
Red Hat 3scale API Management 2.4

API Authentication

Choose your authentication method: API key (user_key), app identifier and keys
(app_id/app_key), or OpenID Connect.

Last Updated: 2019-03-14

Red Hat 3scale API Management 2.4 API Authentication

Choose your authentication method: API key (user_key), app identifier and keys (app_id/app_key),
or OpenID Connect.

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide documents methods for API authentication with Red Hat 3scale API Management 2.4.

. .

. .

Table of Contents

CHAPTER 1. AUTHENTICATION PATTERNS
1.1. AUTHENTICATION PATTERNS
1.2. STEP 1: SELECT THE AUTHENTICATION MODE FOR YOUR SERVICE
1.3. STEP 2: SELECT THE AUTHENTICATION MODE YOU WANT TO USE
1.4. STEP 3: ENSURE YOUR API ACCEPTS THE CORRECT TYPES OF CREDENTIALS
1.5. STEP 4: CREATE AN APPLICATION TO TEST CREDENTIALS
1.6. STANDARD AUTHENTICATION PATTERNS

1.6.1. API Key
1.6.2. App_ID and App_Key Pair
1.6.3. OpenID Connect

1.7. REFERRER FILTERING

CHAPTER 2. OPENID CONNECT INTEGRATION
2.1. JWT VERIFICATION AND PARSING BY APICAST
2.2. CLIENT CREDENTIALS SYNCHRONIZATION BY ZYNC
2.3. CONFIGURE RED HAT SINGLE SIGN-ON INTEGRATION

2.3.1. Configure Zync to use custom CA certificates
2.3.2. Configure Red Hat Single Sign-On
2.3.3. Configure 3scale

2.4. OAUTH 2.0 SUPPORTED FLOWS
2.5. TEST THE INTEGRATION

2.5.1. Test the client synchronization
2.5.2. Test the API authorization flow

2.6. EXAMPLE OF THE INTEGRATION

3
3
3
4
4
4
4
4
5
5
5

10
10
11
11
11
12
13
13
14
14
14
14

Table of Contents

1

Red Hat 3scale API Management 2.4 API Authentication

2

CHAPTER 1. AUTHENTICATION PATTERNS
By the end of this tutorial you will know how to set the authentication pattern on your API and the effect
that this has on applications communicating with your API.

Depending on your API, you may need to use different authentication patterns to issue credentials for
access to your API. These can range from API keys to openAuth tokens and custom configurations. This
tutorial covers how to select from the available standard Authentication Patterns.

1.1. AUTHENTICATION PATTERNS

3scale supports the following authentication patterns out of the box:

Standard API Keys: Single randomized strings or hashes acting as an identifier and a secret
token.

Application Identifier and Key pairs: Immutable identifier and mutable secret key strings.

OpenID Connect

1.2. STEP 1: SELECT THE AUTHENTICATION MODE FOR YOUR
SERVICE

Navigate to the API service you want to work on (there may be only one service named API in which
case select this). Go to the Integration section.

Each service that you operate can use a different authentication pattern, but only one pattern can be
used per service.

CHAPTER 1. AUTHENTICATION PATTERNS

3

IMPORTANT

You must not change the authentication pattern after the credentials have been registered
because the behavior of the service may then become unpredictable. To change
authentication patterns we recommend creating a new service and migrating customers.

1.3. STEP 2: SELECT THE AUTHENTICATION MODE YOU WANT TO
USE

To select an authentication mode, scroll to the AUTHENTICATION section. Here, you can choose one of
the following options:

API Key (user_key)

App_ID and App_Key Pair

OpenID Connect

1.4. STEP 3: ENSURE YOUR API ACCEPTS THE CORRECT TYPES OF
CREDENTIALS

Depending on the credential type chosen, you may need to accept different parameters in your API calls
(key fields, IDs etc.). The names of these parameters may not be the same as those used internally at
3scale. The 3scale authentication will function correctly if the correct parameter names are used in calls
to the 3scale backend.

1.5. STEP 4: CREATE AN APPLICATION TO TEST CREDENTIALS

To ensure that the credential sets are working, you can create a new application to issue credentials to
use the API. Navigate to the Accounts area of your dashboard, click the account you want to use and
click new application.

Filling out the form and clicking save will create a new application with credentials to use the API. You
can now use these credentials to make calls to your API and records will be checked against the 3scale
list of registered applications.

1.6. STANDARD AUTHENTICATION PATTERNS

3scale supports the authentication patterns detailed in the following sections.

1.6.1. API Key

The simplest form of credential supported is the single API model. Here, each application with
permissions on the API has a single (unique) long character string; example:

By default, the name of the key parameter is user_key. You can use this label or choose another, such
as API-key. If choosing another label, you need to map the value before you make the authorization
calls to 3scale. The string acts as both, an identifier and a secret token, for use of the API. It is
recommended that you use such patterns only in environments with low security requirements or with
SSL security on API calls. Following are the operations that can be carried out on the token and
application:

API-key = 853a76f7c8d5f4a1ee8bf10a4e0d1f13

Red Hat 3scale API Management 2.4 API Authentication

4

Application Suspend: This suspends the applications access to the API and, in effect, all calls to
the API with the relevant key will be suspended.

Application Resume: Undoes the effect of an application suspend action.

Key Regenerate: This action generates a new random string key for the application and
associates it with the application. Immediately after this action is taken, calls with the previous
token will cease to be accepted.

The latter action can be triggered from the API Administration dashboard and (if permitted) from the API
Developers User console.

1.6.2. App_ID and App_Key Pair

The API Key Pattern combines the identity of the application and the secret usage token in one token;
however, this pattern separates the two. Each application using the API, issues an immutable initial
identifier known as the Application ID (App ID). The App ID is constant and may or may not be secret.
In addition, each application may have 1-n Application Keys (App_Keys). Each Key is associated
directly with the App_ID and should be treated as secret.

In the default setting, developers can create up to five keys per application. This allows a developer to
create a new key, add it to their code, redeploy their application, and then disable old keys. This does not
cause any application downtime the way an API Key Regeneration would.

Statistics and rate limits are always kept at the application ID level of granularity and not per API Key. If a
developer wants to track two sets of statistics, they should create two applications rather than two keys.

It is also possible to change the mode in the system and allow applications to be created in the absence
of application keys. In this case the 3scale system will authenticate access based on the App ID only
(and no key checks are made). This mode is useful for widget type scenarios or where rate limits are
applied to users rather than applications. In most cases you will want your API to enforce the presence of
at least one application key per application present (this setting is available in the Settings menu under
usage rules).

1.6.3. OpenID Connect

For information on OpenID Connect authentication, see the OpenID Connect integration section.

1.7. REFERRER FILTERING

3scale supports the Referrer Filtering feature that can be used to whitelist IP addresses or domain
names from where an application can access the API. The API clients specify the referrer value in the
Referer header. The purpose and the usage of the Referer header are described in the RFC 7231,
section 5.5.2: Referer.

To enable the Referrer Filtering feature go to [your_API_name] > Integration > Settings, click the
Require referrer filtering checkbox and click Update Service.

app_id = 80a4e03 app_key = a1ee8bf10a4e0d1f13853a76f7c8d5f4

CHAPTER 1. AUTHENTICATION PATTERNS

5

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html-single/api_authentication/#openid-connect
https://tools.ietf.org/html/rfc7231#section-5.5.2

The developers with access to your API must configure allowed domain/IP referrers from the developer
portal.

In the Admin Portal on the application details page for all applications that belong to this service a new
Referrer Filters section displays. Here, the admin can also configure a whitelist of the allowed Referrer
header values for this application.

Red Hat 3scale API Management 2.4 API Authentication

6

You can set a maximum of five referrer values per application.

The value can only consist of Latin letters, numbers, and special characters *, ., and -. * can be used
for wildcard values. If the value is set to *, any referrer value will be allowed, so the referrer check will be
bypassed.

For the Referrer Filtering feature to work, the APIcast Referrer policy must be enabled in the service
policy chain.

When the Require referrer filtering feature and the 3scale Referrer policy are enabled, the
authorization works as follows:

1. The applications that do not have Referrer Filters specified are authorized normally only using
the provided credentials.

2. For the applications that have Referrer Filters values set, APIcast extracts the referrer value from
the Referer header of the request and sends it as referrer param in the AuthRep (authorize
and report) request to the Service Management API. The following table shows the AuthRep
responses for different combination of the referrer filtering parameters.

referrer
parameter
passed?

Referrer Filters
configured for the
app?

Referrer
parameter value

HTTP Response Response body

Yes Yes matches referrer
filter

200 OK <status>
<authorized>
true</author
ized>
</status>

CHAPTER 1. AUTHENTICATION PATTERNS

7

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.4/html-single/deployment_options/#referrer_policy

Yes No matches referrer
filter

200 OK <status>
<authorized>
true</author
ized>
</status>

Yes Yes does not match
referrer filter

409 Conflict <status>
<authorized>
false</autho
rized>
<reason>refe
rrer
"test.exampl
e.com" is
not
allowed</rea
son>
(test.example
.com is an
example)

Yes No does not match
referrer filter

200 OK <status>
<authorized>
true</author
ized>
</status>

Yes Yes * 200 OK <status>
<authorized>
true</author
ized>
</status>

Yes No * 200 OK <status>
<authorized>
true</author
ized>
</status>

No Yes  —  409 Conflict <status>
<authorized>
false</autho
rized>
<reason>refe
rrer is
missing</rea
son>

referrer
parameter
passed?

Referrer Filters
configured for the
app?

Referrer
parameter value

HTTP Response Response body

Red Hat 3scale API Management 2.4 API Authentication

8

No No  —  200 OK <status>
<authorized>
true</author
ized>
</status>

referrer
parameter
passed?

Referrer Filters
configured for the
app?

Referrer
parameter value

HTTP Response Response body

The calls that are not authorized by AuthRep are rejected by APIcast with an "Authorization Failed" error.
You can configure the exact status code and the error message on the service Integration page.

CHAPTER 1. AUTHENTICATION PATTERNS

9

CHAPTER 2. OPENID CONNECT INTEGRATION
3scale integrates with the 3rd-party Identity Providers (IdP) for authenticating the API requests using the
OpenID Connect specification. OpenID Connect is built on top of OAuth 2.0 that complements the OAuth
2.0 Authorization framework with an authentication mechanism. When OpenID Connect authentication
option is used, the API requests are authenticated using the access tokens in the JSON Web Token
(JWT) format (RFC 7519).

The integration consists of the following two parts:

Section 2.1, “JWT verification and parsing by APIcast”

Section 2.2, “Client credentials synchronization by Zync”

Red Hat 3scale API Management fully supports both integration points with Red Hat Single Sign-On
(RH-SSO) acting as the OpenID Provider. See the supported version of RH-SSO on the Supported
Configurations page. APIcast integration is also tested with ForgeRock.

In both cases, you can configure the integration by specifying the OpenID Connect Issuer field in the
APIcast Configuration on the Integration page of the service using OpenID Connect authentication
option. For instructions, see Section 2.3, “Configure Red Hat Single Sign-On integration”.

2.1. JWT VERIFICATION AND PARSING BY APICAST

The API requests to the service using the OpenID Connect authentication mode should provide the
access token in the JWT format, issued by the OpenID Provider, in the Authorization header using
Bearer schema. The header should look like the following example:

Authorization: Bearer <JWK>

Example:

Authorization: Bearer:
eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRwczovL2lkcC5leGFtcGxlL
mNvbSIsInN1YiI6ImFiYzEyMyIsIm5iZiI6MTUzNzg5MjQ5NCwiZXhwIjoxNTM3ODk2MDk0LCJ
pYXQiOjE1Mzc4OTI0OTQsImp0aSI6ImlkMTIzNDU2IiwidHlwIjoiQmVhcmVyIn0.LM2PSmQ0k
8mR7eDS_Z8iRdGta-Ea-pJRrf4C6bAiKz-Nzhxpm7fF7oV3BOipFmimwkQ_-mw3kN--
oOc3vU1RE4FTCQGbzO1SAWHOZqG5ZUx5ugaASY-
hUHIohy6PC7dQl0e2NlAeqqg4MuZtEwrpESJW-
VnGdljrAS0HsXzd6nENM0Z_ofo4ZdTKvIKsk2KrdyVBOcjgVjYongtppR0cw30FwnpqfeCkuAT
eINN5OKHXOibRA24pQyIF1s81nnmxLnjnVbu24SFE34aMGRXYzs4icMI8sK65eKxbvwV3PIG3m
M0C4ilZPO26doP0YrLfVwFcqEirmENUAcHXz7NuvA

The JWT token contains a signature that the token’s receiver can verify and ensure that the token was
signed by a known issuer and that its content has not been changed. 3scale supports RSA signature
based on the public/private key pair. Here, the issuer signs the JWT token using a private key. APIcast
verifies this token using a public key.

APIcast uses OpenID Connect Discovery for getting the JSON Web Keys (JWK) that can be used for
verifying the JWT signature.

On each request, APIcast does the following:

1. Verifies the JWT token using the public key.

Red Hat 3scale API Management 2.4 API Authentication

10

https://openid.net/connect/
https://tools.ietf.org/html/rfc7519
https://access.redhat.com/products/red-hat-single-sign-on
https://access.redhat.com/node/2787991
https://www.forgerock.com/
https://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/draft-ietf-jose-json-web-key-41

2. Validates the claims nbf and exp.

3. Verifies that the issuer specified in the claim iss (Issuer) is the same as the one configured in
the OpenID Connect Issuer field.

4. Extracts the value of the azp or aud claim and uses it as the Client ID (that identifies the
application in 3scale) to authorize the call through the Service Management API.

If any of the JWT validation or the authorization checks fail, APIcast returns an "Authenication failed"
error. Otherwise, APIcast proxies the request to the API backend. The Authorization header remains
in the request, so the API backend can also use the JWT token to check the user and client identity.

2.2. CLIENT CREDENTIALS SYNCHRONIZATION BY ZYNC

Using the Zync component, 3scale syncronizes the client (application) credentials between 3scale and
the Red Hat Single Sign-On server configured through the OpenID Connect Issuer setting. Whenever a
new application is created, updated, or deleted for a service configured to use OpenID Connect, Zync
receives the corresponding event and communicates the change to the Red Hat Single Sign-On instance
using RH-SSO API. The Section 2.3, “Configure Red Hat Single Sign-On integration” section provides
the steps required to ensure that Zync has the correct credentials to use the RH-SSO API.

2.3. CONFIGURE RED HAT SINGLE SIGN-ON INTEGRATION

2.3.1. Configure Zync to use custom CA certificates

You must establish an SSL connection between Zync and Red Hat Single Sign-On. 3scale 2.2 and
above supports custom CA certificates for Red Hat Single Sign-On with the SSL_CERT_FILE
environment variable. This variable points to the local path of the certificates bundle. Configure it as
follows:

1. Validate the new certificate with the following cURL command. The expected response is a
JSON configuration of the realm. If validation fails it is an indicator that your certificate may not
be correct.

curl -v https://<secure-sso-host>/auth/realms/master --cacert
customCA.pem

2. Add the certificate bundle to the Zync pod:

a. Gather the existing content of the /etc/pki/tls/cert.pem file on the Zync pod. Run:

oc exec <zync-pod-id> cat /etc/pki/tls/cert.pem > zync.pem

b. Append the contents of the custom CA certificate file to zync.pem:

cat customCA.pem >> zync.pem

c. Attach the new file to the Zync pod as ConfigMap:

oc create configmap zync-ca-bundle --from-file=./zync.pem

oc set volume dc/zync --add --name=zync-ca-bundle --mount-path
/etc/pki/tls/zync/zync.pem --sub-path zync.pem --

CHAPTER 2. OPENID CONNECT INTEGRATION

11

https://tools.ietf.org/html/rfc7519#section-4.1.5
https://tools.ietf.org/html/rfc7519#section-4.1.4
https://tools.ietf.org/html/rfc7519#section-4.1.1

source='{"configMap":{"name":"zync-ca-bundle","items":
[{"key":"zync.pem","path":"zync.pem"}]}}'

oc patch dc/zync --type=json -p '[{"op": "add", "path":
"/spec/template/spec/containers/0/volumeMounts/0/subPath",
"value":"zync.pem"}]'

3. After deployment, verify that the certificate is attached and the content is correct:

oc exec <zync-pod-id> cat /etc/pki/tls/zync/zync.pem

4. Configure the SSL_CERT_FILE environment variable on Zync to point to the new CA certificate
bundle:

oc set env dc/zync SSL_CERT_FILE=/etc/pki/tls/zync/zync.pem

2.3.2. Configure Red Hat Single Sign-On

To configure Red Hat Single Sign-On, take the following steps:

1. Create a realm (<REALM_NAME>).

2. Create a client:

a. Specify a client ID.

b. In the Client Protocol field, select openid-connect.

3. To configure the client permissions, set the following values:

a. Access Type to confidential.

b. Standard Flow Enabled to OFF.

c. Direct Access Grants Enabled to OFF.

d. Service Accounts Enabled to ON.

4. Set the service account roles for the client:

a. Navigate to the Service Account Roles tab of the client.

b. In the Client Roles dropdown list, click realm-management.

c. In the Available Roles pane, select the manage-clients list item and assign the role by
clicking Add selected >>.

5. Note the client credentials:

a. Make a note of the client ID (<CLIENT_ID>).

b. Navigate to the Credentials tab of the client and make a note of the Secret field
(<CLIENT_SECRET>).

6. Add a user to the realm:

Red Hat 3scale API Management 2.4 API Authentication

12

a. Click the Users menu on the left side of the window.

b. Click Add user.

c. Type the username, set the Email Verified switch to ON, and click Save.

d. On the Credentials tab, set the password. Enter the password in both the fields, set the
Temporary switch to OFF to avoid the password reset at the next login, and click Reset
Password.

e. When the pop-up window displays, click Change password.

2.3.3. Configure 3scale

After you have created and configured the client in Red Hat Single Sign-On, you must configure 3scale
to work with Red Hat Single Sign-On.

To configure 3scale, take the following steps:

1. Enable OpenID Connect.

a. Select the service on which you want to enable the OpenID Connect authentication,
navigate to [your_API_name] > Integration > Configuration.

b. Select edit integration settings.

c. Under the Authentication deployment options, select OpenID Connect.

d. Click Update Service to save the settings.

2. Edit the APIcast Configuration:

a. Navigate to [your_API_name] > Integration > Configuration.

b. Select edit APIcast configuration.

c. Under the Authentication Settings heading, in the OpenID Connect Issuer field, enter the
previously noted client credentials with the URL of your Red Hat Single Sign-On server
(located at host <RHSSO_HOST> and port <RHSSO_PORT>).

https://<CLIENT_ID>:<CLIENT_SECRET>@<RHSSO_HOST>:
<RHSSO_PORT>/auth/realms/<REALM_NAME>

d. To save the configuration, click Update the Staging Environment.

2.4. OAUTH 2.0 SUPPORTED FLOWS

The API clients must get access tokens from the OpenID Connect issuer configured in 3scale, using any
OAuth 2.0 flow that is supported by this OpenID provider. In case of Red Hat Signle Sign-On, the
following flows are supported (the terms used in RH-SSO clients are specified in parenthesis):

Authorization Code (Standard Flow)

Resource Owner Password Credentials (Direct Access Grants)

Implicit (Implicit Flow)

CHAPTER 2. OPENID CONNECT INTEGRATION

13

Client Credentials (Service Accounts)

When the clients (applications) are created in 3scale, the corresponding clients created by Zync in Red
Hat Single Sign-On have only the Authorization Code flow enabled. This flow is recommended as the
most secure and suitable for most cases. However, it is possible to enable other flows either through the
RH-SSO admin console or using the Client Registration API.

The client gets the access token using the authorization request, or the token request, or both. The
URLs that receive these requests can be discovered using the .well-known/openid-
configuration endpoint of the OpenID provider, in the "authorization_endpoint" and
"token_endpoint", accordingly. Example: https://<RHSSO_HOST>:
<RHSSO_PORT>/auth/realms/<REALM_NAME>/.well-known/openid-configuration.

2.5. TEST THE INTEGRATION

To test the integration, you must perform the steps listed in the following sections.

2.5.1. Test the client synchronization

To test the client synchronization, take the following steps:

1. Create an application for the service where you configured the OpenID Connect integration.

2. Note the client ID and the client Secret of the generated application.

3. Verify that the client with the same client ID and client secret is now present in the configured
Red Hat Single Sign-On realm.

4. Update the Redirect URL of the application in the 3scale admin portal.

5. Verify that the Valid Redirect URIs field of the client in Red Hat Single Sign-On has been
updated accordingly.

2.5.2. Test the API authorization flow

To test the APT authorization flow, take the following steps:

1. Get the access token from the Red Hat Single Sign-On server using an OAuth 2.0 flow that is
enabled on the corresponding RH-SSO client.

2. Use the value of the access_token retrieved from RH-SSO in the Authorization header as
follows: Authorization: Bearer <access_token>

If the token is correct and the corresponding application in 3scale is authorized, APIcast gateway returns
a response from the API backend.

2.6. EXAMPLE OF THE INTEGRATION

The service "API" in 3scale is configured to use the OpenID Connect authentication. The Public Base
URL on the service "API" is configured to be https://api.example.com and the Private Base URL is
configured to be https://internal-api.example.com.

Red Hat 3scale API Management 2.4 API Authentication

14

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.2/html/securing_applications_and_services_guide/client_registration#red_hat_single_sign_on_representations
https://api.example.com
https://internal-api.example.com

The OpenID Connect Issuer field is set to https://zync:41dbb98b-e4e9-4a89-84a3-
91d1d19c4207@idp.example.com/auth/realms/myrealm in the API integration and the client
zync in the realm myrealm has the correct Service Account roles.

In 3scale, there is an application having the myclientid client ID, myclientsecret client secret, and
a https://myapp.example.com Redirect URL. In Red Hat Single Sign-On, in the myrealm realm,
there also exists a client having a myclientid client ID, myclientsecret secret, and
https://myapp.example.com Valid Redirect URIs. Standard Flow is enabled on this client. There is
a user configured in the myrealm realm having the myuser username and mypassword password.

The flow is as follows:

1. Using the endpoint
https://idp.example.com/auth/realms/myrealm/protocol/openid-
connect/auth, the application sends an Authorization request to RH-SSO. The application
should provide the client ID myclientsecret and Redirect URL
https://myapp.example.com with the request.

2. RH-SSO shows the login window, where the user must provide the user’s credentials: Username
myuser and password mypassword.

3. Depending on the configuration, and if it is the first time that the user is authenticating in this
specific application, the consent window displays.

4. After the user is authenticated, the applciation sends a Token request to RH-SSO using the
endpoint https://idp.example.com/auth/realms/myrealm/protocol/openid-
connect/token and providing the client ID myclientid, client secret myclientsecret and
Redirect URL https://myapp.example.com.

5. RH-SSO returns a JSON with an "access_token" field
eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk… ​xBArNhqF-A.

6. The application sends an API request to https://api.example.com with the header
Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCIgOiAiSldUIiwia2lk… ​
xBArNhqF-A.

7. The application should receive a successful response from https://internal-
api.example.com.

CHAPTER 2. OPENID CONNECT INTEGRATION

15

https://zync:41dbb98b-e4e9-4a89-84a3-91d1d19c4207@idp.example.com/auth/realms/myrealm
https://myapp.example.com
https://myapp.example.com
https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/auth
https://myapp.example.com
https://idp.example.com/auth/realms/myrealm/protocol/openid-connect/token
https://myapp.example.com
https://api.example.com
https://internal-api.example.com

	Table of Contents
	CHAPTER 1. AUTHENTICATION PATTERNS
	1.1. AUTHENTICATION PATTERNS
	1.2. STEP 1: SELECT THE AUTHENTICATION MODE FOR YOUR SERVICE
	1.3. STEP 2: SELECT THE AUTHENTICATION MODE YOU WANT TO USE
	1.4. STEP 3: ENSURE YOUR API ACCEPTS THE CORRECT TYPES OF CREDENTIALS
	1.5. STEP 4: CREATE AN APPLICATION TO TEST CREDENTIALS
	1.6. STANDARD AUTHENTICATION PATTERNS
	1.6.1. API Key
	1.6.2. App_ID and App_Key Pair
	1.6.3. OpenID Connect

	1.7. REFERRER FILTERING

	CHAPTER 2. OPENID CONNECT INTEGRATION
	2.1. JWT VERIFICATION AND PARSING BY APICAST
	2.2. CLIENT CREDENTIALS SYNCHRONIZATION BY ZYNC
	2.3. CONFIGURE RED HAT SINGLE SIGN-ON INTEGRATION
	2.3.1. Configure Zync to use custom CA certificates
	2.3.2. Configure Red Hat Single Sign-On
	2.3.3. Configure 3scale

	2.4. OAUTH 2.0 SUPPORTED FLOWS
	2.5. TEST THE INTEGRATION
	2.5.1. Test the client synchronization
	2.5.2. Test the API authorization flow

	2.6. EXAMPLE OF THE INTEGRATION

