
Red Hat AMQ 7.5

Deploying AMQ Broker on OpenShift

For Use with AMQ Broker 7.5

Last Updated: 2020-06-18





Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

For Use with AMQ Broker 7.5



Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to install and deploy AMQ Broker on OpenShift Container Platform.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. VERSION COMPATIBILITY AND SUPPORT
1.2. UNSUPPORTED FEATURES

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR
2.1. OVERVIEW OF THE AMQ BROKER OPERATOR
2.2. OVERVIEW OF CUSTOM RESOURCE DEFINITIONS

2.2.1. Sample broker Custom Resources
2.3. INSTALLING THE AMQ BROKER OPERATOR

2.3.1. Getting the Operator code
2.3.2. Deploying the Operator

2.4. DEPLOYING A BASIC BROKER
2.5. APPLYING CUSTOM RESOURCE CHANGES TO RUNNING BROKER DEPLOYMENTS
2.6. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS FOR CLIENT CONNECTIONS

2.6.1. Configuring brokers to accept client connections
2.6.1.1. Configuring acceptors
2.6.1.2. Generating credentials for SSL connections
2.6.1.3. Networking services in your broker deployments

2.6.2. Connecting a broker to the AMQ Broker management console
2.6.2.1. Accessing the broker management console
2.6.2.2. Accessing management console login credentials

2.7. BROKER DEPLOYMENT EXAMPLES
2.7.1. Deploying clustered brokers
2.7.2. Creating queues in a broker cluster

2.8. MIGRATING MESSAGES UPON SCALEDOWN
2.9. MANAGING THE BROKER OPERATOR USING THE OPERATOR LIFECYCLE MANAGER

2.9.1. Overview of the Operator Lifecycle Manager
2.9.2. Installing the AMQ Broker Operator in OperatorHub

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING APPLICATION
TEMPLATES

3.1. INSTALLING THE IMAGE STREAMS AND APPLICATION TEMPLATES
3.2. PREPARING AN AMQ BROKER DEPLOYMENT
3.3. DEPLOYING A BASIC BROKER

3.3.1. Creating the broker application
3.3.2. About sensitive credentials
3.3.3. Deploying and starting the broker application

CHAPTER 4. UPGRADING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
4.1. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

4.1.1. Upgrading the broker container image
4.1.2. Upgrading the Operator

4.2. UPGRADING TEMPLATES-BASED BROKER DEPLOYMENTS
4.2.1. Upgrading non-persistent broker deployments
4.2.2. Upgrading persistent broker deployments

CHAPTER 5. HIGH AVAILABILITY
5.1. HIGH AVAILABILITY OVERVIEW
5.2. MESSAGE MIGRATION

5.2.1. Message migration overview
5.2.1.1. How does message migration work?

CHAPTER 6. CONNECTING EXTERNAL CLIENTS TO TEMPLATES-BASED BROKER DEPLOYMENTS

4
4
4

5
5
5
6
6
7
8
11

12
13
13
13
14
15
15
16
16
17
17
17
18

20
20
21

22
22
23
24
25
26
26

30
30
30
31
32
32
33

35
35
35
35
36

38

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1. CONFIGURING SSL
6.2. GENERATING THE AMQ BROKER SECRET
6.3. CREATING AN SSL ROUTE

CHAPTER 7. CUSTOMIZING AMQ BROKER CONFIGURATION FILES FOR DEPLOYMENT

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES
8.1. DEPLOYING A BASIC BROKER WITH SSL

8.1.1. Deploying the image and template
8.1.2. Deploying the application
8.1.3. Creating a Route

8.2. DEPLOYING A BASIC BROKER WITH PERSISTENCE AND SSL
8.2.1. Deploy the image and template
8.2.2. Deploy the application
8.2.3. Creating a Route

8.3. DEPLOYING A SET OF CLUSTERED BROKERS
8.3.1. Distributing messages
8.3.2. Deploy the image and template
8.3.3. Deploying the application
8.3.4. Creating Routes for the AMQ Broker management console

8.4. DEPLOYING A SET OF CLUSTERED SSL BROKERS
8.4.1. Distributing messages
8.4.2. Deploying the image and template
8.4.3. Deploying the application

8.5. DEPLOYING A BROKER WITH CUSTOM CONFIGURATION
8.5.1. Deploy the image and template
8.5.2. Deploy the application

8.6. BASIC SSL CLIENT EXAMPLE
8.6.1. Configuring the client

8.7. EXTERNAL CLIENTS USING SUB-DOMAINS EXAMPLE
8.7.1. Exposing the brokers
8.7.2. Connecting the clients

8.8. EXTERNAL CLIENTS USING PORT BINDING EXAMPLE
8.8.1. Exposing the brokers
8.8.2. Connecting the clients

8.9. MONITORING AMQ BROKER

CHAPTER 9. REFERENCE
9.1. CUSTOM RESOURCE DEFINITION CONFIGURATION REFERENCE

9.1.1. Broker CRD configuration reference
9.1.2. Addressing CRD configuration reference

9.2. APPLICATION TEMPLATE PARAMETERS
9.3. LOGGING

38
38
39

41

42
42
42
43
44
44
45
46
47
48
48
48
49
51
52
53
53
54
56
56
57
57
57
58
58
58
59
59
60
61

63
63
63
73
73
76

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

2



Table of Contents

3



CHAPTER 1. INTRODUCTION
Red Hat AMQ Broker 7.5 is available as a containerized image that is provided for use with OpenShift
Container Platform (OCP) 3.11 and later.

AMQ Broker is based on Apache ActiveMQ Artemis. It provides a message broker that is JMS-
compliant. After you have set up the initial broker pod, you can quickly deploy duplicates by using
OpenShift Container Platform features.

AMQ Broker on OCP provides similar functionality to Red Hat AMQ Broker, but some aspects of the
functionality need to be configured specifically for use with OpenShift Container Platform.

1.1. VERSION COMPATIBILITY AND SUPPORT

For details about OpenShift Container Platform 4.1 image version compatibility, see the OpenShift and
Atomic Platform Tested Integrations page.

1.2. UNSUPPORTED FEATURES

Master-slave-based high availability
High availability (HA) achieved by configuring master and slave pairs is not supported. Instead,
when pods are scaled down, HA is provided in OpenShift by using the scaledown controller,
which enables message migration.

External Clients that connect to a cluster of brokers, either through the OpenShift proxy or by
using bind ports, may need to be configured for HA accordingly. In a clustered scenario, a broker
will inform certain clients of the addresses of all the broker’s host and port information. Since
these are only accessible internally, certain client features either will not work or will need to be
disabled.

Client Configuration

Core JMS Client Because external Core Protocol JMS clients do
not support HA or any type of failover, the
connection factories must be configured with 
useTopologyForLoadBalancing=false.

AMQP Clients AMQP clients do not support failover lists

Durable subscriptions in a cluster
When a durable subscription is created, this is represented as a durable queue on the broker to
which a client has connected. When a cluster is running within OpenShift the client does not
know on which broker the durable subscription queue has been created. If the subscription is
durable and the client reconnects there is currently no method for the load balancer to
reconnect it to the same node. When this happens, it is possible that the client will connect to a
different broker and create a duplicate subscription queue. For this reason, using durable
subscriptions with a cluster of brokers is not recommended.

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

4

https://access.redhat.com/articles/2176281


CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT
CONTAINER PLATFORM USING AN OPERATOR

2.1. OVERVIEW OF THE AMQ BROKER OPERATOR

Kubernetes - and, by extension, OpenShift Container Platform - includes features such as secret
handling, load balancing, service discovery, and autoscaling that enable you to build complex distributed
systems. Operators are programs that enable you to package, deploy, and manage Kubernetes
applications. Often, Operators automate common or complex tasks.

Commonly, Operators are intended to provide:

Consistent, repeatable installations

Health checks of system components

Over-the-air (OTA) updates

Managed upgrades

Operators use Kubernetes extension mechanisms called Custom Resource Definitions and
corresponding Custom Resources to ensure that your custom objects look and act just like native, built-
in Kubernetes objects. Custom Resource Definitions and Custom Resources are how you specify the
configuration of the OpenShift objects that you plan to deploy.

Previously, you could use only application templates to deploy AMQ Broker on OpenShift Container
Platform. While templates are effective for creating an initial deployment, they do not provide a
mechanism for updating the deployment. Operators enable you to make changes while your broker
instances are running, because they are always listening for changes to your Custom Resources, where
you specify your configuration. When you make changes to a Custom Resource, the Operator reconciles
the changes with the existing broker installation in your project, and makes it reflect the changes you
have made.

2.2. OVERVIEW OF CUSTOM RESOURCE DEFINITIONS

In general, a Custom Resource Definition (CRD) is a schema of configuration items that you can modify
for a custom OpenShift object deployed with an Operator. An accompanying Custom Resource (CR) file
enables you to specify values for configuration items in the CRD. If you are an Operator developer, what
you expose through a CRD essentially becomes the API for how a deployed object is configured and
used. You can directly access the CRD through regular HTTP curl commands, because the CRD gets
exposed automatically through Kubernetes. The Operator also interacts with Kubernetes via the 
kubectl command using HTTP requests.

The main broker CRD is the broker_v2alpha1_activemqartemis file in the deploy/crds directory of
the archive that you download and extract when installing the Operator. This CRD enables you to
configure a broker deployment in a given OpenShift project. The other CRDs in the deploy/crds
directory are for configuring addresses and for the Operator to use when instantiating a scaledown
controller .

When deployed, each CRD is a separate controller, running independently within the Operator.

For a complete configuration reference for each CRD see:

Broker CRD configuration reference

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

5



Addressing CRD configuration reference

2.2.1. Sample broker Custom Resources

The AMQ Broker Operator archive that you download and extract during installation includes sample
CR files in the deploy/crs directory. These sample CR files enable you to:

Deploy a minimal broker without SSL or clustering.

Define addresses.

The broker Operator archive that you download and extract also includes CRs for example deployments
in the deploy/examples directory, as listed below.

basic-deployment.yaml

Basic broker deployment.

persistence-deployment.yaml

Broker deployment with persistent storage.

cluster-deployment.yaml

Deployment of clustered brokers.

persistence-cluster-deployment.yaml

Deployment of clustered brokers with persistent storage.

ssl-deployment.yaml

Broker deployment with SSL security.

ssl-persistence-deployment.yaml

Broker deployment with SSL security and persistent storage.

address-queue-create.yaml

Address and queue creation.

aio-journal.yaml

Use of asynchronous I/O (AIO) with the broker journal.

The procedures in the following sections show you how to use an Operator, CRD, and some CRs to
create some container-based broker deployments on OpenShift Container Platform. When you have
successfully completed the procedures, you will have the Operator running in an individual Pod. Each
broker instance that you create will run in a separate StatefulSet containing a Pod in the project. You will
use a dedicated CR to define addresses in your broker deployments.

NOTE

You cannot create more than one broker deployment in a given OpenShift project by
deploying multiple broker CR instances. However, when you have created a broker
deployment in a project, you can deploy multiple CR instances for addresses.

2.3. INSTALLING THE AMQ BROKER OPERATOR

The procedures in this section show you how to install and deploy the AMQ Broker Operator on
OpenShift Container Platform. In subsequent procedures, you use this Operator to deploy some broker
instances.

NOTE

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

6



NOTE

Deploying the Custom Resource Definitions (CRDs) that accompany the AMQ Broker
Operator requires administrator privileges for your OpenShift cluster. When the Operator
is deployed, a regular user can deploy broker instances via the provided Custom
Resources (CRs).

2.3.1. Getting the Operator code

This procedure shows you how to access and prepare the code you need to install the AMQ Broker
Operator.

Procedure

1. In your web browser, navigate to the AMQ Broker 7.5.0 Software Downloads  page.

2. Click Download next to the Operator archive file that you want to install. Choose an archive file
based on the information in the following table.

Platform Download title Compressed archive file name

OpenShift Container Platform AMQ Broker 7.5 Operator
Installation Files

amq-broker-operator-7.5.0-
ocp-install-examples.zip

OpenShift Container Platform
on IBM Z

AMQ Broker 7.5 Operator
Installation Files for IBM
zSeries

amq-broker-operator-7.5.0-
Z-ocp-install-examples.zip

3. When the download is complete, move the archive to your chosen installation directory.
This example moves the OpenShift Container Platform Operator archive to a directory called 
~/broker/operator.

4. In your chosen installation directory, extract the contents of the archive. For example:

5. Log in to OpenShift Container Platform as a cluster administrator.

6. Create or log in to the project in which you want to install the Operator.

or

mkdir ~/broker/operator
mv amq-broker-operator-7.5.0-ocp-install-examples.zip ~/broker/operator

cd ~/broker/operator
unzip amq-broker-operator-7.5.0-ocp-install-examples.zip

$ oc login -u system:admin

$ oc new-project <project_name>

$ oc project <project_name>

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

7

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.broker&version=7.5.0


7. Specify a service account to use with the Operator.

a. In the deploy directory of the Operator archive that you extracted, open the 
service_account.yaml file.

b. Set the kind element to ServiceAccount.

c. In the metadata section, assign a name to the service account. The default name is amq-
broker-operator.

8. Specify a role name for the Operator.

a. Open the role.yaml file. This file specifies the resources that the Operator can use and
modify.

b. Set the kind element to Role.

c. In the metadata section, assign a name to the role. The default name is amq-broker-
operator.

9. Specify a role binding for the Operator. The role binding binds the previously-created service
account to the Operator role, based on the names you specified.
Open the role_binding.yaml file. Add lines that look like the following:

2.3.2. Deploying the Operator

The procedure in this section shows you how to deploy the AMQ Broker Operator in your OpenShift
project.

Prerequisites

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Container Registry to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images. Before you can follow the procedure in this section, you must
first complete the steps described in Red Hat Container Registry Authentication .

If you intend to deploy brokers with persistent storage and do not have container-native
storage in your OpenShift cluster, you need to manually provision persistent volumes and
ensure that they are available to be claimed by the Operator. For example, if you want to create
a cluster of two brokers with persistent storage (that is, by setting persistenceEnabled=true in
your Custom Resource), you need to have two persistent volumes available. By default, each
broker instance requires storage of 2 GiB.
If you specify persistenceEnabled=false in your Custom Resource, the deployed brokers uses
ephemeral storage. Ephemeral storage means that that every time you restart the broker Pods,
any existing data is lost.

For more information about provisioning persistent storage in OpenShift Container Platform,

metadata:
    name: amq-broker-operator
subjects:
    kind: ServiceAccount
    name: amq-broker-operator
roleRef:
    kind: Role
    name: amq-broker-operator

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

8

https://access.redhat.com/RegistryAuthentication


For more information about provisioning persistent storage in OpenShift Container Platform,
see Understanding persistent storage  in the OpenShift Container Platform documentation.

Procedure

1. In the OpenShift Container Platform web console, open the project you created, or the existing
project in which you want your broker deployment.
If you created a new project, it is currently empty. You see that there are no deployments,
StatefulSets, Pods, Services, or Routes.

2. Prepare the project to receive the operator.

a. Create the service account.

b. Create the role.

c. Create the role binding.

d. Deploy the broker CRD to the OpenShift cluster.

NOTE

You must install the CRDs before deploying and starting the Operator. If not,
the Operator logs will show messages instructing you to do so.

e. Deploy the addressing CRD.

f. Deploy the scaledown CRD.

3. Link the pull secret associated with the account used for authentication in the Red Hat
Container Registry with the default, deployer, and builder service accounts for your OpenShift
project.

NOTE

$ oc create -f deploy/service_account.yaml

$ oc create -f deploy/role.yaml

$ oc create -f deploy/role_binding.yaml

$ oc create -f deploy/crds/broker_v2alpha1_activemqartemis_crd.yaml

$ oc create -f deploy/crds/broker_v2alpha1_activemqartemisaddress_crd.yaml

$ oc create -f deploy/crds/broker_v2alpha1_activemqartemisscaledown_crd.yaml

$ oc secrets link --for=pull default <secret-name>
$ oc secrets link --for=pull deployer <secret-name>
$ oc secrets link --for=pull builder <secret-name>

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

9

https://docs.openshift.com/container-platform/4.4/storage/understanding-persistent-storage.html


NOTE

In OpenShift Container Platform 4.1, you can also use the web console to
associate a pull secret with a project in which you want to deploy container
images such as the AMQ Broker Operator. To do this, click Administration →
Service Accounts. Specify the pull secret associated with the account that you
use for authentication in the Red Hat Container Registry.

4. In the deploy directory of the Operator archive that you downloaded and extracted, open the 
operator.yaml file. Update spec.containers.image with the full path to the latest Operator
image for AMQ Broker 7.5 in the Red Hat Container Registry.
Specify the Operator image name for your platform, based on the information in the following
table.

Platform Repository name Latest version tag

OpenShift Container Platform amq7/amq-broker-rhel7-
operator

0.9

OpenShift Container Platform
on IBM Z

amq7/amq-broker-rhel8-
operator

0.10

For example, to deploy the Operator for OpenShift Container Platform, specify the latest
version tag for the Operator container image in the amq7/amq-broker-rhel7-operator
repository, as shown below.

5. Deploy the Operator.

In your OpenShift project, the amq-broker-operator image that you deployed starts in a new
Pod.

The information on the Events tab of the new Pod confirms that OpenShift has deployed the
Operator image you specified, assigned a new container to a node in your OpenShift cluster,
and started the new container.

In addition, if you click the Logs tab within the Pod, the output includes line like the following:

...
{"level":"info","ts":1553619035.8302743,"logger":"kubebuilder.controller","msg":"Starting 
Controller","controller":"activemqartemisaddress-controller"}
{"level":"info","ts":1553619035.830541,"logger":"kubebuilder.controller","msg":"Starting 
Controller","controller":"activemqartemis-controller"}
{"level":"info","ts":1553619035.9306898,"logger":"kubebuilder.controller","msg":"Starting 

spec:
    template:
        spec:
            containers:
                image: registry.redhat.io/amq7/amq-broker-rhel7-operator:0.9

$ oc create -f deploy/operator.yaml

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

10



workers","controller":"activemqartemisaddress-controller","worker count":1}
{"level":"info","ts":1553619035.9311671,"logger":"kubebuilder.controller","msg":"Starting 
workers","controller":"activemqartemis-controller","worker count":1}

The preceding output confirms that the newly-deployed Operator is communicating with
Kubernetes, that the controllers for the broker and addressing are running, and that these
controllers have started some workers.

2.4. DEPLOYING A BASIC BROKER

The following procedures show you how to deploy a basic broker instance in your OpenShift project
when you have installed the AMQ Broker Operator.

NOTE

You cannot create more than one broker deployment in a given OpenShift project by
deploying multiple broker CR instances. However, when you have created a broker
deployment in a project, you can deploy multiple CR instances for addresses.

Prerequisites

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Container Registry to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images. Before you can follow the procedure in this section, you must
first complete the steps described in Red Hat Container Registry Authentication .

The Broker Operator is already installed. See Installing the Broker Operator.

Procedure

When you have successfully installed the Operator, the Operator is running and listening for changes
related to your Custom Resources (CRs). This example procedure shows you how to use a CR to deploy
a basic broker in your project.

1. In the deploy/crs directory of the Operator archive that you downloaded and extracted, open
the broker_v2alpha1_activemqartemis_cr.yaml file. This file is an instance of a basic broker
Custom Resource.
For the broker Operator for OpenShift Container Platform, the default contents of the file look
as follows:

apiVersion: broker.amq.io/v2alpha1
kind: ActiveMQArtemis
metadata:
  name: ex-aao
  application: ex-aao-app
  namespace: aao-demo-0
  labels:
    ActiveMQArtemis: ex-aao
    application: ex-aao-app
...
spec:
    deploymentPlan:
        size: 2
        image: registry.redhat.io/amq7/amq-broker:7.5

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

11

https://access.redhat.com/RegistryAuthentication


size

Specifies the number of brokers to deploy. For a clustered deployment, this value is 2 or
greater. However, for a basic broker instance, change the value to 1.

image

Specifies the container image to use to launch the broker. Default values for the image
attribute are shown in the following table.

Platform Image

OpenShift Container Platform registry.redhat.io/amq7/amq-broker:7.5

OpenShift Container Platform on IBM Z registry.redhat.io/amq7/amq-broker-openj9-
11-rhel8:7.5

2. Deploy a basic broker, based on the broker_v2alpha1_activemqartemis CR.

In the OpenShift Container Platform web console, click Workloads → Stateful Sets (OpenShift
Container Platform 4.1) or Applications → Stateful Sets (OpenShift Container Platform 3.11).
You see a new Stateful Set called ex-aao-ss.

Expand the ex-aao-ss Stateful Set section. You see that there is one Pod, corresponding to
the single broker that you defined in the Custom Resource.

On the Events tab of the running Pod, you see that the broker has started.

NOTE

To delete a broker deployment, delete the Custom Resource instance that you created
for the deployment. It is not sufficient to delete only the Stateful Set.

Additional resources

To learn how to connect a running broker to the AMQ Broker management console, see
Connecting a broker to the AMQ Broker management console .

2.5. APPLYING CUSTOM RESOURCE CHANGES TO RUNNING BROKER
DEPLOYMENTS

The following are some things to note about applying Custom Resource (CR) changes to running broker
deployments:

You cannot dynamically update the persistenceEnabled attribute in your CR. To change this
attribute, scale your cluster down to zero brokers. Delete the existing CR. Then, recreate and
redeploy the CR with your changes, also specifying a deployment size.

If the image attribute in your CR uses a floating tag such as 7.5, then your deployment
automatically pulls new image versions as they become available in the Red Hat Container
Registry, provided that the imagePullPolicy attribute in your deployment configuration or
Stateful Set is set to Always. For example, if your deployment currently uses a broker image

$ oc create -f deploy/crs/broker_v2alpha1_activemqartemis_cr.yaml

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

12



version, 7.5-2, and a newer broker image version, 7.5-3, becomes available, then your
deployment automatically pulls and uses the new image version. To use the new image, each
broker in the deployment scales down and then back up. If you have multiple brokers in your
deployment, each broker scales down and back up, in sequence.

The value of the deploymentPlan.size attribute in your CR overrides any change you make to
size of your broker deployment via the oc scale command. For example, suppose you use oc 
scale to change the size of a deployment from three brokers to two, but the value of 
deploymentPlan.size in your CR is still 3. In this case, OpenShift initially scales the deployment
down to two brokers. However, when the scaledown operation is complete, the Operator
restores the deployment to three brokers, as specified in the CR.

During an active scaling event, any further changes that you apply are queued by the Operator
and executed only when scaling is complete. For example, suppose you scale the size of your
deployment down from four brokers to one. Then, while scaledown is taking place, you also
change the values of the broker administrator user name and password. In this case, the
Operator queues the user name and password changes until the deployment is running with one
active broker.

All Custom Resource changes – apart from changing the size of your deployment, or changing
the value of the expose attribute for acceptors, connectors, or the console – cause existing
brokers to scale down and then back up. If you have multiple brokers in your deployment, only
one broker scales down at a time.

2.6. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS FOR
CLIENT CONNECTIONS

2.6.1. Configuring brokers to accept client connections

2.6.1.1. Configuring acceptors

To enable client connections to a broker in your OpenShift deployment, you define acceptors on the
broker Pod. Acceptors define how the broker accepts connections.

You define acceptors in the Custom Resource (CR) used for your broker deployment. A single acceptor
can accept multiple client connections, up to a maximum limit specified by the connectionsAllowed
parameter of your acceptor configuration . You can define acceptors for both internal clients (that is,
client applications in the same OpenShift cluster as the broker) and external clients (applications
outside OpenShift). For each acceptor that you define, a dedicated Service and Route is created in the
broker Pod.

When you create an acceptor, you specify information such as the messaging protocols to enable on the
acceptor, and the port on the broker Pod to be exposed to use these protocols.

If you do not define any acceptors in your CR, then your broker Pods use a minimum configuration of a
single acceptor, created by default, on port 61616. This default acceptor has only the Core protocol
specified. The reason that all broker use this minimum acceptor configuration is that clustering requires
the configuration, and clustering is enabled by default.

In addition, port 8161 is automatically exposed on the broker Pod for use by the AMQ Broker
management console. Within the OpenShift network, this console port can be accessed via the headless
service that runs in your broker deployment.

You can also specify whether to enable SSL on the acceptor, using the sslEnabled parameter. If the
acceptor uses SSL, you can specify information such as:

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

13



The secret name used to store SSL credentials (required).

The cipher suites and and protocols to use for SSL communication.

Whether the acceptor uses two-way SSL, that is, mutual authentication between the broker and
the client.

NOTE

If the acceptor that you define uses SSL, then the SSL credentials used by the acceptor
must be stored in a secret. You must create your own secret and specify this secret name
in the sslSecret parameter of your acceptor configuration. If you do not specify a custom
secret name in the sslSecret parameter, the acceptor assumes a default secret name.
The default secret name uses the format <Custom Resource name>-<acceptor-
name>-secret. For example, ex-aao-amqp-secret. The SSL credentials required in the
secret are broker.ks, which must be a base64-encoded keystore, client.ts, which must be
a base64-encoded truststore, and keyStorePassword and trustStorePassword, which
are passwords specified in raw text. This requirement is the same for any connectors that
you configure. For information about generating credentials for SSL connections, see
Generating credentials for SSL connections .

To connect to the broker from outside OpenShift via a NodePort, use a URI formatted like 
protocol://any.ocp.node.ip:ProtocolPortNumber. If you have configured a Route, you need to specify
the Route name. The Route name must resolve to the node that’s hosting the OpenShift router. The
OpenShift router uses the specified hostname to determine where to send the traffic inside the
OpenShift internal network.

IMPORTANT

To configure acceptors, your Operator-based broker deployment must specify a broker
container image for AMQ Broker 7.5 or later. For an example of specifying a broker
container image in your deployment, see Deploying a basic broker .

NOTE

The preceding information applies only to broker deployments based on the AMQ Broker
Operator. If you have used application templates to create your broker deployment
instead, you cannot create individual acceptors to directly connect external clients to the
protocol-specific ports that OpenShift exposes on the broker Pod. For more information,
see Connecting external clients to templates-based broker deployments .

Additional resources

For a complete configuration reference for the main broker Custom Resource Definition (CRD),
including configuration of acceptors, see Custom Resource Definition configuration reference .

For information about generating credentials for SSL connections, see Generating credentials
for SSL connections.

2.6.1.2. Generating credentials for SSL connections

For SSL connections, AMQ Broker requires a broker keystore, a client keystore, and a client truststore
that includes the broker keystore. This procedure shows you how to generate the credentials. The
procedure uses Java Keytool, a package included with the Java Development Kit.

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

14



Procedure

1. Generate a self-signed certificate for the broker keystore.

2. Export the certificate, so that it can be shared with clients.

3. Generate a self-signed certificate for the client keystore.

4. Create a client truststore that imports the broker certificate.

5. Use the broker keystore file to create a secret to store the SSL credentials, as shown in the
example below.

6. Add the secret to the service account that you created when installing the Operator, as shown in
the example below.

2.6.1.3. Networking services in your broker deployments

On the Networking pane of the OpenShift Container Platform web console for your broker
deployment, there are two running services; a headless service and a ping service. The default name of
the headless service uses the format <Custom Resource name>-hdls-svc, for example, ex-aao-hdls-
svc. The default name of the ping service uses a format of <Custom Resource name>-ping-svc, for
example, ex-aao-ping-svc.

The headless service provides access to ports 8161 and 61616 on each broker Pod. Port 8161 is used by
the broker management console, and port 61616 is used for broker clustering.

The ping service is a service used by the brokers for discovery, and enables brokers to form a cluster
within the OpenShift environment. Internally, this service exposes the 8888 port.

2.6.2. Connecting a broker to the AMQ Broker management console

The broker hosts its own management console at port 8161. Each broker Pod in your deployment has a
Service and Route that provide access to the console.

The following procedure shows how to connect to the AMQ Broker management console for a running
broker instance.

Prerequisites

You have deployed a basic broker using the AMQ Broker Operator. For more information, see

$ keytool -genkey -alias broker -keyalg RSA -keystore broker.ks

$ keytool -export -alias broker -keystore broker.ks -file broker_cert

$ keytool -genkey -alias client -keyalg RSA -keystore client.ks

$ keytool -import -alias broker -keystore client.ts -file broker_cert

$ oc secrets new ex-aao-amqp-secret broker.ks client.ts

$ oc secrets add sa/amq-broker-operator secret/ex-aao-amqp-secret

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

15



You have deployed a basic broker using the AMQ Broker Operator. For more information, see
Deploying a basic broker .

2.6.2.1. Accessing the broker management console

Each broker Pod in your deployment has a service that provides access to the console. The default
name of this service uses the format <Custom Resource name>-wconsj-<broker Pod ordinal>-svc.
For example, for broker Pod 0 of your deployment, the service name is ex-aao-wconsj-0-svc. Each
Service has a corresponding Route that uses the format `<Custom Resource name>-wconsj-<broker 
Pod ordinal>-svc-rte. For example, ex-aao-wconsj-0-svc-rte.

This procedure shows you how to access the AMQ Broker management console for a running broker
instance.

Procedure

1. In the OpenShift Container Platform web console, click Networking → Routes (OpenShift
Container Platform 4.1) or Applications → Routes (OpenShift Container Platform 3.11).
On the Routes pane, you see a Route corresponding to the wconsj Service.

2. Under Hostname, note the complete URL. You need to specify this URL to access the console.

3. In a web browser, enter the host name URL.

a. If your console configuration does not use SSL, specify http in the URL. In this case, DNS
resolution of the host name directs traffic to port 80 of the OpenShift router.

b. If your console configuration uses SSL, specify https in the URL. In this case, your browser
defaults to port 443 of the OpenShift router. This enables a successful connection to the
console if the OpenShift router also uses port 443 for SSL traffic, which the router does by
default.

4. To log in to the management console, enter the user name and password specified in the 
adminUser and adminPassword parameters of your broker deployment Custom Resource. If
there are no values specified for adminUser and adminPassword, follow the instructions in
Accessing management console login credentials  to retrieve the credentials required to log in
to the console.

2.6.2.2. Accessing management console login credentials

If you did not specify a value for adminUser and adminPassword in your broker Custom Resource
(CR), the Operator automatically generates the broker user name and password (required to log in to
the AMQ Broker management console) and stores these credentials in a secret. The default secret
name has a format of <Custom Resource name>-credentials-secret, for example, ex-aao-
credentials-secret.

This procedure shows you how to access the login credentials required to log in to the management
console.

Procedure

1. See the complete list of secrets in your OpenShift project.

a. From the OpenShift Container Platform web console, click Workload → Secrets
(OpenShift Container Platform 4.1) or Resources → Secrets (OpenShift Container
Platform 3.11).

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

16



b. From the command line:

$ oc get secrets

2. Open the appropriate secret to reveal the console login credentials.

a. From the OpenShift Container Platform web console, click the secret that includes your
broker Custom Resource instance in its name. To see the encrypted user name and
password values, click the YAML tab (OpenShift Container Platform 4.1) or Actions → Edit
YAML (OpenShift Container Platform 3.11).

b. From the command line:

$ oc edit secret <my_custom_resource_name-credentials-secret>

2.7. BROKER DEPLOYMENT EXAMPLES

2.7.1. Deploying clustered brokers

If there are two or more broker Pods running in your project, the Pods automatically form a broker
cluster. A clustered configuration enables brokers to connect to each other and redistribute messages
as needed, for load balancing.

The following procedure shows you how to deploy clustered brokers. By default, the brokers in this
deployment use on demand load balancing, meaning that brokers will forward messages only to other
brokers that have matching consumers.

Prerequisites

A basic broker is already deployed. See Deploying a basic broker .

Procedure

1. In the deploy/crs directory of the Operator archive that you downloaded and extracted, open
the broker_v2alpha1_activemqartemis_cr.yaml Custom Resource file.

2. For a minimally-sized clustered deployment, ensure that the value of deploymentPlan.size is 2.

3. At the command line, apply the change:

In the OpenShift Container Platform web console, a second Pod starts in your project, for the
additional broker that you specified in your CR. By default, the two brokers running in your
project are clustered.

4. Open the Logs tab of each Pod. The logs show that OpenShift has established a cluster
connection bridge on each broker. Specifically, the log output includes a line like the following:

targetConnector=ServerLocatorImpl (identity=(Cluster-connection-
bridge::ClusterConnectionBridge@6f13fb88

2.7.2. Creating queues in a broker cluster

$ oc apply -f deploy/crs/broker_v2alpha1_activemqartemis_cr.yaml

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

17



The following procedure shows you how to use a Custom Resource Definition (CRD) and example
Custom Resource (CR) to add and remove a queue from a broker cluster deployed using an Operator.

Prerequisites

You have already deployed a broker cluster. See Deploying clustered brokers .

Procedure

1. Deploy the addressing CRD.

2. An example CR file, broker_v2alpha1_activemqartemisaddress_cr.yaml, was included in the
Operator archive that you downloaded and extracted. The example Custom Resource includes
the following:

With your broker cluster already already deployed and running via the Operator, use the
example Custom Resource to create an address on every running broker in your cluster.

Deploying the example CR creates an address myAddress0 with a queue named myQueue0
that has an anycast routing type. This address is created on every running broker.

NOTE

To create multiple addresses and/or queues in your broker cluster, you need to
create separate CR files and deploy them individually, specifying new address
and/or queue names in each case.

NOTE

If you add brokers to your cluster after deploying the addressing CR, the new
brokers will not have the address you previously created. In this case, you need to
delete the addresses and redeploy the addressing CR.

3. To delete queues created from the example CR, use the following command:

2.8. MIGRATING MESSAGES UPON SCALEDOWN

To migrate messages upon scaledown of your broker deployment, use the main broker Custom
Resource Definition (CRD) to enable message migration. The AMQ Broker Operator runs a dedicated

$ oc create -f deploy/crds/broker_v2alpha1_activemqartemisaddress_crd.yaml

spec:
  # Add fields here
  spec:
    addressName: myAddress0
    queueName: myQueue0
    routingType: anycast

$ oc create -f deploy/crs/broker_v2alpha1_activemqartemisaddress_cr.yaml

$ oc delete -f deploy/crs/broker_v2alpha1_activemqartemisaddress_cr.yaml

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

18



scaledown controller to execute message migration when you scale down a clustered broker
deployment.

With message migration enabled, the scaledown controller within the Operator detects shutdown of a
broker Pod and starts a drainer Pod to execute message migration. The drainer Pod connects to one of
the other live broker Pods in the cluster and migrates messages over to that live broker Pod. After
migration is complete, the scaledown controller shuts down.

NOTE

A scaledown controller operates only within a single OpenShift project. The controller
cannot migrate messages between brokers in separate projects.

NOTE

If you scale a broker deployment down to 0 (zero), message migration does not occur,
since there is no running broker Pod to which the messaging data can be migrated.
However, if you scale a deployment down to zero brokers and then back up to only some
of the brokers that were in the original deployment, drainer Pods are started for the
brokers that remain shut down.

The following example procedure shows the behavior of the scaledown controller.

Prerequisites

You already have a basic broker deployment. See Deploying a basic broker .

You should understand how message migration works. For more information, see Message
migration.

Procedure

1. In the deploy/crs directory of the Operator repository that you originally downloaded and
extracted, open the main broker CR, broker_v2alpha1_activemqartemis_cr.yaml.

2. In the main broker CR set messageMigration and persistenceEnabled to true.
These settings mean that when you later scale down the size of your clustered broker
deployment, the Operator automatically starts a scaledown controller and migrate messages to
a broker Pod that is still running.

3. In your existing broker deployment, verify which Pods are running.

You see output that looks like the following.

activemq-artemis-operator-8566d9bf58-9g25l   1/1   Running   0   3m38s
ex-aao-ss-0                                  1/1   Running   0   112s
ex-aao-ss-1                                  1/1   Running   0   8s

The preceding output shows that there are three Pods running; one for the broker Operator
itself, and a separate Pod for each broker in the deployment.

4. Log into each Pod and send some messages to each broker.

a. Supposing that Pod ex-aao-ss-0 has a cluster IP address of 172.17.0.6, run the following

$ oc get pods

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

19



a. Supposing that Pod ex-aao-ss-0 has a cluster IP address of 172.17.0.6, run the following
command:

b. Supposing that Pod ex-aao-ss-1 has a cluster IP address of 172.17.0.7, run the following
command:

The preceding commands create a queue called TEST on each broker and add 1000
messages to each queue.

5. Scale the cluster down from two brokers to one.

a. Open the main broker CR, broker_v2alpha1_activemqartemis_cr.yaml.

b. In the CR, set deploymentPlan.size to 1.

c. At the command line, apply the change:

You see that the Pod ex-aao-ss-1 starts to shut down. The scaledown controller starts a
new drainer Pod of the same name. This drainer Pod also shuts down after it migrates all
messages from broker Pod ex-aao-ss-1 to the other broker Pod in the cluster, ex-aao-ss-
0.

6. When the drainer Pod is shut down, check the message count on the TEST queue of broker Pod
ex-aao-ss-0. You see that the number of messages in the queue is 2000, indicating that the
drainer Pod successfully migrated 1000 messages from the broker Pod that shut down.

2.9. MANAGING THE BROKER OPERATOR USING THE OPERATOR
LIFECYCLE MANAGER

2.9.1. Overview of the Operator Lifecycle Manager

In OpenShift Container Platform 4.0 and later, the Operator Lifecycle Manager (OLM) helps users
install, update, and generally manage the lifecycle of all Operators and their associated services running
across their clusters. It is part of the Operator Framework, an open source toolkit designed to manage
Kubernetes native applications (Operators) in an effective, automated, and scalable way.

The OLM runs by default in OpenShift Container Platform 4.0, which aids cluster administrators in
installing, upgrading, and granting access to Operators running on their cluster. The OpenShift
Container Platform web console provides management screens for cluster administrators to install
Operators, as well as grant specific projects access to use the catalog of Operators available on the
cluster.

OperatorHub is the graphical interface that OpenShift cluster administrators use to discover, install, and
upgrade Operators. With one click, these Operators can be pulled from OperatorHub, installed on the
cluster, and managed by the OLM, ready for engineering teams to self-service manage the software in
development, test, and production environments.

When you install the AMQ Broker Operator in OperatorHub, you can use the graphical interface to

$ /opt/amq-broker/bin/artemis producer --url tcp://172.17.0.6:61616 --user admin --
password admin

$ /opt/amq-broker/bin/artemis producer --url tcp://172.17.0.7:61616 --user admin --
password admin

$ oc apply -f deploy/crs/broker_v2alpha1_activemqartemis_cr.yaml

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

20



When you install the AMQ Broker Operator in OperatorHub, you can use the graphical interface to
create various broker deployments, such as standalone and clustered brokers.

2.9.2. Installing the AMQ Broker Operator in OperatorHub

If you do not see the AMQ Broker Operator automatically available for use in OperatorHub, follow these
instructions to manually install the Operator.

Procedure

1. In your web browser, navigate to the AMQ Broker Software Downloads page.

2. In the Version drop-down box, ensure the value is set to the latest Broker version, 7.5.0.

3. Next to AMQ Broker 7.5 Operator Installation Files, click Download.
Download of the amq-broker-operator-7.5.0-ocp-install-examples.zip compressed archive
automatically begins.

4. When the download has completed, move the archive to your chosen installation directory. The
following example moves the archive to a directory called /broker/operator.

5. In your chosen installation directory, extract the contents of the archive. For example:

6. Log in to OpenShift Container Platform as a cluster administrator.

7. Deploy the AMQ Broker Operator source bundle from the deploy directory of the Operator
archive that you downloaded and extracted.

After a few minutes, the AMQ Broker Operator is available in the OperatorHub section of the
OpenShift Container Platform web console. You can then use the OperatorHub graphical
interface to create various types of broker deployments.

sudo mv amq-broker-operator-7.5.0-ocp-install-examples.zip /broker/operator

cd /broker/operator
unzip amq-broker-operator-7.5.0-ocp-install-examples.zip

$ oc login -u system:admin

$ oc create -f deploy/catalog_resources/courier/amq-broker-operatorsource.yaml

CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR

21

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.amq.broker&downloadType=distributions


CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT
CONTAINER PLATFORM USING APPLICATION TEMPLATES

The procedures in this section show:

How to install the AMQ Broker image streams and application templates

How to prepare a templates-based broker deployment

An example of using the OpenShift Container Platform web console to deploy a basic broker
instance using an application template. For examples of deploying other broker configurations
using templates, see Templates-based broker deployment examples .

3.1. INSTALLING THE IMAGE STREAMS AND APPLICATION
TEMPLATES

The AMQ Broker on OpenShift Container Platform image streams and application templates are not
available in OpenShift Container Platform by default. You must manually install them using the
procedure in this section. When you have completed the manual installation, you can then instantiate a
template that enables you to deploy a chosen broker configuration on your OpenShift cluster. For
examples of creating various broker configurations in this way, see Deploying AMQ Broker on OpenShift
Container Platform and Tutorials.

Procedure

1. At the command line, log in to OpenShift as a cluster administrator (or as a user that has
namespace-specific administrator access for the global openshift project namespace), for
example:

$ oc login -u system:admin
$ oc project openshift

Using the openshift project makes the image stream and application templates that you install
later in this procedure globally available to all projects in your OpenShift cluster. If you want to
explicitly specify that image streams and application templates are imported to the openshift
project, you can also add -n openshift as an optional parameter with the oc replace commands
that you use later in the procedure.

As an alternative to using the openshift project (e.g., if a cluster administrator is unavailable),
you can log in to a specific OpenShift project to which you have administrator access and in
which you want to create a broker deployment, for example:

$ oc login -u <USERNAME>
$ oc project <PROJECT_NAME>

Logging into a specific project makes the image stream and templates that you install later in
this procedure available only in that project’s namespace.

NOTE

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

22



NOTE

AMQ Broker on OpenShift Container Platform uses StatefulSet resources with
all *-persistence*.yaml templates. For templates that are not *-
persistence*.yaml, AMQ Broker uses Deployments resources. Both types of
resources are Kubernetes-native resources that can consume image streams
only from the same project namespace in which the template will be instantiated.

2. At the command line, run the following commands to import the broker image streams to your
project namespace. Using the --force option with the oc replace command updates the
resources, or creates them if they don’t already exist.

$ oc replace --force  -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-amq-7-broker-openshift-
image/75-7.5.0.GA/amq-broker-7-image-streams.yaml

3. Run the following command to update the AMQ Broker application templates.

$ for template in amq-broker-75-basic.yaml \
amq-broker-75-ssl.yaml \
amq-broker-75-custom.yaml \
amq-broker-75-persistence.yaml \
amq-broker-75-persistence-ssl.yaml \
amq-broker-75-persistence-clustered.yaml \
amq-broker-75-persistence-clustered-ssl.yaml;
 do
 oc replace --force -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-amq-7-broker-openshift-
image/75-7.5.0.GA/templates/${template}
 done

3.2. PREPARING AN AMQ BROKER DEPLOYMENT

Prerequisites

Before deploying a broker instance on OpenShift Container Platform, you must have installed
the AMQ Broker image streams and application templates. For more information, see Installing
the AMQ Broker image streams and application templates.

The following procedure assumes that the broker image stream and application templates you
installed in Installing AMQ Broker on OpenShift Container Platform  are available in the global 
openshift project. If you installed the image and application templates in a specific project
namespace, then continue to use that project instead of creating a new project such as amq-
demo.

Procedure

1. Use the command prompt to create a new project:

$ oc new-project amq-demo

2. Create a service account to be used for the AMQ Broker deployment:

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING APPLICATION TEMPLATES

23



$ echo '{"kind": "ServiceAccount", "apiVersion": "v1", "metadata": {"name": "amq-service-
account"}}' | oc create -f -

3. Add the view role to the service account. The view role enables the service account to view all
the resources in the amq-demo namespace, which is necessary for managing the cluster when
using the OpenShift dns-ping protocol for discovering the broker cluster endpoints.

$ oc policy add-role-to-user view system:serviceaccount:amq-demo:amq-service-account

4. AMQ Broker requires a broker keystore, a client keystore, and a client truststore that includes
the broker keystore. This example uses Java Keytool, a package included with the Java
Development Kit, to generate dummy credentials for use with the AMQ Broker installation.

a. Generate a self-signed certificate for the broker keystore:

$ keytool -genkey -alias broker -keyalg RSA -keystore broker.ks

b. Export the certificate so that it can be shared with clients:

$ keytool -export -alias broker -keystore broker.ks -file broker_cert

c. Generate a self-signed certificate for the client keystore:

$ keytool -genkey -alias client -keyalg RSA -keystore client.ks

d. Create a client truststore that imports the broker certificate:

$ keytool -import -alias broker -keystore client.ts -file broker_cert

e. Use the broker keystore file to create the AMQ Broker secret:

$ oc create secret generic amq-app-secret --from-file=broker.ks

f. Add the secret to the service account created earlier:

$ oc secrets add sa/amq-service-account secret/amq-app-secret

3.3. DEPLOYING A BASIC BROKER

The procedure in this section shows you how to deploy a basic broker that is ephemeral and does not
support SSL.

NOTE

This broker does not support SSL and is not accessible to external clients. Only clients
running internally on the OpenShift cluster can connect to the broker. For examples of
creating broker configurations that support SSL, see Tutorials.

Prerequisites

You have already prepared the broker deployment. See Preparing an AMQ Broker deployment .

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

24



The following procedure assumes that the broker image stream and application templates you
installed in Installing AMQ Broker on OpenShift Container Platform  are available in the global 
openshift project. If you installed the image and application templates in a specific project
namespace, then continue to use that project instead of creating a new project such as amq-
demo.

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Container Registry to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images and pull them into an OpenShift project. Before following the
procedure in this section, you must first complete the steps described in Red Hat Container
Registry Authentication.

3.3.1. Creating the broker application

Procedure

1. Log in to the amq-demo project space, or another, existing project in which you want to deploy
a broker.

$ oc login -u <USER_NAME>
$ oc project <PROJECT_NAME>

2. Create a new broker application, based on the template for a basic broker. The broker created
by this template is ephemeral and does not support SSL.

$ oc new-app --template=amq-broker-75-basic \
   -p AMQ_PROTOCOL=openwire,amqp,stomp,mqtt,hornetq \
   -p AMQ_QUEUES=demoQueue \
   -p AMQ_ADDRESSES=demoTopic \
   -p AMQ_USER=amq-demo-user \
   -p AMQ_PASSWORD=password \

The basic broker application template sets the environment variables shown in the following
table.

Table 3.1. Basic broker application template

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,horne
tq

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates an address (or topic) called
demoTopic. By default, this address
has no assigned routing type.

AMQ_USER AMQ Username amq-demo-user User name that the client uses to
connect to the broker

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING APPLICATION TEMPLATES

25

https://access.redhat.com/RegistryAuthentication


AMQ_PASSWOR
D

AMQ Password password Password that the client uses with the
user name to connect to the broker

Environment
variable

Display Name Value Description

3.3.2. About sensitive credentials

In the AMQ Broker application templates, the values of the following environment variables are stored in
a secret:

AMQ_USER

AMQ_PASSWORD

AMQ_CLUSTER_USER (clustered broker deployments)

AMQ_CLUSTER_PASSWORD (clustered broker deployments)

AMQ_TRUSTSTORE_PASSWORD (SSL-enabled broker deployments)

AMQ_KEYSTORE_PASSWORD (SSL-enabled broker deployments)

To retrieve and use the values for these environment variables, the AMQ Broker application templates
access the secret specified in the AMQ_CREDENTIAL_SECRET environment variable. By default, the
secret name specified in this environment variable is amq-credential-secret. Even if you specify a
custom value for any of these variables when deploying a template, OpenShift Container Platform uses
the value currently stored in the named secret. Furthermore, the application templates always use the
default values stored in amq-credential-secret unless you edit the secret to change the values, or
create and specify a new secret with new values. You can edit a secret using the OpenShift command-
line interface, as shown in this example:

$ oc edit secrets amq-credential-secret

Values in the amq-credential-secret use base64 encoding. To decode a value in the secret, use a
command that looks like this:

$ echo 'dXNlcl9uYW1l' | base64 --decode
user_name

3.3.3. Deploying and starting the broker application

After the broker application is created, you need to deploy it. Deploying the application creates a Pod
for the broker to run in.

Procedure

1. Click Deployments in the OpenShift Container Platform web console.

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

26



2. Click the broker-amq application.

3. Click Deploy.

NOTE

If the application does not deploy, you can check the configuration by clicking the
Events tab. If something is incorrect, edit the deployment configuration by
clicking the Actions button.

4. After you deploy the broker application, inspect the current state of the broker Pod.

a. Click Deployment Configs.

b. Click the broker-amq Pod and then click the Logs tab to verify the state of the broker. You
should see the queue previously created via the application template.
If the logs show that:

The broker is running, skip to step 9 of this procedure.

The broker logs have not loaded, and the Pod status shows ErrImagePull or 
ImagePullBackOff, your deployment configuration was not able to directly pull the
specified broker image from the Red Hat Container Registry. In this case, continue to
step 5 of this procedure.

5. To prepare the Pod for installation of the broker container image, scale the number of running
brokers to 0.

a. Click Deployment Configs → broker-amq.

b. Click Actions → Edit Deployment Configs.

c. In the deployment config .yaml file, set the value of the replicas attribute to 0.

d. Click Save.

e. The pod restarts, with zero broker instances running.

6. Install the latest broker container image.

a. In your web browser, navigate to the Red Hat Container Catalog .

b. In the search box, enter AMQ Broker. Click Search.

c. Choose an image repository based on the information in the following table.

Platform Container image name Repository name

OpenShift Container
Platform

AMQ Broker amq7/amq-broker

OpenShift Container
Platform on IBM Z

AMQ Broker on OpenJ9 11 amq7/amq-broker-openj9-
11-rhel8

For example, for the OpenShift Container Platform broker container image, click AMQ

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING APPLICATION TEMPLATES

27

https://access.redhat.com/containers/


Broker. The amq7/amq-broker repository opens, with the most recent image version
automatically selected. If you want to change to an earlier image version, click the Tags tab
and choose another version tag.

d. Click the Get This Image tab.

e. Under Authentication with registry tokens, review the on-page instructions in the Using
OpenShift secrets section. The instructions describe how to add references to the broker
image and the image pull secret name associated with the account used for authentication
in the Red Hat Container Registry to your Pod deployment configuration file.
For example, to pull the latest version of the OpenShift Container Platform broker
container image for a deployment configuration called broker-amq in the amq-demo
project namespace, include lines that look like the following:

NOTE

To use the latest version of the broker container image for OpenShift
Container Platform on IBM Z, specify the image attribute as 
registry.redhat.io/amq7/amq-broker-openj9-11-rhel8:7.5.

f. Click Save.

7. Import the latest broker image version to your project namespace. For example:

$ oc import-image amq7/amq-broker:7.5 --from=registry.redhat.io/amq7/amq-broker --
confirm

8. Edit the broker-amq deployment config again, as previously described. Set the value of the 
replicas attribute back to its original value.
The broker Pod restarts, with all running brokers referencing the new broker image.

9. Click the Terminal tab to access a shell where you can start the broker and use the CLI to test
sending and consuming messages.

sh-4.2$ ./broker/bin/artemis run
sh-4.2$ ./broker/bin/artemis producer --destination queue://demoQueue
Producer ActiveMQQueue[demoQueue], thread=0 Started to calculate elapsed time ...

Producer ActiveMQQueue[demoQueue], thread=0 Produced: 1000 messages

apiVersion: apps.openshift.io/v1
kind: DeploymentConfig
..
metadata:
  name: broker-amq
  namespace: amq-demo
..
  spec:
    containers:
        name: broker-amq
        image: 'registry.redhat.io/amq7/amq-broker:7.5'
    ..
    imagePullSecrets:
      - name: {PULL-SECRET-NAME}

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

28



Producer ActiveMQQueue[demoQueue], thread=0 Elapsed time in second : 4 s
Producer ActiveMQQueue[demoQueue], thread=0 Elapsed time in milli second : 4584 milli 
seconds
sh-4.2$ ./broker/bin/artemis consumer --destination queue://demoQueue
Consumer:: filter = null
Consumer ActiveMQQueue[demoQueue], thread=0 wait until 1000 messages are consumed
Received 1000
Consumer ActiveMQQueue[demoQueue], thread=0 Consumed: 1000 messages
Consumer ActiveMQQueue[demoQueue], thread=0 Consumer thread finished

Alternatively, use the OpenShift client to access the shell using the Pod name, as shown in the
following example.

// Get the Pod names and internal IP Addresses
$ oc get pods -o wide

// Access a broker Pod by name
$ oc rsh <broker-pod-name>

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING APPLICATION TEMPLATES

29



CHAPTER 4. UPGRADING AMQ BROKER ON OPENSHIFT
CONTAINER PLATFORM

The procedures in this section show how to upgrade Operator- and templates-based broker
deployments on OpenShift Container Platform.

IMPORTANT

To upgrade an existing AMQ Broker deployment on OpenShift Container Platform 3.11 to
run on OpenShift Container Platform 4.1, you must first upgrade your OpenShift
Container Platform installation, before performing a clean installation of AMQ Broker
that matches your existing deployment. To perform a clean AMQ Broker installation, use
one of these methods:

Deploying AMQ Broker on OpenShift Container Platform using an Operator
(Recommended).

Deploying AMQ Broker on OpenShift Container Platform using Application
Templates

4.1. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

The following procedures show you how to upgrade:

The broker container image for an Operator-based broker deployment

The AMQ Broker Operator version in your OpenShift project

4.1.1. Upgrading the broker container image

The following procedure shows how to upgrade the broker container image for a broker deployment
based on the AMQ Broker Operator.

NOTE

The procedure assumes that you used version 0.9.0 or greater of the AMQ Broker
Operator to create your broker deployment. The name of the main broker Custom
Resource (CR) instance included with these versions of the Operator is 
broker_v2alpha1_activemqartemis_cr.yaml. You can also use instructions similar to
those below to upgrade the broker container image for a deployment based on version
0.6.3 or earlier of the Operator. For those Operator versions, the name of the included
main broker CR instance is broker_v1alpha1_activemqartemis_cr.yaml.

Prerequisites

You have used the AMQ Broker Operator to create a broker deployment. For more information,
see Deploying AMQ Broker on OpenShift Container Platform using an Operator .

Procedure

1. In the deploy/crs directory of the Operator archive that you downloaded and extracted during
your initial installation, open the broker_v2alpha1_activemqartemis_cr.yaml Custom
Resource (CR).

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

30



2. Edit the image element to specify the latest AMQ Broker 7.5 container image, as shown below.

3. Apply the CR change.

$ oc apply -f deploy/crs/broker_v2alpha1_activemqartemis_cr.yaml

When you apply the CR change, each broker Pod in your deployment shuts down and then
restarts using the new broker container image. If you have multiple brokers in your deployment,
only one broker Pod shuts down and restarts at a time.

4.1.2. Upgrading the Operator

The following procedure shows how to upgrade the AMQ Broker Operator version in your OpenShift
project.

IMPORTANT

You cannot directly upgrade an Operator installation based on version 0.6.3 or earlier to
use version 0.9.0 or greater because the Custom Resource Definitions (CRDs) used by
versions 0.6.3 or earlier are not compatible with versions 0.9.0 or later. In this case, you
must perform a new installation of the Operator before using it to recreate your broker
deployments. For more information, see Installing the Broker Operator.

Prerequisites

You have previously installed and deployed an AMQ Broker Operator based on version 0.9.0 or
greater. For more information, see Installing the AMQ Broker Operator .

Procedure

1. Log in to OpenShift Container Platform as a cluster administrator.

2. Log in to the project in which you want to upgrade the Operator.

3. In the deploy directory of the Operator archive that you downloaded and extracted during your
original installation, open the operator.yaml file.

4. Update the spec.containers.image attribute to specify the full path to the latest Operator
image for AMQ Broker 7.5 in the Red Hat Container Registry.

5. When you have updated the spec.containers.image attribute, apply the changes.

image: registry.redhat.io/amq7/amq-broker:7.5

$ oc login -u system:admin

$ oc project <project_name>

spec:
    template:
        spec:
            containers:
                image: registry.redhat.io/amq7/amq-broker-rhel7-operator:0.9

CHAPTER 4. UPGRADING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

31



OpenShift updates your project to use the latest Operator version. The upgrade has no effect
on your running broker Pods.

4.2. UPGRADING TEMPLATES-BASED BROKER DEPLOYMENTS

The following procedures show how to upgrade an existing broker deployment that is based on
application templates.

4.2.1. Upgrading non-persistent broker deployments

This procedure shows you how to upgrade a non-persistent broker deployment. The non-persistent
broker templates in the OpenShift Container Platform service catalog have labels that resemble the
following:

Red Hat AMQ Broker 7.x (Ephemeral, no SSL)

Red Hat AMQ Broker 7.x (Ephemeral, with SSL)

Red Hat AMQ Broker 7.x (Custom Config, Ephemeral, no SSL)

Prerequisites

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Container Registry to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images and pull them into an OpenShift project. Before following the
procedure in this section, you must first complete the steps described in Red Hat Container
Registry Authentication.

Procedure

1. Navigate to the OpenShift Container Platform web console and log in.

2. Click the project in which you want to upgrade a non-persistent broker deployment.

3. Select the Deployment Config (DC) corresponding to your broker deployment.

a. In OpenShift Container Platform 4.1, click Workloads → Deployment Configs.

b. In OpenShift Container Platform 3.11, click Applications → Deployments. Within your
broker deployment, click the Configuration tab.

4. From the Actions menu, click Edit Deployment Config (OpenShift Container Platform 4.1) or
Edit YAML (OpenShift Container Platform 3.11).
The YAML tab of the Deployment Config opens, with the .yaml file in an editable mode.

5. Edit the image attribute to specify the latest AMQ Broker 7.5 container image, 
registry.redhat.io/amq7/amq-broker:7.5.

6. Add the imagePullSecrets attribute to specify the image pull secret associated with the
account used for authentication in the Red Hat Container Registry.
Changes based on the previous two steps are shown in the example below:

$ oc apply -f deploy/operator.yaml

...

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

32

https://access.redhat.com/RegistryAuthentication


NOTE

In AMQ Broker, container image tags increment by 1 for each new version of the
container image added to the Red Hat image registry, for example, 7.5-1, 7.5-2,
and so on. If you specify a tag name without a final digit (7.5, for example), this
tag is known as a floating tag. When you specify a floating tag, OpenShift
Container Platform automatically identifies the most recent available image (that
is, the image tag with the highest final number) and uses this image to upgrade
your broker deployment.

7. Click Save.
If a newer broker image than the one currently installed is available in the Red Hat Container
Registry, OpenShift Container Platform upgrades your broker deployment. To do this,
OpenShift Container Platform stops the existing broker Pod and then starts a new Pod that
uses the new image.

4.2.2. Upgrading persistent broker deployments

This procedure shows you how to upgrade a persistent broker deployment. The persistent broker
templates in the OpenShift Container Platform service catalog have labels that resemble the following:

Red Hat AMQ Broker 7.x (Persistence, clustered, no SSL)

Red Hat AMQ Broker 7.x (Persistence, clustered, with SSL)

Red Hat AMQ Broker 7.x (Persistence, with SSL)

Prerequisites

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Container Registry to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images and pull them into an OpenShift project. Before following the
procedure in this section, you must first complete the steps described in Red Hat Container
Registry Authentication.

Procedure

1. Navigate to the OpenShift Container Platform web console and log in.

2. Click the project in which you want to upgrade a persistent broker deployment.

3. Select the StatefulSet (SS) corresponding to your broker deployment.

a. In OpenShift Container Platform 4.1, click Workloads → Stateful Sets.

b. In OpenShift Container Platform 3.11, click Applications → Stateful Sets.

4. From the Actions menu, click Edit Stateful Set (OpenShift Container Platform 4.1) or Edit

spec:
    containers:
        image: 'registry.redhat.io/amq7/amq-broker:7.5'
..
imagePullSecrets:
  - name: {PULL-SECRET-NAME}

CHAPTER 4. UPGRADING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

33

https://access.redhat.com/RegistryAuthentication


4. From the Actions menu, click Edit Stateful Set (OpenShift Container Platform 4.1) or Edit
YAML (OpenShift Container Platform 3.11).
The YAML tab of the StatefulSet opens, with the .yaml file in an editable mode.

5. To prepare your broker deployment for upgrade, scale the deployment down to zero brokers.

a. If the replicas attribute is currently set to 1 or greater, set it to 0.

b. Click Save.

6. When all broker Pods have shut down, edit the Stateful Set .yaml file again. Edit the image
attribute to specify the latest AMQ Broker 7.5 container image, registry.redhat.io/amq7/amq-
broker:7.5.

7. Add the imagePullSecrets attribute to specify the image pull secret associated with the
account used for authentication in the Red Hat Container Registry.
Changes based on the previous two steps are shown in the example below:

8. Set the replicas attribute back to the original value.

9. Click Save.
If a newer broker image than the one currently installed is available in the Red Hat Container
Registry, OpenShift Container Platform upgrades your broker deployment. To do this,
OpenShift Container Platform restarts the broker Pod.

...
spec:
    containers:
        image: 'registry.redhat.io/amq7/amq-broker:7.5'
..
imagePullSecrets:
  - name: {PULL-SECRET-NAME}

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

34



CHAPTER 5. HIGH AVAILABILITY

5.1. HIGH AVAILABILITY OVERVIEW

The term high availability  refers to a system that is capable of remaining operational, even when part of
that system fails or is taken offline. With Broker on OCP, specifically, HA refers to both maintaining the
availability of brokers and the integrity of the messaging data if a broker fails.

In an HA configuration on AMQ Broker on OpenShift Container Platform, you run multiple instances of a
broker pod simultaneously. Each individual broker pod writes its message data to a persistent volume
(PVs), which logically define the storage volumes in the system. If a broker pod fails or is taken offline,
the message data stored in that PV is redistributed to an alternative available broker, which then stores it
in its own PV.

Figure 5.1. StatefulSet working normally

When you take a broker pod offline, the StatefulSet is scaled down and you must manage what happens
to the message data in the unattached PV. To migrate the messages held in the PV associated with the
now-offline pod, you use the scaledown controller. The process of migrating message data in this
fashion is sometimes referred to as pod draining .

5.2. MESSAGE MIGRATION

5.2.1. Message migration overview

Message migration is how you ensure the integrity of messaging data when a broker in a clustered
deployment shuts down due to failure or intentional scaledown of the deployment. Message migration,
which uses a method called Pod draining , refers to the removal and redistribution of "orphaned"
messages from the persistent volume used by the broker to store messaging data. With message
migration enabled, the scaledown controller, which is part of the AMQ Broker Operator, detects

CHAPTER 5. HIGH AVAILABILITY

35



shutdown of any broker Pods in your deployment. The scaledown controller starts a dedicated drainer
Pod for each broker Pod that is shut down, to prepare for message migration. Each drainer Pod
connects to one of the remaining live broker Pods in the cluster and migrates messages over to that live
broker Pod. After migration is complete, each drainer Pod shuts down. Persistent volumes previously
used by running brokers are returned to a "Released" state.

NOTE

The scaledown controller within the AMQ Broker Operator can operate only within a
single OpenShift project. The controller cannot migrate messages between brokers in
separate projects.

NOTE

If you scale a broker deployment down to 0 (zero), message migration does not occur,
since there is no running broker Pod to which the messaging data can be migrated.
However, if you scale a deployment down to zero brokers and then back up to only some
of the brokers that were in the original deployment, drainer Pods are started for the
brokers that remain shut down.

5.2.1.1. How does message migration work?

When you enable message migration in a broker deployment created using the AMQ Broker Operator, a
scaledown controller is started by the Operator within the same project namespace as the broker Pods.

The scaledown controller registers itself and listens for Kubernetes events that are related to persistent
volume claims (PVCs) in the project namespace.

The scaledown controller checks for PVCs that have been orphaned by looking at the ordinal on the
volume claim. The ordinal on the volume claim is compared to the ordinal on the existing broker Pods,
which are part of the StatefulSet in the project namespace.

If the ordinal on the volume claim is greater than the ordinal on the existing broker Pods, then the Pod
at that ordinal has been terminated and the data must be migrated to another broker.

When these conditions are met, a drainer Pod is started. The drainer Pod runs the broker and executes
the message migration. Then, the drainer Pod identifies an alternative broker Pod to which the
orphaned PVC messages can be migrated.

NOTE

There must be at least one broker Pod still running in your deployment for message
migration to occur.

Figure 5.2. The scaledown controller registers itself, deletes the PVC, and redistributes messages

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

36



Figure 5.2. The scaledown controller registers itself, deletes the PVC, and redistributes messages
on the persistent volume.

After the messages are successfully migrated to an operational broker Pod, the drainer Pod shuts down
and the scaledown controller removes the orphaned PVC. The persistent volume is returned to a
"Released" state.

Additional resources

For an example of message migration when you scale down a broker deployment, see Migrating
Messages Upon Scaledown.

CHAPTER 5. HIGH AVAILABILITY

37



CHAPTER 6. CONNECTING EXTERNAL CLIENTS TO
TEMPLATES-BASED BROKER DEPLOYMENTS

This section describes how to configure SSL to enable connections from clients outside OpenShift
Container Platform to brokers deployed using application templates.

6.1. CONFIGURING SSL

For a minimal SSL configuration to allow connections outside of OpenShift Container Platform, AMQ
Broker requires a broker keystore, a client keystore, and a client truststore that includes the broker
keystore. The broker keystore is also used to create a secret for the AMQ Broker on OpenShift
Container Platform image, which is added to the service account.

The following example commands use Java KeyTool, a package included with the Java Development Kit,
to generate the necessary certificates and stores.

For a more complete example of deploying a broker instance that supports SSL, see Deploying a basic
broker with SSL.

Procedure

1. Generate a self-signed certificate for the broker keystore:

$ keytool -genkey -alias broker -keyalg RSA -keystore broker.ks

2. Export the certificate so that it can be shared with clients:

$ keytool -export -alias broker -keystore broker.ks -file broker_cert

3. Generate a self-signed certificate for the client keystore:

$ keytool -genkey -alias client -keyalg RSA -keystore client.ks

4. Create a client truststore that imports the broker certificate:

$ keytool -import -alias broker -keystore client.ts -file broker_cert

5. Export the client’s certificate from the keystore:

$ keytool -export -alias client -keystore client.ks -file client_cert

6. Import the client’s exported certificate into a broker SERVER truststore:

$ keytool -import -alias client -keystore broker.ts -file client_cert

6.2. GENERATING THE AMQ BROKER SECRET

The broker keystore can be used to generate a secret for the namespace, which is also added to the
service account so that the applications can be authorized.

Procedure

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

38



At the command line, run the following commands:

$ oc create secret generic <secret-name> --from-file=<broker-keystore> --from-file=<broker-
truststore>
$ oc secrets add sa/<service-account-name> secret/<secret-name>

6.3. CREATING AN SSL ROUTE

To enable client applications outside your OpenShift cluster to connnect to a broker, you need to create
an SSL Route for the broker Pod. You can expose only SSL-enabled Routes to external clients because
the OpenShift router requires Server Name Indication (SNI) to send traffic to the correct Service.

When you use an application template to deploy a broker on OpenShift Container Platform, you use the 
AMQ_PROTOCOL template parameter to specify the messaging protocols that the broker uses, in a
comma-separated list. Available options are amqp, mqtt, openwire, stomp, and hornetq. If you do not
specify any protocols, all protocols are made available.

For each messaging protocol that the broker uses, OpenShift exposes a dedicated port on the broker
Pod. In addition, OpenShift automatically creates a multiplexed, all protocols port. Client applications
outside OpenShift always use the multiplexed, all protocols port to connect to the broker, regardless of
which of the supported protocols they are using.

Connections to the all protocols port are via a Service that OpenShift automatically creates, and an SSL
Route that you create. A headless service within the broker Pod provides access to the other protocol-
specific ports, which do not have their own Services and Routes that clients can access directly.

The ports that OpenShift exposes for the various AMQ Broker transport protocols are shown in the
following table. Brokers listen on the non-SSL ports for traffic within the OpenShift cluster. Brokers
listen on the SSL-enabled ports for traffic from clients outside OpenShift, if you created your
deployment using an SSL-based (that is, *-ssl.yaml) template.

Table 6.1. Default ports for AMQ Broker transport protocols

AMQ Broker transport protocol Default port

All protocols (OpenWire, AMQP, STOMP, MQTT, and
HornetQ)

61616

All protocols -SSL (OpenWire AMQP, STOMP,
MQTT, and HornetQ)

61617

AMQP 5672

AMQP (SSL) 5671

MQTT 1883

MQTT (SSL) 8883

STOMP 61613

STOMP (SSL) 61612

CHAPTER 6. CONNECTING EXTERNAL CLIENTS TO TEMPLATES-BASED BROKER DEPLOYMENTS

39



Below are some other things to note when creating an SSL Route on your broker Pod:

When you create a Route, setting TLS Termination to Passthrough relays all communication to
AMQ Broker without the OpenShift router decrypting and resending it.

NOTE

Regular HTTP traffic does not require a TLS passthrough Route because the
OpenShift router uses HAProxy, which is an HTTP proxy.

External broker clients must specify the OpenShift router port (443, by default) when setting
the broker URL for SSL connections. When a client connection specifies the OpenShift router
port, the router determines the appropriate port on the broker Pod to which the client traffic
should be directed.

NOTE

By default, the OpenShift router uses port 443. However, the router might be
configured to use a different port number, based on the value specified for the 
ROUTER_SERVICE_HTTPS_PORT environment variable. For more
information, see OpenShift Container Platform Routes .

Including the failover protocol in the broker URL preserves the client connection in case the Pod
is restarted or upgraded, or a disruption occurs on the router.
Both of the previous settings are shown in the example below.

...
factory.setBrokerURL("failover://ssl://<broker-pod-route-name>:443");
...

Additional resources

For a complete example of deploying a broker that supports SSL and of creating an SSL Route
to enable external client access, see Deploying a basic broker with SSL .

For an example of creating Routes for clustered brokers to connect to their own instances of
the AMQ Broker management console, see Creating routes for the AMQ Broker management
console.

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

40

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/architecture/networking#architecture-core-concepts-routes


CHAPTER 7. CUSTOMIZING AMQ BROKER CONFIGURATION
FILES FOR DEPLOYMENT

If you are using a template from an alternative repository, AMQ Broker configuration files such as 
artemis-users.properties can be included. When the image is downloaded for deployment, these files
are copied from <amq-home>/conf/ to the <broker-instance-dir>/etc/ directory on AMQ Broker, which
is committed to the container and pushed to the OpenShift registry.

NOTE

If using this method, ensure that the placeholders in the configuration files (such as 
AUTHENTICATION) are not removed. The placeholders are necessary for building the
AMQ Broker on OpenShift Container Platform image.

CHAPTER 7. CUSTOMIZING AMQ BROKER CONFIGURATION FILES FOR DEPLOYMENT

41



CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT
EXAMPLES

Prerequisites

These procedures assume an OpenShift Container Platform 4.1 instance similar to that created
in OpenShift Container Platform 4.1 Getting Started .

In the AMQ Broker application templates, the values of the AMQ_USER, AMQ_PASSWORD,
AMQ_CLUSTER_USER, AMQ_CLUSTER_PASSWORD, AMQ_TRUSTSTORE_PASSWORD, and
AMQ_KEYSTORE_PASSWORD environment variables are stored in a secret. To learn more
about using and modifying these environment variables when you deploy a template in any of
tutorials that follow, see About sensitive credentials.

The following procedures example how to use application templates to create various deployments of
brokers.

8.1. DEPLOYING A BASIC BROKER WITH SSL

Deploy a basic broker that is ephemeral and supports SSL.

8.1.1. Deploying the image and template

Prerequisites

This tutorial builds upon Preparing a Broker.

Completion of the Deploying a Basic Broker  tutorial is recommended.

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse Catalog to list all of the default image streams and templates.

4. Use the Filter search bar to limit the list to those that match amq. You might need to click See
all to show the desired application template.

5. Select the amq-broker-75-ssl template which is labeled Red Hat AMQ Broker 7.5 (Ephemeral, 
with SSL).

6. Set the following values in the configuration and click Create.

Table 8.1. Example template

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,horne
tq

The protocols to be accepted by the
broker

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/getting_started/


AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates an address (or topic) called
demoTopic. By default, this address
has no assigned routing type.

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWOR
D

AMQ Password password The password the client uses with the
username

AMQ_TRUSTST
ORE

Trust Store
Filename

broker.ts The SSL truststore file name

AMQ_TRUSTST
ORE_PASSWOR
D

Truststore
Password

password The password used when creating the
Truststore

AMQ_KEYSTOR
E

AMQ Keystore
Filename

broker.ks The SSL keystore file name

AMQ_KEYSTOR
E_PASSWORD

AMQ Keystore
Password

password The password used when creating the
Keystore

Environment
variable

Display Name Value Description

8.1.2. Deploying the application

After creating the application, deploy it to create a Pod and start the broker.

Procedure

1. Click Deployments in the OpenShift Container Platform web console.

2. Click the broker-amq deployment.

3. Click Deploy to deploy the application.

4. Click the broker Pod and then click the Logs tab to verify the state of the broker.
If the broker logs have not loaded, and the Pod status shows ErrImagePull or 
ImagePullBackOff, your deployment configuration was not able to directly pull the specified
broker image from the Red Hat Container Registry. In this case, edit your deployment
configuration to reference the correct broker image name and the image pull secret name
associated with the account used for authentication in the Red Hat Container Registry. Then,
you can import the broker image and start the broker. To do this, complete steps similar to
those in Deploy and start the broker application .

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

43



8.1.3. Creating a Route

Create a Route for the broker so that clients outside of OpenShift Container Platform can connect
using SSL. By default, the secured broker protocols are available through the 61617/TCP port. In
addition, there are SSL and non-SSL ports exposed on the broker Pod for each messaging protocol that
the broker supports. However, external client cannot connect directly to these ports on the broker.
Instead, external clients connect to OpenShift via the Openshift router, which determines how to
forward traffic to the appropriate port on the broker Pod.

NOTE

If you scale your deployment up to multiple brokers in a cluster, you must manually create
a Service and a Route for each broker, and then use each Service-and-Route
combination to direct a given client to a given broker, or broker list. For an example of
configuring multiple Services and Routes to connect clustered brokers to their own
instances of the AMQ Broker management console, see Creating Routes for the AMQ
Broker management console.

Prerequisites

Before creating an SSL Route, you should understand how external clients use this Route to
connect to the broker. For more information, see Creating an SSL Route .

Procedure

1. Click Services → broker-amq-tcp-ssl.

2. Click Actions → Create a route.

3. To display the TLS parameters, select the Secure route check box.

4. From the TLS Termination drop-down menu, choose Passthrough. This selection relays all
communication to AMQ Broker without the OpenShift router decrypting and resending it.

5. To view the Route, click Routes. For example:

https://broker-amq-tcp-amq-demo.router.default.svc.cluster.local

This hostname will be used by external clients to connect to the broker using SSL with SNI.

Additional resources

For more information about creating SSL Routes, see Creating an SSL Route .

For more information on Routes in the OpenShift Container Platform, see Routes.

8.2. DEPLOYING A BASIC BROKER WITH PERSISTENCE AND SSL

Deploy a persistent broker that supports SSL. When a broker needs persistence, the broker is deployed
as a StatefulSet and stores messaging data on a persistent volume associated with the broker Pod via a
persistent volume claim. When a broker Pod is created, it uses storage that remains in the event that
you shut down the Pod, or if the Pod shuts down unexpectedly. This configuration means that messages
are not lost, as they would be with a standard deployment.

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

44

https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/routes.html


Prerequisites

This tutorial builds upon Preparing a broker.

Completion of the Deploying a basic broker  tutorial is recommended.

You must have sufficient persistent storage provisioned to your OpenShift cluster to associate
with your broker Pod via a persistent volume claim. For more information, see Understanding
persistent storage.

8.2.1. Deploy the image and template

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project → Browse catalog to list all of the default image streams and templates.

4. Use the Filter search bar to limit the list to those that match amq. You might need to click See
all to show the desired application template.

5. Select the amq-broker-75-persistence-ssl template, which is labelled Red Hat AMQ Broker 
7.5 (Persistence, with SSL).

6. Set the following values in the configuration and click create.

Table 8.2. Example template

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,horne
tq

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates an address (or topic) called
demoTopic. By default, this address
has no assigned routing type.

VOLUME_CAPA
CITY

AMQ Volume
Size

1Gi The persistent volume size created for
the journal

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWOR
D

AMQ Password password The password the client uses with the
username

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

45

https://docs.openshift.com/container-platform/4.1/storage/understanding-persistent-storage.html#persistent-volume-claims_understanding-persistent-storage


AMQ_TRUSTST
ORE

Trust Store
Filename

broker.ts The SSL truststore file name

AMQ_TRUSTST
ORE_PASSWOR
D

Truststore
Password

password The password used when creating the
Truststore

AMQ_KEYSTOR
E

AMQ Keystore
Filename

broker.ks The SSL keystore file name

AMQ_KEYSTOR
E_PASSWORD

AMQ Keystore
Password

password The password used when creating the
Keystore

Environment
variable

Display Name Value Description

8.2.2. Deploy the application

Once the application has been created it needs to be deployed. Deploying the application creates a Pod
and starts the broker.

Procedure

1. Click Stateful Sets in the OpenShift Container Platform web console.

2. Click the broker-amq deployment.

3. Click Deploy to deploy the application.

4. Click the broker Pod and then click the Logs tab to verify the state of the broker. You should
see the queue created via the template.
If the broker logs have not loaded, and the Pod status shows ErrImagePull or 
ImagePullBackOff, your configuration was not able to directly pull the specified broker image
from the Red Hat Container Registry. In this case, edit your deployment configuration to
reference the correct broker image name and the image pull secret name associated with the
account used for authentication in the Red Hat Container Registry. Then, you can import the
broker image and start the broker. To do this, complete steps similar to those in Deploy and
start the broker application.

5. Click the Terminal tab to access a shell where you can use the CLI to send some messages.

sh-4.2$ ./broker/bin/artemis producer --destination queue://demoQueue
Producer ActiveMQQueue[demoQueue], thread=0 Started to calculate elapsed time ...

Producer ActiveMQQueue[demoQueue], thread=0 Produced: 1000 messages
Producer ActiveMQQueue[demoQueue], thread=0 Elapsed time in second : 4 s
Producer ActiveMQQueue[demoQueue], thread=0 Elapsed time in milli second : 4584 milli 
seconds

sh-4.2$ ./broker/bin/artemis consumer  --destination queue://demoQueue

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

46



Consumer:: filter = null
Consumer ActiveMQQueue[demoQueue], thread=0 wait until 1000 messages are consumed
Received 1000
Consumer ActiveMQQueue[demoQueue], thread=0 Consumed: 1000 messages
Consumer ActiveMQQueue[demoQueue], thread=0 Consumer thread finished

Alternatively, use the OpenShift client to access the shell using the Pod name, as shown in the
following example.

// Get the Pod names and internal IP Addresses
oc get pods -o wide

// Access a broker Pod by name
oc rsh <broker-pod-name>

6. Now scale down the broker using the oc command.

$ oc scale statefulset broker-amq --replicas=0
statefulset "broker-amq" scaled

You can use the console to check that the Pod count is 0

7. Now scale the broker back up to 1.

$ oc scale statefulset broker-amq --replicas=1
statefulset "broker-amq" scaled

8. Consume the messages again by using the terminal. For example:

sh-4.2$ broker/bin/artemis consumer --destination queue://demoQueue
Consumer:: filter = null
Consumer ActiveMQQueue[demoQueue], thread=0 wait until 1000 messages are consumed
Received 1000
Consumer ActiveMQQueue[demoQueue], thread=0 Consumed: 1000 messages
Consumer ActiveMQQueue[demoQueue], thread=0 Consumer thread finished

Additional resources

For more information on managing stateful applications, see StatefulSets (external).

8.2.3. Creating a Route

Create a Route for the broker so that clients outside of OpenShift Container Platform can connect
using SSL. By default, the broker protocols are available through the 61617/TCP port.

NOTE

If you scale your deployment up to multiple brokers in a cluster, you must manually create
a Service and a Route for each broker, and then use each Service-and-Route
combination to direct a given client to a given broker, or broker list. For an example of
configuring multiple Services and Routes to connect clustered brokers to their own
instances of the AMQ Broker management console, see Creating routes for the AMQ
Broker management console.

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

47

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/


Prerequisites

Before creating an SSL Route, you should understand how external clients use this Route to
connect to the broker. For more information, see Creating an SSL Route .

Procedure

1. Click Services → broker-amq-tcp-ssl.

2. Click Actions → Create a route.

3. To display the TLS parameters, select the Secure route check box.

4. From the TLS Termination drop-down menu, choose Passthrough. This selection relays all
communication to AMQ Broker without the OpenShift router decrypting and resending it.

5. To view the Route, click Routes. For example:

https://broker-amq-tcp-amq-demo.router.default.svc.cluster.local

This hostname will be used by external clients to connect to the broker using SSL with SNI.

Additional resources

For more information on Routes in the OpenShift Container Platform, see Routes.

8.3. DEPLOYING A SET OF CLUSTERED BROKERS

Deploy a clustered set of brokers where each broker runs in its own Pod.

8.3.1. Distributing messages

Message distribution is configured to use ON_DEMAND. This means that when messages arrive at a
clustered broker, the messages are distributed in a round-robin fashion to any broker that has
consumers.

This message distribution policy safeguards against messages getting stuck on a specific broker while a
consumer, connected either directly or through the OpenShift router, is connected to a different broker.

The redistribution delay is zero by default. If a message is on a queue that has no consumers, it will be
redistributed to another broker.

NOTE

When redistribution is enabled, messages can be delivered out of order.

8.3.2. Deploy the image and template

Prerequisites

This procedure builds upon Preparing a broker.

Completion of the Deploying a basic broker  tutorial is recommended.

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

48

https://docs.openshift.com/container-platform/3.4/architecture/core_concepts/routes.html


Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates

4. Use the Filter search bar to limit the list to those that match amq. Click See all to show the
desired application template.

5. Select the amq-broker-75-persistence-clustered template which is labeled Red Hat AMQ 
Broker 7.5 (no SSL, clustered).

6. Set the following values in the configuration and click create.

Table 8.3. Example template

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,horne
tq

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

AMQ_ADDRESS
ES

Addresses demoTopic Creates an address (or topic) called
demoTopic. By default, this address
has no assigned routing type.

VOLUME_CAPA
CITY

AMQ Volume
Size

1Gi The persistent volume size created for
the journal

AMQ_CLUSTER
ED

Clustered true This needs to be true to ensure the
brokers cluster

AMQ_CLUSTER
_USER

cluster user generated The username the brokers use to
connect with each other

AMQ_CLUSTER
_PASSWORD

cluster password generated The password the brokers use to
connect with each other

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWOR
D

AMQ Password password The password the client uses with the
username

8.3.3. Deploying the application

Once the application has been created it needs to be deployed. Deploying the application creates a Pod

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

49



Once the application has been created it needs to be deployed. Deploying the application creates a Pod
and starts the broker.

Procedure

1. Click Stateful Sets in the OpenShift Container Platform web console.

2. Click the broker-amq deployment.

3. Click Deploy to deploy the application.

NOTE

The default number of replicas for a clustered template is 0. You should not see
any Pods.

4. Scale up the Pods to three to create a cluster of brokers.

$ oc scale statefulset broker-amq --replicas=3
statefulset "broker-amq" scaled

5. Check that there are three Pods running.

$ oc get pods
NAME           READY     STATUS    RESTARTS   AGE
broker-amq-0   1/1       Running   0          33m
broker-amq-1   1/1       Running   0          33m
broker-amq-2   1/1       Running   0          29m

6. If the Pod status shows ErrImagePull or ImagePullBackOff, your deployment was not able to
directly pull the specified broker image from the Red Hat Container Registry. In this case, edit
your Stateful Set to reference the correct broker image name and the image pull secret name
associated with the account used for authentication in the Red Hat Container Registry. Then,
you can import the broker image and start the brokers. To do this, complete steps similar to
those in Deploy and start the broker application .

7. Verify that the brokers have clustered with the new Pod by checking the logs.

$ oc logs broker-amq-2

This shows the logs of the new broker and an entry for a clustered bridge created between the
brokers:

2018-08-29 07:43:55,779 INFO  [org.apache.activemq.artemis.core.server] AMQ221027: 
Bridge ClusterConnectionBridge@1b0e9e9d [name=$.artemis.internal.sf.my-
cluster.4333c830-ab5f-11e8-afb8-0a580a82006e, 
queue=QueueImpl[name=$.artemis.internal.sf.my-cluster.4333c830-ab5f-11e8-afb8-
0a580a82006e, postOffice=PostOfficeImpl 
[server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-0a580a82006c], 
temp=false]@5e0c0398 targetConnector=ServerLocatorImpl (identity=(Cluster-connection-
bridge::ClusterConnectionBridge@1b0e9e9d [name=$.artemis.internal.sf.my-
cluster.4333c830-ab5f-11e8-afb8-0a580a82006e, 
queue=QueueImpl[name=$.artemis.internal.sf.my-cluster.4333c830-ab5f-11e8-afb8-
0a580a82006e, postOffice=PostOfficeImpl 

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

50



[server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-0a580a82006c], 
temp=false]@5e0c0398 targetConnector=ServerLocatorImpl [initialConnectors=
[TransportConfiguration(name=artemis, factory=org-apache-activemq-artemis-core-remoting-
impl-netty-NettyConnectorFactory) ?port=61616&host=10-130-0-110], 
discoveryGroupConfiguration=null]]::ClusterConnectionImpl@806813022[nodeUUID=9cedb69d
-ab5e-11e8-87a4-0a580a82006c, connector=TransportConfiguration(name=artemis, 
factory=org-apache-activemq-artemis-core-remoting-impl-netty-NettyConnectorFactory) ?
port=61616&host=10-130-0-108, address=, 
server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-0a580a82006c])) 
[initialConnectors=[TransportConfiguration(name=artemis, factory=org-apache-activemq-
artemis-core-remoting-impl-netty-NettyConnectorFactory) ?port=61616&host=10-130-0-110], 
discoveryGroupConfiguration=null]] is connected

8.3.4. Creating Routes for the AMQ Broker management console

The clustering templates do not expose the AMQ Broker management console by default. This is
because the OpenShift proxy performs load balancing across each broker in the cluster and it would not
be possible to control which broker console is connected at a given time.

The following example procedure shows how to configure each broker in the cluster to connect to its
own management console instance. You do this by creating a dedicated Service-and-Route
combination for each broker Pod in the cluster.

Prerequisites

You have already deployed a clustered set of brokers, where each broker runs in its own Pod.
See Deploying a set of clustered brokers .

Procedure

1. Create a regular Service for each Pod in the cluster, using a StatefulSet selector to select
between Pods. To do this, deploy a Service template, in .yaml format, that looks like the
following:

apiVersion: v1
kind: Service
metadata:
  annotations:
    description: 'Service for the management console of broker pod XXXX'
  labels:
    app: application2
    application: application2
    template: amq-broker-75-persistence-clustered
  name: amq2-amq-console-XXXX
  namespace: amq75-p-c-ssl-2
spec:
  ports:
    - name: console-jolokia
      port: 8161
      protocol: TCP
      targetPort: 8161
  selector:
    deploymentConfig: application2-amq
    statefulset.kubernetes.io/pod-name: application2-amq-XXXX
  type: ClusterIP

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

51



In the preceding template, replace XXXX with the ordinal value of the broker Pod you want to
associate with the Service. For example, to associate the Service with the first Pod in the
cluster, set XXXX to 0. To associate the Service with the second Pod, set XXXX to 1, and so on.

Save and deploy an instance of the template for each broker Pod in your cluster.

NOTE

In the example template shown above, the selector uses the Kubernetes-defined
Pod name.

2. Create a Route for each broker Pod, so that the AMQ Broker management console can connect
to the Pod.
Click Routes → Create Route.

The Edit Route page opens.

a. In the Services drop-down menu, select the previously created broker Service that you
want to associate the Route with, for example, amq2-amq-console-0.

b. Set Target Port to 8161, to enable access for the AMQ Broker management console.

c. To display the TLS parameters, select the Secure route check box.

i. From the TLS Termination drop-down menu, choose Passthrough.
This selection relays all communication to AMQ Broker without the OpenShift router
decrypting and resending it.

d. Click Create.
When you create a Route associated with one of broker Pods, the resulting .yaml file
includes lines that look like the following:

3. To access the management console for a specific broker instance, copy the host URL shown
above to a web browser.

Additional resources

For more information on the clustering of brokers see Enabling message redistribution.

8.4. DEPLOYING A SET OF CLUSTERED SSL BROKERS

Deploy a clustered set of brokers, where each broker runs in its own Pod and the broker is configured to

spec:
  host: amq2-amq-console-0-amq75-p-c-2.apps-ocp311.example.com
  port:
    targetPort: console-jolokia
  tls:
    termination: passthrough
  to:
    kind: Service
    name: amq2-amq-console-0
    weight: 100
  wildcardPolicy: None

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

52

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/configuring_amq_broker/index#enabling-message-redistribution-configuring


Deploy a clustered set of brokers, where each broker runs in its own Pod and the broker is configured to
accept connections using SSL.

8.4.1. Distributing messages

Message distribution is configured to use ON_DEMAND. This means that when messages arrive at a
clustered broker, the messages are distributed in a round-robin fashion to any broker that has
consumers.

This message distribution policy safeguards against messages getting stuck on a specific broker while a
consumer, connected either directly or through the OpenShift router, is connected to a different broker.

The redistribution delay is non-zero by default. If a message is on a queue that has no consumers, it will
be redistributed to another broker.

NOTE

When redistribution is enabled, messages can be delivered out of order.

8.4.2. Deploying the image and template

Prerequisites

This procedure builds upon Preparing a broker.

Completion of the Deploying a basic broker  example is recommended.

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates.

4. Use the Filter search bar to limit the list to those that match amq. Click See all to show the
desired application template.

5. Select the amq-broker-75-persistence-clustered-ssl template which is labeled Red Hat AMQ 
Broker 7.5 (SSL, clustered).

6. Set the following values in the configuration and click create.

Table 8.4. Example template

Environment
variable

Display Name Value Description

AMQ_PROTOC
OL

AMQ Protocols openwire,amqp,s
tomp,mqtt,horne
tq

The protocols to be accepted by the
broker

AMQ_QUEUES Queues demoQueue Creates an anycast queue called
demoQueue

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

53



AMQ_ADDRESS
ES

Addresses demoTopic Creates an address (or topic) called
demoTopic. By default, this address
has no assigned routing type.

VOLUME_CAPA
CITY

AMQ Volume
Size

1Gi The persistent volume size created for
the journal

AMQ_CLUSTER
ED

Clustered true This needs to be true to ensure the
brokers cluster

AMQ_CLUSTER
_USER

cluster user generated The username the brokers use to
connect with each other

AMQ_CLUSTER
_PASSWORD

cluster password generated The password the brokers use to
connect with each other

AMQ_USER AMQ Username amq-demo-user The username the client uses

AMQ_PASSWOR
D

AMQ Password password The password the client uses with the
username

AMQ_TRUSTST
ORE

Trust Store
Filename

broker.ts The SSL truststore file name

AMQ_TRUSTST
ORE_PASSWOR
D

Truststore
Password

password The password used when creating the
Truststore

AMQ_KEYSTOR
E

AMQ Keystore
Filename

broker.ks The SSL keystore file name

AMQ_KEYSTOR
E_PASSWORD

AMQ Keystore
Password

password The password used when creating the
Keystore

Environment
variable

Display Name Value Description

8.4.3. Deploying the application

Deploy after creating the application. Deploying the application creates a Pod and starts the broker.

Procedure

1. Click Stateful Sets in the OpenShift Container Platform web console.

2. Click the broker-amq deployment.

3. Click Deploy to deploy the application.

NOTE

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

54



NOTE

The default number of replicas for a clustered template is 0, so you will not see
any Pods.

4. Scale up the Pods to three to create a cluster of brokers.

$ oc scale statefulset broker-amq --replicas=3
statefulset "broker-amq" scaled

5. Check that there are three Pods running.

$ oc get pods
NAME           READY     STATUS    RESTARTS   AGE
broker-amq-0   1/1       Running   0          33m
broker-amq-1   1/1       Running   0          33m
broker-amq-2   1/1       Running   0          29m

6. If the Pod status shows ErrImagePull or ImagePullBackOff, your deployment was not able to
directly pull the specified broker image from the Red Hat Container Registry. In this case, edit
your Stateful Set to reference the correct broker image name and the image pull secret name
associated with the account used for authentication in the Red Hat Container Registry. Then,
you can import the broker image and start the brokers. To do this, complete steps similar to
those in Deploy and start the broker application .

7. Verify the brokers have clustered with the new Pod by checking the logs.

$ oc logs broker-amq-2

This shows all the logs of the new broker and an entry for a clustered bridge created between
the brokers, for example:

2018-08-29 07:43:55,779 INFO  [org.apache.activemq.artemis.core.server] AMQ221027: 
Bridge ClusterConnectionBridge@1b0e9e9d [name=$.artemis.internal.sf.my-
cluster.4333c830-ab5f-11e8-afb8-0a580a82006e, 
queue=QueueImpl[name=$.artemis.internal.sf.my-cluster.4333c830-ab5f-11e8-afb8-
0a580a82006e, postOffice=PostOfficeImpl 
[server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-0a580a82006c], 
temp=false]@5e0c0398 targetConnector=ServerLocatorImpl (identity=(Cluster-connection-
bridge::ClusterConnectionBridge@1b0e9e9d [name=$.artemis.internal.sf.my-
cluster.4333c830-ab5f-11e8-afb8-0a580a82006e, 
queue=QueueImpl[name=$.artemis.internal.sf.my-cluster.4333c830-ab5f-11e8-afb8-
0a580a82006e, postOffice=PostOfficeImpl 
[server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-0a580a82006c], 
temp=false]@5e0c0398 targetConnector=ServerLocatorImpl [initialConnectors=
[TransportConfiguration(name=artemis, factory=org-apache-activemq-artemis-core-remoting-
impl-netty-NettyConnectorFactory) ?port=61616&host=10-130-0-110], 
discoveryGroupConfiguration=null]]::ClusterConnectionImpl@806813022[nodeUUID=9cedb69d
-ab5e-11e8-87a4-0a580a82006c, connector=TransportConfiguration(name=artemis, 
factory=org-apache-activemq-artemis-core-remoting-impl-netty-NettyConnectorFactory) ?
port=61616&host=10-130-0-108, address=, 
server=ActiveMQServerImpl::serverUUID=9cedb69d-ab5e-11e8-87a4-0a580a82006c])) 

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

55



[initialConnectors=[TransportConfiguration(name=artemis, factory=org-apache-activemq-
artemis-core-remoting-impl-netty-NettyConnectorFactory) ?port=61616&host=10-130-0-110], 
discoveryGroupConfiguration=null]] is connected

Additional resources

To learn how to configure each broker in the cluster to connect to its own management console
instance, see Creating Routes for the AMQ Broker management console .

For more information about messaging in a broker cluster, see Enabling Message Redistribution.

8.5. DEPLOYING A BROKER WITH CUSTOM CONFIGURATION

Deploy a broker with custom configuration. Although functionality can be obtained by using templates,
broker configuration can be customized if needed.

Prerequisites

This tutorial builds upon Preparing a broker.

Completion of the Deploying a basic broker  tutorial is recommended.

8.5.1. Deploy the image and template

Procedure

1. Navigate to the OpenShift web console and log in.

2. Select the amq-demo project space.

3. Click Add to Project > Browse catalog to list all of the default image streams and templates.

4. Use the Filter search bar to limit results to those that match amq. Click See all to show the
desired application template.

5. Select the amq-broker-75-custom template which is labeled Red Hat AMQ Broker 
7.5(Ephemeral, no SSL).

6. In the configuration, update broker.xml with the custom configuration you would like to use.
Click Create.

NOTE

Use a text editor to create the broker’s XML configuration. Then, cut and paste
confguration details into the broker.xml field.

NOTE

OpenShift Container Platform does not use a ConfigMap object to store the
custom configuration that you specify in the broker.xml field, as is common for
many applications deployed on this platform. Instead, OpenShift temporarily
stores the specified configuration in an environment variable, before transferring
the configuration to a standalone file when the broker container starts.

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

56

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html/using_amq_broker/clustering#enabling_message_redistribution


8.5.2. Deploy the application

Once the application has been created it needs to be deployed. Deploying the application creates a Pod
and starts the broker.

Procedure

1. Click Deployments in the OpenShift Container Platform web console.

2. Click the broker-amq deployment

3. Click Deploy to deploy the application.

8.6. BASIC SSL CLIENT EXAMPLE

Implement a client that sends and receives messages from a broker configured to use SSL, using the
Qpid JMS client.

Prerequisites

This tutorial builds upon Preparing a Broker.

Completion of the Deploying a Basic Broker with SSL  tutorial is recommended.

AMQ JMS Examples

8.6.1. Configuring the client

Create a sample client that can be updated to connect to the SSL broker. The following procedure
builds upon AMQ JMS Examples .

Procedure

1. Add an entry into your /etc/hosts file to map the route name onto the IP address of the
OpenShift cluster:

10.0.0.1 broker-amq-tcp-amq-demo.router.default.svc.cluster.local

2. Update the jndi.properties configuration file to use the route, truststore and keystore created
previously, for example:

connectionfactory.myFactoryLookup = amqps://broker-amq-tcp-amq-
demo.router.default.svc.cluster.local:8443?transport.keyStoreLocation=<keystore-
path>client.ks&transport.keyStorePassword=password&transport.trustStoreLocation=
<truststore-
path>/client.ts&transport.trustStorePassword=password&transport.verifyHost=false

3. Update the jndi.properties configuration file to use the queue created earlier.

queue.myDestinationLookup = demoQueue

4. Execute the sender client to send a text message.

5. Execute the receiver client to receive the text message. You should see:

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

57

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_the_amq_jms_client/examples
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_the_amq_jms_client/examples


Received message: Message Text!

8.7. EXTERNAL CLIENTS USING SUB-DOMAINS EXAMPLE

Expose a clustered set of brokers through a node port and connect to it using the core JMS client. This
enables clients to connect to a set of brokers which are configured using the amq-broker-75-
persistence-clustered-ssl template.

8.7.1. Exposing the brokers

Configure the brokers so that the cluster of brokers are externally available and can be connected to
directly, bypassing the OpenShift router. This is done by creating a route that exposes each pod using its
own hostname.

Prerequisites

Deploying a set of clustered brokers

Procedure

1. Choose import YAML/JSON from Add to Project drop down

2. Enter the following and click create.

apiVersion: v1
kind: Route
metadata:
  labels:
    app: broker-amq
    application: broker-amq
  name: tcp-ssl
spec:
  port:
    targetPort: ow-multi-ssl
  tls:
    termination: passthrough
  to:
    kind: Service
    name: broker-amq-headless
    weight: 100
  wildcardPolicy: Subdomain
  host: star.broker-ssl-amq-headless.amq-demo.svc

NOTE

The important configuration here is the wildcard policy of Subdomain. This
allows each broker to be accessible through its own hostname.

8.7.2. Connecting the clients

Create a sample client that can be updated to connect to the SSL broker. The steps in this procedure
build upon the AMQ JMS Examples .

Procedure

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

58

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_the_amq_jms_client/examples


Procedure

1. Add entries into the /etc/hosts file to map the route name onto the actual IP addresses of the
brokers:

10.0.0.1 broker-amq-0.broker-ssl-amq-headless.amq-demo.svc broker-amq-1.broker-ssl-
amq-headless.amq-demo.svc broker-amq-2.broker-ssl-amq-headless.amq-demo.svc

2. Update the jndi.properties configuration file to use the route, truststore, and keystore created
previously, for example:

connectionfactory.myFactoryLookup = amqps://broker-amq-0.broker-ssl-amq-headless.amq-
demo.svc:443?transport.keyStoreLocation=/home/ataylor/projects/jboss-amq-7-broker-
openshift-
image/client.ks&transport.keyStorePassword=password&transport.trustStoreLocation=/home/at
aylor/projects/jboss-amq-7-broker-openshift-
image/client.ts&transport.trustStorePassword=password&transport.verifyHost=false

3. Update the jndi.properties configuration file to use the queue created earlier.

queue.myDestinationLookup = demoQueue

4. Execute the sender client code to send a text message.

5. Execute the receiver client code to receive the text message. You should see:

Received message: Message Text!

Additional resources

For more information on using the AMQ JMS client, see AMQ JMS Examples .

8.8. EXTERNAL CLIENTS USING PORT BINDING EXAMPLE

Expose a clustered set of brokers through a NodePort and connect to it using the core JMS client. This
enables clients that do not support SNI or SSL. It is used with clusters configured using the amq-broker-
75-persistence-clustered template.

8.8.1. Exposing the brokers

Configure the brokers so that the cluster of brokers are externally available and can be connected to
directly, bypassing the OpenShift router. This is done by creating a service that uses a NodePort to load
balance around the clusters.

Prerequisites

Deploying a set of clustered brokers

Procedure

1. Choose import YAML/JSON from Add to Project drop down.

2. Enter the following and click create.

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

59

https://access.redhat.com/documentation/en-us/red_hat_amq/7.2/html/using_the_amq_jms_client/examples


apiVersion: v1
kind: Service
metadata:
  annotations:
    description: The broker's OpenWire port.
    service.alpha.openshift.io/dependencies: >-
      [{"name": "broker-amq-amqp", "kind": "Service"},{"name":
      "broker-amq-mqtt", "kind": "Service"},{"name": "broker-amq-stomp", "kind":
      "Service"}]
  creationTimestamp: '2018-08-29T14:46:33Z'
  labels:
    application: broker
    template: amq-broker-75-statefulset-clustered
  name: broker-external-tcp
  namespace: amq-demo
  resourceVersion: '2450312'
  selfLink: /api/v1/namespaces/amq-demo/services/broker-amq-tcp
  uid: 52631fa0-ab9a-11e8-9380-c280f77be0d0
spec:
  externalTrafficPolicy: Cluster
  ports:
   -  nodePort: 30001
      port: 61616
      protocol: TCP
      targetPort: 61616
  selector:
    deploymentConfig: broker-amq
  sessionAffinity: None
  type: NodePort
status:
  loadBalancer: {}

NOTE

The NodePort configuration is important. The NodePort is the port in which the
client will access the brokers and the type is NodePort.

8.8.2. Connecting the clients

Create consumers that are round-robinned around the brokers in the cluster using the AMQ broker CLI.

Procedure

1. In a terminal create a consumer and attach it to the IP address where OpenShift is running.

artemis consumer --url tcp://<IP_ADDRESS>:30001 --message-count 100 --destination 
queue://demoQueue

2. Repeat step 1 twice to start another two consumers.

NOTE

You should now have three consumers load balanced across the three brokers.

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

60



3. Create a producer to send messages.

artemis producer --url tcp://<IP_ADDRESS>:30001 --message-count 300 --destination 
queue://demoQueue

4. Verify each consumer receives messages.

Consumer:: filter = null
Consumer ActiveMQQueue[demoQueue], thread=0 wait until 100 messages are consumed
Consumer ActiveMQQueue[demoQueue], thread=0 Consumed: 100 messages
Consumer ActiveMQQueue[demoQueue], thread=0 Consumer thread finished

8.9. MONITORING AMQ BROKER

This tutorial demonstrates how to monitor AMQ Broker.

Prerequisites

This tutorial builds upon Preparing a broker.

Completion of the Deploying a basic broker  tutorial is recommended.

Procedure

1. Get the list of running pods:

$ oc get pods

NAME                 READY     STATUS    RESTARTS   AGE
broker-amq-1-ftqmk   1/1       Running   0          14d

2. Run the oc logs command:

$ oc logs -f broker-amq-1-ftqmk

Running /amq-broker-71-openshift image, version 1.3-5
INFO: Loading '/opt/amq/bin/env'
INFO: Using java '/usr/lib/jvm/java-1.8.0/bin/java'
INFO: Starting in foreground, this is just for debugging purposes (stop process by pressing 
CTRL+C)
...
INFO | Listening for connections at: tcp://broker-amq-1-ftqmk:61616?
maximumConnections=1000&wireFormat.maxFrameSize=104857600
INFO | Connector openwire started
INFO | Starting OpenShift discovery agent for service broker-amq-tcp transport type tcp
INFO | Network Connector DiscoveryNetworkConnector:NC:BrokerService[broker-amq-1-
ftqmk] started
INFO | Apache ActiveMQ 5.11.0.redhat-621084 (broker-amq-1-ftqmk, ID:broker-amq-1-
ftqmk-41433-1491445582960-0:1) started
INFO | For help or more information please see: http://activemq.apache.org
WARN | Store limit is 102400 mb (current store usage is 0 mb). The data directory: 
/opt/amq/data/kahadb only has 9684 mb of usable space - resetting to maximum available 
disk space: 9684 mb

CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES

61



WARN | Temporary Store limit is 51200 mb, whilst the temporary data directory: 
/opt/amq/data/broker-amq-1-ftqmk/tmp_storage only has 9684 mb of usable space - resetting 
to maximum available 9684 mb.

3. Run your query to monitor your broker for MaxConsumers:

$ curl -k -u admin:admin http://console-broker.amq-
demo.apps.example.com/console/jolokia/read/org.apache.activemq.artemis:broker=%22broker
%22,component=addresses,address=%22TESTQUEUE%22,subcomponent=queues,routing-
type=%22anycast%22,queue=%22TESTQUEUE%22/MaxConsumers

{"request":
{"mbean":"org.apache.activemq.artemis:address=\"TESTQUEUE\",broker=\"broker\",compone
nt=addresses,queue=\"TESTQUEUE\",routing-
type=\"anycast\",subcomponent=queues","attribute":"MaxConsumers","type":"read"},"value":-
1,"timestamp":1528297825,"status":200}

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

62



CHAPTER 9. REFERENCE

9.1. CUSTOM RESOURCE DEFINITION CONFIGURATION REFERENCE

A Custom Resource Definition (CRD) is a schema of configuration items that you can modify for a
custom OpenShift object deployed with an Operator. An accompanying Custom Resource (CR) file
enables you to specify values for configuration items in the CRD.

The following sub-sections detail the configuration items available in the broker and addressing CRDs.

9.1.1. Broker CRD configuration reference

The broker Custom Resource Definition (CRD) enables you to configure a broker for deployment in an
OpenShift project. The following table details the items that you can configure.

IMPORTANT

Configuration items marked with an asterisk (*) are required in any corresponding
Custom Resource (CR) that you deploy. If you do not explicitly specify a value for a non-
required item, the configuration uses the default value.

Entry Sub-entry Type Example Default
value

Description

adminUser*  string my_user Automatic
ally-
generated,
random
value

Password required
for connecting to
broker and
management
console.

If you do not
specify a value, the
value is
automatically
generated and
stored in a secret.
The default secret
name has a format
of <Custom 
Resource 
name>-
credentials-
secret. For
example, ex-aao-
credentials-
secret.

CHAPTER 9. REFERENCE

63



adminPassword
*

 string my_passw
ord

Automatic
ally-
generated,
random
value

Password required
for connecting to
broker and
management
console.

If you do not
specify a value, the
value is
automatically
generated and
stored in a secret.
The default secret
name has a format
of <Custom 
Resource 
name>-
credentials-
secret. For
example, ex-aao-
credentials-
secret.

deploymentPlan
*

    Broker
deployment
configuration

 image* string registry.re
dhat.io/am
q7/amq-
broker:late
st

registry.re
dhat.io/am
q7/amq-
broker:7.5

URL of broker
container image to
pull from Red Hat
Container Registry.
The default tag
matches the
broker Operator
version.

Entry Sub-entry Type Example Default
value

Description

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

64



 size* int 2 2 Number of broker
Pods to create in
deployment.

If you a specify a
value of 2 or
greater, your
broker deployment
is clustered by
default. The
cluster user name
and password are
automatically
generated and
stored in the same
secret as 
adminUser and 
adminPassword
, by default.

 requireLogin Boolean true true Specify whether
login credentials
are required to
connect to broker.

 persistenceEna
bled

Boolean false true Specify whether to
use journal storage
via a persistent
volume (PV)
created with a
persistent volume
claim (PVC).

 journalType string aio aio Specify whether to
use asynchronous
I/O (AIO) or non-
blocking I/O
(NIO).

 messageMigrati
on

Boolean true true Specify whether to
migrate messages
upon broker
scaledown.

acceptors.accep
tor

 object   A single acceptor
configuration
instance.

Entry Sub-entry Type Example Default
value

Description

CHAPTER 9. REFERENCE

65



 name* string my_accept
or

Not
specified

Name of acceptor.

 port int 5672 61626 for
the first
acceptor
that you
define.
Default
value
increment
s by 10 for
every
subsequen
t acceptor
that you
define.

Port number to be
used for acceptor
instance.

 protocols string amqp,core all Messaging
protocols to
enable on
acceptor instance.

 sslEnabled Boolean false false Specify whether
SSL is enabled on
acceptor port. If
set to true, look in
secret for data
required to enable
SSL on acceptor.

Entry Sub-entry Type Example Default
value

Description

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

66



 sslSecret string ex-aao-
my_accept
or-secret

Not
specified

Secret where
client truststore
and broker
keystore (base64-
encoded) and 
keyStorePassw
ord and 
trustStorePass
word (non-
encoded) are
stored. If you do
not specify a value
for sslSecret, the
acceptor uses the
default secret. The
default secret
name has a format
of <Custom 
Resource 
name>-
<acceptor 
name>-secret.

 enabledCipherS
uites

string SSL_RSA_
WITH_RC4
_128_SHA,
SSL_DH_a
non_WITH
_3DES_ED
E_CBC_SH
A

Not
specified

Comma-separated
list of cipher suites
to use for SSL
communication.

 enabledProtocol
s

string TLSv1,TLS
v1.1,TLSv1.2

Not
specified

Comma-separated
list of protocols to
use for SSL
communication.

 needClientAuth Boolean true Not
specified

Specify whether
broker informs
client that two-way
SSL is required on
acceptor. This
property overrides 
wantClientAuth.

Entry Sub-entry Type Example Default
value

Description

CHAPTER 9. REFERENCE

67



 wantClientAuth Boolean true Not
specified

Specify whether
broker tells client
that two-way SSL
is requested on
acceptor, but not
required.
Overridden by 
needClientAuth.

 verifyHost Boolean true Not
specified

Specify whether to
compare the
Common Name
(CN) of client’s
SSL certificate to
its host name, to
verify that they
match. This option
applies only when
two-way SSL is
used.

 sslProvider string JDK JDK Specify whether
SSL provider is
JDK or OPENSSL.

 sniHost string some_regu
lar_express
ion

Not
specified

Regular expression
to match against 
server_name
extension on
incoming SSL
connections. If the
names don’t
match, connection
to the acceptor is
rejected.

 expose Boolean true false Specify whether to
expose acceptor
outside OpenShift
Container
Platform

 anycastPrefix string jms.topic. Not
specified

Prefix used by
client to specify
that the anycast
routing type
should be used.

Entry Sub-entry Type Example Default
value

Description

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

68



 multicastPrefix string /queue/ Not
specified

Prefix used by
client to specify
that the multicast
routing type
should be used.

 connectionsAllo
wed

integer 2 0 Number of
connections
allowed on
acceptor. When
this limit is
reached, a 
DEBUG message
is issued to the log,
and the
connection is
refused. The type
of client in use
determines what
happens when the
connection is
refused.

connectors.con
nector

 object   A single connector
configuration
instance.

 name* string my_conne
ctor

N/A Name of
connector

 type string tcp tcp The type of
connector to
create, tcp or vm.

 host* string localhost Not
specified

Host name or IP
address to
connect to.

 port* int 22222 Not
specified

Port number to be
used for connector
instance.

Entry Sub-entry Type Example Default
value

Description

CHAPTER 9. REFERENCE

69



 sslEnabled Boolean false false Specify whether
SSL is enabled on
connector port. If
set to true, look in
secret for data
required to enable
SSL on connector.

 sslSecret string ex-aao-
my_conne
ctor-
secret

Not
specified

Secret where
client truststore
and broker
keystore (base64-
encoded) and 
keyStorePassw
ord and 
trustStorePass
word (non-
encoded) are
stored. If you do
not specify a value
for sslSecret, the
connector uses the
default secret. The
default secret
name has a format
of <Custom 
Resource 
name>-
<connector 
name>-secret.

 enabledCipherS
uites

string SSL_RSA_
WITH_RC4
_128_SHA,
SSL_DH_a
non_WITH
_3DES_ED
E_CBC_SH
A

Not
specified

Comma-separated
list of cipher suites
to use for SSL
communication.

 enabledProtocol
s

string TLSv1,TLS
v1.1,TLSv1.2

Not
specified

Comma-separated
list of protocols to
use for SSL
communication.

Entry Sub-entry Type Example Default
value

Description

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

70



 needClientAuth Boolean true Not
specified

Specify whether
broker informs
client that two-way
SSL is required on
connector. This
property overrides 
wantClientAuth.

 wantClientAuth Boolean true Not
specified

Specify whether
broker informs
client that two-way
SSL is requested
on connector, but
not required.
Overridden by 
needClientAuth.

 verifyHost Boolean true Not
specified

Specify whether to
compare Common
Name (CN) of
client’s SSL
certificate to its
host name, to
verify that they
match. This option
applies only when
two-way SSL is
used.

 sslProvider string JDK JDK Specify whether
SSL provider is 
JDK or 
OPENSSL.

 sniHost string some_regu
lar_express
ion

Not
specified

Regular expression
to match against 
server_name
extension on SSL
connection. If the
names don’t
match, the
connector
connection is
rejected.

Entry Sub-entry Type Example Default
value

Description

CHAPTER 9. REFERENCE

71



 expose Boolean true false Specify whether to
expose connector
outside OpenShift
Container
Platform.

console     Configuration of
broker
management
console.

 expose Boolean true false Specify whether to
expose
management
console port.

 sslEnabled Boolean true false Specify whether to
use SSL on
management
console port.

 sslSecret string ex-aao-
my_consol
e-secret

Not
specified

Secret where
client truststore
and broker
keystore (base64-
encoded) and 
keyStorePassw
ord and 
trustStorePass
word (non-
encoded) are
stored. If you do
not specify a value
for sslSecret, the
console uses the
default secret. The
default secret
name has a format
of <Custom 
Resource 
name>-console-
secret.

 useClientAuth Boolean true false Specify whether
management
console requires
client
authorization.

Entry Sub-entry Type Example Default
value

Description

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

72



9.1.2. Addressing CRD configuration reference

The addressing Custom Resource Definition (CRD) enables you to define addresses and queues and
associated routing types to be created in your broker. The following table details the items that you can
configure.

IMPORTANT

Configuration items marked with an asterisk (*) are required in any corresponding
Custom Resource (CR) that you deploy. If you do not explicitly specify a value for a non-
required item, the configuration uses the default value.

Entry Type Example Default value Description

addressName* string address0 Not specified Address name to be
created in broker.

queueName* string queue0 Not specified Queue name to be
created in broker.

routingType* string anycast Not specified Routing type to be used
- anycast or multicast.

9.2. APPLICATION TEMPLATE PARAMETERS

Configuration of the AMQ Broker on OpenShift Container Platform image is performed by specifying
values of application template parameters. You can configure the following parameters:

Table 9.1. Application template parameters

Parameter Description

AMQ_ADDRESSES Specifies the addresses available by default on the
broker on its startup, in a comma-separated list.

AMQ_ANYCAST_PREFIX Specifies the anycast prefix applied to the
multiplexed protocol ports 61616 and 61617.

AMQ_CLUSTERED Enables clustering.

AMQ_CLUSTER_PASSWORD Specifies the password to use for clustering. The
AMQ Broker application templates use the value of
this parameter stored in the secret named in
AMQ_CREDENTIAL_SECRET.

AMQ_CLUSTER_USER Specifies the cluster user to use for clustering. The
AMQ Broker application templates use the value of
this parameter stored in the secret named in
AMQ_CREDENTIAL_SECRET.

CHAPTER 9. REFERENCE

73



AMQ_CREDENTIAL_SECRET Specifies the secret in which sensitive credentials
such as broker user name/password, cluster user
name/password, and truststore and keystore
passwords are stored.

AMQ_DATA_DIR Specifies the directory for the data. Used in stateful
sets.

AMQ_DATA_DIR_LOGGING Specifies the directory for the data directory logging.

AMQ_EXTRA_ARGS Specifies additional arguments to pass to artemis 
create.

AMQ_GLOBAL_MAX_SIZE Specifies the maximum amount of memory that
message data can consume. If no value is specified,
half of the system’s memory is allocated.

AMQ_KEYSTORE Specifies the SSL keystore file name. If no value is
specified, a random password is generated but SSL
will not be configured.

AMQ_KEYSTORE_PASSWORD (Optional) Specifies the password used to decrypt
the SSL keystore. The AMQ Broker application
templates use the value of this parameter stored in
the secret named in AMQ_CREDENTIAL_SECRET.

AMQ_KEYSTORE_TRUSTSTORE_DIR Specifies the directory where the secrets are
mounted. The default value is /etc/amq-secret-
volume.

AMQ_MAX_CONNECTIONS For SSL only, specifies the maximum number of
connections that an acceptor will accept.

AMQ_MULTICAST_PREFIX Specifies the multicast prefix applied to the
multiplexed protocol ports 61616 and 61617.

AMQ_NAME Specifies the name of the broker instance. The
default value is amq-broker.

AMQ_PASSWORD Specifies the password used for authentication to
the broker. The AMQ Broker application templates
use the value of this parameter stored in the secret
named in AMQ_CREDENTIAL_SECRET.

Parameter Description

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

74



AMQ_PROTOCOL Specifies the messaging protocols used by the
broker in a comma-separated list. Available options
are amqp, mqtt, openwire, stomp, and hornetq. If
none are specified, all protocols are available. Note
that for integration of the image with Red Hat JBoss
Enterprise Application Platform, the OpenWire
protocol must be specified, while other protocols can
be optionally specified as well.

AMQ_QUEUES Specifies the queues available by default on the
broker on its startup, in a comma-separated list.

AMQ_REQUIRE_LOGIN If set to true, login is required. If not specified, or set
to false, anonymous access is permitted. By default,
the value of this parameter is not specified.

AMQ_ROLE Specifies the name for the role created. The default
value is amq.

AMQ_TRUSTSTORE Specifies the SSL truststore file name. If no value is
specified, a random password is generated but SSL
will not be configured.

AMQ_TRUSTSTORE_PASSWORD (Optional) Specifies the password used to decrypt
the SSL truststore. The AMQ Broker application
templates use the value of this parameter stored in
the secret named in AMQ_CREDENTIAL_SECRET.

AMQ_USER Specifies the user name used for authentication to
the broker. The AMQ Broker application templates
use the value of this parameter stored in the secret
named in AMQ_CREDENTIAL_SECRET.

APPLICATION_NAME Specifies the name of the application used internally
within OpenShift. It is used in names of services,
pods, and other objects within the application.

IMAGE Specifies the image. Used in the persistence, 
persistent-ssl, and statefulset-clustered
templates.

IMAGE_STREAM_NAMESPACE Specifies the image stream name space. Used in the 
ssl and basic templates.

OPENSHIFT_DNS_PING_SERVICE_PORT Specifies the port number for the OpenShift DNS
ping service.

Parameter Description

CHAPTER 9. REFERENCE

75



PING_SVC_NAME Specifies the name of the OpenShift DNS ping
service. The default value is 
$APPLICATION_NAME-ping if you have
specified a value for APPLICATION_NAME.
Otherwise, the default value is ping. If you specify a
custom value for PING_SVC_NAME, this value
overrides the default value. If you want to use
templates to deploy multiple broker clusters in the
same OpenShift project namespace, you must
ensure that PING_SVC_NAME has a unique value
for each deployment.

VOLUME_CAPACITY Specifies the size of the persistent storage for
database volumes.

Parameter Description

NOTE

If you use broker.xml for a custom configuration, any values specified in that file for the
following parameters will override values specified for the same parameters in the your
application templates.

AMQ_NAME

AMQ_ROLE

AMQ_CLUSTER_USER

AMQ_CLUSTER_PASSWORD

9.3. LOGGING

In addition to viewing the OpenShift logs, you can troubleshoot a running AMQ Broker on OpenShift
Container Platform image by viewing the AMQ logs that are output to the container’s console.

Procedure

At the command line, run the following command:

$ oc logs -f <pass:quotes[<pod-name>]> <pass:quotes[<container-name>]>

Revised on 2020-06-18 16:02:31 UTC

Red Hat AMQ 7.5 Deploying AMQ Broker on OpenShift

76


	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. VERSION COMPATIBILITY AND SUPPORT
	1.2. UNSUPPORTED FEATURES

	CHAPTER 2. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING AN OPERATOR
	2.1. OVERVIEW OF THE AMQ BROKER OPERATOR
	2.2. OVERVIEW OF CUSTOM RESOURCE DEFINITIONS
	2.2.1. Sample broker Custom Resources

	2.3. INSTALLING THE AMQ BROKER OPERATOR
	2.3.1. Getting the Operator code
	2.3.2. Deploying the Operator

	2.4. DEPLOYING A BASIC BROKER
	2.5. APPLYING CUSTOM RESOURCE CHANGES TO RUNNING BROKER DEPLOYMENTS
	2.6. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS FOR CLIENT CONNECTIONS
	2.6.1. Configuring brokers to accept client connections
	2.6.1.1. Configuring acceptors
	2.6.1.2. Generating credentials for SSL connections
	2.6.1.3. Networking services in your broker deployments

	2.6.2. Connecting a broker to the AMQ Broker management console
	2.6.2.1. Accessing the broker management console
	2.6.2.2. Accessing management console login credentials


	2.7. BROKER DEPLOYMENT EXAMPLES
	2.7.1. Deploying clustered brokers
	2.7.2. Creating queues in a broker cluster

	2.8. MIGRATING MESSAGES UPON SCALEDOWN
	2.9. MANAGING THE BROKER OPERATOR USING THE OPERATOR LIFECYCLE MANAGER
	2.9.1. Overview of the Operator Lifecycle Manager
	2.9.2. Installing the AMQ Broker Operator in OperatorHub


	CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING APPLICATION TEMPLATES
	3.1. INSTALLING THE IMAGE STREAMS AND APPLICATION TEMPLATES
	3.2. PREPARING AN AMQ BROKER DEPLOYMENT
	3.3. DEPLOYING A BASIC BROKER
	3.3.1. Creating the broker application
	3.3.2. About sensitive credentials
	3.3.3. Deploying and starting the broker application


	CHAPTER 4. UPGRADING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
	4.1. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT
	4.1.1. Upgrading the broker container image
	4.1.2. Upgrading the Operator

	4.2. UPGRADING TEMPLATES-BASED BROKER DEPLOYMENTS
	4.2.1. Upgrading non-persistent broker deployments
	4.2.2. Upgrading persistent broker deployments


	CHAPTER 5. HIGH AVAILABILITY
	5.1. HIGH AVAILABILITY OVERVIEW
	5.2. MESSAGE MIGRATION
	5.2.1. Message migration overview
	5.2.1.1. How does message migration work?



	CHAPTER 6. CONNECTING EXTERNAL CLIENTS TO TEMPLATES-BASED BROKER DEPLOYMENTS
	6.1. CONFIGURING SSL
	6.2. GENERATING THE AMQ BROKER SECRET
	6.3. CREATING AN SSL ROUTE

	CHAPTER 7. CUSTOMIZING AMQ BROKER CONFIGURATION FILES FOR DEPLOYMENT
	CHAPTER 8. TEMPLATES-BASED BROKER DEPLOYMENT EXAMPLES
	8.1. DEPLOYING A BASIC BROKER WITH SSL
	8.1.1. Deploying the image and template
	8.1.2. Deploying the application
	8.1.3. Creating a Route

	8.2. DEPLOYING A BASIC BROKER WITH PERSISTENCE AND SSL
	8.2.1. Deploy the image and template
	8.2.2. Deploy the application
	8.2.3. Creating a Route

	8.3. DEPLOYING A SET OF CLUSTERED BROKERS
	8.3.1. Distributing messages
	8.3.2. Deploy the image and template
	8.3.3. Deploying the application
	8.3.4. Creating Routes for the AMQ Broker management console

	8.4. DEPLOYING A SET OF CLUSTERED SSL BROKERS
	8.4.1. Distributing messages
	8.4.2. Deploying the image and template
	8.4.3. Deploying the application

	8.5. DEPLOYING A BROKER WITH CUSTOM CONFIGURATION
	8.5.1. Deploy the image and template
	8.5.2. Deploy the application

	8.6. BASIC SSL CLIENT EXAMPLE
	8.6.1. Configuring the client

	8.7. EXTERNAL CLIENTS USING SUB-DOMAINS EXAMPLE
	8.7.1. Exposing the brokers
	8.7.2. Connecting the clients

	8.8. EXTERNAL CLIENTS USING PORT BINDING EXAMPLE
	8.8.1. Exposing the brokers
	8.8.2. Connecting the clients

	8.9. MONITORING AMQ BROKER

	CHAPTER 9. REFERENCE
	9.1. CUSTOM RESOURCE DEFINITION CONFIGURATION REFERENCE
	9.1.1. Broker CRD configuration reference
	9.1.2. Addressing CRD configuration reference

	9.2. APPLICATION TEMPLATE PARAMETERS
	9.3. LOGGING


