& RedHat

Red Hat AMQ 2020.Q4

Using the AMQ JMS Client

For Use with AMQ Clients 2.8

Last Updated: 2020-10-08

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

For Use with AMQ Clients 2.8

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

CHAPTER1L.OVERVIEW e

11. KEY FEATURES
1.2. SUPPORTED STANDARDS AND PROTOCOLS
1.3. SUPPORTED CONFIGURATIONS
1.4. TERMS AND CONCEPTS
1.5. DOCUMENT CONVENTIONS
The sudo command
File paths
Variable text

CHAPTER 2. INSTALLATION .. e

2.1. PREREQUISITES

2.2. USING THE RED HAT MAVEN REPOSITORY
2.3.INSTALLING A LOCAL MAVEN REPOSITORY
2.4, INSTALLING THE EXAMPLES

CHAPTER3.GETTING STARTEDot

3.1. PREREQUISITES
3.2. RUNNING HELLO WORLD

CHAPTER 4. CONFIGURATION ... e

4.1. CONFIGURING THE JNDI INITIAL CONTEXT
Using a jndi.properties file
Using a system property
Using the initial context API
4.2. CONFIGURING THE CONNECTION FACTORY
4.3. CONNECTION URIS
Failover URIs
SSL/TLS Server Name Indication
4.4, CONFIGURING QUEUE AND TOPIC NAMES
4.5. VARIABLE EXPANSION IN UJNDI PROPERTIES

CHAPTER 5. CONFIGURATION OPTIONS ...,

5.1. JMS OPTIONS
Prefetch policy options
Redelivery policy options
Message ID policy options
Presettle policy options
Deserialization policy options
5.2. TCP OPTIONS
5.3.SSL/TLS OPTIONS
5.4. AMQP OPTIONS
5.5. FAILOVER OPTIONS
5.6. DISCOVERY OPTIONS

CHAPTERG.EXAMPLES ... e

6.1. CONFIGURING THE UNDI CONTEXT
6.2. SENDING MESSAGES
6.3. RECEIVING MESSAGES

CHAPTER7.SECURITY .. i

7.1. ENABLING OPENSSL SUPPORT
7.2. AUTHENTICATING USING KERBEROS

Table of Contents

() I @) N e) M e) B €2 B € B R N 2

¢4}

O 00 0 0

................................. 24

24
24
26

................................. 28

28
28

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

CHAPTER 8. MESSAGE DELIVERY cvvivvvinennnn..

8.1. HANDLING UNACKNOWLEDGED DELIVERIES
Non-transacted producer with an unacknowledged delivery
Transacted producer with an uncommitted transaction
Transacted producer with a pending commit
Non-transacted consumer with an unacknowledged delivery
Transacted consumer with an uncommitted transaction
Transacted consumer with a pending commit

8.2. EXTENDED SESSION ACKNOWLEDGMENT MODES
Individual acknowledge
No acknowledge

CHAPTER O. LOGGING . i i e i e it i et e e n,

9.1. CONFIGURING LOGGING
9.2. ENABLING PROTOCOL LOGGING

CHAPTER10. DISTRIBUTED TRACING ... i i e i et cee e

10.1. ENABLING DISTRIBUTED TRACING

CHAPTER 1L INTEROPERABILITY o i i i e i it

.. INTEROPERATING WITH OTHER AMQP CLIENTS
11.1.1. Sending messages
11.1.1.1. Message type
11.1.1.2. Message properties
11.1.2. Receiving messages
11.1.2.1. Message type
11.1.2.2. Message properties
11.2. CONNECTING TO AMQ BROKER
11.3. CONNECTING TO AMQ INTERCONNECT

APPENDIX A. USING YOUR SUBSCRIPTIONo i et

Al ACCESSING YOUR ACCOUNT

A2. ACTIVATING A SUBSCRIPTION

A.3. DOWNLOADING RELEASE FILES
A.4.REGISTERING YOUR SYSTEM FOR PACKAGES

APPENDIX B. USING RED HAT MAVEN REPOSITORIES i

B.1. USING THE ONLINE REPOSITORY
Adding the repository to your Maven settings
Adding the repository to your POM file

B.2. USING A LOCAL REPOSITORY

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES
C.1. INSTALLING THE BROKER
C.2. STARTING THE BROKER
C.3. CREATING A QUEUE
C.4. STOPPING THE BROKER

30
30
30
30
30
30
30

31

31

31

32
32
32

33
33

35
35
35
35
36
36
36
37
38
38

39
39
39
39
39

41
41
41
42
42

44
44
44
44

Table of Contents

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

CHAPTER 1. OVERVIEW

AMQ JMS is a Java Message Service (JMS) 2.0 client for use in messaging applications that send and
receive AMQP messages.

AMQ JMS is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and
platforms. For an overview of the clients, see AMQ Clients Overview. For information about this release,
see AMQ Clients 2.8 Release Notes.

AMQ JMS is based on the JMS implementation from Apache Qpid. For more information about the JMS
API, see the JMS API| reference and the JMS tutorial.

1.1. KEY FEATURES

JMS 1.1and 2.0 compatible
SSL/TLS for secure communication
Flexible SASL authentication
Automatic reconnect and failover
Ready for use with OSGi containers
Pure-Java implementation

Distributed tracing based on the OpenTracing standard

IMPORTANT

Distributed tracing in AMQ Clients is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process. For more information about the
support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview/.

NOTE

AMQ JMS does not currently support distributed transactions (XA). If your application
requires distributed transactions, it is recommended that you use the AMQ Core Protocol
JMS client.

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ JMS supports the following industry-recognized standards and network protocols:

® Version 2.0 of the Java Message Service API

® Version 1.0 of the Advanced Message Queueing Protocol (AMQP)

® \Version 1.0 of the AMQP JMS Mapping

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/amq_clients_2.8_release_notes/
http://qpid.apache.org/
https://docs.oracle.com/javaee/7/api/index.html?javax/jms/package-summary.html
https://docs.oracle.com/javaee/7/tutorial/jms-concepts001.htm
https://access.redhat.com/support/offerings/techpreview/
https://jcp.org/en/jsr/detail?id=343
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html

CHAPTER 1. OVERVIEW

® Versions 1.0, 1.1,1.2, and 1.3 of the Transport Layer Security (TLS) protocol, the successor to SSL

® Simple Authentication and Security Layer (SASL) mechanisms including ANONYMOUS, PLAIN,
SCRAM, EXTERNAL, and GSSAPI (Kerberos)

® Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS

AMQ JMS supports the OS and language versions listed below. For more information, see Red Hat
AMQ 7 Supported Configurations.

® Red Hat Enterprise Linux 7 and 8 with the following JDKs:

o OpendDK8andTl
o Oracle JDK 8
o IBMJDKS8

® Red Hat Enterprise Linux 6 with the following JDKs:

o OpendDK 8
o Oracle JDK 8
e |BM AIX7.1with IBM JDK 8
® Microsoft Windows 10 Pro with Oracle JDK 8
® Microsoft Windows Server 2012 R2 and 2016 with Oracle JDK 8
® Oracle Solaris 10 and 11 with Oracle JDK 8
AMQ JMS is supported in combination with the following AMQ components and versions:
e All versions of AMQ Broker
® Allversions of AMQ Interconnect

® A-MQ 6 versions 6.2.1 and newer

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

Entity Description

ConnectionFactory An entry point for creating connections.
Connection A channel for communication between two peers on a network. It contains
sessions.

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460
https://access.redhat.com/articles/2791941

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

Entity Description

Session A context for producing and consuming messages. It contains message producers
and consumers.

MessageProducer A channel for sending messages to a destination. It has a target destination.
MessageConsumer A channel for receiving messages from a destination. It has a source destination.
Destination A named location for messages, either a queue or a topic.

Queue A stored sequence of messages.

Topic A stored sequence of messages for multicast distribution.

Message An application-specific piece of information.

AMQ JMS sends and receives messages. Messages are transferred between connected peers using
message producers and consumers. Producers and consumers are established over sessions. Sessions
are established over connections. Connections are created by connection factories.

A sending peer creates a producer to send messages. The producer has a destination that identifies a
target queue or topic at the remote peer. A receiving peer creates a consumer to receive messages.
Like the producer, the consumer has a destination that identifies a source queue or topic at the remote
peer.

A destination is either a queue or a topic. In JMS, queues and topics are client-side representations of
named broker entities that hold messages.

A queue implements point-to-point semantics. Each message is seen by only one consumer, and the
message is removed from the queue after it is read. A topic implements publish-subscribe semantics.
Each message is seen by multiple consumers, and the message remains available to other consumers
afteritis read.

See the JMS tutorial for more information.

1.5. DOCUMENT CONVENTIONS

The sudo command

In this document, sudo is used for any command that requires root privileges. Exercise caution when
using sudo because any changes can affect the entire system. For more information about sudo, see
Using the sudo command.

File paths

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/andrea). On Microsoft Windows, you must use the equivalent Windows paths (for example,
C:\Users\andrea).

Variable text

https://docs.oracle.com/javaee/7/tutorial/jms-concepts001.htm
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-gaining_privileges#sect-Gaining_Privileges-The_sudo_Command

CHAPTER 1. OVERVIEW

This document contains code blocks with variables that you must replace with values specific to your
environment. Variable text is enclosed in arrow braces and styled as italic monospace. For example, in
the following command, replace <project-dir> with the value for your environment:

I $ cd <project-dir>

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ JMS in your environment.

2.1. PREREQUISITES

® You must have a subscription to access AMQ release files and repositories.
® To build programs with AMQ JMS, you must install Apache Maven.

® To use AMQ JMS, you must install Java.

2.2. USING THE RED HAT MAVEN REPOSITORY

Configure your Maven environment to download the client library from the Red Hat Maven repository.

Procedure

1. Add the Red Hat repository to your Maven settings or POM file. For example configuration files,
see Section B.1, “Using the online repository”.

<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>

2. Add the library dependency to your POM file.
<dependency>
<groupld>org.apache.qpid</groupld>
<artifactld>gpid-jms-client</artifactld>

<version>0.53.0.redhat-00001 </version>
</dependency>

The client is now available in your Maven project.

2.3.INSTALLING A LOCAL MAVEN REPOSITORY

As an alternative to the online repository, AMQ JMS can be installed to your local filesystem as a file-
based Maven repository.

Procedure

1. Use your subscription to download the AMQ Clients 2.8.0 JMS Maven repository.zip file.

2. Extract the file contents into a directory of your choosing.
On Linux or UNIX, use the unzip command to extract the file contents.

I $ unzip amg-clients-2.8.0-jms-maven-repository.zip

On Windows, right-click the .zip file and select Extract All.

http://maven.apache.org/

CHAPTER 2. INSTALLATION

3. Configure Maven to use the repository in the maven-repository directory inside the extracted
install directory. For more information, see Section B.2, “Using a local repository”.

2.4.INSTALLING THE EXAMPLES

Procedure

1. Use the git clone command to clone the source repository to a local directory named qpid-jms:
I $ git clone https://github.com/apache/qpid-jms.git gqpid-jms

2. Change to the gpid-jms directory and use the git checkout command to switch to the 0.53.0
branch:

$ cd gpid-jms
$ git checkout 0.53.0

The resulting local directory is referred to as <source-dirs throughout this document.

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

CHAPTER 3. GETTING STARTED

This chapter guides you through the steps to set up your environment and run a simple messaging
program.

3.1. PREREQUISITES

® To build the example, Maven must be configured to use the Red Hat repository or a local
repository.

® You mustinstall the examples.

® You must have a message broker listening for connections on localhost. It must have
anonymous access enabled. For more information, see Starting the broker.

® You must have a queue named queue. For more information, see Creating a queue.

3.2. RUNNING HELLO WORLD

The Hello World example creates a connection to the broker, sends a message containing a greeting to
the queue queue, and receives it back. On success, it prints the received message to the console.

Procedure

1. Use Maven to build the examples by running the following command in the <source-dirs/qpid-
jms-examples directory:

I $ mvn clean package dependency:copy-dependencies -DincludeScope=runtime -DskipTests

The addition of dependency:copy-dependencies results in the dependencies being copied
into the target/dependency directory.

2. Use the java command to run the example.
On Linux or UNIX:

I $ java -cp "target/classes:target/dependency/*" org.apache.qpid.jms.example.HelloWorld

On Windows:

I > java -cp "target\classes;target\dependency*" org.apache.qpid.jms.example.HelloWorld
For example, running it on Linux results in the following output:

$ java -cp "target/classes/:target/dependency/*" org.apache.gpid.jms.example.HelloWorld
Hello world!

The source code for the example is in the <source-dirs/qpid-jms-examples/src/main/java directory.

The JNDI and logging configuration is in the <source-dirs/qpid-jms-examples/src/main/resources
directory.

10

CHAPTER 4. CONFIGURATION

CHAPTER 4. CONFIGURATION

This chapter describes the process for binding the AMQ JMS implementation to your JMS application
and setting configuration options.

JMS uses the Java Naming Directory Interface (JNDI) to register and look up APl implementations and
other resources. This enables you to write code to the JMS API without tying it to a particular

implementation.

Configuration options are exposed as query parameters on the connection URI.

4.1. CONFIGURING THE JNDI INITIAL CONTEXT

JMS applications use a JNDI InitialContext object obtained from an InitialContextFactory to look up
JMS objects such as the connection factory. AMQ JMS provides an implementation of the
InitialContextFactory in the org.apache.qpid.jms.jndi.JmslinitialContextFactory class.

The InitialContextFactory implementation is discovered when the InitialContext object is instantiated:

I javax.naming.Context context = new javax.naming.InitialContext();

To find an implementation, JNDI must be configured in your environment. There are three ways of
achieving this: using a jndi.properties file, using a system property, or using the initial context API.

Using a jndi.properties file
Create a file named jndi.properties and place it on the Java classpath. Add a property with the key
java.naming.factory.initial.

Example: Setting the JNDI initial context factory using a jndi.properties file
I java.naming.factory.initial = org.apache.qgpid.jms.jndi.JmsInitialContextFactory

In Maven-based projects, the jndi.properties file is placed in the <project-dirs/src/main/resources
directory.

Using a system property
Set the java.naming.factory.initial system property.

Example: Setting the JNDI initial context factory using a system property
I $ java -Djava.naming.factory.initial=org.apache.qpid.jms.jndi.Jmslnitial ContextFactory ...

Using the initial context API
Use the JNDI initial context API to set properties programatically.

Example: Setting JNDI properties programatically

Hashtable<Object, Object> env = new Hashtable<>();
env.put("java.naming.factory.initial", "org.apache.qpid.jms.jndi.JmslInitialContextFactory");

InitialContext context = new InitialContext(env);

1

https://docs.oracle.com/javase/7/docs/api/javax/naming/InitialContext.html

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

Note that you can use the same API to set the JNDI properties for connection factories, queues, and
topics.

4.2. CONFIGURING THE CONNECTION FACTORY

The JMS connection factory is the entry point for creating connections. It uses a connection URI that
encodes your application-specific configuration settings.

To set the factory name and connection URI, create a property in the format below. You can store this
configuration in a jndi.properties file or set the corresponding system property.

The JNDI property format for connection factories
I connectionFactory.<lookup-name> = <connection-uri>

For example, this is how you might configure a factory named app1:

Example: Setting the connection factory in a jndi.properties file
I connectionFactory.app1 = amqp://example.net:5672?jms.clientiID=backend
You can then use the JNDI context to look up your configured connection factory using the name app1:

I ConnectionFactory factory = (ConnectionFactory) context.lookup("app1");

4.3. CONNECTION URIS

Connections are configured using a connection URI. The connection URI specifies the remote host, port,
and a set of configuration options, which are set as query parameters. For more information about the
available options, see Chapter 5, Configuration options.

The connection URI format
I <scheme>://<host>:<port>[?<option>=<value>[&<option>=<value>...]]

The scheme is amgqp for unencrypted connections and amqps for SSL/TLS connections.

For example, the following is a connection URI that connects to host example.net at port 5672 and sets
the client ID to backend:

Example: A connection URI
I amaqp://example.net:56727?jms.clientiID=backend

Failover URIs

When failover is configured, the client can reconnect to another server automatically if the connection to
the current server is lost. Failover URIs have the prefix failover: and contain a comma-separated list of
connection URIs inside parentheses. Additional options are specified at the end.

The failover URI format

I failover:(<connection-uri>[,<connection-uri>...])[?7<option>=<value>[&<option>=<value>...]]

12

CHAPTER 4. CONFIGURATION

For example, the following is a failover URI that can connect to either of two hosts, host1 or host2:

Example: A failover URI
I failover:(amgp://host1:5672,amqp://host2:5672) ?jms.clientiID=backend

As with the connection URI example, the client can be configured with a number of different settings
using the URI in a failover configuration. These settings are detailed in Chapter 5, Configuration options,
with the Section 5.5, “Failover options” section being of particular interest.

SSL/TLS Server Name Indication

When the amqps scheme is used to specify an SSL/TLS connection, the host segment from the URI can
be used by the JVM’s TLS Server Name Indication (SNI) extension to communicate the desired server
hostname during a TLS handshake. The SNI extension is automatically included if a fully qualified

domain name (for example, "myhost.mydomain") is specified, but not when an unqualified name (for
example, "myhost") or a bare IP address is used.

4.4. CONFIGURING QUEUE AND TOPIC NAMES
JMS provides the option of using JNDI to look up deployment-specific queue and topic resources.

To set queue and topic names in JNDI, create properties in the following format. Either place this
configuration in a jndi.properties file or set corresponding system properties.

The JNDI property format for queues and topics

queue.<lookup-name> = <queue-name>
topic.<lookup-name> = <topic-name>

For example, the following properties define the names jobs and notifications for two deployment-
specific resources:

Example: Setting queue and topic names in a jndi.properties file

queue.jobs = app1/work-items
topic.natifications = app1/updates

You can then look up the resources by their JNDI names:

Queue queue = (Queue) context.lookup("jobs");
Topic topic = (Topic) context.lookup("notifications");
4.5. VARIABLE EXPANSION IN JNDI PROPERTIES

JNDI property values can contain variables of the form ${<variable-names}. The library resolves the
variable value by searching in order in the following locations:

® Java system properties
® OS environment variables

® The JNDI properties file or environment Hashtable

13

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

For example, on Linux ${HOME} resolves to the HOME environment variable, the current user's home

directory.

A default value can be supplied using the syntax ${<variable-names:-<default-values}. If no value for
<variable-name> is found, the default value is used instead.

14

CHAPTER 5. CONFIGURATION OPTIONS

CHAPTER 5. CONFIGURATION OPTIONS

This chapter lists the available configuration options for AMQ JMS.

JMS configuration options are set as query parameters on the connection URI. For more information,
see Section 4.3, “Connection URIs".

5.1. JMS OPTIONS

These options control the behaviour of JMS objects such as Connection, Session, MessageConsumer,
and MessageProducer.

jms.username

The user name the client uses to authenticate the connection.
jms.password

The password the client uses to authenticate the connection.
jms.clientlD

The client ID that the client applies to the connection.
jms.forceAsyncSend

If enabled, all messages from a MessageProducer are sent asynchronously. Otherwise, only certain
kinds, such as non-persistent messages or those inside a transaction, are sent asynchronously. It is
disabled by default.

jms.forceSyncSend

If enabled, all messages from a MessageProducer are sent synchronously. It is disabled by default.
jms.forceAsyncAcks

If enabled, all message acknowledgments are sent asynchronously. It is disabled by default.
jms.localMessageExpiry

If enabled, any expired messages received by a MessageConsumer are filtered out and not
delivered. It is enabled by default.

jms.localMessagePriority

If enabled, prefetched messages are reordered locally based on their message priority value. It is
disabled by default.

jms.validatePropertyNames
If enabled, message property names are required to be valid Java identifiers. It is enabled by default.
jms.receiveLocalOnly

If enabled, calls to receive with a timeout argument check a consumer’s local message buffer only.
Otherwise, if the timeout expires, the remote peer is checked to ensure there are really no messages.
It is disabled by default.

jms.receiveNoWaitLocalOnly

If enabled, calls to receiveNoWait check a consumer’s local message buffer only. Otherwise, the
remote peer is checked to ensure there are really no messages available. It is disabled by default.

jms.queuePrefix

An optional prefix value added to the name of any Queue created from a Session.
jms.topicPrefix

An optional prefix value added to the name of any Topic created from a Session.

jms.closeTimeout

15

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

The time in milliseconds for which the client waits for normal resource closure before returning. The
default is 60000 (60 seconds).

jms.connectTimeout

The time in milliseconds for which the client waits for connection establishment before returning with
an error. The default is 15000 (15 seconds).

jms.sendTimeout

The time in milliseconds for which the client waits for completion of a synchronous message send
before returning an error. By default the client waits indefinitely for a send to complete.

jms.requestTimeout

The time in milliseconds for which the client waits for completion of various synchronous interactions
like opening a producer or consumer (excluding send) with the remote peer before returning an
error. By default the client waits indefinitely for a request to complete.

jms.clientIDPrefix

An optional prefix value used to generate client ID values when a new Connection is created by the
ConnectionFactory. The default is ID:.

jms.connectionIDPrefix

An optional prefix value used to generate connection ID values when a new Connection is created by
the ConnectionFactory. This connection ID is used when logging some information from the
Connection object, so a configurable prefix can make breadcrumbing the logs easier. The default is
ID:.

jms.populateJMSXUserID

If enabled, populate the JMSXUserID property for each sent message using the authenticated user
name from the connection. It is disabled by default.

jms.awaitClientID

If enabled, a connection with no client ID configured in the URI waits for a client ID to be set
programmatically, or for confirmation that none can be set, before sending the AMQP connection
"open”. It is enabled by default.

jms.useDaemonThread

If enabled, a connection uses a daemon thread for its executor, rather than a non-daemon thread. It
is disabled by default.

jms.tracing

The name of a tracing provider. Supported values are opentracing and noop. The default is noop.

Prefetch policy options
Prefetch policy determines how many messages each MessageConsumer fetches from the remote
peer and holds in a local "prefetch” buffer.

jms.prefetchPolicy.queuePrefetch
The default is 1000.
jms.prefetchPolicy.topicPrefetch
The default is 1000.
jms.prefetchPolicy.queueBrowserPrefetch
The default is 1000.
jms.prefetchPolicy.durableTopicPrefetch
The default is 1000.
jms.prefetchPolicy.all

This can be used to set all prefetch values at once.

16

CHAPTER 5. CONFIGURATION OPTIONS

The value of prefetch can affect the distribution of messages to multiple consumers on a queue or
shared subscription. A higher value can result in larger batches sent at once to each consumer. To
achieve more even round-robin distribution, use a lower value.

Redelivery policy options
Redelivery policy controls how redelivered messages are handled on the client.

jms.redeliveryPolicy.maxRedeliveries

Controls when an incoming message is rejected based on the number of times it has been
redelivered. A value of O indicates that no message redeliveries are accepted. A value of 5 allows a
message to be redelivered five times, and so on. The default is -1, meaning no limit.

jms.redeliveryPolicy.outcome

Controls the outcome applied to a message once it has exceeded the configured maxRedeliveries
value. Supported values are: ACCEPTED, REJECTED, RELEASED, MODIFIED_FAILED and
MODIFIED_FAILED_UNDELIVERABLE. The default value is
MODIFIED_FAILED_UNDELIVERABLE.

Message ID policy options
Message ID policy controls the data type of the message ID assigned to messages sent from the client.
jms.messagelDPolicy.messagelDType

By default, a generated String value is used for the message ID on outgoing messages. Other
available types are UUID, UUID_STRING, and PREFIXED_UUID_STRING.

Presettle policy options
Presettle policy controls when a producer or consumer instance is configured to use AMQP presettled
messaging semantics.

jms.presettlePolicy.presettleAll

If enabled, all producers and non-transacted consumers created operate in presettled mode. It is
disabled by default.

jms.presettlePolicy.presettleProducers
If enabled, all producers operate in presettled mode. It is disabled by default.
jms.presettlePolicy.presettleTopicProducers

If enabled, any producer that is sending to a Topic or TemporaryTopic destination operates in
presettled mode. It is disabled by default.

jms.presettlePolicy.presettleQueueProducers

If enabled, any producer that is sending to a Queue or TemporaryQueue destination operates in
presettled mode. It is disabled by default.

jms.presettlePolicy.presettleTransactedProducers

If enabled, any producer that is created in a transacted Session operates in presettled mode. It is
disabled by default.

jms.presettlePolicy.presettleConsumers
If enabled, all consumers operate in presettled mode. It is disabled by default.
jms.presettlePolicy.presettleTopicConsumers

If enabled, any consumer that is receiving from a Topic or TemporaryTopic destination operates in
presettled mode. It is disabled by default.

jms.presettlePolicy.presettleQueueConsumers

If enabled, any consumer that is receiving from a Queue or TemporaryQueue destination operates
in presettled mode. It is disabled by default.

17

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

Deserialization policy options

Deserialization policy provides a means of controlling which Java types are trusted to be deserialized
from the object stream while retrieving the body from an incoming ObjectMessage composed of
serialized Java Object content. By default all types are trusted during an attempt to deserialize the
body. The default deserialization policy provides URI options that allow specifying a whitelist and a
blacklist of Java class or package names.

jms.deserializationPolicy.whiteList

A comma-separated list of class and package names that should be allowed when deserializing the
contents of an ObjectMessage, unless overridden by blackList. The names in this list are not
pattern values. The exact class or package name must be configured, as in java.util.Map or java.util.
Package matches include sub-packages. The default is to allow all.

jms.deserializationPolicy.blackList

A comma-separated list of class and package names that should be rejected when deserializing the
contents of a ObjectMessage. The names in this list are not pattern values. The exact class or
package name must be configured, as in java.util.Map or java.util. Package matches include sub-
packages. The default is to prevent none.

5.2. TCP OPTIONS

When connected to a remote server using plain TCP, the following options specify the behavior of the
underlying socket. These options are appended to the connection URI along with any other
configuration options.

Example: A connection URI with transport options
I amgp://localhost:56727?jms.clientiID=foo&transport.connectTimeout=30000

The complete set of TCP transport options is listed below.

transport.sendBufferSize
The send buffer size in bytes. The default is 65536 (64 KiB).
transport.receiveBufferSize
The receive buffer size in bytes. The default is 65536 (64 KiB).
transport.trafficClass
The defaultis O.
transport.connectTimeout
The default is 60 seconds.
transport.soTimeout
The defaultiis -1.
transport.soLinger
The defaultiis -1.
transport.tcpKeepAlive
The default is false.
transport.tcpNoDelay
If enabled, do not delay and buffer TCP sends. It is enabled by default.

transport.useEpoll

18

CHAPTER 5. CONFIGURATION OPTIONS

When available, use the native epoll IO layer instead of the NIO layer. This can improve performance.
It is enabled by default.

5.3.SSL/TLS OPTIONS

The SSL/TLS transport is enabled by using the amqps URI scheme. Because the SSL/TLS transport
extends the functionality of the TCP-based transport, all of the TCP transport options are valid on an
SSL/TLS transport URI.

Example: A simple SSL/TLS connection URI
I amgqps://myhost.mydomain:5671

The complete set of SSL/TLS transport options is listed below.

transport.keyStoreLocation

The path to the SSL/TLS key store. If unset, the value of the javax.net.ssl.keyStore system
property is used.

transport.keyStorePassword

The password for the SSL/TLS key store. If unset, the value of the javax.net.ssl.keyStorePassword
system property is used.

transport.trustStoreLocation

The path to the SSL/TLS trust store. If unset, the value of the javax.net.ssl.trustStore system
property is used.

transport.trustStorePassword

The password for the SSL/TLS trust store. If unset, the value of the
javax.net.ssl.trustStorePassword system property is used.

transport.keyStoreType

If unset, the value of the javax.net.ssl.keyStoreType system property is used. If the system
property is unset, the default is JKS.

transport.trustStoreType

If unset, the value of the javax.net.ssl.trustStoreType system property is used. If the system
property is unset, the default is JKS.

transport.storeType

Sets both keyStoreType and trustStoreType to the same value. If unset, keyStoreType and
trustStoreType default to the values specified above.

transport.contextProtocol

The protocol argument used when getting an SSLContext. The defaultis TLS, or TLSv1.2 if using
OpenSSL.

transport.enabledCipherSuites

A comma-separated list of cipher suites to enable. If unset, the context-default ciphers are used. Any
disabled ciphers are removed from this list.

transport.disabledCipherSuites

A comma-separated list of cipher suites to disable. Ciphers listed here are removed from the enabled
ciphers.

transport.enabledProtocols

A comma-separated list of protocols to enable. If unset, the context-default protocols are used. Any
disabled protocols are removed from this list.

19

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

transport.disabledProtocols

A comma-separated list of protocols to disable. Protocols listed here are removed from the enabled
protocol list. The default is SSLv2Hello,SSLv3.

transport.trustAll

If enabled, trust the provided server certificate implicitly, regardless of any configured trust store. It is
disabled by default.

transport.verifyHost

If enabled, verify that the connection hostname matches the provided server certificate. It is enabled
by default.

transport.keyAlias

The alias to use when selecting a key pair from the key store if required to send a client certificate to
the server.

transport.useOpenSSL

If enabled, use native OpenSSL libraries for SSL/TLS connections if available. It is disabled by
default.

For more information, see Section 7.1, “Enabling OpenSSL support”.

5.4. AMQP OPTIONS

The following options apply to aspects of behavior related to the AMQP wire protocol.

amgp.idleTimeout

The time in milliseconds after which the connection is failed if the peer sends no AMQP frames. The
default is 60000 (1 minute).

amgp.vhost

The virtual host to connect to. This is used to populate the SASL and AMQP hostname fields. The
default is the main hostname from the connection URI.

amgp.saslLayer
If enabled, SASL is used when establishing connections. It is enabled by default.
amgqp.saslMechanisms

A comma-separated list of SASL mechanisms the client should allow selection of, if offered by the
server and usable with the configured credentials. The supported mechanisms are EXTERNAL,
SCRAM-SHA-256, SCRAM-SHA-1, CRAM-MD5, PLAIN, ANONYMOUS, and GSSAPI for Kerberos.
The default is to allow selection from all mechanisms except GSSAPI, which must be explicitly
included here to enable.

amqp.maxFrameSize

The maximum AMQP frame size in bytes allowed by the client. This value is advertised to the remote
peer. The default is 1048576 (1 MiB).

amgp.drainTimeout

The time in milliseconds that the client waits for a response from the remote peer when a consumer
drain request is made. If no response is seen in the allotted timeout period, the link is considered
failed and the associated consumer is closed. The default is 60000 (1 minute).

amgp.allowNonSecureRedirects

If enabled, allow AMQP redirects to alternative hosts when the existing connection is secure and the
alternative connection is not. For example, if enabled this would permit redirecting an SSL/TLS
connection to a raw TCP connection. It is disabled by default.

20

CHAPTER 5. CONFIGURATION OPTIONS

5.5. FAILOVER OPTIONS

Failover URIs start with the prefix failover: and contain a comma-separated list of connection URIs
inside parentheses. Additional options are specified at the end. Options prefixed with jms. are applied to
the overall failover URI, outside of parentheses, and affect the Connection object for its lifetime.

Example: A failover URI with failover options

failover:(amgp://host1:5672,amqp://host2:5672)?
jms.clientID=foo&failover.maxReconnectAttempts=20

The individual broker details within the parentheses can use the transport. or amgqp. options defined
earlier. These are applied as each host is connected to.

Example: A failover URI with per-connection transport and AMQP options

failover:(amqp://host1:56727?amqp.option=value,amqp://host2:5672?transport.option=value)?
jms.clientlD=foo

All of the configuration options for failover are listed below.

failover.initialReconnectDelay

The time in milliseconds the client waits before the first attempt to reconnect to a remote peer. The
default is O, meaning the first attempt happens immediately.

failover.reconnectDelay

The time in milliseconds between reconnection attempts. If the backoff option is not enabled, this
value remains constant. The default is 10.

failover.maxReconnectDelay

The maximum time that the client waits before attempting to reconnect. This value is only used when
the backoff feature is enabled to ensure that the delay does not grow too large. The default is 30
seconds.

failover.useReconnectBackOff

If enabled, the time between reconnection attempts grows based on a configured multiplier. It is
enabled by default.

failover.reconnectBackOffMultiplier
The multiplier used to grow the reconnection delay value. The default is 2.0.
failover.maxReconnectAttempts

The number of reconnection attempts allowed before reporting the connection as failed to the
client. The default is -1, meaning no limit.

failover.startupMaxReconnectAttempts

For a client that has never connected to a remote peer before, this option controls how many
attempts are made to connect before reporting the connection as failed. If unset, the value of
maxReconnectAttempts is used.

failover.warnAfterReconnectAttempts
The number of failed reconnection attempts until a warning is logged. The default is 10.
failover.randomize

If enabled, the set of failover URIs is randomly shuffled before attempting to connect to one of
them. This can help to distribute client connections more evenly across multiple remote peers. It is
disabled by default.

21

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

failover.amqgpOpenServerListAction

Controls how the failover transport behaves when the connection "open"” frame from the server
provides a list of failover hosts to the client. Valid values are REPLACE, ADD, or IGNORE. If
REPLACE is configured, all failover URIs other than the one for the current server are replaced with
those provided by the server. If ADD is configured, the URIs provided by the server are added to the
existing set of failover URIs, with deduplication. If IGNORE is configured, any updates from the
server are ignored and no changes are made to the set of failover URIs in use. The default is
REPLACE.

The failover URI also supports defining nested options as a means of specifying AMQP and transport
option values applicable to all the individual nested broker URIs. This is accomplished using the same
transport. and amqp. URI options outlined earlier for a non-failover broker URI but prefixed with
failover.nested.. For example, to apply the same value for the amgqp.vhost option to every broker
connected to you might have a URI like the following:

Example: A failover URI with shared transport and AMQP options

failover:(amgp://host1:5672,amqp://host2:5672)?
jms.clientiID=foo&failover.nested.amqp.vhost=myhost

5.6. DISCOVERY OPTIONS

The client has an optional discovery module that provides a customized failover layer where the broker
URIs to connect to are not given in the initial URI but instead are discovered by interacting with a
discovery agent. There are currently two discovery agent implementations: a file watcher that loads URIs
from a file and a multicast listener that works with ActiveMQ 5.x brokers that are configured to
broadcast their broker addresses for listening clients.

The general set of failover-related options when using discovery are the same as those detailed earlier,
with the main prefix changed from failover. to discovery., and with the nested prefix used to supply URI
options common to all the discovered broker URIs. For example, without the agent URI details, a general
discovery URI might look like the following:

Example: A discovery URI

discovery:(<agent-uri>)?
discovery.maxReconnectAttempts=20&discovery.discovered.jms.clientID=foo

To use the file watcher discovery agent, create an agent URI like the following:

Example: A discovery URI using the file watcher agent
I discovery:(file:///path/to/monitored-file ?updateInterval=60000)

The URI options for the file watcher discovery agent are listed below.

updatelnterval

The time in milliseconds between checks for file changes. The default is 30000 (30 seconds).
To use the multicast discovery agent with an ActiveMQ 5.x broker, create an agent URI like the following:

Example: A discovery URI using the multicast listener agent

22

CHAPTER 5. CONFIGURATION OPTIONS

I discovery:(multicast://default?group=default)

Note that the use of default as the host in the multicast agent URI above is a special value that is
substituted by the agent with the default 239.255.2.3:6155. You can change this to specify the actual IP
address and port in use with your multicast configuration.

The URI option for the multicast discovery agent is listed below.

group
The multicast group used to listen for updates. The default is default.

23

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

CHAPTER 6. EXAMPLES

This chapter demonstrates the use of AMQ JMS through example programs.

For more examples, see the AMQ JMS example suite and the Qpid JMS examples.

6.1. CONFIGURING THE JNDI CONTEXT

Applications using JMS typically use JNDI to obtain the ConnectionFactory and Destination objects
used by the application. This keeps the configuration separate from the program and insulates it from
the particular client implementation.

For the purpose of using these examples, a file named jndi.properties should be placed on the
classpath to configure the JNDI context, as detailed previously.

The contents of the jndi.properties file should match what is shown below, which establishes that the
client’s InitialContextFactory implementation should be used, configures a ConnectionFactory to
connect to a local server, and defines a destination queue named queue.

Configure the InitialContextFactory class to use
java.naming.factory.initial = org.apache.gpid.jms.jndi.JmsinitialContextFactory

Configure the ConnectionFactory
connectionfactory.myFactoryLookup = amqp://localhost:5672

Configure the destination
queue.myDestinationLookup = queue

6.2. SENDING MESSAGES

This example first creates a JNDI Context, uses it to look up a ConnectionFactory and Destination,
creates and starts a Connection using the factory, and then creates a Session. Then a
MessageProducer is created to the Destination, and a message is sent using it. The Connection is
then closed, and the program exits.

A runnable variant of this Sender example is in the <source-dir>/gqpid-jms-examples directory, along
with the Hello World example covered previously in Chapter 3, Getting started.

Example: Sending messages

package org.jboss.amqg.example;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;
import javax.jms.DeliveryMode;
import javax.jms.Destination;

import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageProducer;
import javax.jms.Session;

import javax.jms.TextMessage;
import javax.naming.Context;
import javax.naming.InitialContext;

24

https://github.com/amqphub/equipage/tree/master/qpid-jms
https://github.com/apache/qpid-jms/tree/0.53.0/qpid-jms-examples

1]
2]
©

QDO

CHAPTER 6. EXAMPLES

public class Sender {
public static void main(String[] args) throws Exception {

try {
Context context = new InitialContext(); ﬂ

ConnectionFactory factory = (ConnectionFactory) context.lookup("myFactoryLookup");
Destination destination = (Destination) context.lookup("myDestinationLookup™);
Connection connection = factory.createConnection("<username>", "<password>");
connection.setExceptionListener(new MyExceptionListener());

connection.start(); 6

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); ﬂ
MessageProducer messageProducer = session.createProducer(destination); 6

TextMessage message = session.createTextMessage("Message Text!"); G
messageProducer.send(message, DeliveryMode.NON_PERSISTENT,
Message.DEFAULT_PRIORITY, Message.DEFAULT_TIME_TO_LIVE); ﬂ

connection.close(); 9
} catch (Exception exp) {
System.out.printin("Caught exception, exiting.");
exp.printStackTrace(System.out);
System.exit(1);
}
}

private static class MyExceptionListener implements ExceptionListener {
@Override
public void onException(JMSException exception) {
System.out.printin("Connection ExceptionListener fired, exiting.");
exception.printStackTrace(System.out);
System.exit(1);
}
}
}

Creates the JNDI Context to look up ConnectionFactory and Destination objects. The
configuration is picked up from the jndi.properties file as detailed earlier.

The ConnectionFactory and Destination objects are retrieved from the JNDI Context using their
lookup names.

The factory is used to create the Connection, which then has an ExceptionListener registered and
is then started. The credentials given when creating the connection will typically be taken from an
appropriate external configuration source, ensuring they remain separate from the application

itself and can be updated independently.

A non-transacted, auto-acknowledge Session is created on the Connection.

The MessageProducer is created to send messages to the Destination.

A TextMessage is created with the given content.

25

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

Q The TextMessage is sent. It is sent non-persistent, with default priority and no expiration.

@ The Connection is closed. The Session and MessageProducer are closed implicitly.

Note that this is only an example. A real-world application would typically use a long-lived
MessageProducer and send many messages using it over time. Opening and then closing a Connection,
Session, and MessageProducer per message is generally not efficient.

6.3. RECEIVING MESSAGES

This example starts by creating a JNDI Context, using it to look up a ConnectionFactory and
Destination, creating and starting a Connection using the factory, and then creates a Session. Then a
MessageConsumer is created for the Destination, a message is received using it, and its contents are
printed to the console. The Connection is then closed and the program exits. The same JNDI
configuration is used as in the sending example.

An executable variant of this Receiver example is contained within the examples directory of the client
distribution, along with the Hello World example covered previously in Chapter 3, Getting started.

Example: Receiving messages

package org.jboss.amqg.example;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;
import javax.jms.Destination;

import javax.jms.ExceptionListener;
import javax.jms.JMSException;
import javax.jms.Message;

import javax.jms.MessageConsumer;
import javax.jms.Session;

import javax.jms.TextMessage;
import javax.naming.Context;

import javax.naming.InitialContext;

public class Receiver {
public static void main(String[] args) throws Exception {
try {
Context context = new InitialContext(); ﬂ

ConnectionFactory factory = (ConnectionFactory) context.lookup("myFactoryLookup");
Destination destination = (Destination) context.lookup("myDestinationLookup™);

Connection connection = factory.createConnection("<usernames", "<password>");
connection.setExceptionListener(new MyExceptionListener());

connection.start(); 6

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE); ﬂ

MessageConsumer messageConsumer = session.createConsumer(destination); 9

Message message = messageConsumer.receive(5000); G

if (message == null) {a

26

O ® o

o -

o

CHAPTER 6. EXAMPLES

System.out.printin("A message was not received within given time.");
} else {
System.out.printin("Received message: " + ((TextMessage) message).getText());

}

connection.close(); 9
} catch (Exception exp) {
System.out.printin("Caught exception, exiting.");
exp.printStackTrace(System.out);
System.exit(1);
}
}

private static class MyExceptionListener implements ExceptionListener {
@Override
public void onException(JMSException exception) {
System.out.printin("Connection ExceptionListener fired, exiting.");
exception.printStackTrace(System.out);
System.exit(1);
}
}
}

Creates the JNDI Context to look up ConnectionFactory and Destination objects. The
configuration is picked up from the jndi.properties file as detailed earlier.

The ConnectionFactory and Destination objects are retrieved from the JNDI Context using their

lookup names.

The factory is used to create the Connection, which then has an ExceptionListener registered and

is then started. The credentials given when creating the connection will typically be taken from an
appropriate external configuration source, ensuring they remain separate from the application
itself and can be updated independently.

A non-transacted, auto-acknowledge Session is created on the Connection.

The MessageConsumer is created to receive messages from the Destination.

A call to receive a message is made with a five second timeout.

The result is checked, and if a message was received, its contents are printed, or notice that no
message was received. The result is cast explicitly to TextMessage as this is what we know the

Sender sent.

The Connection is closed. The Session and MessageConsumer are closed implicitly.

Note that this is only an example. A real-world application would typically use a long-lived
MessageConsumer and receive many messages using it over time. Opening and then closing a
Connection, Session, and MessageConsumer for each message is generally not efficient.

27

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

CHAPTER 7. SECURITY

AMQ JMS has a range of security-related configuration options that can be leveraged according to your
application’s needs.

Basic user credentials such as username and password should be passed directly to the
ConnectionFactory when creating the Connection within the application. However, if you are using the
no-argument factory method, it is also possible to supply user credentials in the connection URI. For
more information, see the Section 5.1, “"JMS options” section.

Another common security consideration is use of SSL/TLS. The client connects to servers over an
SSL/TLS transport when the amqps URI scheme is specified in the connection URI, with various options
available to configure behavior. For more information, see the Section 5.3, “SSL/TLS options” section.

In concert with the earlier items, it may be desirable to restrict the client to allow use of only particular
SASL mechanisms from those that may be offered by a server, rather than selecting from all it supports.
For more information, see the Section 5.4, "AMQP options” section.

Applications calling getObject() on a received ObjectMessage may wish to restrict the types created
during deserialization. Note that message bodies composed using the AMQP type system do not use the
ObjectinputStream mechanism and therefore do not require this precaution. For more information, see
the the section called “Deserialization policy options” section.

7.1. ENABLING OPENSSL SUPPORT

SSL/TLS connections can be configured to use a native OpenSSL implementation for improved
performance. To use OpenSSL, the transport.useOpenSSL option must be enabled, and an OpenSSL
support library must be available on the classpath.

To use the system-installed OpenSSL libraries on Red Hat Enterprise Linux, install the openssl and apr
RPM packages and add the following dependency to your POM file:

Example: Adding native OpenSSL support

<dependency>
<groupld>io.netty</groupld>
<artifactld>netty-tcnative</artifactld>
<version>2.0.31.Final-redhat-00001</version>
<classifier>linux-x86_64-fedora</classifier>
</dependency>

A list of OpenSSL library implementations is available from the Netty project.

7.2. AUTHENTICATING USING KERBEROS

The client can be configured to authenticate using Kerberos when used with an appropriately configured
server. To enable Kerberos, use the following steps.

1. Configure the client to use the GSSAPI mechanism for SASL authentication using the
amgqp-saslMechanisms URI option.

amqp://myhost:5672?amqp.sasiMechanisms=GSSAPI
failover:(amqgp://myhost:5672?amqp.sasIMechanisms=GSSAPI)

28

https://netty.io/wiki/forked-tomcat-native.html

CHAPTER 7. SECURITY

2. Set the java.security.auth.login.config system property to the path of a JAAS login
configuration file containing appropriate configuration for a Kerberos LoginModule.

I -Djava.security.auth.login.config=<login-config-file>

The login configuration file might look like the following example:

amgp-jms-client {
com.sun.security.auth.module.Krb5LoginModule required
useTicketCache=true;

1

The precise configuration used will depend on how you wish the credentials to be established for the
connection, and the particular LoginModule in use. For details of the Oracle Krb5LoginModule, see the
Oracle Krb5LoginModule class reference. For details of the IBM Java 8 Krb5LoginModule, see the
IBM Krb5LoginModule class reference.

It is possible to configure a LoginModule to establish the credentials to use for the Kerberos process,
such as specifying a principal and whether to use an existing ticket cache or keytab. If, however, the
LoginModule configuration does not provide the means to establish all necessary credentials, it may
then request and be passed the username and password values from the client Connection object if
they were either supplied when creating the Connection using the ConnectionFactory or previously
configured via its URI options.

Note that Kerberos is supported only for authentication purposes. Use SSL/TLS connections for
encryption.

The following connection URI options can be used to influence the Kerberos authentication process.

sasl.options.configScope

The name of the login configuration entry used to authenticate. The default is amqp-jms-client.
sasl.options.protocol

The protocol value used during the GSSAPI SASL process. The default is amqp.
sasl.options.serverName

The serverName value used during the GSSAPI SASL process. The default is the server hostname
from the connection URL.

Similar to the amgqp. and transport. options detailed previously, these options must be specified on a
per-host basis or as all-host nested options in a failover URI.

29

https://docs.oracle.com/javase/8/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.api.doc/jgss/com/ibm/security/auth/module/Krb5LoginModule.html

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

CHAPTER 8. MESSAGE DELIVERY

8.1. HANDLING UNACKNOWLEDGED DELIVERIES

Messaging systems use message acknowledgment to track if the goal of sending a message is truly
accomplished.

When a message is sent, there is a period of time after the message is sent and before it is
acknowledged (the message is "in flight"). If the network connection is lost during that time, the status
of the message delivery is unknown, and the delivery might require special handling in application code
to ensure its completion.

The sections below describe the conditions for message delivery when connections fail.

Non-transacted producer with an unacknowledged delivery
If a message is in flight, it is sent again after reconnect, provided a send timeout is not set and has not
elapsed.

No user action is required.

Transacted producer with an uncommitted transaction

If a message is in flight, it is sent again after reconnect. If the send is the first in a new transaction, then
sending continues as normal after reconnect. If there are previous sends in the transaction, then the
transaction is considered failed, and any subsequent commit operation throws a
TransactionRolledBackException.

To ensure delivery, the user must resend any messages belonging to a failed transaction.

Transacted producer with a pending commit
If a commit is in flight, then the transaction is considered failed, and any subsequent commit operation
throws a TransactionRolledBackException.

To ensure delivery, the user must resend any messages belonging to a failed transaction.

Non-transacted consumer with an unacknowledged delivery
If a message is received but not yet acknowledged, then acknowledging the message produces no error
but results in no action by the client.

Because the received message is not acknowledged, the producer might resend it. To avoid duplicates,
the user must filter out duplicate messages by message ID.

Transacted consumer with an uncommitted transaction
If an active transaction is not yet committed, it is considered failed, and any pending acknowledgments
are dropped. Any subsequent commit operation throws a TransactionRolledBackException.

The producer might resend the messages belonging to the transaction. To avoid duplicates, the user
must filter out duplicate messages by message ID.

Transacted consumer with a pending commit
If a commit is in flight, then the transaction is considered failed. Any subsequent commit operation

throws a TransactionRolledBackException.

The producer might resend the messages belonging to the transaction. To avoid duplicates, the user
must filter out duplicate messages by message ID.

30

CHAPTER 8. MESSAGE DELIVERY

8.2. EXTENDED SESSION ACKNOWLEDGMENT MODES

The client supports two additional session acknowledgement modes beyond those defined in the JMS
specification.

Individual acknowledge

In this mode, messages must be acknowledged individually by the application using the
Message.acknowledge() method used when the session isin CLIENT_ACKNOWLEDGE mode. Unlike
with CLIENT_ACKNOWLEDGE mode, only the target message is acknowledged. All other delivered
messages remain unacknowledged. The integer value used to activate this mode is 101.

I connection.createSession(false, 101);

No acknowledge

In this mode, messages are accepted at the server before being dispatched to the client, and no
acknowledgment is performed by the client. The client supports two integer values to activate this
mode, 100 and 257.

I connection.createSession(false, 100);

31

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

CHAPTER 9. LOGGING

9.1. CONFIGURING LOGGING

The client uses the SLF4J API, enabling users to select a particular logging implementation based on
their needs. For example, users can provide the s/f4j-log4j binding to select the Log4J implementation.
More details on SLF4J are available from its website.

The client uses Logger names residing within the org.apache.qpid.jms hierarchy, which you can use to
configure a logging implementation based on your needs.

9.2. ENABLING PROTOCOL LOGGING

When debugging, it is sometimes useful to enable additional protocol trace logging from the Qpid
Proton AMQP 1.0 library. There are two ways to achieve this.

® Set the environment variable (not the Java system property) PN_TRACE_FRM to 1. When the
variable is set to 1, Proton emits frame logging to the console.

® Add the option amqp.traceFrames=true to your connection URI and configure the
org.apache.qpid.jms.provider.amqp.FRAMES logger to log level TRACE. This adds a
protocol tracer to Proton and includes the output in your logs.

You can also configure the client to emit low-level tracing of input and output bytes. To enable this, add

the option transport.traceBytes=true to your connection URI and configure the
org.apache.qpid.jms.transports.netty.NettyTcpTransport logger to log level DEBUG.

32

http://www.slf4j.org
http://www.slf4j.org/

CHAPTER10. DISTRIBUTED TRACING

CHAPTER10. DISTRIBUTED TRACING

The client offers distributed tracing based on the Jaeger implementation of the OpenTracing standard.

10.1. ENABLING DISTRIBUTED TRACING

Use the following steps to enable tracing in your application:

Procedure

1. Add the Jaeger client dependency to your POM file.

<dependency>
<groupld>io.jaegertracing</groupld>
<artifactld>jaeger-client</artifactld>
<version>${jaeger-version}</version>
</dependency>

${jaeger-version} must be 1.0.0 or later.
2. Add the jms.tracing option to your connection URI. Set the value to opentracing.

Example: A connection URI with tracing enabled
I amqps://example.net?jms.tracing=opentracing

3. Register the global tracer.

Example: Global tracer registration

import io.jaegertracing.Configuration;
import io.opentracing.Tracer;
import io.opentracing.util.GlobalTracer;

public class Example {
public static void main(String[] args) {
Tracer tracer = Configuration.fromEnv("<service-name>").getTracer();
GlobalTracer.registerlfAbsent(tracer);

/...

4. Configure your environment for tracing.

Example: Tracing configuration

$ export JAEGER_SAMPLER_TYPE=const
$ export JAEGER_SAMPLER_PARAM=1
$ java -jar example.jar net.example.Example

The configuration shown here is for demonstration purposes. For more information about
Jaeger configuration, see Configuration via Environment and Jaeger Sampling.

33

https://github.com/jaegertracing/jaeger-client-java/tree/master/jaeger-core#configuration-via-environment
https://www.jaegertracing.io/docs/latest/sampling/

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

To view the traces your application captures, use the Jaeger Getting Started to run the Jaeger
infrastructure and console.

34

https://www.jaegertracing.io/docs/latest/getting-started/

CHAPTER 1. INTEROPERABILITY

CHAPTER 1. INTEROPERABILITY

This chapter discusses how to use AMQ JMS in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

11.1. INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. Having this common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other. This section
serves to document behaviour around the AMQP payloads sent and received by the client in relation to
the various JMS Message types used, to aid in using the client along with other AMQP clients.

11.1.1. Sending messages

This section serves to document the different payloads sent by the client when using the various JMS
Message types, so as to aid in using other clients to receive them.

11.1.1.1. Message type

JMS message type Description of transmitted AMQP message

TextMessage A TextMessage will be sent using an amgp-value body section containing a utf8
encoded string of the body text, omullif no body text is set. The message
annotation with symbol key of “x-opt-jms-msg-type” will be set to abyte value of
5.

BytesMessage A BytesMessage will be sent using a data body section containing the raw bytes
from the BytesMessage body, with the properties section content-type field set
to the symbol value “application/octet-stream”. The message annotation with
symbol key of “x-opt-jms-msg-type” will be set to abyte value of 3.

MapMessage A MapMessage body will be sent using an amgp-value body section containing a
single map value. Any byte[] values in the MapMessage body will be encoded as
binary entries in the map. The message annotation withsymbol key of “x-opt-
jms-msg-type” will be set to a byte value of 2.

StreamMessage A StreamMessage will be sent using an amgp-sequence body section containing
the entries in the StreamMessage body. Any byte[] entries in the StreamMessage
body will be encoded as binary entries in the sequence. The message annotation
with symbol key of “x-opt-jms-msg-type” will be set to abyte value of 4.

ObjectMessage An ObjectMessage will be sent using an data body section, containing the bytes
from serializing the ObjectMessage body using an ObjectOutputStream, with the
properties section content-type field set to the symbol value “application/x-java-
serialized-object”. The message annotation withsymbol key of “x-opt-jms-msg-
type” will be set to a byte value of 1.

Message A plain JMS Message has no body, and will be sent as an amgp-value body
section containing a null. The message annotation withsymbol key of “x-opt-jms-
msg-type” will be set to a byte value of O.

35

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#section-message-format
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-sequence
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

11.1.1.2. Message properties

JMS messages support setting application properties of various Java types. This section serves to show
the mapping of these property types to AMQP typed values in the application-properties section of the
sent message. Both JMS and AMQP use string keys for property names.

JMS property type AMQP application property type

boolean boolean
byte byte

short short

int int

long long

float float
double double
String string or null

11.1.2. Receiving messages

This section serves to document the different payloads received by the client will be mapped to the
various JMS Message types, so as to aid in using other clients to send messages for receipt by the JMS
client.

11.1.2.1. Message type

If the the “x-opt-jms-msg-type” message-annotation is present on the received AMQP message, its
value is used to determine the JMS message type used to represent it, according to the mapping
detailed in the following table. This reflects the reverse process of the mappings discussed for messages
sent by the JMS client.

AMQP “x-opt-jms-msg-type” message-annotation value (type) JMS message type
0 (byte) Message

1 (byte) ObjectMessage

2 (byte) MapMessage

3 (byte) BytesMessage

4 (byte) StreamMessage

36

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-application-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oracle.com/javaee/7/api/javax/jms/Message.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html

CHAPTER 1. INTEROPERABILITY

AMQP “x-opt-jms-msg-type” message-annotation value (type) JMS message type

5 (byte) TextMessage

If the “x-opt-jms-msg-type” message-annotation is not present, the table below details how the
message will be mapped to a JMS Message type. Note that the StreamMessage and MapMessage
types are only assigned to annotated messages.

Description of Received AMQP Message without “x-opt-jms-msg-type” JMS Message Type

annotation

) o) TextMessage
® Anamgp-value body section containing astring or null.

o A databody section, with theproperties section content-type field set to
a symbol value representing a common textual media type such as

non

"text/plain", "application/xml", or "application/json”.

) o) BytesMessage
® Anamgp-value body section containing abinary.

o A databody section, with theproperties section content-type field either

not set, set to symbol value "application/octet-stream”, or set to any
value not understood to be associated with another message type.

. . . .) ObjectMessage
o A databody section, with theproperties section content-type field set to

symbol value “application/x-java-serialized-object".
® Anamgp-value body section containing a value not covered above.

® Anamgp-sequence body section. This will be represented as a List inside
the ObjectMessage.

11.1.2.2. Message properties

This section serves to show the mapping of values in the application-properties section of the received
AMQP message to Java types used in the JMS Message.

AMQP application property Type JMS property type

boolean boolean
byte byte
short short
int int

37

http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/StreamMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/MapMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-data
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-value
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-amqp-sequence
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-messaging-v1.0-os.html#type-application-properties
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

AMQP application property Type JMS property type

long long
float float
double double
string String
null String

11.2. CONNECTING TO AMQ BROKER

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the
broker is configured for AMQP messaging:

® Port 5672 in the network firewall is open.
® The AMQ Broker AMQP acceptor is enabled. See Default acceptor settings.
® The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

® The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

11.3. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly:

® Port 5672 in the network firewall is open.

® The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Securing network connections.

38

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#default-acceptor-settings-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/configuring_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/using_amq_interconnect/#securing-network-connections-router-rhel

APPENDIX A. USING YOUR SUBSCRIPTION

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

A.1. ACCESSING YOUR ACCOUNT

Procedure

1. Go to access.redhat.com.
2. If you do not already have an account, create one.

3. Login to your account.

A.2. ACTIVATING A SUBSCRIPTION

Procedure

1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscriptionand enter your 16-digit activation number.

A.3. DOWNLOADING RELEASE FILES

To access .zip, .tar.gz, and other release files, use the customer portal to find the relevant files for
download. If you are using RPM packages or the Red Hat Maven repository, this step is not required.

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQentries in the INTEGRATION AND AUTOMATION category.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

To install RPM packages for this product on Red Hat Enterprise Linux, your system must be registered. If
you are using downloaded release files, this step is not required.

Procedure

1. Go to access.redhat.com.
2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

39

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

4. Use the listed command in your system terminal to complete the registration.
For more information about registering your system, see one of the following resources:

® Red Hat Enterprise Linux 6 - Registering the system and managing subscriptions

® Red Hat Enterprise Linux 7 - Registering the system and managing subscriptions

® Red Hat Enterprise Linux 8 - Registering the system and managing subscriptions

40

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html-single/deployment_guide/index#chap-Subscription_and_Support-Registering_a_System_and_Managing_Subscriptions
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#chap-Subscription_and_Support-Registering_a_System_and_Managing_Subscriptions
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#registering-the-system-and-managing-subscriptions_getting-started-with-system-administration

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

This section describes how to use Red Hat-provided Maven repositories in your software.

B.1. USING THE ONLINE REPOSITORY

Red Hat maintains a central Maven repository for use with your Maven-based projects. For more
information, see the repository welcome page.

There are two ways to configure Maven to use the Red Hat repository:
® Add the repository to your Maven settings
® Add the repository to your POM file

Adding the repository to your Maven settings
This method of configuration applies to all Maven projects owned by your user, as long as your POM file
does not override the repository configuration and the included profile is enabled.

Procedure

1. Locate the Maven settings.xml file. It is usually inside the .m2 directory in the user home
directory. If the file does not exist, use a text editor to create it.
On Linux or UNIX:

I /home/<username>/.m2/settings.xml

On Windows:
I C:\Users\<username>\.m2\settings.xml

2. Add a new profile containing the Red Hat repository to the profiles element of the
settings.xml file, as in the following example:

Example: A Maven settings.xml file containing the Red Hat repository

<settings>
<profiles>
<profile>
<id>red-hat</id>
<repositories>
<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>

41

https://access.redhat.com/maven-repository

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<activeProfile>red-hat</activeProfile>
</activeProfiles>
</settings>

For more information about Maven configuration, see the Maven settings reference.

Adding the repository to your POM file
To configure a repository directly in your project, add a new entry to the repositories element of your
POM file, as in the following example:

Example: A Maven pom.xml file containing the Red Hat repository

<project>
<modelVersion>4.0.0</modelVersion>

<groupld>com.example</groupld>
<artifactld>example-app</artifactid>
<version>1.0.0</version>

<repositories>
<repository>
<id>red-hat-ga</id>
<url>https://maven.repository.redhat.com/ga</url>
</repository>
</repositories>
</project>

For more information about POM file configuration, see the Maven POM reference.

B.2. USING A LOCAL REPOSITORY

Red Hat provides file-based Maven repositories for some of its components. These are delivered as
downloadable archives that you can extract to your local filesystem.

To configure Maven to use a locally extracted repository, apply the following XML in your Maven
settings or POM file:

<repository>
<id>red-hat-local</id>
<url>${repository-url}</url>
</repository>

${repository-url} must be a file URL containing the local filesystem path of the extracted repository.

Table B.1. Example URLs for local Maven repositories

42

http://maven.apache.org/settings.html
https://maven.apache.org/pom.html

APPENDIX B. USING RED HAT MAVEN REPOSITORIES

Operating system Filesystem path URL
Linux or UNIX /home/alice/maven-repository file:’home/alice/maven-repository
Windows C:\repos\red-hat file:C:\repos\red-hat

43

Red Hat AMQ 2020.Q4 Using the AMQ JMS Client

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES

The AMQ JMS examples require a running message broker with a queue named queue. Use the
procedures below to install and start the broker and define the queue.

C.1. INSTALLING THE BROKER

Follow the instructions in Getting Started with AMQ Broker to install the broker and create a broker
instance. Enable anonymous access.

The following procedures refer to the location of the broker instance as <broker-instance-dir>.

C.2.STARTING THE BROKER

Procedure

1. Use the artemis run command to start the broker.

I $ <broker-instance-dir>/bin/artemis run

2. Check the console output for any critical errors logged during startup. The broker logs Server
is now live when it is ready.

$ example-broker/bin/artemis run

ANV A |
NN e
[ANTIVITE T </ NV
N TTTO T <

7\) N\ A\ N]

Red Hat AMQ <version>

2020-06-03 12:12:11,807 INFO [org.apache.activemq.artemis.integration.bootstrap]
AMQ101000: Starting ActiveMQ Artemis Server

2020-06-03 12:12:12,336 INFO [org.apache.activemq.artemis.core.server] AMQ221007:
Server is now live

C.3. CREATING A QUEUE

In a new terminal, use the artemis queue command to create a queue named queue.

$ <broker-instance-dir>/bin/artemis queue create --name queue --address queue --auto-create-
address --anycast

You are prompted to answer a series of yes or no questions. Answer N for no to all of them.

Once the queue is created, the broker is ready for use with the example programs.

C.4.STOPPING THE BROKER

44

https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.7/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES

When you are done running the examples, use the artemis stop command to stop the broker.

I $ <broker-instance-dir>/bin/artemis stop

Revised on 2020-10-08 11:24:40 UTC

45

	Table of Contents
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	File paths
	Variable text

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. USING THE RED HAT MAVEN REPOSITORY
	2.3. INSTALLING A LOCAL MAVEN REPOSITORY
	2.4. INSTALLING THE EXAMPLES

	CHAPTER 3. GETTING STARTED
	3.1. PREREQUISITES
	3.2. RUNNING HELLO WORLD

	CHAPTER 4. CONFIGURATION
	4.1. CONFIGURING THE JNDI INITIAL CONTEXT
	Using a jndi.properties file
	Using a system property
	Using the initial context API

	4.2. CONFIGURING THE CONNECTION FACTORY
	4.3. CONNECTION URIS
	Failover URIs
	SSL/TLS Server Name Indication

	4.4. CONFIGURING QUEUE AND TOPIC NAMES
	4.5. VARIABLE EXPANSION IN JNDI PROPERTIES

	CHAPTER 5. CONFIGURATION OPTIONS
	5.1. JMS OPTIONS
	Prefetch policy options
	Redelivery policy options
	Message ID policy options
	Presettle policy options
	Deserialization policy options

	5.2. TCP OPTIONS
	5.3. SSL/TLS OPTIONS
	5.4. AMQP OPTIONS
	5.5. FAILOVER OPTIONS
	5.6. DISCOVERY OPTIONS

	CHAPTER 6. EXAMPLES
	6.1. CONFIGURING THE JNDI CONTEXT
	6.2. SENDING MESSAGES
	6.3. RECEIVING MESSAGES

	CHAPTER 7. SECURITY
	7.1. ENABLING OPENSSL SUPPORT
	7.2. AUTHENTICATING USING KERBEROS

	CHAPTER 8. MESSAGE DELIVERY
	8.1. HANDLING UNACKNOWLEDGED DELIVERIES
	Non-transacted producer with an unacknowledged delivery
	Transacted producer with an uncommitted transaction
	Transacted producer with a pending commit
	Non-transacted consumer with an unacknowledged delivery
	Transacted consumer with an uncommitted transaction
	Transacted consumer with a pending commit

	8.2. EXTENDED SESSION ACKNOWLEDGMENT MODES
	Individual acknowledge
	No acknowledge

	CHAPTER 9. LOGGING
	9.1. CONFIGURING LOGGING
	9.2. ENABLING PROTOCOL LOGGING

	CHAPTER 10. DISTRIBUTED TRACING
	10.1. ENABLING DISTRIBUTED TRACING

	CHAPTER 11. INTEROPERABILITY
	11.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	11.1.1. Sending messages
	11.1.1.1. Message type
	11.1.1.2. Message properties

	11.1.2. Receiving messages
	11.1.2.1. Message type
	11.1.2.2. Message properties

	11.2. CONNECTING TO AMQ BROKER
	11.3. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	A.1. ACCESSING YOUR ACCOUNT
	A.2. ACTIVATING A SUBSCRIPTION
	A.3. DOWNLOADING RELEASE FILES
	A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

	APPENDIX B. USING RED HAT MAVEN REPOSITORIES
	B.1. USING THE ONLINE REPOSITORY
	Adding the repository to your Maven settings
	Adding the repository to your POM file

	B.2. USING A LOCAL REPOSITORY

	APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES
	C.1. INSTALLING THE BROKER
	C.2. STARTING THE BROKER
	C.3. CREATING A QUEUE
	C.4. STOPPING THE BROKER

