICE DEPENDENCIES
	5.3.1. The Service Registry
	5.3.1.1. About the ServiceRegistry

	5.3.2. Custom Services
	5.3.2.1. About Custom Services

	5.3.3. The Boot-Strap Registry
	5.3.3.1. About the Boot-strap Registry
	5.3.3.2. BootstrapRegistry Services

	5.3.4. SessionFactory Registry
	5.3.4.1. SessionFactory Services

	5.3.5. Integrators
	5.3.5.1. Integrator Use Cases

	CHAPTER 6. HIBERNATE ENVERS
	6.1. ABOUT HIBERNATE ENVERS
	6.2. ABOUT AUDITING PERSISTENT CLASSES
	6.3. AUDITING STRATEGIES
	6.3.1. About Auditing Strategies
	6.3.2. Set the Auditing Strategy
	Define an Auditing Strategy

	6.3.3. Adding Auditing Support to a JPA Entity

	6.4. CONFIGURATION
	6.4.1. Configure Envers Parameters
	6.4.2. Enable or Disable Auditing at Runtime
	6.4.3. Configure Conditional Auditing
	6.4.4. Envers Configuration Properties

	6.5. QUERYING AUDIT INFORMATION
	6.5.1. Retrieve Auditing Information Through Queries
	6.5.2. Traversing Entity Associations Using Properties of Referenced Entities

	6.6. PERFORMANCE TUNING
	6.6.1. Alternative Batch Loading Algorithms
	6.6.2. Second Level Caching of Object References for Non-mutable Data

	CHAPTER 7. HIBERNATE SEARCH
	7.1. GETTING STARTED WITH HIBERNATE SEARCH
	7.1.1. About Hibernate Search
	7.1.2. Overview
	7.1.3. About the Directory Provider
	7.1.4. About the Worker
	7.1.5. Back End Setup and Operations
	7.1.5.1. Back End
	7.1.5.2. Lucene
	7.1.5.3. JMS

	7.1.6. Reader Strategies
	7.1.6.1. The Shared Strategy
	7.1.6.2. The Not-shared Strategy
	7.1.6.3. Custom Reader Strategies

	7.2. CONFIGURATION
	7.2.1. Minimum Configuration
	7.2.2. Configuring the IndexManager
	7.2.2.1. Directory-based
	7.2.2.2. Near Real Time
	7.2.2.3. Custom

	7.2.3. DirectoryProvider Configuration
	Directory Providers and Their Properties

	7.2.4. Worker Configuration
	7.2.4.1. JMS Master/Slave Back End
	7.2.4.2. Slave Nodes
	7.2.4.3. Master Node

	7.2.5. Tuning Lucene Indexing
	7.2.5.1. Tuning Lucene Indexing Performance
	7.2.5.2. The Lucene IndexWriter
	7.2.5.3. Performance Option Configuration
	7.2.5.4. Tuning the Indexing Speed
	7.2.5.5. Control Segment Size

	7.2.6. LockFactory Configuration
	7.2.7. Index Format Compatibility

	7.3. HIBERNATE SEARCH FOR YOUR APPLICATION
	7.3.1. First Steps with Hibernate Search
	7.3.2. Enable Hibernate Search Using Maven
	7.3.3. Add Annotations
	7.3.4. Indexing
	7.3.5. Searching
	7.3.6. Analyzer

	7.4. MAPPING ENTITIES TO THE INDEX STRUCTURE
	7.4.1. Mapping an Entity
	7.4.1.1. Basic Mapping
	7.4.1.2. @Indexed
	7.4.1.3. @Field
	7.4.1.4. @NumericField
	7.4.1.5. @Id
	7.4.1.6. Mapping Properties Multiple Times
	7.4.1.7. Embedded and Associated Objects
	7.4.1.8. Limiting Object Embedding to Specific Paths

	7.4.2. Boosting
	7.4.2.1. Static Index Time Boosting
	7.4.2.2. Dynamic Index Time Boosting

	7.4.3. Analysis
	7.4.3.1. Default Analyzer and Analyzer by Class
	7.4.3.2. Named Analyzers
	7.4.3.3. Available Analyzers
	7.4.3.4. Dynamic Analyzer Selection
	7.4.3.5. Retrieving an Analyzer

	7.4.4. Bridges
	7.4.4.1. Built-in Bridges
	7.4.4.2. Custom Bridges

	7.5. QUERYING
	7.5.1. Building Queries
	7.5.1.1. Building a Lucene Query Using the Lucene API
	7.5.1.2. Building a Lucene Query
	7.5.1.3. Keyword Queries
	7.5.1.4. Fuzzy Queries
	7.5.1.5. Wildcard Queries
	7.5.1.6. Phrase Queries
	7.5.1.7. Range Queries
	7.5.1.8. Combining Queries
	7.5.1.9. Query Options
	7.5.1.10. Build a Hibernate Search Query

	7.5.2. Retrieving the Results
	7.5.2.1. Performance Considerations
	7.5.2.2. Result Size
	7.5.2.3. ResultTransformer
	7.5.2.4. Understanding Results
	7.5.2.5. Filters
	7.5.2.6. Using Filters in a Sharded Environment

	7.5.3. Faceting
	7.5.3.1. Creating a Faceting Request
	7.5.3.2. Applying a Faceting Request
	7.5.3.3. Restricting Query Results

	7.5.4. Optimizing the Query Process
	7.5.4.1. Caching Index Values: FieldCache

	7.6. MANUAL INDEX CHANGES
	7.6.1. Adding Instances to the Index
	7.6.2. Deleting Instances from the Index
	7.6.3. Rebuilding the Index
	7.6.3.1. Using flushToIndexes()
	7.6.3.2. Using a MassIndexer

	7.7. INDEX OPTIMIZATION
	7.7.1. Automatic Optimization
	7.7.2. Manual Optimization
	7.7.3. Adjusting Optimization

	7.8. ADVANCED FEATURES
	7.8.1. Accessing the SearchFactory
	7.8.2. Using an IndexReader
	7.8.3. Accessing a Lucene Directory
	7.8.4. Sharding Indexes
	7.8.5. Customizing Lucene’s Scoring Formula
	7.8.6. Exception Handling Configuration
	7.8.7. Disable Hibernate Search

	7.9. MONITORING
	Access to Statistics via JMX
	Monitoring Indexing

	APPENDIX A. REFERENCE MATERIAL
	A.1. HIBERNATE PROPERTIES

