第1章 RHEL におけるセキュリティーの強化の概要

ビジネスの運営や個人情報の把握ではネットワーク化された強力なコンピューターへの依存度が高まっていることから、各種業界ではネットワークとコンピューターのセキュリティーの実践に関心が向けられています。企業は、システム監査を適正に行い、ソリューションが組織の運営要件を満たすようにするために、セキュリティーの専門家の知識と技能を求めてきました。多くの組織はますます動的になってきていることから、従業員は、会社の重要な IT リソースに、ローカルまたはリモートからアクセスするようになっています。このため、セキュアなコンピューティング環境に対するニーズはより顕著になっています。

にも関わらず、多くの組織 (個々のユーザーも含む) は、機能性、生産性、便利さ、使いやすさ、および予算面の懸念事項にばかり目を向け、セキュリティーをその結果論と見なし、セキュリティーのプロセスが見過ごされています。したがって、適切なセキュリティーの確保は、無許可の侵入が発生してはじめて徹底されることも少なくありません。多くの侵入の試みを阻止する効果的な方法は、インターネットなどの信頼できないネットワークにサイトを接続する前に、適切な措置を講じることです。

1.1. コンピューターセキュリティーとは

コンピューターセキュリティーは、コンピューティングと情報処理の幅広い分野で使用される一般的な用語です。コンピューターシステムとネットワークを使用して日々の業務を行い、重要な情報へアクセスしている業界では、企業データを総体的資産の重要な部分であると見なしています。総保有コスト (Total Cost of Ownership: TCO)、投資利益率 (Return on Investment: ROI)、サービスの品質 (Quality of Service: QoS) などの用語や評価指標は日常的なビジネス用語として用いられるようになっています。各種の業界が、計画およびプロセス管理コストの一環として、これらの評価指標を用いてデータ保全性や可用性などを算出しています。電子商取引などの業界では、データの可用性と信頼性は、成功と失敗の違いを意味します。

1.2. セキュリティーの標準化

企業はどの業界でも、米国医師会 (AMA: American Medical Association)、米国電気電子学会 (IEEE: Institute of Electrical and Electronics Engineers) などの標準化推進団体が作成する規制やルールに従っています。情報セキュリティーにも同じことが言えます。多くのセキュリティーコンサルタントやベンダーが 機密性 (Confidentiality)、保全性 (Integrity)、可用性 (Availability) の頭文字をとった CIA として知られる標準セキュリティーモデルを採用しています。この 3 階層モデルは、機密情報のリスク評価やセキュリティー方針の確立において、一般的に採用されているモデルです。以下でこの CIA モデルを説明します。

  • 機密性 - 機密情報は、事前に定義された個人だけが利用できるようにする必要があります。許可されていない情報の送信や使用は、制限する必要があります。たとえば、情報に機密性があれば、権限のない個人が顧客情報や財務情報を悪意のある目的 (ID 盗難やクレジット詐欺など) で入手できません。
  • 保全性 - 情報は、改ざんして不完全または不正確なものにすべきではありません。承認されていないユーザーが、機密情報を変更したり破壊したりする機能を使用できないように制限する必要があります。
  • 可用性 - 情報は、認証されたユーザーが必要な時にいつでもアクセスできるようにする必要があります。可用性は、合意した頻度とタイミングで情報を入手できることを保証します。これは、パーセンテージで表されることが多く、ネットワークサービスプロバイダーやその企業顧客が使用するサービスレベルアグリーメント (SLA) で正式に合意となります。

1.3. 暗号化ソフトウェアおよび認定

Red Hat Enterprise Linux は、業界のベストプラクティスに従い、FIPS 140-2Common Criteria (CC) などのセキュリティー認証を受けています。

ナレッジベースの記事「RHEL 8 core crypto components」では、Red Hat Enterprise Linux 8 コア暗号化コンポーネントの概要 (「どのコンポーネントか選択されているか」、「どのように選択されているか」、「オペレーティングシステムにどのように統合されているかどうか」、「ハードウェアセキュリティーモジュールおよびスマートカードにどのように対応しているか」、および「暗号化認証がどのように適用されているか」) を説明します。

1.4. セキュリティーコントロール

多くの場合、コンピューターセキュリティーは、一般に コントロール と呼ばれる以下の 3 つのマスターカテゴリーに分類されます。

  • 物理的
  • 技術的
  • 管理的

この 3 つのカテゴリーは、セキュリティーの適切な実施における主な目的を定義するものです。このコントロールには、コントロールと、その実装方法を詳細化するサブカテゴリーがあります。

1.4.1. 物理的コントロール

物理的コントロールは、機密資料への非認証アクセスの抑止または防止のために、明確な構造でセキュリティー対策を実施します。物理的コントロールの例は以下のとおりです。

  • 有線監視カメラ
  • 動作または温度の感知アラームシステム
  • 警備員
  • 写真付き身分証明書
  • 施錠された、デッドボルト付きのスチールドア
  • バイオメトリクス (本人確認を行うための指紋、声、顔、虹彩、筆跡などの自動認識方法が含まれます)

1.4.2. 技術的コントロール

技術的コントロールでは、物理的な構造物やネットワークにおける機密データのアクセスや使用を制御する基盤となる技術を使用します。技術的コントロールは広範囲に及び、以下のような技術も含まれます。

  • 暗号化
  • スマートカード
  • ネットワーク認証
  • アクセス制御リスト (ACL)
  • ファイルの完全性監査ソフトウェア

1.4.3. 管理的コントロール

管理的コントロールは、セキュリティーの人的要素を定義します。これは組織内のあらゆるレベルの職員や社員に関連するもので、誰がどのリソースや情報にアクセスするかを、次のような手段で決定します。

  • トレーニングおよび認識の向上
  • 災害準備および復旧計画
  • 人員採用と分離の戦略
  • 人員登録とアカウンティング

1.5. 脆弱性のアセスメント

時間やリソースがあり、その気になれば、攻撃者はほとんどすべてのシステムに侵入できます。現在利用できるセキュリティーの手順と技術をすべて駆使しても、すべてのシステムを侵入から完全に保護できる訳ではありません。ルーターは、インターネットへのセキュアなゲートウェイを提供します。ファイアウォールは、ネットワークの境界を保護します。仮想プライベートネットワーク (VPN) では、データが、暗号化されているストリームで安全に通過できます。侵入検知システムは、悪意のある活動を警告します。しかし、これらの技術が成功するかどうかは、以下のような数多くの要因によって決まります。

  • 技術の設定、監視、および保守を行うスタッフの専門知識
  • サービスとカーネルのパッチ、および更新を迅速かつ効率的に行う能力
  • ネットワーク上での警戒を常に怠らない担当者の能力

データシステムと各種技術が動的であることを考えると、企業リソースを保護するタスクは極めて複雑になる可能性もあります。この複雑さゆえに、使用するすべてのシステムの専門家を見つけることは、多くの場合困難になります。情報セキュリティーの多くの分野によく精通している人材を確保することはできても、多くの分野を専門とするスタッフを確保することは容易ではありません。これは、情報セキュリティーの各専門分野で、継続的な注意と重点が必要となるためです。情報セキュリティーは、常に変化しています。

脆弱性アセスメントは、お使いのネットワークとシステムのセキュリティーに関する内部監査です。このアセスメントの結果により、ネットワークの機密性、完全性、および可用性の状態が明らかになります。通常、脆弱性アセスメントは、対象システムとリソースに関する重要なデータを収集する調査フェーズから開始します。その後システム準備フェーズとなります。基本的にこのフェーズでは、対象を絞り、すべての既知の脆弱性を調べます。準備フェーズが終わると報告フェーズになります。ここでは、調査結果が高中低のカテゴリーに分類され、対象のセキュリティーを向上させる (または脆弱性のリスクを軽減する) 方法が話し合われます。

たとえば、自宅の脆弱性アセスメントを実施することを想定してみましょう。まずは自宅のドアを点検し、各ドアが閉まっていて、かつ施錠されていることを確認します。また、すべての窓が完全に閉まっていて鍵が閉まっていることも確認します。これと同じ概念が、システム、ネットワーク、および電子データにも適用されます。悪意のあるユーザーはデータを盗んで、破壊します。悪意のあるユーザーが使用するツール、思考、動機に注目すると、彼らの行動にすばやく反応することが可能になります。

1.5.1. アセスメントとテストの定義

脆弱性アセスメントは、外部からの視点内部からの視点 の 2 種類に分類できます。

外部からの視点で脆弱性アセスメントを実施する場合は、外部からシステムに攻撃を試みます。会社を外から見ることで、クラッカーの視点に立つことができます。一般にルーティング可能な IP アドレス、DMZ にあるシステム、ファイアウォールの外部インターフェースなど、クラッカーが目を付けるものに着目します。DMZ は「非武装地帯 (demilitarized zone)」を表し、企業のプライベート LAN などの信頼できる内部ネットワークと、公的なインターネットなどの信頼できない外部ネットワークの間にあるコンピューターまたは小さなサブネットワークに相当します。通常、DMZ には Web (HTTP) サーバー、FTP サーバー、SMTP (e-mail) サーバー、DNS サーバーなど、インターネットのトラフィックにアクセスできるデバイスが含まれます。

内部からの視点で脆弱性アセスメントを実施する場合、実行者は内部関係者であり、信頼されるステータスにあることから、有利な立場になります。内部からの視点は、実行者やその同僚がシステムにログオンした時点で得られるものです。プリントサーバー、ファイルサーバー、データベースなどのリソースを見ることができます。

これら 2 種類の脆弱性アセスメントには大きな違いがあります。社内のユーザーには、部外者が得られない多くの特権が付与されています。多くの組織では、侵入者を締め出すようにセキュリティーが構成されています。しかし、組織内の細かい部分 (部門内ファイアウォール、ユーザーレベルのアクセス制御および内部リソースに対する認証手順など) には、セキュリティー対策がほとんど行われていません。また、一般的にほとんどのシステムは社内にあるため、内部からの方がより多くのリソースを確認できます。いったん社外に移動すると、ステータスは信頼されない状態になります。通常、外部から利用できるシステムやリソースは、非常に限られたものになります。

脆弱性アセスメントと 侵入テスト の違いを考えてみましょう。脆弱性アセスメントを、侵入テストの第一歩と捉えてください。このアセスメントで得られる情報は、その後のテストで使用します。アセスメントは抜け穴や潜在的な脆弱性を検査する目的で行われるのに対し、侵入テストでは調査結果を実際に使用する試みがなされます。

ネットワークインフラストラクチャーのアセスメントは動的なプロセスです。セキュリティー (情報セキュリティーおよび物理的なセキュリティー) は動的なものです。アセスメントを実施することで概要が明らかになり、誤検出 (False positives) および検出漏れ (False negatives) が示される場合があります。誤検出は、実際には存在しない脆弱性をツールが検出することを指します。検出漏れは、実際の脆弱性が検出されないことを指します。

セキュリティー管理者の力量は、使用するツールとその管理者が有する知識で決まります。現在使用できるアセスメントツールのいずれかを選び、それらをシステムに対して実行すると、ほぼ間違いなく誤検出がいくつか見つかります。プログラム障害でもユーザーエラーでも、結果は同じです。ツールは、誤検出することもあれば、さらに悪い場合は、検出漏れをすることもあります。

脆弱性アセスメントと侵入テストの違いが定義されたところで、新たなベストプラクティスの一環として侵入テストを実施する前に、アセスメントの結果を注意深く確認し、検討してみましょう。

警告

実稼働システムで脆弱性を悪用する試みを行わないでください。システムおよびネットワークの生産性ならびに効率に悪影響を与える可能性があります。

脆弱性アセスメントの実施には、以下のような利点があります。

  • 情報セキュリティーに事前にフォーカスできる
  • クラッカーが発見する前に潜在的な不正使用を発見できる
  • システムを最新の状態に維持し、パッチを適用できる
  • スタッフの成長と専門知識の開発を促す
  • 経済的な損失や否定的な評判を減らす

1.5.2. 脆弱性評価に関する方法論の確立

脆弱性アセスメントの方法論が確立されれば、脆弱性アセスメント用のツール選択に役立ちます。現時点では、事前定義の方法論や業界で承認された方法論はありませんが、一般常識やベストプラクティスを適切なガイドとして活用できます。

「ターゲット」とは何を指していますか?1 台のサーバー、またはネットワーク全体およびネットワーク内にあるすべてのサーバーを確認しますか?会社外ですか? それとも内部ですか? この質問に対する回答は、選択したツールだけでなく、そのツールの使用方法を決定する際に重要です。

方法論の確立の詳細は、以下の Web サイトを参照してください。

1.5.3. 脆弱性アセスメントのツール

アセスメントは、情報収集ツールを使用することから始まります。ネットワーク全体を評価する際は、最初にレイアウトを描いて、稼働しているホストを把握します。ホストの場所を確認したら、それぞれのホストを個別に検査します。各ホストにフォーカスするには別のツールセットが必要になります。どのツールを使用すべきかを知っておくことは、脆弱性の発見において最も重要なステップになる可能性があります。

以下で、利用可能なツールを一部紹介します。

  • Nmap は、ホストシステムを見つけて、そのシステムでポートを開くことができる一般的なツールです。AppStream リポジトリーから Nmap をインストールするには、rootyum install nmap コマンドを実行します。詳細は nmap(1) の man ページを参照してください。
  • oscap コマンドラインユーティリティー、scap-workbench グラフィカルユーティリティーなどの OpenSCAP スイートのツールは、完全に自動化されたコンプライアンス監査を提供します。詳細は「セキュリティーコンプライアンスおよび脆弱性スキャンの開始」を参照してください。
  • AIDE (Advanced Intrusion Detection Environment) は、システムのファイルのデータベースを作成し、そのデータベースを使用してファイルの整合性を確保し、システムの侵入を検出します。詳細は「AIDE で整合性のチェック」を参照してください。

1.6. セキュリティーへの脅威

1.6.1. ネットワークセキュリティーへの脅威

ネットワークの以下の要素を設定する際に不適当なプラクティスが行われると、攻撃のリスクが増大します。

セキュリティーが十分ではないアーキテクチャー

間違った構成のネットワークは、未承認ユーザーの主要なエントリーポイントになります。信頼に基づいたオープンなローカルネットワークを、安全性が非常に低いインターネットに対して無防備な状態にしておくことは、犯罪の多発地区でドアを半開きにしておくようなものです。すぐに何かが起きることはないかもしれませんが、いずれ、誰かが、このチャンスを悪用するでしょう。

ブロードキャストネットワーク

システム管理者は、セキュリティー計画においてネットワーキングハードウェアの重要性を見落としがちです。ハブやルーターなどの単純なハードウェアは、ブロードキャストやノンスイッチの仕組みに基づいています。つまり、あるノードがネットワークを介して受信ノードにデータを送信するときは常に、受信ノードがデータを受信して処理するまで、ハブやルーターがデータパケットのブロードキャストを送信します。この方式は、外部侵入者やローカルホストの未認証ユーザーが仕掛けるアドレス解決プロトコル (ARP) およびメディアアクセスコントロール (MAC) アドレスの偽装に対して最も脆弱です。

集中化サーバー

ネットワーキングのもうひとつの落とし穴は、集中化されたコンピューティングの使用にあります。多くの企業では、一般的なコスト削減手段として、すべてのサービスを 1 台の強力なマシンに統合しています。集中化は、複数サーバーを設定するよりも管理が簡単で、コストを大幅に削減できるので便利です。ただし、集中化されたサーバーはネットワークにおける単一障害点となります。中央のサーバーが攻撃されると、ネットワークが完全に使用できなくなるか、データの不正操作や盗難が起きやすくなる可能性があります。このような場合は、中央サーバーがネットワーク全体へのアクセスを許可することになります。

1.6.2. サーバーセキュリティーへの脅威

サーバーには組織の重要情報が数多く含まれることが多いため、サーバーのセキュリティーは、ネットワークのセキュリティーと同様に重要です。サーバーが攻撃されると、クラッカーが意のままにすべてのコンテンツを盗んだり、不正に操作したりできるようになる可能性があります。以下のセクションでは、主要な問題の一部を詳述します。

未使用のサービスと開かれたポート

Red Hat Enterprise Linux 8 のフルインストールを行うと、アプリケーションとライブラリーのパッケージが 1000 個以上含まれます。ただし、サーバー管理者が、ディストリビューションに含まれるすべての個別パッケージをインストールすることはほとんどありません。代わりに、複数のサーバーアプリケーションを含むパッケージのベースインストールを行います。

システム管理者は、インストールに含まれるプログラムに注意を向けずにオペレーティングシステムをインストールしてしまうことがよくあります。これにより、不要なサービスがインストールされ、デフォルト設定でオンになっていることで、問題が発生する場合があります。つまり、管理者が気が付かないところで、Telnet、DHCP、DNS などの不要なサービスがサーバーやワークステーションで実行し、その結果、サーバーへの不要なトラフィックが発生したり、クラッカーがシステムのパスを悪用できてしまう可能性があります。

パッチが適用されないサービス

デフォルトのインストールに含まれるほとんどのサーバーアプリケーションは、ソフトウェアの細部まで徹底的にテストされており、堅牢な作りになっています。何年も実稼働環境で使用される中で、そのコードは入念に改良され、数多くのバグが発見されて修正されてきました。

しかし、完璧なソフトウェアというものはなく、改良の余地は常にあります。または、比較的新しいソフトウェアは、実稼働環境に導入されてから日が浅く、他のサーバーソフトウェアほど普及していないこともあるため、厳密なテストが期待通りに行われていない状況も少なくありません。

開発者やシステム管理者が、サーバーアプリケーションで悪用される可能性のあるバグを発見することも多々あり、Bugtraq メーリングリスト (http://www.securityfocus.com)、Computer Emergency Response Team (CERT) Web サイト (http://www.cert.org) などで、バグ追跡やセキュリティー関連の Web サイトに関連する情報が公開されています。このような情報発信は、コミュニティーにセキュリティーの脆弱性を警告する効果的な方法ではありますが、システムに速やかにパッチを当てるかどうかは個々のシステム管理者が決定します。クラッカーも、パッチが適用されていないシステムがあればクラッキングできるように、脆弱性トラッキングサービスにアクセスし、関連情報を利用できることを考慮すると、速やかな対応がとりわけ重要になります。優れたシステム管理を行うには、警戒を怠らず、バグ追跡を絶えず行い、適切なシステム保守を実行して、よりセキュアなコンピューティング環境を維持することが求められます。

管理における不注意

管理者がシステムにパッチを当てないことが、サーバーのセキュリティーに対する最大の脅威の 1 つになります。これは、管理者の経験の少なさだけでなく、管理者の過信やモチベーションの低さなども原因となります。

管理者が、サーバーやワークステーションにパッチを当てることを忘れたり、システムのカーネルやネットワーク通信のログメッセージを見落とす場合もあります。その他にも、よく起こるケースとして、サービスのデフォルトパスワードや鍵を変更しないまま放置しておくことが挙げられます。たとえば、データベースにはデフォルトの管理パスワードが設定されているものがありますが、ここでは、システム管理者がインストール後すぐにデフォルトパスワードを変更することを、データベース開発者は想定しています。しかし、データベース管理者がパスワードを変更することを忘れると、クラッカーの経験が浅くても、周知のデフォルトパスワードを使用してデータベースの管理者権限を得ることができます。この他に、管理者の不注意によりサーバーが危険にさらされる場合もあります。

本質的に安全ではないサービス

どんなに注意深い組織であっても、選択するネットワークサービスが本質的に安全でない限り、攻撃を受けやすくなります。たとえば、多くのサービスは、信頼できるネットワークでの使用を想定して開発されますが、このサービスが (本質的に信頼できない) インターネットで利用可能になる時点で、この仮定は成立しなくなります。

安全ではないネットワークサービスの例として、暗号化されていないユーザー名とパスワードを認証時に要求するサービスが挙げられます。具体例としては、Telnet や FTP の 2 つがあげられます。パケット盗聴ソフトウェアがリモートユーザーとこのようなサービスの間のトラフィックを監視していれば、ユーザー名とパスワードは簡単に傍受される可能性があります。

また、基本的にこのようなサービスはセキュリティー業界で 中間者 攻撃と呼ばれる攻撃の被害者になりやすくなります。この種の攻撃では、クラッカーが、ネットワーク上でクラッキングしたネームサーバーを操って、目標のサーバーではなくクラッカーのマシンを指定して、ネットワークトラフィックをリダイレクトします。誰かがサーバーへのリモートセッションを開くと、攻撃者のマシンがリモートサービスと無防備なユーザーとの間に存在する目に見えないパイプとして機能し、この間を流れる情報を取り込みます。このようにして、クラッカーはサーバーやユーザーに気付かれることなく、管理パスワードや生データを収集できるようになります。

安全ではないサービスの例としては、他にも NFS、NIS などのネットワークファイルシステムおよび情報サービスが挙げられます。このサービスは、LAN 利用を目的として開発されましたが、(リモートユーザー用の) WAN も対象に含まれるように拡張されました。NFS では、クラッカーによる NFS 共有のマウントやそこに格納されているものへのアクセスを防ぐ認証やセキュリティーの仕組みがデフォルトで設定されていません。NIS も、プレーンテキストの ASCII または DBM (ASCII から派生) データベースに、パスワードやファイルパーミッションなど、ネットワーク上の全コンピューターへの周知が必要となる重要な情報を保持しています。クラッカーがこのデータベースのアクセス権を取得すると、管理者のアカウントを含む、ネットワークのすべてのユーザーアカウントにアクセスできるようになります。

Red Hat Enterprise Linux 8 では、デフォルトでは、上記のサービスがすべて無効になっています。ただし、管理者は、このようなサービスを使用しないといけない場合があるため、注意して設定することが重要となります。

1.6.3. ワークステーションおよび家庭用 PC のセキュリティーに対する脅威

ワークステーションや家庭用 PC はネットワークやサーバーほど攻撃にさらされることはないかもしれませんが、クレジットカード情報のような機密データが含まれるため、システムクラッカーの標的になります。ワークステーションは知らぬ間に攻撃者によって選択され、一連の攻撃で「スレーブ」マシンとして使用される可能性もあります。このため、ユーザーはワークステーションの脆弱性を理解しておくと、オペレーティングシステムの再インストールや、深刻な場合はデータ盗難からの回復といった問題から免れることができます。

不適切なパスワード

攻撃者が最も簡単にシステムへのアクセスを得る方法の 1 つとして、パスワードが適切でないことが挙げられます。

脆弱なクライアントアプリケーション

管理者がサーバーに十分な安全対策を施し、パッチを当てている場合でも、リモートユーザーによるアクセスが安全であるわけではありません。たとえば、サーバーが公開ネットワーク上で Telnet や FTP のサービスを提供している場合、攻撃者はネットワークを通過するプレーンテキストのユーザー名とパスワードを取り込み、アカウント情報を使用してリモートユーザーのワークステーションにアクセスすることが可能です。

SSH などのセキュアなプロトコルを使用している場合であっても、クライアントアプリケーションを定期的に更新していないと、リモートユーザーは特定の攻撃を受けやすくなる可能性があります。たとえば、SSH プロトコルのバージョン 1 のクライアントは、悪意のある SSH サーバーからの X 転送攻撃に対して脆弱です。クライアントがサーバーに接続すると、攻撃者はネットワーク上でクライアントによるキー入力やマウス操作をひそかに収集できます。この問題は SSH プロトコルのバージョン 2 で修正されましたが、ユーザーはどのアプリケーションにこのような脆弱性があるかを追跡し、必要に応じてアプリケーションを更新する必要があります。

1.7. 一般的な不正使用と攻撃

表1.1「一般的な不正使用」では、侵入者が組織のネットワークリソースにアクセスするために使用する最も一般的な不正使用とエントリーポイントの例を挙げて詳しく説明します。この一般的な不正使用では、それがどのように実行され、管理者がその攻撃からネットワークをどのように適切に保護できるかを理解していることが重要になります。

表1.1 一般的な不正使用

不正使用説明備考

空またはデフォルトのパスワード

管理パスワードを空白のままにしたり、製品ベンダーが設定したデフォルトのパスワードをそのまま使用します。これは、ルーターやファイアウォールなどのハードウェアで最もよく見られますが、Linux で実行するサービスにはデフォルトの管理者パスワードが指定されているものがあります (ただし Red Hat Enterprise Linux 8 には含まれません)。

一般的に、ルーター、ファイアウォール、VPN、ネットワーク接続ストレージ (NAS) の機器など、ネットワークハードウェアに関連するものです。

多数のレガシーオペレーティングシステム、特にサービスをバンドルしたオペレーティングシステム (UNIX や Windows など) でよく見られます。

管理者が急いで特権ユーザーアカウントを作成したためにパスワードが空白のままになっていることがありますが、このような空白のパスワードは、このアカウントを発見した悪意のあるユーザーが利用できる絶好のエントリーポイントとなります。

デフォルトの共有鍵

セキュアなサービスでは、開発や評価テスト向けにデフォルトのセキュリティー鍵がパッケージ化されていることがあります。この鍵を変更せずにインターネットの実稼働環境に置いた場合は、同じデフォルトの鍵を持つ すべての ユーザーがその共有鍵のリソースや、そこにあるすべての機密情報にアクセスできるようになります。

無線アクセスポイントや、事前設定済みでセキュアなサーバー機器に最も多く見られます。

IP スプーフィング

リモートマシンがローカルネットワークのノードのように動作し、サーバーに脆弱性を見つけるとバックドアプログラムまたはトロイの木馬をインストールして、ネットワークリソース全体へのコントロールを得ようとします。

スプーフィングは、攻撃者が標的となるシステムへの接続を調整するのに、TCP/IP シーケンス番号を予測しなければならないため、かなり難しくなりますが、クラッカーの脆弱性の攻撃を支援する利用可能なツールがいくつかあります。

標的となるシステムで実行している source-based 認証技術を使用するサービス (rshtelnet、FTP など) により異なりますが、このようなサービスは、ssh、または SSL/TLS で使用される PKI などの形式の暗号化認証と比較すると推奨されません。

盗聴

2 つのノード間の接続を盗聴することにより、ネットワーク上のアクティブなノード間を行き交うデータを収集します。

この種類の攻撃には大抵、Telnet、FTP、HTTP 転送などのプレーンテキストの転送プロトコルが使用されます。

リモートの攻撃者がこのような攻撃を仕掛けるには、LAN で、攻撃するシステムへのアクセス権が必要になります。通常、クラッカーは、LAN 上にあるシステムを危険にさらすためにアクティブ攻撃 (IP スプーフィングや中間者攻撃など) を仕掛けます。

パスワードのなりすましに対する防護策としては、暗号化鍵交換、ワンタイムパスワード、または暗号化された認証によるサービス使用が挙げられます。通信中は強力な暗号化を実施することをお勧めします。

サービスの脆弱性

攻撃者はインターネットで実行しているサービスの欠陥や抜け穴を見つけます。攻撃者がこの脆弱性を利用する場合は、システム全体と格納されているデータを攻撃するだけでなく、ネットワーク上の他のシステムも攻撃する可能性があります。

CGI などの HTTP ベースのサービスは、リモートのコマンド実行やインタラクティブなシェルアクセスに対しても脆弱です。HTTP サービスが「nobody」などの権限のないユーザーとして実行している場合でも、設定ファイルやネットワークマップなどの情報が読み取られる可能性があります。または、攻撃者がサービス拒否攻撃を開始して、システムのリソースを浪費させたり、他のユーザーが利用できないようにする可能性もあります。

開発時およびテスト時には気が付かない脆弱性がサービスに含まれることがあります。(アプリケーションのメモリーバッファー領域をあふれさせ、任意のコマンドを実行できるようなインタラクティブなコマンドプロンプトを攻撃者に提供するように、攻撃者が任意の値を使用してサービスをクラッシュさせる バッファーオーバーフローなどの) 脆弱性は、完全な管理コントロールを攻撃者に与えるものとなる可能性があります。

管理者は、root 権限でサービスが実行されないようにし、ベンダー、または CERT、CVE などのセキュリティー組織がアプリケーション用のパッチやエラータ更新を提供していないかを常に注意する必要があります。

アプリケーションの脆弱性

攻撃者は、デスクトップやワークステーションのアプリケーション(電子メールクライアントなど)に欠陥を見つけ出し、任意のコードを実行したり、将来のシステム侵害のためにトロイの木馬を移植したり、システムを破壊したりします。攻撃を受けたワークステーションがネットワークの残りの部分に対して管理特権を持っている場合は、さらなる不正使用が起こる可能性があります。

ワークステーションとデスクトップは、ユーザーが侵害を防いだり検知するための専門知識や経験を持たないため、不正使用の対象になりやすくなります。認証されていないソフトウェアをインストールしたり、要求していないメールの添付ファイルを開く際には、それに伴うリスクについて個々に通知することが必須です。

電子メールクライアントソフトウェアが添付ファイルを自動的に開いたり、実行したりしないようにするといった、予防手段を取ることが可能です。さらに、Red Hat Network や他のシステム管理サービスなどからワークステーションのソフトウェアを自動更新することにより、マルチシートのセキュリティーデプロイメントの負担を軽減できます。

サービス拒否攻撃 (DoS: Denial of Service)

単独の攻撃者または攻撃者のグループは、目標のホスト (サーバー、ルーター、ワークステーションのいずれか) に認証されていないパケットを送り、組織のネットワークまたはサーバーのリソースに対して攻撃を仕掛けます。これにより、正当なユーザーがリソースを使用できなくなります。

米国で最も多く報告された DOS の問題は、2000 年に発生しました。この時、通信量が非常に多い民間および政府のサイトが一部が利用できなくなりました。ゾンビ (zombie) や、リダイレクトされたブロードキャストノードとして動作する高帯域幅接続を有し、セキュリティー侵害された複数のシステムを使用して、調整された ping フラッド攻撃が行われたためです。

通常ソースパケットは、真の攻撃元を調査するのが難しくなるよう、偽装 (または再ブロードキャスト)されています。

iptables を使用したイングレスフィルタリング (IETF rfc2267) や、snort などのネットワーク侵入検知システムにおける進歩は、管理者が分散型サービス拒否攻撃を追跡し、これを防止するのに役立っています。


このページには機械翻訳が使用されている場合があります (詳細はこちら)。