
Red Hat Fuse 7.2

Integrating Applications with Fuse Online

For business users who want to share data between different applications and
services.

Last Updated: 2020-03-11

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

For business users who want to share data between different applications and services.

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Fuse Online provides integration as a service.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. HIGH LEVEL OVERVIEW OF FUSE ONLINE
1.1. HOW FUSE ONLINE WORKS
1.2. WHO FUSE ONLINE IS FOR
1.3. BENEFITS OF USING FUSE ONLINE
1.4. DESCRIPTIONS OF FUSE ONLINE CONSTRUCTS

CHAPTER 2. HOW TO GET READY TO CREATE INTEGRATIONS
2.1. PLAN YOUR INTEGRATIONS
2.2. GENERAL WORKFLOW FOR CREATING AN INTEGRATION
2.3. EXAMPLE WORKFLOW FOR CREATING A SALESFORCE TO DATABASE INTEGRATION

CHAPTER 3. WHAT TO EXPECT WHEN USING FUSE ONLINE FOR THE FIRST TIME

CHAPTER 4. ABOUT CONNECTIONS TO APPLICATIONS THAT YOU WANT TO INTEGRATE
4.1. ABOUT CREATING CONNECTIONS FROM FUSE ONLINE TO APPLICATIONS
4.2. GENERAL PROCEDURE FOR OBTAINING AUTHORIZATION
4.3. ABOUT CONNECTION VALIDATION
4.4. ABOUT ADDING CONNECTIONS TO INTEGRATIONS
4.5. HOW TO VIEW AND EDIT CONNECTION INFORMATION
4.6. ABOUT CREATING A CONNECTION FROM A CUSTOM CONNECTOR

CHAPTER 5. CREATE INTEGRATIONS
5.1. PREPARATION FOR CREATING AN INTEGRATION
5.2. PROCEDURE FOR CREATING AN INTEGRATION
5.3. ABOUT ADDING STEPS BETWEEN CONNECTIONS
5.4. ADD A DATA MAPPING STEP
5.5. ADD A BASIC FILTER STEP
5.6. ADD AN ADVANCED FILTER STEP
5.7. ADD A LOG STEP
5.8. ADD A TEMPLATE STEP
5.9. ADD A CUSTOM STEP

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION
6.1. IDENTIFY WHERE DATA MAPPING IS NEEDED
6.2. FIND THE DATA FIELD THAT YOU WANT TO MAP
6.3. MAP ONE SOURCE FIELD TO ONE TARGET FIELD
6.4. EXAMPLE OF MISSING OR UNWANTED DATA WHEN COMBINING OR SEPARATING FIELDS
6.5. COMBINE MULTIPLE SOURCE FIELDS INTO ONE TARGET FIELD
6.6. SEPARATE ONE SOURCE FIELD INTO MULTIPLE TARGET FIELDS
6.7. TRANSFORM SOURCE OR TARGET DATA
6.8. VIEW THE MAPPINGS IN A STEP
6.9. DESCRIPTIONS OF AVAILABLE TRANSFORMATIONS

CHAPTER 7. CUSTOMIZE FUSE ONLINE
7.1. DEVELOP REST API CLIENT CONNECTORS

7.1.1. Requirements for REST API client connectors
7.1.2. Guidelines for OpenAPI schemas
7.1.3. Provide client credentials in parameters
7.1.4. Automatically refresh access tokens

7.2. ADD AND MANAGE REST API CLIENT CONNECTORS
7.2.1. Create REST API client connectors

5

6
6
6
7
7

10
10
11

12

14

15
15
15
16
17
17
18

19
19

20
21
22
22
23
24
25
27

28
28
28
29
30
31
32
34
34
35

43
43
44
44
44
45
46
46

Table of Contents

1

. .

. .

7.2.2. Update API client connectors by creating new ones
7.2.3. Delete API client connectors

7.3. DEVELOP FUSE ONLINE EXTENSIONS
7.3.1. General procedure for developing extensions
7.3.2. Description of the kinds of extensions
7.3.3. Overview of extension content and structure
7.3.4. Requirements in an extension definition JSON file
7.3.5. Description of Maven plugin that supports extensions
7.3.6. How to specify data shapes in extensions
7.3.7. Alternatives for developing step extensions

7.3.7.1. Example of developing a Camel route with XML fragments
7.3.7.2. Example of developing a Camel route with RouteBuilder
7.3.7.3. Example of using a Camel bean
7.3.7.4. Example of using the Syndesis Step API

7.3.8. Example of developing a connector extension
7.3.9. How to develop library extensions
7.3.10. Create JDBC driver library extensions

7.4. ADD AND MANAGE EXTENSIONS
7.4.1. Make custom features available
7.4.2. Identify integrations that use extensions
7.4.3. Update extensions
7.4.4. Delete extensions

CHAPTER 8. MANAGE INTEGRATIONS
8.1. ABOUT INTEGRATION LIFECYCLE HANDLING
8.2. PUT INTEGRATIONS INTO AND OUT OF SERVICE

8.2.1. About publishing integrations
8.2.2. Stop integrations
8.2.3. Start integrations
8.2.4. Restart older integration versions

8.3. MONITOR INTEGRATIONS
8.3.1. View integration history
8.3.2. View information about an integration’s activity
8.3.3. View metrics for a particular integration
8.3.4. View metrics for a Fuse Online environment

8.4. TEST INTEGRATIONS
8.5. UPDATE INTEGRATIONS
8.6. DELETE INTEGRATIONS
8.7. TIPS FOR TROUBLESHOOTING INTEGRATION EXECUTION
8.8. COPY AN INTEGRATION TO ANOTHER ENVIRONMENT

8.8.1. About copying integrations
8.8.2. Export integrations
8.8.3. Import integrations

CHAPTER 9. TRIGGER INTEGRATION EXECUTION WITH A REST API CALL
9.1. OVERVIEW AND BENEFIT OF API PROVIDER INTEGRATIONS
9.2. ABOUT API PROVIDER FLOWS
9.3. ABOUT API PROVIDER URLS
9.4. GENERAL WORKFLOW FOR CREATING INTEGRATIONS THAT ARE TRIGGERED BY API CALLS
9.5. CREATE AN INTEGRATION THAT IS TRIGGERED BY AN API CALL
9.6. CREATE THE INTEGRATION’S OPERATION FLOWS
9.7. CONFIGURE AND PUBLISH THE API PROVIDER QUICKSTART INTEGRATION
9.8. EXECUTE THE API PROVIDER QUICKSTART INTEGRATION

48
48
48
49
50
51
51

54
57
60
60
62
64
66
69
73
74
75
75
76
77
77

79
79
80
81

82
82
82
83
83
84
85
85
85
86
86
87
87
87
88
89

91
91

92
92
93
94
95
97
99

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

2

. .CHAPTER 10. HOW TO INSTALL OR UPGRADE FUSE ONLINE ON OPENSHIFT CONTAINER PLATFORM
10.1. OVERVIEW OF STEPS FOR INSTALLING FUSE ONLINE ON OCP
10.2. REGISTER A CUSTOM RESOURCE DEFINITION
10.3. DECISIONS TO MAKE BEFORE YOU INSTALL FUSE ONLINE ON OCP
10.4. INSTALL FUSE ONLINE ON OCP
10.5. EXPOSE APIS IN 3SCALE FOR API PROVIDER INTEGRATIONS
10.6. MONITOR FUSE ONLINE INTEGRATIONS ON OCP WITH PROMETHEUS
10.7. UPGRADE FUSE ONLINE ON OCP
10.8. UNINSTALL FUSE ONLINE FROM AN OCP PROJECT
10.9. DELETE AN OCP PROJECT THAT CONTAINS FUSE ONLINE

101
101
101
102
102
104
104
105
106
106

Table of Contents

3

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

4

PREFACE
Red Hat Fuse is a distributed, cloud-native integration solution that provides choices for architecture,
deployment, and tools. Fuse Online is Red Hat’s web-based Fuse distribution. Syndesis is the open
source project for Fuse Online. Fuse Online runs on OpenShift Online, OpenShift Dedicated, and
OpenShift Container Platform.

This guide provides information and instructions for using Fuse Online’s web interface to integrate
applications. The content is organized as follows:

Chapter 1, High level overview of Fuse Online

Chapter 2, How to get ready to create integrations

Chapter 3, What to expect when using Fuse Online for the first time

Chapter 4, About connections to applications that you want to integrate

Chapter 5, Create integrations

Chapter 6, Map integration data to fields for the next connection

Chapter 7, Customize Fuse Online

Chapter 8, Manage integrations

Chapter 9, Trigger integration execution with a REST API call

Chapter 10, How to install or upgrade Fuse Online on OpenShift Container Platform

To learn how to use Fuse Online by creating sample integrations, see the sample integration tutorials.

To obtain support, in Fuse Online, in the upper right, click and then select Support.

PREFACE

5

https://syndesis.io/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/fuse_online_sample_integration_tutorials/

CHAPTER 1. HIGH LEVEL OVERVIEW OF FUSE ONLINE
With Fuse Online, you can obtain data from an application or service, operate on that data if you need
to, and then send the data to a completely different application or service. No coding is required to
accomplish this.

The following topics provide a high-level overview of Fuse Online:

Section 1.1, “How Fuse Online works”

Section 1.2, “Who Fuse Online is for”

Section 1.3, “Benefits of using Fuse Online”

Section 1.4, “Descriptions of Fuse Online constructs”

1.1. HOW FUSE ONLINE WORKS

Fuse Online provides a web browser interface that lets you integrate two or more different applications
or services without writing code. It also provides features that allow you to introduce code if it is needed
for complex use cases.

Fuse Online lets you enable data transfer between different applications. For example, a business
analyst can use Fuse Online to capture tweets that mention customers and then leverage the data
obtained from Twitter to update Salesforce accounts. Another example is a service that makes stock
trade recommendations. You can use Fuse Online to capture recommendations for buying or selling
stocks of interest and forward those recommendations to a service that automates stock transfers.

To create and run a simple integration, the main steps are:

1. Create a connection to each application that you want to integrate.

2. Select the start connection. This connection is to the application that contains the data that you
want to share with another application.
Alternatively, you can start the integration with a timer or a webhook that accepts an HTTP
request.

3. Select the finish connection. This connection is to the application that receives data from the
start connection and that completes the integration.

4. Map data fields from the start connection to data fields in the finish connection.

5. Give the integration a name.

6. Click Publish to start running the integration.

The Fuse Online dashboard lets you monitor and manage integrations. You can see which integrations
are running, and you can start, stop, and edit integrations.

1.2. WHO FUSE ONLINE IS FOR

Fuse Online is for business experts in, for example, finance, human resources, or marketing, who do not
want to write code in order to share data between two different applications. Their use of a variety of
software-as-a-service (SaaS) applications gives them an understanding of business requirements,
workflows, and relevant data.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

6

As a business user, you can use Fuse Online to:

Capture tweets that mention your company, filter them, and create new contacts in your
Salesforce environment when the tweet is from an unknown source.

Identify Salesforce lead updates and then execute a SQL stored procedure to keep your related
database up to date.

Subscribe for orders received by an AMQ broker and then operate on those orders with a
custom API.

Obtain data from an Amazon S3 bucket and add it to a Dropbox folder.

These are just a few examples of what a business user can do without writing code.

1.3. BENEFITS OF USING FUSE ONLINE

Fuse Online has a number of benefits:

Integrate data from different applications or services without writing code.

Run the integration on OpenShift Online in the public cloud or on OpenShift Container Platform
on site.

Use the visual data mapper to map data fields in one application to data fields in another
application.

Leverage all the benefits of open source software. You can extend features, and customize
interfaces. If Fuse Online does not provide a connector for an application or service that you
want to integrate then a developer can create the connector that you need.

1.4. DESCRIPTIONS OF FUSE ONLINE CONSTRUCTS

To use Fuse Online, you create an integration by working with connectors, connections, actions, and
steps. It is helpful to have a basic understanding each of these constructs.

Integrations

An integration is a set of ordered steps that Fuse Online executes. This set includes:

A step that connects to an application to start the integration. This connection provides the
initial data that the integration operates on. A subsequent connection can provide additional
data.

A step that connects to an application to complete the integration. This connection receives any
data that was output from previous steps and finishes the integration.

Optional additional steps that connect to applications between the start and finish connections.
Depending on the position of the additional connection in the sequence of integration steps, an
additional connection can do any or all of the following:

Provide additional data for the integration to operate on

Process the integration data

Output processing results to the integration

CHAPTER 1. HIGH LEVEL OVERVIEW OF FUSE ONLINE

7

Optional steps that operate on data between connections to applications. Typically, there is a
step that maps data fields from the previous connection to data fields that the next connection
uses.

In an integration, each step can operate on the data that is output from the previous steps. To
determine the steps that you need in an integration, see Planning integrations.

Connectors

Fuse Online provides a set of connectors. A connector represents a specific application that you want to
obtain data from or send data to. Each connector is a template for creating a connection to that specific
application. For example, you use the Salesforce connector to create a connection to Salesforce.

An application that you want to connect to might use the OAuth protocol to authenticate users. In this
case, you register your Fuse Online environment as a client that can access that application. The
registration is associated with the connector for that application. You need to register a particular Fuse
Online environment only once with each application that uses OAuth. The registration extends to each
connection that you create from that connector.

If Fuse Online does not provide a connector that you need, a developer can create the required
connector.

Connections

Before you can create an integration, you must create a connection to each application or service that
you want to obtain data from or send data to. To create a connection, you select a connector and add
configuration information. For example, to connect to an AMQ broker in an integration, you create a
connection by selecting the AMQ connector, and then following prompts to identify the broker to
connect to and the account to use for the connection.

A connection is one specific instance of the connector that it is created from. You can create any
number of connections from one connector. For example, you can use the AMQ connector to create
three AMQ connections where each connection accesses a different broker.

To create an integration, you select a connection to start the integration, a connection to end the
integration, and optionally one or more connections for accessing additional applications. Any number of
integrations can use the same connection. A particular integration can use the same connection more
than once.

For details, see About connecting to applications .

Actions

In an integration, each connection performs exactly one action. As you create an integration, you choose
a connection to add to the integration and then you choose the action that the connection performs.
For example, when you create an integration that uses a Salesforce connection, you choose from a set of
actions that includes, but is not limited to, creating a Salesforce account, updating a Salesforce account,
and searching Salesforce.

Some actions require additional configuration and Fuse Online prompts you for this information.

Steps

An integration is a set of ordered steps. Each step operates on data. Some steps operate on data while
connected to an application or service outside Fuse Online. These steps are connections. Between
connections, there can be other steps that operate on data in Fuse Online. Typically, an integration
includes a step that maps data fields used in a connection to data fields used in the next connection.
Except for the start connection, each step operates on data it receives from the previous steps.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

8

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#planning_ready
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#connecting-to-applications_connections

To operate on data between connections, Fuse Online provides steps for:

Mapping data fields in one application to data fields in another application.

Filtering data so that the integration continues only when the data being processed meets
criteria that you define.

Generating equivalent, consistent output by inserting data into a template, such as Mustache.

Logging information in addition to the default logging that Fuse Online automatically provides.

To operate on data between connections in a way that is not built into Fuse Online, you can upload an
extension that provides a custom step. See Developing extensions.

CHAPTER 1. HIGH LEVEL OVERVIEW OF FUSE ONLINE

9

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#developing-extensions_extensions

CHAPTER 2. HOW TO GET READY TO CREATE INTEGRATIONS
Some planning and an understanding of the workflow for creating an integration can help you create
integrations that meet your needs. The following topics provide information for getting ready to create
integrations.

Section 2.1, “Plan your integrations”

Section 2.2, “General workflow for creating an integration”

Section 2.3, “Example workflow for creating a Salesforce to database integration”

2.1. PLAN YOUR INTEGRATIONS

Consider the following questions before you create an integration.

How do you want to trigger execution of the integration?

Do you want to set a timer to trigger execution at intervals that you specify?

Do you want to send an HTTP request?

Do you want to connect to an application to obtain data from?

In that application, what triggers the action that obtains the data? For example, an
integration that starts by obtaining data from Twitter might trigger on a Twitter mention.

What are the data fields of interest?

What credentials does Fuse Online use to access this application?

To finish the integration:

Which application receives the data?

In that application, what action does the integration perform?

What are the data fields of interest?

What credentials does Fuse Online use to access this application?

Between the start and finish applications:

Do you need to access any other applications? For any other applications the integration
accesses:

Which application does the integration need to connect to?

What action should the integration perform?

What are the data fields of interest?

What credentials should the integration use to connect to this application?

Does the integration need to operate on the data between connections? For example:

Should the integration filter the data it operates on?

Do field names differ between source and target applications? If they do then data mapping

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

10

Do field names differ between source and target applications? If they do then data mapping
is required.

Would a template be helpful for outputting data in a consistent form?

Do you want to send information about messages being processed to the integration’s log?

Does the integration need to operate on the data in some customized way?

2.2. GENERAL WORKFLOW FOR CREATING AN INTEGRATION

After you log in to the Fuse Online console, you can start creating connections to the applications that
you want to integrate. For each application that you want to integrate and that uses the OAuth protocol,
register Fuse Online as a client of that application. Applications that you must register with include:

Dropbox

Gmail

Google Calendar

Salesforce

SAP Concur

Twitter

With registration in place for those applications, the workflow for creating an integration looks like this:

CHAPTER 2. HOW TO GET READY TO CREATE INTEGRATIONS

11

Additional resource

Workflow for creating API provider integrations .

2.3. EXAMPLE WORKFLOW FOR CREATING A SALESFORCE TO
DATABASE INTEGRATION

The best way to understand the workflow for using Fuse Online is to create the sample integrations by
following the instructions in the sample integration tutorials. If you have already done that, you can skip
this section.

The following diagram shows the workflow for creating the sample Salesforce to Database integration.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

12

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#workflow-api-providers_api-provider
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/fuse_online_sample_integration_tutorials/

After you publish an integration, the Fuse Online dashboard displays Running next to the integration
name when the integration is ready to be executed.

CHAPTER 2. HOW TO GET READY TO CREATE INTEGRATIONS

13

CHAPTER 3. WHAT TO EXPECT WHEN USING FUSE ONLINE
FOR THE FIRST TIME

To enable access to Fuse Online on OpenShift Online, Red Hat provides a link. Clicking this link displays
the Red Hat OpenShift Online Log In page, which prompts you to log in by using your Red Hat account.
Logging in prompts you to authorize access from Fuse Online to your OpenShift Online account:

Click Allow selected permissions. You need to do this only once. The next time you click the Fuse
Online access link that is in your "Welcome to the Red Hat Fuse Online Evaluation" email message, Fuse
Online immediately appears.

To use Fuse Online on OpenShift Container Platform, follow the installation instructions, which are at
the end of Integrating Applications with Fuse Online.

Red Hat supports using Fuse Online in the following browsers:

Chrome

Firefox

Microsoft Edge

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

14

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/

CHAPTER 4. ABOUT CONNECTIONS TO APPLICATIONS THAT
YOU WANT TO INTEGRATE

To connect to applications that you want to integrate, the main steps are:

1. Create a connection to each application or service that you want to integrate.

2. Create an integration that has a connection to each application that you want to integrate.

The procedure for creating a connection varies for each application or service. The details for creating
each kind of connection and configuring it for a particular integration are in Connecting Fuse Online to
Applications and Services.

The following topics provide general information about connections:

Section 4.1, “About creating connections from Fuse Online to applications”

Section 4.2, “General procedure for obtaining authorization”

Section 4.3, “About connection validation”

Section 4.4, “About adding connections to integrations”

Section 4.5, “How to view and edit connection information”

Section 4.6, “About creating a connection from a custom connector”

4.1. ABOUT CREATING CONNECTIONS FROM FUSE ONLINE TO
APPLICATIONS

To create a connection, you select the connector for the application that you want to connect to and
then enter values in input fields to configure a connection to that application. The configuration details
that you need to provide vary for each application. After configuring the connection, you give it a name
that helps you distinguish it from any other connections to the same application. Optionally, you can
specify a description of the connection.

You can use the same connector to create any number of connections to that application. For example,
you might use the AMQ connector to create three different connections. Each AMQ connection could
specify a different broker.

For examples, see:

Create AMQ connections

Create HTTP and HTTPS connections

Create Slack connections

4.2. GENERAL PROCEDURE FOR OBTAINING AUTHORIZATION

In an integration, you might want to connect to an application that uses the OAuth protocol to
authenticate access requests. To do this, you must register your installation of Fuse Online for access to
that application. Registration authorizes all connections from your Fuse Online installation to a given

CHAPTER 4. ABOUT CONNECTIONS TO APPLICATIONS THAT YOU WANT TO INTEGRATE

15

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#create-amq-connection_amq
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#creating-http-connections_http
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#creating-slack-connections_slack

application. For example, if you register your Fuse Online installation with Salesforce, all connections
from your Fuse Online installation to Salesforce use the same Salesforce client ID and the same
Salesforce client secret that registration provided.

In each Fuse Online environment, for each application that uses OAuth, only one registration of Fuse
Online as a client is required. This registration lets you create multiple connections and each connection
can use different user credentials.

While the specific steps vary for each OAuth application that you want to connect to, registration always
provides your Fuse Online environment with a client ID and a client secret. Some applications use other
labels for the client ID and client secret. For example, Salesforce generates a consumer key and a
consumer secret.

For some OAuth applications, Fuse Online provides an entry in its Settings page that makes it easy to
register with the application. To see which applications this applies to, in the left panel of Fuse Online,
click Settings.

Prerequisite

In the Fuse Online Settings page, there is an entry for the application that uses the OAuth protocol to
authorize access.

Procedure overview

1. In the Fuse Online OAuth Application Management page, in the entry for the application with
which you want to register Fuse Online, click Register to display the client ID and client secret
fields.

2. Near the top of the OAuth Application Management page, where you see During
registration, enter this callback URL:, copy that URL to the clipboard.

3. In another browser tab, go to the web site for the application that you want to register with and
perform the steps required to obtain a client ID and secret. One of these steps requires you to
enter the callback URL for your Fuse Online environment. Paste the URL that you copied to the
clipboard in the second step.

4. In Fuse Online, on the Settings page, paste the client ID and client secret and save the settings.

Additional resources

Examples of registering applications that have entries in the Settings page:

Register Fuse Online as a Salesforce client

Register Fuse Online as a Twitter client

Example of registering with an application that does not have an entry in the Fuse Online
Settings page: Register Fuse Online as a Dropbox client

Information about using custom connectors that let you access applications that use the OAuth
protocol: Create connections from custom connectors .

4.3. ABOUT CONNECTION VALIDATION

After obtaining authorization for Fuse Online to access an application that uses OAuth, you can create
one or more connections to that application. When you create a connection to an OAuth application,

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

16

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-salesforce_salesforce
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-twitter_twitter
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-dropbox_dropbox
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#creating-connections-from-custom-connectors_connections

Fuse Online validates it to confirm that authorization is in place. At any time, you can validate the
connection again to ensure that authorization is still in place.

Some OAuth applications grant access tokens that have an expiration data. If the access token expires,
you can reconnect to the application to obtain a new access token.

To validate a connection that uses OAuth or to obtain a new access token for an OAuth application:

1. In the left panel, click Connections.

2. Click the connection that you want to validate or for which you want to obtain a new access
token.

3. In the connection’s details page, click Validate or click Reconnect.

If validation or reconnection fails, then check with the application/service provider to determine if the
application’s OAuth keys, IDs, tokens, or secrets are still valid. It is possible that an item has expired or
been revoked.

If you find that an OAuth item is invalid, has expired, or been revoked, obtain new values and paste them
into the Fuse Online settings for the application. See the instructions in Connecting Fuse Online to
Applications and Services for registering the application whose connection did not validate. With the
updated settings in place, follow the instructions above to try to validate the updated connection. If
validation is successful, and there is a running integration that is using this connection, restart the
integration. To restart an integration, stop it and then start it.

If validation fails and reconnection fails but everything appears to be valid at the service provider, then
try reregistering your Fuse Online environment with the application and then recreate the connection.
Fuse Online validates the connection when you recreate it. If you recreate the connection, and there is
an integration that is using the connection, then you must edit the integration to delete the old
connection and add the new connection. If the integration is running, then you must stop it and restart it.

4.4. ABOUT ADDING CONNECTIONS TO INTEGRATIONS

When you add a connection to an integration, Fuse Online displays a list of the actions that the
connection can perform when it connects to the application. You must select exactly one action. In a
running integration, each connection performs only the action you choose. For example, when you add a
Twitter connection as an integration’s start connection, you might choose the Mention action, which
monitors Twitter for tweets that mention your Twitter handle.

Selection of some actions prompts you to specify one or more parameters, which configure the action.
For example, if you add a Salesforce connection to an integration and choose the On create action then
you must indicate the type of object whose creation you are interested in, such as a lead or a contact.

4.5. HOW TO VIEW AND EDIT CONNECTION INFORMATION

After you create a connection, Fuse Online assigns an internal identifier to the connection. This identifier
does not change. You can change the connection’s name, description, or configuration values and Fuse
Online recognizes it as the same connection.

There are two ways to view and edit information about a connection:

In the left panel, click Connections and then click any connection to view its details.

In the left panel, click Integrations and then click any integration to view its details. In the

CHAPTER 4. ABOUT CONNECTIONS TO APPLICATIONS THAT YOU WANT TO INTEGRATE

17

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/

In the left panel, click Integrations and then click any integration to view its details. In the
Integration Summary page, in the flow diagram of the integration, click a connection icon to
view that connection’s details.

On the Connection Details page, for the connection that you want to edit, click next to a field to
edit that field. Or, for some connections, below the configuration fields, click Edit to change
configuration values. If you change any values, be sure to click Save.

If you update a connection that is used in an integration that is running, you must republish the
integration.

For connections to applications that use the OAuth protocol to authorize access, you cannot change the
login credentials that the connection uses. To connect to the application and use different login
credentials, you must create a new connection.

4.6. ABOUT CREATING A CONNECTION FROM A CUSTOM
CONNECTOR

After you upload an extension that defines a custom connector, the custom connector is available for
use. You use custom connectors to create connections in the same way that you use Fuse Online-
provided connectors to create connections.

A custom connector might be for an application that uses the OAuth protocol. Before you create a
connection from this kind of connector, you must register your Fuse Online environment for access to
the application that the connector is for. You do this in the interface for the application that the
connector is for. The details for how to register your Fuse Online environment vary for each application.

For example, suppose the custom connector is for creating connections to Yammer. You would need to
register your Fuse Online environment by creating a new application within Yammer. Registration
provides a Yammer client ID for Fuse Online and a Yammer client secret value for Fuse Online A
connection from your Fuse Online environment to Yammer must provide these two values.

Note that an application might use different names for these values, such as consumer ID or consumer
secret.

After you register your Fuse Online environment, you can create a connection to the application. When
you configure the connection, there should be parameters for entering the client ID and the client
secret. If these parameters are not available, you need to talk with the extension developer and ask for
an updated extension that lets you specify the client ID and client secret.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

18

CHAPTER 5. CREATE INTEGRATIONS
After some planning and preparation, you are ready to create an integration. In the Fuse Online web
interface, when you click Create Integration, Fuse Online guides you through the procedure to create
an integration.

Prerequisites

Plan your integrations

General workflow for creating an integration

The following topics provide information and instructions for creating an integration:

Section 5.1, “Preparation for creating an integration”

Section 5.2, “Procedure for creating an integration”

Section 5.3, “About adding steps between connections”

Section 5.4, “Add a data mapping step”

Section 5.5, “Add a basic filter step”

Section 5.6, “Add an advanced filter step”

Section 5.7, “Add a log step”

Section 5.8, “Add a template step”

Section 5.9, “Add a custom step”

5.1. PREPARATION FOR CREATING AN INTEGRATION

Preparation for creating an integration starts with answers to the questions listed in Plan your
integrations. After you have a plan for the integration, you need to do the following before you can
create the integration:

1. Determine whether an application that you want to connect to uses the OAuth protocol. For
each application that uses OAuth, register Fuse Online as a client that is authorized to access
that application. Applications that use the OAuth protocol include:

Dropbox

Gmail

Google Calendar

Salesforce

SAP Concur

Twitter

2. Determine whether an application that you want to connect to uses HTTP basic authentication.

CHAPTER 5. CREATE INTEGRATIONS

19

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#plan_ready
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#workflow-overview_ready
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#plan_ready

2. Determine whether an application that you want to connect to uses HTTP basic authentication.
For each application that does, identify the user name and password for accessing that
application. You need to provide this information when you create the integration.

3. For each application that you want to integrate, create a connection.

Additional resources

General procedure for obtaining authorization

About creating connections

5.2. PROCEDURE FOR CREATING AN INTEGRATION

Fuse Online guides you through the procedure for creating an integration. It prompts you to choose the
start connection, the finish connection, optional middle connections, and other steps. When your
integration is complete, you can publish it so that it is running or you can save it for publication at a later
time.

Prerequisites

You have a plan for what the steps in the integration will be.

You created a connection to each application or service that you want to connect to in this
integration.

Procedure

1. In the left panel in Fuse Online, click Integrations.

2. In the upper right, click Create Integration.

3. Choose and configure the start connection:

a. On the Choose a Start Connection page, click the connection that you want to use to start
the integration. When this integration is running, Fuse Online will connect to this application
and obtain data that you want the integration to operate on.

b. On the Choose an Action page, click the action you want this connection to perform. The
available actions vary for each connection.

c. On the page for configuring the action, enter values in the fields.

d. Optionally, if the connection requires data type specification, Fuse Online prompts you to
click Next to specify the input and/or output type of the action.

e. Click Done to add the start connection.

As an alternative to connecting to an application, a start connection can be a timer that triggers
integration execution at intervals that you specify or it can be a webhook that accepts HTTP
requests.

4. Choose and configure the finish connection:

a. On the Choose a Finish Connection page, click the connection you want to use to

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

20

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#general-procedure-for-obtaining-authorization_connections
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#about-creating-connections_connections

a. On the Choose a Finish Connection page, click the connection you want to use to
complete the integration. When this integration is running, Fuse Online will connect to this
application with the data that the integration has been operating on.

b. On the Choose an Action page, click the action you want this connection to perform. The
available actions vary for each connection.

c. On the page for configuring the action, enter values in the fields.

d. Optionally, if the connection requires data type specification, Fuse Online prompts you to
click Next to specify the input and/or output type of the action.

e. Click Done to add the finish connection.

As an alternative to connecting to an application, a finish connection can send information to the
integration’s log about the messages that the integration processed.

5. Optionally, add one or more connections between the start connection and the finish
connections. For each connection, choose its action and enter any required configuration
details.

6. Optionally, add one or more steps that operate on integration data between connections. See
About adding steps between connections .

7. When the integration contains all needed steps, click Save as Draft or Publish according to
whether you want to start running the integration.

8. In the Integration Name field, enter a name that distinguishes this integration from any other
integrations.

9. In the Description field, enter a description, for example, you can indicate what this integration
does.

10. If you are ready to start running the integration, in the upper right, click Publish. Otherwise, click
Save as Draft.

Results

In the Fuse Online Integrations page, you can see your new integration in the list of integrations. If you
published the integration, then you can see that Fuse Online is in the process of publishing it. It may take
a few moments for the status of the integration to become Running. If you saved the integration as a
draft, then Draft appears on the integration’s entry.

Click the integration’s entry to see a summary of the integration, including its version history, logs for
each execution, and aggregate execution metrics.

5.3. ABOUT ADDING STEPS BETWEEN CONNECTIONS

After you add connections to an integration, you can optionally add steps between connections. Each
step operates on data obtained from the previous connection(s) and any other previous steps and
makes the resulting data available to the next step in the integration.

Often, you must map data fields that are received from a connection to data fields that the next
connection in the integration can operate on. After you add all connections to your integration, check the
integration visualization panel on the left. For each connection that requires data mapping before it can

CHAPTER 5. CREATE INTEGRATIONS

21

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#about-adding-steps_create

operate on the input data, Fuse Online displays . Click this icon to see Data Type Mismatch: Add a
data mapping step before this connection to resolve the difference.

Click the link in the message to display the Configure Mapper page in which you add and specify a data
mapping step.

5.4. ADD A DATA MAPPING STEP

Almost all integrations require data mapping. A data mapper step maps data fields from the previous
connection(s) and any other steps to data fields that the next connection in the integration can operate
on. For example, suppose the integration data contains a Name field and the next connection in the
integration has a CustomerName field. You need to map the source Name field to the target
CustomerName field.

Prerequisite

You are creating a new integration or editing an integration.

Procedure

1. In the left panel, where you want to add a data mapper step, hover over the .

2. In the popup that appears, click Add a Step.

3. On the Choose a Step page, click Data Mapper to display source and target fields.

Next step

See Map data fields to the next connection in the integration .

5.5. ADD A BASIC FILTER STEP

You can add a step to an integration to filter the data that the integration operates on. In a filter step,
Fuse Online inspects the data and continues the integration only if the content meets criteria that you
define. For example, in an integration that obtains data from Twitter, you can specify that you want to
continue the integration by operating only on tweets that contain "Red Hat".

Prerequisites

The integration contains all connections that it needs to.

You are creating or editing an integration.

Procedure

1. In the left panel, where you want to add a filter step to the integration, hover over the and
in the popup that appears, click Add a Step.

2. On the Add a Step page, click Basic Filter.

3. On the Configure Basic Filter Step page, in the Continue only if incoming data match field,
select one of the following options:

Accept the default that all defined rules must be satisfied.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

22

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#mapping-data_map

Accept the default that all defined rules must be satisfied.

Indicate that only one rule must be satisfied by selecting ANY of the following.

4. Define the filter rule:

a. For this field: In the field on the left, enter the name of the field that contains the content
you want the filter to evaluate. For example, suppose the data coming in to the step
consists of tweets that mention your Twitter handle. You want to continue the integration
only when the tweet contains certain content. The tweet is in a field named text so you
enter or select text as the value in the first field.
You can define the field value in the following ways:

Start typing. The data name field has a typeahead feature that provides a list of
possible completions for you in a pop-up box. Select the correct one from the box.

Click in the text field. A dropdown box appears with a list of available fields. Select the
field of interest from the list.

b. This condition must be satisfied: In the middle field, select a condition from the dropdown
box. The setting defaults to Contains. For the integration to continue, the condition that
you select in this field must be true for the value that you enter in the third field.

c. For this value: In the third field, enter a value to filter on. For example, if you want to operate
on mentions of a certain product from the Twitter feed, you would enter the product name
here.

5. Optionally, click + Add another rule and define another rule.
You can delete a rule by clicking the trash can icon next to the entry.

6. When the filter step is complete, click Done to add it to the integration.

Additional resource

If you cannot define the filter you need in a basic filter step, see Add an advanced filter step .

5.6. ADD AN ADVANCED FILTER STEP

In a filter step, Fuse Online inspects the data and continues the integration only if the content meets
criteria that you define. If the basic filter step does not let you define the exact filter you need, then add
an advanced filter step.

Prerequisites

The integration contains all connections that it needs to.

You are creating or editing an integration.

Procedure

1. In the left panel, where you want to add an advanced filter step to the integration, hover over

the and in the popup that appears, click Add a Step.

2. Select Advanced Filter.

3. In the edit box, use the Camel Simple Expression language to specify a filter expression. For

CHAPTER 5. CREATE INTEGRATIONS

23

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#add-advanced-filter-step_create

3. In the edit box, use the Camel Simple Expression language to specify a filter expression. For
example, the following expression evaluates to true when the message header’s type field is set
to widget:

${in.header.type} == 'widget'

In the following example, the expression evaluates to true when the body of the message
contains a title field:

${in.body.title}

4. Click Done to add the advanced filter step to the integration.

5.7. ADD A LOG STEP

Fuse Online provides information about each execution of an integration. To learn what information is
automatically provided, see View integration activity information .

To obtain additional information, between any two steps, add a log step or a log connection to the
integration. See Comparison of log step and log connection .

For each message that an integration receives, a log step can provide one or more of the following:

The message’s header, which provides metadata about the message.

The message’s body, which provides the content of the message.

Text that you specify either explicitly or through evaluation of an Apache Camel Simple
language expression.

Prerequisites

You are creating an integration or editing an integration.

The integration already has its start and finish connections.

Procedure

1. In the integration visualization panel on the left, hover over the at the location where you
want to add a log step.

2. In the popup, click Add a Step.

3. On the Choose a Step page, click Log.

4. On the Configure Log Step page, select the content that you want to log. If you select Custom
text, then in the text input field, enter one of the following:

The text that you want to log

A Camel Simple language expression

If you enter an expression, Fuse Online resolves the expression and logs the resulting text.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

24

http://camel.apache.org/simple.html
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#viewing-integration-activity-information_monitor
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#comparison-log-step-connection_connect-to-log
http://camel.apache.org/simple.html

5. When log step configuration is complete, click Done to add the step to the integration.

6. When the integration is complete, publish it to start seeing output from the new log step.

Additional resources

To finish an integration by logging information about the messages that an integration
processes, or to log message information at a particular log level, Add a log connection instead
of a log step.

After an integration that has a log step has been executed, output from its log step appears in
the integration’s Activity tab. See View integration activity information .

5.8. ADD A TEMPLATE STEP

In an integration, a template step takes data from a source and inserts it into the format that is defined
in a template that you upload to Fuse Online. The benefit of a template step is that it provides data
output in a consistent format that you specify.

In the template, you define placeholders and specify static text. When you create the integration, you
add a template step, map source fields to the template placeholders, and then map template content to
the next step in the integration. When the integration executes, Fuse Online inserts the values that are in
the mapped source fields into an instance of the template and passes the result to the next step in the
integration.

If an integration includes a template step then it is most likely the only template step in the integration.
However, more than one template step in an integration is allowed.

In this release, Fuse Online supports only Mustache templates. It is expected that Velocity and
Freemarker templates will be supported in a future release.

Prerequisites

You must be creating or editing an integration.

If you are creating an integration then it must already have its start and finish connections.

Procedure

1. In the integration visualization panel on the left, hover over the at the location where you
want to add a template step.

2. In the popup, click Add a Step.

3. On the Choose a Step page, click Template. The Upload Template page opens and prompts
you to choose how you want to define the template.

4. To define the template, do one of the following:

Drag and drop a template file or a file that contains text that you want to modify to create a
template, into the template editor.

Click browse to upload, navigate to a file, and upload it.

In the template editor, start typing to define a template.
Note that you might upload a template that is valid in other environments but that has

CHAPTER 5. CREATE INTEGRATIONS

25

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#add-log-connection_connect-to-log
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#viewing-integration-activity-information_monitor
https://mustache.github.io
https://velocity.apache.org
https://freemarker.apache.org

Note that you might upload a template that is valid in other environments but that has
errors in Fuse Online. Fuse Online requires that you append the body. prefix to each
placeholder inside double curly braces. For example, while {{text}} is valid in a typical
template, you must specify {{body.text}} in a template that you use with Fuse Online. Here
is an example of a valid template:

At {{body.time}}, {{body.name}} tweeted:
{{body.text}}

5. In the template editor, ensure that the template is valid for use with Fuse Online. Fuse Online

displays to the left of a line that contains a syntax error. Hovering over a red indicator
displays hints about how to resolve the error.
Inside each set of double curly braces, the body. prefix is required. Data mapping does not work
if the body. prefix is missing. For example, if you upload a template that does not have the
body. prefix on each placeholder, Fuse Online displays an error icon on those lines.

6. Click Done to add the template step to the integration.
If the Done button is not enabled then there is at least one syntax error that you must correct.

Input to a template step must be in the form of a JSON object. Consequently, you must add a
data mapping step before a template step.

7. To add a data mapper step before the template step:

a. In the left panel, hover over the that is immediately before the template step that you
just added and then click Add a Step.

b. On the Choose a Step page, click Data Mapper.

c. In the data mapper, map a source field to each template placeholder field.
For example, using the template above, map a source field to each of these template fields:

body.time

body.name

body.text

d. In the upper right, click Done to add the data mapper step to the integration.

Output from a template step is always a JSON object. Consequently, you must add a data
mapper step after a template step.

8. To add a data mapper step after the template step:

a. In the left panel, hover over the that is immediately after the template step you just
added and then click Add a Step.

b. On the Choose a Step page, click Data Mapper.

c. In the data mapper, map the template’s message field, which always contains the result of
inserting source fields into the template, to a target field. For example, suppose that a
Gmail connection is next in the integration and you want to send the result of the template

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

26

step as the content of a Gmail message. To do this, you would map the message source
field to the text target field.

d. In the upper right, click Done.

Additional resources

For details about mapping fields, see Map integration data to fields for the next connection in
the integration.

Mustache Manual

5.9. ADD A CUSTOM STEP

If Fuse Online does not provide a step that you need in an integration, a developer can define one or
more custom steps in an extension. A custom step operates on integration data between connections.

You add a custom step to an integration in the same way that you add a built-in step. Create an
integration, choose the start and finish connections, add other connections as needed and then add
additional steps. When you add a step, Fuse Online operates on the data it receives from the previous
step(s).

Prerequisites

You uploaded the custom step extension to Fuse Online. See Make extensions available .

You are creating or editing an integration.

The integration already has all the connections that it requires.

Procedure

1. In the left panel, where you want to add a custom step to the integration, hover over the
and in the popup that appears, click Add a Step.

2. On the Add a Step page, click the custom step that you want to add.
The list of available steps includes any custom steps that are defined in extensions that were
uploaded to your Fuse Online environment.

At the top of the list of steps, in the Name field, you can select Custom Steps to display only custom
steps.

1. Respond to prompts for any information that is required to perform the step. This information
varies for each custom step.

CHAPTER 5. CREATE INTEGRATIONS

27

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#mapping-data_map
https://mustache.github.io/mustache.5.html
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#making-extensions-available_custom

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE
NEXT CONNECTION

In most integrations, you need to map data fields that have already been obtained or processed to data
fields that the next connection in the integration can process. Fuse Online provides a data mapper to
help you do this. In an integration, at each point where you need to map data fields, add a data mapper
step. Details for mapping data fields are in the following topics:

Section 6.1, “Identify where data mapping is needed”

Section 6.2, “Find the data field that you want to map”

Section 6.3, “Map one source field to one target field”

Section 6.4, “Example of missing or unwanted data when combining or separating fields”

Section 6.5, “Combine multiple source fields into one target field”

Section 6.6, “Separate one source field into multiple target fields”

Section 6.7, “Transform source or target data”

Section 6.8, “View the mappings in a step”

Section 6.9, “Descriptions of available transformations”

6.1. IDENTIFY WHERE DATA MAPPING IS NEEDED

Fuse Online displays warning icons to indicate where an integration requires data mapping.

Prerequisites

You are creating or editing an integration.

The integration contains all connections that it requires.

Procedure

1. In the integration visualization panel on the left, look for any icons.

2. Click the icon to see the message. A Data Type Mismatch notification indicates that you need
to add a data mapper step before that connection.

In the integration’s visualization panel, to the right of a connection, click to display
information about that connection, including its input and/or output type.

6.2. FIND THE DATA FIELD THAT YOU WANT TO MAP

In a relatively simple integration, mapping data fields is easy and intuitive. In more complex integrations
or integrations that handle large sets of data fields, mapping from source to target is easier when you
have some background about how to use the data mapper.

The data mapper displays two columns of data fields:

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

28

Sources is a list of the data fields that are obtained or processed in all previous steps in the
integration.

Target is a list of the data fields that the next connection in the integration expects and can
process.

To quickly find the data field that you want to map, you can do any of the following:

Search for it.
The Sources panel and the Target panel each have a search field at the top. If the search field

is not visible, click at the top right of the Sources or Target panel.

Enter the names of the fields that you want to map.
To do this, in the upper right of the Configure Mapper page, click the plus sign to display the
Mapping Details panel. In the Sources section, enter the name of the source field. In the
Action section, accept the default Map, which maps one field to one other field. Or, select
Combine or Separate. In the Target section, enter the name of the field that you want to map
to.

Expand and collapse folders to limit the visible fields.
To view the data fields available in a particular step, expand the folder for that step.

As you add steps to an integration, Fuse Online numbers and renumbers them to indicate the
order in which the integration processes the steps. When you are creating or editing an
integration, these numbers are visible in the integration visualization panel on the left. When you
add a data mapping step, the step numbers appear in the folder labels in the Sources panel and
in the Target panel.

The folder label also displays the name of the data type that is output by that step. Connections
to applications such as Twitter, Salesforce, and SQL define their own data types. For connecting
to applications such as Amazon S3, AMQ, AMQP, Dropbox, and FTP/SFTP, you define the
connection’s input and/or output type when you add the connection to an integration and select
the action that the connection performs. When you specify the data type, you also give the type
a name. The type name you specify appears as the name of a folder in the data mapper. If you
specified a description when you declared the data type, then the type description appears
when you hover over the step folder in the mapper.

6.3. MAP ONE SOURCE FIELD TO ONE TARGET FIELD

The default mapping behavior maps one source field to one target field. For example, map the Name
field to the CustomerName field.

Procedure

1. In the Sources panel, click the data field that you want to map from.
You might need to expand an integration step to see the data fields that it provides.

When there are many source fields, you can search for the field of interest by clicking the
and entering the name of the data field in the search field.

2. In the Target panel, click the data field that you want to map to.
The data mapper displays a line that connects the two fields that you just selected.

3. Optionally, preview the data mapping result. This is useful when you add a transformation to the

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION

29

3. Optionally, preview the data mapping result. This is useful when you add a transformation to the
mapping or when the mapping requires a type conversion.

a. In the upper right of the data mapper, click and select Show Mapping Preview to
display a text input field on the source field and a read-only result field on the target field.

b. In the source field’s data input field, enter text. Click somewhere outside this text box to
display the mapping result in the read-only field on the target field.

c. Optionally, to see the result of a transformation, add a transformation in the Mapping
Details panel.

d. Hide the preview fields by clicking again and selecting Show Mapping Preview.

4. Optionally, to confirm that the mapping is defined, in the upper right, click to display the
defined mappings.
You can also preview data mapping results in this view. If preview fields are not visible, click

 and select Show Mapping Preview. Enter data as described in the previous step. In the
table of defined mappings, preview fields appear for only the selected mapping. To see preview
fields for another mapping, select it.

Click again to display the data field panels.

5. In the upper right, click Done to add the data mapper step to the integration.

Alternative procedure

Here is another way to map a single source field to a single target field:

1. In the Configure Mapper page, in the upper right, click the plus sign to display the Mapping
Details panel.

2. In the Sources section, enter the name of the source field.

3. In the Action section, accept the default Map action.

4. In the Target section, enter the name of the field that you want to map to and click Enter.

6.4. EXAMPLE OF MISSING OR UNWANTED DATA WHEN COMBINING
OR SEPARATING FIELDS

In a data mapping, you might need to identify missing or unwanted data when a source or target field
contains compound data. For example, consider a long_address field that has this format:

number street apartment city state zip zip+4 country

Suppose that you want to separate the long_address field into discrete fields for number, street, city,
state, and zip. To do this, you select long_address as the source field and then select the target fields.
You then add padding fields at the locations for the parts of the source field that you do not want. In this
example, the unwanted parts are apartment, zip+4, and country.

To identify the unwanted parts, you need to know the order of the parts. The order indicates an index for

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

30

To identify the unwanted parts, you need to know the order of the parts. The order indicates an index for
each part of the content in the compound field. For example, the long_address field has 8 ordered
parts. Starting at 1, the index of each part is:

1 number

2 street

3 apartment

4 city

5 state

6 zip

7 zip+4

8 country

In the data mapper, to identify apartment, zip+4, and country as missing, you add padding fields at
indexes 3, 7, and 8. See Separate one source field into multiple target fields .

Now suppose that you want to combine source fields for number, street, city, state, and zip into a
long_address target field. Further suppose that there are no source fields to provide content for
apartment, zip+4, and country. In the data mapper, again you need to identify these fields as missing and
add padding fields at indexes 3, 7, and 8. See Combine multiple source fields into one target field .

6.5. COMBINE MULTIPLE SOURCE FIELDS INTO ONE TARGET FIELD

In a data mapper step, you can combine multiple source fields into one compound target field. For
example, you can map the FirstName and LastName fields to the CustomerName field.

Prerequisite

For the target field, you must know what type of content is in each part of this compound field, the order
and index of each part of the content, and the separator between parts, such as a space or comma. See
Example of missing or unwanted data .

Procedure

1. In the Target panel, click the field into which you want to map more than one source field.

2. In the Sources panel, if there is a field that contains the fields that you want to map to the
target field, then click that container field to map all contained fields to the target field.
To individually select each source field, click the first field that you want to combine into the
target field. For each of the other fields that you want to combine into the target field, hover
over that field, and press CTRL-Mouse1 (CMD-Mouse1 on MacOS).

The data mapper automatically changes the field action from Map to Combine.

When you are done you should see a line from each of the source fields to the target field.

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION

31

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#separate-one-source-field-into-multiple-target-fields_map
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#combine-multiple-source-fields-into-one-target-field_map
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#example-missing-unwanted-data_map

3. In the Mapping Details panel, in the Separator field, accept or select the character that the
data mapper inserts in the target field between the content from different source fields. The
default is a space.

4. In the Mapping Details panel, under Sources, ensure that the source fields are in the same
order as the corresponding content in the compound target field.
If necessary, drag and drop source fields to achieve the same order. The data mapper
automatically updates the index numbers to reflect the new order.

5. If you mapped a source field to each part of the compound target field, then skip to the next
step.
If the target field expects data that is not available to be mapped, then in the Mapping Details
panel, edit the index of each source field so that it is the same as the index of the corresponding
data in the compound target field. The data mapper automatically adds padding fields as
needed to indicate missing data.

If you accidentally create too many padding fields, click the trash-can icon on each extra
padding field to delete it.

6. Optionally, preview the data mapping result:

a. In the upper right of the data mapper, click and select Show Mapping Preview to
display a text input field on each source field for the currently selected mapping and a read-
only result field on the target field of the currently selected mapping.

b. In the source data input fields, enter text. Click outside the text box to display the mapping
result in the read-only field on the target field.
If you reorder the source fields or add a transformation to the mapping then the result field
on the target field reflects this. If the data mapper detects any errors, it displays informative
messages at the top of the Mapping Details panel.

c. Hide the preview fields by clicking again and selecting Show Mapping Preview.
If you redisplay the preview fields, any data that you entered in them is still there and it
remains there until you exit the data mapper.

7. To confirm that the mapping is correctly defined, in the upper right, click to display the
mappings defined in this step. A mapping that combines the values of more than one source
field into one target field looks like this:

.

You can also preview mapping results in this view. Click , select Show Mapping Preview,
and enter text as described in the previous step. Preview fields appear for only the selected
mapping. Click another mapping in the table to view preview fields for it.

6.6. SEPARATE ONE SOURCE FIELD INTO MULTIPLE TARGET FIELDS

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

32

In a data mapper step, you can separate a compound source field into multiple target fields. For
example, map the Name field to the FirstName and LastName fields.

Prerequisite

For the source field, you must know what type of content is in each part of this compound field, the
order and index of each part of the content, and the separator between parts, such as a space or
comma. See Example of missing or unwanted data .

Procedure

1. In the Sources panel, click the field whose content you want to separate.

2. In the Target panel, click the first field that you want to separate the source field data into.

3. In the Target panel, for each additional target field that you want to contain some of the data
from the source field, hover over the field and press CTRL-Mouse1 (CMD-Mouse1 on MacOS)
to select it.
The data mapper automatically changes the field action to Separate.

When you are done selecting target fields, you should see lines from the source field to each of
the target fields.

4. In the Mapping Details panel, in the Separator field, accept or select the character in the
source field that indicates where to separate the source field values. The default is a space.

5. In the Mapping Details panel, under Targets, ensure that the target fields are in the same order
as the corresponding content in the compound source field.
If necessary, drag and drop target fields to achieve the same order. The data mapper
automatically updates the index numbers to reflect the new order.

6. If you mapped each part of the compound source field to a target field, then skip to the next
step.
If the source field contains data that you do not need, then in the Mapping Details panel, edit
the index of each target field so that it is the same as the index of the corresponding data in the
compound source field. The data mapper automatically adds padding fields as needed to
indicate unwanted data.

7. Optionally, preview the data mapping result:

a. In the upper right of the data mapper, click and select Show Mapping Preview to
display a text input field on the source field and read-only result fields on each target field.

b. In the source field’s data input field, enter text. Be sure to enter the separator character
between the parts of the field. Click outside the text box to display the mapping result in the
read-only fields on the target fields.
If you reorder the target fields or add a transformation to a target field then the result fields
on the target fields reflect this. If the data mapper detects any errors, it displays informative
messages at the top of the Mapping Details panel.

c. Hide the preview fields by clicking again and selecting Show Mapping Preview.
If you redisplay the preview fields, any data that you entered in them is still there and it
remains there until you exit the data mapper.

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION

33

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#example-missing-unwanted-data_map

8. To confirm that the mapping is correctly defined, click to display the mappings defined in
this step. A mapping that separates the value of a source field into multiple target fields looks
like this:

.

You can also preview mapping results in this view. Click , select Show Mapping Preview,
and enter text as described in the previous step. Preview fields appear for only the selected
mapping. Click another mapping in the table to view preview fields for it.

6.7. TRANSFORM SOURCE OR TARGET DATA

In the data mapper, after you define a mapping, you can transform any field in the mapping.
Transforming a data field defines how you want to store the data. For example, you could specify the
Capitalize transformation to ensure that the first letter of a data value is uppercase.

Procedure

1. Map the fields. This can be a one-to-one mapping, a combination mapping, or a separation
mapping.

2. In the Mapping Details panel, under Sources or under Targets, in the box for the field that you
want to transform, click the arrow that points to the trash can. This displays a field where you can
select the transformation that you want the data mapper to perform.

3. Click in this field to display the list of transformations.

4. Click the transformation that you want to perform.

5. If the transformation requires any input parameters, specify them in the appropriate input fields.

6. To add another transformation, click the arrow that points to the trash can again.

Additional resource

Available transformations.

6.8. VIEW THE MAPPINGS IN A STEP

While you are adding or editing a data mapper step, you can view the mappings already defined in this
step. This lets you check whether the correct mappings are in place.

Prerequisites

You are creating or editing an integration.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

34

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#available-transformations_map

You are adding a data mapper step. That is, the data mapper is visible.

Procedure

1. In the upper right, click .

2. To dismiss the list of mappings and redisplay the source and target fields, click again.

6.9. DESCRIPTIONS OF AVAILABLE TRANSFORMATIONS

The following table describes the available transformations. The date and number types refer generically
to any of the various forms of these concepts. That is, number includes, for example, integer, long,
double. Date includes, for example, date, Time, ZonedDateTime.

Transformation Input Type Output Type Parameter (* =
required)

Description

AbsoluteValue number number None Return the
absolute value of a
number.

AddDays date date days Add days to a
date. The default
is 0 days.

AddSeconds date date seconds Add seconds to a
date. The default
is 0 seconds.

Append string string string Append a string to
the end of a string.
The default is to
append nothing.

Camelize string string None Convert a phrase
to a camelized
string by removing
whitespace,
making the first
word lowercase,
and capitalizing
the first letter of
each subsequent
word.

Capitalize string string None Capitalize the first
character in a
string.

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION

35

Ceiling number number None Return the whole
number ceiling of
a number.

Contains any Boolean value Return true if a
field contains the
specified value.

ConvertAreaUni
t

number number fromUnit*

toUnit *

Convert a number
that represents an
area to another
unit. For the
fromUnit and
toUnit
parameters, select
the appropriate
unit from the
From Unit and To
Unit menus. The
choices are:
Square Foot,
Square Meter, or
Square Mile.

ConvertDistanc
eUnit

number number fromUnit *

toUnit *

Convert a number
that represents a
distance to
another unit. For
the fromUnit and
toUnit
parameters, select
the appropriate
unit from the
From Unit and To
Unit menus. The
choices are: Foot,
Inch, Meter, Mile,
or Yard.

Transformation Input Type Output Type Parameter (* =
required)

Description

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

36

ConvertMassUn
it

number number fromUnit *

toUnit *

Convert a number
that represents
mass to another
unit. For the
fromUnit and
toUnit
parameters, select
the appropriate
unit from the
From Unit and To
Unit menus. The
choices are:
Kilogram or
Pound.

ConvertVolume
Unit

number number fromUnit *

toUnit *

Convert a number
that represents
volume to another
unit. For the
fromUnit and
toUnit
parameters, select
the appropriate
unit from the
From Unit and To
Unit menus. The
choices are:
Cubic Foot,
Cubic Meter,
Gallon US Fluid,
or Liter.

DayOfWeek date number None Return the day of
the week (1
through 7) that
corresponds to the
date.

DayOfYear date number None Return the day of
the year (1 through
366) that
corresponds to the
date.

Transformation Input Type Output Type Parameter (* =
required)

Description

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION

37

EndsWith string Boolean string Return true if a
string ends with
the specified
string, including
case.

Equals any Boolean value Return true if a
field is equal to
the specified
value, including
case.

FileExtension string string None From a string that
represents a file
name, return the
file extension
without the dot.

Floor number number None Return the whole
number floor of a
number.

Format any string template * In template,
replace each
placeholder (such
as %s) with the
value of the input
field and return a
string that
contains the
result. This is
similar to
mechanisms that
are available in
programming
languages such as
Java and C.

IndexOf string number string In a string, starting
at 0, return the
first index of the
specified string.
Return -1 if it is not
found.

IsNull any Boolean None Return true if a
field is null.

Transformation Input Type Output Type Parameter (* =
required)

Description

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

38

LastIndexOf string number string In a string, starting
at 0, return the
last index of the
specified string.
Return -1 if it is not
found.

Length any number None Return the length
of the field, or -1 if
the field is null.

Lowercase string string None Convert a string to
lowercase.

Normalize string string None Replace
consecutive
whitespace
characters with a
single space and
trim leading and
trailing whitespace
from a string.

PadStringLeft string string padCharacter *

padCount *

Insert the
character supplied
in padCharacter
at the beginning of
a string. Do this
the number of
times specified in
padCount.

PadStringRight string string padCharacter *

padCount *

Insert the
character supplied
in padCharacter
at the end of a
string. Do this the
number of times
specified in
padCount.

Prepend string string string Prefix string to
the beginning of a
string. the default
is to prepend
nothing.

Transformation Input Type Output Type Parameter (* =
required)

Description

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION

39

ReplaceAll string string match *

newString

In a string, replace
all occurrences of
the supplied
matching string
with the supplied
newString. The
default
newString is an
empty string.

ReplaceFirst string string match *

newString *

In a string, replace
the first
occurrence of the
specified match
string with the
specified
newString. The
default
newString is an
empty string.

Round number number None Return the
rounded whole
number of a
number.

SeparateByDas
h

string string None Replace each
occurrence of
whitespace, colon
(:), underscore (_),
plus (+), and
equals (=) with a
hyphen (-).

SeparateByUnd
erscore

string string None Replace each
occurrence of
whitespace, colon
(:), hyphen (-), plus
(+), and equals (=)
with an underscore
(_).

StartsWith string Boolean string Return true if a
string starts with
the specified
string (including
case).

Transformation Input Type Output Type Parameter (* =
required)

Description

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

40

Substring string string startIndex *

endIndex

Retrieve a
segment of a
string from the
specified inclusive
startIndex to the
specified exclusive
endIndex. Both
indexes start at
zero. startIndex
is inclusive.
endIndex is
exclusive. The
default value of
endIndex is the
length of the
string.

SubstringAfter string string startIndex *

endIndex

match *

Retrieve the
segment of a
string after the
specified match
string from the
specified inclusive
startIndex to the
specified exclusive
endIndex. Both
indexes start at
zero. The default
value of
endIndex is the
length of the
string after the
supplied match
string.

Transformation Input Type Output Type Parameter (* =
required)

Description

CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION

41

SubstringBefor
e

string string startIndex *

endIndex

match *

Retrieve a
segment of a
string before the
supplied match
string from the
supplied inclusive
startIndex to the
supplied exclusive
endIndex. Both
indexes start at
zero. The default
value of
endIndex is the
length of the
string before the
supplied match
string.

Trim string string None Trim leading and
trailing whitespace
from a string.

TrimLeft string string None Trim leading
whitespace from a
string.

TrimRight string string None Trim trailing
whitespace from a
string.

Uppercase string string None Convert a string to
uppercase.

Transformation Input Type Output Type Parameter (* =
required)

Description

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

42

CHAPTER 7. CUSTOMIZE FUSE ONLINE
Fuse Online provides many connectors that you can use to connect to common applications and
services. There are also a number of built-in steps for processing data in common ways. However, if
Fuse Online does not provide a feature that you need, talk with a developer about your requirements. An
experienced developer can help you customize integrations by providing any of the following:

An OpenAPI schema that Fuse Online can use to create a connector for a REST API client.
You upload this schema to Fuse Online and Fuse Online creates a connector according to the
schema. You then use the connector to create a connection that you can add to an integration.
For example, many retail web sites provide a REST API client interface that a developer can
capture in an OpenAPI schema.

An OpenAPI schema for a REST API service.
You upload this schema to Fuse Online. Fuse Online makes the API service available and
provides the URL for API calls. This lets you trigger integration execution with an API call .

A JAR file that implements a Fuse Online extension. An extension can be any one of the
following:

One or more steps that operate on integration data between connections

A connector for an application or service

A library resource such as a JDBC driver for a proprietary SQL database
You upload this JAR file to Fuse Online and Fuse Online makes the custom feature
provided by the extension available.

See the following topics for details:

Section 7.1, “Develop REST API client connectors”

Section 7.2, “Add and manage REST API client connectors”

Section 7.3, “Develop Fuse Online extensions”

Section 7.4, “Add and manage extensions”

7.1. DEVELOP REST API CLIENT CONNECTORS

Fuse Online can create connectors for Representational State Transfer Application Programming
Interfaces (REST APIs) that support Hypertext Transfer Protocol (HTTP). To do this, Fuse Online
requires a valid OpenAPI 2.0 schema that describes a REST API that you want to connect to. If the API
service provider does not make an OpenAPI schema available then an experienced developer must
create the OpenAPI schema.

The following topics provide information and instructions for developing REST API connectors:

Section 7.1.1, “Requirements for REST API client connectors”

Section 7.1.2, “Guidelines for OpenAPI schemas”

Section 7.1.3, “Provide client credentials in parameters”

Section 7.1.4, “Automatically refresh access tokens”

CHAPTER 7. CUSTOMIZE FUSE ONLINE

43

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#trigger-integrations-with-api-calls_ug

7.1.1. Requirements for REST API client connectors

After you upload an OpenAPI schema to Fuse Online, a connector to the REST API becomes available.
You can select the connector to create a REST API client connection. You can then create a new
integration and add the REST API client connection, or you can edit an existing integration to add the
REST API client connection.

Fuse Online connectors support OAuth 2.0 and HTTP Basic Authorization. If access to the REST API
requires Transport Layer Security (TLS) then the API needs to use a valid certificate that is issued by a
recognized Certificate Authority (CA).

A REST API that uses OAuth must have an authorization URL that takes a client callback URL as input.
After Fuse Online creates the connector and before you use the connector to create a connection, you
must visit that URL to register your Fuse Online environment as a client of the REST API. This authorizes
your Fuse Online environment to access the REST API. As part of registration, you provide the Fuse
Online callback URL. The details for doing this are described in Connecting Fuse Online to Applications
and Services, Register with REST APIs.

Fuse Online cannot create connectors for REST APIs that support the HTTP 2.0 protocol.

7.1.2. Guidelines for OpenAPI schemas

When Fuse Online creates a REST API client connector, it maps each resource operation in the OpenAPI
schema to a connection action. The action name and action description come from documentation in
the OpenAPI schema.

The more detail that the OpenAPI schema provides, the more support Fuse Online can offer when
connecting to the API. For example, the API definition is not required to declare data types for requests
and responses. Without type declarations, Fuse Online defines the corresponding connection action as
typeless. However, in an integration, you cannot add a data mapping step immediately before or
immediately after an API connection that performs a typeless action.

One remedy for this is to add more information to the OpenAPI schema. Identify the OpenAPI resource
operations that will map to the actions you want the API connection to perform. In the OpenAPI schema,
ensure that there is a JSON schema that specifies each operation’s request and response types.

After you upload the schema, Fuse Online gives you an opportunity to review and edit it in Apicurio
Studio, which is a visual editor for designing APIs based on the OpenAPI schema. You can add more
detail, save your updates, and Fuse Online creates an API client connector hat incorporates your
updates.

If the OpenAPI schema for the API declares support for application/json content type and also
application/xml content type then the connector uses the JSON format. If the OpenAPI schema
specifies consumes or produces parameters that define both application/json and application/xml,
then the connector uses the JSON format.

7.1.3. Provide client credentials in parameters

When Fuse Online tries to obtain authorization to access an OAuth2 application, it uses HTTP basic
authentication to provide client credentials. If you need to, you can change this default behavior so that
Fuse Online passes client credentials to the provider as parameters instead of using HTTP basic
authentication. This affects the use of the tokenUrl endpoint that is used to obtain an OAuth access
token.

IMPORTANT

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

44

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-rest-apis_rest

IMPORTANT

This is a Technology Preview feature.

To specify that Fuse Online should pass client credentials as parameters, in the securityDefinitions
section of the OpenAPI schema, add the x-authorize-using-parameters vendor extension with a
setting of true. In the example below, the last line specifies x-authorize-using-parameters:

securityDefinitions:
 concur_oauth2:
 type: 'oauth2'
 flow: 'accessCode'
 authorizationUrl: 'https://example.com/oauth/authorize'
 tokenUrl: 'https://example.com/oauth/token'
 scopes:
 LIST: Access List API
 x-authorize-using-parameters: true

The setting of the x-authorize-using-parameters vendor extension is true or false:

true indicates that client credentials are in parameters.

false, the default, indicates that Fuse Online uses HTTP basic authentication to provide client
credentials.

7.1.4. Automatically refresh access tokens

If an access token has an expiration date, then Fuse Online integrations that use that token to connect
to an application stop running successfully when the taken expires. To obtain a new access token, you
must either reconnect to the application or re-register with the application.

If you need to, you can change this default behavior so that Fuse Online automatically requests a new
access token in the following situations:

When the expiration date has been reached.

When HTTP response status codes that you specify are received.

IMPORTANT

This is a Technology Preview feature.

To specify that Fuse Online should automatically try to obtain a new access token in the situations
described, in the securityDefinitions section of the OpenAPI schema, add the x-refresh-token-retry-
statuses vendor extension. The setting of this extension is a comma separated list that specifies HTTP
response status codes. When an access token’s expiration date is reached or when Fuse Online receives
a message from an OAuth2 provider and the message has one of these response status codes, then
Fuse Online automatically tries to obtain a new access token. In the example below, the last line
specifies x-refresh-token-retry-statuses:

securityDefinitions:
 concur_oauth2:
 type: 'oauth2'
 flow: 'accessCode'

CHAPTER 7. CUSTOMIZE FUSE ONLINE

45

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview/

 authorizationUrl: 'https://example.com/oauth/authorize'
 tokenUrl: 'https://example.com/oauth/token'
 scopes:
 LIST: Access List API
 x-refresh-token-retry-statuses: 401,402,403

NOTE

Sometimes, an API operation fails and a side effect of that failure is that the access token
is refreshed. In this situation, even when obtaining a new access token is successful, the
API operation still fails. In other words, Fuse Online does not retry the failed API operation
after it receives the new access token.

7.2. ADD AND MANAGE REST API CLIENT CONNECTORS

Fuse Online can create a REST API client connector from an OpenAPI schema. For information about
the content of the OpenAPI schema, see Develop REST API client connectors .

The following topics provide information and instructions for adding and managing REST API client
connectors:

Section 7.2.1, “Create REST API client connectors”

Section 7.2.2, “Update API client connectors by creating new ones”

Section 7.2.3, “Delete API client connectors”

After you create a REST API client connector, for details about using that connector, see Connecting
Fuse Online to Applications and Services, Connect to REST APIs.

7.2.1. Create REST API client connectors

Upload an OpenAPI schema to enable Fuse Online to create a REST API client connector.

Prerequisite

You have an OpenAPI schema for the connector that you want Fuse Online to create.

Procedure

1. In the Fuse Online navigation panel, click Customizations to display the API Client Connectors
tab. Any API client connectors that are already available are listed here.

2. Click Create API Connector.

3. On the Create API Client Connector page, do one of the following:

Click Browse and select the OpenAPI file that you want to upload.

Select Use a URL and paste the URL for your OpenAPI schema in the input field.

4. Click Next. If there is invalid or missing content, Fuse Online displays information about what
needs to be corrected. Select a different OpenAPI file to upload or click Cancel, revise the
OpenAPI file, and upload the updated file.
If the schema is valid, Fuse Online displays a summary of the actions that the connector
provides. This might include errors and warnings about the action definitions.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

46

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#developing-rest-api-client-connectors_dev-client-connector
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#connecting-to-rest-apis_rest

5. If you are satisfied with the action summary, click Next.
Or, to revise the OpenAPI schema, in the lower right, click Review/Edit to open Apicurio Studio.
Update the schema as needed. In the upper right, click Save to incorporate your updates into
the new API client connector. Then click Next to continue creating the API client connector.

For details about using Apicurio Studio, see https://www.apicur.io/. Sometimes, if you provide a
URL for the OpenAPI schema, Fuse Online can upload it but cannot open it for editing.
Typically, this is caused by settings on the file’s host. To open the schema for editing, Fuse
Online requires that the file host has:

An https URL. An http URL does not work.

Enabled CORS.

6. Indicate the API’s security requirements by selecting one of the following:

a. No Security

b. HTTP Basic Authorization — Enter the user name and password you want to use to access
the API.

c. OAuth — Fuse Online prompts you to enter:

i. Authorization URL is the location for registering Fuse Online as a client of the API.
Registration authorizes Fuse Online to access the API. See Connecting Fuse Online to
Applications and Services, Register Fuse Online as a REST API client. The OpenAPI
schema or other documentation for the API should specify this URL. If it does not then
you must contact the service provider to obtain this URL.

ii. Access Token URL is required for OAuth authorization. Again, the OpenAPI schema or
other documentation for the API should provide this URL. If it does not then you must
contact the service provider.

7. Click Next. Fuse Online displays the connector’s name, description, host, and base URL as
indicated by the OpenAPI schema. For connections that you create from this connector,

Fuse Online concatenates the host and base URL values to define the endpoint for the
connection. For example, if the host is https://example.com and the base URL is /api/v1
then the connection endpoint is https://example.com/api/v1.

Fuse Online applies the OpenAPI schema to data mapping steps. If the OpenAPI schema
supports more than one schema then Fuse Online uses the TLS (HTTPS) schema.

8. Review the connector details and optionally upload an icon for the connector. If you do not
upload an icon, Fuse Online generates one. You can upload an icon at a later time. When Fuse
Online displays the flow of an integration, it displays a connector’s icon to represent connections
that are created from that connector.
To override a value obtained from the OpenAPI file, edit the field value that you want to change.
After Fuse Online creates a connector, you cannot change it. To effect a change, you need to
upload an updated OpenAPI schema so that Fuse Online can create a new connector or you can
upload the same schema and then edit it in Apicurio Studio. You then continue the process for
creating a new API client connector.

9. When you are satisfied with the connector details, click Create API Connector. Fuse Online
displays the new connector with the other connectors.

Next step

CHAPTER 7. CUSTOMIZE FUSE ONLINE

47

https://www.apicur.io/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-rest-api_rest

For details about using your new API connector, see Connecting Fuse Online to Applications and
Services, Connect to REST APIs.

7.2.2. Update API client connectors by creating new ones

When there is an update to an OpenAPI schema from which you created an API client connector, and you
want your API client connector to use those updates, you must create a new API client connector. You
cannot directly update an API client connector. After you create the new API client connector, you use it
to create a new connection and then you edit each integration that uses a connection that was created
from the out-of-date connector.

Prerequisite

Be prepared to do one of the following:

Upload the updated OpenAPI schema.

Upload the out-of-date schema again and update it in Apicurio Studio.

Procedure

1. Create a new API client connector based on the updated OpenAPI schema. To easily distinguish
between the old connector and the new connector, you might want to specify a version number
in the connector name or the connector description.
See Create REST API client connector .

2. Create a new connection from the new connector. Again, you want to be able to easily
distinguish between connections created from the old connector and connections created from
the new connector. A version number in the connection name or connection description is
helpful.

3. Edit each integration that uses a connection that was created from the old connector by
removing the old connection and adding the new connection.

4. Publish each updated integration.

5. Recommended, but not required: delete the old connector and the old connections.

7.2.3. Delete API client connectors

You cannot delete a connector when there is a connection that was created from that connector and
this connection is being used in an integration. After you delete an API client connector, you cannot use
a connection that was created from that connector.

Procedure

1. In the left panel, click Customizations.

2. In the API Client Connectors tab, to the right of the name of the connector that you want to
delete, click Delete.

3. Read the confirmation popup to be sure that you want to click Delete.

7.3. DEVELOP FUSE ONLINE EXTENSIONS

If Fuse Online does not provide a feature that is needed to create an integration, then an expert

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

48

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#connecting-to-rest-apis_rest
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#creating-api-connectors_add-client-connector

If Fuse Online does not provide a feature that is needed to create an integration, then an expert
developer can code an extension that provides the needed behavior. The Syndesis extensions
repository contains examples of extensions.

A business integrator shares requirements with a developer who codes the extension. The developer
provides a .jar file that contains the extension. The business integrator uploads the .jar file in Fuse
Online to make the custom connector, custom step(s), or library resource available for use in Fuse
Online.

The Fuse Tooling plugin to Red Hat Developer Studio provides a wizard that helps you develop a step
extension or a connector extension. It is a matter of personal preference whether you choose to develop
a step extension or a connector extension in Developer Studio or in some other IDE. For information
about using the Developer Studio plugin, see Developing extensions for Fuse Online integrations .

In this document, the following topics outline the procedure, describe the requirements, and provide
additional examples for developing extensions in an IDE that you choose.

Section 7.3.1, “General procedure for developing extensions”

Section 7.3.2, “Description of the kinds of extensions”

Section 7.3.3, “Overview of extension content and structure”

Section 7.3.4, “Requirements in an extension definition JSON file”

Section 7.3.5, “Description of Maven plugin that supports extensions”

Section 7.3.6, “How to specify data shapes in extensions”

Section 7.3.7, “Alternatives for developing step extensions”

Section 7.3.8, “Example of developing a connector extension”

Section 7.3.9, “How to develop library extensions”

Section 7.3.10, “Create JDBC driver library extensions”

7.3.1. General procedure for developing extensions

Before you start to develop an extension, become familiar with the tasks that you will need to
accomplish.

Prerequisites

Familiarity with Maven

Familiarity with Camel if you are developing an extension that provides a connector or that
provides an integration step that operates on data between connections

Experience programming

Procedure

1. Obtain an understanding of what the extended feature must do. Talk to your business colleague
to understand the feature requirements.

2. Determine whether you need to develop a step extension, a connector extension, or a library

CHAPTER 7. CUSTOMIZE FUSE ONLINE

49

https://github.com/syndesisio/syndesis-extensions
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/tooling_user_guide/index#igniteextension
https://maven.apache.org/
https://camel.apache.org/

2. Determine whether you need to develop a step extension, a connector extension, or a library
extension.

3. Set up the Maven project in which to develop the extension.

4. If you are developing a step extension:

a. Decide whether to implement it as a Camel route or implement it by using the Syndesis
Step API. Information for the Syndesis API is at
http://javadoc.io/doc/io.syndesis.extension/extension-api.

b. If you choose to implement the extension as a Camel route, decide whether to implement
XML fragments, a RouteBuilder class, or a bean.

c. In your Maven project, specify the required metadata, such as the schemaVersion,
extension name, extensionId, and so on.

5. Code the classes that implement the feature.

6. Add dependencies to the project’s pom.xml file.

7. For connector and library extensions, and for step extensions that you implement in XML,
create the JSON file that defines the extension.
For step extensions that you implement in Java, Maven can generate the JSON extension
definition file for you when you specify corresponding data structure values in your Maven
project.

8. Run Maven to build the extension and create the extension’s JAR file.

9. Test the extension by uploading the JAR file to a Fuse Online development environment.

10. Provide the JAR file that packages the extension to your business colleague, who uploads it to a
Fuse Online production environment. When you provide the JAR file, let your business
colleague know about any configuration settings that require information beyond what appears
in the Fuse Online web interface.

7.3.2. Description of the kinds of extensions

An extension defines one of the following:

One or more custom steps that operate on integration data between connections. Each custom
step performs one action. This is a step extension.

A library resource that an integration runtime uses. For example, a library extension can provide
a JDBC driver for connecting to a proprietary SQL database, such as Oracle.

A single custom connector for creating connections to a particular application or service that
you want to integrate. This is a connector extension.

NOTE

Fuse Online can use an OpenAPI schema to create a connector for a REST API
client. See Develop a REST API client connector .

A business integrator shares requirements with a developer who codes the extension. The developer
provides a .jar file that contains the extension. The business integrator uploads the .jar file in Fuse

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

50

http://javadoc.io/doc/io.syndesis.extension/extension-api
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#developing-rest-api-client-connectors_custom

1

2

3

Online to make the custom connector, custom step(s), or library resource available for use within Fuse
Online.

An extension .jar file that you upload to Fuse Online always contains exactly one extension.

For an example of uploading and using an extension that provides a step that operates on data between
connections, see the AMQ to REST API sample integration tutorial .

7.3.3. Overview of extension content and structure

An extension is a collection of classes, dependencies, and resources that are packaged in a .jar file.

Fuse Online uses Spring Boot to load an extension. Consequently, you must package an extension
according to Spring Boot’s executable JAR format. For example, ensure that you use the
ZipEntry.STORED() method to save a nested JAR file.

The structure of a .jar file that packages an extension is as follows:

extension.jar
|
+- META-INF
| |
| +- syndesis
| |
| +- syndesis-extension-definition.json 1
|
+- mycompany
| |
| +-project
| |
| +-YourClasses.class 2
|
+- lib 3
 |
 +-dependency1.jar
 |
 +-dependency2.jar

A JSON schema file that specifies the data structures that define the extension. This is referred to
as the extension definition JSON file.

The Java classes that implement the behavior that the extension provides.

Additional dependencies that are required to build and execute the custom feature.

7.3.4. Requirements in an extension definition JSON file

Each extension must have a .json file that defines the extension by specifying values for data structures
such as name, description, supported actions, and dependencies. For each extension type, the following
table indicates whether Maven can generate the extension definition JSON file and which data
structures are required.

CHAPTER 7. CUSTOMIZE FUSE ONLINE

51

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/fuse_online_sample_integration_tutorials/#amq-to-rest-api_tutorials

Extension Type Maven Can
Generate
Extension
Definition

Required Data Structures

Step extension in Java Yes schemaVersion
name
description
version
extensionId
extensionType
actions
dependencies *

Step extension in XML No schemaVersion
name
description
version
extensionId
extensionType
actions
dependencies *

Connector extension No schemaVersion
name
description
version
extensionId
extensionTypeproperties
actions
dependencies *
componentScheme
connectorCustomizers
connectorFactory

Library extension No schemaVersion
name
description
version
extensionId
extensionType
dependencies *

*While specification of dependencies is not strictly required, in practice, there are almost always
dependencies that you need to specify.

Typically, an extension definition file has the following layout:

{
 "schemaVersion": "v1",
 "name": "",
 "description": "",
 "version": "",

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

52

schemaVersion defines the version of the extension definition schema. Internally, Syndesis
uses schemaVersion to determine how to map the extension definition to the internal model.
This allows extensions that were developed against an old version of Syndesis to be deployed on
newer versions of Syndesis.

name is the name of the extension. When you upload an extension to Fuse Online, this name
appears.

description is any useful information that you want to specify. Fuse Online does not operate on
this value.

version is for your convenience to help you distinguish updates to an extension. Fuse Online
does not operate on this value.

extensionId defines a unique ID for the extension. This should be unique at least across a
Syndesis environment.

extensionType indicates to Syndesis what the extension provides. As of Syndesis version 1.3,
the following extension types are supported:

Steps

Connectors

Libraries

properties defines the global configuration options that are supported by the extension. Only
connector extensions use properties that you specify. For example:

actions defines the operations that a connector can perform or the operation that a step

 "extensionId": "",
 "extensionType": "",
 "properties": {
 },
 "actions": [
],
 "dependencies": [
],
}

"propertyName": {
 "deprecated": true|false,
 "description": "",
 "displayName": "",
 "group": "",
 "kind": "",
 "label": "",
 "required": true|false,
 "secret": true|false,
 "javaType": "",
 "type": "",
 "defaultValue": "",
 "enum": {
 }
}

CHAPTER 7. CUSTOMIZE FUSE ONLINE

53

actions defines the operations that a connector can perform or the operation that a step
between connections can perform. Only connector and step extensions use actions that you
specify. The format for an action specification looks like this:

id is a unique ID for the action. This should be unique at least within a Syndesis environment.

name is the action name that appears in Fuse Online. An integrator sees this value as the
name of a connection action or as the name of a step that operates on integration data
between connections.

description is the action description that appears in Fuse Online. Use this field to help the
integrator understand what the action does.

actionType indicates whether the action is performed by a connection or a step that is
between connections.

descriptor specifies nested attributes such as kind, entrypoint, inputDataType,
outputDatatype and more.

dependencies defines the resources that this extension requires Fuse Online to provide.
Define a dependency as follows:

type indicates the type of the dependency. Specify MAVEN. (It is expected that other
types will be supported in the future.)

id is the ID of the Maven dependency, which is a Maven GAV.

7.3.5. Description of Maven plugin that supports extensions

The extension-maven-plugin supports extension development by packaging the extension as a valid
Spring Boot module. For step extensions that you implement in Java, this plugin can generate the
extension definition JSON file.

In your Maven project’s`pom.xml` file, add the following plugin declaration:

{
 "id": "",
 "name": "",
 "description": "",
 "actionType": "step|connector",
 "descriptor": {
 }
}

{
 "type": "MAVEN",
 "id" : "org.apache.camel:camel-telegram:jar:2.21.0"
}

<plugin>
 <groupId>io.syndesis.extension</groupId>
 <artifactId>extension-maven-plugin</artifactId>
 <version>${syndesis.version}</version>
 <executions>
 <execution>

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

54

The extension-maven-plugin defines the following goals:

generate-metadata generates the JSON extension definition file that will be in the generated
JAR file as follows:

a. Maven starts with the data structure specifications that are in the META-
INF/syndesis/syndesis-extension-definition.json file, if there is one.
If you are coding in XML, then you must define the extension definition JSON file yourself
and it must specify all required data structures.

If you are developing a connector or library extension, then you must define the extension
definition JSON file yourself and it must specify all required data structures.

If you are developing a step extension in Java, you can:

Create the extension definition JSON file yourself.

In your Java code, specify annotations that define all required data structures. You do
not create an extension definition JSON file.

Create an extension definition JSON file and specify some but not all data structures.

b. For step extensions that you develop in Java, Maven obtains missing specifications from
code annotations

c. Maven adds the dependencies list, which specifies dependencies that are provided with a
scope of provided and that are managed through the extension-bom.

repackage-extension packages the extension.

Dependencies and related transitive dependencies that are not managed through the
extension-bom are in the lib folder of the generated JAR.

For library extensions, dependencies whose scope is system are in the lib folder of the
generated JAR.

For example, suppose your Maven project has the following pom.xml file:

 <goals>
 <goal>generate-metadata</goal>
 <goal>repackage-extension</goal>
 </goals>
 </execution>
 </executions>
</plugin>

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-
4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.company</groupId>
 <artifactId>my-extension</artifactId>
 <version>1.0.0</version>
 <name>MyExtension</name>

CHAPTER 7. CUSTOMIZE FUSE ONLINE

55

 <description>A Sample Extension</description>
 <packaging>jar</packaging>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.syndesis.extension</groupId>
 <artifactId>extension-bom</artifactId>
 <version>1.3.10</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>io.syndesis.extension</groupId>
 <artifactId>extension-api</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.github.lalyos</groupId>
 <artifactId>jfiglet</artifactId>
 <version>0.0.8</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.7.0</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 <plugin>
 <groupId>io.syndesis.extension</groupId>
 <artifactId>extension-maven-plugin</artifactId>
 <version>1.3.10</version>
 <executions>
 <execution>
 <goals>
 <goal>generate-metadata</goal>
 <goal>repackage-extension</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

56

Based on this pom.xml file, the generated extension definition JSON file looks like this:

The generated archive has this structure and content:

my-extension-1.0.0.jar
|
+- lib
| |
| + jfiglet-0.0.8.jar
|
+- META-INF
 |
 +- MANIFEST.MF
 |
 +- syndesis
 |
 +- syndesis-extension-definition.json

7.3.6. How to specify data shapes in extensions

A data shape holds data type metadata for use by the data mapper. The data mapper transforms this
metadata into internal documents that it uses to display the source and target data fields in the data
mapper user interface. In an extension definition JSON file for a connector or for a custom step, each
action specification defines an input data shape (inputDataShape) and an output data shape
(outputDataShape).

When you are developing an extension, it is important to specify data shape properties that allow the
data mapper to correctly handle and display the source and target fields. The following data shape
properties affect data mapper behavior:

kind

type

specification

name

description

About the kind property

The data shape kind property is represented by the DataShapeKinds enum. The possible values for

{
 "name": "MyExtension",
 "description": "A Sample Extension",
 "extensionId": "com.company:my-extension",
 "version": "1.0.0",
 "dependencies": [{
 "type": "MAVEN",
 "id": "io.syndesis.extension:extension-api:jar:1.3.10"
 }],
 "extensionType": "Libraries",
 "schemaVersion": "v1"
}

CHAPTER 7. CUSTOMIZE FUSE ONLINE

57

The data shape kind property is represented by the DataShapeKinds enum. The possible values for
the kind property are:

java indicates that the data type is represented by a Java class. Follow the "kind": "java"
declaration by specifying a fully qualified class name for the type property. For example:

"outputDataShape": {
 "kind": "java",
 "type": "org.apache.camel.component.telegram.model.IncomingMessage"
},

json-schema indicates that the data type is represented by a JSON schema.

json-instance indicates that the data type is represented by a JSON instance.

xml-schema indicates that the data type is represented by an XML schema.

xml-instance indicates that the data type is represented by an XML instance.

any indicates that the data type is not structured. For example, it might be a byte array or free
format text. The data mapper ignores a data shape when its kind property is set to any. In other
words, the data does not appear in the data mapper and therefore you cannot map any fields to
or from this data.
However, for a custom connector, when its kind property is set to any, Fuse Online prompts you
to specify input and/or output data types when you configure a connection that you have
created from the custom connector. This happens when you add a connection to an integration.
You can specify the kind of the data shape’s schema, an appropriate document for the kind of
schema that you specify, and a name for the data type.

none indicates that there is no data type. For an input data shape, this indicates that the
connection or step does not read data. For an output data shape, this indicates that the
connection or step does not modify data. For example, when an input message body is being
transferred to an output message body, setting the kind property to none indicates that the
data is only passing through. The data mapper ignores data shapes when kind is set to none. In
other words, the data does not appear in the data mapper and therefore you cannot map any
fields to or from this data.

About the type property

When the value of the kind property is java, the "kind": "java" declaration is followed by a type
declaration that specifies a fully qualified Java class name. For example:

"outputDataShape": {
 "kind": "java",
 "type": "org.apache.camel.component.telegram.model.IncomingMessage"
},

When the kind property is set to anything other than java then any setting for the type property is
ignored.

About the specification property

The setting of the kind property determines the setting of the specification property, as shown in the
following table.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

58

kind property setting specification property setting

java Java inspection result.

For each extension that you write in Java, use
extension-maven-plugin to at least obtain the
Java inspection result. The plugin inserts the Java
inspection result in the JSON extension definition file
as the setting of the specification property. This is
the only way to obtain the Java inspection result,
which is required for data mapping in Fuse Online.

As a reminder, for step extensions written in Java,
extension-maven-plugin generates the JSON
extension definition file and populates it with
required content. For connector extensions, while
extension-maven-plugin inserts the Java
inspection result in the JSON extension definition
file, you will need to manually add the required
content that the plugin does not insert.

json-schema An actual JSON schema document. The setting
cannot be a reference to a document and the JSON
schema cannot point to other JSON schema
documents by means of references.

json-instance An actual JSON document that contains example
data. The data mapper derives the data types from
the example data. The setting cannot be a reference
to a document.

xml-schema An actual XML schema document. The setting
cannot be a reference to a document and the XML
schema cannot point to other XML schema
documents by means of references.

xml-instance An actual XML instance document. The setting
cannot be a reference to a document.

any The specification property is not required. Any
setting is ignored.

none The specification property is not required. Any
setting is ignored.

About the name property

The data shape name property specifies a human readable name for the data type. The data mapper
displays this name in its user interface as the label for the data fields. In the following image, Twitter
Mention is an example of where you would see the value of the name property.

CHAPTER 7. CUSTOMIZE FUSE ONLINE

59

This name also appears in data type indicators in the Fuse Online integration visualization panel.

About the description property

The data shape description property specifies text that appears as a tooltip when the cursor hovers
over the data type name in the data mapper user interface.

7.3.7. Alternatives for developing step extensions

A step extension implements one or more custom steps. Each custom step implements one action for
processing integration data between connections. The following examples demonstrate the alternatives
for developing step extensions:

Section 7.3.7.1, “Example of developing a Camel route with XML fragments”

Section 7.3.7.2, “Example of developing a Camel route with RouteBuilder”

Section 7.3.7.3, “Example of using a Camel bean”

Section 7.3.7.4, “Example of using the Syndesis Step API”

Syndesis provides custom Java annotations that you can use in conjunction with the syndesis-
extension-plugin. When you implement a step extension or a connector extension in Java, you can
specify annotations that enable Maven to add action definitions to the extension definition JSON file.
To enable annotation processing, add the following dependency to your Maven project:

7.3.7.1. Example of developing a Camel route with XML fragments

To develop a custom step, you can implement the action as an XML fragment that is a Camel route that
has an input such as direct. The Syndesis runtime invokes this route in the same way that it invokes any
other Camel route.

For example, suppose that you want to create a step that logs the body of a message with an optional
prefix. The following XML defines a Camel route that does this.

<dependency>
 <groupId>io.syndesis.extension</groupId>
 <artifactId>extension-annotation-processor</artifactId>
 <optional>true</optional>
</dependency>

<?xml version="1.0" encoding="UTF-8"?>

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

60

When you develop an extension in XML, you must create the extension definition JSON file yourself. For
this XML fragment, the src/main/resources/META-INF/syndesis/syndesis-extension-definition.json
file could define the action as follows:

<routes xmlns="http://camel.apache.org/schema/spring"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <route id="log-body-with-prefix">
 <from uri="direct:log"/>
 <choice>
 <when>
 <simple>${header.prefix} != ''</simple>
 <log message="${header.prefix} ${body}"/>
 </when>
 <otherwise>
 <log message="Output ${body}"/>
 </otherwise>
 </choice>
 </route>

</routes>

{
 "actionType": "step",
 "id": "log-body-with-prefix",
 "name": "Log body with prefix",
 "description": "A simple body log with a prefix",
 "descriptor": {
 "kind": "ENDPOINT", 1
 "entrypoint": "direct:log", 2
 "resource": "classpath:log-body-action.xml", 3
 "inputDataShape": {
 "kind": "none"
 },
 "outputDataShape": {
 "kind": "none"
 },
 "propertyDefinitionSteps": [{
 "description": "extension-properties",
 "name": "extension-properties",
 "properties": { 4
 "prefix": {
 "componentProperty": false,
 "deprecated": false,
 "description": "The Log body prefix message",
 "displayName": "Log Prefix",
 "javaType": "String",
 "kind": "parameter",
 "required": false,
 "secret": false,
 "type": "string"
 }

CHAPTER 7. CUSTOMIZE FUSE ONLINE

61

1

2

3

4

The type of the action is set to ENDPOINT. The runtime invokes a Camel endpoint to execute the
action provided by this custom step.

The Camel endpoint to invoke is direct:log. This is the from specification in the route.

This is the location of the XML fragment.

These are the properties that the action defined in this custom step exposes to the integrator who
will be adding this step to an integration. In Fuse Online, each value that the integrator specifies in
the user interface gets mapped to a message header that has the same name as the property. In
this example, the integrator will see one input field, with the Log Prefix display name.

WARNING

Syndesis does not support full Camel XML configuration. Syndesis supports only
the <routes> tag.

7.3.7.2. Example of developing a Camel route with RouteBuilder

You can implement a custom step by developing an action as a Camel route with the support of the
RouteBuilder class. Such a route has an input such as direct. Syndesis invokes this route in the same
way that it invokes any other Camel route.

To implement the example that creates a step that logs the body of a message with an optional prefix,
you can write something like this:

 }
 }]
 }
}

import org.apache.camel.builder.RouteBuilder;

import io.syndesis.extension.api.annotations.Action;
import io.syndesis.extension.api.annotations.ConfigurationProperty;

@Action(1
 id = "log-body-with-prefix",
 name = "Log body with prefix",
 description = "A simple body log with a prefix",
 entrypoint = "direct:log")
public class LogAction extends RouteBuilder {
 @ConfigurationProperty(2
 name = "prefix",
 description = "The Log body prefix message",
 displayName = "Log Prefix",
 type = "string")
 private String prefix;

 @Override

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

62

1

2

3

The @Action annotation indicates the action definition.

The @ConfigurationProperty annotation indicates the property definition.

This is the action implementation.

This Java code uses Syndesis annotations, which means that the extension-maven-plugin can
automatically generate the action definition. In the extension definition JSON file, the action definition
will look like this:

 public void configure() throws Exception {
 from("direct::start") 3
 .choice()
 .when(simple("${header.prefix} != ''"))
 .log("${header.prefix} ${body}")
 .otherwise()
 .log("Output ${body}")
 .endChoice();
 }
}

{
 "id": "log-body-with-prefix",
 "name": "Log body with prefix",
 "description": "A simple body log with a prefix",
 "descriptor": {
 "kind": "ENDPOINT", 1
 "entrypoint": "direct:log", 2
 "resource": "class:io.syndesis.extension.log.LogAction", 3
 "inputDataShape": {
 "kind": "none"
 },
 "outputDataShape": {
 "kind": "none"
 },
 "propertyDefinitionSteps": [{
 "description": "extension-properties",
 "name": "extension-properties",
 "properties": { 4
 "prefix": {
 "componentProperty": false,
 "deprecated": false,
 "description": "The Log body prefix message",
 "displayName": "Log Prefix",
 "javaType": "java.lang.String",
 "kind": "parameter",
 "required": false,
 "secret": false,
 "type": "string",
 "raw": false
 }
 }
 }]

CHAPTER 7. CUSTOMIZE FUSE ONLINE

63

1

2

3

4

The type of action is ENDPOINT. The runtime invokes a Camel endpoint to execute the action that
this step implements.

This is the Camel endpoint to invoke. It is the from specification in the route.

This is the class that implements RoutesBuilder.

These are the properties that the action defined in this custom step exposes to the integrator who
will be adding this step to an integration. In Fuse Online, each value that the integrator specifies in
the user interface gets mapped to a message header that has the same name as the property. In
this example, the integrator will see one input field, with the Log Prefix display name.

7.3.7.3. Example of using a Camel bean

You can implement a custom step by developing an action as a Camel bean processor. To implement
the example that creates a step that logs the body of a message with an optional prefix, you can write
something like this:

 },
 "actionType": "step"
}

import org.apache.camel.Body;
import org.apache.camel.Handler;
import org.apache.camel.Header;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import io.syndesis.extension.api.annotations.Action;
import io.syndesis.extension.api.annotations.ConfigurationProperty;

@Action(
 id = "log-body-with-prefix",
 name = "Log body with prefix",
 description = "A simple body log with a prefix")
public class LogAction {
 private static final Logger LOGGER = LoggerFactory.getLogger(LogAction.class);

 @ConfigurationProperty(
 name = "prefix",
 description = "The Log body prefix message",
 displayName = "Log Prefix",
 type = "string")
 private String prefix;

 @Handler 1
 public void process(@Header("prefix") String prefix, @Body Object body) {
 if (prefix == null) {
 LOGGER.info("Output {}", body);
 } else {
 LOGGER.info("{} {}", prefix, body);
 }
 }
}

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

64

1

1

2

3

This is the function that implements the action.

This Java code uses Syndesis annotations, which means that the extension-maven-plugin can
automatically generate the action definition. In the extension definition JSON file, the action definition
will look like this:

The type of the action is BEAN. The runtime invokes a Camel bean processor to execute the action
in this custom step.

This is the Camel bean to invoke.

These are the properties that the action defined in this custom step exposes to the integrator who
will be adding this step to an integration. In Fuse Online, each value that the integrator specifies in
the user interface gets mapped to a message header that has the same name as the property. In
this example, the integrator will see one input field, with the Log Prefix display name.

When you use beans, you might find it convenient to inject user properties into the bean instead of
retrieving them from the exchange header. To do this, implement getter and setter methods for the
properties that you want to get injected. The action implementation would look like this:

{
 "id": "log-body-with-prefix",
 "name": "Log body with prefix",
 "description": "A simple body log with a prefix",
 "descriptor": {
 "kind": "BEAN", 1
 "entrypoint": "io.syndesis.extension.log.LogAction::process", 2
 "inputDataShape": {
 "kind": "none"
 },
 "outputDataShape": {
 "kind": "none"
 },
 "propertyDefinitionSteps": [{
 "description": "extension-properties",
 "name": "extension-properties",
 "properties": {
 "prefix": { 3
 "componentProperty": false,
 "deprecated": false,
 "description": "The Log body prefix message",
 "displayName": "Log Prefix",
 "javaType": "java.lang.String",
 "kind": "parameter",
 "required": false,
 "secret": false,
 "type": "string",
 "raw": false
 }
 }
 }]
 },
 "actionType": "step"
}

CHAPTER 7. CUSTOMIZE FUSE ONLINE

65

1

2

This is the property setter method.

This is the property getter method.

7.3.7.4. Example of using the Syndesis Step API

You can implement a custom step by using the Syndesis Step API. This provides a way to interact with
runtime route creation. You can use any method provided by the ProcessorDefinition class and you can
create more complex routes. Information for the Syndesis API is at
http://javadoc.io/doc/io.syndesis.extension/extension-api.

Here is an example of a step extension that uses the Syndesis Step API to implement a split action:

import org.apache.camel.Body;
import org.apache.camel.Handler;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import io.syndesis.extension.api.annotations.Action;
import io.syndesis.extension.api.annotations.ConfigurationProperty;

@Action(
 id = "log-body-with-prefix",
 name = "Log body with prefix",
 description = "A simple body log with a prefix")
public class LogAction {
 private static final Logger LOGGER = LoggerFactory.getLogger(LogAction.class);

 @ConfigurationProperty(
 name = "prefix",
 description = "The Log body prefix message",
 displayName = "Log Prefix",
 type = "string")
 private String prefix;

 public void setPrefix(String prefix) { 1
 this.prefix = prefix;
 }

 public String getPrefix() { 2
 return prefix;
 }

 @Handler
 public void process(@Body Object body) {
 if (this.prefix == null) {
 LOGGER.info("Output {}", body);
 } else {
 LOGGER.info("{} {}", this.prefix, body);
 }
 }
}

import java.util.Map;

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

66

http://javadoc.io/doc/io.syndesis.extension/extension-api

import java.util.Optional;

import io.syndesis.extension.api.Step;
import io.syndesis.extension.api.annotations.Action;
import io.syndesis.extension.api.annotations.ConfigurationProperty;
import org.apache.camel.CamelContext;
import org.apache.camel.model.ProcessorDefinition;
import org.apache.camel.util.ObjectHelper;
import org.apache.camel.Expression;
import org.apache.camel.builder.Builder;
import org.apache.camel.processor.aggregate.AggregationStrategy;
import org.apache.camel.processor.aggregate.UseOriginalAggregationStrategy;
import org.apache.camel.spi.Language;

@Action(id = "split", name = "Split", description = "Split your exchange")
public class SplitAction implements Step {

 @ConfigurationProperty(
 name = "language",
 displayName = "Language",
 description = "The language used for the expression")
 private String language;

 @ConfigurationProperty(
 name = "expression",
 displayName = "Expression",
 description = "The expression used to split the exchange")
 private String expression;

 public String getLanguage() {
 return language;
 }

 public void setLanguage(String language) {
 this.language = language;
 }

 public String getExpression() {
 return expression;
 }

 public void setExpression(String expression) {
 this.expression = expression;
 }

 @Override
 public Optional<ProcessorDefinition> configure(
 CamelContext context,
 ProcessorDefinition route,
 Map<String, Object> parameters) { 1

 String languageName = language;
 String expressionDefinition = expression;

 if (ObjectHelper.isEmpty(languageName) && ObjectHelper.isEmpty(expressionDefinition)) {
 route = route.split(Builder.body());

CHAPTER 7. CUSTOMIZE FUSE ONLINE

67

1 This is the implementation of the action that the custom step performs.

This Java code uses Syndesis annotations, which means that the extension-maven-plugin can
automatically generate the action definition. In the extension definition JSON file, the action definition
will look like this:

 } else if (ObjectHelper.isNotEmpty(expressionDefinition)) {

 if (ObjectHelper.isEmpty(languageName)) {
 languageName = "simple";
 }

 final Language splitLanguage = context.resolveLanguage(languageName);
 final Expression splitExpression = splitLanguage.createExpression(expressionDefinition);
 final AggregationStrategy aggreationStrategy = new UseOriginalAggregationStrategy(null,
false);

 route = route.split(splitExpression).aggregationStrategy(aggreationStrategy);
 }

 return Optional.of(route);
 }
}

{
 "id": "split",
 "name": "Split",
 "description": "Split your exchange",
 "descriptor": {
 "kind": "STEP", 1
 "entrypoint": "io.syndesis.extension.split.SplitAction", 2
 "inputDataShape": {
 "kind": "none"
 },
 "outputDataShape": {
 "kind": "none"
 },
 "propertyDefinitionSteps": [{
 "description": "extension-properties",
 "name": "extension-properties",
 "properties": {
 "language": {
 "componentProperty": false,
 "deprecated": false,
 "description": "The language used for the expression",
 "displayName": "Language",
 "javaType": "java.lang.String",
 "kind": "parameter",
 "required": false,
 "secret": false,
 "type": "string",
 "raw": false
 },
 "expression": {
 "componentProperty": false,

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

68

1

2

The type of the action is STEP.

This is the class that is implementing the Step interface.

7.3.8. Example of developing a connector extension

If Fuse Online does not provide a connector for the application or service that you want to connect to in
an integration, an experienced developer can code an extension that contributes a new connector to
Fuse Online.

IMPORTANT

For connector extensions, it is not yet possible to automatically generate the extension
definition JSON file from Java code.

A connector is essentially a proxy for a Camel component. A connector configures the underlying
component and creates endpoints according to options that are defined in the extension definition and
in user-supplied options that the Fuse Online web interface collects.

The connector extension definition extends the extension definition that is required for step extensions
with the following additional data structures:

componentScheme
Defines the Camel component that the connector uses. For example, telegram.

connectorCustomizers
Specifies a list of classes that implement the ComponentProxyCustomizer class. Each class
customizes the behavior of a connector. For example, a class might manipulate properties
before they are applied to the underlying component/endpoint, or a class might add pre/post
endpoint logic. For each class, specify the full class name of the implementation, for example,
com.mycomponent.MyCustomizer.

connectorFactory
Defines the class that implements the ComponentProxyFactory class, which creates and/or
configures the underlying component/endpoint. Specify the full class name of the
implementation.

You can set the above data structures at the action level or at the global level. Settings at the action

 "deprecated": false,
 "description": "The expression used to split the exchange",
 "displayName": "Expression",
 "javaType": "java.lang.String",
 "kind": "parameter",
 "required": false,
 "secret": false,
 "type": "string",
 "raw": false
 }
 }
 }]
 },
 "tags": [],
 "actionType": "step"
}

CHAPTER 7. CUSTOMIZE FUSE ONLINE

69

https://github.com/syndesisio/syndesis/blob/master/app/integration/component-proxy/src/main/java/io/syndesis/integration/component/proxy/ComponentProxyCustomizer.java
https://github.com/syndesisio/syndesis/blob/master/app/integration/component-proxy/src/main/java/io/syndesis/integration/component/proxy/ComponentProxyFactory.java

1 2

3 4 5

You can set the above data structures at the action level or at the global level. Settings at the action
level have precedence over the same items defined at global level.

Customizer example

The following customizer example sets up a DataSource from individual options:

 By implementing CamelContextAware, Syndesis injects the Camel context and then invoking the
customize method.

 Processes options and then removes them from the options map.

Example of injecting properties

If the customizer respects Java bean conventions, you can also inject the properties, as shown in this
revision of the previous example:

public class DataSourceCustomizer implements ComponentProxyCustomizer, CamelContextAware {
 private final static Logger LOGGER = LoggerFactory.getLogger(DataSourceCustomizer.class);

 private CamelContext camelContext;

 @Override
 public void setCamelContext(CamelContext camelContext) { 1
 this.camelContext = camelContext;
 }

 @Override
 public CamelContext getCamelContext() { 2
 return this.camelContext;
 }

 @Override
 public void customize(ComponentProxyComponent component, Map<String, Object> options) {
 if (!options.containsKey("dataSource")) {
 if (options.containsKey("user") && options.containsKey("password") &&
options.containsKey("url")) {
 try {
 BasicDataSource ds = new BasicDataSource();

 consumeOption(camelContext, options, "user", String.class, ds::setUsername); 3
 consumeOption(camelContext, options, "password", String.class, ds::setPassword); 4
 consumeOption(camelContext, options, "url", String.class, ds::setUrl); 5

 options.put("dataSource", ds);
 } catch (@SuppressWarnings("PMD.AvoidCatchingGenericException") Exception e) {
 throw new IllegalArgumentException(e);
 }
 } else {
 LOGGER.debug("Not enough information provided to set-up the DataSource");
 }
 }
 }
}

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

70

public class DataSourceCustomizer implements ComponentProxyCustomizer, CamelContextAware {
 private final static Logger LOGGER = LoggerFactory.getLogger(DataSourceCustomizer.class);

 private CamelContext camelContext;
 private String userName;
 private String password;
 private String url;

 @Override
 public void setCamelContext(CamelContext camelContext) { 1
 this.camelContext = camelContext;
 }

 @Override
 public CamelContext getCamelContext() { 2
 return this.camelContext;
 }

 public void setUserName(String userName) { 3
 this.userName = userName;
 }

 public String getUserName() { 4
 return this.userName;
 }

 public void setPassword(String password) { 5
 this.password = password;
 }

 public String getPassword() { 6
 return this.password;
 }

 public void setUrl(String url) { 7
 this.url = url;
 }

 public String getUrl() { 8
 return this.url;
 }

 @Override
 public void customize(ComponentProxyComponent component, Map<String, Object> options) {
 if (!options.containsKey("dataSource")) {
 if (userName != null && password != null && url != null) {
 try {
 BasicDataSource ds = new BasicDataSource();
 ds.setUserName(userName);
 ds.setPassword(password);
 ds.setUrl(url);

 options.put("dataSource", ds);
 } catch (@SuppressWarnings("PMD.AvoidCatchingGenericException") Exception e) {
 throw new IllegalArgumentException(e);

CHAPTER 7. CUSTOMIZE FUSE ONLINE

71

1 2 3

4 5 6 7 8

 By implementing CamelContextAware, Syndesis injects the Camel context and then invokes
the customize method. This sample code overrides the setCamelContext() and

getCamelContext() methods, and sets the user name.

 Starting here, the sample code processes the injected options and automatically
removes them from the options map.

Using a customizer to configure before/after logic

You can use a customizer to configure before/after logic as shown in this example:

Customizing behavior of ComponentProxyComponent

To customize the behavior of the ComponentProxyComponent class, you can override any of the
following methods:

createDelegateComponent()
Syndesis invokes this method when the proxy starts and it is used to eventually create a
dedicated instance of the component with the scheme defined by the componentScheme
option.

The default behavior of this method is to determine if any of the connector/action options

 }
 } else {
 LOGGER.debug("Not enough information provided to set-up the DataSource");
 }
 }
 }
}

public class AWSS3DeleteObjectCustomizer implements ComponentProxyCustomizer {
 private String filenameKey;

 public void setFilenameKey(String filenameKey) {
 this.filenameKey = filenameKey;
 }

 public String getFilenameKey() {
 return this.filenameKey;
 }

 @Override
 public void customize(ComponentProxyComponent component, Map<String, Object> options) {
 component.setBeforeProducer(this::beforeProducer);
 }

 public void beforeProducer(final Exchange exchange) throws IOException {
 exchange.getIn().setHeader(S3Constants.S3_OPERATION, S3Operations.deleteObject);

 if (filenameKey != null) {
 exchange.getIn().setHeader(S3Constants.KEY, filenameKey);
 }
 }
}

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

72

https://github.com/syndesisio/syndesis/blob/master/app/integration/component-proxy/src/main/java/io/syndesis/integration/component/proxy/ComponentProxyComponent.java

applies at the component level. If the same option cannot be applied at the endpoint, and only
in this case, the method creates a custom component instance and configures it according to
the applicable options.

configureDelegateComponent()`
Syndesis invokes this method only if a custom component instance has been created to
configure additional behavior of the delegated component instance.

createDelegateEndpoint()
Syndesis invokes this method when the proxy creates the endpoint and by default creates the
endpoint by using Camel catalog facilities.

configureDelegateEndpoint()
After the delegated endpoint has been created, Syndesis invokes this method to configure
additional behavior of the delegated endpoint instance, for example:

7.3.9. How to develop library extensions

A library extension provides a resource that an integration requires at runtime. A library extension does
not contribute steps or connectors to Fuse Online.

Support for library extensions is evolving. In this release, in the Fuse Online web interface:

When you create an integration, you cannot select which library extension(s) an integration
should include.

When you add a database connection to an integration, Fuse Online adds all extensions that
have the jdbc-driver tag to the integration runtime.

public class IrcComponentProxyFactory implements ComponentProxyFactory {

 @Override
 public ComponentProxyComponent newInstance(String componentId, String
componentScheme) {
 return new ComponentProxyComponent(componentId, componentScheme) {
 @Override
 protected void configureDelegateEndpoint(ComponentDefinition definition, Endpoint
endpoint, Map<String, Object> options) throws Exception {
 if (!(endpoint instanceof IrcEndpoint)) {
 throw new IllegalStateException("Endpoint should be of type IrcEndpoint");
 }

 final IrcEndpoint ircEndpoint = (IrcEndpoint)endpoint;
 final String channels = (String)options.remove("channels");

 if (ObjectHelper.isNotEmpty(channels)) {
 ircEndpoint.getConfiguration().setChannel(
 Arrays.asList(channels.split(","))
);
 }
 }
 };
 }
}

CHAPTER 7. CUSTOMIZE FUSE ONLINE

73

A library extension does not define any actions. Here is a sample definition for a library extension:

Other than the lack of actions, the structure of a library extension is the same as the structure of a step
or connector extension.

In a Maven project that creates a library extension, to add dependencies that are not available from a
Maven repository, specify a system dependency, for example:

7.3.10. Create JDBC driver library extensions

To connect to a SQL database other than Apache Derby, MySQL, and PostgreSQL, you can create a
library extension that wraps a JDBC driver for the database you want to connect to. After uploading this
extension to Fuse Online, the Fuse Online-provided Database connector can access the driver to
validate and create connections to the proprietary database. You do not create a new connector for your
particular database.

The Syndesis open source community provides a project for creating an extension that wraps a JDBC
driver.

Package one driver only in an extension. This makes it easier to manage the extension as part of
managing your particular database. However, it is possible to create a library extension that wraps more
than one driver.

Prerequisites

To use the Syndesis project, you must have a GitHub account.

Procedure

1. Ensure access to the JDBC driver for the database you want to connect to by doing one of the
following:

a. Confirm that the driver is in a Maven repository.

b. Download the driver.

2. In a browser tab, go to https://github.com/syndesisio/syndesis-extensions

{
 "schemaVersion" : "v1",
 "name" : "Example JDBC Driver Library",
 "description" : "Syndesis Extension for adding a custom JDBC Driver",
 "extensionId" : "io.syndesis.extensions:syndesis-library-jdbc-driver",
 "version" : "1.0.0",
 "tags" : ["jdbc-driver"],
 "extensionType" : "Libraries"
}

<dependency>
 <groupId>com.company</groupId>
 <artifactId>jdbc-driver</artifactId>
 <version>1.0</version>
 <scope>system</scope>
 <systemPath>${project.basedir}/lib/jdbc-driver-1.0.jar</systemPath>
</dependency>

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

74

https://github.com/syndesisio/syndesis-extensions

3. Fork the syndesis-extensions repository to your GitHub account.

4. Create a local clone from your fork.

5. In your syndesis-extensions clone:

a. If the driver is not in a Maven repository, copy the driver into the syndesis-library-jdbc-
driver/lib folder.

b. Edit the syndesis-library-jdbc-driver/pom.xml file:

i. Update the value of the Name element to be a name that you choose for this extension.

ii. Update the value of the Description element to provide helpful information about this
extension.

iii. If the driver is in a Maven repository, ensure that a reference to that Maven repository
is in the pom.xml file.

iv. Examine the rest of the content of the pom.xml file and change any relevant metadata
as needed.

c. In the syndesis-library-jdbc-driver folder, execute mvn clean package to build the
extension.

The generated .jar file is in the syndesis-library-jdbc-driver/target folder. Provide this .jar file for
uploading to Fuse Online.

NOTE

Fuse Online does not yet offer a way to select which library extension(s) an integration
should include. When you add a database connection to an integration, Fuse Online adds
all extensions that have the jdbc-driver tag to integration runtime. This is expected to
improve in a future release.

7.4. ADD AND MANAGE EXTENSIONS

Extensions let you add customizations to Fuse Online so you can integrate applications the way you want
to. After you start using customizations provided in extensions, you can identify the integrations that use
those customizations. This is helpful to do before you update or delete an extension.

The following topics provide details:

Section 7.4.1, “Make custom features available”

Section 7.4.2, “Identify integrations that use extensions”

Section 7.4.3, “Update extensions”

Section 7.4.4, “Delete extensions”

7.4.1. Make custom features available

To make a custom feature available for use in an integration, upload the extension to Fuse Online.

Prerequisite

CHAPTER 7. CUSTOMIZE FUSE ONLINE

75

A developer has provided a .jar file that contains a Fuse Online extension.

Procedure

1. In the left Fuse Online panel, click Customizations.

2. At the top, click Extensions.

3. Click Import Extension.

4. Drag and drop, or choose, the .jar file that contains the extension that you want to upload.
Fuse Online immediately tries to validate that the file contains an extension. If there is a
problem, Fuse Online displays a message about the error. You must coordinate with the
extension developer to obtain an updated .jar file, which you can then try to upload.

5. Review the extension details.
After Fuse Online validates the file, it extracts and displays the extension’s name, ID,
description, and type. The type indicates whether the extension defines a custom connector, or
one or more custom steps for operating on data between connections, or a JDBC driver for a
proprietary database. An extension that provides a JDBC driver is referred to as a library
extension.

For a connector extension, Fuse Online displays the actions that are available to a connection
that is created from this custom connector. In the extension, the developer might have provided
an icon that Fuse Online can use to represent the application connections created from this
connector. While you do not see this icon in the extension details page, it appears when you
create connections from the custom connector. If the extension developer did not provide an
icon in the extension, then Fuse Online generates an icon.

For a step extension, Fuse Online displays the name of each custom step that the extension
defines.

For a library extension, if this extension contains a newer version of a JDBC driver that you
previously uploaded, then you must remove the older version from your classpath. Ensure that
your classpath has only one version of this driver and that the reference is to the newer driver
you are uploading. Integrations that are running and that use connections based on the older
driver are not affected. New connections that you create will use the new driver. If you start an
integration that has a connection that was created with the older driver, Fuse Online
automatically uses the new driver instead.

6. Click Import Extension. Fuse Online makes the custom connector or custom step(s) available
and displays the extension’s details page.

Additional resources

Create a connection from a custom connectors .

Add a custom step

Connect to a proprietary database

7.4.2. Identify integrations that use extensions

Before you update or delete an extension, you should identify the integrations that use customizations
that are provided by that extension.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

76

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#creating-connections-from-custom-connectors_connections
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#add-custom-step_create
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#connecting-to-proprietary-databases_db

Procedure

1. In the left Fuse Online panel, click Customizations.

2. At the top, click Extensions.

3. In the list of extensions, find the entry for the extension that you want to update or delete and
click it.

Result

Fuse Online displays details about the extension including a list of any integrations that use a
customization provided by the extension.

7.4.3. Update extensions

When a developer updates an extension, you can upload the updated .jar file to implement the updates
in your integrations.

Prerequisite

A developer has provided you with an updated .jar file for an extension that you previously uploaded.

Procedure

1. In Fuse Online, in the left panel, click Customizations.

2. Click the Extensions tab.

3. At the right of the entry for the extension that you want to update, click Update.

4. Click Browse, select the updated .jar file, and click Open.

5. Confirm that the extension details are correct and click Update.

6. In the details page for the updated extension, determine which integrations use the connector
or custom step(s) defined in the extension.

It is up to you to know exactly what is required to update each integration that uses a custom connector
or a custom step from the updated extension. At the very least, you must republish each integration that
uses a customization defined in the updated extension.

In some cases, you might need to edit the integration to change or add configuration details for a
customization. You must communicate with the extension developer to understand how to update
integrations.

7.4.4. Delete extensions

You can delete an extension even if a running integration uses a step that is provided by that extension
or uses a connection that was created from a connector that was provided by that extension. After you
delete an extension, you cannot start an integration that uses a customization that was provided by that
extension.

Procedure

1. In the left Fuse Online panel, click Customizations.

CHAPTER 7. CUSTOMIZE FUSE ONLINE

77

2. At the top, click Extensions.

3. In the list of extensions, find the entry for the extension that you want to delete and click
Delete, which appears at the right of the entry.

Results

There might be stopped or draft integrations that use a customization provided by an extension that you
delete. To run one of these integrations, you will need to edit the integration to remove the
customization.

Additional resources

Identify extension use

Update an extension

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

78

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#identifying-extension-use_add-extension
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#updating-integrations_add-extension

CHAPTER 8. MANAGE INTEGRATIONS
Each Fuse Online environment is hosted on OpenShift Online or OpenShift Container Platform (OCP).
A common set up is to have a Fuse Online development environment, a Fuse Online test environment,
and a Fuse Online deployment environment.

To facilitate this, Fuse Online provides the ability to export an integration from one Fuse Online
environment and then import that integration into another Fuse Online environment.

The information and procedures for managing integrations are the same in each kind of Fuse Online
environment, unless specifically noted.

The following topics provide information to help you manage your integrations:

Section 8.1, “About integration lifecycle handling”

Section 8.2, “Put integrations into and out of service”

Section 8.3, “Monitor integrations”

Section 8.4, “Test integrations”

Section 8.7, “Tips for troubleshooting integration execution”

Section 8.8, “Copy an integration to another environment”

Section 8.5, “Update integrations”

Section 8.6, “Delete integrations”

8.1. ABOUT INTEGRATION LIFECYCLE HANDLING

After you create and publish an integration, you might want to update what the integration does. You can
edit a draft of the published integration and then replace the running version with the updated version.
To facilitate this, for each integration, Fuse Online maintains multiple versions as well as each version’s
state. An understanding of integration versions and states helps you to manage your integrations.

Description of integration versions

In each Fuse Online environment, each integration can have multiple versions. Support for multiple
integration versions has several benefits:

If you publish a version that does not work correctly, then you can return to running a correct
version of the integration. To do that, you stop the incorrect version and start a version that runs
the way you want it to.

As requirements or tools change, you can incrementally update an integration. You do not need
to create a new integration.

Fuse Online assigns a new version number each time it starts running a new version of an integration. For
example, suppose you publish the Twitter to Salesforce sample integration. After it has been running,
you update the integration to use a different account to connect to Twitter. You then publish the
updated integration. Fuse Online stops the running version of the integration, and publishes the
updated version of the integration with an incremented version number.

The initial integration that was running is version 1. The updated integration that is now running is version

CHAPTER 8. MANAGE INTEGRATIONS

79

The initial integration that was running is version 1. The updated integration that is now running is version
2. If you edit version 2, for example to use a different account to connect to Salesforce, and you publish
that version then it becomes version 3 of the integration.

There can be exactly one draft version of an integration. Fuse Online has a definition for the draft
version of an integration but it has never run this version of the integration. The draft version of an
integration does not have a number. When you edit an integration, you are updating the draft version of
the integration.

In Fuse Online, you can see a list of the versions of an integration in the integration’s summary page. To
view this page, in the left navigation panel, click Integrations and then click the entry for the integration
whose versions you want to see.

Description of integration states

In Fuse Online, in the list of integration versions, each entry indicates the state of that version, which is
one of the following:

State Description

Running A Running version is executing; it is in service. Only
one version of an integration can be running. That is,
only one version at a time can be in the Running
state.

Stopped A Stopped version is not running. The draft version of
an integration is in the Stopped state. Each
integration that was running at one time and then
stopped is in the Stopped state.

If no version of this integration is in the Running
state, then you can start a version that is stopped.

Pending A pending version is in transition. Fuse Online is in
the process of either starting this version of the
integration or stopping this version of the integration,
but the integration is not yet running or stopped.

Error An integration version that is in the Error state
encountered an OpenShift error while being started
or while running. The error suspended start-up or
execution. If this happens, try starting an earlier
integration version that ran correctly. Alternatively,
contact technical support for help. To do that, in any

Fuse Online page, in the upper right, click the
icon and select Support.

8.2. PUT INTEGRATIONS INTO AND OUT OF SERVICE

After you create an integration, you can save it as a draft or publish it to start running it. When you
publish an integration, Fuse Online assembles the needed resources, builds the integration runtime,
deploys the OpenShift pod that will run the integration, and then starts running the integration.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

80

At any time, you can click a button to stop running the integration. When you want to start the
integration again, Fuse Online already has what it needs so starting it takes less time than when you
published it to run it for the first time.

The process of starting a version of an integration for the first time is referred to as publishing the
integration. The following topics provide details:

Section 8.2.1, “About publishing integrations”

Section 8.2.2, “Stop integrations”

Section 8.2.3, “Start integrations”

Section 8.2.4, “Restart older integration versions”

8.2.1. About publishing integrations

To run a version of an integration for the first time, you publish it. Publishing an integration builds and
deploys the integration runtime. The integration starts running. After publishing an integration, you can
stop it and restart it. Exactly one version of an integration can be running at one time.

Alternatives for publishing

To run an integration for the first time, publish it by doing one of the following:

At the end of the procedure in which you create or edit the integration, in the upper right, click
Publish.

Publish the draft version of an integration:

1. In the left Fuse Online panel, click Integrations.

2. In the list of integrations, click the entry for the integration that you want to publish.

3. On the integration’s summary page, in the Details tab, to the right of the draft entry, click

 and select Publish.

About the publication progress

Fuse Online displays the progress of the publication process, which has several stages:

1. Assembling creates pod resources needed to build the integration.

2. Building gets the integration ready to deploy.

3. Deploying waits for deployment of the pod that will run the integration.

4. Starting waits for the pod to start running the integration.

5. Deployed indicates that the integration is running.

During start-up, you can click View Logs to display OpenShift logs that provide start-up information.

Integration status after publication

When publishing the integration is complete, the Running status appears next to the integration name.
The pod is running the integration.

CHAPTER 8. MANAGE INTEGRATIONS

81

8.2.2. Stop integrations

Each integration can have exactly one version that is running. A running version is in the Running state.
At any time, you can stop running an integration.

Prerequisite

The integration that you want to stop is in the Running state.

Procedure

1. In the left Fuse Online panel, click Integrations.

2. In the list of integrations, identify the entry for the integration that you want to stop running.
The entry shows that this integration is Running.

3. At the far right of this integration’s entry, click and select Stop.

Result

Fuse Online stops running the integration. Stopping and then Stopped appears in the integration’s
entry in the list of integrations.

8.2.3. Start integrations

The first time that you start an integration, the process is referred to as publishing the integration
because Fuse Online has to build the integration runtime before it can run the integration. At any time,
you can stop running an integration and then start it again.

Prerequisite

The integration that you want to start is in the Stopped state.

Procedure

1. In the left navigation panel, click Integrations.

2. In the list of integrations, to the right of the entry for the integration that you want to start, click

 .

3. Select Start.

Result

Fuse Online displays Starting as the status of that integration version, and then Running when the
integration is running again.

8.2.4. Restart older integration versions

You might publish an integration that does not work the way you want it to. In this situation, you can stop
the incorrect version and replace it with a version that you published previously and that runs correctly.

Prerequisites

A version of the integration is running but you want to stop it.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

82

You have another version of the integration and you want to run that one.

Procedure

1. In the left panel, click Integrations to display a list of the the integrations in this environment.

2. Click the entry for the integration for which you want to publish an older version. Fuse Online
displays a list of the versions of the integration.

3. In the entry for the version that is running, at the far right, click and select Stop.

4. Click OK to confirm that you want to stop running this version.

5. Wait for Stopped to appear to the right of the integration name near the top of the page.

6. To publish the older version as is, skip to the next step. Or, before you publish the older version,
you can update it:

a. In the entry for the integration version that you want to update, at the far right, click and
select Replace Draft.

b. Update the integration as needed.

c. When updates are complete, in the upper right, click Publish, and then click Publish to
confirm. This takes the place of the next two steps.

7. To publish the older version as is, in the entry for the integration version that you want to start

running again, at the far right, click and select Start.

8. Click Start to confirm that you want to start this version of the integration.

Result

Fuse Online starts the integration, which takes a few minutes. When the integration is running, then
Running version n appears to the right of the integration’s name.

8.3. MONITOR INTEGRATIONS

Fuse Online provides various ways for you to monitor the execution of your integrations. See:

Section 8.3.1, “View integration history”

Section 8.3.2, “View information about an integration’s activity”

Section 8.3.3, “View metrics for a particular integration”

Section 8.3.4, “View metrics for a Fuse Online environment”

8.3.1. View integration history

Fuse Online maintains each version of an integration. You can always view a list of the versions of each
integration.

Procedure

CHAPTER 8. MANAGE INTEGRATIONS

83

1. In the left panel, click Integrations to display a list of the integrations in your environment.

2. Click the entry for the integration whose versions you want to see.

Result

In the page that appears, the History section lists the versions of the integration. The icon
identifies the current version, which is the most recently, successfully running version. For each version,
you can also see the date on which it was last started.

To edit, start, or stop a particular version, click the to the right of the version’s entry. Select the
operation you want to perform.

8.3.2. View information about an integration’s activity

Fuse Online provides activity information for each execution of an integration. This information is part of
the integration’s log. For each integration step, Fuse Online provides:

The date and time that the step was executed

How long it took to execute the step

Whether execution was successful

The error message if execution was not successful

At any time, you can view this information.

Prerequisites

There is or was a running integration for which you want to view activity information.

This integration has been executed at least once.

Procedure

1. In the left panel, click Integrations.

2. Click the entry for the integration for which you want to view activity information.

3. In the integration’s summary page, click the Activity tab.

4. Optionally, enter date and/or keyword filters to limit the executions listed.

5. Click the integration execution for which you want to view activity information.

Additional resources

To obtain additional information between any two steps, you can add a log step to the
integration. A log step provides information about each message it receives and can provide
custom text that you specify. If you add a log step, then it appears as one of the integration’s
steps when you expand the integration execution that you want to view activity information for.
You view Fuse Online information for a log step in the same way that you view Fuse Online
information for any other step. See Add a log step .

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

84

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#add-log-step_create

To finish an integration by logging message information, see Add a log connection .

8.3.3. View metrics for a particular integration

Fuse Online provides the following metrics for each integration:

Total Errors indicates the number of runtime errors that all executions of this integration
encountered during the past 30 days.

Last Processed displays the most recent date and time that this integration processed a
message. The message might have been successfully processed or there might have been an
error.

Total Messages is the number of messages that all executions of this integration processed in
the last 30 days. This includes message failures.

Uptime indicates when this integration started running and how long it has been running
without an error.

Prerequisite

The integration that you want to view metrics for is running or has been running.

Procedure

1. In the left panel, click Integrations.

2. Click the entry for the integration for which you want to view metrics.

3. In the integration’s summary page, click Metrics.

8.3.4. View metrics for a Fuse Online environment

Metrics for your Fuse Online environment appear on the Fuse Online home page. To see them, click
Home in the left panel. Fuse Online updates the following metrics every 5 seconds:

The number of integrations that are defined in this environment as well as the number of
integrations that are running, the number of integrations that are stopped, and the number of
integrations that are pending. Fuse Online is either stopping or starting pending integrations. A
red cross indicates any integrations that were running but that encountered an error that
suspended execution.

The number of connections that are defined in this environment.

Total number of messages that have been processed by integrations in this environment in the
last 30 days. This includes messages that were processed by integrations that might no longer
be running or that might have been deleted from this environment.

Uptime indicates how long there has been at least one integration that is running. The date and
time when uptime started appears as well.

8.4. TEST INTEGRATIONS

After you create an integration and it is running correctly in a Fuse Online development environment,
you might want to run it in a different Fuse Online environment to test it.

CHAPTER 8. MANAGE INTEGRATIONS

85

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#connecting-to-log_connect-to-log

Prerequisite

You have a Fuse Online development environment and a Fuse Online test environment.

You have an integration that is running correctly in your Fuse Online development environment.

Procedure

1. Learn about copying an integration to another environment .

2. Export the integration from the development environment. See Export an integration .

3. Import the integration into the test environment. See Import an integration .

8.5. UPDATE INTEGRATIONS

After you create an integration, you might need to update it to add, edit or remove a step.

Prerequisite

In your Fuse Online environment, there is a version of the integration that you want to update.

Procedure

1. In the left Fuse Online panel, click Integrations.

2. In the list of integrations, click the entry for the integration that you want to update.

3. On the integration’s summary page, in the upper right corner, click Edit Integration.
In the left panel, you can see that each step in the integration is represented by an icon that
indicates whether it is a connection or a data operation between connections.

4. Update the integration as needed:

To add a step, in the left panel, hover over the plus sign that is in the location where you
want to add it. Click Add a Connection or Add a Step.

To delete a step, in the left panel, click to the right of the step that you want to delete.

To change the configuration of a step, in the left panel, click the step that you want to
update. In the configuration page, update the parameter settings as needed.

8.6. DELETE INTEGRATIONS

After you delete an integration, Fuse Online still has the history of that integration. If you import a
version of the deleted integration, then Fuse Online associates the history of the deleted integration
with the imported integration.

Procedure

1. In the left Fuse Online panel, click Integrations.

2. In the list of integrations, at the right of the entry for the integration that you want to delete,

click and select Delete.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

86

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#about-copying-integrations_copy
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#exporting-integrations_copy
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#importing-integrations_copy

3. In the popup, click OK to confirm that you want to delete the integration.

8.7. TIPS FOR TROUBLESHOOTING INTEGRATION EXECUTION

If an integration stops working, check its activity and history details. See View integration activity
information and View integration history.

For a connection to an application that uses OAuth, you might see an error message that indicates that
the access token for the application has expired. Sometimes, you might get a less explicit 403 - Access
denied message. The information in the message depends on the application that the integration is
connecting to. In this situation, try reconnecting to the application and then republishing the integration:

1. In the left panel, click Integrations.

2. In the list of integrations, click the entry for the integration that stopped running.

3. In the integration’s summary page, in the visual integration flow, click the icon for the application
that you want to reconnect to.

4. In the connection’s details page, click Reconnect.

5. Respond to that application’s OAuth workflow prompts.
Fuse Online displays a message to indicate that its access to that application has been
authorized. For some applications, this takes a few seconds but it can take longer for other
applications.

6. After reconnecting to the application, start the integration.

If reconnection is not successful, try this:

1. Re-register Fuse Online as a client of the application. See General procedure for obtaining
authorization.

2. Create a new connection.

3. Edit each integration that was using the old connection:

a. Remove the old connection.

b. Replace it with the new connection.

4. Publish each updated integration.

8.8. COPY AN INTEGRATION TO ANOTHER ENVIRONMENT

To run integrations across development, staging and production environments, you can export and
import integrations. The environments can all be on a single OpenShift cluster, or they can be spread
out across multiple OpenShift clusters. See the following topics:

Section 8.8.1, “About copying integrations”

Section 8.8.2, “Export integrations”

Section 8.8.3, “Import integrations”

8.8.1. About copying integrations

CHAPTER 8. MANAGE INTEGRATIONS

87

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#viewing-integration-activity-information_monitor
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#viewing-integration-history_monitor
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#general-procedure-for-obtaining-authorization_connections

Each Fuse Online installation is an environment from which you can export an integration. Exporting an
integration downloads a zip file that contains the information needed to recreate the integration in a
different Fuse Online environment.

In an environment, each integration can have only one Draft version.

The result of importing an integration depends on:

Whether the integration was previously imported

Whether a connection that the integration uses was previously imported

Fuse Online uses an internal identifier for each integration and each connection to determine whether it
already exists in the environment that it is being imported into. If you change the name of an integration
or connection Fuse Online recognizes it as the same integration or connection, which just has a different
name.

The following table describes the possible results of importing an integration:

In the importing environment: What the import operation does:

The integration has not been previously imported. Creates the integration. The integration is in the
Draft state.

The integration has been previously imported. Fuse Online updates the integration. The updated
integration is in the Draft state. If there was a Draft
version of this integration, it is lost.

The imported integration uses a connection that did
not exist in the environment before the import
operation.

Fuse Online creates a connection that has the same
settings except for secrets. You must review each
new connection. If a connection is not completely
configured for its new environment then you must
add the missing settings. For example, you might
need to obtain secret settings by registering this
Fuse Online environment as a client of the
application that this connection accesses.

8.8.2. Export integrations

When Fuse Online exports an integration it downloads a zip file to your local Downloads folder. This zip
file contains the information needed to recreate the integration in a different Fuse Online environment.

Exporting an integration is also a way to have a backup of the integration. However, Fuse Online
maintains the versions of an integration so exporting an integration is not required for having a backup
copy.

Procedure

1. In the left panel of Fuse Online, click Integrations.

2. In the list of integrations, identify the entry for the integration that you want to export.

3. At the right of the entry, click and select Export.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

88

Next step

To import the integration into another Fuse Online environment, open that environment and import the
exported zip file.

8.8.3. Import integrations

In a Fuse Online environment, you can import an integration that was exported from another Fuse Online
environment. Exporting an integration downloads the zip file that you upload to import the integration.

Prerequisite

You have a zip file that contains an integration that was exported in another Fuse Online environment.

Procedure

1. Open the Fuse Online environment that you want to import the integration into.

2. In the left panel, click Integrations.

3. In the upper right, click Import.

4. Drag and drop one or more exported integration zip files, or navigate to a zip file that contains
an exported integration and select it.

5. After Fuse Online imports the file(s), click Done. Fuse Online displays information about
imported integrations.

6. In the left panel, click Connections.
If an imported integration uses a connection that requires configuration, then there is a
Configuration Required message at the bottom of the connection’s card.

7. For each connection that requires configuration:

a. Click it to display its details.

b. Enter or change connection details as needed. It is possible that every field on this page is
correct and that only security configuration is required.

c. If you updated any fields, click Save.

d. In the left panel, click Settings.
The Settings page displays entries for applications that use the OAuth protocol.

8. For each connection that requires configuration and that accesses an application that uses the
OAuth protocol, register your Fuse Online environment with the application. The steps vary for
each application. See the appropriate topic:

Register with Dropbox

Register with Gmail

Register with a REST API

Register with Salesforce

Register with Twitter

9. In the left panel, click Connections and confirm that there are no longer any connections that

CHAPTER 8. MANAGE INTEGRATIONS

89

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-dropbox_dropbox
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-gmail_gmail
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-rest-api_rest
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-salesforce_salesforcecopy
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/connecting_fuse_online_to_applications_and_services/#register-with-twitter_twitter

9. In the left panel, click Connections and confirm that there are no longer any connections that
require configuration.

10. In the left panel, click Integrations. In the list of integrations, imported integrations have a green
triangle in the upper left corner of their entries.

11. In the list of integrations, at the right of the entry for the integration that you imported, click
and select Edit.

12. In the upper right, click Save as Draft or, if you want to start running the imported integration,
click Publish. Regardless of whether you save the integration as a draft or you publish the
integration, Fuse Online updates the integration to use the updated connections.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

90

CHAPTER 9. TRIGGER INTEGRATION EXECUTION WITH A
REST API CALL

To trigger execution of an integration on demand, start the integration with a REST API service that you
provide. Integrations that start this way are referred to as API provider integrations . An API provider
integration allows REST API clients to invoke commands that trigger execution of the integration.

When Fuse Online publishes an API provider integration, it annotates the API service definition for use
with Red Hat 3scale. 3scale is Red Hat’s API management solution. 3scale enforces API access policies,
centralizes API control, provides high availability for your API, and integrates with Red Hat Fuse. For
more information, see the API Gateway documentation that is available from the Red Hat 3scale
documentation page.

If you are running Fuse Online on OCP on premise, the default behavior is that APIs are not exposed for
automatic discovery in 3scale. To expose APIs for automatic discovery in 3scale, see Expose APIs in
3scale for API provider integrations.

The following topics provide information and instructions for creating API provider integrations:

Section 9.1, “Overview and benefit of API provider integrations”

Section 9.2, “About API provider flows”

Section 9.3, “About API provider URLs”

Section 9.4, “General workflow for creating integrations that are triggered by API calls”

Section 9.5, “Create an integration that is triggered by an API call”

Section 9.6, “Create the integration’s operation flows”

Section 9.7, “Configure and publish the API provider quickstart integration”

Section 9.8, “Execute the API provider quickstart integration”

IMPORTANT

In this release, an API provider integration is a Technology Preview feature.

9.1. OVERVIEW AND BENEFIT OF API PROVIDER INTEGRATIONS

API provider integrations start with a REST API service that Fuse Online makes available. This REST API
service is defined by an OpenAPI 2.0 schema that you provide.

The benefit of API provider integrations is that calls from REST API clients trigger execution of the
integration. This is different from other Fuse Online integrations. A traditional Fuse Online integration
periodically monitors an application or service and triggers execution of the integration when it finds a
new event or message. For example, an integration might start with a Twitter connection that watches
for tweets that contain Red Hat Fuse. Fuse Online executes the integration only when the connection
to Twitter finds such tweets.

An API provider integration makes it possible to call a REST API when a particular event occurs. This call
triggers execution of the integration. To set this up, you upload an OpenAPI 2.0 schema to Fuse Online.
Fuse Online publishes the API and provides the URL where the service is available. In Fuse Online, for
each operation that the OpenAPI schema defines, you add connections and steps that process data as

CHAPTER 9. TRIGGER INTEGRATION EXECUTION WITH A REST API CALL

91

https://access.redhat.com/documentation/en-us/red_hat_3scale/2.3/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#expose-apis_ocp
https://access.redhat.com/support/offerings/techpreview/

required for the particular operation. For example, consider a human resources application that calls a
REST API service that Fuse Online has made available. Suppose the call invokes the operation that adds
a new employee. The integration flow that handles this call could:

Connect to an application that creates an expense report for new employee equipment.

Connect to a SQL database to add an internal ticket for setting up new equipment.

Connect to Google mail to send a message to the new employee that provides orientation
information.

There are many ways to call the REST APIs that trigger integration execution, including:

A web browser page that takes data input and generates the call.

An application that explicitly calls the REST APIs.

Other APIs that call the REST API, for example a webhook.

9.2. ABOUT API PROVIDER FLOWS

A Fuse Online integration that does not start with a REST API service has one flow. That is, each time
Fuse Online executes the integration, Fuse Online connects to the same applications, applies the same
steps between connections, and finishes integration execution in the same way. In other words, the
integration has one execution path.

An API provider integration has multiple flows. Each operation that the OpenAPI schema defines has its
own flow, which Fuse Online automatically creates. For each operation, you can edit its flow by:

Adding connections to the applications that need to process the data.

Adding steps between connections, including data mapping steps.

Altering the return code for the finish connection, which sends a response to the application
that invoked the call that triggered execution of the integration.

9.3. ABOUT API PROVIDER URLS

After you publish an API provider integration, Fuse Online displays the external URL for your REST API
service. This is where Fuse Online publishes your REST API service. This external URL is the base URL
for calls from REST clients to your REST API service URLs. Fuse Online displays this URL in the
integration’s summary page. Examples of REST clients are the curl utility, a web browser, the Postman
app, and other applications that make REST calls.

In an integration, each operation that the OpenAPI schema defines has its own integration flow.
Consequently, each operation can also have its own REST API service URL. Each URL is defined by the
base URL and optionally by a subpath. REST API calls that trigger execution of a particular integration
flow specify that operation’s URL.

Your OpenAPI schema determines which HTTP verbs (such as GET, POST, DELETE and so on) you can
specify in calls to your REST API service URLs. Examples of calls to API provider URLs are in the
instructions for trying out the API provider quickstart .

The following diagram shows an API provider integration that processes data about people. An external
REST API client invokes the REST API URLs that are deployed by the API provider integration.
Invocation of a URL triggers execution of the integration flow for one REST operation. This API provider

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

92

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#try-api-provider-quickstart_api-provider

integration has 3 flows. Each integration flow can use any connection or step that is available in Fuse
Online. The REST API along with its integration flows is one Fuse Online integration, which is deployed in
one OpenShift container/pod.

9.4. GENERAL WORKFLOW FOR CREATING INTEGRATIONS THAT ARE
TRIGGERED BY API CALLS

In Fuse Online, after you click Create Integration, the workflow for creating an API provider integration
is as follows.

1. On the Choose a Start Connection page, click the API Provider card.

2. On the Start integration with an API call page, upload a file that contains an OpenAPI 2.0
schema or indicate that you want to create the schema now. If you upload a file, you can review
and edit it. If you select Create from scratch, Fuse Online opens an editor that supports
creation of OpenAPI schemas.

CAUTION

After you save or publish an API provider integration, you cannot update the OpenAPI definition
for the REST API service. If you need to edit the OpenAPI definition then you must start over
and create a new API provider integration.

3. Give the integration a name and save it.

CHAPTER 9. TRIGGER INTEGRATION EXECUTION WITH A REST API CALL

93

4. On the Choose operation page, for each operation that the OpenAPI schema defines, create
the integration flow for that operation:

a. Click an operation to display the Add to Integration page.

b. Add the connections that are required to implement the selected operation.

c. Add additional steps that process data between connections. For example, in the visual
representation of this integration flow, check for data type mismatch indications. For each
data type mismatch, add a step that maps data fields.

d. In the visual representation of this integration flow, click the flow’s finish connection and
specify a return code. When Fuse Online executes this integration flow and reaches this
connection, Fuse Online sends the return code to your API service, which in turn sends a
response to the caller that invoked the API that triggered the integration.
In this release, because an API provider integration is a Technology Preview feature, the
integration flow always returns the code that you select. Error handling is not yet supported.

5. Publish the integration.
Fuse Online provides the URL where your REST API service is available.

6. Optionally, use the curl utility to test the integration flows.
For example, suppose that the following curl command triggers execution of an integration flow
for the Get Task by ID operation. The HTTP GET command is the default request so there is
no requirement to specify GET. The last part of the URL specifies the ID of the task to get:

curl -k https://i-task-api-proj319352.6a63.fuse-ignite.openshiftapps.com/api/todo/1

9.5. CREATE AN INTEGRATION THAT IS TRIGGERED BY AN API CALL

To be able to invoke a call that triggers execution of an integration, you provide an OpenAPI schema
that defines the operations that the integration can perform. For each operation, you specify an
integration flow that connects to the applications and processes the integration data according to the
requirements for that operation.

Prerequisites

You can provide an OpenAPI schema for the REST API operations that you want the integration
to perform.
To experiment, download the task-api.json file, which is an OpenAPI schema for an API
provider quickstart. You can then drag this file in when Fuse Online prompts you to provide an
OpenAPI schema.

You have a plan for the integration flow for each OpenAPI operation.

You created a connection for each application or service that you want to add to an integration
flow.

Procedure

1. In Fuse Online, in the left navigation panel, click Integrations.

2. In the upper right, click Create Integration.

3. On the Choose a Start Connection page, click the API Provider card.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

94

https://github.com/syndesisio/syndesis-quickstarts/blob/master/api-provider/task-api.json

4. On the Start integration with an API call page, if you have an OpenAPI 2.0 schema that defines
the REST API operations then upload it in one of the following ways:

Drag and drop the file that contains the schema.

Click Choose File to navigate to and select the file that contains the schema.

Click Use a URL and enter the URL for the schema.

Or, if you need to define the schema, select Create from scratch.

5. Click Next.

If you uploaded a schema, remember that this is your only opportunity to change it. To
review or edit the schema:

a. Click Review/Edit to open the Apicurio editor.

b. Review and edit as needed.

c. In the upper right, click Save or Cancel to close the editor.

d. Click Next and go to step 6 in this procedure.

If you are creating a schema from scratch then in the Apicurio editor that Syndesis opens:

a. Define the OpenAPI schema.

b. In the upper right, click Save, which closes the editor.

c. Click Next.

For information about using the Apicurio editor, see Design and develop an API definition with
Apicurito. In this Technology Preview release, you cannot edit the operation description that will
appear in the operations list in Fuse Online.

6. On the Give this integration a name page, enter a name for your integration.

7. Optionally, enter a description that helps you distinguish this integration from other integrations.

8. Click Save and continue to display the Choose Operation page. You are ready to define a flow
for each operation.

9.6. CREATE THE INTEGRATION’S OPERATION FLOWS

The OpenAPI schema that defines your REST API service defines the operations that the service can
perform. After you create an API provider integration, you can edit the integration flow for each
operation.

Each operation has exactly one integration flow. In an integration flow, you can add connections to other
applications and services, as well as steps that operate on data between connections.

Prerequisites

You created an API provider integration, gave it a name, and saved it.

You created a connection to each application or service that you want an integration flow to

CHAPTER 9. TRIGGER INTEGRATION EXECUTION WITH A REST API CALL

95

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/designing_apis_with_apicurito/#create-api-definition
{LinkFuseOnlineIntrationGuide}#create-integration-operation-flows_api-provider

You created a connection to each application or service that you want an integration flow to
connect to. For details, see the information about creating connections .

Fuse Online is displaying the Choose operation page.

Procedure

1. In the Choose operation page, click the entry for an operation whose flow you want to edit. This
opens the Add to Integration page.

2. In the integration visualization panel on the left, click the icon at the bottom. When you
hover over this icon, Provided API Return Path appears.
Every API provider integration ends each integration flow by sending a response to the REST
API caller that triggered execution of the integration flow.

3. Specify the operation’s return code as follows:

a. In the Provided API Return Path page, click in the Return Code input field, which displays a
list of possible return codes.

b. Scroll to 200 OK and click it.
If there is a return code that better describes the result then you can select that one
instead. However, in this Technology Preview release, you can select only one return code.
Whenever an API call triggers execution of this integration flow, this is the return code. This
Technology Preview release does not support error handling.

c. Click Done.

d. In the upper right, click Save as Draft.
After you implement the return code for at least one operation, you can publish the
integration to start running it. When it is running, you can invoke an API call that triggers
execution of the integration flow for which you defined the return code. However, you
probably want to add more steps to the operation’s flow.

4. In this integration flow, to connect to another application or service:

a. In the integration flow visualization panel on the left, hover over the plus sign in the location
where you want to add a connection and in the popup that appears, click Add a connection.

b. Click the connection that you want to add to this integration flow.

c. Click the action that you want this connection to perform.

d. Configure the action.

e. Click Done.

f. In the upper right, click Save as Draft.

For each connection that you want to add to this integration flow, repeat this subset of
instructions. Add all desired connections to the integration flow before you continue.

5. In this integration flow, to process data between connections:

a. In the integration flow visualization panel on the left, hover over the plus sign in the location
where you want to add a step and in the popup that appears, click Add a step.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

96

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#about-creating-connections_connections

b. In the Choose a Step page, click the step that you want to add.

c. Configure the step.

d. Click Done.

e. In the upper right, click Save as Draft.
For help, see Adding steps between connections .

Repeat this subset of instructions to add another step that processes data between
connections.

6. In the integration flow visualization panel on the left, check for data type mismatch icons,
which indicate that the connection cannot process the incoming data. You need to add a data
mapper step here. Go back to the previous subset of instructions. On the Choose a Step page,
click Data Mapper, and define the needed mappings. For help, see Map integration data fields
to the next connection in the integration.

7. When this integration flow has all needed connections and steps, do one of the following:

To start running the integration, in the upper right, click Publish. This builds the integration
and makes it available to be executed. You can publish the integration each time that you
complete the creation of an operation’s integration flow or each time that you edit an
operation’s integration flow.

To edit the integration flow for another operation, in the upper right, click Go to Operations
List.

Repeat this procedure to edit another operation’s integration flow.

IMPORTANT

In this Technology Preview release, in an integration flow, a connection to a SQL database
that executes a SELECT statement returns only the first record in the result set.

Next steps

When an API provider integration is running, you can use the curl utility to confirm that it is working as
expected. For examples of doing this, see the description of the API provider quickstart .

9.7. CONFIGURE AND PUBLISH THE API PROVIDER QUICKSTART
INTEGRATION

Fuse Online provides an API provider quickstart integration that you can import into your Fuse Online
environment. This quickstart includes an OpenAPI schema for a task management API. After importing
the quickstart integration, you configure return codes, and then publish the integration. After you
complete the procedure described below, the Task API integration is running and ready to be executed.

The API provider quickstart helps you quickly learn how to configure, publish, and test an API provider
integration. But it is not a real-world example of how useful an API provider integration can be. For a
real-world example, suppose that you already used Fuse Online to publish several integrations. You
could define an OpenAPI schema for triggering execution of those integrations. To do this, you would
edit the integration flow for each OpenAPI operation to be almost the same as the integrations you
already published.

CHAPTER 9. TRIGGER INTEGRATION EXECUTION WITH A REST API CALL

97

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#about-adding-steps_create
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#mapping-data_ug
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#try-api-provider-quickstart_api-provider

A video of configuring and publishing this quickstart is also available.

Prerequisites

Fuse Online is open in a browser.

Procedure

1. To import the Task API quickstart integration:

a. Go to https://github.com/syndesisio/syndesis-quickstarts/tree/master/api-provider and
download TaskAPI-export.zip.

b. In Fuse Online, in the left navigation panel, click Integrations.

c. In the upper right, click Import.

d. Drag and drop the zip file that you downloaded. Fuse Online indicates that it has
successfully imported the file.

e. In the left navigation panel, click Integrations to see an entry for the Task API integration
that you just imported. The entry indicates that configuration is required.

2. To configure the Task API integration:

a. Click the Task API entry to display the integration summary.

b. In the upper right, click Edit Integration to display a list of the operations that this API
provides.

c. To configure the integration flow for the Create Task operation:

i. Click the Create Task entry to display a page that prompts you to add a connection or
add a step.
Connections and steps have already been added to this integration flow. In the
integration flow visualization panel on the left, move your cursor over the icons to see
what they represent. Click a step or connection to view its configuration. When you are
done examining one, click another one to examine it. When you click a database
connection, you can see the SQL statement that it executes.

ii. In the integration flow visualization panel on the left, click the icon at the bottom.
You might have to scroll down to see it. When you hover over it, Fuse Online displays
Provided API Return Path.

iii. Click in the Return Code input field and scroll to select 201 Created.

iv. Click Done.

v. In the upper right, click Save as Draft and then Go to Operation List.

d. To configure the integration flow for the Delete Task for ID operation:

i. Click the Delete Task for ID entry to display a page that prompts you to add a
connection or add a step.
This integration flow has a data mapper step and a connection to the sample database
that is provided with Fuse Online. In the integration flow visualization panel, click the
database connection to view the SQL statement that it executes.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

98

https://www.youtube.com/watch?v=RAa1qy3WnWQ&feature=youtu.be
https://github.com/syndesisio/syndesis-quickstarts/tree/master/api-provider

ii. In the integration flow visualization panel, click the icon at the bottom.

iii. Click in the Return Code input field and scroll to select 200 OK.

iv. Click Done.

v. In the upper right, click Save as Draft and then Go to Operation List.

e. To configure the integration flow for the Get Task by ID operation:

i. Click the Get Task by ID entry to display a page that prompts you to add a connection
or add a step.
This integration flow has two data mapper steps, a connection to the sample database
that is provided with Fuse Online, and a log step. In the integration flow visualization
panel, click an icon for a step or connection to view its configuration. When you are done
examining one, click another one.

ii. In the integration flow visualization panel, click the icon at the bottom.

iii. Click in the Return Code input field and scroll to select 200 OK.

iv. Click Done.

3. In the upper right, click Publish.
Fuse Online displays the integration summary page and shows publication progress as it
assemblies, builds, deploys, and starts the integration. The integration summary page also
provides the external URL for the API provider service, which looks something like this:

https://i-task-api-proj319352.6a63.fuse-ignite.openshiftapps.com/api/

This is where Fuse Online makes the Task API service available. REST API calls specify URLs
that start with this base URL.

9.8. EXECUTE THE API PROVIDER QUICKSTART INTEGRATION

When the Fuse Online Task API quickstart integration is running, you can invoke curl utility commands
that send HTTP requests to the Task API service. How you specify the HTTP request determines which
integration flow the call triggers.

Prerequisite

Fuse Online indicates that the Task API is Running.

Procedure

1. In Fuse Online, in the left navigation panel, click Integrations.

2. Click the Task API integration to display its summary.

3. Copy the integration’s external URL.

4. In a terminal, invoke a command such as the following to assign the integration’s external URL to
the externalURL environment variable. Be sure to replace the URL in this sample command
with the URL you copied:
export externalURL="https://i-task-api-proj319352.6a63.fuse-
ignite.openshiftapps.com/api"

CHAPTER 9. TRIGGER INTEGRATION EXECUTION WITH A REST API CALL

99

5. Invoke a curl command that triggers execution of the integration flow for the Create Task
operation:

curl -k --header "Content-Type: application/json" --request POST --data '{ "task":"my new
task!"}' $externalURL/todo

-k allows curl to proceed and operate even for server connections that are otherwise
considered insecure.

--header indicates that the command is sending JSON format data.

--request specifies the HTTP POST command, which stores data.

--data specifies the JSON format content to be stored. In this example the content is {
"task":"my new task!"}.

$externalURL/todo is the URL to invoke.
This command sends an HTTP POST request to the Task API service, which triggers
execution of the Create Task operation’s integration flow. The integration flow adds a new
task to the sample database and returns a message such as the following to indicate what it
did:

{"completed":false,"id":1,"task":"my new task!"}

6. Invoke a curl command that triggers execution of the integration flow for the Get Task by ID
operation:

curl -k $externalURL/todo/1

To obtain a task, the curl command needs to specify only the URL. The HTTP GET command is
the default request. The last part of the URL specifies the ID of the task to get.

7. Invoke a curl command that triggers execution of the integration flow for the Delete Task for
ID operation:

curl -k -X DELETE $externalURL/todo/1

This command invokes the HTTP DELETE command with the same URL as the command that
obtained a task by its ID.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

100

CHAPTER 10. HOW TO INSTALL OR UPGRADE FUSE ONLINE
ON OPENSHIFT CONTAINER PLATFORM

You can install and upgrade Fuse Online on OpenShift Container Platform (OCP) on premise. See the
following topics for details:

Section 10.1, “Overview of steps for installing Fuse Online on OCP”

Section 10.2, “Register a custom resource definition”

Section 10.3, “Decisions to make before you install Fuse Online on OCP”

Section 10.4, “Install Fuse Online on OCP”

Section 10.5, “Expose APIs in 3scale for API Provider integrations”

Section 10.6, “Monitor Fuse Online integrations on OCP with Prometheus”

Section 10.7, “Upgrade Fuse Online on OCP”

Section 10.8, “Uninstall Fuse Online from an OCP project”

Section 10.9, “Delete an OCP project that contains Fuse Online”

10.1. OVERVIEW OF STEPS FOR INSTALLING FUSE ONLINE ON OCP

To install Fuse Online on OCP on premise, the main steps are:

1. A user with cluster administration permissions:

a. Downloads the installation script.

b. Registers a custom resource definition (CRD) at the cluster level.

c. Grants permission for a user to install Fuse Online in their projects.

2. A user who is granted permission to install Fuse Online:

a. Ensures that all prerequisites are met.

b. Decides how to install Fuse Online with regard to the OpenShift project to install into, the
OpenShift route for Fuse Online, and the level of accessibility of OpenShift logs.

c. Downloads the installation script.

d. Invokes the installation script with the command that implements decisions.

e. Confirms that Fuse Online is running.

10.2. REGISTER A CUSTOM RESOURCE DEFINITION

To enable installation of Fuse Online, a cluster administrator registers a custom resource definition. The
administrator needs to do this only once for the OpenShift cluster. The administrator also grants
permission for installing Fuse Online to the appropriate users. Each user can then install Fuse Online in
their projects.

CHAPTER 10. HOW TO INSTALL OR UPGRADE FUSE ONLINE ON OPENSHIFT CONTAINER PLATFORM

101

Prerequisites

You must have cluster administration permissions.

You must be connected to the OCP cluster into which Fuse Online will be installed.

Procedure

1. Download the Fuse Online installation script to the current local directory by invoking the
following command:
$ wget https://raw.githubusercontent.com/syndesisio/fuse-online-install/1.5/install_ocp.sh

2. To verify that you are properly connected and can list custom resource definitions, invoke the
following command:
$ oc get crd

3. To register the custom resource definition at the cluster level, invoke the following command:
$ bash install_ocp.sh --setup

4. Grant installation permission to each user who needs to install Fuse Online. For example,
suppose you want to grant permission to an account with the user name developer. The
following command grants permission to developer to install Fuse Online into any project that
the developer account can access on the currently connected cluster:
$ bash install_ocp.sh --grant developer --cluster

Repeat this command for each user account that needs permission to install Fuse Online.

10.3. DECISIONS TO MAKE BEFORE YOU INSTALL FUSE ONLINE ON
OCP

To correctly specify the Fuse Online installation command, decide on the answers to these questions:

Do you want to install Fuse Online into the current OpenShift project or do you want to
specify the project into which you want to install Fuse Online in the command that you
invoke to do the installation?
The default is that the installation script installs Fuse Online into the current project.

You can install Fuse Online into a project that you specify. If this project does not yet exist, then
the script creates it. If this project exists then the installation script prompts you to confirm that
it is okay to delete the project’s content. To continue, you must confirm. The installation script
then deletes the project and re-creates it.

Do you want the installation script to calculate the OpenShift route by which Fuse Online
can be reached or do you want to specify the OpenShift route in the installation command?
The default is that the installation script calculates the route.

Do you want to be able to access OpenShift log information for Fuse Online integrations by
clicking a link in the Fuse Online user interface?
While you can always access OpenShift logs manually, you might want to enable direct access
by means of a link in the Fuse Online user interface. The default is that the installation script
does not enable this link. To enable this link, you specify the URL for your OpenShift console
when you invoke the installation script.

10.4. INSTALL FUSE ONLINE ON OCP

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

102

https://raw.githubusercontent.com/syndesisio/fuse-online-install/1.5/install_ocp.sh

To install Fuse Online on OCP on premise, download the installation script, run it, and confirm that Fuse
Online is installed.

Prerequisites

You are running OCP on premise.

You installed the oc client tool and it is connected to the OCP cluster in which you want to
install Fuse Online.

A user with cluster administration permissions gave you permission to install Fuse Online in any
project that you have permission to access in the cluster.

You decided whether to perform the default installation or specify options to customize the
installation.

Procedure

1. Download the Fuse Online installation script to the current local directory by invoking the
following command:
$ wget https://raw.githubusercontent.com/syndesisio/fuse-online-install/1.5/install_ocp.sh

2. Log in to OpenShift with an account that has permission to install Fuse Online. For example:
$ oc login -u developer -p developer

3. Ensure that the current project is the project into which you want to install Fuse Online. To view
the current project:
$ oc project

4. In the directory in which you downloaded the installation script, invoke the installation script:

To perform the default installation, invoke:
$ bash install_ocp.sh

To specify installation options, you might invoke something like the following command,
which specifies three options:

$ bash install_ocp.sh \
 --project my-project \
 --route my-project.6a63.fuse-online.openshiftapps.com \
 --console https://console.fuse-online.openshift.com/console

--project specifies the name of the OpenShift project in which you want to install Fuse
Online. You need to specify this option only when you want to install Fuse Online into an
OpenShift project other than the current OpenShift project.

--route specifies the URL that your Fuse Online environment will have. This URL will be
where you access your Fuse Online environment. This URL specifies the project in which
you are installing Fuse Online followed by the domain that is specific to your OpenShift
cluster.
In other words, specify the project name followed by the hostname that is associated
with the OpenShift route that is used to access Fuse Online. The DNS resolution of the
specified hostname must point to the OpenShift Router.

--console specifies the full URL for your OpenShift console.

To learn more about the installation script options, invoke the $ bash install_ocp.sh --help

CHAPTER 10. HOW TO INSTALL OR UPGRADE FUSE ONLINE ON OPENSHIFT CONTAINER PLATFORM

103

https://raw.githubusercontent.com/syndesisio/fuse-online-install/1.5/install_ocp.sh

To learn more about the installation script options, invoke the $ bash install_ocp.sh --help
command.

5. Confirm that installation was successful:

a. Display the OpenShift OAuth proxy log-in page at https://openshift-route.
If you specified the --route option when you ran the installation script, replace openshift-
route with the route name that you specified. If you chose to let the installation script
calculate the OpenShift route, then the script displays the calculated route near the end of
its execution. Replace openshift-route with the value that the script provided.

b. If you are not already logged in to the OpenShift console, its log-in page appears. Enter
your OpenShift user name and password to log in.

The Fuse Online home page appears either immediately or after you log in to the OpenShift
console.

10.5. EXPOSE APIS IN 3SCALE FOR API PROVIDER INTEGRATIONS

If you create an API provider integration, you might want to enable discovery of the API for that
integration in 3scale. For Fuse Online environments that are installed on OCP, you can expose APIs by
setting a server configuration environment variable.

The default behavior is that APIs are not exposed for automatic discovery in 3scale. Turning on 3scale
service discovery applies to all API Provider integrations in your Fuse Online environment. You cannot
choose which APIs are exposed.

When 3scale service discovery is turned on then the API is accessible only by means of a 3scale
endpoint. That is, OCP does not create a route that would expose the API. Configuration in 3scale is
required to expose the endpoint. For details, see Red Hat 3scale API Management, Service Discovery .

Prerequisites

Fuse Online is installed on OCP on premise.

Procedure

Edit the syndesis-server DeploymentConfig object to set the
CONTROLLERS_EXPOSE_VIA3SCALE environment variable to true. To do this, enter the following
command on one line:

$ oc patch dc syndesis-server -p '{"spec":{"template":{"spec":{"containers":[{"name":"syndesis-
server","env":[{"name":"CONTROLLERS_EXPOSE_VIA3SCALE","value":"true"}]}]}}}}'

10.6. MONITOR FUSE ONLINE INTEGRATIONS ON OCP WITH
PROMETHEUS

When you install Fuse Online on OCP on premise, the environment includes an instance of Prometheus
in the OpenShift project in which you installed Fuse Online. You can access the Prometheus dashboard
to monitor Fuse Online integrations.

Prerequisites

You are running OCP on premise.

Fuse Online is installed in an OpenShift project.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

104

https://openshift-route
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html-single/service_discovery/

Procedure

1. Log in to the OpenShift console.

2. Open the project in which you installed Fuse Online.

3. In the left pane of the OpenShift console, select Applications > Routes.

4. Click the syndesis-prometheus Hostname URL to open the Prometheus dashboard in a new
browser tab or window.

Additional resources

For information about getting started with Prometheus, go to:
https://prometheus.io/docs/prometheus/latest/getting_started/

For information about how to configure an existing external Prometheus instance to monitor
Fuse Online, see the section on Prometheus in Managing Fuse.

10.7. UPGRADE FUSE ONLINE ON OCP

To upgrade Fuse Online on OCP on premise, download the latest Fuse Online release and run the
update script.

From time to time, fresh application images, which incorporate patches and security fixes, are released
for Fuse Online. You are notified of these updates through Red Hat’s errata update channel. You can
then upgrade your Fuse Online images.

The upgrade procedure is the same whether you want to upgrade from Fuse Online 7.1 to Fuse Online
7.2, or from a Fuse Online 7.2 version to a newer Fuse Online 7.2 version.

Prerequisites

You installed and are running version 7.1 of Fuse Online on OCP on premise. OR, you installed
and are running a version of 7.2 of Fuse Online on OCP on premise and you want to upgrade to
fresh application images.

You installed the oc client tool and it is connected to the OCP cluster in which Fuse Online is
installed.

A user with cluster administration permissions gave you permission to install or upgrade Fuse
Online in any project that you have permission to access in the cluster.

Procedure

1. Download the latest Fuse Online release to the current local directory by invoking the following
command:
$ wget https://github.com/syndesisio/fuse-online-install/archive/1.5.tar.gz

2. Uncompress the downloaded file.

3. Change to the directory that contains the extracted archive. For example:
$ cd fuse-online-install-1.5

4. Log in to OpenShift with an account that has permission to upgrade Fuse Online. For example:
$ oc login -u developer

CHAPTER 10. HOW TO INSTALL OR UPGRADE FUSE ONLINE ON OPENSHIFT CONTAINER PLATFORM

105

https://prometheus.io/docs/prometheus/latest/getting_started/
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/managing_fuse/index
https://github.com/syndesisio/fuse-online-install/archive/1.5.tar.gz

5. Invoke the following command, which returns the name of the current project, to ensure that
the current project is the project where Fuse Online is installed:
$ oc project

If you need to switch to the project where Fuse Online is installed then invoke the following
command with the name of the OpenShift project that contains Fuse Online:

$ oc project project-name

6. To check which version you are about to upgrade to, run the update script with the --version
option, as follows:
$ bash update_ocp.sh --version

7. Invoke the update script as follows:
$ bash update_ocp.sh

To learn more about the script, invoke $ bash update_ocp.sh --help.

During and after an infrastructure upgrade, existing integrations continue to run with the older
versions of Fuse Online libraries and dependencies.

8. Upgrade Fuse Online integrations that are running as follows:

a. In Fuse Online, select the integration that you want to upgrade.

b. Select Edit.

c. Select Publish to republish the integration.

Republishing the integration forces a rebuild that uses the latest Fuse Online dependencies.

10.8. UNINSTALL FUSE ONLINE FROM AN OCP PROJECT

You can uninstall Fuse Online from an OCP project without deleting the project nor anything else in that
project. After uninstalling Fuse Online, integrations that are running continue to run but you can no
longer edit or republish them.

Prerequisite

You have an OCP project in which Fuse Online is installed.

You exported any integrations that you might want to use in some other OpenShift project in
which Fuse Online is installed. If necessary, see Export integrations.

Procedure

Invoke the following command:

$ oc delete syndesis app

This command deletes the Fuse Online infrastructure.

10.9. DELETE AN OCP PROJECT THAT CONTAINS FUSE ONLINE

Deleting an OpenShift project in which Fuse Online is installed deletes everything in the project. This
includes all integrations that have been defined as well as all integrations that are running.

Red Hat Fuse 7.2 Integrating Applications with Fuse Online

106

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#exporting-integrations_copy

Prerequisites

You have an OCP project in which Fuse Online is installed.

You exported any integrations that you might want to use in some other OpenShift project in
which Fuse Online is installed. If necessary, see Export integrations.

Procedure

Invoke the oc delete project command. For example, to delete an OpenShift project whose name is
fuseonline, enter the following command:

$ oc delete project fuseonline

CHAPTER 10. HOW TO INSTALL OR UPGRADE FUSE ONLINE ON OPENSHIFT CONTAINER PLATFORM

107

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/integrating_applications_with_fuse_online/#exporting-integrations_copy

	Table of Contents
	PREFACE
	CHAPTER 1. HIGH LEVEL OVERVIEW OF FUSE ONLINE
	1.1. HOW FUSE ONLINE WORKS
	1.2. WHO FUSE ONLINE IS FOR
	1.3. BENEFITS OF USING FUSE ONLINE
	1.4. DESCRIPTIONS OF FUSE ONLINE CONSTRUCTS

	CHAPTER 2. HOW TO GET READY TO CREATE INTEGRATIONS
	2.1. PLAN YOUR INTEGRATIONS
	2.2. GENERAL WORKFLOW FOR CREATING AN INTEGRATION
	2.3. EXAMPLE WORKFLOW FOR CREATING A SALESFORCE TO DATABASE INTEGRATION

	CHAPTER 3. WHAT TO EXPECT WHEN USING FUSE ONLINE FOR THE FIRST TIME
	CHAPTER 4. ABOUT CONNECTIONS TO APPLICATIONS THAT YOU WANT TO INTEGRATE
	4.1. ABOUT CREATING CONNECTIONS FROM FUSE ONLINE TO APPLICATIONS
	4.2. GENERAL PROCEDURE FOR OBTAINING AUTHORIZATION
	4.3. ABOUT CONNECTION VALIDATION
	4.4. ABOUT ADDING CONNECTIONS TO INTEGRATIONS
	4.5. HOW TO VIEW AND EDIT CONNECTION INFORMATION
	4.6. ABOUT CREATING A CONNECTION FROM A CUSTOM CONNECTOR

	CHAPTER 5. CREATE INTEGRATIONS
	5.1. PREPARATION FOR CREATING AN INTEGRATION
	5.2. PROCEDURE FOR CREATING AN INTEGRATION
	5.3. ABOUT ADDING STEPS BETWEEN CONNECTIONS
	5.4. ADD A DATA MAPPING STEP
	5.5. ADD A BASIC FILTER STEP
	5.6. ADD AN ADVANCED FILTER STEP
	5.7. ADD A LOG STEP
	5.8. ADD A TEMPLATE STEP
	5.9. ADD A CUSTOM STEP

	CHAPTER 6. MAP INTEGRATION DATA TO FIELDS FOR THE NEXT CONNECTION
	6.1. IDENTIFY WHERE DATA MAPPING IS NEEDED
	6.2. FIND THE DATA FIELD THAT YOU WANT TO MAP
	6.3. MAP ONE SOURCE FIELD TO ONE TARGET FIELD
	6.4. EXAMPLE OF MISSING OR UNWANTED DATA WHEN COMBINING OR SEPARATING FIELDS
	6.5. COMBINE MULTIPLE SOURCE FIELDS INTO ONE TARGET FIELD
	6.6. SEPARATE ONE SOURCE FIELD INTO MULTIPLE TARGET FIELDS
	6.7. TRANSFORM SOURCE OR TARGET DATA
	6.8. VIEW THE MAPPINGS IN A STEP
	6.9. DESCRIPTIONS OF AVAILABLE TRANSFORMATIONS

	CHAPTER 7. CUSTOMIZE FUSE ONLINE
	7.1. DEVELOP REST API CLIENT CONNECTORS
	7.1.1. Requirements for REST API client connectors
	7.1.2. Guidelines for OpenAPI schemas
	7.1.3. Provide client credentials in parameters
	7.1.4. Automatically refresh access tokens

	7.2. ADD AND MANAGE REST API CLIENT CONNECTORS
	7.2.1. Create REST API client connectors
	7.2.2. Update API client connectors by creating new ones
	7.2.3. Delete API client connectors

	7.3. DEVELOP FUSE ONLINE EXTENSIONS
	7.3.1. General procedure for developing extensions
	7.3.2. Description of the kinds of extensions
	7.3.3. Overview of extension content and structure
	7.3.4. Requirements in an extension definition JSON file
	7.3.5. Description of Maven plugin that supports extensions
	7.3.6. How to specify data shapes in extensions
	7.3.7. Alternatives for developing step extensions
	7.3.7.1. Example of developing a Camel route with XML fragments
	7.3.7.2. Example of developing a Camel route with RouteBuilder
	7.3.7.3. Example of using a Camel bean
	7.3.7.4. Example of using the Syndesis Step API

	7.3.8. Example of developing a connector extension
	7.3.9. How to develop library extensions
	7.3.10. Create JDBC driver library extensions

	7.4. ADD AND MANAGE EXTENSIONS
	7.4.1. Make custom features available
	7.4.2. Identify integrations that use extensions
	7.4.3. Update extensions
	7.4.4. Delete extensions

	CHAPTER 8. MANAGE INTEGRATIONS
	8.1. ABOUT INTEGRATION LIFECYCLE HANDLING
	8.2. PUT INTEGRATIONS INTO AND OUT OF SERVICE
	8.2.1. About publishing integrations
	8.2.2. Stop integrations
	8.2.3. Start integrations
	8.2.4. Restart older integration versions

	8.3. MONITOR INTEGRATIONS
	8.3.1. View integration history
	8.3.2. View information about an integration’s activity
	8.3.3. View metrics for a particular integration
	8.3.4. View metrics for a Fuse Online environment

	8.4. TEST INTEGRATIONS
	8.5. UPDATE INTEGRATIONS
	8.6. DELETE INTEGRATIONS
	8.7. TIPS FOR TROUBLESHOOTING INTEGRATION EXECUTION
	8.8. COPY AN INTEGRATION TO ANOTHER ENVIRONMENT
	8.8.1. About copying integrations
	8.8.2. Export integrations
	8.8.3. Import integrations

	CHAPTER 9. TRIGGER INTEGRATION EXECUTION WITH A REST API CALL
	9.1. OVERVIEW AND BENEFIT OF API PROVIDER INTEGRATIONS
	9.2. ABOUT API PROVIDER FLOWS
	9.3. ABOUT API PROVIDER URLS
	9.4. GENERAL WORKFLOW FOR CREATING INTEGRATIONS THAT ARE TRIGGERED BY API CALLS
	9.5. CREATE AN INTEGRATION THAT IS TRIGGERED BY AN API CALL
	9.6. CREATE THE INTEGRATION’S OPERATION FLOWS
	9.7. CONFIGURE AND PUBLISH THE API PROVIDER QUICKSTART INTEGRATION
	9.8. EXECUTE THE API PROVIDER QUICKSTART INTEGRATION

	CHAPTER 10. HOW TO INSTALL OR UPGRADE FUSE ONLINE ON OPENSHIFT CONTAINER PLATFORM
	10.1. OVERVIEW OF STEPS FOR INSTALLING FUSE ONLINE ON OCP
	10.2. REGISTER A CUSTOM RESOURCE DEFINITION
	10.3. DECISIONS TO MAKE BEFORE YOU INSTALL FUSE ONLINE ON OCP
	10.4. INSTALL FUSE ONLINE ON OCP
	10.5. EXPOSE APIS IN 3SCALE FOR API PROVIDER INTEGRATIONS
	10.6. MONITOR FUSE ONLINE INTEGRATIONS ON OCP WITH PROMETHEUS
	10.7. UPGRADE FUSE ONLINE ON OCP
	10.8. UNINSTALL FUSE ONLINE FROM AN OCP PROJECT
	10.9. DELETE AN OCP PROJECT THAT CONTAINS FUSE ONLINE

