
Red Hat Fuse 7.0

Security Guide

Making it safe for your systems to work together

Last Updated: 2020-03-27

Red Hat Fuse 7.0 Security Guide

Making it safe for your systems to work together

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to secure the Red Hat Fuse container, the web console, message brokers,
routing and integration components, web and RESTful services, and it provides a tutorial on LDAP
authentication.

. .

. .

Table of Contents

CHAPTER 1. SECURITY ARCHITECTURE
1.1. OSGI CONTAINER SECURITY

Overview
JAAS realms
karaf realm
Console port
JMX port
Application bundles and JAAS security

1.2. APACHE CAMEL SECURITY
Overview
Alternatives for Apache Camel security
Endpoint security
Payload security
XMLSecurity data format
Crypto data format

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER
2.1. JAAS AUTHENTICATION

2.1.1. Default JAAS Realm
Default JAAS realm
How to integrate an application with JAAS
Default JAAS login modules
Configuring users in the properties login module
Configuring user groups in the properties login module
Configuring the public key login module
Configuring user groups in the public key login module
Encrypting the stored passwords
Overriding the default realm

2.1.2. Defining JAAS Realms
Namespace
Configuring a JAAS realm
Converting standard JAAS login properties to XML
Example

2.1.3. JAAS Properties Login Module
Supported credentials
Implementation classes
Options
Format of the user properties file
Sample Blueprint configuration

2.1.4. JAAS OSGi Config Login Module
Overview
Supported credentials
Implementation classes
Options
Location of the configuration file
Format of the configuration file
Sample Blueprint configuration

2.1.5. JAAS Public Key Login Module
Supported credentials
Implementation classes
Options

7
7
7
7
8
8
8
8
8
8
9
9

10
10
10

11
11
11
11
11
11

12
12
12
13
13
14
14
14
14
16
17
17
17
18
18
18
18
19
19
19
19

20
20
20
20
21
21
21
21

Table of Contents

1

Format of the keys properties file
Sample Blueprint configuration

2.1.6. JAAS JDBC Login Module
Overview
Supported credentials
Implementation classes
Options
Example of setting up a JDBC login module
Create the database tables
Create the data source
Specify the data source as an OSGi service

2.1.7. JAAS LDAP Login Module
Overview
Supported credentials
Implementation classes
Options
Sample configuration for Apache DS
Filter settings for different directory servers

2.1.8. Encrypting Stored Passwords
Options
Encryption services
Basic encryption service
Jasypt encryption
Example of a login module with Jasypt encryption

2.2. ROLE-BASED ACCESS CONTROL
2.2.1. Overview of Role-Based Access Control

Mechanisms
Types of protection
Adding roles to users
Standard roles
ACL files
Customizing role-based access control
Additional properties for controlling access

2.2.2. Customizing the JMX ACLs
Architecture
How it works
Location of JMX ACL files
Mapping MBeans to ACL file names
ACL file format
ACL file hierarchy
Root ACL definitions
Package ACL definitions
ACL for custom MBeans
Dynamic configuration at run time

2.2.3. Customizing the Command Console ACLs
Architecture
How it works
Configuring default security roles
Location of command console ACL files
Mapping command scopes to ACL file names
ACL file format
Dynamic configuration at run time

2.2.4. Defining ACLs for OSGi Services

21
22
22
22
23
23
23
24
24
24
25
26
26
26
26
27
29
31
32
32
33
34
34
34
35
35
35
36
36
37
37
37
37
38
38
38
39
39
39
40
40
41
41
41
41
41

42
42
43
43
43
44
44

Red Hat Fuse 7.0 Security Guide

2

. .

. .

. .

ACL file format
How to define an ACL for a custom OSGi service
How to invoke an OSGi service secured with RBAC
How to discover the roles required by an OSGi service

2.3. USING ENCRYPTED PROPERTY PLACEHOLDERS
How to use encrypted property placeholders
Blueprint XML example

2.4. ENABLING REMOTE JMX SSL
Overview
Prerequisites
Create the jbossweb.keystore file
Create and deploy the keystore.xml file
Add the required properties to org.apache.karaf.management.cfg
Restart the Karaf container
Testing the Secure JMX connection

CHAPTER 3. SECURING THE UNDERTOW HTTP SERVER
3.1. UNDERTOW SERVER
3.2. CREATE X.509 CERTIFICATE AND PRIVATE KEY
3.3. ENABLING SSL/TLS FOR UNDERTOW IN AN APACHE KARAF CONTAINER
3.4. CUSTOMIZING ALLOWED TLS PROTOCOLS AND CIPHER SUITES
3.5. CONNECT TO THE SECURE CONSOLE

CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT
4.1. SECURE ACTIVEMQ CONNECTION FACTORY

Overview
Programming the security properties
Defining a secure connection factory

4.2. EXAMPLE CAMEL ACTIVEMQ COMPONENT CONFIGURATION
Overview
Prerequisites
Sample Camel ActiveMQ component
Sample Camel route

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT
5.1. THE CAMEL CXF PROXY DEMONSTRATION

Overview
Modifications
Obtaining the demonstration code
Obtaining the sample certificates
Physical part of the WSDL contract
WSDL addressing details

5.2. SECURING THE WEB SERVICES PROXY
Overview
Implicit configuration
Steps to add SSL/TLS security to the Jetty container
Add certificates to the bundle resources
Modify POM to switch off resource filtering
Instantiate the CXF Bus
Add the httpj:engine-factory element to Spring
Define the cxfcore:, sec: and httpj: prefixes
Modify proxy address URL to use HTTPS

5.3. DEPLOYING THE APACHE CAMEL ROUTE
Overview

44
44
46
46
46
47
48
49
49
50
50
52
52
52
52

54
54
54
54
56
56

57
57
57
57
57
58
58
58
58
59

60
60
60
60
61
61
61

62
62
62
63
63
64
64
64
65
66
66
67
67

Table of Contents

3

. .

. .

. .

. .

Prerequisites
Steps to deploy the Camel route
Build the demonstration
Start the OSGi container
Install the required features
Deploy the bundle
Check the console output

5.4. SECURING THE WEB SERVICES CLIENT
Overview
Implicit configuration
Certificates needed on the client side
Loading Spring definitions into the client
Creating the client proxy
Steps to add SSL/TLS security to the client
Create the Java client as a test case
Add the http:conduit element to Spring configuration
Run the client

CHAPTER 6. SECURING THE MANAGEMENT CONSOLE
6.1. CONTROLLING ACCESS TO THE FUSE MANAGEMENT CONSOLE

CHAPTER 7. INTEGRATION WITH RED HAT SINGLE SIGN-ON
7.1. ADAPTER FOR SPRING BOOT CONTAINER
7.2. ADAPTER FOR APACHE KARAF CONTAINER
7.3. ADAPTER FOR JBOSS EAP CONTAINER

CHAPTER 8. LDAP AUTHENTICATION TUTORIAL
8.1. TUTORIAL OVERVIEW

Goals
8.2. SET-UP A DIRECTORY SERVER AND CONSOLE

Prerequisites
Install 389 Directory Server
Install 389 Management Console
Connect the console to the server

8.3. ADD USER ENTRIES TO THE DIRECTORY SERVER
Alternative to adding user entries
Goals
Adding user entries
Adding groups for the roles

8.4. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER
References
Procedure for standalone OSGi container
Test the LDAP authentication
Troubleshooting

APPENDIX A. MANAGING CERTIFICATES
A.1. WHAT IS AN X.509 CERTIFICATE?

Role of certificates
Integrity of the public key
Digital signatures
Contents of an X.509 certificate
Distinguished names

A.2. CERTIFICATION AUTHORITIES
A.2.1. Introduction to Certificate Authorities

67
67
67
68
68
68
68
68
69
69
69
70
70
71
71
73
74

76
76

77
77
77
77

79
79
79
79
79
79
80
80
82
82
82
82
84
86
86
86
88
89

90
90
90
90
90
90
91
91
91

Red Hat Fuse 7.0 Security Guide

4

. .

A.2.2. Commercial Certification Authorities
Signing certificates
Advantages of commercial CAs
Criteria for choosing a CA

A.2.3. Private Certification Authorities
Choosing a CA software package
OpenSSL software package
Setting up a private CA using OpenSSL
Choosing a host for a private certification authority
Security precautions

A.3. CERTIFICATE CHAINING
Certificate chain
Self-signed certificate
Chain of trust
Certificates signed by multiple CAs
Trusted CAs

A.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES
Overview
HTTPS URL integrity check
Reference
How to specify the certificate identity
Using commonName
Using subjectAltName (multi-homed hosts)

A.5. CREATING YOUR OWN CERTIFICATES
A.5.1. Install the OpenSSL Utilities

Installing OpenSSL on RHEL and Fedora platforms
Source code distribution

A.5.2. Set Up a Private Certificate Authority
Overview
Steps to set up a private Certificate Authority

A.5.3. Create a CA Trust Store File
Overview
Steps to create a CA trust store

A.5.4. Generate and Sign a New Certificate
Overview
Steps to generate and sign a new certificate

APPENDIX B. ASN.1 AND DISTINGUISHED NAMES
B.1. ASN.1

Overview
BER
DER
References

B.2. DISTINGUISHED NAMES
Overview
String representation of DN
DN string example
Structure of a DN string
OID
Attribute types
AVA
RDN

91
91
91
91

92
92
92
92
92
92
92
92
93
93
93
93
93
93
94
94
94
94
94
95
96
96
96
96
96
96
99
99
99
99
99

100

102
102
102
102
102
102
102
102
103
103
103
103
103
104
104

Table of Contents

5

Red Hat Fuse 7.0 Security Guide

6

CHAPTER 1. SECURITY ARCHITECTURE

Abstract

In the OSGi container, it is possible to deploy applications supporting a variety of security features.
Currently, only the Java Authentication and Authorization Service (JAAS) is based on a common,
container-wide infrastructure. Other security features are provided separately by the individual products
and components deployed in the container.

1.1. OSGI CONTAINER SECURITY

Overview

Figure 1.1, “OSGi Container Security Architecture” shows an overview of the security infrastructure that
is used across the container and is accessible to all bundles deployed in the container. This common
security infrastructure currently consists of a mechanism for making JAAS realms (or login modules)
available to all application bundles.

Figure 1.1. OSGi Container Security Architecture

JAAS realms

A JAAS realm or login module is a plug-in module that provides authentication and authorization data to
Java applications, as defined by the Java Authentication and Authorization Service (JAAS)
specification.

Red Hat Fuse supports a special mechanism for defining JAAS login modules (in either a Spring or a
blueprint file), which makes the login module accessible to all bundles in the container. This makes it easy
for multiple applications running in the OSGi container to consolidate their security data into a single
JAAS realm.

CHAPTER 1. SECURITY ARCHITECTURE

7

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html

karaf realm

The OSGi container has a predefined JAAS realm, the karaf realm. Red Hat Fuse uses the karaf realm
to provide authentication for remote administration of the OSGi runtime, for the Fuse Management
Console, and for JMX management. The karaf realm uses a simple file-based repository, where
authentication data is stored in the InstallDir/etc/users.properties file.

You can use the karaf realm in your own applications. Simply configure karaf as the name of the JAAS
realm that you want to use. Your application then performs authentication using the data from the
users.properties file.

Console port

You can administer the OSGi container remotely either by connecting to the console port with a Karaf
client or using the Karaf ssh:ssh command. The console port is secured by a JAAS login feature that
connects to the karaf realm. Users that try to connect to the console port will be prompted to enter a
username and password that must match one of the accounts from the karaf realm.

JMX port

You can manage the OSGi container by connecting to the JMX port (for example, using Java’s
JConsole). The JMX port is also secured by a JAAS login feature that connects to the karaf realm.

Application bundles and JAAS security

Any application bundles that you deploy into the OSGi container can access the container’s JAAS
realms. The application bundle simply references one of the existing JAAS realms by name (which
corresponds to an instance of a JAAS login module).

It is essential, however, that the JAAS realms are defined using the OSGi container’s own login
configuration mechanism—by default, Java provides a simple file-based login configuration
implementation, but you cannot use this implementation in the context of the OSGi container.

1.2. APACHE CAMEL SECURITY

Overview

Figure 1.2, “Apache Camel Security Architecture” shows an overview of the basic options for securely
routing messages between Apache Camel endpoints.

Figure 1.2. Apache Camel Security Architecture

Red Hat Fuse 7.0 Security Guide

8

Figure 1.2. Apache Camel Security Architecture

Alternatives for Apache Camel security

As shown in Figure 1.2, “Apache Camel Security Architecture” , you have the following options for
securing messages:

Endpoint security—part (a) shows a message sent between two routes with secure endpoints.
The producer endpoint on the left opens a secure connection (typically using SSL/TLS) to the
consumer endpoint on the right. Both of the endpoints support security in this scenario.
With endpoint security, it is typically possible to perform some form of peer authentication (and
sometimes authorization).

Payload security—part (b) shows a message sent between two routes where the endpoints are
both insecure. To protect the message from unauthorized snooping in this case, use a payload
processor that encrypts the message before sending and decrypts the message after it is
received.
A limitation of payload security is that it does not provide any kind of authentication or
authorization mechanisms.

Endpoint security

There are several Camel components that support security features. It is important to note, however,
that these security features are implemented by the individual components, not by the Camel core.
Hence, the kinds of security feature that are supported, and the details of their implementation, vary
from component to component. Some of the Camel components that currently support security are, as
follows:

JMS and ActiveMQ—SSL/TLS security and JAAS security for client-to-broker and broker-to-
broker communication.

Jetty—HTTP Basic Authentication and SSL/TLS security.

CXF—SSL/TLS security and WS-Security.

Crypto—creates and verifies digital signatures in order to guarantee message integrity.

Netty—SSL/TLS security.

CHAPTER 1. SECURITY ARCHITECTURE

9

MINA—SSL/TLS security.

Cometd—SSL/TLS security.

glogin and gauth—authorization in the context of Google applications.

Payload security

Apache Camel provides the following payload security implementations, where the encryption and
decryption steps are exposed as data formats on the marshal() and unmarshal() operations

the section called “XMLSecurity data format” .

the section called “Crypto data format” .

XMLSecurity data format

The XMLSecurity data format is specifically designed to encrypt XML payloads. When using this data
format, you can specify which XML element to encrypt. The default behavior is to encrypt all XML
elements. This feature uses a symmetric encryption algorithm.

For more details, see http://camel.apache.org/xmlsecurity-dataformat.html.

Crypto data format

The crypto data format is a general purpose encryption feature that can encrypt any kind of payload. It
is based on the Java Cryptographic Extension and implements only symmetric (shared-key) encryption
and decryption.

For more details, see http://camel.apache.org/crypto.html.

Red Hat Fuse 7.0 Security Guide

10

http://camel.apache.org/xmlsecurity-dataformat.html
http://camel.apache.org/crypto.html

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

Abstract

The Apache Karaf container is secured using JAAS. By defining JAAS realms, you can configure the
mechanism used to retrieve user credentials. You can also refine access to the container’s
administrative interfaces by changing the default roles.

2.1. JAAS AUTHENTICATION

Abstract

The Java Authentication and Authorization Service (JAAS) provides a general framework for
implementing authentication in a Java application. The implementation of authentication is modular,
with individual JAAS modules (or plug-ins) providing the authentication implementations.

For background information about JAAS, see the JAAS Reference Guide.

2.1.1. Default JAAS Realm

This section describes how to manage user data for the default JAAS realm in a Karaf container.

Default JAAS realm

The Karaf container has a predefined JAAS realm, the karaf realm, which is used by default to secure all
aspects of the container.

How to integrate an application with JAAS

You can use the karaf realm in your own applications. Simply configure karaf as the name of the JAAS
realm that you want to use.

Default JAAS login modules

When you start the Karaf container for the first time, it is configured to use the karaf default realm. In
this default configuration, the karaf realm deploys five JAAS login modules, which are enabled
simultaneously. To see the deployed login modules, enter the jaas:realms console command, as follows:

Index │ Realm Name │ Login Module Class Name
──────┼────────────┼───
────────────────────
1 │ karaf │ org.apache.karaf.jaas.modules.properties.PropertiesLoginModule
2 │ karaf │ org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule
3 │ karaf │ org.apache.karaf.jaas.modules.audit.FileAuditLoginModule
4 │ karaf │ org.apache.karaf.jaas.modules.audit.LogAuditLoginModule
5 │ karaf │ org.apache.karaf.jaas.modules.audit.EventAdminAuditLoginModule

IMPORTANT

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

11

https://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html

IMPORTANT

In a Karaf container, both the properties login module and the public key login module are
enabled. When JAAS authenticates a user, it tries first of all to authenticate the user with
the properties login module. If that fails, it then tries to authenticate the user with the
public key login module. If that module also fails, an error is raised.

NOTE

The FileAuditLoginModule login module, the LogAuditLoginModule login module, and
the EventAdminAuditLoginModule login module are used to record an audit trail of
successful and failed login attempts. These login modules do not authenticate users.

Configuring users in the properties login module

The properties login module is used to store username/password credentials in a flat file format. To
create a new user in the properties login module, open the InstallDir/etc/users.properties file using a
text editor and add a line with the following syntax:

Username=Password[,UserGroup|Role][,UserGroup|Role]...

For example, to create the jdoe user with password, topsecret, and role, admin, you could create an
entry like the following:

jdoe=topsecret,admin

Where the admin role gives full administrative privileges to the jdoe user.

Configuring user groups in the properties login module

Instead of (or in addition to) assigning roles directly to users, you also have the option of adding users to
user groups in the properties login module. To create a user group in the properties login module, open
the InstallDir/etc/users.properties file using a text editor and add a line with the following syntax:

g\:GroupName=Role1,Role2,...

For example, to create the admingroup user group with the roles, group and admin, you could create
an entry like the following:

g\:admingroup=group,admin

You could then add the majorclanger user to the admingroup, by creating the following user entry:

majorclanger=secretpass,_g_:admingroup

Configuring the public key login module

The public key login module is used to store SSH public key credentials in a flat file format. To create a
new user in the public key login module, open the InstallDir/etc/keys.properties file using a text editor
and add a line with the following syntax:

Username=PublicKey[,UserGroup|Role][,UserGroup|Role]...

Red Hat Fuse 7.0 Security Guide

12

For example, you can create the jdoe user with the admin role by adding the following entry to the
InstallDir/etc/keys.properties file (on a single line):

jdoe=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH
7WT2NWPq/xfW6MPbLm1Vs14E7gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnfqimFQ8E+4
P208UewwI1VBNaFpEy9nXzrith1yrv8iIDGZ3RSAHHAAAAFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QA
AAnEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6E
woFhO3zwkyjMim4TwWeotifI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfB
pKLZl6Ae1UlZAFMO/7PSSoAAACBAKKSU2PFl/qOLxIwmBZPPIcJshVe7bVUpFvyl3BbJDow8rXfskl8w
O63OzP/qLmcJM0+JbcRU/53Jj7uyk31drV2qxhIOsLDC9dGCWj47Y7TyhPdXh/0dthTRBy6bqGtRPxGa
7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx,admin

IMPORTANT

Do not insert the entire contents of an id_rsa.pub file here. Insert just the block of
symbols which represents the public key itself.

Configuring user groups in the public key login module

Instead of (or in addition to) assigning roles directly to users, you also have the option of adding users to
user groups in the public key login module. To create a user group in the public key login module, open
the InstallDir/etc/keys.properties file using a text editor and add a line with the following syntax:

g\:GroupName=Role1,Role2,...

For example, to create the admingroup user group with the roles, group and admin, you could create
an entry like the following:

g\:admingroup=group,admin

You could then add the jdoe user to the admingroup, by creating the following user entry:

jdoe=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH
7WT2NWPq/xfW6MPbLm1Vs14E7gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnfqimFQ8E+4
P208UewwI1VBNaFpEy9nXzrith1yrv8iIDGZ3RSAHHAAAAFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QA
AAnEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6E
woFhO3zwkyjMim4TwWeotifI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfB
pKLZl6Ae1UlZAFMO/7PSSoAAACBAKKSU2PFl/qOLxIwmBZPPIcJshVe7bVUpFvyl3BbJDow8rXfskl8w
O63OzP/qLmcJM0+JbcRU/53Jj7uyk31drV2qxhIOsLDC9dGCWj47Y7TyhPdXh/0dthTRBy6bqGtRPxGa
7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx,_g_:admingroup

Encrypting the stored passwords

By default, passwords are stored in the InstallDir/etc/users.properties file in plaintext format. To
protect the passwords in this file, you must set the file permissions of the users.properties file so that it
can be read only by administrators. To provide additional protection, you can optionally encrypt the
stored passwords using a message digest algorithm.

To enable the password encryption feature, edit the InstallDir/etc/org.apache.karaf.jaas.cfg file and
set the encryption properties as described in the comments. For example, the following settings would
enable basic encryption using the MD5 message digest algorithm:

encryption.enabled = true

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

13

encryption.name = basic
encryption.prefix = {CRYPT}
encryption.suffix = {CRYPT}
encryption.algorithm = MD5
encryption.encoding = hexadecimal

NOTE

The encryption settings in the org.apache.karaf.jaas.cfg file are applied only to the
default karaf realm in a Karaf container. They have no effect on a custom realm.

For more details about password encryption, see Section 2.1.8, “Encrypting Stored Passwords” .

Overriding the default realm

If you want to customise the JAAS realm, the most convenient approach to take is to override the
default karaf realm by defining a higher ranking karaf realm. This ensures that all of the Red Hat Fuse
security components switch to use your custom realm. For details of how to define and deploy custom
JAAS realms, see Section 2.1.2, “Defining JAAS Realms” .

2.1.2. Defining JAAS Realms

When defining a JAAS realm in the OSGi container, you cannot put the definitions in a conventional
JAAS login configuration file. Instead, the OSGi container uses a special jaas:config element for
defining JAAS realms in a blueprint configuration file. The JAAS realms defined in this way are made
available to all of the application bundles deployed in the container, making it possible to share the JAAS
security infrastructure across the whole container.

Namespace

The jaas:config element is defined in the http://karaf.apache.org/xmlns/jaas/v1.0.0 namespace. When
defining a JAAS realm you need to include the line shown in Example 2.1, “JAAS Blueprint Namespace”.

Example 2.1. JAAS Blueprint Namespace

xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"

Configuring a JAAS realm

The syntax for the jaas:config element is shown in Example 2.2, “Defining a JAAS Realm in Blueprint
XML”.

Example 2.2. Defining a JAAS Realm in Blueprint XML

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0">

 <jaas:config name="JaasRealmName"
 rank="IntegerRank">
 <jaas:module className="LoginModuleClassName"
 flags="[required|requisite|sufficient|optional]">

Red Hat Fuse 7.0 Security Guide

14

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html#AppendixB
http://karaf.apache.org/xmlns/jaas/v1.0.0

 Property=Value
 ...
 </jaas:module>
 ...
 <!-- Can optionally define multiple modules -->
 ...
 </jaas:config>

</blueprint>

The elements are used as follows:

jaas:config

Defines the JAAS realm. It has the following attributes:

name—specifies the name of the JAAS realm.

rank—specifies an optional rank for resolving naming conflicts between JAAS realms . When
two or more JAAS realms are registered under the same name, the OSGi container always
picks the realm instance with the highest rank. If you decide to override the default realm,
karaf, you should specify a rank of 100 or more, so that it overrides all of the previously
installed karaf realms.

jaas:module

Defines a JAAS login module in the current realm. jaas:module has the following attributes:

className—the fully-qualified class name of a JAAS login module. The specified class must
be available from the bundle classloader.

flags—determines what happens upon success or failure of the login operation. Table 2.1,
“Flags for Defining a JAAS Module” describes the valid values.

Table 2.1. Flags for Defining a JAAS Module

Value Description

required Authentication of this login module must
succeed. Always proceed to the next login
module in this entry, irrespective of success or
failure.

requisite Authentication of this login module must
succeed. If success, proceed to the next login
module; if failure, return immediately without
processing the remaining login modules.

sufficient Authentication of this login module is not
required to succeed. If success, return
immediately without processing the remaining
login modules; if failure, proceed to the next
login module.

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

15

optional Authentication of this login module is not
required to succeed. Always proceed to the
next login module in this entry, irrespective of
success or failure.

Value Description

The contents of a jaas:module element is a space separated list of property settings, which
are used to initialize the JAAS login module instance. The specific properties are determined
by the JAAS login module and must be put into the proper format.

NOTE

You can define multiple login modules in a realm.

Converting standard JAAS login properties to XML

Red Hat Fuse uses the same properties as a standard Java login configuration file, however Red Hat
Fuse requires that they are specified slightly differently. To see how the Red Hat Fuse approach to
defining JAAS realms compares with the standard Java login configuration file approach, consider how
to convert the login configuration shown in Example 2.3, “Standard JAAS Properties” , which defines the
PropertiesLogin realm using the Red Hat Fuse properties login module class, PropertiesLoginModule:

Example 2.3. Standard JAAS Properties

PropertiesLogin {
 org.apache.activemq.jaas.PropertiesLoginModule required
 org.apache.activemq.jaas.properties.user="users.properties"
 org.apache.activemq.jaas.properties.group="groups.properties";
};

The equivalent JAAS realm definition, using the jaas:config element in a blueprint file, is shown in
Example 2.4, “Blueprint JAAS Properties” .

Example 2.4. Blueprint JAAS Properties

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="PropertiesLogin">
 <jaas:module flags="required"
 className="org.apache.activemq.jaas.PropertiesLoginModule">
 org.apache.activemq.jaas.properties.user=users.properties
 org.apache.activemq.jaas.properties.group=groups.properties
 </jaas:module>
 </jaas:config>

</blueprint>

Red Hat Fuse 7.0 Security Guide

16

IMPORTANT

Do not use double quotes for JAAS properties in the blueprint configuration.

Example

Red Hat Fuse also provides an adapter that enables you to store JAAS authentication data in an X.500
server. Example 2.5, “Configuring a JAAS Realm” defines the LDAPLogin realm to use Red Hat Fuse’s
LDAPLoginModule class, which connects to the LDAP server located at ldap://localhost:10389.

Example 2.5. Configuring a JAAS Realm

For a detailed description and example of using the LDAP login module, see Section 2.1.7, “JAAS LDAP
Login Module”.

2.1.3. JAAS Properties Login Module

The JAAS properties login module stores user data in a flat file format (where the stored passwords can
optionally be encrypted using a message digest algorithm). The user data can either be edited directly,
using a simple text editor, or managed using the jaas:* console commands.

For example, a Karaf container uses the JAAS properties login module by default and stores the
associated user data in the InstallDir/etc/users.properties file.

Supported credentials

The JAAS properties login module authenticates username/password credentials, returning the list of

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="LDAPLogin" rank="200">
 <jaas:module flags="required"
 className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.username=uid=admin,ou=system
 connection.password=secret
 connection.protocol=
 connection.url = ldap://localhost:10389
 user.base.dn = ou=users,ou=system
 user.filter = (uid=%u)
 user.search.subtree = true
 role.base.dn = ou=users,ou=system
 role.filter = (uid=%u)
 role.name.attribute = ou
 role.search.subtree = true
 authentication = simple
 </jaas:module>
 </jaas:config>
</blueprint>

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

17

The JAAS properties login module authenticates username/password credentials, returning the list of
roles associated with the authenticated user.

Implementation classes

The following classes implement the JAAS properties login module:

org.apache.karaf.jaas.modules.properties.PropertiesLoginModule

Implements the JAAS login module.

org.apache.karaf.jaas.modules.properties.PropertiesBackingEngineFactory

Must be exposed as an OSGi service. This service makes it possible for you to manage the user data
using the jaas:* console commands from the Apache Karaf shell (see Apache Karaf Console
Reference).

Options

The JAAS properties login module supports the following options:

users

Location of the user properties file.

Format of the user properties file

The user properties file is used to store username, password, and role data for the properties login
module. Each user is represented by a single line in the user properties file, where a line has the following
form:

Username=Password[,UserGroup|Role][,UserGroup|Role]...

User groups can also be defined in this file, where each user group is represented by a single line in the
following format:

g\:GroupName=Role1[,Role2]...

For example, you can define the users, bigcheese and guest, and the user groups, admingroup and
guestgroup, as follows:

Users
bigcheese=cheesepass,_g_:admingroup
guest=guestpass,_g_:guestgroup

Groups
g\:admingroup=group,admin
g\:guestgroup=viewer

Sample Blueprint configuration

The following Blueprint configuration shows how to define a new karaf realm using the properties login
module, where the default karaf realm is overridden by setting the rank attribute to 200:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

Red Hat Fuse 7.0 Security Guide

18

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.0/html-single/apache_karaf_console_reference/index#Consolejaas

 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <type-converters>
 <bean class="org.apache.karaf.jaas.modules.properties.PropertiesConverter"/>
 </type-converters>

<!--Allow usage of System properties, especially the karaf.base property-->
 <ext:property-placeholder
 placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule">
 users= $[karaf.base]/etc/users.properties
 </jaas:module>
 </jaas:config>

 <!-- The Backing Engine Factory Service for the PropertiesLoginModule -->
 <service interface="org.apache.karaf.jaas.modules.BackingEngineFactory">
 <bean class="org.apache.karaf.jaas.modules.properties.PropertiesBackingEngineFactory"/>
 </service>

</blueprint>

Remember to export the BackingEngineFactory bean as an OSGi service, so that the jaas:* console
commands can manage the user data.

2.1.4. JAAS OSGi Config Login Module

Overview

The JAAS OSGi config login modules leverages the OSGi Config Admin Service to store user data.
This login module is fairly similar to the JAAS properties login module (for example, the syntax of the
user entries is the same), but the mechanism for retrieving user data is based on the OSGi Config
Admin Service.

The user data can be edited directly by creating a corresponding OSGi configuration file,
etc/PersistentID.cfg or using any method of configuration that is supported by the OSGi Config Admin
Service. The jaas:* console commands are not supported, however.

Supported credentials

The JAAS OSGi config login module authenticates username/password credentials, returning the list of
roles associated with the authenticated user.

Implementation classes

The following classes implement the JAAS OSGi config login module:

org.apache.karaf.jaas.modules.osgi.OsgiConfigLoginModule

Implements the JAAS login module.

NOTE

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

19

NOTE

There is no backing engine factory for the OSGi config login module, which means that
this module cannot be managed using the jaas:* console commands.

Options

The JAAS OSGi config login module supports the following options:

pid

The persistent ID of the OSGi configuration containing the user data. In the OSGi Config Admin
standard, a persistent ID references a set of related configuration properties.

Location of the configuration file

The location of the configuration file follows the usual convention where the configuration for the
persistent ID, PersistentID, is stored in the following file:

InstallDir/etc/PersistentID.cfg

Format of the configuration file

The PersistentID.cfg configuration file is used to store username, password, and role data for the OSGi
config login module. Each user is represented by a single line in the configuration file, where a line has
the following form:

Username=Password[,Role][,Role]...

NOTE

User groups are not supported in the JAAS OSGi config login module.

Sample Blueprint configuration

The following Blueprint configuration shows how to define a new karaf realm using the OSGi config
login module, where the default karaf realm is overridden by setting the rank attribute to 200:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
className="org.apache.karaf.jaas.modules.osgi.OsgiConfigLoginModule">
 pid = org.jboss.example.osgiconfigloginmodule
 </jaas:module>
 </jaas:config>

</blueprint>

In this example, the user data will be stored in the file,

Red Hat Fuse 7.0 Security Guide

20

In this example, the user data will be stored in the file,
InstallDir/etc/org.jboss.example.osgiconfigloginmodule.cfg, and it is not possible to edit the
configuration using the jaas:* console commands.

2.1.5. JAAS Public Key Login Module

The JAAS public key login module stores user data in a flat file format, which can be edited directly
using a simple text editor. The jaas:* console commands are not supported, however.

For example, a Karaf container uses the JAAS public key login module by default and stores the
associated user data in the InstallDir/etc/keys.properties file.

Supported credentials

The JAAS public key login module authenticates SSH key credentials. When a user tries to log in, the
SSH protocol uses the stored public key to challenge the user. The user must possess the
corresponding private key in order to answer the challenge. If login is successful, the login module
returns the list of roles associated with the user.

Implementation classes

The following classes implement the JAAS public key login module:

org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule

Implements the JAAS login module.

NOTE

There is no backing engine factory for the public key login module, which means that this
module cannot be managed using the jaas:* console commands.

Options

The JAAS public key login module supports the following options:

users

Location of the user properties file for the public key login module.

Format of the keys properties file

The keys.properties file is used to store username, public key, and role data for the public key login
module. Each user is represented by a single line in the keys properties file, where a line has the following
form:

Username=PublicKey[,UserGroup|Role][,UserGroup|Role]...

Where the PublicKey is the public key part of an SSH key pair (typically found in a user’s home directory
in ~/.ssh/id_rsa.pub in a UNIX system).

For example, to create the user jdoe with the admin role, you would create an entry like the following:

jdoe=AAAAB3NzaC1kc3MAAACBAP1/U4EddRIpUt9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH
7WT2NWPq/xfW6MPbLm1Vs14E7gB00b/JmYLdrmVClpJ+f6AR7ECLCT7up1/63xhv4O1fnfqimFQ8E+4

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

21

P208UewwI1VBNaFpEy9nXzrith1yrv8iIDGZ3RSAHHAAAAFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QA
AAnEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6E
woFhO3zwkyjMim4TwWeotifI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfB
pKLZl6Ae1UlZAFMO/7PSSoAAACBAKKSU2PFl/qOLxIwmBZPPIcJshVe7bVUpFvyl3BbJDow8rXfskl8w
O63OzP/qLmcJM0+JbcRU/53Jj7uyk31drV2qxhIOsLDC9dGCWj47Y7TyhPdXh/0dthTRBy6bqGtRPxGa
7gJov1xm/UuYYXPIUR/3x9MAZvZ5xvE0kYXO+rx,admin

IMPORTANT

Do not insert the entire contents of the id_rsa.pub file here. Insert just the block of
symbols which represents the public key itself.

User groups can also be defined in this file, where each user group is represented by a single line in the
following format:

g\:GroupName=Role1[,Role2]...

Sample Blueprint configuration

The following Blueprint configuration shows how to define a new karaf realm using the public key login
module, where the default karaf realm is overridden by setting the rank attribute to 200:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

<!--Allow usage of System properties, especially the karaf.base property-->
 <ext:property-placeholder
 placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
className="org.apache.karaf.jaas.modules.publickey.PublickeyLoginModule">
 users = $[karaf.base]/etc/keys.properties
 </jaas:module>
 </jaas:config>

</blueprint>

In this example, the user data will be stored in the file, InstallDir/etc/keys.properties, and it is not
possible to edit the configuration using the jaas:* console commands.

2.1.6. JAAS JDBC Login Module

Overview

The JAAS JDBC login module enables you to store user data in a database back-end, using Java
Database Connectivity (JDBC) to connect to the database. Hence, you can use any database that
supports JDBC to store your user data. To manage the user data, you can use either the native
database client tools or the jaas:* console commands (where the backing engine uses configured SQL
queries to perform the relevant database updates).

Red Hat Fuse 7.0 Security Guide

22

You can combine multiple login modules with each login module providing both the authentication and
authorization components. For example, you can combine default PropertiesLoginModule with
JDBCLoginModule to ensure access to the system.

NOTE

User groups are not supported in the JAAS JDBC login module.

Supported credentials

The JAAS JDBC Login Module authenticates username/password credentials, returning the list of roles
associated with the authenticated user.

Implementation classes

The following classes implement the JAAS JDBC Login Module:

org.apache.karaf.jaas.modules.jdbc.JDBCLoginModule

Implements the JAAS login module.

org.apache.karaf.jaas.modules.jdbc.JDBCBackingEngineFactory

Must be exposed as an OSGi service. This service makes it possible for you to manage the user data
using the jaas:* console commands from the Apache Karaf shell (see
olink:FMQCommandRef/Consolejaas).

Options

The JAAS JDBC login module supports the following options:

datasource

The JDBC data source, specified either as an OSGi service or as a JNDI name. You can specify a data
source’s OSGi service using the following syntax:

osgi:ServiceInterfaceName[/ServicePropertiesFilter]

The ServiceInterfaceName is the interface or class that is exported by the data source’s OSGi service
(usually javax.sql.DataSource).

Because multiple data sources can be exported as OSGi services in a Karaf container, it is usually
necessary to specify a filter, ServicePropertiesFilter, to select the particular data source that you
want. Filters on OSGi services are applied to the service property settings and follow a syntax that is
borrowed from LDAP filter syntax.

query.password

The SQL query that retrieves the user’s password. The query can contain a single question mark
character, ?, which is substituted by the username at run time.

query.role

The SQL query that retrieves the user’s roles. The query can contain a single question mark
character, ?, which is substituted by the username at run time.

insert.user

The SQL query that creates a new user entry. The query can contain two question marks, ?,

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

23

olink:FMQCommandRef/Consolejaas

The SQL query that creates a new user entry. The query can contain two question marks, ?,
characters: the first question mark is substituted by the username and the second question mark is
substituted by the password at run time.

insert.role

The SQL query that adds a role to a user entry. The query can contain two question marks, ?,
characters: the first question mark is substituted by the username and the second question mark is
substituted by the role at run time.

delete.user

The SQL query that deletes a user entry. The query can contain a single question mark character, ?,
which is substituted by the username at run time.

delete.role

The SQL query that deletes a role from a user entry. The query can contain two question marks, ?,
characters: the first question mark is substituted by the username and the second question mark is
substituted by the role at run time.

delete.roles

The SQL query that deletes multiple roles from a user entry. The query can contain a single question
mark character, ?, which is substituted by the username at run time.

Example of setting up a JDBC login module

To set up a JDBC login module, perform the following main steps:

1. the section called “Create the database tables”

2. the section called “Create the data source”

3. the section called “Specify the data source as an OSGi service”

Create the database tables

Before you can set up the JDBC login module, you must set up a users table and a roles table in the
backing database to store the user data. For example, the following SQL commands show how to create
a suitable users table and roles table:

CREATE TABLE users (
 username VARCHAR(255) NOT NULL,
 password VARCHAR(255) NOT NULL,
 PRIMARY KEY (username)
);
CREATE TABLE roles (
 username VARCHAR(255) NOT NULL,
 role VARCHAR(255) NOT NULL,
 PRIMARY KEY (username,role)
);

The users table stores username/password data and the roles table associates a username with one or
more roles.

Create the data source

To use a JDBC datasource with the JDBC login module, the correct approach to take is to create a data
source instance and export the data source as an OSGi service. The JDBC login module can then

Red Hat Fuse 7.0 Security Guide

24

access the data source by referencing the exported OSGi service. For example, you could create a
MySQL data source instance and expose it as an OSGi service (of javax.sql.DataSource type) using
code like the following in a Blueprint file:

<blueprint xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
 <bean id="mysqlDatasource"
 class="com.mysql.jdbc.jdbc2.optional.MysqlDataSource">
 <property name="serverName" value="localhost"></property>
 <property name="databaseName" value="DBName"></property>
 <property name="port" value="3306"></property>
 <property name="user" value="DBUser"></property>
 <property name="password" value="DBPassword"></property>
 </bean>

 <service id="mysqlDS" interface="javax.sql.DataSource"
 ref="mysqlDatasource">
 <service-properties>
 <entry key="osgi.jndi.service.name" value="jdbc/karafdb"/>
 </service-properties>
 </service>
</blueprint>

The preceding Blueprint configuration should be packaged and installed in the Karaf container as an
OSGi bundle.

Specify the data source as an OSGi service

After the data source has been instantiated and exported as an OSGi service, you are ready to configure
the JDBC login module. In particular, the datasource option of the JDBC login module can reference
the data source’s OSGi service using the following syntax:

osgi:javax.sql.DataSource/(osgi.jndi.service.name=jdbc/karafdb)

Where javax.sql.DataSource is the interface type of the exported OSGi service and the filter,
(osgi.jndi.service.name=jdbc/karafdb), selects the particular javax.sql.DataSource instance whose
osgi.jndi.service.name service property has the value, jdbc/karafdb.

For example, you can use the following Blueprint configuration to override the karaf realm with a JDBC
login module that references the sample MySQL data source:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

<!--Allow usage of System properties, especially the karaf.base property-->
 <ext:property-placeholder
 placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
 className="org.apache.karaf.jaas.modules.jdbc.JDBCLoginModule">
 datasource = osgi:javax.sql.DataSource/(osgi.jndi.service.name=jdbc/karafdb)

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

25

 query.password = SELECT password FROM users WHERE username=?
 query.role = SELECT role FROM roles WHERE username=?
 insert.user = INSERT INTO users VALUES(?,?)
 insert.role = INSERT INTO roles VALUES(?,?)
 delete.user = DELETE FROM users WHERE username=?
 delete.role = DELETE FROM roles WHERE username=? AND role=?
 delete.roles = DELETE FROM roles WHERE username=?
 </jaas:module>
 </jaas:config>

 <!-- The Backing Engine Factory Service for the JDBCLoginModule -->
 <service interface="org.apache.karaf.jaas.modules.BackingEngineFactory">
 <bean class="org.apache.karaf.jaas.modules.jdbc.JDBCBackingEngineFactory"/>
 </service>

</blueprint>

NOTE

The SQL statements shown in the preceding configuration are in fact the default values
of these options. Hence, if you create user and role tables consistent with these SQL
statements, you could omit the options settings and rely on the defaults.

In addition to creating a JDBCLoginModule, the preceding Blueprint configuration also instantiates and
exports a JDBCBackingEngineFactory instance, which enables you to manage the user data using the
jaas:* console commands.

2.1.7. JAAS LDAP Login Module

Overview

The JAAS LDAP login module enables you to store user data in an LDAP database. To manage the
stored user data, use a standard LDAP client tool. The jaas:* console commands are not supported.

For more details about using LDAP with Red Hat Fuse see Chapter 8, LDAP Authentication Tutorial .

NOTE

User groups are not supported in the JAAS LDAP login module.

Supported credentials

The JAAS LDAP Login Module authenticates username/password credentials, returning the list of roles
associated with the authenticated user.

Implementation classes

The following classes implement the JAAS LDAP Login Module:

org.apache.karaf.jaas.modules.ldap.LDAPLoginModule

Implements the JAAS login module. It is preloaded in the Karaf container, so you do not need to
install its bundle.

NOTE

Red Hat Fuse 7.0 Security Guide

26

NOTE

There is no backing engine factory for the LDAP Login Module, which means that this
module cannot be managed using the jaas:* console commands.

Options

The JAAS LDAP login module supports the following options:

authentication

Specifies the authentication method used when binding to the LDAP server. Valid values are

simple—bind with user name and password authentication, requiring you to set the
connection.username and connection.password properties.

none—bind anonymously. In this case the connection.username and connection.password
properties can be left unassigned.

NOTE

The connection to the directory server is used only for performing searches. In
this case, an anonymous bind is often preferred, because it is faster than an
authenticated bind (but you would also need to ensure that the directory
server is sufficiently protected, for example by deploying it behind a firewall).

connection.url

Specifies specify the location of the directory server using an ldap URL, ldap://Host:Port. You can
optionally qualify this URL, by adding a forward slash, /, followed by the DN of a particular node in the
directory tree. To enable SSL security on the connection, you need to specify the ldaps: scheme in
the URL—for example, ldaps://Host:Port. You can also specify multiple URLs, as a space-separated
list, for example:

connection.url=ldap://10.0.0.153:2389 ldap://10.10.178.20:389

connection.username

Specifies the DN of the user that opens the connection to the directory server. For example,
uid=admin,ou=system.

connection.password

Specifies the password that matches the DN from connection.username. In the directory server,
the password is normally stored as a userPassword attribute in the corresponding directory entry.

context.com.sun.jndi.ldap.connect.pool

If true, enables connection pooling for LDAP connections. Default is false.

context.com.sun.jndi.ldap.connect.timeout

Specifies the timeout for creating a TCP connection to the LDAP server, in units of milliseconds. We
recommend that you set this property explicitly, because the default value is infinite, which can result
in a hung connection attempt.

context.com.sun.jndi.ldap.read.timeout

Specifies the read timeout for an LDAP operation, in units of milliseconds. We recommend that you
set this property explicitly, because the default value is infinite.

context.java.naming.referral

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

27

An LDAP referral is a form of indirection supported by some LDAP servers. The LDAP referral is an
entry in the LDAP server which contains one or more URLs (usually referencing a node or nodes in
another LDAP server). The context.java.naming.referral property can be used to enable or disable
referral following. It can be set to one of the following values:

follow to follow the referrals (assuming it is supported by the LDAP server),

ignore to silently ignore all referrals,

throw to throw a PartialResultException whenever a referral is encountered.

disableCache

The user and role caches can be disabled by setting this property to true. Default is false.

initial.context.factory

Specifies the class of the context factory used to connect to the LDAP server. This must always be
set to com.sun.jndi.ldap.LdapCtxFactory.

role.base.dn

Specifies the DN of the subtree of the DIT to search for role entries. For example,
ou=groups,ou=system.

role.filter

Specifies the LDAP search filter used to locate roles. It is applied to the subtree selected by
role.base.dn. For example, (member=uid=%u). Before being passed to the LDAP search operation,
the value is subjected to string substitution, as follows:

%u is replaced by the user name extracted from the incoming credentials, and

%dn is replaced by the RDN of the corresponding user in the LDAP server (which was found
by matching against the user.filter filter).

%fqdn is replaced by the DN of the corresponding user in the LDAP server (which was
found by matching against the user.filter filter).

role.mapping

Specifies the mapping between LDAP groups and JAAS roles. If no mapping is specified, the default
mapping is for each LDAP group to map to the corresponding JAAS role of the same name. The role
mapping is specified with the following syntax:

ldap-group=jaas-role(,jaas-role)*(;ldap-group=jaas-role(,jaas-role)*)*

Where each LDAP group, ldap-group, is specified by its Common Name (CN).

For example, given the LDAP groups, admin, devop, and tester, you could map them to JAAS roles,
as follows:

role.mapping=admin=admin;devop=admin,manager;tester=viewer

role.name.attribute

Specifies the attribute type of the role entry that contains the name of the role/group. If you omit
this option, the role search feature is effectively disabled. For example, cn.

role.search.subtree

Specifies whether the role entry search scope includes the subtrees of the tree selected by

Red Hat Fuse 7.0 Security Guide

28

Specifies whether the role entry search scope includes the subtrees of the tree selected by
role.base.dn. If true, the role lookup is recursive (SUBTREE). If false, the role lookup is performed
only at the first level (ONELEVEL).

ssl

Specifies whether the connection to the LDAP server is secured using SSL. If connection.url starts
with ldaps:// SSL is used regardless of this property.

ssl.provider

Specifies the SSL provider to use for the LDAP connection. If not specified, the default SSL
provider is used.

ssl.protocol

Specifies the protocol to use for the SSL connection. You must set this property to TLSv1, in order
to prevent the SSLv3 protocol from being used (POODLE vulnerability).

ssl.algorithm

Specifies the algorithm used by the trust store manager. For example, PKIX.

ssl.keystore

The ID of the keystore that stores the LDAP client’s own X.509 certificate (required only if SSL client
authentication is enabled on the LDAP server). The keystore must be deployed using a
jaas:keystore element (see the section called “Sample configuration for Apache DS”).

ssl.keyalias

The keystore alias of the LDAP client’s own X.509 certificate (required only if there is more than one
certificate stored in the keystore specified by ssl.keystore).

ssl.truststore

The ID of the keystore that stores trusted CA certificates, which are used to verify the LDAP server’s
certificate (the LDAP server’s certificate chain must be signed by one of the certificates in the
truststore). The keystore must be deployed using a jaas:keystore element.

user.base.dn

Specifies the DN of the subtree of the DIT to search for user entries. For example,
ou=users,ou=system.

user.filter

Specifies the LDAP search filter used to locate user credentials. It is applied to the subtree selected
by user.base.dn. For example, (uid=%u). Before being passed to the LDAP search operation, the
value is subjected to string substitution, as follows:

%u is replaced by the user name extracted from the incoming credentials.

user.search.subtree

Specifies whether the user entry search scope includes the subtrees of the tree selected by
user.base.dn. If true, the user lookup is recursive (SUBTREE). If false, the user lookup is performed
only at the first level (ONELEVEL).

Sample configuration for Apache DS

The following Blueprint configuration shows how to define a new karaf realm using the LDAP login
module, where the default karaf realm is overridden by setting the rank attribute to 200, and the LDAP
login module connects to an Apache Directory Server:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

29

 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="karaf" rank="100">

 <jaas:module className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="sufficient">
 debug=true

 <!-- LDAP Configuration -->
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
<!-- multiple LDAP servers can be specified as a space separated list of URLs -->
 connection.url=ldap://10.0.0.153:2389 ldap://10.10.178.20:389

<!-- authentication=none -->
 authentication=simple
 connection.username=cn=Directory Manager
 connection.password=directory

 <!-- User Info -->
 user.base.dn=dc=redhat,dc=com
 user.filter=(&(objectClass=InetOrgPerson)(uid=%u))
 user.search.subtree=true

 <!-- Role/Group Info-->
 role.base.dn=dc=redhat,dc=com
 role.name.attribute=cn
<!--
 The 'dc=redhat,dc=com' used in the role.filter
 below is the user.base.dn.
-->
<!-- role.filter=(uniquemember=%dn,dc=redhat,dc=com) -->
 role.filter=(&(objectClass=GroupOfUniqueNames)(UniqueMember=%fqdn))
 role.search.subtree=true

<!-- role mappings - a ';' separated list -->
 role.mapping=JBossAdmin=admin;JBossMonitor=viewer

<!-- LDAP context properties -->
 context.com.sun.jndi.ldap.connect.timeout=5000
 context.com.sun.jndi.ldap.read.timeout=5000

<!-- LDAP connection pooling -->
<!-- http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/pool.html -->
<!-- http://docs.oracle.com/javase/jndi/tutorial/ldap/connect/config.html -->
 context.com.sun.jndi.ldap.connect.pool=true

<!-- How are LDAP referrals handled?

 Can be `follow`, `ignore` or `throw`. Configuring `follow` may not work on all LDAP servers,
`ignore` will
 silently ignore all referrals, while `throw` will throw a partial results exception if there is a referral.
-->
 context.java.naming.referral=ignore

<!-- SSL configuration -->

Red Hat Fuse 7.0 Security Guide

30

 ssl=false
 ssl.protocol=SSL
<!-- matches the keystore/truststore configured below -->
 ssl.truststore=ks
 ssl.algorithm=PKIX
<!-- The User and Role caches can be disabled - 6.3.0 179 and later -->
 disableCache=true
 </jaas:module>
 </jaas:config>

 <!-- Location of the SSL truststore/keystore
 <jaas:keystore name="ks" path="file:///${karaf.home}/etc/ldap.truststore"
keystorePassword="XXXXXX" />
-->
</blueprint>

NOTE

In order to enable SSL, you must remember to use the ldaps scheme in the
connection.url setting.

IMPORTANT

You must set ssl.protocol to TLSv1 (or later), in order to protect against the Poodle
vulnerability (CVE-2014-3566)

Filter settings for different directory servers

The most significant differences between directory servers arise in connection with setting the filter
options in the LDAP login module. The precise settings depend ultimately on the organisation of your
DIT, but the following table gives an idea of the typical role filter settings required for different directory
servers:

Directory Server Typical Filter Settings

389-DS

Red Hat DS
user.filter=(&
(objectClass=InetOrgPerson)(uid=%u))
role.filter=(uniquemember=%fqdn)

MS Active Directory
user.filter=(&(objectCategory=person)
(samAccountName=%u))
role.filter=(uniquemember=%fqdn)

Apache DS
user.filter=(uid=%u)
role.filter=(member=uid=%u)

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

31

https://access.redhat.com/articles/1232123

OpenLDAP
user.filter=(uid=%u)
role.filter=(member:=uid=%u)

Directory Server Typical Filter Settings

NOTE

In the preceding table, the & symbol (representing the logical And operator) is escaped
as & because the option settings will be embedded in a Blueprint XML file.

2.1.8. Encrypting Stored Passwords

By default, the JAAS login modules store passwords in plaintext format. Although you can (and should)
protect such data by setting file permissions appropriately, you can provide additional protection to
passwords by storing them in an obscured format (using a message digest algorithm).

Red Hat Fuse provides a set of options for enabling password encryption, which can be combined with
any of the JAAS login modules (except the public key login module, where it is not needed).

IMPORTANT

Although message digest algorithms are difficult to crack, they are not invulnerable to
attack (for example, see the Wikipedia article on cryptographic hash functions). Always
use file permissions to protect files containing passwords, in addition to using password
encryption.

Options

You can optionally enable password encryption for JAAS login modules by setting the following login
module properties. To do so, either edit the InstallDir/etc/org.apache.karaf.jaas.cfg file or deploy your
own blueprint file as described in the section called “Example of a login module with Jasypt encryption” .

encryption.enabled

Set to true, to enable password encryption.

encryption.name

Name of the encryption service, which has been registered as an OSGi service.

encryption.prefix

Prefix for encrypted passwords.

encryption.suffix

Suffix for encrypted passwords.

encryption.algorithm

Specifies the name of the encryption algorithm—for example, MD5 or SHA-1. You can specify one of
the following encryption algorithms:

MD2

MD5

SHA-1

Red Hat Fuse 7.0 Security Guide

32

http://en.wikipedia.org/wiki/Cryptographic_hash_function

SHA-256

SHA-384

SHA-512

encryption.encoding

Encrypted passwords encoding: hexadecimal or base64.

encryption.providerName (Jasypt only)

Name of the java.security.Provider instance that is to provide the digest algorithm.

encryption.providerClassName (Jasypt only)

Class name of the security provider that is to provide the digest algorithm

encryption.iterations (Jasypt only)

Number of times to apply the hash function recursively.

encryption.saltSizeBytes (Jasypt only)

Size of the salt used to compute the digest.

encryption.saltGeneratorClassName (Jasypt only)

Class name of the salt generator.

role.policy

Specifies the policy for identifying role principals. Can have the values, prefix or group.

role.discriminator

Specifies the discriminator value to be used by the role policy.

Encryption services

There are two encryption services provided by Fuse:

encryption.name = basic, described in the section called “Basic encryption service” ,

encryption.name = jasypt, described in the section called “Jasypt encryption” .

You can also create your own encryption service. To do so, you need to:

Implement the org.apache.karaf.jaas.modules.EncryptionService interface, and

Expose your implementation as OSGI service.

The following listing shows how to expose a custom encryption service to the OSGI container:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <service interface="org.apache.karaf.jaas.modules.EncryptionService">
 <service-properties>
 <entry key="name" value="jasypt" />
 </service-properties>
 <bean class="org.apache.karaf.jaas.jasypt.impl.JasyptEncryptionService"/>
 </service>
 ...
</blueprint>

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

33

Basic encryption service

The basic encryption service is installed in the Karaf container by default and you can reference it by
setting the encryption.name property to the value, basic. In the basic encryption service, the message
digest algorithms are provided by the SUN security provider (the default security provider in the Oracle
JDK).

Jasypt encryption

The Jasypt encryption service is normally installed by default on Karaf. If necessary, you can install it
explicitly by installing the jasypt-encryption feature, as follows:

JBossA-MQ:karaf@root> features:install jasypt-encryption

This command installs the requisite Jasypt bundles and exports Jasypt encryption as an OSGi service,
so that it is available for use by JAAS login modules. To access the Jasypt encryption service, set the
encryption.name property to the value, jasypt.

For more information about Jasypt encryption, see the Jasypt documentation.

Example of a login module with Jasypt encryption

Assuming that you have already installed the jasypt-encryption feature, you could deploy a properties
login module with Jasypt encryption using the following Blueprint configuration:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <type-converters>
 <bean class="org.apache.karaf.jaas.modules.properties.PropertiesConverter"/>
 </type-converters>

<!--Allow usage of System properties, especially the karaf.base property-->
 <ext:property-placeholder
 placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="200">
 <jaas:module flags="required"
className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule">
 users = $[karaf.base]/etc/users.properties
 encryption.enabled = true
 encryption.name = jasypt
 encryption.algorithm = SHA-256
 encryption.encoding = base64
 encryption.iterations = 100000
 encryption.saltSizeBytes = 16
 encryption.prefix = {CRYPT}
 encryption.suffix = {CRYPT}
 </jaas:module>
 </jaas:config>

 <!-- The Backing Engine Factory Service for the PropertiesLoginModule -->

Red Hat Fuse 7.0 Security Guide

34

http://docs.oracle.com/javase/6/docs/technotes/guides/security/SunProviders.html#SUNProvider
http://www.jasypt.org/general-usage.html

2.2. ROLE-BASED ACCESS CONTROL

Abstract

This section describes the role-based access control (RBAC) feature, which is enabled by default in the
Karaf container. You can immediately start taking advantage of the RBAC feature, simply by adding one
of the standard roles (such as manager or admin) to a user’s credentials. For more advanced usage, you
have the option of customizing the access control lists, in order to control exactly what each role can do.
Finally, you have the option of applying custom ACLs to your own OSGi services.

2.2.1. Overview of Role-Based Access Control

By default, the Fuse role-based access control protects access through the Fuse Management Console,
JMX connections, and the Karaf command console. To use the default levels of access control, simply
add any of the standard roles to your user authentication data (for example, by editing the
users.properties file). You also have the option of customizing access control, by editing the relevant
Access Control List (ACL) files.

Mechanisms

Role-based access control in Karaf is based on the following mechanisms:

 <service interface="org.apache.karaf.jaas.modules.BackingEngineFactory">
 <bean class="org.apache.karaf.jaas.modules.properties.PropertiesBackingEngineFactory"/>
 </service>

 <!-- Enable automatic encryption of all user passwords
 in InstallDir/etc/users.properties file.
 No login required to activate.
 Encrypted passwords appear in the
 InstallDir/etc/users.properties file as values enclosed
 by {CRYPT}...{CRYPT} prefix/suffix pairs -->

 <bean init-method="init" destroy-method="destroy"
class="org.apache.karaf.jaas.modules.properties.AutoEncryptionSupport">
 <argument>
 <map>
 <entry key="org.osgi.framework.BundleContext"
 value-ref="blueprintBundleContext"/>
 <entry key="users" value="$[karaf.base]/etc/users.properties"/>
 <entry key="encryption.name" value="jasypt"/>
 <entry key="encryption.enabled" value="true"/>
 <entry key="encryption.prefix" value="{CRYPT}"/>
 <entry key="encryption.suffix" value="{CRYPT}"/>
 <entry key="encryption.algorithm" value="SHA-256"/>
 <entry key="encryption.encoding" value="base64"/>
 <entry key="encryption.iterations" value="100000"/>
 <entry key="encryption.saltSizeBytes" value="16"/>
 </map>
 </argument>
 </bean>

</blueprint>

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

35

JMX Guard

The Karaf container is configured with a JMX guard, which intercepts every incoming JMX invocation
and filters the invocation through the configured JMX access control lists. The JMX guard is
configured at the JVM level, so it intercepts every JMX invocation, without exception.

OSGi Service Guard

For any OSGi service, it is possible to configure an OSGi service guard. The OSGi service guard is
implemented as a proxy object, which interposes itself between the client and the original OSGi
service. An OSGi service guard must be explicitly configured for each OSGi service: it is not installed
by default (except for the OSGi services that represent Karaf console commands, which are
preconfigured for you).

Types of protection

The Fuse implementation of role-based access control is capable of providing the following types of
protection:

Fuse Console (Hawtio)

Container access through the Fuse Console (Hawtio) is controlled by the JMX ACL files. The
REST/HTTP service that provides the Fuse Console is implemented using Jolokia technology, which
is layered above JMX. Hence, ultimately, all Fuse Console invocations pass through JMX and are
regulated by JMX ACLs.

JMX

Direct access to the Karaf container’s JMX port is regulated by the JMX ACLs. Moreover, any
additional JMX ports opened by an application running in the Karaf container would also be regulated
by the JMX ACLs, because the JMX guard is set at the JVM level.

Karaf command console

Access to the Karaf command console is regulated by the command console ACL files. Access
control is applied no matter how the Karaf console is accessed. Whether accessing the command
console through the Fuse Console or through the SSH protocol, access control is applied in both
cases.

NOTE

In the special case where you start up the Karaf container directly at the command line
(for example, using the ./bin/fuse script) and no user authentication is performed, you
automatically get the roles specified by the karaf.local.roles property in the
etc/system.properties file.

OSGi services

For any OSGi service deployed in the Karaf container, you can optionally enable an ACL file, which
restricts method invocations to specific roles.

Adding roles to users

In the system of role-based access control, you can give users permissions by adding roles to their user
authentication data. For example, the following entry in the etc/users.properties file defines the admin
user and grants the admin role.

admin = secretpass,group,admin,manager,viewer,systembundles,ssh

You also have the option of defining user groups and then assigning users to a particular user group. For

Red Hat Fuse 7.0 Security Guide

36

You also have the option of defining user groups and then assigning users to a particular user group. For
example, you could define and use an admingroup user group as follows:

admin = secretpass, _g_:admingroup

g\:admingroup = group,admin,manager,viewer,systembundles,ssh

NOTE

User groups are not supported by every type of JAAS login module.

Standard roles

Table 2.2, “Standard Roles for Access Control” lists and describes the standard roles that are used
throughout the JMX ACLs and the command console ACLs.

Table 2.2. Standard Roles for Access Control

Roles Description

viewer Grants read-only access to the Karaf container.

manager Grants read-write access at the appropriate level for
ordinary users, who want to deploy and run
applications. But blocks access to sensitive Karaf
container configuration settings.

admin Grants unrestricted access to the Karaf container.

ssh Grants users permission to connect to the Karaf
command console (through the ssh port).

ACL files

The standard set of ACL files are located under the etc/auth/ directory of the Fuse installation, as
follows:

etc/auth/jmx.acl[.*].cfg

JMX ACL files.

etc/auth/org.apache.karaf.command.acl.*.cfg

Command console ACL files.

Customizing role-based access control

A complete set of JMX ACL files and command console ACL files are provided by default. You are free
to customize these ACLs as required to suit the requirements of your system. Details of how to do this
are given in the following sections.

Additional properties for controlling access

The system.properties file under the etc directory provides the following additional properties for

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

37

The system.properties file under the etc directory provides the following additional properties for
controlling access through the Karaf command console and the Fuse Console (Hawtio):

karaf.local.roles

Specifies the roles that apply when a user starts up the Karaf container console locally (for example,
by running the script).

hawtio.roles

Specifies the roles that are allowed to access the Karaf container through the Fuse Console. This
constraint is applied in addition to the access control defined by the JMX ACL files.

karaf.secured.command.compulsory.roles

Specifies the default roles required to invoke a Karaf console command, in case the console
command is not configured explicitly by a command ACL file,
etc/auth/org.apache.karaf.command.acl.*.cfg. A user must be configured with at least one of the
roles from the list in order to invoke the command. The value is specified as a comma-separated list
of roles.

2.2.2. Customizing the JMX ACLs

The JMX ACLs are stored in the OSGi Config Admin Service and are normally accessible as the files,
etc/auth/jmx.acl.*.cfg. This section explains how you can customize the JMX ACLs by editing these files
yourself.

Architecture

Figure 2.1, “Access Control Mechanism for JMX” shows an overview of the role-based access control
mechanism for JMX connections to the Karaf container.

Figure 2.1. Access Control Mechanism for JMX

How it works

JMX access control works by providing remote access to JMX through a special
javax.management.MBeanServer object. This object acts as a proxy by invoking an

Red Hat Fuse 7.0 Security Guide

38

org.apache.karaf.management.KarafMBeanServerGuard object, which is referred to as JMX guard.
JMX guard is available without special configuration in startup files.

JMX access control is applied as follows:

1. For every non-local JMX invocation, JMX guard is called before the actual MBean invocation.

2. The JMX Guard looks up the relevant ACL for the MBean the user is trying to access (where the
ACLs are stored in the OSGi Config Admin service).

3. The ACL returns the list of roles that are allowed to make this particular invocation on the
MBean.

4. The JMX Guard checks the list of roles against the current security subject (the user that is
making the JMX invocation), to see whether the current user has any of the required roles.

5. If no matching role is found, the JMX invocation is blocked and a SecurityException is raised.

Location of JMX ACL files

The JMX ACL files are located in the InstallDir/etc/auth directory, where the ACL file names obey the
following convention:

etc/auth/jmx.acl[.*].cfg

Technically, the ACLs are mapped to OSGi persistent IDs (PIDs), matching the pattern, jmx.acl[.*]. It
just so happens that the Karaf container stores OSGi PIDs as files, PID.cfg, under the etc/ directory by
default.

Mapping MBeans to ACL file names

The JMX Guard applies access control to every MBean class that is accessed through JMX (including
any MBeans you define in your own application code). The ACL file for a specific MBean class is derived
from the MBean’s Object Name, by prefixing it with jmx.acl. For example, given the MBean whose
Object Name is given by org.apache.camel:type=context, the corresponding PID would be:

jmx.acl.org.apache.camel.context

The OSGi Config Admin service stores this PID data in the following file:

etc/auth/jmx.acl.org.apache.camel.context.cfg

ACL file format

Each line of a JMX ACL file is an entry in the following format:

Pattern = Role1[,Role2][,Role3]...

Where Pattern is a pattern that matches a method invocation on an MBean, and the right-hand side of
the equals sign is a comma-separated list of roles that give a user permission to make that invocation. In
the simplest cases, the Pattern is simply a method name. For example, as in the following settings for
the jmx.acl.hawtio.OSGiTools MBean (from the jmx.acl.hawtio.OSGiTools.cfg file):

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

39

getResourceURL = admin, manager, viewer
getLoadClassOrigin = admin, manager, viewer

It is also possible to use the wildcard character, *, to match multiple method names. For example, the
following entry gives permission to invoke all method names starting with set:

set* = admin, manager, viewer

But the ACL syntax is also capable of defining much more fine-grained control of method invocations.
You can define patterns to match methods invoked with specific arguments or even arguments that
match a regular expression. For example, the ACL for the org.apache.karaf.config MBean package
exploits this capability to prevent ordinary users from modifying sensitive configuration settings. The
create method from this package is restricted, as follows:

create(java.lang.String)[/jmx[.]acl.*/] = admin
create(java.lang.String)[/org[.]apache[.]karaf[.]command[.]acl.+/] = admin
create(java.lang.String)[/org[.]apache[.]karaf[.]service[.]acl.+/] = admin
create(java.lang.String) = admin, manager

In this case, the manager role generally has permission to invoke the create method, but only the admin
role has permission to invoke create with a PID argument matching jmx.acl.*,
org.apache.karaf.command.acl.*, or org.apache.karaf.service.*.

For complete details of the ACL file format, please see the comments in the etc/auth/jmx.acl.cfg file.

ACL file hierarchy

Because it is often impractical to provide an ACL file for every single MBean, you have the option of
specifying an ACL file at the level of a Java package, which provides default settings for all of the
MBeans in that package. For example, the org.apache.cxf.Bus MBean could be affected by ACL
settings at any of the following PID levels:

jmx.acl.org.apache.cxf.Bus
jmx.acl.org.apache.cxf
jmx.acl.org.apache
jmx.acl.org
jmx.acl

Where the most specific PID (top of the list) takes precedence over the least specific PID (bottom of
the list).

Root ACL definitions

The root ACL file, jmx.acl.cfg, is a special case, because it supplies the default ACL settings for all
MBeans. The root ACL has the following settings by default:

list* = admin, manager, viewer
get* = admin, manager, viewer
is* = admin, manager, viewer
set* = admin
* = admin

This implies that the typical read method patterns (list*, get*, is*) are accessible to all standard roles,

Red Hat Fuse 7.0 Security Guide

40

This implies that the typical read method patterns (list*, get*, is*) are accessible to all standard roles,
but the typical write method patterns and other methods (set* and *) are accessible only to the admin
role, admin.

Package ACL definitions

Many of the standard JMX ACL files provided in etc/auth/jmx.acl[.*].cfg apply to MBean packages. For
example, the ACL for the org.apache.camel.endpoints MBean package is defined with the following
permissions:

is* = admin, manager, viewer
get* = admin, manager, viewer
set* = admin, manager

ACL for custom MBeans

If you define custom MBeans in your own application, these custom MBeans are automatically
integrated with the ACL mechanism and protected by the JMX Guard when you deploy them into the
Karaf container. By default, however, your MBeans are typically protected only by the default root ACL
file, jmx.acl.cfg. If you want to define a more fine-grained ACL for your MBean, create a new ACL file
under etc/auth, using the standard JMX ACL file naming convention.

For example, if your custom MBean class has the JMX Object Name, org.example:type=MyMBean,
create a new ACL file under the etc/auth directory called:

jmx.acl.org.example.MyMBean.cfg

Dynamic configuration at run time

Because the OSGi Config Admin service is dynamic, you can change ACL settings while the system is
running, and even while a particular user is logged on. Hence, if you discover a security breach while the
system is running, you can immediately restrict access to certain parts of the system by editing the
relevant ACL file, without having to restart the Karaf container.

2.2.3. Customizing the Command Console ACLs

The command console ACLs are stored in the OSGi Config Admin Service and are normally accessible
as the files, etc/auth/org.apache.karaf.command.acl.*.cfg. This section explains how you can
customize the command console ACLs by editing these files yourself.

Architecture

Figure 2.2, “Access Control Mechanism for OSGi Services” shows an overview of the role-based access
control mechanism for OSGi services in the Karaf container.

Figure 2.2. Access Control Mechanism for OSGi Services

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

41

Figure 2.2. Access Control Mechanism for OSGi Services

How it works

The mechanism for command console access control is, in fact, based on the generic access control
mechanism for OSGi services. It so happens that console commands are implemented and exposed as
OSGi services. The Karaf console itself discovers the available commands through the OSGi service
registry and accesses the commands as OSGi services. Hence, the access control mechanism for OSGi
services can be used to control access to console commands.

The mechanism for securing OSGi services is based on OSGi Service Registry Hooks. This is an
advanced OSGi feature that makes it possible to hide OSGi services from certain consumers and to
replace an OSGi service with a proxy service.

When a service guard is in place for a particular OSGi service, a client invocation on the OSGi service
proceeds as follows:

1. The invocation does not go directly to the requested OSGi service. Instead, the request is
routed to a replacement proxy service, which has the same service properties as the original
service (and some extra ones).

2. The service guard looks up the relevant ACL for the target OSGi service (where the ACLs are
stored in the OSGi Config Admin service).

3. The ACL returns the list of roles that are allowed to make this particular method invocation on
the service.

4. If no ACL is found for this command, the service guard defaults to the list of roles specified in
the karaf.secured.command.compulsory.roles property in the etc/system.properties file.

5. The service guard checks the list of roles against the current security subject (the user that is
making the method invocation), to see whether the current user has any of the required roles.

6. If no matching role is found, the method invocation is blocked and a SecurityException is
raised.

7. Alternatively, if a matching role is found, the method invocation is delegated to the original OSGi
service.

Configuring default security roles

For any commands that do not have a corresponding ACL file, you specify a default list of security roles

Red Hat Fuse 7.0 Security Guide

42

For any commands that do not have a corresponding ACL file, you specify a default list of security roles
by setting the karaf.secured.command.compulsory.roles property in the etc/system.properties file
(specified as a comma-separated list of roles).

Location of command console ACL files

The command console ACL files are located in the InstallDir/etc/auth directory, with the prefix,
org.apache.karaf.command.acl.

Mapping command scopes to ACL file names

The command console ACL file names obey the following convention:

etc/auth/org.apache.karaf.command.acl.CommandScope.cfg

Where the CommandScope corresponds to the prefix for a particular group of Karaf console
commands. For example, the feature:install and features:uninstall commands belong to the feature
command scope, which has the corresponding ACL file, org.apache.karaf.command.acl.features.cfg.

ACL file format

Each line of a command console ACL file is an entry in the following format:

Pattern = Role1[,Role2][,Role3]...

Where Pattern is a pattern that matches a Karaf console command from the current command scope,
and the right-hand side of the equals sign is a comma-separated list of roles that give a user permission
to make that invocation. In the simplest cases, the Pattern is simply an unscoped command name. For
example, the org.apache.karaf.command.acl.feature.cfg ACL file includes the following rules for the
feature commands:

list = admin, manager, viewer
repo-list = admin, manager, viewer
info = admin, manager, viewer
version-list = admin, manager, viewer
repo-refresh = admin, manager
repo-add = admin, manager
repo-remove = admin, manager
install = admin
uninstall = admin

IMPORTANT

If no match is found for a specific command name, it is assumed that no role is required
for this command and it can be invoked by any user.

You can also define patterns to match commands invoked with specific arguments or even arguments
that match a regular expression. For example, the org.apache.karaf.command.acl.bundle.cfg ACL file
exploits this capability to prevent ordinary users from invoking the bundle:start and bundle:stop
commands with the -f (force) flag (which must be specified to manage system bundles). This restriction
is coded as follows in the ACL file:

start[/.*[-][f].*/] = admin

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

43

start = admin, manager
stop[/.*[-][f].*/] = admin
stop = admin, manager

In this case, the manager role generally has permission to invoke the bundle:start and bundle:stop
commands, but only the admin role has permission to invoke these commands with the force option, -f.

For complete details of the ACL file format, please see the comments in the
etc/auth/org.apache.karaf.command.acl.bundle.cfg file.

Dynamic configuration at run time

The command console ACL settings are fully dynamic, which means you can change the ACL settings
while the system is running and the changes will take effect within a few seconds, even for users that are
already logged on.

2.2.4. Defining ACLs for OSGi Services

It is possible to define a custom ACL for any OSGi service (whether system level or application level). By
default, OSGi services do not have access control enabled (with the exception of the OSGi services that
expose Karaf console commands, which are pre-configured with command console ACL files). This
section explains how to define a custom ACL for an OSGi service and how to invoke methods on that
service using a specified role.

ACL file format

An OSGi service ACL file has one special entry, which identifies the OSGi service to which this ACL
applies, as follows:

service.guard = (objectClass=InterfaceName)

Where the value of service.guard is an LDAP search filter that is applied to the registry of OSGi service
properties in order to pick out the matching OSGi service. The simplest type of filter,
(objectClass=InterfaceName), picks out an OSGi service with the specified Java interface name,
InterfaceName.

The remaining entries in the ACL file are of the following form:

Pattern = Role1[,Role2][,Role3]...

Where Pattern is a pattern that matches a service method, and the right-hand side of the equals sign is a
comma-separated list of roles that give a user permission to make that invocation. The syntax of these
entries is essentially the same as the entries in a JMX ACL file—see the section called “ACL file format” .

How to define an ACL for a custom OSGi service

To define an ACL for a custom OSGi service, perform the following steps:

1. It is customary to define an OSGi service using a Java interface (you could use a regular Java
class, but this is not recommended). For example, consider the Java interface, MyService, which
we intend to expose as an OSGi service:

package org.example;

Red Hat Fuse 7.0 Security Guide

44

public interface MyService {
 void doit(String s);
}

2. To expose the Java interface as an OSGi service, you would typically add a service element to
an OSGi Blueprint XML file (where the Blueprint XML file is typically stored under the
src/main/resources/OSGI-INF/blueprint directory in a Maven project). For example, assuming
that MyServiceImpl is the class that implements the MyService interface, you could expose the
MyService OSGi service as follows:

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 default-activation="lazy">

 <bean id="myserviceimpl" class="org.example.MyServiceImpl"/>

 <service id="myservice" ref="myserviceimpl" interface="org.example.MyService"/>

</blueprint>

3. To define an ACL for the the OSGi service, you must create an OSGi Config Admin PID with the
prefix, org.apache.karaf.service.acl.
For example, in the case of a Karaf container (where the OSGi Config Admin PIDs are stored as
.cfg files under the etc/auth/ directory), you can create the following ACL file for the
MyService OSGi service:

etc/auth/org.apache.karaf.service.acl.myservice.cfg

NOTE

It does not matter exactly how you name this file, as long as it starts with the
required prefix, org.apache.karaf.service.acl. The corresponding OSGi service
for this ACL file is actually specified by a property setting in this file (as you will
see in the next step).

4. Specify the contents of the ACL file in a format like the following:

service.guard = (objectClass=InterfaceName)
Pattern = Role1[,Role2][,Role3]...

The service.guard setting specifies the InterfaceName of the OSGi service (using the syntax
of an LDAP search filter, which is applied to the OSGi service properties). The other entries in
the ACL file consist of a method Pattern, which associates a matching method to the specified
roles. For example, you could define a simple ACL for the MyService OSGi service with the
following settings in the org.apache.karaf.service.acl.myservice.cfg file:

service.guard = (objectClass=org.example.MyService)
doit = admin, manager, viewer

5. Finally, in order to enable the ACL for this OSGi service, you must edit the
karaf.secured.services property in the etc/system.properties file. The value of the
karaf.secured.services property has the syntax of an LDAP search filter (which gets applied to

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

45

the OSGi service properties). In general, to enable ACLs for an OSGi service, ServiceInterface,
you must modify this property as follows:

karaf.secured.services=(|(objectClass=ServiceInterface)(...ExistingPropValue...))

For example, to enable the MyService OSGi service:

karaf.secured.services=(|(objectClass=org.example.MyService)(&(osgi.command.scope=*)
(osgi.command.function=*)))

The initial value of the karaf.secured.services property has the settings to enable the
command console ACLs. If you delete or corrupt these entries, the command console ACLs
might stop working.

How to invoke an OSGi service secured with RBAC

If you are writing Java code to invoke methods on a custom OSGi service (that is, implementing a client
of the OSGi service), you must use the Java security API to specify the role you are using to invoke the
service. For example, to invoke the MyService OSGi service using the manager role, you could use code
like the following:

// Java
import javax.security.auth.Subject;
import org.apache.karaf.jaas.boot.principal.RolePrincipal;
// ...
Subject s = new Subject();
s.getPrincipals().add(new RolePrincipal("Deployer"));
Subject.doAs(s, new PrivilegedAction() {
 public Object run() {
 svc.doit("foo"); // invoke the service
 }
}

NOTE

This example uses the Karaf role type,
org.apache.karaf.jaas.boot.principal.RolePrincipal. If necessary, you could use your
own custom role class instead, but in that case you would have to specify your roles using
the syntax className:roleName in the OSGi service’s ACL file.

How to discover the roles required by an OSGi service

When you are writing code against an OSGi service secured by an ACL, it can sometimes be useful to
check what roles are allowed to invoke the service. For this purpose, the proxy service exports an
additional OSGi property, org.apache.karaf.service.guard.roles. The value of this property is a
java.util.Collection object, which contains a list of all the roles that could possibly invoke a method on
that service.

2.3. USING ENCRYPTED PROPERTY PLACEHOLDERS

When securing a Karaf container, do not use plain text passwords in configuration files. One way to avoid
this using plain text passwords is to use encrypted property placeholders when ever possible.

Red Hat Fuse 7.0 Security Guide

46

How to use encrypted property placeholders

To use encrypted property placeholders in a Blueprint XML file, perform the following steps:

1. Download and install Jasypt, to gain access to the Jasypt listAlgorithms.sh, encrypt.sh and
decrypt.sh command-line tools.

NOTE

When installing the Jasypt command-line tools, you must enable execute
permissions on the script files, by running chmod u+x ScriptName.sh.

2. Choose a master password and an encryption algorithm. To discover which algorithms are
supported in your current Java environment, run the listAlgorithms.sh Jasypt command-line
tool, as follows:

./listAlgorithms.sh
DIGEST ALGORITHMS: [MD2, MD5, SHA, SHA-256, SHA-384, SHA-512]

PBE ALGORITHMS: [PBEWITHMD5ANDDES, PBEWITHMD5ANDTRIPLEDES,
PBEWITHSHA1ANDDESEDE, PBEWITHSHA1ANDRC2_40]

On Windows platforms, the script is listAlgorithms.bat. Fuse uses PBEWithMD5AndDES by
default.

3. Use the Jasypt encrypt command-line tool to encrypt your sensitive configuration values (for
example, passwords for use in configuration files). For example, the following command
encrypts the PlaintextVal value, using the specified algorithm and master password
MasterPass:

./encrypt.sh input="PlaintextVal" algorithm=PBEWithMD5AndDES password=MasterPass

4. Create a properties file with encrypted values. For example, suppose you wanted to store some
LDAP credentials. You could create a file, etc/ldap.properties, with the following contents:

Example 2.6. Property File with an Encrypted Property

#ldap.properties
ldap.password=ENC(amIsvdqno9iSwnd7kAlLYQ==)
ldap.url=ldap://192.168.1.74:10389

The encrypted property values (as generated in the previous step) are identified by wrapping in
the ENC() function.

5. Add the required namespaces to your Blueprint XML file:

Aries extensions—http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0

Apache Karaf Jasypt—http://karaf.apache.org/xmlns/jasypt/v1.0.0
Example 2.7, “Encrypted Property Namespaces” shows a Blueprint file with the requisite
namespaces.

Example 2.7. Encrypted Property Namespaces

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

47

http://jasypt.org/download.html
http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0
http://karaf.apache.org/xmlns/jasypt/v1.0.0

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">
...
</blueprint>

6. Configure the location of the properties file for the property placeholder and configure the
Jasypt encryption algorithm .
Example 2.8, “Jasypt Blueprint Configuration” shows how to configure the ext:property-
placeholder element to read properties from the etc/ldap.properties file. The enc:property-
placeholder element configures Jasypt to use the PBEWithMD5AndDES encryption algorithm
and to read the master password from the JASYPT_ENCRYPTION_PASSWORD environment
variable.

Example 2.8. Jasypt Blueprint Configuration

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

 <ext:property-placeholder>
 <ext:location>file:etc/ldap.properties</ext:location>
 </ext:property-placeholder>

 <enc:property-placeholder>
 <enc:encryptor class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config">
 <bean class="org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName"
value="JASYPT_ENCRYPTION_PASSWORD" />
 </bean>
 </property>
 </enc:encryptor>
 </enc:property-placeholder>
...
</blueprint>

Blueprint XML example

Example 2.9, “Jasypt Example in Blueprint XML” shows an example of an LDAP JAAS realm configured
in Blueprint XML, using Jasypt encrypted property placeholders.

NOTE

When you use the process described in this topic to encrypt external properties you
cannot use the @PropertyInject annotation to decrypt the properties. Instead, use XML
to inject properties into Java objects, as shown in this Blueprint example.

Example 2.9. Jasypt Example in Blueprint XML

Red Hat Fuse 7.0 Security Guide

48

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0"
 xmlns:enc="http://karaf.apache.org/xmlns/jasypt/v1.0.0">

 <ext:property-placeholder>
 <location>file:etc/ldap.properties</location>
 </ext:property-placeholder>

 <enc:property-placeholder>
 <enc:encryptor class="org.jasypt.encryption.pbe.StandardPBEStringEncryptor">
 <property name="config">
 <bean class="org.jasypt.encryption.pbe.config.EnvironmentStringPBEConfig">
 <property name="algorithm" value="PBEWithMD5AndDES" />
 <property name="passwordEnvName" value="JASYPT_ENCRYPTION_PASSWORD" />
 </bean>
 </property>
 </enc:encryptor>
 </enc:property-placeholder>

 <jaas:config name="karaf" rank="200">
 <jaas:module className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
flags="required">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 debug=true
 connectionURL=${ldap.url}
 connectionUsername=cn=mqbroker,ou=Services,ou=system,dc=jbossfuse,dc=com
 connectionPassword=${ldap.password}
 connectionProtocol=
 authentication=simple
 userRoleName=cn
 userBase = ou=User,ou=ActiveMQ,ou=system,dc=jbossfuse,dc=com
 userSearchMatching=(uid={0})
 userSearchSubtree=true
 roleBase = ou=Group,ou=ActiveMQ,ou=system,dc=jbossfuse,dc=com
 roleName=cn
 roleSearchMatching= (member:=uid={1})
 roleSearchSubtree=true
 </jaas:module>
 </jaas:config>

</blueprint>

The ${ldap.password} placeholder is replaced with the decrypted value of the ldap.password property
from the etc/ldap.properties properties file.

2.4. ENABLING REMOTE JMX SSL

Overview

Red Hat JBoss Fuse provides a JMX port that allows remote monitoring and management of Karaf
containers using MBeans. By default, however, the credentials that you send over the JMX connection
are unencrypted and vulnerable to snooping. To encrypt the JMX connection and protect against
password snooping, you need to secure JMX communications by configuring JMX over SSL.

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

49

To configure JMX over SSL, perform the following steps:

1. Create the jbossweb.keystore file

2. Create and deploy the keystore.xml file

3. Add the required properties to org.apache.karaf.management.cfg

4. Restart the Fuse container

After you have configured JMX over SSL access, you should test the connection.

WARNING

If you are planning to enable SSL/TLS security, you must ensure that you explicitly
disable the SSLv3 protocol, in order to safeguard against the Poodle vulnerability
(CVE-2014-3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and
JBoss A-MQ 6.x.

NOTE

If you configure JMX over SSL while Red Hat JBoss Fuse is running, you will need to
restart it.

Prerequisites

If you haven’t already done so, you need to:

Set your JAVA_HOME environment variable

Configure a Karaf user with the admin role
Edit the InstallDir/etc/users.properties file and add the following entry, on a single line:

admin=YourPassword,admin

This creates a new user with username, admin, password, YourPassword, and the admin role.

Create the jbossweb.keystore file

Open a command prompt and make sure you are in the etc/ directory of your Karaf installation:

cd etc

At the command line, using a -dname value (Distinguished Name) appropriate for your application, type
this command:

$JAVA_HOME/bin/keytool -genkey -v -alias jbossalias -keyalg RSA -keysize 1024 -keystore
jbossweb.keystore -validity 3650 -keypass JbossPassword -storepass JbossPassword -dname
"CN=127.0.0.1, OU=RedHat Software Unit, O=RedHat, L=Boston, S=Mass, C=USA"

Red Hat Fuse 7.0 Security Guide

50

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

IMPORTANT

Type the entire command on a single command line.

The command returns output that looks like this:

Generating 1,024 bit RSA key pair and self-signed certificate (SHA256withRSA) with a validity of
3,650 days
 for: CN=127.0.0.1, OU=RedHat Software Unit, O=RedHat, L=Boston, ST=Mass, C=USA
New certificate (self-signed):
[
[
 Version: V3
 Subject: CN=127.0.0.1, OU=RedHat Software Unit, O=RedHat, L=Boston, ST=Mass, C=USA
 Signature Algorithm: SHA256withRSA, OID = 1.2.840.113549.1.1.11

 Key: Sun RSA public key, 1024 bits
 modulus:
1123086025790567043604962990501918169461098372864273201795342440080393808

1594100776075008647459910991413806372800722947670166407814901754459100720279046

3944621813738177324031064260382659483193826177448762030437669318391072619867218
 036972335210839062722456085328301058362052369248473659880488338711351959835357
 public exponent: 65537
 Validity: [From: Thu Jun 05 12:19:52 EDT 2014,
 To: Sun Jun 02 12:19:52 EDT 2024]
 Issuer: CN=127.0.0.1, OU=RedHat Software Unit, O=RedHat, L=Boston, ST=Mass, C=USA
 SerialNumber: [4666e4e6]

Certificate Extensions: 1
[1]: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: AC 44 A5 F2 E6 2F B2 5A 5F 88 FE 69 60 B4 27 7D .D.../.Z_..i`.'.
0010: B9 81 23 9C ..#.
]
]

]
 Algorithm: [SHA256withRSA]
 Signature:
0000: 01 1D 95 C0 F2 03 B0 FD CF 3A 1A 14 F5 2E 04 E5 :......
0010: DD 18 DD 0E 24 60 00 54 35 AE FE 36 7B 38 69 4C $`.T5..6.8iL
0020: 1E 85 0A AF AE 24 1B 40 62 C9 F4 E5 A9 02 CD D3 $.@b.......
0030: 91 57 60 F6 EF D6 A4 84 56 BA 5D 21 11 F7 EA 09 .W`.....V.]!....
0040: 73 D5 6B 48 4A A9 09 93 8C 05 58 91 6C D0 53 81 s.kHJ.....X.l.S.
0050: 39 D8 29 59 73 C4 61 BE 99 13 12 89 00 1C F8 38 9.)Ys.a........8
0060: E2 BF D5 3C 87 F6 3F FA E1 75 69 DF 37 8E 37 B5 ...<..?..ui.7.7.
0070: B7 8D 10 CC 9E 70 E8 6D C2 1A 90 FF 3C 91 84 50 p.m....<..P

]
[Storing jbossweb.keystore]

Check whether InstallDir/etc now contains the file, jbossweb.keystore.

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

51

Create and deploy the keystore.xml file

1. Using your favorite XML editor, create and save the keystore.xml file in the <installDir>/jboss-
fuse-7.0.0.fuse-000191-redhat-1/etc directory.

2. Include this text in the file:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0">
<jaas:keystore name="sample_keystore"
rank="1"
path="file:etc/jbossweb.keystore"
keystorePassword="JbossPassword"
keyPasswords="jbossalias=JbossPassword" />
</blueprint>

3. Deploy the keystore.xml file to the Karaf container, by copying it into the InstallDir/deploy
directory (the hot deploy directory).

NOTE

Subsequently, if you need to undeploy the keystore.xml file, you can do so by
deleting the keystore.xml file from the deploy/ directory while the Karaf
container is running.

Add the required properties to org.apache.karaf.management.cfg

Edit the InstallDir/etc/org.apache.karaf.management.cfg file to include these properties at the end of
the file:

secured = true
secureProtocol = TLSv1
keyAlias = jbossalias
keyStore = sample_keystore
trustStore = sample_keystore

IMPORTANT

You must set secureProtocol to TLSv1, in order to protect against the Poodle
vulnerability (CVE-2014-3566)

Restart the Karaf container

You must restart the Karaf container for the new JMX SSL/TLS settings to take effect.

Testing the Secure JMX connection

1. Open a command prompt and make sure you are in the etc/ directory of your Fuse installation:

cd <installDir>/jboss-fuse-7.0.0.fuse-000191-redhat-1/etc

2. Open a terminal, and start up JConsole by entering this command:

Red Hat Fuse 7.0 Security Guide

52

https://access.redhat.com/articles/1232123

jconsole -J-Djavax.net.debug=ssl -J-Djavax.net.ssl.trustStore=jbossweb.keystore -J-
Djavax.net.ssl.trustStoreType=JKS -J-Djavax.net.ssl.trustStorePassword=JbossPassword

Where the -J-Djavax.net.ssl.trustStore option specifies the location of the
jbossweb.keystore file (make sure this location is specified correctly, or the SSL/TLS
handshake will fail). The -J-Djavax.net.debug=ssl setting enables logging of SSL/TLS
handshake messages, so you can verify that SSL/TLS has been successfully enabled.

IMPORTANT

Type the entire command on the same command line.

3. When JConsole opens, select the option Remote Process in the New Connection wizard.

4. Under the Remote Process option, enter the following value for the service:jmx:<protocol>:
<sap> connection URL:

service:jmx:rmi://localhost:44444/jndi/rmi://localhost:1099/karaf-root

And fill in the Username, and Password fields with valid JAAS credentials (as set in the
etc/users.properties file):

Username: admin
Password: YourPassword

CHAPTER 2. SECURING THE APACHE KARAF CONTAINER

53

CHAPTER 3. SECURING THE UNDERTOW HTTP SERVER

Abstract

You can configure the built-in Undertow HTTP server to use SSL/TLS security by editing the contents
of the etc/undertow.xml configuration file. In particular, you can add SSL/TLS security to the Fuse
Console in this way.

3.1. UNDERTOW SERVER

The Fuse container is pre-configured with an Undertow server, which acts as a general-purpose HTTP
server and HTTP servlet container. Through a single HTTP port (by default, http://localhost:8181), the
Undertow container can host multiple services, for example:

Fuse Console (by default, http://localhost:8181/hawtio)

Apache CXF Web services endpoints (if the host and port are left unspecified in the endpoint
configuration)

Some Apache Camel endpoints

If you use the default Undertow server for all of your HTTP endpoints, you can conveniently add
SSL/TLS security to these HTTP endpoints by following the steps described here.

3.2. CREATE X.509 CERTIFICATE AND PRIVATE KEY

Before you can enable SSL/TLS on the Undertow server, you must create an X.509 certificate and
private key, where the certificate and private key must be in Java keystore format (JKS format). For
details of how to create a signed certificate and private key, see Appendix A, Managing Certificates.

3.3. ENABLING SSL/TLS FOR UNDERTOW IN AN APACHE KARAF
CONTAINER

For the following procedure, it is assumed that you have already created a signed X.509 certificate and
private key pair in the keystore file, alice.ks, with keystore password, StorePass, and key password,
KeyPass.

To enable SSL/TLS for Undertow in a Karaf container:

1. Make sure that the Pax Web server is configured to take its configuration from the
etc/undertow.xml file. When you look at the contents of the etc/org.ops4j.pax.web.cfg file,
you should see the following setting:

org.ops4j.pax.web.config.file=${karaf.etc}/undertow.xml

2. Open the file, etc/org.ops4j.pax.web.cfg, in a text editor and add the following line:

org.osgi.service.http.port.secure=8443

Save and close the file, etc/org.ops4j.pax.web.cfg.

3. Open the file, etc/undertow.xml, in a text editor. The next steps assume you are working with
the default undertow.xml file, unchanged since installation time.

Red Hat Fuse 7.0 Security Guide

54

http://localhost:8181
http://localhost:8181/hawtio

4. Search for the XML elements, http-listener and https-listener. Comment out the http-listener
element (by enclosing it between <!-- and -->) and uncomment the https-listener element
(spread over two lines). The edited fragment of XML should now look something like this:

5. Search for the w:keystore element. By default, the w:keystore element is configured as
follows:

To install the alice certificate as the Undertow server’s certificate, modify the w:keystore
element attributes as follows:

Set path to the absolute location of the alice.ks file on the file system.

Set provider to JKS.

Set alias to the alice certificate alias in the keystore.

Set keystore-password to the value of the password that unlocks the key store.

Set key-password to the value of the password that encrypts the alice private key.

Delete the generate-self-signed-certificate-host attribute setting.

6. For example, after installing the alice.ks keystore, the modified w:keystore element would look
something like this:

7. Search for the <interface name="secure"> tag, which is used to specify the IP addresses the
secure HTTPS port binds to. By default, this element is commented out, as follows:

Uncomment the element and customize the value attribute to specify the IP address which the
HTTPS port binds to. For example, the wildcard value, 0.0.0.0, configures HTTPS to bind to all
available IP addresses:

8. Search for and uncomment the <socket-binding name="https" tag. When this tag is

<!-- HTTP(S) Listener references Socket Binding (and indirectly - Interfaces) -->
<!-- http-listener name="http" socket-binding="http" /> -->
<!-- verify-client: org.xnio.SslClientAuthMode.NOT_REQUESTED,
org.xnio.SslClientAuthMode.REQUESTED, org.xnio.SslClientAuthMode.REQUIRED -->
<https-listener name="https" socket-binding="https"
 security-realm="https" verify-client="NOT_REQUESTED" />

<w:keystore path="${karaf.etc}/certs/server.keystore" provider="JKS" alias="server"
 keystore-password="secret" key-password="secret"
 generate-self-signed-certificate-host="localhost" />

<w:keystore path="${karaf.etc}/certs/alice.ks" provider="JKS" alias="alice"
 keystore-password="StorePass" key-password="KeyPass" />

<!--<interface name="secure">-->
 <!--<w:inet-address value="127.0.0.1" />-->
<!--</interface>-->

<interface name="secure">
 <w:inet-address value="0.0.0.0" />
</interface>

CHAPTER 3. SECURING THE UNDERTOW HTTP SERVER

55

8. Search for and uncomment the <socket-binding name="https" tag. When this tag is
uncommented, it should look something like this:

9. Save and close the file, etc/undertow.xml.

10. Restart the Fuse container, in order for the configuration changes to take effect.

3.4. CUSTOMIZING ALLOWED TLS PROTOCOLS AND CIPHER SUITES

You can customize the allowed TLS protocols and cipher suites by modifying the following attributes of
the w:engine element in the etc/undertow.xml file:

enabled-cipher-suites

Specifies the list of allowed TLS/SSL cipher suites.

enabled-protocols

Specifies the list of allowed TLS/SSL protocols.

WARNING

Do not enable SSL protocol versions, as they are vulnerable to attack. Use only
TLS protocol versions.

For full details of the available protocols and cipher suites, consult the appropriate JVM documentation
and security provider documentation. For example, for Java 8, see Java Cryptography Architecture
Oracle Providers Documentation for JDK 8.

3.5. CONNECT TO THE SECURE CONSOLE

After configuring SSL security for the Undertow server in the Pax Web configuration file, you should be
able to open the Fuse Console by browsing to the following URL:

https://localhost:8443/hawtio

NOTE

Remember to type the https: scheme, instead of http:, in this URL.

Initially, the browser will warn you that you are using an untrusted certificate. Skip this warning and you
will be presented with the login screen for the Fuse Console.

<socket-binding name="https" interface="secure" port="${org.osgi.service.http.port.secure}"
/>

Red Hat Fuse 7.0 Security Guide

56

https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html

CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT

Abstract

The Camel ActiveMQ component enables you to define JMS endpoints in your routes that can connect
to an Apache ActiveMQ broker. In order to make your Camel ActiveMQ endpoints secure, you must
create an instance of a Camel ActiveMQ component that uses a secure connection factory.

4.1. SECURE ACTIVEMQ CONNECTION FACTORY

Overview

Apache Camel provides an Apache ActiveMQ component for defining Apache ActiveMQ endpoints in a
route. The Apache ActiveMQ endpoints are effectively Java clients of the broker and you can either
define a consumer endpoint (typically used at the start of a route to poll for JMS messages) or define a
producer endpoint (typically used at the end or in the middle of a route to send JMS messages to a
broker).

When the remote broker is secure (SSL security, JAAS security, or both), the Apache ActiveMQ
component must be configured with the required client security settings.

Programming the security properties

Apache ActiveMQ enables you to program SSL security settings (and JAAS security settings) by
creating and configuring an instance of the ActiveMQSslConnectionFactory JMS connection factory.
Programming the JMS connection factory is the correct approach to use in the context of the
containers such as OSGi, J2EE, Tomcat, and so on, because these settings are local to the application
using the JMS connection factory instance.

NOTE

A standalone broker can configure SSL settings using Java system properties. For
clients deployed in a container, however, this is not a practical approach, because the
configuration must apply only to individual bundles, not the entire OSGi container. A
Camel ActiveMQ endpoint is effectively a kind of Apache ActiveMQ Java client, so this
restriction applies also to Camel ActiveMQ endpoints.

Defining a secure connection factory

Example 4.1, “Defining a Secure Connection Factory Bean” shows how to create a secure connection
factory bean in Blueprint, enabling both SSL/TLS security and JAAS authentication.

Example 4.1. Defining a Secure Connection Factory Bean

<bean id="jmsConnectionFactory"
 class="org.apache.activemq.ActiveMQSslConnectionFactory">
 <property name="brokerURL" value="ssl://localhost:61617" />
 <property name="userName" value="Username"/>
 <property name="password" value="Password"/>
 <property name="trustStore" value="/conf/client.ts"/>
 <property name="trustStorePassword" value="password"/>
</bean>

CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT

57

The following properties are specified on the ActiveMQSslConnectionFactory class:

brokerURL

The URL of the remote broker to connect to, where this example connects to an SSL-enabled
OpenWire port on the local host. The broker must also define a corresponding transport connector
with compatible port settings.

userName and password

Any valid JAAS login credentials, Username and Password.

trustStore

Location of the Java keystore file containing the certificate trust store for SSL connections. The
location is specified as a classpath resource. If a relative path is specified, the resource location is
relative to the org/jbossfuse/example directory on the classpath.

trustStorePassword

The password that unlocks the keystore file containing the trust store.

It is also possible to specify keyStore and keyStorePassword properties, but these would only be
needed, if SSL mutual authentication is enabled (where the client presents an X.509 certificate to the
broker during the SSL handshake).

4.2. EXAMPLE CAMEL ACTIVEMQ COMPONENT CONFIGURATION

Overview

This section describes how to initialize and configure a sample Camel ActiveMQ component instance,
which you can then use to define ActiveMQ endpoints in a Camel route. This makes it possible for a
Camel route to send or receive messages from a broker.

Prerequisites

The camel-activemq feature, which defines the bundles required for the Camel ActiveMQ component,
is not installed by default. To install the camel-activemq feature, enter the following console command:

JBossFuse:karaf@root> features:install camel-activemq

Sample Camel ActiveMQ component

The following Blueprint sample shows a complete configuration of a Camel ActiveMQ component that
has both SSL/TLS security and JAAS authentication enabled. The Camel ActiveMQ component
instance is defined to with the activemqssl bean ID, which means it is associated with the activemqssl
scheme (which you use when defining endpoints in a Camel route).

<?xml version="1.0" encoding="UTF-8"?>
<beans ... >
 ...
 <!--
 Configure the activemqssl component:
 -->
 <bean id="jmsConnectionFactory"
 class="org.apache.activemq.ActiveMQSslConnectionFactory">
 <property name="brokerURL" value="ssl://localhost:61617" />

Red Hat Fuse 7.0 Security Guide

58

 <property name="userName" value="Username"/>
 <property name="password" value="Password"/>
 <property name="trustStore" value="/conf/client.ts"/>
 <property name="trustStorePassword" value="password"/>
 </bean>

 <bean id="pooledConnectionFactory"
 class="org.apache.activemq.pool.PooledConnectionFactory">
 <property name="maxConnections" value="8" />
 <property name="maximumActive" value="500" />
 <property name="connectionFactory" ref="jmsConnectionFactory" />
 </bean>

 <bean id="jmsConfig" class="org.apache.camel.component.jms.JmsConfiguration">
 <property name="connectionFactory" ref="pooledConnectionFactory"/>
 <property name="transacted" value="false"/>
 <property name="concurrentConsumers" value="10"/>
 </bean>

 <bean id="activemqssl"
 class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="configuration" ref="jmsConfig"/>
 </bean>

</beans>

Sample Camel route

The following Camel route defines a sample endpoint that sends messages securely to the security.test
queue on the broker, using the activemqssl scheme to reference the Camel ActiveMQ component
defined in the preceding example:

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <camelContext xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="timer://myTimer?fixedRate=true&period=5000"/>
 <transform><constant>Hello world!</constant></transform>
 <to uri="activemqssl:security.test"/>
 </route>
 </camelContext>
 ...
</beans>

CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT

59

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

Abstract

This chapter explains how to enable SSL/TLS security on a Camel CXF endpoint, using the Camel CXF
proxy demonstration as the starting point. The Camel CXF component enables you to add Apache CXF
endpoints to your Apache Camel routes. This makes it possible to simulate a Web service in Apache
Camel or you could interpose a route between a WS client and a Web service to perform additional
processing (which is the case considered here).

5.1. THE CAMEL CXF PROXY DEMONSTRATION

Overview

In order to explain how to secure a Camel CXF endpoint in OSGi, this tutorial builds on an example
available from the standalone distribution of Apache Camel, the Camel CXF proxy demonstration.
Figure 5.1, “Camel CXF Proxy Overview” gives an overview of how this demonstration works

Figure 5.1. Camel CXF Proxy Overview

The report incident Web service, which is implemented by the RealWebServiceBean, receives details
of an incident (for example, a traffic accident) and returns a tracking code to the client. Instead of
sending its requests directly to the real Web service, however, the WS client connects to a Camel CXF
endpoint, which is interposed between the WS client and the real Web service. The Apache Camel route
performs some processing on the WSDL message (using the enrichBean) before forwarding it to the
real Web service.

WARNING

If you enable SSL/TLS security, you must ensure that you explicitly disable the
SSLv3 protocol, in order to safeguard against the Poodle vulnerability (CVE-2014-
3566). For more details, see Disabling SSLv3 in JBoss Fuse 6.x and JBoss A-MQ
6.x.

Modifications

In order to demonstrate how to enable SSL/TLS on a Camel CXF endpoint in the context of OSGi, this
chapter contains instructions on how to modify the basic demonstration as follows:

1. SSL/TLS security is enabled on the connection between the WS client and the Camel CXF

Red Hat Fuse 7.0 Security Guide

60

https://access.redhat.com/articles/1232123
https://access.redhat.com/solutions/1237613

1. SSL/TLS security is enabled on the connection between the WS client and the Camel CXF
endpoint.

2. The Apache Camel route and the RealWebServiceBean bean are both deployed into the OSGi
container.

Obtaining the demonstration code

The Camel CXF proxy demonstration is available only from the standalone distribution of Apache
Camel, which is included in the InstallDir/extras directory. Using a standard archive utility, expand the
Camel archive file and extract the contents to a convenient location on your filesystem.

Assuming that you have installed Apache Camel in CamelInstallDir, you can find the Camel CXF proxy
demonstration in the following directory:

CamelInstallDir/examples/camel-example-cxf-proxy

Obtaining the sample certificates

This demonstration needs X.509 certificates. In a real deployment, you should generate these
certificates yourself using a private certificate authority. For this demonstration, however, we use some
sample certificates from the Apache CXF wsdl_first_http example. This demonstration is available from
the standalone distribution of Apache CXF, which is included in the InstallDir/extras directory. Using a
standard archive utility, expand the CXF archive file and extract the contents to a convenient location
on your filesystem.

Assuming that you have installed Apache CXF in CXFInstallDir, you can find the wsdl_first_http
demonstration in the following directory:

CXFInstallDir/samples/wsdl_first_http

Physical part of the WSDL contract

The physical part of the WSDL contract refers to the wsdl:service and wsdl:port elements. These
elements specify the transport details that are needed to connect to a specific Web services endpoint.
For the purposes of this demonstration, this is the most interesting part of the contract and it is shown in
Example 5.1, “The ReportIncidentEndpointService WSDL Service” .

Example 5.1. The ReportIncidentEndpointService WSDL Service

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 ...
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://reportincident.example.camel.apache.org">
 ...
 <!-- Service definition -->
 <wsdl:service name="ReportIncidentEndpointService">
 <wsdl:port name="ReportIncidentEndpoint" binding="tns:ReportIncidentBinding">
 <soap:address location="http://localhost:9080/camel-example-cxf-
proxy/webservices/incident"/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

61

http://reportincident.example.camel.apache.org

NOTE

The address URL appearing in the WSDL contract (the value of the soap:address
element’s location attribute) is not important here, because the application code
overrides the default value of the address URL.

WSDL addressing details

A WS client needs three pieces of information to connect to a WSDL service: the WSDL service name ,
the WSDL port name , and the address URL of the Web service. The following addressing details are
used to connect to the proxy Web service and to the real Web service in this example:

WSDL service name

The full QName of the WSDL service is as follows:

{http://reportincident.example.camel.apache.org}ReportIncidentEndpointService

WSDL port name

The full QName of the WSDL port is as follows:

{http://reportincident.example.camel.apache.org}ReportIncidentEndpoint

Address URL

The address URL of the proxy Web service endpoint (which uses the HTTPS protocol) is as follows:

https://localhost:9080/camel-example-cxf-proxy/webservices/incident

NOTE

The preceding address is specified when the reportIncident bean is created using a
cxf:cxfEndpoint element in the bundle’s Spring configuration file,
src/main/resources/META-INF/spring/camel-config.xml.

The address URL of the real Web service endpoint (using the HTTP protocol) is as follows:

http://localhost:9081/real-webservice

NOTE

The preceding address is specified when the realWebService bean is created in the
bundle’s Spring configuration file, src/main/resources/META-INF/spring/camel-
config.xml.

5.2. SECURING THE WEB SERVICES PROXY

Overview

Red Hat Fuse 7.0 Security Guide

62

This section explains how to enable SSL/TLS security on the Camel CXF endpoint, which acts as a proxy
for the real Web service. Assuming that you already have the X.509 certificates available, all that is
required is to add a block of configuration data to the Spring configuration file (where the configuration
data is contained in a httpj:engine-factory element). There is just one slightly subtle aspect to this,
however: you need to understand how the Camel CXF endpoint gets associated with the SSL/TLS
configuration details.

Implicit configuration

A WS endpoint can be configured by creating the endpoint in Spring and then configuring SSL/TLS
properties on its Jetty container. The configuration can be somewhat confusing, however, for the
following reason: the Jetty container (which is configured by a httpj:engine-factory element in Spring)
does not explicitly reference the WS endpoints it contains and the WS endpoints do not explicitly
reference the Jetty container either. The connection between the Jetty container and its contained
endpoints is established implicitly, in that they are both configured to use the same TCP port, as
illustrated by WS Endpoint Implicitly Configured by httpj:engine-factory .

WS Endpoint Implicitly Configured by httpj:engine-factory

Element

The connection between the Web service endpoint and the httpj:engine-factory element is established
as follows:

1. The Spring container loads and parses the file containing the httpj:engine-factory element.

2. When the httpj:engine-factory bean is created, a corresponding entry is created in the registry,
storing a reference to the bean. The httpj:engine-factory bean is also used to initialize a Jetty
container that listens on the specified TCP port.

3. When the WS endpoint is created, it scans the registry to see if it can find a httpj:engine-
factory bean with the same TCP port as the TCP port in the endpoint’s address URL.

4. If one of the beans matches the endpoint’s TCP port, the WS endpoint installs itself into the
corresponding Jetty container. If the Jetty container has SSL/TLS enabled, the WS endpoint
shares those security settings.

Steps to add SSL/TLS security to the Jetty container

To add SSL/TLS security to the Jetty container, thereby securing the WS proxy endpoint, perform the

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

63

To add SSL/TLS security to the Jetty container, thereby securing the WS proxy endpoint, perform the
following steps:

1. the section called “Add certificates to the bundle resources” .

2. the section called “Modify POM to switch off resource filtering” .

3. the section called “Instantiate the CXF Bus” .

4. the section called “Add the httpj:engine-factory element to Spring” .

5. the section called “Define the cxfcore:, sec: and httpj: prefixes” .

6. the section called “Modify proxy address URL to use HTTPS” .

Add certificates to the bundle resources

The certificates used in this demonstration are taken from a sample in the Apache CXF 3.1.11.fuse-
000243-redhat-1 product. If you install the standalone version of Apache CXF (available in the
InstallDir/extras/ directory), you will find the sample certificates in the
CXFInstallDir/samples/wsdl_first_https/src/main/config directory.

Copy the clientKeystore.jks and serviceKeystore.jks keystores from the
CXFInstallDir/samples/wsdl_first_https/src/main/config directory to the
CamelInstallDir/examples/camel-example-cxf-proxy/src/main/resources/certs directory (you must
first create the certs sub-directory).

Modify POM to switch off resource filtering

Including the certificates directly in the bundle as resource is the most convenient way to deploy them.
But when you deploy certificates as resources in a Maven project, you must remember to disable Maven
resource filtering, which corrupts binary files.

To disable filtering of .jks files in Maven, open the project POM file, CamelInstallDir/examples/camel-
example-cxf-proxy/pom.xml, with a text editor and add the following resources element as a child of
the build element:

<?xml version="1.0" encoding="UTF-8"?>
...
<project ...>
 ...
 <build>
 <plugins>
 ...
 </plugins>

 <resources> <resource> <directory>src/main/resources</directory> <filtering>true</filtering>
<excludes> <exclude>/.jks</exclude> </excludes> </resource> <resource>
<directory>src/main/resources</directory> <filtering>false</filtering> <includes>
<include>/.jks</include> </includes> </resource> </resources>
 </build>

</project>

Instantiate the CXF Bus

Red Hat Fuse 7.0 Security Guide

64

You should instantiate the CXF bus explicitly in the Spring XML (this ensures that it will be available to
the Jetty container, which is instantiated by the httpj:engine-factory element in the next step). Edit the
camel-config.xml file in the src/main/resources/META-INF/spring directory, adding the cxfcore:bus
element as a child of the beans element, as follows:

<beans ... >
 ...
 <cxfcore:bus/>
 ...
</beans>

NOTE

The cxfcore: namespace prefix will be defined in a later step.

Add the httpj:engine-factory element to Spring

configuration

To configure the Jetty container that listens on TCP port 9080 to use SSL/TLS security, edit the
camel-config.xml file in the src/main/resources/META-INF/spring directory, adding the httpj:engine-
factory element as shown in Example 5.2, “httpj:engine-factory Element with SSL/TLS Enabled” .

In this example, the required attribute of the sec:clientAuthentication element is set to false, which
means that a connecting client is not required to present an X.509 certificate to the server during the
SSL/TLS handshake (although it may do so, if it has such a certificate).

Example 5.2. httpj:engine-factory Element with SSL/TLS Enabled

<beans ... >
 ...
 <httpj:engine-factory bus="cxf">
 <httpj:engine port="${proxy.port}">
 <httpj:tlsServerParameters secureSocketProtocol="TLSv1">
 <sec:keyManagers keyPassword="skpass">
 <sec:keyStore resource="certs/serviceKeystore.jks" password="sspass" type="JKS"/>
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore resource="certs/serviceKeystore.jks" password="sspass" type="JKS"/>
 </sec:trustManagers>
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*_WITH_NULL_.*</sec:exclude>
 <sec:exclude>.*_DH_anon_.*</sec:exclude>
 </sec:cipherSuitesFilter>
 <sec:clientAuthentication want="true" required="false"/>
 </httpj:tlsServerParameters>
 </httpj:engine>
 </httpj:engine-factory>

</beans>

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

65

IMPORTANT

You must set secureSocketProtocol to TLSv1 on the server side, in order to protect
against the Poodle vulnerability (CVE-2014-3566)

Define the cxfcore:, sec: and httpj: prefixes

Define the cxfcore:, sec: and httpj: namespace prefixes, which appear in the definitions of the
cxfcore:bus element and the httpj:engine-factory element, by adding the following highlighted lines to
the beans element in the camel-config.xml file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:camel="http://camel.apache.org/schema/spring"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:cxfcore="http://cxf.apache.org/core"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:httpj="http://cxf.apache.org/transports/http-jetty/configuration"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd
 http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-cxf.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
 http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 ">

NOTE

It is essential to specify the locations of the
http://cxf.apache.org/configuration/security schema and the
http://cxf.apache.org/transports/http-jetty/configuration schema in the
xsi:schemaLocation attribute. These will not automatically be provided by the OSGi
container.

Modify proxy address URL to use HTTPS

The proxy endpoint at the start of the Apache Camel route is configured by the cxf:cxfEndpoint
element in the camel-config.xml file. By default, this proxy endpoint is configured to use the HTTP
protocol. You must modify the address URL to use the secure HTTPS protocol instead, however. In the
camel-config.xml file, edit the address attribute of the cxf:cxfEndpoint element, replacing the http:
prefix by the https: prefix, as shown in the following fragment:

<beans ...>
 ...
 <cxf:cxfEndpoint id="reportIncident"
 address="https://localhost:${proxy.port}/camel-example-cxf-proxy/webservices/incident"
 endpointName="s:ReportIncidentEndpoint"

Red Hat Fuse 7.0 Security Guide

66

https://access.redhat.com/articles/1232123
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd
http://camel.apache.org/schema/cxf
http://camel.apache.org/schema/cxf/camel-cxf.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://cxf.apache.org/core
http://cxf.apache.org/schemas/core.xsd
http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
http://cxf.apache.org/transports/http-jetty/configuration
http://cxf.apache.org/schemas/configuration/http-jetty.xsd
http://cxf.apache.org/configuration/security
http://cxf.apache.org/transports/http-jetty/configuration

 serviceName="s:ReportIncidentEndpointService"
 wsdlURL="etc/report_incident.wsdl"
 xmlns:s="http://reportincident.example.camel.apache.org"/>
 ...
</beans>

Notice also that the address URL is configured to use the TCP port, ${proxy.port} (which has the value
9080 by default). This TCP port value is the same as the value set for the Jetty container (configured by
the http:engine-factory element), thus ensuring that this endpoint is deployed into the Jetty container.
The attributes of the cxf:cxfEndpoint specify the WSDL addressing details as described in the section
called “WSDL addressing details”:

serviceName

Specifies the WSDL service name.

endpointName

Specifies the WSDL port name.

address

Specifies the address URL of the proxy Web service.

5.3. DEPLOYING THE APACHE CAMEL ROUTE

Overview

The Maven POM file in the basic Camel CXF proxy demonstration is already configured to generate an
OSGi bundle. Hence, after building the demonstration using Maven, the demonstration bundle (which
contains the Apache Camel route and the RealWebServicesBean bean) is ready for deployment into
the OSGi container.

Prerequisites

Before deploying the Apache Camel route into the OSGi container, you must configure the proxy Web
service to use SSL/TLS security, as described in the previous section, Section 5.2, “Securing the Web
Services Proxy”.

Steps to deploy the Camel route

To deploy the Web services proxy demonstration into the OSGi container, perform the following steps:

1. the section called “Build the demonstration” .

2. the section called “Start the OSGi container” .

3. the section called “Install the required features” .

4. the section called “Deploy the bundle” .

5. the section called “Check the console output” .

Build the demonstration

Use Maven to build and install the demonstration as an OSGi bundle. Open a command prompt, switch

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

67

Use Maven to build and install the demonstration as an OSGi bundle. Open a command prompt, switch
the current directory to CamelInstallDir/examples/camel-example-cxf-proxy, and enter the following
command:

mvn install -Dmaven.test.skip=true

Start the OSGi container

If you have not already done so, start up the Karaf console (and container instance) by entering the
following command in a new command prompt:

./fuse

Install the required features

The camel-cxf feature, which defines the bundles required for the Camel/CXF component, is not
installed by default. To install the camel-cxf feature, enter the following console command:

JBossFuse:karaf@root> features:install camel-cxf

You also need the camel-http feature, which defines the bundles required for the Camel/HTTP
component. To install the camel-http feature, enter the following console command:

JBossFuse:karaf@root> features:install camel-http

Deploy the bundle

Deploy the camel-example-cxf-proxy bundle, by entering the following console command:

JBossFuse:karaf@root> install -s mvn:org.apache.camel/camel-example-cxf-proxy/2.21.0.fuse-
000077-redhat-1

NOTE

In this case, it is preferable to deploy the bundle directly using install, rather than using
hot deploy, so that you can see the bundle output on the console screen.

If you have any difficulty using the mvn URL handler, see
olink:ESBOSGiGuide/UrlHandlers-Maven for details of how to set it up.

Check the console output

After the bundle is successfully deployed, you should see output like the following in the console
window:

JBossFuse:karaf@root> Starting real web service...
Started real web service at: http://localhost:9081/real-webservice

5.4. SECURING THE WEB SERVICES CLIENT

Red Hat Fuse 7.0 Security Guide

68

olink:ESBOSGiGuide/UrlHandlers-Maven

Overview

In the basic Camel CXF proxy demonstration, the Web services client is actually implemented as a JUnit
test under the src/test directory. This means that the client can easily be run using the Maven
command, mvn test. To enable SSL/TLS security on the client, the Java implementation of the test
client is completely replaced and a Spring file, containing the SSL/TLS configuration, is added to the
src/test/resources/META-INF/spring directory. Before describing the steps you need to perform to set
up the client, this section explains some details of the client’s Java code and Spring configuration.

Implicit configuration

Apart from changing the URL scheme on the endpoint address to https:, most of the configuration to
enable SSL/TLS security on a client proxy is contained in a http:conduit element in Spring
configuration. The way in which this configuration is applied to the client proxy, however, is potentially
confusing, for the following reason: the http:conduit element does not explicitly reference the client
proxy and the client proxy does not explicitly reference the http:conduit element. The connection
between the http:conduit element and the client proxy is established implicitly, in that they both
reference the same WSDL port, as illustrated by Client Proxy Implicitly Configured by http:conduit .

Client Proxy Implicitly Configured by http:conduit

Element

The connection between the client proxy and the http:conduit element is established as follows:

1. The client loads and parses the Spring configuration file containing the http:conduit element.

2. When the http:conduit bean is created, a corresponding entry is created in the registry, which
stores a reference to the bean under the specified WSDL port name (where the name is stored
in QName format).

3. When the JAX-WS client proxy is created, it scans the registry to see if it can find a
http:conduit bean associated with the proxy’s WSDL port name. If it finds such a bean, it
automatically injects the configuration details into the proxy.

Certificates needed on the client side

The client is configured with the following clientKeystore.jks keystore file from the

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

69

The client is configured with the following clientKeystore.jks keystore file from the
src/main/resources/certs directory. This keystore contains two entries, as follows:

Trusted cert entry

A trusted certificate entry containing the CA certificate that issued and signed both the server
certificate and the client certificate.

Private key entry

A private key entry containing the client’s own X.509 certificate and private key. In fact, this
certificate is not strictly necessary to run the current example, because the server does not require
the client to send a certificate during the TLS handshake (see Example 5.2, “httpj:engine-factory
Element with SSL/TLS Enabled”).

Loading Spring definitions into the client

The example client is not deployed directly into a Spring container, but it requires some Spring
definitions in order to define a secure HTTP conduit. So how can you create the Spring definitions
without a Spring container? It turns out that it is easy to read Spring definitions into a Java-based client
using the org.apache.cxf.bus.spring.SpringBusFactory class.

The following code shows how to read Spring definitions from the file, META-INF/spring/cxf-client.xml,
and create an Apache CXF Bus object that incorporates those definitions:

// Java
import org.apache.cxf.bus.spring.SpringBusFactory;
...
protected void startCxfBus() throws Exception {
 bf = new SpringBusFactory();
 Bus bus = bf.createBus("META-INF/spring/cxf-client.xml");
 bf.setDefaultBus(bus);
}

Creating the client proxy

In principle, there are several different ways of creating a WSDL proxy: you could use the JAX-WS API to
create a proxy based on the contents of a WSDL file; you could use the JAX-WS API to create a proxy
without a WSDL file; or you could use the Apache CXF-specific class, JaxWsProxyFactoryBean, to
create a proxy.

For this SSL/TLS client, the most convenient approach is to use the JAX-WS API to create a proxy
without using a WSDL file, as shown in the following Java sample:

// Java
import javax.xml.ws.Service;
import org.apache.camel.example.reportincident.ReportIncidentEndpoint;
...
// create the webservice client and send the request
Service s = Service.create(SERVICE_NAME);
s.addPort(
 PORT_NAME,
 "http://schemas.xmlsoap.org/soap/",
 ADDRESS_URL
);
ReportIncidentEndpoint client =
 s.getPort(PORT_NAME, ReportIncidentEndpoint.class);

Red Hat Fuse 7.0 Security Guide

70

NOTE

In this example, you cannot use the JaxWsProxyFactoryBean approach to create a
proxy, because a proxy created in this way fails to find the HTTP conduit settings
specified in the Spring configuration file.

The SERVICE_NAME and PORT_NAME constants are the QNames of the WSDL service and the
WSDL port respectively, as defined in Example 5.1, “The ReportIncidentEndpointService WSDL Service” .
The ADDRESS_URL string has the same value as the proxy Web service address and is defined as
follows:

private static final String ADDRESS_URL =
 "https://localhost:9080/camel-example-cxf-proxy/webservices/incident";

In particular, note that the address must be defined with the URL scheme, https, which selects HTTP
over SSL/TLS.

Steps to add SSL/TLS security to the client

To define a JAX-WS client with SSL/TLS security enabled, perform the following steps:

1. the section called “Create the Java client as a test case” .

2. the section called “Add the http:conduit element to Spring configuration” .

3. the section called “Run the client” .

Create the Java client as a test case

Example 5.3, “ReportIncidentRoutesTest Java client” shows the complete code for a Java client that is
implemented as a JUnit test case. This client replaces the existing test,
ReportIncidentRoutesTest.java, in the src/test/java/org/apache/camel/example/reportincident sub-
directory of the examples/camel-example-cxf-proxy demonstration.

To add the client to the CamelInstallDir/examples/camel-example-cxf-proxy demonstration, go to
the src/test/java/org/apache/camel/example/reportincident sub-directory, move the existing
ReportIncidentRoutesTest.java file to a backup location, then create a new
ReportIncidentRoutesTest.java file and paste the code from Example 5.3, “ReportIncidentRoutesTest
Java client” into this file.

Example 5.3. ReportIncidentRoutesTest Java client

// Java
package org.apache.camel.example.reportincident;

import org.apache.camel.spring.Main;
import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
import org.junit.Test;

import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

71

import org.apache.cxf.Bus;
import org.apache.cxf.bus.spring.SpringBusFactory;
import org.apache.camel.example.reportincident.ReportIncidentEndpoint;
import org.apache.camel.example.reportincident.ReportIncidentEndpointService;

import static org.junit.Assert.assertEquals;

/**
 * Unit test of our routes
 */
public class ReportIncidentRoutesTest {

 private static final QName SERVICE_NAME
 = new QName("http://reportincident.example.camel.apache.org",
"ReportIncidentEndpointService");

 private static final QName PORT_NAME =
 new QName("http://reportincident.example.camel.apache.org", "ReportIncidentEndpoint");

 private static final String WSDL_URL = "file:src/main/resources/etc/report_incident.wsdl";

 // should be the same address as we have in our route
 private static final String ADDRESS_URL = "https://localhost:9080/camel-example-cxf-
proxy/webservices/incident";

 protected SpringBusFactory bf;

 protected void startCxfBus() throws Exception {
 bf = new SpringBusFactory();
 Bus bus = bf.createBus("META-INF/spring/cxf-client.xml");
 bf.setDefaultBus(bus);
 }

 @Test
 public void testRendportIncident() throws Exception {
 startCxfBus();
 runTest();
 }

 protected void runTest() throws Exception {

 // create input parameter
 InputReportIncident input = new InputReportIncident();
 input.setIncidentId("123");
 input.setIncidentDate("2008-08-18");
 input.setGivenName("Claus");
 input.setFamilyName("Ibsen");
 input.setSummary("Bla");
 input.setDetails("Bla bla");
 input.setEmail("davsclaus@apache.org");
 input.setPhone("0045 2962 7576");

 // create the webservice client and send the request
 Service s = Service.create(SERVICE_NAME);
 s.addPort(PORT_NAME, "http://schemas.xmlsoap.org/soap/", ADDRESS_URL);
 ReportIncidentEndpoint client = s.getPort(PORT_NAME, ReportIncidentEndpoint.class);

Red Hat Fuse 7.0 Security Guide

72

 OutputReportIncident out = client.reportIncident(input);

 // assert we got a OK back
 assertEquals("OK;456", out.getCode());
 }
}

Add the http:conduit element to Spring configuration

Example 5.4, “http:conduit Element with SSL/TLS Enabled” shows the Spring configuration that defines
a http:conduit element for the ReportIncidentEndpoint WSDL port. The http:conduit element is
configured to enable SSL/TLS security for any client proxies that use the specified WSDL port.

To add the Spring configuration to the client test case, create the src/test/resources/META-INF/spring
sub-directory, use your favorite text editor to create the file, cxf-client.xml, and then paste the
contents of Example 5.4, “http:conduit Element with SSL/TLS Enabled” into the file.

Example 5.4. http:conduit Element with SSL/TLS Enabled

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://camel.apache.org/schema/cxf"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://camel.apache.org/schema/cxf http://camel.apache.org/schema/cxf/camel-cxf.xsd
 http://cxf.apache.org/configuration/security
http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ">

 <http:conduit name="
{http://reportincident.example.camel.apache.org}ReportIncidentEndpoint.http-conduit">
 <http:tlsClientParameters disableCNCheck="true" secureSocketProtocol="TLSv1">
 <sec:keyManagers keyPassword="ckpass">
 <sec:keyStore password="cspass" type="JKS"
 resource="certs/clientKeystore.jks" />
 </sec:keyManagers>
 <sec:trustManagers>
 <sec:keyStore password="cspass" type="JKS"
 resource="certs/clientKeystore.jks" />
 </sec:trustManagers>
 <sec:cipherSuitesFilter>
 <sec:include>.*_WITH_3DES_.*</sec:include>
 <sec:include>.*_WITH_DES_.*</sec:include>
 <sec:exclude>.*WITH_NULL.</sec:exclude>*
 <sec:exclude>.*DH_anon.</sec:exclude>*
 </sec:cipherSuitesFilter>
 </http:tlsClientParameters>

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

73

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/cxf
http://camel.apache.org/schema/cxf/camel-cxf.xsd

 </http:conduit>

</beans>

Please note the following points about the preceding configuration:

The http: and sec: namespace prefixes are needed to define the http:conduit element. In the
xsi:schemaLocation element, it is also essential to specify the locations of the corresponding
http://cxf.apache.org/configuration/security and
http://cxf.apache.org/transports/http/configuration namespaces.

The disableCNCheck attribute of the http:tlsClientParameters element is set to true. This
means that the client does not check whether the Common Name in the server’s X.509
certificate matches the server hostname. For more details, see Appendix A, Managing
Certificates.

IMPORTANT

Disabling the CN check is not recommended in a production deployment.

In the sec:keystore elements, the certificate locations are specified using the resource
attribute, which finds the certificates on the classpath. When Maven runs the test, it
automatically makes the contents of src/main/resources available on the classpath, so that the
certificates can be read from the src/main/resources/certs directory.

NOTE

You also have the option of specifying a certificate location using the file
attribute, which looks in the filesystem. But the resource attribute is more
suitable for use with applications packaged in bundles.

The sec:cipherSuitesFilter element is configured to exclude cipher suites matching
.*WITH_NULL.* and .*DH_anon.*. These cipher suites are effectively incomplete and are not
intended for normal use.

IMPORTANT

It is recommended that you always exclude the ciphers matching
.*WITH_NULL.* and .*DH_anon.*.

The secureSocketProtocol attribute should be set to TLSv1, to match the server protocol and
to ensure that the SSLv3 protocol is not used (POODLE security vulnerability (CVE-2014-
3566)).

Run the client

Because the client is defined as a test case, you can run the client using the standard Maven test goal.
To run the client, open a new command window, change directory to CamelInstallDir/examples/camel-
example-cxf-proxy, and enter the following Maven command:

mvn test

Red Hat Fuse 7.0 Security Guide

74

http://cxf.apache.org/configuration/security
http://cxf.apache.org/transports/http/configuration
https://access.redhat.com/articles/1232123

If the test runs successfully, you should see the following output in the OSGi console window:

Incident was 123, changed to 456

Invoked real web service: id=456 by Claus Ibsen

CHAPTER 5. SECURING THE CAMEL CXF COMPONENT

75

CHAPTER 6. SECURING THE MANAGEMENT CONSOLE

Abstract

The default setting for Access-Control-Allow-Origin header for the Fuse Management Console
permits unrestricted sharing. To restrict access to the Fuse Management Console, create an access
management file which contains a list of the allowed origin URLs. To implement the restrictions, add a
system property that references the access management file

6.1. CONTROLLING ACCESS TO THE FUSE MANAGEMENT CONSOLE

Create an access management file called access-management.xml in <installDir>/etc/. The access
management file must contain <allow-origin> sections within a <cors> section. The <allow-origin>
section can contain the origin URL provided by browsers with the Origin: header, or a wildcard
specification with *. For example:

<cors>
 <!-- Allow cross origin access from www.jolokia.org ... -->
 <allow-origin>http://www.jolokia.org</allow-origin>
 <!-- ... and all servers from jmx4perl.org with any protocol -->
 <allow-origin>*://*.jmx4perl.org</allow-origin>
 <!-- optionally allow access to web console from localhost -->
 <allow-origin>http://localhost:8181/*</allow-origin>
 <!-- Check for the proper origin on the server side, too -->
 <strict-checking/>
</cors>

Add the following line to Fuse config script ./bin/setenv, adding the path to the access management
file.

export EXTRA_JAVA_OPTS='-Djolokia.policyLocation=file:etc/access-management.xml'

When the command ./bin/fuse is executed, the access management file is referenced and used to
restrict access to the Fuse Management Console.

Red Hat Fuse 7.0 Security Guide

76

CHAPTER 7. INTEGRATION WITH RED HAT SINGLE SIGN-ON
Red Hat provides a single sign-on option (Red Hat Single Sign-On) that works with JAAS to provide
enterprise security for certain Web client applications and services running inside Fuse and Fuse
administration services (SSH, JMX, and Fuse Management Console).

Adapters are provided for the following types of container in Red Hat Fuse:

Section 7.1, “Adapter for Spring Boot container”

Section 7.2, “Adapter for Apache Karaf container”

Section 7.3, “Adapter for JBoss EAP container”

7.1. ADAPTER FOR SPRING BOOT CONTAINER

The adapter for the Spring Boot container supports the following embedded Web containers:

Undertow

Jetty

Tomcat

For details on installing and using the Red Hat Single Sign-On adapter for the Spring Boot container,
see Spring Boot Adapter in the Red Hat Single Sign-On Securing Applications and Services Guide .

7.2. ADAPTER FOR APACHE KARAF CONTAINER

The adapter for the Apache Karaf container can secure the following components:

Classic WAR applications deployed on Fuse with Pax Web War Extender.

Servlets deployed on Fuse as OSGI services with Pax Web Whiteboard Extender and
additionally servlets registered through org.osgi.service.http.HttpService#registerServlet()`
which is a standard OSGi Enterprise HTTP Service.

Apache Camel Undertow endpoints running with the Camel Undertow component.

Apache CXF endpoints running on their own separate Undertow engine.

Apache CXF endpoints running on the default engine provided by the CXF servlet.

SSH and JMX admin access.

Hawtio administration console.

For details on installing and using the Red Hat Single Sign-On adapter for the Apache Karaf container,
see JBoss Fuse 7 Adapter in the Red Hat Single Sign-On Securing Applications and Services Guide .

7.3. ADAPTER FOR JBOSS EAP CONTAINER

The adapter for the JBoss Enterprise Application Platform (EAP) container provides security for WARs,
enabling you to define role-based security constraints on your URLs.

For details on installing and using the Red Hat Single Sign-On adapter for the JBoss EAP container, see

CHAPTER 7. INTEGRATION WITH RED HAT SINGLE SIGN-ON

77

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/securing_applications_and_services_guide/index#spring_boot_adapter
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/securing_applications_and_services_guide/index#fuse7_adapter

For details on installing and using the Red Hat Single Sign-On adapter for the JBoss EAP container, see
JBoss EAP Adapter in the Red Hat Single Sign-On Securing Applications and Services Guide .

Red Hat Fuse 7.0 Security Guide

78

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html-single/securing_applications_and_services_guide/index#jboss_adapter

CHAPTER 8. LDAP AUTHENTICATION TUTORIAL

Abstract

This tutorial explains how to set up an X.500 directory server and configure the OSGi container to use
LDAP authentication.

8.1. TUTORIAL OVERVIEW

Goals

In this tutorial you will:

Install 389 Directory Server

Add user entries to the LDAP server

Add groups to manage security roles

Configure Fuse to use LDAP authentication

Configure Fuse to use roles for authorization

Configure SSL/TLS connections to the LDAP server

8.2. SET-UP A DIRECTORY SERVER AND CONSOLE

This stage of the tutorial explains how to install the X.500 directory server and the management
console from the Fedora 389 Directory Server project. If you already have access to a 389 Directory
Server instance, you can skip the instructions for installing the 389 Directory Server and install the 389
Management Console instead.

Prerequisites

If you are installing on a Red Hat Enterprise Linux platform, you must first install the Extra Packages for
Enterprise Linux (EPEL). See the installation notes under RHEL/Cent OS/ EPEL (RHEL 6, RHEL 7,
Cent OS 6, Cent OSý7) on the fedoraproject.org site.

Install 389 Directory Server

If you do not have access to an existing 389 Directory Server instance, you can install 389 Directory
Server on your local machine, as follows:

1. On Red Hat Enterprise Linux and Fedora platforms, use the standard dnf package management
utility to install 389 Directory Server. Enter the following command at a command prompt (you
must have administrator privileges on your machine):

sudo dnf install 389-ds

NOTE

CHAPTER 8. LDAP AUTHENTICATION TUTORIAL

79

http://directory.fedoraproject.org/index.html
https://fedoraproject.org/wiki/EPEL
http://directory.fedoraproject.org/docs/389ds/download.html#rhelcentosepel-rhel-6-rhel-7-centos-6-centos-7

NOTE

The required 389-ds and 389-console RPM packages are available for Fedora,
RHEL6+EPEL, and CentOS7+EPEL platforms. At the time of writing, the 389-
console package is not yet available for RHEL 7.

2. After installing the 389 directory server packages, enter the following command to configure
the directory server:

sudo setup-ds-admin.pl

The script is interactive and prompts you to provide the basic configuration settings for the 389
directory server. When the script is complete, it automatically launches the 389 directory server
in the background.

3. For more details about how to install 389 Directory Server, see the Download page.

Install 389 Management Console

If you already have access to a 389 Directory Server instance, you only need to install the 389
Management Console, which enables you to log in and manage the server remotely. You can install the
389 Management Console, as follows:

On Red Hat Enterprise Linux and Fedora platforms—use the standard dnf package
management utility to install the 389 Management Console. Enter the following command at a
command prompt (you must have administrator privileges on your machine):

sudo dnf install 389-console

On Windows platforms—see the Windows Console download instructions from
fedoraproject.org.

Connect the console to the server

To connect the 389 Directory Server Console to the LDAP server:

1. Enter the following command to start up the 389 Management Console:

389-console

2. A login dialog appears. Fill in the LDAP login credentials in the User ID and Password fields,
and customize the hostname in the Administration URL field to connect to your 389
management server instance (port 9830 is the default port for the 389 management server
instance).

Red Hat Fuse 7.0 Security Guide

80

http://directory.fedoraproject.org/docs/389ds/download.html
http://directory.fedoraproject.org/docs/389ds/download.html#windows-console

3. The 389 Management Console window appears. Select the Servers and Applications tab.

4. In the left-hand pane, drill down to the Directory Server icon.

5. Select the Directory Server icon in the left-hand pane and click Open, to open the 389
Directory Server Console.

6. In the 389 Directory Server Console, click the Directory tab, to view the Directory Information

CHAPTER 8. LDAP AUTHENTICATION TUTORIAL

81

6. In the 389 Directory Server Console, click the Directory tab, to view the Directory Information
Tree (DIT).

7. Expand the root node, YourDomain (usually named after a hostname, and shown as
localdomain in the following screenshot), to view the DIT.

8.3. ADD USER ENTRIES TO THE DIRECTORY SERVER

The basic prerequisite for using LDAP authentication with the OSGi container is to have an X.500
directory server running and configured with a collection of user entries. For many use cases, you will
also want to configure a number of groups to manage user roles.

Alternative to adding user entries

If you already have user entries and groups defined in your LDAP server, you might prefer to map the
existing LDAP groups to JAAS roles using the roles.mapping property in the LDAPLoginModule
configuration, instead of creating new entries. For details, see Section 2.1.7, “JAAS LDAP Login
Module”.

Goals

In this portion of the tutorial you will

Add three user entries to the LDAP server

Add four groups to the LDAP server

Adding user entries

Perform the following steps to add user entries to the directory server:

1. Ensure that the LDAP server and console are running. See Section 8.2, “Set-up a Directory
Server and Console”.

2. In the Directory Server Console, click on the Directory tab, and drill down to the People node,
under the YourDomain node (where YourDomain is shown as localdomain in the following
screenshots).

Red Hat Fuse 7.0 Security Guide

82

3. Right-click the People node, and select menu:[> New > > User >] from the context menu, to
open the Create New User dialog.

4. Select the User tab in the left-hand pane of the Create New User dialog.

5. Fill in the fields of the User tab, as follows:

a. Set the First Name field to John.

b. Set the Last Name field to Doe.

c. Set the User ID field to jdoe.

d. Enter the password, secret, in the Password field.

e. Enter the password, secret, in the Confirm Password field.

CHAPTER 8. LDAP AUTHENTICATION TUTORIAL

83

6. Click OK.

7. Add a user Jane Doe by following Step 3 to Step 6.
In Step 5.e , use janedoe for the new user’s User ID and use the password, secret, for the
password fields.

8. Add a user Camel Rider by following Step 3 to Step 6.
In Step 5.e , use crider for the new user’s User ID and use the password, secret, for the
password fields.

Adding groups for the roles

To add the groups that define the roles:

1. In the Directory tab of the Directory Server Console, drill down to the Groups node, under the
YourDomain node.

2. Right-click the Groups node, and select menu:[> New > > Group >] from the context menu, to
open the Create New Group dialog.

3. Select the General tab in the left-hand pane of the Create New Group dialog.

4. Fill in the fields of the General tab, as follows:

a. Set the Group Name field to admin.

b. Optionally, enter a description in the Description field.

5. Select the Members tab in the left-hand pane of the Create New Group dialog.

Red Hat Fuse 7.0 Security Guide

84

6. Click Add to open the Search users and groups dialog.

7. In the Search field, select Users from the drop-down menu, and click the Search button.

8. From the list of users that is now displayed, select John Doe.

9. Click OK, to close the Search users and groups dialog.

10. Click OK, to close the Create New Group dialog.

11. Add a manager role by following Step 2 to Step 10 .
In Step 4, enter manager in the Group Name field.

CHAPTER 8. LDAP AUTHENTICATION TUTORIAL

85

In Step 8 , select Jane Doe.

12. Add a viewer role by following Step 2 to Step 10 .
In Step 4, enter viewer in the Group Name field.

In Step 8 , select Camel Rider.

13. Add an ssh role by following Step 2 to Step 10 .
In Step 4, enter ssh in the Group Name field.

In Step 8 , select all of the users, John Doe, Jane Doe, and Camel Rider.

8.4. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER

This section explains how to configure an LDAP realm in the OSGi container. The new realm overrides
the default karaf realm, so that the container authenticates credentials based on user entries stored in
the X.500 directory server.

References

More detailed documentation is available on LDAP authentication, as follows:

LDAPLoginModule options—are described in detail in Section 2.1.7, “JAAS LDAP Login
Module”.

Configurations for other directory servers—this tutorial covers only 389-DS. For details of
how to configure other directory servers, such as Microsoft Active Directory, see the section
called “Filter settings for different directory servers”.

Procedure for standalone OSGi container

To enable LDAP authentication in a standalone OSGi container:

1. Ensure that the X.500 directory server is running.

2. Start the Karaf container by entering the following command in a terminal window:

./bin/fuse

3. Create a file called ldap-module.xml.

4. Copy Example 8.1, “JAAS Realm for Standalone” into ldap-module.xml.

Example 8.1. JAAS Realm for Standalone

<?xml version="2.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <jaas:config name="karaf" rank="200">
 <jaas:module className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
 flags="required">
 initialContextFactory=com.sun.jndi.ldap.LdapCtxFactory
 connection.url=ldap://localhost:389

Red Hat Fuse 7.0 Security Guide

86

http://directory.fedoraproject.org/index.html

You must customize the following settings in the ldap-module.xml file:

connection.url

Set this URL to the actual location of your directory server instance. Normally, this URL has
the format, ldap://Hostname:Port. For example, the default port for the 389 Directory
Server is IP port 389.

connection.username

Specifies the username that is used to authenticate the connection to the directory server.
For 389 Directory Server, the default is usually cn=Directory Manager.

connection.password

Specifies the password part of the credentials for connecting to the directory server.

authentication

You can specify either of the following alternatives for the authentication protocol:

simple implies that user credentials are supplied and you are obliged to set the
connection.username and connection.password options in this case.

none implies that authentication is not performed. You must not set the
connection.username and connection.password options in this case.
This login module creates a JAAS realm called karaf, which is the same name as the
default JAAS realm used by Fuse. By redefining this realm with a rank attribute value
greater than 0, it overrides the standard karaf realm which has the rank 0.

For more details about how to configure Fuse to use LDAP, see Section 2.1.7, “JAAS
LDAP Login Module”.

IMPORTANT

When setting the JAAS properties above, do not enclose the property
values in double quotes.

5. To deploy the new LDAP module, copy the ldap-module.xml into the Karaf container’s deploy/
directory (hot deploy).
The LDAP module is automatically activated.

NOTE

 connection.username=cn=Directory Manager
 connection.password=DIRECTORY_MANAGER_PASSWORD
 connection.protocol=
 user.base.dn=ou=People,dc=localdomain
 user.filter=(&(objectClass=inetOrgPerson)(uid=%u))
 user.search.subtree=true
 role.base.dn=ou=Groups,dc=localdomain
 role.name.attribute=cn
 role.filter=(uniquemember=%fqdn)
 role.search.subtree=true
 authentication=simple
 </jaas:module>
 </jaas:config>
</blueprint>

CHAPTER 8. LDAP AUTHENTICATION TUTORIAL

87

NOTE

Subsequently, if you need to undeploy the LDAP module, you can do so by
deleting the ldap-module.xml file from the deploy/ directory while the Karaf
container is running.

Test the LDAP authentication

Test the new LDAP realm by connecting to the running container using the Karaf client utility, as follows:

1. Open a new command prompt.

2. Change directory to the Karaf InstallDir/bin directory.

3. Enter the following command to log on to the running container instance using the identity
jdoe:

./client -u jdoe -p secret

You should successfully log into the container’s remote console. At the command console, type
jaas: followed by the [Tab] key (to activate content completion):

jdoe@root()> jaas:
Display all 31 possibilities? (31 lines)?
jaas:cancel
jaas:group-add
...
jaas:whoami

You should see that jdoe has access to all of the jaas commands (consistent with the admin
role).

4. Log off the remote console by entering the logout command.

5. Enter the following command to log on to the running container instance using the identity
janedoe:

./client -u janedoe -p secret

You should successfully log into the container’s remote console. At the command console, type
jaas: followed by the [Tab] key (to activate content completion):

janedoe@root()> jaas:
Display all 25 possibilities? (25 lines)?
jaas:cancel
jaas:group-add
...
jaas:users

You should see that janedoe has access to almost all of the jaas commands (consistent with
the manager role).

6. Log off the remote console by entering the logout command.

7. Enter the following command to log on to the running container instance using the identity

Red Hat Fuse 7.0 Security Guide

88

7. Enter the following command to log on to the running container instance using the identity
crider:

./client -u crider -p secret

You should successfully log into the container’s remote console. At the command console, type
jaas: followed by the [Tab] key (to activate content completion):

crider@root()> jaas:
jaas:manage
jaas:realm-list
jaas:realm-manage
jaas:realms
jaas:user-list
jaas:users

You should see that crider has access to only five of the jaas commands (consistent with the
viewer role).

8. Log off the remote console by entering the logout command.

Troubleshooting

If you run into any difficulties while testing the LDAP connection, increase the logging level to DEBUG
to get a detailed trace of what is happening on the connection to the LDAP server.

Perform the following steps:

1. From the Karaf console, enter the following command to increase the logging level to DEBUG:

log:set DEBUG

2. Observe the Karaf log in real time:

log:tail

To escape from the log listing, type Ctrl-C.

CHAPTER 8. LDAP AUTHENTICATION TUTORIAL

89

APPENDIX A. MANAGING CERTIFICATES

Abstract

TLS authentication uses X.509 certificates—a common, secure and reliable method of authenticating
your application objects. You can create X.509 certificates that identify your Red Hat Fuse applications.

A.1. WHAT IS AN X.509 CERTIFICATE?

Role of certificates

An X.509 certificate binds a name to a public key value. The role of the certificate is to associate a public
key with the identity contained in the X.509 certificate.

Integrity of the public key

Authentication of a secure application depends on the integrity of the public key value in the
application’s certificate. If an impostor replaces the public key with its own public key, it can impersonate
the true application and gain access to secure data.

To prevent this type of attack, all certificates must be signed by a certification authority (CA). A CA is a
trusted node that confirms the integrity of the public key value in a certificate.

Digital signatures

A CA signs a certificate by adding its digital signature to the certificate. A digital signature is a message
encoded with the CA’s private key. The CA’s public key is made available to applications by distributing a
certificate for the CA. Applications verify that certificates are validly signed by decoding the CA’s digital
signature with the CA’s public key.

WARNING

The supplied demonstration certificates are self-signed certificates. These
certificates are insecure because anyone can access their private key. To secure
your system, you must create new certificates signed by a trusted CA.

Contents of an X.509 certificate

An X.509 certificate contains information about the certificate subject and the certificate issuer (the CA
that issued the certificate). A certificate is encoded in Abstract Syntax Notation One (ASN.1), a
standard syntax for describing messages that can be sent or received on a network.

The role of a certificate is to associate an identity with a public key value. In more detail, a certificate
includes:

A subject distinguished name (DN) that identifies the certificate owner.

The public key associated with the subject.

Red Hat Fuse 7.0 Security Guide

90

X.509 version information.

A serial number that uniquely identifies the certificate.

An issuer DN that identifies the CA that issued the certificate.

The digital signature of the issuer.

Information about the algorithm used to sign the certificate.

Some optional X.509 v.3 extensions; for example, an extension exists that distinguishes
between CA certificates and end-entity certificates.

Distinguished names

A DN is a general purpose X.500 identifier that is often used in the context of security.

See Appendix B, ASN.1 and Distinguished Names for more details about DNs.

A.2. CERTIFICATION AUTHORITIES

A.2.1. Introduction to Certificate Authorities

A CA consists of a set of tools for generating and managing certificates and a database that contains all
of the generated certificates. When setting up a system, it is important to choose a suitable CA that is
sufficiently secure for your requirements.

There are two types of CA you can use:

commercial CAs are companies that sign certificates for many systems.

private CAs are trusted nodes that you set up and use to sign certificates for your system only.

A.2.2. Commercial Certification Authorities

Signing certificates

There are several commercial CAs available. The mechanism for signing a certificate using a commercial
CA depends on which CA you choose.

Advantages of commercial CAs

An advantage of commercial CAs is that they are often trusted by a large number of people. If your
applications are designed to be available to systems external to your organization, use a commercial CA
to sign your certificates. If your applications are for use within an internal network, a private CA might be
appropriate.

Criteria for choosing a CA

Before choosing a commercial CA, consider the following criteria:

What are the certificate-signing policies of the commercial CAs?

Are your applications designed to be available on an internal network only?

What are the potential costs of setting up a private CA compared to the costs of subscribing to

APPENDIX A. MANAGING CERTIFICATES

91

What are the potential costs of setting up a private CA compared to the costs of subscribing to
a commercial CA?

A.2.3. Private Certification Authorities

Choosing a CA software package

If you want to take responsibility for signing certificates for your system, set up a private CA. To set up a
private CA, you require access to a software package that provides utilities for creating and signing
certificates. Several packages of this type are available.

OpenSSL software package

One software package that allows you to set up a private CA is OpenSSL, http://www.openssl.org. The
OpenSSL package includes basic command line utilities for generating and signing certificates.
Complete documentation for the OpenSSL command line utilities is available at
http://www.openssl.org/docs.

Setting up a private CA using OpenSSL

To set up a private CA, see the instructions in Section A.5, “Creating Your Own Certificates” .

Choosing a host for a private certification authority

Choosing a host is an important step in setting up a private CA. The level of security associated with the
CA host determines the level of trust associated with certificates signed by the CA.

If you are setting up a CA for use in the development and testing of Red Hat Fuse applications, use any
host that the application developers can access. However, when you create the CA certificate and
private key, do not make the CA private key available on any hosts where security-critical applications
run.

Security precautions

If you are setting up a CA to sign certificates for applications that you are going to deploy, make the CA
host as secure as possible. For example, take the following precautions to secure your CA:

Do not connect the CA to a network.

Restrict all access to the CA to a limited set of trusted users.

Use an RF-shield to protect the CA from radio-frequency surveillance.

A.3. CERTIFICATE CHAINING

Certificate chain

A certificate chain is a sequence of certificates, where each certificate in the chain is signed by the
subsequent certificate.

Figure A.1, “A Certificate Chain of Depth 2” shows an example of a simple certificate chain.

Figure A.1. A Certificate Chain of Depth 2

Red Hat Fuse 7.0 Security Guide

92

http://www.openssl.org
http://www.openssl.org/docs

Figure A.1. A Certificate Chain of Depth 2

Self-signed certificate

The last certificate in the chain is normally a self-signed certificate—a certificate that signs itself.

Chain of trust

The purpose of a certificate chain is to establish a chain of trust from a peer certificate to a trusted CA
certificate. The CA vouches for the identity in the peer certificate by signing it. If the CA is one that you
trust (indicated by the presence of a copy of the CA certificate in your root certificate directory), this
implies you can trust the signed peer certificate as well.

Certificates signed by multiple CAs

A CA certificate can be signed by another CA. For example, an application certificate could be signed by
the CA for the finance department of Progress Software, which in turn is signed by a self-signed
commercial CA.

Figure A.2, “A Certificate Chain of Depth 3” shows what this certificate chain looks like.

Figure A.2. A Certificate Chain of Depth 3

Trusted CAs

An application can accept a peer certificate, provided it trusts at least one of the CA certificates in the
signing chain.

A.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES

Overview

The HTTPS specification mandates that HTTPS clients must be capable of verifying the identity of the

APPENDIX A. MANAGING CERTIFICATES

93

server. This can potentially affect how you generate your X.509 certificates. The mechanism for
verifying the server identity depends on the type of client. Some clients might verify the server identity
by accepting only those server certificates signed by a particular trusted CA. In addition, clients can
inspect the contents of a server certificate and accept only the certificates that satisfy specific
constraints.

In the absence of an application-specific mechanism, the HTTPS specification defines a generic
mechanism, known as the HTTPS URL integrity check , for verifying the server identity. This is the
standard mechanism used by Web browsers.

HTTPS URL integrity check

The basic idea of the URL integrity check is that the server certificate’s identity must match the server
host name. This integrity check has an important impact on how you generate X.509 certificates for
HTTPS: the certificate identity (usually the certificate subject DN’s common name) must match the
host name on which the HTTPS server is deployed.

The URL integrity check is designed to prevent man-in-the-middle attacks.

Reference

The HTTPS URL integrity check is specified by RFC 2818, published by the Internet Engineering Task
Force (IETF) at http://www.ietf.org/rfc/rfc2818.txt.

How to specify the certificate identity

The certificate identity used in the URL integrity check can be specified in one of the following ways:

Using commonName

Using subectAltName

Using commonName

The usual way to specify the certificate identity (for the purpose of the URL integrity check) is through
the Common Name (CN) in the subject DN of the certificate.

For example, if a server supports secure TLS connections at the following URL:

https://www.redhat.com/secure

The corresponding server certificate would have the following subject DN:

C=IE,ST=Co. Dublin,L=Dublin,O=RedHat,
OU=System,CN=www.redhat.com

Where the CN has been set to the host name, www.redhat.com.

For details of how to set the subject DN in a new certificate, see Section A.5, “Creating Your Own
Certificates”.

Using subjectAltName (multi-homed hosts)

Using the subject DN’s Common Name for the certificate identity has the disadvantage that only one

Red Hat Fuse 7.0 Security Guide

94

http://www.ietf.org/rfc/rfc2818.txt

host name can be specified at a time. If you deploy a certificate on a multi-homed host, however, you
might find it is practical to allow the certificate to be used with any of the multi-homed host names. In
this case, it is necessary to define a certificate with multiple, alternative identities, and this is only
possible using the subjectAltName certificate extension.

For example, if you have a multi-homed host that supports connections to either of the following host
names:

www.redhat.com
www.jboss.org

Then you can define a subjectAltName that explicitly lists both of these DNS host names. If you
generate your certificates using the openssl utility, edit the relevant line of your openssl.cnf
configuration file to specify the value of the subjectAltName extension, as follows:

subjectAltName=DNS:www.redhat.com,DNS:www.jboss.org

Where the HTTPS protocol matches the server host name against either of the DNS host names listed
in the subjectAltName (the subjectAltName takes precedence over the Common Name).

The HTTPS protocol also supports the wildcard character, *, in host names. For example, you can define
the subjectAltName as follows:

subjectAltName=DNS:*.jboss.org

This certificate identity matches any three-component host name in the domain jboss.org.

WARNING

You must never use the wildcard character in the domain name (and you must take
care never to do this accidentally by forgetting to type the dot, ., delimiter in front
of the domain name). For example, if you specified *jboss.org, your certificate
could be used on *any* domain that ends in the letters jboss.

A.5. CREATING YOUR OWN CERTIFICATES

Abstract

This chapter describes the techniques and procedures to set up your own private Certificate Authority
(CA) and to use this CA to generate and sign your own certificates.

APPENDIX A. MANAGING CERTIFICATES

95

WARNING

Creating and managing your own certificates requires an expert knowledge of
security. While the procedures described in this chapter can be convenient for
generating your own certificates for demonstration and testing environments, it is
not recommended to use these certificates in a production environment.

A.5.1. Install the OpenSSL Utilities

Installing OpenSSL on RHEL and Fedora platforms

On Red Hat Enterprise Linux (RHEL) 5 and 6 and Fedora platforms, are made available as an RPM
package. To install OpenSSL, enter the following command (executed with administrator privileges):

yum install openssl

Source code distribution

The source distribution of OpenSSL is available from http://www.openssl.org/docs. The OpenSSL
project provides source code distributions only. You cannot download a binary install of the OpenSSL
utilities from the OpenSSL Web site.

A.5.2. Set Up a Private Certificate Authority

Overview

If you choose to use a private CA you need to generate your own certificates for your applications to
use. The OpenSSL project provides free command-line utilities for setting up a private CA, creating
signed certificates, and adding the CA to your Java keystore.

WARNING

Setting up a private CA for a production environment requires a high level of
expertise and extra care must be taken to protect the certificate store from
external threats.

Steps to set up a private Certificate Authority

To set up your own private Certificate Authority:

1. Create the directory structure for the CA, as follows:

X509CA/demoCA
X509CA/demoCA/private

Red Hat Fuse 7.0 Security Guide

96

http://www.openssl.org/docs

X509CA/demoCA/certs
X509CA/demoCA/newcerts
X509CA/demoCA/crl

2. Using a text editor, create the file, X509CA/openssl.cfg, and add the following contents to this
file:

Example A.1. OpenSSL Configuration

#
SSLeay example configuration file.
This is mostly being used for generation of certificate requests.
#

RANDFILE = ./.rnd

##
[req]
default_bits = 2048
default_keyfile = keySS.pem
distinguished_name = req_distinguished_name
encrypt_rsa_key = yes
default_md = sha1

[req_distinguished_name]
countryName = Country Name (2 letter code)

organizationName = Organization Name (eg, company)

commonName = Common Name (eg, YOUR name)

##
[ca]
default_ca = CA_default # The default ca section

##
[CA_default]

dir = ./demoCA # Where everything is kept
certs = $dir/certs # Where the issued certs are kept
crl_dir = $dir/crl # Where the issued crl are kept
database = $dir/index.txt # database index file.
#unique_subject = no # Set to 'no' to allow creation of
 # several certificates with same subject.
new_certs_dir = $dir/newcerts # default place for new certs.

certificate = $dir/cacert.pem # The CA certificate
serial = $dir/serial # The current serial number
crl = $dir/crl.pem # The current CRL
private_key = $dir/private/cakey.pem# The private key
RANDFILE = $dir/private/.rand # private random number file

name_opt = ca_default # Subject Name options
cert_opt = ca_default # Certificate field options

default_days = 365 # how long to certify for

APPENDIX A. MANAGING CERTIFICATES

97

default_crl_days = 30 # how long before next CRL
default_md = md5 # which md to use.
preserve = no # keep passed DN ordering

policy = policy_anything

[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

IMPORTANT

The preceding openssl.cfg configuration file is provided as a demonstration
only. In a production environment, this configuration file would need to be
carefully elaborated by an engineer with a high level of security expertise, and
actively maintained to protect against evolving security threats.

3. Initialize the demoCA/serial file, which must have the initial contents 01 (zero one). Enter the
following command:

echo 01 > demoCA/serial

4. Initialize the demoCA/index.txt, which must initially be completely empty. Enter the following
command:

touch demoCA/index.txt

5. Create a new self-signed CA certificate and private key with the command:

openssl req -x509 -new -config openssl.cfg -days 365 -out demoCA/cacert.pem -keyout
demoCA/private/cakey.pem

You are prompted for a pass phrase for the CA private key and details of the CA distinguished
name as shown in Example A.2, “Creating a CA Certificate” .

Example A.2. Creating a CA Certificate

Generating a 2048 bit RSA private key
...+++
.................+++
writing new private key to 'demoCA/private/cakey.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.

Red Hat Fuse 7.0 Security Guide

98

There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:DE
Organization Name (eg, company) []:Red Hat
Common Name (eg, YOUR name) []:Scooby Doo

NOTE

The security of the CA depends on the security of the private key file and the
private key pass phrase used in this step.

You must ensure that the file names and location of the CA certificate and private key,
cacert.pem and cakey.pem, are the same as the values specified in openssl.cfg.

A.5.3. Create a CA Trust Store File

Overview

A trust store file is commonly required on the client side of an SSL/TLS connection, in order to verify a
server’s identity. A trust store file can also be used to check digital signatures (for example, to check that
a signature was made using the private key corresponding to one of the trusted certificates in the trust
store file).

Steps to create a CA trust store

To add one of more CA certificates to a trust store file:

1. Assemble the collection of trusted CA certificates that you want to deploy.
The trusted CA certificates can be obtained from public CAs or private CAs. The trusted CA
certificates can be in any format that is compatible with the Java keystore utility; for example,
PEM format. All you need are the certificates themselves—the private keys and passwords are
not required.

2. Add a CA certificate to the trust store using the keytool -import command.
Enter the following command to add the CA certificate, cacert.pem, in PEM format, to a JKS
trust store.

keytool -import -file cacert.pem -alias CAAlias -keystore truststore.ts -storepass StorePass

Where truststore.ts is a keystore file containing CA certificates. If this file does not already
exist, the keytool command creates it. The CAAlias is a convenient identifier for the imported
CA certificate and StorePass is the password required to access the keystore file.

3. Repeat the previous step to add all of the CA certificates to the trust store.

A.5.4. Generate and Sign a New Certificate

Overview

In order for a certificate to be useful in the real world, it must be signed by a CA, which vouches for the

APPENDIX A. MANAGING CERTIFICATES

99

In order for a certificate to be useful in the real world, it must be signed by a CA, which vouches for the
authenticity of the certificate. This facilitates a scalable solution for certificate verification, because it
means that a single CA certificate can be used to verify a large collection of certificates.

Steps to generate and sign a new certificate

To generate and sign a new certificate, using your own private CA, perform the following steps:

1. Generate a certificate and private key pair using the keytool -genkeypair command, as follows:

keytool -genkeypair -keyalg RSA -dname "CN=Alice, OU=Engineering, O=Red Hat,
ST=Dublin, C=IE" -validity 365 -alias alice -keypass KeyPass -keystore alice.ks -storepass
StorePass

Because the specified keystore, alice.ks, did not exist prior to issuing the command implicitly
creates a new keystore and sets its password to StorePass.

The -dname and -validity flags define the contents of the newly created X.509 certificate.

NOTE

When specifying the certificate’s Distinguished Name (through the -dname
parameter), you must be sure to observe any policy constraints specified in the
openssl.cfg file. If those policy constraints are not heeded, you will not be able to
sign the certificate using the CA (in the next steps).

NOTE

It is essential to generate the key pair with the -keyalg RSA option (or a key
algorithm of similar strength). The default key algorithm uses a combination of
DSA encryption and SHA-1 signature. But the SHA-1 algorithm is no longer
regarded as sufficiently secure and modern Web browsers will reject certificates
signed using SHA-1. When you select the RSA key algorithm, the keytool utility
uses an SHA-2 algorithm instead.

2. Create a certificate signing request using the keystore -certreq command.
Create a new certificate signing request for the alice.ks certificate and export it to the
alice_csr.pem file, as follows:

keytool -certreq -alias alice -file alice_csr.pem -keypass KeyPass -keystore alice.ks -
storepass StorePass

3. Sign the CSR using the openssl ca command.
Sign the CSR for the Alice certificate, using your private CA, as follows:

openssl ca -config openssl.cfg -days 365 -in alice_csr.pem -out alice_signed.pem

You will prompted to enter the CA private key pass phrase you used when creating the CA (in
the section called “Steps to set up a private Certificate Authority”).

For more details about the openssl ca command see
http://www.openssl.org/docs/apps/ca.html#.

4. Convert the signed certificate to PEM only format using the openssl x509 command with the -

Red Hat Fuse 7.0 Security Guide

100

http://www.openssl.org/docs/apps/ca.html#

4. Convert the signed certificate to PEM only format using the openssl x509 command with the -
outform option set to PEM. Enter the following command:

openssl x509 -in alice_signed.pem -out alice_signed.pem -outform PEM

5. Concatenate the CA certificate file and the converted, signed certificate file to form a
certificate chain. For example, on Linux and UNIX platforms, you can concatenate the CA
certificate file and the signed Alice certificate, alice_signed.pem, as follows:

cat demoCA/cacert.pem alice_signed.pem > alice.chain

6. Import the new certificate’s full certificate chain into the Java keystore using the keytool -
import command. Enter the following command:

keytool -import -file alice.chain -keypass KeyPass -keystore alice.ks -storepass StorePass

APPENDIX A. MANAGING CERTIFICATES

101

APPENDIX B. ASN.1 AND DISTINGUISHED NAMES

Abstract

The OSI Abstract Syntax Notation One (ASN.1) and X.500 Distinguished Names play an important role
in the security standards that define X.509 certificates and LDAP directories.

B.1. ASN.1

Overview

The Abstract Syntax Notation One (ASN.1) was defined by the OSI standards body in the early 1980s to
provide a way of defining data types and structures that are independent of any particular machine
hardware or programming language. In many ways, ASN.1 can be considered a forerunner of modern
interface definition languages, such as the OMG’s IDL and WSDL, which are concerned with defining
platform-independent data types.

ASN.1 is important, because it is widely used in the definition of standards (for example, SNMP, X.509,
and LDAP). In particular, ASN.1 is ubiquitous in the field of security standards. The formal definitions of
X.509 certificates and distinguished names are described using ASN.1 syntax. You do not require
detailed knowledge of ASN.1 syntax to use these security standards, but you need to be aware that
ASN.1 is used for the basic definitions of most security-related data types.

BER

The OSI’s Basic Encoding Rules (BER) define how to translate an ASN.1 data type into a sequence of
octets (binary representation). The role played by BER with respect to ASN.1 is, therefore, similar to the
role played by GIOP with respect to the OMG IDL.

DER

The OSI’s Distinguished Encoding Rules (DER) are a specialization of the BER. The DER consists of the
BER plus some additional rules to ensure that the encoding is unique (BER encodings are not).

References

You can read more about ASN.1 in the following standards documents:

ASN.1 is defined in X.208.

BER is defined in X.209.

B.2. DISTINGUISHED NAMES

Overview

Historically, distinguished names (DN) are defined as the primary keys in an X.500 directory structure.
However, DNs have come to be used in many other contexts as general purpose identifiers. In Apache
CXF, DNs occur in the following contexts:

X.509 certificates—for example, one of the DNs in a certificate identifies the owner of the
certificate (the security principal).

Red Hat Fuse 7.0 Security Guide

102

LDAP—DNs are used to locate objects in an LDAP directory tree.

String representation of DN

Although a DN is formally defined in ASN.1, there is also an LDAP standard that defines a UTF-8 string
representation of a DN (see RFC 2253). The string representation provides a convenient basis for
describing the structure of a DN.

NOTE

The string representation of a DN does not provide a unique representation of DER-
encoded DN. Hence, a DN that is converted from string format back to DER format does
not always recover the original DER encoding.

DN string example

The following string is a typical example of a DN:

C=US,O=IONA Technologies,OU=Engineering,CN=A. N. Other

Structure of a DN string

A DN string is built up from the following basic elements:

OID .

Attribute Types .

AVA .

RDN .

OID

An OBJECT IDENTIFIER (OID) is a sequence of bytes that uniquely identifies a grammatical construct in
ASN.1.

Attribute types

The variety of attribute types that can appear in a DN is theoretically open-ended, but in practice only a
small subset of attribute types are used. Table B.1, “Commonly Used Attribute Types” shows a selection
of the attribute types that you are most likely to encounter:

Table B.1. Commonly Used Attribute Types

String Representation X.500 Attribute Type Size of Data Equivalent OID

C countryName 2 2.5.4.6

O organizationName 1…64 2.5.4.10

OU organizationalUnitName 1…64 2.5.4.11

APPENDIX B. ASN.1 AND DISTINGUISHED NAMES

103

CN commonName 1…64 2.5.4.3

ST stateOrProvinceName 1…64 2.5.4.8

L localityName 1…64 2.5.4.7

STREET streetAddress

DC domainComponent

UID userid

String Representation X.500 Attribute Type Size of Data Equivalent OID

AVA

An attribute value assertion (AVA) assigns an attribute value to an attribute type. In the string
representation, it has the following syntax:

<attr-type>=<attr-value>

For example:

CN=A. N. Other

Alternatively, you can use the equivalent OID to identify the attribute type in the string representation
(see Table B.1, “Commonly Used Attribute Types”). For example:

2.5.4.3=A. N. Other

RDN

A relative distinguished name (RDN) represents a single node of a DN (the bit that appears between the
commas in the string representation). Technically, an RDN might contain more than one AVA (it is
formally defined as a set of AVAs). However, this almost never occurs in practice. In the string
representation, an RDN has the following syntax:

<attr-type>=<attr-value>[+<attr-type>=<attr-value> ...]

Here is an example of a (very unlikely) multiple-value RDN:

OU=Eng1+OU=Eng2+OU=Eng3

Here is an example of a single-value RDN:

OU=Engineering

Red Hat Fuse 7.0 Security Guide

104

APPENDIX B. ASN.1 AND DISTINGUISHED NAMES

105

	Table of Contents
	CHAPTER 1. SECURITY ARCHITECTURE
	1.1. OSGI CONTAINER SECURITY
	Overview
	JAAS realms
	karaf realm
	Console port
	JMX port
	Application bundles and JAAS security

	1.2. APACHE CAMEL SECURITY
	Overview
	Alternatives for Apache Camel security
	Endpoint security
	Payload security
	XMLSecurity data format
	Crypto data format

	CHAPTER 2. SECURING THE APACHE KARAF CONTAINER
	2.1. JAAS AUTHENTICATION
	2.1.1. Default JAAS Realm
	Default JAAS realm
	How to integrate an application with JAAS
	Default JAAS login modules
	Configuring users in the properties login module
	Configuring user groups in the properties login module
	Configuring the public key login module
	Configuring user groups in the public key login module
	Encrypting the stored passwords
	Overriding the default realm

	2.1.2. Defining JAAS Realms
	Namespace
	Configuring a JAAS realm
	Converting standard JAAS login properties to XML
	Example

	2.1.3. JAAS Properties Login Module
	Supported credentials
	Implementation classes
	Options
	Format of the user properties file
	Sample Blueprint configuration

	2.1.4. JAAS OSGi Config Login Module
	Overview
	Supported credentials
	Implementation classes
	Options
	Location of the configuration file
	Format of the configuration file
	Sample Blueprint configuration

	2.1.5. JAAS Public Key Login Module
	Supported credentials
	Implementation classes
	Options
	Format of the keys properties file
	Sample Blueprint configuration

	2.1.6. JAAS JDBC Login Module
	Overview
	Supported credentials
	Implementation classes
	Options
	Example of setting up a JDBC login module
	Create the database tables
	Create the data source
	Specify the data source as an OSGi service

	2.1.7. JAAS LDAP Login Module
	Overview
	Supported credentials
	Implementation classes
	Options
	Sample configuration for Apache DS
	Filter settings for different directory servers

	2.1.8. Encrypting Stored Passwords
	Options
	Encryption services
	Basic encryption service
	Jasypt encryption
	Example of a login module with Jasypt encryption

	2.2. ROLE-BASED ACCESS CONTROL
	2.2.1. Overview of Role-Based Access Control
	Mechanisms
	Types of protection
	Adding roles to users
	Standard roles
	ACL files
	Customizing role-based access control
	Additional properties for controlling access

	2.2.2. Customizing the JMX ACLs
	Architecture
	How it works
	Location of JMX ACL files
	Mapping MBeans to ACL file names
	ACL file format
	ACL file hierarchy
	Root ACL definitions
	Package ACL definitions
	ACL for custom MBeans
	Dynamic configuration at run time

	2.2.3. Customizing the Command Console ACLs
	Architecture
	How it works
	Configuring default security roles
	Location of command console ACL files
	Mapping command scopes to ACL file names
	ACL file format
	Dynamic configuration at run time

	2.2.4. Defining ACLs for OSGi Services
	ACL file format
	How to define an ACL for a custom OSGi service
	How to invoke an OSGi service secured with RBAC
	How to discover the roles required by an OSGi service

	2.3. USING ENCRYPTED PROPERTY PLACEHOLDERS
	How to use encrypted property placeholders
	Blueprint XML example

	2.4. ENABLING REMOTE JMX SSL
	Overview
	Prerequisites
	Create the jbossweb.keystore file
	Create and deploy the keystore.xml file
	Add the required properties to org.apache.karaf.management.cfg
	Restart the Karaf container
	Testing the Secure JMX connection

	CHAPTER 3. SECURING THE UNDERTOW HTTP SERVER
	3.1. UNDERTOW SERVER
	3.2. CREATE X.509 CERTIFICATE AND PRIVATE KEY
	3.3. ENABLING SSL/TLS FOR UNDERTOW IN AN APACHE KARAF CONTAINER
	3.4. CUSTOMIZING ALLOWED TLS PROTOCOLS AND CIPHER SUITES
	3.5. CONNECT TO THE SECURE CONSOLE

	CHAPTER 4. SECURING THE CAMEL ACTIVEMQ COMPONENT
	4.1. SECURE ACTIVEMQ CONNECTION FACTORY
	Overview
	Programming the security properties
	Defining a secure connection factory

	4.2. EXAMPLE CAMEL ACTIVEMQ COMPONENT CONFIGURATION
	Overview
	Prerequisites
	Sample Camel ActiveMQ component
	Sample Camel route

	CHAPTER 5. SECURING THE CAMEL CXF COMPONENT
	5.1. THE CAMEL CXF PROXY DEMONSTRATION
	Overview
	Modifications
	Obtaining the demonstration code
	Obtaining the sample certificates
	Physical part of the WSDL contract
	WSDL addressing details

	5.2. SECURING THE WEB SERVICES PROXY
	Overview
	Implicit configuration
	Steps to add SSL/TLS security to the Jetty container
	Add certificates to the bundle resources
	Modify POM to switch off resource filtering
	Instantiate the CXF Bus
	Add the httpj:engine-factory element to Spring
	Define the cxfcore:, sec: and httpj: prefixes
	Modify proxy address URL to use HTTPS

	5.3. DEPLOYING THE APACHE CAMEL ROUTE
	Overview
	Prerequisites
	Steps to deploy the Camel route
	Build the demonstration
	Start the OSGi container
	Install the required features
	Deploy the bundle
	Check the console output

	5.4. SECURING THE WEB SERVICES CLIENT
	Overview
	Implicit configuration
	Certificates needed on the client side
	Loading Spring definitions into the client
	Creating the client proxy
	Steps to add SSL/TLS security to the client
	Create the Java client as a test case
	Add the http:conduit element to Spring configuration
	Run the client

	CHAPTER 6. SECURING THE MANAGEMENT CONSOLE
	6.1. CONTROLLING ACCESS TO THE FUSE MANAGEMENT CONSOLE

	CHAPTER 7. INTEGRATION WITH RED HAT SINGLE SIGN-ON
	7.1. ADAPTER FOR SPRING BOOT CONTAINER
	7.2. ADAPTER FOR APACHE KARAF CONTAINER
	7.3. ADAPTER FOR JBOSS EAP CONTAINER

	CHAPTER 8. LDAP AUTHENTICATION TUTORIAL
	8.1. TUTORIAL OVERVIEW
	Goals

	8.2. SET-UP A DIRECTORY SERVER AND CONSOLE
	Prerequisites
	Install 389 Directory Server
	Install 389 Management Console
	Connect the console to the server

	8.3. ADD USER ENTRIES TO THE DIRECTORY SERVER
	Alternative to adding user entries
	Goals
	Adding user entries
	Adding groups for the roles

	8.4. ENABLE LDAP AUTHENTICATION IN THE OSGI CONTAINER
	References
	Procedure for standalone OSGi container
	Test the LDAP authentication
	Troubleshooting

	APPENDIX A. MANAGING CERTIFICATES
	A.1. WHAT IS AN X.509 CERTIFICATE?
	Role of certificates
	Integrity of the public key
	Digital signatures
	Contents of an X.509 certificate
	Distinguished names

	A.2. CERTIFICATION AUTHORITIES
	A.2.1. Introduction to Certificate Authorities
	A.2.2. Commercial Certification Authorities
	Signing certificates
	Advantages of commercial CAs
	Criteria for choosing a CA

	A.2.3. Private Certification Authorities
	Choosing a CA software package
	OpenSSL software package
	Setting up a private CA using OpenSSL
	Choosing a host for a private certification authority
	Security precautions

	A.3. CERTIFICATE CHAINING
	Certificate chain
	Self-signed certificate
	Chain of trust
	Certificates signed by multiple CAs
	Trusted CAs

	A.4. SPECIAL REQUIREMENTS ON HTTPS CERTIFICATES
	Overview
	HTTPS URL integrity check
	Reference
	How to specify the certificate identity
	Using commonName
	Using subjectAltName (multi-homed hosts)

	A.5. CREATING YOUR OWN CERTIFICATES
	A.5.1. Install the OpenSSL Utilities
	Installing OpenSSL on RHEL and Fedora platforms
	Source code distribution

	A.5.2. Set Up a Private Certificate Authority
	Overview
	Steps to set up a private Certificate Authority

	A.5.3. Create a CA Trust Store File
	Overview
	Steps to create a CA trust store

	A.5.4. Generate and Sign a New Certificate
	Overview
	Steps to generate and sign a new certificate

	APPENDIX B. ASN.1 AND DISTINGUISHED NAMES
	B.1. ASN.1
	Overview
	BER
	DER
	References

	B.2. DISTINGUISHED NAMES
	Overview
	String representation of DN
	DN string example
	Structure of a DN string
	OID
	Attribute types
	AVA
	RDN

