
Red Hat Customer Content
Services

Red Hat JBoss Data Virtualization
6.3
Development Guide Volume 2:
Governance

This guide is intended for developers

Red Hat JBoss Data Virtualization 6.3 Development Guide Volume 2:
Governance

This guide is intended for developers

Red Hat Customer Content Services

Legal Notice

Copyright © 2016 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This document provides information on Design-Time Governance and the hierarchical database.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Chapter 1. Read Me
1.1. Governance is Deprecated
1.2. Back Up Your Data
1.3. Variable Name: EAP_HOME
1.4. Variable Name: MODE
1.5. Red Hat Documentation Site

Chapter 2. Governance Overview
2.1. Governance in JBoss Data Virtualization

Part I. The Hierarchical Database

Chapter 3. The Hierarchical Database
3.1. The Hierarchical Database
3.2. Federation
3.3. Architecture
3.4. Clustering
3.5. Sequencing

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP
4.1. Configuring the Hierarchical Database
4.2. Using Repositories with JCR API
4.3. Using Repositories with REST in EAP
4.4. Using Repositories with WebDAV in EAP
4.5. Using Repositories with JDBC in EAP
4.6. Administering Repositories in JBoss EAP

Chapter 5. The REST Service
5.1. REST Service 2.x
5.2. REST Service 3.x

Chapter 6. Query and Search
6.1. Query Languages
6.2. Creating Queries
6.3. Executing Queries
6.4. SQL Extensions
6.5. Query Object Model Extensions
6.6. Search and Text Extraction

Chapter 7. Query Language Grammars
7.1. JCR-SQL2
7.2. JCR-SQL
7.3. XPath
7.4. JCR Java Query Object Model
7.5. Full Text Search

Chapter 8. Built-in Node Types
8.1. Standard Node Types
8.2. Hierarchical Database Built-in Node Types

Chapter 9. Built-in Sequencers
9.1. Compact Node Type (CND) File Sequencer
9.2. Data Definition Language (DDL) File Sequencer
9.3. Text File Sequencer
9.4. Web Service Definition Language (WSDL) File Sequencer

4
4
4
4
4
4

5
5

6

7
7
8

12
15
19

29
29
42
48
50
53
55

57
57
62

80
80
80
81
82
83
98

100
100
124
126
131
133

135
135
138

141
141
142
145
148

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

9.4. Web Service Definition Language (WSDL) File Sequencer
9.5. Extensible Markup Language (XML) File Sequencer
9.6. XML Schema Document (XSD) File Sequencer
9.7. ZIP File Sequencer

Chapter 10. Built-in Connectors
10.1. File System Connector
10.2. Git Connector
10.3. CMIS Connector

Chapter 11. Built-in Text Extractors
11.1. Tika Text Extractor

Chapter 12. Monitoring
12.1. Public API
12.2. Metrics
12.3. Windows and Statistics
12.4. Histories
12.5. Repository Monitor
12.6. Monitoring Examples

Chapter 13. Backup and Restore
13.1. Backup and Restore Overview
13.2. Migrating from a Previous Release
13.3. The Repository Manager
13.4. Backup a Repository
13.5. Restore a Repository

Chapter 14. Security
14.1. Authentication and Authorization
14.2. Anonymous Sessions
14.3. JAAS
14.4. JAAS Configuration
14.5. Servlet Authentication
14.6. Access Controls
14.7. Privileges
14.8. Principals
14.9. Access Control Policies

Chapter 15. Extending the Hierarchical Database
15.1. Custom Authentication and Authorization Modules
15.2. Custom Sequencers
15.3. Custom Text Extractors
15.4. Custom Connectors

Appendix A. Appendix
A.1. File Locations

Appendix B. Initial Content
B.1. XML Format
B.2. Configuring Initial Content

Appendix C. Binary Values
C.1. Extended Binary Interface
C.2. Importing and Exporting

Appendix D. Scaling for Many Child Nodes

148
150
153
156

158
158
162
164

168
168

169
169
169
170
171
172
174

177
177
177
177
178
179

180
180
180
180
181
182
182
182
183
183

185
185
190
192
195

206
206

207
207
208

209
209
210

211

Development Guide Volume 2: Governance

2

. .

. .

. .

. .

Appendix D. Scaling for Many Child Nodes

Appendix E. Infinispan Configuration

Appendix F. Registering Custom Node Types
F.1. Registering Node Types Using CND Files
F.2. Registering CND Files via Configuration
F.3. Jackrabbit XML Format

Appendix G. Revision History

211

212

213
213
215
215

217

Table of Contents

3

Chapter 1. Read Me

1.1. Governance is Deprecated

Warning

Governance is deprecated. New users should not adopt the features discussed in this book.

1.2. Back Up Your Data

Warning

Red Hat recommends that you back up your system settings and data before undertaking any of the
configuration tasks mentioned in this book.

1.3. Variable Name: EAP_HOME

EAP_HOME refers to the root directory of the Red Hat JBoss Enterprise Application Platform installation on
which JBoss Data Virtualization has been deployed.

1.4. Variable Name: MODE

MODE will either be standalone or domain depending on whether JBoss Data Virtualization is running in
standalone or domain mode. Substitute one of these whenever you see MODE in a file path in this
documentation. (You need to set this variable yourself, based on where the product has been installed in your
directory structure.)

1.5. Red Hat Documentation Site

Red Hat's official documentation site is available at https://access.redhat.com/site/documentation/. There you
will find the latest version of every book, including this one.

Development Guide Volume 2: Governance

4

https://access.redhat.com/site/documentation/

Chapter 2. Governance Overview

2.1. Governance in JBoss Data Virtualization

Governance in JBoss Data Virtualization is supported by this component:

Hierarchical Database

The hierarchical database is often not so much used for governance of artifacts, but more for
storing additional data and metadata related to JBoss Data Virtualization. For example, if a user
needs to incorporate information in their JBoss Data Virtualization solution such as images, emails
or other semi-structured content, they can store that in the hierarchical database and then access it
through JBoss Data Virtualization. Or they can put additional descriptive information about their
data in the hierarchical database and combine it with other data.

Example 2.1.

Let us say a customer has a database with customer contact information in it. That database
has the customer data but does not necessarily contain information about that customer data
such as:

the owner of the data

whether the data is considered authoritative

whether this is this the only source of the customer data

any other attributes that an organization might want to "tag" that data with

If this additional information is stored in the hierarchical database, then it can be accessed either
through REST API or via JBoss Data Virtualization so the organization can augment or enrich
their data.

Note

The hierarchical database can provide extra value for more advanced scenarios and
solutions.

Chapter 2. Governance Overview

5

Part I. The Hierarchical Database

Development Guide Volume 2: Governance

6

Chapter 3. The Hierarchical Database

3.1. The Hierarchical Database

The hierarchical database is a distributed, hierarchical, transactional, and consistent data store. It provides
support for queries, full-text search, events, versioning, references, and flexible and dynamic schemas.
Clients use the JSR-283 standard Java API for content repositories (also known as JCR) or the hierarchical
database's REST API, and can query content through JDBC and SQL.

You can use the hierarchical database for data that is organized in a tree-like hierarchical structure where
related data is stored close together and navigation to related content is frequently required.

The hierarchical database automatically extracts the structured information within the files enabling clients to
navigate or use queries to find files satisfying complex, structurally-oriented criteria. You can use the
hierarchical database for all kinds of applications, including repositories, content management systems,
historical data services, provisioning and governance systems, and metadata management systems.

The hierarchical database supports all JCR 2.0 required features:

Repository acquisition

Authentication

Reading/Navigating

Query

Export

Node type discovery

Permissions and capability checking

The hierarchical database supports most of the JCR 2.0 optional features:

Writing

Import

Observation

Workspace management

Access control management

Versioning

Locking

Node type management

Same-name siblings

Orderable child nodes

Shareable nodes

mix:etag, mix:created and mix:lastModified mixins with automatically created properties

The hierarchical database supports the following query languages:

Chapter 3. The Hierarchical Database

7

The JCR-SQL2 and JCR-JQOM query languages defined in JCR 2.0 (JSR-283)

The XPath and JCR-SQL query languages defined in JCR 1.0 (JSR-170)

a full-text search-engine-like language

3.2. Federation

Previously, the hierarchical database owned all of its own data. It stored all of the information about all nodes
within an Infinispan cache, and the repository had a single binary store used to persist all BINARY values.

Figure 3.1. Conventional Repository

However, in this release, the hierarchical database provides the ability for clients to access data stored both
internally and externally using the single JCR API.

Development Guide Volume 2: Governance

8

Figure 3.2. Federated Repository

An external system is a system outside of the hierarchical database that owns its own data and that the
hierarchical database interacts with to access (and optionally update) that data. The external system might be
a data store, or it might be a service that dynamically produces data. Examples of external systems are
Oracle 11i, Cassandra, MongoDB, Git, SVN, SAP, file systems, CMIS, RPM repositories, and JCR
repositories.

Whereas an external system is a kind of software system, we use the term external source to describe an
addressable instance or installation of the external system. For example, external sources might include a
particular database instance, a particular Git repository, a particular file system on a specific machine, or a
particular instance of a CMIS repository.

In the diagram above, two external sources are shown and labeled "External Source A" and "External Source
B". (But the diagram does not define what kind of system they are.)

Chapter 3. The Hierarchical Database

9

A hierarchical database connector is the software used to interact with a specific kind of external system. A
connector consists of compiled Java classes and resources, and is usually packaged as a JAR with
dependencies on 3rd party libraries. The hierarchical database defines a connector SPI (or Service Provider
Interface) which the connector must implement. Generally connectors can read and update data in the
external system, although a connector implementation may support only read operations.

To be useful, however, a connector must be instantiated and that instance configured to talk to a specific
external source . Then that connector instance's job is to create a single, virtual tree of nodes that represents
the data in the external source. Note that the connector does not create the entire tree up front; instead, the
connector creates the nodes in that virtual tree only when the hierarchical database asks for them. Thus, the
potential tree of nodes for a given source might be massive, but only the nodes being used will be
materialized.

The diagram of the federated repository shown above includes two connector instances , each of which is
configured to talk to one of the external sources.

An internal node is any node within a hierarchical database repository that is owned by the database and
stored within the Infinispan cache. In a regular repository (without federation), all nodes are internal nodes.

An external node is any node within a federated hierarchical database repository that is not owned by the
database but instead is dynamically generated to represent some portion of data in an external source.
Clients view internal and external nodes in exactly the same way, but internally they are handled in different
ways.

A federated node is an internal node that contains some children that are external nodes. In other words, only
federated nodes can have internal nodes and external nodes as children, whereas internal nodes can only
have other internal nodes as children and external nodes can only have other external nodes as children.

A projection is a portion of the repository (really a subgraph) whose nodes are all external nodes that are
representations of some of the data in an external source. The nodes are dynamically generated (by the
connector's logic) as needed, and can optionally be cached for a configurable amount of time.

The federated repository diagram above shows three projections, labeled "Projection 1", "Projection 2", and
"Projection 3". Strictly speaking, projections do not have a name, so the labels are merely for discussion
purposes. Note how projections 1 and 2 both project external nodes from "External Source A", whereas
projection 3 only projects the external nodes from "External Source B". We often will talk about an external
source as having one or more projections; thus "External Source A" has two projections ("Projection 1" and
"Projection 2"), while "External Source B" has only one projection ("Projection 3").

Each projection maps a specific subtree of the virtual tree (created by a connector talking to an external
source) underneath a specific federated node. A simple path is used to identify the subtree of external nodes,
and a simple path is used to identify the federated node. The hierarchical database uses a projection
expression that is a string with these two paths:

<workspace-name>':' <path-to-federated-node> '=>' <path-in-external-source-
of-node>

where

<workspace-name> is the name of the workspace where the projection is to be placed

<path-to-federated-node> is a regular absolute path to the existing internal node under which the
external nodes are to appear

<path-in-external-source-of-node is a regular absolute path in the virtual tree created by the
connector of the node whose children are to appear as children of the federated node.

Development Guide Volume 2: Governance

10

Projections can be defined within a repository's configuration (making them available immediately upon
startup of the repository) or programmatically added or removed by client applications using the
FederationManager interface.

The hierarchical database public API includes the
org.modeshape.jcr.api.federation.FederationManager interface that defines several methods
for programmatically creating and removing projections. Note that at this time it is not possible to
programmatically create, modify, or remove external sources, so these must be defined within the repository
configuration.

As clients navigate the nodes in the repository, they typically ask for one (or multiple) children of a particular
node. Clients repeat this process until they access the node(s) they're looking for.

The hierarchical database performs these operations differently depending upon the kind of node:

If the parent is an internal node , then all children will also be internal. Therefore, to find a particular child
by name, the hierarchical database obtains the parent's child reference to obtain the child's node key, and
then looks up the node with that key in the Infinispan cache. This is the "conventional" behavior, and this
incurs no overhead even when the repository is configured to use federation.

If the parent is a federated node , then the process is very similar to internal nodes, except that the internal
and external child references are managed separately. The hierarchical database then looks at the child's
node key to determine (from the key itself) if the child exists in the Infinispan cache or in an external
source. If in an external source, the hierarchical database then calls to the connector to ask for the
representation of the requested node.

If the parent is an external node , then the hierarchical database obtains the parent's child reference and
looks up the node with that key in the same connector. The connector then generates a representation of
the requested node.

All nodes (both internal and external) can be accessed by Session.getNodeByIdentifier(String ,
where the identifier is the same string returned by calling the getIdentifier() method on the node. The
hierarchical database can tell from the identifier whether it is for an external node, and if so it will look up the
node in the connector.

Note

Per the JCR specification, clients should treat these identifiers as opaque. In fact, hierarchical
database identifiers follow a fairly complex pattern that will likely be difficult to reverse engineer, and
which may change at any time.

The hierarchical database actually uses an in-memory LIRS cache of the nodes. So, although the navigation
and lookup steps mentioned above do not discuss using the LIRS cache, the hierarchical database always
consults this cache when it needs to find a node with a particular node key. If found in the cache, the node will
be used. If the cache does not contain the node, then it will consult the Infinispan cache or the connector to
obtain (and cache) the node.

Normally, nodes in the LIRS cache are evicted after a certain (but configurable) time. However, external
nodes can have an additional internal property that specifies the maximum time that the node can be in the
cache. Or, an external source can be configured with a global time to live value. Either way, the LIRS cache
ensures that the nodes are evicted at the appropriate time.

Of course, a node is also evicted from the cache if the node has been changed and persisted (e.g., via
Session.save() or user transaction commit), even if that change was made on a different process in the
cluster.

Chapter 3. The Hierarchical Database

11

A connector decides which external nodes are to be indexes.

The connector instance can be configured with a queryable boolean parameter that states whether any
of the content is to be queryable. This defaults to true .

The connector can mark any or all nodes as not queryable .

Thus, even though a connector implementation may be written such that some or all of the external nodes
can be queried, a repository configuration can configure an instance of that connector and override the
behavior so that no nodes are queryable.

Note

If a connector is implemented by marking all nodes as not queryable , then configuring an instance of
that connector with queryable=true has no effect.

Any nodes that are queryable will be included in the index, as long as the hierarchical database is notified of
new nodes. By default, external nodes are not automatically indexed. To index them, use the public API for
reindexing.

Once indexed, the nodes can be queried like any other nodes.

A connector works by creating a node representation of external data, and that node contains the references
to the node's children. These references are relatively small (the ID and name of the child), and for many
connectors this is sufficient and fast enough. However, when the number of children under a node starts to
increase, building the list of child references for a parent node can become noticeable and even burdensome,
especially when few (if any) of the child references may ultimately be resolved into nodes because no client
actually uses those references.

A pageable connector is one that will expose the children of nodes in a "page by page" fashion, where the
parent node only contains the first page of child references and subsequent pages are loaded only if needed.
This turns out to be quite effective, since when clients navigate a specific path (or ask for a specific child of a
parent by its name) the hierarchical database does not need to use the child references in a node's document
and can instead have the connector resolve such (relative or absolute external) paths into an identifier and
then ask for the document with that ID.

Therefore, the only time the child references are needed are when clients iterate over the children of a node.
A pageable connector will only be asked for as many pages as needed to handle the client's iteration, making
it very efficient for exposing a node structure that can contain nodes with numerous children.

3.3. Architecture

3.3.1. The Hierarchical Database Engine

Perhaps the most important component in the hierarchical database is the engine, which is responsible for
managing and making available all of the configured repositories. When the database is embedded into an
application, the application is better of manually instantiating the
org.modeshape.jcr.ModeShapeEngine class and explicitly invoking the start() ,
deployRepository(...) and shutdown() methods in appropriate places within the application's own
lifecycle. Note that repository configurations can be updated even when the repository is running and in use.
The hierarchical database can also be deployed to a server (e.g., JBoss EAP, Tomcat, etc.) so that the
server manages the lifecycle of the engine.

Development Guide Volume 2: Governance

12

Every repository in a ModeShapeEngine instance has a unique name, and applications can easily use the
engine to get a particular repository by name. If used within an environment that has JNDI, the hierarchical
database will also register each repository into JNDI so that applications can easily look it up. See the
documentation for all the ways to find a repository.

3.3.2. Repository Configuration

Each repository is configured separately with a file that conforms to the JSON format. (Note that when
installed into JBoss EAP, configuring the hierarchical database is done through EAP's configuration system.)
The configuration files can be read with the org.modeshape.jcr.RepositoryConfiguration class,
and the resulting RepositoryConfiguration instances can be passed to the
ModeShapeEngine.deployRepository(...) and ModeShapeEngine.updateRepository(...)
methods.

3.3.3. Clustering

The hierarchical database can be clustered at the repository level. This means that a repository with the
same name is deployed to multiple engines (typically in separate processes), and those repository instances
are aware of each other so that events that originate in one repository instance will be forwarded to all other
repository instances in the cluster. Additionally, the Infinispan cache(s) used in each repository should also be
clustered, so that Infinispan can coordinate changes to the data stored in the cache(s).

There are two other important aspects of clustering: storage and indexing.

3.3.4. Clustering: Storage

If the Infinispan caches use cache stores to persist content to the filesystem, a database, cloud storage and
so forth then this storage must be compatible with clustering. For example, if the cache store content on the
file system, then the cache used by each repository instance must have its own non-shared directory in which
the cache can persist information. (Infinispan clustering will use network messaging to ensure that multiple
instances that "own" a particular piece of data are all kept in sync.) Some of Red Hat JBoss Data Grid's cache
stores are sharable , which means that multiple instances can all share a single store.

3.3.5. Clustering: Indexing

Each repository instance uses indexes to help answer queries. When clustering a repository, the repository
has to know whether it owns the indexes (in which case the repository will update the indexes to reflect all
changes that originate from the local or remote repository instances) or whether indexes are shared (in which
case the repository will update the indexes only when changes that are made with that repository instance).
Note that even in the shared case, the index files might be local copies that are periodically cloned from a
master set.

Local indexes are much easier to configure, but the disadvantage is that every repository is hereby updating
its own indexes for every change (so there is duplicate work). This might cause a write-heavy system to
become inundated with changes.

Shareable indexes are more difficult to configure (they require the use and proper configuration of JMS and/or
JGroups), but are generally more capable of handling large amounts of updates.

3.3.6. Public APIs

javax.jcr - This is the standard JCR 2.0 API, and it actually is not in our codebase but is available in
Maven. It has no dependencies.

modeshape-jcr-api - the hierarchical database's small extension to the standard JCR 2.0 API. This

Chapter 3. The Hierarchical Database

13

public API was meant to be used by client applications that already use the JCR API, but it is entirely
optional. Many of the interfaces extend the functionality offered by standard interfaces, so most of the
time clients can cast standard JCR instances to these interfaces only when they need a method specific
to the hierarchical database. A few interfaces are new concepts that clients might need to access. It only
depends on the JCR API JAR. Note that the public API will only ever be modified in a backward-
compatible fashion: while some methods might be deprecated at any time (though we do not anticipate
doing so), changes that are not backward compatible (e.g., removal of deprecated methods) will only
occur on major releases. This module also defines the Sequencer SPI, since sequencer implementations
only need the JCR API and this public API.

3.3.7. Sequencers

All of the sequencer artifacts are named in a similar way: modeshape-sequencer-name . For example, the
DDL sequencer is in the modeshape-sequencer-ddl module, while the WSDL sequencer is in the
modeshape-sequencer-wsdl module.

The use of sequencers in a repository is entirely optional. And because nearly all of the sequencers depend
upon third-party libraries, we've put each sequencer into a separate artifact so that only the required
dependencies are included.

3.3.8. Core Modules

modeshape-common - A simple set of domain-independent utilities and classes that are available for use
in any other module. Some of these might be similar to those available in other third-party libraries, but
were create and are maintained here to help minimize third-party dependencies (especially when small
fractions of the third party libraries would be used). This includes the hierarchical database's framework
for internationalization (I18n) and the logging framework that is a slight facade on top of several other
logging systems, including SLF4J, Log4J, Logback, JDK logging. Sure, SLF4J is already a logging
abstraction framework, but using our own abstraction makes it easier for developers to hook up the
hierarchical database logging to their preferred framework (include the appropriate logging JAR on the
classpath, or fallback to JDK logging) and it also allows the hierarchical database to enforce using only
internationalized logging messages (except for debug and trace, which take string messages). Therefore,
this module has no required dependencies, but will use one of the logging frameworks if they are available
on the classpath.

modeshape-schematic - A library for working with JSON and BSON documents, for storing them inside
Infinispan, and for editing them in a way that allows for the changes to be recorded as a set of changes to
the documents and atomically apply them. (The latter is what distinguishes this library from other JSON or
BSON libraries.) Supports reading a document from JSON and/or BSON, and writing a document to JSON
and/or BSON. The hierarchical database stores each node as a document inside Infinispan, and this
library encapsulates all of the domain-independent logic for doing this. The module depends on several
Infinispan artifacts.

modeshape-jcr - The primary module that contains the hierarchical database engine and
implementations of the standard JCR API and the hierarchical database's public API. It also defines
several SPIs, including the Connector SPI (for federation) and the BinaryStore SPI (for storing binary
values). It contains the file system connector and CND sequencer (since neither is dependent upon any
other libraries and thus are too simple to be distinct artifacts).

3.3.9. Connectors

All of the connector artifacts are named in a similar way: modeshape-connector-name . For example, the
Git connector is in the modeshape-connector-git module, while the CMIS connector is in the
modeshape-connector-cmis module.

Development Guide Volume 2: Governance

14

The use of federation (and thus connectors) in a repository is entirely optional. And because nearly all of the
connectors depend upon third-party libraries, we've put each connector into a separate artifact so that only
the required dependencies are included.

3.3.10. Web APIs

The hierarchical database has a number of web-based APIs that may optionally be used by remote clients to
interact with one or more repositories.

REST Service - a RESTful service that enables navigating, searching, modifying and deleting nearly any
content in the repositories (see the detailed API documentation in the REST Service 3.x section). All
representations are in JSON, XML or text form. Each operation creates a new session, fulfills the request,
and then closes the session; sessions longer than a single request are not possible. Versioned content
can be manipulated: if it is changed, it is checked out, modified, saved, and checked back in. However,
the rest of the JCR functionality is not available. The WAR file is named modeshape-web-jcr-rest-
war-<version>.war .

WebDAV Service - exposes content via WebDAV, enabling WebDAV clients and operating systems to
mount the repositories as network disk drives. This service exposes a small amount of the hierarchical
database's functionality, and allows clients to basically navigate, download, and upload files and folders.
The WAR file is named modeshape-web-jcr-webdav-war-<version>.war .

CMIS Service - exposes an API that conforms to CMIS . The CMIS functionality exposes the ability to
navigate, download, and upload folders and CMIS documents. The WAR file is named modeshape-web-
jcr-cmis-war-<version>.war .

Each of these services can be independently deployed to a web or application server and in which the
hierarchical database must be running. Each service talks to a single (local) ModeShapeEngine instance
(typically found via JNDI) and will work with all of the repositories deployed to that engine.

3.3.11. JDBC Driver

The hierarchical database supports several query languages to allow client applications to find content
independent of its hierarchical location. The JCR-SQL2 language is by far the most powerful, and the
hierarchical database provides a JDBC driver that applications can use to query a repository (running in the
same process or in a remote process where the REST service is available). The driver JAR is self-contained,
making it pretty easy to incorporate into existing JDBC-aware applications.

3.4. Clustering

You can create a hierarchical database repository that stands alone and is self-contained, or you can create
a cluster of repositories that all work together to ensure all content is accessible to each of the repositories.

When you create a cluster, a client talking to any of the processes in the cluster will see exactly the same
content and the same events. In fact, from a client perspective, there is no difference between talking to a
repository that is clustered versus one that is not.

The hierarchical database can be clustered in a variety of ways, but the biggest decision will be to determine
where to store the content. Much of this flexibility comes from the power and flexibility of Infinispan, which can
use a variety of topologies.

3.4.1. Local Caching

Chapter 3. The Hierarchical Database

15

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis

In a local mode, the hierarchical database is not clustered at all. This is the default, so if you do not tell both
the database and Infinispan to cluster, each process will happily operate without communicating or sharing
any content. Updates on one process will not be visible to any of the other processes.

Figure 3.3. Local topology

Note that in the local, non-clustered topology data must be persisted to disk or some other system.
Otherwise, if the hierarchical database process terminates, all data will be lost.

3.4.2. Replicated Clustering

The simplest clustering topology is to have each replicate all content across each member of the cluster. This
means that each cluster member has its own storage for content, binaries, and indexes - nothing is shared.
However, hierarchical database (and Infinispan) processes in the cluster communicate to ensure that locks
are acquired as necessary and that committed changes in each member are replicated to all other members
of the cluster.

Development Guide Volume 2: Governance

16

Figure 3.4. Replicated cluster topology with non-shared storage

The advantage of this topology is that each member of the cluster has a complete set of content, so all reads
can be satisfied with locally-held data. This works great for small to medium-sized repositories. Additionally,
because repositories share nothing, it is simple to add or remove cluster instances.

Replication works well for repositories with fairly large amounts of content, and with relatively few members of
the cluster. Typically replication is used when you want clustering for fault-tolerance purpose, to handle larger
workloads of clients, or when the hardware is not terribly powerful.

Note that the diagram above shows that each process has its own non-shared persistent store. Persistently
storing the content is recommended, typically because all of the cluster members will likely be in a single data
center and thus share some risk of common failure.

However, it is also possible to avoid persistent storage altogether, since the data is copied to multiple
locations. But it is also possible for all of the members to share a persistent store, as long as that persistent
store is transactional and capable of coordinating multiple concurrent operations. (An example of this is a
relational database.)

Chapter 3. The Hierarchical Database

17

Figure 3.5. Replicated cluster topology with shared storage

3.4.3. Distributed Clustering

With larger cluster sizes, however, it is not as efficient for every member in the cluster to have a complete
copy of all of the data. Additionally, the overhead of coordination of locks and inter-process communication
starts to grow. This is when the distributed cluster topology becomes very advantageous.

In a distributed cluster, each piece of data is owned/managed by more than two members but fewer than the
total size of the cluster. In other words, each bit of data is distributed across enough members so that no data
will be lost if members catastrophically fail. And because of this, you can choose to not use persistent
storage but to instead rely upon the multiple copies of the in-memory data, especially if the cluster is hosted in
multiple data centers (or sites). In fact, a distributed cluster can have a very large number of members.

Figure 3.6. Distributed cluster topology

In this scenario, when a client requests some node or binary value, the hierarchical database (via Infinispan)

Development Guide Volume 2: Governance

18

looks to see which member owns the node and forwards the request to that node. (Each repository instance
maintains a cache of nodes, so subsequent reads of the same node will be very quick.)

3.4.4. Remote Clustering

The final topology is to cluster the hierarchical database as normal but to configure Infinispan to use a remote
data grid. The benefit here is that the data grid is a self contained and separately managed system, and all of
the specifics of the Infinispan configuration can be hidden by the data grid. Additionally, the data grid could
itself be replicated or distributed across one or multiple physical sites.

Figure 3.7. Cluster topology with remote (data grid) storage

Because of differences in the remote and local Infinispan interfaces, the only way to get this to work is to use
a local cache with a remote cache store.

3.5. Sequencing

Many repositories are used (at least in part) to manage files and other artifacts, including service definitions,
policy files, images, media, documents, presentations, application components, reusable libraries,
configuration files, application installations, databases schemas, management scripts, and so on. Most JCR
repository implementations will store those files and maybe index them for searching.

The hierarchical database sequencers can automatically unlock the structured information buried within all of
those files, and this useful content derived from your files is then stored back in the repository where your
client applications can search, access, and analyze it using the JCR API. Sequencing is performed in the
background, so the client application does not have to wait for (or even know about) the sequencing
operations.

The following diagram shows conceptually how these automatic sequencers do this.

Chapter 3. The Hierarchical Database

19

Figure 3.8. Sequencing Workflow

As of this release, your applications can use a session to explicitly invoke a sequencer on a specified
property. We call these manual sequencers . Any generated output is included in the session's transient
state, so nothing is persisted until the application calls session.save() .

Note

Prior to this release, the hierarchical database only had support for automatic sequencers.

3.5.1. Sequencers

Sequencers are POJOs that implement a specific interface, and when they are called they process the
supplied input, extract meaningful information, and produce an output structure of nodes that somehow
represents that meaningful information. This derived information can take almost any form, and it typically
varies for each sequencer. For example, the hierarchical database comes with an image sequencer that
extracts the simple metadata from different kinds of image files (e.g., JPEG, GIF, PNG, etc.). Another
example is the Compact Node Definition (CND) sequencer that processes the CND files to extract and
produce a structured representation of the node type definitions, property definitions, and child node
definitions contained within the file. A third example is a sequencer that works on XML Schema Documents
might parse the XSD content and generate nodes that mirror the various elements, and attributes, and types
defined within the schema document.

Development Guide Volume 2: Governance

20

Sequencers allow a repository to help you extract more meaning from the artifacts you already are managing,
and makes it much easier for applications to find and use all that valuable information. All without your
applications doing anything extra.

Each repository can be configured with any number of sequencers. Each one includes a name, the POJO
class name, an optional classpath (for environments with multiple named classloaders), and any number of
POJO-specific fields. Upon startup, the hierarchical database creates each sequencer by instantiating the
POJO and setting all of the fields, then initializing the sequencer so it can register any namespaces or node
type definitions.

There are two kinds of sequencers, automatic and manual .

3.5.2. Automatic Sequencers

An automatic sequencer has a path expression that dictates which content in the repository the sequencer is
to operate upon. These path expressions are really patterns and look somewhat like simple regular
expressions. When persisted content in the repository changes, the hierarchical database automatically looks
to see which (if any) sequencers might be able to run on the changed content. If any of the sequencers do
match, the hierarchical database automatically calls them by supplying the changed content. At that point, the
sequencer then processes the supplied content and generates the output, and the hierarchical database then
saves that generated output to the repository.

To use an automatic sequencer, add or change content in the repository that matches the sequencer's path
expression. For example, if an XSD sequencer is configured for nodes with paths like /files//*.xsd, then
upload a file into that location and save it. The hierarchical database will detect that the XSD sequencer
should be called, and will do the rest. The generated content will magically appear in the repository.

3.5.3. Manual Sequencers

A manual sequencer is a sequencer that is configured without path expressions. Because no path
expressions are provided, the hierarchical database cannot determine when/where these sequencers should
be applied. Instead, manual sequencers are intended to be called by client applications.

For example, consider that a session uploaded a file at /files/schemas/Customers.xsd, and this node
has a primary type of nt:file. (This means the file's content is stored in the jcr:data property the
jcr:content child node.) The session has not yet saved any of this information, so it is still in the session's
transient state. The following code shows how an XSD sequencer configured with name "XSD Sequencer" is
manually invoked to place the generated content directly under the /files/schemas/Customers.xsd
node (and adjacent to the jcr:content node):

Node fileNode = session.getNode("/files/schemas/Customers.xsd");
 Property content = fileNode.getProperty("jcr:content/jcr:data");
 Node output = fileNode; // could be anywhere!

 boolean success = session.sequence("XSD Sequencer", content, output);

The sequence(...) method returns true if the sequencer generated output, or false if the sequencer
could not use the input and instead did nothing. Remember that when the sequence(...) does return, any
generated output is only in the session's transient state and session.save() must be called to persist this
state.

3.5.4. Built-in Sequencers

The hierarchical database comes with sequencer implementations for a variety of file types:

Chapter 3. The Hierarchical Database

21

Input files Derives
XML Documents A node is created for each XML element, properties

are created for each XML attribute, and each
declared namespace is registered in the workspace.

XML Schema Documents (XSDs) A node structure that represents the structure and
semantics of the XSD, including the attribute
declarations, element declarations, simple type
definitions, complex type definitions, import
statements, include statements, attribute group
declarations, annotations, other components, and
even attributes with a non-schema namespace.

WSDL 1.1 files A node structure that represents the WSDL file's
messages, port types, bindings, services, types
(including embedded XML Schemas),
documentation, and extension elements (including
HTTP, SOAP and MIME bindings).

ZIP files Extracts the files and folders contained in the
archive file, representing them as nt:file and
nt:folder nodes. The resulting files will be
candidates for further sequencing.

Delimited and fixed-width text files A simple node structure reflecting the rows of data
fields.

DDL files A node structure that represents the parsed data
definition statements from SQL-92, Oracle, Derby,
and PostgreSQL. The resulting structure is largely
the same for all dialects, though some dialects have
non-standard additions to their grammar that result
in dialect-specific additions to the graph structure.

Red Hat JBoss Data Virtualization relational models A rich node structure containing all the objects
defined in the models, including the
catalogs/schemas, tables, views, columns, primary
keys, foreign keys, indexes, procedures, procedure
results, extension properties, and data source
information. The structure will also contain the
select, update, insert and delete transformations in
the case of virtual models.

Red Hat JBoss Data Virtualization virtual databases A node structure that mirrors the relational model
files, XSDs, and additional metadata. The resulting
relational model files will be candidates for further
sequencing.

Compact Node Definition files

3.5.5. Configuring an Automatic Sequencer

Each sequencer must be configured to describe the areas or types of content that the sequencer is capable
of handling. This is done by specifying these patterns using path expressions that identify the nodes (or node
patterns) that should be sequenced and where to store the output generated by the sequencer.

A path expression consists of two parts: a selection criteria (or an input path) and an output path:

inputPath => outputPath

3.5.5.1. Input Path

Development Guide Volume 2: Governance

22

http://www.w3.org/TR/xml
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/wsdl
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Data_Definition_Language

The inputPath part defines an expression for the path of a node that is to be sequenced. Input paths consist of
'/' separated segments, where each segment represents a pattern for a single node's name (including the
same-name-sibling indexes) and '@' signifies a property name.

Example 3.1. Input Path Samples

Input Path Description
/a/b Match node "b" that is a child of the top level node

"a". Neither node may have any same-name-
siblings.

/a/* Match any child node of the top level node "a".
/a/*.txt Match any child node of the top level node "a" that

also has a name ending in ".txt".
/a/b/@c Match the property "c" of node "/a/b".
/a/b[2] The second child named "b" below the top level

node "a".
/a/b[2,3,4] The second, third or fourth child named "b" below

the top level node "a".
/a/b[*] Any (and every) child named "b" below the top

level node "a".
//a/b Any node named "b" that exists below a node

named "a", regardless of where node "a" occurs.
Again, neither node may have any same-name-
siblings.

With these simple examples, you can probably discern the most important rules. First, the '*' is a wildcard
character that matches any character or sequence of characters in a node's name (or index if appearing in
between square brackets), and can be used in conjunction with other characters (e.g., *.txt).

Second, square brackets (i.e., '[' and ']') are used to match a node's same-name-sibling index. You can put
a single non-negative number or a comma-separated list of non-negative numbers. Use '0' to match a node
that has no same-name-siblings, or any positive number to match the specific same-name-sibling.

Third, combining two delimiters (e.g., '//') matches any sequence of nodes, regardless of what their names
are or how many nodes. Often used with other patterns to identify nodes at any level matching other
patterns. Three or more sequential slash characters are treated as two.

Many input paths can be created using these simple rules. However, input paths can be more complicated.
Here are some more examples:

Input Path Description
/a/(b|c|d) Match children of the top level node "a" that are

named "b", "c" or "d". None of the nodes may have
same-name-sibling indexes.

/a/b[c/d] Match node "b" child of the top level node "a", when
node "b" has a child named "c", and "c" has a child
named "d". Node "b" is the selected node, while
nodes "c" and "d" are used as criteria but are not
selected.

/a(/(b|c|d|)/e)[f/g/@something] Match node "/a/b/e", "/a/c/e", "/a/d/e", or "/a/e" when
they also have a child "f" that itself has a child "g"
with property "something". None of the nodes may
have same-name-sibling indexes.

Chapter 3. The Hierarchical Database

23

These examples show a few more advanced rules. Parentheses (i.e., '(' and ')') can be used to define a set
of options for names, as shown in the first and third rules. Whatever part of the selected node's path appears
between the parentheses is captured for use within the output path, similar to regular expressions. Thus, the
first input path in the previous table would match node /a/b, and b would be captured and could be used
within the output path using $1, where the number used in the output path identifies the parentheses. Here
are some examples of what's captured by the parenthesis and available for use in the output path:

Input Path $1 $2 $3
/a/(b|c|d) "b" or "c" or "d" n/a n/a
/a/b[c/d] n/a n/a n/a
/a(/(b|c|d|)/e)
[f/g/@something]

"/b/e" or "/c/e" or "/d/e"
or "/e"

"b" or "c" or "d" or "" n/a

Square brackets can also be used to specify criteria on a node's properties or children. Whatever appears in
between the square brackets does not appear in the selected node. This distinction between the selected
path and the changed path becomes important when writing custom sequencers .

3.5.5.2. Output Paths

The outputPath part of a path expression defines where the content derived by the sequencer should be
stored. Typically, this points to a location in a different part of the repository, but it can actually be left off if the
sequenced output is to be placed directly under the selected node. The output path can also use any of the
capture groups used in the input path.

3.5.5.3. Workspaces in Input and Output Paths

So far, we've talked about how input paths and output paths are independent of the workspace. However,
there are times when it is desirable to configure sequencers to only work against content in a specific
workspace. In these cases, it is possible to specify the workspace names before the path. For example:

Input Path Description
:default:/a/(b|c|d) Match nodes in the "default" workspace within any

source that are children of the top level node "a" and
named "b", "c" or "d". None of the nodes may have
same-name-sibling indexes.

:/a/(b|c|d) Match nodes in any within any source that are
children of the top level node "a" and named "b", "c"
or "d". None of the nodes may have same-name-
sibling indexes. (This is equivalent to the path
/a/(b|c|d).)

Again, the rules are pretty straightforward. You can leave off the workspace name, or you can prepend the
path with workspaceNamePattern:, where workspaceNamePattern is a regular-expression pattern
used to match the applicable workspace names. A blank pattern implies any match, and is a shorthand
notation for the '.*' regular expression. Note that the repository names may not include forward slashes (e.g.,
'/') or colons (e.g., ':').

3.5.5.4. Example Path Expression

Let's look at an example sequencer path expression:

default://(*.(jpg\|jpeg\|gif\|bmp\|pcx\|png)\[*])\[/jcr:content@jcr:data]
=> meta:/images/\$1

Development Guide Volume 2: Governance

24

This matches a changed jcr:data property on a node named jcr:content[1] that is a child of a node
whose name ends with .jpg, .jpeg, .gif, .bmp, .pcx, or .png (that may have any same-name-sibling
index) appearing at any level in the default workspace. Note how the selected path capture the filename
(the segment containing the file extension), including any same-name-sibling index. This filename is then
used in the output path, which is where the sequenced content is placed under the /images node in the
meta workspace.

So, consider a PNG image file is stored in the default workspace in a repository configured with an image
sequencer and the aforementioned path expression, and the file is stored at
/jsmith/photos/2011/08/09/reunion.png using the standard nt:file pattern. This means that an
nt:file node named reunion.png is created at the designated path, and a child node named
jcr:content will be created with primary type of nt:resource and a jcr:data binary property (at which
the image file's content is store).

When the session is saved with these changes, the hierarchical database discovers that the

{{/jsmith/photos/2011/08/09/reunion.png/jcr:content/jcr:data}}

property satisfies the criteria of the sequencer, and calls the sequencer's execute(...) method with the
selected node, input node, input property and output node of /images in the meta workspace. When the
execute() method completes successfully, the session with the change in the meta workspace are saved
and the content is immediately available to all other sessions using that workspace.

Chapter 3. The Hierarchical Database

25

Figure 3.9. Sequencing an Uploaded File

3.5.5.5. Observing Automatic Sequencing

When your application creates or uploads content that will kick off a sequencing operation, the sequencing is
actually done asynchronously. If you want to be notified when the sequencing is complete, you can use the
observation feature to register a listener for the sequencing event.

The first step is to create a class that implements javax.jcr.observation.EventListener. Normally

Development Guide Volume 2: Governance

26

this is pretty easy, but in our case we want to block until the listener is notified via a separate thread. An easy
way to do this is to use a java.util.concurrent.CountDownLatch , and to count down the latch as
soon as we get our event. (If we carefully register the listener using criteria for only the sequencing output
we're interested in, we'll know we'll only receive one event.)

Here's our implementation that captures from the first event whether the sequencing was successful and the
path of the output node, and then counts down the latch:

public class SequencingListener implements
javax.jcr.observation.EventListener {
 private final CountDownLatch latch;
 private volatile String sequencedNodePath;
 private volatile boolean successfulSequencing;
 public SequencingListener(CountDownLatch latch) {
 this.latch = latch;
 }

 @Override
 public void onEvent(javax.jcr.observation.EventIterator events) {
 if (sequencedNodePath != null) return;
 try {
 javax.jcr.observation.Event event =
(javax.jcr.observation.Event)events.nextEvent();
 this.sequencedNodePath = event.getPath();
 this.successfulSequencing = event.getType() ==
org.modeshape.jcr.observation.Event.Sequencing.NODE_SEQUENCED;
 latch.countDown();
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 public boolean isSequencingSuccessful() {
 return this.successfulSequencing;
 }

 public String getSequencedNodePath() {
 return sequencedNodePath;
 }
}

We could then register this using the public API:

Session session = ...
ObservationManager observationManager =
session.getWorkspace().getObservationManager();

String outputPath = .. // the path at or below which the output is to be
placed
// Listen for sequencing completion or failure events, via the ALL type ...
int eventTypes = org.modeshape.jcr.api.observation.Event.Sequencing.ALL;
boolean isDeep = true; // if outputPath is ancestor of the sequencer output,
false if identical
String[] uuids = null; // Don't care about UUIDs of nodes for sequencing
events
String[] nodeTypes = null; // Don't care about node types of output nodes

Chapter 3. The Hierarchical Database

27

for sequencing events
boolean noLocal = false; // We do want events for sequencing happen locally
(as well as remotely)

// Now create a listener implementation that will be called when the event is
here ...
CountDownLatch latch = new CountDownLatch(1);
SequencingListener listener = new SequencingListener(latch);
observationManager.addEventListener(listener,eventTypes,outputPath,isDeep,
 uuids, nodeTypes, noLocal);

// Now, block until the latch is decremented (by the listener) or when our
max wait time is exceeded
latch.await(15, TimeUnit.SECONDS);

if (listener.isSequencingSuccessful()) {
 // Grab the output produced by the sequencer ...
} else {
 // Handle the failure ...
}

Development Guide Volume 2: Governance

28

Chapter 4. Using the Hierarchical Database with Red Hat JBoss
EAP

4.1. Configuring the Hierarchical Database

4.1.1. Hierarchical Database Configuration

Although JBoss Data Virtualization comes with a hierarchical database already configured, this topic
describes the steps required to configure another if so desired.

Procedure 4.1. Task

1. Start the JBoss EAP server

Start JBoss EAP in standalone mode with the configuration of your choice. For example, the
following starts with the standalone.xml configuration file:

$ bin/standalone.sh -c=standalone.xml

2. Start the JBoss EAP Management CLI

You can use the JBoss EAP command line interface (CLI) tool to directly manipulate the
configuration of the running server. If the server is running in domain mode, the CLI immediately
propagates the changes to all the servers. Start the CLI and connect to your server as shown below:

$./bin/jboss-cli.sh
You are disconnected at the moment. Type 'connect' to connect to the
server or 'help' for the list of supported commands.
[disconnected /] connect
[standalone@localhost:9999 /]

3. Add a hierarchical database subsystem

Add the subsystem to the current configuration as shown below:

[standalone@localhost:9999 /] /extension=org.modeshape:add()
{"outcome" => "success"}
[standalone@localhost:9999 /] ./subsystem=modeshape:add
{"outcome" => "success"}

This updates the configuration's XML file (in this case standalone.xml) immediately.

4. Add a hierarchical database repository

Before adding a repository, add or configure the JBoss EAP resources for the repository to use.

a. Add an Infinispan cache

Each hierarchical database repository stores its content in an Infinispan cache. The following
steps show how to put this cache in a new cache container called modeshape, which you
can use for other repositories:

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

29

[standalone@localhost:9999 /] /subsystem=infinispan/cache-
container=modeshape:add
{"outcome" => "success"}

Once you have your container, here is how you can define a local cache named sample that
uses non-XA transactions and persists all content immediately to the
modeshape/store/sample directory under the standalone/data directory:

 [standalone@localhost:9999 /] /subsystem=infinispan/cache-
container=modeshape/local-cache=sample:add
{"outcome" => "success"}
[standalone@localhost:9999 /] /subsystem=infinispan/cache-
container=modeshape/local-
cache=sample/transaction=TRANSACTION:add(mode=NON_XA)
{
 "outcome" => "success",
 "response-headers" => {
 "operation-requires-reload" => true,
 "process-state" => "reload-required"
 }
}
[standalone@localhost:9999 /] /subsystem=infinispan/cache-
container=modeshape/local-cache=sample/file-
store=FILE_STORE:add(path="modeshape/store/sample",relative-
to="jboss.server.data.dir",passivation=false,purge=false)
{
 "outcome" => "success",
 "response-headers" => {"process-state" => "reload-required"}
}

These commands run successfully, however, the last few may require a reload of the
Infinispan service. This means that your changes are saved to the configuration, but these
few may not take effect until the next restart or until you explicitly perform the reload:

[standalone@localhost:9999 /] :reload
{
 "outcome" => "success",
 "response-headers" => {"process-state" => "reload-required"}
}
[standalone@localhost:9999 /] :reload
{"outcome" => "success"}

b. Add the repository

After defining the services for the repository to use, here is how you can define a repository
called sample:

[standalone@localhost:9999 /]
./subsystem=modeshape/repository=sample:add(security-
domain="modeshape-security",cache-name="sample",cache-
container="modeshape")
{"outcome" => "success"}

Development Guide Volume 2: Governance

30

This command configures the sample repository to use the sample Infinispan cache in the
modeshape cache container, and to use the modeshape-security security domain
created earlier. Restart is not required after defining a repository. Most of the administrative
operations take effect immediately even when applications are actively using the repository.

You need not define the security-domain="modeshape-security" attribute because
the repository uses a security domain with that name by default. Also, by default the
repository tries to use an Infinispan cache with the name "modeshape" which is same as the
repository in the cache container. You can specify these, but any attributes that match the
default value will not be serialized to the XML configuration file.

4.1.2. Advanced Repository Configuration

Procedure 4.2. Task

1. You can view the complete definition of a repository at any point by running the following command
in the Management CLI:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample:read-resource(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "allow-workspace-creation" => true,
 "anonymous-roles" => undefined,
 "anonymous-username" => "<anonymous>",
 "binary-storage" => undefined,
 "cache-container" => "modeshape",
 "cluster-name" => undefined,
 "cluster-stack" => undefined,
 "default-workspace" => "default",
 "enable-monitoring" => true,
 "index-storage" => undefined,
 "indexing-analyzer-classname" =>
"org.apache.lucene.analysis.standard.StandardAnalyzer",
 "indexing-analyzer-module" => undefined,
 "indexing-async-max-queue-size" => 0,
 "indexing-async-thread-pool-size" => 1,
 "indexing-batch-size" => -1,
 "indexing-mode" => "SYNC",
 "indexing-reader-strategy" => "SHARED",
 "indexing-thread-pool" => "modeshape-workers",
 "jndi-name" => undefined,
 "minimum-binary-size" => 4096,
 "predefined-workspace-names" => undefined,
 "rebuild-indexes-upon-startup" => "IF_MISSING",
 "security-domain" => "modeshape-security",
 "sequencer" => undefined,
 "use-anonymous-upon-failed-authentication" => false
 }
}

This shows all the attributes including the ones that are not set, or set to their default values.

2. To view details about each attribute and child, use the :read-resource-description()

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

31

command. For example:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample:read-resource-
description(recursive=true)
{
 "outcome" => "success",
 "result" => {
 "description" => "ModeShape repository",
 "attributes" => {
 "cache-name" => {
 "type" => STRING,
 "description" => "The name of the cache that is to be
used for storing this repository's content",
 "expressions-allowed" => false,
 "nillable" => true,
 "min-length" => 1L,
 "max-length" => 2147483647L,
 "access-type" => "read-write",
 "storage" => "configuration",
 "restart-required" => "resource-services"
 },
 "cache-container" => {
 "type" => STRING,
 "description" => "The name of the cache container
that contains the cache to be used for storing this repository's
content",
 "expressions-allowed" => false,
 "nillable" => true,
 "min-length" => 1L,
 "max-length" => 2147483647L,
 "access-type" => "read-write",
 "storage" => "configuration",
 "restart-required" => "resource-services"
 },
 "jndi-name" => {
 "type" => STRING,
 "description" => "The optional alias in JNDI where
this repository is to be registered, in addition to
'jcr/{repositoryName}",
 "expressions-allowed" => false,
 "nillable" => true,
 "min-length" => 1L,
 "max-length" => 2147483647L,
 "access-type" => "read-write",
 "storage" => "configuration",
 "restart-required" => "resource-services"
 },
...

Here, the output shows the description of each attribute, the criteria for valid values, whether
expressions such as system variables are allowed or not, and whether a restart is required or not
before changes take effect.

Development Guide Volume 2: Governance

32

Most of the attributes have defaults, but the descriptions do not list some of the defaults because the
defaults are functions of other attributes. For example, every repository is registered in JNDI under
jcr/repositoryName, and also under the JNDI name explicitly set with the jndi-name attribute.

4.1.3. Repository Attributes

The following table contains the list of all the attributes for a hierarchical database repository:

Table 4.1. Repository Attributes

Attribute Name Description
allow-workspace-creation Specifies whether authenticated and authorized JCR

users can create additional workspaces beyond the
predefined, system, and default workspaces. The
default value is 'true'. Set this to 'false' when you
need to fix the workspaces.

anonymous-roles The list of names (of type String) of the roles for all
anonymous users. An empty String in the role name
results in disabling the logins. By default,
anonymous users are given all roles: 'connect',
'readonly', 'readwrite', and 'admin'.

anonymous-username The username for all anonymous users. The
username <anonymous> is used by default.

cache-container The name of the Infinispan cache container
containing the cache. If not provided, the
"modeshape" cache container is used.

cache-name The name of the Infinispan cache where repository
content is stored. If not provided, the repository
name is used for the cache name.

cluster-name Defines the name of the communication channel
used to share events amongst all repository
instances in the cluster. By default there is no value.
This means that the repository is not participating in
a cluster.

cluster-stack Specifies the name of the JGroups stack used by
the repository to create a channel for events when
the repository is clustered. By default there is no
value. This means that the repository is not
participating in a cluster.

default-workspace The name of the workspace to be used when
sessions are created without specifying an explicit
workspace name. By default, the "default"
workspace name is used.

enable-monitoring Specifies whether the repository is to maintain the
metrics that can be used to monitor the performance
and activities. The default value is 'true', which
means that the monitoring is enabled.

indexing-analyzer-classname The fully-qualified name of the Lucene analyzer
implementation class. The default value is
org.apache.lucene.analysis.standard.St
andardAnalyzer.

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

33

indexing-analyzer-module The name of the module that contains the specified
analyzer class. No value is specified by default,
which means that the class is visible to the
hierarchical database engine.

indexing-async-max-queue-size The maximum size of the queue used for
asynchronous indexing. By default the value is '0'.
The value is ignored if synchronous indexing is
enabled.

indexing-async-thread-pool-size The size of the thread pool used for asynchronous
indexing. By default the value is '1'. The value is
ignored if synchronous indexing is enabled.

indexing-batch-size The size of the indexing batches. The default value
is '-1', which means the batch sizes are unlimited.

indexing-mode The concurrency mode for indexing. The valid
values are 'SYNC' and 'ASYNC'.

indexing-reader-strategy The strategy for sharing (or not sharing) index
readers. The valid values are 'SHARED' and
'NOT_SHARED'.

indexing-thread-pool The name of the thread pool that the repository
indexing system should use. The default value is
'modeshape-workers'.

jndi-name The repository is always bound in JNDI to the name
'jcr/{repositoryName}', however you can use this
attribute to specify an additional location in JNDI
where the repository is to be registered.

minimum-binary-size The size threshold that dictates whether String and
binary values should be stored in the binary store.
String and binary values smaller than this value are
stored with the node, whereas String and binary
values with a size equal to or greater than this limit
are stored separately from the node in the binary
store, keyed by the SHA-1 hash of the value. This is
a space and performance optimization that stores
each unique large value only once. The default
value is '4096' bytes, or 4 kilobytes.

predefined-workspace-names The names of the workspaces that the repository
ensures exist (or create if necessary) when the
repository starts up.

rebuild-indexes-upon-startup Specifies whether the indexes need to be rebuilt
immediately when each process starts up. Valid
values are 'IF_MISSING' , 'ALWAYS' or 'NEVER. By
default the value is 'IF_MISSING'.

rebuild-upon-startup-mode Specifies whether index rebuilding at startup should
be synchronous or asynchronous. Valid values are
'SYNC' and 'ASYNC'. The default value is 'SYNC'.

rebuild-upon-startup-include-system-content Specifies whether the system content area (the
nodes below /jcr:system) should be indexed or not
when rebuilding indexes at startup. The default
value is 'FALSE'

security-domain The name of the security domain that should be
used for JAAS authentication. The default value is
'modeshape-security'

Attribute Name Description

Development Guide Volume 2: Governance

34

use-anonymous-upon-failed-authentication Indicates that the failed authentication attempts will
not result in a javax.jcr.LoginException, but
will instead fall back to anonymous access. If
anonymous access is not enabled, then failed login
attempts throw a LoginException. The default
value is 'false'.

default-initial-content The file which should be treated as the default initial
content imported into all workspace.

workspaces-initial-content A set of (workspaceName, initial content file) pairs,
which defines the custom initial content files for each
workspace.

node-types A sequence of node-type elements, where the value
of each element represents a path to a CND file.
This file should be imported at repository startup.

external-sources A sequence of source elements, where each
element contains the definition of an external source

Attribute Name Description

4.1.4. Sequencers

Sequencers are POJOs that implement a specific interface. Sequencers allow a hierarchical database
repository to help you extract more meaning from the artifacts you already are managing, and makes it much
easier for applications to find and use all that valuable information. You can configure a repository with any
number of sequencers and each one applies to content in the repository matching specific patterns. When
content in the repository changes, it is automatically checked to see which sequencers might be able to run
on the changed content. If any of the sequencers match, the hierarchical database automatically calls them
by supplying the changed content. At that point, the sequencer's job is to process the supplied input, extract
meaningful information, and write that derived information back into the repository where it can be accessed,
searched and used by your client applications.

The derived information can take almost any form, and it typically varies for each sequencer. For example, an
image sequencer is provided that extracts the simple metadata from different kinds of image files (such as
JPEG, GIF, and PNG).

Another example is the Compact Node Definition (CND) sequencer that processes the CND files to extract
and produce a structured representation of the node type definitions, property definitions, and child node
definitions contained within the file.

4.1.5. Adding and Removing Sequencers

You can use the CLI to dynamically add and remove sequencers.

Procedure 4.3. Task

1. Add a sequencer to the sample repository that operates against comma-separated value (CSV) files
uploaded under the /files node as shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/sequencer=delimited-text-
sequencer:add(
classname="org.modeshape.sequencer.text.DelimitedTextSequencer",
module="org.modeshape.sequencer.text", path-expressions=
["/files(//*.csv[*])/jcr:content[@jcr:data] =>
/derived/text/delimited/$1"], properties=[{ "splitPattern"=>"," }])

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

35

{"outcome" => "success"}
[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/sequencer=delimited-text-
sequencer:read-resource()
{
 "outcome" => "success",
 "result" => {
 "classname" =>
"org.modeshape.sequencer.text.DelimitedTextSequencer",
 "module" => "org.modeshape.sequencer.text",
 "path-expressions" =>
["/files(//*.csv[*])/jcr:content[@jcr:data] =>
/derived/text/delimited/$1"],
 "properties" => [{"splitPattern" => ","}]
 }
}

This sequencer has an additional splitPattern property that specifies the delimiter.

2. To remove a sequencer, invoke the remove operation on the appropriate item as shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/sequencer=delimited-text-
sequencer:remove()
{"outcome" => "success"}

4.1.6. Specify Index Storage

Procedure 4.4. Task

1. To specify where indexes are stored, add the index storage resource to your configuration as shown
below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/configuration=index-
storage:add()
{"outcome" => "success"}

2. Once you add the index storage node, add the storage type with required optional parameters as
shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/configuration=index-
storage/storage-type=master-file-index-storage:add(connection-factory-
jndi-name=conn-name,queue-jndi-name=queue-name, path=/somepath,
source-path=/someotherpath)
{"outcome" => "success"}

4.1.7. Specify Binary Storage

Procedure 4.5. Task

1. To specify where large binary values are stored, you need to first add the binary storage resource to
your configuration as shown below:

Development Guide Volume 2: Governance

36

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/configuration=binary-
storage:add()
{"outcome" => "success"}

2. Once you add the binary storage node, add the storage type with the required optional parameters
as shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/configuration=binary-
storage/storage-type=file-binary-storage:add(path=/somepath)
{"outcome" => "success"}

4.1.8. Configure Composite Binary Stores

Composite binary stores are different from the rest of the standard binary stores, as they can aggregate any
number of standard binary stores.

Procedure 4.6. Task

1. Configure composite binary stores via CLI as shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/configuration=binary-
storage/storage-type=composite-binary-storage:add()

Ensure that each nested store has a store-name property that is unique within the composite store
and that the appropriate resource-container is used when adding the store. Corresponding to
each of the standard binary stores, the following resource-containers are available:

nested-storage-type-file - for file system binary stores

nested-storage-type-cache - for cache binary stores

nested-storage-type-db - for database binary stores

nested-storage-type-custom - for custom (user defined) binary stores

2. Add a file system binary store to a composite store as shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/configuration=binary-
storage/storage-type=composite-binary-storage/nested-storage-type-
file=filesystem1:add(store-name=filesystem1, path="/somepath")

You can remove a file system binary store from a composite store as shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/configuration=binary-
storage/storage-type=composite-binary-storage/nested-storage-type-
file=filesystem1:remove()

4.1.9. Add and Remove Authentication and Authorization Providers

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

37

You can use the CLI to dynamically add and remove custom authentication and authorization providers.

Procedure 4.7. Task

1. If your org.modeshape.jcr.security.AuthorizationProvider implementation is named
org.example.MyAuthProvider and is added to a new org.example.auth module, then use
the following command to add this provider to the "sample" repository:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/authenticator=custom:add(classn
ame="org.example.MyAuthProvider", module="org.example.auth")
{"outcome" => "success"}
[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/authenticator=jaas:read-
resource()
{
 "outcome" => "success",
 "result" => {
 "classname" => "org.modeshape.jcr.security.JaasProvider",
 "module" => "org.modeshape",
 "properties" => undefined
 }
}

2. To remove an authentication provider, invoke the "remove" operation on the appropriate item as
shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/authenticator=custom:remove()
{"outcome" => "success"}

4.1.10. Set Instance-Level Fields on Provider Instances

Instance-level fields can be set on the provider instances.

Procedure 4.8. Task

You can set the auth-domain field on the MyAuthProvider instance to the String value "global". To do
this, add them via the properties parameter, which is a list of documents that each contain a single
name-value pair:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/authenticator=custom:add(classname=
"org.example.MyAuthProvider", module="org.example.auth", properties=[
{"foo"=>"bar"}, {"baz"=>"bam"}])
{"outcome" => "success"}
/subsystem=modeshape/repository=sample/authenticator=custom:read-
resource()
{
 "outcome" => "success",
 "result" => {
 "classname" => "org.example.MyAuthProvider",
 "module" => "org.example.auth",
 "properties" => [

Development Guide Volume 2: Governance

38

 {"foo" => "bar"},
 {"baz" => "bam"}
]
 }
}

4.1.11. Add JDBC Data Source

Prerequisities

Before adding a data source, add the driver as shown below:

[standalone@localhost:9999 /] /subsystem=datasources/jdbc-
driver=modeshape-driver:add(driver-name="modeshape-driver", driver-module-
name="org.modeshape.jdbc", driver-class-
name="org.modeshape.jdbc.LocalJcrDriver")
{"outcome" => "success"}

Procedure 4.9. Task

Add the JDBC Data Source as shown below:

[standalone@localhost:9999 /] /subsystem=datasources/data-
source="java:/datasources/ModeShapeDS":add(jndi-
name="java:/datasources/ModeShapeDS",driver-name="modeshape-
driver",connection-url="jdbc:jcr:jndi:jcr?repositoryName=artifacts",user-
name="admin",password="admin")
{"outcome" => "success"}

Note

A preconfigured datasource java:/datasources/ModeShapeDS already exists by default.

4.1.12. Add and Remove External Sources

Procedure 4.10. Task

1. You can add one or more external sources to an existing repository to enable federation. Here is an
example on how you can link an external file system source(via the FileSytemConnector) to the
sample repository using the CLI:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/source=fsSource:add(classname="
org.modeshape.connector.filesystem.FileSystemConnector",properties=
[{"directoryPath"=>"."}], readonly="true",
 projections=["default:/projection1 => /"], cacheTtlSeconds="1")
{"outcome" => "success"}

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/source=fsSource:read-resource()
{

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

39

 "outcome" => "success",
 "result" => {
 "cacheTtlSeconds" => "1",
 "classname" =>
"org.modeshape.connector.filesystem.FileSystemConnector",
 "module" => undefined,
 "projections" => ["default:/projection1 => /"],
 "properties" => [{"directoryPath" => "."}],
 "queryable" => undefined,
 "readonly" => "true"
 }
}

2. Specify the following attributes when adding an external source:

classname (mandatory) - The fully qualified name of the Connector class that allows content to
be retrieved and written to that external source.

module (optional) - The name of the JBoss EAP module where the above class is found.

projections (optional) - A list of projection expressions representing predefined projection paths
for the source. Projections can either be defined here or programmatically using the
FederationManager.createProjection(...) method.

queryable (optional) - A flag indicating if the content exposed from the external source should be
indexed by the repository or not. By default, this flag is set.

readonly (optional) - A flag indicating if only read or both read and write is possible on the source.

cacheTtlSeconds (optional) - The number of seconds any given node is to be held in the cache of
the corresponding workspace from the external source.

properties (optional) - An array of key-value pairs that allow any custom attributes to be passed
down on the Connector implementation class.

3. To remove an external source, invoke the remove method on the source as shown below:

[standalone@localhost:9999 /]
/subsystem=modeshape/repository=sample/source=fsSource:remove()
{"outcome" => "success"}

4.1.13. Working with Batch Mode

You can combine all commands except for the initial /extension=org.modeshape:add() command, into
a batch operation:

[standalone@localhost:9999 /] /extension=org.modeshape:add()
{"outcome" => "success"}
[standalone@localhost:9999 /] batch
[standalone@localhost:9999 / #] (paste the commands here)
[standalone@localhost:9999 / #] run-batch
The batch executed successfully.

You can edit the batches before runnning them and paste multiple commands into a batch.

4.1.14. Clustering Configuration

Development Guide Volume 2: Governance

40

Before configuring the hierarchical database to run in a cluster, ensure the JGroups subsystem is present in
the JBoss EAP configuration.

Then the following parts need to be configured.

1. Replicated Infinispan caches for the repository store and the binary store:

/subsystem=infinispan/cache-
container=modeshape:add(module="org.modeshape")
/subsystem=infinispan/cache-
container=modeshape/transport=TRANSPORT:add(lock-timeout="60000")
/subsystem=infinispan/cache-container=modeshape/replicated-
cache=sample:add(mode="SYNC", batching="true")
/subsystem=infinispan/cache-container=modeshape/replicated-
cache=sample/transaction=TRANSACTION:add(mode=NON_XA)
/subsystem=infinispan/cache-container=modeshape/replicated-
cache=sample/file-store=FILE_STORE:add(path="modeshape/store/sample-
${jboss.node.name}",relative-
to="jboss.server.data.dir",passivation=false,purge=false)
/subsystem=infinispan/cache-container=modeshape-binary-
store:add(module="org.modeshape")
/subsystem=infinispan/cache-container=modeshape-binary-
store/transport=TRANSPORT:add(lock-timeout="60000")
/subsystem=infinispan/cache-container=modeshape-binary-
store/replicated-cache=sample-binary-data:add(mode="SYNC",
batching="true")
/subsystem=infinispan/cache-container=modeshape-binary-
store/replicated-cache=sample-binary-
data/transaction=TRANSACTION:add(mode=NON_XA)
/subsystem=infinispan/cache-container=modeshape-binary-
store/replicated-cache=sample-binary-data/file-
store=FILE_STORE:add(path="modeshape/binary-store/sample-data-
${jboss.node.name}",relative-
to="jboss.server.data.dir",passivation=false,purge=false)
/subsystem=infinispan/cache-container=modeshape-binary-
store/replicated-cache=sample-binary-metadata:add(mode="SYNC",
batching="true")
/subsystem=infinispan/cache-container=modeshape-binary-
store/replicated-cache=sample-binary-
metadata/transaction=TRANSACTION:add(mode=NON_XA)
/subsystem=infinispan/cache-container=modeshape-binary-
store/replicated-cache=sample-binary-metadata/file-
store=FILE_STORE:add(path="modeshape/binary-store/sample-metadata-
${jboss.node.name}",relative-
to="jboss.server.data.dir",passivation=false,purge=false)

2. The main repository:

/subsystem=modeshape/repository=sample:add(cache-
container="modeshape",cache-name="sample",cluster-name="modeshape-
sample",cluster-stack="tcp",security-domain="modeshape-security")

3. Indexing:

/subsystem=modeshape/repository=sample/configuration=index-
storage:add()

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

41

/subsystem=modeshape/repository=sample/configuration=index-
storage/storage-type=local-file-index-
storage:add(path="modeshape/indexes/sample-indexes-
${jboss.node.name}")

4. Binary Storage:

/subsystem=modeshape/repository=sample/configuration=binary-
storage:add()
/subsystem=modeshape/repository=sample/configuration=binary-
storage/storage-type=cache-binary-storage:add(data-cache-name="sample-
binary-data", metadata-cache-name="sample-binary-metadata", cache-
container="modeshape-binary-store")

4.2. Using Repositories with JCR API

4.2.1. JCR API

The JCR API is a powerful and easy way to access or manipulate repository content from within a deployed
web application or service. The hierarchical database makes using the JCR API very easy. You can get a
javax.jcr.Repository object that represents one of the repositories running within the hierarchical
database subsystem and start using the API.

4.2.2. Find the JCR Repository

You can use any of the following ways to find repository instances within JBoss EAP:

Use Java EE resource injection

Look up a Repository in JNDI

Look up the hierarchical database's Repositories instance and use it to find the Repository by
name

Use JCR's javax.jcr.RepositoryFactory and the Service Loader

These methods rely upon JNDI and the fact that the hierarchical database registers itself and each of the
Repository instances into JNDI. The hierarchical database engine, which implements the
org.modeshape.jcr.api.Repositories interface, is registered at jcr, while each repository is
registered at jcr/{repositoryName}. You can optionally specify an additional JNDI location in the
repository configuration. It is useful when you deploy an application that is already looking up a Repository
instance at a specific JNDI name that can not be easily changed. For example, for a repository named
"sample", the hierarchical database engine automatically registers it into JNDI (in the global context) at
jcr/sample, although java:jcr/sample also works in JBoss EAP.

4.2.3. Use Java EE Resource Injection

JBoss EAP is a Java EE compliant application server, which means that your code can use Java EE
resource injection to automatically get a reference to the Repository instance. Here is a snippet from a
ManagedBean example that has the "sample" repository injected automatically:

@ManagedBean
public class MyBean {

Development Guide Volume 2: Governance

42

 @Resource(mappedName="java:/jcr/sample")
 private javax.jcr.Repository repository;

 ...
}

When you deploy your application, JBoss EAP automatically starts the "sample" repository. When you
undeploy your application, JBoss EAP automatically stops the "sample" repository unless there are other
applications or subsystems using it. This works because the JBoss EAP deployer encounters the @Resource
annotation and automatically adds a dependency for the application on the JNDI binding service associated
with the specified JNDI name, which depends upon relevant Repository instance.

4.2.4. Get a Repository Instance from JNDI

You can get a repository by directly looking up the repository in JNDI as shown below:

InitialContext context = new InitialContext();
javax.jcr.Repository repository = (javax.jcr.Repository)
context.lookup("jcr/sample");

Consider using this approach if you deploy your application to multiple containers including some non-EE
containers.

4.2.5. Use RepositoryFactory of JCR

Not all deployment environments have JNDI support. The JCR 2.0 specification defines a pattern that uses
the Java SE Service Loader facility to find javax.jcr.RepositoryFactory instances and use them to
get your repository instance. This mechanism also works with for JBoss EAP. If your components that use
JCR, are deployed or reused in other applications that are deployed to environments having no JNDI or Java
EE support, you can consider this way to look up JCR repositories:

String configUrl = "jndi:jcr/sample";
Map<String, String> parameters =
java.util.Collections.singletonMap("org.modeshape.jcr.URL", configUrl);
javax.jcr.Repository repository = null;
for (RepositoryFactory factory :
java.util.ServiceLoader.load(RepositoryFactory.class)) {
 repository = factory.getRepository(parameters);
 if (repository != null) break;
}

The RepositoryFactory implementations look for a single org.modeshape.jcr.URL parameter that should
be a URL of the form "jndi:jndiName". As your "sample" repository is registered into JNDI at jcr/sample,
you can use jndi:jcr/sample for the URL.

4.2.6. Use a Repositories Container

Sometimes your applications may need to do more than look up repository instances. For example, your
application may need to know which repositories exist. The hierarchical database provides an
implementation of the org.modeshape.jcr.api.Repositories interface that defines several useful
methods:

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

43

public interface Repositories {

 /**
 * Get the names of the available repositories.
 *
 * @return the immutable set of repository names provided by this
server; never null
 */
 Set<String> getRepositoryNames();

 /**
 * Return the JCR Repository with the supplied name.
 *
 * @param repositoryName the name of the repository to return; may not
be null
 * @return the repository with the given name; never null
 * @throws javax.jcr.RepositoryException if no repository exists with
the given name or there is an error communicating with
 * the repository
 */
 javax.jcr.Repository getRepository(String repositoryName) throws
javax.jcr.RepositoryException;
}

The getRepositoryNames() method returns an immutable set of names of all existing repositories, while
the getRepository(String) method obtains the JCR repository with the specified name.

The hierarchical database always registers the implementation of this interface in JNDI at the "jcr" (or
"java:jcr") name. The following code shows how to directly look up a repository named "sample" using this
interface:

InitialContext context = new InitialContext();
Repositories repositories = (Repositories) context.lookup("jcr");
javax.jcr.Repository repository = repositories.get("sample");

You can also use the repositories object with the RepositoryFactory-style mechanism. In this case, the URL
should contain jndi:jcr?repositoryName=repositoryName. Here is how you can find the "sample"
repository using this technique:

String configUrl = "jndi:jcr/sample";
Map<String, String> params = new HashMap<String, String>();
params.put(org.modeshape.jcr.api.RepositoryFactory.URL, "jndi:jcr?
repositoryName=sample");
javax.jcr.Repository repository = null;
for (RepositoryFactory factory :
java.util.ServiceLoader.load(RepositoryFactory.class)) {
 repository = factory.getRepository(parameters);
 if (repository != null) break;
}

Here is how you can do the same, separating the URL and repository name:

Development Guide Volume 2: Governance

44

String configUrl = "jndi:jcr/sample";
Map<String, String> params = new HashMap<String, String>();
params.put(org.modeshape.jcr.api.RepositoryFactory.URL, "jndi:jcr");
params.put(org.modeshape.jcr.api.RepositoryFactory.REPOSITORY_NAME,
"sample");
javax.jcr.Repository repository = null;
for (RepositoryFactory factory :
java.util.ServiceLoader.load(RepositoryFactory.class)) {
 repository = factory.getRepository(parameters);
 if (repository != null) break;
}

Here is how you can use resource-injection:

@ManagedBean
public class MyBean {
 @Resource(mappedName="java:/jcr")
 private org.modeshape.jcr.api.Repositories repositories;

 ...
}

4.2.7. Deploy JCR Web Applications

The modular classloading system in JBoss EAP enables your application to only see those Java APIs that
your applications use. As the JCR API is not one of the standard JEE APIs, your application needs to
explicitly state that it needs the JCR API and optionally the hierarchical database API. You can manually
specify the modules that your application uses in any of the following ways:

Specify dependencies in your MANIFEST.MF file.

Override dependencies with the jboss-deployment-structure.xml file.

4.2.8. Specify Dependencies with MANIFEST.MF

You can specify dependencies in your application's META-INF/MANIFEST.MF file by adding the following
line:

Dependencies: javax.jcr, org.modeshape.jcr.api export services,
org.modeshape export services

Adding this line gives your application visibility to the standard JCR API and to the hierarchical database
public API. It also ensures that the hierarchical database service is running by the time your application
needs it. It also exports any services such as RepositoryFactory implementations, so that the ServiceLoader
can find them.

If you modify theMANIFEST.MF file, ensure that you include a newline character at the end of the file.

4.2.9. Override Dependencies with jboss-deployment-structure.xml

The jboss-deployment-structure.xml file is a JBoss specific deployment descriptor. You can use it to
control class loading in a fine grained manner. Like the MANIFEST.MF file, you can use this file to add

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

45

dependencies. This file can also prevent automatic dependencies from being added, define additional
modules, change an EAR deployment's isolated class loading behavior, and add additional resource roots to
a module. Here is a snippet of the jboss-deployment-structure.xml file:

<jboss-deployment-structure>
 ...
 <deployment>
 ...
 <dependencies>
 ...
 <!-- These are equivalent to the "Dependencies: javax.jcr ..." line in
the MANIFEST.MF -->
 <module name="javax.jcr" />
 <module name="org.modeshape.jcr.api" services="import" />
 <module name="org.modeshape" services="import" />
 ...
 </dependencies>
 ...
 </deployment>
 ...
</jboss-deployment-structure>

4.2.10. Build an Application with Maven

As the hierarchical database and JBoss EAP are built with Maven, we recommend you to use Maven to build
and test your application.

Procedure 4.11. Task

1. To build an application with Maven, include the hierarchical database as a provided dependency in
your application's POM file. You can do this for each of the artifacts you need, however it is easier to
use the hierarchical database's BOM in your <dependencyManagement> section. The example
below shows how the POM file specifies the BOM in the dependencyManagement section and how
you can specify the Java EE 6 APIs:

<project ...>
 <!-- ... -->
 <dependencyManagement>
 <dependencies>
 <!-- Define the version of JBoss' Java EE 6 APIs we want
to import.
 Any dependencies from org.jboss.spec will have
their version defined by this
 BOM -->
 <!-- JBoss distributes a complete set of Java EE 6 APIs
including
 a Bill of Materials (BOM). A BOM specifies the
versions of a "stack" (or
 a collection) of artifacts. We use this here so
that we always get the correct
 versions of artifacts. Here we use the jboss-
javaee-6.0-with-tools stack
 (you can read this as the JBoss stack of the Java

Development Guide Volume 2: Governance

46

EE 6 APIs, with some extras
 tools for your project, such as Arquillian for
testing) -->
 <dependency>
 <groupId>org.jboss.bom</groupId>
 <artifactId>jboss-javaee-6.0-with-tools</artifactId>
 <version>1.0.0.M11</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <!-- Import the ModeShape BOM for embedded usage. This
adds to the "dependenciesManagement" section
 defaults for all of the modules we might need, but
we still have to include in the
 "dependencies" section the modules we DO need. The
benefit is that we don't have to
 specify the versions of any of those modules.-->
 <dependency>
 <groupId>org.modeshape.bom</groupId>
 <artifactId>modeshape-bom-jbosseap</artifactId>
 <version>3.2.0.Final</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <!-- ... -->
</project>

2. Specify the version that you want to use in the following line:

<version>3.2.0.Final</version>

As the modeshape-bom-jbossas is a BOM, it includes default "version" and "scope" values for all of
the hierarchical database artifacts and (transitive) dependencies.

3. The BOMs add default values for several Java EE6 and hierarchical database artifacts and
dependencies, respectively. To make them available in your application, add dependencies for all the
artifacts that you directly use. In the case of the hierarchical database, the following is the JCR API
and the database's public API:

<dependencies>
 ...
 <!-- Directly depend on the JCR 2.0 API -->
 <dependency>
 <groupId>javax.jcr</groupId>
 <artifactId>jcr</artifactId>
 </dependency>
 <!-- Directly depend on ModeShape's public API -->
 <dependency>
 <groupId>org.modeshape</groupId>

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

47

 <artifactId>modeshape-jcr-api</artifactId>
 </dependency>
 ...
 </dependencies>

Here you do not have to specify any versions or scope of these artifacts because they are specified
in the BOMs used in the <dependencyManagement> section. In the case of these two artifacts, the
default scope is "provided", which means that Maven makes them available for compilation. However,
since they are provided by JBoss EAP, the hierarchical database runtime environment does not
include them in any produced artifacts like WAR files.

Warning

Your deployable web applications and services need not contain any of the JARs from the hierarchical
database, JCR API, Infinispan, Hibernate Search, Lucene, Joda Time, Tika, or any of the other
libraries that the database uses. Doing so will result in (convoluted) deployment errors regarding class
incompatibilities or class cast exceptions. If your code directly uses these libraries, add them as a
dependency in your MANIFEST.mf file or jboss-deployment-structure.xml file.

4.2.11. Build an Application with Non-Maven Tools

If you are using a non-Maven tool to build your application, ensure that the resulting deployments such as
WAR and EAR files do not contain any of the JARs from the hierarchical database, JCR API, Infinispan,
Hibernate Search, Lucene, Joda Time, or any of the other libraries that the database uses. These are
provided by the subsystem in JBoss EAP. If your code uses any of these, add them as a dependency in your
MANIFEST.mf file or jboss-deployment-structure.xml file.

4.3. Using Repositories with REST in EAP

4.3.1. RESTful API

The RESTful API is a simple JAX-RS web application that is packaged as a WAR file, and the kit
automatically deploys this WAR file. HTTP clients use the hierarchical database's RESTful API. Hence it is
easy to write a simple client application to read and write repository content using the RESTful API. However,
since your web browser is a simple HTTP client, you can use it to directly interact with the RESTful API. The
RESTful API automatically installs when you install the hierarchical database into a JBoss EAP installation.

4.3.2. Using RESTful API to Check the Availability of the Repositories

Procedure 4.12. Task

1. To use the RESTful API to check the health and availability of the repositories, point your browser to
http://localhost:8080/modeshape-rest/. This results in a JSON response that is similar to the
following:

{
 "sample": {
 "repository": {
 "name": "sample",
 "resources": {

Development Guide Volume 2: Governance

48

 "workspaces": "/modeshape-rest/sample"
 },
 "metadata": {
 "option.retention.supported": "false",
 ...
 }
 }
 }
}

The response document lists the named repositories that are available. In this case, there is only one
"sample" repository, and its nested document provides the name, resources and metadata for the
repository. The "resources" nested document contains the usable (relative) link.

2. To use the link to get more information about the repository, issue a GET to the resource at
http://localhost:8080/modeshape-rest/sample, which you can do by pointing your browser to this
URL. When you do this, the RESTful service returns a JSON response document describing the
"sample" repository as shown below:

{
 "default": {
 "workspace": {
 "name": "default",
 "resources": {
 "query": "/modeshape-rest/sample/default/query",
 "items": "/modeshape-rest/sample/default/items"
 }
 }
 }
}

This document describes the repository and lists the named workspaces. In this case, there is a
single "default" workspace, and the following resources available for use:

http://localhost:8080/modeshape-rest/sample/default/items exposes the repository's nodes via
RESTful methods.

http://localhost:8080/modeshape-rest/sample/default/query allows RESTful clients to POST
queries and receive responses containing the results.

3. Continue to navigate the content of the "default" workspace in the "sample" repository. You can not
issue a POST with your web browser without some HTML/JavaScript content on the page. For
example, if you point your browser to http://localhost:8080/modeshape-rest/sample/default/items, you
will get a response that describes the root node of that workspace:

{
 "properties": {
 "jcr:primaryType": "mode:root",
 "jcr:uuid": "81513257505d64/"
 },
 "children": ["jcr:system"]
}

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

49

Here, the root node has two properties, jcr:primaryType and jcr:uuid (since the node is also
mix:referenceable), and one child node jcr:system.

4. You can append the child name to your URL (for example, http://localhost:8080/modeshape-
rest/sample/default/items/jcr:system) to get the information about the "/jcr:system" node:

{
 "properties": {
 "jcr:primaryType": "mode:system"
 },
 "children": ["jcr:nodeTypes", "jcr:versionStorage",
"mode:namespaces", "mode:locks"]
}

Here, the "/jcr:system" node has only one property but has four children.

5. You can look at the mode:namespaces child node by pointing your browser to
http://localhost:8080/modeshape-rest/sample/default/items/jcr:system/mode:namespaces to get its
JSON representation:

{
 "properties": {
 "jcr:primaryType": "mode:namespaces"
 },
 "children": ["jcr", "nt", "mix", "sv", "mode", "xml", "xmlns",
"xs", "xsi"]
}

Here, you can see only one property, while there are 9 children, one for each registered namespace,
where the node name is the namespace prefix.

6. You can get the JSON representation of the "jcr" namespace by pointing your browser to
http://localhost:8080/modeshape-rest/sample/default/items/jcr:system/mode:namespaces/jcr:

{
 "properties": {
 "jcr:primaryType": "mode:namespace",
 "mode:generated": "false",
 "mode:uri": "http:\/\/www.jcp.org\/jcr\/1.0"
 }
}

Here, the "/jcr:system/mode:namespaces/jcr" node has three properties and no children.

4.4. Using Repositories with WebDAV in EAP

4.4.1. WebDAV in EAP

The hierarchical database includes a WebDAV interface that clients can use to access, create, update, and
delete update nt:file and nt:folder nodes in the repositories, treating these nodes as if they are files and
folders on a network file system. Many applications and operating systems are WebDAV clients that you can

Development Guide Volume 2: Governance

50

use with the hierarchical database. For example, you can mount a repository (or parts of it) as a network
drive on most operating systems, and then upload or download files and folders using standard OS
operations and graphical tools. You can access all repositories and authenticate them using the 'connect'
role. The WebDAV service is packaged as a WAR file and is automatically deployed. You can undeploy it if it
is not needed.

4.4.2. Connecting to the Repository with WebDAV

Procedure 4.13. Task

Connect to the WebDAV service available on your EAP instance using the URL:

http://localhost:8080/modeshape-webdav/repositoryName/workspaceName/pathInWorkspace

here,

repositoryName is the name of the repository you want to connect to.

workspaceName is the name of the workspace to be accessed.

pathInWorkspace is the JCR path to the top-level nt:folder (or nt:file) node to be accessed. This is
optional.

4.4.3. WebDAV Server Configuration

The WebDAV server is deployed as a WAR and configured mostly through its web configuration files located
within the deployment at standalone/deployments/modeshape-webdav.war. The WEB-INF/web.xml
defines the following parameters:

Table 4.2. WEB-INF/web.xml Parameters

Parameter Name Description Value
org.modeshape.web.jcr.REP
OSITORY_PROVIDER

The fully-qualified name of the
class that implements the
org.modeshape.web.jcr.spi
.RepositoryProvider
interface. This remains the same,
unless you are using the WebDAV
server to connect to a different
JCR implementation.

org.modeshape.web.jcr.spi
.FactoryRepositoryProvide
r

org.modeshape.jcr.URL This parameter is specific to the
FactoryRepositoryProvider
implementation and specifies the
JNDI URL of the Repositories
implementation.

jndi:jcr

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

51

org.modeshape.web.jcr.web
dav.CONTENT_MAPPER_CLASS_
NAME

The fully-qualified name of the
class that implements the
org.modeshape.web.jcr.web
dav.ContentMapper interface
that is responsible for mapping
content nodes to WebDAV
responses. The
DefaultContentMapper
implementation maps nodes with
type nt:folder and nt:file to
WebDAV folders and files,
respectively. You can provide
your own implementation to map
WebDAV content to other node
content or structures.

org.modeshape.web.jcr.web
dav.DefaultContentMapper

org.modeshape.web.jcr.web
dav.NEW_FOLDER_PRIMARY_TY
PE_NAME

Each folder created through the
WebDAV servlet is created as a
node with this primary node type.

nt:folder

org.modeshape.web.jcr.web
dav.NEW_RESOURCE_PRIMARY_
TYPE_NAME

This primary node type creates
each resource (such as a file)
through the WebDAV servlet.

nt:file

org.modeshape.web.jcr.web
dav.NEW_CONTENT_PRIMARY_T
YPE_NAME

This primary node type creates
content through the WebDAV
servlet.

nt:resource

org.modeshape.web.jcr.web
dav.RESOURCE_PRIMARY_TYPE
_NAMES

Nodes with any of the primary
node types in this comma-
delimited list is exposed to
WebDAV clients as file nodes.

nt:file

org.modeshape.web.jcr.web
dav.CONTENT_PRIMARY_TYPE_
NAMES

Nodes with any of the primary
node types in this comma-
delimited list is exposed to
WebDAV clients as content nodes
(that is, nodes that have the
content of the files).

nt:resource,
mode:resource

Parameter Name Description Value

4.4.4. Authentication and Authorization in the JCR Repository

Here is how you can perform authentication in the JCR Repository:

<!--
 The ModeShape WebDAV implementation leverages the HTTP credentials to for
authentication
 and authorization within the JCR repository. Unless the repository provides
for anonymous
 access, it makes no sense to try to log into the JCR repository without
credentials, so
 this constraint helps lock down the repository.

 This should generally not be modified.
-->
<security-constraint>

Development Guide Volume 2: Governance

52

 <display-name>ModeShape WebDAV</display-name>
 <web-resource-collection>
 <web-resource-name>WebDAV</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <!--
 A user must be assigned this role to connect to any JCR repository, in
addition to
 needing the READONLY or READWRITE roles to actually read or modify the
data.
 -->
 <role-name>connect</role-name>
 </auth-constraint>
</security-constraint>

<!--
 Any auth-method will work for ModeShape. BASIC is used this example for
simplicity.
-->
<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<!--
 This must match the role-name in the auth-constraint above.
-->
<security-role>
 <role-name>connect</role-name>
</security-role>

4.5. Using Repositories with JDBC in EAP

4.5.1. JDBC in EAP

The hierarchical database provides a JDBC-compliant API that allows clients to connect and query a
repository via JDBC. The hierarchical database comes pre-packaged with a org.modeshape.jdbc module.
This module contains a java.sql.Driver implementation that allows JDBC clients to connect to existing
repositories.

4.5.2. Configure a Datasource and Driver

You can access a hierarchical database repository via JDBC to configure a datasource and a driver inside of
JBoss EAP. The following example shows a configuration snippet from a JBoss EAP standalone.xml file,
which exposes via JDBC, the workspace "extra" from a repository named "artifacts":

<datasource jndi-name="java:/datasources/ModeShapeDS" enabled="true" use-
java-context="true" pool-name="ModeShapeDS">
 <connection-url>jdbc:jcr:jndi:jcr?repositoryName=artifacts</connection-
url>
 <driver>modeshape</driver>
 <connection-property name="workspace">extra</connection-property>

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

53

 <security>
 <user-name>admin</user-name>
 <password>admin</password>
 </security>
</datasource>

<drivers>
 <driver name="modeshape" module="org.modeshape.jdbc">
 <driver-class>org.modeshape.jdbc.LocalJcrDriver</driver-class>
 </driver>
</drivers>

Configuring the hierarchical database JDBC driver requires the following attributes:

Table 4.3. JDBC driver attributes

name A symbolic name for the JDBC driver for the
datasource.

module The JBoss EAP module name containing the JDBC
driver implementation.

driver-class The fully qualified class name of the
java.sql.Driver implementation.

For each repository you want to access, you need to configure a DataSource in the JBoss EAP configuration
file. In the example above, the following attributes are defined:

Table 4.4. JDBC driver attributes

jndi-name The name under which the datasource should be
registered in JNDI by JBoss EAP. Currently, JBoss
EAP only allows datasources to be registered under
a name beginning either with java:/ or java:jboss/.

connection-url A JNDI URL that points the hierarchical database to
an existing repository. The format of this URL is:
jdbc:jcr:jndi:jcr:?repositoryName=

driver The name of the JDBC driver.

security The username and password that is passed to the
connection, when attempting to access a repository.
Inside JBoss EAP, these are taken from the
modeshape-security domain.

connection-property Any additional properties which can be passed to
the connection. For example, to access a specific
workspace of a repository, the workspace property
can be defined.

4.5.3. Access Datasource from JNDI and Execute Queries

Once you configure a datasource and start the application server, you can access the datasource from JNDI
and execute queries against the configured repository. Here is an example:

@Resource(mappedName = "datasources/ModeShapeDS")
private DataSource modeshapeDS;

Development Guide Volume 2: Governance

54

....

Connection connection = modeshapeDS.getConnection();
Statement statement = connection.createStatement();
ResultSet resultSet = statement.executeQuery("SELECT [jcr:primaryType],
[jcr:mixinTypes], [jcr:path], [jcr:name] FROM [nt:unstructured] ORDER BY
[jcr:path]");

For executing queries, use JCR-SQL2 query language. However, as you can not expose JCR Nodes directly
via JDBC, the only way to return the path and score information is through additional columns in the result.
But doing so is not compatible with JDBC applications that dynamically build queries based upon database
metadata. Such applications require the columns to be properly described in database metadata, and the
columns need to be used within queries. The hierarchical database attempts to solve these issues by directly
supporting a number of "pseudo-columns" within JCR-SQL2 queries, wherever columns can be used. These
"pseudo-columns" include:

jcr:score: This is a column of type DOUBLE that represents the full-text search score of the node,
which is a measure of the node's relevance to the full-text search expression. The hierarchical database
computes the scores for all queries, though the score for rows in queries that do not include a full-text
search criteria may not be reliable.

jcr:path: This is a column of type PATH that represents the normalized path of a node, including same-
name siblings. This is the same as what would be returned by the getPath() method of
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.htmlNode. Examples of paths include
"/jcr:system" and "/foo/bar[3]".

jcr:name: This is a column of type NAME that represents the node name in its namespace-qualified
form using namespace prefixes and excluding same-name-sibling indexes. Examples of node names
include "jcr:system", "jcr:content", "ex:UserData", and "bar".

mode:localName: This is a column of type STRING that represents the local name of the node, which
excludes the namespace prefix and same-name-sibling index. As an example, the local name of the
"jcr:system" node is "system", while the local name of the "ex:UserData[3]" node is "UserData".

mode:depth: This is a column of type LONG that represents the depth of a node, which corresponds
exactly to the number of path segments within the path. For example, the depth of the root node is 0,
whereas the depth of the "/jcr:system/jcr:nodeTypes" node is 2.

These columns are exposed in the database metadata allowing potential clients to detect and use them.

4.6. Administering Repositories in JBoss EAP

4.6.1. Navigation with Management CLI

The CLI allows you to navigate the management model as if you are navigating a file system. Here are some
helpful commands that can be run at the root of the management system. But each of these commands can
be modified to run using relative paths also.

To navigate to the hierarchical database subsystem:

cd /subsystem=modeshape

To navigate to the hierarchical database repositories:

cd /subsystem=modeshape/repository

Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP

55

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/Node.htmlNode

To navigate to a specific repository:

cd /subsystem=modeshape/repository=<repository-name>

To navigate to the hierarchical database web applications:

cd /subsystem=modeshape/webapp

To navigate to a specific web application:

cd /subsystem=modeshape/webapp=<web-app-war>

To navigate to a specific repository's CND sequencer:

cd /subsystem=modeshape/repository=<repository-name>/sequencer=cnd-sequencer

4.6.2. Managed Resource Commands

To view attribute values, metric values, and child managed nodes of a resource, like a repository, enter "ls"
for a listing. A nicer way to see the same information in a much more readable form is to enter the following:

:read-resource

To obtain descriptions, possible attribute types, and possible child types:

:read-resource-description

To obtain current metric values:

:read-resource(include-runtime=true)

To obtain current attribute values recursively for child nodes so that you do not have to navigate to each child
node:

:read-resource(recursive-depth=10)

4.6.3. Administering Repositories with JBoss Operations Network

You can administer hierarchical database repositories using JBoss Operations Network. For more
information, see the JBoss Operations Network documentation.

Note

You can use JBoss Operations Network to deploy VDBs that are present in the hierarchical database
repository.

Development Guide Volume 2: Governance

56

Chapter 5. The REST Service

The hierarchical database's RESTful API was intended to be used by HTTP clients, so it is convenient to
write a simple client application to read and write repository content using the RESTful API. However, since
our trusty web browser is indeed a simple HTTP client, we can use it to directly interact with the RESTful
API. It might not be pretty, but it works beautifully.

The RESTful API is nothing more than a simple JAX-RS web application that is packaged as a WAR file and
that comes in 2 flavors:

modeshape-web-jcr-rest-war - is a war file artifact available via Maven that can be deployed into any
servlet container. To access it, include the following dependency in your project's POM:

<dependency>
 <groupId>org.modeshape</groupId>
 <artifactId>modeshape-web-jcr-rest-war</artifactId>
 <version>${modeshape.version}</version>
 <type>war</type>
</dependency>

The JBoss EAP kit - once installed into JBoss EAP, it provides the RESTful API out-of-the-box, via a web
application.

Both web applications use Basic HTTP Authentication and require a role named connect to be present in the
authenticated user's set of roles.

The hierarchical database provides two different versions of the RESTful API:

1. REST Service 2.x - the version which was included in previous versions and which has been
deprecated. However, for backwards compatibility it is still accessible using the v1 URL prefix:
http://<host>:<port>/<context>/v1/

2. REST Service 3.x - a newer version which is an extension of the old one, plus a number of additional
improvements.

5.1. REST Service 2.x

Represents the version of the RESTful API distributed with previous versions. It has been deprecated in this
release, but is still available using the v1 URL prefix. It provides the following methods:

Retrieve a list of available repositories

URL : http://<host>:<port>/<context>/v1/

HTTP Method : GET

Produces : application/json; text/html; text/plain;

Default Output : text/plain

Response Code (if successful): OK

Response Format :

{
 "repo":
 {

Chapter 5. The REST Service

57

 "repository":
 {
 "name": "repo",
 "resources":
 {
 "workspaces": "/resources/v1/repo"
 },
 "metadata":
 {
 "option.retention.supported": "false",
 "query.xpath.doc.order": "false",
 ...
 }
 }
 }
}

Retrieve a list of workspaces for a repository

URL : http://<host>:<port>/<context>/v1/<repository_name>

HTTP Method : GET

Produces : application/json; text/html; text/plain;

Default Output : text/plain

Response Code (if successful): OK

Response Format :

{
 "default":
 {
 "workspace":
 {
 "name": "default",
 "resources":
 {
 "query": "/resources/v1/repo/default/query",
 "items": "/resources/v1/repo/default/items"
 }
 }
 }
 }

Retrieve a node or a property

Retrieves an item at a given path.

URL : http://<host>:
<port>/<context>/v1/<repository_name>/<workspace_name>/items/<item_path>

HTTP Method : GET

Produces : application/json; text/html; text/plain;

Default Output : text/plain

Development Guide Volume 2: Governance

58

Response Code (if successful): OK

Optional Query Parameters :

depth - a numeric value indicating how many level of children should be retrieved under the
node located at path. A negative value indicates all children

mode:depth - same as the above

Response Format :

{
 "properties":
 {
 "jcr:primaryType": "mode:system"
 },
 "children":
 [
 "jcr:nodeTypes",
 "jcr:versionStorage",
 "mode:namespaces",
 "mode:locks"
]
 }

Create a node

Creates a node at the given path, using the body of request as JSON content

URL : http://<host>:
<port>/<context>/v1/<repository_name>/<workspace_name>/items/<node_path>

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Default Output : text/plain

Request Content-Type : accepts any, but for this to work it has to be a valid JSON object

Response Code (if successful): CREATED

Optional Query Parameters :

mode:includeNode - indicates if the entire node should be returned in the response or only the
path to the new node.

Request Format :

{ "properties":{
 "jcr:primaryType":"nt:unstructured",
 "testProperty":"testValue",
 "multiValuedProperty":["value1", "value2"]
 },
 "children":{
 "childNode":{
 "properties":{
 "nestedProperty":"nestedValue"

Chapter 5. The REST Service

59

 }
 }
 }
}

Response Format :

{"properties":{
 "jcr:primaryType":"nt:unstructured",
 "multiValuedProperty":["value1", "value2"],
 "testProperty":"testValue"
}, "children":{
 "childNode":{
 "properties":{
 "jcr:primaryType":"nt:unstructured",
 "nestedProperty":"nestedValue"
 }
 }
}}

Update a node or a property

Updates a node or a property at the given path, using the body of request as JSON content

URL : http://<host>:
<port>/<context>/v1/<repository_name>/<workspace_name>/items/<item_path>

HTTP Method : PUT

Produces : application/json; text/html; text/plain;

Default Output : text/plain

Request Content-Type : accepts any, but for this to work it has to be a valid JSON object

Response Code (if successful): OK

Request Format :

Node: same as the one used when creating

Property:

{"testProperty":"some_new_value"}

Response Format :

Node: same as one used when creating

Property:

{"testProperty":"some_new_value"}

Delete a node or a property

Deletes the node or the property at the given path.

Development Guide Volume 2: Governance

60

URL : http://<host>:
<port>/<context>/v1/<repository_name>/<workspace_name>/items/<item_path>

HTTP Method : DELETE

Produces : none

Response Code (if successful): OK

Execute a JCR query

Executes a JCR query in either: XPath, SQL or SQL2 format, returning a JSON object in response.

URL : http://<host>:<port>/<context>/v1/<repository_name>/<workspace_name>/query

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Request Content-Type : application/jcr+sql; application/jcr+xpath; application/jcr+sql2;
application/jcr+search

Default Output : text/plain

Response Code (if successful): OK

Optional Query Parameters :

offset - the index in the result set where to start the retrieval of data

limit - the maximum number of rows to return

Response Format :

{
 "types":
 {
 "nt:base.jcr:primaryType": "STRING",
 "nt:base.jcr:mixinTypes": "STRING",
 "nt:base.jcr:path": "STRING",
 "nt:base.jcr:name": "STRING",
 "nt:base.jcr:score": "DOUBLE",
 "nt:base.mode:localName": "STRING",
 "nt:base.mode:depth": "LONG"
 },
 "rows":
 [
 {
 "nt:base.jcr:primaryType": "mode:root",
 "nt:base.jcr:path": "/",
 "nt:base.jcr:name": "",
 "nt:base.jcr:score": "0.3535533845424652",
 "nt:base.mode:localName": "",
 "nt:base.mode:depth": "0"
 },
 {
 "nt:base.jcr:primaryType": "mode:locks",
 "nt:base.jcr:path": "/jcr:system/mode:locks",
 "nt:base.jcr:name": "mode:locks",

Chapter 5. The REST Service

61

 "nt:base.jcr:score": "0.3535533845424652",
 "nt:base.mode:localName": "locks",
 "nt:base.mode:depth": "2"
 }
]
 }

5.2. REST Service 3.x

Represents the default version of the RESTful API distributed with the hierarchical database. It provides the
following methods:

Retrieve a list of available repositories

URL : http://<host>:<port>/<context>

HTTP Method : GET

Produces : application/json; text/html; text/plain;

Default Output : text/html

Response Code (if successful): OK

Response Format :

{
 "repositories":[
 {
 "name":"repo",
 "workspaces":"http://localhost:8080/modeshape-rest",
 "metadata":{
 "custom.rep.name":"repo",
 "custom.rep.workspace.names":"default",}

 }
 }
]
}

Retrieve a list of workspaces for a repository

URL : http://<host>:<port>/<context>/<repository_name>

HTTP Method : GET

Produces : application/json; text/html; text/plain;

Default Output : text/html

Response Code (if successful): OK

Response Format :

{
 "workspaces":[
 {

Development Guide Volume 2: Governance

62

 "name":"default",
 "repository":"http://localhost:8080/modeshape-rest",
 "items":"http://localhost:8080/modeshape-
rest/default/items",
 "query":"http://localhost:8080/modeshape-
rest/default/query",
 "binary":"http://localhost:8080/modeshape-
rest/default/binary",
 "nodeTypes":"http://localhost:8080/modeshape-
rest/default/nodetypes"
 }
]
}

Retrieve a node or a property

Retrieves an item at a given path.

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/items/<item_path>

HTTP Method : GET

Produces : application/json; text/html; text/plain;

Default Output : text/html

Response Code (if successful): OK

Optional Query Parameters :

depth - a numeric value indicating how many level of children should be retrieved under the
node located at path. A negative value indicates all children

Response Format :

{
 "self":"http://localhost:8080/modeshape-
rest/default/items/someNode",
 "up":"http://localhost:8080/modeshape-rest/default/items/",
 "id":"319a0554-3504-4984-b54b-3a9367caac92",
 "jcr:primaryType":"{http://www.modeshape.org/1.0}root",
 "jcr:uuid":"319a0554-3504-4984-b54b-3a9367caac92",
 "children":{
 "jcr:system":{
 "self":"http://localhost:8080/modeshape-
rest/default/items/jcr:system",
 "up":"http://localhost:8080/modeshape-
rest/default/items/",
 "id": "0a851519-e87d-4e02-b399-0503aa70ab3f"
 }
 }
}

Create a node

Creates a node at the given path, using the body of request as JSON content

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/items/<node_path>

Chapter 5. The REST Service

63

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Default Output : application/json

Request Content-Type : application/json

Response Code (if successful): CREATED

Request Format :

{
 "jcr:primaryType":"nt:unstructured",
 "testProperty":"testValue",
 "multiValuedProperty":["value1", "value2"],
 "children":{
 "childNode":{
 "nestedProperty":"nestedValue"
 }
 }
}

Response Format :

{
 "self":"http://localhost:8080/modeshape-
rest/default/items/testNode",
 "up":"http://localhost:8080/modeshape-rest/default/items/",
 "id":"bf171df0-daa2-481d-a48a-b3965cd69d9c",
 "jcr:primaryType":"{http://www.jcp.org/jcr/nt/1.0}unstructured",
 "multiValuedProperty":[
 "value1",
 "value2"
],
 "testProperty":"testValue",
 "children":{
 "childNode":{
 "self":"http://localhost:8080/modeshape-
rest/default/items/testNode/childNode",
 "up":"http://localhost:8080/modeshape-
rest/default/items/testNode",
 "id":"113e6eea-cbd2-4837-8344-5b28bbfd695c",
 }
 }
}

Update a node or a property

Updates a node or a property at the given path, using the body of request as JSON content

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/items/<item_path>

HTTP Method : PUT

Produces : application/json; text/html; text/plain;

Default Output : application/json

Development Guide Volume 2: Governance

64

Request Content-Type : application/json

Response Code (if successful): OK

Request Format :

Node: same as the one used when creating

Property:

{"testProperty":"some_new_value"}

Response Format :

Node: same as one used when creating

Property:

{"testProperty":"some_new_value"}

Delete a node or a property

Deletes the node or the property at the given path. If a node is being deleted, this will also delete all
of its descendants.

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/items/<item_path>

HTTP Method : DELETE

Produces : none

Response Code (if successful): NO_CONTENT

Retrieve a node by its identifier

Retrieves a node with a specified identifier. This is equivalent to the
Session.getNodeByIdentifier(String) method, where the identifier is obtained from the
id field (or the jcr:uuid field if the node is mix:referenceable) in a previous response.
Remember that node identifiers are generated by the repository, are opaque (and are not always
UUIDs), and always remains the same for a given node (even when moved or renamed) until the
node is destroyed.

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/nodes/<node_id>

HTTP Method : GET

Produces : application/json; text/html; text/plain;

Default Output : text/html

Response Code (if successful): OK

Optional Query Parameters :

depth - a numeric value indicating how many level of children should be retrieved under the
node located at path. A negative value indicates all children

Response Format :

{

Chapter 5. The REST Service

65

 "self":"http://localhost:8080/modeshape-
rest/default/items/someNode",
 "up":"http://localhost:8080/modeshape-rest/default/items/",
 "id":"319a0554-3504-4984-b54b-3a9367caac92",
 "jcr:primaryType":"{http://www.modeshape.org/1.0}root",
 "jcr:uuid":"319a0554-3504-4984-b54b-3a9367caac92",
 "children":{
 "jcr:system":{
 "self":"http://localhost:8080/modeshape-
rest/default/items/jcr:system",
 "up":"http://localhost:8080/modeshape-
rest/default/items/",
 "id": "0a851519-e87d-4e02-b399-0503aa70ab3f"
 }
 }
}

Update a node by its identifier

Updates a node with the given identifier, using the body of request as JSON content. The identifier
must be obtained from the id field in a previous response.

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/nodes/<node_id>

HTTP Method : PUT

Produces : application/json; text/html; text/plain;

Default Output : application/json

Request Content-Type : application/json

Response Code (if successful): OK

Request Format :

Node: same as the one used when creating a node

Property:

{"testProperty":"some_new_value"}

Response Format :

Node: same as one used when creating a node

Property:

{"testProperty":"some_new_value"}

Delete a node by its identifier

Deletes the node with the given identifier, and all of its descendants. The identifier must be
obtained from the id field in a previous response.

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/nodes/<node_id>

HTTP Method : DELETE

Development Guide Volume 2: Governance

66

Produces : none

Response Code (if successful): NO_CONTENT

Execute a JCR query

Executes a JCR query in either: XPath, SQL or SQL2 format, returning a JSON object in response.

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/query

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Request Content-Type : application/jcr+sql; application/jcr+xpath; application/jcr+sql2;
application/jcr+search

Default Output : application/json

Response Code (if successful): OK

Optional Query Parameters :

offset - the index in the result set where to start the retrieval of data

limit - the maximum number of rows to return

Response Format :

{
 "columns":{
 "jcr:path":"STRING",
 "jcr:score":"DOUBLE",
 "foo":"STRING"
 },
 "rows":[
 {
 "jcr:path":"/{}testNode/{}child[2]",
 "jcr:score":"0.8575897812843323",
 "foo":"value",
 "mode:uri":"http://localhost:8080/modeshape-
rest/default/items/testNode/child[2]"
 },
 {
 "jcr:path":"/{}testNode/{}child[3]",
 "jcr:score":"0.8575897812843323",
 "foo":"value",
 "mode:uri":"http://localhost:8080/modeshape-
rest/default/items/testNode/child[3]"
 }
]
}

Create multiple nodes

Creates multiple nodes (bulk operation) in the repository, using a single session. If any of the
nodes cannot be created, the entire operation fails.

URL : _http://<host>:<port>/<context>/<repository_name>/<workspace_name>/items

Chapter 5. The REST Service

67

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Default Output : application/json

Request Content-Type : application/json

Response Code (if successful): OK

Request Format :

{
 "testNode/child/subChild" : {
 "jcr:primaryType":"nt:unstructured",
 "testProperty":"testValue",
 "multiValuedProperty":["value1", "value2"]
 },
 "testNode/child" : {
 "jcr:primaryType":"nt:unstructured",
 "testProperty":"testValue",
 "multiValuedProperty":["value1", "value2"]
 },
 "testNode/otherChild" : {
 "jcr:primaryType":"nt:unstructured",
 "testProperty":"testValue",
 "multiValuedProperty":["value1", "value2"],
 "children":{
 "otherSubChild":{
 "nestedProperty":"nestedValue"
 }
 }
 }
}

Response Format :

[
 {
 "self":"http://localhost:8080/modeshape-
rest/default/items/testNode/child",
 "up":"http://localhost:8080/modeshape-
rest/default/items/testNode",
 "id":"0ef2edc9-c873-4a2f-805e-2950b98225c6",
 "jcr:primaryType":"
{http://www.jcp.org/jcr/nt/1.0}unstructured",
 "multiValuedProperty":[
 "value1",
 "value2"
],
 "testProperty":"testValue"
 },
 {
 "self":"http://localhost:8080/modeshape-
rest/default/items/testNode/child/subChild",
 "up":"http://localhost:8080/modeshape-
rest/default/items/testNode/child",

Development Guide Volume 2: Governance

68

 "id":"fb6f4d82-33e1-4bc1-8048-d1f9a685779b",
 "jcr:primaryType":"
{http://www.jcp.org/jcr/nt/1.0}unstructured",
 "multiValuedProperty":[
 "value1",
 "value2"
],
 "testProperty":"testValue"
 },
 {
 "self":"http://localhost:8080/modeshape-
rest/default/items/testNode/otherChild",
 "up":"http://localhost:8080/modeshape-
rest/default/items/testNode",
 "id":"da12f5f9-4ab9-48d7-a159-07144e378d54",
 "jcr:primaryType":"
{http://www.jcp.org/jcr/nt/1.0}unstructured",
 "multiValuedProperty":[
 "value1",
 "value2"
],
 "testProperty":"testValue",
 "children":{
 "otherSubChild":{
 "self":"http://localhost:8080/modeshape-
rest/default/items/testNode/otherChild/otherSubChild",
 "up":"http://localhost:8080/modeshape-
rest/default/items/testNode/otherChild"
 "id":"21ea01f5-e41c-4aea-9087-e241e02a4b2d",
 }
 }
 }
]

Update multiple items

Updates multiple nodes and/or properties (bulk operation) in the repository, using a single session.
If any of the items cannot be updated, the entire operation fails.

URL : _http://<host>:<port>/<context>/<repository_name>/<workspace_name>/items

HTTP Method : PUT

Produces : application/json; text/html; text/plain;

Default Output : application/json

Request Content-Type : application/json

Response Code (if successful): OK

Request Format : same as the one used when creating multiple nodes.

Response Format : same as the one used when creating multiple nodes.

Delete multiple items

Deletes multiple items (bulk operation) in the repository, using a single session. If any of the items
cannot be removed, the entire operation fails.

Chapter 5. The REST Service

69

URL : _http://<host>:<port>/<context>/<repository_name>/<workspace_name>/items

HTTP Method : DELETE

Produces : none;

Request Content-Type : application/json

Response Code (if successful): OK

Request Format :

["testNode/otherChild", "testNode/child", "testNode/child/subChild"]

Retrieve a node type

Retrieves the information about a registered node type in the repository.

URL : http://<host>:
<port>/<context>/<repository_name>/<workspace_name>/nodetypes/node_type_name

HTTP Method : GET

Produces : application/json; text/html; text/plain;

Default Output : text/html

Response Code (if successful): OK

Response Format :

{
 "nt:base":{
 "mixin":false,
 "abstract":true,
 "queryable":true,
 "hasOrderableChildNodes":false,
 "propertyDefinitions":[
 {
 "jcr:primaryType":{
 "requiredType":"Name",
 "declaringNodeTypeName":"nt:base",
 "mandatory":true,
 "multiple":false,
 "autocreated":true,
 "protected":true,
 "fullTextSearchable":true,
 "onParentVersion":"COMPUTE"
 }
 },
 {
 "jcr:mixinTypes":{
 "requiredType":"Name",
 "declaringNodeTypeName":"nt:base",
 "mandatory":false,
 "multiple":true,
 "autocreated":false,

Development Guide Volume 2: Governance

70

 "protected":true,
 "fullTextSearchable":true,
 "onParentVersion":"COMPUTE"
 }
 }
],
 "subTypes":[
 "http://localhost:8080/modeshape-
rest/default/nodetypes/mode:lock",
 "http://localhost:8080/modeshape-
rest/default/nodetypes/mode:locks",

]
 }
}

Import a CND file (via request content)

Imports a CND file into the Repository, using the entire request body stream as the content of the
CND. If you were using curl , this would be the equivalent of curl -d

URL : _http://<host>:<port>/<context>/<repository_name>/<workspace_name>/nodetypes

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Default Output : application/json

Response Code (if successful): OK

Response Format :

[
 {
 "nt:base":{
 "mixin":false,
 "abstract":true,
 "queryable":true,
 "hasOrderableChildNodes":false,
 "propertyDefinitions":[
 {
 "jcr:primaryType":{
 "requiredType":"Name",
 "declaringNodeTypeName":"nt:base",
 "mandatory":true,
 "multiple":false,
 "autocreated":true,
 "protected":true,
 "fullTextSearchable":true,
 "onParentVersion":"COMPUTE"
 }
 },
 {
 "jcr:mixinTypes":{
 "requiredType":"Name",
 "declaringNodeTypeName":"nt:base",

Chapter 5. The REST Service

71

 "mandatory":false,
 "multiple":true,
 "autocreated":false,
 "protected":true,
 "fullTextSearchable":true,
 "onParentVersion":"COMPUTE"
 }
 }
],
 "subTypes":[
 "http://localhost:8080/modeshape-
rest/default/nodetypes/mode:lock",
 ...
]
 }
 },
 {
 "nt:unstructured":{
 "mixin":false,
 "abstract":false,
 "queryable":true,
 "hasOrderableChildNodes":true,
 "propertyDefinitions":[
 {
 "*":{
 "requiredType":"undefined",
 "declaringNodeTypeName":"nt:unstructured",
 "mandatory":false,
 "multiple":true,
 "autocreated":false,
 "protected":false,
 "fullTextSearchable":true,
 "onParentVersion":"COPY"
 }
 },
 {
 "*":{
 "requiredType":"undefined",
 "declaringNodeTypeName":"nt:unstructured",
 "mandatory":false,
 "multiple":false,
 "autocreated":false,
 "protected":false,
 "fullTextSearchable":true,
 "onParentVersion":"COPY"
 }
 }
],
 "superTypes":[
 "http://localhost:8080/modeshape-
rest/default/nodetypes/nt:base"
]
 }
 },
 {
 "mix:created":{

Development Guide Volume 2: Governance

72

 "mixin":true,
 "abstract":false,
 "queryable":true,
 "hasOrderableChildNodes":false,
 "propertyDefinitions":[
 {
 "jcr:created":{
 "requiredType":"Date",
 "declaringNodeTypeName":"mix:created",
 "mandatory":false,
 "multiple":false,
 "autocreated":false,
 "protected":true,
 "fullTextSearchable":true,
 "onParentVersion":"COPY"
 }
 },
 {
 "jcr:createdBy":{
 "requiredType":"String",
 "declaringNodeTypeName":"mix:created",
 "mandatory":false,
 "multiple":false,
 "autocreated":false,
 "protected":true,
 "fullTextSearchable":true,
 "onParentVersion":"COPY"
 }
 }
],
 "subTypes":[
 "http://localhost:8080/modeshape-
rest/default/nodetypes/nt:hierarchyNode"
]
 }
 }
]

Import a CND file (via "multipart/form-data")

Imports a CND file into the Repository when the CND file came from a form submission, where the
name of the HTML element is file . If you were using curl , this would be the equivalent of curl -F

URL : _http://<host>:<port>/<context>/<repository_name>/<workspace_name>/nodetypes

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Request Content-Type : multipart/form-data

Default Output : application/json

Response Code (if successful): OK

Response Format : the same as when importing a CND via the request body.

Retrieve a binary property

Chapter 5. The REST Service

73

Retrieves the content of a binary property from the repository, at a given path, by streaming it to the
response.

URL : http://<host>:
<port>/<context>/<repository_name>/<workspace_name>/binary/binary_property_path

HTTP Method : GET

Produces : the mime-type of the binary, or a default mime-type

Response Code (if successful): OK

Optional Query Parameters :

mimeType - a string which can be provided by the client, in case it already knows the expected
mimetype of the binary stream. Otherwise, the hierarchical database will try to detect the
mimetype using its own detectors mechanism

contentDisposition - a string which will be returned as the Content-Disposition response header.
If none provide, the default is: attachment;filename=property_parent_name

Create a binary property (via request content)

Creates a new binary property in the repository, at the given path, using the entire request body
stream as the content of the binary. If you were using curl , this would be the equivalent of curl -d

URL : http://<host>:
<port>/<context>/<repository_name>/<workspace_name>/binary/binary_property_path

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Default Output : application/json

Response Code (if successful): OK

Response Format :

{
 "testProperty":"http://localhost:8080/modeshape-
rest/default/binary/testNode/testProperty",
 "self":"http://localhost:8080/modeshape-
rest/default/items/testNode/testProperty",
 "up":"http://localhost:8080/modeshape-
rest/default/items/testNode"
}

Update a binary property (via request content)

Updates the content of a binary property in the repository, at the given path, using the entire
request body stream as the content of the binary. If you were using curl , this would be the
equivalent of curl -d

URL : http://<host>:
<port>/<context>/<repository_name>/<workspace_name>/binary/binary_property_path

HTTP Method : POST, PUT

Produces : application/json; text/html; text/plain;

Development Guide Volume 2: Governance

74

Default Output : application/json

Response Code (if successful): OK

Response Format : the same as in the case when creating a new binary property

Create/Update a binary property (via "multipart/form-data")

Creates or updates the content of a binary property in the repository, at the given path, when the
content came from a form submission, where the name of the HTML element is file . If you were
using curl , this would be the equivalent of curl -F

URL : http://<host>:
<port>/<context>/<repository_name>/<workspace_name>/binary/binary_property_path

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Default Output : application/json

Request Content-Type : multipart/form-data

Response Code (if successful): OK

Response Format : the same as in the case when creating a new binary property

Obtain a query plan for a JCR query

Obtain the query plan for an XPath, SQL or SQL2 query, returning the string representation of the
query plan.

URL : http://<host>:<port>/<context>/<repository_name>/<workspace_name>/queryPlan

HTTP Method : POST

Produces : application/json; text/html; text/plain;

Default Output : text/plain

Request Content-Type : application/jcr+sql; application/jcr+xpath; application/jcr+sql2;
application/jcr+search

Response Code (if successful): OK

Optional Query Parameters :

offset - the index in the result set where to start the retrieval of data

limit - the maximum number of rows to return

Response Format (as "application/json"):

{
 "statement":"SELECT * FROM [nt:unstructured] WHERE
ISCHILDNODE('\/testNode')",
 "language":"JCR-SQL2",
 "abstractQueryModel":"SELECT * FROM [nt:unstructured] WHERE
ISCHILDNODE([nt:unstructured],'\/testNode')",
 "queryPlan": [
 "Access [nt:unstructured]",

Chapter 5. The REST Service

75

 " Project [nt:unstructured] <PROJECT_COLUMNS=
[[nt:unstructured].[jcr:primaryType] AS
[nt:unstructured.jcr:primaryType], [nt:unstructured].[jcr:mixinTypes]
AS [nt:unstructured.jcr:mixinTypes], [nt:unstructured].[jcr:path] AS
[nt:unstructured.jcr:path], [nt:unstructured].[jcr:name] AS
[nt:unstructured.jcr:name], [nt:unstructured].[jcr:score] AS
[nt:unstructured.jcr:score], [nt:unstructured].[mode:localName] AS
[nt:unstructured.mode:localName], [nt:unstructured].[mode:depth] AS
[nt:unstructured.mode:depth]], PROJECT_COLUMN_TYPES=[STRING, STRING,
STRING, STRING, DOUBLE, STRING, LONG]>",
 " Select [nt:unstructured]
<SELECT_CRITERIA=ISCHILDNODE([nt:unstructured],'\/testNode')>",
 " Select [nt:unstructured] <SELECT_CRITERIA=
[nt:unstructured].[jcr:primaryType] = 'nt:unstructured'>",
 " Source [nt:unstructured]
<SOURCE_NAME=__ALLNODES__, SOURCE_COLUMNS=[jcr:frozenUuid(STRING),
mode:sharedUuid(REFERENCE), mode:sessionScope(BOOLEAN),
jcr:defaultValues(STRING), mode:projectedNodeKey(STRING),
jcr:mixinTypes(STRING), jcr:frozenPrimaryType(STRING),
jcr:defaultPrimaryType(STRING), jcr:statement(STRING),
jcr:lastModifiedBy(STRING), jcr:mimeType(STRING),
jcr:hasOrderableChildNodes(BOOLEAN), jcr:etag(STRING),
jcr:encoding(STRING), jcr:root(REFERENCE), jcr:supertypes(STRING),
jcr:successors(REFERENCE), jcr:primaryItemName(STRING),
jcr:hold(STRING), jcr:workspace(STRING), jcr:description(STRING),
jcr:primaryType(STRING), mode:externalNodeKey(STRING),
mode:derivedFrom(STRING), mode:isHeldBySession(BOOLEAN),
jcr:baseVersion(REFERENCE), jcr:lastModified(DATE),
jcr:mergeFailed(REFERENCE), mode:derivedAt(DATE),
jcr:requiredPrimaryTypes(STRING), jcr:multiple(BOOLEAN),
mode:generated(BOOLEAN), jcr:activityTitle(STRING),
jcr:lifecyclePolicy(REFERENCE), jcr:isMixin(BOOLEAN),
jcr:availableQueryOperators(STRING),
jcr:childVersionHistory(REFERENCE), jcr:content(REFERENCE),
jcr:autoCreated(BOOLEAN), mode:alias(STRING), jcr:createdBy(STRING),
jcr:isFullTextSearchable(BOOLEAN), jcr:uuid(STRING),
jcr:onParentVersion(STRING), mode:expirationDate(DATE),
jcr:lockIsDeep(BOOLEAN), jcr:copiedFrom(REFERENCE),
jcr:isDeep(BOOLEAN), jcr:title(STRING), jcr:versionableUuid(STRING),
jcr:versionHistory(REFERENCE), jcr:isAbstract(BOOLEAN),
jcr:predecessors(REFERENCE), jcr:lockOwner(STRING),
mode:sha1(STRING), jcr:repository(STRING), jcr:created(DATE),
jcr:frozenMixinTypes(STRING), mode:lockedKey(STRING),
jcr:text(STRING), jcr:host(STRING), jcr:configuration(REFERENCE),
jcr:port(STRING), mode:workspace(STRING), jcr:nodeTypeName(STRING),
jcr:data(BINARY), jcr:isQueryable(BOOLEAN), jcr:language(STRING),
jcr:isQueryOrderable(BOOLEAN), jcr:mandatory(BOOLEAN),
jcr:isCheckedOut(BOOLEAN), jcr:protected(BOOLEAN),
jcr:sameNameSiblings(BOOLEAN), jcr:requiredType(STRING),
jcr:protocol(STRING), mode:lockingSession(STRING),
jcr:messageId(STRING), jcr:id(REFERENCE), mode:uri(STRING),
jcr:valueConstraints(STRING), jcr:retentionPolicy(REFERENCE),
jcr:activity(REFERENCE), jcr:currentLifecycleState(STRING),
jcr:path(STRING), jcr:name(STRING), jcr:score(DOUBLE),

Development Guide Volume 2: Governance

76

mode:localName(STRING), mode:depth(LONG)],
SOURCE_ALIAS=nt:unstructured>"
]
}

Note that the JSON response contains several fields, including the original query statement, the
language, the abstract query model (or AQM, which is always equivalent to the JCR-SQL2 form of
the query), and the query plan (as an array of strings).

Response Format (as "text/plain"):

Access [nt:unstructured]
 Project [nt:unstructured] <PROJECT_COLUMNS=[[nt:unstructured].
[jcr:primaryType] AS [nt:unstructured.jcr:primaryType],
[nt:unstructured].[jcr:mixinTypes] AS
[nt:unstructured.jcr:mixinTypes], [nt:unstructured].[jcr:path] AS
[nt:unstructured.jcr:path], [nt:unstructured].[jcr:name] AS
[nt:unstructured.jcr:name], [nt:unstructured].[jcr:score] AS
[nt:unstructured.jcr:score], [nt:unstructured].[mode:localName] AS
[nt:unstructured.mode:localName], [nt:unstructured].[mode:depth] AS
[nt:unstructured.mode:depth]], PROJECT_COLUMN_TYPES=[STRING, STRING,
STRING, STRING, DOUBLE, STRING, LONG]>
 Select [nt:unstructured]
<SELECT_CRITERIA=ISCHILDNODE([nt:unstructured],'/testNode')>
 Select [nt:unstructured] <SELECT_CRITERIA=[nt:unstructured].
[jcr:primaryType] = 'nt:unstructured'>
 Source [nt:unstructured] <SOURCE_ALIAS=nt:unstructured,
SOURCE_NAME=__ALLNODES__, SOURCE_COLUMNS=[jcr:frozenUuid(STRING),
mode:sharedUuid(REFERENCE), mode:sessionScope(BOOLEAN),
jcr:defaultValues(STRING), mode:projectedNodeKey(STRING),
jcr:mixinTypes(STRING), jcr:frozenPrimaryType(STRING),
jcr:defaultPrimaryType(STRING), jcr:statement(STRING),
jcr:lastModifiedBy(STRING), jcr:mimeType(STRING),
jcr:hasOrderableChildNodes(BOOLEAN), jcr:etag(STRING),
jcr:encoding(STRING), jcr:root(REFERENCE), jcr:supertypes(STRING),
jcr:successors(REFERENCE), jcr:primaryItemName(STRING),
jcr:hold(STRING), jcr:workspace(STRING), jcr:description(STRING),
jcr:primaryType(STRING), mode:externalNodeKey(STRING),
mode:derivedFrom(STRING), mode:isHeldBySession(BOOLEAN),
jcr:baseVersion(REFERENCE), jcr:lastModified(DATE),
jcr:mergeFailed(REFERENCE), mode:derivedAt(DATE),
jcr:requiredPrimaryTypes(STRING), jcr:multiple(BOOLEAN),
mode:generated(BOOLEAN), jcr:activityTitle(STRING),
jcr:lifecyclePolicy(REFERENCE), jcr:isMixin(BOOLEAN),
jcr:availableQueryOperators(STRING),
jcr:childVersionHistory(REFERENCE), jcr:content(REFERENCE),
jcr:autoCreated(BOOLEAN), mode:alias(STRING), jcr:createdBy(STRING),
jcr:isFullTextSearchable(BOOLEAN), jcr:uuid(STRING),
jcr:onParentVersion(STRING), mode:expirationDate(DATE),
jcr:lockIsDeep(BOOLEAN), jcr:copiedFrom(REFERENCE),
jcr:isDeep(BOOLEAN), jcr:title(STRING), jcr:versionableUuid(STRING),
jcr:versionHistory(REFERENCE), jcr:isAbstract(BOOLEAN),
jcr:predecessors(REFERENCE), jcr:lockOwner(STRING),
mode:sha1(STRING), jcr:repository(STRING), jcr:created(DATE),
jcr:frozenMixinTypes(STRING), mode:lockedKey(STRING),
jcr:text(STRING), jcr:host(STRING), jcr:configuration(REFERENCE),

Chapter 5. The REST Service

77

jcr:port(STRING), mode:workspace(STRING), jcr:nodeTypeName(STRING),
jcr:data(BINARY), jcr:isQueryable(BOOLEAN), jcr:language(STRING),
jcr:isQueryOrderable(BOOLEAN), jcr:mandatory(BOOLEAN),
jcr:isCheckedOut(BOOLEAN), jcr:protected(BOOLEAN),
jcr:sameNameSiblings(BOOLEAN), jcr:requiredType(STRING),
jcr:protocol(STRING), mode:lockingSession(STRING),
jcr:messageId(STRING), jcr:id(REFERENCE), mode:uri(STRING),
jcr:valueConstraints(STRING), jcr:retentionPolicy(REFERENCE),
jcr:activity(REFERENCE), jcr:currentLifecycleState(STRING),
jcr:path(STRING), jcr:name(STRING), jcr:score(DOUBLE),
mode:localName(STRING), mode:depth(LONG)]>

The text response only contains the string representation of the query plan.

Reordering nodes

Assuming you create a parent node POSTing the following request:

{
 "jcr:primaryType":"nt:unstructured",
 "children":{
 "child1":{
 "prop":"child1"
 },
 "child2":{
 "prop":"child2"
 },
 "child3":{
 "prop":"child3"
 }
 }
}

Then you can reorder its children by issuing a PUT request with the following format:

{
 "children":{
 "child3":{
 },
 "child2":{
 },
 "child1":{
 }
 }
}

Moving nodes

In order to move a node using the REST service, 2 steps are required:

1. Retrieve the node which should be moved and store its ID (the id member of the JSON
response)

2. Edit the parent-to-be node (aka. the new parent) via a PUT request which contains the ID
of the node:

Development Guide Volume 2: Governance

78

{
 "children":{
 "child1":{
 },
 "child2":{
 },
 "child3":{
 },
 "41e666ff-0997-4ee0-9eb8-b41319f9f403": {
 }
 }
}

Chapter 5. The REST Service

79

Chapter 6. Query and Search

The JCR API defines a way to query a repository for content that meets user-defined criteria. The JCR 2.0
API actually makes it possible for implementations to support multiple query languages, and the specification
requires support for two languages: JCR-SQL2 and JCR-QOM. JCR 1.0 defined two other languages (XPath
and JCR-SQL), though these languages were deprecated in JCR 2.0.

6.1. Query Languages

At this time, the hierarchical database supports five query languages:

JCR-SQL2

JCR-SQL

XPath

JCR-JQOM (programmatic API)

full-text search (a language that reuses the full-text search expression grammar used in the second
parameter of the CONTAINS(...) function of the JCR-SQL2 language)

It is best to pick the language for each query that expresses your application's needs. The JCR-SQL2
language is expressive, and is technically a superset of JCR-SQL. But sometimes it will be easier to specify
path-oriented criteria using XPath. Or sometimes you only need to do full-text search, in which case the full-
text search language is more appropriate.

Note

Not all JCR implementations execute their queries in the same way. Some (including Jackrabbit) have
completely different execution paths for different languages, meaning queries in some languages are
faster than equivalent queries expressed in other languages.

6.2. Creating Queries

There are two ways to create a JCR Query object. The first is by supplying a query expression and the name
of the query language, and this can be done with the standard JCR API:

// Obtain the query manager for the session via the workspace ...
javax.jcr.query.QueryManager queryManager =
session.getWorkspace().getQueryManager();

// Create a query object ...
String language = ... // e.g. javax.jcr.query.Query.JCR_SQL2
String expression = ...
javax.jcr.query.Query query = queryManager.createQuery(expression,language);

Before returning the Query , the hierarchical database finds a parser for the language given by the
language parameter, and uses this parser to create a language-independent object representation of the
query. (Note that any grammatical errors in the expression result in an immediate exception.) This object
representation is what JCR 2.0 calls the "Query Object Model", or QOM. After parsing, the hierarchical
database embeds the QOM into the Query object.

Development Guide Volume 2: Governance

80

The second approach for creating a Query object is to programmatically build up the query using the
QueryObjectModelFactory . Again, this uses the standard JCR API. Here's a simple example:

// Obtain the query manager for the session via the workspace ...
javax.jcr.query.QueryManager queryManager =
session.getWorkspace().getQueryManager();
javax.jcr.query.qom.QueryObjectModelFactory factory =
queryManager.getQOMFactory();

// Create the parts of a query object ...
javax.jcr.query.qom.Source selector = factory.selector(...);
javax.jcr.query.qom.Constraint constraints = ...
javax.jcr.query.qom.Column[] columns = ...
javax.jcr.query.qom.Ordering[] orderings = ...
javax.jcr.query.qom.QueryObjectModel model =
 factory.createQuery(selector,constraints,orderings,columns);

// The model is a query ...
javax.jcr.query.Query query = model;

Of course, the QueryObjectModelFactory can create lots variations of selectors, joins, constraints, and
orderings. The hierarchical database fully supports this style of creating queries, and it even offers some very
useful extensions (described below).

6.3. Executing Queries

As we mentioned above, all Query objects contain the object representation of the query, called the query
object model. No matter which query language is used or whether the query was created programmatically,
the hierarchical database uses the same kind of model objects to represent every single query.

So when the JCR client executes the query:

javax.jcr.query.Query query = ...

// Execute the query and get the results ...
javax.jcr.query.QueryResult result = query.execute();

The hierarchical database then takes the query's object model and runs it through a series of steps to plan,
validate, optimize, and finally execute the query:

1. Planning - in this step, the hierarchical database converts the language-independent query object
model into a canonical relational query plan that outlines the various relational operations that need
to be performed for this query. The query plan forms a tree, with each leaf node representing an
access query against the indexes. However, this plan is not quite ready to be used.

2. Validation - not all queries that are well-formed can be executed, so the hierarchical database then
validates the canonical query plan to make sure that all named selectors exist, all named properties
exist on the selectors, that all aliases are properly used, and that all identifiers are resolvable. If the
query fails validation, an exception is thrown immediately.

3. Optimization - the canonical plan should mirror the actual query model, but it may not be the most
simple or efficient plan. The hierarchical database runs the canonical plan through a rule-based
optimizer to produce an optimum and executable plan. For example, one rule rewrites right outer
joins as left outer joins. Another rule looks for identity joins (e.g., ISSAMENODE join criteria or equi-
join criteria involving node identifiers), and if possible removes the join altogether (replacing it with

Chapter 6. Query and Search

81

additional criteria) or copies criteria on one side of the join to the other. Another rule removes parts of
the plan that (based upon criteria) will never return any rows. Yet another rule determines the best
algorithm for joining tuples. Overall, there are about a dozen such rules, and all are intended to make
the query plans more easily and efficiently executed.

4. Execution - the optimized plan is then executed: each access query in the plan is issued and the
resulting tuples processed and combined to form the result set's tuples.

6.4. SQL Extensions

The hierarchical database adds several features to its support of the standard JCR-SQL and JCR-SQL2
grammars. These extensions include support for:

1. Additional join types with FULL OUTER JOIN and CROSS JOIN

2. UNION , INTERSECT , and EXCEPT set operations

3. Non-correlated subqueries in the WHERE clause; multiple subqueries can be used in a single query,
and they can even be nested

4. Removing duplicate rows with SELECT DISTINCT ...

5. Limit the number of rows returned with LIMITcount

6. Skip initial rows with OFFSETnumber

7. Constrain the depth of a node with DEPTH(selectorName)

8. Constrain the path of a node with PATH(selectorName)

9. Constrain the references from a node with REFERENCE(selectorName.property) and
REFERENCE(selectorName)

10. Ranges of criteria values using BETWEENlowerANDupper and optionally specifying whether to
exclude the lower and/or upper values

11. Set criteria to specify multiple criteria values using IN and NOT IN

12. Use simple arithmetic in criteria and ORDER BY clauses, such as SCORE(type1)*3 +
SCORE(type2)

13. Use pseudo-columns to include the path, score, node name, node local name, and node depth in
result columns or in criteria

More detail of the particular extensions can be found in the JCR-SQL2 grammar.

Use these extensions within your JCR-SQL or JCR-SQL2 query expressions strings, and use the standard
JCR API to obtain a Query :

// Obtain the query manager for the session via the workspace ...
javax.jcr.query.QueryManager queryManager =
session.getWorkspace().getQueryManager();

// Create a query object ...
String language = ...
String expression = ... // USE THE EXTENSIONS HERE
javax.jcr.query.Query query = queryManager.createQuery(expression,language);

Development Guide Volume 2: Governance

82

// And use the query ...

6.5. Query Object Model Extensions

The extensions in the JCR-SQL and JCR-SQL2 languages can also be used when building queries
programmatically using the JCR Query Object Model API. The hierarchical database defines the
org.modeshape.jcr.api.query.qom.QueryObjectModelFactory interface that extends the
standard javax.jcr.query.qom.QueryObjectModelFactory interface, and which contains methods
providing ways to construct a QOM with the extended features.

6.5.1. Join Types

The standard javax.jcr.query.qom.QueryObjectModelFactory interface uses a String to specify
the join type:

package javax.jcr.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Performs a join between two node-tuple sources.
 *
 * The query is invalid if 'left' is the same source as 'right'.
 *
 * @param left the left node-tuple source; non-null
 * @param right the right node-tuple source; non-null
 * @param joinType either QueryObjectModelConstants.JCR_JOIN_TYPE_INNER,
 * QueryObjectModelConstants.JCR_JOIN_TYPE_LEFT_OUTER, or
 * QueryObjectModelConstants.JCR_JOIN_TYPE_RIGHT_OUTER.
 * @param joinCondition the join condition; non-null
 * @return the join; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later,
 * on {@link #createQuery}), and the parameters given fail that
test
 * @throws RepositoryException if the operation otherwise fails
 */
 public Join join(Source left,
 Source right,
 String joinType,
 JoinCondition joinCondition) throws
InvalidQueryException, RepositoryException;
 ...
}

In addition to the three standard constants, the hierarchical database supports two additional constant values:

javax.jcr.query.qom.QueryObjectModelConstants.JCR_JOIN_TYPE_INNER

javax.jcr.query.qom.QueryObjectModelConstants.JCR_JOIN_TYPE_LEFT_OUTER

javax.jcr.query.qom.QueryObjectModelConstants.JCR_JOIN_TYPE_RIGHT_OUTER

Chapter 6. Query and Search

83

org.modeshape.jcr.api.query.qom.QueryObjectModelConstants.JCR_JOIN_TYPE_CROSS

org.modeshape.jcr.api.query.qom.QueryObjectModelConstants.JCR_JOIN_TYPE_FULL_O
UTER

6.5.2. Set Operations

Creating a set query is very similar to creating a normal SELECT type query, but instead the following on
org.modeshape.jcr.api.query.qom.QueryObjectModelFactory are used:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Creates a query with one or more selectors.
 *
 * @param source the node-tuple source; non-null
 * @param constraint the constraint, or null if none
 * @param orderings zero or more orderings; null is equivalent to a
zero-length array
 * @param columns the columns; null is equivalent to a zero-length array
 * @param limit the limit; null is equivalent to having no limit
 * @param isDistinct true if the query should return distinct values; or
false if no
 * duplicate removal should be performed
 * @return the select query; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test and the
parameters given fail that
 * test. See the individual QOM factory methods for the validity
criteria
 * of each query element.
 * @throws RepositoryException if another error occurs.
 */
 public SelectQuery select(Source source,
 Constraint constraint,
 Ordering[] orderings,
 Column[] columns,
 Limit limit,
 boolean isDistinct) throws
InvalidQueryException, RepositoryException;

 /**
 * Creates a query command that effectively appends the results of the
right-hand query
 * to those of the left-hand query.
 *
 * @param left the query command that represents left-side of the set
operation;
 * non-null and must have columns that are equivalent and union-
able to those
 * of the right-side query
 * @param right the query command that represents right-side of the set
operation;

Development Guide Volume 2: Governance

84

 * non-null and must have columns that are equivalent and union-
able to those
 * of the left-side query
 * @param orderings zero or more orderings; null is equivalent to a
zero-length array
 * @param limit the limit; null is equivalent to having no limit
 * @param all true if duplicate rows in the left- and right-hand side
results should
 * be included, or false if duplicate rows should be eliminated
 * @return the select query; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test and the
parameters given fail
 * that test. See the individual QOM factory methods for the
validity criteria
 * of each query element.
 * @throws RepositoryException if another error occurs.
 */
 public SetQuery union(QueryCommand left,
 QueryCommand right,
 Ordering[] orderings,
 Limit limit,
 boolean all) throws InvalidQueryException,
RepositoryException;

 /**
 * Creates a query command that returns all rows that are both in the
result of the
 * left-hand query and in the result of the right-hand query.
 *
 * @param left the query command that represents left-side of the set
operation;
 * non-null and must have columns that are equivalent and union-
able to those
 * of the right-side query
 * @param right the query command that represents right-side of the set
operation;
 * non-null and must have columns that are equivalent and union-
able to those
 * of the left-side query
 * @param orderings zero or more orderings; null is equivalent to a
zero-length array
 * @param limit the limit; null is equivalent to having no limit
 * @param all true if duplicate rows in the left- and right-hand side
results should
 * be included, or false if duplicate rows should be eliminated
 * @return the select query; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test and the
parameters given fail
 * that test. See the individual QOM factory methods for the
validity criteria
 * of each query element.
 * @throws RepositoryException if another error occurs.

Chapter 6. Query and Search

85

 */
 public SetQuery intersect(QueryCommand left,
 QueryCommand right,
 Ordering[] orderings,
 Limit limit,
 boolean all) throws InvalidQueryException,
RepositoryException;

 /**
 * Creates a query command that returns all rows that are in the result
of the left-hand
 * query but not in the result of the right-hand query.
 *
 * @param left the query command that represents left-side of the set
operation;
 * non-null and must have columns that are equivalent and union-
able to those
 * of the right-side query
 * @param right the query command that represents right-side of the set
operation;
 * non-null and must have columns that are equivalent and union-
able to those
 * of the left-side query
 * @param orderings zero or more orderings; null is equivalent to a
zero-length array
 * @param limit the limit; null is equivalent to having no limit
 * @param all true if duplicate rows in the left- and right-hand side
results should
 * be included, or false if duplicate rows should be eliminated
 * @return the select query; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test and the
parameters given fail
 * that test. See the individual QOM factory methods for the
validity criteria
 * of each query element.
 * @throws RepositoryException if another error occurs.
 */
 public SetQuery except(QueryCommand left,
 QueryCommand right,
 Ordering[] orderings,
 Limit limit,
 boolean all) throws InvalidQueryException,
RepositoryException;
 ...
}

Note that the select(...) method returns a SelectQuery while the union(...) , intersect(...)
and except(...) methods return a SetQuery . The SelectQuery and SetQuery interfaces are defined
by the hierarchical database and both extend the QueryCommand interface. This interface is then used in the
methods to create SetQuery .

The SetQuery object is not executable. To create the corresponding javax.jcr.Query object, pass the
SetQuery to the following method on
org.modeshape.jcr.api.query.qom.QueryObjectModelFactory :

Development Guide Volume 2: Governance

86

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Creates a set query.
 *
 * @param command set query; non-null
 * @return the executable query; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test and the
parameters given fail
 * that test. See the individual QOM factory methods for the
validity criteria
 * of each query element.
 * @throws RepositoryException if another error occurs.
 */
 public SetQueryObjectModel createQuery(SetQuery command) throws
InvalidQueryException, RepositoryException;
 ...
}

The resulting SetQueryObjectModel extends javax.jcr.query.Query and SetQuery and can be
executed and treated similarly to the standard javax.jcr.query.qom.QueryObjectModel (that also
extends javax.jcr.query.Query).

6.5.3. Correlated Subqueries

The hierarchical database defines a Subquery interface that extends the standard
javax.jcr.query.qom.StaticOperand interface, and thus can be used on the right-hand side of any
Criteria :

public interface Subquery extends StaticOperand {
 /**
 * Gets the {@link QueryCommand} that makes up the subquery.
 *
 * @return the query command; non-null
 */
 public QueryCommand getQuery();
}

Subqueries can be created by passing a QueryCommand into this
org.modeshape.jcr.query.qom.QueryObjectModelFactory method:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Creates a subquery that can be used as a {@link StaticOperand} in
another query.
 *
 * @param subqueryCommand the query command that is to be used as the

Chapter 6. Query and Search

87

subquery
 * @return the constraint; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later,
 * on {@link #createQuery}), and the parameters given fail that
test
 * @throws RepositoryException if the operation otherwise fails
 */
 public Subquery subquery(QueryCommand subqueryCommand) throws
InvalidQueryException, RepositoryException;
 ...
}

The resulting Subquery is a StaticOperand that can then be used to create a Criteria .

6.5.4. Removing Duplicate Rows

The org.modeshape.jcr.query.qom.QueryObjectModelFactory interface includes a variation of the
standard QueryObjectModeFactory.select(...) method with an additional isDistinct flag that
controls whether duplicate rows should be removed:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Creates a query with one or more selectors.
 *
 * @param source the node-tuple source; non-null
 * @param constraint the constraint, or null if none
 * @param orderings zero or more orderings; null is equivalent to a
zero-length array
 * @param columns the columns; null is equivalent to a zero-length array
 * @param limit the limit; null is equivalent to having no limit
 * @param isDistinct true if the query should return distinct values; or
false if no
 * duplicate removal should be performed
 * @return the select query; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test and the
parameters given fail
 * that test. See the individual QOM factory methods for the
validity criteria
 * of each query element.
 * @throws RepositoryException if another error occurs.
 */
 public SelectQuery select(Source source,
 Constraint constraint,
 Ordering[] orderings,
 Column[] columns,
 Limit limit,

Development Guide Volume 2: Governance

88

 boolean isDistinct) throws
InvalidQueryException, RepositoryException;
 ...
}

6.5.5. Limit and Offset Results

The hierarchical database defines a Limit interface as a top-level object that can be used to create queries
that limit the number of rows and/or skip a number of initial rows:

public interface Limit {

 /**
 * Get the number of rows skipped before the results begin.
 *
 * @return the offset; always 0 or a positive number
 */
 public int getOffset();

 /**
 * Get the maximum number of rows that are to be returned.
 *
 * @return the maximum number of rows; always positive, or equal to
Integer.MAX_VALUE if there is no limit
 */
 public int getRowLimit();

 /**
 * Determine whether this limit clause is necessary.
 *
 * @return true if the number of rows is not limited and there is no
offset, or false otherwise
 */
 public boolean isUnlimited();

 /**
 * Determine whether this limit clause defines an offset.
 *
 * @return true if there is an offset, or false if there is no offset
 */
 public boolean isOffset();
}

These range constraints can be constructed using this
org.modeshape.jcr.query.qom.QueryObjectModelFactory method:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Evaluates to a limit on the maximum number of tuples in the results
and the
 * number of rows that are skipped before the first tuple in the
results.

Chapter 6. Query and Search

89

 *
 * @param rowLimit the maximum number of rows; must be a positive
number, or Integer.MAX_VALUE if there is to be a
 * non-zero offset but no limit
 * @param offset the number of rows to skip before beginning the
results; must be 0 or a positive number
 * @return the operand; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public Limit limit(int rowLimit,
 int offset) throws InvalidQueryException,
RepositoryException;
 ...
}

The Limit objects can then be used when creating queries using a variation of the standard
QueryObjectModeFactory.select(...) defined in the
org.modeshape.jcr.query.qom.QueryObjectModelFactory interface:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Creates a query with one or more selectors.
 *
 * @param source the node-tuple source; non-null
 * @param constraint the constraint, or null if none
 * @param orderings zero or more orderings; null is equivalent to a
zero-length array
 * @param columns the columns; null is equivalent to a zero-length array
 * @param limit the limit; null is equivalent to having no limit
 * @param isDistinct true if the query should return distinct values; or
false if no
 * duplicate removal should be performed
 * @return the select query; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test and the
parameters given fail
 * that test. See the individual QOM factory methods for the
validity criteria
 * of each query element.
 * @throws RepositoryException if another error occurs.
 */
 public SelectQuery select(Source source,
 Constraint constraint,
 Ordering[] orderings,
 Column[] columns,
 Limit limit,

Development Guide Volume 2: Governance

90

 boolean isDistinct) throws
InvalidQueryException, RepositoryException;
 ...
}

Similarly, the Limit objects can be passed to the hierarchical database except(...) , union(...) ,
intersect(...) methods, too.

6.5.6. Depth Constraints

The hierarchical database defines a DepthPath interface that extends the standard
javax.jcr.query.qom.DynamicOperand interface, and thus can be used as part of a WHERE clause to
constrain the depth of the nodes accessed by a selector:

public interface NodeDepth extends javax.jcr.query.qom.DynamicOperand {

 /**
 * Get the selector symbol upon which this operand applies.
 *
 * @return the one selector names used by this operand; never null
 */
 public String getSelectorName();
}

These range constraints can be constructed using this
org.modeshape.jcr.query.qom.QueryObjectModelFactory method:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Evaluates to a LONG value equal to the depth of a node in the
specified selector.
 *
 * The query is invalid if selector is not the name of a selector in the
query.
 *
 * @param selectorName the selector name; non-null
 * @return the operand; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public NodeDepth nodeDepth(String selectorName) throws
InvalidQueryException, RepositoryException;
 ...
}

6.5.7. Path Constraints

Chapter 6. Query and Search

91

The hierarchical database defines a NodePath interface that extends the standard
javax.jcr.query.qom.DynamicOperand interface, and thus can be used as part of a WHERE clause to
constrain the path of nodes accessed by a selector:

public interface NodePath extends javax.jcr.query.qom.DynamicOperand {

 /**
 * Get the selector symbol upon which this operand applies.
 *
 * @return the one selector names used by this operand; never null
 */
 public String getSelectorName();
}

These range constraints can be constructed using this
org.modeshape.jcr.query.qom.QueryObjectModelFactory method:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Evaluates to a PATH value equal to the prefix-qualified path of a
node in the specified selector.
 *
 * The query is invalid if selector is not the name of a selector in the
query.
 *
 * @param selectorName the selector name; non-null
 * @return the operand; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public NodePath nodePath(String selectorName) throws
InvalidQueryException, RepositoryException;
 ...
}

6.5.8. Criteria on References From a Node

The hierarchical database defines a ReferenceValue interface that extends the standard
javax.jcr.query.qom.DynamicOperand interface, and thus can be used as part of a WHERE or ORDER
BY clause:

public interface ReferenceValue extends DynamicOperand {
 ...
 /**
 * Get the selector symbol upon which this operand applies.
 *
 * @return the one selector names used by this operand; never null

Development Guide Volume 2: Governance

92

 */
 public String getSelectorName();

 /**
 * Get the name of the one reference property.
 *
 * @return the property name; or null if this operand applies to any
reference property
 */
 public String getPropertyName();
}

These reference value operand allow a query to easily place constraints on a particular REFERENCE
property or (more importantly) any REFERENCE properties on the nodes. The former is a more simple
alternative to using a regular comparison constraint with the REFERENCE property on one side and the
jcr:uuid property on the other. The latter effectively means "where the node references (with any property)
some other nodes", and this is something that standard JCR-SQL2 cannot represent.

They are created using these org.modeshape.jcr.query.qom.QueryObjectModelFactory methods:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Creates a dynamic operand that evaluates to the REFERENCE value of
the any property
 * on the specified selector.
 *
 * The query is invalid if:
 * - selector is not the name of a selector in the query, or
 * - property is not a syntactically valid JCR name.
 *
 * @param selectorName the selector name; non-null
 * @return the operand; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public ReferenceValue referenceValue(String selectorName) throws
InvalidQueryException, RepositoryException;

 /**
 * Creates a dynamic operand that evaluates to the REFERENCE value of
the specified
 * property on the specified selector.
 *
 * The query is invalid if:
 * - selector is not the name of a selector in the query, or
 * - property is not a syntactically valid JCR name.
 *
 * @param selectorName the selector name; non-null
 * @param propertyName the reference property name; non-null

Chapter 6. Query and Search

93

 * @return the operand; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public ReferenceValue referenceValue(String selectorName,
 String propertyName) throws
InvalidQueryException, RepositoryException;
 ...
}

6.5.9. Range Criteria

The hierarchical database defines a Between interface that extends the standard
javax.jcr.query.qom.Constraint interface, and thus can be used as part of a WHERE clause:

public interface Between extends Constraint {

 /**
 * Get the dynamic operand specification.
 *
 * @return the dynamic operand; never null
 */
 public DynamicOperand getOperand();

 /**
 * Get the lower bound operand.
 *
 * @return the lower bound; never null
 */
 public StaticOperand getLowerBound();

 /**
 * Get the upper bound operand.
 *
 * @return the upper bound; never null
 */
 public StaticOperand getUpperBound();

 /**
 * Return whether the lower bound is to be included in the results.
 *
 * @return true if the {@link #getLowerBound() lower bound} is to be
included, or false otherwise
 */
 public boolean isLowerBoundIncluded();

 /**
 * Return whether the upper bound is to be included in the results.
 *
 * @return true if the {@link #getUpperBound() upper bound} is to be

Development Guide Volume 2: Governance

94

included, or false otherwise
 */
 public boolean isUpperBoundIncluded();
}

These range constraints can be constructed using this
org.modeshape.jcr.query.qom.QueryObjectModelFactory method:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Tests that the value (or values) defined by the supplied dynamic
operand are
 * within a specified range. The range is specified by a lower and upper
bound,
 * and whether each of the boundary values is included in the range.
 *
 * @param operand the dynamic operand describing the values that are to
be constrained
 * @param lowerBound the lower bound of the range
 * @param upperBound the upper bound of the range
 * @param includeLowerBound true if the lower boundary value is not be
included
 * @param includeUpperBound true if the upper boundary value is not be
included
 * @return the constraint; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public Between between(DynamicOperand operand,
 StaticOperand lowerBound,
 StaticOperand upperBound,
 boolean includeLowerBound,
 boolean includeUpperBound) throws
InvalidQueryException, RepositoryException;
 ...
}

To create a NOT BETWEEN ... criteria, create the Between criteria object, and then pass that into the
standard QueryObjectModelFactory.not(Criteria) method.

6.5.10. Set Criteria

The hierarchical database defines a SetCriteria interface that extends the standard
javax.jcr.query.qom.Constraint interface, and thus can be used as part of a WHERE clause:

public interface SetCriteria extends Constraint {

 /**

Chapter 6. Query and Search

95

 * Get the dynamic operand specification for the left-hand side of the
set criteria.
 *
 * @return the dynamic operand; never null
 */
 public DynamicOperand getOperand();

 /**
 * Get the static operands for this set criteria.
 *
 * @return the static operand; never null and never empty
 */
 public Collection<? extends StaticOperand> getValues();
}

These set constraints can be constructed using this
org.modeshape.jcr.query.qom.QueryObjectModelFactory method:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Tests that the value (or values) defined by the supplied dynamic
operand are
 * found within the specified set of values.
 *
 * @param operand the dynamic operand describing the values that are to
be constrained
 * @param values the static operand values; may not be null or empty
 * @return the constraint; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public SetCriteria in(DynamicOperand operand,
 StaticOperand... values) throws
InvalidQueryException, RepositoryException;
 ...
}

To create a NOT IN criteria, create the IN criteria to get a SetCriteria object, and then pass that into the
standard QueryObjectModelFactory.not(Criteria) method.

6.5.11. Arithmetic Operands

The hierarchical database defines an ArithmeticOperand interface that extends the
javax.jcr.query.qom.DynamicOperand , and thus can be used anywhere a DynamicOperand can be
used.

public interface ArithmeticOperand extends DynamicOperand {

Development Guide Volume 2: Governance

96

 /**
 * Get the operator for this binary operand.
 *
 * @return the operator; never null
 */
 public String getOperator();

 /**
 * Get the left-hand operand.
 *
 * @return the left-hand operator; never null
 */
 public DynamicOperand getLeft();

 /**
 * Get the right-hand operand.
 *
 * @return the right-hand operator; never null
 */
 public DynamicOperand getRight();
}

These can be constructed using additional
org.modeshape.jcr.query.qom.QueryObjectModelFactory methods:

package org.modeshape.jcr.api.query.qom;

public interface QueryObjectModelFactory {
 ...
 /**
 * Create an arithmetic dynamic operand that adds the numeric value of
the two supplied operand(s).
 *
 * @param left the left-hand-side operand; not null
 * @param right the right-hand-side operand; not null
 * @return the dynamic operand; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public ArithmeticOperand add(DynamicOperand left,
 DynamicOperand right) throws
InvalidQueryException, RepositoryException;

 /**
 * Create an arithmetic dynamic operand that subtracts the numeric value
of the second operand from the numeric value of the
 * first.
 *
 * @param left the left-hand-side operand; not null
 * @param right the right-hand-side operand; not null
 * @return the dynamic operand; non-null
 * @throws InvalidQueryException if a particular validity test is

Chapter 6. Query and Search

97

possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public ArithmeticOperand subtract(DynamicOperand left,
 DynamicOperand right) throws
InvalidQueryException, RepositoryException;

 /**
 * Create an arithmetic dynamic operand that multplies the numeric value
of the first operand by the numeric value of the
 * second.
 *
 * @param left the left-hand-side operand; not null
 * @param right the right-hand-side operand; not null
 * @return the dynamic operand; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public ArithmeticOperand multiply(DynamicOperand left,
 DynamicOperand right) throws
InvalidQueryException, RepositoryException;

 /**
 * Create an arithmetic dynamic operand that divides the numeric value
of the first operand by the numeric value of the
 * second.
 *
 * @param left the left-hand-side operand; not null
 * @param right the right-hand-side operand; not null
 * @return the dynamic operand; non-null
 * @throws InvalidQueryException if a particular validity test is
possible on this method,
 * the implemention chooses to perform that test (and not leave
it until later, on createQuery),
 * and the parameters given fail that test
 * @throws RepositoryException if the operation otherwise fails
 */
 public ArithmeticOperand divide(DynamicOperand left,
 DynamicOperand right) throws
InvalidQueryException, RepositoryException;
 ...
}

6.6. Search and Text Extraction

The full-text search language and JCR-SQL2's full-text search constraint both have the ability to find nodes
using a simpler search-engine-like expression with wildcards and phrases.

Development Guide Volume 2: Governance

98

One can imagine how the hierarchical database performs these matches against a node's name and
properties containing STRING, LONG, DATE, DOUBLE, DECIMAL, NAME, and PATH values. But for
BINARY values, in order to determine whether the search expressions match, the hierarchical database has
to determine what text is contained within each BINARY value. Indeed, the hierarchical database can only
match against the BINARY value if it can extract the text from that value. This is where text extraction comes
into play.

A text extractor is a component that knows how to extract searchable text from a BINARY value. Each text
extract describes whether it can process files of a particular MIME type. If it can, the hierarchical database
will (when necessary) call the extractor to obtain the searchable text for a supplied BINARY value.

Chapter 6. Query and Search

99

Chapter 7. Query Language Grammars

The hierarchical database supports multiple query languages, including all four languages defined in the JCR
1.0 specification and JCR 2.0 specification .

7.1. JCR-SQL2

The JCR-SQL2 query language is defined by the JCR 2.0 specification as a way to express queries using
strings that are similar to SQL. This query language is an improvement over the earlier JCR-SQL language,
providing among other things far richer specifications of joins and criteria.

7.1.1. Extensions to JCR-SQL2

The hierarchical database includes full support for the complete JCR-SQL2 query language defined by the
specification. However, there are several extensions provided to make it even more powerful:

Support for the FULL OUTER JOIN and CROSS JOIN join types, in addition to the LEFT OUTER JOIN,
RIGHT OUTER JOIN and INNER JOIN types defined by JCR-SQL2. Note that JOIN is a shorthand for
INNER JOIN. For detail, see the grammar for "joins" .

Support for the UNION , INTERSECT , and EXCEPT set operations on multiple result sets to form a single
result set. As with standard SQL, the result sets being combined must have the same columns. The
UNION operator combines the rows from two result sets, the INTERSECT operator returns the difference
between two result sets, and the EXCEPT operator returns the rows that are common to two result sets.
Duplicate rows are removed unless the operator is followed by the ALL keyword. For detail, see the
grammar for "set queries" .

Removal of duplicate rows in the results, using SELECT DISTINCT ... expression. For detail, see the
grammar for queries .

Limiting the number of rows in the result set with the LIMIT count clause, where count is the
maximum number of rows that should be returned. This clause may optionally be followed by the OFFSET
number clause to specify the number of initial rows that should be skipped. For detail, see the grammar
for "limits and offsets" .

Additional dynamic operands DEPTH(selectorName) and PATH(selectorName) that enable placing
constraints on the node depth and path, respectively. These dynamic operands can be used in a manner
similar to NAME(selectorName) and LOCALNAME(selectorName) that are defined by JCR-SQL2.
Note in each of these cases, the selectorName is optional if there is only one selector in the query. For
detail, see the grammar for "dynamic operands" .

Additional dynamic operand REFERENCE(selectorName.propertyName) and
REFERENCE(selectorName) that enables placing constraints on one or any of the reference properties,
respectively, and which can be used in a manner similar to the standard dynamic operand
PropertyValue(selectorName.propertyName). Note in each of these cases, the selectorName
is optional if there is only one selector in the query, and that the propertyName can be excluded if the
constraint should apply to all reference properties. For detail, see the grammar for "dynamic operands" .

Support for the IN and NOT IN clauses to more easily and concisely supply multiple of discrete static
operands. For example, WHERE ... [my:type].[prop1] IN (3,5,7,10,11,50) For detail,
see the grammar for "set constraints" .

Development Guide Volume 2: Governance

100

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283

Support for the BETWEEN clause to more easily and concisely supply a range of discrete operands. For
example, WHERE ... [my:type].[prop1] BETWEEN 3 EXCLUSIVE AND 10 For detail, see
the grammar for "between constraints" .

Support for simple arithmetic in numeric-based criteria and order-by clauses. For example, ... WHERE
SCORE(type1) + SCORE(type2) > 1.0 or ... ORDER BY (SCORE(type1) * SCORE(type2))
ASC, LENGTH(type2.property1) DESC. For detail, see the grammar for "order-by clauses" .

Support for (non-correlated) subqueries in the WHERE clause, wherever a static operand can be used.
Subqueries can even be used within another subquery. All subqueries must return a single column, and
each row's single value will be treated as a literal value. If the subquery is used in a clause that expects a
single value (e.g., in a comparison), only the subquery's first row will be used. If the subquery is used in a
clause that allows multiple values (e.g., IN (...)), then all of the subquery's rows will be used. For
example, this expression WHERE ... [my:type].[prop1] IN (SELECT [my:prop2] FROM
[my:type2] WHERE [my:prop3] < '1000') AND ... will use the results of the subquery as the
literal values in the IN clause. See the "subqueries" section for more information.

Support for several pseudo-columns (jcr:path, jcr:score, jcr:name, mode:localName, and
mode:depth) that can be used in the SELECT , equijoin, and WHERE clauses. These pseudo-columns
make it possible to return location-related and score information within the QueryResult 's rows. They
also make queries look more like SQL, and thus may be more friendly and easier to use in existing SQL-
aware client applications. See the "pseudo-columns" section for more information.

Support for NOT LIKE as an operator in comparison criteria, and which is equivalent to wrapping a LIKE
comparison criteria in a NOT(...) clause.

7.1.2. Extended JCR-SQL2 Grammar

The full grammar for the hierarchical database's extended JCR-SQL2 support is a strict superset of that
defined by the JCR 2.0 specification. In other words, Any JCR-SQL2 query that uses the standard grammar it
supported, as well as queries that make use of the provided extensions.

7.1.2.1. Queries

The top-level rule for the extended JCR-SQL2 grammar is QueryCommand , which consists of both Query
and SetQuery :

QueryCommand ::= Query | SetQuery

SetQuery ::= Query ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query
 { ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query }

Query ::= 'SELECT' ['DISTINCT'] columns
 'FROM' Source
 ['WHERE' Constraint]
 ['ORDER BY' orderings]
 [Limit]

The hierarchical database adds the concept of a set query, which is a query that performs a union ,
intersection , or complement of the results of two other queries. Set queries are common in SQL (which is
essentially a set manipulation language) and are a very useful tool that would otherwise require significant
processing of the results of multiple queries by the application. By supporting set queries, the application
merely needs to declare that set operation be performed, and the hierarchical database will perform all the
work before returning the results.

Chapter 7. Query Language Grammars

101

There is also the ability to use SELECT DISTINCT, which eliminates duplicate rows in a manner similar to
SQL.

7.1.2.2. Source

A source is a named set of tuples, which in the hierarchical database corresponds to the nodes of a particular
named node type. In other words, a source is equivalent to a table in a relational database. The available
columns of a source are the named properties declared on the node type.

In the JCR-SQL2 grammar, a source is either a selector (a named node type) or a join specification:

Source ::= Selector | Join

Selector ::= nodeTypeName ['AS' selectorName]

nodeTypeName ::= Name
selectorName ::= /* A string that contains only SQL-legal characters,
 and which can be used elsewhere in the query to
 refer to the selector. */

See Also:

Section 7.1.2.5, “Path and Name”

7.1.2.3. Joins

The JCR 2.0 specification does include joins in the standard JCR-SQL2 grammar, though the only defined
types of joins included inner , left outer , and right outer joins. Because SQL also defines the useful full outer
and cross join types, the hierarchical database adds support for these.

Join ::= left [JoinType] 'JOIN' right 'ON' JoinCondition
 /* If JoinType is omitted INNER is assumed. */

left ::= Source
right ::= Source

JoinType ::= Inner | LeftOuter | RightOuter | FullOuter | Cross

Inner ::= 'INNER' ['JOIN']

LeftOuter ::= 'LEFT JOIN' | 'OUTER JOIN' | 'LEFT OUTER JOIN'

RightOuter ::= 'RIGHT OUTER' ['JOIN']

RightOuter ::= 'FULL OUTER' ['JOIN']

RightOuter ::= 'CROSS' ['JOIN']

JoinCondition ::= EquiJoinCondition |
 SameNodeJoinCondition |
 ChildNodeJoinCondition |
 DescendantNodeJoinCondition

Each of the four kinds of join conditions are described below.

Development Guide Volume 2: Governance

102

join condition

An equijoin is a join that uses only equality comparisons in the join predicate (or join condition).
Using any other operators (e.g., '<' or '!=') in the join condition disqualifies a query from being an
equi-join.

Therefore, the rules for the equi-join condition are as follows:

EquiJoinCondition ::= selector1Name'.'property1Name
 '=' selector2Name'.'property2Name

selector1Name ::= selectorName
selector2Name ::= selectorName
property1Name ::= propertyName
property2Name ::= propertyName

propertyName ::= Name

where the node type referenced by the selector identified in the query with the selector1Name
must contain the property given by the property1Name literal, and similarly the node type
referenced by the selector identified in the query with the selector2Name must contain the
property given by the property2Name literal.

See also the "name rule" .

node join condition

An identity join is a special case of an equijoin, where the compared properties are node identifiers.
Thus the join condition of an identity join constrains the node on one sides of the join to be the
same node on the other side of the join. The standard JCR-SQL2 grammar defines a special
function that makes this a little easier to use:

SameNodeJoinCondition ::= 'ISSAMENODE(' selector1Name
 ',' selector2Name
 [',' selector2Path] ')'

selector1Name ::= selectorName
selector2Name ::= selectorName
selector2Path ::= Path

See also the "path rule" .

Child-node join condition

A child-node join is one where the join condition constrains the node on the left side of the join to be
a child of the node on the right side of the join. The standard JCR-SQL2 grammar defines a special
function that makes it easier to specify such join conditions:

ChildNodeJoinCondition ::= 'ISCHILDNODE('
 childSelectorName ','
 parentSelectorName ')'

childSelectorName ::= selectorName
parentSelectorName ::= selectorName

Descendant-node join condition

Chapter 7. Query Language Grammars

103

A descendant-node join is one where the join condition constrains the node on the left side of the
join to be a descendant of the node on the right side of the join. The standard JCR-SQL2 grammar
defines a special function that makes it easier to specify such join conditions:

DescendantNodeJoinCondition ::= 'ISDESCENDANTNODE('
 descendantSelectorName ','
 ancestorSelectorName ')'

descendantSelectorName ::= selectorName
ancestorSelectorName ::= selectorName

See Also:

Section 7.1.2.5, “Path and Name”

7.1.2.4. Constraints

The "query rule" included a WHERE clause that can define multiple constraints on the nodes included in the
results. The standard JCR-SQL2 grammar defined several such constraints, including and , or , not ,
comparison , property existence , full-text search , same-node , child-node , and descendant-node
constraints. The hierarchical database supports all of these, but adds two others: between and set
constraints.

Constraint ::= ConstraintItem | '(' ConstraintItem ')'

ConstraintItem ::= And | Or | Not
 Comparison | Between |
 PropertyExistence |
 SetConstraint |
 FullTextSearch |
 SameNode |
 ChildNode |
 DescendantNode

Each of these types of constraints are described below.

And constraint

An and constraint stipulates that a node (or record or tuple) is included only if two other constraints
are both true.

And ::= constraint1 'AND' constraint2

constraint1 ::= Constraint
constraint2 ::= Constraint

Or constraint

An or constraint stipulates that a node (or record or tuple) is included if either of two other
constraints are true.

Or ::= constraint1 'OR' constraint2

constraint1 ::= Constraint
constraint2 ::= Constraint

Development Guide Volume 2: Governance

104

Not constraint

The not qualifier will negate another constraint, requiring that a node (or record or tuple) is included
if the other constraint is not true.

Not ::= 'NOT' constraint

constraint ::= Constraint

Comparison constraint

A comparison constraint requires that the value for a node described by the dynamic operand on
the left side of the operator is to be compared to a static literal value. The term "dynamic operand"
is used in the JCR-SQL2 grammar because its value can only be determined during query
evaluation.

Comparison ::= DynamicOperand Operator StaticOperand

Operator ::= '=' | '!=' | '<' | '<=' | '>' | '>=' | 'LIKE' | 'NOT
LIKE'

The behavior of the operators is dictated by the JCR 2.0 specification and matches how Value
objects are compared:

If the DynamicOperand evaluates to null, the constraint is not satisfied.

If the '=' operator is used, the value that the DynamicOperand evaluates to must equal the
StaticOperand value for the constraint to be satisfied.

If the '!=' operator is used, the value that the DynamicOperand evaluates to must not equal
the StaticOperand value for the constraint to be satisfied.

If the '<' operator is used, the value that the DynamicOperand evaluates to must be less than
the StaticOperand value for the constraint to be satisfied.

If the '<=' operator is used, the value that the DynamicOperand evaluates to must be less than
or equal to the StaticOperand value for the constraint to be satisfied.

If the '>' operator is used, the value that the DynamicOperand evaluates to must be greater
than the StaticOperand value for the constraint to be satisfied.

If the '>=' operator is used, the value that the DynamicOperand evaluates to must be greater
than or equal to the StaticOperand value for the constraint to be satisfied.

If the 'LIKE' operator is used, the constraint is only satisfied if the value that the
DynamicOperand evaluates to match the pattern specified by the string literal
StaticOperand , where in the pattern:

the character '%' matches zero or more characters, and

the character '_' (underscore) matches exactly one character, and

the string '\x' matches the character 'x', and

all other characters match themselves

Chapter 7. Query Language Grammars

105

If the NOT LIKE operator is used, the constraint is only satisfied if the value that the
DynamicOperand evaluates to not match the pattern specified by the string literal
StaticOperand , where in the pattern:

the character '%' matches zero or more characters, and

the character '_' (underscore) matches exactly one character, and

the string '\x' matches the character 'x', and

all other characters match themselves

Also, note that, unlike SQL, the standard JCR-SQL2 grammar does not allow the left-hand side and
right-hand sides of a comparison constraint to be swapped.

Between constraint

The between constraint is one of the extensions defined by the hierarchical database, and allows a
query to more easily represent a range of static values than using only the constraints available in
the standard JCR-SQL2 grammar. The between constraint is based on the similar expression in
SQL.

Between ::= DynamicOperand ['NOT'] 'BETWEEN'
 lowerBound ['EXCLUSIVE'] 'AND'
 upperBound ['EXCLUSIVE']

lowerBound ::= StaticOperand
upperBound ::= StaticOperand

Property existence constraint

A property existence constraint stipulates that a property does indeed exist on a node that is of the
node type specified by the named selector. the hierarchical database does allow the NOT qualifier
to be excluded, which turns the constraint into a stipulation that the property does not exist on the
node.

PropertyExistence ::= [selectorName'.']propertyName 'IS' ['NOT']
'NULL'

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 preceding the propertyName is optional */

Set constraint

Like the "between constraint", the set constraint is an extension to the standard JCR-SQL2
grammar that allows what would normally be a complicated combination of standard JCR-SQL2
constraints to be more easily represented with a single, simple expression. Again, this constraint is
patterned after the similar expression in SQL.

SetConstraint ::= [selectorName '.']propertyName ['NOT'] 'IN'
 '(' firstStaticOperand
 {',' additionalStaticOperand }
 ')'

 /* If only one selector exists in this query,
 explicit specification of the selectorName

Development Guide Volume 2: Governance

106

 preceding the propertyName is optional */

firstStaticOperand ::= StaticOperand
additionalStaticOperand ::= StaticOperand

Note that multiple static operands can be included in the comma-separated list.

Although this rule seems complicated, it is actually very straightforward. The following query
selects all the properties defined on the acme:taggable node type, returning only those
"taggable" nodes with a acme:tagname value of "tag1", "tag2", "tag3", or "tag4":

SELECT * FROM [acme:taggable] as tagged
WHERE tagged.[acme:tagName] IN ('tag1','tag2','tag3','tag4')

Even this trivial query is quite a bit simpler and easier to understand than if the query had used
only the constraints defined by the standard JCR-SQL2 grammar:

SELECT * FROM [acme:taggable] as tagged
WHERE tagged.[acme:tagName] = 'tag1'
 OR tagged.[acme:tagName] = 'tag2'
 OR tagged.[acme:tagName] = 'tag3'
 OR tagged.[acme:tagName] = 'tag4'

Imagine how complicated a query might be with multiple joins, multiple criteria, and many values to
be compared for one or several different properties.

text search constraint

FullTextSearch ::= 'CONTAINS('
 ([selectorName'.']propertyName |
selectorName'.*')
 ',' ''' fullTextSearchExpression''' ')'

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 preceding the propertyName is optional */

fullTextSearchExpression ::= FulltextSearch

The full-text search expression is a string literal that adheres to the "full-text search" grammar
described below.

An example query selects all the properties defined on the acme:taggable node type, returning
only those "taggable" nodes with a acme:tagname value that contains the "foo" term within the
value:

SELECT * FROM [acme:taggable] as tagged
WHERE CONTAINS(tagged.[acme:tagName],'foo')

node constraint

The same-node constraint stipulates that the node appearing in the selector with the given name
has a path that matches the literal path provided.

SameNode ::= 'ISSAMENODE(' [selectorName ','] Path ')'

Chapter 7. Query Language Grammars

107

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 preceding the propertyName is optional */

Because this standard constraint clause is not really like traditional SQL, the hierarchical database
defines a jcr:path "pseudo-column" that can be used in "comparison constraints" and that
allows for using other comparison operators, including LIKE.

Child-node constraint

The child-node constraint stipulates that the node appearing in the selector with the given name is
a child of a node with a path that matches the literal path provided.

ChildNode ::= 'ISCHILDNODE(' [selectorName ','] Path ')'

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 preceding the propertyName is optional */

See also the jcr:path "pseudo-column" that can be used in "comparison constraints" and that
allows for using other comparison operators, including LIKE. And because the right hand side (i.e.,
static operand) of a LIKE expression can involve wildcards, it may be easier and more
understandable to use the pseudo-column.

Descendant-node constraint

The descendant-node constraint stipulates that the node appearing in the selector with the given
name is a descendant of a node with a path that matches the literal path provided.

DescendantNode ::= 'ISDESCENDANTNODE(' [selectorName ','] Path ')'

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 preceding the propertyName is optional */

See also the jcr:path "pseudo-column" that can be used in "comparison constraints" and that
allows for using other comparison operators, including LIKE. And because the right hand side (i.e.,
static operand) of a LIKE expression can involve wildcards, it may be easier and more
understandable to use the pseudo-column.

See Also:

Section 7.1.2.6, “Static Operand”

Section 7.1.2.7, “Dynamic Operand”

7.1.2.5. Path and Name

Many of the rules above have used paths and names, and the rules for these are defined as follows:

Name ::= '[' quotedName ']' | '[' simpleName ']' | simpleName

quotedName ::= /* A JCR Name (see the JCR specification) */
simpleName ::= /* A JCR Name that contains only SQL-legal

Development Guide Volume 2: Governance

108

 characters (namely letters, digits, and underscore) */

Path ::= '[' quotedPath ']' | '[' simplePath ']' | simplePath

quotedPath ::= /* A JCR Path that contains non-SQL-legal characters */
simplePath ::= /* A JCR Path (rather Name) that contains only SQL-legal
 characters (namely letters, digits, and underscore) */

Note that JCR-SQL2 surrounds identifiers with square brackets (e.g., '[' and ']'), allowing names to contain a
':' character needed with namespaced names. If the names or paths only contain valid SQL characters, then
they do not need to be quoted.

7.1.2.6. Static Operand

In the standard JCR-SQL2 grammar, a static operand appears on the right-hand side of an operator, and
represents an expression whose value can be determined by static analysis of the query (e.g., when the
query is parsed). In particular, a static operand in the standard JCR-SQL2 grammar comprised of either a
literal value or a variable.

In SQL, however, the expression that appears on the right-hand side of an operator is not always able to be
determined at query parse time. An example is a subquery, which appears on the right hand side but
obviously can only be evaluated into values during query execution time. Since standard JCR-SQL2 does
not include any such features, the term "static operand" is technically valid.

In addition to literal values and variables, the hierarchical database also supports "subqueries" appearing on
the right-hand side of an operator. So this grammar continues to use the "static operand" term for easy
comparison with the standard JCR-SQL2 grammar, but the term has a different (and expanded) semantic
than in the standard grammar.

Therefore, the rules for what the hierarchical database allows on the right-hand side of an operator in a
constraint is as follows:

StaticOperand ::= Literal | BindVariableValue | Subquery

Literal ::= CastLiteral | UncastLiteral

CastLiteral ::= 'CAST(' UncastLiteral ' AS ' PropertyType ')'

PropertyType ::= 'STRING' | 'BINARY' | 'DATE' |
 'LONG' | 'DOUBLE' | 'DECIMAL' |
 'BOOLEAN' | 'NAME' | 'PATH' |
 'REFERENCE' | 'WEAKREFERENCE' |
 'URI'

UncastLiteral ::= UnquotedLiteral |
 ''' UnquotedLiteral ''' |
 '"' UnquotedLiteral '"'

UnquotedLiteral ::= /* String form of a JCR Value,
 as defined in the JCR specification */

Bind variable

The standard JCR-SQL2 grammar supports using variable names within a query, where the values
for those variables are bound to the Query object before execution. In the query, the variable
names are prefixed with a '$' character and are otherwise normal JCR name:

Chapter 7. Query Language Grammars

109

BindVariableValue ::= '$'bindVariableName

bindVariableName ::= /* A string that conforms to the JCR Name
syntax,
 though the prefix does not need to be a
 registered namespace prefix. */

So, consider this simple query that selects all the properties defined on the acme:taggable node
type, and that returns only those "taggable" nodes with a acme:tagname value that matches the
value of the tagValue variable:

SELECT * FROM [acme:taggable] as tagged
WHERE tagged.[acme:tagName] = $tagValue

This query could be evaluated using the JCR API as follows:

// Obtain the query manager for the session via the workspace ...
javax.jcr.Session session = // ...
javax.jcr.query.QueryManager mgr =
session.getWorkspace().getQueryManager();

// Create a query object ...
String language = ...
String expression = ...
javax.jcr.query.Query query =
queryManager.createQuery(expression,language);

// Bind a value to the variable ...
Value tag = session.getValueFactory().create("foo");
query.bindVariable("tagValue",tag);

// Execute the query and get the results ...
javax.jcr.query.QueryResult result = query.execute();

Obviously multiple variables can be used in a query expression, but a value must be bound to
every variable before the Query object can be executed.

Subquery

The standard JCR-SQL2 grammar does not support subqueries. But subqueries are such a useful
feature, so the hierarchical database supports using multiple subqueries within a single query. In
fact, subqueries are nothing more than a QueryCommand , which if you'll remember is the top-level
rule in the grammar. That means that subqueries can be any query, and you can even include
subqueries within a subquery!

Subquery ::= '(' QueryCommand ')' |
 QueryCommand

Strictly speaking, the hierarchical database only supports non-correlated subqueries, which means
that they can actually be evaluated independently (outside the context of the containing query).

Additionally, because subqueries appear on the right-hand side of an operator, all subqueries must
return a single column, and each row's single value will be treated as a literal value. If the subquery
is used in a clause that expects a single value (e.g., in a comparison), only the subquery's first row
will be used. If the subquery is used in a clause that allows multiple values (e.g., IN (...)), then

Development Guide Volume 2: Governance

110

all of the subquery's rows will be used.

For example, in the following query fragment, the first value in each row of the subquery's results
will be used within the IN clause of the outer query:

WHERE ... [my:type].[prop1] IN
 (SELECT [my:prop2] FROM [my:type2]
 WHERE [my:prop3] < '1000')
AND ...

However, changing the IN clause to a comparison results in only the first value in the first row of
the subquery's results being using in the comparison criteria:

WHERE ... [my:type].[prop1] =
 (SELECT [my:prop2] FROM [my:type2]
 WHERE [my:prop3] < '1000')
AND ...

7.1.2.7. Dynamic Operand

In various constraints described above, the dynamic operand appears on the left-hand side of an operator,
and signifies that the values can only be determined when the query is evaluated.

The standard JCR-SQL2 grammar defines seven kinds of dynamic operands: property value , length , node
name , node local name , full-text search score , lowercase , and uppercase .

The hierarchical database supports all these types, but adds support for four more: reference value , node
path , node depth , and simple arithmetic clauses . The hierarchical database also allows the dynamic
operand to be surrounded by parentheses, which is sometimes convenient for complex queries.

The DynamicOperand rule in the extended grammar is:

DynamicOperand ::= PropertyValue | ReferenceValue |
 Length | NodeName | NodeLocalName |
 NodePath | NodeDepth |
 FullTextSearchScore |
 LowerCase | UpperCase |
 Arithmetic |
 '(' DynamicOperand ')'

Each of these types of dynamic operands is described below.

Property value operand

The property value operand always evaluates to the value(s) of the specified property on the
selector.

PropertyValue ::= [selectorName'.'] propertyName

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 preceding the propertyName is optional. */

Note that if the property is multi-valued, the constraint will be satisfied if any of the property values
works with the constraint. For example, if the acme:tagNames property is a multi-valued property

Chapter 7. Query Language Grammars

111

declared on the acme:taggable node type, then the following query will finds all
acme:taggable nodes that has "foo" for at least one of the values of the acme:tagNames
property:

SELECT * FROM [acme:taggable] as tagged
WHERE tagged.[acme:tagNames] = 'foo'

Reference value operand

One of the extensions is to support the a REFERENCE(...) dynamic operand, which enables
placing constraints on one or any of the reference properties.

ReferenceValue ::= 'REFERENCE(' selectorName '.' propertyName ')' |
 'REFERENCE(' selectorName ')' |
 'REFERENCE()' |

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 preceding the propertyName is optional.
 Also, the property name may be excluded
 if the constraint should apply to any
 reference property.*/

The REFERENCE operand always evaluates to the identifier of the referenced nodes in one or all of
the REFERENCE properties. Thus, all of the REFERENCE operands should be used with a
StaticOperand that also evaluates to identifiers.

The REFERENCE() operand (with no selector name and no property name) evaluates to the
identifiers of the nodes referenced by all of reference properties on the node in the only selector.
The REFERENCE(selectorName) works the same way, but must be used if there is more than
one selector in the query. Finally, the REFERENCE(selectorName.propertyName) evaluates
to the identifiers of nodes referenced by the propertyName reference property on the nodes in the
named selector.

For example, here is a query that finds all nodes that reference a set of nodes for which we already
know the identifiers, id1, id2, and id3.

SELECT * FROM [nt:base]
WHERE REFERENCE() IN ('id1','id2','id3')

This operand works really well with subqueries or variables for the right-hand side. For example,
here is a query finds all nodes that reference any of the nodes in the subgraph below the
/foo/bar/baz node, where a subquery is used to find all nodes in the subgraph:

SELECT * FROM [nt:base]
WHERE REFERENCE() IN (
 SELECT [jcr:uuid] FROM [nt:base] AS refd
 WHERE ISDESCENDANT(refd,'/foo/bar/baz')
)

This kind of query is impossible to do using standard JCR-SQL2 features, and shows some of the
power of the extensions to JCR-SQL2.

Length operand

Development Guide Volume 2: Governance

112

The length operand evaluates to the length (or lengths, if multi-valued) of a property. The length is
defined to be:

for a BINARY value, the number of bytes in the value, or

for all other value types, the number of characters of the string resulting from a conversion of
the value to a string.

The rule for the length operand is:

Length ::= 'LENGTH(' PropertyValue ')'

Node name operand

The node name operand always evaluates to the prefixed name of the node given by the supplied
selector:

NodeName ::= 'NAME(' [selectorName] ')'

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 is optional */

See also the jcr:name "pseudo-column", which enables accessing the JCR name of any node as
if the name were a regular property on any node.

Node local name operand

The node name operand always evaluates to the local name of the node given by the supplied
selector:

NodeLocalName ::= 'LOCALNAME(' [selectorName] ')'

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 is optional */

See also the mode:localName "pseudo-column", which enables accessing the local name of any
node as if the local name were a regular property.

Node depth operand

The node depth operand is an extension to the standard set of dynamic operands specific to the
hierarchical database, and evaluates to the integer depth of the node given by the supplied
selector. The depth of a node is defined to be the number of segments in the node's path. For
example, the depth of the root node is 0, whereas the depth of the node at /foo/bar/baz is 3.

NodeDepth ::= 'DEPTH(' [selectorName] ')'

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 is optional */

See also the mode:depth "pseudo-column", which enables accessing the depth of any node as if
the depth were a regular property.

Chapter 7. Query Language Grammars

113

Node path operand

The node path operand is an extension to the standard set of dynamic operands specific to the
hierarchical database, and evaluates to the path of the node given by the supplied selector.

NodePath ::= 'PATH(' [selectorName] ')'

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 is optional */

See also the jcr:path "pseudo-column", which enables accessing the path of any node as if the
path were a regular property.

Full text search score operand

The full-text search score operand evaluates to a DOUBLE value equal to the full-text search score
of a node. The full-text search score ranks a selector's nodes by their relevance to the
fullTextSearchExpression specified in a
[FullTextSearch|#Fulltextsearchconstraint . The magnitude of the scores are
implementation specific, but most implementations will produce higher scores with more relevant
matching and lower scores for less-relevant matching.

FullTextSearchScore ::= 'SCORE(' [selectorName] ')'
 /* If only one selector exists in this query,
 explicit specification of the selectorName
 is optional */

See also the jcr:score "pseudo-column", which enables accessing the score of any node as if
the score were a regular property.

Lowercase operand

The lowercase operand evaluates to the lower-case string value (or values, if multi-valued) of
operand. If the operand does not evaluate to a string value, its value is first converted to a string.

LowerCase ::= 'LOWER(' DynamicOperand ')'

Uppercase operand

The uppercase operand evaluates to the upper-case string value (or values, if multi-valued) of
operand. If the operand does not evaluate to a string value, its value is first converted to a string.

LowerCase ::= 'LOWER(' DynamicOperand ')'

Arithmetic operand

The arithmetic operand is an extension to the standard JCR-SQL2 grammar specific to the
hierarchical database. It allows two other dynamic operands that evaluate to numeric values to be
numerically combined using addition, subtraction, multiplication, or division.

Arithmetic ::= DynamicOperand ('+'|'-'|'*'|'/') DynamicOperand

Development Guide Volume 2: Governance

114

For example, the following query restricts the results such that the sum of the score of nodes
originating from separate selectors is greater than 1.0:

SELECT * FROM [acme:type1] AS type1
 JOIN [acme:type2] as type2 ON type1.prop1 < type2.prop2
 WHERE SCORE(type1) + SCORE(type2) > 1.0

So although it is possible to use in the WHERE clause, it is more likely to be used in the order-by
clauses . For example, the following query orders the results based upon the difference in the
scores of nodes in the two selectors:

SELECT * FROM [acme:type1] AS type1
 JOIN [acme:type2] as type2 ON type1.prop1 < type2.prop2
 ORDER BY (SCORE(type1) - SCORE(type2)) ASC,
 LENGTH(type2.prop3) DESC

7.1.2.8. Ordering

The ORDER BY clause defined by the standard JCR-SQL2 grammar allows the order of the results to be
dictated by the values evaluated at execution time based upon one or more "dynamic operands" . The rule for
the expression is as follows:

orderings ::= Ordering {',' Ordering}

Ordering ::= DynamicOperand [Order]

Order ::= 'ASC' | 'DESC'

As with SQL, the ASC qualifier specifies that the ordering should be in ascending order, and is the default;
likewise, the DESC qualifier specifies that the ordering should be in descending order.

See Also:

Section 7.1.2.7, “Dynamic Operand”

7.1.2.9. Columns

The standard JCR-SQL2 grammar allows a query to include in the SELECT clause which property values
should be returned and included in the results:

columns ::= (Column ',' {Column}) | '*'

Column ::= ([selectorName'.']propertyName ['AS' columnName]) |
 (selectorName'.*')

 /* If only one selector exists in this query,
 explicit specification of the selectorName
 is optional */

selectorName ::= Name
propertyName ::= Name
columnName ::= Name

When '*' "' is used for the list of selected columns, the result set is expected to minimally include, for each

Chapter 7. Query Language Grammars

115

selector, a column for each single-valued non-residual property of the selector's node type, including those
explicitly declared on the node type and those inherited from the node's supertypes.

For example, the result set for the following query would contain at least the [jcr:primaryType] column,
since it is the only single-valued, non-residual property defined on the [nt:base] node type. The
[jcr:mixinTypes] property is also non-residual, but the results need not include it since it is multi-valued.

SELECT * FROM [nt:base]

If there are multiple selectors, then SELECT * will include all of the selectable columns from each selector's
node type. However, it is possible to request all of the selectable columns from some of the selectors, using
the form. For example:

SELECT type1.*
FROM [acme:type1] AS type1
JOIN [acme:type2] as type2 ON type1.prop1 < type2.prop2

Note, however, that although only single-valued, non-residual properties are included when '*' "' is used in the
SELECT clause, it is possible to explicitly include residual properties. For example, the following query finds
all nodes that have at least one "foo" value for the acme:tagNames property:

SELECT [acme:tagNames] AS tagName
FROM [nt:base] WHERE tagName = 'foo'

7.1.2.10. Limit and Offset

Neither the standard JCR-SQL2 grammar or the JCR API itself provide support for limiting the rows that are
returned in the results. This is a common need, especially for applications that paginate the results, where
each page shows a subset of the results.

Because this is such an essential feature that cannot be accomplished any other way, the hierarchical
database adds support for specifying the maximum number of rows to return, and optionally specifying the
number of initial rows that should be skipped. This extension follows the SQL syntax:

Limit ::= 'LIMIT' count ['OFFSET' offset]
count ::= /* Positive integer value */
offset ::= /* Non-negative integer value */

The LIMIT clause is entirely optional, and if absent does not limit the result set rows in any way. However, if
the LIMIT count clause is used, then the result set will contain no more than count rows. This LIMIT
clause may optionally be followed by the OFFSET number clause, where number is the number of initial
rows that should be skipped before the rows are included in the results.

7.1.2.11. Psuedo-Columns

The design of the JCR-SQL2 query language makes fairly heavy use of functions, including SCORE() ,
NAME() , LOCALNAME() , and various constraints. The hierarchical database provides several more useful
functions, such as PATH() and DEPTH() , that follow the same patterns.

However, these functions have several disadvantages. First, they make the JCR-SQL2 language less "SQL-
like", since SQL-92 and -99 do not define similar kinds of functions. (There are aggregate functions, like
COUNT , SUM , etc., but they operate on a particular column in all tuples and are therefore more dissimilar than
similar.) This means that applications that use SQL and SQL-like query languages are less likely to be able to
build and issue JCR-SQL2 queries.

Development Guide Volume 2: Governance

116

A second disadvantage of these functions is that JCR-SQL2 does not allow them to be used within the
SELECT clause. As a result, the location-related and score information cannot be included as columns of
values in the QueryResult rows. Instead, a client can only access this information by obtaining the Node
object(s) for each row. Relying upon both the result set and additional Java objects makes it difficult to use
the JCR query system. It also makes certain kinds of applications impossible.

For example, the hierarchical database's JDBC driver is designed to enable JDBC-aware applications to
query repository content using JCR-SQL2 queries. The standard JDBC API cannot expose the Node objects,
so the only way to return the path-related and score information is through additional columns in the result.
While such columns could always "magically" appear in the result set, doing this is not compatible with JDBC
applications that dynamically build the SELECT clauses of queries based upon database metadata. Such
applications require the columns to be properly described in database metadata, and the columns need to be
used within queries.

The hierarchical database attempts to solve these issues by directly supporting a number of "pseudo-
columns" within JCR-SQL2 queries, wherever columns can be used. These "pseudo-columns" include:

jcr:score is a column of type DOUBLE that represents the full-text search score of the node, which is a
measure of the node's relevance to the full-text search expression. The hierarchical database does
compute the scores for all queries, though the score for rows in queries that do not include a full-text
search criteria may not be reliable.

jcr:path is a column of type PATH that represents the normalized path of a node, including same-name
siblings. This is the same as what would be returned by the getPath() method of Node. Examples of paths
include "/jcr:system" and "/foo/bar3".

jcr:name is a column of type NAME that represents the node name in its namespace-qualified form
using namespace prefixes and excluding same-name-sibling indexes. Examples of node names include
"jcr:system", "jcr:content", "ex:UserData", and "bar".

mode:localName is a column of type STRING that represents the local name of the node, which
excludes the namespace prefix and same-name-sibling index. As an example, the local name of the
"jcr:system" node is "system", while the local name of the "ex:UserData3" node is "UserData".

mode:depth is a column of type LONG that represents the depth of a node, which corresponds exactly
to the number of path segments within the path. For example, the depth of the root node is 0, whereas the
depth of the "/jcr:system/jcr:nodeTypes" node is 2.

All of these pseudo-columns can be used in the SELECT clause of any JCR-SQL2 query, and their use
defines whether such columns appear in the result set. In fact, all of these pseudo-columns will be included
when SELECT * clauses in JCR-SQL2 queries are expanded by the query engine. This means that every
node type (even mixin node types that have no properties and are essentially markers) are represented by a
queryable table with at least one column. However, unlike the older JCR-SQL query language, these pseudo-
columns are never included in the result unless explicitly included or implicitly included with the SELECT *
clause.

Note

Why did the hierarchical database use the jcr namespace prefix for some of the pseudo-columns,
and mode for the others? The older JCR-SQL language defined the jcr:score, jcr:path, and
jcr:name pseudo-columns, so we use the same names. The other columns were unique to the
hierarchical database and are therefore defined with the mode namespace prefix.

Like any other column, all of these pseudo-columns can be also be used in the WHERE clause of any JCR-
SQL2 query, even if they are not included in the SELECT clause. They can be used anywhere that a regular

Chapter 7. Query Language Grammars

117

column can be used, including within constraints and dynamic operands. The hierarchical database will
automatically rewrite queries that use pseudo-columns in the dynamic operands of constraints to use the
corresponding function, such as SCORE() , PATH() , NAME() , LOCALNAME() , and DEPTH() . Additionally,
any property existence constraint using these pseudo-columns will always evaluate to 'true' (and thus the
hierarchical database's query optimizer will always remove such constraints from the query plan).

The jcr:path pseudo-column may also be used on both sides of an "equijoin" constraint clause. For
example, equijoin expressions similar to:

 ... selector1.[jcr:path] = selector2.[jcr:path] ...

will be automatically rewritten by the hierarchical database's optimizer to the following form:

 ... ISSAMENODE(selector1,selector2) ...

As with regular columns, the pseudo-columns must be qualified with the selector name if the query contains
more than one selector.

7.1.3. Full-text Search Grammar

The grammar for the full-text search expressions used in the JCR-SQL2's "full-text search constraint" is as
follows:

FulltextSearch ::= Disjunct {Space 'OR' Space Disjunct}

Disjunct ::= Term {Space Term}

Term ::= ['-'] SimpleTerm

SimpleTerm ::= Word | '"' Word {Space Word} '"'

Word ::= NonSpaceChar {NonSpaceChar}

Space ::= SpaceChar {SpaceChar}

NonSpaceChar ::= Char - SpaceChar /* Any Char except SpaceChar */

SpaceChar ::= ' '

Char ::= /* Any character */

This grammar supports expressions similar to what you might provide to an Internet search engine. It lists the
terms or phrases that should appear (or not appear) in the applicable property value(s). Simple terms consist
of a single word (with only non-space characters), while phrases can be surrounded with double quotes.

7.1.4. Example JCR-SQL2 Queries

7.1.4.1. Simple Queries

One of the simplest JCR-SQL2 queries finds all nodes in the current workspace of the repository:

SELECT * FROM [nt:base]

This query will return a result set containing the jcr:primaryType column, since the nt:base node type

Development Guide Volume 2: Governance

118

defines only one single-valued, non-residual property called jcr:primaryType.

Note

The hierarchical database does not currently support returning multi-valued properties in result sets.
This is permitted by the JCR 2.0 specification. The hierarchical database does, however, support
using multi-valued properties in constraints and ORDER BY clauses.

Since our query used SELECT *, the hierarchical database also includes the five non-standard pseudo-
columns mentioned above: jcr:path, jcr:score, jcr:name, mode:localName, and mode:depth.
These columns are very convenient to have in the results, but also make certain criteria much easier than
with the corresponding standard functions or those specific to the hierarchical database.

Queries can explicitly specify the columns that are to be returned in the results. The following query is very
similar to the previous query and will return the same rows, but the result set will have only a single column
and will not include any of the pseudo-columns:

SELECT [jcr:primaryType] FROM [nt:base]

The following query will return the same rows as in the previous two queries, but the SELECT clause explicitly
includes only two of the pseudo-columns for the path and depth (which are computed from the nodes'
locations):

SELECT [jcr:primaryType], [jcr:path], [mode:depth] FROM [nt:base]

In JCR-SQL2, a table representing a particular node type will have a column for each of the node type's
property definitions, including those inherited from supertypes. For example, the nt:file node type, its
nt:hierarchyNode supertype, and the mix:created mixin type are defined using the CND notation as
follows:

[mix:created] mixin
 - jcr:created (date) protected
 - jcr:createdBy (string) protected

[nt:hierarchyNode] > mix:created abstract

[nt:file] > nt:hierarchyNode
 + jcr:content (nt:base) primary mandatory

Therefore, the table representing the nt:file node type will have 3 columns: the jcr:created and
jcr:createdBy columns inherited from the mix:created mixin node type (via the nt:hierarchyNode
node type), and the jcr:primaryType column inherited from the nt:base node type, which is the implicit
supertype of the nt:hierarchyNode (and all node types).

The hierarchical database adheres to this behavior with the exception that a SELECT * will result in the
additional pseudo-columns. Thus, this next query:

SELECT * FROM [nt:file]

is equivalent to this query:

Chapter 7. Query Language Grammars

119

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy],
 [jcr:path], [jcr:name], [jcr:score], [mode:localName], [mode:depth]
FROM [nt:file]

7.1.4.2. Using Columns in Constraints

Consider a query that selects some of the available columns from the nt:file table and uses a constraint to
ensure the resulting file nodes have names that end in '.txt':

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path] FROM
[nt:file]
WHERE LOCALNAME() LIKE '%.txt'

The hierarchical database also supports placing criteria against the mode:localName pseudo-column
instead of using the LOCALNAME() function. Such a query is equivalent to the previous query and will
produce the exact same results:

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path]
FROM [nt:file]
WHERE [mode:localName] LIKE '%.txt'

Note

The hierarchical database's pseudo-columns are often far easier to use than the corresponding
function-like constraints.

Although this query looks much more like SQL, the use of the '[' and ']' characters to quote the identifiers is
not typical of a SQL dialect. The hierarchical database actually supports the using double-quote characters
and square braces interchangeably around identifiers (although they must match around any single
identifier). Again, this next query, which looks remarkably like any SQL-92 or -99 dialect, is functionally
identical to the previous two queries:

SELECT "jcr:primaryType", "jcr:created", "jcr:createdBy", "jcr:path" FROM
"nt:file"
WHERE "mode:localName" LIKE '%.txt'

7.1.4.3. Inner Joins

In JCR-SQL2, a node will appear as a row in each table that corresponds to the node types defined by that
node's primary type or mixin types, or any supertypes of these node types. In other words, a node will appear
in the table corresponding to each node type for which Node.isNodeType(...) returns true.

For example, consider a node that has a primary type of nt:file but has an explicit mixin of
mix:referenceable . This node will appear as a row in the all of these tables:

nt:file

mix:referenceable

nt:hierarchyNode

mix:created

Development Guide Volume 2: Governance

120

nt:base

However, the columns in each of these tables will differ. The nt:file node type has the
nt:hierarchyNode , mix:created , and nt:base for supertypes, and therefore the table for nt:file
contains columns for the property definitions on all of these types. But because mix:referenceable is not
a supertype of nt:file , the table for nt:file will not contain a jcr:uuid column. To obtain a single
result set that contains columns for all the properties of our node, we need to perform an identity join .

The next query shows how to return all properties for nt:file nodes that are also mix:referenceable :

SELECT file.*, ref.*
FROM [nt:file] AS file
JOIN [mix:referenceable] AS ref
 ON ISSAMENODE(file,ref)

Since wildcards were used in the SELECT clause, the hierarchical database expands the SELECT clause to
include the columns for all (explicit and inherited) property definitions of each type plus pseudo-columns for
each type, which is equivalent to:

SELECT file.[jcr:primaryType],
 file.[jcr:created],
 file.[jcr:createdBy],
 file.[jcr:path],
 file.[jcr:name],
 file.[jcr:score],
 file.[mode:localName],
 file.[mode:depth],
 ref.[jcr:path],
 ref.[jcr:name],
 ref.[jcr:score],
 ref.[mode:localName],
 ref.[mode:depth],
 ref.[jcr:uuid]
FROM [nt:file] AS file
JOIN [mix:referenceable] AS ref
 ON ISSAMENODE(file,ref)

Note because we are using an identity join, the file.[jcr:path] column will contain the same value as
the ref.[jcr:path].

Note

Fully-expand the SELECT clause to specify exactly the columns that you want, excluding the columns
that return the same values or return values not needed by your application. This can also make the
query a bit more efficient, since less data needs to be found and returned.

By the way, this is also what many well-written applications do when querying SQL databases.

Here is a query that does this by eliminating columns with duplicate values and using aliases that are simpler
than the namespace-qualified names:

Chapter 7. Query Language Grammars

121

SELECT file.[jcr:primaryType] AS primaryType,
 file.[jcr:created] AS created,
 file.[jcr:createdBy] AS createdBy,
 ref.[jcr:uuid] AS uuid,
 file.[jcr:path] AS path,
 file.[jcr:name] AS name,
 file.[jcr:score] AS score,
 file.[mode:localName] AS localName,
 file.[mode:depth] AS depth
FROM [nt:file] AS file
JOIN [mix:referenceable] AS ref
 ON ISSAMENODE(file,ref)

Although this query looks much more like SQL, use of the '[' and ']' characters in JCR-SQL2 to quote the
identifiers is not typical of a SQL dialect. Again, the hierarchical database supports the using double-quote
characters and square braces interchangeably around identifiers (although they must match around any
single identifier). This makes it easier for existing SQL-oriented tools and applications to work more readily,
including applications that use the hierarchical database's JDBC driver to query a JCR repository.

This next query, which looks remarkably like any SQL-92 or -99 dialect, is functionally identical to the
previous query. However, it uses double quotes and a pseudo-column identity constraint on jcr:path
(which is identical in semantics and performance as the ISSAMENODE(...) constraint):

SELECT file."jcr:primaryType" AS primaryType,
 file."jcr:created" AS created,
 file."jcr:createdBy" AS createdBy,
 ref."jcr:uuid" AS uuid,
 file."jcr:path" AS path,
 file."jcr:name" AS name,
 file."jcr:score" AS score,
 file."mode:localName" AS localName,
 file."mode:depth" AS depth
FROM "nt:file" AS file
JOIN "mix:referenceable" AS ref
 ON file."jcr:path" = ref."jcr:path"

Note

When using joins and selecting multiple columns, use aliases on the columns to make it easier to
reference those columns in constraints and ordering clauses.

7.1.4.4. Other Joins

These are examples of two-way inner joins, but the hierarchical database supports joining multiple tables
together in a single query. The hierarchical database also supports a variety of joins, including:

INNER JOIN (or JOIN)

LEFT OUTER JOIN

RIGHT OUTER JOIN

FULL OUTER JOIN

Development Guide Volume 2: Governance

122

CROSS JOIN

7.1.4.5. Set Operations

The hierarchical database also supports several other query features beyond JCR-SQL2. One of these is
support for set queries that use:

UNION and UNION ALL

INTERSECT and INTERSECT ALL

EXCEPT and EXCEPT ALL .

Here is an example of a union:

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path] FROM
[nt:file]
UNION
SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path] FROM
[nt:folder]

7.1.4.6. Subqueries

The hierarchical database also supports using (non-correlated) subqueries within the WHERE clause and
wherever a static operand can be used. Subqueries can even be used within another subquery. All
subqueries, though, should return a single column (all other columns will be ignored), and each row's
single value will be treated as a literal value. If the subquery is used in a clause that expects a single row
(e.g., in a comparison), only the subquery's first row will be used.

Subqueries in the hierarchical database are a powerful and easy way to use more complex criteria that is a
function of the content in the repository, without having to resort to multiple queries and complex application
logic, such as taking the results of one query and dynamically generating the criteria of another query.

Here's an example of a query that finds all nt:file nodes in the repository whose paths are referenced in
the value of the vdb:originalFile property of the vdb:virtualDatabase nodes. (This query also uses
the $maxVersion variable in the subquery.)

SELECT [jcr:primaryType], [jcr:created], [jcr:createdBy], [jcr:path]
FROM [nt:file]
WHERE PATH() IN (
 SELECT [vdb:originalFile] FROM [vdb:virtualDatabase]
 WHERE [vdb:version] <= $maxVersion
 AND CONTAINS([vdb:description],'xml OR xml maybe')
)

Without subqueries, this query would need to be broken into two separate queries: the first would find all of
the paths referenced by the vdb:virtualDatabase nodes matching the version and description criteria,
followed by one (or more) subsequent queries to find the nt:file nodes with the paths expressed as literal
values (or variables).

Note

Using a subquery is not only easier to implement and understand, it is actually more efficient.

Chapter 7. Query Language Grammars

123

7.2. JCR-SQL

The JCR-SQL query language is defined by the JCR 1.0 specification as a way to express queries using
strings that are similar to SQL. Support for the language is optional, and in fact this language was deprecated
in the JCR 2.0 specification in favor of JCR-SQL2.

Important

As an aside, the hierarchical database's parser for JCR-SQL queries is actually a simplified and more
limited version of the parser for JCR-SQL2 queries. All other processing, however, is done in exactly
the same way.

The JCR 2.0 specification defines how nodes in a repository are mapped onto relational tables queryable
through a SQL-like language, including JCR-SQL and JCR-SQL2. Each node type is mapped as a relational
view with a single column for each of the node type's (residual and non-residual) property definitions.
Conceptually, each node in the repository then appears as a record inside the view corresponding to the
node type for which Node.isNodeType(nodeTypeName) would return true.

Since each node likely returns true from this method for multiple node type (e.g., the primary node type, the
mixin types, and all supertypes of the primary and mixin node types), all nodes will likely appear as records in
multiple views. And since each view only exposes those properties defined by (or inherited by) the
corresponding node type, a full picture of a node will likely require joining the views for multiple node types.
This special kind of join, where the nodes have the same identity on each side of the join, is referred to as an
identity join, and is handled very efficiently by the hierarchical database.

7.2.1. Extensions to JCR-SQL

The hierarchical database includes support for the JCR-SQL language, and adds several extensions to make
it even more powerful and useful:

Support for the UNION , INTERSECT , and EXCEPT set operations on multiple result sets to form a single
result set. As with standard SQL, the result sets being combined must have the same columns. The
UNION operator combines the rows from two result sets, the INTERSECT operator returns the difference
between two result sets, and the EXCEPT operator returns the rows that are common to two result sets.
Duplicate rows are removed unless the operator is followed by the ALL keyword. For detail, see the
grammar for set queries.

Removal of duplicate rows in the results, using SELECT DISTINCT

Limiting the number of rows in the result set with the LIMIT count clause, where count is the
maximum number of rows that should be returned. This clause may optionally be followed by the OFFSET
number clause to specify the number of initial rows that should be skipped.

Support for the IN and NOT IN clauses to more easily and concisely supply multiple of discrete static
operands. For example, WHERE ... prop1 IN (3,5,7,10,11,50)

Support for the BETWEEN clause to more easily and concisely supply a range of discrete operands. For
example, WHERE ... prop1 BETWEEN 3 EXCLUSIVE AND 10

Support for (non-correlated) subqueries in the WHERE clause, wherever a static operand can be used.
Subqueries can even be used within another subquery. All subqueries must return a single column, and
each row's single value will be treated as a literal value. If the subquery is used in a clause that expects a
single value (e.g., in a comparison), only the subquery's first row will be used. If the subquery is used in a

Development Guide Volume 2: Governance

124

http://www.jcp.org/en/jsr/detail?id=170
http://www.jcp.org/en/jsr/detail?id=283

clause that allows multiple values (e.g., IN (...)), then all of the subquery's rows will be used. For
example, this query WHERE ... prop1 IN (SELECT my:prop2 FROM my:type2 WHERE
my:prop3 < '1000') AND ... will use the results of the subquery as the literal values in the IN
clause.

7.2.2. Extended JCR-SQL Grammar

The grammar for the JCR-SQL query language is actually a superset of that defined by the JCR 1.0
specification , and as such the complete grammar is included here.

Note

The grammar is presented using the same EBNF nomenclature as used in the JCR 1.0 specification.
Terms are surrounded by '[' and ']' denote optional terms that appear zero or one times. Terms
surrounded by '{' and '}' denote terms that appear zero or more times. Parentheses are used to
identify groups, and are often used to surround possible values. Literals (or keywords) are denoted by
single-quotes.

QueryCommand ::= Query | SetQuery

SetQuery ::= Query ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query
 { ('UNION'|'INTERSECT'|'EXCEPT') ['ALL'] Query }

Query ::= Select From [Where] [OrderBy] [Limit]

Select ::= 'SELECT' ('*' | Proplist)

From ::= 'FROM' NtList

Where ::= 'WHERE' WhereExp

OrderBy ::= 'ORDER BY' propname [Order] {',' propname [Order]}

Order ::= 'DESC' | 'ASC'

Proplist ::= propname {',' propname}

NtList ::= ntname {',' ntname}

WhereExp ::= propname Op value |
 propname 'IS' ['NOT'] 'NULL' |
 like |
 contains |
 whereexp ('AND'|'OR') whereexp |
 'NOT' whereexp |
 '(' whereexp ')' |
 joinpropname '=' joinpropname |
 between |
 propname ['NOT'] 'IN' '(' value {',' value } ')'

Op ::= '='|'>'|'<'|'>='|'<='|'<>'

joinpropname ::= quotedjoinpropname | unquotedjoinpropname

Chapter 7. Query Language Grammars

125

http://www.jcp.org/en/jsr/detail?id=170

quotedjoinpropname ::= ''' unquotedjoinpropname '''
unquotedjoinpropname ::= ntname '.jcr:path'

propname ::= quotedpropname | unquotedpropname
quotedpropname ::= ''' unquotedpropname '''
unquotedpropname ::= /* A property name, possible a pseudo-property:
jcr:score or jcr:path */

ntname ::= quotedntname | unquotedntname
quotedntname ::= ''' unquotedntname '''
unquotedntname ::= /* A node type name */

value ::= literal | subquery

literal ::= ''' literalvalue ''' | literalvalue
literalvalue ::= /* A property value (in standard string form) */

subquery ::= '(' QueryCommand ')' | QueryCommand

like ::= propname 'LIKE' likepattern [escape]
likepattern ::= ''' likechar { likepattern } '''
likechar ::= char | '%' | '_'

escape ::= 'ESCAPE' ''' likechar '''

char ::= /* Any character valid within the string representation of a value
 except for the characters % and _ themselves. These must be
escaped */

contains ::= 'CONTAINS(' scope ',' searchexp ')'
scope ::= unquotedpropname | '.'
searchexp ::= ''' exp '''
exp ::= ['-']term {whitespace ['OR'] whitespace ['-']term}
term ::= word | '"' word {whitespace word} '"'
word ::= /* A string containing no whitespace */
whitespace ::= /* A string of only whitespace*/

between ::= propname ['NOT'] 'BETWEEN' lowerBound ['EXCLUSIVE']
 'AND' upperBound ['EXCLUSIVE']
lowerBound ::= value
upperBound ::= value

Limit ::= 'LIMIT' count ['OFFSET' offset]
count ::= /* Positive integer value */
offset ::= /* Non-negative integer value */

7.3. XPath

The JCR 1.0 specification uses the XPath query language because node structures in JCR are very
analogous to the structure of an XML document. Thus, XPath provides a useful language for selecting and
searching workspace content. And since JCR 1.0 defines a mapping between XML and a workspace view
called the "document view", adapting XPath to workspace content is quite natural.

A JCR XPath query specifies the subset of nodes in a workspace that satisfy the constraints defined in the
query. Constraints can limit the nodes in the results to be those nodes with a specific (primary or mixin) node

Development Guide Volume 2: Governance

126

http://www.jcp.org/en/jsr/detail?id=170

type, with properties having particular values, or to be within a specific subtree of the workspace. The query
also defines how the nodes are to be returned in the result sets using column specifiers and ordering
specifiers.

7.3.1. Extensions to XPath

The hierarchical database offers a bit more functionality in the jcr:contains(...) clauses than required
by the specification. In particular, the second parameter specifies the search expression, and for these full-
text search language expressions are accepted, including wildcard support.

Important

As an aside, the hierarchical database actually implements XPath queries by transforming them into
the equivalent JCR-SQL2 representation. And the JCR-SQL2 language, although often more verbose,
is much more capable of representing complex queries with multiple combinations of type, property,
and path constraints.

7.3.2. Column Specifiers

JCR 1.0 specifies that support is required only for returning column values based upon single-valued, non-
residual properties that are declared on or inherited by the node types specified in the type constraint. The
hierarchical database follows this requirement, and does not specifying residual properties. However, the
hierarchical database does allow multi-valued properties to be specified as result columns. And as per the
specification, the hierarchical database always returns the jcr:path and jcr:score pseudo-columns.

The hierarchical database uses the last location step with an attribute axis to specify the properties that are to
be returned as result columns. Multiple properties are specified with a union. For example, the following table
shows several XPath queries and how they map to JCR-SQL2 queries.

XPath JCR-SQL2
//* SELECT * FROM [nt:base]

//element(*,my:type) SELECT * FROM [my:type]

//element(*,my:type)/@my:title SELECT [my:title] FROM [my:type]

//element(*,my:type)/(@my:title |
@my:text)

SELECT [my:title], [my:text] FROM
[my:type]

//element(*,my:type)/(@my:title union
@my:text)

SELECT [my:title], [my:text] FROM
[my:type]

Specifying result set columns

7.3.3. Type Constraints

JCR 1.0 specifies that support is required only for specifying constraints of one primary type, and it is optional
to support specifying constraints on one (or more) mixin types. The specification also defines that the XPath
element test be used to test against node types, and that it is optional to support element tests on location
steps other than the last one. Type constraints are inherently inheritance-sensitive, in that a constraint against
a particular node type 'X' will be satisfied by nodes explicitly declared to be of type 'X' or of subtypes of 'X'.

The hierarchical database does support using the element test to test against primary or mixin type. The
hierarchical database also only supports using an element test on the last location step. For example, the
following table shows several XPath queries and how they map to JCR-SQL2 queries.

Chapter 7. Query Language Grammars

127

XPath JCR-SQL2
//* SELECT * FROM [nt:base]

//element(*,my:type) SELECT * FROM [my:type]

/jcr:root/nodes/element(*,my:type) SELECT * FROM [my:type]WHERE
PATH([my:type])> LIKE '/nodes/%' {{AND
DEPTH([my:type]) = CAST(2 AS LONG) }}

/jcr:root/nodes//element(*,my:type) SELECT * FROM [my:type]WHERE
PATH([my:type]) LIKE '/nodes/%'

/jcr:root/nodes//element(ex:nodeName,m
y:type)

SELECT * FROM [my:type]WHERE
PATH([my:type]) LIKE '/nodes/%'AND
NAME([my:type]) = 'ex:nodeName'

Specifying type constraints

Note that the JCR-SQL2 language supported by the hierarchical database is far more capable of joining
multiple sets of nodes with different type, property and path constraints.

7.3.4. Property Constraints

JCR 1.0 specifies that attribute tests on the last location step is required, but that predicate tests on any other
location steps are optional.

The hierarchical database does support using attribute tests on the last location step to specify property
constraints, as well as supporting axis and filter predicates on other location steps. For example, the
following table shows several XPath queries and how they map to JCR-SQL2 queries.

XPath JCR-SQL2
//*[] SELECT * FROM [nt:base]WHERE

[nt:base].prop1 IS NOT NULL

//element(*,my:type)[@prop1] SELECT * FROM [my:type]WHERE
[my:type].prop1 IS NOT NULL

//element(*,my:type)
[@prop1=xs:boolean('true')]

SELECT * FROM [my:type]WHERE
[my:type].prop1 = CAST('true' AS
BOOLEAN)

//element(*,my:type)[@id<1 and
@name='john']

SELECT * FROM [my:type]WHERE id < 1
AND name = 'john'

//element(*,my:type)[a/b/@id] SELECT * FROM [my:type]JOIN [nt:base]
as nodeSet1ON ISCHILDNODE(nodeSet1,
[my:type])JOIN [nt:base] as nodeSet2ON
ISCHILDNODE(nodeSet2,nodeSet1)WHERE
(NAME(nodeSet1) = 'a' {{AND
NAME(nodeSet2) = 'b') }} AND nodeSet2.id IS
NOT NULL]

//element(,my:type)[./ { }{}/*/@id] SELECT * FROM [my:type]JOIN [nt:base]
as nodeSet1ON ISCHILDNODE(nodeSet1,
[my:type])JOIN [nt:base] as nodeSet2ON
ISCHILDNODE(nodeSet2,nodeSet1)WHERE
nodeSet2.id IS NOT NULLL

Development Guide Volume 2: Governance

128

//element(*,my:type)[.//@id] SELECT * FROM [my:type]JOIN [nt:base]
as nodeSet1ON
ISDESCENDANTNODE(nodeSet1,
[my:type])WHERE nodeSet2.id IS NOT
NULLL

XPath JCR-SQL2

Specifying property constraints

Section 6.6.3.3 of the JCR 1.0 specification contains an in-depth description of property value constraints
using various comparison operators.

7.3.5. Path Constraints

JCR 1.0 specifies that exact, child node, and descendants-or-self path constraints be supported on the
location steps in an XPath query.

The hierarchical database does support the four kinds of path constraints. For example, the following table
shows several XPath queries and how they map to JCR-SQL2 queries.

XPath JCR-SQL2
/jcr:root/a[1]/b[2] SELECT * FROM [nt:base]WHERE

PATH([nt:base]) = '/a[1]/b[2]'

/jcr:root/a/b[*] SELECT * FROM [nt:base]WHERE
PATH([nt:base]) = '/a[%]/b[%]'

/jcr:root/a[1]/b[*] SELECT * FROM [nt:base]WHERE
PATH([nt:base]) = '/a[%]/b[%]'

/jcr:root/a[2]/b SELECT * FROM [nt:base]WHERE
PATH([nt:base]) = '/a[2]/b[%]'

/jcr:root/a/b[2]//c[4] SELECT * FROM [my:type]WHERE
PATH([nt:base]) = '/a[%]/b[2]/c[4]'OR
PATH(nodeSet1) LIKE
'/a[%]/b[\2]/%/c[\4]'

/jcr:root/a/b//c//d SELECT * FROM [my:type]WHERE
PATH([nt:base]) =
'/a[%]/b[%]/c[%]/d[%]'OR
PATH([nt:base]) LIKE
'/a[%]/b[%]/%/c[%]/d[%]'OR
PATH([nt:base]) LIKE
'/a[%]/b[%]/c[%]/%/d[%]'OR
PATH([nt:base]) LIKE
'/a[%]/b[%]/%/c[%]/%/d[%]'

//element(*,my:type)[@id<1 and
@name='john']

SELECT * FROM [my:type]WHERE id < 1
AND name = 'john'

/jcr:root/a/b//element(*,my:type) SELECT * FROM [my:type]WHERE
PATH([my:type]) = '/a[%]/b[%]/%'

Specifying path constraints

Note that the JCR-SQL2 language supported by the hierarchical database is capable of representing a wider
combination of path constraints, although the XPath expressions are easier to understand and significantly
shorter.

Chapter 7. Query Language Grammars

129

Also, path constraints in XPath do not need to specify wildcards for the same-name-sibling (SNS) indexes, as
XPath should naturally find all nodes regardless of the SNS index, unless the SNS index is explicitly
specified. In other words, any path segment that does not have an explicit SNS index (or an SNS index of
'[%]' or '[]') will match _all SNS index values. However, any segments in the path expression that have an
explicit numeric SNS index will require an exact match. Thus this path constraint:

/a/b/c\[2]/d\[%]/\%/e\[_]

will effectively be converted into

/a[%]/b[%]/c\[2]/d\[%]/\%/e\[_]

This behavior is very different than how JCR-SQL and JCR-SQL2 path constraints are handled, since these
languages interpret a lack of a SNS index as equating to '[1]'. To achieve the XPath-like matching, a query
written in JCR-SQL or JCR-SQL2 would need to explicitly include '[%]' in each path segment where an SNS
index literal is not already specified.

7.3.6. Ordering Specifiers

JCR 1.0 extends the XPath grammar to add support for ordering the results according to the natural ordering
of the values of one or more properties on the nodes.

The hierarchical database does support zero or more ordering specifiers, including whether each specifier is
ascending or descending. If no ordering specifiers are defined, the ordering of the results is not predefined
and may vary (though ordering by score may be used by default). For example, the following table shows
several XPath queries and how they map to JCR-SQL2 queries.

XPath JCR-SQL2
//element(,) order by @title SELECT nodeSet1.titleFROM [nt:base] AS

nodeSet1ORDER BY nodeSet1.title

//element(,) order by jcr:score() SELECT *FROM [nt:base] AS
nodeSet1ORDER BY SCORE(nodeSet1)

//element(*,my:type) order by
jcr:score(my:type)

SELECT *FROM [my:type] AS
nodeSet1ORDER BY SCORE(nodeSet1)

//element(,) order by @jcr:path SELECT jcr:pathFROM [nt:base] AS
nodeSet1ORDER BY PATH(nodeSet1)

//element(,) order by @title,
@jcr:score

SELECT nodeSet1.titleFROM [nt:base] AS
nodeSet1ORDER BY
nodeSet1.title,SCORE(nodeSet1)

Specifying result ordering

Note that the JCR-SQL2 language supported by the hierarchical database has a far richer ORDER BY clause,
allowing the use of any kind of dynamic operand, including ordering upon arithmetic operations of multiple
dynamic operands.

7.3.7. Miscellaneous

JCR 1.0 defines a number of other optional and required features, and these are summarized in this section.

Only abbreviated XPath syntax is supported.

Development Guide Volume 2: Governance

130

Only the child axis (the default axis, represented by '/' in abbreviated syntax), descendant-or-self
axis (represented by '//' in abbreviated syntax), self axis (represented by '.' in abbreviated syntax), and
attribute axis (represent by '@' in abbreviated syntax) are supported.

The text() node test is not supported.

The element() node test is supported.

The jcr:like() function is supported.

The jcr:contains() function is supported.

The jcr:score() function is supported.

The jcr:deref() function is not supported.

7.4. JCR Java Query Object Model

JCR 2.0 introduces a new API for programmatically constructing a query. This API allows the client to
construct the lower-level objects for each part of the query, and is a great fit for applications that would
otherwise need to dynamically generate query expressions using fairly complicated string manipulation.

Using this API is a matter of getting the QueryObjectModelFactory from the session's QueryManager ,
and using the factory to create the various components, starting with the lowest-level components. Then
these lower-level components can be passed to other factory methods to create the higher-level components,
and so on, until finally the createQuery(...) method is called to return the QueryObjectModel .

Important

Although the JCR-SQL2 and Query Object Model API construct queries in very different ways,
executing queries for the two languages is done in nearly the same way. The only difference is that a
JCR-SQL2 query expression must be parsed into an abstract syntax tree (AST), whereas with the
Query Object Model API your application is programmatically creating objects that effectively are the
AST. From that point on, however, all subsequent processing is done in an identical manner for all the
query languages.

Do not consider using the QOM API to get a performance benefit. The JCR-SQL2 parser is very
efficient, and your application code will be far easier to understand and maintain. Where possible, use
JCR-SQL2 query expressions.

7.4.1. Java Query Object Model Example

Here is a simple example that shows how this is done for the simple query SELECT * FROM
[nt:unstructured] AS unstructNodes:

// Obtain the query manager for the session ...
javax.jcr.query.QueryManager queryManager =
session.getWorkspace().getQueryManager();

// Create a query object model factory ...
QueryObjectModelFactory factory = queryManager.getQOMFactory();

Chapter 7. Query Language Grammars

131

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryManager.html
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModel.html

// Create the FROM clause: a selector for the [nt:unstructured] nodes ...
Selector source = factory.selector("nt:unstructured","unstructNodes");

// Create the SELECT clause (we want all columns defined on the node type)
...
Column[] columns = null;

// Create the WHERE clause (we have none for this query) ...
Constraint constraint = null;

// Define the orderings (we have none for this query)...
Ordering[] orderings = null;

// Create the query ...
QueryObjectModel query =
factory.createQuery(source,constraint,orderings,columns);

// Execute the query and get the results ...
// (This is the same as before.)
javax.jcr.QueryResult result = query.execute();

Obviously this is a lot more code than would be required to submit the fixed query expression, but the
purpose of the example is to show how to use the Query Object Model API to build a query that you can
easily understand. In fact, most Query Object Model queries will create the columns, orderings, and
constraints using the QueryObjectModelFactory , whereas the example above assumes all of the
columns, no orderings, and no constraints.

Once your application executes the QueryResult , processing the results is exactly the same as when using
the JCR Query AP. This is because all of the query languages are represented internally and executed in
exactly the same manner. For the sake of completion, here's the code to process the results by iterating over
the nodes:

javax.jcr.NodeIterator nodeIter = result.getNodes();
while (nodeIter.hasNext()) {
 javax.jcr.Node node = nodeIter.nextNode();
 ...
}

or iterating over the rows in the results:

String[] columnNames = result.getColumnNames();
javax.jcr.query.RowIterator rowIter = result.getRows();
while (rowIter.hasNext()) {
 javax.jcr.query.Row row = rowIter.nextRow();
 // Iterate over the column values in each row ...
 javax.jcr.Value[] values = row.getValues();
 for (javax.jcr.Value value : values) {
 ...
 }
 // Or access the column values by name ...
 for (String columnName : columnNames) {
 javax.jcr.Value value = row.getValue(columnName);
 ...
 }
}

Development Guide Volume 2: Governance

132

http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/qom/QueryObjectModelFactory.html

7.5. Full Text Search

There are times when a formal structured query language is overkill, and the easiest way to find the right
content is to perform a search, like you would with a search engine such as Google or Yahoo! This is where
the hierarchical database's full-text search language comes in, because it allows you to use the JCR query
API but with a far simpler, Google-style search grammar.

This query language is actually defined by the JCR 2.0 specification as the full-text search expression
grammar used in the second parameter of the CONTAINS(...) function of the JCR-SQL2 language. We
have made it available as a first-class query language, such that a full-text search query supplied by the user,
full-text-query , is equivalent to executing this JCR-SQL2:

SELECT * FROM [nt:base] WHERE CONTAINS([nt:base],'full-text-query')

This language allows a JCR client to construct a query to find nodes with property values that match the
supplied terms. Nodes that "best" match the terms are returned before nodes that have a lesser match. Of
course, the hierarchical database uses a complex system to analyze the node content and the query terms,
and may perform a number of optimizations, such as (but not limited to) eliminating stop words (e.g., "the",
"a", "and", etc.), treating terms independent of case, and converting words to base forms using a process
called stemming (e.g., "running" into "run", "customers" into "customer").

Search terms can also include phrases by wrapping the phrase with double-quotes. For example, the search
term table "customer invoice" would rank higher those nodes with properties containing the phrase
"customer invoice" than nodes with properties containing only "customer" or "invoice".

Term in the query are implicitly AND-ed together, meaning that the matches occur when a node has property
values that match all of the terms. However, it is also possible to put an "OR" in between two terms where
either of those terms may occur.

By default, all terms are assumed to be positive terms, in the sense that the occurrence of the term will
increase the rank of any nodes containing the value. However, it is possible to specify that terms should not
appear in the results. This is called a negative term , and it reduces the rank of any node whose property
values contain the value. To specify a negative term, prefix the term with a hyphen ('-').

Each term may also contain wildcards to specify the pattern to be matched (or negated). The hierarchical
database supports two different sets of wildcards:

'*' matches zero or more characters, and '?' matches any single character; and

'%' matches zero or more characters, and '_' matches any single character.

The former are wildcards that are more commonly used in various systems (including older JCR repository
implementations), while the latter are the wildcards used in LIKE expressions in both JCR-SQL and JCR-
SQL2. Both families are supported for convenience, and you can also mix and match the various wildcards,
such as ta*bl_ and ta?_ble*. (Of course, placing multiple '*' or '%' characters next to each other offers no
real benefit, as it is equivalent to a single '*' or '%'.)

If you want to use these characters literally in a term and do not want them to be treated as wildcards, they
must be escaped by prefixing them with a '{{}}' character. For example, this full text search expression:

table* 'customer invoice\?'

will would rank higher those nodes with properties containing table* (including the unescaped asterisk as a
wildcard) and those containing the phrase "customer invoice?" (including the unescaped question mark as a
wildcard). To use a literal backslash character, escape it as well.

When using this query language, the QueryResult always contains the jcr:path and jcr:score

Chapter 7. Query Language Grammars

133

http://www.jcp.org/en/jsr/detail?id=283
http://www.day.com/maven/javax.jcr/javadocs/jcr-2.0/javax/jcr/query/QueryResult.html

columns.

Warning

The hierarchical database handles leading and trailing wildcards in very different ways. When trailing
wildcards are used, even a few characters preceding the wildcard can be used to quickly narrow down
the potential results using the internal reverse indexes. However, when terms start with a wildcard the
hierarchical database cannot use the internal reverse indexes to help narrow the results. Thus,
performing a search with a leading wildcard must be done in a pretty inefficient manner in a process
that is something analogous to a relational database's table scan. Where possible, avoid using leading
wildcards in your search terms.

7.5.1. Full Text Search Grammar

The grammar for this full-text search language is specified in Section 6.7.19 of the JCR 2.0 specification , but
it is also included here as a convenience.

Important

The grammar is presented using the same EBNF nomenclature as used in the JCR 2.0 specification.
Terms are surrounded by matching square brackets (e.g., '[' and ']') denote optional terms that
appear zero or one times. Terms surrounded by matching braces (e.g., '}' and '{') denote terms that
appear zero or more times. Parentheses are used to identify groups, and are often used to surround
possible values.

FulltextSearch ::= Disjunct {Space 'OR' Space Disjunct}

Disjunct ::= Term {Space Term}

Term ::= ['-'] SimpleTerm

SimpleTerm ::= Word | '"' Word {Space Word} '"'

Word ::= NonSpaceChar {NonSpaceChar}

Space ::= SpaceChar {SpaceChar}

NonSpaceChar ::= Char - SpaceChar /* Any Char except SpaceChar */

SpaceChar ::= ' '

Char ::= /* Any character */

As you can see, this is a pretty simple and straightforward query language. But this language makes it
extremely easy to find all the nodes in the repository that match a set of terms.

Development Guide Volume 2: Governance

134

http://www.jcp.org/en/jsr/detail?id=283

Chapter 8. Built-in Node Types

The JCR 2.0 specification requires that repositories have a number of node types immediately available for
use by client applications. The hierarchical database defines a number of additional node types that are
installed into every repository. None of these node types can be changed or modified.

8.1. Standard Node Types

The following is the CND representation of the standard JCR built-in node types:

<jcr='http://www.jcp.org/jcr/1.0'>
<nt='http://www.jcp.org/jcr/nt/1.0'>
<mix='http://www.jcp.org/jcr/mix/1.0'>

// ---

// Pre-defined Node Types
// ---

[nt:base] abstract
 - jcr:primaryType (name) mandatory autocreated
 protected compute
 - jcr:mixinTypes (name) protected multiple compute

[nt:unstructured]
 orderable
 - * (undefined) multiple
 - * (undefined)
 + * (nt:base) = nt:unstructured sns version

[mix:created] mixin
 - jcr:created (date) protected
 - jcr:createdBy (string) protected

[nt:hierarchyNode] > mix:created abstract

[nt:file] > nt:hierarchyNode
 + jcr:content (nt:base) primary mandatory

[nt:linkedFile] > nt:hierarchyNode
 - jcr:content (reference) primary mandatory

[nt:folder] > nt:hierarchyNode
 + * (nt:hierarchyNode) version

[mix:referenceable] mixin
 - jcr:uuid (string) mandatory autocreated protected initialize

[mix:mimeType] mixin
 - jcr:mimeType (string)
 - jcr:encoding (string)

[mix:lastModified] mixin

Chapter 8. Built-in Node Types

135

 - jcr:lastModified (date)
 - jcr:lastModifiedBy (string)

[nt:resource] > mix:mimeType, mix:lastModified
 - jcr:data (binary) primary mandatory

[nt:nodeType]
 - jcr:nodeTypeName (name) mandatory protected copy
 - jcr:supertypes (name) multiple protected copy
 - jcr:isAbstract (boolean) mandatory protected copy
 - jcr:isMixin (boolean) mandatory protected copy
 - jcr:isQueryable (boolean) mandatory protected copy
 - jcr:hasOrderableChildNodes (boolean) mandatory protected copy
 - jcr:primaryItemName (name) protected copy
 + jcr:propertyDefinition (nt:propertyDefinition) = nt:propertyDefinition
sns protected copy
 + jcr:childNodeDefinition (nt:childNodeDefinition) =
nt:childNodeDefinition sns protected copy

[nt:propertyDefinition]
 - jcr:name (name) protected
 - jcr:autoCreated (boolean) mandatory protected
 - jcr:mandatory (boolean) mandatory protected
 - jcr:isFullTextSearchable (boolean) mandatory protected
 - jcr:isQueryOrderable (boolean) mandatory protected
 - jcr:onParentVersion (string) mandatory protected
 < 'COPY', 'VERSION', 'INITIALIZE', 'COMPUTE',
 'IGNORE', 'ABORT'
 - jcr:protected (boolean) mandatory protected
 - jcr:requiredType (string) mandatory protected
 < 'STRING', 'URI', 'BINARY', 'LONG', 'DOUBLE', 'DECIMAL', 'BOOLEAN',
 'DATE', 'NAME', 'PATH', 'REFERENCE', 'WEAKREFERENCE', 'UNDEFINED'
 - jcr:valueConstraints (string) multiple protected
 - jcr:availableQueryOperators (name) mandatory multiple protected
 - jcr:defaultValues (undefined) multiple protected
 - jcr:multiple (boolean) mandatory protected

[nt:childNodeDefinition]
 - jcr:name (name) protected
 - jcr:autoCreated (boolean) mandatory protected
 - jcr:mandatory (boolean) mandatory protected
 - jcr:onParentVersion (string) mandatory protected
 < 'COPY', 'VERSION', 'INITIALIZE', 'COMPUTE',
 'IGNORE', 'ABORT'
 - jcr:protected (boolean) mandatory protected
 - jcr:requiredPrimaryTypes (name) = 'nt:base' mandatory protected multiple
 - jcr:defaultPrimaryType (name) protected
 - jcr:sameNameSiblings (boolean) mandatory protected

[nt:versionHistory] > mix:referenceable
 - jcr:versionableUuid (string) mandatory autocreated protected abort
 - jcr:copiedFrom (weakreference) protected abort < 'nt:version'
 + jcr:rootVersion (nt:version) = nt:version mandatory autocreated
protected abort
 + jcr:versionLabels (nt:versionLabels) = nt:versionLabels mandatory
autocreated protected abort

Development Guide Volume 2: Governance

136

 + * (nt:version) = nt:version protected abort

[nt:versionLabels]
 - * (reference) protected abort < 'nt:version'

[nt:version] > mix:referenceable
 - jcr:created (date) mandatory autocreated protected abort
 - jcr:predecessors (reference) protected multiple abort < 'nt:version'
 - jcr:successors (reference) protected multiple abort < 'nt:version'
 - jcr:activity (reference) protected abort < 'nt:activity'
 + jcr:frozenNode (nt:frozenNode) protected abort

[nt:frozenNode] > mix:referenceable
 orderable
 - jcr:frozenPrimaryType (name) mandatory autocreated protected abort
 - jcr:frozenMixinTypes (name) protected multiple abort
 - jcr:frozenUuid (string) mandatory autocreated protected abort
 - * (undefined) protected abort
 - * (undefined) protected multiple abort
 + * (nt:base) protected sns abort

[nt:versionedChild]
 - jcr:childVersionHistory (reference) mandatory autocreated protected
abort < 'nt:versionHistory'

[nt:query]
 - jcr:statement (string)
 - jcr:language (string)

[nt:activity] > mix:referenceable
 - jcr:activityTitle (string) mandatory autocreated protected

[mix:simpleVersionable] mixin
 - jcr:isCheckedOut (boolean) = 'true' mandatory autocreated protected
ignore

[mix:versionable] > mix:simpleVersionable, mix:referenceable mixin
 - jcr:versionHistory (reference) mandatory protected ignore <
'nt:versionHistory'
 - jcr:baseVersion (reference) mandatory protected ignore < 'nt:version'
 - jcr:predecessors (reference) mandatory protected multiple ignore <
'nt:version'
 - jcr:mergeFailed (reference) protected multiple abort
 - jcr:activity (reference) protected < 'nt:version'
 - jcr:configuration (reference) protected ignore < 'nt:configuration'

[nt:configuration] > mix:versionable
 - jcr:root (reference) mandatory autocreated protected

[nt:address]
 - jcr:protocol (string)
 - jcr:host (string)
 - jcr:port (string)
 - jcr:repository (string)

Chapter 8. Built-in Node Types

137

 - jcr:workspace (string)
 - jcr:path (path)
 - jcr:id (weakreference)

[nt:naturalText]
 - jcr:text (string)
 - jcr:messageId (string)

// ---

// Pre-defined Mixins
// ---

[mix:etag] mixin
 - jcr:etag (string) protected autocreated

[mix:lockable] mixin
 - jcr:lockOwner (string) protected ignore
 - jcr:lockIsDeep (boolean) protected ignore

[mix:lifecycle] mixin
 - jcr:lifecyclePolicy (reference) protected initialize
 - jcr:currentLifecycleState (string) protected initialize

[mix:managedRetention] > mix:referenceable mixin
 - jcr:hold (string) protected multiple
 - jcr:isDeep (boolean) protected multiple
 - jcr:retentionPolicy (reference) protected

[mix:shareable] > mix:referenceable mixin

[mix:title] mixin
 - jcr:title (string)
 - jcr:description (string)

[mix:language] mixin
 - jcr:language (string)

8.2. Hierarchical Database Built-in Node Types

The following is the CND representation of built-in node types specific to the hierarchical database. Note that
many of these outline the structure of nodes under the /jcr:system area of the repository and are
protected (meaning clients can view but not directly modify their content).

//--

// N A M E S P A C E S
//--

<jcr = "http://www.jcp.org/jcr/1.0">
<nt = "http://www.jcp.org/jcr/nt/1.0">
<mix = "http://www.jcp.org/jcr/mix/1.0">
<mode = "http://www.modeshape.org/1.0">

Development Guide Volume 2: Governance

138

//--

// N O D E T Y P E S
//--

[mode:namespace] > nt:base
- mode:uri (string) primary protected version
- mode:generated (boolean) protected version

[mode:namespaces] > nt:base
+ * (mode:namespace) = mode:namespace protected version

[mode:nodeTypes] > nt:base
+ * (nt:nodeType) = nt:nodeType protected version

[mode:lock] > nt:base
- mode:lockedKey (string) protected ignore
- jcr:lockOwner (string) protected ignore
- mode:lockingSession (string) protected ignore
- mode:expirationDate (date) protected ignore
- mode:sessionScope (boolean) protected ignore
- jcr:isDeep (boolean) protected ignore
- mode:isHeldBySession (boolean) protected ignore
- mode:workspace (string) protected ignore

[mode:locks] > nt:base
+ * (mode:lock) = mode:lock protected ignore

[mode:versionHistoryFolder] > nt:base
+ * (nt:versionHistory) = nt:versionHistory protected ignore
+ * (mode:versionHistoryFolder) protected ignore

[mode:versionStorage] > mode:versionHistoryFolder

[mode:system] > nt:base
+ mode:namespaces (mode:namespaces) = mode:namespaces autocreated mandatory
protected abort
+ mode:locks (mode:locks) = mode:locks autocreated mandatory protected abort
+ jcr:nodeTypes (mode:nodeTypes) = mode:nodeTypes autocreated mandatory
protected abort
+ jcr:versionStorage (mode:versionStorage) = mode:versionStorage autocreated
mandatory protected abort

[mode:root] > nt:base, mix:referenceable orderable
- * (undefined) multiple version
- * (undefined) version
+ jcr:system (mode:system) = mode:system autocreated mandatory protected
ignore
+ * (nt:base) = nt:unstructured sns version

// This is the same as 'nt:resource' (which should generally be used
instead)...
[mode:resource] > nt:base, mix:mimeType, mix:lastModified
- jcr:data (binary) primary mandatory

Chapter 8. Built-in Node Types

139

[mode:share] > mix:referenceable // Used for non-original shared nodes,
but never really exposed to JCR clients
- mode:sharedUuid (reference) mandatory protected initialize

[mode:hashed] mixin
- mode:sha1 (string)

// A marker node type that can be used to denote areas into which files can
be published.
// Published areas have optional titles and descriptions.
[mode:publishArea] > mix:title mixin

[mode:derived] mixin
- mode:derivedFrom (path) // the location of the original information from
which this was derived
- mode:derivedAt (date) // the timestamp of the last change to the original
information from which this was derived

Development Guide Volume 2: Governance

140

Chapter 9. Built-in Sequencers

9.1. Compact Node Type (CND) File Sequencer

The Compact Node Definition (CND) File Sequencer processes JCR CND files to extract node definitions
with their property definitions, and inserts these into the repository using aliases of the JCR built-in types. The
node structure generated by this sequencer is equivalent to the node structure used in
/jcr:system/jcr:nodeTypes .

9.1.1. CND File Sequencer Example

As an example, consider the following CND file:

<mode = "http://www.modeshape.org/1.0">

[mode:example] mixin
- mode:name (string) multiple copy
+ mode:child (mode:example) = mode:example version

The resulting graph structure contains the node type information from the CND file above. Note that
comments are not sequenced.

<mode:example jcr:primaryType=cnd:nodeType
 cnd:isQueryable=true
 cnd:hasOrderableChildNodes=false
 cnd:nodeTypeName=mode:example
 cnd:supertypes=[]
 cnd:isAbstract=false
 cnd:isMixin=true/>

 <cnd:propertyDefinition cnd:requiredType=STRING
 jcr:primaryType=cnd:propertyDefinition
 cnd:multiple=true
 cnd:autoCreated=false
 cnd:onParentVersion=COPY
 cnd:mandatory=false
 cnd:defaultValues=[]
 cnd:isFullTextSearchable=true
 cnd:isQueryOrderable=true
 cnd:name=mode:name
 cnd:availableQueryOperators=[]
 cnd:protected=false
 cnd:valueConstraints=[] />

 <cnd:childNodeDefinition jcr:primaryType=cnd:childNodeDefinition
 cnd:sameNameSiblings=false
 cnd:autoCreated=false
 cnd:onParentVersion=VERSION
 cnd:defaultPrimaryType=mode:example
 cnd:mandatory=false
 cnd:name=mode:child
 cnd:protected=false
 cnd:requiredPrimaryTypes=[mode:example] />

Chapter 9. Built-in Sequencers

141

9.1.2. Using the CND File Sequencer

The CND File Sequencer can be added to the repository configuration like so:

{
 "name" : "CNDSequencer Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : {
 "CND Sequencer" : {
 "description" : "CND Sequencer Same Location",
 "classname" : "CNDSequencer",
 "pathExpressions" : [
"default://(*.cnd)/jcr:content[@jcr:data]"]
 }
 }
 }
}

As with other sequencers, you may use a more restrictive input path expression. For example, if you only
want to sequence the CND files stored anywhere under the /global/nodeTypes/cnd area in the
"metadata" workspace, then the path expression might be this:

metadata:/global/nodeTypes/cnd//(*.cnd)/jcr:content[@jcr:data]

9.2. Data Definition Language (DDL) File Sequencer

The Data Definition Language (DDL) File Sequencer is capable of parsing the more important DDL
statements from SQL-92, Oracle, Derby, and PostgreSQL, and constructing a graph structure containing a
structured representation of these statements. The resulting graph structure is largely the same for all
dialects, though some dialects have non-standard additions to their grammar, and thus require dialect-
specific additions to the graph structure.

The sequencer is designed to behave as intelligently as possible with as little configuration. Thus, the
sequencer automatically determines the dialect used by a given DDL stream. This can be tricky, of course,
since most dialects are very similar and the distinguishing features of a dialect may only be apparent in some
of the statements.

To get around this, the sequencer uses a "best fit" algorithm: run the DDL stream through the parser for each
of the dialects, and determine which parser was able to successfully read the greatest number of statements
and tokens.

Note

It is possible to define which DDL dialects (or grammars) should be considered during sequencing
using the "grammars" property in the sequencer configuration. Set the values of this property to the
names of the grammars (e.g., "oracle", "postgres", "sql92", or "derby"), specified in the order they
should be used. To use a custom DDL parser (not provided by the hierarchical database) provide the
fully-qualified class name of the implementation class. If this custom parser implementation is not
found on the default classpath, additional classpath URLs can be specified using the "classpath"
property of the sequencer.

Development Guide Volume 2: Governance

142

One useful feature of this sequencer is that, although only a subset of the (more common) DDL statements
are supported, the sequencer is still extremely functional since it adds all statements into the output graph
(the statement text and the position in the DDL file). Thus, if a DDL file contains statements the sequencer
understands and statements the sequencer does not understand, the graph will still contain all statements,
where those statements understood by the sequencer will have full detail. Since the underlying parsers are
able to operate upon a single statement, it is possible to go back later (after the parsers have been enhanced
to support additional DDL statements) and re-parse only those incomplete statements in the graph.

At this time, the sequencer supports SQL-92 standard DDL as well as dialects from Oracle, Derby, and
PostgreSQL. It supports:

Detailed parsing of CREATE SCHEMA, CREATE TABLE and ALTER TABLE.

Partial parsing of DROP statements

General parsing of remaining schema definition statements (i.e. CREATE VIEW, CREATE DOMAIN, etc.
Note that the sequencer does not perform detailed parsing of SQL (i.e. SELECT, INSERT, UPDATE,
etc....) statements.

9.2.1. DDL File Sequencer Example

Below is an example DDL schema definition statement containing table and view definition statements.

CREATE SCHEMA hollywood
CREATE TABLE films (title varchar(255), release date, producerName
varchar(255))
CREATE VIEW winners AS SELECT title, release FROM films WHERE producerName
IS NOT NULL;

The resulting graph structure contains the raw statement expression, pertinent table, column and key
reference information and position of the statement in the text stream (e.g., line number, column number and
character index) so the statement can be tied back to the original DDL:

<nt:unstructured jcr:name="statements"
 jcr:mixinTypes = "mode:derived"
 ddl:parserId="POSTGRES">
 <nt:unstructured jcr:name="hollywood"
jcr:mixinTypes="ddl:createSchemaStatement"
 ddl:startLineNumber="1"
 ddl:startColumnNumber="1"
 ddl:expression="CREATE SCHEMA hollywood"
 ddl:startCharIndex="0">
 <nt:unstructured jcr:name="films"
jcr:mixinTypes="ddl:createTableStatement"
 ddl:startLineNumber="2"
 ddl:startColumnNumber="5"
 ddl:expression="CREATE TABLE films (title varchar(255),
release date, producerName varchar(255))"
 ddl:startCharIndex="28"/>
 <nt:unstructured jcr:name="title" jcr:mixinTypes="ddl:columnDefinition"
 ddl:datatypeName="VARCHAR"
 ddl:datatypeLength="255"/>
 <nt:unstructured jcr:name="release" jcr:mixinTypes="ddl:columnDefinition"
 ddl:datatypeName="DATE"/>
 <nt:unstructured jcr:name="producerName"
jcr:mixinTypes="ddl:columnDefinition"

Chapter 9. Built-in Sequencers

143

 ddl:datatypeName="VARCHAR"
 ddl:datatypeLength="255"/>
 <nt:unstructured jcr:name="winners"
jcr:mixinTypes="ddl:createViewStatement"
 ddl:startLineNumber="3"
 ddl:startColumnNumber="5"
 ddl:expression="CREATE VIEW winners AS SELECT title,
release FROM films WHERE producerName IS NOT NULL;"
 ddl:queryExpression="SELECT title, release FROM films
WHERE producerName IS NOT NULL"
 ddl:startCharIndex="113"/>
</nt:unstructured>

Note that all nodes are of type nt:unstructured while the type of statement is identified using mixins.
Also, each of the nodes representing a statement contain: a ddl:expression property with the exact
statement as it appeared in the original DDL stream; a ddl:startLineNumber and
ddl:startColumnNumber property defining the position in the original DDL stream of the first character in
the expression; and a ddl:startCharIndex property that defines the integral index of the first character in
the expression as found in the DDL stream. All of these properties make sure the statement can be traced
back to its location in the original DDL.

9.2.2. Using the DDL File Sequencer

To use the DDL File Sequencer, include the modeshape-sequencer-ddl JAR in your application and
configure the repository to use this sequencer using something similar to:

{
 "name" : "DdlSequencer Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : [
 {
 "description" : "Ddl sequencer test",
 "classname" : "DdlSequencer",
 "pathExpressions" : [
"default://(*.ddl)/jcr:content[@jcr:data] => default:/ddl"]
 }
]
 }
}

This will use all of the built-in grammars (e.g., "sql92", "oracle", "postgres", and "derby"). To specify a
different order or subset of the grammars, use the grammars parameter. Here's an example that uses the
Standard grammar followed by the PostgreSQL grammar:

{
 "name" : "DdlSequencer Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : [
 {
 "description" : "Ddl sequencer test",
 "classname" : "DdlSequencer",
 "grammars" : ["sql92", "postgres"],
Â "pathExpressions" : [

Development Guide Volume 2: Governance

144

"default://(*.ddl)/jcr:content[@jcr:data] => default:/ddl"]
 }
]
 }
}

To use a custom implementation, use the fully-qualified name of the implementation class (which must have
a no-arg constructor) as the name of the grammar:

{
 "name" : "DdlSequencer Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : {
 "DDL Sequencer" : {
 "description" : "Ddl sequencer test",
 "classname" : "DdlSequencer",
 "grammars" : ["sql92", "postgres",
"org.example.ddl.MyCustomDdlParser"],
 "pathExpressions" : [
"default://(*.ddl)/jcr:content[@jcr:data] => default:/ddl"]
 }
 }
 }
}

9.3. Text File Sequencer

Text sequencers extract data from text streams. There are separate sequencers for character-delimited
sequencing and fixed width sequencing, but both treat the incoming text stream as a series of rows
(separated by line-terminators, as defined in BufferedReader .readLine() with each row consisting of one or
more columns. As noted above, each text sequencer provides its own mechanism for splitting the row into
columns.

9.3.1. Abstract Text Sequencer

When using the Abstract Text Sequencer, the default row factory creates one node in the output location for
each row sequenced from the source and adds each column with the row as a child node of the row node.
The output graph takes the following form (all nodes have primary type nt:unstructured):

<graph root jcr:mixinTypes = mode:derived,
 mode:derivedAt="2011-05-13T13:12:03.925Z",
 mode:derivedFrom="/files/foo.dat">
 + text:row[1]
 | + text:column[1] (jcr:mixinTypes = text:column, text:data =
<column1 data>)
 | + ...
 | + text:column[n] (jcr:mixinTypes = text:column, text:data =
<columnN data>)
 + ...
 + text:row[m]
 + text:column[1] (jcr:mixinTypes = text:column, text:data =

Chapter 9. Built-in Sequencers

145

http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html

<column1 data>)
 + ...
 + text:column[n] (jcr:mixinTypes = text:column, text:data =
<columnN data>)

9.3.2. Abstract Text Sequencer Properties

The AbstractTextSequencer class provides a number of JavaBean properties that are common to both of
the concrete text sequencer classes:

Table 9.1. Abstract Text Sequencer Properties

Property Description
commentMarker Optional property that, if set, indicates that any line

beginning with exactly this string should be treated
as a comment and should not be processed further.
If this value is null, then all lines will be sequenced.
The default value for this property is null

maximumLinesToRead Optional property that, if set, limits the number of
lines that will be read during sequencing. Additional
lines will be ignored. If this value is non-positive, all
lines will be read and sequenced. Comment lines
are not counted towards this total. The default value
of this property is -1 (indicating that all lines should
be read and sequenced).

rowFactoryClassName Optional property that, if set, provides the fully
qualified name of a class that provides a custom
implementation of the RowFactory interface. This
class must have a no-argument, public constructor.
If set, an instance of this class will be created each
time that the sequencer sequences an input stream
and will be used to provide the output structure of
the graph. If this property is set to null, a default
implementation will be used. The default value of
this property is null.

9.3.3. Delimited Text Sequencer

The Delimited Text Sequencer splits rows into columns based on a regular expression pattern. Although the
default pattern is a comma, any regular expression can be provided allowing for more sophisticated splitting
patterns.

9.3.4. Delimited Text Sequencer Properties

The DelimitedTextSequencer class provides an additional JavaBean property to override the default
regular expression pattern:

Table 9.2. DelimitedTextSequencer properties

Property Description

Development Guide Volume 2: Governance

146

splitPattern Optional property that, if set, sets the regular
expression pattern that is used to split each row into
columns. This property may not be set to null and
defaults to ",".

Property Description

9.3.5. Using the Delimited Text Sequencer

To use the Delimited Text Sequencer, include the modeshape-sequencer-text JAR in your application
and configure the repository to use this sequencer using something similar to:

{
 "name" : "Text Sequencers Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : [
 {
 "name" : "Delimited text sequencer",
 "classname" : "delimitedtext",
 "pathExpression" : "default:/(*.csv)/jcr:content[@jcr:data]
=> /delimited",
 "commentMarker" : "#"
 }
]
 }
}

9.3.6. Fixed Width Text Sequencer

The Fixed Width Text Sequencer splits rows into columns based on predefined positions. The default setting
is to have a single column per row.

9.3.7. Fixed Width Text Sequencer Properties

The FixedWidthTextSequencer class provides an additional JavaBean property to override the default
start positions for each column.

Table 9.3. FixedWidthTextSequencer Properties

Property Description
columnStartPositions Optional property that, if set, specifies an array of

integers where each value represents the start
position of each column after the first (the start
position for the first column never needs to be
specified, since it is always '0'). The default value is
an empty array, implying that each row should be
treated as a single column. This property may not
be set to null.

9.3.8. Using the Fixed Width Text Sequencer

Chapter 9. Built-in Sequencers

147

To use the Fixed Width Text Sequencer, include the modeshape-sequencer-text JAR in your application
configure the repository to use this sequencer using something similar to:

{
 "name" : "Text Sequencers Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : {
 "Fixed Width Text Sequencer" : {
 "classname" : "fixedwidthtext",
 "pathExpressions" : [
"default:/(*.txt)/jcr:content[@jcr:data] => /fixed"],
 "columnStartPositions" : [3,6],
 "commentMarker" : "#"
 }
 }
 }
}

9.4. Web Service Definition Language (WSDL) File Sequencer

The Web Service Definition Language (WSDL) File Sequencer can parse WSDL files that adhere to the
W3C's Web Service Definition Language (WSDL) 1.1 specification, and output a representation of the WSDL
file's messages, port types, bindings, services, types (including embedded XML Schemas), documentation,
and extension elements (including HTTP, SOAP and MIME bindings). This derived information is intended to
mirror the structure and semantics of the actual WSDL files while also making it possible for users to easily
navigate, query and search over this derived information. This sequencer captures the namespace and
names of all referenced components, and will resolve references to components appearing within the same
file.

The WSDL specification allows for a fair amount of variation in WSDL files, and consequently this variation is
reflected in the derived output structure.

9.4.1. WSDL File Sequencer Example

Consider an example WSDL file from the WSDL 1.1 specification :

<?xml version="1.0" encoding="ISO-8859-1" ?>
<?xml version="1.0"?>
<definitions name="StockQuote"
 targetNamespace="http://example.com/stockquote.wsdl"
 xmlns:tns="http://example.com/stockquote.wsdl"
 xmlns:xsd1="http://example.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema targetNamespace="http://example.com/stockquote.xsd"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="TradePriceRequest">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>

Development Guide Volume 2: Governance

148

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl#_wsdl

 </complexType>
 </element>
 <element name="TradePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetLastTradePriceInput">
 <part name="body" element="xsd1:TradePriceRequest"/>
 </message>

 <message name="GetLastTradePriceOutput">
 <part name="body" element="xsd1:TradePrice"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetLastTradePrice">
 <input message="tns:GetLastTradePriceInput"/>
 <output message="tns:GetLastTradePriceOutput"/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastTradePrice">
 <soap:operation
 soapAction="http://example.com/GetLastTradePrice"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteBinding">
 <soap:address location="http://example.com/stockquote"/>
 </port>
 </service>
</definitions>

This WSDL definition includes an embedded XML Schema that defines the structure of two XML elements
used in the web service messages, and it defines a 'StockQuotePortType' port type with input and output
messages, a SOAP binding, and a SOAP service.

Within the wsdl:messages container node are all of the messages. In this case, there are two: the
GetLastTradePriceInput input message and GetLastTradePriceOutput output message for the

Chapter 9. Built-in Sequencers

149

GetLastTracePrice operation defined a bit later in the structure. Note how these messages contain the
name, namespace URI, and REFERENCE to the corresponding element node in the embedded schema
content. (If the element reference could not be resolved, REFERENCE property would not be set.)

Within the wsdl:portTypes container node are all of the port types. In this example, there is one: the
StockQuotePortType that contains a single GetLastTradePrice operation. Here, the operation's input
and output reference the corresponding message nodes vi the name, namespace URI, and REFERENCE
property. Again, the REFERENCE property would not be set if the input and/or output use a message that is
not in this WSDL file.

Within the wsdl:bindings container node are all of the bindings defined in the WSDL. In this example,
there is a single binding that uses SOAP extensions, which describe all of the SOAP-specific information for
the port type. The sequencer also supports HTTP and MIME extensions. And node how the input, output and
faults of each binding operation reference (using the name, namespace URI, and REFERENCE properties)
the corresponding input, output and fault (respectively) in the correct port type.

Finally, within the wsdl:services container node are all of the services defined in the WSDL. In this
example, there is a single SOAP service that references the StockQuotePortType port type.

This example shows the basic structure this sequencer derives from WSDL 1.1 files. Not only does this
structure mirror that of the actual WSDL file, but it makes this structure easy to navigate, search and query,
especially when it includes the names and namespace URIs of the referenced components (and setting
REFERENCE properties to the referenced component where possible).

9.4.2. WSDL File Sequencer Node Types

The WSDL 1.1 sequencer follows JCR best-practices by defining all nodes to have a primary type that allows
any single or multi-valued property, meaning it is possible and valid for any node to have any property (with
single or multiple values). This sequencer does not add any such properties or nodes, but you are free to
annotate the structure as needed.

9.4.3. Using the WSDL File Sequencer

To use the WSDL File Sequencer, include the appropriate version of the Maven artifact with a
org.modeshape group ID and modeshape-sequencer-wsdl artifact ID and configure your repository
similar to:

{
 "name" : "WSDL Sequencer Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : {
 "WSDL Sequencer" : {
 "classname" : "wsdlsequencer",
 "pathExpressions" : [
"default:/(*.wsdl)/jcr:content[@jcr:data] => /wsdl"]
 }
 }
 }
}

9.5. Extensible Markup Language (XML) File Sequencer

Development Guide Volume 2: Governance

150

The Extensible Markup Language (XML) File Sequencer stores the structure and data of an XML file into the
repository. DTD, entity, comments, and other content are maintained by the sequencer in the output
structure.

9.5.1. XML File Sequencer Example

For this XML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.4//EN" "http://www.oasis-
open.org/docbook/xml/4.4/docbookx.dtd" [
<!ENTITY % RH-ENTITIES SYSTEM "Common_Config/rh-entities.ent">
<!ENTITY versionNumber "0.1">
<!ENTITY copyrightYear "2008">
<!ENTITY copyrightHolder "Red Hat Middleware, LLC.">]>
<?target content ?>
<?target2 other stuff ?>
<Cars xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <!-- This is a comment -->
 <Hybrid>
 <car jcr:name="Toyota Prius"/>
 </Hybrid>
 <Sports>
 </Sports>
</Cars>

The sequencer will generate this content (assuming its output is redirected to xml/myxml)

<xml jcr:primaryType=nt:unstructured
 <myxml jcr:primaryType="modexml:document"
 jcr:mixinTypes="mode:derived"
 mode:derivedAt="2011-05-13T13:12:03.925Z"
 mode:derivedFrom="/files/docForReferenceGuide.xml"
 modedtd:name="book"
 modedtd:publicId="-//OASIS//DTD DocBook XML V4.4//EN"
 modedtd:systemId="http://www.oasis-
open.org/docbook/xml/4.4/docbookx.dtd">
 <modedtd:entity jcr:primaryType="modedtd:entity"
 modedtd:name="%RH-ENTITIES"
 modedtd:systemId="Common_Config/rh-entities.ent" />
 <modedtd:entity[2] jcr:primaryType="modedtd:entity"
 modedtd:name="versionNumber"
 modedtd:value="0.1" />
 <modedtd:entity[3] jcr:primaryType="modedtd:entity"
 modedtd:name="copyrightYear"
 modedtd:value="2008" />
 <modedtd:entity[4] jcr:primaryType="modedtd:entity"
 modedtd:name="copyrightHolder"
 modedtd:value="Red Hat Middleware, LLC." />
 <modexml:processingInstruction
jcr:primaryType="modexml:processingInstruction"

modexml:processingInstructionContent="content"
 modexml:target="target" />
 <modexml:processingInstruction[2]

Chapter 9. Built-in Sequencers

151

jcr:primaryType="modexml:processingInstruction"

modexml:processingInstructionContent="other stuff"
 modexml:target="target2" />
 <Cars jcr:primaryType="modexml:element">
 <modexml:comment jcr:primaryType="modexml:comment"
 modexml:commentContent="This is a comment" />
 <Hybrid jcr:primaryType="modexml:element">
 <car jcr:primaryType="modexml:element" />
 </Hybrid>
 <Sports jcr:primaryType="modexml:element" />
 </Cars>
</myxml>

9.5.2. XML File Sequencer CND

The CND used by this sequencer is provided below. Note that the XML sequencer will parse CDATA into its
own node in the sequenced output even though the example above does not explicitly demonstrate this.

//--

// N A M E S P A C E S
//--

<jcr='http://www.jcp.org/jcr/1.0'>
<nt='http://www.jcp.org/jcr/nt/1.0'>
<mix='http://www.jcp.org/jcr/mix/1.0'>
<modexml='http://www.modeshape.org/xml/1.0'>
<modedtd='http://www.modeshape.org/dtd/1.0'>

//--

// N O D E T Y P E S
//--

[modexml:document] > nt:unstructured, mix:mimeType
 - modexml:cDataContent (string)

[modexml:comment] > nt:unstructured
 - modexml:commentContent (string)

[modexml:element] > nt:unstructured

[modexml:elementContent] > nt:unstructured
 - modexml:elementContent (string)

[modexml:cData] > nt:unstructured
 - modexml:cDataContent (string)

[modexml:processingInstruction] > nt:unstructured
 - modexml:processingInstruction (string)
 - modexml:target (string)

[modedtd:entity] > nt:unstructured

Development Guide Volume 2: Governance

152

 - modexml:name (string)
 - modexml:value (string)
 - modexml:publicId (string)
 - modexml:systemId (string)

9.5.3. Using the XML File Sequencer

To use the XML File Sequencer, include modeshape-sequencer-xml.jar in your classpath and configure
your repository similar to:

{
 "name" : "XML Sequencer Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : {
 "XML Sequencer" : {
 "classname" : "xmlsequencer",
 "pathExpressions" : [
"default:/(*.xml)/jcr:content[@jcr:data] => /xml"]
 }
 }
 }
}

9.6. XML Schema Document (XSD) File Sequencer

The XML Schema Document (XSD) File Sequencer can parse XML Schema Documents that adhere to the
W3C's XML Schema Part 1 and Part 2 specifications, and output a representation of the XSD's attribute
declarations, element declarations, simple type definitions, complex type definitions, import statements,
include statements, attribute group declarations, annotations, other components, and even attributes with a
non-schema namespace. This derived information is intended to accurately reflect the structure and
semantics of the XSD files while also making it possible for users to easily navigate, query and search over
this derived information. This sequencer captures the namespace and names of all referenced components,
and will resolve references to components appearing within the same files.

The XML Schema specification is powerful, flexible, rich, and complicated. This means that many XML
Schema Documents themselves are complicated. But it also means that there is a lot of variation in XSDs,
and consequently there is a lot of variation in the output structure that this sequencer derives from XSD files.

9.6.1. XSD File Sequencer Example

Consider an example XML Schema Document taken from the XML Schema Primer :

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:annotation>
 <xsd:documentation xml:lang="en">
 Purchase order schema for Example.com.
 Copyright 2000 Example.com. All rights reserved.
 </xsd:documentation>
 </xsd:annotation>

Chapter 9. Built-in Sequencers

153

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-0/

 <xsd:element name="purchaseOrder" type="PurchaseOrderType"/>

 <xsd:element name="comment" type="xsd:string"/>

 <xsd:complexType name="PurchaseOrderType">
 <xsd:sequence>
 <xsd:element name="shipTo" type="USAddress"/>
 <xsd:element name="billTo" type="USAddress"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="items" type="Items"/>
 </xsd:sequence>
 <xsd:attribute name="orderDate" type="xsd:date"/>
 </xsd:complexType>

 <xsd:complexType name="USAddress">
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:decimal"/>
 </xsd:sequence>
 <xsd:attribute name="country" type="xsd:NMTOKEN"
 fixed="US"/>
 </xsd:complexType>

 <xsd:complexType name="Items">
 <xsd:sequence>
 <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="productName" type="xsd:string"/>
 <xsd:element name="quantity">
 <xsd:simpleType>
 <xsd:restriction base="xsd:positiveInteger">
 <xsd:maxExclusive value="100"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="USPrice" type="xsd:decimal"/>
 <xsd:element ref="comment" minOccurs="0"/>
 <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="partNum" type="SKU" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

 <!-- Stock Keeping Unit, a code for identifying products -->
 <xsd:simpleType name="SKU">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{3}-[A-Z]{2}"/>

Development Guide Volume 2: Governance

154

 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

This schema defines the structure of several XML elements used to represent purchase orders, and
describes an XML document such as the following:

<?xml version="1.0"?>
<purchaseOrder orderDate="1999-10-20">
 <shipTo country="US">
 <name>Alice Smith</name>
 <street>123 Maple Street</street>
 <city>Mill Valley</city>
 <state>CA</state>
 <zip>90952</zip>
 </shipTo>
 <billTo country="US">
 <name>Robert Smith</name>
 <street>8 Oak Avenue</street>
 <city>Old Town</city>
 <state>PA</state>
 <zip>95819</zip>
 </billTo>
 <comment>Hurry, my lawn is going wild<!/comment>
 <items>
 <item partNum="872-AA">
 <productName>Lawnmower</productName>
 <quantity>1</quantity>
 <USPrice>148.95</USPrice>
 <comment>Confirm this is electric</comment>
 </item>
 <item partNum="926-AA">
 <productName>Baby Monitor</productName>
 <quantity>1</quantity>
 <USPrice>39.98</USPrice>
 <shipDate>1999-05-21</shipDate>
 </item>
 </items>
</purchaseOrder>

9.6.2. XSD File Sequencer Node Types

The XSD sequencer follows JCR best-practices by defining all nodes to have a primary type that allows any
single or multi-valued property, meaning it is possible and valid for any node to have any property (with single
or multiple values). In fact, this feature is used when XSD files contain attributes with non-schema
namespaces, which are then mapped onto properties with the attributes name and possibly-empty
namespace. However, it is still useful to capture the metadata about what that node represents, and so the
sequencer use explicit node type definitions and mixins for this.

9.6.3. Using the XSD File Sequencer

To use the XSD File Sequencer, include the appropriate version of the Maven artifact with a
org.modeshape group ID and modeshape-sequencer-xsd artifacts ID. Alternatively, if you are using
JAR files and manually setting up the classpath for your application, use the modeshape-sequencer-xsd-

Chapter 9. Built-in Sequencers

155

2.7.0.Final-jar-with-dependencies.jar file. Then, define a sequencing configuration, using
something similar to this:

{
 "name" : "XSD Sequencer Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : {
 "XSD Sequencer" : {
 "classname" : "xsdsequencer",
 "pathExpressions" : [
"default:/(*.xsd)/jcr:content[@jcr:data]"]
 }
 }
 }
}

9.7. ZIP File Sequencer

The ZIP file sequencer extracts the files and folders contained in the ZIP archive file, extracting the files and
folders into the repository using JCR's nt:file and nt:folder built-in node types. The structure of the
output thus matches the logical structure of the contents of the ZIP file.

Example

This sequencer generates a graph structure that maps to the files and folders in the ZIP file. An example
(listed in the JCR document view) from sequencing a ZIP file written into /a/foo and containing one file,
/x/y/z.txt is provided below:

<foo jcr:primaryType="zip:file"
 jcr:mixinTypes="mode:derived">
 <x jcr:primaryType="nt:folder"
 jcr:created="2011-05-12T20:07Z"
 jcr:createdBy="currentJcrUser">
 <y jcr:primaryType="nt:folder"
 jcr:created="2011-05-12T20:09Z"
 jcr:createdBy="currentJcrUser">
 <z.txt jcr:primaryType="nt:file">
 <jcr:content jcr:primaryType="nt:resource"
 jcr:data="This is the file content"
 jcr:lastModified="2011-05-12T20:12Z"
 jcr:lastModifiedBy="currentJcrUser"
 jcr:mimeType="text/plain" />
 </z.txt>
 </y>
 </x>
</foo>

The CND for the zip:file node type is listed below.

[zip:file] > nt:folder, mix:mimeType

9.7.1. Using the ZIP File Sequencer

Development Guide Volume 2: Governance

156

To use this sequencer, include the modeshape-sequencer-zip JAR in your application and configure the
repository similar to:

{
 "name" : "ZIP Sequencer Test Repository",
 "sequencing" : {
 "removeDerivedContentWithOriginal" : true,
 "sequencers" : {
 "ZIP Sequencer" : {
 "classname" : "zipsequencer",
 "pathExpressions" : [
"default:/(*.zip)/jcr:content[@jcr:data] => /zip"]
 }
 }
 }
}

Chapter 9. Built-in Sequencers

157

Chapter 10. Built-in Connectors

The hierarchical database comes with several connectors so that you can set up repositories that federate
data from external systems.

10.1. File System Connector

This connector exposes files and folders on the file system as nt:file and nt:folder nodes in the
repository. To use, configure an external source for a given file system (or area of the repository); each
external source can be set up as read-only (to only expose the file system's existing files and folders) or as
writable (to allow JCR clients to create/update/delete files and folders on the file system).

The File System Connector maps nt:file and nt:folder properties directly to the attributes on the file
system's files and folders. By default, the hierarchical database will store these extra properties in the same
Infinispan cache where the normal content is stored, though such content will be lost if files and folders are
moved or renamed outside of the hierarchical database. Several other options are possible, including storing
these extra properties on the file system using "sidecar" files that are named similarly to and stored adjacent
to the target file or folder. See the extraPropertiesStorage attribute description below for more detail.

The connector does not currently monitor the file system for newly created files or folders, and therefore no
events are created. However, navigation will always expose the current files/folder nodes within a folder. The
hierarchical database can index the content so that the projected nt:file , nt:folder , and
nt:resource nodes can be queried, but this must be done manually via the Workspace API's reindex
methods.

Note

As of this release, the file system connector is pageable , which means it can efficiently expose folders
that contain large numbers of items. Paging is a tradeoff between loading the parent node faster (by
having smaller numbers of child references) and having to go back to the connector more frequently.
By default, the connector includes only 20 items per page, so the page size can be adjusted to best
suit your application's needs.

The connector classname is org.modeshape.connector.filesystem.FileSystemConnector, and
there are several attributes that should be configured on each external source:

Attribute Name Description
directoryPath The path to the file or folder that is to be accessed

by this connector.

Development Guide Volume 2: Governance

158

extraPropertyStorage An optional string flag that specifies how this source
handles "extra" properties that are not stored via file
system attributes. The value should be one of the
following:

store - Any extra properties are stored in the
same Infinispan cache where the content is
stored. This is the default and is used if the
actual value does not match any of the other
accepted values.
json - Any extra properties are stored in a
JSON file next to the file or directory.
legacy - Any extra properties are stored in a
file next to the file or directory. This is generally
discouraged unless you were using a previous
version of the hierarchical database and have a
directory structure that already contains these
files.
none - An exception is thrown if the nodes
contain any extra properties.

inclusionPattern Optional property that specifies a regular expression
that is used to help determine which files and folders
in the underlying file system are exposed through
this connector. The connector will expose only those
files and folders with a name that matches the
provided regular expression (as long as they also
are not excluded by the exclusionPattern). If
no inclusion pattern is specified, then the connector
will include all files and folders that are not excluded
via the exclusionPattern .

exclusionPattern Optional property that specifies a regular expression
that is used to help determine which files and folders
in the underlying file system are not exposed
through this connector. Files and folders with a
name that matches the provided regular expression
will not be exposed by this source.

addMimeTypeMixin A boolean flag that specifies whether this connector
should add the mix:mimeType mixin to the
nt:resource nodes to include the
jcr:mimeType property. If set to true, the MIME
type is computed immediately when the
nt:resource node is accessed, which might be
expensive for larger files. This is false by default.

readOnly A boolean flag that specifies whether this source
can create/modify/remove files and directories on
the file system to reflect changes in the JCR
content. By default, sources are not read-only.

Attribute Name Description

Chapter 10. Built-in Connectors

159

cacheTtlSeconds Optional property that specifies the default
maximum number of seconds (i.e., time to live) that
a node returned by this connector should be cached
in the workspace cache before being expired. By
default, the connector will not set a special value,
and the repository will determine how long the node
is cached in the workspace cache.

isQueryable Optional property that specifies whether or not the
content exposed by this connector should be
indexed by the repository. This acts as a global flag,
allowing a specific connector to mark its entire
content as non-queryable. By default, all content
exposed by a connector is queryable.

pageSize (Added in this release) Optional property that
controls the number of children that the connector
should include in a single page; the default is 20.
For example, if a folder contains 200 items (e.g.,
files or folders) and the page size is 20, then the
connector will include in the document representing
this folder only the properties of the folder and the
first 20 items (that are readable, that satisfy the
inclusion pattern, and that does not match the
exclusion pattern). As additional children are
needed (e.g., as the hierarchical database client
navigates or accesses the folder's child nodes), the
hierarchical database will request additional pages,
each with up to 20 items.

Attribute Name Description

By default, the file system connector will expose all of the files and folders that are underneath the specified
directory and readable by the Java process, and it will allow hierarchical database clients using the JCR API
to change, remove, or even create new files and folders. Additionally, any "extra properties" (e.g., those that
are not directly mappable to file system attributes, such as jcr:primaryType, jcr:created,
jcr:lastModified, and jcr:data) will be stored not on the file system but in the same Infinispan cache
that the repositories own internal (non-federated) content is stored. The connector will also use pages to
efficiently work with folders with large numbers of items.

If other behavior is desired, set the connector's properties to non-default values. For example, if hierarchical
database clients are not allowed to modify, create, or remove file and folder nodes, then the connector should
be configured with readOnly set to true . Or, if only certain files and folders are to be exposed, set the
inclusionPattern and exclusionPattern to regular expressions that the connector can use to know
whether to include or exclude files and folders by name. Note that any file or folder will only be exposed by
the connector when the file/folder is readable and when its name satisfies the inclusionPatternand does
not satisfy the exclusion pattern.

The connector is often used to expose as content in a repository the existing files and folders on the file
system. Since the connector does not access any OS-specific file attributes, the connector maps each
existing file and folder as follows:

A folder is represented in the hierarchical database as a node with a primary type of nt:folder, no
mixin types, and the jcr:created timestamp set to the last modified timestamp given by the file system.
The node will contain a child for each file and folder that are to be exposed (as discussed above).

A file is represented in the hierarchical database as a node with a primary type of nt:file, no mixin
types, and the jcr:created timestamp set to the last modified timestamp given by the file system. The
node will contain a single child node named jcr:content that represents the content of the file, and

Development Guide Volume 2: Governance

160

which has a primary type of nt:resource and the jcr:lastModified timestamp set to the file
system's last modified timestamp for the file. If the connector is configured with addMimeTypeMixin set
to true , then the hierarchical database will also attempt to determine the MIME type for the file's content
and, if determined, add the mix:mimeType mixin and the jcr:mimeType property to the jcr:content
node.

Here is a sample configuration that projects the //a/b/c directory onto a node the repository at /files,
with the above (default) behavior:

{
 ...
 "externalSources" : {
 "local-git-repo" : {
 "classname" :
"org.modeshape.connector.filesystem.FileSystemConnector",
 "directoryPath" : "/a/b/c/",
 "projections" : \["/files" \]
 }
 }
 ...
}

Here is a slightly different configuration that is read-only, that excludes any files or folders with names that
end with "{{.tmp}" (and have at least one character before this suffix), and that includes the automatically-
detected MIME type:

{
 ...
 "externalSources" : {
 "local-git-repo" : {
 "classname" :
"org.modeshape.connector.filesystem.FileSystemConnector",
 "directoryPath" : "/a/b/c/",
 "projections" : \["/files" \],
 "readOnly" : true,
 "addMimeTypeMixin" : true,
 "exclusionPattern" : ".+[.]tmp$"
 }
 }
 ...
}

Of course, some applications may want to set additional properties and/or mixins. When the connector is
writable (e.g., not read-only), the connector can store these properties in one of several places, based upon
the extraPropertyStorage configuration property. By default, these extra properties are stored in the
same Infinispan cache where the hierarchical database repository stores the rest of its internal (non-
federated) content. This is convenient, but can lead to orphaned documents in the Infinispan cache should
files and folder be removed outside of the hierarchical database.

Alternatively, the connector can store these extra properties on the file system. Any extra properties on a file
or folder will be stored in a "sidecar" next to the corresponding file or folder and named similarly to the
corresponding file or folder but with a special suffix. If stored as a JSON file, the suffix will be
.modeshape.json, or if stored as a text file the suffix will be .modeshape. (The text format is the same as

Chapter 10. Built-in Connectors

161

that used in the previous release, but is provided only for backward compatibility. Where possible, choose the
JSON format.) Extra properties on the jcr:content child of nt:file nodes are stored in a different
sidecar file, named similarly to the corresponding file but with the .content.modeshape.json or
.content.modeshape suffix. Note that these sidecar files are never exposed as nodes by the connector.

It is even possible to prevent updating or creating files and folders with extra properties. To do this, configure
the connector with the extraPropertyStorage property set to none.

Here is another sample configuration for a connector that works the same as the earlier configuration except
that it is now storing extra properties in a JSON sidecar:

{
 ...
 "externalSources" : {
 "local-git-repo" : {
 "classname" :
"org.modeshape.connector.filesystem.FileSystemConnector",
 "directoryPath" : "/a/b/c/",
 "projections" : \["/files" \],
 "readOnly" : true,
 "addMimeTypeMixin" : true,
 "exclusionPattern" : ".+[.]tmp$",
 "extraPropertyStorage" : "json"
 }
 }
 ...
}

10.2. Git Connector

This read-only connector exposes the branches, tags, and commits in a local Git repository as nodes within a
repository. The structure is pre-defined by the connector so that the branches, tags, commits, and their files
and folders are all accessible via navigation, via identifiers, or via query (if configured).

The connector classname is org.modeshape.connector.git.GitConnector, and there are several
attributes that should be configured on each external source:

Attribute Name Description
directoryPath The path to the folder that is or contains the .git data

structure is to be accessed by this connector. This is
required.

includeMimeType A boolean flag denoting whether the MIME types for
the files should be determined and included as a
property on the node. This is 'false' by default.

Development Guide Volume 2: Governance

162

remoteName The alias used by the local Git repository for the
remote repository. The default is origin, which is
common in Git repositories. If the value contains
commas, the value contains an ordered list of
remote aliases that should be accessed; the first one
to match an existing remote will be used. The
remote names are used to know which branches
should be exposed: if at least one remote name is
given, then only the branches in the remote(s) will be
exposed; if no remotes are given, then all local
branches will be exposed.

queryableBranches An array with the names of the branches that should
be queryable by the repository. By default, only the
master branch is queryable. Set this to an empty
array if no branches are to be queryable.

cacheTtlSeconds Optional property that specifies the default
maximum number of seconds (i.e., time to live) that
a node returned by this connector should be cached
in the workspace cache before being expired. By
default, the connector will not set a special value,
and the repository will determine how long the node
is cached in the workspace cache.

Attribute Name Description

Here is a sample configuration that projects the Git repository located at /home/jsmith/git/MyRepo on
the local file system into the repository under the /git/MyRepo node, which will have a primary type of
git:root. The master and 2.x branches will be included in the hierarchical database indexes when the
content is reindexed, and MIME types will be included on all git:resource nodes (that is, the
jcr:content child of the git:file nodes). The list of branches and tags will include those on the
upstream and origin remotes.

{
 ...
 "externalSources" : {
 "local-git-repo" : {
 "classname" : "org.modeshape.connector.git.GitConnector",
 "directoryPath" : "/home/jsmit/git/MyRepo/",
 "remoteName" : "upstream,origin",
 "includeMimeType" : true,
 "queryableBranches" : ["master","2.x"],
 "projections" : \["/git/MyRepo" \]
 }
 }
 ...
}

And here is a description of the repository structure:

Path Description
/branches/{branchName } The list of branches.

/tags/{tagName } The list of tags.

Chapter 10. Built-in Connectors

163

/commits/{branchOrTagNameOrCommit\/{ob
jectId }

The history of commits on the branch, tag or object
ID name "{ branchOrTagNameOrCommit }", where
"{ objectId }" is the object ID of the commit.

/commit/{branchOrTagNameOrCommit } The information about a particular branch, tag or
commit "{ branchOrTagNameOrCommit }".

/tree/{branchOrTagOrObjectId}/{filesAn
dFolders}/...

The structure of the directories and files in the
specified branch, tag or commit "{
branchOrTagNameOrCommit }".

Path Description

The node types used by the connector are specified here . Some of the more important node types include:

Node Type Description
git:committed A mixin that defines the git:objectId (SHA-1

hash), git:author , git:committer ,
git:committed (date), and git:title
properties that appear on all "committed" nodes.

git:file The primary node type for a node representing a file
in a Git repository. Extends both nt:file and
git:committed .

git:folder The primary node type for a node representing a
folder in a Git repository. Extends both nt:folder
and git:committed .

git:resource The primary node type for a node representing the
jcr:content child of git:file nodes, where
content-related information is placed. Extends both
nt:resource and git:committed .

git:branch The primary node type for a node representing a Git
branch.

git:tag The primary node type for a node representing a Git
tag.

git:commit The primary node type for a node representing a Git
commit.

git:branches The primary node type for the node that contains the
list of git:branch nodes.

git:tags The primary node type for the node that contains the
list of git:tag nodes.

git:commits The primary node type for the node that contains a
list of git:commit nodes.

git:root The primary node type for the top-level node of the
repository.

10.3. CMIS Connector

This connector exposes the content of a CMIS repository.

The Content Management Interoperability Services (CMIS) standard defines a domain model and Web
Services, Restful AtomPub and browser (JSON) bindings that can be used by applications to work with one
or more Content Management repositories/systems.

Development Guide Volume 2: Governance

164

https://github.com/ModeShape/modeshape/blob/master/connectors/modeshape-connector-git/src/main/resources/org/modeshape/connector/git/git.cnd
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis

The CMIS connector is designed to be layered on top of existing Content Management systems. It is intended
to use Apache Chemistry API to access services provided by Content Management system and incorporate
those services into the hierarchical database content repository.

The connector class name is org.modeshape.connector.cmis.CmisConnector, and there are several
attributes that should be configured on each external source:

Attribute Name Description
aclService URL of the Access list service binding entry point.

The ACL Services are used to discover and manage
Access Control Lists.

discoveryService URL of the Discovery service binding entry point.
Discovery service executes a CMIS query statement
against the contents of the repository.

multifilingService URL of the Multi-filing service binding entry point.
The Multi-Ã¯Â¬Â ling Services are used to
Ã¯Â¬Â le/un-Ã¯Â¬Â le objects into/from folders.

navigationService URL of the Navigation service binding entry point.
The Navigation service gets the list of child objects
contained in the speciÃ¯Â¬Â ed folder.

objectService URL of the Object service binding entry point.
Creates a document object of the speciÃ¯Â¬Â ed
type (given by the cmis:objectTypeId property) in
the (optionally) speciÃ¯Â¬Â ed location

policyService URL of the Policy service binding entry point.
Applies a speciÃ¯Â¬Â ed policy to an object.

relationshipService URL of the Relationship service binding entry point.
Gets all or a subset of relationships associated with
an independent object.

repositoryService URL of the Repository service binding entry point.
Returns a list of CMIS repositories available from
this CMIS service endpoint.

versioningService URL of the Policy service binding entry point. Create
a private working copy (PWC) of the document.

readOnly A boolean flag that specifies whether this source
can create/modify/remove files and directories on
the file system to reflect changes in the JCR
content. By default, sources are not read-only.

cacheTtlSeconds Optional property that specifies the default
maximum number of seconds (i.e., time to live) that
a node returned by this connector should be cached
in the workspace cache before being expired. By
default, the connector will not set a special value,
and the repository will determine how long the node
is cached in the workspace cache.

isQueryable Optional property that specifies whether or not the
content exposed by this connector should be
indexed by the repository. This acts as a global flag,
allowing a specific connector to mark its entire
content as non-queryable. By default, all content
exposed by a connector is queryable.

Here is a sample configuration that projects the CMIS repository into the Modeshape repository under the
/cmis/ node

Chapter 10. Built-in Connectors

165

{
 ...
 "externalSources" : {
 "cmis" : {
 "classname" : "org.modeshape.connector.CmisConnector",
 "cacheTtlSeconds" : 5,
 "aclService" : "http://localhost:8080/services/ACLService?wsdl",
 "discoveryService" :
"http://localhost:8080/services/DiscoveryService?wsdl",
 "multifilingService" :
"http://localhost:8080/services/MultifilingService?wsdl",
 "navigationService" :
"http://localhost:8080/services/NavigationService?wsdl",
 "objectService" : "http://localhost:8080/services/ObjectService?
wsdl",
 "policyService" : "http://localhost:8080/services/PolicyService?
wsdl",
 "relationshipService" :
"http://localhost:8080/services/RelationshipService?wsdl",
 "repositoryService" :
"http://localhost:8080/services/RepositoryService?wsdl",
 "versioningService" :
"http://localhost:8080/services/VersioniongService?wsdl",
 "repositoryId" : "A1",
 "projections" : ["default:/cmis => /"]
 }
 }
 ...
}

Here is the same configuration except that a variable is used so that the actual URLs can be set with a
system property:

{
 ...
 "externalSources" : {
 "cmis" : {
 "classname" : "org.modeshape.connector.CmisConnector",
 "cacheTtlSeconds" : 5,
 "aclService" : "${custom.cmis.services.url}/ACLService?wsdl",
 "discoveryService" :
"${custom.cmis.services.url}/DiscoveryService?wsdl",
 "multifilingService" :
"${custom.cmis.services.url}/MultifilingService?wsdl",
 "navigationService" :
"${custom.cmis.services.url}/NavigationService?wsdl",
 "objectService" : "${custom.cmis.services.url}/ObjectService?
wsdl",
 "policyService" : "${custom.cmis.services.url}/PolicyService?
wsdl",
 "relationshipService" :
"${custom.cmis.services.url}/RelationshipService?wsdl",
 "repositoryService" :
"${custom.cmis.services.url}/RepositoryService?wsdl",
 "versioningService" :
"${custom.cmis.services.url}/VersioniongService?wsdl",

Development Guide Volume 2: Governance

166

 "repositoryId" : "A1",
 "projections" : ["default:/cmis => /"]
 }
 }
 ...
}

The Repository structure is defined as follows

Path Description
/repository_info The description of the CMIS repository

/filesAndFolders The structure of the folders and files in the projected
repository

Node types used by connectors are specified by JCR specifications or imported from CMIS repository itself.
Most important node types are as follows:

Node Type Description
nt:folder The primary node type for the node representing

CMIS folder
nt:file The primary node type for the node representing

CMIS document
nt:resource The primary node type for the node representing

binary content of the CMIS document
cmis:repository The primary node type for the node representing

information of CMIS repository itself

Chapter 10. Built-in Connectors

167

Chapter 11. Built-in Text Extractors

The hierarchical database comes with a single text extractor. All you have to do is configure it and be ready
to work with the generated output.

11.1. Tika Text Extractor

This text extractor uses the Tika library to extract text from a variety of file formats. It will automatically
discover all of the Tika Parser implementations that are defined in META-
INF/services/org.apache.tika.parser.Parser text files accessible via the current classloader and
that contain the class names of the Parser implementations (one class name per line in each file). In other
words, ensure that the Tika libraries for the appropriate file formats are on the classpath, and the text
extractor will be able to use them all.

This text extractor can be configured in a hierarchical database configuration by specifying several optional
properties:

excludedMimeTypes - The comma- or whitespace-separated list of MIME types that should be
excluded from text extraction, even if there is a Tika Parser available for that MIME type. By default, the
MIME types for package files are excluded, though explicitly setting any excluded MIME types will
override these default.

includedMimeTypes - The comma- or whitespace-separated list of MIME types that should be included
in text extraction. This extractor will ignore any MIME types in this list that are not covered by Tika Parser
implementations.

To use this extractor, include the modeshape-extractor-tika JAR and the appropriate required Tika
JARs are on the classpath (or via Maven) and configure the repository in a similar fashion to:

{
 "name" : "Sample Config",
 "query" : {
 "textExtracting": {
 "extractors" : {
 "tikaExtractor":{
 "name" : "General content-based extractor",
 "classname" : "tika",
 }
 }
 },
 }
}

Development Guide Volume 2: Governance

168

http://tika.apache.org

Chapter 12. Monitoring

12.1. Public API

The hierarchical database now includes as part of its public API a set of interfaces that your application can
use to monitor the activities and health of your repository. We did this because the standard JCR API does
not cover monitoring at all, and we thought it is useful enough to make it available.

12.2. Metrics

The hierarchical database can capture a number of different measurements, called metrics , and these are
broken into two categories: duration-based metrics (how long something takes) and simple value metrics.

Duration metrics are represented by the org.modeshape.jcr.api.monitor.DurationMetric
enumeration, and include:

Metric Description
Query execution time The amount of time required to execute a query.
Session duration The length of time that a session is used before

being closed.
Sequencer duration The length of time required to sequence a node,

produce the output, and save the changes to the
workspace.

Value metrics are represented by the org.modeshape.jcr.api.monitor.ValueMetric enumeration,
and include:

Metric Style Description
Active sessions continuous The number of active sessions.
Active queries continuous The number of active queries.
Workspace count continuous The number of workspaces.
Session-scoped locks continuous The number of session-scoped

locks held by clients.
Open-scoped locks continuous The number of open-scoped locks

held by clients.
Listener count continuous The number of listeners registered

with active sessions.
Event queue size continuous The number of events that are

enqueued for processing and
sending to listeners.

Event count incremental The number of events that have
been sent to at least one listener.

Changed nodes incremental The number of nodes that were
created, updated, or deleted.

Session saves incremental The number of Session.save()
calls.

Sequencer queue size continuous The number of sequencing
operations that are enqueued.

Sequenced nodes incremental The number of nodes sequenced.

Chapter 12. Monitoring

169

Values for each of these metrics is captured every 5 seconds, where the continuous metrics are recorded as
is (the values continue from one measurement to the next), while the incremental metrics represent distinct
perturbations (or increments) from 0.

12.3. Windows and Statistics

As mentioned above, the hierarchical database measures the values for each metric every 5 seconds. But it
would take vast amounts of space to keep all these measurements around for long periods of time. Instead,
the hierarchical database calculates the statistics for various intervals, and then rolls up the statistics into
different time windows .

The statistics are straightforward:

Statistic Data type Description
Count int The number of samples.
Maximum long The maximum value from the

samples.
Minimum long The minimum value from the

samples.
Mean double The mean (or average) value from

the samples.
Variance double The average of the squared

differences from the mean .
Standard Deviation double A measure of how spread out the

samples are and is the square
root of the variance

and are represented in the API by the org.modeshape.jcr.api.monitor.Statistics interface (with
getter methods for each statistic). The statistics were chosen because multiple Statistics objects can
easily be rolled-up into a single Statistic object.

The rollup process is pretty simple. For each metric:

The value is captured every 5 seconds, and recorded a Statistics instance with a single sample. This
is repeated 9 more times.

After 60 seconds, the 10 Statistics objects recorded in the previous step are rolled-up into a single
Statistics object for this minute. This is repeated 59 more times.

After 60 minutes, the 60 Statistics objects recorded in the previous step are rolled-up into a single
Statistics object for this hour. This is repeated 23 more times.

After 24 hours, the 24 Statistics objects recorded in the previous step are rolled-up into a single
Statistics object for the day. This is repeated 7 more times.

After 7 days, the 7 Statistics objects recorded in the previous step are rolled-up into a single
Statistics object for the week. This is repeated 52 more times.

Each of these periods represents a window in time during with the Statistics are captured:

Window timeframe Description
60 seconds A Statistics for each of the ten 5-second

intervals during the last minute.
60 minutes A Statistics for each minute during the last hour.

Development Guide Volume 2: Governance

170

24 hours A Statistics for each hour during the last day.

7 days A Statistics for each day during the last week.

52 weeks A Statistics for each week during the last year.

Window timeframe Description

The org.modeshape.jcr.api.monitor.Window enumeration is used to represent each of these
windows in time.

12.4. Histories

The set of Statistics objects for a particular metric during a Window is called the history of the metric,
which is represented by the org.modeshape.jcr.api.monitor.History interface:

public interface History {

 /**
 * Get the kind of window.
 *
 * @return the window type; never null
 */
 public Window getWindow();

 /**
 * Get the total duration of this history window.
 *
 * @param unit the desired time unit; if null, then {@link
TimeUnit#SECONDS} is used
 * @return the duration
 */
 public long getTotalDuration(TimeUnit unit);

 /**
 * Get the timestamp (including time zone information) at which this
history window starts.
 *
 * @return the time at which this window starts
 */
 public DateTime getStartTime();

 /**
 * Get the timestamp (including time zone information) at which this
history window ends.
 *
 * @return the time at which this window ends
 */
 public DateTime getEndTime();

 /**
 * Get the statistics for that make up the history.
 *
 * @return the statistics; never null, but the array may contain null if
the window is

Chapter 12. Monitoring

171

 * longer than the lifetime of the repository
 */
 Statistics[] getStats();
}

Note

The org.modeshape.jcr.api.value.DateTime interface is an immutable representation of an
instant in time. It includes timezone information and methods for converting or obtaining the various
representations and/or parts of the instant. It is based upon initial work by the JSR-310 effort, and is far
superior to the mutable and difficult-to-use java.util.Calendar class.

12.5. Repository Monitor

The org.modeshape.jcr.api.monitor.RepositoryMonitor interface can then be used to get the
available metrics and windows, as well as obtaining the history for a given metric and window:

public interface RepositoryMonitor {

 /**
 * Get the ValueMetric enumerations that are available for use by the
caller
 * with {{getHistory(ValueMetric, Window)}}.
 *
 * @return the immutable set of ValueMetric instances; never null but
possibly
 * empty if the caller has no permissions to see any value
metrics
 */
 Set<ValueMetric> getAvailableValueMetrics();

 /**
 * Get the DurationMetric enumerations that are available for use by the
caller
 * with {{getHistory(DurationMetric, Window)}}.
 *
 * @return the immutable set of DurationMetric instances; never null but
possibly
 * empty if the caller has no permissions to see any value
metrics
 */
 Set<DurationMetric> getAvailableDurationMetrics();

 /**
 * Get the Window enumerations that are available for use by the caller
with
 * {{getHistory(DurationMetric, Window)}} and {{getHistory(ValueMetric,
Window)}}.
 *
 * @return the immutable set of DurationMetric instances; never null but
possibly
 * empty if the caller has no permissions to see any value

Development Guide Volume 2: Governance

172

http://jcp.org/en/jsr/detail?id=310

metrics
 */
 Set<Window> getAvailableWindows();

 /**
 * Get the statics for the specified value metric during the given
window in time.
 * The oldest statistics will be first, while the newest statistics will
be last.
 *
 * @param metric the value metric; may not be null
 * @param windowInTime the window specifying which statistics are to be
returned;
 * may not be null
 * @return the history of the metrics; never null but possibly empty if
there are
 * no statistics being captures for this repository
 * @throws AccessDeniedException if the session does not have privileges
to monitor the repository
 * @throws RepositoryException if there is an error obtaining the
history
 */
 public History getHistory(ValueMetric metric,
 Window windowInTime)
 throws AccessDeniedException, RepositoryException;

 /**
 * Get the statics for the specified duration metric during the given
window in time.
 * The oldest statistics will be first, while the newest statistics will
be last.
 *
 * @param metric the duration metric; may not be null
 * @param windowInTime the window specifying which statistics are to be
returned;
 * may not be null
 * @return the history of the metrics; never null but possibly empty if
there are
 * no statistics being captures for this repository
 * @throws AccessDeniedException if the session does not have privileges
to monitor the repository
 * @throws RepositoryException if there is an error obtaining the
history
 */
 public History getHistory(DurationMetric metric,
 Window windowInTime)
 throws AccessDeniedException, RepositoryException;

 /**
 * Get the longest-running activities recorded for the specified metric.
 * The results contain the duration records in order of increasing
duration,
 * with the activity with the longest duration appearing last in the
array.
 *
 * @param metric the duration metric; may not be null

Chapter 12. Monitoring

173

 * @return the activities with the longest durations; never null but
possibly
 * empty if no such activities were performed
 * @throws AccessDeniedException if the session does not have privileges
to monitor the repository
 * @throws RepositoryException if there is an error obtaining the
history
 */
 public DurationActivity[] getLongestRunning(DurationMetric metric)
 throws AccessDeniedException, RepositoryException;

And finally, your application can get the RepositoryMonitor instance from the Session's workspace, using
the org.modeshape.jcr.api.Workspace interface that extends the standard javax.jcr.Workspace
interface:

Session session = ...
org.modeshape.jcr.api.Workspace workspace =
(org.modeshape.jcr.api.Workspace)session.getWorkspace();
RepositoryMonitor monitor =
workspace.getRepositoryManager().getRepositoryMonitor();

12.6. Monitoring Examples

12.6.1. Active Sessions During the Last Hour

This example shows how to get the history containing the number of active sessions during each minute of
the last hour:

RepositoryMonitor monitor =
workspace.getRepositoryManager().getRepositoryMonitor();
History history =
monitor.getHistory(ValueMetric.SESSION_COUNT,Window.PREVIOUS_60_MINUTES);

// Use the history information to build a graph and determine the axes labels
...
int duration = history.getTotalDuration(TimeUnit.MINUTES); // will be '60'
DateTime started = history.getStartTime();
DateTime ended = history.getEndTime();
Statistics[] stats = history.getStats(); // will contain 60 elements

Here, each Statistics object represents the number of active sessions that existed during each minute. If,
for example, all the sessions were closed in the second-to-last minute, then the second-to-last Statistics
object will reflect some of them closing, while the first Statistics object will have average, maximum, and
minimum values of 0.

12.6.2. Query Durations During the Last Day

This example shows how to obtain the statistics for the durations of queries executed during the last 24
hours:

RepositoryMonitor monitor =
workspace.getRepositoryManager().getRepositoryMonitor();
History history =

Development Guide Volume 2: Governance

174

monitor.getHistory(DurationMetric.QUERY_EXECUTION_TIME,Window.PREVIOUS_24_HO
URS);

// Use the history information to build a graph and determine the axes labels
...
int duration = history.getTotalDuration(TimeUnit.MINUTES); // will be
'1440' (or 24 x 60)
DateTime started = history.getStartTime();
DateTime ended = history.getEndTime();
Statistics[] stats = history.getStats(); // will contain 24 elements

Each Statistics object will represent the number, average, maximum, minimum, variance, and standard
deviation for the queries that were executed during an hour of the last 24 hours.

12.6.3. Worst Performing Queries During the Last Day

In the same way that we can obtain the statistics for the queries that were submitted during the last 24 hours,
we can also obtain information about the longest-running queries:

RepositoryMonitor monitor =
workspace.getRepositoryManager().getRepositoryMonitor();
// Get the 'DurationActivity' object for each long-running query, where the
longest is last ...
DurationActivity[] longestQueries =
monitor.getLongestRunning(DurationMetric.QUERY_EXECUTION_TIME);

for (DurationActivity queryActivity : longestQueries) {
 long duration = queryActivity.getDuration(TimeUnit.MILLISECONDS);
 Map<String,String> payload = queryActivity.getPayload();
 String query = payload.get("query");
}

12.6.4. Event Queue Backlog During the Last Hour

This example shows how to get the history containing the number of events in the event queue during each
minute of the last hour:

RepositoryMonitor monitor =
workspace.getRepositoryManager().getRepositoryMonitor();
History history =
monitor.getHistory(ValueMetric.EVENT_QUEUE_SIZE,Window.PREVIOUS_60_MINUTES);

// Use the history information to build a graph and determine the axes labels
...
int duration = history.getTotalDuration(TimeUnit.MINUTES); // will be '60'
DateTime started = history.getStartTime();
DateTime ended = history.getEndTime();
Statistics[] stats = history.getStats(); // will contain 60 elements

Here, each Statistics object represents the number of events that are in the queue during each minute. If,
for example, the number of events is increasing during each minute, then the hierarchical database is falling
behind in notifying the listeners. This likely will happen when sessions are making frequent changes, while
registered listeners are taking too long to process the event.

Chapter 12. Monitoring

175

Note

Listeners are not supposed to take too long to process the event, since one thread is being used to
notify all listeners. If your listeners are taking too long, consider managing the queuing in a separate
java.util.concurrent.Executor, where the actual work is performed on separate threads.

Also, be careful if the listener looks up content using a session. Generally speaking, it is not good
practice for a listener to reuse the same session on which it is registered, since all listeners will share
the same session. The hierarchical database is thread-safe, but any changes made by one listener
will be visible to other listeners.

Development Guide Volume 2: Governance

176

Chapter 13. Backup and Restore

13.1. Backup and Restore Overview

Backup and restore functions are provided that enable repository administrators to create backups of an
entire repository (even when the repository is in use), and to then restore a repository to the state reflected by
a particular backup. This works regardless of where the repository content is persisted.

There are several reasons why you might want to restore a repository to a previous state:

Failure

For example, the application or the process it is running in might stop unexpectedly, the hardware
on which the process is running might fail, or the persistent store might have a catastrophic failure
(although this would most likely be backed up already).

Transfer

For example, backups of a running repository can be used to transfer content to a new repository
hosted in a different location. It might be possible to manually transfer the persisted content (for
example, in a database or on the file system), but the process of doing so varies for different
persistence options.

Ease of Access

For example, the hierarchical database can be configured to use a distributed in-memory data grid
that already maintains its own copies for ensuring high availability, and therefore the data grid
might not persist anything to disk. In such cases, content is stored on the data grid's virtual heap,
and getting access to it without the hierarchical database may be difficult.

Configuration Change

For example, you may initially configure your repository to use a particular persistence approach
but, over time as the repository grows, you want to move to a different, more scalable (but perhaps
more complex) persistence approach.

Migration

Finally, the backup and restore feature can be used to migrate to a new major version of the
hierarchical database.

13.2. Migrating from a Previous Release

Backup and restore can be used to migrate content stored in the provided hierarchical database system.

This is the proposed way for users to migrate such data for release 6.

Note

When migrating from a version of JBoss Data Virtualization prior to version 6.0.0, a migration tool will
be provided to backup the repository from the previous installation. The backup can be restored using
the restoreRepository method on the new (and empty) repository.

13.3. The Repository Manager

Chapter 13. Backup and Restore

177

13.3. The Repository Manager

The org.modeshape.jcr.api.RepositoryManager interface contains the backup and restore functions.

public interface RepositoryManager {

 ...

 Problems backupRepository(File backupDirectory) throws
RepositoryException;

 ...

 Problems restoreRepository(File backupDirectory) throws
RepositoryException;

 ...

}

The following code demonstrates how to access the repository manager from a standard authenticated JCR
session:

javax.jcr.Repository repository = ...
javax.jcr.Credentials credentials = ...
String workspaceName = ...
javax.jcr.Session session = repository.login(credentials,workspaceName);
org.modeshape.jcr.api.Session msSession =
(org.modeshape.jcr.api.Session)session;
org.modeshape.jcr.api.RepositoryManager repoMgr =
((org.modeshape.jcr.api.Session)session).getWorkspace().getRepositoryManager
();

Note

Which workspace is used by the session is not important.

13.4. Backup a Repository

The backupRepository method provided by the org.modeshape.jcr.api.RepositoryManager interface is
used to create a backup of the entire repository, including all workspaces that existed when the backup was
initiated.

This method blocks until the backup is completed, so it is the caller's responsibility to invoke the method
asynchronously if that is desired.

When this method is called on a repository that is being actively used, all of the changes made while the
backup process is underway will be included. At some point near the end of the backup process, however,
additional changes will be excluded from the backup. This means that each backup contains a fully-consistent
snapshot of the entire repository as it existed near the time at which the backup completed.

The following code demonstrates usage of the backup method:

Development Guide Volume 2: Governance

178

org.modeshape.jcr.api.RepositoryManager repoMgr = ...
java.io.File backupDirectory = ...
Problems problems = repoMgr.backupRepository(backupDirectory);
if (problems.hasProblems()) {
 System.out.println("Problems restoring the repository:");
 // Report the problems (we'll just print them out) ...
 for (Problem problem : problems) {
 System.out.println(problem);
 }
} else {
 System.out.println("The backup was successful");
}

Each backup is stored on the file system in a directory that contains a series of GZIP-ed files (each containing
representations of approximately 100K nodes) and a subdirectory in which all the large BINARY values are
stored.

Note

It is the application's responsibility to initiate each backup operation. There currently is no way to
configure a scheduled backup. Doing so would add significant complexity.

13.5. Restore a Repository

Once you have a complete backup on disk, you can then restore a repository back to the state captured
within the backup using the restoreRepository method provided by the
org.modeshape.jcr.api.RepositoryManager interface.

To do this, start a repository (or perhaps a new instance of a repository with a different configuration) and,
before it is used by any applications, restore the content.

The following code demonstrates usage of the restore method:

org.modeshape.jcr.api.RepositoryManager repoMgr = ...
java.io.File backupDirectory = ...
Problems problems = repoMgr.restoreRepository(backupDirectory);
if (problems.hasProblems()) {
 System.out.println("Problems backing up the repository:");
 // Report the problems (we'll just print them out) ...
 for (Problem problem : problems) {
 System.out.println(problem);
 }
} else {
 System.out.println("The restoration was successful");
}

Once a restore succeeds, the newly-restored repository will be restarted and ready for use.

Chapter 13. Backup and Restore

179

Chapter 14. Security

The hierarchical database delegates all authentication and authorization to the providers with which a
repository is configured. The hierarchical database includes a few providers, but it is also possible to create
custom authentication and/or authorization providers.

One exception is the access control feature, new in this latest release, that provides a way to use the
standard JCR API to define node-level access control lists (ACLs) that augment the normal authorization
mechanism. These fine-grained access controls are handled entirely within the hierarchical database, stored
within the normal repository content, and built on top of the existing authentication and authorization
providers.

14.1. Authentication and Authorization

In order to create a Session , a client application must authenticate their identity by logging in and providing
a javax.jcr.Credential . The hierarchical database passes this credential to a series of
AuthenticationProvider components. The first provider to accept the credential will result in the
hierarchical database authenticating the caller and returning a valid Session .

The authorizing provider, as part of the authentication step, returns an internal SecurityContext that is
associated with that session. This SecurityContext is then used to determine whether the session is
authorized to read, write, or administer the repository. These are coarse-grained roles that apply to all
content; for example, if a session only has the read role, then it can read all repository content but can write
or administer no content.

The names of the three roles are readonly, readwrite, and admin.

See Also:

Section 15.1, “Custom Authentication and Authorization Modules”

14.2. Anonymous Sessions

The hierarchical database does make it possible for clients to create anonymous sessions. These are never
authenticated, and they are generally given only the readonly role. Of course, you can choose to configure
anonymous sessions to use any of the three roles, though be careful granting more than readonly.

When a client attempts to authenticate normally by supplying credentials, should that authentication fail, the
repository can do one of two things:

fail by throwing an exception

return an anonymous session

This is often useful in applications that want to always provide at least some read-only functionality for all
users.

14.3. JAAS

The org.modeshape.jcr.security.JaasProvider class is configured to use a specific JAAS policy to
perform all authentication and role-based authorization. This is the easiest to use, since most application
servers will come with JAAS support and even Java SE applications can pretty easily set up one of the
available JAAS implementations.

Development Guide Volume 2: Governance

180

Note

If no providers are explicitly configured, the JAAS provider is automatically enabled with the
"modeshape-jcr" policy.

14.4. JAAS Configuration

Each JAAS implementation will be configured differently. In the case of the PicketBox implementation,
configuration is done via a jaas.conf.xml file on the classpath. There are quite a few modules to choose
from, including LDAP, database, XACML, and even a simple file-based option. Here is an example of a
jaas.conf.xml file that uses the users and roles defined in local files:

<?xml version='1.0'?>
<policy xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:jboss:security-config:5.0"
xmlns="urn:jboss:security-config:5.0">
 <application-policy name="modeshape-jcr">
 <authentication>
 <login-module
code="org.jboss.security.auth.spi.UsersRolesLoginModule" flag="required">
 <module-option
name="usersProperties">security/users.properties</module-option>
 <module-option
name="rolesProperties">security/roles.properties</module-option>
 </login-module>
 </authentication>
 </application-policy>
</policy>

This file sets up a JAAS policy named modeshape-jcr that uses the User-Roles Login Module, and defines
the users and passwords in the security/users.properties file and the roles in the
security/roles.properties file.

The users file contains a line for each user, of the form username=password. The roles file also contains a
line for each user, but this format is a little more complicated:

{{<username>=<role>\[,<role>,...\]}}

where:

<username> is the name of the user,

<role> is an expression describing a role for the user and which adheres to the format <role>=
<roleName>[.<workspaceName], where:

<roleName> is one of admin, readonly, readwrite, or (for WebDAV and RESTful access) connect

<workspaceName> is the name of the repository workspace to which the role is granted; if absent,
the role will be granted for all workspaces in the repository

For example, the following line provides all roles to user 'jsmith' for all workspaces in the configured
repository:

Chapter 14. Security

181

http://www.jboss.org/picketbox

jsmith=admin,connect,readonly,readwrite

while

jsmith=connect,readonly,readwrite.ws1

provides connect and read access to all workspaces, but only write access to the ws1 workspace.

14.5. Servlet Authentication

You can configure a repository to this provider, and then have your applications create a
org.modeshape.jcr.api.ServletCredentials instance with the servlet's HttpServletRequest .
The hierarchical database will then delegate all authentication and role-based authorization to the servlet
container. Again, the roles are expected to be readonly, readwrite and admin.

Note

If no providers are explicitly configured, the Servlet provider is automatically enabled if the servlet API
is on the classpath.

14.6. Access Controls

Recall that the aforementioned role-based authorizations apply to a whole repository or workspace, and thus
are referred to as coarse-grained authorization. This simple approach is perfectly acceptable for many
applications. However, with the latest release, it is possible to use fine-grained authorization to determine
what operations are allowed on specific nodes or subtrees. The API to set up and manage these fine-grained
permissions and access control lists is actually part of the standard JCR 2.0 API.

Note that an authenticated user must have already be granted the coarse-grained roles for a repository
before any fine-grained access controls are even evaluated. This means that, for example, even if an
authenticated user is granted a privilege to modify the properties of a node, that means nothing unless the
user has one of the roles that allows writing or changing content. In other words, when using fine-grained
access controls, the hierarchical database will require that both the coarse-grained and fine-grained
authorizations allow the requested action.

14.7. Privileges

The JCR 2.0 API defines the following privileges:

Privilege Description
jcr:read The privilege to retrieve a node and get its

properties and their values.
jcr:modifyProperties The privilege to create, remove and modify the

values of the properties of a node.
jcr:addChildNodes The privilege to create child nodes of a node.

jcr:removeNode The privilege to remove a node.

Development Guide Volume 2: Governance

182

jcr:removeChildNodes The privilege to remove child nodes of a node. In
order to actually remove a node requires
jcr:removeNode on that node and
jcr:removeChildNodes on the parent node.

jcr:write An aggregate privilege that contains:
jcr:modifyProperties , jcr:addChildNodes
, jcr:removeNode , and
jcr:removeChildNodes .

jcr:readAccessControl The privilege to read the access control settings of a
node.

jcr:modifyAccessControl The privilege to modify the access control settings of
a node.

jcr:lockManagement The privilege to lock and unlock a node.

jcr:versionManagement The privilege to perform versioning operations on a
node.

jcr:nodeTypeManagement The privilege to add and remove mixin node types
and change the primary node type of a node.

jcr:retentionManagement The privilege to perform retention management
operations on a node.

jcr:lifecycleManagement The privilege to perform lifecycle operations on a
node.

jcr:all An aggregate privilege that contains: jcr:read ,
jcr:write , jcr:readAccessControl ,
jcr:modifyAccessControl ,
jcr:lockManagement ,
jcr:versionManagement ,
jcr:nodeTypeManagement ,
jcr:retentionManagement , and
jcr:lifecycleManagement

Privilege Description

See the javax.jcr.security.AccessControlManager API for methods to determine the privileges
supported by the repository on any given node and for manually determining whether the session has
particular privileges on any given node.

14.8. Principals

Privileges are assigned to specific principals , which can either represent usernames or the names of groups.
A principal is represented in the API via the javax.security.Principal , which can be any
implementation. (The hierarchical database primarily uses the principal's name.)

An authenticated user is considered a member of a group if the AuthorizationProvider or
AdvancedAuthorizationProvider implementations return true for hasRole(groupName) .

14.9. Access Control Policies

The privileges granted to a user can be controlled by assigning an access control policy to nodes. Before the
access to a node can be controlled, however, it must have the mode:accessControllable mixin. Each
such node has one or more access control policies to which additional access control entries (e.g., a
principal-permissions pair) can be added.

For example, the following code fragment shows how to define an access control policy on a specific node

Chapter 14. Security

183

(and its descendants):

String path = "/Cars/Luxury";
String[] privileges = new String[]{Privilege.JCR_READ, Privilege.JCR_WRITE,
Privilege.JCR_MODIFY_ACCESS_CONTROL};
Principal principal = ... /* any implementation, referring to a username or
group name */
Session session = ...
AccessControlManager acm = session.getAccessControlManager();

// Convert the privilege strings to Privilege instances ...
Privilege[] permissions = new Privilege[privileges.length];
for (int i = 0; i < privileges.length; i++) {
 permissions[i] = acm.privilegeFromName(privileges[i]);
}

AccessControlList acl = null;
AccessControlPolicyIterator it = acm.getApplicablePolicies(path);
if (it.hasNext()) {
 acl = (AccessControlList)it.nextAccessControlPolicy();
} else {
 acl = (AccessControlList)acm.getPolicies(path)[0];
}
acl.addAccessControlEntry(principal, permissions);

acm.setPolicy(path, acl);
session.save();

From this point on, when a session is created by authenticating as a user with the supplied principal (e.g.,
username or group membership), then that session will be allowed to read, write and modify access controls
on the /Cars/Luxury node or its descendants (unless otherwise restricted with access controls). Again, this
presume that the authentication session already has the coarse-grained roles for reading and writing content
in this particular workspace.

Note

Creating an access control entry for a principal that does not exist is not useful, but it is not dangerous,
either. Evaluation of access controls requires that the entry match the current session's username or
roles (for groups); other principals are never considered.

See the javax.jcr.security.AccessControlManager API and the JSR-283 for more information
about defining and using access control policies.

Development Guide Volume 2: Governance

184

http://www.jcp.org/en/jsr/detail?id=283

Chapter 15. Extending the Hierarchical Database

You can create customized extensions to the hierarchical database. To do so you will need to write Java
code, and to use Maven 3 for the build system.

15.1. Custom Authentication and Authorization Modules

15.1.1. The AuthenticationProvider Interface

The hierarchical database defines a simple interface for authenticating users. Each repository can have
multiple authentication modules, and a client is authenticated as soon as one of the modules accepts the
credentials. The interface is quite simple:

/**
 * An interface used by a ModeShape Repository for authenticating users when
they create new sessions
 * using Repository.login(javax.jcr.Credentials, String)} and related
methods.
 */
public interface AuthenticationProvider {

 /**
 * Authenticate the user that is using the supplied credentials. If the
supplied credentials are authenticated, this
 * method should construct an ExecutionContext that reflects the
authenticated environment, including the context's
 * valid SecurityContext security context that will be used for
authorization throughout.
 *
 * Note that each provider is handed a map into which it can place name-
value pairs that will be used in the
 * Session attributes of the Session that results from this
authentication attempt.
 * ModeShape will ignore any attributes if this provider does not
authenticate the credentials.
 *
 *
 * @param credentials the user's JCR credentials, which may be an
AnonymousCredentials if authenticating as an
 * anonymous user
 * @param repositoryName the name of the JCR repository; never null
 * @param workspaceName the name of the JCR workspace; never null
 * @param repositoryContext the execution context of the repository,
which may be wrapped by this method
 * @param sessionAttributes the map of name-value pairs that will be
placed into the Session attributes; never null
 * @return the execution context for the authenticated user, or null if
this provider could not authenticate the user
 */
 ExecutionContext authenticate(Credentials credentials,
 String repositoryName,
 String workspaceName,
 ExecutionContext repositoryContext,

Chapter 15. Extending the Hierarchical Database

185

 Map<String, Object> sessionAttributes
);

}

All the parameters are supplied by the hierarchical database and contain everything necessary to
authenticate a client attempting to create a new JCR Session.

Implementations are expected to return a new ExecutionContext instance for the user, and this can be
created from the repository's execution context by calling
repositoryContext.with(securityContext) , where securityContext is a custom
implementation of the org.modeshape.jcr.security.SecurityContext interface that returns
information about the authenticated user:

/**
 * A security context provides a pluggable means to support disparate
authentication and authorization mechanisms that specify the
 * user name and roles.
 *
 * A security context should only be associated with the execution context
after authentication has occurred.
 */
@NotThreadSafe
public interface SecurityContext {

 /**
 * Return whether this security context is an anonymous context.
 * @return true if this context represents an anonymous user, or false
otherwise
 */
 boolean isAnonymous();

 /**
 * Returns the authenticated user's name
 * @return the authenticated user's name
 */
 String getUserName();

 /**
 * Returns whether the authenticated user has the given role.
 * @param roleName the name of the role to check
 * @return true if the user has the role and is logged in; false
otherwise
 */
 boolean hasRole(String roleName);

 /**
 * Logs the user out of the authentication mechanism.
 * For some authentication mechanisms, this will be implemented as a no-
op.
 */
 void logout();
}

Note that if you want to provide authorization functionality, then your SecurityContext implementation
must also implement AuthorizationProvider or AdvancedAuthorizationProvider .

Development Guide Volume 2: Governance

186

15.1.2. The AuthorizationProvider Interface

The hierarchical database uses its org.modeshape.jcr.security.AuthorizationProvider interface
to determine whether a Session has the appropriate privileges to perform reads and writes.

/**
 * An interface that can authorize access to specific resources within
repositories.
 */
public interface AuthorizationProvider {

 /**
 * Determine if the supplied execution context has permission for all of
the named actions in the named workspace.
 * If not all actions are allowed, the method returns false.
 *
 * @param context the context in which the subject is performing the
actions on the supplied workspace
 * @param repositoryName the name of the repository containing the
workspace content
 * @param repositorySourceName <i>This is no longer used and will always
be the same as the repositoryName</i>
 * @param workspaceName the name of the workspace in which the path
exists
 * @param path the path on which the actions are occurring
 * @param actions the list of {@link ModeShapePermissions actions} to
check
 * @return true if the subject has privilege to perform all of the named
actions on the content at the supplied
 * path in the given workspace within the repository, or false
otherwise
 */
 boolean hasPermission(ExecutionContext context,
 String repositoryName,
 String repositorySourceName,
 String workspaceName,
 Path path,
 String... actions);
}

You can have your SecurityContext implementation also implement this interface, and return true
whenever the session is allows to perform the requested operations.

15.1.3. The AdvancedAuthorizationProvider Interface

The hierarchical database uses its
org.modeshape.jcr.security.AdvancedAuthorizationProvider interface to determine whether a
Session has the appropriate privileges to perform reads and writes.

/**
 * An interface that can authorize access to specific resources within
repositories. Unlike the more basic and simpl
 * AuthenticationProvider, this interface allows an implementation to get at
additional information with each call to
 * hasPermission(Context, Path, String...).

Chapter 15. Extending the Hierarchical Database

187

 *
 * In particular, the supplied Context instance contains the Session that is
calling this provider, allowing the
 * provider implementation to access authorization-specific content within
the repository to determine permissions for other
 * repository content.
 *
 * In these cases, calls to the session to access nodes will result in their
own calls to hasPermission(Context, Path, String...).
 * Therefore, such implementations need to handle these special
authorization-specific content permissions in an explicit fashion.
 * It is also adviced that such providers cache as much of the
authorization-specifc content as possible, as the
 * hasPermission(Context, Path, String...) method is called frequently.
 */
public interface AdvancedAuthorizationProvider {

 /**
 * Determine if the supplied execution context has permission for all of
the named actions in the given context. If not all
 * actions are allowed, the method returns false.
 *
 * @param context the context in which the subject is performing the
actions on the supplied workspace
 * @param absPath the absolute path on which the actions are occurring,
or null if the permissions are at the workspace-level
 * @param actions the list of {@link ModeShapePermissions actions} to
check
 * @return true if the subject has privilege to perform all of the named
actions on the content at the supplied path in the
 * given workspace within the repository, or false otherwise
 */
 boolean hasPermission(Context context,
 Path absPath,
 String... actions);
}

where Context is a new nested interface nested in AdvancedAuthorizationProvider :

 /**
 * The context in which the calling session is operating, and which
contains session-related information that a provider
 * implementation may find useful.
 */
 public static interface Context {
 /**
 * Get the execution context in which this session is running.
 *
 * @return the session's execution context; never null
 */
 public ExecutionContext getExecutionContext();

 /**
 * Get the session that is requesting this authorization provider to
 * {@link AdvancedAuthorizationProvider#hasPermission(Context, Path,
String...) determine permissions}. Provider

Development Guide Volume 2: Governance

188

 * implementations are free to use the session to access nodes
<i>other</i> than those for which permissions are being
 * determined. For example, the implementation may access other
<i>authorization-related content</i> inside the same
 * repository. Just be aware that such accesses will generate
additional calls to the
 * {@link AdvancedAuthorizationProvider#hasPermission(Context, Path,
String...)} method.
 *
 * @return the session; never null
 */
 public Session getSession();

 /**
 * Get the name of the repository that is being accessed.
 *
 * @return the repository name; never null
 */
 public String getRepositoryName();

 /**
 * Get the name of the repository workspace that is being accessed.
 *
 * @return the workspace name; never null
 */
 public String getWorkspaceName();
 }

You can have your SecurityContext implementation also implement this interface, and return true
whenever the session is allows to perform the requested operations.

15.1.4. Configure a Repository to Use Your Custom Modules

Once you've implemented the interfaces and placed the classes on the classpath, all you have to do is then
configure your repositories to use your modules. As noted in the "configuration overview" , there is a nested
document in the JSON configuration file in the security field, and this section lists the authentication
module implementations in the order that they should be used . For example:

 ...
 "security" : {
 "anonymous" : {
 "username" : "<anonymous>",
 "roles" : ["readonly","readwrite","admin"],
 "useOnFailedLogin" : false
 },
 "providers" : [
 {
 "name" : "My Custom Security Provider",
 "classname" : "com.example.MyAuthenticationProvider",
 },
 {
 "classname" : "JAAS",
 "policyName" : "modeshape-jcr",

Chapter 15. Extending the Hierarchical Database

189

 }
]
 },
 ...

This configuration enables the use of anonymous logins (although it disables a failed authentication attempt
from downgrading to an anonymous session with the useOnFailedLogin as false), and configures two
authentication providers: the MyAuthenticationProvider implementation will be used first, and if that
does not authenticate the repository will delegate to the built-in JAAS provider. (Note that built-in providers
can be referenced with an alias in the classname field rather than the fully-qualified classname.)
Anonymous authentication is always performed last.

15.2. Custom Sequencers

15.2.1. The Sequencer Framework

A sequencer is actually a plain old Java object (POJO). To create a sequencer, create a Java class that
extends a single abstract class, called Sequencer :

package org.modeshape.jcr.api.sequencer;

import javax.jcr.Node;
import javax.jcr.Property;
import javax.jcr.RepositoryException;

public abstract class Sequencer {

 ...

 /**
 * Execute the sequencing operation on the specified property, which has
recently
 * been created or changed.
 *
 * Each sequencer is expected to process the value of the property,
extract information
 * from the value, and write a structured representation (in the form of
a node or a
 * subgraph of nodes) using the supplied output node. Note that the
output node
 * will either be:
 * 1. the selected node, in which case the sequencer was configured to
generate the
 * output information directly under the selected input node; or
 * 2. a newly created node in a different location than node being
sequenced (in
 * this case, the primary type of the new node will be
'nt:unstructured', but
 * the sequencer can easily change that using
Node.setPrimaryType(String)).
 *
 * The implementation is expected to always clean up all resources that
it acquired,
 * even in the case of exceptions.

Development Guide Volume 2: Governance

190

 *
 * @param inputProperty the property that was changed and that should be
used as
 * the input; never null
 * @param outputNode the node that represents the output for the derived
information;
 * never null, and will either be a new node if the output is
being placed
 * outside of the selected node, or will not be new when the
output is to be
 * placed on the selected input node
 * @param context the context in which this sequencer is executing, and
which may
 * contain additional parameters useful when generating the
output structure; never null
 * @return true if the sequencer's output should be saved, or false
otherwise
 * @throws Exception if there was a problem with the sequencer that
could not be handled.
 * All exceptions will be logged automatically as errors by
ModeShape.
 */
 public abstract boolean execute(Property inputProperty,
 Node outputNode,
 Context context) throws Exception;

 /**
 * Initialize the sequencer. This is called automatically by ModeShape,
and
 * should not be called by the sequencer.
 * <p>
 * By default this method does nothing, so it should be overridden by
 * implementations to do a one-time initialization of any internal
components.
 * For example, sequencers can use the supplied 'registry' and
 * 'nodeTypeManager' objects to register custom namesapces and node
types
 * required by the generated content.
 * </p>
 *
 * @param registry the namespace registry that can be used to register
 * custom namespaces; never null
 * @param nodeTypeManager the node type manager that can be used to
register
 * custom node types; never null
 */
 public void initialize(NamespaceRegistry registry,
 NodeTypeManager nodeTypeManager) {
 }

}

The abstract class also contains fields and getters (not shown above) for the name, description, and path
expressions that are automatically set by the hierarchical database during repository initialization. The
initialize(...) method is run upon repository initialization and can be overridden by an implementation
to register (if required) any custom namespaces and node types required by the sequencer's generated

Chapter 15. Extending the Hierarchical Database

191

output.

Note

The outputNode might belong to a different javax.jcr.Session object than the inputProperty
, if the input and output paths of the sequencer configuration specify different workspaces. Therefore,
be careful that all changes are made using the output node and its session.

The inputs to the sequencer depend on how it is configured, but often the inputProperty represents the
jcr:data BINARY property on the jcr:content child of an nt:file node. The outputNode , however,
will be one of two things:

1. If there is no output path in the path expression, then the sequenced output is to be placed directly
under the selected node, so therefore the outputNode will be the existing node being sequenced. In
this case, the sequencer should place all content under the output node. In this case, the sequencers
are not allowed to change the primary type.

2. Otherwise, the sequenced output is to be placed in a different location than the selected node. In this
case, the hierarchical database uses the name of the selected node and creates a new node under
the output path. This new node will have a primary type of nt:unstructured, but sequencers are
allowed to change the primary type.

The final parameter to the execute(...) method is the SequencerContext object, which is an interface
containing some extra information often useful when sequencing files:

package org.modeshape.jcr.api.sequencer;

import java.util.Calendar;

/**
 * The sequencer context represents the complete context of a sequencer
invocation.
 * Currently, this information includes the current time of execution.
 */
public interface SequencerContext {

 /**
 * Get the timestamp of the sequencing. This is always the timestamp of
the
 * change event that is being processed.
 *
 * @return timestamp the "current" timestamp; never null
 */
 Calendar getTimestamp();

}

15.3. Custom Text Extractors

15.3.1. The Text Extraction Framework

Development Guide Volume 2: Governance

192

A text extractor is actually a plain old Java object (POJO). To create an extractor, you create a Java class
that extends a single abstract class, called TextExtractor :

package org.modeshape.jcr.api.text;

import javax.jcr.Node;
import javax.jcr.Property;
import javax.jcr.RepositoryException;

public abstract class TextExtractor {

 ...

 /**
 * Determine if this extractor is capable of processing content with the
supplied MIME type.
 * @param mimeType the MIME type; never null
 * @return true if this extractor can process content with the supplied
MIME type, or false otherwise.
 */
 public abstract boolean supportsMimeType(String mimeType);

 /**
 * Extract text from the given {@link Binary}, using the given output to
record the results.
 * @param binary the binary value that can be used in the extraction
process; never <code>null</code>
 * @param output the output from the sequencing operation; never
<code>null</code>
 * @param context the context for the sequencing operation; never
<code>null</code>
 * @throws Exception if there is a problem during the extraction process
 */
 public abstract void extractFrom(Binary binary,
 TextExtractor.Output output,
 Context context) throws Exception;

 /**
 * Allows subclasses to process the stream of binary value property in
"safe" fashion, making sure the stream is closed at the
 * end of the operation.
 * @param binary a {@link org.modeshape.jcr.api.Binary} who is expected
to contain a non-null binary value.
 * @param operation a {@link
org.modeshape.jcr.api.text.TextExtractor.BinaryOperation} which should work
with the stream
 * @param <T> the return type of the binary operation
 * @return whatever type of result the stream operation returns
 * @throws Exception if there is an error processing the stream
 */
 protected final <T> T processStream(Binary binary,
 BinaryOperation<T> operation)
throws Exception {
 ...
 }

Chapter 15. Extending the Hierarchical Database

193

 /**
 * Interface which can be used by subclasses to process the input stream
of a binary property.
 * @param <T> the return type of the binary operation
 */
 protected interface BinaryOperation<T> {
 T execute(InputStream stream) throws Exception;
 }

 /**
 * Interface which provides additional information to the text
extractors, during the extraction operation.
 */
 public interface Context {
 String mimeTypeOf(String name,
 Binary binaryValue) throws RepositoryException,
IOException;
 }

 /**
 * The interface passed to a TextExtractor to which the extractor should
record all text content.
 */
 public interface Output {
 /**
 * Record the text as being extracted. This method can be called
multiple times during a single extract.
 * @param text the text extracted from the content.
 */
 void recordText(String text);
 }
}

The abstract class also contains fields and getters (not shown above) for the name and logger that are
automatically set by the hierarchical database during repository initialization.

There are two abstract methods that must be implemented: supportsMimeType(...) and
extractFrom(...) . The first is fairly obvious: return true for all of the MIME types for which the extractor
is capable of processing. The extractFrom method is the meat of the implementation, and should process
the BINARY value's contents and write the searchable text to the supplied Output object.

Note that the processStream(...) method is a utility that can be called by the extractFrom and that
properly opens the BINARY value's stream, processes the content, and ensures that the stream is always
closed. Your implementation can therefore implement the extractFrom method as follows:

public void extractFrom(final Binary binary,
 final TextExtractor.Output output,
 final Context context) throws Exception {
 processStream(binary, new BinaryOperation<Object>() {
 @Override
 public Object execute(InputStream stream) throws Exception {
 // Custom logic to read the stream and write to 'output'
 return null;
 }
 });
}

Development Guide Volume 2: Governance

194

This can make your implementation a little easier, but feel free to implement the extractFrom method
directly process the stream.

15.4. Custom Connectors

15.4.1. The Connector Framework

A connector is actually a plain old Java object (POJO). To create a connector, create a Java class that
extends one of the following abstract classes:

ReadOnlyConnector - extend this class when the hierarchical database clients will never be able to
manipulate, create or remove any content exposed by the connector.

WritableConnector - extend this class when the hierarchical database clients may be able to
manipulate, create and/or remove content exposed by the connector. Note that each time this connector
is configured, it can still be made to be read-only.

A connector operates by accessing an external system and dynamically creating nodes that represent
information in that external system. The nodes must form a single tree, although how that tree is structured
and what the nodes actually look like is completely up to the connector implementation.

15.4.2. Documents

While a connector conceptually exposes nodes, technically it exchanges representations of nodes (and other
information, like sublists of children). These representations take the form of Java Document objects that are
semantically like JSON and BSON documents. The connector SPI does this for a number of reasons:

Firstly, the hierarchical database actually stores its own internal (non-federated) nodes as Documents, so
connectors are actually working with the same kind of internal Document instances that the hierarchical
database uses.

Secondly, a Document is easily converted to and from JSON (and BSON), making it potentially very easy
to write a connector that accesses a remote system.

Thirdly, constructs other than nodes can be represented as documents; for example, a connector can be
pageable, meaning it breaks the list of child node references into multiple pages that are read with
separate requests, allowing the connector to efficiently expose large numbers of children under a single
node.

Finally, the node's identifier, properties, child node references, and other information specific to the
hierarchical database are stored in specific fields within a Document, but additional fields can be used by
the connector and hidden from hierarchical database clients. Though this makes little sense for a read-
only connector, a writable connector might include such hidden fields when reading nodes so that when
the document comes back to the connector those hidden fields are still available.

Before studying the Documents you shall study the methods your connector implementation will need to
implement.

15.4.3. Read Only Connector

The following code fragment shows the methods that a ReadOnlyConnector subclass must implement.

package org.modeshape.jcr.federation.spi;

Chapter 15. Extending the Hierarchical Database

195

import java.io.IOException;
import java.util.Collection;
import javax.jcr.NamespaceRegistry;
import javax.jcr.RepositoryException;
import org.infinispan.schematic.document.Document;
import org.modeshape.jcr.api.nodetype.NodeTypeManager;

public abstract class ReadOnlyConnector extends Connector {

 ...

 /**
 * Initialize the connector. This is called automatically by ModeShape
once for each Connector instance,
 * and should not be called by the connector. By the time this method is
called, ModeShape will have
 * already set the {{ExecutionContext}}, {{Logger}}, connector name,
repository name {@link #context},
 * and any fields that match configuration properties for the connector.
 *
 * By default this method does nothing, so it should be overridden by
implementations to do a one-time
 * initialization of any internal components. For example, connectors
can use the supplied {{registry}}
 * and {{nodeTypeManager}} parameters to register custom namespaces and
node types used by the exposed nodes.
 *
 * This is also an excellent place for connector to validate the
connector-specific fields set by ModeShape
 * via reflection during instantiation.
 *
 * @param registry the namespace registry that can be used to register
custom namespaces; never null
 * @param nodeTypeManager the node type manager that can be used to
register custom node types; never null
 * @throws RepositoryException if operations on the {@link
NamespaceRegistry} or {@link NodeTypeManager} fail
 * @throws IOException if any stream based operations fail (like
importing cnd files)
 */
 public void initialize(NamespaceRegistry registry,
 NodeTypeManager nodeTypeManager) throws
RepositoryException, IOException {
 }

 /**
 * Returns the id of an external node located at the given external path
within the connector's
 * exposed tree of content.
 *
 * @param externalPath a non-null string representing an external path,
or "/" for the top-level
 * node exposed by the connector
 * @return either the id of the document or null
 */
 public abstract String getDocumentId(String externalPath);

Development Guide Volume 2: Governance

196

 /**
 * Returns a Document instance representing the document with a given
id. The document should have
 * a "proper" structure for it to be usable by ModeShape.
 *
 * @param id a {@code non-null} string
 * @return either an {@link Document} instance or {@code null}
 */
 public abstract Document getDocumentById(String id);

 /**
 * Return the path(s) of the external node with the given identifier.
The resulting paths are from the
 * point of view of the connector. For example, the "root" node exposed
by the connector wil have a
 * path of "/".
 *
 * @param id a null-null string
 * @return the connector-specific path(s) of the node, or an empty
document if there is no such
 * document; never null
 */
 public abstract Collection<String> getDocumentPathsById(String id);

 /**
 * Checks if a document with the given id exists in the end-source.
 *
 * @param id a non-null string.
 * @return {{true}} if such a document exists, {{false}} otherwise.
 */
 public abstract boolean hasDocument(String id);

 ...
}

Not shown are fields, getters, and other implemented methods that your methods will almost certainly use.
For example, a Document is a read-only representation of a JSON document, and they can be created by
calling the newDocument(id) method with the document's identifier, using the resulting DocumentWriter
to set/remove/add fields (and nested documents), and calling the writer's document() method to obtain the
read-only Document instance.

The DocumentWriter interface provides dozens of methods for getting and setting node properties and
child node references. Here's some code that uses a document writer to construct a node representation with
a few properties:

 String id = ...
 DocumentWriter writer = newDocument(id);
 writer.setPrimaryType("lib:book");
 writer.addMixinType("lib:tagged");
 writer.addProperty("lib:isbn, "0486280616");
 writer.addProperty("lib:format, "paperback");
 writer.addProperty("lib:author", "Mark Twain");
 writer.addProperty("lib:title", "The Adventures of Huckleberry Finn");

Chapter 15. Extending the Hierarchical Database

197

 writer.addProperty("lib:tags", "fiction", "classic", "americana");
 // Add a single child named 'tableOfContents' with its own identifier
 writer.addChild(id + "/toc","tableOfContents");
 Document doc = writer.document();

As you can see, creating documents is pretty straightforward.

Identifiers of documents are simple strings that are expected to uniquely and durably identify a document.
However, the content of that string is entirely up to the connector implementations. If the external system
already has the notion of unique identifiers, it might be easiest to reuse a string representation of those
identifiers. For example, a database might have a unique key within a given table, whereas a Git repository
uses SHA-1 hashes for identifiers of commits, branches, tags, etc. Some external systems (like file systems)
do not have a concept of unique identifiers, and in such cases the connector should devise its own identifier
mechanism is durable and reliable.

15.4.4. Properties, Paths, Names, and Values

Most of the time, you can use string property names and property values that are String, Calendar, URL, or
Numeric instances, and the hierarchical database will convert to an internal object representation. However,
the hierarchical database provides object definitions of JCR names, paths, values, and properties. These
classes are often much easier to work with than the String names and paths, and they're easy to create using
namespace-aware factories. The ValueFactories interface is a container for type-specific factories
accessible with various getter methods. Here's an example of creating a Path value from a string and then
using the Path methods to get at the already-parsed segments of the path:

 String str = "/a/b/c/cust:d";
 PathFactory pathFactory = factories().getPathFactory();
 Path path = pathFactory.create(str);
 for (Segment segment : path) {
 Name name = segment.getName();
 String localName = name.getLocalName();
 String namespaceUri = name.getNamespaceUri();
 if (segment.hasIndex()) {
 String snsIndex = segment.getIndex();
 }
 }
 Path parentPath = path.getParent();
 ...

The process of using a factory to create Name , Binary , DateTime , and all other JCR-compliant values is
similar.

Properties are slightly different, since they are a bit more structured. The hierarchical database provides a
PropertyFactory that can create single- or multi-valued Property instances given a name and one or
more values. Here's some simple code that shows how to create a single-valued property:

 PropertyFactory propFactory = propertyFactory();
 Name propName = nameFactory().create("lib:title");
 String propValue = factories().stringFactory("The Adventures of
Huckleberry Finn");
 Property prop = propFactory.create(propName,propValue);

All Property , Name , Path , DateTime , and Binary instances are immutable, meaning you can pass
them around without worrying about whether the receiver might modify them. Also, the factories will often pick
implementation classes that are tailored for the specific value. For example, there are separate

Development Guide Volume 2: Governance

198

implementations for the root path, single-segment paths, paths created from a parent path, single-valued
properties, empty properties, and multi-valued properties.

15.4.5. Writable Connector

The following code fragment shows the methods that a WritableConnector subclass must implement.

package org.modeshape.jcr.federation.spi;

import java.io.IOException;
import java.util.Collection;
import javax.jcr.NamespaceRegistry;
import javax.jcr.RepositoryException;
import org.infinispan.schematic.document.Document;
import org.modeshape.jcr.api.nodetype.NodeTypeManager;

public abstract class WritableConnector extends Connector {

 ...

 /**
 * Initialize the connector. This is called automatically by ModeShape
once for each Connector instance,
 * and should not be called by the connector. By the time this method is
called, ModeShape will have
 * already set the {{ExecutionContext}}, {{Logger}}, connector name,
repository name {@link #context},
 * and any fields that match configuration properties for the connector.
 *
 * By default this method does nothing, so it should be overridden by
implementations to do a one-time
 * initialization of any internal components. For example, connectors
can use the supplied {{registry}}
 * and {{nodeTypeManager}} parameters to register custom namespaces and
node types used by the exposed nodes.
 *
 * This is also an excellent place for connector to validate the
connector-specific fields set by ModeShape
 * via reflection during instantiation.
 *
 * @param registry the namespace registry that can be used to register
custom namespaces; never null
 * @param nodeTypeManager the node type manager that can be used to
register custom node types; never null
 * @throws RepositoryException if operations on the {@link
NamespaceRegistry} or {@link NodeTypeManager} fail
 * @throws IOException if any stream based operations fail (like
importing cnd files)
 */
 public void initialize(NamespaceRegistry registry,
 NodeTypeManager nodeTypeManager) throws
RepositoryException, IOException {
 }

 /**
 * Returns the id of an external node located at the given external path

Chapter 15. Extending the Hierarchical Database

199

within the connector's
 * exposed tree of content.
 *
 * @param externalPath a non-null string representing an external path,
or "/" for the top-level
 * node exposed by the connector
 * @return either the id of the document or null
 */
 public abstract String getDocumentId(String externalPath);

 /**
 * Returns a Document instance representing the document with a given
id. The document should have
 * a "proper" structure for it to be usable by ModeShape.
 *
 * @param id a {@code non-null} string
 * @return either an {@link Document} instance or {@code null}
 */
 public abstract Document getDocumentById(String id);

 /**
 * Return the path(s) of the external node with the given identifier.
The resulting paths are
 * from the point of view of the connector. For example, the "root" node
exposed by the connector
 * will have a path of "/".
 *
 * @param id a null-null string
 * @return the connector-specific path(s) of the node, or an empty
document if there is no such
 * document; never null
 */
 public abstract Collection<String> getDocumentPathsById(String id);

 /**
 * Checks if a document with the given id exists in the end-source.
 *
 * @param id a non-null string.
 * @return {{true}} if such a document exists, {{false}} otherwise.
 */
 public abstract boolean hasDocument(String id);

 /**
 * Removes the document with the given id.
 *
 * @param id a non-null string.
 * @return {{true}} if the document was removed, or {{false}} if there
was no document with the
 * given id
 */
 public abstract boolean removeDocument(String id);

 /**
 * Stores the given document.
 *
 * @param document a non-null Document instance.

Development Guide Volume 2: Governance

200

 * @throws DocumentAlreadyExistsException if there is already a new
document with the same identifier
 * @throws DocumentNotFoundException if one of the modified documents
was removed by another session
 */
 public abstract void storeDocument(Document document);

 /**
 * Updates a document using the provided changes.
 *
 * @param documentChanges a non-null DocumentChanges object which
contains
 * granular information about all the changes.
 */
 public abstract void updateDocument(DocumentChanges documentChanges);

 /**
 * Generates an identifier which will be assigned when a new document
(aka. child) is created under an
 * existing document (aka.parent). This method should be implemented
only by connectors which support
 * writing.
 *
 * @param parentId a non-null string which represents the identifier of
the parent under which the new
 * document will be created.
 * @param newDocumentName a non-null Name which represents the name that
will be given
 * to the child document
 * @param newDocumentPrimaryType a non-null Name which represents the
child document's
 * primary type.
 * @return either a non-null string which will be assigned as the new
identifier, or null which means
 * that no "special" id format is required. In this last case,
the repository will
 * auto-generate a random id.
 * @throws org.modeshape.jcr.cache.DocumentStoreException if the
connector is readonly.
 */
 public abstract String newDocumentId(String parentId,
 Name newDocumentName,
 Name newDocumentPrimaryType);
 ...
}

A WritableConnector has to implement all of the read-related methods that a ReadOnlyConnector
must implement and a handful of write-related methods for removing, updating, and storing new documents
(nodes).

In the same way that the hierarchical database provides a DocumentWriter, there is also a
DocumentReader that has methods to easily read properties, primary type, mixin types, and child
references:

 Document doc = ...
 DocumentReader reader = readDocument(doc);

Chapter 15. Extending the Hierarchical Database

201

 String id = reader.getDocumentId();
 String primaryType = reader.getPrimaryTypeName();
 Map<Name, Property> properties = reader.getProperties();
 // Get the ordered list of child references ...
 LinkedHashMap<String,Name> childReferences = reader.getChildrenMap();
 for (Map<String,Name>.Entry childRef : childReferences.entrySet()) {
 String key = childRef.getKey();
 String name = childRef.getValue();
 }

15.4.6. Extra Properties

The hierarchical database provides a framework for storing "extra properties" that cannot be stored in the
external system. For example, the "file system connector" cannot naturally map arbitrary properties to file
attributes, and instead uses a variety of techniques to stores these extra properties.

By default, the hierarchical database can store the extra properties inside the same Infinispan cache where
the repository's own internal (non-federated) content is stored. However, this may not be ideal, and so a
connector can provide its own implementation of the ExtraPropertiesStore interface:

package org.modeshape.jcr.federation.spi;

/**
 * Store for extra properties, which a {@link Connector} implementation can
use to store and retrieve
 * "extra" properties on a node that cannot be persisted in the external
system. Generally, a connector
 * should store as much as possible in the external system. However, not all
systems are capable of
 * persisting any and all properties that a JCR client may put on a node. In
such cases, the connector
 * can store these "extra" properties (that it does not persist) in this
properties store.
 */
public interface ExtraPropertiesStore {

 static final Map<Name, Property> NO_PROPERTIES = Collections.emptyMap();

 /**
 * Store the supplied extra properties for the node with the supplied
ID. This will overwrite any properties
 * that were previously stored for the node with the specified ID.
 *
 * @param id the identifier for the node; may not be null
 * @param properties the extra properties for the node that should be
stored in this storage area, keyed by
 * their name
 */
 void storeProperties(String id,
 Map<Name, Property> properties);

 /**
 * Update the supplied extra properties for the node with the supplied
ID.
 *

Development Guide Volume 2: Governance

202

 * @param id the identifier for the node; may not be null
 * @param properties the extra properties for the node that should be
stored in this storage area, keyed by
 * their name; any entry that contains a null Property will
define a property that should be removed
 */
 void updateProperties(String id,
 Map<Name, Property> properties);

 /**
 * Retrieve the extra properties that were stored for the node with the
supplied ID.
 *
 * @param id the identifier for the node; may not be null
 * @return the map of properties keyed by their name; may be empty, but
never null
 */
 Map<Name, Property> getProperties(String id);

 /**
 * Remove all of the extra properties that were stored for the node with
the supplied ID.
 *
 * @param id the identifier for the node; may not be null
 * @return true if there were properties stored for the node and now
removed, or false if there were no extra
 * properties stored for the node with the supplied key
 */
 boolean removeProperties(String id);
}

Then to use the extra properties store, simple call in the connector's initialize(...) method the
setEtraPropertiesStore(ExtraPropertiesStore store) method with an instance of your custom
store. Then, in your store(Document) and update(Document) methods, record these extra properties.
There are multiple ways of doing this, but here are a few:

 ExtraProperties extraProperties = extraPropertiesFor(id, false);
 // Add a single property ...
 Property p1 = ...
 extraProperties.add(p1);
 // Or add multiple properties at once ...
 Map<Name,Property> properties = ...
 extraProperties.addAll(properties).except("jcr:primaryType",
"jcr:created");
 extraProperties.save();

15.4.7. Pageable Connectors

A Document that represents a node will contain references to all the children of that node. These references
are relatively small (the ID and name of the child), and for many connectors this is sufficient and fast enough.
However, when the number of children under a node starts to increase, building the list of child references for
a parent node can become noticeable and even burdensome, especially when few (if any) of the child
references may ultimately be resolved into their node representations.

A pageable connector is one that exposes the children of nodes in a "page by page" fashion, where the

Chapter 15. Extending the Hierarchical Database

203

parent node only contains the first page of child references and subsequent pages are loaded only if needed.
This turns out to be quite effective, since when clients navigate a specific path (or ask for a specific child of a
parent by its name) the hierarchical database does not need to use the child references in a node's document
and can instead have the connector resolve such (relative or absolute external) paths into an identifier and
then ask for the document with that ID.

Therefore, the only time the child references are needed are when clients iterate over the children of a node.
A pageable connector will only be asked for as many pages as needed to handle the client's iteration, making
it very efficient for exposing a node structure that can contain nodes with numerous children.

To make your ReadOnlyConnector or WritableConnector support paging, implement the Pageable
interface:

package org.modeshape.jcr.federation.spi;

public interface Pageable {

 /**
 * Return a document which represents a page of children. The document
for the parent node
 * should include as many children as desired, and then include a
reference to the next
 * page of children with the {{PageWriter#addPage(String, String, long,
long)}} method.
 * Each page returned by this method should also include a reference to
the next page.
 *
 * @param pageKey a non-null {@link PageKey} instance, which offers
information about the
 * page that should be retrieved.
 * @return either a non-null page document or {@code null} indicating
that such a page
 * doesn't exist
 */
 Document getChildren(PageKey pageKey);
}

The hierarchical database then knows that the document for the parent will contain only some of the children
and how to access each page of children as needed.

For example, here's an example of code that might be used in a connector's getDocumentById(...)
method to include some of the children in the parent node's document and to include a reference to a second
page of children. This uses an imaginary Book class that is presumed to represent information about a book
in a library:

 String id = "category/Americana";
 DocumentWriter writer = newDocument(id);
 writer.setPrimaryType("lib:category");
 writer.addProperty("lib:description", "Classic American literature");
 // Get the books in this category ...
 Collection<Book> books = getBooksInCategory("Americana");
 // Put just 20 in this document ...
 count = 0;
 for (Book book : books) {
 writer.addChild(book.getId(),book.getTitle());
 if (++count == 20) break;

Development Guide Volume 2: Governance

204

 }
 if (count == 20) {
 // There were more than 20 books, so add a reference to the next page
 // that starts with the 20th book ...
 writer.addPage(id, 20, 20, books.size());
 }
 Document doc = writer.document();

Then, the connector's getPage(...) method would implement getting the child references for a particular
page:

public Document getPage(PageKey pageKey) {
 String parentId = pageKey.getParentId();
 int offset = pageKey.getOffsetInt();
 String category = parentId.substring(9); // we assume this is
"category/{categoryName}"
 DocumentWriter writer = newDocument(parentId);
 // Get the next 20 books in this category plus one so we know there are
more ...
 List<Book> books =
getBooksInCategory("Americana").sublist(offset,offset+20+1); // no error
checking here!
 for (Book book : books) {
 writer.addChild(book.getId(),book.getTitle());
 if (++count == 20) break;
 }
 if (count == 20) {
 // There were more than 20 books, so add a reference to the next page
 // that starts with the 20th book ...
 writer.addPage(id, 20, 20, books.size());
 }
 Document doc = writer.document();
}

As you can see, the logic of getPage(...) is actually very similar to the logic that adds children in the
getDocumentById(...) method, and your connector might find it useful to abstract this into a single
helper method.

Chapter 15. Extending the Hierarchical Database

205

Appendix A. Appendix

A.1. File Locations

The hierarchical database is installed with JBoss Data Virtualization and JBoss Fuse Service Works by
default.

Associated files are located within the JBoss Enterprise Application Platform directory structure as follows:

/docs
 /schema
 modeshape_1_0.xsd
/domain
 /configuration
 domain-modeshape.xml
/modules
 /javax/jcr/*
 /org/modeshape/*
 /org/hibernate/*
 /org/infinispan
 /org/apache/*
/standalone
 /configuration/
 standalone-modeshape.xml
 standalone-modeshape-ha.xml

Development Guide Volume 2: Governance

206

Appendix B. Initial Content

To help setup a simple, out-of-the-box repository pre-populated with some content, the hierarchical database
provides a way to configure such content using a simple xml format. This content can be imported either in a
specific workspace, or imported by default in all predefined or new workspaces.

Note

Initial content is imported only the first time a repository starts up into the predefined workspaces or
when a new workspace is created, if that workspace was configured as such.

Warning

The initial content feature is intended to allow the import of a simple structure and is not intended for
large volumes of data or complex data structures. There are other, more powerful mechanisms like
backup & restore or JCR XML import/export that may be better suited to those cases.

B.1. XML Format

Each initial content XML must define a single root node called jcr:root under the namespace
http://www.jcp.org/jcr/1.0 . This represents the root node of a workspace and all content is imported
below it.

Example B.1. Example

<?xml version="1.0" encoding="UTF-8"?>
<jcr:root xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <folder jcr:mixinTypes="mix:created, mix:lastModified"
jcr:primaryType="nt:folder">
 <file1 jcr:primaryType="nt:file">
 <jcr:content/>
 </file1>
 <file2 jcr:primaryType="nt:file">
 <jcr:content/>
 </file2>
 </folder>
</jcr:root>

Each node has by default, the same name as the XML element which defines it and the properties the
attributes of the XML element. Beside any number of custom properties, the JCR properties: jcr:name ,
jcr:primaryType and jcr:mixinTypes are supported, allowing for a node to have custom name, type
and/or mixins. If not specified, the default node type of the created node will be nt:unstructured .

<?xml version="1.0" encoding="UTF-8"?>
<jcr:root xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <Cars>
 <Hybrid>

Appendix B. Initial Content

207

http://www.jcp.org/jcr/1.0

 <car jcr:name="Toyota Prius" maker="Toyota" model="Prius"/>
 <car jcr:name="Toyota Highlander" maker="Toyota"
model="Highlander"/>
 <car jcr:name="Nissan Altima" maker="Nissan" model="Altima"/>
 </Hybrid>
 <Sports>
 <car jcr:name="Aston Martin DB9" maker="Aston Martin"
model="DB9"/>
 <car jcr:name="Infiniti G37" maker="Infiniti" model="G37"/>
 </Sports>
 </Cars>
</jcr:root>

It is also possible to override the name of the nodes by defining the jcr:name attribute, which will then be
used instead of the XML element's name.

B.2. Configuring Initial Content

The configuration necessary for a repository to make use of the initial content is the following:

{
 "name" : "Repository with initial content",
 "storage" : {
 "transactionManagerLookup" :
"org.infinispan.transaction.lookup.DummyTransactionManagerLookup"
 },
 "workspaces" : {
 "predefined" : ["ws1", "ws2"],
 "default" : "default",
 "allowCreation" : true,
 "initialContent" : {
 "ws1" : "xmlImport/docWithMixins.xml",
 "ws2" : "xmlImport/docWithCustomType.xml",
 "default" : "xmlImport/docWithoutNamespaces.xml",
 "ws4" : "",
 "ws5" : "xmlImport/docWithCustomType.xml",
 "*" : "xmlImport/docWithMixins.xml"
 }
 }
}

One needs to define an initialContent object inside the workspaces object, with the following content:

each attribute name inside the initialContent object, with the exception of the * string, will be treated
as the name of a workspace and will have precedence over anything else. This includes the empty string,
which can be used to explicitly configure workspace without any initial content, when a default is defined
(see below)

the * character is interpreted as "default content" which means that any predefined or newly created
workspaces, that are not configured explicitly, will make use of this content

the value of each attribute must be a simple string (including the empty string) which represents the URL
of an XML file located in the runtime classpath

Development Guide Volume 2: Governance

208

Appendix C. Binary Values

The hierarchical database is now capable of handling binary values that are larger than available memory.
This is because it never loads the whole value onto the heap, but instead streams the value to and from the
persistent store. You can also configure where the hierarchical database stores the binary values
independently of where the rest of the content is stored.

The hierarchical database stores all binary content by its SHA-1 hash. The SHA-1 cryptographic hash
function is not used for security purposes, but is instead used because the SHA-1 can reliably be determined
entirely from the content itself, and because two binary contents will only have the same SHA-1 if they are
indeed identical. Thus, the SHA-1 hash of some binary content serves as an excellent key for storing and
referencing that content.

Using the SHA-1 hash as the identifier for the binary content also means that the hierarchical database never
needs to store a given binary content more than once, no matter how many nodes or properties refer to it. It
also means that if your JCR client already knows (or can compute) the SHA-1 of a large value, the JCR client
can use APIs specific to the hierarchical database to easily determine if that value has already been stored in
the repository.

C.1. Extended Binary Interface

The hierarchical database public API defines the org.modeshape.jcr.api.Binary interface as a simple
extension to the standard javax.jcr.Binary interface. The hierarchical database adds useful methods to
get the SHA-1 hash (as a binary array and as a hexadecimal string) and the MIME type for the content:

@Immutable
public interface Binary extends javax.jcr.Binary {

 /**
 * Get the SHA-1 hash of the contents. This hash can be used to
determine whether two
 * Binary instances contain the same content.
 *
 * Repeatedly calling this method should generally be efficient, as it
most implementations
 * will compute the hash only once.
 *
 * @return the hash of the contents as a byte array, or an empty array
if the hash could
 * not be computed.
 * @see #getHexHash()
 */
 byte[] getHash();

 /**
 * Get the hexadecimal form of the SHA-1 hash of the contents. This hash
can be used to
 * determine whether two Binary instances contain the same content.
 *
 * Repeatedly calling this method should generally be efficient, as it
most implementations
 * will compute the hash only once.
 *
 * @return the hexadecimal form of the getHash(), or a null string if
the hash could

Appendix C. Binary Values

209

 * not be computed or is not known
 * @see #getHash()
 */
 String getHexHash();

 /**
 * Get the MIME type for this binary value.
 *
 * @return the MIME type, or null if it cannot be determined (e.g., the
Binary is empty)
 * @throws IOException if there is a problem reading the binary content
 * @throws RepositoryException if an error occurs.
 */
 String getMimeType() throws IOException, RepositoryException;

 /**
 * Get the MIME type for this binary value.
 *
 * @param name the name of the binary value, useful in helping to
determine the MIME type
 * @return the MIME type, or null if it cannot be determined (e.g., the
Binary is empty)
 * @throws IOException if there is a problem reading the binary content
 * @throws RepositoryException if an error occurs.
 */
 String getMimeType(String name) throws IOException,
RepositoryException;
}

All javax.jcr.Binary values returned will implement this public interface, so you can cast the values to
gain access to the additional methods.

C.2. Importing and Exporting

When exporting content from a workspace with large Binary values, be sure to export using JCR's System
View format. Only the System View treats properties as child elements. This allows each large value to be
streamed (using buffered streams) into the XML element's content as a Base64-encoded string. Importing
can also take advantage of streaming.

Exporting content using JCR's Document View results in all properties being treated as XML attributes, and
various XML processing libraries treat large attributes poorly (e.g., using values that are in-memory String
objects). Another critical disadvantage of the Document View is that it is unable to represent multi-valued
properties, since attributes can have only one value.

Development Guide Volume 2: Governance

210

Appendix D. Scaling for Many Child Nodes

The hierarchical database efficiently handles situations in which a single node has a large number (>100K) of
child nodes. It does this by segmenting the parent's list of child references into multiple blocks, where each
block is small enough to manage.

The hierarchical database actually performs this optimization in the background rather than do it during the
Session's save() operation. As a consequence, the actual number of child references stored in any block
might vary significantly from the "optimal" value. While the hierarchical database is capable of handling
blocks of any size, performance when dealing with very large numbers of child nodes will be improved when
the block sizes are optimized.

Accessing by Path

Navigating to a node by using its path is perhaps one of the most common access patterns in JCR.
This uses the Node.getNode(String) method that takes a relative path, finding a particular
child node with the supplied name and same-name-sibling index. The hierarchical database
internally indexes the children in each block by both names, so finding nodes by name (and SNS)
are as fast as possible, even if multiple blocks need to be accessed.

Iterating

Another common access pattern is to iterate over some or all of a parent node's children, using the
Node.getNodes() and Node.getNodes(String) methods. The resulting NodeIterator will
transparently access the children one block at a time, and will continue with all blocks until the last
child reference is found or until the caller halts the iteration.

Accessing by Identifier

Another common access pattern is to find a node by identifier, using the
Session.getNodeByIdentifier(String) method. The hierarchical database handles this
request by directly finding the node by its identifier, and only needs to access the parent's (or
ancestors') child references only when the node's name or path is requested by the caller (via the
Node.getName() or Node.getPath() methods).

Appendix D. Scaling for Many Child Nodes

211

Appendix E. Infinispan Configuration

In all cases, you still need to configure Infinispan. There are a few things to keep in mind:

Minimally, the cache used by a repository needs to be transactional , since the hierarchical database
internally uses transactions and works with client-initiated or container-managed JTA transactions.

Applications that may be concurrently updating the same nodes should use Infinispan configured to use
pessimistic locking . By default Infinispan will use optimistic locking; this is more efficient for
applications that do not update the same nodes, but concurrently updating the same nodes with optimistic
locking may very well cause some updates to be lost. If you're not sure, use pessimistic locking.

Sample Infinispan configuration using a FileCacheStore is provided below:

Example E.1. Infinispan Pessimistic Locking

<local-cache name="sample">
 <!-- ModeShape requires transactions -->
 <transaction mode="NON_XA" locking="PESSIMISTIC"/>
 <!-- Use a cache with file-backed write-through storage. File-backed
storage is simple, but not necessarily the fastest. -->
 <file-store passivation="false" path="modeshape/store/sample" relative-
to="jboss.server.data.dir" purge="false"/>
</local-cache>

Development Guide Volume 2: Governance

212

Appendix F. Registering Custom Node Types

As described in the section on defining custom node types, the JCR 2.0 specification defines the Compact
Node Definition (CND) format to easily and compactly specify node type definitions, but uses this format only
within the specification. Instead, the only standard API for registering custom node types is via the standard
programmatic API.

The hierarchical database fully supports this standard API, but it also defines a non-standard API for reading
node type definitions from either CND files or the older Jackrabbit XML format. This non-standard API is
described in this section.

F.1. Registering Node Types Using CND Files

The hierarchical database defines in its public API a
org.modeshape.jcr.nodetype.NodeTypeManager interface that extends the standard
javax.jcr.nodetype.NodeTypeManager interface:

public interface NodeTypeManager extends javax.jcr.nodetype.NodeTypeManager
{

 /**
 * Read the supplied stream containing node type definitions in the
standard JCR 2.0 Compact Node Definition (CND) format or
 * non-standard Jackrabbit XML format, and register the node types with
this repository.
 *
 * @param stream the stream containing the node type definitions in CND
format
 * @param allowUpdate a boolean stating whether existing node type
definitions should be modified/updated
 * @throws IOException if there is a problem reading from the supplied
stream
 * @throws InvalidNodeTypeDefinitionException if the
<code>NodeTypeDefinition</code> is invalid.
 * @throws NodeTypeExistsException if <code>allowUpdate</code> is
<code>false</code> and the <code>NodeTypeDefinition</code>
 * specifies a node type name that is already registered.
 * @throws UnsupportedRepositoryOperationException if this
implementation does not support node type registration.
 * @throws RepositoryException if another error occurs.
 */
 void registerNodeTypes(InputStream stream,
 boolean allowUpdate)
 throws IOException, InvalidNodeTypeDefinitionException,
NodeTypeExistsException, UnsupportedRepositoryOperationException,
 RepositoryException;

 /**
 * Read the supplied file containing node type definitions in the
standard JCR 2.0 Compact Node Definition (CND) format or
 * non-standard Jackrabbit XML format, and register the node types with
this repository.
 *
 * @param file the file containing the node types

Appendix F. Registering Custom Node Types

213

 * @param allowUpdate a boolean stating whether existing node type
definitions should be modified/updated
 * @throws IOException if there is a problem reading from the supplied
stream
 * @throws InvalidNodeTypeDefinitionException if the
<code>NodeTypeDefinition</code> is invalid.
 * @throws NodeTypeExistsException if <code>allowUpdate</code> is
<code>false</code> and the <code>NodeTypeDefinition</code>
 * specifies a node type name that is already registered.
 * @throws UnsupportedRepositoryOperationException if this
implementation does not support node type registration.
 * @throws RepositoryException if another error occurs.
 */
 void registerNodeTypes(File file,
 boolean allowUpdate) throws IOException,
RepositoryException;

 /**
 * Read the supplied stream containing node type definitions in the
standard JCR 2.0 Compact Node Definition (CND) format or
 * non-standard Jackrabbit XML format, and register the node types with
this repository.
 *
 * @param url the URL that can be resolved to the file containing the
node type definitions in CND format
 * @param allowUpdate a boolean stating whether existing node type
definitions should be modified/updated
 * @throws IOException if there is a problem reading from the supplied
stream
 * @throws InvalidNodeTypeDefinitionException if the
<code>NodeTypeDefinition</code> is invalid.
 * @throws NodeTypeExistsException if <code>allowUpdate</code> is
<code>false</code> and the <code>NodeTypeDefinition</code>
 * specifies a node type name that is already registered.
 * @throws UnsupportedRepositoryOperationException if this
implementation does not support node type registration.
 * @throws RepositoryException if another error occurs.
 */
 void registerNodeTypes(URL url,
 boolean allowUpdate) throws IOException,
RepositoryException;
}

Cast the NodeTypeManager instance obtained from the Workspace.getNodeTypeManager() method:

Session session = ...
Workspace workspace = session.getWorkspace();
org.modeshape.jcr.api.nodetype.NodeTypeManager nodeTypeMgr =
 (org.modeshape.jcr.api.nodetype.NodeTypeManager)
workspace.getNodeTypeManager();

// Then register the node types in one or more CND files
// using a Java File object ...
File myCndFile = ...
nodeTypeManager.registerNodeTypes(myCndFile,true);

Development Guide Volume 2: Governance

214

// or a URL that is resolvable to a CND file ...
URL myCndUrl = ...
nodeTypeManager.registerNodeTypes(myCndUrl,true);

// or an InputStream to the content of a CND file ...
InputStream myCndStream = ...
nodeTypeManager.registerNodeTypes(myCndStream,true);

Alternatively, you can cast the result of the Session.getWorkspace() method to
org.modeshape.jcr.api.Workspace , which overrides the getNodeTypeManager() method to return
org.modeshape.jcr.api.nodetype.NodeTypeManager :

Session session = ...
org.modeshape.jcr.api.Workspace workspace = (org.modeshape.jcr.api.Workspace)
session.getWorkspace();
org.modeshape.jcr.api.nodetype.NodeTypeManager nodeTypeMgr =
workspace.getNodeTypeManager();

// Then register the node types in one or more CND files ...

F.2. Registering CND Files via Configuration

In addition to using the hierarchical database public API as described above, it is possible to configure a
repository to import, at startup, one or more CND files using the following format:

{
 "name" : "Repository with node types",
 "storage" : {
 "transactionManagerLookup" :
"org.infinispan.transaction.lookup.DummyTransactionManagerLookup"
 },
 "workspaces" : {
 "predefined" : ["ws1", "ws2"],
 "default" : "default",
 "allowCreation" : true
 },
 "node-types" : ["cnd/cars.cnd", "cnd/aircraft.cnd"]
}

where the node-types attribute accepts an array of strings, representing paths to CND files, accessible at
runtime.

Note

If CND files are configured to be imported at repository startup, they will overwrite each time any pre-
existing node types with the same name that have been registered previously.

F.3. Jackrabbit XML Format

The hierarchical database also supports the older non-standard Jackrabbit format for defining node types,
and only to make it easier for people to switch from Jackrabbit to the hierarchical database. The Jackrabbit

Appendix F. Registering Custom Node Types

215

2.x no longer uses this format, and Jackrabbit 1.x only used this XML format for built-in node types and
discouraged users from modifying it. However, some users of Jackrabbit 1.x still added their custom node
types to this file.

Warning

Use the standard CND format wherever possible, and use this non-standard XML format only if you're
trying to switch from Jackrabbit to the hierarchical database (with as little work as possible). If you are
using the hierarchical database, you will need to convert your XML files to CND files.

The DTD for the non-standard XML files can be found here .

Development Guide Volume 2: Governance

216

https://github.com/apache/jackrabbit/blob/1.4/jackrabbit-core/src/main/resources/org/apache/jackrabbit/core/nodetype/builtin_nodetypes.xml

Appendix G. Revision History

Revision 6.3.0-04 Fri Sep 9 2016 David Le Sage
Updates for release 6.3

Revision 6.2.0-03 Fri Nov 6 2015 David Le Sage
Updates for release 6.2

Appendix G. Revision History

217

	Table of Contents
	Chapter 1. Read Me
	1.1. Governance is Deprecated
	1.2. Back Up Your Data
	1.3. Variable Name: EAP_HOME
	1.4. Variable Name: MODE
	1.5. Red Hat Documentation Site

	Chapter 2. Governance Overview
	2.1. Governance in JBoss Data Virtualization

	Part I. The Hierarchical Database
	Chapter 3. The Hierarchical Database
	3.1. The Hierarchical Database
	3.2. Federation
	3.3. Architecture
	3.3.1. The Hierarchical Database Engine
	3.3.2. Repository Configuration
	3.3.3. Clustering
	3.3.4. Clustering: Storage
	3.3.5. Clustering: Indexing
	3.3.6. Public APIs
	3.3.7. Sequencers
	3.3.8. Core Modules
	3.3.9. Connectors
	3.3.10. Web APIs
	3.3.11. JDBC Driver

	3.4. Clustering
	3.4.1. Local Caching
	3.4.2. Replicated Clustering
	3.4.3. Distributed Clustering
	3.4.4. Remote Clustering

	3.5. Sequencing
	3.5.1. Sequencers
	3.5.2. Automatic Sequencers
	3.5.3. Manual Sequencers
	3.5.4. Built-in Sequencers
	3.5.5. Configuring an Automatic Sequencer
	3.5.5.1. Input Path
	3.5.5.2. Output Paths
	3.5.5.3. Workspaces in Input and Output Paths
	3.5.5.4. Example Path Expression
	3.5.5.5. Observing Automatic Sequencing

	Chapter 4. Using the Hierarchical Database with Red Hat JBoss EAP
	4.1. Configuring the Hierarchical Database
	4.1.1. Hierarchical Database Configuration
	4.1.2. Advanced Repository Configuration
	4.1.3. Repository Attributes
	4.1.4. Sequencers
	4.1.5. Adding and Removing Sequencers
	4.1.6. Specify Index Storage
	4.1.7. Specify Binary Storage
	4.1.8. Configure Composite Binary Stores
	4.1.9. Add and Remove Authentication and Authorization Providers
	4.1.10. Set Instance-Level Fields on Provider Instances
	4.1.11. Add JDBC Data Source
	4.1.12. Add and Remove External Sources
	4.1.13. Working with Batch Mode
	4.1.14. Clustering Configuration

	4.2. Using Repositories with JCR API
	4.2.1. JCR API
	4.2.2. Find the JCR Repository
	4.2.3. Use Java EE Resource Injection
	4.2.4. Get a Repository Instance from JNDI
	4.2.5. Use RepositoryFactory of JCR
	4.2.6. Use a Repositories Container
	4.2.7. Deploy JCR Web Applications
	4.2.8. Specify Dependencies with MANIFEST.MF
	4.2.9. Override Dependencies with jboss-deployment-structure.xml
	4.2.10. Build an Application with Maven
	4.2.11. Build an Application with Non-Maven Tools

	4.3. Using Repositories with REST in EAP
	4.3.1. RESTful API
	4.3.2. Using RESTful API to Check the Availability of the Repositories

	4.4. Using Repositories with WebDAV in EAP
	4.4.1. WebDAV in EAP
	4.4.2. Connecting to the Repository with WebDAV
	4.4.3. WebDAV Server Configuration
	4.4.4. Authentication and Authorization in the JCR Repository

	4.5. Using Repositories with JDBC in EAP
	4.5.1. JDBC in EAP
	4.5.2. Configure a Datasource and Driver
	4.5.3. Access Datasource from JNDI and Execute Queries

	4.6. Administering Repositories in JBoss EAP
	4.6.1. Navigation with Management CLI
	4.6.2. Managed Resource Commands
	4.6.3. Administering Repositories with JBoss Operations Network

	Chapter 5. The REST Service
	5.1. REST Service 2.x
	5.2. REST Service 3.x

	Chapter 6. Query and Search
	6.1. Query Languages
	6.2. Creating Queries
	6.3. Executing Queries
	6.4. SQL Extensions
	6.5. Query Object Model Extensions
	6.5.1. Join Types
	6.5.2. Set Operations
	6.5.3. Correlated Subqueries
	6.5.4. Removing Duplicate Rows
	6.5.5. Limit and Offset Results
	6.5.6. Depth Constraints
	6.5.7. Path Constraints
	6.5.8. Criteria on References From a Node
	6.5.9. Range Criteria
	6.5.10. Set Criteria
	6.5.11. Arithmetic Operands

	6.6. Search and Text Extraction

	Chapter 7. Query Language Grammars
	7.1. JCR-SQL2
	7.1.1. Extensions to JCR-SQL2
	7.1.2. Extended JCR-SQL2 Grammar
	7.1.2.1. Queries
	7.1.2.2. Source
	7.1.2.3. Joins
	7.1.2.4. Constraints
	7.1.2.5. Path and Name
	7.1.2.6. Static Operand
	7.1.2.7. Dynamic Operand
	7.1.2.8. Ordering
	7.1.2.9. Columns
	7.1.2.10. Limit and Offset
	7.1.2.11. Psuedo-Columns

	7.1.3. Full-text Search Grammar
	7.1.4. Example JCR-SQL2 Queries
	7.1.4.1. Simple Queries
	7.1.4.2. Using Columns in Constraints
	7.1.4.3. Inner Joins
	7.1.4.4. Other Joins
	7.1.4.5. Set Operations
	7.1.4.6. Subqueries

	7.2. JCR-SQL
	7.2.1. Extensions to JCR-SQL
	7.2.2. Extended JCR-SQL Grammar

	7.3. XPath
	7.3.1. Extensions to XPath
	7.3.2. Column Specifiers
	7.3.3. Type Constraints
	7.3.4. Property Constraints
	7.3.5. Path Constraints
	7.3.6. Ordering Specifiers
	7.3.7. Miscellaneous

	7.4. JCR Java Query Object Model
	7.4.1. Java Query Object Model Example

	7.5. Full Text Search
	7.5.1. Full Text Search Grammar

	Chapter 8. Built-in Node Types
	8.1. Standard Node Types
	8.2. Hierarchical Database Built-in Node Types

	Chapter 9. Built-in Sequencers
	9.1. Compact Node Type (CND) File Sequencer
	9.1.1. CND File Sequencer Example
	9.1.2. Using the CND File Sequencer

	9.2. Data Definition Language (DDL) File Sequencer
	9.2.1. DDL File Sequencer Example
	9.2.2. Using the DDL File Sequencer

	9.3. Text File Sequencer
	9.3.1. Abstract Text Sequencer
	9.3.2. Abstract Text Sequencer Properties
	9.3.3. Delimited Text Sequencer
	9.3.4. Delimited Text Sequencer Properties
	9.3.5. Using the Delimited Text Sequencer
	9.3.6. Fixed Width Text Sequencer
	9.3.7. Fixed Width Text Sequencer Properties
	9.3.8. Using the Fixed Width Text Sequencer

	9.4. Web Service Definition Language (WSDL) File Sequencer
	9.4.1. WSDL File Sequencer Example
	9.4.2. WSDL File Sequencer Node Types
	9.4.3. Using the WSDL File Sequencer

	9.5. Extensible Markup Language (XML) File Sequencer
	9.5.1. XML File Sequencer Example
	9.5.2. XML File Sequencer CND
	9.5.3. Using the XML File Sequencer

	9.6. XML Schema Document (XSD) File Sequencer
	9.6.1. XSD File Sequencer Example
	9.6.2. XSD File Sequencer Node Types
	9.6.3. Using the XSD File Sequencer

	9.7. ZIP File Sequencer
	9.7.1. Using the ZIP File Sequencer

	Chapter 10. Built-in Connectors
	10.1. File System Connector
	10.2. Git Connector
	10.3. CMIS Connector

	Chapter 11. Built-in Text Extractors
	11.1. Tika Text Extractor

	Chapter 12. Monitoring
	12.1. Public API
	12.2. Metrics
	12.3. Windows and Statistics
	12.4. Histories
	12.5. Repository Monitor
	12.6. Monitoring Examples
	12.6.1. Active Sessions During the Last Hour
	12.6.2. Query Durations During the Last Day
	12.6.3. Worst Performing Queries During the Last Day
	12.6.4. Event Queue Backlog During the Last Hour

	Chapter 13. Backup and Restore
	13.1. Backup and Restore Overview
	13.2. Migrating from a Previous Release
	13.3. The Repository Manager
	13.4. Backup a Repository
	13.5. Restore a Repository

	Chapter 14. Security
	14.1. Authentication and Authorization
	14.2. Anonymous Sessions
	14.3. JAAS
	14.4. JAAS Configuration
	14.5. Servlet Authentication
	14.6. Access Controls
	14.7. Privileges
	14.8. Principals
	14.9. Access Control Policies

	Chapter 15. Extending the Hierarchical Database
	15.1. Custom Authentication and Authorization Modules
	15.1.1. The AuthenticationProvider Interface
	15.1.2. The AuthorizationProvider Interface
	15.1.3. The AdvancedAuthorizationProvider Interface
	15.1.4. Configure a Repository to Use Your Custom Modules

	15.2. Custom Sequencers
	15.2.1. The Sequencer Framework

	15.3. Custom Text Extractors
	15.3.1. The Text Extraction Framework

	15.4. Custom Connectors
	15.4.1. The Connector Framework
	15.4.2. Documents
	15.4.3. Read Only Connector
	15.4.4. Properties, Paths, Names, and Values
	15.4.5. Writable Connector
	15.4.6. Extra Properties
	15.4.7. Pageable Connectors

	Appendix A. Appendix
	A.1. File Locations

	Appendix B. Initial Content
	B.1. XML Format
	B.2. Configuring Initial Content

	Appendix C. Binary Values
	C.1. Extended Binary Interface
	C.2. Importing and Exporting

	Appendix D. Scaling for Many Child Nodes
	Appendix E. Infinispan Configuration
	Appendix F. Registering Custom Node Types
	F.1. Registering Node Types Using CND Files
	F.2. Registering CND Files via Configuration
	F.3. Jackrabbit XML Format

	Appendix G. Revision History

