
Red Hat build of Node.js 10

Node.js Runtime Guide

Use Node.js 10 to develop scalable network applications that run on OpenShift and
on stand-alone RHEL

Last Updated: 2020-07-01

Red Hat build of Node.js 10 Node.js Runtime Guide

Use Node.js 10 to develop scalable network applications that run on OpenShift and on stand-alone
RHEL

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides details on using the Node.js runtime.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. WHAT IS NODE.JS

CHAPTER 2. SUPPORTED ARCHITECTURES BY NODE.JS

CHAPTER 3. INTRODUCTION TO EXAMPLE APPLICATIONS

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS
4.1. REST API LEVEL 0 EXAMPLE FOR NODE.JS

4.1.1. REST API Level 0 design tradeoffs
4.1.2. Deploying the REST API Level 0 example application to OpenShift Online

4.1.2.1. Deploying the example application using developers.redhat.com/launch
4.1.2.2. Authenticating the oc CLI client
4.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

4.1.3. Deploying the REST API Level 0 example application to Minishift or CDK
4.1.3.1. Getting the Fabric8 Launcher tool URL and credentials
4.1.3.2. Deploying the example application using the Fabric8 Launcher tool
4.1.3.3. Authenticating the oc CLI client
4.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

4.1.4. Deploying the REST API Level 0 example application to OpenShift Container Platform
4.1.5. Interacting with the unmodified REST API Level 0 example application for Node.js
4.1.6. REST resources

4.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR NODE.JS
4.2.1. The externalized configuration design pattern
4.2.2. Externalized Configuration design tradeoffs
4.2.3. Deploying the Externalized Configuration example application to OpenShift Online

4.2.3.1. Deploying the example application using developers.redhat.com/launch
4.2.3.2. Authenticating the oc CLI client
4.2.3.3. Deploying the Externalized Configuration example application using the oc CLI client

4.2.4. Deploying the Externalized Configuration example application to Minishift or CDK
4.2.4.1. Getting the Fabric8 Launcher tool URL and credentials
4.2.4.2. Deploying the example application using the Fabric8 Launcher tool
4.2.4.3. Authenticating the oc CLI client
4.2.4.4. Deploying the Externalized Configuration example application using the oc CLI client

4.2.5. Deploying the Externalized Configuration example application to OpenShift Container Platform
4.2.6. Interacting with the unmodified Externalized Configuration example application for Node.js
4.2.7. Externalized Configuration resources

4.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR NODE.JS
4.3.1. Relational Database Backend design tradeoffs
4.3.2. Deploying the Relational Database Backend example application to OpenShift Online

4.3.2.1. Deploying the example application using developers.redhat.com/launch
4.3.2.2. Authenticating the oc CLI client
4.3.2.3. Deploying the Relational Database Backend example application using the oc CLI client

4.3.3. Deploying the Relational Database Backend example application to Minishift or CDK
4.3.3.1. Getting the Fabric8 Launcher tool URL and credentials
4.3.3.2. Deploying the example application using the Fabric8 Launcher tool
4.3.3.3. Authenticating the oc CLI client
4.3.3.4. Deploying the Relational Database Backend example application using the oc CLI client

4.3.4. Deploying the Relational Database Backend example application to OpenShift Container Platform
4.3.5. Interacting with the Relational Database Backend API on Node.js

Troubleshooting

5

6

7

8

9
9
9

10
10
10
11

12
12
13
13
13
15
15
15
16
16
17
17
17
17
18
19
19

20
20
21
22
23
23
24
25
25
25
25
26
27
28
28
28
29
31
31
32

Table of Contents

1

4.3.6. Relational database resources
4.4. HEALTH CHECK EXAMPLE FOR NODE.JS

4.4.1. Health check concepts
4.4.2. Deploying the Health Check example application to OpenShift Online

4.4.2.1. Deploying the example application using developers.redhat.com/launch
4.4.2.2. Authenticating the oc CLI client
4.4.2.3. Deploying the Health Check example application using the oc CLI client

4.4.3. Deploying the Health Check example application to Minishift or CDK
4.4.3.1. Getting the Fabric8 Launcher tool URL and credentials
4.4.3.2. Deploying the example application using the Fabric8 Launcher tool
4.4.3.3. Authenticating the oc CLI client
4.4.3.4. Deploying the Health Check example application using the oc CLI client

4.4.4. Deploying the Health Check example application to OpenShift Container Platform
4.4.5. Interacting with the unmodified Health Check example application
4.4.6. Health check resources

4.5. CIRCUIT BREAKER EXAMPLE FOR NODE.JS
4.5.1. The circuit breaker design pattern

Circuit breaker implementation
4.5.2. Circuit Breaker design tradeoffs
4.5.3. Deploying the Circuit Breaker example application to OpenShift Online

4.5.3.1. Deploying the example application using developers.redhat.com/launch
4.5.3.2. Authenticating the oc CLI client
4.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

4.5.4. Deploying the Circuit Breaker example application to Minishift or CDK
4.5.4.1. Getting the Fabric8 Launcher tool URL and credentials
4.5.4.2. Deploying the example application using the Fabric8 Launcher tool
4.5.4.3. Authenticating the oc CLI client
4.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

4.5.5. Deploying the Circuit Breaker example application to OpenShift Container Platform
4.5.6. Interacting with the unmodified Node.js Circuit Breaker example application
4.5.7. Circuit breaker resources

4.6. SECURED EXAMPLE APPLICATION FOR NODE.JS
4.6.1. The Secured project structure
4.6.2. Red Hat SSO deployment configuration
4.6.3. Red Hat SSO realm model

4.6.3.1. Red Hat SSO users
4.6.3.2. The application clients

4.6.4. Node.js SSO adapter configuration
4.6.5. Deploying the Secured example application to Minishift or CDK

4.6.5.1. Getting the Fabric8 Launcher tool URL and credentials
4.6.5.2. Creating the Secured example application using Fabric8 Launcher
4.6.5.3. Authenticating the oc CLI client
4.6.5.4. Deploying the Secured example application using the oc CLI client

4.6.6. Deploying the Secured example application to OpenShift Container Platform
4.6.6.1. Authenticating the oc CLI client
4.6.6.2. Deploying the Secured example application using the oc CLI client

4.6.7. Authenticating to the Secured example application API endpoint
4.6.7.1. Getting the Secured example application API endpoint
4.6.7.2. Authenticating HTTP requests using the command line
4.6.7.3. Authenticating HTTP requests using the web interface

4.6.8. Secured SSO resources
4.7. CACHE EXAMPLE FOR NODE.JS

4.7.1. How caching works and when you need it

33
33
34
34
34
34
35
36
36
37
37
38
39
39
41
41

42
42
42
43
43
43
44
45
45
46
46
47
48
48
50
50
51
51
52
52
54
54
55
55
55
56
56
57
57
58
58
59
59
62
64
64
65

Red Hat build of Node.js 10 Node.js Runtime Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

4.7.2. Deploying the Cache example application to OpenShift Online
4.7.2.1. Deploying the example application using developers.redhat.com/launch
4.7.2.2. Authenticating the oc CLI client
4.7.2.3. Deploying the Cache example application using the oc CLI client

4.7.3. Deploying the Cache example application to Minishift or CDK
4.7.3.1. Getting the Fabric8 Launcher tool URL and credentials
4.7.3.2. Deploying the example application using the Fabric8 Launcher tool
4.7.3.3. Authenticating the oc CLI client
4.7.3.4. Deploying the Cache example application using the oc CLI client

4.7.4. Deploying the Cache example application to OpenShift Container Platform
4.7.5. Interacting with the unmodified Cache example application
4.7.6. Caching resources

CHAPTER 5. DEBUGGING YOUR NODE.JS BASED APPLICATION
5.1. REMOTE DEBUGGING

5.1.1. Starting your application locally and attaching the native debugger
5.1.2. Starting your application locally and attaching the V8 inspector
5.1.3. Starting your application on OpenShift in debugging mode

5.2. DEBUG LOGGING
5.2.1. Add debug logging
5.2.2. Accessing debug logs on localhost
5.2.3. Accessing Node.js debug logs on OpenShift

CHAPTER 6. DEVELOPING AND DEPLOYING A NODE.JS APPLICATION
6.1. DEVELOPING A NODE.JS APPLICATION
6.2. DEPLOYING A NODE.JS APPLICATION TO OPENSHIFT

6.2.1. Preparing Node.js application for OpenShift deployment
6.2.2. Deploying a Node.js application to OpenShift

6.3. DEPLOYING A NODE.JS APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX

APPENDIX A. ABOUT NODESHIFT

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR NODE.JS APPLICATION
WITH NODESHIFT

Next steps

APPENDIX D. BREAKDOWN OF PACKAGE.JSON PROPERTIES

APPENDIX E. ADDITIONAL NODE.JS RESOURCES

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES

APPENDIX G. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS

APPENDIX H. PROFICIENCY LEVELS
Foundational
Advanced
Expert

APPENDIX I. GLOSSARY
I.1. PRODUCT AND PROJECT NAMES
I.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

66
66
66
67
68
68
69
69
70
71
71
72

73
73
73
73
74
75
75
76
77

79
79
80
80
81

82

83

84

86
87

88

90

91

92

93
93
93
93

94
94
94

Table of Contents

3

Red Hat build of Node.js 10 Node.js Runtime Guide

4

PREFACE
This guide covers concepts as well as practical details needed by developers to use the Node.js runtime.

PREFACE

5

CHAPTER 1. WHAT IS NODE.JS
Node.js is based on the V8 JavaScript engine from Google and allows you to write server-side
JavaScript applications. It provides an I/O model based on events and non-blocking operations that
enables you to write efficient applications. Node.js also provides a large module ecosystem called npm.
Check out Additional Resources for further reading on Node.js.

The Node.js runtime enables you to run Node.js applications and services on OpenShift while providing
all the advantages and conveniences of the OpenShift platform such as rolling updates, continuous
delivery pipelines, service discovery, and canary deployments. OpenShift also makes it easier for your
applications to implement common microservice patterns such as externalized configuration, health
check, circuit breaker, and failover.

Red Hat provides different supported releases of Node.js. For more information how to get support, see
Getting Node.js and support from Red Hat .

Red Hat build of Node.js 10 Node.js Runtime Guide

6

https://v8.dev//
https://www.npmjs.com/
https://access.redhat.com/articles/4485361

CHAPTER 2. SUPPORTED ARCHITECTURES BY NODE.JS
Node.js supports the following architectures:

x86_64 (AMD64)

IBM Z (s390x) in the OpenShift environment

Different images are supported for different architectures. The example codes in this guide
demonstrate the commands for x86_64 architecture. If you are using other architectures, specify the
relevant image name in the commands.

CHAPTER 2. SUPPORTED ARCHITECTURES BY NODE.JS

7

CHAPTER 3. INTRODUCTION TO EXAMPLE APPLICATIONS
Examples are working applications that demonstrate how to build cloud native applications and services.
They demonstrate prescriptive architectures, design patterns, tools, and best practices that should be
used when you develop your applications. The example applications can be used as templates to create
your cloud-native microservices. You can update and redeploy these examples using the deployment
process explained in this guide.

The examples implement Microservice patterns such as:

Creating REST APIs

Interoperating with a database

Implementing the health check pattern

Externalizing the configuration of your applications to make them more secure and easier to
scale

You can use the examples applications as:

Working demonstration of the technology

Learning tool or a sandbox to understand how to develop applications for your project

Starting point for updating or extending your own use case

Each example application is implemented in one or more runtimes. For example, the REST API Level 0
example is available for the following runtimes:

Node.js

Spring Boot

Eclipse Vert.x

Thorntail

The subsequent sections explain the example applications implemented for the Node.js runtime.

You can download and deploy all the example applications on:

x86_64 architecture - The example applications in this guide demonstrate how to build and
deploy example applications on x86_64 architecture.

s390x architecture - To deploy the example applications on OpenShift environments
provisioned on IBM Z infrastructure, specify the relevant IBM Z image name in the commands.
Some of the example applications also require other products, such as Red Hat Data Grid to
demonstrate the workflows. In this case, you must also change the image names of these
products to their relevant IBM Z image names in the YAML file of the example applications.

Red Hat build of Node.js 10 Node.js Runtime Guide

8

http://microservices.io/patterns/microservices.html
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-rest-http-nodejs
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-rest-http-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.8/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-rest-http-wf-swarm

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS
The Node.js runtime provides example applications. When you start developing applications on
OpenShift, you can use the example applications as templates.

You can access these example applications on Developer Launcher.

4.1. REST API LEVEL 0 EXAMPLE FOR NODE.JS

IMPORTANT

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

What the REST API Level 0 example does

The REST API Level 0 example shows how to map business operations to a remote procedure call
endpoint over HTTP using a REST framework. This corresponds to Level 0 in the Richardson Maturity
Model. Creating an HTTP endpoint using REST and its underlying principles to define your API lets you
quickly prototype and design the API flexibly.

This example introduces the mechanics of interacting with a remote service using the HTTP protocol. It
allows you to:

Execute an HTTP GET request on the api/greeting endpoint.

Receive a response in JSON format with a payload consisting of the Hello, World! String.

Execute an HTTP GET request on the api/greeting endpoint while passing in a String argument.
This uses the name request parameter in the query string.

Receive a response in JSON format with a payload of Hello, $name! with $name replaced by
the value of the name parameter passed into the request.

4.1.1. REST API Level 0 design tradeoffs

Table 4.1. Design tradeoffs

Pros Cons

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

9

https://developers.redhat.com/launch
https://martinfowler.com/articles/richardsonMaturityModel.html#level0

The example application enables fast
prototyping.

The API Design is flexible.

HTTP endpoints allow clients to be
language-neutral.

As an application or service matures, the
REST API Level 0 approach might not scale
well. It might not support a clean API design
or use cases with database interactions.

Any operations involving shared,
mutable state must be integrated with
an appropriate backing datastore.

All requests handled by this API design
are scoped only to the container
servicing the request. Subsequent
requests might not be served by the
same container.

Pros Cons

4.1.2. Deploying the REST API Level 0 example application to OpenShift Online

Use one of the following options to execute the REST API Level 0 example application on OpenShift
Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

4.1.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser and log in.

2. Follow on-screen instructions to create and launch your example application in Node.js.

4.1.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

Red Hat build of Node.js 10 Node.js Runtime Guide

10

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your OpenShift Online account.

4.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 4.1.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 4.1.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project in OpenShift.

3. Navigate to the root directory of your application.

4. Use npm to start the deployment to OpenShift.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

5. Check the status of your application and ensure your pod is running.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ npm install && npm run openshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

11

https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully deployed
and started. Your specific pod name will vary. The number in the middle will increase with each
new build. The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.1.3. Deploying the REST API Level 0 example application to Minishift or CDK

Use one of the following options to execute the REST API Level 0 example application locally on
Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

4.1.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.

Red Hat build of Node.js 10 Node.js Runtime Guide

12

4.1.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.1.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Node.js.

4.1.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.1.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your Minishift or CDK account.

4.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

$ oc login OPENSHIFT_URL --token=MYTOKEN

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

13

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 4.1.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 4.1.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project in OpenShift.

3. Navigate to the root directory of your application.

4. Use npm to start the deployment to OpenShift.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

5. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once it is fully deployed
and started. Your specific pod name will vary. The number in the middle will increase with each
new build. The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ npm install && npm run openshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

Red Hat build of Node.js 10 Node.js Runtime Guide

14

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.1.4. Deploying the REST API Level 0 example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 4.1.2, “Deploying the REST API Level 0 example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

4.1.5. Interacting with the unmodified REST API Level 0 example application for
Node.js

The example provides a default HTTP endpoint that accepts GET requests.

Prerequisites

Your application running

The curl binary or a web browser

Procedure

1. Use curl to execute a GET request against the example. You can also use a browser to do this.

2. Use curl to execute a GET request with the name URL parameter against the example. You can
also use a browser to do this.

NOTE

From a browser, you can also use a form provided by the example to perform these same
interactions. The form is located at the root of the project http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME.

4.1.6. REST resources

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}

$ curl http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting?name=Sarah
{"content":"Hello, Sarah!"}

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

15

https://developers.redhat.com/launch

More background and related information on REST can be found here:

Architectural Styles and the Design of Network-based Software Architectures -
Representational State Transfer (REST)

Richardson Maturity Model

Express Web Framework

REST API Level 0 for Spring Boot

REST API Level 0 for Eclipse Vert.x

REST API Level 0 for Thorntail

4.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR NODE.JS

IMPORTANT

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

Externalized Configuration provides a basic example of using a ConfigMap to externalize configuration.
ConfigMap is an object used by OpenShift to inject configuration data as simple key and value pairs into
one or more Linux containers while keeping the containers independent of OpenShift.

This example shows you how to:

Set up and configure a ConfigMap.

Use the configuration provided by the ConfigMap within an application.

Deploy changes to the ConfigMap configuration of running applications.

4.2.1. The externalized configuration design pattern

Whenever possible, externalize the application configuration and separate it from the application code.
This allows the application configuration to change as it moves through different environments, but
leaves the code unchanged. Externalizing the configuration also keeps sensitive or internal information
out of your code base and version control. Many languages and application servers provide environment
variables to support externalizing an application’s configuration.

Microservices architectures and multi-language (polyglot) environments add a layer of complexity to
managing an application’s configuration. Applications consist of independent, distributed services, and
each can have its own configuration. Keeping all configuration data synchronized and accessible creates
a maintenance challenge.

ConfigMaps enable the application configuration to be externalized and used in individual Linux
containers and pods on OpenShift. You can create a ConfigMap object in a variety of ways, including
using a YAML file, and inject it into the Linux container. ConfigMaps also allow you to group and scale
sets of configuration data. This lets you configure a large number of environments beyond the basic
Development, Stage, and Production. You can find more information about ConfigMaps in the OpenShift
documentation.

Red Hat build of Node.js 10 Node.js Runtime Guide

16

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://martinfowler.com/articles/richardsonMaturityModel.html
https://expressjs.com/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-rest-http-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.8/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-rest-http-wf-swarm
https://docs.openshift.com/container-platform/3.11/dev_guide/configmaps.html

4.2.2. Externalized Configuration design tradeoffs

Table 4.2. Design Tradeoffs

Pros Cons

Configuration is separate from deployments

Can be updated independently

Can be shared across services

Adding configuration to environment
requires additional step

Has to be maintained separately

Requires coordination beyond the scope of
a service

4.2.3. Deploying the Externalized Configuration example application to OpenShift
Online

Use one of the following options to execute the Externalized Configuration example application on
OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

4.2.3.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser and log in.

2. Follow on-screen instructions to create and launch your example application in Node.js.

4.2.3.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

17

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your OpenShift Online account.

4.2.3.3. Deploying the Externalized Configuration example application using the oc CLI
client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 4.2.3.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 4.2.3.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Assign view access rights to the service account before deploying your example application, so
that the application can access the OpenShift API in order to read the contents of the
ConfigMap.

4. Navigate to the root directory of your application.

5. Deploy your ConfigMap configuration to OpenShift using app-config.yml.

6. Verify your ConfigMap configuration has been deployed.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc policy add-role-to-user view -n $(oc project -q) -z default

$ oc create configmap app-config --from-file=app-config.yml

$ oc get configmap app-config -o yaml

Red Hat build of Node.js 10 Node.js Runtime Guide

18

https://manage.openshift.com
https://developers.redhat.com/launch

7. Use npm to start the deployment to OpenShift.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

8. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. Your specific pod name will vary. The number in the middle will increase with each new
build. The letters at the end are generated when the pod is created.

9. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.2.4. Deploying the Externalized Configuration example application to Minishift or
CDK

Use one of the following options to execute the Externalized Configuration example application locally
on Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

4.2.4.1. Getting the Fabric8 Launcher tool URL and credentials

apiVersion: v1
data:
 app-config.yml: |-
 message : "Hello, %s from a ConfigMap !"
 level : INFO
...

$ npm install && npm run openshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

19

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

4.2.4.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.2.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Node.js.

4.2.4.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.2.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

Red Hat build of Node.js 10 Node.js Runtime Guide

20

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your Minishift or CDK account.

4.2.4.4. Deploying the Externalized Configuration example application using the oc CLI
client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 4.2.4.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 4.2.4.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Assign view access rights to the service account before deploying your example application, so
that the application can access the OpenShift API in order to read the contents of the
ConfigMap.

4. Navigate to the root directory of your application.

5. Deploy your ConfigMap configuration to OpenShift using app-config.yml.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc policy add-role-to-user view -n $(oc project -q) -z default

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

21

6. Verify your ConfigMap configuration has been deployed.

7. Use npm to start the deployment to OpenShift.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

8. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. Your specific pod name will vary. The number in the middle will increase with each new
build. The letters at the end are generated when the pod is created.

9. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.2.5. Deploying the Externalized Configuration example application to OpenShift
Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

$ oc create configmap app-config --from-file=app-config.yml

$ oc get configmap app-config -o yaml

apiVersion: v1
data:
 app-config.yml: |-
 message : "Hello, %s from a ConfigMap !"
 level : INFO
...

$ npm install && npm run openshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

Red Hat build of Node.js 10 Node.js Runtime Guide

22

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 4.2.3, “Deploying the Externalized Configuration example
application to OpenShift Online”, only use the URL and user credentials from the OpenShift
Container Platform Web Console.

4.2.6. Interacting with the unmodified Externalized Configuration example
application for Node.js

The example provides a default HTTP endpoint that accepts GET requests.

Prerequisites

Your application running

The curl binary or a web browser

Procedure

1. Use curl to execute a GET request against the example. You can also use a browser to do this.

2. Update the deployed ConfigMap configuration.

Change the value for the message key to Bonjour, %s from a ConfigMap ! and save the file.

3. Update of the ConfigMap should be read by the application within an acceptable time (a few
seconds) without requiring a restart of the application.

4. Execute a GET request using curl against the example with the updated ConfigMap
configuration to see your updated greeting. You can also do this from your browser using the
web form provided by the application.

4.2.7. Externalized Configuration resources

More background and related information on Externalized Configuration and ConfigMap can be found
here:

OpenShift ConfigMap Documentation

Blog Post about ConfigMap in OpenShift

Externalized Configuration for Spring Boot

Externalized Configuration for Eclipse Vert.x

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World from a ConfigMap !"}

$ oc edit configmap app-config

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting
{"content":"Bonjour, World from a ConfigMap !"}

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

23

https://developers.redhat.com/launch
https://docs.openshift.com/container-platform/3.11/dev_guide/configmaps.html
https://blog.openshift.com/configuring-your-application-part-1/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-configmap-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.8/html-single/eclipse_vert.x_runtime_guide/#example-configmap-vertx

Externalized Configuration for Thorntail

4.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR NODE.JS

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Foundational.

What the Relational Database Backend example does

The Relational Database Backend example expands on the REST API Level 0 application to provide a
basic example of performing create, read, update and delete (CRUD) operations on a PostgreSQL
database using a simple HTTP API. CRUD operations are the four basic functions of persistent storage,
widely used when developing an HTTP API dealing with a database.

The example also demonstrates the ability of the HTTP application to locate and connect to a database
in OpenShift. Each runtime shows how to implement the connectivity solution best suited in the given
case. The runtime can choose between options such as using JDBC, JPA, or accessing ORM APIs
directly.

The example application exposes an HTTP API, which provides endpoints that allow you to manipulate
data by performing CRUD operations over HTTP. The CRUD operations are mapped to HTTP Verbs.
The API uses JSON formatting to receive requests and return responses to the user. The user can also
use a user interface provided by the example to use the application. Specifically, this example provides
an application that allows you to:

Navigate to the application web interface in your browser. This exposes a simple website
allowing you to perform CRUD operations on the data in the my_data database.

Execute an HTTP GET request on the api/fruits endpoint.

Receive a response formatted as a JSON array containing the list of all fruits in the database.

Execute an HTTP GET request on the api/fruits/* endpoint while passing in a valid item ID as an
argument.

Receive a response in JSON format containing the name of the fruit with the given ID. If no item
matches the specified ID, the call results in an HTTP error 404.

Execute an HTTP POST request on the api/fruits endpoint passing in a valid name value to
create a new entry in the database.

Execute an HTTP PUT request on the api/fruits/* endpoint passing in a valid ID and a name as
an argument. This updates the name of the item with the given ID to match the name specified
in your request.

Execute an HTTP DELETE request on the api/fruits/* endpoint, passing in a valid ID as an
argument. This removes the item with the specified ID from the database and returns an HTTP
code 204 (No Content) as a response. If you pass in an invalid ID, the call results in an HTTP
error 404.

Red Hat build of Node.js 10 Node.js Runtime Guide

24

https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-configmap-wf-swarm

This example does not showcase a fully matured RESTful model (level 3), but it does use compatible
HTTP verbs and status, following the recommended HTTP API practices.

4.3.1. Relational Database Backend design tradeoffs

Table 4.3. Design Tradeoffs

Pros Cons

Each runtime determines how to implement
the database interactions. One can use a
low-level connectivity API such as JDBC,
some other can use JPA, and yet another
can access ORM APIs directly. Each runtime
decides what would be the best way.

Each runtime determines how the schema is
created.

The PostgreSQL database provided with
this example application is not backed up
with persistent storage. Changes to the
database are lost if you stop or redeploy the
database pod. To use an external database
with your example application’s pod in order
to preserve changes, see the Creating an
application with a database chapter of the
OpenShift Documentation. It is also possible
to set up persistent storage with database
containers on OpenShift. (For more details
about using persistent storage with
OpenShift and containers, see the
Persistent Storage, Managing Volumes and
Persistent Volumes chapters of the
OpenShift Documentation).

4.3.2. Deploying the Relational Database Backend example application to OpenShift
Online

Use one of the following options to execute the Relational Database Backend example application on
OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

4.3.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser and log in.

2. Follow on-screen instructions to create and launch your example application in Node.js.

4.3.2.2. Authenticating the oc CLI client

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

25

https://docs.openshift.com/container-platform/latest/cli_reference/openshift_developer_cli/creating-an-application-with-a-database.html
https://docs.openshift.com/online/architecture/additional_concepts/storage.html
https://docs.openshift.com/online/dev_guide/volumes.html
https://docs.openshift.com/online/dev_guide/persistent_volumes.html
https://manage.openshift.com
https://developers.redhat.com/launch

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your OpenShift Online account.

4.3.2.3. Deploying the Relational Database Backend example application using the oc CLI
client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 4.3.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 4.3.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the PostgreSQL database to OpenShift. Ensure that you use the following values for
user name, password, and database name when creating your database application. The

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

Red Hat build of Node.js 10 Node.js Runtime Guide

26

https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

example application is pre-configured to use these values. Using different values prevents your
application from integrating with the database.

5. Check the status of your database and ensure the pod is running.

The my-database-1-aaaaa pod should have a status of Running and should be indicated as
ready once it is fully deployed and started. Your specific pod name will vary. The number in the
middle will increase with each new build. The letters at the end are generated when the pod is
created.

6. Use npm to start the deployment to OpenShift.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

7. Check the status of your application and ensure your pod is running.

Your MY_APP_NAME-1-aaaaa pod should have a status of Running and should be indicated
as ready once it is fully deployed and started.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.3.3. Deploying the Relational Database Backend example application to Minishift
or CDK

Use one of the following options to execute the Relational Database Backend example application
locally on Minishift or CDK:

$ oc new-app -e POSTGRESQL_USER=luke -ePOSTGRESQL_PASSWORD=secret -
ePOSTGRESQL_DATABASE=my_data registry.access.redhat.com/rhscl/postgresql-10-rhel7
--name=my-database

$ oc get pods -w
my-database-1-aaaaa 1/1 Running 0 45s
my-database-1-deploy 0/1 Completed 0 53s

$ npm install && npm run openshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

27

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

4.3.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

4.3.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.3.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Node.js.

4.3.3.3. Authenticating the oc CLI client

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

Red Hat build of Node.js 10 Node.js Runtime Guide

28

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.3.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your Minishift or CDK account.

4.3.3.4. Deploying the Relational Database Backend example application using the oc CLI
client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 4.3.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 4.3.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

29

3. Navigate to the root directory of your application.

4. Deploy the PostgreSQL database to OpenShift. Ensure that you use the following values for
user name, password, and database name when creating your database application. The
example application is pre-configured to use these values. Using different values prevents your
application from integrating with the database.

5. Check the status of your database and ensure the pod is running.

The my-database-1-aaaaa pod should have a status of Running and should be indicated as
ready once it is fully deployed and started. Your specific pod name will vary. The number in the
middle will increase with each new build. The letters at the end are generated when the pod is
created.

6. Use npm to start the deployment to OpenShift.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

7. Check the status of your application and ensure your pod is running.

Your MY_APP_NAME-1-aaaaa pod should have a status of Running and should be indicated
as ready once it is fully deployed and started.

8. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.3.4. Deploying the Relational Database Backend example application to OpenShift

$ oc new-app -e POSTGRESQL_USER=luke -ePOSTGRESQL_PASSWORD=secret -
ePOSTGRESQL_DATABASE=my_data registry.access.redhat.com/rhscl/postgresql-10-rhel7
--name=my-database

$ oc get pods -w
my-database-1-aaaaa 1/1 Running 0 45s
my-database-1-deploy 0/1 Completed 0 53s

$ npm install && npm run openshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

Red Hat build of Node.js 10 Node.js Runtime Guide

30

4.3.4. Deploying the Relational Database Backend example application to OpenShift
Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 4.3.2, “Deploying the Relational Database Backend example
application to OpenShift Online”, only use the URL and user credentials from the OpenShift
Container Platform Web Console.

4.3.5. Interacting with the Relational Database Backend API on Node.js

When you have finished creating your example application, you can interact with it the following way:

Prerequisites

Your application running

The curl binary or a web browser

Procedure

1. Obtain the URL of your application by executing the following command:

NAME HOST/PORT PATH SERVICES PORT
TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

2. To access the web interface of the database application, navigate to the application URL in your
browser:

Alternatively, you can make requests directly on the api/fruits/* endpoint using curl:

List all entries in the database:

$ oc get route MY_APP_NAME

http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits

[{
 "id" : 1,
 "name" : "Apple",
 "stock" : 10
}, {

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

31

https://developers.redhat.com/launch

Retrieve an entry with a specific ID

Create a new entry:

Update an Entry

Delete an Entry:

Troubleshooting

If you receive an HTTP Error code 503 as a response after executing these commands, it means
that the application is not ready yet.

 "id" : 2,
 "name" : "Orange",
 "stock" : 10
}, {
 "id" : 3,
 "name" : "Pear",
 "stock" : 10
}]

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/3

{
 "id" : 3,
 "name" : "Pear",
 "stock" : 10
}

$ curl -H "Content-Type: application/json" -X POST -d '{"name":"Peach","stock":1}'
http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits

{
 "id" : 4,
 "name" : "Peach",
 "stock" : 1
}

$ curl -H "Content-Type: application/json" -X PUT -d '{"name":"Apple","stock":100}'
http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/1

{
 "id" : 1,
 "name" : "Apple",
 "stock" : 100
}

$ curl -X DELETE http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/fruits/1

Red Hat build of Node.js 10 Node.js Runtime Guide

32

4.3.6. Relational database resources

More background and related information on running relational databases in OpenShift, CRUD, HTTP
API and REST can be found here:

HTTP Verbs

Architectural Styles and the Design of Network-based Software Architectures -
Representational State Transfer (REST)

The never ending REST API design debase

REST APIs must be Hypertext driven

Richardson Maturity Model

Express Web Framework

Relational Database Backend for Spring Boot

Relational Database Backend for Eclipse Vert.x

Relational Database Backend for Thorntail

4.4. HEALTH CHECK EXAMPLE FOR NODE.JS

IMPORTANT

The following example is not meant to be run in a production environment.

Example proficiency level: Foundational.

When you deploy an application, it is important to know if it is available and if it can start handling
incoming requests. Implementing the health check pattern allows you to monitor the health of an
application, which includes if an application is available and whether it is able to service requests.

NOTE

If you are not familiar with the health check terminology, see the Section 4.4.1, “Health
check concepts” section first.

The purpose of this use case is to demonstrate the health check pattern through the use of probing.
Probing is used to report the liveness and readiness of an application. In this use case, you configure an
application which exposes an HTTP health endpoint to issue HTTP requests. If the container is alive,
according to the liveness probe on the health HTTP endpoint, the management platform receives 200
as return code and no further action is required. If the health HTTP endpoint does not return a
response, for example if the thread is blocked, then the application is not considered alive according to
the liveness probe. In that case, the platform kills the pod corresponding to that application and
recreates a new pod to restart the application.

This use case also allows you to demonstrate and use a readiness probe. In cases where the application is
running but is unable to handle requests, such as when the application returns an HTTP 503 response
code during restart, this application is not considered ready according to the readiness probe. If the
application is not considered ready by the readiness probe, requests are not routed to that application
until it is considered ready according to the readiness probe.

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

33

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://speakerdeck.com/glaforge/the-never-ending-rest-api-design-debate
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://martinfowler.com/articles/richardsonMaturityModel.html
https://expressjs.com/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-crud-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.8/html-single/eclipse_vert.x_runtime_guide/#example-crud-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-crud-wf-swarm

4.4.1. Health check concepts

In order to understand the health check pattern, you need to first understand the following concepts:

Liveness

Liveness defines whether an application is running or not. Sometimes a running application moves
into an unresponsive or stopped state and needs to be restarted. Checking for liveness helps
determine whether or not an application needs to be restarted.

Readiness

Readiness defines whether a running application can service requests. Sometimes a running
application moves into an error or broken state where it can no longer service requests. Checking
readiness helps determine whether or not requests should continue to be routed to that application.

Fail-over

Fail-over enables failures in servicing requests to be handled gracefully. If an application fails to
service a request, that request and future requests can then fail-over or be routed to another
application, which is usually a redundant copy of that same application.

Resilience and Stability

Resilience and Stability enable failures in servicing requests to be handled gracefully. If an application
fails to service a request due to connection loss, in a resilient system that request can be retried after
the connection is re-established.

Probe

A probe is a Kubernetes action that periodically performs diagnostics on a running container.

4.4.2. Deploying the Health Check example application to OpenShift Online

Use one of the following options to execute the Health Check example application on OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

4.4.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser and log in.

2. Follow on-screen instructions to create and launch your example application in Node.js.

4.4.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

Red Hat build of Node.js 10 Node.js Runtime Guide

34

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your OpenShift Online account.

4.4.2.3. Deploying the Health Check example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 4.4.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 4.4.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use npm to start the deployment to OpenShift.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ npm install && npm run openshift

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

35

https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://developers.redhat.com/launch

5. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. You should also wait for your pod to be ready before proceeding, which is shown in the
READY column. For example, MY_APP_NAME-1-aaaaa is ready when the READY column is
1/1. Your specific pod name will vary. The number in the middle will increase with each new build.
The letters at the end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.4.3. Deploying the Health Check example application to Minishift or CDK

Use one of the following options to execute the Health Check example application locally on Minishift or
CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

4.4.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

Red Hat build of Node.js 10 Node.js Runtime Guide

36

Example Console Output from a Minishift or CDK Startup

4.4.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.4.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Node.js.

4.4.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.4.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

37

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your Minishift or CDK account.

4.4.3.4. Deploying the Health Check example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 4.4.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 4.4.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use npm to start the deployment to OpenShift.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

5. Check the status of your application and ensure your pod is running.

The MY_APP_NAME-1-aaaaa pod should have a status of Running once its fully deployed and
started. You should also wait for your pod to be ready before proceeding, which is shown in the
READY column. For example, MY_APP_NAME-1-aaaaa is ready when the READY column is
1/1. Your specific pod name will vary. The number in the middle will increase with each new build.
The letters at the end are generated when the pod is created.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ npm install && npm run openshift

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-aaaaa 1/1 Running 0 58s
MY_APP_NAME-s2i-1-build 0/1 Completed 0 2m

Red Hat build of Node.js 10 Node.js Runtime Guide

38

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.4.4. Deploying the Health Check example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 4.4.2, “Deploying the Health Check example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

4.4.5. Interacting with the unmodified Health Check example application

After you deploy the example application, you will have the MY_APP_NAME service running. The
MY_APP_NAME service exposes the following REST endpoints:

/api/greeting

Returns a JSON containing greeting of name parameter (or World as default value).

/api/stop

Forces the service to become unresponsive as means to simulate a failure.

The following steps demonstrate how to verify the service availability and simulate a failure. This failure
of an available service causes the OpenShift self-healing capabilities to be trigger on the service.

Alternatively, you can use the web interface to perform these steps.

1. Use curl to execute a GET request against the MY_APP_NAME service. You can also use a
browser to do this.

{"content":"Hello, World!"}

2. Invoke the /api/stop endpoint and verify the availability of the /api/greeting endpoint shortly

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME
MY_APP_NAME 8080

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

39

https://developers.redhat.com/launch

2. Invoke the /api/stop endpoint and verify the availability of the /api/greeting endpoint shortly
after that.
Invoking the /api/stop endpoint simulates an internal service failure and triggers the OpenShift
self-healing capabilities. When invoking /api/greeting after simulating the failure, the service
should return a HTTP status 503.

Stopping HTTP server, Bye bye world !

(followed by)

Not online

3. Use oc get pods -w to continuously watch the self-healing capabilities in action.
While invoking the service failure, you can watch the self-healing capabilities in action on
OpenShift console, or with the oc client tools. You should see the number of pods in the
READY state move to zero (0/1) and after a short period (less than one minute) move back up
to one (1/1). In addition to that, the RESTARTS count increases every time you you invoke the
service failure.

4. Optional: Use the web interface to invoke the service.
Alternatively to the interaction using the terminal window, you can use the web interface
provided by the service to invoke the different methods and watch the service move through
the life cycle phases.

http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME

5. Optional: Use the web console to view the log output generated by the application at each
stage of the self-healing process.

1. Navigate to your project.

2. On the sidebar, click on Monitoring.

3. In the upper right-hand corner of the screen, click on Events to display the log messages.

4. Optional: Click View Details to display a detailed view of the Event log.

The health check application generates the following messages:

Message Status

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/stop

$ curl http://MY_APP_NAME-MY_PROJECT_NAME.OPENSHIFT_HOSTNAME/api/greeting

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-1-26iy7 0/1 Running 5 18m
MY_APP_NAME-1-26iy7 1/1 Running 5 19m

Red Hat build of Node.js 10 Node.js Runtime Guide

40

Unhealthy Readiness probe failed. This message is
expected and indicates that the simulated failure
of the /api/greeting endpoint has been
detected and the self-healing process starts.

Killing The unavailable Docker container running the
service is being killed before being re-created.

Pulling Downloading the latest version of docker image
to re-create the container.

Pulled Docker image downloaded successfully.

Created Docker container has been successfully created

Started Docker container is ready to handle requests

Message Status

4.4.6. Health check resources

More background and related information on health checking can be found here:

Application Health in OpenShift

Kubernetes Liveness and Readiness Probes

Health Check for Spring Boot

Health Check for Eclipse Vert.x

Health Check for Thorntail

4.5. CIRCUIT BREAKER EXAMPLE FOR NODE.JS

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Foundational.

The Circuit Breaker example demonstrates a generic pattern for reporting the failure of a service and
then limiting access to the failed service until it becomes available to handle requests. This helps prevent
cascading failure in other services that depend on the failed services for functionality.

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-application-health
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-health-check-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.8/html-single/eclipse_vert.x_runtime_guide/#example-health-check-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-health-check-wf-swarm

This example shows you how to implement a Circuit Breaker and Fallback pattern in your services.

4.5.1. The circuit breaker design pattern

The Circuit Breaker is a pattern intended to:

Reduce the impact of network failure and high latency on service architectures where services
synchronously invoke other services.
If one of the services:

becomes unavailable due to network failure, or

incurs unusually high latency values due to overwhelming traffic,

other services attempting to call its endpoint may end up exhausting critical resources in an
attempt to reach it, rendering themselves unusable.

Prevent the condition also known as cascading failure, which can render the entire microservice
architecture unusable.

Act as a proxy between a protected function and a remote function, which monitors for failures.

Trip once the failures reach a certain threshold, and all further calls to the circuit breaker return
an error or a predefined fallback response, without the protected call being made at all.

The Circuit Breaker usually also contain an error reporting mechanism that notifies you when the Circuit
Breaker trips.

Circuit breaker implementation

With the Circuit Breaker pattern implemented, a service client invokes a remote service
endpoint via a proxy at regular intervals.

If the calls to the remote service endpoint fail repeatedly and consistently, the Circuit Breaker
trips, making all calls to the service fail immediately over a set timeout period and returns a
predefined fallback response.

When the timeout period expires, a limited number of test calls are allowed to pass through to
the remote service to determine whether it has healed, or remains unavailable.

If the test calls fail, the Circuit Breaker keeps the service unavailable and keeps returning
the fallback responses to incoming calls.

If the test calls succeed, the Circuit Breaker closes, fully enabling traffic to reach the remote
service again.

4.5.2. Circuit Breaker design tradeoffs

Table 4.4. Design Tradeoffs

Pros Cons

Red Hat build of Node.js 10 Node.js Runtime Guide

42

Enables a service to handle the failure of
other services it invokes.

Optimizing the timeout values can be
challenging

Larger-than-necessary timeout values
may generate excessive latency.

Smaller-than-necessary timeout values
may introduce false positives.

Pros Cons

4.5.3. Deploying the Circuit Breaker example application to OpenShift Online

Use one of the following options to execute the Circuit Breaker example application on OpenShift
Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

4.5.3.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser and log in.

2. Follow on-screen instructions to create and launch your example application in Node.js.

4.5.3.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

43

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your OpenShift Online account.

4.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 4.5.3.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 4.5.3.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use the provided start-openshift.sh script to start the deployment to OpenShift.

These commands use the Nodeshift npm module to install your dependencies, launch the S2I
build process on OpenShift, and start the services.

5. Check the status of your application and ensure your pod is running.

Both the MY_APP_NAME-greeting-1-aaaaa and MY_APP_NAME-name-1-aaaaa pods should
have a status of Running once they are fully deployed and started. You should also wait for your

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ chmod +x start-openshift.sh
$./start-openshift.sh

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-greeting-1-aaaaa 1/1 Running 0 17s
MY_APP_NAME-greeting-1-deploy 0/1 Completed 0 22s
MY_APP_NAME-name-1-aaaaa 1/1 Running 0 14s
MY_APP_NAME-name-1-deploy 0/1 Completed 0 28s

Red Hat build of Node.js 10 Node.js Runtime Guide

44

https://manage.openshift.com
https://developers.redhat.com/launch

pods to be ready before proceeding, which is shown in the READY column. For example,
MY_APP_NAME-greeting-1-aaaaa is ready when the READY column is 1/1. Your specific pod
names will vary. The number in the middle will increase with each new build. The letters at the
end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.5.4. Deploying the Circuit Breaker example application to Minishift or CDK

Use one of the following options to execute the Circuit Breaker example application locally on Minishift
or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

4.5.4.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None
MY_APP_NAME-name MY_APP_NAME-name-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-name 8080
None

...
-- Removing temporary directory ... OK

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

45

4.5.4.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.5.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Node.js.

4.5.4.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.5.4.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your Minishift or CDK account.

-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat build of Node.js 10 Node.js Runtime Guide

46

4.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 4.5.4.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 4.5.4.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Use the provided start-openshift.sh script to start the deployment to OpenShift.

These commands use the Nodeshift npm module to install your dependencies, launch the S2I
build process on OpenShift, and start the services.

5. Check the status of your application and ensure your pod is running.

Both the MY_APP_NAME-greeting-1-aaaaa and MY_APP_NAME-name-1-aaaaa pods should
have a status of Running once they are fully deployed and started. You should also wait for your
pods to be ready before proceeding, which is shown in the READY column. For example,
MY_APP_NAME-greeting-1-aaaaa is ready when the READY column is 1/1. Your specific pod
names will vary. The number in the middle will increase with each new build. The letters at the
end are generated when the pod is created.

6. After your example application is deployed and started, determine its route.

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ chmod +x start-openshift.sh
$./start-openshift.sh

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-greeting-1-aaaaa 1/1 Running 0 17s
MY_APP_NAME-greeting-1-deploy 0/1 Completed 0 22s
MY_APP_NAME-name-1-aaaaa 1/1 Running 0 14s
MY_APP_NAME-name-1-deploy 0/1 Completed 0 28s

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

47

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the application.

4.5.5. Deploying the Circuit Breaker example application to OpenShift Container
Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 4.5.3, “Deploying the Circuit Breaker example application to
OpenShift Online”, only use the URL and user credentials from the OpenShift Container
Platform Web Console.

4.5.6. Interacting with the unmodified Node.js Circuit Breaker example application

After you have the Node.js example application deployed, you have the following services running:

MY_APP_NAME-name

Exposes the following endpoints:

the /api/name endpoint, which returns a name when this service is working, and an error when
this service is set up to demonstrate failure.

the /api/state endpoint, which controls the behavior of the /api/name endpoint and
determines whether the service works correctly or demonstrates failure.

MY_APP_NAME-greeting

Exposes the following endpoints:

the /api/greeting endpoint that you can call to get a personalized greeting response.
When you call the /api/greeting endpoint, it issues a call against the /api/name endpoint of
the MY_APP_NAME-name service as part of processing your request. The call made against
the /api/name endpoint is protected by the Circuit Breaker.

If the remote endpoint is available, the name service responds with an HTTP code 200 (OK)

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None
MY_APP_NAME-name MY_APP_NAME-name-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-name 8080
None

Red Hat build of Node.js 10 Node.js Runtime Guide

48

https://developers.redhat.com/launch

If the remote endpoint is available, the name service responds with an HTTP code 200 (OK)
and you receive the following greeting from the /api/greeting endpoint:

{"content":"Hello, World!"}

If the remote endpoint is unavailable, the name service responds with an HTTP code 500
(Internal server error) and you receive a predefined fallback response from the
/api/greeting endpoint:

{"content":"Hello, Fallback!"}

the /api/cb-state endpoint, which returns the state of the Circuit Breaker. The state can be:

open : the circuit breaker is preventing requests from reaching the failed service,

closed: the circuit breaker is allowing requests to reach the service.

The following steps demonstrate how to verify the availability of the service, simulate a failure and
receive a fallback response.

1. Use curl to execute a GET request against the MY_APP_NAME-greeting service. You can also
use the Invoke button in the web interface to do this.

2. To simulate the failure of the MY_APP_NAME-name service you can:

use the Toggle button in the web interface.

scale the number of replicas of the pod running the MY_APP_NAME-name service down to
0.

execute an HTTP PUT request against the /api/state endpoint of the MY_APP_NAME-
name service to set its state to fail.

3. Invoke the /api/greeting endpoint. When several requests on the /api/name endpoint fail:

a. the Circuit Breaker opens,

b. the state indicator in the web interface changes from CLOSED to OPEN,

c. the Circuit Breaker issues a fallback response when you invoke the /api/greeting endpoint:

4. Restore the name MY_APP_NAME-name service to availability. To do this you can:

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}

$ curl -X PUT -H "Content-Type: application/json" -d '{"state": "fail"}'
http://MY_APP_NAME-name-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/state

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, Fallback!"}

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

49

use the Toggle button in the web interface.

scale the number of replicas of the pod running the MY_APP_NAME-name service back up
to 1.

execute an HTTP PUT request against the /api/state endpoint of the MY_APP_NAME-
name service to set its state back to ok.

5. Invoke the /api/greeting endpoint again. When several requests on the /api/name endpoint
succeed:

a. the Circuit Breaker closes,

b. the state indicator in the web interface changes from OPEN to CLOSED,

c. the Circuit Breaker issues a returns the Hello World! greeting when you invoke the
/api/greeting endpoint:

4.5.7. Circuit breaker resources

Follow the links below for more background information on the design principles behind the Circuit
Breaker pattern

microservices.io: Microservice Patterns: Circuit Breaker

Martin Fowler: CircuitBreaker

Circuit Breaker for Spring Boot

Circuit Breaker for Eclipse Vert.x

Circuit Breaker for Thorntail

4.6. SECURED EXAMPLE APPLICATION FOR NODE.JS

IMPORTANT

The following example is not meant to be run in a production environment.

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

NOTE

$ curl -X PUT -H "Content-Type: application/json" -d '{"state": "ok"}'
http://MY_APP_NAME-name-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/state

$ curl http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.LOCAL_OPENSHIFT_HOSTNAME/api/greeting
{"content":"Hello, World!"}

Red Hat build of Node.js 10 Node.js Runtime Guide

50

https://microservices.io/patterns/reliability/circuit-breaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-circuit-breaker-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.8/html-single/eclipse_vert.x_runtime_guide/#example-circuit-breaker-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_node.js/10/html-single/node.js_runtime_guide/#example-circuit-breaker-nodejs

NOTE

The Secured example application in Node.js requires Red Hat SSO 7.3. Since Red Hat
SSO 7.3 is not supported on IBM Z, the Secured example is not available for IBM Z.

Example proficiency level: Advanced.

The Secured example application secures a REST endpoint using Red Hat SSO . (This example expands
on the REST API Level 0 example).

Red Hat SSO:

Implements the Open ID Connect protocol which is an extension of the OAuth 2.0 specification.

Issues access tokens to provide clients with various access rights to secured resources.

Securing an application with SSO enables you to add security to your applications while centralizing the
security configuration.

IMPORTANT

This example comes with Red Hat SSO pre-configured for demonstration purposes, it
does not explain its principles, usage, or configuration. Before using this example, ensure
that you are familiar with the basic concepts related to Red Hat SSO .

4.6.1. The Secured project structure

The SSO example contains:

the sources for the Greeting service, which is the one which we are going to to secure

a template file (service.sso.yaml) to deploy the SSO server

the Keycloak adapter configuration to secure the service

4.6.2. Red Hat SSO deployment configuration

The service.sso.yaml file in this example contains all OpenShift configuration items to deploy a pre-
configured Red Hat SSO server. The SSO server configuration has been simplified for the sake of this
exercise and does provide an out-of-the-box configuration, with pre-configured users and security
settings. The service.sso.yaml file also contains very long lines, and some text editors, such as gedit,
may have issues reading this file.

WARNING

It is not recommended to use this SSO configuration in production. Specifically, the
simplifications made to the example security configuration impact the ability to use
it in a production environment.

Table 4.5. SSO Example Simplifications

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

51

https://access.redhat.com/products/red-hat-single-sign-on
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html/securing_applications_and_services_guide/openid_connect_3
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.1/html-single/getting_started_guide/
https://wiki.gnome.org/Apps/Gedit

Change Reason Recommendation

The default configuration includes
both public and private keys in
the yaml configuration files.

We did this because the end user
can deploy Red Hat SSO module
and have it in a usable state
without needing to know the
internals or how to configure Red
Hat SSO.

In production, do not store private
keys under source control. They
should be added by the server
administrator.

The configured clients accept
any callback url.

To avoid having a custom
configuration for each runtime,
we avoid the callback verification
that is required by the OAuth2
specification.

An application-specific callback
URL should be provided with a
valid domain name.

Clients do not require SSL/TLS
and the secured applications are
not exposed over HTTPS.

The examples are simplified by
not requiring certificates
generated for each runtime.

In production a secure application
should use HTTPS rather than
plain HTTP.

The token timeout has been
increased to 10 minutes from the
default of 1 minute.

Provides a better user experience
when working with the command
line examples

From a security perspective, the
window an attacker would have to
guess the access token is
extended. It is recommended to
keep this window short as it makes
it much harder for a potential
attacker to guess the current
token.

4.6.3. Red Hat SSO realm model

The master realm is used to secure this example. There are two pre-configured application client
definitions that provide a model for command line clients and the secured REST endpoint.

There are also two pre-configured users in the Red Hat SSO master realm that can be used to validate
various authentication and authorization outcomes: admin and alice.

4.6.3.1. Red Hat SSO users

The realm model for the secured examples includes two users:

admin

The admin user has a password of admin and is the realm administrator. This user has full access to
the Red Hat SSO administration console, but none of the role mappings that are required to access
the secured endpoints. You can use this user to illustrate the behavior of an authenticated, but
unauthorized user.

alice

The alice user has a password of password and is the canonical application user. This user will
demonstrate successful authenticated and authorized access to the secured endpoints. An example
representation of the role mappings is provided in this decoded JWT bearer token:

{
 "jti": "0073cfaa-7ed6-4326-ac07-c108d34b4f82",

Red Hat build of Node.js 10 Node.js Runtime Guide

52

1

2

3

4

5

The iss field corresponds to the Red Hat SSO realm instance URL that issues the token. This
must be configured in the secured endpoint deployments in order for the token to be verified.

The roles object provides the roles that have been granted to the user at the global realm level.
In this case alice has been granted the example-admin role. We will see that the secured
endpoint will look to the realm level for authorized roles.

The resource_access object contains resource specific role grants. Under this object you will
find an object for each of the secured endpoints.

The resource_access.secured-example-endpoint.roles object contains the roles granted to
alice for the secured-example-endpoint resource.

The preferred_username field provides the username that was used to generate the access
token.

 "exp": 1510162193,
 "nbf": 0,
 "iat": 1510161593,
 "iss": "https://secure-sso-sso.LOCAL_OPENSHIFT_HOSTNAME/auth/realms/master", 1
 "aud": "demoapp",
 "sub": "c0175ccb-0892-4b31-829f-dda873815fe8",
 "typ": "Bearer",
 "azp": "demoapp",
 "nonce": "90ff5d1a-ba44-45ae-a413-50b08bf4a242",
 "auth_time": 1510161591,
 "session_state": "98efb95a-b355-43d1-996b-0abcb1304352",
 "acr": "1",
 "client_session": "5962112c-2b19-461e-8aac-84ab512d2a01",
 "allowed-origins": [
 "*"
],
 "realm_access": {
 "roles": [2
 "example-admin"
]
 },
 "resource_access": { 3
 "secured-example-endpoint": {
 "roles": [
 "example-admin" 4
]
 },
 "account": {
 "roles": [
 "manage-account",
 "view-profile"
]
 }
 },
 "name": "Alice InChains",
 "preferred_username": "alice", 5
 "given_name": "Alice",
 "family_name": "InChains",
 "email": "alice@keycloak.org"
}

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

53

1

2

3

4

4.6.3.2. The application clients

The OAuth 2.0 specification allows you to define a role for application clients that access secured
resources on behalf of resource owners. The master realm has the following application clients defined:

demoapp

This is a confidential type client with a client secret that is used to obtain an access token. The token
contains grants for the alice user which enable alice to access the Thorntail, Eclipse Vert.x, Node.js
and Spring Boot based REST example application deployments.

secured-example-endpoint

The secured-example-endpoint is a bearer-only type of client that requires a example-admin role
for accessing the associated resources, specifically the Greeting service.

4.6.4. Node.js SSO adapter configuration

The SSO adapter is the client side, or client to the SSO server, component that enforces security on the
web resources. In this specific case, it is the Greeting service.

Enacting Security Example Node.js Code

npm module keycloak-connect must be installed and required. The keycloak-connect module acts
as connect middleware, which provides integration with express.

Instantiate a new Keycloak object and pass in an empty configuration object.

Tells express to use Keycloak as middleware.

Enforces that a user must be authenticated and part of the example-admin role before accessing a
resource.

Enacting Security in Keycloak Adapter using keycloak.json

const express = require(‘express’);
const Keycloak = require(‘keycloak-connect’); 1
const kc = new Keycloak({}); 2

const app = express();

app.use(kc.middleware()); 3

app.use(‘/api/greeting’, kc.protect('example-admin'), callback); 4

{
 "realm": "master", 1
 "resource": "secured-example-endpoint", 2
 "realm-public-key": "...", 3
 "auth-server-url": "${env.SSO_AUTH_SERVER_URL}", 4
 "ssl-required": "external",
 "disable-trust-manager": true,
 "bearer-only": true, 5
 "use-resource-role-mappings": true
}

Red Hat build of Node.js 10 Node.js Runtime Guide

54

https://www.npmjs.com/package/keycloak-connect
https://github.com/senchalabs/connect

1

2

3

4

5

The security realm to be used.

The actual Keycloak client configuration.

PEM format of the realm public key. You can obtain this from the administration console.

The address of the Red Hat SSO server (Interpolation at build time).

If enabled the adapter will not attempt to authenticate users, but only verify bearer tokens.

The example Node.js code enables Keycloak and enforces protection of the Greeting service web
resource endpoint. The keycloak.json configures the security adapter to interact with Red Hat SSO.

Additional resources

For more information about the Node.js Keycloak adapter, see the Keycloak documentation.

4.6.5. Deploying the Secured example application to Minishift or CDK

4.6.5.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

4.6.5.2. Creating the Secured example application using Fabric8 Launcher

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

55

https://www.keycloak.org/docs/latest/securing_apps/index.html#_nodejs_adapter

Prerequisites

The URL and user credentials of your running Fabric8 Launcher instance. For more information,
see Section 4.6.5.1, “Getting the Fabric8 Launcher tool URL and credentials” .

Procedure

Navigate to the Fabric8 Launcher URL in a browser and log in.

Follow the on-screen instructions to create your example in Node.js. When asked about which
deployment type, select I will build and run locally.

Follow on-screen instructions.
When done, click the Download as ZIP file button and store the file on your hard drive.

4.6.5.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.6.5.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your Minishift or CDK account.

4.6.5.4. Deploying the Secured example application using the oc CLI client

Prerequisites

The example application created using the Fabric8 Launcher tool on a Minishift or CDK. For
more information, see Section 4.6.5.2, “Creating the Secured example application using Fabric8
Launcher”.

Your Fabric8 Launcher URL.

The oc client authenticated. For more information, see Section 4.6.5.3, “Authenticating the oc
CLI client”.

$ oc login OPENSHIFT_URL --token=MYTOKEN

Red Hat build of Node.js 10 Node.js Runtime Guide

56

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the Red Hat SSO server using the service.sso.yaml file from your example ZIP file:

5. Use npm to start the deployment to Minishift or CDK.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

4.6.6. Deploying the Secured example application to OpenShift Container Platform

In addition to the Minishift or CDK, you can create and deploy the example on OpenShift Container
Platform with only minor differences. The most important difference is that you need to create the
example application on Minishift or CDK before you can deploy it with OpenShift Container Platform.

Prerequisites

The example created using Minishift or CDK.

4.6.6.1. Authenticating the oc CLI client

To work with example applications on OpenShift Container Platform using the oc command-line client,
you must authenticate the client using the token provided by the OpenShift Container Platform web
interface.

Prerequisites

An account at OpenShift Container Platform.

Procedure

1. Navigate to the OpenShift Container Platform URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc create -f service.sso.yaml

$ npm install && npm run openshift -- \
 -d SSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}
{.spec.host}{"/auth\n"}')

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

57

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your OpenShift Container Platform account.

4.6.6.2. Deploying the Secured example application using the oc CLI client

Prerequisites

The example application created using the Fabric8 Launcher tool on a Minishift or CDK.

The oc client authenticated. For more information, see Section 4.6.6.1, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new OpenShift project.

3. Navigate to the root directory of your application.

4. Deploy the Red Hat SSO server using the service.sso.yaml file from your example ZIP file:

5. Use npm to start the deployment to OpenShift Container Platform.

These commands install any missing module dependencies, then using the Nodeshift module,
deploy the example application on OpenShift.

4.6.7. Authenticating to the Secured example application API endpoint

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc create -f service.sso.yaml

$ npm install && npm run openshift -- \
 -d SSO_AUTH_SERVER_URL=$(oc get route secure-sso -o jsonpath='{"https://"}
{.spec.host}{"/auth\n"}')

Red Hat build of Node.js 10 Node.js Runtime Guide

58

The Secured example application provides a default HTTP endpoint that accepts GET requests if the
caller is authenticated and authorized. The client first authenticates against the Red Hat SSO server and
then performs a GET request against the Secured example application using the access token returned
by the authentication step.

4.6.7.1. Getting the Secured example application API endpoint

When using a client to interact with the example, you must specify the Secured example application
endpoint, which is the PROJECT_ID service.

Prerequisites

The Secured example application deployed and running.

The oc client authenticated.

Procedure

1. In a terminal application, execute the oc get routes command.
A sample output is shown in the following table:

Example 4.1. List of Secured endpoints

Name Host/Port Path Services Port Termination

secure-sso secure-sso-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 secure-sso <all> passthrough

PROJECT_I
D

PROJECT_I
D-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 PROJECT_I
D

<all>

sso sso-
myproject.L
OCAL_OPE
NSHIFT_HO
STNAME

 sso <all>

In the above example, the example endpoint would be http://PROJECT_ID-
myproject.LOCAL_OPENSHIFT_HOSTNAME. PROJECT_ID is based on the name you
entered when generating your example using developers.redhat.com/launch or the Fabric8
Launcher tool.

4.6.7.2. Authenticating HTTP requests using the command line

Request a token by sending a HTTP POST request to the Red Hat SSO server. In the following example,

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

59

https://developers.redhat.com/launch

Request a token by sending a HTTP POST request to the Red Hat SSO server. In the following example,
the jq CLI tool is used to extract the token value from the JSON response.

Prerequisites

The secured example endpoint URL. For more information, see Section 4.6.7.1, “Getting the
Secured example application API endpoint”.

The jq command-line tool (optional). To download the tool and for more information, see
https://stedolan.github.io/jq/.

Procedure

1. Request an access token with curl, the credentials, and <SSO_AUTH_SERVER_URL> and
extract the token from the response with the jq command:

<SSO_AUTH_SERVER_URL> is the url of the secure-sso service.

The attributes, such as username, password, and client_secret are usually kept secret, but the
above command uses the default provided credentials with this example for demonstration
purpose.

If you do not want to use jq to extract the token, you can run just the curl command and
manually extract the access token.

NOTE

curl -sk -X POST https://<SSO_AUTH_SERVER_URL>/auth/realms/master/protocol/openid-
connect/token \
 -d grant_type=password \
 -d username=alice\
 -d password=password \
 -d client_id=demoapp \
 -d client_secret=1daa57a2-b60e-468b-a3ac-25bd2dc2eadc \
 | jq -r '.access_token'

eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lkIiA6ICJRek1nbXhZMUhrQnpxTnR0SnkwMm5j
NTNtMGNiWDQxV1hNSTU1MFo4MGVBIn0.eyJqdGkiOiI0NDA3YTliNC04YWRhLTRlMTctOD
Q2ZS03YjI5MjMyN2RmYTIiLCJleHAiOjE1MDc3OTM3ODcsIm5iZiI6MCwiaWF0IjoxNTA3Nzkz
NzI3LCJpc3MiOiJodHRwczovL3NlY3VyZS1zc28tc3NvLWRlbW8uYXBwcy5jYWZlLWJhYmUub
3JnL2F1dGgvcmVhbG1zL21hc3RlciIsImF1ZCI6ImRlbW9hcHAiLCJzdWIiOiJjMDE3NWNjYi0w
ODkyLTRiMzEtODI5Zi1kZGE4NzM4MTVmZTgiLCJ0eXAiOiJCZWFyZXIiLCJhenAiOiJkZW1vY
XBwIiwiYXV0aF90aW1lIjowLCJzZXNzaW9uX3N0YXRlIjoiMDFjOTkzNGQtNmZmOS00NWYzL
WJkNWUtMTU4NDI5ZDZjNDczIiwiYWNyIjoiMSIsImNsaWVudF9zZXNzaW9uIjoiMzM3Yzk0MT
YtYTdlZS00ZWUzLThjZWQtODhlODI0MGJjNTAyIiwiYWxsb3dlZC1vcmlnaW5zIjpbIioiXSwicmV
hbG1fYWNjZXNzIjp7InJvbGVzIjpbImJvb3N0ZXItYWRtaW4iXX0sInJlc291cmNlX2FjY2VzcyI6ey
JzZWN1cmVkLWJvb3N0ZXItZW5kcG9pbnQiOnsicm9sZXMiOlsiYm9vc3Rlci1hZG1pbiJdfSwiY
WNjb3VudCI6eyJyb2xlcyI6WyJtYW5hZ2UtYWNjb3VudCIsInZpZXctcHJvZmlsZSJdfX0sIm5hbW
UiOiJBbGljZSBJbkNoYWlucyIsInByZWZlcnJlZF91c2VybmFtZSI6ImFsaWNlIiwiZ2l2ZW5fbmFtZ
SI6IkFsaWNlIiwiZmFtaWx5X25hbWUiOiJJbkNoYWlucyIsImVtYWlsIjoiYWxpY2VAa2V5Y2xvYW
sub3JnIn0.mjmZe37enHpigJv0BGuIitOj-
kfMLPNwYzNd3n0Ax4Nga7KpnfytGyuPSvR4KAG8rzkfBNN9klPYdy7pJEeYlfmnFUkM4EDrZY
gn4qZAznP1Wzy1RfVRdUFi0-
GqFTMPb37o5HRldZZ09QljX_j3GHnoMGXRtYW9RZN4eKkYkcz9hRwgfJoTy2CuwFqeJwZY
UyXifrfA-JoTr0UmSUed-0NMksGrtJjjPggUGS-
qOn6OgKcmN2vaVAQlxW32y53JqUXctfLQ6DhJzIMYTmOflIPy0sgG1mG7sovQhw1xTg0vTjdx
8zQ-EJcexkj7IivRevRZsslKgqRFWs67jQAFQA

Red Hat build of Node.js 10 Node.js Runtime Guide

60

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

NOTE

The -sk option tells curl to ignore failures resulting from self-signed certificates.
Do not use this option in a production environment. On macOS, you must have
curl version 7.56.1 or greater installed. It must also be built with OpenSSL.

1. Invoke the Secured service. Attach the access (bearer) token to the HTTP headers:

Example 4.2. A sample GET Request Headers with an Access (Bearer) Token

<SERVICE_HOST> is the URL of the secured example endpoint. For more information, see
Section 4.6.7.1, “Getting the Secured example application API endpoint” .

2. Verify the signature of the access token.
The access token is a JSON Web Token, so you can decode it using the JWT Debugger:

a. In a web browser, navigate to the JWT Debugger website.

b. Select RS256 from the Algorithm drop down menu.

NOTE

Make sure the web form has been updated after you made the selection, so it
displays the correct RSASHA256(…) information in the Signature section. If it
has not, try switching to HS256 and then back to RS256.

c. Paste the following content in the topmost text box into the VERIFY SIGNATURE section:

NOTE

$ curl -v -H "Authorization: Bearer <TOKEN>" http://<SERVICE_HOST>/api/greeting

{
 "content": "Hello, World!",
 "id": 2
}

> GET /api/greeting HTTP/1.1
> Host: <SERVICE_HOST>
> User-Agent: curl/7.51.0
> Accept: */*
> Authorization: Bearer <TOKEN>

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAoETnPmN55xBJjRzN/cs30OzJ
9olkteLVNRjzdTxFOyRtS2ovDfzdhhO9XzUcTMbIsCOAZtSt8K+6yvBXypOSYvI75EUdypm
kcK1KoptqY5KEBQ1KwhWuP7IWQ0fshUwD6jI1QWDfGxfM/h34FvEn/0tJ71xN2P8TI2Yan
wuDZgosdobx/PAvlGREBGuk4BgmexTOkAdnFxIUQcCkiEZ2C41uCrxiS4CEe5OX91aK9
HKZV4ZJX6vnqMHmdDnsMdO+UFtxOBYZio+a1jP4W3d7J5fGeiOaXjQCOpivKnP2yU2D
PdWmDMyVb67l8DRA+jh0OJFKZ5H2fNgE3II59vdsRwIDAQAB
-----END PUBLIC KEY-----

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

61

https://jwt.io
https://jwt.io/#debugger-io
https://jwt.io/#debugger-io

NOTE

This is the master realm public key from the Red Hat SSO server deployment
of the Secured example application.

d. Paste the token output from the client output into the Encoded box.
The Signature Verified sign is displayed on the debugger page.

4.6.7.3. Authenticating HTTP requests using the web interface

In addition to the HTTP API, the secured endpoint also contains a web interface to interact with.

The following procedure is an exercise for you to see how security is enforced, how you authenticate,
and how you work with the authentication token.

Prerequisites

The secured endpoint URL. For more information, see Section 4.6.7.1, “Getting the Secured
example application API endpoint”.

Procedure

1. In a web browser, navigate to the endpoint URL.

2. Perform an unauthenticated request:

a. Click the Invoke button.

Figure 4.1. Unauthenticated Secured Example Web Interface

The services responds with an HTTP 403 Forbidden status code.

NOTE

This is not the correct status code. It should be HTTP 401 Unauthorized.
This issue has been identified and this example will be updated as soon as it is
resolved.

3. Perform an authenticated request as a user:

a. Click the Login button to authenticate against Red Hat SSO. You will be redirected to the
SSO server.

Red Hat build of Node.js 10 Node.js Runtime Guide

62

https://github.com/nodeshift-starters/nodejs-rest-http-secured-redhat/issues/21

b. Log in as the Alice user. You will be redirected back to the web interface.

NOTE

You can see the access (bearer) token in the command line output at the
bottom of the page.

Figure 4.2. Authenticated Secured Example Web Interface (as Alice)

c. Click Invoke again to access the Greeting service.
Confirm that there is no exception and the JSON response payload is displayed. This means
the service accepted your access (bearer) token and you are authorized access to the
Greeting service.

Figure 4.3. The Result of an Authenticated Greeting Request (as Alice)

d. Log out.

4. Perform an authenticated request as an admininstrator:

a. Click the Invoke button.
Confirm that this sends an unauthenticated request to the Greeting service.

b. Click the Login button and log in as the admin user.

Figure 4.4. Authenticated Secured Example Web Interface (as admin)

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

63

Figure 4.4. Authenticated Secured Example Web Interface (as admin)

5. Click the Invoke button.
The service responds with an HTTP 403 Forbidden status code because the admin user is not
authorized to access the Greeting service.

Figure 4.5. Unauthorized Error Message

4.6.8. Secured SSO resources

Follow the links below for additional information on the principles behind the OAuth2 specification and
on securing your applications using Red Hat SSO and Keycloak:

Aaron Parecki: OAuth2 Simplified

Red Hat SSO 7.1 Documentation

Keycloak 3.2 Documentation

Secured for Spring Boot

Secured for Eclipse Vert.x

Secured for Thorntail

4.7. CACHE EXAMPLE FOR NODE.JS

IMPORTANT

The following example is not meant to be run in a production environment.

Red Hat build of Node.js 10 Node.js Runtime Guide

64

https://aaronparecki.com/oauth-2-simplified/
https://access.redhat.com/documentation/en/red-hat-single-sign-on?version=7.1/
https://www.keycloak.org/documentation.html
https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-rest-http-secured-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.8/html-single/eclipse_vert.x_runtime_guide/#example-rest-http-secured-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-rest-http-secured-wf-swarm

Limitation: Run this example application on a Minishift or CDK. You can also use a manual workflow to
deploy this example to OpenShift Online Pro and OpenShift Container Platform. This example is not
currently available on OpenShift Online Starter.

Example proficiency level: Advanced.

The Cache example demonstrates how to use a cache to increase the response time of applications.

This example shows you how to:

Deploy a cache to OpenShift.

Use a cache within an application.

4.7.1. How caching works and when you need it

Caches allows you to store information and access it for a given period of time. You can access
information in a cache faster or more reliably than repeatedly calling the original service. A disadvantage
of using a cache is that the cached information is not up to date. However, that problem can be reduced
by setting an expiration or TTL (time to live) on each value stored in the cache.

Example 4.3. Caching example

Assume you have two applications: service1 and service2:

Service1 depends on a value from service2.

If the value from service2 infrequently changes, service1 could cache the value from
service2 for a period of time.

Using cached values can also reduce the number of times service2 is called.

If it takes service1 500 ms to retrieve the value directly from service2, but 100 ms to retrieve
the cached value, service1 would save 400 ms by using the cached value for each cached call.

If service1 would make uncached calls to service2 5 times per second, over 10 seconds, that
would be 50 calls.

If service1 started using a cached value with a TTL of 1 second instead, that would be reduced
to 10 calls over 10 seconds.

How the Cache example works

1. The cache, cute name, and greeting services are deployed and exposed.

2. User accesses the web frontend of the greeting service.

3. User invokes the greeting HTTP API using a button on the web frontend.

4. The greeting service depends on a value from the cute name service.

The greeting service first checks if that value is stored in the cache service. If it is, then the
cached value is returned.

If the value is not cached, the greeting service calls the cute name service, returns the value,
and stores the value in the cache service with a TTL of 5 seconds.

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

65

5. The web front end displays the response from the greeting service as well as the total time of
the operation.

6. User invokes the service multiple times to see the difference between cached and uncached
operations.

Cached operations are significantly faster than uncached operations.

User can force the cache to be cleared before the TTL expires.

4.7.2. Deploying the Cache example application to OpenShift Online

Use one of the following options to execute the Cache example application on OpenShift Online.

Use developers.redhat.com/launch

Use the oc CLI client

Although each method uses the same oc commands to deploy your application, using
developers.redhat.com/launch provides an automated deployment workflow that executes the oc
commands for you.

4.7.2.1. Deploying the example application using developers.redhat.com/launch

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the developers.redhat.com/launch URL in a browser and log in.

2. Follow on-screen instructions to create and launch your example application in Node.js.

4.7.2.2. Authenticating the oc CLI client

To work with example applications on OpenShift Online using the oc command-line client, you must
authenticate the client using the token provided by the OpenShift Online web interface.

Prerequisites

An account at OpenShift Online.

Procedure

1. Navigate to the OpenShift Online URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token

Red Hat build of Node.js 10 Node.js Runtime Guide

66

https://manage.openshift.com
https://developers.redhat.com/launch
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com
https://manage.openshift.com

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your OpenShift Online account.

4.7.2.3. Deploying the Cache example application using the oc CLI client

Prerequisites

The example application created using developers.redhat.com/launch. For more information,
see Section 4.7.2.1, “Deploying the example application using developers.redhat.com/launch” .

The oc client authenticated. For more information, see Section 4.7.2.2, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project.

3. Navigate to the root directory of your application.

4. Deploy the cache service.

NOTE

If you are using an architecture other than x86_64, in the YAML file, update the
image name of Red Hat Data Grid to its relevant image name in that
architecture. For example, for the s390x architecture, update the image name to
its IBM Z image name registry.access.redhat.com/jboss-datagrid-
7/datagrid73-openj9-11-openshift-rhel8.

5. Use start-openshift.sh to start the deployment to OpenShift.

6. Check the status of your application and ensure your pod is running.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc apply -f service.cache.yml

$./start-openshift.sh

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
cache-server-123456789-aaaaa 1/1 Running 0 8m

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

67

https://manage.openshift.com
https://developers.redhat.com/launch

Your 3 pods should have a status of Running once they are fully deployed and started.

7. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the greeting
service.

4.7.3. Deploying the Cache example application to Minishift or CDK

Use one of the following options to execute the Cache example application locally on Minishift or CDK:

Using Fabric8 Launcher

Using the oc CLI client

Although each method uses the same oc commands to deploy your application, using Fabric8 Launcher
provides an automated deployment workflow that executes the oc commands for you.

4.7.3.1. Getting the Fabric8 Launcher tool URL and credentials

You need the Fabric8 Launcher tool URL and user credentials to create and deploy example
applications on Minishift or CDK. This information is provided when the Minishift or CDK is started.

Prerequisites

The Fabric8 Launcher tool installed, configured, and running.

Procedure

1. Navigate to the console where you started Minishift or CDK.

2. Check the console output for the URL and user credentials you can use to access the running
Fabric8 Launcher:

Example Console Output from a Minishift or CDK Startup

MY_APP_NAME-cutename-1-bbbbb 1/1 Running 0 4m
MY_APP_NAME-cutename-s2i-1-build 0/1 Completed 0 7m
MY_APP_NAME-greeting-1-ccccc 1/1 Running 0 3m
MY_APP_NAME-greeting-s2i-1-build 0/1 Completed 0 3m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-cutename MY_APP_NAME-cutename-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-cutename 8080
None
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None

Red Hat build of Node.js 10 Node.js Runtime Guide

68

4.7.3.2. Deploying the example application using the Fabric8 Launcher tool

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.7.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Fabric8 Launcher URL in a browser.

2. Follow the on-screen instructions to create and launch your example application in Node.js.

4.7.3.3. Authenticating the oc CLI client

To work with example applications on Minishift or CDK using the oc command-line client, you must
authenticate the client using the token provided by the Minishift or CDK web interface.

Prerequisites

The URL of your running Fabric8 Launcher instance and the user credentials of your Minishift or
CDK. For more information, see Section 4.7.3.1, “Getting the Fabric8 Launcher tool URL and
credentials”.

Procedure

1. Navigate to the Minishift or CDK URL in a browser.

2. Click on the question mark icon in the top right-hand corner of the Web console, next to your
user name.

3. Select Command Line Tools in the drop-down menu.

4. Find the text box that contains the oc login … command with the hidden token, and click the
button next to it to copy its content to your clipboard.

5. Paste the command into a terminal application. The command uses your authentication token
to authenticate your oc CLI client with your Minishift or CDK account.

...
-- Removing temporary directory ... OK
-- Server Information ...
 OpenShift server started.
 The server is accessible via web console at:
 https://192.168.42.152:8443

 You are logged in as:
 User: developer
 Password: developer

 To login as administrator:
 oc login -u system:admin

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

69

4.7.3.4. Deploying the Cache example application using the oc CLI client

Prerequisites

The example application created using Fabric8 Launcher tool on a Minishift or CDK. For more
information, see Section 4.7.3.2, “Deploying the example application using the Fabric8 Launcher
tool”.

Your Fabric8 Launcher tool URL.

The oc client authenticated. For more information, see Section 4.7.3.3, “Authenticating the oc
CLI client”.

Procedure

1. Clone your project from GitHub.

Alternatively, if you downloaded a ZIP file of your project, extract it.

2. Create a new project.

3. Navigate to the root directory of your application.

4. Deploy the cache service.

NOTE

If you are using an architecture other than x86_64, in the YAML file, update the
image name of Red Hat Data Grid to its relevant image name in that
architecture. For example, for the s390x architecture, update the image name to
its IBM Z image name registry.access.redhat.com/jboss-datagrid-
7/datagrid73-openj9-11-openshift-rhel8.

5. Use start-openshift.sh to start the deployment to OpenShift.

6. Check the status of your application and ensure your pod is running.

$ oc login OPENSHIFT_URL --token=MYTOKEN

$ git clone git@github.com:USERNAME/MY_PROJECT_NAME.git

$ unzip MY_PROJECT_NAME.zip

$ oc new-project MY_PROJECT_NAME

$ oc apply -f service.cache.yml

$./start-openshift.sh

$ oc get pods -w
NAME READY STATUS RESTARTS AGE
cache-server-123456789-aaaaa 1/1 Running 0 8m

Red Hat build of Node.js 10 Node.js Runtime Guide

70

Your 3 pods should have a status of Running once they are fully deployed and started.

7. After your example application is deployed and started, determine its route.

Example Route Information

The route information of a pod gives you the base URL which you use to access it. In the
example above, you would use http://MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME as the base URL to access the greeting
service.

4.7.4. Deploying the Cache example application to OpenShift Container Platform

The process of creating and deploying example applications to OpenShift Container Platform is similar
to OpenShift Online:

Prerequisites

The example application created using developers.redhat.com/launch.

Procedure

Follow the instructions in Section 4.7.2, “Deploying the Cache example application to OpenShift
Online”, only use the URL and user credentials from the OpenShift Container Platform Web
Console.

4.7.5. Interacting with the unmodified Cache example application

Prerequisites

Your application deployed

Procedure

1. Navigate to the greeting service using your browser.

2. Click Invoke the service once.
Notice the duration value is above 2000. Also notice the cache state has changed form No
cached value to A value is cached.

MY_APP_NAME-cutename-1-bbbbb 1/1 Running 0 4m
MY_APP_NAME-cutename-s2i-1-build 0/1 Completed 0 7m
MY_APP_NAME-greeting-1-ccccc 1/1 Running 0 3m
MY_APP_NAME-greeting-s2i-1-build 0/1 Completed 0 3m

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION
MY_APP_NAME-cutename MY_APP_NAME-cutename-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-cutename 8080
None
MY_APP_NAME-greeting MY_APP_NAME-greeting-
MY_PROJECT_NAME.OPENSHIFT_HOSTNAME MY_APP_NAME-greeting 8080
None

CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS

71

https://developers.redhat.com/launch

3. Wait 5 seconds and notice cache state has changed back to No cached value.
The TTL for the cached value is set to 5 seconds. When the TTL expires, the value is no longer
cached.

4. Click Invoke the service once more to cache the value.

5. Click Invoke the service a few more times over the course of a few seconds while cache state is
A value is cached.
Notice a significantly lower duration value since it is using a cached value. If you click Clear the
cache, the cache is emptied.

4.7.6. Caching resources

More background and related information on caching can be found here:

Cache for Spring Boot

Cache for Eclipse Vert.x

Cache for Thorntail

Red Hat build of Node.js 10 Node.js Runtime Guide

72

https://access.redhat.com/documentation/en-us/red_hat_support_for_spring_boot/2.1/html-single/spring_boot_2.1.x_runtime_guide/#example-cache-spring-boot
https://access.redhat.com/documentation/en-us/red_hat_build_of_eclipse_vert.x/3.8/html-single/eclipse_vert.x_runtime_guide/#example-cache-vertx
https://access.redhat.com/documentation/en-us/red_hat_build_of_thorntail/2.5/html-single/thorntail_runtime_guide/#example-cache-wf-swarm

CHAPTER 5. DEBUGGING YOUR NODE.JS BASED
APPLICATION

This section contains information about debugging your Node.js–based application and using debug
logging in both local and remote deployments.

5.1. REMOTE DEBUGGING

To remotely debug an application, you need to start it in a debugging mode and attach a debugger to it.

5.1.1. Starting your application locally and attaching the native debugger

The native debugger enables you to debug your Node.js–based application using the built-in debugging
client.

Prerequisites

An application you want to debug.

Procedure

1. Start the application with the debugger enabled.
The native debugger is automatically attached and provides a debugging prompt.

Example application with the debugger enabled

If you have a different entry point for your application, you need to change the command to
specify that entry point:

For example, when using the express generator to create your application, the entry point is set
to ./bin/www by default. Some of the examples, such as the REST API Level 0 example
application, use ./bin/www as an entry point.

2. Use the debugger prompt to perform debugging commands.

5.1.2. Starting your application locally and attaching the V8 inspector

The V8 inspector enables you to debug your Node.js–based application using other tools, such as
Chrome DevTools , that use the Chrome Debugging Protocol.

Prerequisites

An application you want to debug.

$ node inspect app.js
< Debugger listening on ws://127.0.0.1:9229/12345678-aaaa-bbbb-cccc-0123456789ab
< For help see https://nodejs.org/en/docs/inspector
< Debugger attached.
...
debug>

$ node inspect path/to/entrypoint

CHAPTER 5. DEBUGGING YOUR NODE.JS BASED APPLICATION

73

https://expressjs.com/en/starter/generator.html
https://nodejs.org/api/debugger.html#debugger_command_reference
https://developers.google.com/web/tools/chrome-devtools/
https://chromedevtools.github.io/debugger-protocol-viewer/1-2/

The V8 inspector installed, such as the one provided in the Google Chrome Browser .

Procedure

1. Start your application with the V8 inspector integration enabled.

If you have a different entry point for your application, you need to change the command to
specify that entry point:

For example, when using the express generator to create your application, the entry point is set
to ./bin/www by default. Some of the examples, such as the REST API Level 0 example
application, use ./bin/www as an entry point.

2. Attach the V8 inspector and perform debugging commands.
For example, if using Google Chrome:

a. Navigate to chrome://inspect.

b. Select your application from below Remote Target.

c. You can now see the source of your application and can perform debugging actions.

5.1.3. Starting your application on OpenShift in debugging mode

To debug your Node.js-based application on OpenShift remotely, you must set the NODE_ENV
environment variable inside the container to development and configure port forwarding so that you
can connect to your application from a remote debugger.

Prerequisites

Your application running on OpenShift.

The oc binary installed on your machine.

The ability to execute the oc port-forward command in your target OpenShift environment.

Procedure

1. Using the oc command, list the available deployment configurations:

2. Set the NODE_ENV environment variable in the deployment configuration of your application
to development to enable debugging. For example:

3. Redeploy the application if it is not set to redeploy automatically on configuration change. For
example:

$ node --inspect app.js

$ node --inspect path/to/entrypoint

$ oc get dc

$ oc set env dc/MY_APP_NAME NODE_ENV=development

Red Hat build of Node.js 10 Node.js Runtime Guide

74

https://www.google.com/chrome/index.html
https://nodejs.org/api/debugger.html#debugger_v8_inspector_integration_for_node_js
https://expressjs.com/en/starter/generator.html

4. Configure port forwarding from your local machine to the application pod:

a. List the currently running pods and find one containing your application:

b. Configure port forwarding:

Here, $LOCAL_PORT_NUMBER is an unused port number of your choice on your local
machine. Remember this number for the remote debugger configuration.

5. Attach the V8 inspector and perform debugging commands.
For example, if using Google Chrome:

a. Navigate to chrome://inspect.

b. Click Configure.

c. Add 127.0.0.1:$LOCAL_PORT_NUMBER.

d. Click Done.

e. Select your application from below Remote Target.

f. You can now see the source of your application and can perform debugging actions.

6. When you are done debugging, unset the NODE_ENV environment variable in your application
pod. For example:

5.2. DEBUG LOGGING

Debug logging is a way to add detailed information to the application log when debugging. This allows
you to:

Keep minimal logging output during normal operation of the application for improved readability
and reduced disk space usage.

View detailed information about the inner workings of the application when resolving issues.

5.2.1. Add debug logging

This example uses the debug package, but there are also other packages available that can handle
debug logging.

Prerequisites

$ oc rollout latest dc/MY_APP_NAME

$ oc get pod
NAME READY STATUS RESTARTS AGE
MY_APP_NAME-3-1xrsp 0/1 Running 0 6s
...

$ oc port-forward MY_APP_NAME-3-1xrsp $LOCAL_PORT_NUMBER:5858

$ oc set env dc/MY_APP_NAME NODE_ENV-

CHAPTER 5. DEBUGGING YOUR NODE.JS BASED APPLICATION

75

https://www.npmjs.com/package/debug
https://www.npmjs.com/search?q=log

An application you want to debug. For example, an example.

Procedure

1. Add the debug logging definition.

2. Add debug statements.

3. Add the debug module to package.json.

Depending on your application, this module may already be included. For example, when using
the express generator to create your application, the debug module is already added to
package.json. Some of the example applications, such as the REST API Level 0 example ,
already have the debug module in the package.json file.

4. Install the application dependencies.

5.2.2. Accessing debug logs on localhost

Use the DEBUG environment variable when starting your application to enable debug logging.

Prerequisites

An application with debug logging.

Procedure

1. Set the DEBUG environment variable when starting your application to enable debug logging.

The debug module can use wildcards to filter debugging messages. This is set using the
DEBUG environment variable.

2. Test your application to invoke debug logging.
For example, when debug logging in the REST API Level 0 example is set to log the name
variable in the /api/greeting method:

const debug = require('debug')('myexample');

app.use('/api/greeting', (request, response) => {
 const name = request.query ? request.query.name : undefined;
 //log name in debugging
 debug('name: '+name);
 response.send({content: `Hello, ${name || 'World'}`});
});

...
"dependencies": {
 "debug": "^3.1.0"
 }

$ npm install

$ DEBUG=myexample npm start

Red Hat build of Node.js 10 Node.js Runtime Guide

76

https://www.npmjs.com/package/debug
https://expressjs.com/en/starter/generator.html
https://www.npmjs.com/package/debug#wildcards

3. View your application logs to see your debug messages.

myexample name: Sarah +3m

5.2.3. Accessing Node.js debug logs on OpenShift

Use the the DEBUG environment variable in your application pod in OpenShift to enable debug logging.

Prerequisites

An application with debug logging.

The oc CLI client installed.

Procedure

1. Use the oc CLI client to log into your OpenShift instance.

2. Deploy your application to OpenShift.

This runs the openshift npm script, which wraps direct calls to nodeshift.

3. Find the name of your pod and follow the logs to watch it start.

IMPORTANT

After your pod has started, leave this command running and execute the
remaining steps in a new terminal window. This allows you to follow the logs and
see new entries made to it.

4. Test your application.
For example, if you had debug logging in the REST API Level 0 example to log the name
variable in the /api/greeting method:

5. Return to your pod logs and notice there are no debug logging messages in the logs.

6. Set the DEBUG environment variable to enable debug logging.

$ curl http://localhost:8080/api/greeting?name=Sarah

$ oc login ...

$ npm run openshift

$ oc get pods
....
$ oc logs -f pod/POD_NAME

$ oc get routes
...
$ curl $APPLICATION_ROUTE/api/greeting?name=Sarah

CHAPTER 5. DEBUGGING YOUR NODE.JS BASED APPLICATION

77

7. Return to your pod logs to watch the update roll out.
After the update has rolled out, your pod will stop and you will no longer be following the logs.

8. Find the name of your new pod and follow the logs.

IMPORTANT

After your pod has started, leave this command running and execute the
remaining steps in a different terminal window. This allows you to follow the logs
and see new entries made to it. Specifically, the logs will show your debug
messages.

9. Test the application to invoke debug logging.

10. Return to your pod logs to see the debug messages.

...
myexample name: Sarah +3m

To disable debug logging, remove the DEBUG environment variable from the pod:

Additional resources

More details on environment variables are available in the OpenShift documentation.

$ oc get dc
...
$ oc set env dc DC_NAME DEBUG=myexample

$ oc get pods
....
$ oc logs -f pod/POD_NAME

$ oc get routes
...
$ curl $APPLICATION_ROUTE/api/greeting?name=Sarah

$ oc set env dc DC_NAME DEBUG-

Red Hat build of Node.js 10 Node.js Runtime Guide

78

https://docs.openshift.com/container-platform/latest/builds/build-configuration.html

CHAPTER 6. DEVELOPING AND DEPLOYING A NODE.JS
APPLICATION

In addition to using an example , you can create new Node.js applications from scratch and deploy them
to OpenShift.

6.1. DEVELOPING A NODE.JS APPLICATION

For a basic Node.js application, you must create a JavaScript file containing Node.js methods.

Prerequisites

npm installed.

Procedure

1. Create a new directory myApp, and navigate to it.

This is the root directory for the application.

2. Initialize your application with npm.
The rest of this example assumes the entry point is app.js, which you are prompted to set when
running npm init.

3. Create the entry point in a new file called app.js.

Example app.js

4. Start your application.

$ mkdir myApp
$ cd MyApp

$ cd myApp
$ npm init

const http = require('http');

const server = http.createServer((request, response) => {
 response.statusCode = 200;
 response.setHeader('Content-Type', 'application/json');

 const greeting = {content: 'Hello, World!'};

 response.write(JSON.stringify(greeting));
 response.end();
});

server.listen(8080, () => {
 console.log('Server running at http://localhost:8080');
});

CHAPTER 6. DEVELOPING AND DEPLOYING A NODE.JS APPLICATION

79

5. Using curl or your browser, verify your application is running at http://localhost:8080.

Additional information

The Node.js runtime provides the core Node.js API which is documented in the Node.js API
documentation.

6.2. DEPLOYING A NODE.JS APPLICATION TO OPENSHIFT

To deploy your Node.js application to OpenShift, add nodeshift to the application, configure the
package.json file and then deploy using nodeshift.

6.2.1. Preparing Node.js application for OpenShift deployment

To prepare a Node.js application for OpenShift deployment, you must perform the following steps:

Add nodeshift to the application.

Add openshift and start entries to the package.json file.

Prerequisites

npm installed.

Procedure

1. Add nodeshift to your application.

2. Add the openshift and start entries to the scripts section in package.json.

$ node app.js
Server running at http://localhost:8080

$ curl http://localhost:8080
{"content":"Hello, World!"}

$ npm install nodeshift --save-dev

{
 "name": "myApp",
 "version": "1.0.0",
 "description": "",
 "main": "app.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "openshift": "nodeshift --expose --
dockerImage=registry.access.redhat.com/rhscl/ubi8/nodejs-10",
 "start": "node app.js",
 ...
 }
 ...
}

Red Hat build of Node.js 10 Node.js Runtime Guide

80

http://localhost:8080
https://nodejs.org/api/

The openshift script uses nodeshift to deploy the application to OpenShift.

NOTE

Universal base images and RHEL images are available for Node.js. See the
Node.js release notes for more information on image names.

3. Optional: Add a files section in package.json.

The files section tells nodeshift what files and directories to include when deploying to
OpenShift. nodeshift uses the node-tar module to create a tar file based on the files and
directories you list in the files section. This tar file is used when nodeshift deploys your
application to OpenShift. If the files section is not specified, nodeshift will send the entire
current directory, excluding:

node_modules/

.git/

tmp/
It is recommended that you include a files section in package.json to avoid including
unnecessary files when deploying to OpenShift.

6.2.2. Deploying a Node.js application to OpenShift

You can deploy a Node.js application to OpenShift using nodeshift.

Prerequisites

The oc CLI client installed.

npm installed.

Ensure all the ports used by your application are correctly exposed when configuring your routes.

Procedure

1. Log in to your OpenShift instance with the oc client.

{
 "name": "myApp",
 "version": "1.0.0",
 "description": "",
 "main": "app.js",
 "scripts": {
 ...
 },
 "files": [
 "package.json",
 "app.js"
]
 ...
}

CHAPTER 6. DEVELOPING AND DEPLOYING A NODE.JS APPLICATION

81

https://github.com/npm/node-tar

2. Use nodeshift to deploy the application to OpenShift.

6.3. DEPLOYING A NODE.JS APPLICATION TO STAND-ALONE RED
HAT ENTERPRISE LINUX

You can deploy a Node.js application to stand-alone Red Hat Enterprise Linux using npm.

Prerequisites

A Node.js application.

npm 6.4.1 installed

RHEL 7 or RHEL 8 installed.

Node.js installed

Procedure

1. If you have specified additional dependencies in the package.json file of your project, ensure
that you install them before running your applications.

2. Deploy the application from the application’s root directory.

Verification steps

1. Use curl or your browser to verify your application is running at http://localhost:8080

$ oc login ...

$ npm run openshift

$ npm install

$ node app.js
Server running at http://localhost:8080

$ curl http://localhost:8080

Red Hat build of Node.js 10 Node.js Runtime Guide

82

http://localhost:8080

APPENDIX A. ABOUT NODESHIFT
Nodeshift is a module for running OpenShift deployments with Node.js projects.

IMPORTANT

Nodeshift assumes you have the oc CLI client installed, and you are logged into your
OpenShift cluster. Nodeshift also uses the current project the oc CLI client is using.

Nodeshift uses resource files in the .nodeshift folder located at the root of the project to handle
creating OpenShift Routes, Services and DeploymentConfigs. More details on Nodeshift are available
on the Nodeshift project page .

APPENDIX A. ABOUT NODESHIFT

83

https://github.com/nodeshift/nodeshift
https://github.com/nodeshift/nodeshift

APPENDIX B. UPDATING THE DEPLOYMENT
CONFIGURATION OF AN EXAMPLE APPLICATION

The deployment configuration for an example application contains information related to deploying and
running the application in OpenShift, such as route information or readiness probe location. The
deployment configuration of an example application is stored in a set of YAML files. For examples that
use the Fabric8 Maven Plugin, the YAML files are located in the src/main/fabric8/ directory. For
examples using Nodeshift, the YAML files are located in the .nodeshift directory.

IMPORTANT

The deployment configuration files used by the Fabric8 Maven Plugin and Nodeshift do
not have to be full OpenShift resource definitions. Both Fabric8 Maven Plugin and
Nodeshift can take the deployment configuration files and add some missing information
to create a full OpenShift resource definition. The resource definitions generated by the
Fabric8 Maven Plugin are available in the target/classes/META-INF/fabric8/ directory.
The resource definitions generated by Nodeshift are available in the
tmp/nodeshift/resource/ directory.

Prerequisites

An existing example project.

The oc CLI client installed.

Procedure

1. Edit an existing YAML file or create an additional YAML file with your configuration update.

For example, if your example already has a YAML file with a readinessProbe configured,
you could change the path value to a different available path to check for readiness:

If a readinessProbe is not configured in an existing YAML file, you can also create a new
YAML file in the same directory with the readinessProbe configuration.

2. Deploy the updated version of your example using Maven or npm.

3. Verify that your configuration updates show in the deployed version of your example.

spec:
 template:
 spec:
 containers:
 readinessProbe:
 httpGet:
 path: /path/to/probe
 port: 8080
 scheme: HTTP
...

$ oc export all --as-template='my-template'

apiVersion: v1
kind: Template

Red Hat build of Node.js 10 Node.js Runtime Guide

84

Additional resources

If you updated the configuration of your application directly using the web-based console or the oc CLI
client, export and add these changes to your YAML file. Use the oc export all command to show the
configuration of your deployed application.

metadata:
 creationTimestamp: null
 name: my-template
objects:
- apiVersion: v1
 kind: DeploymentConfig
 ...
 spec:
 ...
 template:
 ...
 spec:
 containers:
 ...
 livenessProbe:
 failureThreshold: 3
 httpGet:
 path: /path/to/different/probe
 port: 8080
 scheme: HTTP
 initialDelaySeconds: 60
 periodSeconds: 30
 successThreshold: 1
 timeoutSeconds: 1
 ...

APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION

85

APPENDIX C. CONFIGURING A JENKINS FREESTYLE
PROJECT TO DEPLOY YOUR NODE.JS APPLICATION WITH

NODESHIFT
Similar to using nodeshift from your local host to deploy a Node.js application, you can configure Jenkins
to use nodeshift to deploy a Node.js application.

Prerequisites

Access to an OpenShift cluster.

The Jenkins container image running on same OpenShift cluster.

The Node.js plugin installed on your Jenkins server.

A Node.js application configured to use nodeshift and the Red Hat base image.

Example using the Red Hat base image with nodeshift

The source of the application available in GitHub.

Procedure

1. Create a new OpenShift project for your application:

a. Open the OpenShift Web console and log in.

b. Click Create Project to create a new OpenShift project.

c. Enter the project information and click Create.

2. Ensure Jenkins has access to that project.
For example, if you configured a service account for Jenkins, ensure that account has edit
access to the project of your application.

3. Create a new freestyle Jenkins project on your Jenkins server:

a. Click New Item.

b. Enter a name, choose Freestyle project, and click OK.

c. Under Source Code Management, choose Git and add the GitHub url of your application.

d. Under Build Environment, make sure Provide Node & npm bin/ folder to PATH is checked
and the Node.js environment is configured.

e. Under Build, choose Add build step and select Execute Shell.

f. Add the following to the Command area:

$ nodeshift --dockerImage=registry.access.redhat.com/ubi8/nodejs-10 ...

npm install -g nodeshift
nodeshift --dockerImage=registry.access.redhat.com/ubi8/nodejs-10 --
namespace=MY_PROJECT

Red Hat build of Node.js 10 Node.js Runtime Guide

86

https://docs.openshift.com/container-platform/latest/openshift_images/using_images/images-other-jenkins.html
https://plugins.jenkins.io/nodejs
https://github.com/nodeshift/nodeshift
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Settinguptheproject

Substitute MY_PROJECT with the name of the OpenShift project for your application.

g. Click Save.

4. Click Build Now from the main page of the Jenkins project to verify your application builds and
deploys to the OpenShift project for your application.
You can also verify that your application is deployed by opening the route in the OpenShift
project of the application.

Next steps

Consider adding GITSCM polling or using the Poll SCM build trigger. These options enable
builds to run every time a new commit is pushed to the GitHub repository.

Consider adding nodeshift as a global package when configuring the Node.js plugin . This allows
you to omit npm install -g nodeshift when adding your Execute Shell build step.

Consider adding a build step that executes tests before deploying.

APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR NODE.JS APPLICATION WITH NODESHIFT

87

https://wiki.jenkins.io/display/JENKINS/Github+Plugin#GitHubPlugin-GitHubhooktriggerforGITScmpolling
https://wiki.jenkins.io/display/JENKINS/Building+a+software+project#Buildingasoftwareproject-Buildsbysourcechanges
https://wiki.jenkins.io/display/JENKINS/NodeJS+Plugin

APPENDIX D. BREAKDOWN OF PACKAGE.JSON PROPERTIES

nodejs-rest-http/package.json

{
 "name": "nodejs-rest-http",
 "version": "1.1.1",
 "author": "Red Hat, Inc.",
 "license": "Apache-2.0",
 "scripts": {
 "test": "tape test/*.js | tap-spec", 1
 "lint": "eslint test/*.js app.js bin/*",
 "prepare": "nsp check",
 "coverage": "nyc npm test",
 "coveralls": "nyc npm test && nyc report --reporter=text-lcov | coveralls",
 "ci": "npm run lint && npm run coveralls",
 "dependencyCheck": "szero . --ci",
 "release": "standard-version",
 "openshift": "nodeshift --strictSSL=false --nodeVersion=8.x", 2
 "postinstall": "license-reporter report && license-reporter save --xml licenses.xml",
 "start": "node ." 3
 },
 "main": "./bin/www", 4
 "repository": {
 "type": "git",
 "url": "git://github.com/nodeshift-starters/nodejs-rest-http.git"
 },
 "files": [5
 "package.json",
 "app.js",
 "public",
 "bin",
 "LICENSE",
 "licenses"
],
 "bugs": {
 "url": "https://github.com/nodeshift-starters/nodejs-rest-http/issues"
 },
 "homepage": "https://github.com/nodeshift-starters/nodejs-rest-http",
 "devDependencies": { 6
 "coveralls": "^3.0.0",
 "nodeshift": "^1.3.0",
 "nsp": "~3.1.0",
 "nyc": "~11.4.1",
 "standard-version": "^4.2.0",
 "supertest": "^3.0.0",
 "szero": "^1.0.0",
 "tap-spec": "~4.1.1",
 "tape": "~4.8.0",
 "xo": "~0.20.3"
 },
 "dependencies": { 7
 "body-parser": "^1.18.2",
 "debug": "^3.1.0",

Red Hat build of Node.js 10 Node.js Runtime Guide

88

https://github.com/nodeshift-starters/nodejs-rest-http/blob/master/package.json

1

2

3

4

5

6

7

A npm script for running unit tests. Run with npm run test.

A npm script for deploying this application to Minishift or CDK. Run with npm run openshift. The
strictSSL option allows us to deploy to Minishift or CDK instances with self-signed certificates.

A npm script for starting this application. Run with npm start.

The primary entrypoint for the application when run with npm start.

Specifies the files to be included in the binary that is uploaded to Minishift or CDK.

A list of development dependencies to be installed from the npm registry. These are used for
testing and deployment to Minishift or CDK.

A list of dependencies to be installed from the npm registry.

 "express": "^4.16.0",
 "license-reporter": "^1.1.3"
 }
}

APPENDIX D. BREAKDOWN OF PACKAGE.JSON PROPERTIES

89

APPENDIX E. ADDITIONAL NODE.JS RESOURCES
Node.js Home Page

npm Home Page

Red Hat build of Node.js 10 Node.js Runtime Guide

90

https://nodejs.org/
https://www.npmjs.com/

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES
For additional information about application development with OpenShift, see:

OpenShift Interactive Learning Portal

To reduce network load and shorten the build time of your application, set up a Nexus mirror for Maven
on your Minishift or CDK:

Setting Up a Nexus Mirror for Maven

APPENDIX F. APPLICATION DEVELOPMENT RESOURCES

91

https://learn.openshift.com/
https://docs.openshift.com/container-platform/3.11/dev_guide/dev_tutorials/maven_tutorial.html

APPENDIX G. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
Source-to-Image (S2I) is a build tool for generating reproducible Docker-formatted container images
from online SCM repositories with application sources. With S2I builds, you can easily deliver the latest
version of your application into production with shorter build times, decreased resource and network
usage, improved security, and a number of other advantages. OpenShift supports multiple build
strategies and input sources.

For more information, see the Source-to-Image (S2I) Build chapter of the OpenShift Container
Platform documentation.

You must provide three elements to the S2I process to assemble the final container image:

The application sources hosted in an online SCM repository, such as GitHub.

The S2I Builder image, which serves as the foundation for the assembled image and provides
the ecosystem in which your application is running.

Optionally, you can also provide environment variables and parameters that are used by S2I
scripts.

The process injects your application source and dependencies into the Builder image according to
instructions specified in the S2I script, and generates a Docker-formatted container image that runs the
assembled application. For more information, check the S2I build requirements, build options and how
builds work sections of the OpenShift Container Platform documentation.

Red Hat build of Node.js 10 Node.js Runtime Guide

92

https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html#build-strategy-s2i_understanding-image-builds
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/openshift_images/create-images.html
https://docs.openshift.com/container-platform/latest/builds/build-strategies.html
https://docs.openshift.com/container-platform/latest/builds/understanding-image-builds.html

APPENDIX H. PROFICIENCY LEVELS
Each available example teaches concepts that require certain minimum knowledge. This requirement
varies by example. The minimum requirements and concepts are organized in several levels of
proficiency. In addition to the levels described here, you might need additional information specific to
each example.

Foundational
The examples rated at Foundational proficiency generally require no prior knowledge of the subject
matter; they provide general awareness and demonstration of key elements, concepts, and terminology.
There are no special requirements except those directly mentioned in the description of the example.

Advanced
When using Advanced examples, the assumption is that you are familiar with the common concepts and
terminology of the subject area of the example in addition to Kubernetes and OpenShift. You must also
be able to perform basic tasks on your own, for example, configuring services and applications, or
administering networks. If a service is needed by the example, but configuring it is not in the scope of the
example, the assumption is that you have the knowledge to properly configure it, and only the resulting
state of the service is described in the documentation.

Expert
Expert examples require the highest level of knowledge of the subject matter. You are expected to
perform many tasks based on feature-based documentation and manuals, and the documentation is
aimed at most complex scenarios.

APPENDIX H. PROFICIENCY LEVELS

93

APPENDIX I. GLOSSARY

I.1. PRODUCT AND PROJECT NAMES

Developer Launcher (developers.redhat.com/launch)

developers.redhat.com/launch called Developer Launcher is a stand-alone getting started
experience provided by Red Hat. It helps you get started with cloud-native development on
OpenShift. It contains functional example applications that you can download, build, and deploy on
OpenShift.

Minishift or CDK

An OpenShift cluster running on your machine using Minishift.

I.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

Example

An application specification, for example a web service with a REST API.
Examples generally do not specify which language or platform they should run on; the description
only contains the intended functionality.

Example application

A language-specific implementation of a particular example on a particular runtime. Example
applications are listed in an examples catalog.
For example, an example application is a web service with a REST API implemented using the
Thorntail runtime.

Examples Catalog

A Git repository that contains information about example applications.

Runtime

A platform that executes an example application. For example, Thorntail or Eclipse Vert.x.

Red Hat build of Node.js 10 Node.js Runtime Guide

94

https://developers.redhat.com/launch

	Table of Contents
	PREFACE
	CHAPTER 1. WHAT IS NODE.JS
	CHAPTER 2. SUPPORTED ARCHITECTURES BY NODE.JS
	CHAPTER 3. INTRODUCTION TO EXAMPLE APPLICATIONS
	CHAPTER 4. AVAILABLE EXAMPLES FOR NODE.JS
	4.1. REST API LEVEL 0 EXAMPLE FOR NODE.JS
	4.1.1. REST API Level 0 design tradeoffs
	4.1.2. Deploying the REST API Level 0 example application to OpenShift Online
	4.1.2.1. Deploying the example application using developers.redhat.com/launch
	4.1.2.2. Authenticating the oc CLI client
	4.1.2.3. Deploying the REST API Level 0 example application using the oc CLI client

	4.1.3. Deploying the REST API Level 0 example application to Minishift or CDK
	4.1.3.1. Getting the Fabric8 Launcher tool URL and credentials
	4.1.3.2. Deploying the example application using the Fabric8 Launcher tool
	4.1.3.3. Authenticating the oc CLI client
	4.1.3.4. Deploying the REST API Level 0 example application using the oc CLI client

	4.1.4. Deploying the REST API Level 0 example application to OpenShift Container Platform
	4.1.5. Interacting with the unmodified REST API Level 0 example application for Node.js
	4.1.6. REST resources

	4.2. EXTERNALIZED CONFIGURATION EXAMPLE FOR NODE.JS
	4.2.1. The externalized configuration design pattern
	4.2.2. Externalized Configuration design tradeoffs
	4.2.3. Deploying the Externalized Configuration example application to OpenShift Online
	4.2.3.1. Deploying the example application using developers.redhat.com/launch
	4.2.3.2. Authenticating the oc CLI client
	4.2.3.3. Deploying the Externalized Configuration example application using the oc CLI client

	4.2.4. Deploying the Externalized Configuration example application to Minishift or CDK
	4.2.4.1. Getting the Fabric8 Launcher tool URL and credentials
	4.2.4.2. Deploying the example application using the Fabric8 Launcher tool
	4.2.4.3. Authenticating the oc CLI client
	4.2.4.4. Deploying the Externalized Configuration example application using the oc CLI client

	4.2.5. Deploying the Externalized Configuration example application to OpenShift Container Platform
	4.2.6. Interacting with the unmodified Externalized Configuration example application for Node.js
	4.2.7. Externalized Configuration resources

	4.3. RELATIONAL DATABASE BACKEND EXAMPLE FOR NODE.JS
	4.3.1. Relational Database Backend design tradeoffs
	4.3.2. Deploying the Relational Database Backend example application to OpenShift Online
	4.3.2.1. Deploying the example application using developers.redhat.com/launch
	4.3.2.2. Authenticating the oc CLI client
	4.3.2.3. Deploying the Relational Database Backend example application using the oc CLI client

	4.3.3. Deploying the Relational Database Backend example application to Minishift or CDK
	4.3.3.1. Getting the Fabric8 Launcher tool URL and credentials
	4.3.3.2. Deploying the example application using the Fabric8 Launcher tool
	4.3.3.3. Authenticating the oc CLI client
	4.3.3.4. Deploying the Relational Database Backend example application using the oc CLI client

	4.3.4. Deploying the Relational Database Backend example application to OpenShift Container Platform
	4.3.5. Interacting with the Relational Database Backend API on Node.js
	Troubleshooting

	4.3.6. Relational database resources

	4.4. HEALTH CHECK EXAMPLE FOR NODE.JS
	4.4.1. Health check concepts
	4.4.2. Deploying the Health Check example application to OpenShift Online
	4.4.2.1. Deploying the example application using developers.redhat.com/launch
	4.4.2.2. Authenticating the oc CLI client
	4.4.2.3. Deploying the Health Check example application using the oc CLI client

	4.4.3. Deploying the Health Check example application to Minishift or CDK
	4.4.3.1. Getting the Fabric8 Launcher tool URL and credentials
	4.4.3.2. Deploying the example application using the Fabric8 Launcher tool
	4.4.3.3. Authenticating the oc CLI client
	4.4.3.4. Deploying the Health Check example application using the oc CLI client

	4.4.4. Deploying the Health Check example application to OpenShift Container Platform
	4.4.5. Interacting with the unmodified Health Check example application
	4.4.6. Health check resources

	4.5. CIRCUIT BREAKER EXAMPLE FOR NODE.JS
	4.5.1. The circuit breaker design pattern
	Circuit breaker implementation

	4.5.2. Circuit Breaker design tradeoffs
	4.5.3. Deploying the Circuit Breaker example application to OpenShift Online
	4.5.3.1. Deploying the example application using developers.redhat.com/launch
	4.5.3.2. Authenticating the oc CLI client
	4.5.3.3. Deploying the Circuit Breaker example application using the oc CLI client

	4.5.4. Deploying the Circuit Breaker example application to Minishift or CDK
	4.5.4.1. Getting the Fabric8 Launcher tool URL and credentials
	4.5.4.2. Deploying the example application using the Fabric8 Launcher tool
	4.5.4.3. Authenticating the oc CLI client
	4.5.4.4. Deploying the Circuit Breaker example application using the oc CLI client

	4.5.5. Deploying the Circuit Breaker example application to OpenShift Container Platform
	4.5.6. Interacting with the unmodified Node.js Circuit Breaker example application
	4.5.7. Circuit breaker resources

	4.6. SECURED EXAMPLE APPLICATION FOR NODE.JS
	4.6.1. The Secured project structure
	4.6.2. Red Hat SSO deployment configuration
	4.6.3. Red Hat SSO realm model
	4.6.3.1. Red Hat SSO users
	4.6.3.2. The application clients

	4.6.4. Node.js SSO adapter configuration
	4.6.5. Deploying the Secured example application to Minishift or CDK
	4.6.5.1. Getting the Fabric8 Launcher tool URL and credentials
	4.6.5.2. Creating the Secured example application using Fabric8 Launcher
	4.6.5.3. Authenticating the oc CLI client
	4.6.5.4. Deploying the Secured example application using the oc CLI client

	4.6.6. Deploying the Secured example application to OpenShift Container Platform
	4.6.6.1. Authenticating the oc CLI client
	4.6.6.2. Deploying the Secured example application using the oc CLI client

	4.6.7. Authenticating to the Secured example application API endpoint
	4.6.7.1. Getting the Secured example application API endpoint
	4.6.7.2. Authenticating HTTP requests using the command line
	4.6.7.3. Authenticating HTTP requests using the web interface

	4.6.8. Secured SSO resources

	4.7. CACHE EXAMPLE FOR NODE.JS
	4.7.1. How caching works and when you need it
	4.7.2. Deploying the Cache example application to OpenShift Online
	4.7.2.1. Deploying the example application using developers.redhat.com/launch
	4.7.2.2. Authenticating the oc CLI client
	4.7.2.3. Deploying the Cache example application using the oc CLI client

	4.7.3. Deploying the Cache example application to Minishift or CDK
	4.7.3.1. Getting the Fabric8 Launcher tool URL and credentials
	4.7.3.2. Deploying the example application using the Fabric8 Launcher tool
	4.7.3.3. Authenticating the oc CLI client
	4.7.3.4. Deploying the Cache example application using the oc CLI client

	4.7.4. Deploying the Cache example application to OpenShift Container Platform
	4.7.5. Interacting with the unmodified Cache example application
	4.7.6. Caching resources

	CHAPTER 5. DEBUGGING YOUR NODE.JS BASED APPLICATION
	5.1. REMOTE DEBUGGING
	5.1.1. Starting your application locally and attaching the native debugger
	5.1.2. Starting your application locally and attaching the V8 inspector
	5.1.3. Starting your application on OpenShift in debugging mode

	5.2. DEBUG LOGGING
	5.2.1. Add debug logging
	5.2.2. Accessing debug logs on localhost
	5.2.3. Accessing Node.js debug logs on OpenShift

	CHAPTER 6. DEVELOPING AND DEPLOYING A NODE.JS APPLICATION
	6.1. DEVELOPING A NODE.JS APPLICATION
	6.2. DEPLOYING A NODE.JS APPLICATION TO OPENSHIFT
	6.2.1. Preparing Node.js application for OpenShift deployment
	6.2.2. Deploying a Node.js application to OpenShift

	6.3. DEPLOYING A NODE.JS APPLICATION TO STAND-ALONE RED HAT ENTERPRISE LINUX

	APPENDIX A. ABOUT NODESHIFT
	APPENDIX B. UPDATING THE DEPLOYMENT CONFIGURATION OF AN EXAMPLE APPLICATION
	APPENDIX C. CONFIGURING A JENKINS FREESTYLE PROJECT TO DEPLOY YOUR NODE.JS APPLICATION WITH NODESHIFT
	Next steps

	APPENDIX D. BREAKDOWN OF PACKAGE.JSON PROPERTIES
	APPENDIX E. ADDITIONAL NODE.JS RESOURCES
	APPENDIX F. APPLICATION DEVELOPMENT RESOURCES
	APPENDIX G. THE SOURCE-TO-IMAGE (S2I) BUILD PROCESS
	APPENDIX H. PROFICIENCY LEVELS
	Foundational
	Advanced
	Expert

	APPENDIX I. GLOSSARY
	I.1. PRODUCT AND PROJECT NAMES
	I.2. TERMS SPECIFIC TO DEVELOPER LAUNCHER

