
Red Hat Fuse 7.3

Tooling User Guide

Tooling User Guide

Last Updated: 2019-04-29

Red Hat Fuse 7.3 Tooling User Guide

Tooling User Guide

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use the Red Hat Fuse Tooling, which provides developer tools
designed to increase your productivity when designing, developing, testing, and debugging your
integration applications.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

PART I. DEVELOPING APPLICATIONS

CHAPTER 1. CREATING A NEW FUSE INTEGRATION PROJECT
OVERVIEW
BEFORE YOU BEGIN
SPECIFYING THE PROJECT NAME AND WORKSPACE
CONFIGURING THE PROJECT DEPLOYMENT ENVIRONMENT
CREATING A NEW TARGET RUNTIME (OPTIONAL)
SELECTING A PROJECT TEMPLATE
RESOLVING MAVEN DEPENDENCY ERRORS

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR
2.1. ADDING PATTERNS TO A ROUTE

Procedure
Changing the layout direction
Related topics

2.2. CONFIGURING A PATTERN
Overview
Procedure

2.3. REMOVING PATTERNS FROM A ROUTE
Overview
Procedure
Related topics

2.4. ADDING ROUTES TO THE ROUTING CONTEXT
Overview
Procedure

2.5. DELETING A ROUTE
Overview
Procedure

2.6. ADDING GLOBAL ENDPOINTS, DATA FORMATS, OR BEANS
Overview
Adding a global endpoint
Adding a global data format
Adding a global bean
Deleting a global element
Editing a global element

2.7. CONFIGURING THE ROUTE EDITOR
Overview
Procedure

CHAPTER 3. VIEWING AND EDITING REST DSL COMPONENTS
3.1. VIEWING A GRAPHICAL REPRESENTATION OF REST DSL COMPONENTS
3.2. EDITING REST DSL COMPONENTS IN THE GRAPHICAL VIEW
3.3. VIEWING AND EDITING THE REST DSL SOURCE CODE

CHAPTER 4. MIGRATING A SOAP APPLICATION TO RESTFUL WEB SERVICES
4.1. WIZARD WORKFLOW
4.2. PREREQUISITES
4.3. MIGRATING A SAMPLE SOAP APPLICATION TO RESTFUL WEB SERVICES

CHAPTER 5. CREATING A NEW APACHE CAMEL JUNIT TEST CASE

8

9

10
10
10
10
11
13
16
20

22
22
22
23
23
23
23
24
24
24
24
24
25
25
25
26
26
27
27
27
29
33
36
39
41
44
44
44

47
47
48
50

52
52
52
52

55

Table of Contents

1

. .

. .

. .

OVERVIEW
PREREQUISITES
DELETING AND EXISTING JUNIT TEST CASE
CREATING AND ADDING THE SRC/TEST/JAVA FOLDER TO THE BUILD PATH
CREATING A JUNIT TEST CASE

CHAPTER 6. RUNNING ROUTES INSIDE RED HAT FUSE TOOLING
6.1. RUNNING ROUTES AS A LOCAL CAMEL CONTEXT

Overview
Procedure
Result
Related topics

6.2. RUNNING ROUTES USING MAVEN
Overview
Procedure
Results
Related topics

6.3. WORKING WITH RUNTIME PROFILES
6.3.1. Editing a Local Camel Context runtime profile

Overview
Accessing the Local Camel Context’s runtime configuration editor
Setting the camel context file
Changing the command line options
Changing where output is sent
Related topics

6.3.2. Editing a Maven runtime profile
Overview
Accessing the Maven runtime configuration editor
Changing the Maven goal
Changing the version of Maven
Changing where the output is sent
Related topics

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES
OVERVIEW
ADDING THE RED HAT CONTAINER DEVELOPMENT KIT SERVER
STARTING THE CONTAINER DEVELOPMENT ENVIRONMENT (CDE) AND VIRTUAL OPENSHIFT SERVER

CREATING A NEW OPENSHIFT PROJECT
CREATING A NEW FIS PROJECT
DEPLOYING THE FIS PROJECT TO OPENSHIFT
ACCESSING THE OPENSHIFT WEB CONSOLE

CHAPTER 8. USING THE RED HAT FUSE SAP TOOL SUITE
8.1. INSTALLING THE RED HAT FUSE SAP TOOL SUITE

Overview
Platform restrictions for SAP tooling
Prerequisites
Procedure

8.2. CREATE AND TEST SAP DESTINATION CONNECTION
Overview
Procedure

8.3. CREATE AND TEST SAP SERVER CONNECTION
Overview

55
55
55
55
56

59
59
59
59
59
59
59
59
59
60
60
60
60
60
61
62
62
62
63
63
63
63
64
64
64
65

66
66
67

69
70
72
77
83

84
84
84
84
84
84
85
85
85
88
88

Red Hat Fuse 7.3 Tooling User Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

Procedure
8.4. DELETING DESTINATION AND SERVER CONNECTIONS

Overview
Procedure

8.5. CREATE A NEW SAP ENDPOINT
Overview
Prerequisites
Procedure

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION
9.1. CREATING A PROJECT FOR THE DATA TRANSFORMATION EXAMPLE
9.2. ADDING A DATA TRANSFORMATION NODE TO THE CAMEL ROUTE
9.3. MAPPING SOURCE DATA ITEMS TO TARGET DATA ITEMS
9.4. CREATING THE TRANSFORMATION TEST FILE AND RUNNING THE JUNIT TEST
9.5. MAPPING A CONSTANT VARIABLE TO A DATA ITEM
9.6. MAPPING AN EXPRESSION TO A DATA ITEM
9.7. ADDING A CUSTOM TRANSFORMATION TO A MAPPED DATA ITEM
9.8. MAPPING A SIMPLE DATA ITEM TO A DATA ITEM IN A COLLECTION
9.9. ADDING A BUILT-IN FUNCTION TO A MAPPED DATA ITEM
9.10. PUBLISHING A FUSE INTEGRATION PROJECT WITH DATA TRANSFORMATION TO A RED HAT FUSE
SERVER

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS
10.1. OVERVIEW OF TASKS
10.2. PREREQUISITES
10.3. CREATING A CUSTOM CONNECTOR

10.3.1. Creating a Fuse Online Extension project for a custom connector
10.3.2. Writing code for the custom connector

10.4. CREATING CUSTOM STEPS
10.4.1. Creating a Fuse Online Extension project for custom steps
10.4.2. Writing code for the custom step

10.5. BUILDING THE FUSE ONLINE EXTENSION JAR FILE
10.6. PROVIDING THE JAR FILE TO THE FUSE ONLINE USER

CHAPTER 11. CREATING A NEW CAMEL XML FILE
OVERVIEW
PROCEDURE

CHAPTER 12. CHANGING THE CAMEL VERSION

CHAPTER 13. IMPORTING AN EXISTING MAVEN PROJECT
OVERVIEW
PROCEDURE

PART II. DEBUGGING ROUTING CONTEXTS

CHAPTER 14. SETTING BREAKPOINTS
OVERVIEW
SETTING UNCONDITIONAL BREAKPOINTS
SETTING CONDITIONAL BREAKPOINTS
DISABLING BREAKPOINTS
DELETING BREAKPOINTS
RELATED TOPICS

CHAPTER 15. RUNNING THE CAMEL DEBUGGER

88
89
89
89
89
89
90
90

92
92
93
99

102
103
105
108
112
114

117

119
119
120
120
120
123
126
126
130
131
133

134
134
134

136

137
137
137

138

139
139
139
139
140
141
141

142

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

. .

15.1. DEBUGGING A LOCALLY RUNNING ROUTING CONTEXT
Procedure
Watching message exchanges progress through the routing context

15.2. DEBUGGING A REMOTELY RUNNING ROUTING CONTEXT
Prerequisites
Setting up and starting remote debugging
Procedure

RELATED TOPICS

CHAPTER 16. STOPPING THE CAMEL DEBUGGER
OVERVIEW
CLOSING THE CAMEL DEBUGGER
RELATED TOPICS

CHAPTER 17. CHANGING VARIABLE VALUES
OVERVIEW
PROCEDURE
RELATED TOPICS

CHAPTER 18. ADDING VARIABLES TO THE WATCH LIST
OVERVIEW
PROCEDURE
RELATED TOPICS

CHAPTER 19. DISABLING BREAKPOINTS IN A RUNNING CONTEXT
OVERVIEW
DISABLING AND ENABLING BREAKPOINTS IN BREAKPOINTS VIEW

PART III. MONITORING AND TESTING APPLICATIONS

CHAPTER 20. JMX NAVIGATOR
20.1. VIEWING PROCESSES IN JMX

Overview
Viewing processes in a local JMX server
Viewing processes in alternate JMX servers

20.2. ADDING A JMX SERVER
Overview
Procedure

CHAPTER 21. VIEWING A COMPONENT’S JMX STATISTICS
OVERVIEW
PROCEDURE

CHAPTER 22. BROWSING MESSAGES
OVERVIEW
PROCEDURE
RELATED TOPICS

CHAPTER 23. TRACING ROUTES
23.1. CREATING TEST MESSAGES FOR ROUTE TRACING

Overview
Creating a new folder to store test messages
Creating a test message
Related topics

23.2. ACTIVATING ROUTE TRACING
Overview

142
142
144
144
144
145
146
150

152
152
152
152

153
153
153
154

155
155
155
156

157
157
157

159

160
161
161
161
161
161
161
161

163
163
163

165
165
165
166

167
167
167
167
168
168
168
168

Red Hat Fuse 7.3 Tooling User Guide

4

. .

. .

. .

. .

. .

. .

Procedure
Related topics

23.3. TRACING MESSAGES THROUGH A ROUTING CONTEXT
Overview
Procedure
Related topics

23.4. DEACTIVATING ROUTE TRACING
Overview
Procedure
Related topics

CHAPTER 24. MANAGING JMS DESTINATIONS
24.1. ADDING A JMS DESTINATION

Overview
Procedure
Related topics

24.2. DELETING A JMS DESTINATION
Overview
Procedure
Related topics

CHAPTER 25. MANAGING ROUTING ENDPOINTS
25.1. ADDING A ROUTING ENDPOINT

Overview
Procedure
Related topics

25.2. DELETING A ROUTING ENDPOINT
Overview
Procedure
Related topics

CHAPTER 26. EDITING RUNNING ROUTES
OVERVIEW
MODIFYING A RUNNING ROUTE AND EVALUATING RESULTS
TERMINATING THE ROUTE EDITING SESSION
RELATED TOPICS

CHAPTER 27. MANAGING ROUTING CONTEXTS
27.1. SUSPENDING OPERATION OF A ROUTING CONTEXT

Overview
Procedure
Related topics

27.2. RESUMING OPERATION OF A ROUTING CONTEXT
Overview
Procedure
Related topics

PART IV. PUBLISHING APPLICATIONS TO A CONTAINER

CHAPTER 28. MANAGING SERVERS
28.1. ADDING A SERVER

Overview
Procedure

28.2. STARTING A SERVER
Overview

168
169
169
169
169
170
170
170
170
170

171
171
171
171
171
171
171
171
172

173
173
173
173
173
173
173
173
174

175
175
175
177
178

179
179
179
179
179
179
179
179
180

181

182
182
182
182
186
186

Table of Contents

5

. .

. .

. .

Procedure
28.3. CONNECTING TO A RUNNING SERVER

Overview
Connecting to a running server in the Servers view
Connecting to a running server in the JMX Navigator view
Viewing bundles installed on the connected server

28.4. DISCONNECTING FROM A SERVER
Overview
Disconnecting from a server in the Servers view
Disconnecting from a server in the JMX Navigator view

28.5. STOPPING A SERVER
Overview
Using the Servers view
Using the remote console

28.6. DELETING A SERVER
Overview
Deleting a server
Deleting the server’s configuration

CHAPTER 29. PUBLISHING FUSE INTEGRATION PROJECTS TO A SERVER
OVERVIEW
PUBLISHING FUSE PROJECTS AUTOMATICALLY WHEN RESOURCES CHANGE
PUBLISHING FUSE PROJECTS MANUALLY
VERIFYING THE PROJECT WAS PUBLISHED TO THE SERVER

APPENDIX A. FUSE INTEGRATION PERSPECTIVE

APPENDIX B. DEBUG PERSPECTIVE

186
187
187
187
188
188
189
189
189
189
190
190
190
190
190
190
191
191

192
192
193
196
197

199

204

Red Hat Fuse 7.3 Tooling User Guide

6

Table of Contents

7

PREFACE
Red Hat Fuse Tooling is an Eclipse-based IDE that simplifies and streamlines the process of developing
integration applications within Red Hat CodeReady Studio. Fuse Tooling provides a set of developer
tools that are specifically designed to work with:

Red Hat Fuse

Red Hat JBoss EAP

Apache Camel

Apache CXF

Apache Karaf

Spring Boot

This guide provides information about how to use Fuse Tooling to:

Create a project for your application, including Maven dependencies

Connect and configure Enterprise Integration Patterns to build routes

Browse endpoints and routes

Drag and drop messages onto running routes

Browse and visualize runtime processes via JMX

Debug locally running Camel contexts and routes

Test your application by:

Creating and using JUnit test cases on Apache Camel routes

Using JMX to analyze running components

Tracing messages through Apache Camel routes

Deploy your application

For new users, the Tooling Tutorials provide step-by-step instructions on how to create, debug, test, and
deploy a sample Camel application.

Red Hat Fuse 7.3 Tooling User Guide

8

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html-single/tooling_tutorials/index

PART I. DEVELOPING APPLICATIONS

PART I. DEVELOPING APPLICATIONS

9

CHAPTER 1. CREATING A NEW FUSE INTEGRATION
PROJECT

OVERVIEW

Creating a new Fuse Integration project involves these main steps:

Specifying the project name and workspace

Configuring the project deployment environment

Selecting a project template

If necessary, resolving Maven dependency errors

After you configure the project, the tooling downloads all of the required Maven dependencies and
creates the POM file needed to run and publish the project.

NOTE

The first time that you build a Fuse project in CodeReady Studio, it might take several
minutes for the wizard to finish generating the project as it downloads dependencies from
remote Maven repositories.

BEFORE YOU BEGIN

Before you create a new Fuse Integration project, you should have the following information:

Your target runtime environment: Fuse on OpenShift or Fuse standalone (Spring Boot, Fuse on
Karaf, or Fuse on EAP)

The Camel version (if other than the default used by the tooling)

SPECIFYING THE PROJECT NAME AND WORKSPACE

To create a new Fuse Integration project, follow these steps:

1. Select New → Project → Red Hat Fuse → Fuse Integration Project to open the New Fuse
Integration Project wizard.
The wizard opens with the Use default workspace location option selected in the Location
pane.

Red Hat Fuse 7.3 Tooling User Guide

10

2. In Project Name, type a name for the new project, for example MySampleProject.

3. Specify the workspace location in which you want to store the data for the project.

To use the default workspace, leave the Use default workspace location option enabled.

To use an alternative location clear the Use default workspace location option and specify
a location in the Path field.

Click to quickly find and select an alternate workspace.

4. Click Next to open the Select a Target Environment page.

CONFIGURING THE PROJECT DEPLOYMENT ENVIRONMENT

When you create a new project, you specify the project’s target deployment environment so that your
project has the resources it needs at runtime. You must select a deployment platform and a Camel
version. Optionally, you can specify a runtime configuration.

With the Select a Target Environment page open:

1. Select whether you want to deploy the project on Kubernetes/OpenShift or on a Standalone
platform.

CHAPTER 1. CREATING A NEW FUSE INTEGRATION PROJECT

11

If you select Kubernetes/OpenShift for the deployment platform, the Sprint Boot runtime is
automatically selected and you can skip to Step 3.

2. If you select Standalone for the deployment platform:

a. Choose a target runtime environment:

Spring Boot

Karaf/Fuse on Karaf

Wildfly/Fuse on EAP

b. For the Karaf and EAP standalone runtime environments, choose one of the following
options for the runtime configuration:

Accept the None selected option (you can define the runtime configuration later).

Select an existing runtime configuration from the drop-down menu.

Create a new runtime configuration as described in the section called “Creating a new
target runtime (optional)”.

3. In the Select the Camel version for your new project pane, accept the default Camel version
associated with the runtime or change the default by:

Selecting a Camel version from the drop-down list. Fuse Tooling supports the listed
productized versions.

Red Hat Fuse 7.3 Tooling User Guide

12

Typing a different Camel version if you want to experiment with non-productized versions
(that are not supported).
You can click the Verify button to check whether the tooling can access the specified
version. If not, a notification similar to the following example appears in the Select a Target
Runtime page header:

NOTE

After you create, configure, and save a project, you can change the Camel
version. See Chapter 12, Changing the Camel version.

4. After you choose a runtime environment and a Camel version on which to base your new Fuse
Integration project, click Next to open the wizard’s Advanced Project Setup page and then
follow the steps in the section called “Selecting a project template”.

CREATING A NEW TARGET RUNTIME (OPTIONAL)

For the Karaf and EAP standalone runtime environments, you can optionally create a new runtime
configuration from the New Fuse Integration Project wizard.

1. From the wizard’s the Select a Target Runtime page, click New to open the New server
runtime environment page:

CHAPTER 1. CREATING A NEW FUSE INTEGRATION PROJECT

13

2. Expand the Red Hat JBoss Middleware folder, and then select a Red Hat Fuse runtime
environment.
Leave the Create a new local server option unchecked. You can create the local server later
when you are ready to publish your project (see Section 28.1, “Adding a Server”).

NOTE

If you check the Create a new local server option, the New Fuse Integration
Project wizard walks you through additional steps to define and configure the
Fuse server runtime (as described in Section 28.1, “Adding a Server”). Then,
when it builds the project, it also adds the server runtime to the Servers view in
the Fuse Integration perspective.

3. Click Next to open the server’s New Server Runtime Environment page:

Red Hat Fuse 7.3 Tooling User Guide

14

4. Specify the Name, Home Directory, Execution Environment of the server runtime:

Name — Accept the default or enter a new name for the runtime environment.

Home Directory — Click the Browse button to locate and select the server runtime’s
installation directory.

NOTE

If the server is not already installed on your machine, you can install it now by
clicking the Download and install runtime link and then following the site’s
download instructions. Depending on the site, you might be required to
provide valid credentials before you can continue the download process.

Runtime JRE: Execution Environment — Accept the default or select another JavaSE
version from the drop-down list.
If the version that you want does not appear on the list, click the Environments button and
select the version from that list. The JRE version that you select must be installed on your
machine.

NOTE

Fuse 7.x requires JRE version 1.8.

CHAPTER 1. CREATING A NEW FUSE INTEGRATION PROJECT

15

Runtime JRE: Alternate JRE - If your project requires a different version of Java, you can
use this option.

5. Click Finish to return to the New Fuse Integration Project wizard’s Select a Target Runtme
page:
The newly configured target runtime appears in the Target Runtime pane’s drop-down menu,
and the Camel version supported by the runtime appears in the Camel Version pane, grayed
out.

After you create a Fuse Integration project, it is possible to change the Camel version. See
Chapter 12, Changing the Camel version.

6. Click Next to specify a template for the project as described in the section called “Selecting a
project template”.

SELECTING A PROJECT TEMPLATE

The Advanced Project Setup page provides a list of templates that you can use as a starting point for
your new project. The templates, based on common use cases, provide sample code and data to get you
started quickly. The list of available templates depends on the runtime environment that you selected on
the previous page. Select a template to view its description in the right pane.

NOTE

If you do not see a template that meets your requirements, you can click the Where can I
find more examples to use as templates? link to open an information dialog with a list of
URLs with more examples:

To use one of these examples:

1. Select Cancel to exit the New Fuse Integration Project wizard.

2. Clone the repository from one of the listed URLs.

3. Import the example project into CodeReady Studio as described in Chapter 13,
Importing an existing Maven project.

Red Hat Fuse 7.3 Tooling User Guide

16

For Fuse on OpenShift there is a single template that demonstrates how to configure Camel
routes in Spring Boot using a Spring XML configuration file. This template creates a Fuse
Integration Services project and requires a Camel version newer than 2.18.1.redhat-000012.
This template creates a project that runs on OpenShift servers, and it supports the Spring DSL
only. For details on using this template, see Chapter 7, Getting Started with Fuse Integration
Services.

For Wildfly or Fuse on EAP there is a single template that provides a sample Camel route that
calls into a bean service to say "Hello". This template creates a project that runs on Red Hat EAP
servers, and it supports the Spring DSL only.

CHAPTER 1. CREATING A NEW FUSE INTEGRATION PROJECT

17

For Karaf or Fuse on Karaf, you have a choice of templates. You can create an empty project,
which creates a skeleton Camel context routing file based on one of the three supported Domain
Specific Languages (DSLs), or you can use a predefined template, each of which is based on a
common use case. Individual templates might not support all DSL options.

NOTE

For Java DSL, the tooling generates a CamelRoute.java file that you can edit
in the tooling’s Java editor, but it does not generate a graphical diagram
representation of it.

Content Based Router — Provides a sample Camel route that reads files from a specific
location and routes them to different output folders according to message content.
This template creates a project that runs on Red Hat Fuse servers, and it supports all three
of the DSLs.

CXF code first — Provides a sample Camel route that is started by a CXF web service call.
This template creates a project that runs on Red Hat Fuse servers, and it supports the
Spring and Java DSLs only.

Red Hat Fuse 7.3 Tooling User Guide

18

1. Select a template from the list.

2. Click Finish.
The tooling starts building the project and adds it to the Project Explorer view.

If the Fuse Integration perspective is not already open, the tooling asks whether you
want to switch to it now:

3. Click Yes to open the new project in the Fuse Integration perspective:

CHAPTER 1. CREATING A NEW FUSE INTEGRATION PROJECT

19

The project appears in the Project Explorer view. By default, the project includes an
Apache Camel context (XML) file.

4. Click the Source tab at the bottom of the canvas to see the generated Camel context
file:

NOTE

If you want to add another new Camel context file to the project, see Chapter 11, Creating
a New Camel XML file.

When you build a project that uses CXF you might want the build process to automatically
operate on the Java files to generate WSDL files. To do this, configure the java2ws
Maven plug-in in the project’s .pom file. See: Apache CXF Development Guide, Maven
Tooling Reference, java2ws.

RESOLVING MAVEN DEPENDENCY ERRORS

You might encounter Maven dependency errors after you create a new Fuse Integration project.

Red Hat Fuse 7.3 Tooling User Guide

20

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html-single/apache_cxf_development_guide/index#MVNJava2Ws

Though it can happen at other times, it more typically occurs when you cancel a project build before the
process has finished. Interrupting the process in this way often prevents all of the project’s dependencies
from downloading from the Maven repositories, which can take some time.

You can often resolve these dependency errors by updating Maven dependencies as follows:

1. In the Project Explorer view, right-click the root project to open the context menu.

2. Select Maven → Update Project.

3. In the Update Maven Project wizard:

Select the project that you want to update, if more than one appears in the wizard’s list.

Click the Force Update of Snapshots/Releases option to enable it.

4. Click OK.
In the bottom, right corner of the workbench, you can view the progress status bar churning as
missing dependencies are downloaded from the Maven repositories.

CHAPTER 1. CREATING A NEW FUSE INTEGRATION PROJECT

21

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE
EDITOR

The following sections describe how to edit a routing context.

2.1. ADDING PATTERNS TO A ROUTE

Routes consist of a sequence of connected patterns, referred to as nodes once they are placed on the
canvas inside a Route container node. A complete route typically consists of a starting endpoint, a string
of processing nodes, and one or more destination endpoints.

When you add a pattern into a Route container on the canvas, the pattern takes on a color that indicates
its type of node:

Blue — Route containers, which correspond to route elements in the context file, and other
container nodes, such as when and otherwise EIPs that contain other EIPs that complete their
logic

Green — Consumer endpoints that input data entering routes

Orange — EIPs that route, transform, process, or control the flow of data transiting routes

Purple — Producer endpoints that output the data exiting routes

Procedure

To add a pattern to a route:

1. In the Palette, locate the pattern that you want to add to the route.

2. Use one of the following methods:

Click the pattern in the Palette and then, in the canvas, click the route container.

Drag the pattern over the target Route container and drop it.
Alternatively, you can add a pattern on an existing node that has no outgoing connection, or
on a connection existing between two nodes, to have the tooling automatically wire the
connections between all nodes involved.

The tooling checks whether the resulting connection is valid and then either allows or
prevents you from adding the pattern on the target. For valid connections, the tooling
behaves differently depending on whether the target is a node or a connection:

For an existing node, the tooling adds the new node to the target node’s outgoing side
(beneath or to the right of it depending on how the editor preferences are set) and
automatically wires the connection between them

For an existing connection, the tooling inserts the new node between the two
connected nodes and automatically rewires the connections between the three nodes

3. Optionally, you can manually connect two nodes:

a. In the Route container on the canvas, select the source node to display its connector arrow.

Red Hat Fuse 7.3 Tooling User Guide

22

b. Drag the source node’s connector arrow () to the target node, and release the mouse
button to drop the connector on it.

NOTE

Not all nodes can be connected. When you try to connect a source node to
an invalid target node, the tooling displays the symbol attached to the
mouse cursor, and the connector fails to stick to the target node.

4. After you add a pattern inside a Route container, you can drag it to different location inside the
route container or to another route container on the canvas, as long as it can establish a valid
connection. You can also relocate existing nodes that are already connected, as long as the
move can establish another valid connection.
To view a short video that illustrates how to reposition endpoints, click here.

5. Select File → Save. The tooling saves routes in the context file regardless of whether they are
complete.

The new pattern appears on the canvas in the Route container and becomes the selected node. The
Properties view displays a list of the new node’s properties that you can edit.

Changing the layout direction

When you connect one node to another, the tooling updates the layout according to the route editor’s
layout preference. The default is Down.

To access the route editor 's layout preference:

On Linux and Windows machines, select Windows → Preferences → Fuse Tooling → Editor
→ Choose the layout direction for the diagram editor.

On OS X, select CodeReady Studio → Preferences → Fuse Tooling → Editor → Choose
the layout direction for the diagram editor.

Related topics

Section 2.2, “Configuring a pattern”

Section 2.3, “Removing patterns from a route”

2.2. CONFIGURING A PATTERN

Overview

Most patterns require some explicit configuration. For example, an endpoint requires an explicitly
entered URI.

The tooling’s Properties view provides a form that lists all of the configuration details a particular pattern
supports. The Properties view also provides the following convenience features:

validating that all required properties have values

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

23

https://www.youtube.com/watch?v=EdFUsvoTp8o

validating that supplied values are the correct data type for the property

drop-down lists for properties that have a fixed set of values

drop-down lists that are populated with the available bean references from the Apache Camel
Spring configuration

Procedure

To configure a pattern:

1. On the canvas, select the node you want to configure.
The Properties view lists all of the selected node’s properties for you to edit. For EIPs, the
Details tab lists all of a pattern’s properties. For components from the Components drawer, the
Details tab lists the general properties and those that require a value, and the Advanced tab
lists additional properties grouped according to function.

The Documentation tab describes the pattern and each of its properties.

2. Edit the fields in the Properties view to configure the node.

3. When done, save your work by selecting File → Save from the menu bar.

2.3. REMOVING PATTERNS FROM A ROUTE

Overview

As you develop and update a route, you may need to remove one or more of the route’s nodes. The
node’s icon makes this easy to do. When you delete a node from the canvas, all of its connections
with other nodes in the route are also deleted, and the node is removed from the corresponding route
element in the context file.

NOTE

You can also remove a node by opening its context menu and selecting Remove.

Procedure

To remove a node from a route:

1. Select the node you want to delete.

2. Click its icon.

3. Click Yes when asked if you are sure you want to delete this element.

The node and all of its connections are deleted from the canvas, and the node is removed from its
corresponding route element in the context file.

Related topics

Section 2.1, “Adding patterns to a route”

Red Hat Fuse 7.3 Tooling User Guide

24

2.4. ADDING ROUTES TO THE ROUTING CONTEXT

Overview

The camelContext element within an XML context file creates a routing context. The camelContext
element can contain one or more routes, and each route, displayed on the canvas as a Route container
node, maps to a route element in the generated camelContext element.

Procedure

To add another route to the camelContext:

1. In the Design tab, do one of the following:

Click a Route pattern in the Palette's Routing drawer and then click in the canvas where
you want to place the route.

Drag a Route pattern from the Palette's Routing drawer and drop it onto the canvas.
The Properties view displays a list of the new route’s properties that you can edit.

2. In the Properties view, enter:

An ID (for example, Route2) for the new route in the route’s Id field

NOTE

The tooling automatically assigns an ID to EIP and component patterns
dropped on the canvas. You can replace these autogenerated IDs with your
own to distinguish the routes in your project.

A description of the route in the Description field

Values for any other properties, as needed. Required properties are indicated by an asterisk
(*).

3. On the menu bar, select File → Save to save the changes you made to the routing context file.

4. To switch between multiple routes, select the route that you want to display on the canvas by
clicking its entry under the project’s Camel Contexts folder in the Project Explorer view.

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

25

5. To display all routes in the context, as space allows, click the context file entry in the Project
Explorer view.

6. To view the code generated by the tooling when you add a route to the canvas, click the Source
tab.

NOTE

You can alternately add a route in the Source tab, by adding a <route/> element
to the existing list within the camelContext element.

2.5. DELETING A ROUTE

Overview

In some cases you made need to delete an entire route from your routing context. The Route container’s
 icon makes this easy to do. When you delete a route, all of the nodes inside the Route container are

also deleted, and the corresponding route element in the context file is removed.

NOTE

You can also remove a route using the Route container’s context menu and selecting
Remove.

IMPORTANT

You cannot undo this operation.

Red Hat Fuse 7.3 Tooling User Guide

26

Procedure

To delete a route:

1. If the routing context contains more than one route, first select the route you want to delete in the
Project Explorer view.

2. On the canvas, click the Route container’s icon.

3. Click Yes when asked if you are sure you want to delete this element.

The route is removed from the canvas, from the context file, and from the Project Explorer view.

2.6. ADDING GLOBAL ENDPOINTS, DATA FORMATS, OR BEANS

Overview

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

27

Some routes rely on shared configuration provided by global endpoints, global data formats, or global
beans. You can add global elements to the project’s routing context file by using the route editor’s
Configurations tab.

To add global elements to your routing context file:

1. Open your routing context file in the route editor.

2. At the bottom of the route editor, click the Configurations tab to display global configurations, if
there are any.

3. Click Add to open the Create a new global element dialog.

Red Hat Fuse 7.3 Tooling User Guide

28

The options are:

Endpoint — see the section called “Adding a global endpoint”.

Data Format — see the section called “Adding a global data format”.

Bean — see the section called “Adding a global bean”.

Adding a global endpoint

1. In the Create a new global element dialog, select Endpoint and click OK to open the Select
component dialog.

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

29

NOTE

By default, the Select component dialog opens with the Show only palette
components option enabled. To see all available components, uncheck this
option.

NOTE

The Grouped by categories option groups components by type.

2. In the Select component dialog, scroll through the list of Camel components to find and select
the component you want to add to the context file, and then enter an ID for it in the Id field.

Red Hat Fuse 7.3 Tooling User Guide

30

In this example, the JMS component is selected and myJMS is the Id value.

3. Click Finish.

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

31

You can now set properties in the Properties view as needed.

The tooling autofills Id with the value you entered in the component’s Id field in
[globalEndptSelect]. In this example, Camel builds the uri (required field) starting with the
component’s schema (in this case, jms:), but you must specify the destinationName and the
destinationType to complete the component’s uri.

NOTE

For the JMS component, the destination type defaults to queue. This default
value does not appear in the uri field on the Details page until you have entered
a value in Destination Name (required field).

4. To complete the component’s uri, click Advanced.

Red Hat Fuse 7.3 Tooling User Guide

32

5. In the Destination Name field, enter the name of the destination endpoint (for example,
FOO.BAR). In the Destination Type field, enter the endpoint destination’s type (for example,
queue, topic, temp:queue, or temp:topic).

The Properties view’s Details and Advanced tabs provide access to all properties available for
configuring a particular component.

6. Click the Consumer (advanced) tab.

Enable the properties Eager Loading Of Properties and Expose Listener Session.

7. In the route editor, switch to the Source tab to see the code that the tooling added to the context
file (in this example, a configured JMS endpoint), before the first route element.

8. When done, save your changes by selecting File → Save on the menu bar.

Adding a global data format

1. In the Create a new global element dialog, select Data Format and click OK to open the Create
a global Data Format dialog.

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

33

The data format defaults to avro, the format at the top of the list of those available.

2. Open the Data Format drop-down menu, and select the format you want, for example,
xmljson.

3. In the Id field, enter a name for the format, for example, myDataFormat).

4. Click Finish.

Red Hat Fuse 7.3 Tooling User Guide

34

5. In the Properties view, set property values as appropriate for your project, for example:

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

35

6. In the route editor, click the Source tab to see the code that the tooling added to the context file.
In this example, a configured xmljson data format is before the first route element.

7. When done, save your changes by selecting File → Save on the menu bar.

Adding a global bean

A global bean enables out-of-route bean definitions that can be referenced from anywhere in the route.
When you copy a Bean component from the palette to the route, you can find defined global beans in the
Properties view’s Ref dropdown. Select the global bean that you want the Bean component to
reference.

To add a global bean element:

1. In the Create a new global element window, select Bean and click OK to open the Bean
Definition dialog.

Red Hat Fuse 7.3 Tooling User Guide

36

2. In the Id field, enter an ID for the global bean, for example, TransformBean. The ID must be
unique in the configuration.

3. Identify a bean class or a factory bean.
To specify a factory bean, you must have already added another global bean with a factory class
specified. You can then select that global bean to declare it as a global bean factory. One
instance of the bean factory class will be in the runtime. Other global beans can call factory
methods on that class to create their own instances of other classes.

To fill the Class field, do one of the following:

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

37

Enter the name of a class that is in the project or in a referenced project.

Click … ​ to navigate to and select a class that is in the project or in a referenced project.

Click + to define a new bean class and add it as a global bean.

4. If the bean you are adding requires one or more arguments, in the Constructor Arguments
section, for each argument:

a. Click Add.

b. Optionally, in the Type field, enter the type of the argument. The default is
java.lang.String.

c. In the Value field, enter the value of the argument.

d. Click OK.

5. Optionally specify one or more properties that are accessible to the global bean. In the Bean
Properties section, do the following for each property:

a. Click Add.

b. In the Name field, enter the name of the property.

c. In the Value field, enter the value of the property.

d. Click OK.

6. Click Finish to add the global bean to the configuration. The global bean ID you specified
appears in the Configurations tab, for example:

7. Switch to the Source tab to see the bean element that the tooling added to the context file. For
example:

Red Hat Fuse 7.3 Tooling User Guide

38

8. Click the Configurations tab to return to the list of global elements and select a global bean to
display its standard properties in the Properties view, for example:

NOTE

To view or edit a property that you specified when you added a global bean,
select the bean in the Configurations tab and then click Edit.

9. Set global bean properties as needed:

Depends-on is a string that you can use to identify a bean that must be created before this
global bean. Specify the ID (name) of the depended on bean. For example, if you are
adding the TransformBean and you set Depends-on to ChangeCaseBean then
ChangeCaseBean must be created and then TransformBean can be created. When the
beans are being destroyed then TransformBean is destroyed first.

Factory-method is useful only when the global bean is a factory class. In this situation,
specify or select a static factory method to be called when the bean is referenced.

Scope is singleton or prototype. The default, singleton, indicates that Camel uses
the same instance of the bean each time the bean is called. Specify prototype when you
want Camel to create a new instance of the bean each time the bean is called.

Init-method lets you specify or select which of the bean’s init() methods to call when the
bean is referenced.

Destroy-method lets you specify or select which of the bean’s destory methods to call when
the processing performed by the bean is done.

10. When done, save your changes by selecting File → Save on the menu bar.

Deleting a global element

The procedure is the same whether removing an endpoint, data format or bean that was previously
added to the routing context.

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

39

NOTE

You cannot perform an undo operation for deletion of a global element. If you
inadvertently delete a global element that you want to keep in the configuration you might
be able to undo the deletion by closing the context file without saving it. If this is not
feasible then re-add the inadvertently deleted global element.

1. In the Configurations tab, select the global element that you want to delete.
For example, suppose you want to delete the data format myDataFormat that was added in the
section called “Adding a global data format”:

2. Click Delete.
The global element myDataFormat disappears from the Configurations tab.

3. Switch to the Source tab to check that the tooling removed the XML code from the routing
context.

Red Hat Fuse 7.3 Tooling User Guide

40

4. When done, save your changes by selecting File → Save on the menu bar.

Editing a global element

The procedure is the same whether modifying the properties of an endpoint, data format or bean that you
added to the routing context.

Typically, you do not want to change the ID of a global element. If the global element is already in use in
a running route, changing the ID can break references to the global element.

1. In the Configurations tab, select the global element that you want to edit.
For example, to edit the endpoint myJMS that was added in the section called “Adding a global
endpoint”, select it:

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

41

2. Click Edit.

Red Hat Fuse 7.3 Tooling User Guide

42

In the Properties view, modify the element’s properties as needed.

3. For example, open the Advanced → Consumer tab, and change the value of Concurrent
Consumers to 2:

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

43

4. In the route editor, click the Source tab and check that the tooling added the property
concurrentConsumers=2 to the routing context:

5. When done, save your changes by selecting File → Save on the menu bar.

2.7. CONFIGURING THE ROUTE EDITOR

Overview

Using Fuse preference settings, you can specify options for the route editor’s behavior and user
interface:

The default language to use for expressions in Enterprise Integration Patterns (EIPs)

The direction (to the right or down) in which patterns flow on the Design canvas when you create
routes

Whether the Design canvas displays a grid overlay in the background of the canvas.

The method for labeling nodes on the Design canvas

Procedure

To configure the route editor:

1. Open the Editor preferences window:

On Linux and Windows machines, select Windows → Preferences → Fuse Tooling →
Editor.

On OS X, select CodeReady Studio → Preferences → Fuse Tooling → Editor.

Red Hat Fuse 7.3 Tooling User Guide

44

2. To select the default language that you want to use for expressions in Enterprise Integration
Pattern (EIP) components, select a language from the drop-down list. The default is Simple.

3. To specify the direction in which you want the route editor to align the patterns in a route, select
Down or Right. The default is Down.

4. To enable or disable displaying a grid overlay on the background of the canvas, check the box
next to Show diagram grid in Routes Editor. The default is enabled.

5. To enable or disable using component IDs as labels in the route editor’s Design tab, check the
box next to Use ID values for component labels. The default is disabled.
If you check this option and also specify a preferred label for a component (see Step 6), then the
preferred label is used for that component instead of the ID value.

6. To use a parameter as the label for a component (except for endpoints, such as File nodes) in
the route editor’s Design tab:

a. In the Preferred labels section, click Add. The New Preferred Label dialog opens.

CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR

45

b. Select a Component and then select the Parameter to use as the label for the component.

c. Click OK. The component and parameter pairs are listed in the Editor Preferences window.

You can optionally Edit and Remove component labels.

NOTE

If you check the Use ID values for component labels option, it applies to all
components except for the components listed in the Preferred labels
section.

7. Click Apply and Close to apply the changes to the Editor preferences and close the
Preferences window.

NOTE

You can restore the route editor’s original defaults at any time by returning to the Editor
preferences dialog and clicking Restore Defaults.

Red Hat Fuse 7.3 Tooling User Guide

46

CHAPTER 3. VIEWING AND EDITING REST DSL
COMPONENTS

You can view and edit Rest DSL components that are in your Camel Context file.

3.1. VIEWING A GRAPHICAL REPRESENTATION OF REST DSL
COMPONENTS

To view the REST DSL components in your Camel Context file in graphical mode:

1. Open the Camel Context file in the route editor.

2. Click the REST tab to the view the Rest DSL components.

The REST Configuration section displays these configuration options:

Component — The Camel component to use for the REST transport.

Context Path — The leading context-path for the REST services. You can use this option for
components, such as Servlet, where the web application is deployed using a context-path.

Port — The port number that exposes the REST service.

Binding Mode — The binding mode for JSON or XML format messages. Possible values
are: off (the default), auto, json, xml, or json_xml.

Host — The hostname to use for exposing the REST service.

3. Click a REST element to view its associated operations (for example, GET, POST, PUT, and
DELETE) in the REST Operations section.

CHAPTER 3. VIEWING AND EDITING REST DSL COMPONENTS

47

4. Click a REST element or a REST operation to view its properties in the Properties view.

3.2. EDITING REST DSL COMPONENTS IN THE GRAPHICAL VIEW

You can add, edit, or delete REST elements in your project’s Camel Context file in the REST tab.

To add a new REST element:

1. In the REST elements section, click the + button. A REST element is added to the list of
REST elements.

2. In the Properties view, edit the REST element properties.

Red Hat Fuse 7.3 Tooling User Guide

48

To add a REST operation to a REST element:

1. In the list of REST elements, select a REST element.

2. In the REST operations section, click the + button.
The Add REST Operation dialog box opens.

CHAPTER 3. VIEWING AND EDITING REST DSL COMPONENTS

49

3. Specify the ID, URI, and Operation Type. Optionally, select a Referenced Route ID.

4. Click Finish. The new operation shows in the list of REST operations for the selected REST
element.

To edit a REST element or operation, select it in the REST tab and then edit its property values
in the Properties tab.

To remove a selected REST element or operation, click the x button.

3.3. VIEWING AND EDITING THE REST DSL SOURCE CODE

You can also view and edit Rest DSL components in the Source tab:

1. Open the Camel Context file in the route editor.

2. Click the route editor’s Source tab and then edit the code.

Red Hat Fuse 7.3 Tooling User Guide

50

3. Optionally, click the REST tab to see the changes in the graphical view.

4. To save your changes, select File → Save.

For information about the Camel Rest DSL, see the “Defining REST services” section of the Apache
Camel Development Guide.

CHAPTER 3. VIEWING AND EDITING REST DSL COMPONENTS

51

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html-single/apache_camel_development_guide/index

CHAPTER 4. MIGRATING A SOAP APPLICATION TO RESTFUL
WEB SERVICES

You can use the WSDL-to-Camel Rest wizard to migrate from an existing JAX-WS SOAP web services
implementation to a RESTful web services implementation by using an existing WSDL. The wizard is
available as part of Fuse Tooling and it is based on the wsdl2rest utility, available in Github wsdl2rest
project.

It supports the following specifications/configurations:

Document/literal (doc/lit)

Document/literal Wrapped (doc/lit wrap)

RPC/literal (rpclit)

4.1. WIZARD WORKFLOW

The wizard uses a WSDL path which can be a valid URL (in the file:// URL form) or a remote URL
(using http or https) and the selected Fuse project. In the wizard, you provide the paths for the
generated Java code, the generated Camel configuration file, the target address for the generated camel
endpoint, and the bean implementation class.

The wizard generates the destination Java and Camel paths based on the project. The generated Java
code is available in src/main/java and the Camel file in an appropriate location for Spring or
Blueprint, such as src/main/resources/META-INF/spring.

You can modify the generated classes and configure them to a certain point.

4.2. PREREQUISITES

Before you begin, you must meet these prerequisites:

A pre-existing Fuse Integration Project. You can create a new project using the File→ New→
Fuse Integration Project wizard.

A WSDL file accessible through URL. It can be local (file:// url) or remote (http or
https).

4.3. MIGRATING A SAMPLE SOAP APPLICATION TO RESTFUL WEB
SERVICES

Follow these steps to run the wizard:

1. In CodeReady Studio, select your Fuse project in the Project Explorer view.

2. Right-click on the Fuse project and then select New → Camel Rest DSL from WSDL.
The Select Incoming WSDL and Project for Generated Output page opens. The Destination
Project field is automatically pre-populated with the Fuse project selected in the Project
Explorer. This project is the destination for the artifacts that the wizard generates.

Red Hat Fuse 7.3 Tooling User Guide

52

https://github.com/tdiesler/wsdl2rest

3. For WSDL File, specify the original SOAP service for processing.

4. Click Next. The Specify Advanced Options for WSDL-to-REST Processing page appears.

a. For Destination Java Folder, specify the location of the CXF-generated Java classes.

b. For Destination Camel Folder, specify the location of the generated Camel Rest DSL
configuration file.

CHAPTER 4. MIGRATING A SOAP APPLICATION TO RESTFUL WEB SERVICES

53

NOTE

The path and name of the generated Camel file varies based on the type of
Camel project:

For Spring projects: src/main/resources/META-INF/rest-camel-
context.xml

For Spring Boot projects: src/main/resources/spring/rest-
springboot-context.xml

For Blueprint projects: src/main/resources/OSGI-INF/rest-
blueprint-context.xml

c. Optionally, for Target Service Address provide the SOAP address specified in the WSDL
binding. You can change this option to match the actual address of the SOAP service
referenced by the WSDL.

d. Optionally, for Target REST Service Address provide the URL for accessing the REST
service. This URL is decomposed into settings for the <restConfiguration> and
<rest> tags in the Rest DSL to specify the complete URL for REST operations mapped to
the SOAP service.

5. Click Finish to create two files as the output:

The Camel configuration with Rest DSL.

Java classes from CXF to wrap the SOAP service.

Red Hat Fuse 7.3 Tooling User Guide

54

CHAPTER 5. CREATING A NEW APACHE CAMEL JUNIT TEST
CASE

OVERVIEW

A common way of testing routes is to use JUnit. The design time tooling includes a wizard that simplifies
creating a JUnit test case for your routes. The wizard uses the endpoints you specify to generate the
starting point code and configuration for the test.

NOTE

After you create the boilerplate JUnit test case, you need to modify it to add expectations
and assertions specific to the route that you’ve created or modified, so the test is valid for
the route.

PREREQUISITES

Before you create a new JUnit test case, you need to perform a preliminary task:

If you are replacing an existing JUnit test case, you need to delete it before you create a new
one. See the section called “Deleting and existing JUnit test case”.

If you are creating a new JUnit test case in a project that hasn’t one, you need to first create the
project_root/src/test/java folder for the test case that is included in the build path. See the
section called “Creating and adding the src/test/java folder to the build path”.

DELETING AND EXISTING JUNIT TEST CASE

1. In the Project Explorer view, expand the project’s root node to expose the
<root_project>/src/test/java folder.

2. Locate the JUnit test case file in the /src/test/java folder.
Depending on which DSL the project is based on, the JUnit test case file is named
BlueprintXmlTest.java or CamelContextXmlTest.java.

3. Right-click the JUnit test case .java file to open the context menu, and then select Delete.
The JUnit test case .java file disappears from the Project Explorer view.

You can now create a new JUnit test case.

CREATING AND ADDING THE SRC/TEST/JAVA FOLDER TO THE BUILD
PATH

1. In the Project Explorer view, right-click the project’s root to open the context menu.

2. Select New → Folder to open the Create a new folder resource wizard.

3. In the wizard’s project tree pane, expand the project’s root node and select the src folder.
Make sure <project_root>/src appears in the Enter or select the parent folder field.

4. In Folder name, enter /test/java. This folder will store the new JUnit test case you create.

CHAPTER 5. CREATING A NEW APACHE CAMEL JUNIT TEST CASE

55

5. Click Finish.
In the Project Explorer view, the new src/test/java folder appears under the
src/main/resources folder. You can verify that this folder is on the class path by opening its
context menu and selecting Build Path. If Remove from Build Path is a menu option, you
know the src/test/java folder is on the class path.

You can now create a new JUnit test case.

CREATING A JUNIT TEST CASE

To create a new JUnit test case for your route:

1. In the Project Explorer view, select the routing context .xml file in your project.

2. Right-click it to open the context menu, and then select New → Camel Test Case to open the
New Camel JUnit Test Case wizard, as shown in Figure 5.1, “New Camel JUnit Test Case
wizard”.

Figure 5.1. New Camel JUnit Test Case wizard

Alternatively, you can open the wizard by selecting File → New → Other > Fuse > Camel Test
Case from the menu bar.

Red Hat Fuse 7.3 Tooling User Guide

56

3. In Source folder, accept the default location of the source code for the test case, or enter
another location.

You can click to search for a location.

4. In Package, accept the default package name for the generated test code, or enter another
package name.

You can click to search for a package.

5. In Camel XML file under test, accept the default pathname of the routing context file that
contains the route you want to test, or enter another pathname.

You can click to search for a context file.

6. In Name, accept the default name for the generated test class, or enter another name.

7. Select the method stubs you want to include in the generated code.

8. If you want to include the default generated comments in the generated code, check the
Generate comments box.

9. Click to open the Test Endpoints page. For example, Figure 5.2, “New Camel
JUnit Test Case page” shows a route’s input and output file endpoints selected.

Figure 5.2. New Camel JUnit Test Case page

10. Under Available endpoints, select the endpoints you want to test. Click the checkbox next to
any selected endpoint to deselect it.

11. Click .

CHAPTER 5. CREATING A NEW APACHE CAMEL JUNIT TEST CASE

57

NOTE

If prompted, add JUnit to the build path.

The artifacts for the test are added to your project and appear in the Project Explorer view under
src/test/java. The class implementing the test case opens in the Java editor.

Red Hat Fuse 7.3 Tooling User Guide

58

CHAPTER 6. RUNNING ROUTES INSIDE RED HAT FUSE
TOOLING

There are two ways to run your routes using the tooling:

Section 6.1, “Running routes as a local Camel context”

Section 6.2, “Running routes using Maven”

6.1. RUNNING ROUTES AS A LOCAL CAMEL CONTEXT

Overview

The simplest way to run an Apache Camel route is as a Local Camel Context. This method enables
you to launch the route directly from the Project Explorer view’s context menu. When you run a route
from the context menu, the tooling automatically creates a runtime profile for you. You can also create a
custom runtime profile for running your route.

Your route runs as if it were invoked directly from the command line and uses Apache Camel’s
embedded Spring container. You can configure a number of the runtime parameters by editing the
runtime profile.

Procedure

To run a route as a local Camel context:

1. In the Project Explorer view, select a routing context file.

2. Right-click it to open the context menu, and then select Run As → Local Camel Context.

NOTE

Selecting Local Camel Context (without tests) directs the tooling to run the
project without performing validation tests, which may be faster.

Result

The Console view displays the output generated from running the route.

Related topics

Section 6.3.1, “Editing a Local Camel Context runtime profile”

6.2. RUNNING ROUTES USING MAVEN

Overview

If the project containing your route is a Maven project, you can use the m2e plug-in to run your route.
Using this option, you can execute any Maven goals, before the route runs.

Procedure

CHAPTER 6. RUNNING ROUTES INSIDE RED HAT FUSE TOOLING

59

To run a route using Maven:

1. In the Project Explorer view, select the root of the project .

2. Right-click it to open the context menu, and then select Run As → Maven build.

a. The first time you run the project using Maven, the Edit Configuration and launch editor
opens, so you can create a Maven runtime profile.
To create the runtime profile, on the Maven tab:

i. Make sure the route directory of your Apache Camel project appears in the Base
directory: field.
For example, on Linux the root of your project is similar to ~/workspace/simple-
router.

ii. In the Goals: field, enter camel:run.

IMPORTANT

If you created your project using the Java DSL, enter exec:java in the
Goals: field.

iii. Click Apply and then Run.

b. Subsequent Maven runs use this profile, unless you modify it between runs.

Results

The Console view displays the output from the Maven run.

Related topics

Section 6.3.2, “Editing a Maven runtime profile”

6.3. WORKING WITH RUNTIME PROFILES

Red Hat Fuse Tooling stores information about the runtime environments for each project in runtime
profiles. The runtime profiles keep track of such information as which Maven goals to call, the Java
runtime environment to use, any system variables that need to be set, and so on. A project can have
more than one runtime profile.

6.3.1. Editing a Local Camel Context runtime profile

Overview

A Local Camel Context runtime profile configures how Apache Camel is invoked to execute a route. A
Local Camel Context runtime profile stores the name of the context file in which your routes are
defined, the name of the main to invoke, the command line options passed into the JVM, the JRE to use,
the classpath to use, any environment variables that need to be set, and a few other pieces of
information.

The runtime configuration editor for a Local Camel Context runtime profile contains the following tabs:

Red Hat Fuse 7.3 Tooling User Guide

60

Camel Context File — specifies the name of the new configuration and the full path of the
routing context file that contains your routes.

JMX — specifies JMX connection details, including the JMX URI and the user name and
password (optional) to use to access it.

Main — specifies the fully qualified name of the project’s base directory, a few options for
locating the base directory, any goals required to execute before running the route, and the
version of the Maven runtime to use.

JRE — specifies the JRE and command line arguments to use when starting the JVM.

Refresh — specifies how Maven refreshes the project’s resource files after a run terminates.

Environment — specifies any environment variables that need to be set.

Common — specifies how the profile is stored and the output displayed.

The first time an Apache Camel route is run as a Local Camel Context, Red Hat Fuse Tooling creates
for the routing context file a default runtime profile, which should not require editing.

Accessing the Local Camel Context’s runtime configuration editor

1. In the Project Explorer view, select the Camel context file for which you want to edit or create a
custom runtime profile.

2. Right-click it to open the context menu, and then select Run As → Run Configurations to open
the Run Configurations dialog.

3. In the context selection pane, select Local Camel Context, and then click at the top, left of
the context selection pane.

4. In the Name field, enter a new name for your runtime profile.

CHAPTER 6. RUNNING ROUTES INSIDE RED HAT FUSE TOOLING

61

Figure 6.1. Runtime configuration editor for Local Camel Context

Setting the camel context file

The Camel Context File tab has one field, Select Camel Context file… ​. Enter the full path to the
routing context file that contains your route definitions.

The Browse button accesses the Open Resource dialog, which facilitates locating the target routing
context file. This dialog is preconfigured to search for files that contain Apache Camel routes.

Changing the command line options

By default the only command line option passed to the JVM is:

-fa context-file

If you are using a custom main class you may need to pass in different options. To do so, on the Main
tab, click the Add button to enter a parameter’s name and value. You can click the Add Parameter
dialog’s Variables… ​ button to display a list of variables that you can select.

To add or modify JVM-specific arguments, edit the VM arguments field on the JRE tab.

Changing where output is sent

By default, the output generated from running the route is sent to the Console view. But you can redirect
it to a file instead.

Red Hat Fuse 7.3 Tooling User Guide

62

To redirect output to a file:

1. Select the Common tab.

2. In the Standard Input and Output pane, click the checkbox next to the Output File: field, and
then enter the path to the file where you want to send the output.
The Workspace, File System, and Variables buttons facilitate building the path to the output
file.

Related topics

Section 6.1, “Running routes as a local Camel context”

6.3.2. Editing a Maven runtime profile

Overview

A Maven runtime profile configures how Maven invokes Apache Camel. A Maven runtime profile stores
the Maven goals to execute, any Maven profiles to use, the version of Maven to use, the JRE to use, the
classpath to use, any environment variables that need to be set, and a few other pieces of information.

IMPORTANT

The first time an Apache Camel route is run using Maven, you must create a default
runtime profile for it.

The runtime configuration editor for a Fuse runtime profile contains the following tabs:

Main — specifies the name of the new configuration, the fully qualified name of the project’s
base directory, a few options for locating the base directory, any goals required to execute
before running the route, and the version of the Maven runtime to use.

JRE — specifies the JRE and command line arguments to use when starting the JVM.

Refresh — specifies how Maven refreshes the project’s resource files after a run terminates.

Source — specifies the location of any additional sources that the project requires.

Environment — specifies any environment variables that need to be set.

Common — specifies how the profile is stored and the output displayed.

Accessing the Maven runtime configuration editor

1. In the Project Explorer view, select the root of the project for which you want to edit or create a
custom runtime profile.

2. Right-click it to open the context menu, and then select Run As → Run Configurations to open
the Run Configurations dialog.

3. In the context selection pane, select Maven Build, and then click at the top, left of the
context selection pane.

CHAPTER 6. RUNNING ROUTES INSIDE RED HAT FUSE TOOLING

63

Figure 6.2. Runtime configuration editor for Maven

Changing the Maven goal

The most commonly used goal when running a route is camel:run. It loads the routes into a Spring
container running in its own JVM.

The Apache Camel plug-in also supports a camel:embedded goal that loads the Spring container into
the same JVM used by Maven. The advantage of this is that the routes should bootstrap faster.

Projects based on Java DSL use the exec:java goal.

If your POM contains other goals, you can change the Maven goal used by clicking the Configure… ​
button next to the Maven Runtime field on the Main tab. On the Installations dialog, you edit the Global
settings for <selected_runtime> installation field.

Changing the version of Maven

By default, Red Hat Fuse Tooling for Eclipse uses m2e, which is embedded in Eclipse. If you want to use
a different version of Maven or have a newer version installed on your development machine, you can
select it from the Maven Runtime drop-down menu on the Main tab.

Changing where the output is sent

Red Hat Fuse 7.3 Tooling User Guide

64

By default, the output from the route execution is sent to the Console view. But you can redirect it to a
file instead.

To redirect output to a file:

1. Select the Common tab.

2. Click the checkbox next to the Output File: field, and then enter the path to the file where you
want to send the output.
The Workspace, File System, and Variables buttons facilitate building the path to the output
file.

Related topics

Section 6.2, “Running routes using Maven”

CHAPTER 6. RUNNING ROUTES INSIDE RED HAT FUSE TOOLING

65

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION
SERVICES

OVERVIEW

Fuse Integration Services (FIS) provides a set of tools and containerized xPaaS images for developing,
deploying, and managing microservices on OpenShift.

IMPORTANT

For FIS projects, Fuse Tooling requires installation of the Red Hat Container Development
Kit (CDK) v3.x. See Getting Started Guide for instructions. In addition to the prerequisites
specified in this guide, you need to establish a Red Hat account if you do not have one.
Your Red Hat user name and password are required to start the virtual OpenShift instance
provided in the Red Hat Container Development Kit.

You can easily get an account by registering on the Red Hat Customer Portal. Click

 in the upper right corner of the white banner, and then click

 on the Login to Your Red Hat Account page.

Fuse Tooling enables you to develop and deploy FIS 2.0 projects using the s2i binary workflow. In this
workflow, the tooling builds your project locally, assembles it into an image stream, then pushes the
image stream to OpenShift, where it is used to build the Docker container. Once the Docker container is
built, OpenShift deploys it in a pod.

IMPORTANT

Fuse Tooling works only with the S2I binary workflow and only with projects based on the
Spring Boot framework.

NOTE

Although Fuse Tooling can deploy FIS projects created using the tooling to remote
OpenShift servers, this chapter describes creating and deploying FIS projects to a virtual
OpenShift instance, installed locally using the Red Hat Container Development Kit (CDK)
v3.x.

Creating and deploying your first FIS project involves:

the section called “Adding the Red Hat Container Development Kit server”

the section called “Starting the Container Development Environment (CDE) and virtual
OpenShift server”

the section called “Creating a new OpenShift project”

the section called “Creating a new FIS project”

the section called “Deploying the FIS project to OpenShift”

Red Hat Fuse 7.3 Tooling User Guide

66

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.8/html-single/getting_started_guide/
https://access.redhat.com

NOTE

You can also run a FIS project as a local Camel context, see Section 6.1, “Running
routes as a local Camel context”, and then connect to it in the JMX Navigator view,
where you can monitor and test the routing context. You can also run the Camel
debugger on a FIS project (Part II, “Debugging Routing Contexts”) to expose and fix any
logic errors in the routing context.

ADDING THE RED HAT CONTAINER DEVELOPMENT KIT SERVER

To add the Red Hat Container Development Kit to the Servers view:

1. If necessary, switch to the Fuse Integration perspective.

NOTE

If, in this or any other section in this chapter, a view described in a procedure is
not open, you can open it by clicking Window → Show View → *Other →
*view_name.

2. In the Servers view, click the link No servers are available. Click this link to create a new
server… ​ to open the Define a New Server wizard. This link appears only when the Servers
view contains no server entry.
Otherwise, right-click in the view to open the context menu, and then select New → Server to
open the Define a New Server wizard.

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

67

3. Select Red Hat JBoss Middleware → Red Hat Container Development Kit 3.
Accept the defaults for:

Server’s host name — localhost

Server name — Container Development Environment

4. Click Next to open the Red Hat Container Development Environment page.

5. Next to Folder, click Browse, navigate to the location where you installed the Red Hat
Container Development Kit 3.x and click Open.

6. Next to Username, click Add to open the Add a Credential page.

7. Set the credentials this way:

Username — Enter the name you use to log into your Red Hat account.

Always prompt for password — Leave as is (disabled).

Password — Enter the password you use to log into your Red Hat account.

Red Hat Fuse 7.3 Tooling User Guide

68

8. Click OK to return to the Red Hat Container Development Environment page, which is now
populated. For example:

9. Click Finish. Container Development Environment 3 [Stopped, Synchronized] appears in
the Servers view. Container Development Environment 3 is the default server name when
you add a CDK 3.x server.

STARTING THE CONTAINER DEVELOPMENT ENVIRONMENT (CDE)
AND VIRTUAL OPENSHIFT SERVER

Starting the Container Development Environment (CDE) also starts the virtual OpenShift server.
Stopping the CDE also stops the virtual OpenShift server.

1. In the Servers view, select Container Development Environment 3 [stopped,

Synchronized], and then click on the Servers menu bar.
Console view opens and displays the status of the startup process:

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

69

NOTE

On initial startup, the CDE asks whether you accept the untrusted SSL certificate.
Click Yes.

When the startup process has finished, the Servers view displays:

2. Switch to the OpenShift Explorer view.
The virtual OpenShift server instance, developer, is also running:

https://192.168.99.100:8443 is an example of a URL for the OpenShift developer web
console. Your installation displays the URL for your instance. For more details, see the section
called “Accessing the OpenShift Web Console”.

CREATING A NEW OPENSHIFT PROJECT

When you deploy your FIS project to OpenShift, it is published to the OpenShift project you create here.

1. In the OpenShift Explorer view, right-click the developer entry, to open the context menu.

2. Select New → Project to open the New OpenShift Project wizard.

3. Set the new project’s properties this way:

In the Project Name field, enter the name for the project’s namespace on the virtual
OpenShift server.

Red Hat Fuse 7.3 Tooling User Guide

70

https://192.168.99.100:8443

OpenShift server.
Only lower case letters, numbers, and dashes are valid.

In the Display Name field, enter the name to display on the virtual OpenShift web console’s
Overview page.

Leave the Description field as is.
For example:

4. Click Finish.
The new OpenShift project (in this example, New FIS Test newtest) appears in the OpenShift
Explorer tab, under, in this example, developer https://192.168.99.100:8443:

NOTE

MyProject myproject is an initial example project included with OpenShift.

With New FIS Test newtest selected in the OpenShift Explorer view, the Properties view
displays the project’s details. For example:

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

71

https://192.168.99.100:8443

NOTE

When you deploy the project to OpenShift, the Properties view gathers and
displays the same information about the project that the OpenShift web console
does.

CREATING A NEW FIS PROJECT

Before you create a new FIS project, you should enable staging repositories. This is needed because
some Maven artifacts are not in default Maven repositories. To enable staging repositories, select
Window → Preferences → Fuse Tooling → Staging Repositories.

To create a FIS project, use the Spring Boot on OpenShift template:

1. In the Project Explorer view, right-click to open the context menu and then select New → Fuse
Integration Project to open the wizard’s Choose a project name page:

Red Hat Fuse 7.3 Tooling User Guide

72

2. In the Project Name field, enter a name that is unique to the workspace you are using, for
example, myFISproject.
Accept the defaults for the other options.

3. Click Next to open the Select a Target Runtime page:

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

73

Leave the defaults for Target Runtime (No Runtime selected) and Camel Version
(2.18.1.redhat-000021 (FIS 2.0 R3)).

4. Click Next to open the Advanced Project Setup page:

Red Hat Fuse 7.3 Tooling User Guide

74

5. Select the Simple log using Spring Boot - Spring DSL template.

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

75

6. Click Finish.

NOTE

Because of the number of dependencies that are downloaded for a first-time FIS
project, building it can take some time.

If the Fuse Integration perspective is not already open, Developer Studio
prompts you to indicate whether you want to open it now. Click Yes.

When the build is done the Fuse Integration perspective displays the project, for example:

Red Hat Fuse 7.3 Tooling User Guide

76

At this point, you can:

Deploy the project on OpenShift

Section 6.1, “Running routes as a local Camel context” to verify that the routing context runs
successfully on your local machine
Connecting to the running context in the JMX Navigator view (see the section called “Viewing
processes in a local JMX server”), you can monitor route components and test whether the route
performs as expected:

View a route component’s JMX statistics — see Chapter 21, Viewing a component’s JMX
statistics.

Edit the running route — see Chapter 25, Managing routing endpoints.

Suspend/resume the running route — see Chapter 27, Managing routing contexts

Start/stop tracing on the running route — see Chapter 23, Tracing Routes

Run the Camel debugger on the project’s camel-context.xml file to discover and fix logic
errors — see Part II, “Debugging Routing Contexts”

DEPLOYING THE FIS PROJECT TO OPENSHIFT

1. In the Project Explorer view, right-click the project’s root (in this example, myFISproject) to
open the context menu.

2. Select Run As → Run Configurations to open the Run Configurations wizard.

3. In the sidebar menu, select Maven Build → Deploy <projectname> on OpenShift (in this
example, Deploy myFISproject on OpenShift) to open the project’s default run configuration:

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

77

Leave the default settings as they are on the Main tab.

4. Open the JRE tab to access the VM arguments:

Red Hat Fuse 7.3 Tooling User Guide

78

5. In the VM arguments pane, change the value of the -Dkubernetes.namespace=test
argument to match the Project name you used for the OpenShift project when you created it
(OpenShift project name in the section called “Creating a new OpenShift project”.
In this example, change the default value test to newtest:

Depending on your OpenShift configuration, you may need to modify other`VM arguments to
support it:

-Dkubernetes.master=https://192.168.99.1:8443

When running multiple OpenShift instances or using a remote instance, you need to specify
the URL of the OpenShift instance targeted for the deployment. The URL above is an
example.

-Dkubernetes.trust.certificates=true

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

79

When using the CDK, this argument is required. Leave it set to true.

If you are using an OpenShift instance that has a valid SSL certificate, change the value
of this argument to false.

6. Click Apply and then click Run.
Because of the number of dependencies to download, first-time deployment can take some time.
The speed of your computer and your internet connection are contributing factors. Typically, it
takes 25 to 35 minutes to complete a first-time deployment.

In the Console view, you can track the progress of the deploy process. In the following output,
the entry *Pushing image 172.30.1 … ​.. * indicates that the project built successfully and the
application images are being pushed to OpenShift, where they will be used to build the Docker
container.

The Console view displays BUILD SUCCESS when deployment completes successfully:

7. Switch to the OpenShift Explorer view and select New FIS Test newtest:

Red Hat Fuse 7.3 Tooling User Guide

80

In the Properties view, the Details page displays all of the project’s property values.

Open the other tabs (Builds, Build Configs, Deployments,… ​) to view other properties of the
project. The Properties view provides the same information as the OpenShift Web Console.

8. In the OpenShift Explorer view, select camel-ose-springboot-xml to view its details in the
Properties view:

Scroll through the other tabs to view other properties of the deployment configuration.

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

81

9. In the OpenShift Explorer view, select camel-ose-springboot-xml-1-mdmtd Pod
Running, and then view the details of the running instance in the Properties view:

10. In the OpenShift Explorer view, right-click camel-ose-springboot-xml-1-mdmtd Pod
Running, and then select Pod Logs… ​.

NOTE

If prompted, enter the path to the installed oc executable. It is required to retrieve
pod logs.

The Console view automatically opens, displaying the logs from the running pod:

Red Hat Fuse 7.3 Tooling User Guide

82

Click in the Console view’s menu bar to terminate the session and clear console output.

ACCESSING THE OPENSHIFT WEB CONSOLE

NOTE

This information applies to Red Hat Container Development Kit installations only.

To access the OpenShift Web Console, open a browser and enter the OpenShift server’s URL, which is
specific to your instance and your machine. For example, enter https://192.168.99.100:8443, in
the browser’s address field.

You can log into the web console either as a developer or as an administrator, using the default
credentials:

Default developer role
Developer users can view only their own projects and the supplied OpenShift sample project,
which demonstrates OpenShift v3 features. Developer users can create, edit and delete any
project that they own that is deployed on OpenShift.

Username - developer

Password - developer

Default administrator role
An administrator user can view and access all projects on OpenShift (CDK). Administrator users
can create, edit and delete, any project deployed on OpenShift.

Username - admin

Password - admin

For more information on using the OpenShift web console, see NameOfCDKGettingStarted}.

CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES

83

https://192.168.99.100:8443
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.8/html-single/getting_started_guide/{

CHAPTER 8. USING THE RED HAT FUSE SAP TOOL SUITE
The Red Hat Fuse SAP Tool Suite makes it possible to integrate your Camel routes with a remote SAP
Application Server. A variety of SAP components are provided to support Remote Function Calls (RFC)
and the sending and receiving of Intermediate Documents (IDocs). The SAP Tool Suite depends on the
JCo and IDoc client libraries from SAP. To install and use these libraries, you must have an SAP Service
Marketplace Account.

8.1. INSTALLING THE RED HAT FUSE SAP TOOL SUITE

Overview

The Red Hat Fuse SAP Tool Suite provides the Edit SAP Connection Configuration dialog, which helps
you to create and manage the SAP Application Server and Destination connections. The suite is not
installed by default, because it requires third-party JCo and IDoc client libraries, which are licensed
separately by SAP.

Platform restrictions for SAP tooling

Because the SAP tool suite depends on the third-party JCo 3.0 and IDoc 3.0 libraries, it can only be
installed on the platforms that these libraries support. For more details about the platform restrictions for
SAP tooling, see Red Hat Fuse Supported Configurations.

Prerequisites

Before you can install the Fuse SAP Tool Suite, you must download the JCo and IDoc libraries from the
following location:

http://service.sap.com/connectors

To download these libraries, you must have an SAP Service Marketplace Account. Be sure to choose
the appropriate JCo and IDoc libraries for your operationg system. Also:

Only version 3.0.11 or greater of the JCo library is supported.

Only version 3.0.10 or greater of the IDoc library is supported.

For this installation procedure, you can leave the downloaded files in archive format. There is no need to
extract the contents.

Procedure

To install the Fuse SAP Tool Suite into Red Hat CodeReady Studio, perform the following steps:

1. In Red Hat CodeReady Studio, select File → Import to open the Import wizard.

2. In the Select screen of the Import wizard, select Fuse → Install Fuse SAP Tool Suite, and
then click Next.

3. The Install the Red Hat Fuse SAP Tool Suite screen opens, which displays the instructions for
downloading the JCo and IDoc libraries from the SAP Service Marketplace. Click Next.

4. The Select JCo3 and IDoc3 Archive to Import screen opens. Next to the JCo Archive File
field, use the Browse button to select the JCo archive that you downloaded from the SAP

Red Hat Fuse 7.3 Tooling User Guide

84

https://access.redhat.com/site/articles/310603
http://service.sap.com/connectors

Service Marketplace. After selecting the JCo archive, the Archive Version and Archive OS
Platform fields are automatically filled in, so that you can check whether the library you are
installing has the correct version and OS platform.
Next to the IDoc3 Archive File field, use the Browse button to select the IDoc archive that you
downloaded from the SAP Service Marketplace.

After selecting both archive files, click Finish.

5. A new Install wizard (for installing Eclipse plug-ins) opens automatically. This wizard displays
the following to plug-ins to be installed:

Fuse SAP Tool Suite

SAP JCo3 and IDoc3 Libraries
Make sure that both of these plug-ins are selected. Click Next.

NOTE

The SAP JCo3 and IDoc3 Libraries plug-in is dynamically constructed
from the selected JCo and IDoc libraries.

6. The Install Details screen allows you to review the plug-ins to be installed. Click Next.

7. The Review Licenses dialog opens. Select the I accept radiobutton option, and then click
Finish.

8. If you encounter a Security Warning dialog (warning of unsigned content), click OK to ignore
the warning and continue installing.

9. The Restart Eclipse dialog opens. Click OK to restart Eclipse.

8.2. CREATE AND TEST SAP DESTINATION CONNECTION

Overview

In Fuse SAP Tool suite, the Edit SAP Connection Configuration dialog helps you to create and manage
the SAP Application Destination connections. This section describes how to create and test the SAP
destination connection.

Procedure

To create and test an SAP destination connection, perform the following steps:

1. Navigate to the global Configurations tab of the route editor and click Add.
The Create new global element view appears.

2. Under SAP, select the type of connection you would like to create. Choose the SAP
Connection and click Ok.
The Edit SAP Connection Configuration dialog appears. It allows you to create, edit and
delete the Destination and Server Connection Configurations.

3. To create a new Destination Data Store, click the Add Destination tab.
The Create Destination dialog appears.

CHAPTER 8. USING THE RED HAT FUSE SAP TOOL SUITE

85

4. Enter a name for the destination in the Destination Name field and click Ok.

5. In the Properties dialog,

a. Click the Basic tab to configure the basic properties required to connect to an SAP
destination. In this tab, fill in the following property fields to configure the connection:

SAP Application Server

SAP System Number

SAP Client

Logon User

Logon Password

Logon Language

b. Click the Connection tab to add values required to connect to an SAP destination. Fill in the
following property fields to configure the connection:

SAP System Number

SAP Router String

SAP Application Server

SAP Message Server

SAP Message Server Port

Gateway Host

Gateway Port

SAP System ID

SAP Application Server Group

c. Click the Authenticate tab to add values required to validate an SAP destination. Fill in the
following property fields to configure the connection.

SAP Authentication type

SAP Client

Logon User

Logon User Alias

Logon Password

SAP SSO Logon Ticket

SAP X509 Login Ticket

Logon Language

Red Hat Fuse 7.3 Tooling User Guide

86

d. Click the Special tab. In this tab, fill in the following property fields to configure the
connection:

Select CPIC Trace

Initial Codepage

e. Click the Pool tab and fill in the following property fields to configure the connection:

Connection Pool Peak Limit

Connection Pool Capacity

Connection Pool Expiration Time

Connection Pool Expire Check Period

Connection Pool Max Get Client Time

f. Click the SNC tab and fill in the following property fields to configure the connection:

SNC Partner Name

SNC Level of Security

SNC Name

SNC Library Path

g. Click the Repository tab and fill in the following property fields to configure the connection:

Repository Destination

Repository Logon User

Repository Logon Password

NOTE

If you need more information about these settings, refer the SAP
documentation.

6. You are now ready to test the destination connection. In the Edit SAP Connection
Configuration dialog, right-click on the destination name and select Test.
The Test Destination Connection dialog opens.

7. The dialog uses the current destination configuration settings to connect to the SAP Destination
Data Store. If the test is successful, you will see the following message in the status area:

Connection test for destination 'YourDestination' succeeded.

Otherwise, an error report appears in the status area.

8. Click Close to close the Test Destination Connection dialog.

9. Click Finish. The newly created SAP Destination Connection appears under SAP.

CHAPTER 8. USING THE RED HAT FUSE SAP TOOL SUITE

87

8.3. CREATE AND TEST SAP SERVER CONNECTION

Overview

In Fuse SAP Tool suite, the Edit SAP Connection Configuration dialog helps you to create and manage
the SAP Application Server connections. This section describes how to create and test the SAP Server
connection.

Procedure

To create and test the SAP Server connection, perform the following steps:

1. Navigate to the global Configurations tab of route editor and click Add.
The Create new global element view appears.

2. Under SAP, select the type of connection you would like to create. Choose the SAP
Connection and click Ok.
The Edit SAP Connection Configuration dialog appears. It allows you to create, edit and
delete the Destination and Server Connection Configurations.

3. To create a new Server Data Store, click the Add Server tab.
The Create Server dialog appears.

4. Enter a name for the Server in the Server Name field and click Ok.

5. In the Properties dialog,

a. Click the Mandatory tab to configure the basic properties required to connect to an SAP
server. In this tab, fill in the following property fields to configure the connection:

Gateway Host

Gateway Port

Program ID

Repository Destination

Connection Count

b. Click the Optional tab and fill in the following property fields to configure the connection:

SAP Router String

Worker Thread Count

Minimum Worker Thread Count

Maximum Startup Delay

Repository Map

c. Click the SNC tab and fill in the following property fields to configure the connection.

SNC Level of Security

SNC Name

Red Hat Fuse 7.3 Tooling User Guide

88

SNC Library Path

NOTE

For more information about the settings, refer the SAP documentation.

6. You are now ready to test the server connection. In the Edit SAP Connection Configuration
dialog, right-click on the server name and select Test.
The Test Server Connection dialog opens.

7. The dialog uses the current server configuration settings to connect to the SAP Server Data
Store. If the test is successful, you will see the following message in the status area:

Server state: STARTED
Server state: ALIVE

If the test fails, the server status is reported as DEAD.

8. Click Stop to shut down the Test Sever.

9. Click Close to close the Test Server Connection dialog.

10. Click Finish. The newly created SAP Server Connection appears under SAP.

8.4. DELETING DESTINATION AND SERVER CONNECTIONS

Overview

This following section describes how to delete the SAP Destination and Server connections in the Edit
SAP Connection Configuration dialog.

Procedure

If you want to delete the Destination and Server connections, perform the following steps:

1. Navigate to the global Configurations tab of route editor and click Add.
The Create new global element view appears.

2. Under SAP, select the SAP Connection and click Ok.
The Edit SAP Connection Configuration dialog appears. It allows you to create, edit and
delete the Destination and Server Connection Configurations.

3. In the Edit SAP Connection Configuration dialog, select the Destination and Server Data
Stores which you want to delete.

4. Click Delete. It will delete the selected connections.
Atlast, click Finish. It will save all the changes.

8.5. CREATE A NEW SAP ENDPOINT

Overview

CHAPTER 8. USING THE RED HAT FUSE SAP TOOL SUITE

89

You can use the Components palette in the route editor to add SAP components to a route with the help
of the Edit SAP Connection Configuration dialog.

NOTE

If you are using the SAP Connection view, remember to paste the requisite SAP
connection configuration data into your Blueprint XML or Spring XML code.

Prerequisites

You must already have created some SAP destination connections and/or server connections with the
help of the Edit SAP Connection Configuration dialog.

NOTE

If you are using the SAP Connection view, export this configuration to a file of the
appropriate type (Blueprint XML or Spring XML).

Procedure

To create a new SAP endpoint, perform the following steps:

1. It is assumed that you already have a Fuse project and a Camel XML file to work with (which
could either be in Blueprint XML or Spring XML format).

2. Open your Camel XML file in the route editor. If you have already installed the Red Hat Fuse
SAP Tool Suite, you should be able to see the SAP components under the Components palette
in the route editor. The following SAP components are provided by the tool suite:

SAP IDoc Destination

SAP IDoc List Destination

SAP IDoc List Server

SAP qRFC Destination

SAP Queued IDoc Destination

SAP Queued IDoc List Destination

SAP sRFC Destination

SAP sRFC Server

SAP tRFC Destination

SAP tRFC Server
In the Design tab of the route editor, drag one of these components onto the canvas to
create a new SAP endpoint in the current camelContext.

NOTE

The SAP Netweaver component does not belong to the Red Hat Fuse SAP
Tool Suite. It is hosted in the Apache Camel project.

Red Hat Fuse 7.3 Tooling User Guide

90

3. Switch to the Source tab of the route editor, by clicking the Source tab at the bottom of the
canvas. You can see the XML source of the routes.

4. When specifying an SAP endpoint URI, you must embed either a destination name or a server
connection name in the URI format. For example, the sap-srfc-destination component
has the following URI format:

sap-srfc-destination:destinationName:rfcName

To reference a particular destination, use the value of the relevant entry element’s key
attribute as the destinationName in this URI.

CHAPTER 8. USING THE RED HAT FUSE SAP TOOL SUITE

91

CHAPTER 9. GETTING STARTED WITH DATA
TRANSFORMATION

One of the challenges that comes with system and data integration is that the component systems often
work with different data formats. You cannot simply send messages from one system to another without
translating it into a format (or language) recognized by the receiving system. Data transformation is the
term given to this translation.

In this chapter, you learn how to include data transformation in a predefined Camel route. The Camel
route directs messages from a source endpoint that produces XML data to a target endpoint that
consumes JSON data. You add and define a data transformation component that maps the source’s XML
data format to the target’s JSON data format.

9.1. CREATING A PROJECT FOR THE DATA TRANSFORMATION
EXAMPLE

1. Create a new Fuse Integration Project (select File → New → Fuse Integration Project).
Provide the following information in the wizard:

Project name: starter

Deployment platform: Standalone

Runtime environment: Karaf/Fuse on Karaf

Camel version: Use the default

Template: Empty - Blueprint DSL

2. Download the prepared data examples from:
https://github.com/FuseByExample/fuse-tooling-tutorials/archive/user-
guide-11.1.zip

3. Extract the data folder and the three files that it contains from the user-guide-11.1.zip
archive into the Fuse Integration project’s src directory (starter/src/data).

4. In the Project Explorer view, expand the starter project.

5. Double-click Camel Contexts → src/main/resources/OSGI-
INF/blueprint/blueprint.xml to open the route in the route editor’s Design tab.

6. Click the Source tab to view the underlying XML.

7. Replace <route id="_route1"/> with the following code:

<route id="_route1">
 <from id="_from1" uri="file:src/data?fileName=abc-
order.xml&noop=true"/>
 <setHeader headerName="approvalID" id="_setHeader1">
 <simple>AUTO_OK</simple>
 </setHeader>
 <to id="_to1" uri="file:target/messages?fileName=xyz-order.json"/>
</route>

Red Hat Fuse 7.3 Tooling User Guide

92

https://github.com/FuseByExample/fuse-tooling-tutorials/archive/user-guide-11.1.zip

8. Click the Design tab to return to the graphical display of the route:

9.2. ADDING A DATA TRANSFORMATION NODE TO THE CAMEL
ROUTE

1. In the Palette, expand the Transformation drawer.

2. Click the Data Transformation pattern and then, in the canvas, click the arrow between the
SetHeader _setHeader1 and To_to1 nodes.
The New Transformation wizard opens with the Dozer File Path field auto-filled.

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

93

3. Fill in the remaining fields:

In the Transformation ID field, enter xml2json.

For Source Type, select XML from the drop-down menu.

For Target Type, select JSON from the drop-down menu.

4. Click Next.
The Source Type (XML) definition page opens, where you specify either an XML Schema
(default) or an example XML Instance Document to provide the type definition of the source
data:

Red Hat Fuse 7.3 Tooling User Guide

94

5. Leave XML Schema enabled.

6. For Source file, browse to the location of the XML schema file or the XML instance file to use for
the type definition of the source data, and select it (in this case, abc-order.xsd).
The XML Structure Preview pane displays a preview of the XML structure.

7. In the Element root field, enter ABCOrder.
The tooling uses this text to label the pane that displays the source data items to map.

The Source Type (XML) definition page should now look like this:

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

95

8. Click Next to open the Target Type (JSON) definition page. This is where you specify the type
definition for the target data.

Red Hat Fuse 7.3 Tooling User Guide

96

9. Click JSON Instance Document.
In the Target File field, enter the path to the xyz-order.json instance document, or browse to
it. The JSON Structure Preview pane displays a preview of the JSON data structure:

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

97

10. Click Finish.

The transformation editor opens. This is where you can map data items in your XML source to data items
in your JSON target.

The transformation editor is composed of three panels:

Source — lists the available data items of the source

Mappings — displays the mappings between the source and target data items

Red Hat Fuse 7.3 Tooling User Guide

98

Target — lists the available data items of the target

In addition, the editor’s details pane, located just below the editor’s three panels (once the first mapping
has been made), graphically displays the hierarchical ancestors for both the mapped source and target
data items currently selected. For example:

Using the details pane, you can customize the mapping for the selected source and target data items:

Set property — Modify an existing mapping or map a simple data item to one in a collection (see
Section 9.8, “Mapping a simple data item to a data item in a collection”).

Set variable — Specify a constant value for a data item (see Section 9.5, “Mapping a constant
variable to a data item”).

Set expression — Map a data item to the dynamic evaluation of a specified expression (see
Section 9.6, “Mapping an expression to a data item”).

Add transformation — Modify the value of a mapped data item using a built-in function (see
Section 9.9, “Adding a built-in function to a mapped data item”).

Add custom transformation — Modify the value of a mapped data item using the Java method
you create or one you previously created (see Section 9.7, “Adding a custom transformation to a
mapped data item”).

9.3. MAPPING SOURCE DATA ITEMS TO TARGET DATA ITEMS

1. Expand all items in the Source and Target panels located on left and right sides of the
Mappings panel.

2. Drag a data item from the Source panel and drop it on its corresponding data item in the Target
panel.

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

99

For example, drag the customerNum data item from the Source panel and drop it on the
custId data item in the Target panel.

The mapping appears in the Mappings panel, and the details of both the Source and Target
data items appear below in the details pane.

3. Continue dragging and dropping source data items onto their corresponding target data items
until you have completed all basic mappings.
In the starter example, the remaining data items to map are:

Source Target

orderNum orderId

status priority

id itemId

price cost

quantity amount

NOTE

You can map collections (data items containing lists or sets) to non-collection
data items and vice versa, but you cannot map collections to other collections.

4. Click on both the Source and Target panels to quickly determine whether all data items
have been mapped.

Red Hat Fuse 7.3 Tooling User Guide

100

Only data items that have not been mapped are listed in the Source and Target panels.

In the starter example, the remaining unmapped Target attributes are approvalCode and
origin.

5. Click the blueprint.xml tab to return to the graphical display of the route:

6. Click File → Save.

You can run a JUnit test on your transformation file after you create the transformation test. For details,
see Section 9.4, “Creating the transformation test file and running the JUnit test”. If you do so at this
point, you will see this output in the Console view:

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

101

For the source XML data:

<?xml version="1.0" encoding="UTF-8"?>
<ABCOrder xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:java="http://java.sun.com">
 <header>
 <status>GOLD</status>
 <customer-num>ACME-123</customer-num>
 <order-num>ORDER1</order-num>
 </header>
 <order-items>
 <item id="PICKLE">
 <price>2.25</price>
 <quantity>1000</quantity>
 </item>
 <item id="BANANA">
 <price>1.25</price>
 <quantity>400</quantity>
 </item>
 </order-items>
</ABCOrder>

For the target JSON data:

{"custId":"ACME-123","priority":"GOLD","orderId":"ORDER1","lineItems":
[{"itemId":"PICKLE",
"amount":1000,"cost":2.25},{"itemId":"BANANA","amount":400,"cost":1.25

9.4. CREATING THE TRANSFORMATION TEST FILE AND RUNNING
THE JUNIT TEST

1. Right-click the starter project in the Project Explorer view, and select New → Other → Fuse
Tooling → Fuse Transformation Test .

2. Select Next to open the New Transformation Test wizard.

3. In the New Transformation Test wizard, set the following values:

Field Value

Package example

Camel File Path OSGI-INF/blueprint/blueprint.xml

Transformation ID xml2json

4. Click Finish.

5. In the Project Explorer view, navigate to starter/src/test/java/example, and open the
TransformationTest.java file.

6. Add the following code to the transform method:

Red Hat Fuse 7.3 Tooling User Guide

102

startEndpoint.sendBodyAndHeader(readFile("src/data/abc-order.xml"),
"approvalID", "AUTO_OK");

7. Click File → Save.
You can now run a JUnit test on your transformation file at any point in these tutorials.

8. In the Project Explorer view, expand the starter project to expose the
/src/test/java/example/TransformationTest.java file.

9. Right click it to open the context menu, and select Run as JUnit Test.
The JUnit Test pane opens to display the status of the test. To avoid cluttering your workspace,
drag and drop the pane in the bottom panel near the Console view.

10. Open the Console view to see the log output.

9.5. MAPPING A CONSTANT VARIABLE TO A DATA ITEM

When a source/target data item has no corresponding target/source data item, you can map a constant
variable to the existing data item.

In the starter example, the target data item origin does not have a corresponding source data item.
To map the origin attribute to a constant variable:

1. In the Source panel, click the Variables view.

2. In the Variables view, click to open the Enter a new variable name dialog.

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

103

3. Enter a name for the variable you want to create.
For the starter example, enter ORIGIN.

4. Click OK.
The newly created variable ORIGIN appears in the Variables view in the Name column and the
default value ORIGIN in the Value column.

5. Click the default value to edit it, and change the value to Web.

6. Press Enter.

7. Drag and drop the new variable ORIGIN onto the origin data item in the Target panel.

The new mapping of the variable $(ORIGIN) appears in the Mappings panel and in the details
pane.

8. Run a JUnit test on your TransformationTest.java file. For details, see Section 9.4,
“Creating the transformation test file and running the JUnit test”.
The Console view displays the JSON-formatted output data:

{"custId":"ACME-
123","priority":"GOLD","orderId":"ORDER1","origin":"Web",
"approvalCode":"AUTO_OK","lineItems":
[{"itemId":"PICKLE","amount":1000,"cost":2.25},
{"itemId":"BANANA","amount":400,"cost":1.25}]}

Red Hat Fuse 7.3 Tooling User Guide

104

9.6. MAPPING AN EXPRESSION TO A DATA ITEM

This feature enables you, for example, to map a target data item to the dynamic evaluation of a Camel
language expression.

Use the target approvalCode data item, which lacks a corresponding source data item:

1. Click to add an empty transformation map to the Mappings panel.

2. From the Target panel, drag and drop the approvalCode data item to the target field of the
newly created mapping in the Mappings panel.

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

105

The approvalCode data item also appears in the details pane’s target box.

3. In the details pane, click on the ABCOrder source box to open the drop-down menu.

Menu options depend on the selected data item’s data type. The available options are bolded.

4. Select Set expression to open the Expression dialog.

Red Hat Fuse 7.3 Tooling User Guide

106

5. In Language, select the expression language to use from the list of those available. Available
options depend on the data item’s data type.
For the starter example, select Header.

6. In the details pane, select the source of the expression to use.
The options are Value and Script.

For the starter example, click Value, and then enter ApprovalID.

7. Click OK.

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

107

Both the Mappings panel and the details pane display the new mapping for the target data item
approvalCode.

8. Run a JUnit test on your TransformationTest.java file. For details, see Section 9.4,
“Creating the transformation test file and running the JUnit test”.
The Console view displays the JSON-formatted output data:

{"custId":"ACME-
123","priority":"GOLD","orderId":"ORDER1","origin":"Web",
"approvalCode":"AUTO_OK","lineItems":
[{"itemId":"PICKLE","amount":1000,"cost":2.25},
{"itemId":"BANANA","amount":400,"cost":1.25}]}

9.7. ADDING A CUSTOM TRANSFORMATION TO A MAPPED DATA
ITEM

You may need to modify the formatting of source data items when they do not satisfy the requirements of
the target system.

For example, to satisfy the target system’s requirement that all customer IDs be enclosed in brackets:

1. In the Mappings panel, select the customerNum mapping to populate the details pane.

2. In the details pane, click on the ABCOrder source box to open the drop-down menu.

Red Hat Fuse 7.3 Tooling User Guide

108

3. Select Add custom transformation to open the Add Custom Transformation page.

4. Click next to the Class field to open the Create a New Java Class wizard.

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

109

5. Modify the following fields:

Package — Enter example.

Name — Enter MyCustomMapper.

Method Name — Change map to brackets.
Leave all other fields as is.

6. Click Finish.
The Add Custom Transformation page opens with the Class and Method fields auto filled:

Red Hat Fuse 7.3 Tooling User Guide

110

7. Click OK to open the MyCustomMapper.java file in the Java editor:

8. Edit the brackets method to change the last line return null; to this:

return "[" + input + "]";

9. Click the transformation.xml tab to switch back to the transformation editor.

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

111

The details pane shows that the brackets method has been associated with the
customerNum data item.

The brackets method is executed on the source input before it is sent to the target system.

10. Run a JUnit test on your TransformationTest.java file. For details, see Section 9.4,
“Creating the transformation test file and running the JUnit test”.
The Console view displays the JSON-formatted output data:

{"custId":"[ACME-
123]","priority":"GOLD","orderId":"ORDER1","origin":"Web",
"approvalCode":"AUTO_OK","lineItems":
[{"itemId":"PICKLE","amount":1000,"cost":2.25},
{"itemId":"BANANA","amount":400,"cost":1.25}]}

9.8. MAPPING A SIMPLE DATA ITEM TO A DATA ITEM IN A
COLLECTION

In this tutorial, you will modify an existing mapping that maps all ids in the Source to the itemIds in the
Target. The new mapping will map the customerNum data item in the Source to the itemId of the
second item in the lineItems collection in the Target.

With this change, no ids in the Source will be mapped to itemIds in the Target.

1. In the Mappings panel, select the mapping id  — > itemId to display the mapping in the details
pane.

Red Hat Fuse 7.3 Tooling User Guide

112

2. On the Source box, click to open the drop-down menu, and select Set property.

3. In the Select a property page, expand the header node and select customerNum. Click OK to
save the changes.

4. The details pane now shows that XyzOrder has a lineItems field. Click the toggle button next

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

113

to lineItems to increase its value to 1.

NOTE

Indexes are zero-based, so a value of 1 selects the second instance of itemId in
the collection.

Notice that the details pane shows customerNum mapped to the itemId of the second item in
the lineItems collection.

5. Run a JUnit test on your TransformationTest.java file. For details, see Section 9.4,
“Creating the transformation test file and running the JUnit test”.
The Console view displays the JSON-formatted output data:

{"custId":"[ACME-
123]","priority":"GOLD","orderId":"ORDER1","origin":"Web",
"approvalCode":"AUTO_OK","lineItems":[{"amount":1000,"cost":2.25},
{"itemId":"ACME-123","amount":400,"cost":1.25}]}

9.9. ADDING A BUILT-IN FUNCTION TO A MAPPED DATA ITEM

You can use the built-in string-related functions to apply transformations to mapped data items.

1. In the Transformations panel, select the status to priority mapping to populate the details
pane.

2. In the Source box, click to open the drop-down menu, and select Add transformation.

Red Hat Fuse 7.3 Tooling User Guide

114

3. In the Transformations pane, select append, and in the Arguments pane, enter -level for
the value of suffix.
This append function adds the specified suffix to the end of the status string before mapping it
to the target priority data item.

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

115

4. Click OK.

Red Hat Fuse 7.3 Tooling User Guide

116

By default, the details pane displays the results of adding the append function to the status
data item in a user-friendly format. You can change this formatting by clicking the right-most
on the Source box, and selecting Show standard formatting.

5. Run a JUnit test on your TransformationTest.java file. For details, see Section 9.4,
“Creating the transformation test file and running the JUnit test”.
The Console view displays the JSON-formatted output data:

{"custId":"[ACME-123]","priority":"GOLD-
level","orderId":"ORDER1","origin":"Web",
"approvalCode":"AUTO_OK","lineItems":[{"amount":1000,"cost":2.25},
{"itemId":"ACME-123",
"amount":400,"cost":1.25}]}

9.10. PUBLISHING A FUSE INTEGRATION PROJECT WITH DATA
TRANSFORMATION TO A RED HAT FUSE SERVER

Before you publish your data transformation project to a Fuse server (see Chapter 29, Publishing Fuse
Integration Projects to a Server), you need to install the following features in the Fuse runtime:

camel-dozer

camel-jackson

camel-jaxb

To install the required features on the Fuse runtime:

1. If not already there, switch to the Fuse Integration perspective.

2. If necessary, add the Fuse server to the Servers list (see Section 28.1, “Adding a Server”).

3. Start the Fuse Server (see Section 28.2, “Starting a Server”), and wait for the JBoss Fuse shell
to appear in the Terminal view.

4. For each of the required camel- features, at the JBossFuse:admin@root> prompt type:
features:install camel-<featureName>

Where featureName is one of dozer, jackson, or jaxb.

5. To verify that each of the features was successfully installed, at the JBossFuse:admin@root>
prompt type:
features:list --ordered --installed

You should see the camel features you just installed in the output listing:

CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION

117

Red Hat Fuse 7.3 Tooling User Guide

118

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE
INTEGRATIONS

Fuse Online is a Red Hat Fuse feature that provides a web interface for integrating applications. Without
writing code, a business expert can use Fuse Online to connect to applications and optionally operate on
data between connections to different applications. If Fuse Online does not provide a feature that an
integrator needs, then a developer can create an extension that defines the needed behavior.

You can use Fuse Tooling to develop extensions that provide features for use in Fuse Online. An
extension defines:

One or more custom steps that operate on data between connections in an integration
or

One custom connector

In Fuse Online, a connector represents a specific application to obtain data from or send data to. Each
connector is a template for creating a connection to that specific application. For example, the Salesforce
connector is the template for creating a connection to Salesforce. If Fuse Online does not provide a
connector that the Fuse Online user needs, you can develop an extension that defines a custom
connector.

In Fuse Online, a data operation that happens between connections in an integration is referred to as a
step. Fuse Online provides steps for operations such as filtering and mapping data. To operate on data
between connections in ways that are not provided by Fuse Online built-in steps, you can develop a
Fuse Online extension that defines one or more custom steps.

NOTE

You might prefer to develop an extension in the IDE of your choice. Whether you use
Fuse Tooling or another IDE is entirely a matter of personal preference. Information about
developing an extension in any IDE is in Integrating Applications with Fuse Online.

10.1. OVERVIEW OF TASKS

Here is an overview of the tasks for developing a Fuse Online extension:

1. In Red Hat CodeReady Studio, create a Fuse Online extension project and select Custom
Connector or Custom Step as the extension type.

2. Depending on the extension type, write the code for the extension:

For a Custom Connector: Define the base Camel component, the connector icon, global
connector properties, and the connector actions.

For a Custom Step: Add routes, define actions, and specify any dependencies.

3. Build a .jar file.

4. Provide the .jar file to the Fuse Online user.

The Fuse Online user uploads the .jar file to Fuse Online, which makes the custom connector or
custom step(s) available for use. For information about Fuse Online and how to create integrations, see
Integrating Applications with Fuse Online.

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS

119

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html-single/integrating_applications_with_fuse_online/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html-single/integrating_applications_with_fuse_online/

10.2. PREREQUISITES

Before you begin, you need the following information and knowledge:

A description of the required functionality for the Fuse Online custom connector or step (from the
Fuse Online user).

The Fuse Online version number for the extension.

For a custom connector, an icon image file in PNG or SVG format. Fuse Online uses this icon
when it displays the flow of an integration. If you do not provide an icon, then Fuse Online
generates one when the .jar that contains the extension is uploaded.

You should be familiar with:

Fuse Online

Spring Boot XML or Java

Apache Camel routes (if you want to create a route-based step extension)

JSON

Maven

10.3. CREATING A CUSTOM CONNECTOR

In Fuse Online, a custom connector consists of one or more connection configuration parameters, one or
more connection actions, and optional configuration parameters for each action.

Here is an overview of the tasks for developing a custom connector:

1. In Red Hat CodeReady Studio, create a Fuse Online extension project and select Custom
Connector as the extension type.

2. Write the code for the extension. Define the base Camel component, the connector icon, global
connector properties, and the connector actions.

10.3.1. Creating a Fuse Online Extension project for a custom connector

A Fuse Tooling Fuse Online extension project provides a starting point for a custom connector.

To create a Fuse Tooling Fuse Online extension project, follow these steps:

1. In Red Hat CodeReady Studio, select New → Project → Red Hat Fuse → Fuse Online
Extension Project.
The New Fuse Online Extension Project wizard opens.

Red Hat Fuse 7.3 Tooling User Guide

120

2. Enter the name and location for the project, then click Next.

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS

121

3. Select the Fuse Online version.

4. Specify the following extension details:

ID — A value that you define and that is unique in the Fuse Online environment. This value
will be visible in Fuse Online when the Fuse Online user imports the extension .jar file.

Name — The name of the extension. This value will be visible in Fuse Online as the
extension name. In Fuse Online, on the Customizations → Extensions tab, the user can
see a list of the names and descriptions of extensions that have been uploaded to Fuse
Online.

Description — An optional description of the extension content.

Version — The version of the extension. For example, if this is the initial version, you could
type 1.0. If you are updating a version, you could type 1.1 or 2.0.

5. Select Custom Connector for the kind of Fuse Online extension that you want to create.

Red Hat Fuse 7.3 Tooling User Guide

122

6. Click Finish.

The new project appears in the Red Hat CodeReady Studio Project Explorer view. It includes the
following files for a custom connector extension:

In the src/main/resources/META-INF/syndesis folder:

A descriptor file: syndesis-extension-definition.json
This is the file that you edit to: * Add top-level global properties, connector actions, and
action properties. * Change the Extension Id, Name, Version, or Description values.

A default icon image file: icon.png
You can optionally replace this file with your own icon image (PNG or SVG) file.

A Maven Project Object Model file: pom.xml
This file contains information about the project and configuration details used by Maven to build
the project, including default extension dependencies. You edit this file to add custom
dependencies. The scope for any dependency that Red Hat ships is provided, for example:

<dependency>
 <groupId>io.syndesis.extension</groupId>
 <artifactId>extension-api</artifactId>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 <scope>provided</scope>
</dependency>

10.3.2. Writing code for the custom connector

After you create the Fuse Online extension project, you write the code that defines the custom connector
elements based on the description of the required functionality provided to you by the Fuse Online user.
The Table 10.1, “Custom connector elements” table shows how the elements of the custom connector
that you create in Fuse Tooling correspond to elements in Fuse Online.

Table 10.1. Custom connector elements

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS

123

Fuse Tooling element Fuse Online element Description

Global (top-level) property Connection configuration
parameter

When a Fuse Online user creates
a connection from this connector,
the user specifies a value for this
property as part of the
configuration of the connection.

Action Connection action In Fuse Online, for a connection
created from this connector, a
Fuse Online user selects one of
these actions.

Property defined in an action An action configuration parameter When a Fuse Online user
configures the action that the
connection performs, the Fuse
Online user specifies a value for
this property as part of the
configuration of the action.

To write the code that implements a custom connector for Fuse Online:

1. Open the syndesis-extension-definition.json file in the Editor view and write the code that defines
the global properties, the actions that the custom connector can perform, and each action’s
properties.
Each global property corresponds to a connection configuration parameter in Fuse Online.
Each action property corresponds to a Fuse Online connection action configuration parameter. In
Fuse Online, when the user selects a custom connector, Fuse Online prompts for values for
each connection configuration parameter. A custom connector can be for an application that
uses the OAuth protocol. In this case, be sure to specify a global property for the OAuth client ID
and another global property for the OAuth client secret. The Fuse Online user will need to specify
values for these parameters for a connection created from this connector to work.

Each connector action declares a base Camel component scheme.

The example provided by the New Fuse Online Extension Project wizard uses the telegram
Camel component scheme:

{
 "schemaVersion" : "v1",
 "name" : "Example Fuse Online Extension",
 "extensionId" : "fuse.online.extension.example",
 "version" : "1.0.0",
 "actions" : [{
 "id" : "io.syndesis:telegram-chat-from-action",
 "name" : "Chat Messages",
 "description" : "Receive all messages sent to the chat bot",
 "descriptor" : {
 "componentScheme" : "telegram",
 "inputDataShape" : {
 "kind" : "none"
 },
 "outputDataShape" : {

Red Hat Fuse 7.3 Tooling User Guide

124

 "kind" : "java",
 "type" :
"org.apache.camel.component.telegram.model.IncomingMessage"
 },
 "configuredProperties" : {
 "type" : "bots"
 }
 },
 "actionType" : "connector",
 "pattern" : "From"
 }, {
 "id" : "io.syndesis:telegram-chat-to-action",
 "name" : "Send a chat Messages",
 "description" : "Send messages to the chat (through the bot).",
 "descriptor" : {
 "componentScheme" : "telegram",
 "inputDataShape" : {
 "kind" : "java",
 "type" : "java.lang.String"
 },
 "outputDataShape" : {
 "kind" : "none"
 },
 "propertyDefinitionSteps" : [{
 "description" : "Chat id",
 "name" : "chatId",
 "properties" : {
 "chatId" : {
 "kind" : "parameter",
 "displayName" : "Chat Id",
 "type" : "string",
 "javaType" : "String",
 "description" : "The telegram's Chat Id, if not set will
use CamelTelegramChatId from the incoming exchange."
 }
 }
 }],
 "configuredProperties" : {
 "type" : "bots"
 }
 },
 "actionType" : "connector",
 "pattern" : "To"
 }],
 "properties" : {
 "authorizationToken" : {
 "kind" : "property",
 "displayName" : "Authorization Token",
 "group" : "security",
 "label" : "security",
 "required" : true,
 "type" : "string",
 "javaType" : "java.lang.String",
 "secret" : true,
 "description" : "Telegram Bot Authorization Token"

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS

125

 }
 }
}

2. If the custom connector requires additional dependencies, add them to the project’s pom.xml
file. The default scope for dependencies is runtime. If you add a dependency that Red Hat ships,
define its scope as provided, for example:

<dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-telegram</artifactId>
 <scope>provided</scope>
 </dependency>
 </dependencies>

When you finish writing the code for the custom connector, build the .jar file as described in
Section 10.5, “Building the Fuse Online extension JAR file”.

10.4. CREATING CUSTOM STEPS

After you create the Fuse Online extension project, you write the code that defines the custom steps
based on the description of the required functionality provided to you by the Fuse Online user. Within a
single extension, you can define more than one custom step and you can define each custom step with
Camel routes or with Java beans.

10.4.1. Creating a Fuse Online Extension project for custom steps

To create a Fuse Tooling Fuse Online extension project, follow these steps:

1. In Red Hat CodeReady Studio, select New → Project → Red Hat Fuse → Fuse Online
Extension Project.
The New Fuse Online Extension Project wizard opens.

Red Hat Fuse 7.3 Tooling User Guide

126

2. Enter the name and location for the project, then click Next.

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS

127

3. Select the Fuse Online version.

4. Specify the following extension details:

ID — A value that you define and that is unique in the Fuse Online environment. This value
will be visible in Fuse Online when the Fuse Online user imports the extension .jar file.

Name — The name of the extension. This value will be visible in Fuse Online as the
extension name. In Fuse Online, on the Customizations → Extensions tab, the user can
see a list of the names and descriptions of extensions that have been uploaded to Fuse
Online.

Description — An optional description of the extension content.

Version — The version of the extension. For example, if this is the initial version, you could
type 1.0. If you are updating a version, you could type 1.1 or 2.0.

5. Select Custom Step for the kind of Fuse Online extension that you want to create.

Red Hat Fuse 7.3 Tooling User Guide

128

6. Select the template for the custom step:

Camel route — Provides a sample Camel route.

Java bean — Provides a sample Java bean.

NOTE

The template that you select provides a starting point for your project. If you
want to create one or more custom steps based on Camel routes and one or
more other custom steps based on Java beans within the same extension,
start with one of the templates and then add the needed file and
dependencies for the other type of custom step.

7. Click Finish.

The new project appears in the Red Hat CodeReady Studio Project Explorer view. It includes the
following files depending on the template that you selected for the custom step:

In the src/main/resources/META-INF/syndesis folder:

A descriptor file: syndesis-extension-definition.json
This is the file that you edit to: * Add one or more actions. An action in the `.json `file
becomes a custom step in Fuse Online. In an action element, a property in the `.json
`file becomes a step configuration parameter in Fuse Online. * Change the Extension
Id, Name, Version, or Description values.

For a Camel route template, a Camel context file: extensions/log-body-action.xml
This file contains a sample route with a log component. You customize the Camel routes in
this file.

For a Java bean template, a Java file: extensions/extension.java
This file contains a sample POJO-based logging extension.

A Maven Project Object Model file: pom.xml

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS

129

This file contains information about the project and configuration details used by Maven to build
the project, including default extension dependencies. You edit this file to add custom
dependencies. The scope for any dependency that Red Hat ships is provided, for example:

<dependency>
 <groupId>io.syndesis.extension</groupId>
 <artifactId>extension-api</artifactId>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>
 <scope>provided</scope>
</dependency>

10.4.2. Writing code for the custom step

After you create the Fuse Online extension project, you write the code that defines the custom
step(s)based on the description of the required functionality provided to you by the Fuse Online user.

Table 10.2, “Custom step elements” shows how the elements of the custom step that you create in Fuse
Tooling correspond to elements in Fuse Online.

Table 10.2. Custom step elements

Fuse Tooling element Fuse Online element Description

Action Custom Step In Fuse Online, after the user
imports the step extension, the
custom step(s) appear(s) on the
Choose a step page.

Property defined in an action A custom step configuration
parameter

In Fuse Online, when the user
selects a custom step, Fuse
Online prompts for values for
configuration parameters.

To write the code that implements a custom step for Fuse Online:

1. For a Camel route-based step, in the extension.xml file, create routes that address the
purpose of the extension. The entrypoint of each route must match the entrypoint that you define
in the syndesis-extension-definition.json file, as described in Step 2.
For a Java bean-based step, edit the java file.

2. In the syndesis-extension-definition.json file, write the code that defines the actions
and their properties. You need a new action for each entrypoint.

Red Hat Fuse 7.3 Tooling User Guide

130

Each action that you create corresponds to a custom step in Fuse Online. You can use different
types of code for each action. That is, you can use a Camel route for one action and a Java bean
for another action.

Each property corresponds to a Fuse Online step configuration parameter. In Fuse Online, when
the user selects a custom step, Fuse Online prompts for values for configuration parameters.
For example, a custom log step might have a level parameter that indicates how much
information to send to the log.

Here is the template for the .json file that contains the extension metadata, including properties
that will be filled in by the user in Fuse Online after uploading the extension and adding its
custom step to an integration:

{
 "actions": [
 {
 "actionType": "extension",
 "id": "${actionId}",
 "name": "Action Name",
 "description": "Action Description",
 "tags": [
 "xml"
],
 "descriptor": {
 "kind": "ENDPOINT|BEAN|STEP",
 "entrypoint": "direct:${actionId}",
 "inputDataShape": {
 "kind": "any"
 },
 "outputDataShape": {
 "kind": "any"
 },
 "propertyDefinitionSteps": []
 }
 }
],
 "tags": [
 "feature",
 "experimental"
]
}

NOTE

The tags are ignored in this release. They are reserved for future use.

3. To edit the extension dependencies, open the `pom.xml `file in the editor. If you add a
dependency, you must define its scope.

When you finish writing the code for the custom step(s), build the .jar file as described in Section 10.5,
“Building the Fuse Online extension JAR file”.

10.5. BUILDING THE FUSE ONLINE EXTENSION JAR FILE

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS

131

To build the .jar file for the extension:

1. In the Project Explorer view, right-click the project.

2. From the context menu, select Run As → Maven clean verify.

3. In the Console view, you can monitor the progress of the build.

4. When the build is complete, refresh the target folder in the Project Explorer view (select the
project and then press F5).

5. In the Project Explorer view, open the target folder to see the generated .jar file:
The name of the .jar file follows Maven defaults: ${artifactId}-${version}.jar

For example: custom:step-camel-1.0.0.jar

This .jar file defines the extension, its required dependencies, and its metadata: Extension Id,
Name, Version, Tags, and Description. For example:

{
 "schemaVersion" : "v1",
 "name" : "Example Fuse Online Extension",
 "description" : "Logs a message body with a prefix",
 "extensionId" : "fuse.online.extension.example",
 "version" : "1.0.0",
 "actions" : [{
 "id" : "Log-body",
 "name" : "Log Body",
 "description" : "A simple xml Body Log with a prefix",
 "descriptor" : {
 "kind" : "ENDPOINT",
 "entrypoint" : "direct:log-xml",
 "resource" : "classpath:META-
INF/syndesis/extensions/log-body-action.xml",
 "inputDataShape" : {
 "kind" : "any"
 },
 "outputDataShape" : {
 "kind" : "any"
 },
 "propertyDefinitionSteps" : [{
 "description" : "Define your Log message",
 "name" : "Log Body",
 "properties" : {
 "prefix" : {
 "componentProperty" : false,
 "deprecated" : false,
 "description" : "The Log body prefix
message",
 "displayName" : "Log Prefix",
 "javaType" : "String",
 "kind" : "parameter",
 "required" : false,
 "secret" : false,
 "type" : "string"
 }

Red Hat Fuse 7.3 Tooling User Guide

132

 }
 }]
 },
 "tags" : ["xml"],
 "actionType" : "step"
 }],
 "dependencies" : [{
 "type" : "MAVEN",
 "id" : "io.syndesis.extension:extension-api:jar:1.3.0.fuse-
000014"
 }],
 "extensionType" : "Steps"
}

10.6. PROVIDING THE JAR FILE TO THE FUSE ONLINE USER

Provide the following to the Fuse Online user:

The .jar file

A document that describes the extension. For a step extension, include information about data
shapes that each action in the step extension requires as input or provides as output (for data
mapping).

In Fuse Online, the user uploads the .jar file as described in Integrating Applications with Fuse Online.

CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS

133

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html-single/integrating_applications_with_fuse_online/

CHAPTER 11. CREATING A NEW CAMEL XML FILE

OVERVIEW

Apache Camel stores routes in an XML file that contains a camelContext element. When you create a
new Fuse Integration project, the tooling provides an Apache Camel context (XML) file as part of the
project by default.

You can also add a new Camel XML file that includes all of the required namespaces preconfigured and
a template camelContext element.

PROCEDURE

To add a new Apache Camel context file to your project:

1. Select File → New → Camel XML File from the main menu to open the Camel XML File
wizard, as shown in Figure 11.1, “Camel XML File wizard”.

Figure 11.1. Camel XML File wizard

2. In RouteContainer, enter the location for the new file, or accept the default.

Red Hat Fuse 7.3 Tooling User Guide

134

You can click to search for an appropriate location.

IMPORTANT

The Spring framework and the OSGi Blueprint framework require that all Apache
Camel files be placed in specific locations under the project’s META-INF or
OSGI-INF folder:

Spring - projectName/src/main/resources/META-INF/spring/

OSGi Blueprint - projectName/src/main/resources/OSGI-
INF/blueprint/

3. In File Name, enter a name for the new context file, or accept the default
(camelContext.xml).
The file’s name cannot contain spaces or special characters, and it must be unique within the
JVM.

4. In Framework, accept the default, or select which framework the routes will use:

Spring — [default] for routes that will be deployed in Spring containers, non-OSGi
containers, or as standalone applications

OSGi Blueprint — for routes that will be deployed in OSGi containers

Routes — for routes that you can load and add into existing camelContexts

5. Click Finish.
The new context file is added to the project and opened in the route editor.

CHAPTER 11. CREATING A NEW CAMEL XML FILE

135

CHAPTER 12. CHANGING THE CAMEL VERSION
As you work with a Fuse tooling project, you might want to change the Camel version that it uses. This
can be helpful, for example, if you want to use a feature supported in a more recent Camel version or if
you want to use a community version.

To change the Camel version that a project uses:

1. In Project Explorer, right-click the project for which you want to change the Camel version and
select Configure → Change Camel Version.

2. In the Change Camel Version window, to the right of the Camel Version field, click the down
caret to display available Camel versions.
To use a community version of Apache Camel, you enter its version number, for example,
2.19.2.

3. Select or enter the version you want and click Finish.

Fuse Tooling checks whether the version you selected is available and supported by Fuse Tooling. If it is
then Fuse Tooling changes the Camel version and saves the project’s updated pom.xml file. You
receive an error message if the Camel version that you select is not available or not supported.

You can check the project’s Camel version in its pom.xml file, in the <camel.version> element.

Red Hat Fuse 7.3 Tooling User Guide

136

CHAPTER 13. IMPORTING AN EXISTING MAVEN PROJECT

OVERVIEW

You might want to import an existing project, for example, to use as a template or starting point for
developing an application.

For example, the New Fuse Integration Project wizard points to the following Github repositories as
sources for examples:

https://github.com/apache/camel/tree/master/examples

https://github.com/fabric8-quickstarts

https://github.com/wildfly-extras/wildfly-camel-examples

https://github.com/jboss-fuse/quickstarts

After you download an example project, you import it into CodeReady Studio.

PROCEDURE

To import an existing Maven project:

1. Select File → Import → Maven → Existing Maven Projects, and then click Next.

2. For the Root Directory, select the folder that contains the downloaded example projects.

3. In the list of Projects, check the projects that you want to import and then click Finish.

CHAPTER 13. IMPORTING AN EXISTING MAVEN PROJECT

137

https://github.com/apache/camel/tree/master/examples
https://github.com/fabric8-quickstarts
https://github.com/wildfly-extras/wildfly-camel-examples
https://github.com/jboss-fuse/quickstarts

PART II. DEBUGGING ROUTING CONTEXTS
The Camel debugger includes many features for debugging locally and remotely running routing
contexts:

Setting conditional and unconditional breakpoints on nodes in the route editor

Autolaunching the debugger and switching to the Debug perspective

Interacting with the running routing context:

Switch between breakpoints to quickly compare variable values of message instances

Examine and change the value of variables of interest

Add variables of interest to the watch list to track them throughout the debug session

Disable and re-enable breakpoints on-the-fly

Track message flow graphically in the routing context runtime

Examine console logs to track Camel and debugger actions

NOTE

Before you can run the Camel debugger, you must set breakpoints on the nodes of
interest displayed on the route editor’s canvas. Then you can run the Camel debugger on
a project’s routing context .xml file to find the logic errors in it and fix them. Invoking the
Camel debugger runs the routing context in debug mode and opens the Debug
Perspective.

Red Hat Fuse 7.3 Tooling User Guide

138

CHAPTER 14. SETTING BREAKPOINTS

OVERVIEW

To set breakpoints, your project’s routing context .xml file must be open in the route editor’s Design tab.

The Camel debugger supports two types of breakpoints:

Unconditional breakpoints — triggered whenever one is encountered during a debugging session

Conditional breakpoints — triggered only when the breakpoint’s specified condition is met during
a debugging session

NOTE

You cannot set breakpoints on consumer endpoints or on when or otherwise nodes.

SETTING UNCONDITIONAL BREAKPOINTS

With your routing context displayed on the canvas in the Design tab:

1. Select a node whose state you want to examine during the debugging session.

2. Click its icon to set an unconditional breakpoint.

3. Repeat these steps for each node on which you want to set an unconditional breakpoint.

SETTING CONDITIONAL BREAKPOINTS

With your routing context displayed on the canvas in the Design tab:

1. Select a node whose state you want to examine during the debugging session.

2. Click its icon to set a conditional breakpoint and to open the Edit the condition and
language of your breakpoint… ​ dialog:

CHAPTER 14. SETTING BREAKPOINTS

139

3. Click the Language drop-down menu and select the expression language to use to create the
condition that will trigger the breakpoint.
Fuse Tooling supports twenty-four expression languages. Some of these languages provide
variables for creating conditional expressions, while others do not.

4. Click Variables to display a list of the selected language’s supported variables.
If a list appears, select in sequence one or more of the variables to create the condition for
triggering the breakpoint. The variables you select appear in the Condition text box.

If appears, enter the expression directly into the Condition text
box.

5. Repeat steps [condBpFirst] through [condBpLast] for each node on which you want to set a
conditional breakpoint.

DISABLING BREAKPOINTS

You can temporarily disable a breakpoint, leaving it in place, then enable it again later. The button
skips over disabled breakpoints during debugging sessions.

To disable a breakpoint, select the node on the canvas and click its icon. The breakpoint turns gray,
indicating that it has been disabled.

To enable a disabled breakpoint, select the node on the canvas and click its icon. Depending on
whether the disabled breakpoint is conditional or unconditional, it turns yellow or red, respectively, to
indicate that it has been re-enabled.

Red Hat Fuse 7.3 Tooling User Guide

140

NOTE

You can also disable and re-enable breakpoints during debugging sessions. For details,
see Chapter 19, Disabling Breakpoints in a Running Context.

DELETING BREAKPOINTS

You can delete individual breakpoints or all breakpoints.

To delete individual breakpoints — in a route container, select the node whose breakpoint you

want to delete, and click its icon.

To delete all breakpoints in a particular route — right-click the target route’s container, and select

 Delete all breakpoints.

To delete all breakpoints in all routes — right-click the canvas, and select
 Delete all breakpoints.

RELATED TOPICS

Chapter 15, Running the Camel Debugger

CHAPTER 14. SETTING BREAKPOINTS

141

CHAPTER 15. RUNNING THE CAMEL DEBUGGER
You can run the Camel debugger on locally running routing contexts and on remotely running routing
contexts. The same basic features and functionality are available in both debugging modes.

Local debugging — Runs the debugger on the routing context running in the same JVM with
Fuse Tooling. This mode is activated by selecting the project’s routing context in the Project
Explorer view and selecting Debug As → Local Camel Context from the context menu.

Remote debugging — Runs the debugger on a routing context running in a separate JVM either
on the local machine or on a remote machine. This mode requires a supported runtime server
installed on the local machine or on an accessible remote machine. It is activated by creating
and running a debug launch configuration that specifies the remote runtime’s connection details.

NOTE

If your project contains Java code, you can use the standard Eclipse Java debugging tools
to debug it. For local debugging, it is automatically available. For remote debugging, you
need to use the Remote Camel Context and Java launch option (see Section 15.2,
“Debugging a remotely running routing context”).

NOTE

You must set breakpoints in your routing context file before you can start the Camel
debugger.

15.1. DEBUGGING A LOCALLY RUNNING ROUTING CONTEXT

Procedure

1. In the Project Explorer view, select the routing context file you want to debug.

2. Right-click the selected file to open the context menu, and then select Debug As → Local
Camel Context.
Fuse Tooling builds the Camel route, starts Apache Camel, starts the routing context, enables
JMX, starts the route(s) in the routing context, adds the breakpoints to the nodes, and enables
the Camel debugger.

The Camel debugger suspends execution of the routing context at the first breakpoint hit
(received a message), and prompts you to indicate whether you want it to open the Debug
perspective.

Red Hat Fuse 7.3 Tooling User Guide

142

3. Click Yes to open the Debug perspective.
The Debug perspective opens with the routing context suspended at the first breakpoint
encountered in the running routing context.

IMPORTANT

Breakpoints are held for a maximum of five minutes, after which debugging
automatically resumes, moving on to the next breakpoint or to the end of the
routing context.

NOTE

To see the console output, open the Console view if it was not open when you
switched perspectives.

CHAPTER 15. RUNNING THE CAMEL DEBUGGER

143

NOTE

By default, the Debug perspective displays the Outline view, which provides the
means to switch between separate routes in a running routing context. If your
routing context contains a single route, closing the Outline view frees space to
expand the other views, making it easier to access and examine debugger output.

Watching message exchanges progress through the routing context

Click (Step Over) to jump to the next node of execution in the routing context. Click (Resume) to
continue execution at the next active breakpoint in the routing context.

15.2. DEBUGGING A REMOTELY RUNNING ROUTING CONTEXT

Prerequisites

Access to a Fuse runtime in one of the following ways:

Install a Fuse server on your local machine and edit its
Fuse_HOME/etc/users.properties file to activate the admin user. For details, see
Section 28.1, “Adding a Server”.

Be able to access a Fuse server that is installed on a remote machine. You must know its
connection details, including the credentials of the admin user.

Create a new Fuse Integration project, see the section called “Specifying the project name and
workspace”. In the Fuse Integration project:

Select the Camel version that matches the version of the JBoss Fuse server runtime.

Red Hat Fuse 7.3 Tooling User Guide

144

Create an empty Blueprint DSL project or use one of the JBoss Fuse pre-defined templates
with Blueprint DSL.

NOTE

Though not a requirement, it is a good idea to verify that you can run the
project’s routing context successfully as a Local Camel Context. For
details, see Section 6.1, “Running routes as a local Camel context” .

NOTE

The examples in the section called “Setting up and starting remote
debugging” are based on the Fuse → Content Based Router pre-defined
template and a Red Hat Fuse 6.3.0 runtime.

In Red Hat CodeReady Studio:

Add the Fuse server to the Servers view. For details, see Section 28.1, “Adding a Server”.

Start the Fuse server. For details, see Section 28.2, “Starting a Server”.

Publish your project to the Fuse Runtime server. For details, see the section called
“Publishing Fuse projects automatically when resources change”.

NOTE

You cannot deploy a Fuse Integration project to a JBoss Fuse server running
on a remote host from inside JBoss CodeReady Studio. Instead, you deploy
the project’s bundle directly on the remote host using one of two supported
deployment methods (for details, see).

Verify that the project’s bundle is deployed and active. For details, see the section called
“Verifying the project was published to the server”.

Stop the Fuse Runtime server. For details, see Section 28.5, “Stopping a Server”.

Setting up and starting remote debugging

With the project deployed on Fuse and the server stopped, you need to set up and start remote
debugging as follows:

Start Fuse in debug mode outside of Red Hat CodeReady Studio.

In CodeReady Studio, set breakpoints on nodes in the project’s routing context, which is open in
the route editor.

Create a remote Camel context debug configuration and run it.

Connect to Fuse runtime in the JMX Navigator view.

Drop test messages in the JMX Navigator view on the input node of the Camel route running
inside the Fuse runtime.

Use any of the Camel debugger’s tools for debugging routes.

CHAPTER 15. RUNNING THE CAMEL DEBUGGER

145

Procedure

To set up and start remote debugging:

1. Open a terminal outside of Red Hat CodeReady Studio, and enter

$ [{prodname}_HOME]/bin/{prodname} debug

2. Wait for the Fuse splash screen to appear, and then return to the Fuse Integration perspective
in JBoss Developer Studio.

3. In the tooling’s route editor, with the project’s routing context open in the Design tab, set
breakpoints on the nodes of interest. For details, see Chapter 14, Setting Breakpoints.

4. In the Project Explorer view, right-click the project’s root and select Debug As → Debug
Configurations to open the Debug Configurations wizard:

5. In the configuration type pane, select either Remote Camel Context or Remote Camel
Context and Java , and then click :

Red Hat Fuse 7.3 Tooling User Guide

146

For both the Remote Camel Context and Remote Camel Context and Java options, you need
to specify configuration details on the Camel and JMX tabs.

For the Remote Camel Context and Java option only, you also need to specify configuration
details on the Connect tab.

NOTE

Unless your project contains Java code that you want to debug using the
standard Eclipse Java debugging tools, select the Remote Camel Context
option.

6. In the Name field, enter a name for the new launch configuration.

7. On the Camel tab, click the Browse button to locate the project’s routing context .xml file in the
Open Resources dialog:

CHAPTER 15. RUNNING THE CAMEL DEBUGGER

147

NOTE

When you select a file in the Matching items pane, the tooling displays the file’s
location, relative to the project root, at the bottom of the pane.

8. In the Matching items pane, select your project’s routing context file from the list, and then click
OK.
The tooling inserts the file’s path into the Select Camel Context file field:

9. Click the JMX tab:

Edit the JMX connection details as follows:

JMX Uri — change :9011/jmxrmi to :1099/karaf-root

Red Hat Fuse 7.3 Tooling User Guide

148

If the Fuse server is running on a remote host, replace localhost with the DNS name or IP
address of the remote host.

JMX User — enter admin.

JMX Password — enter admin.

IMPORTANT

The values shown for JMX User and JMX Password are the Fuse admin
user defaults, stored in the Fuse_HOME/etc/users.properties file. If
your setup is different, enter the values specific to it.

If you are creating a Remote Camel Context debug launch configuration, you are done.
Skip to [debugCfgGo].

10. Click the Connect tab:

Change the Port value from 8000 to 5005. Leave each of the other properties as is.

11. Click Apply and then click Debug.

12. In the JMX Navigator view, double-click Fuse [xxx] [Disconnected] to connect to it, and then
expand its tree.

13. In the Project Explorer view, drag a test message from src/test/resources/data and
drop it on the cbr-example-context/Endpoints/file/work/cbr/input folder in the
JMX Navigator view.
When the message hits the first breakpoint that is set in the routing context, the tooling asks you
to switch to the Debug perspective:

CHAPTER 15. RUNNING THE CAMEL DEBUGGER

149

14. Click Yes.

At this point, you can use any of the Camel debugger’s tools to debug your routing context.

NOTE

In remote debugging sessions, the Console view does not display log output.

NOTE

When one message reaches the end of the routing context, the debugger is
suspended. To continue debugging, switch back to the Fuse Integration
perspective and drop another message on the input node in the JMX Navigator
view. Each time you do so, the tooling asks you to confirm the switch to the
Debug perspective.

RELATED TOPICS

Red Hat Fuse 7.3 Tooling User Guide

150

Chapter 16, Stopping the Camel Debugger

CHAPTER 15. RUNNING THE CAMEL DEBUGGER

151

CHAPTER 16. STOPPING THE CAMEL DEBUGGER

OVERVIEW

The way to stop the Camel debugger depends on the mode in which it is running:

Local debugging (Section 15.1, “Debugging a locally running routing context”)

To stop the Camel debugger, click on the menu bar once if the debugging session has

ended. Otherwise, click twice: once to terminate the currently running node thread and once
to terminate the Camel Context thread (both displayed in the Debug view).

NOTE

Terminating the Camel debugger also terminates the console but does not clear

its output. To clear the output, click (Clear Console) on the Console view’s
menu bar.

Remote debugging (Section 15.2, “Debugging a remotely running routing context”)
To stop the Camel debugger, select the [Remote Camel Context] thread or the [Remote

Camel Context and Java] thread in the Debug view, and then click on the menu bar.

NOTE

Terminating the Camel debugger does not close the connection to the remote
runtime server in the Servers view nor in the JMX Navigator view.

CLOSING THE CAMEL DEBUGGER

After you have finished debugging your project, you may want to close the Debug perspective to make
more space for your workbench.

To do so, right-click on the right side of the CodeReady Studio toolbar, and then select
Close.

RELATED TOPICS

Chapter 15, Running the Camel Debugger

Red Hat Fuse 7.3 Tooling User Guide

152

CHAPTER 17. CHANGING VARIABLE VALUES

OVERVIEW

When the Camel debugger hits a breakpoint, the Variables view displays the values of all variables
available at that point in the routing context. Some variables are editable, allowing you to change their
value. This enables you to see how the application handles changes in program state.

NOTE

Not all variables are editable. The context menu of editable variables displays the
Change Value… ​ option.

PROCEDURE

To change the value of a variable:

1. If necessary, start the debugger. See Chapter 15, Running the Camel Debugger.

2. In the Variables view, select a variable whose value you want to change, and then click its
Value field.

The variable’s value field turns a lighter shade of blue, indicating that it is in edit mode.

NOTE

Alternatively, you can right-click the variable to open its context menu, and select
Change Value… ​ to edit its value.

3. Enter the new value and then click Enter.
The Console view displays an INFO level log entry noting the change in the variable’s value (for

CHAPTER 17. CHANGING VARIABLE VALUES

153

example, Breakpoint at node to1 is updating message header on
exchangeId: ID-dhcp-97-16-bos-redhat-com-52574-1417298894070-0-2 with
header: Destination and value: UNITED KINGDOM).

4. Continue stepping through the breakpoints and check whether the message is processed as
expected. At each step, check the Debug view, the Variables view, and the Console output.

RELATED TOPICS

Chapter 19, Disabling Breakpoints in a Running Context

Chapter 18, Adding Variables to the Watch List

Red Hat Fuse 7.3 Tooling User Guide

154

CHAPTER 18. ADDING VARIABLES TO THE WATCH LIST

OVERVIEW

By adding variables to the watch list, you can focus on particular variables to see whether their values
change as expected as they flow through the routing context.

PROCEDURE

To add a variable to the watch list:

1. If necessary, start the debugger. See Chapter 15, Running the Camel Debugger.

2. In the Variables view, right-click a variable you want to track to open the context menu.

3. Select Watch.
A new view, Expressions, opens next to the Breakpoints view. The Expressions view displays
the name of the variable being watched and its current value, for example:

CHAPTER 18. ADDING VARIABLES TO THE WATCH LIST

155

4. Repeat [watch1] and [watch2] to add additional variables to the watch list.

NOTE

The variables you add remain in the watch list until you remove them. To stop
watching a variable, right-click it in the list to open the context menu, and then
click Remove.

5. With the Expressions view open, step through the routing context to track how the value of each
variable in the watch list changes as it reaches each step in the route.

RELATED TOPICS

Chapter 17, Changing Variable Values

Red Hat Fuse 7.3 Tooling User Guide

156

CHAPTER 19. DISABLING BREAKPOINTS IN A RUNNING
CONTEXT

OVERVIEW

You can disable and re-enable breakpoints in a running routing context in the Breakpoints view.

When a breakpoint is disabled, the button causes the debugger to skip over it during the debugging
session.

DISABLING AND ENABLING BREAKPOINTS IN BREAKPOINTS VIEW

The Breakpoints view opens with all set breakpoints enabled.

To disable a breakpoint, clear its check box.

CHAPTER 19. DISABLING BREAKPOINTS IN A RUNNING CONTEXT

157

For each breakpoint you disable, the Console view displays an INFO level log entry noting that it has
been disabled (for example, Removing breakpoint log2). Likewise, for each breakpoint you re-
enable, the Console view displays an INFO level log entry noting that it has been enabled (for example,
Adding breakpoint log2).

NOTE

To re-enable a disabled breakpoint, click its check box. The Console view displays an
INFO level log entry noting that the breakpoint has been added to the selected node.

Red Hat Fuse 7.3 Tooling User Guide

158

PART III. MONITORING AND TESTING APPLICATIONS
The JMX Navigator view provides numerous ways to monitor and test your Fuse applications.

NOTE

You can also monitor your Fuse applications with the Fuse Console as described in
Managing Fuse.

PART III. MONITORING AND TESTING APPLICATIONS

159

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.3/html-single/managing_fuse/index

CHAPTER 20. JMX NAVIGATOR
The JMX Navigator view, shown in Figure 20.1, “JMX Navigator view”, displays all processes that are
running in your application and it drives all interactions with the monitoring and testing features. Other
areas of the Fuse Integration perspective adapt to display information related to the node selected in
the JMX Navigator view. In the JMX Navigator view, its context menu provides the commands needed
to activate route tracing and to add JMS destinations.

Figure 20.1. JMX Navigator view

By default, the JMX Navigator view discovers all JMX servers running on the local machine and lists
them under the following categories:

Local Processes

Server Connections

Red Hat Fuse 7.3 Tooling User Guide

160

User-Defined Connections

NOTE

You can add other JMX servers by using a server’s JMX URL. For details, see
Section 20.2, “Adding a JMX server”.

20.1. VIEWING PROCESSES IN JMX

Overview

The JMX Navigator view lists all known processes in a series of trees. The root for each tree is a JMX
server.

The first tree in the list is a special Local Processes tree that contains all JMX servers that are running
on the local machine. You must connect to one of the JMX servers to see the processes it contains.

Viewing processes in a local JMX server

To view information about processes in a local JMX server:

1. In the JMX Navigator view, expand Local Processes.

2. Under Local Processes, double-click one of the top-level entries to connect to it.

3. Click the icon that appears next to the entry to display a list of its components that are running
in the JVM.

Viewing processes in alternate JMX servers

To view information about processes in an alternate JMX server:

1. Section 20.2, “Adding a JMX server” the JMX server to the JMX Navigator view.

2. In the JMX Navigator view, expand the server’s entry by using the icon that appears next to
the entry. This displays a list of that JMX server’s components that are running in the JVM.

20.2. ADDING A JMX SERVER

Overview

In the JMX Navigator view, under the Local Processes branch of the tree, you can see a list of all local
JMX servers. You may need to connect to specific JMX servers to see components deployed on other
machines.

To add a JMX server, you must know the JMX URL of the server you want to add.

Procedure

To add a JMX server to the JMX Navigator view:

1. In the JMX Navigator view, click New Connection .

CHAPTER 20. JMX NAVIGATOR

161

2. In the Create a new JMX connection wizard, select Default JMX Connection.

3. Click Next.

4. Select the Advanced tab.

5. In the Name field, enter a name for the JMX server.
The name can be any string. It is used to label the entry in the JMX Navigator tree.

6. In the JMX URL field, enter the JMX URL of the server.

7. If the JMX server requires authentication, enter your user name and password in the Username
and Password fields.

8. Click Finish.
The new JMX server appears as a branch in the User-Defined Connections tree.

Red Hat Fuse 7.3 Tooling User Guide

162

CHAPTER 21. VIEWING A COMPONENT’S JMX STATISTICS

OVERVIEW

The tooling collects all JMX statistics reported by Fuse components and displays them in the Properties
view. This statistical information can provide significant insight into what is happening in your integration
application.

JMX statistics are grouped into three categories: Properties, Processor, and Profile.

PROCEDURE

To see a Fuse component’s statistics:

1. In the JMX Navigator view, locate the node for the component.
You may have to expand nodes on the tree to locate low-level components.

2. Select the node of the Fuse component whose statistics you want to review.

3. Open the Properties view.

4. The Properties page displays the JMX properties for the selected component:

5. Click Processors to check exchange metrics for the selected component:

6. Click Profile to check message metrics for the selected node and its subnodes:

CHAPTER 21. VIEWING A COMPONENT’S JMX STATISTICS

163

Red Hat Fuse 7.3 Tooling User Guide

164

CHAPTER 22. BROWSING MESSAGES

OVERVIEW

A key tool in debugging applications in a distributed environment is seeing all of the messages stored in
the JMS destinations and route endpoints in the application. The tooling can browse the following:

JMS destinations

JMS routing endpoints

Apache Camel routing endpoints

SEDA routing endpoints

Browse routing endpoints

Mock routing endpoints

VM routing endpoints

DataSet routing endpoints

PROCEDURE

To browse messages:

1. In the JMX Navigator view, select the JMS destination or endpoint you want to browse.
The list of messages appears in the Messages View.

2. In the Messages View, select an individual message to inspect.

Message details and content are displayed in the Properties view:

CHAPTER 22. BROWSING MESSAGES

165

RELATED TOPICS

Section 23.3, “Tracing messages through a routing context”

Red Hat Fuse 7.3 Tooling User Guide

166

CHAPTER 23. TRACING ROUTES
Debugging a route often involves solving one of two problems:

A message was improperly transformed.

A message failed to reach its destination endpoint.

Tracing one or more test messages through the route is the easiest way to discover the source of such
problems.

The tooling’s route tracing feature enables you to monitor the path a message takes through a route and
see how the message is transformed as it passes from processor to processor.

The Diagram View displays a graphical representation of the route, which enables you to see the path a
message takes through it. For each processor in a route, it also displays the average processing time, in
milliseconds, for all messages processed since route start-up and the number of messages processed
since route start-up.

The Messages View displays the messages processed by a JMS destination or route endpoint selected
in the JMX Navigator tree. Selecting an individual message trace in the Messages View displays the
full details and content of the message in the Properties view and highlights the correspoding node in
the Diagram View.

Tracing messages through a route involves the following steps:

1. Section 23.1, “Creating test messages for route tracing”

2. Section 23.2, “Activating route tracing”

3. Section 23.3, “Tracing messages through a routing context”

4. Section 23.4, “Deactivating route tracing”

23.1. CREATING TEST MESSAGES FOR ROUTE TRACING

Overview

Route tracing works with any kind of message structure. The Fuse Message wizard creates an empty
.xml message, leaving the structuring of the message entirely up to you.

NOTE

If the folder where you want to store the test messages does not exist, you need to create
it before you create the messages.

Creating a new folder to store test messages

To create a new folder:

1. In the Project Explorer view, right-click the project root to open the context menu.

2. Select New → Folder to open the New Folder wizard.
The project root appears in the Enter or select the parent folder field.

CHAPTER 23. TRACING ROUTES

167

3. Expand the nodes in the graphical representation of the project’s hierarchy, and select the node
you want to be the parent folder.

4. In the Folder name field, enter a name for the new folder.

5. Click Finish.
The new folder appears in the Project Explorer view, under the selected parent folder.

NOTE

If the new folder does not appear, right-click the parent foler and select Refresh.

Creating a test message

To create a test message:

1. In the Project Explorer view, right-click the project to open the context menu.

2. Select New → Fuse Message to open the New File wizard.

3. Expand the nodes in the graphical representation of the project’s hierarchy, and select the folder
in which you want to store the new test message.

4. In the File name field, enter a name for the message, or accept the default (message.xml).

5. Click Finish.
The new message opens in the XML editor.

6. Enter the message contents, both body and header text.

NOTE

You may see the warning, No grammar constraints (DTD or XML
Schema) referenced in the document, depending on the header text you
entered. You can safely ignore this warning.

Related topics

Section 23.3, “Tracing messages through a routing context”

23.2. ACTIVATING ROUTE TRACING

Overview

You must activate route tracing for the routing context before you can trace messages through that
routing context.

Procedure

To activate tracing on a routing context:

1. In the JMX Navigator view, select the running routing context on which you want to start tracing.

Red Hat Fuse 7.3 Tooling User Guide

168

NOTE

You can select any route in the context to start tracing on the entire context.

2. Right-click the selected routing context to open the context menu, and then select Start Tracing
to start the trace.
If Stop Tracing Context is enabled on the context menu, then tracing is already active.

Related topics

Section 23.3, “Tracing messages through a routing context”

Section 23.4, “Deactivating route tracing”

23.3. TRACING MESSAGES THROUGH A ROUTING CONTEXT

Overview

The best way to see what is happening in a routing context is to watch what happens to a message at
each stop along the way. The tooling provides a mechanism for dropping messages into a running
routing context and tracing the path the messages take through it.

Procedure

To trace messages through a routing context:

1. Create one or more test messages as described in Section 23.1, “Creating test messages for
route tracing”.

2. In the Project Explorer view, right-click the project’s Camel context file to open the context
menu, and select Run As → Local Camel Context (without Tests).

NOTE

Do not run it as Local Camel Context unless you have created a comprehensive
JUnit test for the project.

3. Activate tracing for the running routing context as described in Section 23.2, “Activating route
tracing”.

4. Drag one of the test messages from the Project Explorer view onto the routing context’s starting
point in the JMX Navigator view.

5. In the JMX Navigator view, select the routing context being traced.
The tooling populates the Messages View with message instances that represent the message
at each stage in the traced context.

The Diagram View displays a graphical representation of the selected routing context.

6. In the Messages View, select one of the message instances.
The Properties view displays the details and content of the message instance.

CHAPTER 23. TRACING ROUTES

169

In the Diagram View, the route step corresponding to the selected message instance is
highlighted. If the route step is a processing step, the tooling tags the exiting path with timing and
processing metrics.

7. Repeat this prodedure as needed.

Related topics

Section 23.1, “Creating test messages for route tracing”

Section 23.2, “Activating route tracing”

Section 23.4, “Deactivating route tracing”

23.4. DEACTIVATING ROUTE TRACING

Overview

When you are finished debugging the routes in a routing context, you should deactivate tracing.

IMPORTANT

Deactivating tracing stops tracing and flushes the trace data for all of the routes in the
routing context. This means that you cannot review any past tracing sessions.

Procedure

To stop tracing for a routing context:

1. In the JMX Navigator view, select the running routing context for which you want to deactivate
tracing.

NOTE

You can select any route in the context to stop tracing for the context.

2. Right-click the selected routing context to open the context menu, and then select Stop Tracing
Context.
If Start Tracing appears on the context menu, tracing is not activated for the routing context.

Related topics

Section 23.2, “Activating route tracing”

Section 23.3, “Tracing messages through a routing context”

Red Hat Fuse 7.3 Tooling User Guide

170

CHAPTER 24. MANAGING JMS DESTINATIONS
The JMX Navigator view lets you add or delete JMS destinations in a running instance of Red Hat
Fuse.

IMPORTANT

These changes are not persistent across broker restarts.

24.1. ADDING A JMS DESTINATION

Overview

When testing a new scenario, it is convenient to add a new JMS destination to one of your brokers.

Procedure

To add a JMS destination to a broker:

1. In the JMX Navigator view, under the broker node for which you want to add a destination,
select either the Queues child or the Topics child.

2. Right-click the selected node to open the context menu, and then select either Create Queue or
Create Topic.

3. In either the Create Queue or Create Topic dialog, enter a name for the new destination.

4. Click OK.

5. Right-click either the Queues or the Topics child, and then select Refresh.
The new destination appears in the JMX Navigator view under the Queues child or the Topics
child.

Related topics

Section 24.2, “Deleting a JMS destination”

24.2. DELETING A JMS DESTINATION

Overview

When testing failover scenarios or other scenarios that involve handling failures, it is helpful to be able to
easily remove a JMS destination.

Procedure

To delete a JMS destination:

1. In the JMX Navigator view, under the Queues child or the Topics child, select the JMS
destination you want to delete.

2. Right-click the selected destination to open the context menu, and then select Delete
Queue/Topic.

CHAPTER 24. MANAGING JMS DESTINATIONS

171

Related topics

Section 24.1, “Adding a JMS destination”

Red Hat Fuse 7.3 Tooling User Guide

172

CHAPTER 25. MANAGING ROUTING ENDPOINTS
The JMX Navigator view lets you add or delete routing endpoints.

IMPORTANT

These changes are not persistent across routing context restarts.

25.1. ADDING A ROUTING ENDPOINT

Overview

When testing a new scenario, you might want to add a new endpoint to a routing context.

Procedure

To add an endpoint to a routing context:

1. In the JMX Navigator view, under the routing context node, select the Endpoints child to which
you want to add an endpoint.

2. Right-click the selected node to open the context menu, and then select Create Endpoint.

3. In the Create Endpoint dialog, enter a URL that defines the new endpoint, for example,
file://target/messages/validOrders.

4. Click OK.

5. Right-click the routing context node, and select Refresh.
The new destination appears in the JMX Navigator view under the Endpoints node, in a folder
that corresponds to the type of endpoint it is, for example, file.

Related topics

Section 25.2, “Deleting a routing endpoint”

25.2. DELETING A ROUTING ENDPOINT

Overview

When testing failover scenarios or other scenarios that involve handling failures, it is helpful to be able to
remove an endpoint from a routing context.

Procedure

To delete a routing endpoint:

1. In the JMX Navigator view, select the endpoint you want delete.

2. Right-click the selected endpoint to open the context menu, and then select Delete Endpoint.
The tooling deletes the endpoint.

CHAPTER 25. MANAGING ROUTING ENDPOINTS

173

file://target/messages/validOrders

3. To remove the deleted endpoint from the view, right-click the Endpoints node, and select
Refresh.
The endpoint disappears from the JMX Navigator view.

NOTE

To remove the endpoint’s node from the Project Explorer view without rerunning
the project, you need to explicitly delete it by right-clicking the node and selecting
Delete. To remove it from view, refresh the project display.

Related topics

Section 25.1, “Adding a routing endpoint”

Red Hat Fuse 7.3 Tooling User Guide

174

CHAPTER 26. EDITING RUNNING ROUTES

OVERVIEW

You can experiment with changes to a running route without changing your project’s routing context.

To do so:

In the JMX Navigator view, enable the Edit Routes option on the running routing context.
This opens an in-memory model of it — Remote CamelContext:<camelContextId> — in the
route editor.

In the route editor, make your changes to the in-memory model of the routing context. At the
same time, you can set breakpoints on relevant nodes to use the Camel debugger and all of its
features.
You can edit the in-memory model to add, remove, or rearrange nodes; to add or remove
properties of existing nodes; and to modify property values set on existing nodes. You must save
changes made to the in-memory model to update the running context and to see results in the
Debug perspective if you set breakpoints.

In the JMX Navigator view, drop messages on the running routing context, or wait for messages
to arrive from a timer, ActiveMQ, file, or other continuous input node.

In the Debug perspective, evaluate results and use the Camel debugger to gain deeper insight
into your routing context.

MODIFYING A RUNNING ROUTE AND EVALUATING RESULTS

1. In the JMX Navigator view, select the routing context that contains the routes you want to edit.

2. Right-click the selected routing context to open the context menu, and select Edit Routes.
The route editor opens an in-memory model of the routing context, Remote CamelContext:
<contextId>, and displays all routes in the context, for example:

CHAPTER 26. EDITING RUNNING ROUTES

175

Red Hat Fuse 7.3 Tooling User Guide

176

NOTE

<contextId> is the ID of the camelContext element in the project’s routing
context .xml file. In this example, which is based on the Fuse → Content Based
Router built-in template, the ID is cbr-example-context.

3. Edit the route as described in Chapter 2, Editing a routing context in the route editor, then select
File → Save to save the changes you made to the in-memory model and to update the running
routing context.

4. Set breakpoints on the relevant nodes as described in Chapter 14, Setting Breakpoints.

5. In the JMX Navigator view, drop a message on the running routing context’s input node.
If your project does not include test messages, you can create them as described in
Section 23.1, “Creating test messages for route tracing”.

6. Click Yes to confirm the switch to the Debug perspective.

7. In the Camel debugger, step the message through the breakpoints as you normally would (see
Chapter 15, Running the Camel Debugger) to see the results your changes generated.
The Camel debugger behaves the same in Edit Routes mode as in normal debug mode, so
you can use any of the Camel debugger’s features while a message is transiting the routing
context.

NOTE

When a message reaches the end of the routing context, the debugger is
suspended. To continue debugging, switch back to the Fuse Integration
perspective and drop another message on the input node in the JMX Navigator
view. Each time you do so, the tooling asks you to confirm the switch to the
Debug perspective.

NOTE

During a route editing session, it is possible to lose the connection to the running
routing context. If this happens, then in the JMX Navigator view, you would see
something like this: Local Processes → maven[xxxx][Disconnected]. To
continue the session, you must reconnect to the running routing context, select it
in the JMX Navigator view, and then re-select Edit Routes.

TERMINATING THE ROUTE EDITING SESSION

1. In the Debug perspective’s Debug view, select the Remote Camel Debug - camelContext--

<contextId>--xxxxxxxxxxxxxxxxxx.xml [Remote Camel Context] thread, and then click
on the menu bar to terminate the debugging session.

2. On Console view’s menu bar, click to terminate the routing context.

3. If you want to clear console output, click on the Console view’s menu bar.

4. Switch to the Fuse Integration perspective, and in the route editor, click on the Remote
CamelContext:<contextId> tab to close the in-memory model of the routing context file.

CHAPTER 26. EDITING RUNNING ROUTES

177

RELATED TOPICS

Chapter 2, Editing a routing context in the route editor

Part II, “Debugging Routing Contexts”

Red Hat Fuse 7.3 Tooling User Guide

178

CHAPTER 27. MANAGING ROUTING CONTEXTS
The JMX Navigator view lets you suspend and resume running routing contexts.

27.1. SUSPENDING OPERATION OF A ROUTING CONTEXT

Overview

The tooling enables you to suspend the operation of a routing context in the JMX Navigator view.
Suspending context operation gracefully shuts down all routes in the context, but keeps them loaded in
memory, so that they can resume operation.

Procedure

To suspend operation of a routing context:

1. In the JMX Navigator view, expand the project’s Camel Contexts node, and select the routing
context whose operation you want to suspend.

2. Right-click the selected routing context to open the context menu, and then select Suspend
Camel Context.

NOTE

If Resume Camel Context appears on the context menu, operation of the context
is already suspended.

Related topics

Section 27.2, “Resuming operation of a routing context”

27.2. RESUMING OPERATION OF A ROUTING CONTEXT

Overview

The tooling lets you resume operation of a suspended routing context in the JMX Navigator view.
Resuming operation of a context restarts all of the routes in it so that they can process messages.

Procedure

To resume operation of a routing context:

1. In the JMX Navigator view, expand the project’s Camel Contexts node, and select the routing
context whose operation you want to resume.

2. Right-click the selected context to open the context menu, and then select Resume Camel
Context.

NOTE

If Suspend Camel Context appears in the context menu, the context and its
routes are running.

CHAPTER 27. MANAGING ROUTING CONTEXTS

179

Related topics

Section 27.1, “Suspending operation of a routing context”

Red Hat Fuse 7.3 Tooling User Guide

180

PART IV. PUBLISHING APPLICATIONS TO A CONTAINER
To publish Fuse Integration projects to a server container, you must first add the server and its runime
definition to the tooling’s Servers list. Then you can assign projects to the server runtime and set the
publishing options for it.

PART IV. PUBLISHING APPLICATIONS TO A CONTAINER

181

CHAPTER 28. MANAGING SERVERS
The Servers view lets you run and manage servers in your Red Hat CodeReady Studio environment.

NOTE

For step by step instructions on how to publish a Camel project to Red Hat Fuse, see
Chapter 29, Publishing Fuse Integration Projects to a Server.

28.1. ADDING A SERVER

Overview

For the tooling to manage a server, you need to add the server to the Servers list. Once added, the
server appears in the Servers view, where you can connect to it and publish your Fuse Integration
projects.

NOTE

If adding a Red Hat Fuse server, it is recommended that you edit its
installDir/etc/users.properties file and add user information, in the form of
user=password,role, to enable the tooling to establish an SSH connection to the
server.

Procedure

There are three ways to add a new server to the Servers view:

In the Servers view, click No servers are available. Click this link to create
a new server… ​.

NOTE

This link appears in the Servers view only when no server has been defined. If
you defined and added a server when you first created your project, the Servers
view displays that server.

In the Servers view, right-click to open the context menu and select New → Server.

On the menu bar, select File → New → Other → Server → Server.

In the Define a New Server dialog, to add a new server:

1. Expand the Red Hat JBoss Middleware node to expose the list of available server options:

Red Hat Fuse 7.3 Tooling User Guide

182

2. Click the server that you want to add.

3. In the Server’s host name field, accept the default (localhost).

NOTE

The address of localhost is 0.0.0.0.

4. In the Server name field, accept the default, or enter a different name for the runtime server.

5. For Server runtime environment, accept the default or click Add to open the server’s runtime
definition page:

CHAPTER 28. MANAGING SERVERS

183

NOTE

If the server is not already installed on your machine, you can install it now by
clicking Download and install runtime… ​ and following the site’s download
instructions. Depending on the site, you might be required to provide valid
credentials before you can continue the download process.

6. Accept the default for the installation Name.

7. In the Home Directory field, enter the path where the server runtime is installed, or click
Browse to find and select it.

8. Next to Execution Environment, select the runtime JRE from the drop-down menu.
If the version you want does not appear in the list, click Environments and select the version
from the list that appears. The JRE version you select must be installed on your machine.

Red Hat Fuse 7.3 Tooling User Guide

184

NOTE

See Red Hat Fuse Supported Configurations for the required Java version.

9. Leave the Alternate JRE option as is.

10. Click Next to save the server’s runtime definition and open its Configuration details page:

11. Accept the default for SSH Port (8101).
The runtime uses the SSH port to connect to the server’s Karaf shell. If this default is incorrect
for your setup, you can discover the correct port number by looking in the server’s
installDir/etc/org.apache.karaf.shell.cfg file.

12. In the User Name field, enter the name used to log into the server.
For Red Hat Fuse, this is a user name stored in the Red Hat Fuse
installDir/etc/users.properties file.

NOTE

If the default user has been activated (uncommented) in the
/etc/users.properties file, the tooling autofills the User Name and
Password fields with the default user’s name and password, as shown in
[servCnfigDetails].

If a user has not been set up, you can either add one to that file by using the format
user=password,role (for example, joe=secret,Administrator), or you can set one
using the karaf jaas command set:

jaas:realms — to list the realms

jaas:manage --index 1 — to edit the first (server) realm

jaas:useradd <username> <password> — to add a user and associated password

jaas:roleadd <username> Administrator — to specify the new user’s role

CHAPTER 28. MANAGING SERVERS

185

https://access.redhat.com/articles/310603

jaas:update — to update the realm with the new user information

If a jaas realm has already been selected for the server, you can discover the user name by
issuing the command JBossFuse:karaf@root>jaas:users.

13. In the Password field, enter the password required for User Name to log into the server.

14. Click Finish to save the server’s configuration details.
The server runtime appears in the Servers view.

Expanding the server node exposes the server’s JMX node:

28.2. STARTING A SERVER

Overview

When you start a configured server, the tooling opens the server’s remote management console in the
Terminal view. This allows you to easily manage the container while testing your application.

Procedure

To start a server:

1. In the Servers view, select the server you want to start.

2. Click .

The Console view opens and displays a message asking you to wait while the container is
starting, for example:

NOTE

If you did not properly configure the user name and password for opening the
remote console, a dialog opens asking you to enter the proper credentials.
See Section 28.1, “Adding a Server”.

After the container has started up, the Terminal view opens to display the container’s
management console.

The running server appears in the Servers view:

Red Hat Fuse 7.3 Tooling User Guide

186

The running server also appears in the JMX Navigator view under Server Connections:

NOTE

If the server is running on the same machine as the tooling, the server also
has an entry under Local Processes.

28.3. CONNECTING TO A RUNNING SERVER

Overview

After you start a configured server, it appears in the Servers view and in the JMX Navigator view under
the Server Connections node. You may need to expand the Server Connections node to see the
server.

To publish and test your Fuse project application on the running server, you must first connect to it. You
can connect to a running server either in the Servers view or in the JMX Navigator view.

NOTE

The Servers view and the JMX Navigator view are synchronized with regards to server
connections. That is, connecting to a server in the Servers view also connects it in the
JMX Navigator view, and vice versa.

Connecting to a running server in the Servers view

1. In the Servers view, expand the server runtime to expose its JMX[Disconnected] node.

2. Double-click the JMX[Disconnected] node:

CHAPTER 28. MANAGING SERVERS

187

Connecting to a running server in the JMX Navigator view

1. In the JMX Navigator view, under the Server Connections node, select the server to which
you want to connect.

2. Double-click the selected server:

Viewing bundles installed on the connected server

1. In either the Servers view or the JMX Navigator view, expand the server runtime tree to expose
the Bundles node, and select it.

2. The tooling populates the Properties view with a list of bundles that are installed on the server:

Using the Properties view’s Search tool, you can search for bundles by their Symbolic Name
or by their Identifier, if you know it. As you type the symbolic name or the identifier, the list
updates, showing only the bundles that match the current search string.

Red Hat Fuse 7.3 Tooling User Guide

188

NOTE

Alternatively, you can issue the osgi:list command in the Terminal view to
see a generated list of bundles installed on the Red Hat Fuse server runtime. The
tooling uses a different naming scheme for OSGi bundles displayed by the
osgi:list command.

In the <build> section of project’s pom.xml file, you can find the bundle’s
symbolic name and its bundle name (OSGi) listed in the maven-bundle-
plugin entry. For more details, see the section called “Verifying the project was
published to the server”.

28.4. DISCONNECTING FROM A SERVER

Overview

When you are done testing your application, you can disconnect from the server without stopping it.

NOTE

The Servers view and the JMX Navigator view are synchronized with regards to server
connections. That is, disconnecting from a server in the Servers view also disconnects it
in the JMX Navigator view, and vice versa.

Disconnecting from a server in the Servers view

1. In the Servers view, expand the server runtime to expose its JMX[Connected] node.

2. Right-click the JMX[Connected] node to open the context menu, and then select Disconnect.

Disconnecting from a server in the JMX Navigator view

1. In the JMX Navigator view, under Server Connections, select the server from which you want
to disconnect.

CHAPTER 28. MANAGING SERVERS

189

2. Right-click the selected server to open the context menu, and then select Disconnect.

28.5. STOPPING A SERVER

Overview

You can shut down a server in the Servers view or in the server’s remote console in the Terminal view.

Using the Servers view

To stop a server:

1. In the Servers view, select the server you want to stop.

2. Click .

Using the remote console

To stop a server:

1. Open the Terminal view that is hosting the server’s remote console.

2. Press: CTRL+D

28.6. DELETING A SERVER

Overview

When you are finished with a configured server, or if you misconfigure a server, you can delete it and its
configuration.

First, delete the server from the Servers view or from the JMX Navigator view. Next, delete the server’s
configuration.

Red Hat Fuse 7.3 Tooling User Guide

190

Deleting a server

1. In the Servers view, right-click the server you want to delete to open the context menu.

2. Select Delete.

3. Click OK.

Deleting the server’s configuration

1. On the menu bar, select CodeReady Studio → Preferences → Server.

NOTE

On Linux and Windows machines, select Window → Preferences.

2. Expand the Server folder, and then select Runtime Environments to open the Server Runtime
Environments page.

3. From the list, select the runtime environment of the server that you previously deleted from the
Servers view, and then click Remove.

4. Click OK.

CHAPTER 28. MANAGING SERVERS

191

CHAPTER 29. PUBLISHING FUSE INTEGRATION PROJECTS
TO A SERVER

You deploy Fuse Integration projects into a server runtime using the Eclipse publishing mechanism. To
do so, you must have defined and added the server to the Servers view in the Fuse Integration
perspective. For a step-by-step demonstration, see .

OVERVIEW

You can set up supported servers to publish assigned Fuse projects automatically or to publish them
only when you manually invoke the publish command.

Each server runtime added to the Servers view has its own Overview page that contains its
configuration, connection, and publishing details:

You might need to expand Publishing to expose the server runtime publishing options and default
settings:

Never publish automatically — You must select this option to manually publish projects.

IMPORTANT

You must also disable the If server started, publish changes immediately
option on the server’s Add and Remove page (for details see, the section called
“Publishing Fuse projects manually”.

Automatically publish when resources change — [default] Enable this option to automatically
publish or republish a Fuse project when you save changes made to it. How quickly projects are
published depends on the Publishing interval (default is 15 seconds).

Automatically publish after a build event — For Fuse projects, works the same as
Automatically publish when resources change.

Red Hat Fuse 7.3 Tooling User Guide

192

PUBLISHING FUSE PROJECTS AUTOMATICALLY WHEN RESOURCES
CHANGE

The default publishing option for server runtimes is Automatically publish when resources change.

1. If necessary, start the server runtime to which you want to publish a Fuse project. For details,
see Section 28.2, “Starting a Server”.

2. In the Servers view, double-click the server runtime to open its Overview page.

3. Expand Publishing, and then select Automatically publish when resources change.

4. To increase or decrease the interval between publishing cycles, click the radio button next to
Publishing interval (in seconds) up or down, as appropriate.

5. In the Servers view, right-click the server runtime to open the context menu, and then select Add
and Remove.

All resources available for publishing appear in the Available column.

6. To assign a resource (in this case, the CBRroute Fuse project) to the server runtime:

CHAPTER 29. PUBLISHING FUSE INTEGRATION PROJECTS TO A SERVER

193

Double-click it, or

Select it, and click Add.
The selected resource moves to the Configured column:

At this stage, the time at which the assigned resource would actually be published depends
on whether the server runtime was running and on the Publishing interval setting.
However, if the server was stopped, you would have to manually publish the project after
you started the server (for details, see the section called “Publishing Fuse projects
manually”).

7. Click the If server started, publish changes immediately option to enable it:

Red Hat Fuse 7.3 Tooling User Guide

194

This option ensures that the configured project is published immediately once you click Finish.
The Automatically publish when resources change option on the server runtime Overview
page ensures that the configured project is republished whenever changes made to the local
project are saved.

8. Click Finish.
The project appears in the Servers view under the server runtime node, and the server runtime
status reports [Started,Publishing… ​].

When publishing is done, the status of both the server runtime and the project report is
[Started,Synchronized]:

CHAPTER 29. PUBLISHING FUSE INTEGRATION PROJECTS TO A SERVER

195

NOTE

For a server runtime, Synchronized means that all published resources on the
server are identical to their local counterparts. For a published resource,
Synchronized means that it is identical to its local counterpart.

PUBLISHING FUSE PROJECTS MANUALLY

1. If necessary, start the server runtime to which you want to publish a Fuse project. For details,
see Section 28.2, “Starting a Server”.

2. In the Servers view, double-click the server runtime to open its Overview page.

3. Expand Publishing, and then select Never publish automatically.

4. Click File → Save to save the publishing option changes.

5. If the Fuse project has already been assigned to the server runtime, make sure this option is
disabled: If server started, publish changes immediately:

a. In the Servers view, right-click the server runtime to open the context menu.

b. Click Add and Remove… ​ to open the server’s Add and Remove page.

c. If the following option is enabled, disable it: If server started, publish changes
immediately.

d. Skip to [finish].

6. If the Fuse project has not been assigned to the server runtime, assign it now:

a. Follow [startAssignResource] through [stopAssignResource] in the section called “Publishing
Fuse projects automatically when resources change”.

b. Do not enable the If server started, publish changes immediately option.

7. Click Finish.
The project appears in the Servers view under the server runtime node, and the server runtime
status reports [Started]:

8. In the Servers view, right-click the project’s node. In this example, select the CBRroute Fuse
project to open the context menu:

Red Hat Fuse 7.3 Tooling User Guide

196

9. Select Full Publish.
During the publishing operation, the status of both the server runtime and the project report
[Started,Republish].

When publishing is done, the status of both the server runtime and the project report
[Started,Synchronized]:

NOTE

The tooling does not support the Incremental Publish option. Clicking
Incremental Publish results in a full publish.

VERIFYING THE PROJECT WAS PUBLISHED TO THE SERVER

After you have published a Fuse project to a server runtime, you can connect to the server and check
that the project’s bundle was installed on it.

1. Connect to the server runtime. For details see the section called “Connecting to a running server
in the Servers view”.

2. In the Servers view, expand the server runtime tree to expose the Bundles node and select it.
The tooling populates the Properties view with a list of bundles that are installed on the server:

CHAPTER 29. PUBLISHING FUSE INTEGRATION PROJECTS TO A SERVER

197

3. To find your project’s bundle, either scroll down to the bottom of the list, or start typing the
bundle’s Symbolic Name in the Properties view’s Search box. The bundle’s Symbolic Name
is the name you gave your project when you created it.

NOTE

Alternatively, you can issue the osgi:list command in the Terminal view to
see a generated list of bundles installed on the Fuse server runtime. The tooling
uses a different naming scheme for OSGi bundles displayed by the osgi:list
command.

In the <build> section of project’s pom.xml file, you can find the bundle’s
symbolic name and its bundle name (OSGi) listed in the maven-bundle-
plugin entry; for example:

Red Hat Fuse 7.3 Tooling User Guide

198

APPENDIX A. FUSE INTEGRATION PERSPECTIVE
Use the Fuse Integration perspective to design, monitor, test, and publish your integration application.

You can open the Fuse Integration perspective in the following ways:

When you create a new Fuse Integration project (see Chapter 1, Creating a New Fuse
Integration Project), the tooling switches to the Fuse Integration perspective.

Click on the right side of the CodeReady Studio tool bar. If the icon is not available on the

tool bar, click and then select Fuse Integration from the list of available perspectives.

Select Window → Perspective → Open Perspective → Fuse Integration.

The Fuse Integration perspective consists of nine main areas:

Project Explorer view
Displays all projects known to the tooling. You can view all artifacts that make up each project.
The Project Explorer view also displays all routing context .xml. files for a project under its
Camel Contexts node. This enables you to find and open a routing context file included in a
project. Under each routing context .xml file, the Project Explorer view displays all routes
defined within the context. For multiroute contexts, this lets you focus on a specific route on the
canvas.

APPENDIX A. FUSE INTEGRATION PERSPECTIVE

199

The route editor
Provides the main design-time tooling and consists of three tabs:

Design — Displays a large grid area on which routes are constructed and a palette from
which Enterprise Integration Patterns (EIPs) and Camel components are selected and then
connected on the canvas to form routes.

The canvas is the route editor’s workbench and where you do most of your work. It displays
a graphical representation of one or more routes, which are made up of connected EIPs and
Camel components (called nodes once they are placed on the canvas).

Selecting a node on the canvas populates the Properties view with the properties that apply
to the selected node, so you can edit them.

Red Hat Fuse 7.3 Tooling User Guide

200

The Palette contains all of the patterns and Camel components needed to construct a route
and groups them according to function — Components, Routing, Control Flow,
Transformation, and Miscellaneous.

Source
Displays the contents of the .xml file for the routes constructed on the route editor’s canvas.

You can edit the routing context in the Source tab as well as in the Design tab. The Source
tab is useful for editing and adding any configuration, comments, or beans to the routing
context file. The content assist feature helps you when working with configuration files. In the
Source tab, press Ctrl+Space to see a list of possible values that can be inserted into your
project.

Configurations — Provides an easy way to add shared configuration (global endpoints,
data formats, beans) to a multi-route, routing context. For details see Section 2.6, “Adding
global endpoints, data formats, or beans”.

APPENDIX A. FUSE INTEGRATION PERSPECTIVE

201

Properties view
Displays the properties of the node selected on the canvas.

JMX Navigator view
Lists the JMX servers and the infrastructure they monitor. It enables you to browse JMX servers
and the pocesses they are monitoring. It also identifies instances of Red Hat processes.

The JMX Navigator view drives all monitoring and testing activities in the Fuse Integration
perspective. It determines which routes are displayed in the Diagram View, the Properties view,
and the Messages View. It is also provides menu commands for activating route tracing, adding
and deleting JMS destinations, and starting and suspending routes. It is also the target for
dragging and dropping messages onto a route.

By default, the JMX Navigator view shows all Java processes that are running on your local
machine. You can add JMX servers as needed to view infrastructure on other machines.

Diagram View
Displays a graphical tree representing the node selected in the JMX Navigator view. When you
select a process, server, endpoint, or other node, the Diagram View shows the selected node
as the root with branches down to its children and grandchildren.

When you select a broker, the Diagram View displays up to three children: connections, topics,
and queues. It also shows configured connections and destinations as grandchildren.

Red Hat Fuse 7.3 Tooling User Guide

202

When you select a route, the Diagram View displays all nodes in the route and shows the
different paths that messages can take through the route. It also displays timing metrics for each
processing step in the route when route tracing is enabled.

Messages View
Lists the messages that have passed through the selected JMS destination or through Apache
Camel endpoints when route tracing is enabled.

When a JMS destination is selected in the JMX Navigator view, the view lists all messages that
are at the destination.

When route tracing is enabled, the Messages View lists all messages that passed through the
nodes in the route since tracing started. You can configure the Messages View to display only
the data in which you are interested and in your preferred sequence.

When a message trace in the Messages View is selected, its details (message body and all
message headers) appear in the Properties view. In the Diagram View, the step in the route
associated with the selected message trace is highlighted.

Servers view
Displays a list of servers managed by the tooling. It displays their runtime status and provides
controls for adding, starting and stopping them and for publishing projects to them.

Terminal view
Displays the command console of the connected container. You can control the container by
entering commands in the Terminal view.

Console view
Displays the console output for recently executed actions.

APPENDIX A. FUSE INTEGRATION PERSPECTIVE

203

APPENDIX B. DEBUG PERSPECTIVE
Use the Debug perspective to monitor and debug a running Camel context.

Debug view
For the running Camel context, the Debug view displays the debug stack.

You can switch between breakpoints within the same message flow, listed under the Camel
Context at service:jmx:rmi://jndi/rmi://localhost:1099/jmxrmi/camel
entry, to review and compare variable values in the Variables view.

Messages flows are identified by their unique breadcrumb ID, and the breadcrumb ID of each
subsequent message flow is incremented by 2. For example, if the breadcrumb ID for the first
message flow is ID-janemurpheysmbp-home-54620-1470949590275-0-1, the
breadcrumbID for the second message flow would be ID-janemurpheysmbp-home-54620-
1470949590275-0-3.

Variables view
For each node in the routing context that has a breakpoint set, the Variables view displays the
value of the available variables when the breakpoint is hit. Each variable who’s value changed
since the preceding breakpoint is highlighted in yellow.

You can change the value of editable variables to check whether such changes produce the
expected results and to test the robustness of your routing context.

You can also add variables to the watch list, so you can quickly and easily see whether their
values change as expected at the expected point in the message flow.

Breakpoints view
Displays a list of the breakpoints set in the routing context, and shows whether they are enabled
or disabled. You can enable and disable individual breakpoints by checking (enabling) or
unchecking (disabling) them. This enables you to temporarily focus on nodes in your routing

Red Hat Fuse 7.3 Tooling User Guide

204

context that are behaving problematically.

The button skips over disabled breakpoints to jump to the next active breakpoint in the

routing context. In contrast, the button jumps to the next node of execution in the routing
context, regardless of breakpoints.

camel Context.xml view
Displays the running routing context file in graphical mode. For nodes set with breakpoints, it
shows the type of breakpoint set and whether the breakpoint is enabled or disabled. When a
breakpoint is hit, its corresponding node on the canvas is outlined in red.

To check a node’s configuration, open the Properties view and then select the node on the
canvas in camel Context.xml.

Console view
Displays the log output generated by the Camel debugger as it executes the routing context.

Properties view
Displays the properties set for the node selected on the canvas in CamelContext.xml.

APPENDIX B. DEBUG PERSPECTIVE

205

	Table of Contents
	PREFACE
	PART I. DEVELOPING APPLICATIONS
	CHAPTER 1. CREATING A NEW FUSE INTEGRATION PROJECT
	OVERVIEW
	BEFORE YOU BEGIN
	SPECIFYING THE PROJECT NAME AND WORKSPACE
	CONFIGURING THE PROJECT DEPLOYMENT ENVIRONMENT
	CREATING A NEW TARGET RUNTIME (OPTIONAL)
	SELECTING A PROJECT TEMPLATE
	RESOLVING MAVEN DEPENDENCY ERRORS

	CHAPTER 2. EDITING A ROUTING CONTEXT IN THE ROUTE EDITOR
	2.1. ADDING PATTERNS TO A ROUTE
	Procedure
	Changing the layout direction
	Related topics

	2.2. CONFIGURING A PATTERN
	Overview
	Procedure

	2.3. REMOVING PATTERNS FROM A ROUTE
	Overview
	Procedure
	Related topics

	2.4. ADDING ROUTES TO THE ROUTING CONTEXT
	Overview
	Procedure

	2.5. DELETING A ROUTE
	Overview
	Procedure

	2.6. ADDING GLOBAL ENDPOINTS, DATA FORMATS, OR BEANS
	Overview
	Adding a global endpoint
	Adding a global data format
	Adding a global bean
	Deleting a global element
	Editing a global element

	2.7. CONFIGURING THE ROUTE EDITOR
	Overview
	Procedure

	CHAPTER 3. VIEWING AND EDITING REST DSL COMPONENTS
	3.1. VIEWING A GRAPHICAL REPRESENTATION OF REST DSL COMPONENTS
	3.2. EDITING REST DSL COMPONENTS IN THE GRAPHICAL VIEW
	3.3. VIEWING AND EDITING THE REST DSL SOURCE CODE

	CHAPTER 4. MIGRATING A SOAP APPLICATION TO RESTFUL WEB SERVICES
	4.1. WIZARD WORKFLOW
	4.2. PREREQUISITES
	4.3. MIGRATING A SAMPLE SOAP APPLICATION TO RESTFUL WEB SERVICES

	CHAPTER 5. CREATING A NEW APACHE CAMEL JUNIT TEST CASE
	OVERVIEW
	PREREQUISITES
	DELETING AND EXISTING JUNIT TEST CASE
	CREATING AND ADDING THE SRC/TEST/JAVA FOLDER TO THE BUILD PATH
	CREATING A JUNIT TEST CASE

	CHAPTER 6. RUNNING ROUTES INSIDE RED HAT FUSE TOOLING
	6.1. RUNNING ROUTES AS A LOCAL CAMEL CONTEXT
	Overview
	Procedure
	Result
	Related topics

	6.2. RUNNING ROUTES USING MAVEN
	Overview
	Procedure
	Results
	Related topics

	6.3. WORKING WITH RUNTIME PROFILES
	6.3.1. Editing a Local Camel Context runtime profile
	Overview
	Accessing the Local Camel Context’s runtime configuration editor
	Setting the camel context file
	Changing the command line options
	Changing where output is sent
	Related topics

	6.3.2. Editing a Maven runtime profile
	Overview
	Accessing the Maven runtime configuration editor
	Changing the Maven goal
	Changing the version of Maven
	Changing where the output is sent
	Related topics

	CHAPTER 7. GETTING STARTED WITH FUSE INTEGRATION SERVICES
	OVERVIEW
	ADDING THE RED HAT CONTAINER DEVELOPMENT KIT SERVER
	STARTING THE CONTAINER DEVELOPMENT ENVIRONMENT (CDE) AND VIRTUAL OPENSHIFT SERVER
	CREATING A NEW OPENSHIFT PROJECT
	CREATING A NEW FIS PROJECT
	DEPLOYING THE FIS PROJECT TO OPENSHIFT
	ACCESSING THE OPENSHIFT WEB CONSOLE

	CHAPTER 8. USING THE RED HAT FUSE SAP TOOL SUITE
	8.1. INSTALLING THE RED HAT FUSE SAP TOOL SUITE
	Overview
	Platform restrictions for SAP tooling
	Prerequisites
	Procedure

	8.2. CREATE AND TEST SAP DESTINATION CONNECTION
	Overview
	Procedure

	8.3. CREATE AND TEST SAP SERVER CONNECTION
	Overview
	Procedure

	8.4. DELETING DESTINATION AND SERVER CONNECTIONS
	Overview
	Procedure

	8.5. CREATE A NEW SAP ENDPOINT
	Overview
	Prerequisites
	Procedure

	CHAPTER 9. GETTING STARTED WITH DATA TRANSFORMATION
	9.1. CREATING A PROJECT FOR THE DATA TRANSFORMATION EXAMPLE
	9.2. ADDING A DATA TRANSFORMATION NODE TO THE CAMEL ROUTE
	9.3. MAPPING SOURCE DATA ITEMS TO TARGET DATA ITEMS
	9.4. CREATING THE TRANSFORMATION TEST FILE AND RUNNING THE JUNIT TEST
	9.5. MAPPING A CONSTANT VARIABLE TO A DATA ITEM
	9.6. MAPPING AN EXPRESSION TO A DATA ITEM
	9.7. ADDING A CUSTOM TRANSFORMATION TO A MAPPED DATA ITEM
	9.8. MAPPING A SIMPLE DATA ITEM TO A DATA ITEM IN A COLLECTION
	9.9. ADDING A BUILT-IN FUNCTION TO A MAPPED DATA ITEM
	9.10. PUBLISHING A FUSE INTEGRATION PROJECT WITH DATA TRANSFORMATION TO A RED HAT FUSE SERVER

	CHAPTER 10. DEVELOPING EXTENSIONS FOR FUSE ONLINE INTEGRATIONS
	10.1. OVERVIEW OF TASKS
	10.2. PREREQUISITES
	10.3. CREATING A CUSTOM CONNECTOR
	10.3.1. Creating a Fuse Online Extension project for a custom connector
	10.3.2. Writing code for the custom connector

	10.4. CREATING CUSTOM STEPS
	10.4.1. Creating a Fuse Online Extension project for custom steps
	10.4.2. Writing code for the custom step

	10.5. BUILDING THE FUSE ONLINE EXTENSION JAR FILE
	10.6. PROVIDING THE JAR FILE TO THE FUSE ONLINE USER

	CHAPTER 11. CREATING A NEW CAMEL XML FILE
	OVERVIEW
	PROCEDURE

	CHAPTER 12. CHANGING THE CAMEL VERSION
	CHAPTER 13. IMPORTING AN EXISTING MAVEN PROJECT
	OVERVIEW
	PROCEDURE

	PART II. DEBUGGING ROUTING CONTEXTS
	CHAPTER 14. SETTING BREAKPOINTS
	OVERVIEW
	SETTING UNCONDITIONAL BREAKPOINTS
	SETTING CONDITIONAL BREAKPOINTS
	DISABLING BREAKPOINTS
	DELETING BREAKPOINTS
	RELATED TOPICS

	CHAPTER 15. RUNNING THE CAMEL DEBUGGER
	15.1. DEBUGGING A LOCALLY RUNNING ROUTING CONTEXT
	Procedure
	Watching message exchanges progress through the routing context

	15.2. DEBUGGING A REMOTELY RUNNING ROUTING CONTEXT
	Prerequisites
	Setting up and starting remote debugging
	Procedure

	RELATED TOPICS

	CHAPTER 16. STOPPING THE CAMEL DEBUGGER
	OVERVIEW
	CLOSING THE CAMEL DEBUGGER
	RELATED TOPICS

	CHAPTER 17. CHANGING VARIABLE VALUES
	OVERVIEW
	PROCEDURE
	RELATED TOPICS

	CHAPTER 18. ADDING VARIABLES TO THE WATCH LIST
	OVERVIEW
	PROCEDURE
	RELATED TOPICS

	CHAPTER 19. DISABLING BREAKPOINTS IN A RUNNING CONTEXT
	OVERVIEW
	DISABLING AND ENABLING BREAKPOINTS IN BREAKPOINTS VIEW

	PART III. MONITORING AND TESTING APPLICATIONS
	CHAPTER 20. JMX NAVIGATOR
	20.1. VIEWING PROCESSES IN JMX
	Overview
	Viewing processes in a local JMX server
	Viewing processes in alternate JMX servers

	20.2. ADDING A JMX SERVER
	Overview
	Procedure

	CHAPTER 21. VIEWING A COMPONENT’S JMX STATISTICS
	OVERVIEW
	PROCEDURE

	CHAPTER 22. BROWSING MESSAGES
	OVERVIEW
	PROCEDURE
	RELATED TOPICS

	CHAPTER 23. TRACING ROUTES
	23.1. CREATING TEST MESSAGES FOR ROUTE TRACING
	Overview
	Creating a new folder to store test messages
	Creating a test message
	Related topics

	23.2. ACTIVATING ROUTE TRACING
	Overview
	Procedure
	Related topics

	23.3. TRACING MESSAGES THROUGH A ROUTING CONTEXT
	Overview
	Procedure
	Related topics

	23.4. DEACTIVATING ROUTE TRACING
	Overview
	Procedure
	Related topics

	CHAPTER 24. MANAGING JMS DESTINATIONS
	24.1. ADDING A JMS DESTINATION
	Overview
	Procedure
	Related topics

	24.2. DELETING A JMS DESTINATION
	Overview
	Procedure
	Related topics

	CHAPTER 25. MANAGING ROUTING ENDPOINTS
	25.1. ADDING A ROUTING ENDPOINT
	Overview
	Procedure
	Related topics

	25.2. DELETING A ROUTING ENDPOINT
	Overview
	Procedure
	Related topics

	CHAPTER 26. EDITING RUNNING ROUTES
	OVERVIEW
	MODIFYING A RUNNING ROUTE AND EVALUATING RESULTS
	TERMINATING THE ROUTE EDITING SESSION
	RELATED TOPICS

	CHAPTER 27. MANAGING ROUTING CONTEXTS
	27.1. SUSPENDING OPERATION OF A ROUTING CONTEXT
	Overview
	Procedure
	Related topics

	27.2. RESUMING OPERATION OF A ROUTING CONTEXT
	Overview
	Procedure
	Related topics

	PART IV. PUBLISHING APPLICATIONS TO A CONTAINER
	CHAPTER 28. MANAGING SERVERS
	28.1. ADDING A SERVER
	Overview
	Procedure

	28.2. STARTING A SERVER
	Overview
	Procedure

	28.3. CONNECTING TO A RUNNING SERVER
	Overview
	Connecting to a running server in the Servers view
	Connecting to a running server in the JMX Navigator view
	Viewing bundles installed on the connected server

	28.4. DISCONNECTING FROM A SERVER
	Overview
	Disconnecting from a server in the Servers view
	Disconnecting from a server in the JMX Navigator view

	28.5. STOPPING A SERVER
	Overview
	Using the Servers view
	Using the remote console

	28.6. DELETING A SERVER
	Overview
	Deleting a server
	Deleting the server’s configuration

	CHAPTER 29. PUBLISHING FUSE INTEGRATION PROJECTS TO A SERVER
	OVERVIEW
	PUBLISHING FUSE PROJECTS AUTOMATICALLY WHEN RESOURCES CHANGE
	PUBLISHING FUSE PROJECTS MANUALLY
	VERIFYING THE PROJECT WAS PUBLISHED TO THE SERVER

	APPENDIX A. FUSE INTEGRATION PERSPECTIVE
	APPENDIX B. DEBUG PERSPECTIVE

