
OpenShift Dedicated 4

Architecture

Architecture overview.

Last Updated: 2024-04-18

OpenShift Dedicated 4 Architecture

Architecture overview.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Dedicated is a cloud-based Kubernetes container platform. The foundation of OpenShift
Dedicated is based on Kubernetes and therefore shares the same technology. To learn more about
OpenShift Dedicated and Kubernetes, see product architecture.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. ARCHITECTURE OVERVIEW
1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED ARCHITECTURE
1.2. UNDERSTANDING HOW OPENSHIFT DEDICATED DIFFERS FROM OPENSHIFT CONTAINER PLATFORM

1.3. ABOUT THE CONTROL PLANE
1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS
1.5. ABOUT ADMISSION PLUGINS

CHAPTER 2. OPENSHIFT DEDICATED ARCHITECTURE
2.1. INTRODUCTION TO OPENSHIFT DEDICATED

2.1.1. About Kubernetes
2.1.2. The benefits of containerized applications

2.1.2.1. Operating system benefits
2.1.2.2. Deployment and scaling benefits

2.1.3. OpenShift Dedicated overview
2.1.3.1. Custom operating system
2.1.3.2. Simplified update process
2.1.3.3. Other key features

CHAPTER 3. CONTROL PLANE ARCHITECTURE
3.1. NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG POOLS
3.2. MACHINE ROLES IN OPENSHIFT DEDICATED

3.2.1. Cluster workers
3.2.2. Cluster control planes

3.3. OPERATORS IN OPENSHIFT DEDICATED
3.3.1. Add-on Operators

3.4. ABOUT THE MACHINE CONFIG OPERATOR
3.5. OVERVIEW OF ETCD

3.5.1. Benefits of using etcd
3.5.2. How etcd works

CHAPTER 4. NVIDIA GPU ARCHITECTURE OVERVIEW
4.1. NVIDIA GPU PREREQUISITES
4.2. GPUS AND OSD
4.3. GPU SHARING METHODS

4.3.1. CUDA streams
4.3.2. Time-slicing
4.3.3. CUDA Multi-Process Service
4.3.4. Multi-instance GPU
4.3.5. Virtualization with vGPU

4.4. NVIDIA GPU FEATURES FOR OPENSHIFT DEDICATED

CHAPTER 5. UNDERSTANDING OPENSHIFT DEDICATED DEVELOPMENT
5.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS
5.2. BUILDING A SIMPLE CONTAINER

5.2.1. Container build tool options
5.2.2. Base image options
5.2.3. Registry options

5.3. CREATING A KUBERNETES MANIFEST FOR OPENSHIFT DEDICATED
5.3.1. About Kubernetes pods and services
5.3.2. Application types
5.3.3. Available supporting components

4
4

8
8
9
9

10
10
11

12
12
12
12
13
13
13

15
15
16
16
17
19
19

20
21
21
22

23
23
23
23
24
24
25
25
25
25

27
27
27
28
29
30
30
31
31
32

Table of Contents

1

. .

5.3.4. Applying the manifest
5.3.5. Next steps

5.4. DEVELOP FOR OPERATORS

CHAPTER 6. ADMISSION PLUGINS
6.1. ABOUT ADMISSION PLUGINS
6.2. DEFAULT ADMISSION PLUGINS
6.3. WEBHOOK ADMISSION PLUGINS
6.4. TYPES OF WEBHOOK ADMISSION PLUGINS

6.4.1. Mutating admission plugin
6.4.2. Validating admission plugin

6.5. ADDITIONAL RESOURCES

32
33
33

34
34
34
37
38
38
40
41

OpenShift Dedicated 4 Architecture

2

Table of Contents

3

CHAPTER 1. ARCHITECTURE OVERVIEW
OpenShift Dedicated is a cloud-based Kubernetes container platform. The foundation of OpenShift
Dedicated is based on Kubernetes and therefore shares the same technology. To learn more about
OpenShift Dedicated and Kubernetes, see product architecture.

1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED
ARCHITECTURE

This glossary defines common terms that are used in the architecture content.

access policies

A set of roles that dictate how users, applications, and entities within a cluster interact with one
another. An access policy increases cluster security.

admission plugins

Admission plugins enforce security policies, resource limitations, or configuration requirements.

authentication

To control access to an OpenShift Dedicated cluster, an administrator with the dedicated-admin
role can configure user authentication to ensure only approved users access the cluster. To interact
with an OpenShift Dedicated cluster, you must authenticate with the OpenShift Dedicated API. You
can authenticate by providing an OAuth access token or an X.509 client certificate in your requests
to the OpenShift Dedicated API.

bootstrap

A temporary machine that runs minimal Kubernetes and deploys the OpenShift Dedicated control
plane.

certificate signing requests (CSRs)

A resource requests a denoted signer to sign a certificate. This request might get approved or
denied.

Cluster Version Operator (CVO)

An Operator that checks with the OpenShift Dedicated Update Service to see the valid updates and
update paths based on current component versions and information in the graph.

compute nodes

Nodes that are responsible for executing workloads for cluster users. Compute nodes are also known
as worker nodes.

configuration drift

A situation where the configuration on a node does not match what the machine config specifies.

containers

Lightweight and executable images that consist of software and all of its dependencies. Because
containers virtualize the operating system, you can run containers anywhere, such as data centers,
public or private clouds, and local hosts.

container orchestration engine

Software that automates the deployment, management, scaling, and networking of containers.

container workloads

Applications that are packaged and deployed in containers.

control groups (cgroups)

Partitions sets of processes into groups to manage and limit the resources processes consume.

OpenShift Dedicated 4 Architecture

4

control plane

A container orchestration layer that exposes the API and interfaces to define, deploy, and manage
the life cycle of containers. Control planes are also known as control plane machines.

CRI-O

A Kubernetes native container runtime implementation that integrates with the operating system to
deliver an efficient Kubernetes experience.

deployment

A Kubernetes resource object that maintains the life cycle of an application.

Dockerfile

A text file that contains the user commands to perform on a terminal to assemble the image.

hosted control planes

A OpenShift Dedicated feature that enables hosting a control plane on the OpenShift Dedicated
cluster from its data plane and workers. This model performs the following actions:

Optimize infrastructure costs required for the control planes.

Improve the cluster creation time.

Enable hosting the control plane using the Kubernetes native high level primitives. For
example, deployments and stateful sets.

Allow a strong network segmentation between the control plane and workloads.

hybrid cloud deployments

Deployments that deliver a consistent platform across bare metal, virtual, private, and public cloud
environments. This offers speed, agility, and portability.

Ignition

A utility that RHCOS uses to manipulate disks during initial configuration. It completes common disk
tasks, including partitioning disks, formatting partitions, writing files, and configuring users.

installer-provisioned infrastructure

The installation program deploys and configures the infrastructure that the cluster runs on.

kubelet

A primary node agent that runs on each node in the cluster to ensure that containers are running in a
pod.

kubernetes manifest

Specifications of a Kubernetes API object in a JSON or YAML format. A configuration file can
include deployments, config maps, secrets, daemon sets.

Machine Config Daemon (MCD)

A daemon that regularly checks the nodes for configuration drift.

Machine Config Operator (MCO)

An Operator that applies the new configuration to your cluster machines.

machine config pools (MCP)

A group of machines, such as control plane components or user workloads, that are based on the
resources that they handle.

metadata

Additional information about cluster deployment artifacts.

microservices
An approach to writing software. Applications can be separated into the smallest components,

CHAPTER 1. ARCHITECTURE OVERVIEW

5

An approach to writing software. Applications can be separated into the smallest components,
independent from each other by using microservices.

mirror registry

A registry that holds the mirror of OpenShift Dedicated images.

monolithic applications

Applications that are self-contained, built, and packaged as a single piece.

namespaces

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

networking

Network information of OpenShift Dedicated cluster.

node

A worker machine in the OpenShift Dedicated cluster. A node is either a virtual machine (VM) or a
physical machine.

OpenShift CLI (oc)

A command line tool to run OpenShift Dedicated commands on the terminal.

OpenShift Update Service (OSUS)

For clusters with internet access, Red Hat Enterprise Linux (RHEL) provides over-the-air updates by
using an OpenShift update service as a hosted service located behind public APIs.

OpenShift image registry

A registry provided by OpenShift Dedicated to manage images.

Operator

The preferred method of packaging, deploying, and managing a Kubernetes application in an
OpenShift Dedicated cluster. An Operator takes human operational knowledge and encodes it into
software that is packaged and shared with customers.

OperatorHub

A platform that contains various OpenShift Dedicated Operators to install.

Operator Lifecycle Manager (OLM)

OLM helps you to install, update, and manage the lifecycle of Kubernetes native applications. OLM is
an open source toolkit designed to manage Operators in an effective, automated, and scalable way.

OSTree

An upgrade system for Linux-based operating systems that performs atomic upgrades of complete
file system trees. OSTree tracks meaningful changes to the file system tree using an addressable
object store, and is designed to complement existing package management systems.

over-the-air (OTA) updates

The OpenShift Dedicated Update Service (OSUS) provides over-the-air updates to OpenShift
Dedicated, including Red Hat Enterprise Linux CoreOS (RHCOS).

pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Dedicated cluster. A pod is the smallest compute unit defined, deployed, and managed.

private registry

OpenShift Dedicated can use any server implementing the container image registry API as a source
of the image which allows the developers to push and pull their private container images.

public registry

OpenShift Dedicated can use any server implementing the container image registry API as a source

OpenShift Dedicated 4 Architecture

6

OpenShift Dedicated can use any server implementing the container image registry API as a source
of the image which allows the developers to push and pull their public container images.

RHEL OpenShift Dedicated Cluster Manager

A managed service where you can install, modify, operate, and upgrade your OpenShift Dedicated
clusters.

RHEL Quay Container Registry

A Quay.io container registry that serves most of the container images and Operators to OpenShift
Dedicated clusters.

replication controllers

An asset that indicates how many pod replicas are required to run at a time.

role-based access control (RBAC)

A key security control to ensure that cluster users and workloads have only access to resources
required to execute their roles.

route

Routes expose a service to allow for network access to pods from users and applications outside the
OpenShift Dedicated instance.

scaling

The increasing or decreasing of resource capacity.

service

A service exposes a running application on a set of pods.

Source-to-Image (S2I) image

An image created based on the programming language of the application source code in OpenShift
Dedicated to deploy applications.

storage

OpenShift Dedicated supports many types of storage for cloud providers. You can manage container
storage for persistent and non-persistent data in an OpenShift Dedicated cluster.

Telemetry

A component to collect information such as size, health, and status of OpenShift Dedicated.

template

A template describes a set of objects that can be parameterized and processed to produce a list of
objects for creation by OpenShift Dedicated.

web console

A user interface (UI) to manage OpenShift Dedicated.

worker node

Nodes that are responsible for executing workloads for cluster users. Worker nodes are also known
as compute nodes.

Additional resources

For more information on storage, see OpenShift Dedicated storage.

For more information on authentication, see OpenShift Dedicated authentication.

For more information on Operator Lifecycle Manager (OLM), see OLM.

For more information on logging, see About Logging.

CHAPTER 1. ARCHITECTURE OVERVIEW

7

https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/storage/#index
https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/authentication_and_authorization/#index
https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/logging/#cluster-logging

1.2. UNDERSTANDING HOW OPENSHIFT DEDICATED DIFFERS FROM
OPENSHIFT CONTAINER PLATFORM

OpenShift Dedicated uses the same code base as OpenShift Container Platform but is installed in an
opinionated way to be optimized for performance, scalability, and security. OpenShift Dedicated is a
fully managed service; therefore, many of the OpenShift Dedicated components and settings that you
manually set up in OpenShift Container Platform are set up for you by default.

Review the following differences between OpenShift Dedicated and a standard installation of
OpenShift Container Platform on your own infrastructure:

OpenShift Container Platform OpenShift Dedicated

The customer installs and configures OpenShift
Container Platform.

OpenShift Dedicated is installed through Red Hat
OpenShift Cluster Manager and in a standardized
way that is optimized for performance, scalability,
and security.

Customers can choose their computing resources. OpenShift Dedicated is hosted and managed in a
public cloud (Amazon Web Services or Google Cloud
Platform) either owned by Red Hat or provided by
the customer.

Customers have top-level administrative access to
the infrastructure.

Customers have a built-in administrator group
(dedicated-admin), though the top-level
administration access is available when cloud
accounts are provided by the customer.

Customers can use all supported features and
configuration settings available in OpenShift
Container Platform.

Some OpenShift Container Platform features and
configuration settings might not be available or
changeable in OpenShift Dedicated.

You set up control plane components such as the API
server and etcd on machines that get the control
role. You can modify the control plane components,
but are responsible for backing up, restoring, and
making control plane data highly available.

Red Hat sets up the control plane and manages the
control plane components for you. The control plane
is highly available.

You are responsible for updating the underlying
infrastructure for the control plane and worker
nodes. You can use the OpenShift web console to
update OpenShift Container Platform versions.

Red Hat automatically notifies the customer when
updates are available. You can manually or
automatically schedule updates in OpenShift Cluster
Manager.

Support is provided based on the terms of your Red
Hat subscription or cloud provider.

Engineered, operated, and supported by Red Hat
with a 99.95% uptime SLA and 24x7 coverage. For
details, see Red Hat Enterprise Agreement Appendix
4 (Online Subscription Services).

1.3. ABOUT THE CONTROL PLANE

The control plane manages the worker nodes and the pods in your cluster. You can configure nodes with

OpenShift Dedicated 4 Architecture

8

https://www.redhat.com/licenses/Appendix-4-Red-Hat-Online-Services-20230523.pdf

the use of machine config pools (MCPs). MCPs are groups of machines, such as control plane
components or user workloads, that are based on the resources that they handle. OpenShift Dedicated
assigns different roles to hosts. These roles define the function of a machine in a cluster. The cluster
contains definitions for the standard control plane and worker role types.

You can use Operators to package, deploy, and manage services on the control plane. Operators are
important components in OpenShift Dedicated because they provide the following services:

Perform health checks

Provide ways to watch applications

Manage over-the-air updates

Ensure applications stay in the specified state

1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS

As a developer, you can use different tools, methods, and formats to develop your containerized
application based on your unique requirements, for example:

Use various build-tool, base-image, and registry options to build a simple container application.

Use supporting components such as OperatorHub and templates to develop your application.

Package and deploy your application as an Operator.

You can also create a Kubernetes manifest and store it in a Git repository. Kubernetes works on basic
units called pods. A pod is a single instance of a running process in your cluster. Pods can contain one or
more containers. You can create a service by grouping a set of pods and their access policies. Services
provide permanent internal IP addresses and host names for other applications to use as pods are
created and destroyed. Kubernetes defines workloads based on the type of your application.

1.5. ABOUT ADMISSION PLUGINS

You can use admission plugins to regulate how OpenShift Dedicated functions. After a resource
request is authenticated and authorized, admission plugins intercept the resource request to the master
API to validate resource requests and to ensure that scaling policies are adhered to. Admission plugins
are used to enforce security policies, resource limitations, configuration requirements, and other
settings.

CHAPTER 1. ARCHITECTURE OVERVIEW

9

CHAPTER 2. OPENSHIFT DEDICATED ARCHITECTURE

2.1. INTRODUCTION TO OPENSHIFT DEDICATED

OpenShift Dedicated is a platform for developing and running containerized applications. It is designed
to allow applications and the data centers that support them to expand from just a few machines and
applications to thousands of machines that serve millions of clients.

With its foundation in Kubernetes, OpenShift Dedicated incorporates the same technology that serves
as the engine for massive telecommunications, streaming video, gaming, banking, and other
applications. Its implementation in open Red Hat technologies lets you extend your containerized
applications beyond a single cloud to on-premise and multi-cloud environments.

OpenShift Dedicated 4 Architecture

10

2.1.1. About Kubernetes

Although container images and the containers that run from them are the primary building blocks for
modern application development, to run them at scale requires a reliable and flexible distribution system.
Kubernetes is the defacto standard for orchestrating containers.

Kubernetes is an open source container orchestration engine for automating deployment, scaling, and
management of containerized applications. The general concept of Kubernetes is fairly simple:

Start with one or more worker nodes to run the container workloads.

CHAPTER 2. OPENSHIFT DEDICATED ARCHITECTURE

11

Manage the deployment of those workloads from one or more control plane nodes.

Wrap containers in a deployment unit called a pod. Using pods provides extra metadata with the
container and offers the ability to group several containers in a single deployment entity.

Create special kinds of assets. For example, services are represented by a set of pods and a
policy that defines how they are accessed. This policy allows containers to connect to the
services that they need even if they do not have the specific IP addresses for the services.
Replication controllers are another special asset that indicates how many pod replicas are
required to run at a time. You can use this capability to automatically scale your application to
adapt to its current demand.

In only a few years, Kubernetes has seen massive cloud and on-premise adoption. The open source
development model allows many people to extend Kubernetes by implementing different technologies
for components such as networking, storage, and authentication.

2.1.2. The benefits of containerized applications

Using containerized applications offers many advantages over using traditional deployment methods.
Where applications were once expected to be installed on operating systems that included all their
dependencies, containers let an application carry their dependencies with them. Creating containerized
applications offers many benefits.

2.1.2.1. Operating system benefits

Containers use small, dedicated Linux operating systems without a kernel. Their file system, networking,
cgroups, process tables, and namespaces are separate from the host Linux system, but the containers
can integrate with the hosts seamlessly when necessary. Being based on Linux allows containers to use
all the advantages that come with the open source development model of rapid innovation.

Because each container uses a dedicated operating system, you can deploy applications that require
conflicting software dependencies on the same host. Each container carries its own dependent software
and manages its own interfaces, such as networking and file systems, so applications never need to
compete for those assets.

2.1.2.2. Deployment and scaling benefits

If you employ rolling upgrades between major releases of your application, you can continuously
improve your applications without downtime and still maintain compatibility with the current release.

You can also deploy and test a new version of an application alongside the existing version. If the
container passes your tests, simply deploy more new containers and remove the old ones.

Since all the software dependencies for an application are resolved within the container itself, you can
use a standardized operating system on each host in your data center. You do not need to configure a
specific operating system for each application host. When your data center needs more capacity, you
can deploy another generic host system.

Similarly, scaling containerized applications is simple. OpenShift Dedicated offers a simple, standard way
of scaling any containerized service. For example, if you build applications as a set of microservices
rather than large, monolithic applications, you can scale the individual microservices individually to meet
demand. This capability allows you to scale only the required services instead of the entire application,
which can allow you to meet application demands while using minimal resources.

2.1.3. OpenShift Dedicated overview

OpenShift Dedicated 4 Architecture

12

OpenShift Dedicated provides enterprise-ready enhancements to Kubernetes, including the following
enhancements:

Integrated Red Hat technology. Major components in OpenShift Dedicated come from Red Hat
Enterprise Linux (RHEL) and related Red Hat technologies. OpenShift Dedicated benefits from
the intense testing and certification initiatives for Red Hat’s enterprise quality software.

Open source development model. Development is completed in the open, and the source code
is available from public software repositories. This open collaboration fosters rapid innovation
and development.

Although Kubernetes excels at managing your applications, it does not specify or manage platform-level
requirements or deployment processes. Powerful and flexible platform management tools and
processes are important benefits that OpenShift Dedicated 4 offers. The following sections describe
some unique features and benefits of OpenShift Dedicated.

2.1.3.1. Custom operating system

OpenShift Dedicated uses Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system for all
control plane and worker nodes.

RHCOS includes:

Ignition, which OpenShift Dedicated uses as a firstboot system configuration for initially
bringing up and configuring machines.

CRI-O, a Kubernetes native container runtime implementation that integrates closely with the
operating system to deliver an efficient and optimized Kubernetes experience. CRI-O provides
facilities for running, stopping, and restarting containers. It fully replaces the Docker Container
Engine, which was used in OpenShift Dedicated 3.

Kubelet, the primary node agent for Kubernetes that is responsible for launching and monitoring
containers.

2.1.3.2. Simplified update process

Updating, or upgrading, OpenShift Dedicated is a simple, highly-automated process. Because
OpenShift Dedicated completely controls the systems and services that run on each machine, including
the operating system itself, from a central control plane, upgrades are designed to become automatic
events.

2.1.3.3. Other key features

Operators are both the fundamental unit of the OpenShift Dedicated 4 code base and a convenient way
to deploy applications and software components for your applications to use. In OpenShift Dedicated,
Operators serve as the platform foundation and remove the need for manual upgrades of operating
systems and control plane applications. OpenShift Dedicated Operators such as the Cluster Version
Operator and Machine Config Operator allow simplified, cluster-wide management of those critical
components.

Operator Lifecycle Manager (OLM) and the OperatorHub provide facilities for storing and distributing
Operators to people developing and deploying applications.

The Red Hat Quay Container Registry is a Quay.io container registry that serves most of the container
images and Operators to OpenShift Dedicated clusters. Quay.io is a public registry version of Red Hat
Quay that stores millions of images and tags.

CHAPTER 2. OPENSHIFT DEDICATED ARCHITECTURE

13

Other enhancements to Kubernetes in OpenShift Dedicated include improvements in software defined
networking (SDN), authentication, log aggregation, monitoring, and routing. OpenShift Dedicated also
offers a comprehensive web console and the custom OpenShift CLI (oc) interface.

OpenShift Dedicated 4 Architecture

14

CHAPTER 3. CONTROL PLANE ARCHITECTURE
The control plane, which is composed of control plane machines, manages the OpenShift Dedicated
cluster. The control plane machines manage workloads on the compute machines, which are also known
as worker machines. The cluster itself manages all upgrades to the machines by the actions of the
Cluster Version Operator (CVO), the Machine Config Operator, and a set of individual Operators.

3.1. NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG
POOLS

Machines that run control plane components or user workloads are divided into groups based on the
types of resources they handle. These groups of machines are called machine config pools (MCP). Each
MCP manages a set of nodes and its corresponding machine configs. The role of the node determines
which MCP it belongs to; the MCP governs nodes based on its assigned node role label. Nodes in an
MCP have the same configuration; this means nodes can be scaled up and torn down in response to
increased or decreased workloads.

By default, there are two MCPs created by the cluster when it is installed: master and worker. Each
default MCP has a defined configuration applied by the Machine Config Operator (MCO), which is
responsible for managing MCPs and facilitating MCP upgrades. You can create additional MCPs, or
custom pools, to manage nodes that have custom use cases that extend outside of the default node
types.

Custom pools are pools that inherit their configurations from the worker pool. They use any machine
config targeted for the worker pool, but add the ability to deploy changes only targeted at the custom
pool. Since a custom pool inherits its configuration from the worker pool, any change to the worker pool
is applied to the custom pool as well. Custom pools that do not inherit their configurations from the
worker pool are not supported by the MCO.

NOTE

A node can only be included in one MCP. If a node has multiple labels that correspond to
several MCPs, like worker,infra, it is managed by the infra custom pool, not the worker
pool. Custom pools take priority on selecting nodes to manage based on node labels;
nodes that do not belong to a custom pool are managed by the worker pool.

It is recommended to have a custom pool for every node role you want to manage in your cluster. For
example, if you create infra nodes to handle infra workloads, it is recommended to create a custom infra
MCP to group those nodes together. If you apply an infra role label to a worker node so it has the
worker,infra dual label, but do not have a custom infra MCP, the MCO considers it a worker node. If you
remove the worker label from a node and apply the infra label without grouping it in a custom pool, the
node is not recognized by the MCO and is unmanaged by the cluster.

IMPORTANT

Any node labeled with the infra role that is only running infra workloads is not counted
toward the total number of subscriptions. The MCP managing an infra node is mutually
exclusive from how the cluster determines subscription charges; tagging a node with the
appropriate infra role and using taints to prevent user workloads from being scheduled
on that node are the only requirements for avoiding subscription charges for infra
workloads.

The MCO applies updates for pools independently; for example, if there is an update that affects all

CHAPTER 3. CONTROL PLANE ARCHITECTURE

15

The MCO applies updates for pools independently; for example, if there is an update that affects all
pools, nodes from each pool update in parallel with each other. If you add a custom pool, nodes from
that pool also attempt to update concurrently with the master and worker nodes.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated.

Additional resources

Machine pools

3.2. MACHINE ROLES IN OPENSHIFT DEDICATED

OpenShift Dedicated assigns hosts different roles. These roles define the function of the machine within
the cluster. The cluster contains definitions for the standard master and worker role types.

3.2.1. Cluster workers

In a Kubernetes cluster, worker nodes run and manage the actual workloads requested by Kubernetes
users. The worker nodes advertise their capacity and the scheduler, which is a control plane service,
determines on which nodes to start pods and containers. The following important services run on each
worker node:

CRI-O, which is the container engine.

kubelet, which is the service that accepts and fulfills requests for running and stopping container
workloads.

A service proxy, which manages communication for pods across workers.

The runC or crun low-level container runtime, which creates and runs containers.

NOTE

For information about how to enable crun instead of the default runC, see the
documentation for creating a ContainerRuntimeConfig CR.

In OpenShift Dedicated, compute machine sets control the compute machines, which are assigned the
worker machine role. Machines with the worker role drive compute workloads that are governed by a
specific machine pool that autoscales them. Because OpenShift Dedicated has the capacity to support
multiple machine types, the machines with the worker role are classed as compute machines. In this
release, the terms worker machine and compute machine are used interchangeably because the only
default type of compute machine is the worker machine. In future versions of OpenShift Dedicated,
different types of compute machines, such as infrastructure machines, might be used by default.

NOTE

OpenShift Dedicated 4 Architecture

16

https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/cluster_administration/#machine-pools

NOTE

Compute machine sets are groupings of compute machine resources under the
machine-api namespace. Compute machine sets are configurations that are designed to
start new compute machines on a specific cloud provider. Conversely, machine config
pools (MCPs) are part of the Machine Config Operator (MCO) namespace. An MCP is
used to group machines together so the MCO can manage their configurations and
facilitate their upgrades.

3.2.2. Cluster control planes

In a Kubernetes cluster, the master nodes run services that are required to control the Kubernetes
cluster. In OpenShift Dedicated, the control plane is comprised of control plane machines that have a
master machine role. They contain more than just the Kubernetes services for managing the OpenShift
Dedicated cluster.

For most OpenShift Dedicated clusters, control plane machines are defined by a series of standalone
machine API resources. Control planes are managed with control plane machine sets. Extra controls
apply to control plane machines to prevent you from deleting all of the control plane machines and
breaking your cluster.

NOTE

Single availability zone clusters and multiple availability zone clusters require a minimum
of three control plane nodes.

Services that fall under the Kubernetes category on the control plane include the Kubernetes API server,
etcd, the Kubernetes controller manager, and the Kubernetes scheduler.

Table 3.1. Kubernetes services that run on the control plane

Component Description

Kubernetes API server The Kubernetes API server validates and configures the data for pods,
services, and replication controllers. It also provides a focal point for the
shared state of the cluster.

etcd etcd stores the persistent control plane state while other components
watch etcd for changes to bring themselves into the specified state.

Kubernetes controller manager The Kubernetes controller manager watches etcd for changes to objects
such as replication, namespace, and service account controller objects,
and then uses the API to enforce the specified state. Several such
processes create a cluster with one active leader at a time.

Kubernetes scheduler The Kubernetes scheduler watches for newly created pods without an
assigned node and selects the best node to host the pod.

There are also OpenShift services that run on the control plane, which include the OpenShift API server,
OpenShift controller manager, OpenShift OAuth API server, and OpenShift OAuth server.

Table 3.2. OpenShift services that run on the control plane

CHAPTER 3. CONTROL PLANE ARCHITECTURE

17

Component Description

OpenShift API server The OpenShift API server validates and configures the data for
OpenShift resources, such as projects, routes, and templates.

The OpenShift API server is managed by the OpenShift API Server
Operator.

OpenShift controller manager The OpenShift controller manager watches etcd for changes to
OpenShift objects, such as project, route, and template controller
objects, and then uses the API to enforce the specified state.

The OpenShift controller manager is managed by the OpenShift
Controller Manager Operator.

OpenShift OAuth API server The OpenShift OAuth API server validates and configures the data to
authenticate to OpenShift Dedicated, such as users, groups, and OAuth
tokens.

The OpenShift OAuth API server is managed by the Cluster
Authentication Operator.

OpenShift OAuth server Users request tokens from the OpenShift OAuth server to authenticate
themselves to the API.

The OpenShift OAuth server is managed by the Cluster Authentication
Operator.

Some of these services on the control plane machines run as systemd services, while others run as static
pods.

Systemd services are appropriate for services that you need to always come up on that particular
system shortly after it starts. For control plane machines, those include sshd, which allows remote login.
It also includes services such as:

The CRI-O container engine (crio), which runs and manages the containers. OpenShift
Dedicated 4 uses CRI-O instead of the Docker Container Engine.

Kubelet (kubelet), which accepts requests for managing containers on the machine from control
plane services.

CRI-O and Kubelet must run directly on the host as systemd services because they need to be running
before you can run other containers.

The installer-* and revision-pruner-* control plane pods must run with root permissions because they
write to the /etc/kubernetes directory, which is owned by the root user. These pods are in the following
namespaces:

openshift-etcd

openshift-kube-apiserver

openshift-kube-controller-manager

OpenShift Dedicated 4 Architecture

18

openshift-kube-scheduler

3.3. OPERATORS IN OPENSHIFT DEDICATED

Operators are among the most important components of OpenShift Dedicated. Operators are the
preferred method of packaging, deploying, and managing services on the control plane. They can also
provide advantages to applications that users run.

Operators integrate with Kubernetes APIs and CLI tools such as kubectl and oc commands. They
provide the means of monitoring applications, performing health checks, managing over-the-air (OTA)
updates, and ensuring that applications remain in your specified state.

Operators also offer a more granular configuration experience. You configure each component by
modifying the API that the Operator exposes instead of modifying a global configuration file.

Because CRI-O and the Kubelet run on every node, almost every other cluster function can be managed
on the control plane by using Operators. Components that are added to the control plane by using
Operators include critical networking and credential services.

While both follow similar Operator concepts and goals, Operators in OpenShift Dedicated are managed
by two different systems, depending on their purpose:

Cluster Operators, which are managed by the Cluster Version Operator (CVO), are installed by
default to perform cluster functions.

Optional add-on Operators, which are managed by Operator Lifecycle Manager (OLM), can be
made accessible for users to run in their applications.

3.3.1. Add-on Operators

Operator Lifecycle Manager (OLM) and OperatorHub are default components in OpenShift Dedicated
that help manage Kubernetes-native applications as Operators. Together they provide the system for
discovering, installing, and managing the optional add-on Operators available on the cluster.

Using OperatorHub in the OpenShift Dedicated web console, administrators with the dedicated-admin
role and authorized users can select Operators to install from catalogs of Operators. After installing an
Operator from OperatorHub, it can be made available globally or in specific namespaces to run in user
applications.

Default catalog sources are available that include Red Hat Operators, certified Operators, and
community Operators. Administrators with the dedicated-admin role can also add their own custom
catalog sources, which can contain a custom set of Operators.

NOTE

All Operators listed in the Operator Hub marketplace should be available for installation.
These Operators are considered customer workloads, and are not monitored by Red Hat
Site Reliability Engineering (SRE).

Developers can use the Operator SDK to help author custom Operators that take advantage of OLM
features, as well. Their Operator can then be bundled and added to a custom catalog source, which can
be added to a cluster and made available to users.

NOTE

CHAPTER 3. CONTROL PLANE ARCHITECTURE

19

NOTE

OLM does not manage the cluster Operators that comprise the OpenShift Dedicated
architecture.

Additional resources

For more details on running add-on Operators in OpenShift Dedicated, see the Operators guide
sections on Operator Lifecycle Manager (OLM) and OperatorHub.

For more details on the Operator SDK, see Developing Operators.

3.4. ABOUT THE MACHINE CONFIG OPERATOR

OpenShift Dedicated 4 integrates both operating system and cluster management. Because the cluster
manages its own updates, including updates to Red Hat Enterprise Linux CoreOS (RHCOS) on cluster
nodes, OpenShift Dedicated provides an opinionated lifecycle management experience that simplifies
the orchestration of node upgrades.

OpenShift Dedicated employs three daemon sets and controllers to simplify node management. These
daemon sets orchestrate operating system updates and configuration changes to the hosts by using
standard Kubernetes-style constructs. They include:

The machine-config-controller, which coordinates machine upgrades from the control plane. It
monitors all of the cluster nodes and orchestrates their configuration updates.

The machine-config-daemon daemon set, which runs on each node in the cluster and updates
a machine to configuration as defined by machine config and as instructed by the
MachineConfigController. When the node detects a change, it drains off its pods, applies the
update, and reboots. These changes come in the form of Ignition configuration files that apply
the specified machine configuration and control kubelet configuration. The update itself is
delivered in a container. This process is key to the success of managing OpenShift Dedicated
and RHCOS updates together.

The machine-config-server daemon set, which provides the Ignition config files to control
plane nodes as they join the cluster.

The machine configuration is a subset of the Ignition configuration. The machine-config-daemon reads
the machine configuration to see if it needs to do an OSTree update or if it must apply a series of
systemd kubelet file changes, configuration changes, or other changes to the operating system or
OpenShift Dedicated configuration.

When you perform node management operations, you create or modify a KubeletConfig custom
resource (CR).

IMPORTANT

OpenShift Dedicated 4 Architecture

20

https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/operators/#olm-understanding-operatorhub
https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/operators/#osdk-about

IMPORTANT

When changes are made to a machine configuration, the Machine Config Operator
(MCO) automatically reboots all corresponding nodes in order for the changes to take
effect.

To prevent the nodes from automatically rebooting after machine configuration changes,
before making the changes, you must pause the autoreboot process by setting the
spec.paused field to true in the corresponding machine config pool. When paused,
machine configuration changes are not applied until you set the spec.paused field to
false and the nodes have rebooted into the new configuration.

The following modifications do not trigger a node reboot:

When the MCO detects any of the following changes, it applies the update
without draining or rebooting the node:

Changes to the SSH key in the
spec.config.passwd.users.sshAuthorizedKeys parameter of a machine
config.

Changes to the global pull secret or pull secret in the openshift-config
namespace.

Automatic rotation of the /etc/kubernetes/kubelet-ca.crt certificate
authority (CA) by the Kubernetes API Server Operator.

When the MCO detects changes to the /etc/containers/registries.conf file, such
as adding or editing an ImageDigestMirrorSet, ImageTagMirrorSet, or
ImageContentSourcePolicy object, it drains the corresponding nodes, applies
the changes, and uncordons the nodes. The node drain does not happen for the
following changes:

The addition of a registry with the pull-from-mirror = "digest-only"
parameter set for each mirror.

The addition of a mirror with the pull-from-mirror = "digest-only"
parameter set in a registry.

The addition of items to the unqualified-search-registries list.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated.

3.5. OVERVIEW OF ETCD

etcd is a consistent, distributed key-value store that holds small amounts of data that can fit entirely in
memory. Although etcd is a core component of many projects, it is the primary data store for
Kubernetes, which is the standard system for container orchestration.

3.5.1. Benefits of using etcd

By using etcd, you can benefit in several ways:

CHAPTER 3. CONTROL PLANE ARCHITECTURE

21

Maintain consistent uptime for your cloud-native applications, and keep them working even if
individual servers fail

Store and replicate all cluster states for Kubernetes

Distribute configuration data to provide redundancy and resiliency for the configuration of
nodes

3.5.2. How etcd works

To ensure a reliable approach to cluster configuration and management, etcd uses the etcd Operator.
The Operator simplifies the use of etcd on a Kubernetes container platform like OpenShift Dedicated.
With the etcd Operator, you can create or delete etcd members, resize clusters, perform backups, and
upgrade etcd.

The etcd Operator observes, analyzes, and acts:

1. It observes the cluster state by using the Kubernetes API.

2. It analyzes differences between the current state and the state that you want.

3. It fixes the differences through the etcd cluster management APIs, the Kubernetes API, or both.

etcd holds the cluster state, which is constantly updated. This state is continuously persisted, which
leads to a high number of small changes at high frequency. As a result, Red Hat Site Reliability
Engineering (SRE) backs the etcd cluster member with fast, low-latency I/O.

OpenShift Dedicated 4 Architecture

22

CHAPTER 4. NVIDIA GPU ARCHITECTURE OVERVIEW
NVIDIA supports the use of graphics processing unit (GPU) resources on OpenShift Dedicated.
OpenShift Dedicated is a security-focused and hardened Kubernetes platform developed and
supported by Red Hat for deploying and managing Kubernetes clusters at scale. OpenShift Dedicated
includes enhancements to Kubernetes so that users can easily configure and use NVIDIA GPU
resources to accelerate workloads.

The NVIDIA GPU Operator leverages the Operator framework within OpenShift Dedicated to manage
the full lifecycle of NVIDIA software components required to run GPU-accelerated workloads.

These components include the NVIDIA drivers (to enable CUDA), the Kubernetes device plugin for
GPUs, the NVIDIA Container Toolkit, automatic node tagging using GPU feature discovery (GFD),
DCGM-based monitoring, and others.

NOTE

The NVIDIA GPU Operator is only supported by NVIDIA. For more information about
obtaining support from NVIDIA, see Obtaining Support from NVIDIA .

4.1. NVIDIA GPU PREREQUISITES

A working OpenShift cluster with at least one GPU worker node.

Access to the OpenShift cluster as a cluster-admin to perform the required steps.

OpenShift CLI (oc) is installed.

The node feature discovery (NFD) Operator is installed and a nodefeaturediscovery instance
is created.

4.2. GPUS AND OSD

You can deploy OpenShift Dedicated on NVIDIA GPU instance types.

It is important that this compute instance is a GPU-accelerated compute instance and that the GPU
type matches the list of supported GPUs from NVIDIA AI Enterprise. For example, T4, V100, and A100
are part of this list.

You can choose one of the following methods to access the containerized GPUs:

GPU passthrough to access and use GPU hardware within a virtual machine (VM).

GPU (vGPU) time slicing when the entire GPU is not required.

Additional resources

Red Hat Openshift in the Cloud

4.3. GPU SHARING METHODS

Red Hat and NVIDIA have developed GPU concurrency and sharing mechanisms to simplify GPU-
accelerated computing on an enterprise-level OpenShift Dedicated cluster.

Applications typically have different compute requirements that can leave GPUs underutilized.

CHAPTER 4. NVIDIA GPU ARCHITECTURE OVERVIEW

23

https://access.redhat.com/solutions/5174941
https://docs.nvidia.com/ai-enterprise/deployment-guide-cloud/0.1.0/aws-redhat-openshift.html

Applications typically have different compute requirements that can leave GPUs underutilized.
Providing the right amount of compute resources for each workload is critical to reduce deployment
cost and maximize GPU utilization.

Concurrency mechanisms for improving GPU utilization exist that range from programming model APIs
to system software and hardware partitioning, including virtualization. The following list shows the GPU
concurrency mechanisms:

Compute Unified Device Architecture (CUDA) streams

Time-slicing

CUDA Multi-Process Service (MPS)

Multi-instance GPU (MIG)

Virtualization with vGPU

Additional resources

Improving GPU Utilization

4.3.1. CUDA streams

Compute Unified Device Architecture (CUDA) is a parallel computing platform and programming model
developed by NVIDIA for general computing on GPUs.

A stream is a sequence of operations that executes in issue-order on the GPU. CUDA commands are
typically executed sequentially in a default stream and a task does not start until a preceding task has
completed.

Asynchronous processing of operations across different streams allows for parallel execution of tasks. A
task issued in one stream runs before, during, or after another task is issued into another stream. This
allows the GPU to run multiple tasks simultaneously in no prescribed order, leading to improved
performance.

Additional resources

Asynchronous Concurrent Execution

4.3.2. Time-slicing

GPU time-slicing interleaves workloads scheduled on overloaded GPUs when you are running multiple
CUDA applications.

You can enable time-slicing of GPUs on Kubernetes by defining a set of replicas for a GPU, each of
which can be independently distributed to a pod to run workloads on. Unlike multi-instance GPU (MIG),
there is no memory or fault isolation between replicas, but for some workloads this is better than not
sharing at all. Internally, GPU time-slicing is used to multiplex workloads from replicas of the same
underlying GPU.

You can apply a cluster-wide default configuration for time-slicing. You can also apply node-specific
configurations. For example, you can apply a time-slicing configuration only to nodes with Tesla T4
GPUs and not modify nodes with other GPU models.

You can combine these two approaches by applying a cluster-wide default configuration and then

OpenShift Dedicated 4 Architecture

24

https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution

You can combine these two approaches by applying a cluster-wide default configuration and then
labeling nodes to give those nodes a node-specific configuration.

4.3.3. CUDA Multi-Process Service

CUDA Multi-Process Service (MPS) allows a single GPU to use multiple CUDA processes. The
processes run in parallel on the GPU, eliminating saturation of the GPU compute resources. MPS also
enables concurrent execution, or overlapping, of kernel operations and memory copying from different
processes to enhance utilization.

Additional resources

CUDA MPS

4.3.4. Multi-instance GPU

Using Multi-instance GPU (MIG), you can split GPU compute units and memory into multiple MIG
instances. Each of these instances represents a standalone GPU device from a system perspective and
can be connected to any application, container, or virtual machine running on the node. The software
that uses the GPU treats each of these MIG instances as an individual GPU.

MIG is useful when you have an application that does not require the full power of an entire GPU. The
MIG feature of the new NVIDIA Ampere architecture enables you to split your hardware resources into
multiple GPU instances, each of which is available to the operating system as an independent CUDA-
enabled GPU.

NVIDIA GPU Operator version 1.7.0 and higher provides MIG support for the A100 and A30 Ampere
cards. These GPU instances are designed to support up to seven multiple independent CUDA
applications so that they operate completely isolated with dedicated hardware resources.

Additional resources

NVIDIA Multi-Instance GPU User Guide

4.3.5. Virtualization with vGPU

Virtual machines (VMs) can directly access a single physical GPU using NVIDIA vGPU. You can create
virtual GPUs that can be shared by VMs across the enterprise and accessed by other devices.

This capability combines the power of GPU performance with the management and security benefits
provided by vGPU. Additional benefits provided by vGPU includes proactive management and
monitoring for your VM environment, workload balancing for mixed VDI and compute workloads, and
resource sharing across multiple VMs.

Additional resources

Virtual GPUs

4.4. NVIDIA GPU FEATURES FOR OPENSHIFT DEDICATED

NVIDIA Container Toolkit

NVIDIA Container Toolkit enables you to create and run GPU-accelerated containers. The toolkit
includes a container runtime library and utilities to automatically configure containers to use NVIDIA
GPUs.

CHAPTER 4. NVIDIA GPU ARCHITECTURE OVERVIEW

25

https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://www.nvidia.com/en-us/data-center/virtual-solutions/

NVIDIA AI Enterprise

NVIDIA AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics software
optimized, certified, and supported with NVIDIA-Certified systems.
NVIDIA AI Enterprise includes support for Red Hat OpenShift Dedicated. The following installation
methods are supported:

OpenShift Dedicated on bare metal or VMware vSphere with GPU Passthrough.

OpenShift Dedicated on VMware vSphere with NVIDIA vGPU.

GPU Feature Discovery

NVIDIA GPU Feature Discovery for Kubernetes is a software component that enables you to
automatically generate labels for the GPUs available on a node. GPU Feature Discovery uses node
feature discovery (NFD) to perform this labeling.
The Node Feature Discovery Operator (NFD) manages the discovery of hardware features and
configurations in an OpenShift Container Platform cluster by labeling nodes with hardware-specific
information. NFD labels the host with node-specific attributes, such as PCI cards, kernel, OS version,
and so on.

You can find the NFD Operator in the Operator Hub by searching for “Node Feature Discovery”.

NVIDIA GPU Operator with OpenShift Virtualization

Up until this point, the GPU Operator only provisioned worker nodes to run GPU-accelerated
containers. Now, the GPU Operator can also be used to provision worker nodes for running GPU-
accelerated virtual machines (VMs).
You can configure the GPU Operator to deploy different software components to worker nodes
depending on which GPU workload is configured to run on those nodes.

GPU Monitoring dashboard

You can install a monitoring dashboard to display GPU usage information on the cluster Observe
page in the OpenShift Dedicated web console. GPU utilization information includes the number of
available GPUs, power consumption (in watts), temperature (in degrees Celsius), utilization (in
percent), and other metrics for each GPU.

Additional resources

NVIDIA-Certified Systems

NVIDIA AI Enterprise

NVIDIA Container Toolkit

Enabling the GPU Monitoring Dashboard

MIG Support in OpenShift Container Platform

Time-slicing NVIDIA GPUs in OpenShift

Deploy GPU Operators in a disconnected or airgapped environment

OpenShift Dedicated 4 Architecture

26

https://docs.nvidia.com/ngc/ngc-deploy-on-premises/nvidia-certified-systems/index.html
https://docs.nvidia.com/ai-enterprise/index.html#deployment-guides
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/overview.html#
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mig-ocp.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/time-slicing-gpus-in-openshift.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mirror-gpu-ocp-disconnected.html

CHAPTER 5. UNDERSTANDING OPENSHIFT DEDICATED
DEVELOPMENT

To fully leverage the capability of containers when developing and running enterprise-quality
applications, ensure your environment is supported by tools that allow containers to be:

Created as discrete microservices that can be connected to other containerized, and non-
containerized, services. For example, you might want to join your application with a database or
attach a monitoring application to it.

Resilient, so if a server crashes or needs to go down for maintenance or to be decommissioned,
containers can start on another machine.

Automated to pick up code changes automatically and then start and deploy new versions of
themselves.

Scaled up, or replicated, to have more instances serving clients as demand increases and then
spun down to fewer instances as demand declines.

Run in different ways, depending on the type of application. For example, one application might
run once a month to produce a report and then exit. Another application might need to run
constantly and be highly available to clients.

Managed so you can watch the state of your application and react when something goes wrong.

Containers’ widespread acceptance, and the resulting requirements for tools and methods to make
them enterprise-ready, resulted in many options for them.

The rest of this section explains options for assets you can create when you build and deploy
containerized Kubernetes applications in OpenShift Dedicated. It also describes which approaches you
might use for different kinds of applications and development requirements.

5.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS

You can approach application development with containers in many ways, and different approaches
might be more appropriate for different situations. To illustrate some of this variety, the series of
approaches that is presented starts with developing a single container and ultimately deploys that
container as a mission-critical application for a large enterprise. These approaches show different tools,
formats, and methods that you can employ with containerized application development. This topic
describes:

Building a simple container and storing it in a registry

Creating a Kubernetes manifest and saving it to a Git repository

Making an Operator to share your application with others

5.2. BUILDING A SIMPLE CONTAINER

You have an idea for an application and you want to containerize it.

First you require a tool for building a container, like buildah or docker, and a file that describes what goes
in your container, which is typically a Dockerfile.

Next, you require a location to push the resulting container image so you can pull it to run anywhere you

CHAPTER 5. UNDERSTANDING OPENSHIFT DEDICATED DEVELOPMENT

27

https://docs.docker.com/engine/reference/builder/

Next, you require a location to push the resulting container image so you can pull it to run anywhere you
want it to run. This location is a container registry.

Some examples of each of these components are installed by default on most Linux operating systems,
except for the Dockerfile, which you provide yourself.

The following diagram displays the process of building and pushing an image:

Figure 5.1. Create a simple containerized application and push it to a registry

If you use a computer that runs Red Hat Enterprise Linux (RHEL) as the operating system, the process
of creating a containerized application requires the following steps:

1. Install container build tools: RHEL contains a set of tools that includes podman, buildah, and
skopeo that you use to build and manage containers.

2. Create a Dockerfile to combine base image and software: Information about building your
container goes into a file that is named Dockerfile. In that file, you identify the base image you
build from, the software packages you install, and the software you copy into the container. You
also identify parameter values like network ports that you expose outside the container and
volumes that you mount inside the container. Put your Dockerfile and the software you want to
containerize in a directory on your RHEL system.

3. Run buildah or docker build: Run the buildah build-using-dockerfile or the docker
build command to pull your chosen base image to the local system and create a container
image that is stored locally. You can also build container images without a Dockerfile by using
buildah.

4. Tag and push to a registry: Add a tag to your new container image that identifies the location of
the registry in which you want to store and share your container. Then push that image to the
registry by running the podman push or docker push command.

5. Pull and run the image: From any system that has a container client tool, such as podman or
docker, run a command that identifies your new image. For example, run the podman
run <image_name> or docker run <image_name> command. Here <image_name> is the
name of your new container image, which resembles quay.io/myrepo/myapp:latest. The
registry might require credentials to push and pull images.

5.2.1. Container build tool options

Building and managing containers with buildah, podman, and skopeo results in industry standard
container images that include features specifically tuned for deploying containers in OpenShift
Dedicated or other Kubernetes environments. These tools are daemonless and can run without root

OpenShift Dedicated 4 Architecture

28

privileges, requiring less overhead to run them.

IMPORTANT

Support for Docker Container Engine as a container runtime is deprecated in Kubernetes
1.20 and will be removed in a future release. However, Docker-produced images will
continue to work in your cluster with all runtimes, including CRI-O. For more information,
see the Kubernetes blog announcement .

When you ultimately run your containers in OpenShift Dedicated, you use the CRI-O container engine.
CRI-O runs on every worker and control plane machine in an OpenShift Dedicated cluster, but CRI-O is
not yet supported as a standalone runtime outside of OpenShift Dedicated.

5.2.2. Base image options

The base image you choose to build your application on contains a set of software that resembles a
Linux system to your application. When you build your own image, your software is placed into that file
system and sees that file system as though it were looking at its operating system. Choosing this base
image has major impact on how secure, efficient and upgradeable your container is in the future.

Red Hat provides a new set of base images referred to as Red Hat Universal Base Images (UBI). These
images are based on Red Hat Enterprise Linux and are similar to base images that Red Hat has offered
in the past, with one major difference: they are freely redistributable without a Red Hat subscription. As
a result, you can build your application on UBI images without having to worry about how they are shared
or the need to create different images for different environments.

These UBI images have standard, init, and minimal versions. You can also use the Red Hat Software
Collections images as a foundation for applications that rely on specific runtime environments such as
Node.js, Perl, or Python. Special versions of some of these runtime base images are referred to as
Source-to-Image (S2I) images. With S2I images, you can insert your code into a base image
environment that is ready to run that code.

S2I images are available for you to use directly from the OpenShift Dedicated web UI. In the Developer
perspective, navigate to the +Add view and in the Developer Catalog tile, view all of the available
services in the Developer Catalog.

Figure 5.2. Choose S2I base images for apps that need specific runtimes

CHAPTER 5. UNDERSTANDING OPENSHIFT DEDICATED DEVELOPMENT

29

https://kubernetes.io/blog/2020/12/02/dont-panic-kubernetes-and-docker/
https://cri-o.io/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal
https://access.redhat.com/documentation/en-us/red_hat_software_collections/3/html-single/using_red_hat_software_collections_container_images/index

Figure 5.2. Choose S2I base images for apps that need specific runtimes

5.2.3. Registry options

Container registries are where you store container images so you can share them with others and make
them available to the platform where they ultimately run. You can select large, public container registries
that offer free accounts or a premium version that offer more storage and special features. You can also
install your own registry that can be exclusive to your organization or selectively shared with others.

To get Red Hat images and certified partner images, you can draw from the Red Hat Registry. The Red
Hat Registry is represented by two locations: registry.access.redhat.com, which is unauthenticated
and deprecated, and registry.redhat.io, which requires authentication. You can learn about the Red Hat
and partner images in the Red Hat Registry from the Container images section of the Red Hat
Ecosystem Catalog. Besides listing Red Hat container images, it also shows extensive information about
the contents and quality of those images, including health scores that are based on applied security
updates.

Large, public registries include Docker Hub and Quay.io. The Quay.io registry is owned and managed by
Red Hat. Many of the components used in OpenShift Dedicated are stored in Quay.io, including
container images and the Operators that are used to deploy OpenShift Dedicated itself. Quay.io also
offers the means of storing other types of content, including Helm charts.

If you want your own, private container registry, OpenShift Dedicated itself includes a private container
registry that is installed with OpenShift Dedicated and runs on its cluster. Red Hat also offers a private
version of the Quay.io registry called Red Hat Quay. Red Hat Quay includes geo replication, Git build
triggers, Clair image scanning, and many other features.

All of the registries mentioned here can require credentials to download images from those registries.
Some of those credentials are presented on a cluster-wide basis from OpenShift Dedicated, while other
credentials can be assigned to individuals.

5.3. CREATING A KUBERNETES MANIFEST FOR OPENSHIFT
DEDICATED

While the container image is the basic building block for a containerized application, more information is

OpenShift Dedicated 4 Architecture

30

https://catalog.redhat.com/software/containers/explore
https://hub.docker.com/
https://quay.io/
https://access.redhat.com/products/red-hat-quay

While the container image is the basic building block for a containerized application, more information is
required to manage and deploy that application in a Kubernetes environment such as OpenShift
Dedicated. The typical next steps after you create an image are to:

Understand the different resources you work with in Kubernetes manifests

Make some decisions about what kind of an application you are running

Gather supporting components

Create a manifest and store that manifest in a Git repository so you can store it in a source
versioning system, audit it, track it, promote and deploy it to the next environment, roll it back to
earlier versions, if necessary, and share it with others

5.3.1. About Kubernetes pods and services

While the container image is the basic unit with docker, the basic units that Kubernetes works with are
called pods. Pods represent the next step in building out an application. A pod can contain one or more
than one container. The key is that the pod is the single unit that you deploy, scale, and manage.

Scalability and namespaces are probably the main items to consider when determining what goes in a
pod. For ease of deployment, you might want to deploy a container in a pod and include its own logging
and monitoring container in the pod. Later, when you run the pod and need to scale up an additional
instance, those other containers are scaled up with it. For namespaces, containers in a pod share the
same network interfaces, shared storage volumes, and resource limitations, such as memory and CPU,
which makes it easier to manage the contents of the pod as a single unit. Containers in a pod can also
communicate with each other by using standard inter-process communications, such as System V
semaphores or POSIX shared memory.

While individual pods represent a scalable unit in Kubernetes, a service provides a means of grouping
together a set of pods to create a complete, stable application that can complete tasks such as load
balancing. A service is also more permanent than a pod because the service remains available from the
same IP address until you delete it. When the service is in use, it is requested by name and the
OpenShift Dedicated cluster resolves that name into the IP addresses and ports where you can reach
the pods that compose the service.

By their nature, containerized applications are separated from the operating systems where they run
and, by extension, their users. Part of your Kubernetes manifest describes how to expose the application
to internal and external networks by defining network policies that allow fine-grained control over
communication with your containerized applications. To connect incoming requests for HTTP, HTTPS,
and other services from outside your cluster to services inside your cluster, you can use an Ingress
resource.

If your container requires on-disk storage instead of database storage, which might be provided through
a service, you can add volumes to your manifests to make that storage available to your pods. You can
configure the manifests to create persistent volumes (PVs) or dynamically create volumes that are
added to your Pod definitions.

After you define a group of pods that compose your application, you can define those pods in
Deployment and DeploymentConfig objects.

5.3.2. Application types

Next, consider how your application type influences how to run it.

Kubernetes defines different types of workloads that are appropriate for different kinds of applications.

CHAPTER 5. UNDERSTANDING OPENSHIFT DEDICATED DEVELOPMENT

31

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Kubernetes defines different types of workloads that are appropriate for different kinds of applications.
To determine the appropriate workload for your application, consider if the application is:

Meant to run to completion and be done. An example is an application that starts up to produce
a report and exits when the report is complete. The application might not run again then for a
month. Suitable OpenShift Dedicated objects for these types of applications include Job and
CronJob objects.

Expected to run continuously. For long-running applications, you can write a deployment.

Required to be highly available. If your application requires high availability, then you want to size
your deployment to have more than one instance. A Deployment or DeploymentConfig object
can incorporate a replica set for that type of application. With replica sets, pods run across
multiple nodes to make sure the application is always available, even if a worker goes down.

Need to run on every node. Some types of Kubernetes applications are intended to run in the
cluster itself on every master or worker node. DNS and monitoring applications are examples of
applications that need to run continuously on every node. You can run this type of application as
a daemon set. You can also run a daemon set on a subset of nodes, based on node labels.

Require life-cycle management. When you want to hand off your application so that others can
use it, consider creating an Operator. Operators let you build in intelligence, so it can handle
things like backups and upgrades automatically. Coupled with the Operator Lifecycle Manager
(OLM), cluster managers can expose Operators to selected namespaces so that users in the
cluster can run them.

Have identity or numbering requirements. An application might have identity requirements or
numbering requirements. For example, you might be required to run exactly three instances of
the application and to name the instances 0, 1, and 2. A stateful set is suitable for this
application. Stateful sets are most useful for applications that require independent storage, such
as databases and zookeeper clusters.

5.3.3. Available supporting components

The application you write might need supporting components, like a database or a logging component.
To fulfill that need, you might be able to obtain the required component from the following Catalogs
that are available in the OpenShift Dedicated web console:

OperatorHub, which is available in each OpenShift Dedicated 4 cluster. The OperatorHub
makes Operators available from Red Hat, certified Red Hat partners, and community members
to the cluster operator. The cluster operator can make those Operators available in all or
selected namespaces in the cluster, so developers can launch them and configure them with
their applications.

Templates, which are useful for a one-off type of application, where the lifecycle of a
component is not important after it is installed. A template provides an easy way to get started
developing a Kubernetes application with minimal overhead. A template can be a list of resource
definitions, which could be Deployment, Service, Route, or other objects. If you want to change
names or resources, you can set these values as parameters in the template.

You can configure the supporting Operators and templates to the specific needs of your development
team and then make them available in the namespaces in which your developers work. Many people add
shared templates to the openshift namespace because it is accessible from all other namespaces.

5.3.4. Applying the manifest

Kubernetes manifests let you create a more complete picture of the components that make up your

OpenShift Dedicated 4 Architecture

32

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://www.openshift.com/learn/topics/operators
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

Kubernetes manifests let you create a more complete picture of the components that make up your
Kubernetes applications. You write these manifests as YAML files and deploy them by applying them to
the cluster, for example, by running the oc apply command.

5.3.5. Next steps

At this point, consider ways to automate your container development process. Ideally, you have some
sort of CI pipeline that builds the images and pushes them to a registry. In particular, a GitOps pipeline
integrates your container development with the Git repositories that you use to store the software that
is required to build your applications.

The workflow to this point might look like:

Day 1: You write some YAML. You then run the oc apply command to apply that YAML to the
cluster and test that it works.

Day 2: You put your YAML container configuration file into your own Git repository. From there,
people who want to install that app, or help you improve it, can pull down the YAML and apply it
to their cluster to run the app.

Day 3: Consider writing an Operator for your application.

5.4. DEVELOP FOR OPERATORS

Packaging and deploying your application as an Operator might be preferred if you make your
application available for others to run. As noted earlier, Operators add a lifecycle component to your
application that acknowledges that the job of running an application is not complete as soon as it is
installed.

When you create an application as an Operator, you can build in your own knowledge of how to run and
maintain the application. You can build in features for upgrading the application, backing it up, scaling it,
or keeping track of its state. If you configure the application correctly, maintenance tasks, like updating
the Operator, can happen automatically and invisibly to the Operator’s users.

An example of a useful Operator is one that is set up to automatically back up data at particular times.
Having an Operator manage an application’s backup at set times can save a system administrator from
remembering to do it.

Any application maintenance that has traditionally been completed manually, like backing up data or
rotating certificates, can be completed automatically with an Operator.

CHAPTER 5. UNDERSTANDING OPENSHIFT DEDICATED DEVELOPMENT

33

CHAPTER 6. ADMISSION PLUGINS
Admission plugins are used to help regulate how OpenShift Dedicated functions.

6.1. ABOUT ADMISSION PLUGINS

Admission plugins intercept requests to the master API to validate resource requests. After a request is
authenticated and authorized, the admission plugins ensure that any associated policies are followed.
For example, they are commonly used to enforce security policy, resource limitations or configuration
requirements.

Admission plugins run in sequence as an admission chain. If any admission plugin in the sequence rejects
a request, the whole chain is aborted and an error is returned.

OpenShift Dedicated has a default set of admission plugins enabled for each resource type. These are
required for proper functioning of the cluster. Admission plugins ignore resources that they are not
responsible for.

In addition to the defaults, the admission chain can be extended dynamically through webhook
admission plugins that call out to custom webhook servers. There are two types of webhook admission
plugins: a mutating admission plugin and a validating admission plugin. The mutating admission plugin
runs first and can both modify resources and validate requests. The validating admission plugin validates
requests and runs after the mutating admission plugin so that modifications triggered by the mutating
admission plugin can also be validated.

Calling webhook servers through a mutating admission plugin can produce side effects on resources
related to the target object. In such situations, you must take steps to validate that the end result is as
expected.

WARNING

Dynamic admission should be used cautiously because it impacts cluster control
plane operations. When calling webhook servers through webhook admission
plugins in OpenShift Dedicated 4, ensure that you have read the documentation
fully and tested for side effects of mutations. Include steps to restore resources
back to their original state prior to mutation, in the event that a request does not
pass through the entire admission chain.

6.2. DEFAULT ADMISSION PLUGINS

Default validating and admission plugins are enabled in OpenShift Dedicated 4. These default plugins
contribute to fundamental control plane functionality, such as ingress policy, cluster resource limit
override and quota policy.

IMPORTANT

OpenShift Dedicated 4 Architecture

34

IMPORTANT

Do not run workloads in or share access to default projects. Default projects are reserved
for running core cluster components.

The following default projects are considered highly privileged: default, kube-public,
kube-system, openshift, openshift-infra, openshift-node, and other system-created
projects that have the openshift.io/run-level label set to 0 or 1. Functionality that relies
on admission plugins, such as pod security admission, security context constraints, cluster
resource quotas, and image reference resolution, does not work in highly privileged
projects.

The following lists contain the default admission plugins:

Example 6.1. Validating admission plugins

LimitRanger

ServiceAccount

PodNodeSelector

Priority

PodTolerationRestriction

OwnerReferencesPermissionEnforcement

PersistentVolumeClaimResize

RuntimeClass

CertificateApproval

CertificateSigning

CertificateSubjectRestriction

autoscaling.openshift.io/ManagementCPUsOverride

authorization.openshift.io/RestrictSubjectBindings

scheduling.openshift.io/OriginPodNodeEnvironment

network.openshift.io/ExternalIPRanger

network.openshift.io/RestrictedEndpointsAdmission

image.openshift.io/ImagePolicy

security.openshift.io/SecurityContextConstraint

security.openshift.io/SCCExecRestrictions

route.openshift.io/IngressAdmission

config.openshift.io/ValidateAPIServer

CHAPTER 6. ADMISSION PLUGINS

35

config.openshift.io/ValidateAuthentication

config.openshift.io/ValidateFeatureGate

config.openshift.io/ValidateConsole

operator.openshift.io/ValidateDNS

config.openshift.io/ValidateImage

config.openshift.io/ValidateOAuth

config.openshift.io/ValidateProject

config.openshift.io/DenyDeleteClusterConfiguration

config.openshift.io/ValidateScheduler

quota.openshift.io/ValidateClusterResourceQuota

security.openshift.io/ValidateSecurityContextConstraints

authorization.openshift.io/ValidateRoleBindingRestriction

config.openshift.io/ValidateNetwork

operator.openshift.io/ValidateKubeControllerManager

ValidatingAdmissionWebhook

ResourceQuota

quota.openshift.io/ClusterResourceQuota

Example 6.2. Mutating admission plugins

NamespaceLifecycle

LimitRanger

ServiceAccount

NodeRestriction

TaintNodesByCondition

PodNodeSelector

Priority

DefaultTolerationSeconds

PodTolerationRestriction

DefaultStorageClass

StorageObjectInUseProtection

OpenShift Dedicated 4 Architecture

36

RuntimeClass

DefaultIngressClass

autoscaling.openshift.io/ManagementCPUsOverride

scheduling.openshift.io/OriginPodNodeEnvironment

image.openshift.io/ImagePolicy

security.openshift.io/SecurityContextConstraint

security.openshift.io/DefaultSecurityContextConstraints

MutatingAdmissionWebhook

6.3. WEBHOOK ADMISSION PLUGINS

In addition to OpenShift Dedicated default admission plugins, dynamic admission can be implemented
through webhook admission plugins that call webhook servers, to extend the functionality of the
admission chain. Webhook servers are called over HTTP at defined endpoints.

There are two types of webhook admission plugins in OpenShift Dedicated:

During the admission process, the mutating admission plugin can perform tasks, such as injecting
affinity labels.

At the end of the admission process, the validating admission plugin can be used to make sure an
object is configured properly, for example ensuring affinity labels are as expected. If the
validation passes, OpenShift Dedicated schedules the object as configured.

When an API request comes in, mutating or validating admission plugins use the list of external
webhooks in the configuration and call them in parallel:

If all of the webhooks approve the request, the admission chain continues.

If any of the webhooks deny the request, the admission request is denied and the reason for
doing so is based on the first denial.

If more than one webhook denies the admission request, only the first denial reason is returned
to the user.

If an error is encountered when calling a webhook, the request is either denied or the webhook is
ignored depending on the error policy set. If the error policy is set to Ignore, the request is
unconditionally accepted in the event of a failure. If the policy is set to Fail, failed requests are
denied. Using Ignore can result in unpredictable behavior for all clients.

The following diagram illustrates the sequential admission chain process within which multiple webhook
servers are called.

Figure 6.1. API admission chain with mutating and validating admission plugins

CHAPTER 6. ADMISSION PLUGINS

37

Figure 6.1. API admission chain with mutating and validating admission plugins

An example webhook admission plugin use case is where all pods must have a common set of labels. In
this example, the mutating admission plugin can inject labels and the validating admission plugin can
check that labels are as expected. OpenShift Dedicated would subsequently schedule pods that include
required labels and reject those that do not.

Some common webhook admission plugin use cases include:

Namespace reservation.

Limiting custom network resources managed by the SR-IOV network device plugin.

Pod priority class validation.

NOTE

The maximum default webhook timeout value in OpenShift Dedicated is 13 seconds, and
it cannot be changed.

6.4. TYPES OF WEBHOOK ADMISSION PLUGINS

Cluster administrators can call out to webhook servers through the mutating admission plugin or the
validating admission plugin in the API server admission chain.

6.4.1. Mutating admission plugin

The mutating admission plugin is invoked during the mutation phase of the admission process, which
allows modification of resource content before it is persisted. One example webhook that can be called
through the mutating admission plugin is the Pod Node Selector feature, which uses an annotation on a
namespace to find a label selector and add it to the pod specification.

Sample mutating admission plugin configuration

apiVersion: admissionregistration.k8s.io/v1beta1
kind: MutatingWebhookConfiguration 1
metadata:
 name: <webhook_name> 2
webhooks:

OpenShift Dedicated 4 Architecture

38

1

2

3

4

5

6

7

8

9

10

11

Specifies a mutating admission plugin configuration.

The name for the MutatingWebhookConfiguration object. Replace <webhook_name> with the
appropriate value.

The name of the webhook to call. Replace <webhook_name> with the appropriate value.

Information about how to connect to, trust, and send data to the webhook server.

The namespace where the front-end service is created.

The name of the front-end service.

The webhook URL used for admission requests. Replace <webhook_url> with the appropriate
value.

A PEM-encoded CA certificate that signs the server certificate that is used by the webhook server.
Replace <ca_signing_certificate> with the appropriate certificate in base64 format.

Rules that define when the API server should use this webhook admission plugin.

One or more operations that trigger the API server to call this webhook admission plugin. Possible
values are create, update, delete or connect. Replace <operation> and <resource> with the
appropriate values.

Specifies how the policy should proceed if the webhook server is unavailable. Replace <policy>
with either Ignore (to unconditionally accept the request in the event of a failure) or Fail (to deny
the failed request). Using Ignore can result in unpredictable behavior for all clients.

IMPORTANT

In OpenShift Dedicated 4, objects created by users or control loops through a mutating
admission plugin might return unexpected results, especially if values set in an initial
request are overwritten, which is not recommended.

- name: <webhook_name> 3
 clientConfig: 4
 service:
 namespace: default 5
 name: kubernetes 6
 path: <webhook_url> 7
 caBundle: <ca_signing_certificate> 8
 rules: 9
 - operations: 10
 - <operation>
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - <resource>
 failurePolicy: <policy> 11
 sideEffects: None

CHAPTER 6. ADMISSION PLUGINS

39

1

2

3

4

5

6

7

8

9

6.4.2. Validating admission plugin

A validating admission plugin is invoked during the validation phase of the admission process. This phase
allows the enforcement of invariants on particular API resources to ensure that the resource does not
change again. The Pod Node Selector is also an example of a webhook which is called by the validating
admission plugin, to ensure that all nodeSelector fields are constrained by the node selector
restrictions on the namespace.

Sample validating admission plugin configuration

Specifies a validating admission plugin configuration.

The name for the ValidatingWebhookConfiguration object. Replace <webhook_name> with the
appropriate value.

The name of the webhook to call. Replace <webhook_name> with the appropriate value.

Information about how to connect to, trust, and send data to the webhook server.

The namespace where the front-end service is created.

The name of the front-end service.

The webhook URL used for admission requests. Replace <webhook_url> with the appropriate
value.

A PEM-encoded CA certificate that signs the server certificate that is used by the webhook server.
Replace <ca_signing_certificate> with the appropriate certificate in base64 format.

Rules that define when the API server should use this webhook admission plugin.

apiVersion: admissionregistration.k8s.io/v1beta1
kind: ValidatingWebhookConfiguration 1
metadata:
 name: <webhook_name> 2
webhooks:
- name: <webhook_name> 3
 clientConfig: 4
 service:
 namespace: default 5
 name: kubernetes 6
 path: <webhook_url> 7
 caBundle: <ca_signing_certificate> 8
 rules: 9
 - operations: 10
 - <operation>
 apiGroups:
 - ""
 apiVersions:
 - "*"
 resources:
 - <resource>
 failurePolicy: <policy> 11
 sideEffects: Unknown

OpenShift Dedicated 4 Architecture

40

10

11

One or more operations that trigger the API server to call this webhook admission plugin. Possible
values are create, update, delete or connect. Replace <operation> and <resource> with the

Specifies how the policy should proceed if the webhook server is unavailable. Replace <policy>
with either Ignore (to unconditionally accept the request in the event of a failure) or Fail (to deny
the failed request). Using Ignore can result in unpredictable behavior for all clients.

6.5. ADDITIONAL RESOURCES

Controlling pod placement using node taints

Pod priority names

CHAPTER 6. ADMISSION PLUGINS

41

https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-taints-tolerations_dedicating_nodes-scheduler-taints-tolerations
https://access.redhat.com/documentation/en-us/openshift_dedicated/4/html-single/nodes/#admin-guide-priority-preemption-names_nodes-pods-priority

	Table of Contents
	CHAPTER 1. ARCHITECTURE OVERVIEW
	1.1. GLOSSARY OF COMMON TERMS FOR OPENSHIFT DEDICATED ARCHITECTURE
	1.2. UNDERSTANDING HOW OPENSHIFT DEDICATED DIFFERS FROM OPENSHIFT CONTAINER PLATFORM
	1.3. ABOUT THE CONTROL PLANE
	1.4. ABOUT CONTAINERIZED APPLICATIONS FOR DEVELOPERS
	1.5. ABOUT ADMISSION PLUGINS

	CHAPTER 2. OPENSHIFT DEDICATED ARCHITECTURE
	2.1. INTRODUCTION TO OPENSHIFT DEDICATED
	2.1.1. About Kubernetes
	2.1.2. The benefits of containerized applications
	2.1.2.1. Operating system benefits
	2.1.2.2. Deployment and scaling benefits

	2.1.3. OpenShift Dedicated overview
	2.1.3.1. Custom operating system
	2.1.3.2. Simplified update process
	2.1.3.3. Other key features

	CHAPTER 3. CONTROL PLANE ARCHITECTURE
	3.1. NODE CONFIGURATION MANAGEMENT WITH MACHINE CONFIG POOLS
	3.2. MACHINE ROLES IN OPENSHIFT DEDICATED
	3.2.1. Cluster workers
	3.2.2. Cluster control planes

	3.3. OPERATORS IN OPENSHIFT DEDICATED
	3.3.1. Add-on Operators

	3.4. ABOUT THE MACHINE CONFIG OPERATOR
	3.5. OVERVIEW OF ETCD
	3.5.1. Benefits of using etcd
	3.5.2. How etcd works

	CHAPTER 4. NVIDIA GPU ARCHITECTURE OVERVIEW
	4.1. NVIDIA GPU PREREQUISITES
	4.2. GPUS AND OSD
	4.3. GPU SHARING METHODS
	4.3.1. CUDA streams
	4.3.2. Time-slicing
	4.3.3. CUDA Multi-Process Service
	4.3.4. Multi-instance GPU
	4.3.5. Virtualization with vGPU

	4.4. NVIDIA GPU FEATURES FOR OPENSHIFT DEDICATED

	CHAPTER 5. UNDERSTANDING OPENSHIFT DEDICATED DEVELOPMENT
	5.1. ABOUT DEVELOPING CONTAINERIZED APPLICATIONS
	5.2. BUILDING A SIMPLE CONTAINER
	5.2.1. Container build tool options
	5.2.2. Base image options
	5.2.3. Registry options

	5.3. CREATING A KUBERNETES MANIFEST FOR OPENSHIFT DEDICATED
	5.3.1. About Kubernetes pods and services
	5.3.2. Application types
	5.3.3. Available supporting components
	5.3.4. Applying the manifest
	5.3.5. Next steps

	5.4. DEVELOP FOR OPERATORS

	CHAPTER 6. ADMISSION PLUGINS
	6.1. ABOUT ADMISSION PLUGINS
	6.2. DEFAULT ADMISSION PLUGINS
	6.3. WEBHOOK ADMISSION PLUGINS
	6.4. TYPES OF WEBHOOK ADMISSION PLUGINS
	6.4.1. Mutating admission plugin
	6.4.2. Validating admission plugin

	6.5. ADDITIONAL RESOURCES

