
Red Hat Container Development Kit 3.1

Getting Started Guide

Quick-start guide to using and developing with Red Hat Container Development Kit

Last Updated: 2018-02-02

Red Hat Container Development Kit 3.1 Getting Started Guide

Quick-start guide to using and developing with Red Hat Container Development Kit

Chris Negus
cnegus@redhat.com

Robert Krátký
rkratky@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide shows how to get up to speed using Red Hat Container Development Kit. Included
instructions and examples guide through first steps developing containerized applications using
Docker, Kubernetes, and OpenShift Container Platform, both from your host workstation
(Microsoft Windows, macOS, or Red Hat Enterprise Linux) and from within the Container
Development Environment provided by Red Hat Container Development Kit.

. .

. .

. .

Table of Contents

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT
1.1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT

1.1.1. Additional Information
1.2. PREPARING TO INSTALL CONTAINER DEVELOPMENT KIT

1.2.1. Overview
1.2.2. Prerequisites
1.2.3. Understanding Container Development Kit Installation

1.3. CONTAINER DEVELOPMENT KIT INSTALLATION
1.3.1. Installing Container Development Kit
1.3.2. Step 1: Set up your virtualization environment

1.3.2.1. Set up hypervisor on Red Hat Enterprise Linux
1.3.2.2. Set up hypervisor on macOS
1.3.2.3. Set up hypervisor on Windows

1.3.3. Step 2: Download CDK Software
1.3.4. Step 3: Set up CDK
1.3.5. Step 4: Start CDK
1.3.6. Step 5: Configure CDK
1.3.7. Deploying a Sample Application

1.4. UNINSTALLING CONTAINER DEVELOPMENT KIT
1.4.1. Overview
1.4.2. Uninstalling Container Development Kit

CHAPTER 2. INTERACTING WITH OPENSHIFT
2.1. USING THE OPENSHIFT CLIENT BINARY (OC)

2.1.1. Overview
2.1.2. Container Development Kit CLI Profile
2.1.3. Logging Into the Cluster
2.1.4. Accessing the Web Console
2.1.5. Accessing OpenShift Services
2.1.6. Viewing OpenShift Logs
2.1.7. Updating OpenShift Configuration

2.1.7.1. Example: Configuring cross-origin resource sharing
2.1.7.2. Example: Changing the OpenShift routing suffix

2.2. EXPOSING SERVICES
2.2.1. Overview
2.2.2. Routes
2.2.3. NodePort Services
2.2.4. Port Forwarding

2.3. ACCESSING THE OPENSHIFT DOCKER REGISTRY
2.3.1. Overview
2.3.2. Logging Into the Registry
2.3.3. Deploying Applications

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT
3.1. MANAGING CONTAINER DEVELOPMENT KIT

3.1.1. Overview
3.1.2. Container Development Kit Life-cycle

3.1.2.1. The minishift setup-cdk Command
3.1.2.2. The minishift start Command
3.1.2.3. The minishift stop Command
3.1.2.4. The minishift delete Command

3.1.3. Runtime Options

4
4
4
5
5
5
6
6
6
6
6
7
8
8
9

10
11
12
13
13
13

15
15
15
15
15
16
16
16
16
17
17
18
18
18
18
19
19
19
19
19

20
20
20
20
20
20
20
21
21

Table of Contents

1

3.1.3.1. Flags
3.1.3.2. Environment Variables
3.1.3.3. Persistent Configuration

3.1.3.3.1. Setting Persistent Configuration Values
3.1.3.3.2. Unsetting Persistent Configuration Values

3.1.3.4. Driver-Specific Environment Variables
3.1.4. Caching OpenShift images (experimental)
3.1.5. Persistent Volumes
3.1.6. HTTP/HTTPS Proxies
3.1.7. Networking
3.1.8. Connecting to Container Development Kit VM with SSH

3.2. ADD-ONS
3.2.1. Overview
3.2.2. Add-on Commands
3.2.3. Variable Interpolation

3.2.3.1. Built-in Variables
3.2.3.2. Dynamic Variables

3.2.4. Default Add-ons
3.2.5. Enabling and Disabling Add-ons

3.2.5.1. Add-on Priorities
3.2.6. Applying Add-ons
3.2.7. Writing Custom Add-ons

3.3. HOST FOLDERS
3.3.1. Overview
3.3.2. Driver-Provided Host Folders
3.3.3. The minishift hostfolder Command

3.3.3.1. Prerequisites
3.3.3.2. Displaying Host Folders
3.3.3.3. Adding Host Folders

3.3.3.3.1. Instance-Specific Host Folders
3.3.3.4. Mounting Host Folders

3.3.3.4.1. Auto-Mounting Host Folders
3.3.3.5. Unmounting Host Folders
3.3.3.6. Deleting Host Folders
3.3.3.7. SSHFS Host Folders

3.4. CONTAINER DEVELOPMENT KIT DOCKER DAEMON
3.4.1. Reusing the docker Daemon

3.5. TROUBLESHOOTING CONTAINER DEVELOPMENT KIT
3.5.1. Overview
3.5.2. Special characters cause passwords to fail
3.5.3. Undefining virsh snapshots fail
3.5.4. KVM: Error creating new host: dial tcp: missing address
3.5.5. KVM: Failed to connect socket to '/var/run/libvirt/virtlogd-sock'
3.5.6. KVM: Domain 'minishift' already exists…
3.5.7. xhyve: Could not create vmnet interface
3.5.8. VirtualBox: Error machine does not exist
3.5.9. Hyper-V: Hyper-V commands must be run as an Administrator
3.5.10. Hyper-V: Container Development Kit running with Hyper-V fails when connected to OpenVPN

21
21
22
22
23
23
23
24
24
25
25
25
25
26
27
27
28
28
29
29
30
30
30
31
31
31
31
31
32
33
33
33
33
34
34
34
35
35
35
35
35
36
36
37
37
38
38
38

Red Hat Container Development Kit 3.1 Getting Started Guide

2

Table of Contents

3

CHAPTER 1. GETTING STARTED WITH
CONTAINER DEVELOPMENT KIT

This section contains information about setting up, installing, updating and uninstalling
Container Development Kit.

1.1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT

Red Hat Container Development Kit is a platform for developing containerized applications on a single,
personal system. It enables developers to quickly and easily set up an environment for developing and
testing containerized applications on the Red Hat Enterprise Linux platform.

Container Development Kit:

Provides a personal Container Development Environment you can install on your own laptop,
desktop, or server system. The Container Development Environment is provided in the form of
a Red Hat Enterprise Linux virtual machine. The Container Development Environment itself
can also be installed in a virtual machine.

Includes the same container-development and run-time tools used to create and deploy
containers for large data centers.

CDK version 3 offers an easy installation method based on the minishift tool.

Runs on Microsoft Windows, macOS, and Linux operating systems as a Linux virtual machine,
thus allowing developers to use their favorite platform while producing applications ready to
be deployed in the Red Hat Enterprise Linux ecosystem.

Container Development Kit is a part of the Red Hat Developers program, which provides tools,
resources, and support for developers who wish to utilize Red Hat solutions and products to create
applications, both locally and in the cloud. For additional information and to register to become a part
of the program, visit developers.redhat.com.

1.1.1. Additional Information

Refer to the following documents for further information:

See Red Hat Container Development Kit 3.1 Release Notes and Known Issues for information
about the current release of the product as well as a list of known problems that users may
encounter when using it.

See Container Development Kit Getting Started Guide for instructions on how to install and
start using the Container Development Environment to develop Red Hat Enterprise Linux-
based containers using tools and services such as OpenShift Container Platform , Docker,
Eclipse, and various command-line tools.

To report issues, refer to the following:

For Red Hat Container Development Kit issues or to request new CDK features, refer to the
CDK Project.

For issues with Red Hat Container Development Kit documentation or to request new
documentation, refer to CDK Project Documentation.

Red Hat Container Development Kit 3.1 Getting Started Guide

4

https://www.openshift.org/minishift/
http://developers.redhat.com
http://developers.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.1/html-single/release_notes_and_known_issues/
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.1/html-single/getting_started_guide/
https://issues.jboss.org/projects/CDK
https://issues.jboss.org/projects/RHDEVDOCS

1.2. PREPARING TO INSTALL CONTAINER DEVELOPMENT KIT

1.2.1. Overview

Container Development Kit version 3.1 is based on the Minishift project version 1.5.0. Using a single
executable file, the minishift command deploys Container Development Kit as a Red Hat Enterprise
Linux virtual machine, running OpenShift (which includes Kubernetes, the docker service, and other
container development and deployment software).

Container Development Kit setup procedure can, and should, be run as a regular user that has special
permission to launch virtual machines. In the procedure, you will see how to assign that permission,
along with ways to configure your hypervisor and command shell to start and effectively interact with
Container Development Kit.

NOTE

Container Development Kit version 2.x was based on Vagrant. Because of the
completely different deployment and management methods, there is no upgrade path
from CDK 2.x to CDK 3.x versions. You need to do a fresh setup.

The following section describes how to install Container Development Kit and the required
dependencies.

1.2.2. Prerequisites

Container Development Kit requires a hypervisor to start the virtual machine on which the OpenShift
cluster is provisioned. Verify that the hypervisor of your choice is installed and enabled on your system
before you set up Container Development Kit. Once the hypervisor is up and running, additional setup
is required for Container Development Kit to work with that hypervisor (as described in the coming
setup procedure).

Depending on your host operating system, you have the choice of the following hypervisors:

macOS

xhyve (default)

VirtualBox

Red Hat Enterprise Linux, Fedora, CentOS or other Linux system

KVM (default)

VirtualBox

Windows

Hyper-V (default)

VirtualBox

Refer to the documentation for each hypervisor to determine the hardware and operating system
versions needed to run that hypervisor.

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

5

https://docs.openshift.org/latest/minishift/index.html
https://www.vagrantup.com/
https://github.com/mist64/xhyve
https://www.virtualbox.org/wiki/Downloads
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Virtualization_Deployment_and_Administration_Guide/index.html#chap-Requirements
https://www.virtualbox.org/wiki/Downloads
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://www.virtualbox.org/wiki/Downloads

1.2.3. Understanding Container Development Kit Installation

These are the basic steps for setting up Container Development Kit on your personal laptop or desktop
system:

1. Set up your virtualization environment

2. Download CDK software for your operating system from the Container Development Kit
Download Page

3. Set up CDK

4. Start CDK

5. Configure CDK so you can use it efficiently

1.3. CONTAINER DEVELOPMENT KIT INSTALLATION

1.3.1. Installing Container Development Kit

The following steps describe how to prepare your virtualization environment (hypervisor) for CDK,
download CDK software, set up CDK, and start using it.

1.3.2. Step 1: Set up your virtualization environment

Follow the appropriate procedure to set up virtualization for your particular operating system and
hypervisor. Container Development Kit uses Docker Machine and its driver plug-in architecture to
provide a consistent way to manage the OpenShift VM.

Some hypervisors require that the driver plug-in be manually installed. Container Development Kit
embeds VirtualBox drivers so no additional steps are required to configure the driver. However, later
you will need to run a minishift command to tell Container Development Kit to use VirtualBox.

1.3.2.1. Set up hypervisor on Red Hat Enterprise Linux

Choose between KVM (default) and VirtualBox for your hypervisor. Manual driver setup is required for
KVM The driver is automatically configured if you install VirtualBox. However, a minishift command
would be required later to identify VirtualBox to Container Development Kit.

On Red Hat Enterprise Linux with KVM virtualization : Container Development Kit is currently tested
against docker-machine-driver-kvm version 0.7.0. Follow these steps to install the KVM driver and
configure your user account to use the libvirtd service.

1. As root, install the KVM binary and make it executable as follows:

curl -L https://github.com/dhiltgen/docker-machine-
kvm/releases/download/v0.7.0/docker-machine-driver-kvm -o
/usr/local/bin/docker-machine-driver-kvm
chmod +x /usr/local/bin/docker-machine-driver-kvm

For more information, see the GitHub documentation of the docker machine KVM driver .

2. As root, install libvirt and qemu-kvm on your system and add yourself to the libvirt group:

Red Hat Container Development Kit 3.1 Getting Started Guide

6

https://developers.redhat.com/products/cdk/download/
https://github.com/dhiltgen/docker-machine-kvm#quick-start-instructions

yum install libvirt qemu-kvm
usermod -a -G libvirt <username>

3. Update your current user session to apply the group change:

$ newgrp libvirt

4. Start the libvirtd service as root:

systemctl start libvirtd
systemctl enable libvirtd

1.3.2.2. Set up hypervisor on macOS

Choose between xhyve (default) and VirtualBox for your hypervisor. Manual driver setup is required for
xhyve. The driver is automatically configured if you install VirtualBox. However, a minishift command
would be required later to identify VirtualBox to Container Development Kit.

On macOS with xhyve virtualization:

Container Development Kit on macOS with xhyve virtualization is currently tested against docker-
machine-driver-xhyve version 0.3.1. To manually install the xhyve driver, you need to download and
install the docker-machine-driver-xhyve binary and place it in a directory which is on your PATH
environment variable. The directory /usr/local/bin is most likely a good choice, since it is the default
installation directory for Docker Machine binaries.

The following steps explain the installation of the docker-machine-driver-xhyve binary to the
/usr/local/bin/ directory:

1. Download the docker-machine-driver-xhyve binary using:

$ sudo curl -L https://github.com/zchee/docker-machine-driver-
xhyve/releases/download/v0.3.1/docker-machine-driver-xhyve -o
/usr/local/bin/docker-machine-driver-xhyve

2. Enable root access for the docker-machine-driver-xhyve binary and add it to the default
wheel group:

$ sudo chown root:wheel /usr/local/bin/docker-machine-driver-xhyve

3. Set owner User ID (SUID) for the binary as follows:

$ sudo chmod u+s,+x /usr/local/bin/docker-machine-driver-xhyve

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

7

NOTE

The downloaded docker-machine-driver-xhyve binaries are compiled against a
specific version of macOS. It is possible that the driver fails to work after an macOS
version upgrade. In this case you can try to compile the driver from source:

$ go get -u -d github.com/zchee/docker-machine-driver-xhyve
$ cd $GOPATH/src/github.com/zchee/docker-machine-driver-xhyve

Install docker-machine-driver-xhyve binary into
/usr/local/bin
$ make install

docker-machine-driver-xhyve need root owner and uid
$ sudo chown root:wheel /usr/local/bin/docker-machine-driver-
xhyve
$ sudo chmod u+s /usr/local/bin/docker-machine-driver-xhyve

For more information, see the xhyve driver documentation on GitHub.

1.3.2.3. Set up hypervisor on Windows

Choose between Hyper-V (default on Windows 10) and VirtualBox (Windows 7 or Windows 10) for your
hypervisor. Manual driver setup is required for Hyper-V. The driver is automatically configured if you
install VirtualBox. However, a minishift command would be required later to identify VirtualBox to
Container Development Kit.

On Windows with Hyper-V virtualization:

1. Install Hyper-V.

2. Add an External Virtual Switch. Verify that you pair the virtual switch with a network card
(wired or wireless) that is connected to the network.

3. If you have multiple virtual switches, set the environment variable HYPERV_VIRTUAL_SWITCH
to the name of the external virtual switch you want to use for Container Development Kit.
For example, on Command Prompt use:

C:\> set HYPERV_VIRTUAL_SWITCH=External (Wireless)

Note that using quotes in Command Prompt results in the following error:

C:\> set HYPERV_VIRTUAL_SWITCH="External (Wireless)"
Error creating the VM. Error with pre-create check: "vswitch
\"\\\"External (Wireless)\\\"\" not found"

However, on PowerShell you need to use the quotes:

PS C:\> $env:HYPERV_VIRTUAL_SWITCH="External (Wireless)"

1.3.3. Step 2: Download CDK Software

Red Hat Container Development Kit 3.1 Getting Started Guide

8

https://github.com/zchee/docker-machine-driver-xhyve#install
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/enable-hyper-v
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/connect-to-network

Before you can download CDK software, you need to either register with the Red Hat Developer
Program site or login to the Red Hat customer portal with Red Hat subscription credentials. Then go to
one of the following two sites and download the software associated with your operating system:

Red Hat Developer Program CDK Download Page

Red Hat Customer Portal CDK Download Page

Copy the downloaded minishift file to a directory in your $PATH and make it executable. The
downloaded minishift executable is named cdk-3.1.0-1-minishift-darwin-amd64 (for macOS), cdk-
3.1.0-1-minishift-linux-amd64 (for Linux) or cdk-3.1.0-1-minishift-windows-amd64.exe (for
Windows). Assuming minishift executable is in the Downloads directory, follow the procedure for your
operating system:

For Red Hat Enterprise Linux:

$ mkdir -p ~/bin
$ cp ~/Downloads/cdk-3.1.0-1-minishift* ~/bin/minishift
$ chmod +x ~/bin/minishift
$ export PATH=$PATH:$HOME/bin
$ echo ‘export PATH=$PATH:$HOME/bin’ >> ~/.bashrc

For macOS:

$ mkdir -p ~/bin
$ cp ~/Downloads/cdk-3.1.0-1-minishift* ~/bin/minishift
$ chmod +x ~/bin/minishift
$ export PATH=$PATH:$HOME/bin
$ echo export PATH=$PATH:$HOME/bin >> ~/.bash_profile

For Windows:

Create the desired directory and copy the downloaded minishift binary to the directory, renaming the
binary to minishift. Add the directory path to the Windows path variable. This directory MUST be on
the C: drive!

If it’s difficult to get minishift in your PATH, you can simply run it from the current directory as
./minishift (or .\minishift in some Windows shells).

1.3.4. Step 3: Set up CDK

The minishift setup-cdk command gets and configures the components needed to run
Container Development Kit on your system. By default, it places Container Development Kit content in
your ~/.minishift directory. One thing you should know about this directory:

To use a directory other than ~/.minishift, you must set the --minishift-home flag and the
MINISHIFT_HOME environment variable, as described in Environment Variables.

Run the following command to set up Container Development Kit for Red Hat Enterprise Linux:

$ minishift setup-cdk
Setting up CDK 3 on host using '/home/joe/.minishift' as Minishift's home
directory
Copying minishift-rhel7.iso to '/home/joe/.minishift/cache/iso/minishift-
rhel7.iso'

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

9

https://developers.redhat.com/
https://developers.redhat.com/products/cdk/download/
https://access.redhat.com/downloads/content/293/ver=3.1/rhel---7/3.1/x86_64/product-software
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.1/html-single/getting_started_guide/#environment-variables

Copying oc to '/home/joe/.minishift/cache/oc/v3.6.173.0.21/oc'
Creating configuration file '/home/joe/.minishift/config/config.json'
Creating marker file '/home/joe/.minishift/cdk'
Default add-ons anyuid, admin-user, xpaas installed
Default add-ons anyuid, admin-user, xpaas enabled
CDK 3 setup complete.

As you can see from the output, a .minishift directory is created in the user’s home directory to hold
various CDK components, and appropriate files and setting are stored there.

For Windows or macOS: Running the same minishift setup-cdk command on Windows and Mac results
in slightly different output, based on some different components and pathnames.

1.3.5. Step 4: Start CDK

The minishift start command launches Container Development Kit, which consists of a Red Hat
Enterprise Linux virtual machine running OpenShift. Follow these steps to launch
Container Development Kit.

1. If you are using the default hypervisor for your operating system (KVM for Linux, xhyve for
macOS, or Hyper-V for Windows), you can skip this step. If you have set up VirtualBox as your
hypervisor, you need to configure the VirtualBox Driver. To switch the hypervisor used by
Container Development Kit to VirtualBox, you have two choices.

Temporary: Add the --vm-driver virtualbox option to the minishift start
command line to use VirtualBox immediately.

Persistent: To persistently change the hypervisor, run the minishift config set vm-
driver virtualbox command. See the Persistent Configuration section for examples.

2. Registration. By default, minishift start prompts you for your Red Hat account username and
password. You can enter that information or choose instead to:

Skip registration: Add the --skip-registration option to minishift start to not
register the Container Development Kit VM.

Register permanently: You can export registration information so that minishift picks it up
automatically, each time it starts as shown here:
For Red Hat Enterprise Linux:

$ export MINISHIFT_USERNAME=<RED_HAT_USERNAME>
$ export MINISHIFT_PASSWORD='<RED_HAT_PASSWORD>'
$ echo export MINISHIFT_USERNAME=$MINISHIFT_USERNAME >> ~/.bashrc
$ echo export MINISHIFT_PASSWORD=$MINISHIFT_PASSWORD >> ~/.bashrc

For macOS:

export MINISHIFT_USERNAME=‘<RED_HAT_USERNAME>’
export MINISHIFT_PASSWORD=‘<RED_HAT_PASSWORD>’
echo export MINISHIFT_USERNAME=$MINISHIFT_USERNAME >>
~/.bash_profile
echo export MINISHIFT_PASSWORD=$MINISHIFT_PASSWORD >>
~/.bash_profile

For Windows:

Red Hat Container Development Kit 3.1 Getting Started Guide

10

Set these two variables: MINISHIFT_USERNAME=<RED_HAT_USERNAME> and
MINISHIFT_PASSWORD=<RED_HAT_PASSWORD>.

3. Run minishift start to set up and start the virtual machine with the default configuration. See
the description of minishift start in the minishift start command reference to see other
options to modify minishift start . Here is an example of how that would look run from a Red
Hat Enterprise Linux system.

...
-- Minishift VM will be configured with ...
 Memory: 4 GB
 vCPUs : 2
 Disk size: 20 GB
-- Starting Minishift VM OK
-- Registering machine using subscription-manager
 Registration in progress OK [42s]
-- Checking for IP address ... OK
-- Checking if external host is reachable from the Minishift VM ...
...
Extracting
Image pull complete
OpenShift server started.
The server is accessible via web console at:
 https://192.168.42.60:8443
You are logged in as:
 User: developer
 Password: developer
To login as administrator:
 oc login -u system:admin
...

4. Run this command to see if the virtual machine is running:

$ minishift status
Running

For macOS and Windows system, you see similar output from minishift start when run in a
macOS terminal or Windows command prompt or PowerShell, respectively.

1.3.6. Step 5: Configure CDK

With CDK virtual machine running, you can configure and start using CDK through two primary
interfaces: oc (OpenShift client binary command) or the OpenShift web console .

oc: Use minishift oc-env to display the command you need to type into your shell in order
to add the oc binary to your PATH environment variable. The output of oc-env will differ
depending on your user directory, operating system and shell type.
For Red Hat Enterprise Linux:

$ minishift oc-env
export PATH="/home/joe/.minishift/cache/oc/v3.6.173.0.21:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

11

https://docs.openshift.org/latest/minishift/command-ref/minishift_start.html

To use that information to add the PATH to the oc command permanently to the .bashrc file,
type the following:

$ echo export
PATH=\"/home/joe/.minishift/cache/oc/v3.6.173.0.21:\$PATH\" >>
~/.bashrc
$ source ~/.bashrc

For macOS:

$ minishift oc-env
export PATH="/home/joe/.minishift/cache/oc/v3.6.173.0.21:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)
$ echo export
PATH=/Users/joe/.minishift/cache/oc/v3.6.173.0.21:\$PATH >>
~/.bash_profile
$ source ~/.bash_profile

For Windows:

Set the oc binary path in the environment path variable.

For more information about interacting with OpenShift from the command-line interface, see the
OpenShift Client Binary section.

OpenShift web console : To access OpenShift from the web console, you can either:

Run minishift console to open the OpenShift web console from your default browser or

Open a browser to the URL output from the minishift start command (for example,
https://192.168.42.60:8443).

From the web console screen, enter the user name (developer) and password (developer)
displayed from the output.

You are now ready to start using OpenShift using either of those two interfaces.

1.3.7. Deploying a Sample Application

OpenShift provides various sample applications, such as templates, builder applications, and
quickstarts. To begin creating an application, see :

Creating an Application Using the CLI to use the oc command to create a new application.

Creating an Application Using the Web Console to use the OpenShift web user interface to
create applications.

The following steps describe how to deploy a sample Node.js application from the command-line.

1. Create a Node.js example app.

$ oc new-app https://github.com/openshift/nodejs-ex -l name=myapp

2. Track the build log until the app is built and deployed.

Red Hat Container Development Kit 3.1 Getting Started Guide

12

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.1/html-single/getting_started_guide/#using_the_openshift_client_binary_oc
https://192.168.42.60:8443
https://docs.openshift.org/latest/dev_guide/application_lifecycle/new_app.html#using-the-cli
https://docs.openshift.org/latest/dev_guide/application_lifecycle/new_app.html#using-the-web-console-na

$ oc logs -f bc/nodejs-ex

3. Expose a route to the service.

$ oc expose svc/nodejs-ex

4. Access the application.

$ minishift openshift service nodejs-ex --in-browser

5. If you are done with the VM, use minishift stop to stop the VM temporarily, so you can
return to the same state later (with minishift start).

$ minishift stop
Stopping local OpenShift cluster...
Stopping "minishift"...

See minishift stop for details on managing subscriptions as you stop and start the VM.

For more information about creating applications in OpenShift, see Creating New Applications in the
OpenShift documentation.

1.4. UNINSTALLING CONTAINER DEVELOPMENT KIT

1.4.1. Overview

This section describes how you can uninstall the minishift binary and delete associated files.

1.4.2. Uninstalling Container Development Kit

1. Delete CDK VM and any VM-specific files.

$ minishift delete

This command deletes everything in the CDK_HOME/.minishift/machines/minishift directory.
Other cached data and the persistent configuration are not removed.

2. To completely uninstall Container Development Kit, delete everything in the
MINISHIFT_HOME directory (default ~/.minishift) and ~/.kube, run the following commands:
For Red Hat Enterprise Linux and macOS:

$ rm -rf ~/.minishift
$ rm -rf ~/.kube

For Windows powershell:

Replace <MINISHIFT_HOME> with the location of your home directory.

PS C:\> Remove-Item -Recurse -Force C:\<MINISHIFT_HOME>\.minishift\
PS C:\> Remove-Item -Recurse -Force C:\<MINISHIFT_HOME>\.kube\

For Windows command prompt:

CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT

13

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.1/html-single/getting_started_guide/#minishift-stop-overview
https://docs.openshift.org/latest/dev_guide/application_lifecycle/new_app.html

Replace <MINISHIFT_HOME> with the location of your home directory. (You may need to use
the del /s command instead.)

c:\> rm -r c:\<MINISHIFT_HOME>\.minishift
c:\> rm -r c:\<MINISHIFT_HOME>\.kube

3. With your hypervisor management tool, confirm that there are no remaining artifacts related
to CDK VM. For example, if you use KVM, you need to run the virsh command.

Red Hat Container Development Kit 3.1 Getting Started Guide

14

CHAPTER 2. INTERACTING WITH OPENSHIFT
Container Development Kit creates a virtual machine and provisions a local, single-node OpenShift
cluster in this VM. The following sections describe how Container Development Kit can assist you in
interacting and configuring your local OpenShift cluster.

For details about managing Container Development Kit VM, see the Managing
Container Development Kit section.

2.1. USING THE OPENSHIFT CLIENT BINARY (OC)

2.1.1. Overview

The minishift start command creates an OpenShift cluster using the cluster up approach. For
this purpose it copies the oc binary onto your host.

The oc binary is located in the ~/.minishift/cache/oc/v1.5.1 directory, assuming that you use CDK’s
default version of OpenShift. You can add this binary to your PATH using minishift oc-env, which
displays the command you need to type into your shell.

The output of minishift oc-env differs depending on the operating system and the shell type.

$ minishift oc-env
export PATH="/Users/john/.minishift/cache/oc/v3.6.173.0.21:$PATH"
Run this command to configure your shell:
eval $(minishift oc-env)

2.1.2. Container Development Kit CLI Profile

As a part of the minishift start command, a Container Development Kit CLI profile is also created.
This profile, also known as a context, contains the configuration to communicate with your OpenShift
cluster.

Container Development Kit activates this context automatically, but if you need to switch back to it
after, for example, logging into another OpenShift instance, you can run:

$ oc config use-context minishift

For an introduction to oc usage, see the Get Started with the CLI topic in the OpenShift
documentation.

2.1.3. Logging Into the Cluster

By default, cluster up uses AllowAllPasswordIdentityProvider to authenticate against the local
cluster. This means any non-empty user name and password can be used to login to the local cluster.

The recommended user name and password is developer and developer, respectively. This is
because they are already assigned to the default project myproject and also can impersonate the
administrator. This allows you to run administrator commands using the --as system:admin
parameter.

To login as administrator, use the system account:

CHAPTER 2. INTERACTING WITH OPENSHIFT

15

https://github.com/openshift/origin/blob/master/docs/cluster_up_down.md
https://docs.openshift.org/latest/cli_reference/manage_cli_profiles.html
https://docs.openshift.org/latest/cli_reference/get_started_cli.html
https://docs.openshift.org/latest/install_config/configuring_authentication.html#AllowAllPasswordIdentityProvider
https://docs.openshift.org/latest/architecture/additional_concepts/authentication.html#authentication-impersonation

$ oc login -u system:admin

In this case, client certificates are used. The certificates are stored in ~/.kube/config. The cluster
up command installs the appropriate certificates as a part of the bootstrap.

NOTE

If you run the command oc login -u system -p admin, you will log in but not as
an administrator. Instead, you will be logged in as an unprivileged user with no particular
rights.

To view the available login contexts, run:

$ oc config view

2.1.4. Accessing the Web Console

To access the OpenShift Web console, you can run this command in a shell after running the minishift
command to get the URL of the Web console:

$ minishift console --url

Alternatively, after starting Container Development Kit, you can use the following command to directly
open the console in a browser:

$ minishift console

2.1.5. Accessing OpenShift Services

To access a service that is exposed with a route, run this command in a shell:

$ minishift openshift service [-n NAMESPACE] [--url] NAME

To list all the services in the OpenShift instance, run this command in a shell:

$ minishift openshift service list

For more information on exposing services refer also to Exposing Services.

2.1.6. Viewing OpenShift Logs

To access OpenShift logs, run the logs command after starting Container Development Kit:

$ minishift logs

2.1.7. Updating OpenShift Configuration

While OpenShift is running, you can view and change the master or the node configuration of your
cluster.

Red Hat Container Development Kit 3.1 Getting Started Guide

16

https://docs.openshift.org/latest/architecture/additional_concepts/authentication.html#api-authentication
https://docs.openshift.org/latest/architecture/infrastructure_components/web_console.html

To view the OpenShift master configuration file master-config.yaml, run the following command:

$ minishift openshift config view

To show the node configuration instead of the master configuration, specify the target flag.

NOTE

After you update the OpenShift configuration, OpenShift will transparently restart.

2.1.7.1. Example: Configuring cross-origin resource sharing

In this example, you configure cross-origin resource sharing (CORS) by updating the OpenShift master
configuration to allow additional IP addresses to request resources.

By default, OpenShift only allows cross-origin resource requests from the IP address of the cluster or
from localhost. This setting is stored in the corsAllowedOrigins property of the master
configuration file master-config.yaml.

To change the property value and allow cross-origin requests from all domains, run the following
command:

$ minishift openshift config set --patch '{"corsAllowedOrigins": [".*"]}'

NOTE

If you get the error The specified patch need to be a valid JSON. when you run the above
command, you need to modify the above command depending on your Operating
System, your shell environment and its interpolation behavior.

For example, if you use PowerShell on Windows 7 or 10, modify the above command to:

$ minishift openshift config set --patch
'{\"corsAllowedOrigins\": [\".*\"]}'

If you use Command Prompt you might need to use:

$ minishift openshift config set --patch "
{\"corsAllowedOrigins\": [\".*\"]}"

2.1.7.2. Example: Changing the OpenShift routing suffix

In this example, you change the OpenShift routing suffix in the master configuration.

If you use a static routing suffix, you can set the routing-suffix flag as part of the minishift
start command. By default, The minishift command uses a dynamic routing prefix based on nip.io, in
which the IP address of the VM is a part of the routing suffix, for example 192.168.99.103.nip.io.

If you experience issues with nip.io, you can use xip.io, which is based on the same principles.

To set the routing suffix to xip.io, run the following command:

CHAPTER 2. INTERACTING WITH OPENSHIFT

17

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://docs.openshift.org/latest/admin_guide/master_node_configuration.html#master-configuration-files
http://nip.io/
http://xip.io/

$ minishift openshift config set --patch '{"routingConfig": {"subdomain":
"<IP-ADDRESS>.xip.io"}}'

Make sure to replace IP-ADDRESS in the above example with the IP address of your
Container Development Kit VM. You can retrieve the IP address by running the minishift ip
command.

2.2. EXPOSING SERVICES

2.2.1. Overview

There are several ways you can expose your service after you deploy it on OpenShift. The following
sections describes the various methods and when to use them.

2.2.2. Routes

If you are deploying a Web application, the most common way to expose it is by a route. A route
exposes the service as a host name. You can create a route using the Web console or the CLI:

oc expose svc/frontend --hostname=www.example.com

To see a full example of creating an application and exposing it with a route, see the Deploying a
Sample Application section.

2.2.3. NodePort Services

In case the service you want to expose is not HTTP based, you can create a NodePort service. In this
case, each OpenShift node will proxy that port into your service. To access this port on your
Container Development Kit VM, you need to configure an Ingress IP Self-Service using oc expose
with the parameter type=LoadBalancer.

A common use-case for Ingress IP Self-Service is the ability to expose a database service. The
following example shows the complete workflow to create and expose a MariaDB instance using the
minishift and oc commands:

$ minishift start
$ eval $(minishift oc-env)
$ oc new-app -e MYSQL_ROOT_PASSWORD=admin
https://raw.githubusercontent.com/openshift/origin/master/examples/db-
templates/mariadb-persistent-template.json
$ oc rollout status -w dc/mariadb
$ oc expose dc mariadb --type=LoadBalancer --name=mariadb-ingress
$ oc export svc mariadb-ingress

ports:
 - nodePort: 30907

After the service is exposed, you can access MariaDB with the mysql CLI using
Container Development Kit VM IP and the exposed NodePort service.

$ mysql --user=root --password=foo --host=$(minishift ip) --port=30907

Red Hat Container Development Kit 3.1 Getting Started Guide

18

https://docs.openshift.org/latest/dev_guide/routes.html
https://docs.openshift.org/latest/architecture/core_concepts/pods_and_services.html#service-nodeport
https://docs.openshift.org/latest/dev_guide/getting_traffic_into_cluster.html#using-ingress-IP-self-service
https://mariadb.org

2.2.4. Port Forwarding

If you want to quickly access a port of a specific pod of your cluster, you can also use the oc port-
forward command of the OpenShift CLI.

$ oc port-forward POD [LOCAL_PORT:]REMOTE_PORT

2.3. ACCESSING THE OPENSHIFT DOCKER REGISTRY

2.3.1. Overview

OpenShift provides an integrated Docker registry which can be used for development as well. Images
present in the registry can directly be used for applications, speeding up the local development
workflow.

2.3.2. Logging Into the Registry

1. Run the minishift start command and add the oc binary to the PATH (based on output from
the minishift oc-env command)

2. Make sure your shell is configured to reuse Container Development Kit docker daemon .

3. Log into the OpenShift Docker registry.

 $ docker login -u developer -p $(oc whoami -t) $(minishift
openshift registry)

2.3.3. Deploying Applications

The following example shows how to deploy an OpenShift application directly from a locally-built
docker image. This example uses the OpenShift project myproject. This project is automatically
created by minishift start.

1. Make sure your shell is configured to reuse Container Development Kit docker daemon .

2. Build the docker image as usual.

3. Tag the image against the OpenShift registry.

 $ docker tag my-app $(minishift openshift registry)/myproject/my-
app

4. Push the image to the registry to create an image stream with the same name as the
application.

 $ docker push $(minishift openshift registry)/myproject/my-app

5. Create an application from the image stream and expose the service.

 $ oc new-app --image-stream=my-app --name=my-app
 $ oc expose service my-app

CHAPTER 2. INTERACTING WITH OPENSHIFT

19

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT
This section describes how to use the minishift CLI and manage your Container Development Kit VM. It
also helps troubleshooting common issues.

For details about using the minishift and oc commands to manage your local OpenShift cluster, see the
Interacting with OpenShift section.

3.1. MANAGING CONTAINER DEVELOPMENT KIT

3.1.1. Overview

When you use the minishift command, you interact with two components:

a virtual machine (VM) created by the minishift command

the OpenShift cluster provisioned by the minishift command within the VM

The following sections contain information about managing Container Development Kit VM. For details
about using Container Development Kit to manage your local OpenShift cluster, see the Interacting
with OpenShift section.

3.1.2. Container Development Kit Life-cycle

Use different options to the minishift command to manage Container Development Kit throughout its
life-cycle.

3.1.2.1. The minishift setup-cdk Command

The minishift setup-cdk command creates and configures the Container Development Kit VM
and provisions a local, single-node OpenShift cluster within the Container Development Kit VM.

The command also copies the oc binary to your host so that you can interact with OpenShift through
the oc command-line tool or through the Web console, which can be accessed through the URL
provided in the output of the minishift start command.

3.1.2.2. The minishift start Command

The minishift start command actually starts up the Container Development Kit VM, after it is has
been provisioned by the minishift setup-cdk command.

3.1.2.3. The minishift stop Command

The minishift stop command stops your OpenShift cluster and shuts down the
Container Development Kit VM, but preserves the OpenShift cluster state.

Running the minishift start command again will restore the OpenShift cluster, allowing you to
continue working from the last session. However, you must enter the same parameters that you used
in the original start command.

So not to consume RHEL entitlements when the VM is not running, the VM is unregistered by default
with minishift stop. To retain entitlement credentials (for example, if you want to work offline
temporarily), follow these steps:

Red Hat Container Development Kit 3.1 Getting Started Guide

20

https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.1/html-single/getting_started_guide/#interacting_with_openshift
https://access.redhat.com/documentation/en-us/red_hat_container_development_kit/3.1/html-single/getting_started_guide/#interacting_with_openshift

1. Stop the VM and skip unregistration:

$ minishift stop --skip-unregistration

2. Start the VM while offline (skipping registration):

$ minishift start --skip-registration

Repeat the --skip-unregistration when you stop the VM. The next time you start the VM with
the system online, simply type minishift start to have the VM use the existing credentials again.

Efforts to further refine the minishift start and stop experience are in progress. For details, see the
GitHub issue #179.

3.1.2.4. The minishift delete Command

The minishift delete command deletes the OpenShift cluster, and also shuts down and deletes
the Container Development Kit VM. No data or state are preserved. However, some files may be left
behind in the .minishift and .kde directories in your home directory. So you can remove those
directories to completely clean up your system.

3.1.3. Runtime Options

The runtime behavior of the minishift command can be controlled through flags, environment
variables, and persistent configuration options.

The following precedence order is applied to control the behavior of the minishift command. Each
action in the following list takes precedence over the action below it:

1. Use command-line flags as specified in the Flags section.

2. Set environment variables as described in the Environment Variables section.

3. Use persistent configuration options as described in the Persistent Configuration section.

4. Accept the default value as defined by the minishift command.

3.1.3.1. Flags

You can use command line flags with the minishift command to specify options and direct its behavior.
This has the highest precedence. Almost all commands have flags, although different commands might
have different flags. Some of the commonly-used command line flags of the minishift start
command are cpus, memory or vm-driver.

3.1.3.2. Environment Variables

The minishift command allows you to specify command-line flags you commonly use through
environment variables. To do so, apply the following rules to the flag you want to set as an
environment variable.

1. Apply MINISHIFT_ as a prefix to the flag you want to set as an environment variable. For
example, the vm-driver flag of the minishift start command becomes MINISHIFT_vm-
driver.

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

21

https://github.com/minishift/minishift/issues/179

2. Use uppercase characters for the flag, so MINISHIFT_vm-driver in the above example
becomes MINISHIFT_VM-DRIVER.

3. Replace - with _, so MINISHIFT_VM-DRIVER becomes MINISHIFT_VM_DRIVER.

Environment variables can be used to replace any option of any minishift command.

NOTE

You can use the MINISHIFT_HOME environment variable, to choose a different home
directory for Container Development Kit. By default, the minishift command places all
runtime state into ~/.minishift. This environment variable is currently experimental and
semantics might change in future releases. To use MINISHIFT_HOME, you should set the
new home directory when you first set up Container Development Kit. For example, this
sets the minishift home directory to ~/.mynewdir on a Linux system:

$ minishift setup-cdk --minishift-home ~/.mynewdir
$ export MINISHIFT_HOME=~/.mynewdir
$ echo "export MINISHIFT_HOME=~/.mynewdir" >> ~/.bashrc

3.1.3.3. Persistent Configuration

Using persistent configuration allows you to control the Container Development Kit behavior without
specifying actual command line flags, similar to the way you use environment variables.

The minishift command maintains a configuration file in $MINISHIFT_HOME/config/config.json. This
file can be used to set commonly-used command-line flags persistently.

NOTE

Persistent configuration can only be applied to the set of supported configuration
options that are listed in the synopsis of the minishift config sub-command. This is
different from environment variables, which can be used to replace any option of any
command.

3.1.3.3.1. Setting Persistent Configuration Values

The easiest way to change a persistent configuration option is with the minishift config set sub-
command. For example:

Set default memory 4096 MB
$ minishift config set memory 4096

Flags which can be used multiple times per command invocation, like docker-env or insecure-
registry, need to be comma-separated when used with the config set command. For example,
from the CLI, you can use insecure-registry like this:

$ minishift start --insecure-registry hub.foo.com --insecure-registry
hub.bar.com

If you want to configure the same registries in the persistent configuration, you would run:

Red Hat Container Development Kit 3.1 Getting Started Guide

22

$ minishift config set insecure-registry hub.foo.com,hub.bar.com

In another example, to identify the hypervisor as VirtualBox at Container Development Kit start time,
use the --vm-driver virtualbox option as follows:

$ minishift start --vm-driver virtualbox

To switch from the default hypervisor to have Container Development Kit persistently use VirtualBox
as the hypervisor, type:

$ minishift config set vm-driver virtualbox

To view all persistent configuration values, you can use the minishift config view sub-command:

$ minishift config view
- memory: 4096

Alternatively, you can display a single value with the minishift config get sub-command:

$ minishift config get memory
4096

3.1.3.3.2. Unsetting Persistent Configuration Values

To remove a persistent configuration option, you can use the minishift config unset sub-
command. For example:

$ minishift config unset memory

3.1.3.4. Driver-Specific Environment Variables

You can also set driver-specific environment variables. Each docker-machine driver supports its own
set of options and variables. A good starting point is the official docker-machine driver documentation.

xhyve and KVM documentation is available under their respective GitHub repository docker-machine-
driver-xhyve and docker-machine-kvm.

To use driver-specific options, make sure to export the variable as defined in its driver documentation
before running minishift start. For example, the xhyve experimental NFS sharing can be enabled
by executing:

$ export XHYVE_EXPERIMENTAL_NFS_SHARE=true
$ minishift start --vm-driver xhyve

CAUTION

Driver-specific options might overlap with values specified using minishift-specific flags and
environment variables. Examples are memory size, cpu count, and so on. In this case, driver-specific
environment variables will override minishift-specific settings.

3.1.4. Caching OpenShift images (experimental)

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

23

https://docs.docker.com/machine/drivers/
https://github.com/zchee/docker-machine-driver-xhyve
https://github.com/dhiltgen/docker-machine-kvm

To speed up provisioning of the OpenShift cluster and to minimize network traffic, the core OpenShift
images can be cached on the host. This feature is considered experimental and needs to be explicitly
enabled using the minishift config set command:

$ minishift config set image-caching true

Once enabled, caching occurs transparently, in a background process, the first time you use the
minishift start command. Once the images are cached under $MINISHIFT_HOME/cache/images,
successive Container Development Kit VM creations will use these cached images.

Each time an image exporting background process runs, a log file is generated under
$MINISHIFT_HOME/logs which can be used to verify the progress of the export.

You can disable the caching of the OpenShift images by setting image-caching to false or
removing the setting altogether using minishift config unset:

$ minishift config unset image-caching

NOTE

Image caching is considered experimental and its semantics and API is subject to
change. The aim is to allow caching of arbitrary images, as well as using a better format
for storing the images on the host. You can track the progress on this feature on the
GitHub issue #952.

3.1.5. Persistent Volumes

As part of the OpenShift cluster provisioning, 100 persistent volumes are created for your OpenShift
cluster. This allows applications to make persistent volumes claims. The location of the persistent data
is determined in the host-pv-dir flag of the minishift start command and defaults to
/var/lib/minishift/openshift.local.pv on Container Development Kit VM.

3.1.6. HTTP/HTTPS Proxies

If you are behind an HTTP/HTTPS proxy, you need to supply proxy options to allow Docker and
OpenShift to work properly. To do this, pass the required flags during minishift start.

For example:

$ minishift start --http-proxy http://YOURPROXY:PORT --https-proxy
https://YOURPROXY:PORT

In an authenticated proxy environment, the proxy_user and proxy_password must be a part of
proxy URI.

 $ minishift start --http-proxy http://<proxy_username>:
<proxy_password>@YOURPROXY:PORT \
 --https-proxy https://<proxy_username>:
<proxy_password>@YOURPROXY:PORT

You can also use the --no-proxy flag to specify a comma-separated list of hosts that should not be
proxied.

Red Hat Container Development Kit 3.1 Getting Started Guide

24

https://github.com/minishift/minishift/issues/952
https://docs.openshift.org/latest/dev_guide/persistent_volumes.html
https://docs.openshift.org/latest/dev_guide/persistent_volumes.html#persistent-volumes-claims-as-volumes-in-pods

Using the proxy options will transparently configure the docker daemon as well as OpenShift to use
the specified proxies.

NOTE

minishift start honors the environment variables HTTP_PROXY,
HTTPS_PROXY and NO_PROXY. If these variables are set, they are implicitly used
during minishift start unless explicitly overridden by the corresponding
command line flags.

Use the minishift start --ocp-tag flag to request a specific version of
OpenShift Container Platform. You can list all Container Development Kit-
compatible OpenShift Container Platform versions with the minishift
openshift version list command.

3.1.7. Networking

The Container Development Kit VM is exposed to the host system with a host-only IP address that can
be obtained with the minishift ip command.

3.1.8. Connecting to Container Development Kit VM with SSH

You can use the minishift ssh command to interact with Container Development Kit VM.

You can run minishift ssh without a sub-command to open an interactive shell and run commands
on Container Development Kit VM in the same way that you run commands interactively on any remote
machine using SSH.

You can also run minishift ssh with a sub-command to send the sub-command directly to
Container Development Kit VM and return the result to your local shell. For example:

$ minishift ssh -- docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS NAMES
71fe8ff16548 .../ose-pod:v3.6.173.0.21 "/usr/bin/pod" 4 minutes ago Up 4
minutes k8s_POD...

3.2. ADD-ONS

3.2.1. Overview

NOTE

This feature is still considered experimental and might change in future releases.

Container Development Kit allows you to extend the vanilla OpenShift setup provided by cluster up
with an add-on mechanism.

Add-ons are directories that contain a text file with the .addon extension. The directory can also
contain other resource files such as JSON template files. However, only one .addon file is allowed per
add-on.

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

25

1

2

3

4

The following example shows the contents of an add-on file, including the name and description of the
add-on, additional metadata, and the actual add-on commands to apply.

Example: anyuid add-on definition file

Name: anyuid

1
Description: Allows authenticated users to run images under a non pre-

allocated UID 2
Required-vars: ACME_TOKEN

3

oc adm policy add-scc-to-group anyuid system:authenticated

4

(Required) Name of the add-on.

(Required) Description of the add-on.

(Optional) Comma separated list of required interpolation variables. See Variable Interpolation

Actual add-on command. In this case, the command executes the oc binary.

NOTE

Comment lines, starting with the '#' character, can be inserted at anywhere in the file.

Enabled add-ons are applied during minishift start, immediately after the initial cluster
provisioning is successfully completed.

3.2.2. Add-on Commands

This section describes the commands that an add-on file can contain. They are forming a mini-DSL for
Container Development Kit add-ons:

ssh

If the add-on command starts with ssh, you can run any command within the minishift-managed
VM. This is similar to running minishift ssh and then executing any command on the VM. For
more information about the minishift ssh command usage, see Connecting to
Container Development Kit VM with SSH.

oc

If the add-on command starts with oc, it uses the oc binary that is cached on your host to execute
the specified oc command. This is similar to running oc --as system:admin … from the
command-line.

NOTE

The oc command is executed as system:admin.

openshift

Red Hat Container Development Kit 3.1 Getting Started Guide

26

If the add-on command starts with openshift, you can run the openshift binary within the
container that runs OpenShift. This means that any file parameters or other system-specific
parameters must match the environment of the container instead of your host.

docker

If the add-on command starts with docker, it executes a docker command against the docker
daemon within Container Development Kit VM. This is the same daemon on which the single-node
OpenShift cluster is running as well. This is similar to running eval $(minishift docker-env)
on your host and then executing any docker command. See also minishift docker-env.

echo

If the add-on command starts with echo, the arguments following the echo command are printed to
the console. This can be used to provide additional feedback during add-on execution.

sleep

If the add-on command starts with sleep, it waits for the specified number of seconds. This can be
useful in cases where you know that a command such as oc might take a few seconds before a
certain resource can be queried.

NOTE

Trying to use an undefined command will cause an error when the add-on gets parsed.

3.2.3. Variable Interpolation

Container Development Kit allows the use of variables within the add-on commands. Variables have the
format #{<variable-name>}. The following example shows how the OpenShift routing suffix can be
interpolated into an openshift command to create a new certificate as part of securing the
OpenShift registry. The used variable #{routing-suffix} is part of the built-in add-on variables.

Example: Usage of the routing-suffix variable

$ openshift admin ca create-server-cert \
 --signer-cert=/var/lib/origin/openshift.local.config/master/ca.crt \
 --signer-key=/var/lib/origin/openshift.local.config/master/ca.key \
 --signer-
serial=/var/lib/origin/openshift.local.config/master/ca.serial.txt \
 --hostnames='docker-registry-default.#{routing-suffix},docker-
registry.default.svc.cluster.local,172.30.1.1' \
 --cert=/etc/secrets/registry.crt \
 --key=/etc/secrets/registry.key

3.2.3.1. Built-in Variables

There exist several built-in variables which are available for interpolation at all times. The following
table shows these variables.

Table 3.1. Supported built-in add-on variables

Variable Description

ip IP of Container Development Kit VM.

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

27

1

2

routing-suffix OpenShift routing suffix for the application.

addon-name Name of the current add-on.

Variable Description

3.2.3.2. Dynamic Variables

The commands minishift start as well as minishift addons apply also provide an --
addon-env flag which allows to dynamically pass variables for interpolation, for example:

$ minishift addons apply --addon-env PROJECT_USER=john acme

The --addon-env flag can be specified multiple times to define more than one variables for
interpolation.

Specifying dynamic variables also works in conjunction with setting persistent configuration values .

$ minishift config set addon-env PROJECT_USER=john
$ minishift addons apply acme

TIP

Multiple variables need to be comma separated when the minishift config set is used.

There is also the possibility to dynamically interpolate a variable with the value of an environment
variable at the time the add-on gets applied. For this the variable value needs to be prefixed with env.

$ minishift config set addon-env PROJECT_USER=env.USER 1

$ minishift addons apply acme 2

Using the env prefix ensures that instead of literally replacing '#{PROJECT_USER}' with
'env.USER', the value of the environment variable USER is used. If the environment variable is not
set not, interpolation does not occur.

When the add-on is applied, each occurrence of #{PROJECT_USER} within an add-on command
gets replaced with the value of the environment variable USER.

As an add-on developer, you can enforce that a variable value is provided when the add-on gets applied
by adding the varaible name to the Required-Vars metadata header. Multiple variables need to be
comma separated.

Name: acme
Description: ACME add-on
Required-Vars: PROJECT_USER

3.2.4. Default Add-ons

Red Hat Container Development Kit 3.1 Getting Started Guide

28

Container Development Kit provides a set of built-in add-ons that offer some common OpenShift
customization to assist with development. During minishift setup-cdk , minishift automatically installs
and enables xpaas, anyuid, and admin-user add-ons. To install the default add-ons, run:

$ minishift addons install --defaults

This command extracts the default add-ons to the add-on installation directory
$MINISHIFT_HOME/addons. To view the list of installed add-ons, you can then run:

$ minishift addons list --verbose=true

This command prints a list of installed add-ons. You should at least see the anyuid add-on listed. This is
an important add-on that allows you to run images that do not use a pre-allocated UID. By default, this
is not allowed in OpenShift.

3.2.5. Enabling and Disabling Add-ons

Add-ons are enabled with the minishift addons enable command and disabled with the
minishift addons disable command. Enabled add-ons automatically get executed during
minishift start.

The following examples show how to enable and disable the anyuid add-on.

Example: Enabling the anyuid add-on

$ minishift addons enable anyuid

Example: Disabling the anyuid add-on

$ minishift addons disable anyuid

3.2.5.1. Add-on Priorities

When you enable an add-on, you can also specify a priority, which determines the order that the add-
ons are applied.

The following example shows how to enable the registry add-on with a higher priority value.

Example: Enabling the registry add-on with priority

$ minishift addons enable registry --priority=5

The add-on priority attribute determines the order in which add-ons are applied. By default, an add-on
has the priority 0. Add-ons with a lower priority value are applied first.

In the following example, the anyuid, registry, and eap add-ons are enabled with the respective
priorities of 0, 5 and 10. This means that anyuid is applied first, followed by registry, and lastly the eap
add-on.

Example: List command output with explicit priorities

$ minishift addons list
- anyuid : enabled P(0)

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

29

- registry : enabled P(5)
- eap : enabled P(10)

NOTE

If two add-ons have the same priority the order in which they are getting applied is not
determined.

3.2.6. Applying Add-ons

Add-ons can be explicitly executed with the minishift addons apply command. You can use the
apply command for both enabled and disabled add-ons. To apply multiple add-ons with a single
command, specify add-on names separated by space.

The following example shows how to explicitly apply the anyuid and the admin-user add-ons.

Example: Applying anyuid and admin-user add-ons

$ minishift addons apply anyuid admin-user

3.2.7. Writing Custom Add-ons

To write a custom add-on, you should create a directory and in it create one (and only one) text file
with the extension .addon, for example admin-role.addon.

This file needs to contain the Name and Description metadata fields, as well as the commands that
you want to execute as a part of the add-on.

The following example shows the definition of an add-on that gives the developer user cluster-admin
privileges.

Example: Add-on definition for admin-role

Name: admin-role
Description: Gives the developer user cluster-admin privileges

oc adm policy add-role-to-user cluster-admin developer

After you define the add-on, you can install it by running:

$ minishift addons install <ADDON_DIR_PATH>

NOTE

You can also edit your add-on directly in the minishift add-on install directory
$MINISHIFT_HOME/addons. Be aware that if there is an error in the add-on, it will not
show when you run any addons commands, and it will not be applied during the
minishift start process.

3.3. HOST FOLDERS

Red Hat Container Development Kit 3.1 Getting Started Guide

30

3.3.1. Overview

Host folders are directories on the host which are shared between the host and
Container Development Kit VM. They allow for a two way file synchronization between host and VM.
The following sections discuss the various types of host folders, driver provided host folders, as well as
the minishift hostfolder command.

3.3.2. Driver-Provided Host Folders

Some drivers mount a default host folder into the VM in order to share files between the VM and the
host. These folders are currently not configurable and differ for each driver and OS.

Table 3.2. Driver-provided host folders

Driver OS HostFolder VM

Xhyve OSX /Users /Users

NOTE

Host folder sharing is not implemented in the KVM and Hyper-V drivers. If you
use one of these drivers, you need to use the minishift hostfolder
command to set up and configure host folders.

3.3.3. The minishift hostfolder Command

Container Development Kit provides the minishift hostfolder command to list, add, mount,
unmount and remove host folders. In contrast to the driver-provided host folders, you can use the
hostfolder command to mount multiple shared folders onto custom specified mount points.

NOTE

Currently only CIFS is supported as a host folder type. Support for SSHFS-based host
folders is in progress, as described in GitHub issue #317. If you want to manually set up
SSHFS, see SSHFS Host Folders.

3.3.3.1. Prerequisites

To use the minishift hostfolder command, you need to be able to share directories using CIFS.
On Windows, CIFS is the default technology for sharing directories. For example, on Windows 10 the
C:\Users folder is shared by default and can be accessed by locally-authenticated users.

It is also possible to use CIFS on macOS and Linux. On macOS you can enable CIFS-based shares under
System Preferences > Sharing . See How to connect with File Sharing on your Mac for detailed setup
instructions.

On Linux, follow your distribution-specific instructions to install Samba. Refer to Samba File and Print
Server in RHEL to learn how to configure the Samba implementation of CIFS in Red Hat Enterprise
Linux.

3.3.3.2. Displaying Host Folders

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

31

https://en.wikipedia.org/wiki/Server_Message_Block
https://en.wikipedia.org/wiki/SSHFS
https://github.com/minishift/minishift/issues/317
https://support.apple.com/en-us/HT204445
https://www.samba.org
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/System_Administrators_Guide/index.html#sect-Samba

1

2

3

4

5

6

The minishift hostfolder list command gives you an overview of the defined host folders,
their names, mount points, remote paths and whether they are currently mounted.

An example output could look like:

$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.1.82/MYSHARE N

In this example, there is a host folder with the name myshare which mounts //192.168.1.82/MYSHARE
onto /mnt/sda1/myshare in Container Development Kit VM. The share is currently not mounted.

NOTE

The remote path must be reachable from within the VM. In the example above,
192.168.1.82 is the IP of host within the LAN, which is one option you can use. You can
use ifconfig (or Get-NetIPAddress | Format-Table on Windows) to determine a
routable IP address.

3.3.3.3. Adding Host Folders

The minishift hostfolder add command allows you to define a new host folder. This in an
interactive process that queries the relevant details for a host folder based on CIFS.

Adding a CIFS based hostfolder

$ minishift hostfolder add myshare 1

UNC path: //192.168.99.1/MYSHARE 2

Mountpoint [/mnt/sda1/myshare]: 3

Username: john 4

Password: [HIDDEN] 5

Domain: 6
Added: myshare

(Required) Actual minishift hostfolder add command that specifie a host folder with a
name of myshare.

(Required) The UNC path for the share.

The mount point within the VM. The default is /mnt/sda1/<host folder name>.

(Required) The user name for the CIFS share.

(Required) The password for the CIFS share.

The domain of the share. Often this can be left blank, but for example on Windows, when your
account is linked to a Microsoft account, you must use the Microsoft account email address as
user name as well as your machine name as displayed by $env:COMPUTERNAME as a domain.

Red Hat Container Development Kit 3.1 Getting Started Guide

32

TIP

On Windows hosts, the minishift hostfolder add command also provides a users-share
option. When this option is specified, no UNC path needs to be specified and the C:\Users is assumed.

3.3.3.3.1. Instance-Specific Host Folders

By default, host folder definitions are persistent, similar to other persistent configuration options. This
means that these host folder definitions will survive the deletion and subsequent re-creation of a
Container Development Kit VM.

In some cases you might want to define a host folder just for a specific Container Development Kit
instance. To do so, you can use the instance-only flag of the minishift hostfolder add
command. Host folder definition that are created with the instance-only flag will be removed
together with any other instance-specific state during minishift delete.

3.3.3.4. Mounting Host Folders

After you add host folders, you use the minishift hostfolder mount command to mount a host
folder by its name:

$ minishift hostfolder mount myshare
Mounting 'myshare': '//192.168.99.1/MYSHARE' as '/mnt/sda1/myshare' ... OK

You can verify that the host folder is mounted by running:

$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.99.1/MYSHARE Y

Alternatively, you can list the actual content of the mounted host folder:

$ minishift ssh "ls -al /mnt/sda1/myshare"

3.3.3.4.1. Auto-Mounting Host Folders

Host folders can also be mounted automatically each time you run minishift start. To set auto-
mounting, you need to set the hostfolder-automount option in the minishift configuration file.

$ minishift config set hostfolders-automount true

After the hostfolders-automount option is set, Container Development Kit will attempt to mount
all defined host folders during minishift start.

3.3.3.5. Unmounting Host Folders

You use the minishift hostfolder umount command to unmount a host folder.

$ minishift hostfolder umount myshare
Unmounting 'myshare' ... OK

$ minishift hostfolder list
Name Mountpoint Remote path Mounted

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

33

myshare /mnt/sda1/myshare //192.168.99.1/MYSHARE N

3.3.3.6. Deleting Host Folders

You use the minishift hostfolder remove command to remove a host folder definition.

$ minishift hostfolder list
Name Mountpoint Remote path Mounted
myshare /mnt/sda1/myshare //192.168.1.82/MYSHARE N

$ minishift hostfolder remove myshare
Removed: myshare

$ minishift hostfolder list
No host folders defined

3.3.3.7. SSHFS Host Folders

NOTE

This host folder type is not supported by the minishift hostfolder command and
requires manual configuration.

You can use SSHFS-based host folders if you have an SSH daemon running on your host. Normally, this
prerequisite is met by default on Linux and macOS.

Most Linux distributions have an SSH daemon installed. If not, follow the instructions for your specific
distribution to install an SSH daemon.

macOS also has a built-in SSH server. To use it, make sure that Remote Login is enabled in System
Preferences > Sharing.

On Windows, you can install OpenSSH for Windows.

The following steps demonstrate how to mount host folders with SSHFS.

1. Run ifconfig (or Get-NetIPAddress on Windows) to determine the local IP address from
the same network segment as your Container Development Kit instance.

2. Create a mountpoint and mount the shared folder.

$ minishift ssh "sudo mkdir -p /Users/<username>"
$ minishift ssh "sudo chown -R docker /Users"
$ minishift ssh
$ sshfs <username>@<IP>:/Users/<username>/ /Users

3. Verify the share mount.

$ minishift ssh "ls -al /Users/<username>"

3.4. CONTAINER DEVELOPMENT KIT DOCKER DAEMON

Red Hat Container Development Kit 3.1 Getting Started Guide

34

https://winscp.net/eng/docs/guide_windows_openssh_server

3.4.1. Reusing the docker Daemon

When running OpenShift in a single VM, you can reuse the docker daemon managed by
Container Development Kit for other docker use-cases as well. By using the same docker daemon as
the one used in Container Development Kit, you can speed up your local development.

In order to configure your console to reuse Container Development Kit docker daemon, follow these
steps:

1. Make sure that you have the docker client binary installed on your machine. For information
about specific binary installations for your operating system, see the docker installation site.
For a Red Hat Enterprise Linux system, install the docker package as described in Get Started
with Docker-Formatted Container Images, but don’t start the docker service on the host.

2. Start Container Development Kit with the minishift start command.

3. Run the minishift docker-env command to display the command you need to type into
your shell in order to configure your Docker client. The command output will differ depending
on OS and shell type.

$ minishift docker-env
export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.99.101:2376"
export DOCKER_CERT_PATH="/Users/john/.minishift/certs"
export DOCKER_API_VERSION="1.24"
Run this command to configure your shell:
eval $(minishift docker-env)

4. Test the connection by running the following command:

$ docker ps

If successful, the shell will print a list of running containers.

3.5. TROUBLESHOOTING CONTAINER DEVELOPMENT KIT

3.5.1. Overview

This section contains solutions to common problems that you might encounter while using
Container Development Kit.

3.5.2. Special characters cause passwords to fail

Depending on your operating system and shell environment, certain special characters can trigger
variable interpolation and therefore cause passwords to fail.

Workaround: When creating and entering passwords, wrap the string with single quotes in the
following format: '<password>'

3.5.3. Undefining virsh snapshots fail

If you use virsh on KVM/libvirt to create snapshots in your development workflow, and then use
minishift delete to delete the snapshots along with the VM, you might encounter the following
error:

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

35

https://docs.docker.com/engine/installation/
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/getting-started-with-containers/chapter-7-get-started-with-docker-formatted-container-images#getting_docker_in_rhel_7

$ minishift delete
Deleting the Minishift VM...
Error deleting the VM: [Code-55] [Domain-10] Requested operation is not
valid: cannot delete inactive domain with 4 snapshots

Cause: The snapshots are stored in ~/.minishift/machines, but the definitions are stored in
/var/lib/libvirt/qemu/snapshot/minishift.

Workaround: To delete the snapshots, you need to perform the following steps as root.

1. Delete the definitions.

virsh snapshot-delete --metadata minishift <snapshot-name>

2. Undefine the minishift domain.

virsh undefine minishift

You can now run minishft delete to delete the VM and restart Container Development Kit.

NOTE

If these steps do not resolve the issue, you can also use the following command to delete
the snapshots:

$ rm -rf ~/.minishift/machines

It is recommended to avoid using metadata when you create snapshots. To ensure this, you can specify
the --no-metadata flag. For example:

virsh snapshot-create-as --domain vm1 overlay1 --diskspec
vda,file=/export/overlay1.qcow2 --disk-only --atomic --no-metadata

3.5.4. KVM: Error creating new host: dial tcp: missing address

The problem is likely that the libvirtd service is not running. You can check this with the following
command:

$ systemctl status libvirtd

If libvirtd is not running, start it and enable it to start on boot:

$ systemctl start libvirtd
$ systemctl enable libvirtd

3.5.5. KVM: Failed to connect socket to '/var/run/libvirt/virtlogd-sock'

The problem is likely that the virtlogd service is not running. You can check this with the following
command:

$ systemctl status virtlogd

Red Hat Container Development Kit 3.1 Getting Started Guide

36

If virtlogd is not running, start it and enable it to start on boot:

$ systemctl start virtlogd
$ systemctl enable virtlogd

3.5.6. KVM: Domain 'minishift' already exists…

If you try minishift start and the this error appears, ensure that you use minishift delete to
delete the VMs that you created earlier. However, if this fails and you want to completely clean up
Container Development Kit and start fresh, do the following:

1. As root, check if any existing {project} VMs are running:

virsh list --all

2. If any VM named minishift is running, stop it:

virsh destroy minishift

3. Delete the VM:

virsh undefine minishift

4. As your regular user, delete the ~/.minishift/machines directory:

$ rm -rf ~/.minishift/machines

In case all of this fails, you might want to uninstall Container Development Kit and do a fresh install of
Container Development Kit.

3.5.7. xhyve: Could not create vmnet interface

The problem is likely that the xhyve driver is not able to clean up vmnet when a VM is removed.
vmnet.framework determines the IP address based on the following files:

/var/db/dhcpd_leases

/Library/Preferences/SystemConfiguration/com.apple.vmnet.plist

Reset Container Development Kit-specific IP database, ensure that you remove the minishift entry
section from the dhcpd_leases file, and reboot your system.

{
 ip_address=192.168.64.2
 hw_address=1,2:51:8:22:87:a6
 identifier=1,2:51:8:22:87:a6
 lease=0x585e6e70
 name=minishift
}

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

37

NOTE

You can completely reset the IP database by removing the files manually but this is very
risky.

3.5.8. VirtualBox: Error machine does not exist

If you use Windows, ensure that you set the --vm-driver virtualbox flag in the minishift
start command. Alternatively, the problem might be an outdated version of VirtualBox.

To avoid this issue, it is recommended to use VirtualBox 5.1.12 or later.

3.5.9. Hyper-V: Hyper-V commands must be run as an Administrator

If you run Container Development Kit with Hyper-V on Windows as a normal user or as a user with
Administrator privileges, you might encounter the following error:

Error starting the VM: Error creating the VM. Error with pre-create check:
"Hyper-V commands must be run as an Administrator".

Workaround: You can either add yourself to the Hyper-V Administrators group, which is recommended,
or run the shell in an elevated mode.

If you are using PowerShell, you can add yourself to the Hyper-V Administrators group as follows:

1. As an administrator, run the following command:

([adsi]”WinNT://./Hyper-V
Administrators,group”).Add(“WinNT://$env:UserDomain/$env:Username,us
er”)

2. Log out and log back in for the change to take effect.

You can also use the GUI to add yourself to the Hyper-V Administrators group as follows:

1. Click the Start button and choose Computer Management.

2. In the Computer Management window, select Local Users And Groups and then double click
on Groups.

3. Double click on the Hyper-V Administrators group, the Hyper-V Administrators Properties
dialog box is displayed.

4. Add your account to the Hyper-V Administrators group and log off and log in for the change to
take effect.

Now you can run the Hyper-V commands as a normal user.

For more options for Hyper-V see creating Hyper-V administrators local group .

3.5.10. Hyper-V: Container Development Kit running with Hyper-V fails when
connected to OpenVPN

If you try to use Container Development Kit with Hyper-V using an external virtual switch while you are
connected to a VPN such as OpenVPN, Container Development Kit might fail to provision the VM.

Red Hat Container Development Kit 3.1 Getting Started Guide

38

https://blogs.msdn.microsoft.com/virtual_pc_guy/2010/09/28/creating-a-hyper-v-administrators-local-group-through-powershell

Cause: Hyper-V networking might not route the network traffic in both directions properly when
connected to a VPN.

Workaround: Disconnect from the VPN and try again after stopping the VM from the Hyper-V manager.

CHAPTER 3. USING CONTAINER DEVELOPMENT KIT

39

	Table of Contents
	CHAPTER 1. GETTING STARTED WITH CONTAINER DEVELOPMENT KIT
	1.1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT
	1.1.1. Additional Information

	1.2. PREPARING TO INSTALL CONTAINER DEVELOPMENT KIT
	1.2.1. Overview
	1.2.2. Prerequisites
	1.2.3. Understanding Container Development Kit Installation

	1.3. CONTAINER DEVELOPMENT KIT INSTALLATION
	1.3.1. Installing Container Development Kit
	1.3.2. Step 1: Set up your virtualization environment
	1.3.2.1. Set up hypervisor on Red Hat Enterprise Linux
	1.3.2.2. Set up hypervisor on macOS
	1.3.2.3. Set up hypervisor on Windows

	1.3.3. Step 2: Download CDK Software
	1.3.4. Step 3: Set up CDK
	1.3.5. Step 4: Start CDK
	1.3.6. Step 5: Configure CDK
	1.3.7. Deploying a Sample Application

	1.4. UNINSTALLING CONTAINER DEVELOPMENT KIT
	1.4.1. Overview
	1.4.2. Uninstalling Container Development Kit

	CHAPTER 2. INTERACTING WITH OPENSHIFT
	2.1. USING THE OPENSHIFT CLIENT BINARY (OC)
	2.1.1. Overview
	2.1.2. Container Development Kit CLI Profile
	2.1.3. Logging Into the Cluster
	2.1.4. Accessing the Web Console
	2.1.5. Accessing OpenShift Services
	2.1.6. Viewing OpenShift Logs
	2.1.7. Updating OpenShift Configuration
	2.1.7.1. Example: Configuring cross-origin resource sharing
	2.1.7.2. Example: Changing the OpenShift routing suffix

	2.2. EXPOSING SERVICES
	2.2.1. Overview
	2.2.2. Routes
	2.2.3. NodePort Services
	2.2.4. Port Forwarding

	2.3. ACCESSING THE OPENSHIFT DOCKER REGISTRY
	2.3.1. Overview
	2.3.2. Logging Into the Registry
	2.3.3. Deploying Applications

	CHAPTER 3. USING CONTAINER DEVELOPMENT KIT
	3.1. MANAGING CONTAINER DEVELOPMENT KIT
	3.1.1. Overview
	3.1.2. Container Development Kit Life-cycle
	3.1.2.1. The minishift setup-cdk Command
	3.1.2.2. The minishift start Command
	3.1.2.3. The minishift stop Command
	3.1.2.4. The minishift delete Command

	3.1.3. Runtime Options
	3.1.3.1. Flags
	3.1.3.2. Environment Variables
	3.1.3.3. Persistent Configuration
	3.1.3.4. Driver-Specific Environment Variables

	3.1.4. Caching OpenShift images (experimental)
	3.1.5. Persistent Volumes
	3.1.6. HTTP/HTTPS Proxies
	3.1.7. Networking
	3.1.8. Connecting to Container Development Kit VM with SSH

	3.2. ADD-ONS
	3.2.1. Overview
	3.2.2. Add-on Commands
	3.2.3. Variable Interpolation
	3.2.3.1. Built-in Variables
	3.2.3.2. Dynamic Variables

	3.2.4. Default Add-ons
	3.2.5. Enabling and Disabling Add-ons
	3.2.5.1. Add-on Priorities

	3.2.6. Applying Add-ons
	3.2.7. Writing Custom Add-ons

	3.3. HOST FOLDERS
	3.3.1. Overview
	3.3.2. Driver-Provided Host Folders
	3.3.3. The minishift hostfolder Command
	3.3.3.1. Prerequisites
	3.3.3.2. Displaying Host Folders
	3.3.3.3. Adding Host Folders
	3.3.3.4. Mounting Host Folders
	3.3.3.5. Unmounting Host Folders
	3.3.3.6. Deleting Host Folders
	3.3.3.7. SSHFS Host Folders

	3.4. CONTAINER DEVELOPMENT KIT DOCKER DAEMON
	3.4.1. Reusing the docker Daemon

	3.5. TROUBLESHOOTING CONTAINER DEVELOPMENT KIT
	3.5.1. Overview
	3.5.2. Special characters cause passwords to fail
	3.5.3. Undefining virsh snapshots fail
	3.5.4. KVM: Error creating new host: dial tcp: missing address
	3.5.5. KVM: Failed to connect socket to '/var/run/libvirt/virtlogd-sock'
	3.5.6. KVM: Domain 'minishift' already exists…
	3.5.7. xhyve: Could not create vmnet interface
	3.5.8. VirtualBox: Error machine does not exist
	3.5.9. Hyper-V: Hyper-V commands must be run as an Administrator
	3.5.10. Hyper-V: Container Development Kit running with Hyper-V fails when connected to OpenVPN

