
JBoss Enterprise BRMS Platform 5

BRMS Business Process Management Guide

For JBoss Developers and Rules Authors
Edition 5.3.1

Last Updated: 2017-11-17

JBoss Enterprise BRMS Platform 5 BRMS Business Process Management
Guide

For JBoss Developers and Rules Authors
Edition 5.3.1

Red Hat Content Services

Legal Notice

Copyright © 2012 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A guide to using the Business Process Management capabilities of JBoss Enterprise Business
Rules Management System 5.3.1

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION
1.1. INTRODUCTION

CHAPTER 2. BUSINESS PROCESS MANAGEMENT API
2.1. THE API
2.2. CREATE THE KNOWLEDGE BASE
2.3. CREATE A SESSION
2.4. EVENTS LISTENERS

CHAPTER 3. PROCESS OVERVIEW
3.1. PROCESS OVERVIEW
3.2. PROCESS NODES
3.3. PROCESS PROPERTIES
3.4. EVENTS
3.5. ACTIVITIES
3.6. GATEWAYS
3.7. DATA
3.8. CONSTRAINTS
3.9. TIMERS
3.10. UPDATING PROCESSES
3.11. PROCESS INSTANCE MIGRATION
3.12. MULTI-THREADING
3.13. ASYNCHRONOUS HANDLERS

CHAPTER 4. BPMN 2.0 NOTATION
4.1. BUSINESS PROCESS MODEL AND NOTATION (BPMN) 2.0 SPECIFICATION
4.2. AN EXAMPLE BPMN 2.0 PROCESS

CHAPTER 5. PROCESS DESIGNER
5.1. PROCESS DESIGNER
5.2. CONFIGURING THE PROCESS DESIGNER
5.3. PROCESS CREATION AND VALIDATION
5.4. IMPORTING EXISTING PROCESSES
5.5. VIEW AND SHARE PROCESSES
5.6. DEFINING DOMAIN-SPECIFIC SERVICE NODES
5.7. CONNECTING TO A SERVICE REPOSITORY
5.8. GENERATE PROCESS AND TASK FORMS

CHAPTER 6. JBOSS DEVELOPER STUDIO
6.1. JBOSS DEVELOPER STUDIO
6.2. PROJECT CREATION
6.3. PROCESS CREATION
6.4. VALIDATION AND DEBUGGING

CHAPTER 7. PERSISTENCE
7.1. PERSISTENT
7.2. RUNTIME STATE
7.3. CONFIGURING PERSISTENCE
7.4. HISTORY LOG

CHAPTER 8. BUSINESS CENTRAL CONSOLE
8.1. BUSINESS CENTRAL CONSOLE

3

4
4

5
5
5
6
9

12
12
12
13
13
16
23
25
26
27
27
28
29
30

32
32
36

39
39
39
40
41
42
43
44
44

47
47
47
47
48

49
49
49
52
55

60
60

Table of Contents

1

. .

. .

. .

. .

. .

. .

8.2. BUSINESS CENTRAL CONSOLE AND BRMS INTEGRATION
8.3. LOG ON TO THE BUSINESS CENTRAL CONSOLE
8.4. MANAGING PROCESS INSTANCES
8.5. HUMAN TASK LISTS
8.6. REGISTERING SERVICE HANDLERS
8.7. ADDING NEW PROCESS AND TASK FORMS
8.8. REST INTERFACE

CHAPTER 9. DOMAIN-SPECIFIC PROCESSES
9.1. DOMAIN-SPECIFIC SERVICE NODES
9.2. DEFINE A WORK ITEM
9.3. REGISTER THE WORK DEFINITION
9.4. EXECUTING SERVICE NODES
9.5. SERVICE REPOSITORY

CHAPTER 10. HUMAN TASKS
10.1. HUMAN TASKS
10.2. ADDING HUMAN TASKS TO PROCESSES
10.3. HUMAN TASK SERVICE
10.4. HUMAN TASK PERSISTENCE

CHAPTER 11. TESTING AND DEBUGGING
11.1. UNIT TESTING
11.2. DEBUGGING

CHAPTER 12. BUSINESS ACTIVITY MONITORING
12.1. BUSINESS ACTIVITY MONITORING

CHAPTER 13. INTEGRATION
13.1. INTEGRATION
13.2. OSGI
13.3. SPRING
13.4. MAVEN

APPENDIX A. REVISION HISTORY

60
62
62
63
63
64
65

67
67
67
69
70
71

73
73
73
80
87

101
101
104

107
107

108
108
108
109
110

114

BRMS Business Process Management Guide

2

PREFACE

PREFACE

3

CHAPTER 1. INTRODUCTION

1.1. INTRODUCTION

The Business Process Management capabilities of JBoss BRMS 5.3 enable users to model business
processes as flow charts that describe the steps necessary to achieve business goals.

Figure 1.1. Example Process

JBoss BRMS and the Business Process Management (BPM) engine can deploy as standalone
installations running in JBoss Enterprise Application Server 5.1.2, or they can be deployed to an existing
application server. A full list of certified and compatible configurations can be found at
http://www.redhat.com/resourcelibrary/articles/jboss-enterprise-brms-supported-configurations.

For installation instructions, refer to the JBoss BRMS 5.3 Getting Started Guide.

The Business Process Management capabilities included with JBoss BRMS 5.3 are written in Java and
implement the BPMN 2.0 specification (for full details see Business Process Model and Notation (BPMN)
2.0 Specification).

The following tools are included to support business processes throughout their entire life cycle:

A graphical editor embedded in the JBoss BRMS user interface to create and edit business
processes

A graphical editor plug-in for JBoss Developer studio to create and edit business processes

A management console that provides process monitoring, Human Task management, and the
ability to add reporting

Integration with the JBoss BRMS repository for storing, versioning, and managing processes

Integration with an external Human Tasks service

See Also:

Section 4.1, “Business Process Model and Notation (BPMN) 2.0 Specification”

Report a bug

BRMS Business Process Management Guide

4

http://www.redhat.com/resourcelibrary/articles/jboss-enterprise-brms-supported-configurations
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11215-335297+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Introduction&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 2. BUSINESS PROCESS MANAGEMENT API

2.1. THE API

The JBoss BRMS Platform knowledge API is used to load and execute processes, business rules, and
complex event processing.

Figure 2.1. Knowledge Base and Knowledge Session

The API is intended for the following:

1. Creating a knowledge base that contains the process definitions

2. Creating a session to start new process instances, signal existing process instances, and register
listeners

A knowledge base provides the application's process definitions. Definitions are either contained in the
knowledge base or referenced by the knowledge base and loaded from different resources, such as, the
classpath and file system.

A session which has access to the knowledge base must be instantiated to communicate with the
process engine and execute the processes. Whenever a process is started, a new instance of that
process definition is created and is used to maintain the state of the specific instance of the process.

Report a bug

2.2. CREATE THE KNOWLEDGE BASE

CHAPTER 2. BUSINESS PROCESS MANAGEMENT API

5

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11238-335462+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=The+API&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

A knowledge base needs to contain all of the process definitions, or references to the process definitions,
that the session might need to execute.

Use a knowledge builder to load the processes from the required resources (for example, the classpath
or file system) and then create a new knowledge base from the knowledge builder. The following code
snippet creates a knowledge base consisting of one process definition using a resource from the
classpath.

The ResourceFactory has similar methods to load files from file system, URL, InputStream, and
Reader.

A knowledge base can be shared across sessions and is usually created once at the start of the
application. Knowledge bases can be changed dynamically, allowing processes to be added or removed
at runtime.

Report a bug

2.3. CREATE A SESSION

Sessions are created to interact with the process engine and execute the processes; that is, start new
processes and signal events. As many sessions as are required can be started; however, depending on
the requirements of the application, a single session, which can be called from multiple places in the
application, may be sufficient.

The following code snippet creates a session based on the previously created knowledge base and
starts a process with its ID.

The ProcessRuntime interface defines all the session methods for interacting with processes, as
shown in Example 2.1, “ProcessRuntime Interface”.

Example 2.1. ProcessRuntime Interface

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.bpmn"),
ResourceType.BPMN2);
KnowledgeBase kbase = kbuilder.newKnowledgeBase();

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
ProcessInstance processInstance =
ksession.startProcess("com.sample.MyProcess");

 /**
 * Start a new process instance. The process (definition) that should
 * be used is referenced by the given process id.
 *
 * @param processId The id of the process that should be started
 * @return the ProcessInstance that represents the instance of the
process that was started
 */
 ProcessInstance startProcess(String processId);

 /**
 * Start a new process instance. The process (definition) that should

BRMS Business Process Management Guide

6

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11265-230911+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Create+the+Knowledge+Base&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

 * be used is referenced by the given process id. Parameters can be
passed
 * to the process instance (as name-value pairs), and these will be set
 * as variables of the process instance.
 *
 * @param processId the id of the process that should be started
 * @param parameters the process variables that should be set when
starting the process instance
 * @return the ProcessInstance that represents the instance of the
process that was started
 */
 ProcessInstance startProcess(String processId,
 Map<String, Object> parameters);

 /**
 * Signals the engine that an event has occurred. The type parameter
defines
 * which type of event and the event parameter can contain
additional information
 * related to the event. All process instances that are listening
to this type
 * of (external) event will be notified. For performance reasons,
this type of event
 * signaling should only be used if one process instance should be
able to notify
 * other process instances. For internal event within one process
instance, use the
 * signalEvent method that also include the processInstanceId of the
process instance
 * in question.
 *
 * @param type the type of event
 * @param event the data associated with this event
 */
 void signalEvent(String type,
 Object event);

 /**
 * Signals the process instance that an event has occurred. The type
parameter defines
 * which type of event and the event parameter can contain
additional information
 * related to the event. All node instances inside the given
process instance that
 * are listening to this type of (internal) event will be notified.
Note that the event
 * will only be processed inside the given process instance. All
other process instances
 * waiting for this type of event will not be notified.
 *
 * @param type the type of event
 * @param event the data associated with this event
 * @param processInstanceId the id of the process instance that
should be signaled
 */
 void signalEvent(String type,

CHAPTER 2. BUSINESS PROCESS MANAGEMENT API

7

 Object event,
 long processInstanceId);

 /**
 * Returns a collection of currently active process instances.
Note that only process
 * instances that are currently loaded and active inside the engine
will be returned.
 * When using persistence, it is likely not all running process
instances will be loaded
 * as their state will be stored persistently. It is recommended
not to use this
 * method to collect information about the state of your process
instances but to use
 * a history log for that purpose.
 *
 * @return a collection of process instances currently active in the
session
 */
 Collection<ProcessInstance> getProcessInstances();

 /**
 * Returns the process instance with the given id. Note that only
active process instances
 * will be returned. If a process instance has been completed
already, this method will return
 * null.
 *
 * @param id the id of the process instance
 * @return the process instance with the given id or null if it
cannot be found
 */
 ProcessInstance getProcessInstance(long processInstanceId);

 /**
 * Aborts the process instance with the given id. If the process
instance has been completed
 * (or aborted), or the process instance cannot be found, this
method will throw an
 * IllegalArgumentException.
 *
 * @param id the id of the process instance
 */
 void abortProcessInstance(long processInstanceId);

 /**
 * Returns the WorkItemManager related to this session. This can be
used to
 * register new WorkItemHandlers or to complete (or abort)
WorkItems.
 *
 * @return the WorkItemManager related to this session
 */
 WorkItemManager getWorkItemManager();

BRMS Business Process Management Guide

8

Report a bug

2.4. EVENTS LISTENERS

The session provides methods for registering and removing listeners. A ProcessEventListener can
be used to listen to process-related events, such as starting or completing a process, entering or leaving
a node, etc. The different methods of the ProcessEventListener class are shown in the following
example. An event object provides access to related information, such as the process instance and node
instance linked to the event. This API can be used to register event listeners.

Example 2.2. ProcessEventListener Class

'Before' and 'after' events typically act like a stack, which means that any events that occur as a direct
result of the previous event will occur between the 'before' and the 'after' of that event. For example, if a
subsequent node is triggered as result of leaving a node, the 'NodeTriggered' events will occur in
between the 'beforeNodeLeftEvent' and the 'afterNodeLeftEvent' of the node that is left (as the triggering
of the second node is a direct result of leaving the first node). This triggering allows us to derive cause
relationships between events more easily. Similarly, all 'NodeTriggered' and 'NodeLeft' events that are
the direct result of starting a process will occur between the 'beforeProcessStarted' and
'afterProcessStarted' events. In general, if you just want to be notified when a particular event occurs,
you should be looking at the 'before' events only (as they occur immediately before the event actually
occurs). When only looking at the 'after' events, one might get the impression that the events are fired in
the wrong order; however, this only occurs because the 'after' events are triggered as a stack ('after'
events will only fire when all events that were triggered as a result of this event have already fired). 'After'
events should only be used if you want to make sure that all processing related to this event has ended;
for example, when you want to be notified when the starting of a particular process instance has ended,
an 'after' event would be ideal.

Also note that not all nodes always generate 'NodeTriggered' or 'NodeLeft' events. Depending on the
type of node, some nodes might only generate 'NodeLeft' events; other events might only generate
'NodeTriggered' events. 'Catching' intermediate events, for example, are not generating 'triggered' events
(they are only generating 'left' events as they are not really triggered by another node, rather activated
from outside). Similarly, 'throwing' intermediate events do not generate 'left' events (they only generate
'triggered' events, as they have not really left because they have no outgoing connection).

An event listener is provided that can be used to create an audit log (either to the console or a file on the
file system). This audit log contains all the events that occurred at runtime. Note that these loggers
should only be used for debugging purposes.

public interface ProcessEventListener {

 void beforeProcessStarted(ProcessStartedEvent event);
 void afterProcessStarted(ProcessStartedEvent event);
 void beforeProcessCompleted(ProcessCompletedEvent event);
 void afterProcessCompleted(ProcessCompletedEvent event);
 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);
 void afterNodeTriggered(ProcessNodeTriggeredEvent event);
 void beforeNodeLeft(ProcessNodeLeftEvent event);
 void afterNodeLeft(ProcessNodeLeftEvent event);
 void beforeVariableChanged(ProcessVariableChangedEvent event);
 void afterVariableChanged(ProcessVariableChangedEvent event);

}

CHAPTER 2. BUSINESS PROCESS MANAGEMENT API

9

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11268-335340+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Create+a+Session&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The following logger implementations are supported by default:

Table 2.1. Supported Loggers

Type Description Required Arguments

Console Output is written to the console
when the logger is closed or the
number of events reaches a
predefined level.

The knowledge session to be
logged

File Output is written to a file in XML. The knowledge session to be
logged

The name of the log file to be
created

Threaded File Output is written to a file after a
specified interval; this is useful to
visualize the progress in realtime
during debugging.

The knowledge session to be
logged

The name of the log file to be
created

The interval (in milliseconds) to
save the events.

The KnowledgeRuntimeLoggerFactory lets you add a logger to your session, as shown in the
following example. You should always close the logger at the end of your application.

Example 2.3. KnowledgeRuntimeLogger

The log file that is created by the file-based loggers contains an XML-based overview of all the events
that occurred at runtime. It can be opened in JBoss Developer Studio using the Audit View in the Drools
plug-in; through Audit View the events are visualized as a tree. Events that occur between the 'before'
and 'after' events are shown as children of that event. The following screenshot shows a simple example
where a process is started; this results in the activation of the Start node, an Action node and an End
node, after which the process completes.

KnowledgeRuntimeLogger logger =
 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");
// add invocations to the process engine here,
// e.g. ksession.startProcess(processId);
...
logger.close();

BRMS Business Process Management Guide

10

Report a bug

CHAPTER 2. BUSINESS PROCESS MANAGEMENT API

11

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11232-242290+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Events+Listeners&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 3. PROCESS OVERVIEW

3.1. PROCESS OVERVIEW

Figure 3.1. A Business Process

A business process is a flow chart that describes the order in which a series of steps need to be
executed. A process consists of a collection of nodes that are linked to each other using connections.
Each of the nodes represents one step in the overall process and the connections specify how to
transition from one node to the next. A large selection of predefined node types have been defined.

Processes can be created with the following methods:

As an XML file that follows the XML schema defined in the BPMN 2.0 specification.

For details see Section 4.1, “Business Process Model and Notation (BPMN) 2.0 Specification”

With the graphical web-based designer included in the BRMS user interface.

For details see Section 5.1, “Process Designer”

With the graphical process editor in the JBoss Developer Studio plug-in.

For details see Section 6.1, “JBoss Developer Studio”

Report a bug

3.2. PROCESS NODES

Executable processes consist of different types of nodes which are connected to each other. The BPMN
2.0 specification defines three main types of nodes:

Events

The start of a process and the end of a process are both types of events. Intermediate events indicate
events that could occur during the execution of the process.

Activities

Activities are actions that need to be performed during the execution of the process.

Gateways

Gateways are used to define paths of execution through a process.

Report a bug

BRMS Business Process Management Guide

12

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11259-243164+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Process+Overview&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11271-231526+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Process+Nodes&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

3.3. PROCESS PROPERTIES

Every process has the following properties:

ID: The unique ID of the process

Name: The display name of the process

Version: The version number of the process

Package: The package (namespace) the process is defined in

Variables (optional): Variables to store data during the execution of your process

Swimlanes: Swimlanes used in the process for assigning human tasks

See Also:

Section 10.1, “Human Tasks”

Report a bug

3.4. EVENTS

Processes include start events, intermediate events, and end events. Every event has an ID, which
identifies the node, and a name, which is the display name of the node. Additional properties are listed in
the table below.

Table 3.1. Events

Event Type Additional Properties Usage

Start Event Processes have one start node
with one outgoing connection.
Execution of a process always
starts at the start node.

CHAPTER 3. PROCESS OVERVIEW

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11279-335676+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Process+Properties&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

End Event
Terminate:

An end event terminates
either the entire process
or just the current path of
execution.

Processes have one or more end
events. Each end event has one
incoming connection and no
outgoing connections.

If the process is terminated, all
active nodes (on parallel paths of
execution) are cancelled. Non-
terminating end events end the
current path of execution but allow
other paths to continue.
Terminating end events are
visualized with a full circle inside
the event node; non-terminating
event nodes are empty. Note that
if you use a terminating event
node inside a sub-process, you
are terminating the top-level
process instance, not just that
sub-process.

Throwing Error Event
FaultName:

Provides the name of the
fault, which is used to
search for appropriate
exception handlers that
are capable of handling
this kind of fault.

FaultVariable:

Provides the name of the
variable where the data
associated with this fault
is stored. This data is
also passed on to the
exception handler (if one
is found).

Error events are used to signal an
exceptional condition in the
process. It should have one
incoming connection and no
outgoing connections. When an
Error Event is reached in the
process, it will throw an error with
the given name. The process will
search for an appropriate error
handler that is capable of handling
this kind of fault. If no error
handler is found, the process
instance will be aborted.

Error handlers can be specified
using boundary events when
working with XML.

Catching Timer Event
Timer period:

The period between two
subsequent triggers. If
the period is 0, the timer
should only be triggered
once.

Catching timer events represent a
timer that can trigger one or
multiple times after a given period
of time. A Timer Event should have
one incoming connection and one
outgoing connection. When a
Timer Event is reached in the
process, it will start the associated
timer.

See Section 3.9, “Timers” for
expression syntax and further
details.

Event Type Additional Properties Usage

BRMS Business Process Management Guide

14

Catching Signal Event
EventType:

The type of event that is
expected.

VariableName:

The name of the variable
where the data
associated with this
event will be stored.

A Signal Event can be used to
respond to internal or external
events during the execution of the
process. A Signal Event should
have no incoming connections
and one outgoing connection. It
specifies the type of event that is
expected. Whenever that type of
event is detected, the node
connected to this event node will
be triggered.

A process instance can be
signaled that a specific event
occurred using:

ksession.signalEvent
(eventType, data,
processInstanceId)

This triggers all (active) signal
event nodes in the process
instance that are waiting for that
event type. Data related to the
event can be passed using the
data parameter. If the event node
specifies a variable name, this
data will be copied to that variable
when the event occurs.

Events can be used inside sub-
processes; however, these event
nodes will only be active when the
sub-process is active.

A signal can be generated from
inside a process instance with a
script, for instance:

kcontext.getKnowledg
eRuntime().signalEve
nt(eventType, data,
kcontext.getProcessI
nstance().getId());

Event Type Additional Properties Usage

In addition to ensuring all of the process tasks are executed in the correct order, the process engine can
be instructed to respond to events that occur outside the process. By explicitly representing events that
occur outside the process, the process author can specify how the process should react to the events.

Events have a type and can have data associated with them, and users can define their own event types
and associated data.

A process can specify how to respond to events by using a message event. An event node needs to
specify the type of event the node is interested in. It can also define the name of a variable, which will
receive the data that is associated with the event. This allows subsequent nodes in the process to

CHAPTER 3. PROCESS OVERVIEW

15

access the event data and take appropriate action based on this data.

An event can be signaled to a running instance of a process in a number of ways:

Internal event: Any action inside a process (e.g., the action of an action node or an on-entry or
on-exit action of some node) can signal the occurrence of an internal event to the surrounding
process instance. Example code of an internal event is demonstrated below.

kcontext.getProcessInstance().signalEvent(type, eventData);

External event: A process instance can be notified of an event from outside using code such as
the following:

processInstance.signalEvent(type, eventData);

External event using event correlation: Instead of notifying a process instance directly, it is
possible to have the engine automatically determine which process instances might be interested
in an event using event correlation, which is based on the event type. A process instance that
contains an event node listening to external events of some type is notified whenever such an
event occurs. To signal such an event to the process engine, use the following code:

ksession.signalEvent(type, eventData);

Report a bug

3.5. ACTIVITIES

Activities are actions that need to be performed during the execution of the process. Each activity has
one incoming connection and one outgoing connection.

Every activity has an ID, which identifies the node, and a name, which is the display name of the node.
Additional properties are listed in the table below.

Table 3.2. Activities

Activity Type Additional Properties Usage

BRMS Business Process Management Guide

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11282-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Events&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Script Tasks
Action:

The action script
associated with the
node.

The Script Task represents a
script that should be executed in
this process. The associated
action specifies what should be
executed, the dialect used for
coding the action (i.e., Java or
MVEL), and the actual action
code. This code can access any
variables and globals. There is
also a predefined variable
'kcontext' that references the
'ProcessContext' object (which
can be used to access the current
ProcessInstance or NodeInstance;
this object can also be used to get
and set variables, or for it to get
access to the ksession using:

kcontext.getKnowledg
eRuntime())

When a Script Task is reached in
the process, it will execute the
action and then continue with the
next node.

User Task
TaskName:

The name of the human
task.

Priority:

An integer indicating the
priority of the human
task.

Comment:

A comment associated
with the human task.

ActorId:

The actor ID responsible
for executing the human
task. A list of actor ID's
can be specified using a
comma (',') as a
separator.

GroupId:

The group ID responsible

Processes can involve tasks that
need to be executed by human
actors. A user task represents an
atomic task to be completed by a
human actor. User tasks can be
used in combination with swim
lanes to assign multiple human
tasks to similar actors. For more
information about swim lanes and
human tasks, see Human Tasks
chapter.

Activity Type Additional Properties Usage

CHAPTER 3. PROCESS OVERVIEW

17

for executing the human
task. A list of group ID's
can be specified using a
comma (',') as a
separator.

Skippable:

Specifies whether the
human task is optional.

Content:

The data associated with
this task.

Swimlane:

The swimlane this human
task node is part of.

On entry and on exit
actions:

Action scripts that are
executed upon entry and
exit of this node.

Parameter mapping:

Copies the value of
process variables to the
human task parameters.
The values are copied
when the human task is
created.

Result mapping:

Copies the result
parameters from a
human task to a process
variable. A human task
with a variable called
result will contain the
data return by the human
actor; the result variable
ActorId will contain the
ID of the actor who
completed the task.

Activity Type Additional Properties Usage

BRMS Business Process Management Guide

18

Service Tasks
Parameter mapping:

Copies the value of
process variables to the
work item parameters.
The values are copied
when the work item is
created.

Result mapping:

Copies the result
parameters from work
items to a process
variable when the work
item has completed. For
example, the FileFinder
work item has the
parameter Files, which
returns a list of files that
match a search criteria.
This list of files can then
be bound to a process
variable for use within
the process.

On-entry and on-exit
actions:

Actions that are executed
upon entry or exit of the
node.

Additional parameters:

Each type of work item
can define additional
parameters that are
relevant for that type of
work item. The user can
either provide these
values directly or define
a parameter mapping. If
both methods are used,
the parameter mapping
will override parameters
provided by the user.
The value will be
retrieved when creating
the work item, and the
substitution expression
will be replaced by the
result of calling toString()
on the variable. The
expression could be the
name of a variable (so
that it resolves to the
value of the variable) but
more advanced MVEL

Service Tasks represent an
abstract unit of work that should
be executed in this process. All
work that is executed outside the
process engine should be
represented (in a declarative way)
using a Service Task. Different
types of services are predefined,
e.g., sending an email, logging a
message, etc. however, users can
define domain-specific services or
work items. For further details, see
Domain-Specific Processes
chapter.

Activity Type Additional Properties Usage

CHAPTER 3. PROCESS OVERVIEW

19

expressions are possible
as well, e.g., #
{person.name.firstname}.

Business Rule Task
RuleFlowGroup

The name of the ruleflow
group that represents the
set of rules of this
RuleFlowGroup node.

Business Rule Task represents a
set of rules that need to be
evaluated. Rules are defined in
separate files using the Drools
rule format. Rules can become
part of a specific ruleflow group
using the ruleflow-group attribute
in the header of the rule. When a
Rule Task is reached in the
process, the engine will start
executing rules that are part of the
corresponding ruleflow-group (if
any). Execution will automatically
continue to the next node if there
are no more active rules in this
ruleflow group. This means that
during the execution of a ruleflow
group, it is possible that new
activations belonging to the
currently active ruleflow group are
added to the Agenda; this occurs
because of changes made to the
facts by the other rules. If the
ruleflow group was already active,
the ruleflow group will remain
active and execution will only
continue if all active rules of the
ruleflow group have been
completed.

Embedded Sub-Process
VariableID

Unlike other variables
which have a variable ID
which is derived from
variable_name,
embedded sub-process
have a variable ID in the
form:

subprocess_nod
e_id:variable_
name

Variables

Additional variables can
be defined to store data
during the execution of
this node. For more
details see Section 3.7,
“Data”

A sub-process is a node that can
contain other nodes so that it acts
as a node container. This allows
not only the embedding of a part
of the process within such a sub-
process node, but also the
definition of additional variables
that are accessible for all nodes
inside this container. A sub-
process needs a start event and
one or more end events.

Reusable Sub-process
ProcessId:

The ID of the process
that should be executed.

Reusable sub-processes
represent the invocation of
another process from within a
process. When a reusable sub-

Activity Type Additional Properties Usage

BRMS Business Process Management Guide

20

Wait for Completion:

If false, the process will
continue as soon as the
sub-process has been
started.

If true, it will wait for the
sub-process to finish
(complete or abort).

Independent:

If true, the child process
is started as an
independent process and
will not be terminated if
the parent process
completes.

Independent can only be
set to false when Wait
for Completion is
set to true. If set to false,
the sub-process will be
canceled on termination
of the parent process.

On-entry and on-exit
actions:

Actions that are executed
upon entry or exit of this
node.

Parameter in/out
mapping:

A sub-process node can
define "in" and "out"
mappings for variables.
The variables given in
the "in" mapping will be
used as parameters (with
the associated parameter
name) when starting the
process. The variables of
the child process that are
defined for the "out"
mappings will be copied
to the variables of this
process when the child
process has been
completed. Note that
"out" mappings can only
be used when "Wait for
completion" is set to true.

process node is reached in the
process, the engine will start the
process with the given ID.

Activity Type Additional Properties Usage

CHAPTER 3. PROCESS OVERVIEW

21

Multi-Instance Sub-Process
CollectionExpression:

A collection of elements
either in the form of an
array or the type
java.util.Collection.

VariableName

The name of the variable
to contain the current
element from the
collection. This gives
nodes within the
composite node access
to the selected element.

A Multiple Instance sub-process is
a special kind of sub-process that
allows you to execute the
contained process segment
multiple times, once for each
element in a collection. It waits
until the embedded process
fragment is completed for each of
the elements in the given
collection before continuing. If the
collection expression evaluates to
null or an empty collection, the
multiple instances sub-process will
be completed immediately and
follow its outgoing connection.

Activity Type Additional Properties Usage

Any valid Java code can be used inside a script node. Some points to consider when writing code for a
script node:

Avoid low level implementation details inside the process when defining high-level business
processes that need to be understood by business users. A Script Task could be used to
manipulate variables, but other concepts like a service task could be used to model more
complex behavior in a higher-level manner.

Scripts should be immediate as they use the engine thread to execute the script. Scripts that
take some time to execute should be modeled as an asynchronous Service Task.

Avoid contacting external services through a script node; instead, model communication with an
external service using a service task.

Scripts should not throw exceptions. Runtime exceptions should be caught and managed inside
the script or transformed into signals or errors that can then be handled inside the process.

kcontext variable

This variable is of type org.drools.runtime.process.ProcessContext and can be used for several tasks:

Getting the current node instance (if applicable). The node instance could be queried for data,
such as its name and type. You can also cancel the current node instance.

NodeInstance node = kcontext.getNodeInstance();

String name = node.getNodeName();

Getting the current process instance. A process instance can be queried for data (name, id,
processId, etc.), aborted or signaled an internal event.

ksession.signalEvent(eventType, data, processInstanceId)

Getting or setting the value of variables.

BRMS Business Process Management Guide

22

Accessing the Knowledge Runtime allows you do things like starting a process, signaling
(external) events, inserting data, etc.

Dialects

Both Java and MVEL can be used. Java actions should be valid Java code. MVEL actions can use the
business scripting language MVEL to express the action. MVEL accepts any valid Java code but
additionally provides support for nested accesses of parameters (e.g., person.name instead of
person.getName()), and it provides many other scripting improvements. Thus, MVEL expressions are
more convenient for the business user. For example, an action that prints out the name of the person in
the "requester" variable of the process would look like this:

// Java dialect
System.out.println(person.getName());

// MVEL dialect
System.out.println(person.name);

See Also:

Section 10.1, “Human Tasks”

Section 9.1, “Domain-Specific Service Nodes”

Report a bug

3.6. GATEWAYS

Gateways make it possible to provide multiple paths of execution through a process. There are two types
of gateways: diverging gateways and converging gateways. Diverging gateways create branches in
processes, and converging gateways close the branches by merging them back together.

It is possible to branch processes in the following ways:

AND (Parallel)

The flow of control continues along all outgoing connections (branches) simultaneously.

XOR (Exclusive)

The flow of control continues along only one of the outgoing connections. The connection with
the constraint with the lowest priority number that evaluates to true is selected. For information
about defining constraints see Section 3.8, “Constraints”. At least one of the outgoing
connections must evaluate to true at runtime, or the process will throw an exception at runtime.

CHAPTER 3. PROCESS OVERVIEW

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11280-254906+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Activities&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Figure 3.2. Diverging Gateway

A diverging gateway has one incoming connection and two or more outgoing connections. A diverging
gateway contains the following properties:

ID: The ID of the node (which is unique within one node container).

Name: The display name of the node.

Type: AND or XOR.

Constraints: The constraints linked to each of the outgoing connections (exclusive and inclusive
gateways).

Figure 3.3. Converging Gateway

A converging gateway has two or more incoming connections and one outgoing connection. A
converging gateway contains the following properties:

ID: The ID of the node (which is unique within one node container).

Name: The display name of the node.

Type: AND or XOR.

Depending on the type of diverging gateway used, the converging gateway will behave in different ways:

BRMS Business Process Management Guide

24

When a parallel (AND) split was used, the converging gateway will wait for all incoming
branches to be completed before continuing.

When an exclusive (XOR) split was used, the converging gateway will continue as soon as the
one incoming branch has completed.

NOTE

Inclusive (OR) gateways are not currently supported.

Report a bug

3.7. DATA

Throughout the execution of a process, data can be retrieved, stored, passed on, and used. To store
runtime data during the execution of the process, process variables are used. A variable is defined with a
name and a data type. A basic data type could include the following: boolean, int, String, or any kind of
object subclass.

Variables can be defined inside a variable scope. The top-level scope is the variable scope of the
process itself. Sub-scopes can be defined using a sub-process. Variables that are defined in a sub-scope
are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that defines
the variable. Nesting variable scopes are allowed. A node will always search for a variable in its parent
container; if the variable cannot be found, the node will look in the parent's parent container, and so on,
until the process instance itself is reached. If the variable cannot be found, a read access yields null, and
a write access produces an error message. All of this occurs with the process continuing execution.

Variables can be used in the following ways:

Process-level variables can be set when starting a process by providing a map of parameters to
the invocation of the startProcess method. These parameters will be set as variables on the
process scope.

Script actions can access variables directly simply by using the name of the variable as a local
parameter in their script. For example, if the process defines a variable of type
"org.jbpm.Person" in the process, a script in the process could access this directly:

// call method on the process variable "person"

person.setAge(10);

Changing the value of a variable in a script can be done through the knowledge context:

kcontext.setVariable(variableName, value);

Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y just before the service is invoked. You can
also inject the value of the process variable into a hard-coded parameter String using #
{expression}. For example, the description of a human task could be defined as the following:

CHAPTER 3. PROCESS OVERVIEW

25

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11278-252949+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Gateways&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

You need to contact person #{person.getName()}

Where person is a process variable. This will replace this expression with the actual name of the
person when the service needs to be invoked. Similarl results of a service (or reusable sub-
process) can also be copied back to a variable using result mapping.

Various other nodes can also access data. Event nodes, for example, can store the data
associated to the event in a variable. Check the properties of the different node types for more
information.

Finally, processes (and rules) have access to globals, i.e., globally defined variables and data in the
Knowledge Session. Globals are directly accessible in actions like variables. Globals need to be defined
as part of the process before they can be used. Globals can be set using the following:

ksession.setGlobal(name, value)

Globals can also be set from inside process scripts using:

kcontext.getKnowledgeRuntime().setGlobal(name,value);.

Report a bug

3.8. CONSTRAINTS

There are two types of constraints in business processes: code constraints and rule constraints.

Code constraints are boolean expressions evaluated directly whenever they are reached; these
constraints are written in either Java or MVEL. Both Java and MVEL code constraints have
direct access to the globals and variables defined in the process.

Here is an example of a valid Java code constraint, person being a variable in the process:

return person.getAge() > 20;

Here is an example of a valid MVEL code constraint, person being a variable in the process:

return person.age > 20;

Rule constraints are equal to normal Drools rule conditions. They use the Drools Rule Language
syntax to express complex constraints. These rules can, like any other rule, refer to data in the
working memory. They can also refer to globals directly. Here is an example of a valid rule
constraint:

Person(age > 20)

This tests for a person older than 20 in the working memory.

Rule constraints do not have direct access to variables defined inside the process. However, it is
possible to refer to the current process instance inside a rule constraint by adding the process instance to
the working memory and matching for the process instance in your rule constraint. Logic is included to
make sure that a variable processInstance of type WorkflowProcessInstance will only match the current
process instance and not other process instances in the working memory. Note, it is necessary to insert

BRMS Business Process Management Guide

26

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11283-254987+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Data&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

the process instance into the session. If it is necessary to update the process instance, use Java code or
an on-entry, on-exit, or explicit action in the process. The following example of a rule constraint will
search for a person with the same name as the value stored in the variable name of the process:

processInstance : WorkflowProcessInstance()
Person(name == (processInstance.getVariable("name")))
add more constraints here ...

Report a bug

3.9. TIMERS

A timer node has a delay and a period. The delay specifies the amount of time to wait after node
activation before triggering the timer the first time. The period defines the time between subsequent
trigger activations; a period of 0 results in a timer that does not repeat.

The syntax for defining the delay and period is the following:

[#d][#h][#m][#s][#[ms]]

With this syntax, it is possible to specify the amount of days, hours, minutes, seconds, and milliseconds
(which is the default if nothing is specified). For example, the expression "1h" will wait one hour before
triggering the timer.

The expression could also use #{expr} to dynamically derive the period based on a process variable or a
more complex expression based on a process variable (e.g. myVariable.getValue()).

The timer service is responsible for making sure that timers get triggered at the correct time. Timers can
also be cancelled, which means the timer will no longer be triggered.

A timer event may be added to the process flow. Its activation starts the timer, and when it triggers, once
or repeatedly, it activates the timer node's successor. This means that the outgoing connection of a timer
with a positive period is triggered multiple times. Canceling a timer node also cancels the associated
timer, after which no more triggers will occur.

Report a bug

3.10. UPDATING PROCESSES

Over time, the requirements for a process might change. In order to update a process, it is necessary to
deploy an updated version of the process. The updated process must have an updated version number
to distinguish it from the old process; this is necessary because the old process may still be required by
an existing process instance.

Whenever a process is updated, it is important to determine what should happen to the already running
process instances. There are three possibilities:

Proceed: The running process instance proceeds as normal, following the process definition as
it was defined when the process instance was started. As a result, the already running instance
will proceed as if the process was never updated. New instances can be started using the
updated process.

CHAPTER 3. PROCESS OVERVIEW

27

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11275-255177+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Constraints&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11225-255523+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Timers&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Abort (and restart): The already running instance is aborted. If necessary, the process instance
can be restarted using the new process definition.

Transfer: The process instance is migrated to the new process definition; that is, once it has
been migrated successfully, it will continue executing based on the updated process logic. For
further details see Section 3.11, “Process Instance Migration”.

The default behavior follows the proceed approach, which results in multiple versions of the same
process being deployed. Existing process instances continue executing based on the process definition
that was used when starting the process instance.

The version number should be tracked to determine which version of a process definition a process
instance is using. The current version of the process can be retrieved:

processInstance.getProcess().getVersion()

Report a bug

3.11. PROCESS INSTANCE MIGRATION

A process instance contains all the runtime information needed to continue execution at some later point
in time. This includes all the data linked to this process instance (such as variables); it also includes the
current state in the process diagram. For each node that is currently active, a node instance contains the
state of the node. This node instance can also contain additional state information linked to the execution
of that specific node. There are different types of node instances, one for each type of node.

A process instance only contains the runtime state and is linked to a particular process (indirectly, using
ID references) that represents the process logic that needs to be followed when executing this process
instance. The clear separation of definition and runtime state allows reuse of the definition across all
process instances based on this process, and it minimizes runtime state. As a result, updating a running
process instance to a newer version so it uses the new process logic instead of the old one is simply a
matter of changing the referenced process ID from the old ID to the new ID.

However, this does not include the state of the process instance (the variable instances and the node
instances) which might need to be migrated as well. In cases where the process is only extended and all
existing wait states are kept, the runtime state of the process instance does not need to change at all.
However, it is also possible that a more sophisticated mapping is necessary. For example, when an
existing wait state is removed or split into multiple wait states, an existing process instance in a wait
state cannot simply be updated. When a new process variable is introduced, the variable might need to
be initiated correctly so it can be used in the remainder of the (updated) process.

The WorkflowProcessInstanceUpgrader can be used to upgrade a workflow process instance to a newer
process instance. The process instance must be provided with the new process ID. By default, the old
node instances will be automatically mapped to the new node instances with the same ID. But you can
provide a mapping of the old (unique) node ID to the new node ID. The unique node ID is the node ID,
preceded by the node IDs of its parents (with a colon in-between), to uniquely identify a node when
composite nodes are used (as a node ID is only unique within its node container). The new node ID is
just the new node ID in the node container with no need to reference unique node IDs. The following
code snippet shows an example.

// create the session and start the process "com.sample.process"
KnowledgeBuilder kbuilder = ...
StatefulKnowledgeSession ksession = ...
ProcessInstance processInstance =

BRMS Business Process Management Guide

28

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11204-255550+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Updating+Processes&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

If this kind of mapping is insufficient, you can describe your own custom mappers for specific situations.
First disconnect the process instance, change the state accordingly, and then reconnect the process
instance. This is similar to how the WorkflowProcessinstanceUpgrader does it.

Report a bug

3.12. MULTI-THREADING

3.12.1. Multi-threading

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical multi-
threading is what happens when multiple threads or processes are started on a computer, for example
by a Java or C program. Logical multi-threading is what we see in a BPM process after the process
reaches a parallel gateway. From a functional standpoint, the original process will then split into two
processes that are executed in a parallel fashion.

The BPM engine supports logical multi-threading; for example, processes that include a parallel gateway
are supported. We've chosen to implement logical multi-threading using one thread; accordingly, a BPM
process that includes logical multi-threading will only be executed in one technical thread. The main
reason for doing this is that multiple (technical) threads need to be be able to communicate state
information with each other if they are working on the same process. This requirement brings with it a
number of complications. While it might seem that multi-threading would bring performance benefits with
it, the extra logic needed to make sure the different threads work together well means that this is not
guaranteed. There is also the extra overhead incurred because we need to avoid race conditions and
deadlocks.

Report a bug

3.12.2. Engine Execution

In general, the BPM engine executes actions in serial. For example, when the engine encounters a script
task in a process, it will synchronously execute that script and wait for it to complete before continuing
execution. Similarly, if a process encounters a parallel gateway, it will sequentially trigger each of the
outgoing branches, one after the other. This is possible since execution is almost always instantaneous,

ksession.startProcess("com.sample.process");

// add a new version of the process "com.sample.process2"
kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(..., ResourceType.BPMN2);
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// migrate process instance to new version
Map<String, Long> mapping = new HashMap<String, Long>();
// top level node 2 is mapped to a new node with id 3
mapping.put("2", 3L);
// node 2, which is part of composite node 5, is mapped to a new node with
id 4
mapping.put("5.2", 4L);
WorkflowProcessInstanceUpgrader.upgradeProcessInstance(
 ksession, processInstance.getId(),
 "com.sample.process2", mapping);

CHAPTER 3. PROCESS OVERVIEW

29

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11207-257839+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Process+Instance+Migration&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11229-257894+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Multi-threading&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

meaning that it is extremely fast and produces almost no overhead. As a result, the user will usually not
even notice this. Similarly, action scripts in a process are also synchronously executed, and the engine
will wait for them to finish before continuing the process. For example, doing a Thread.sleep(...) as
part of a script will not make the engine continue execution elsewhere but will block the engine thread
during that period.

The same principle applies to service tasks. When a service task is reached in a process, the engine will
also invoke the handler of this service synchronously. The engine will wait for the
completeWorkItem(...) method to return before continuing execution. It is important that your
service handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in invoking
this service remotely and waiting for the results might be too long, it might be a good idea to invoke this
service asynchronously. This means that the handler will only invoke the service and will notify the
engine later when the results are available. In the mean time, the process engine then continues
execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we don't
want the engine to wait until a human actor has responded to the request. The human task handler will
only create a new task (on the task list of the assigned actor) when the human task node is triggered. The
engine will then be able to continue execution on the rest of the process (if necessary), and the handler
will notify the engine asynchronously when the user has completed the task.

Report a bug

3.13. ASYNCHRONOUS HANDLERS

To implement an asynchronous service handler using simple Java, execute the actual service in a new
thread:

In general, a handler usually will not implement the business logic to perform the work item but will
contact an existing service to do the work. For example, the human task handler simply invokes the
human task service to add a task there. To implement an asynchronous handler, you usually have to do
an asynchronous invocation of this service. This usually depends on the technology you use to do the
communication, but this might be as simple as asynchronously invoking a web service, sending a JMS
message to the external service, etc.

public class MyServiceTaskHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager)
{
 new Thread(new Runnable() {
 public void run() {
 // Do the heavy lifting here ...
 }
 }).start();
 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {
 }

}

BRMS Business Process Management Guide

30

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11200-257924+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Engine+Execution&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Report a bug

CHAPTER 3. PROCESS OVERVIEW

31

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11257-257928+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Asynchronous+Handlers&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 4. BPMN 2.0 NOTATION

4.1. BUSINESS PROCESS MODEL AND NOTATION (BPMN) 2.0
SPECIFICATION

The Business Process Model and Notation (BPMN) 2.0 specification defines a standard for graphically
representing a business process; it includes execution semantics for the defined elements and an XML
format to store and share process definitions.

The table below shows the supported elements of the BPMN 2.0 specification and includes some
additional elements and attributes.

Table 4.1. BPMN 2.0 Supported Elements and Attributes

Element Supported
attributes

Supported
elements

Extension
attributes

Extension
elements

definitions rootElement
BPMNDiagram

process processType
isExecutable
name id

property laneSet
flowElement

packageName
adHoc version

import global

sequenceFlow sourceRef
targetRef
isImmediate name
id

conditionExpressio
n

priority

interface name id operation

operation name id inMessageRef

laneSet lane

lane name id flowNodeRef

import* name

global* identifier type

Events

startEvent name id dataOutput
dataOutputAssocia
tion outputSet
eventDefinition

x y width height

BRMS Business Process Management Guide

32

endEvent name id dataInput
dataInputAssociati
on inputSet
eventDefinition

x y width height

intermediateCatch
Event

name id dataOutput
dataOutputAssocia
tion outputSet
eventDefinition

x y width height

intermediateThrow
Event

name id dataInput
dataInputAssociati
on inputSet
eventDefinition

x y width height

boundaryEvent cancelActivity
attachedToRef
name id

eventDefinition x y width height

terminateEventDef
inition

compensateEvent
Definition

activityRef documentation
extensionElements

conditionalEventD
efinition

condition

errorEventDefinitio
n

errorRef

error errorCode id

escalationEventDe
finition

escalationRef

escalation escalationCode id

messageEventDefi
nition

messageRef

message itemRef id

signalEventDefiniti
on

signalRef

Element Supported
attributes

Supported
elements

Extension
attributes

Extension
elements

CHAPTER 4. BPMN 2.0 NOTATION

33

timerEventDefinitio
n

timeCycle
timeDuration

Activities

task name id ioSpecification
dataInputAssociati
on
dataOutputAssocia
tion

taskName x y
width height

scriptTask scriptFormat name
id

script x y width height

script text[mixed content]

userTask name id ioSpecification
dataInputAssociati
on
dataOutputAssocia
tion resourceRole

x y width height onEntry-script
onExit-script

potentialOwner resourceAssignme
ntExpression

resourceAssignme
ntExpression

expression

businessRuleTask name id x y width height
ruleFlowGroup

onEntry-script
onExit-script

manualTask name id x y width height onEntry-script
onExit-script

sendTask messageRef name
id

ioSpecification
dataInputAssociati
on

x y width height onEntry-script
onExit-script

receiveTask messageRef name
id

ioSpecification
dataOutputAssocia
tion

x y width height onEntry-script
onExit-script

serviceTask operationRef
name id

ioSpecification
dataInputAssociati
on
dataOutputAssocia
tion

x y width height onEntry-script
onExit-script

Element Supported
attributes

Supported
elements

Extension
attributes

Extension
elements

BRMS Business Process Management Guide

34

subProcess name id flowElement
property
loopCharacteristics

x y width height

adHocSubProcess cancelRemainingI
nstances name id

completionConditio
n flowElement
property

x y width height

callActivity calledElement
name id

ioSpecification
dataInputAssociati
on
dataOutputAssocia
tion

x y width height
waitForCompletion
independent

onEntry-script
onExit-script

multiInstanceLoop
Characteristics

loopDataInputRef
inputDataItem

onEntry-script* scriptFormat script

onExit-script* scriptFormat script

Gateways

parallelGateway gatewayDirection
name id

x y width height

eventBasedGatew
ay

gatewayDirection
name id

x y width height

exclusiveGateway default
gatewayDirection
name id

x y width height

inclusiveGateway default
gatewayDirection
name id

x y width height

Data

property itemSubjectRef id

dataObject itemSubjectRef id

itemDefinition structureRef id

Element Supported
attributes

Supported
elements

Extension
attributes

Extension
elements

CHAPTER 4. BPMN 2.0 NOTATION

35

ioSpecification dataInput
dataOutput
inputSet outputSet

dataInput name id

dataInputAssociati
on

sourceRef
targetRef
assignment

dataOutput name id

dataOutputAssocia
tion

sourceRef
targetRef
assignment

inputSet dataInputRefs

outputSet dataOutputRefs

assignment from to

formalExpression language text[mixed content]

BPMNDI

BPMNDiagram BPMNPlane

BPMNPlane bpmnElement BPMNEdge
BPMNShape

BPMNShape bpmnElement Bounds

BPMNEdge bpmnElement waypoint

Bounds x y width height

waypoint x y

Element Supported
attributes

Supported
elements

Extension
attributes

Extension
elements

Report a bug

4.2. AN EXAMPLE BPMN 2.0 PROCESS

The process XML file consists of two parts. The top part (the "process" element) contains the definition of

BRMS Business Process Management Guide

36

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11249-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Business+Process+Model+and+Notation+%28BPMN%29+2.0+Specification&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

the different nodes and their properties; the lower part (the "BPMNDiagram" element) contains all
graphical information, like the location of the nodes. The process XML consist of exactly one <process>
element. This element contains parameters related to the process (its type, name, id and package
name), and it consists of three subsections: a header section (where process-level information like
variables, globals, imports and lanes can be defined), a nodes section that defines each of the nodes in
the process, and a connections section that contains the connections between all the nodes in the
process. In the nodes section, there is a specific element for each node. Each element defines the
various parameters and, possibly, sub-elements for that node type.

A simple hello world process that prints out the phrase 'Hello World' is represented graphically in the
following image.

Figure 4.1. Graphical Hello World Process

An executable version of this process expressed using BPMN 2.0 XML is provided in the following
example.

Example 4.1. BPMN 2.0 XML Hello World Process

<?xml version="1.0" encoding="UTF-8"?>
<definitions id="Definition"
 targetNamespace="http://www.example.org/MinimalExample"
 typeLanguage="http://www.java.com/javaTypes"
 expressionLanguage="http://www.mvel.org/2.0"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL
BPMN20.xsd"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true"
id="com.sample.HelloWorld" name="Hello World" >

 <!-- nodes -->
 <startEvent id="_1" name="StartProcess" />
 <scriptTask id="_2" name="Hello" >
 <script>System.out.println("Hello World");</script>
 </scriptTask>
 <endEvent id="_3" name="EndProcess" >
 <terminateEventDefinition/>
 </endEvent>

 <!-- connections -->
 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />
 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

 </process>

CHAPTER 4. BPMN 2.0 NOTATION

37

Processes can be defined with the BPMN 2.0 specification by using the designer included in the BRMS
user interface (for more details see Section 5.1, “Process Designer”), in JBoss Developer Studio (for
more details see Section 6.1, “JBoss Developer Studio”), or by manually writing the XML directly.

Report a bug

 <bpmndi:BPMNDiagram>
 <bpmndi:BPMNPlane bpmnElement="Minimal" >
 <bpmndi:BPMNShape bpmnElement="_1" >
 <dc:Bounds x="15" y="91" width="48" height="48" />
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="_2" >
 <dc:Bounds x="95" y="88" width="83" height="48" />
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="_3" >
 <dc:Bounds x="258" y="86" width="48" height="48" />
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge bpmnElement="_1-_2" >
 <di:waypoint x="39" y="115" />
 <di:waypoint x="75" y="46" />
 <di:waypoint x="136" y="112" />
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge bpmnElement="_2-_3" >
 <di:waypoint x="136" y="112" />
 <di:waypoint x="240" y="240" />
 <di:waypoint x="282" y="110" />
 </bpmndi:BPMNEdge>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>

</definitions>

BRMS Business Process Management Guide

38

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11247-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=An+Example+BPMN+2.0+Process&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 5. PROCESS DESIGNER

5.1. PROCESS DESIGNER

The Process Designer is accessible through the BRMS user interface, and it can be used to create, view,
edit, or update processes with a drag and drop interface.

Report a bug

5.2. CONFIGURING THE PROCESS DESIGNER

The process designer is a separate application that has been tightly integrated with the JBoss BRMS
user interface and repository, and any configuration changes that are made to JBoss BRMS must also
be applied to the process designer. The process designer is configured with the jbpm.xml file, which is
located in the jboss-as/server/production/deploy/designer.war/profiles/ directory.

The configuration attributes include:

protocol: the protocol to use (http/https)

host: localhost:8080

subdomain: jboss-brms/org.drools.guvnor.Guvnor/oryxeditor

usr: admin (default, must be a valid JBoss BRMS user)

pwd: admin (default, must correspond to a valid JBoss BRMS user password)

NOTE

If the host and port are changed, the information also needs to be updated in
production/deploy/jboss-brms.war/WEB-
INF/classes/preferences.properties.

Report a bug

CHAPTER 5. PROCESS DESIGNER

39

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11213-260921+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Process+Designer&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11226-260559+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Configuring+the+Process+Designer&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

5.3. PROCESS CREATION AND VALIDATION

The following procedure explains how to create a simple process with the Process Designer in the
BRMS user interface. Users must be logged on to the BRMS user interface to use the Process Designer.

Procedure 5.1. Create a Process

1. From the navigation panel select Knowledge Bases → Create New → New BPMN2 Process.

2. Enter a name for the process in the Name: dialogue box.

3. Select which package to create the process in from the drop down menu and provide a
description.

NOTE

At this stage, Red Hat advises against creating processes in the global area as
not all of the processes attributes can be successfully imported into other
packages.

4. Processes are created by dragging and dropping the process elements from the shape
repository panel on the left of the screen onto the canvas in the center of the screen.

Select the node to start the process with from the shape repository panel and drag it onto the
canvas.

Name the node by clicking the value column next to Name in the properties panel on the right
side of the Process Designer.

5. Add the next node in the process by selecting the required node type from the shape repository
panel and dragging it onto the canvas.

Edit the node's properties in the properties panel.

6. Connect the nodes by clicking the first node; then by selecting and holding the arrow icon, drag it
to the second node.

7. Continue to add nodes and connections until the process is finished.

Process Designer and Unicode Characters

When creating new processes it is important not to include unicode characters in either the process
name or the process ID, as this is not currently supported and will result in unexpected behavior from the
process designer when saving and retrieving the process assets.

Process Validation

The Process Designer can be used to check that processes are complete. If validation errors are
encountered, an error message is displayed; however, validation errors should not be relied upon to
check for overall correctness of the process.

To validate processes, select the validate process button on the top menu bar of the Process Designer.

If any validation errors are found, an error symbol is displayed to the left of the node the that contains the
error. A tool tip describing the validation error will be displayed when the cursor is positioned over the
error symbol.

BRMS Business Process Management Guide

40

Report a bug

5.4. IMPORTING EXISTING PROCESSES

5.4.1. Importing Existing BPMN2 Processes

To import existing BPMN2 processes into the designer, select the import icon on the top menu in the
Process Designer and select Import from BPMN2. The import menu provides two options:

Upload an existing file from the local filesystem.

Copy and paste the BPMN2 XML directly into the import dialogue box.

If a BPMN2 process has already been imported and a change to the process is required, the process
should be edited in the process designer. Do not attempt to import the same process twice as the original
process will not be overwritten.

When importing processes, it is important to note that the designer provides visual support for Data
Objects, Lanes, and Groups. If the BPMN2 file being imported does not include positioning information
for these nodes, they will need to be added manually.

(To import processes designed in JBoss Developer Studio, please refer to the BRMS Getting Started
Guide).

Report a bug

5.4.2. Migrating jPDL 3.2 to BPMN2

IMPORTANT

The migration tool for jPDL 3.2 to BPMN2 is an experimental feature and must be enabled
by the user. Red Hat does not support the jPDL 3.2 migration tool.

Procedure 5.2. Enabling the jPDL 3.2 Migration Tool

1. Stop the server.

2. Locate jbpm.xml in the server/profile/deploy/designer.war/profiles/ directory.

3. Remove the comment tags around the JPDL migration plugin tool entry:

 <!-- plugin name="ORYX.Plugins.JPDLMigration"/ --
>

4. Save the file with the comment tags removed:

 <plugin name="ORYX.Plugins.JPDLMigration"/>

5. Restart the server.

6. Log onto the JBoss BRMS user interface and navigate to the process designer. The jPDL
migration tool button has now been added to the process designer user interface.

CHAPTER 5. PROCESS DESIGNER

41

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11222-324990+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Process+Creation+and+Validation&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11239-260577+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Importing+Existing+BPMN2+Processes&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Figure 5.1. jPDL Migration Tool

Report a bug

5.5. VIEW AND SHARE PROCESSES

Processes designed, or accessed through, the Process Designer can be saved in a variety of formats
making it possible for people who do not have access to the Process Designer to view the processes.
The formats processes can be saved in are the following:

ERDF

JSON

PDF

PNG

BPMN2

SVG

NOTE

In order for users of the business process console to view process diagrams, it is
necessary to save them as PNG files; this is done by clicking the PNG option at the
bottom of the process designer window.

It is also possible to create code to share the process by selecting the share icon on the top menu of the
Process Designer. The following formats are available:

Process Image

Process PDF

Embeddable Process

To view the process BPMN2 source code during development of the process select Source → View
Source.

BRMS Business Process Management Guide

42

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11237-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Migrating+jPDL+3.2+to+BPMN2&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Report a bug

5.6. DEFINING DOMAIN-SPECIFIC SERVICE NODES

The Process Designer supports domain-specific nodes. To include service nodes in the Process
Designer's BPMN2 stencil set, the service node definitions can either be uploaded from JBoss Developer
Studio (see Section 6.1, “JBoss Developer Studio”) or configured in the BRMS user interface.

Procedure 5.3. Define a Service Node

1. From the navigation panel, select Knowledge Bases → Create New → New Work Item
Definition.

2. Enter a name for the definition in the Name: dialogue box.

Select which package to assign the service node to, or select Create in Global Area,
provide a description and click OK.

3. Configure the service node as required.

For example, an email service node could be named Email, and parameters, To, From,
Subject, and Body, all of type String. Edit the existing parameters and use the Parameter
button to add new ones.

Edit the display name to show the required name for the work task.

Select File → Save Changes.

4. Upload an icon for the Service node.

Select Create New → Create a file.

Enter a name into the Name dialogue box.

Enter the file extension type.

Select which package the file should be created in and click OK.

5. Click Choose File to select an image file from the local filesystem and click Upload.

6. Add the icon to the service node.

Click the package name from the navigation panel; expand the WorkItemDefinition tab and
select the work and click open for the service node. PNG and GIF formats are supported for
icons.

The icon is now available for the Select Icon to add drop down box. Select the icon to use.

7. Click File → Save Changes.

8. To add the new service node to a process, open a process.

1. From the navigation panel select Knowledge Bases → Packages and select the package.

2. Expand the processes area under the assets tab and click open on the required process.

CHAPTER 5. PROCESS DESIGNER

43

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11242-260704+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=View+and+Share+Processes&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

9. From the Shape Repository, expand the Service Tasks tab and drag the new service
node on to the process as required.

See Also:

Section 9.1, “Domain-Specific Service Nodes”

Report a bug

5.7. CONNECTING TO A SERVICE REPOSITORY

Domain specific services and work items can be stored in a service repository. For instructions to set up
a service repository, see Section 9.5, “Service Repository”.

Procedure 5.4. Connection to the Service Repository

1. Log onto the JBoss BRMS user interface.

2. Access the process designer by either selecting an existing process to edit or by creating a new
process.

3. Select the service repository icon to enter the service repository URL.

Figure 5.2. Service Repository Connection

4. Enter the URL for the service repository and click Connect.

5. Double click the required services to add them to the package and make them available in the
Shape Repository of the process designer.

Report a bug

5.8. GENERATE PROCESS AND TASK FORMS

Designer allows users to generate process and task ftl forms. These forms are fully usable in the jBPM
console. To start using this feature, locate the "Generate Task Form Templates" button in the designer
toolbar:

Designer will iterate through your process BPMN2 and create forms for your process and each of the

BRMS Business Process Management Guide

44

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11290-260732+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Defining+Domain-Specific+Service+Nodes&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11288-260753+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Connecting+to+a+Service+Repository&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

human tasks in your process. It uses the defined process variables and human task data input/output
parameters and associations to create form fields. The generated forms are stored in Guvnor, and the
user is presented with a page which shows each of the forms created as well as a link to their sources in
Guvnor:

All forms are fully usable inside the jBPM console. In addition, each form includes basic JavaScript form
validation which is determined based on the type of process variables and/or human task data
input/output association definitions. Here is an example generated human task form.

CHAPTER 5. PROCESS DESIGNER

45

In order for process and task forms to be generated, you have to make sure that your process has it's ID
parameter set and that each of the human tasks have the TaskName parameter set. Task forms contain
pure HTML, CSS, and JavaScript, so they are easily editable in any HTML editor. Please note that there
is no edit feature available in Designer, so each time a form is generated, existing forms (of the same
name) will be overwritten.

Report a bug

BRMS Business Process Management Guide

46

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11277-260765+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Generate+Process+and+Task+Forms&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 6. JBOSS DEVELOPER STUDIO

6.1. JBOSS DEVELOPER STUDIO

JBoss Developer Studio is the JBoss Integrated Development Environment available from the Red Hat
customer support portal at https://access.redhat.com. JBoss Developer Studio provides tools and
interfaces for developers working with JBoss Enterprise BRMS.

For installation and configuration instructions refer to the JBoss BRMS Getting Started Guide.

NOTE

The JBoss BRMS plug-ins for JBoss Developer Studio are known by the names of the
open-source projects they are based on. Guvnor is the project the BRMS user interface
and repository are based on; Drools is the project the rules engine is based on; and jBPM
is the project the Business Process Management functionality comes from.

Report a bug

6.2. PROJECT CREATION

Procedure 6.1. Create a New Project

1. Select File → New → Project.

2. Select jBPM → jBPM project.

3. Enter a name for the project into the Project name: text box and click Next.

NOTE

JBDS provides the option to add a sample HelloWorld Process to the project.
Accept this default to test the sample project in the next step.

4. To test the project, right click the Java file that contains the main method and select Run → run
as → Java Application.

The output will be displayed in the console tab.

Report a bug

6.3. PROCESS CREATION

Procedure 6.2. Create a New Process

1. To create a new process, select File → New → Other and then select jBPM → BPMN2
Process.

2. Select the parent folder for the process.

CHAPTER 6. JBOSS DEVELOPER STUDIO

47

https://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11230-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=JBoss+Developer+Studio&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11231-262815+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Project+Creation&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

3. Enter a name in the File name: dialogue box and click Finish.

4. Open the graphical editor by right clicking the process .bpmn file, select Open With and then
click the radio button next to BPMN2 Process Editor.

5. Add nodes to the process by clicking on the required node in the palette and clicking on the
canvas where the node should be placed.

6. Connect the nodes with sequence flows. Select Sequence Flow from the palette, then click the
nodes to connect them.

7. To edit a node's properties, click the node, open the properties tab in the bottom panel of the
JBDS workspace, and click the values to be edited.

If the properties tab is not already open, right click the bpmn file in the package panel and select
Show in → Properties.

8. Click the save icon to save the process.

Report a bug

6.4. VALIDATION AND DEBUGGING

JBoss Developer Studio can validate and debug processes.

Validation

To validate a process, right click the .bpmn file and select Validate.

If validation completes successfully, a dialogue box will appear stating there are no errors or warning.

If validation is unsuccessful, the errors will display in the Problems tab. Fix the problems and rerun the
validation.

Debug

To debug a process, right click the .bpmn file and select Debug As → Debug Configurations; make
any required changes to the test configuration and click Debug.

If no errors are found, the process will execute.

If errors are encountered, they will be described in the bottom window of JBoss Developer Studio. Fix
the errors and rerun the debug process.

For further information about debugging processes, refer to Section 11.2.1, “Debugging”.

Report a bug

BRMS Business Process Management Guide

48

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11241-262707+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Process+Creation&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11245-262727+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Validation+and+Debugging&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 7. PERSISTENCE

7.1. PERSISTENT

Storing information persistently in a database makes it possible for processes to recover from
unexpected interruptions. Information is stored persistently by default for JBoss BRMS 5.3 Standalone;
however, customers deploying JBoss BRMS 5.3 as a deployable web app will need to configure
persistence.

The types of information that can be stored persistently are the following:

Runtime

Process Definitions

Historical information (logs)

This chapter describes the different types of persistence and how to configure them.

Report a bug

7.2. RUNTIME STATE

7.2.1. Runtime State

Whenever a process is started, an instance of that process is created. For instance, look at an example
of a process representing a sales order. Each time a sales order is requested, one instance of the sales
order process is created and contains only the information relevant to that sales order. When that
instance is stored persistently, only the minimum set of information required to continue execution of the
instance at some later time is stored. The engine automatically stores the runtime state in a database,
ensuring that whenever the engine is invoked that any changes are stored at the end of the invocation
and at safe points.

If it is ever necessary to restore the engine from a database, it is important not to reload the process
instances and trigger them manually. Process instances will automatically resume execution if they are
triggered, for example, by a timer expiring, the completion of a task that was requested by that process
instance, or a signal being sent to the process instance. The engine will automatically reload process
instances on demand. It is important to note that the snapshot of the process will be reloaded, and any
changes that have occurred since the snapshot was taken will be lost.

The latest snapshot state can be retrieved using the following:

ksession.getProcessInstance(id)

The runtime persistence data should be considered internal, and the database tables where the data is
stored should not be accessed directly. Where information about the current execution state of a process
instance is required, refer to the history logs see Section 7.4.1, “History Log” .

Report a bug

7.2.2. Safe Points

CHAPTER 7. PERSISTENCE

49

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11285-262979+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Persistent&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11211-263282+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Runtime+State&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The state of a process instance is stored at safe points during execution of the process. A safe point
occurs when the process instance has completed, aborted, or reached a wait state in all parallel paths of
execution. When the process instance is stored persistently at safe points, the current state of the
process instance and all other process instances that might have been affected are stored.

Report a bug

7.2.3. Binary Persistence

Binary persistence, also known as marshaling, converts the state of the process instance into a binary
dataset. Binary persistence is the mechanism used to store and retrieve information persistently. The
same mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

The process instance information is transformed into binary data. For performance reasons, a
custom serialization mechanism is used and not normal Java serialization.

The binary data is stored alongside other metadata about the process instance. This metadata
includes the process instance ID, process ID, and the process start date.

Apart from the process instance state, the session itself can also store other forms of state, such as the
state of timer jobs. The session can also store the data that any business rules would be evaluated over.
This session state is stored separately as a binary dataset along with the ID of the session and some
metadata. The session state can be restored by reloading the session with the given ID. The session ID
can be retrieved using ksession.getId().

Note that the process instance binary datasets are usually relatively small, as they only contain the
minimal execution state of the process instance. For a simple process instance, the binary datasets
usually contain one or a few node instances, i.e., any node that is currently executing and any existing
variable values.

As a result of binary persistence, the data model is both simple and small:

Figure 7.1. Data Model

The sessioninfo entity contains the state of the (knowledge) session in which the process instance is
running.

Table 7.1. SessionInfo

Field Description Nullable

id The primary key NOT NULL

BRMS Business Process Management Guide

50

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11205-263288+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Safe+Points&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

lastmodificationdate The last time that the entity was
saved to the database

rulesbytearray The binary dataset containing the
state of the session

NOT NULL

startdate The start time of the session

optlock The version field that serves as its
optimistic lock value

Field Description Nullable

The processinstanceinfo entity contains the state of the process instance.

Table 7.2. ProcessInstanceInfo

Field Description Nullable

instanceid The primary key NOT NULL

lastmodificationdate The last time that the entity was
saved to the database

lastreaddate The last time that the entity was
retrieved (read) from the database

processid The name (ID) of the process

processinstancebytearra
y

This is the binary dataset
containing the state of the process
instance

NOT NULL

startdate The start time of the process

state An integer representing the state
of the process instance

NOT NULL

optlock The version field that serves as its
optimistic lock value

The eventtypes entity contains information about events that a process instance will undergo or has
undergone.

Table 7.3. EventTypes

CHAPTER 7. PERSISTENCE

51

Field Description Nullable

instanceid This references the
processinstanceinfo
primary key and there is a foreign
key constraint on this column

NOT NULL

element A text field related to an event that
the process has undergone

The workiteminfo entity contains the state of a work item.

Table 7.4. WorkItemInfo

Field Description Nullable

workitemid The primary key NOT NULL

name The name of the work item

processinstanceid The (primary key) ID of the
process: there is no foreign key
constraint on this field

NOT NULL

state An integer representing the state
of the work item

NOT NULL

optlock The version field that serves as its
optimistic lock value

workitembytearay This is the binary dataset
containing the state of the work
item

NOT NULL

Report a bug

7.3. CONFIGURING PERSISTENCE

7.3.1. Configuring Persistence

Persistence is configured by default for JBoss BRMS 5.3 standalone; however, it must be configured for
customers deploying JBoss BRMS 5.3 as a deployable web app by adding the jar files to the classpath.

Report a bug

7.3.2. Adding Dependencies

BRMS Business Process Management Guide

52

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11287-269225+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Binary+Persistence&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11206-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Configuring+Persistence&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The following packages are required for manual persistence configuration:

JBoss BRMS 5.3 Deployable Package.

The database vendor's JDBC driver.

A transaction manager.

To manually add the necessary dependencies, copy the required jar files from the jboss-jbpm-engine.zip
archive included with the BRMS 5.3 Deployable archive and make them available on the application
classpath.

The following jar files are required when using a combination of Hibernate as the JPA persistence
provider with an H2 in-memory database and Bitronix for JTA-based transactions management:

NOTE

This list is for demonstration purposes only. Supported configurations can be found at the
following site, http://www.redhat.com/resourcelibrary/articles/jboss-enterprise-brms-
supported-configurations.

jbpm-test

jbpm-persistence-jpa

drools-persistence-jpa

persistence-api

hibernate-entitymanager

hibernate-annotations

hibernate-commons-annotations

hibernate-core

commons-collections

dom4j

jta

btm

javassist

slf4j-api

slf4j-jdk14

h2

Report a bug

CHAPTER 7. PERSISTENCE

53

http://www.redhat.com/resourcelibrary/articles/jboss-enterprise-brms-supported-configurations
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11250-269239+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Adding+Dependencies&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

7.3.3. Configure the Engine to use Persistence

The JBPMHelper class of the jbpm-test module has a method to create a session and uses a
configuration file to configure the session. The information below shows an example jBPM.properties file
that uses an H2 in-memory database with persistence enabled.

Example 7.1. Example jBPM.properties File

The JBPMHelper class can be used to register the datasource:

The JBPMHelper class can be used to create sessions (after the knowledge base has been created):

Methods can now be called on this ksession (for instance, startProcess) and the engine will persist all
runtime state in the created datasource.

The JBPMHelper class can be used to recreate sessions by restoring their state from the database by
passing in the session ID. The session ID is retrieved using ksession.getId().

Report a bug

7.3.4. Session ID

7.3.4.1. Session ID

for creating a datasource
persistence.datasource.name=jdbc/jbpm-ds
persistence.datasource.user=sa
persistence.datasource.password=
persistence.datasource.url=jdbc:h2:tcp://localhost/~/jbpm-db
persistence.datasource.driverClassName=org.h2.Driver

for configuring persistence of the session
persistence.enabled=true
persistence.persistenceunit.name=org.jbpm.persistence.jpa
persistence.persistenceunit.dialect=org.hibernate.dialect.H2Dialect

for configuring the human task service
taskservice.enabled=true
taskservice.datasource.name=org.jbpm.task
taskservice.transport=mina
taskservice.usergroupcallback=org.jbpm.task.service.DefaultUserGroupCall
backImpl

JBPMHelper.setupDataSource();

StatefulKnowledgeSession ksession =
JBPMHelper.newStatefulKnowledgeSession(kbase);

StatefulKnowledgeSession ksession =
 JBPMHelper.loadStatefulKnowledgeSession(kbase, sessionId);

BRMS Business Process Management Guide

54

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11253-269274+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Configure+the+Engine+to+use+Persistence&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The session ID of the most recently used persistent session is also stored in the jbpmSessionId.ser
file. If the jbpmSessionId.ser file does not exist, it will be created and the session ID stored in the file.
If the file exists, the session ID is read from the file and the session is loaded from the database, enabling
the session to be reloaded after the server has been restarted.

By default the jbpmSessionId.ser file is located in jboss-as/server/profile/tmp/ directory;
however, this can be changed by modifying the jbpm.console.tmp.dir property in
jbpm.console.properties located in the jboss-as/server/profile/deploy/business-
central-server.war/WEB-INF/classes/ directory.

Report a bug

7.3.5. Transactions

By default, when transaction boundaries are not provided inside an application, the engine will
automatically execute each method invocation on the engine in a separate transaction. Transaction
boundaries can be specified, allowing, for example, multiple commands to be combined into one
transaction.

The following sample code uses the Bitronix transaction manager.

For Persistence and Concurrency, see Section 3.12.1, “Multi-threading” for more information.

Report a bug

7.4. HISTORY LOG

// create the entity manager factory and register it in the environment
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName.TRANSACTION_MANAGER,
 TransactionManagerServices.getTransactionManager());

// create a new knowledge session that uses JPA to store the runtime state
StatefulKnowledgeSession ksession =
 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

// start the transaction
UserTransaction ut =
 (UserTransaction) new InitialContext().lookup(
"java:comp/UserTransaction");
ut.begin();

// perform multiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksession.startProcess("MyProcess");

// commit the transaction
ut.commit();

CHAPTER 7. PERSISTENCE

55

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11262-269345+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Session+ID&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11254-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Transactions&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

7.4.1. History Log

The history logs store information about the execution of process instances, so that the information can
be retrieved and viewed at a later time. History logs contain information, for instance, about the number
of processes that have run and are running.

This history log of execution information is created based on events that the process engine generates
during execution. This is possible because the jBPM runtime engine provides a generic mechanism to
listen to events. The necessary information can easily be extracted from these events and then persisted
to a database. Filters can also be used to limit the scope of the logged information.

Report a bug

7.4.2. The Business Activity Monitoring Data Model

The jbpm-bam module contains an event listener that stores process-related information in a database
using JPA or Hibernate directly. The data model itself contains three entities: one for process instance
information, one for node instance information, and one for (process) variable instance information.

Figure 7.2. Business Activity Monitoring data model

The ProcessInstanceLog table contains the basic log information about a process instance.

Table 7.5. ProcessInstanceLog

Field Description Nullable

id The primary key and ID of the log
entity

NOT NULL

end_date When applicable, the end date of
the process instance

processid The name (ID) of the process

processinstanceid The process instance ID NOT NULL

start_date The start date of the process
instance

BRMS Business Process Management Guide

56

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11261-269422+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=History+Log&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The NodeInstanceLog table contains more information about which nodes were executed inside each
process instance. Whenever a node instance is entered from one of its incoming connections or is exited
through one of its outgoing connections, that information is stored in this table.

Table 7.6. NodeInstanceLog

Field Description Nullable

id The primary key and ID of the log
entity

NOT NULL

log_date The date of the event

nodeid The node ID of the corresponding
node in the process definition

nodeinstanceid The node instance ID

nodename The name of the node

processid The ID of the process that the
process instance is executing

processinstanceid The process instance ID NOT NULL

type The type of the event (0 = enter, 1
= exit)

NOT NULL

The VariableInstanceLog table contains information about changes in variable instances. The
default is to only generate log entries after a variable changes. It is also possible to log entries before the
variable's value changes.

Table 7.7. VariableInstanceLog

Field Description Nullable

id The primary key and ID of the log
entity

NOT NULL

log_date The date of the event

processid The ID of the process that the
process instance is executing

processinstanceid The process instance ID NOT NULL

value The value of the variable at the
time that the log is made

CHAPTER 7. PERSISTENCE

57

variableid The variable ID in the process
definition

variableinstanceid The ID of the variable instance

Field Description Nullable

Report a bug

7.4.3. Storing Process Events in a Database

To log process history in a database, register the logger to the session:

Note that this logger is like any other audit logger, and one or more filters can be added by calling the
method addFilter to ensure that only relevant information is stored in the database.

The Logger should be disposed of when it is no longer needed.

The persistence database is configured in the persistence.xml file, which is located business-
central-server.war/WEB-INF/classes/META-INF/ directory of the JBoss BRMS 5.3 deployable
installation.

StatefulKnowledgeSession ksession = ...;
JPAWorkingMemoryDbLogger logger = new JPAWorkingMemoryDbLogger(ksession);

// invoke methods one your session here

logger.dispose();

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <persistence
 version="1.0"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/persistence">

 <!--persistence-unit name="ProcessService">
 <jta-data-source>java:/DefaultDS</jta-data-source>
 <properties>
 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>
 </properties>
 </persistence-unit-->

 <persistence-unit name="org.jbpm.persistence.jpa" transaction-
type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>java:/DefaultDS</jta-data-source>

BRMS Business Process Management Guide

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11274-269444+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=The+Business+Activity+Monitoring+Data+Model&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Report a bug

 <mapping-file>META-INF/JBPMorm.xml</mapping-file>

<class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>
 <class>org.drools.persistence.info.SessionInfo</class>
 <class>org.drools.persistence.info.WorkItemInfo</class>
 <class>org.jbpm.process.audit.ProcessInstanceLog</class>
 <class>org.jbpm.process.audit.NodeInstanceLog</class>
 <class>org.jbpm.process.audit.VariableInstanceLog</class>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update" />
 <property name="hibernate.show_sql" value="false" />
 <property name="hibernate.transaction.manager_lookup_class"
value="org.hibernate.transaction.JBossTransactionManagerLookup" />
 </properties>
 </persistence-unit>

 </persistence>

CHAPTER 7. PERSISTENCE

59

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11550-341561+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Storing+Process+Events+in+a+Database&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 8. BUSINESS CENTRAL CONSOLE

8.1. BUSINESS CENTRAL CONSOLE

Business processes can be managed through the web console. The web console includes features for
managing your process instances (starting/stopping/inspecting), inspecting and executing your (human)
task list, and generating reports.

The Business Central Console is installed with the standalone JBoss BRMS 5.3; please refer to the
BRMS Getting Started Guide for installation instructions. When using JBoss BRMS 5.3 from the
deployable package, it is necessary to install the console. The console consists of two war directories
that must be deployed to the application server. These directories contain the necessary libraries and the
actual application. One jar contains the server application, the other one the client. Refer to the BRMS
Getting Started Guide for details.

Report a bug

8.2. BUSINESS CENTRAL CONSOLE AND BRMS INTEGRATION

8.2.1. Business Central Console and BRMS Integration

The Business Central Console is integrated with the JBoss BRMS repository. The console will retrieve
artifacts from all available packages in the repository (please note this does not include packages in the
Global Area). Packages must be built in BRMS before they will be visible in the console. When a
package has been updated and rebuilt, the updated package can be accessed in the console by
pressing the refresh button.

The console will attempt to retrieve all available packages from the BRMS repository, and, as such, all
packages must have been successfully built in BRMS. It is possible to limit the packages the console will
attempt to retrieve, please see Section 8.2.2, “Configuring the Business Central Console” for details.

To build all packages in BRMS at once, from the navigation menu select Knowledge Bases → Create
New → Rebuild all package binaries.

Report a bug

8.2.2. Configuring the Business Central Console

The management console is configured with the jbpm.console.properties file, which is located in
the jboss-as/server/profile/deploy/business-central-server.war/WEB-
INF/classes/ directory. This file configures the following properties:

NOTE

Not all of the properties listed below are included in the jbpm.console.properties
file by default.

jbpm.console.server.host (default localhost)

jbpm.console.server.port (default 8080)

BRMS Business Process Management Guide

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11214-271459+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Business+Central+Console&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11234-271464+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Business+Central+Console+and+BRMS+Integration&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

jbpm.console.task.service.host (default localhost) host where Task Server is deployed applies to
all transports

jbpm.console.tmp.dir: An optional property that is used to set the location of the
jbpmSessionId.ser file, which stores the session ID of the most recently used persisted
session.

jbpm.console.task.service.port: The port where the task server is deployed (5446 when using
HornetQ)

jbpm.console.task.service.strategy (default HornetQ)

JMSTaskClient.connectionFactory (no default) JNDI name of connection factory only for JMS

JMSTaskClient.acknowledgeMode (no default) acknowledgment mode only for JMS

JMSTaskClient.transactedQueue (no default) transacted queue name only for JMS

JMSTaskClient.queueName (no default) queue name only for JMS

JMSTaskClient.responseQueueName (no default) response queue name only for JMS

guvnor.protocol (default http)

guvnor.host (default localhost:8080)

guvnor.subdomain (default drools-guvnor)

guvnor.usr (default admin)

guvnor.pwd (default admin)

guvnor.packages (comma separated list of packages to load from Guvnor. When no packages
have been specified, all packages will be visible. When specifying packages that should be
visible, it is important to remember only the specified packages be visible.)

guvnor.connect.timeout (default 10000)

guvnor.read.timeout (default 10000)

guvnor.snapshot.name (default LATEST) This is an optional property that specifies the name of
the snapshot to use.

NOTE

The password and username contained in this file must match the credentials set in
jboss-as/server/production/deploy/jboss-brms.war/WEB-
INF/components.xml. If the credentials are changed in one place, they must be
changed in both locations.

The Business Central console can be clustered so that multiple instances of the console and the process
engine attached to the console can share the same data in a persisted database. Clustering the console
makes it possible to spread the available processes across the cluster, and also ensures failover if a
node in the cluster fails. See the BRMS Getting Start Guide for details.

CHAPTER 8. BUSINESS CENTRAL CONSOLE

61

Report a bug

8.2.3. User and Group Management

The human task service requires users to be defined as group members so that group members can
claim tasks that are assigned to that group. The console uses username / group associations; when
using the JBoss BRMS 5.3 standalone installation, the group assignments are specified in the brms-
roles.properties file in the server/profile/conf/props/ directory.

Alternative login modules can be configured; for details, please refer to the BRMS Administrator Guide
about Security Authentication.

Report a bug

8.3. LOG ON TO THE BUSINESS CENTRAL CONSOLE

The human task service requires users to be defined as group members so that group members can
claim tasks that are assigned to that group. The console uses username / group associations; when
using the JBoss BRMS 5.3 standalone installation, the group assignments are specified in the brms-
roles.properties file in the server/profile/conf/props/ directory.

Report a bug

8.4. MANAGING PROCESS INSTANCES

The Business Central Console offers the following functionality for managing business processes that
are part of the installed knowledge base:

Managing Process Instances

Managing Process Instances

The process instances table, found under the Processes menu, shows all running instances for a
specific process definition. Select a process instance to show the details of that specific process
instance.

Starting new process instances

New process instances are started by selecting the process definition from the process definition list
and selecting Start. If a form is associated with the process (to ask for additional information before
starting the process) the form will be displayed. After completing the form, the process is started with
the provided information.

Inspecting Process Instance State

To inspect the state of a specific process instance, click on the Diagram button. The process flow
chart is displayed with a red triangle overlaid on any currently active nodes.

Inspecting Process Instance Variables

Top level process instance variables can be inspected by clicking the Instance Data button.

Terminate Process Instances

BRMS Business Process Management Guide

62

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11266-326793+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Configuring+the+Business+Central+Console&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11269-285822+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=User+and+Group+Management&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11244-271473+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Log+On+to+the+Business+Central+Console&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

To terminate a process instance, click the Terminate button.

Delete Process Instances

To delete a process instance, click the Delete button.

Signal Process

To signal processes that have catching intermediate signal events defined, click the signal button.

Report a bug

8.5. HUMAN TASK LISTS

The task management section of the console allows users to see their current task list. The group task
list shows all the tasks that are not yet assigned to one specific user but that the currently logged in user
could claim. The personal task list shows all tasks that are assigned to the currently logged in user. To
execute a task, users select it from the personal task list and click View. If a form is associated with the
selected task (for example, to ask for additional information), the form will be displayed. After completing
the form, the task will also be completed.

Report a bug

8.6. REGISTERING SERVICE HANDLERS

Service handlers must be registered to execute domain-specific services as custom service tasks, this
happens because the process only contains a high-level description of the service that needs to be
executed; accordingly, a handler is responsible for invoking the service.

Service handlers are registered by adding a configuration file that specifies the implementation of class
for each of the handlers to the classpath. You can specify which configuration files are loaded in a
drools.session.conf file by using the drools.workItemHandlers property as a list of space delimited
file names:

drools.workItemHandlers = CustomerWorkItemHandlers.conf

These file names should contain a Map of entries, the name and the corresponding WorkItemHandler
instance that should be used to execute the service. The configuration file is using the MVEL script
language to specify a map of type Map<String,WorkItemHandler>:

[
 "log" : new
org.jbpm.process.instance.impl.demo.SystemOutWorkItemHandler(),
]

The implementation classes (and dependencies) also need to be added to the classpath of the server
war.

Report a bug

CHAPTER 8. BUSINESS CENTRAL CONSOLE

63

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11235-271479+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Managing+Process+Instances&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11223-271498+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Human+Task+Lists&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11272-271517+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Registering+Service+Handlers&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

8.7. ADDING NEW PROCESS AND TASK FORMS

Forms can be used to start a new process and complete a human task. To create a form for a specific
process definition, create a template with the name {processId}.ftl. The template itself should use HTML
to model the form. For example, com.sample.evaluation.ftl file uses HTML to model the form:

Task forms for a specific type of human task (uniquely identified by its task name) can be linked to that
human task by creating a template with the name {taskName}.ftl. The form has access to a task
parameter that represents the current human task, so the task form can be dynamically adjusted based
on the task input. The task parameter is a task model object as defined in the jbpm-human-task module.
This allows the task form to be customized based on the description or input data related to that task. For
example, the evaluation form shown earlier uses the task parameter to access the description of the task
and show that in the task form:

Task forms also have access to the additional task parameters that might be mapped in the user task
node from process variables using parameter mapping. See Section 10.1, “Human Tasks” for more

<html>
<body>
<h2>Start Performance Evaluation</h2>
<hr>
<form action="complete" method="POST" enctype="multipart/form-data">
Please fill in your username: <input type="text" name="employee" /></BR>
<input type="submit" value="Complete">
</form>
</body>
</html>

<html>
<body>
<h2>Employee evaluation</h2>
<hr>
${task.descriptions[0].text}

Please fill in the following evaluation form:
<form action="complete" method="POST" enctype="multipart/form-data">
Rate the overall performance: <select name="performance">
<option value="outstanding">Outstanding</option>
<option value="exceeding">Exceeding expectations</option>
<option value="acceptable">Acceptable</option>
<option value="below">Below average</option>
</select>

Check any that apply:

<input type="checkbox" name="initiative" value="initiative">Displaying
initiative

<input type="checkbox" name="change" value="change">Thriving on
change

<input type="checkbox" name="communication" value="communication">Good
communication skills

<input type="submit" value="Complete">
</form>
</body>
</html>

BRMS Business Process Management Guide

64

details. These task parameters are also directly accessible inside the task form. For example, to make a
task form to review customer requests, the user task node copies the userId (of the customer that
performed the request), the comment (the description of the request) and the date (the actual date and
time of the request) from the process into the task as task parameters, and these parameters will then be
accessible directly in the task form:

Data that is provided by the user when filling in the task form will be added as result parameters when
completing the task. The name of the data element will be used as the name of the result parameter. For
example, when completing the first task above, the Map of outcome parameters will include result
variables called performance, initiative, change, and communication. The result parameters can be
accessed in the related process by mapping these result parameters to process variables using result
mapping.

Forms should either be available on the classpath (for example inside a jar in the
jbossas/server/profile/lib directory or added to the set of sample forms in the jbpm-gwt-
form.jar in the jbpm console server war), or the forms can be stored in the JBoss BRMS process
repository.

Report a bug

8.8. REST INTERFACE

The console offers a REST interface for the functionality it exposes. This allows easy integration with the
process engine for features like starting process instances and retrieving task lists.

The list URLs that the REST interface exposes can be inspected if you navigate to the following URL:

http://localhost:8080/business-central-server/rs/server/resources/jbpm

For example, tasks can be closed using:

/business-central-server/rs/task/{taskId}/close

A new processes instance can be started using:

/business-central-server/rs/process/definition/{id}/new_instance

<html>
<body>
<h2>Request Review</h2>
<hr>
UserId: ${userId}

Description: ${description}

Date: ${date?date} ${date?time}
<form action="complete" method="POST" enctype="multipart/form-data">
Comment:

<textarea cols="50" rows="5" name="comment"></textarea></BR>
<input type="submit" name="outcome" value="Accept">
<input type="submit" name="outcome" value="Reject">
</form>
</body>
</html>

CHAPTER 8. BUSINESS CENTRAL CONSOLE

65

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11256-271533+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Adding+New+Process+and+Task+Forms&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
http://localhost:8080/business-central-server/rs/server/resources/jbpm

Report a bug

BRMS Business Process Management Guide

66

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11263-271538+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=REST+interface&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 9. DOMAIN-SPECIFIC PROCESSES

9.1. DOMAIN-SPECIFIC SERVICE NODES

Domain-specific processes extend default process constructs with domain-specific extensions. Because
domain-specific languages are targeted to one application domain, they can offer constructs that are
closely related to the problem the user is trying to solve, making the process easier to understand and to
a degree, self-documenting. Domain-specific work items (or service nodes) represent atomic units of
work that need to be executed by specifying what needs to be executed in the context of the process in a
declarative manner.

Domain-specific service nodes should be:

1. Declarative (they describe what, not how)

2. high-level (no code)

3. Adaptable to the context

Users can define their own domain-specific service nodes and integrate them into the process language.
The image below provides an example of a process in a health care context. The process includes
domain-specific service nodes for ordering nursing tasks: measuring blood pressure, prescribing
medication, and notifying care providers.

Example 9.1. Ordering Nursing Tasks

Report a bug

9.2. DEFINE A WORK ITEM

A work item represents an atomic unit of work in a declarative way. The work item includes a unique
name and parameters; in addition, each item can include results where results are expected to appear. A
notification of a work item with no result parameters or icon could be defined as follows:

 Name: "Notification"
 Parameters

CHAPTER 9. DOMAIN-SPECIFIC PROCESSES

67

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11267-271732+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Domain-Specific+Service+Nodes&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Work item definitions are specified in one or more configuration files (with a .wid file extension) in the
project classpath in the META-INF directory. The properties are provided as name-value pairs.
Parameters and results are mapped and each parameter name is mapped to the expected data type.
The configuration file also includes the display name and icon for the work item.

Example 9.2. Example Notification Work Item using MVEL

Icons need to be in either .gif or .png format; both formats require a pixel size of 16x16. The icons should
be stored in the resources directory:

In addition to the properties defined in the work item, all work items also have these three properties:

1. Parameter Mapping:

Maps the value of a variable in the process to a parameter of the work item. The work item can
be customized based on the current state of the actual process instance (for example, the
priority of the notification could be dependent on process-specific information).

2. Result Mapping:

Maps a result to a process variable, which is returned after the work item has been executed,
and it makes the variable available to the rest of the process.

3. Wait for completion:

By default, the process waits until the requested work item has been completed before
continuing with the process. It is also possible to continue immediately after the work item has
been requested (and not wait for the results) by setting wait for completion to false.

 From [String]
 To [String]
 Message [String]
 Priority [String]

import org.drools.process.core.datatype.impl.type.StringDataType;
[
 // the Notification work item
 [
 "name" : "Notification",
 "parameters" : [
 "Message" : new StringDataType(),
 "From" : new StringDataType(),
 "To" : new StringDataType(),
 "Priority" : new StringDataType(),
],
 "displayName" : "Notification",
 "icon" : "icons/notification.gif"
]

]

project/src/main/resources/icons/notification.gif

BRMS Business Process Management Guide

68

The process below is an example that creates a domain-specific node to execute Java, asking for the
class and method parameters. It includes a custom java.gif icon and consists of the following files and
resulting screenshot:

Example 9.3.

Report a bug

9.3. REGISTER THE WORK DEFINITION

When using JBoss Developer Studio to edit processes, you are able to register custom work item
definition files for your project using the drools.workDefinitions property. This property represents a list of
files containing work definitions, which are separated using spaces. For example, include a
drools.rulebase.conf file in the META-INF directory of your project and add the following line:

This will replace the default domain specific node types EMAIL and LOG with the newly defined
NOTIFICATION node in the JBoss Developer Studio process editor. Should you wish to just add a newly
created node definition to the existing palette nodes, adjust the drools.workDefinitions property as follows
and include the default set configuration file:

NOTE

It is recommended to use extension .wid for your own definitions of domain specific
nodes.

To update work definitions in the JBoss Enterprise BRMS user interface, please refer to Section 5.6,
“Defining Domain-Specific Service Nodes”.

Report a bug

import org.drools.process.core.datatype.impl.type.StringDataType;
[
 // the Java Node work item located in:
 // project/src/main/resources/META-INF/JavaNodeDefinition.conf
 [
 "name" : "JavaNode",
 "parameters" : [
 "class" : new StringDataType(),
 "method" : new StringDataType(),
],
 "displayName" : "Java Node",
 "icon" : "icons/java.gif"
]

]

 drools.workDefinitions = MyWorkDefinitions.wid

 drools.workDefinitions = MyWorkDefinitions.conf WorkDefinitions.conf

CHAPTER 9. DOMAIN-SPECIFIC PROCESSES

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11252-271743+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Define+a+Work+Item&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11248-276933+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Register+the+Work+Definition&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

9.4. EXECUTING SERVICE NODES

The process engine contains a WorkItemManager that delegates the work items to the
WorkItemHandlers to execute the work item. The WorkItemHandlers notify the WorkItemManager when
the work item has been completed. For executing notification work items, a NotificationWorkItemHandler
should be created (implementing the WorkItemHandler interface):

This WorkItemHandler sends a notification as an email and then immediately notifies the
WorkItemManager that the work item has been completed. Note that not all work items can be completed
directly. In cases where executing a work item takes some time, execution can continue asynchronously
and the work item manager can be notified later. If a work item is aborted before it has completed, the
abort method should be used to specify how the item should be aborted.

WorkItemHandlers should be registered at the WorkItemManager using the following API:

Decoupling the execution of work items from the process itself has the following advantages:

1. The process is more declarative, specifying what should be executed, not how.

2. Changes to the environment can be implemented by adapting the work item handler. The
process itself should not be changed.

package com.sample;

import org.drools.runtime.process.WorkItem;
import org.drools.runtime.process.WorkItemHandler;
import org.drools.runtime.process.WorkItemManager;

public class NotificationWorkItemHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager)
{
 // extract parameters
 String from = (String) workItem.getParameter("From");
 String to = (String) workItem.getParameter("To");
 String message = (String) workItem.getParameter("Message");
 String priority = (String) workItem.getParameter("Priority");
 // send email
 EmailService service =
ServiceRegistry.getInstance().getEmailService();
 service.sendEmail(from, to, "Notification", message);
 // notify manager that work item has been completed
 manager.completeWorkItem(workItem.getId(), null);
 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {
 // Do nothing, notifications cannot be aborted
 }

}

ksession.getWorkItemManager().registerWorkItemHandler(
 "Notification", new NotificationWorkItemHandler());

BRMS Business Process Management Guide

70

3. The same processes can be used in different environments, where the work item handler is
responsible for integration with the right services.

4. It is easy to share work item handlers across processes and projects (which would be more
difficult if the code would be embedded in the process itself).

5. Different work item handlers could be used depending on the context. For example, during
testing or simulation, it might not be necessary to execute the work items. In this case,
specialized dummy work item handlers could be used during testing.

Report a bug

9.5. SERVICE REPOSITORY

Domain-specific services can be added to a repository to make them available to other users.

Services are added to a service repository by creating a configuration file that contains all the necessary
information and links to the required files. Note, the configuration file is an extended version of a normal
work definition configuration file as shown in Section 9.2, “Define a Work Item”.

Example 9.4. Service Repository Configuration File

The icon property should refer to a file with the given file name in the same folder as the
extended configuration file (so it can be downloaded by the import wizard and used in the
process diagrams). Icons should be 16x16 GIF files.

The category property defines the category this service should be placed under when browsing
the repository.

 import org.drools.process.core.datatype.impl.type.StringDataType;
 [
 [
 "name" : "Twitter",
 "description" : "Send a twitter message",
 "parameters" : [
 "Message" : new StringDataType()
],
 "displayName" : "Twitter",
 "eclipse:customEditor" :
"org.drools.eclipse.flow.common.editor.editpart.work.SampleCustomEditor"
,
 "icon" : "twitter.gif",
 "category" : "Communication",
 "defaultHandler" :
"org.jbpm.process.workitem.twitter.TwitterHandler",
 "documentation" : "index.html",
 "dependencies" : [
 "file:./lib/jbpm-twitter.jar",
 "file:./lib/twitter4j-core-2.2.2.jar"
]
]
]

CHAPTER 9. DOMAIN-SPECIFIC PROCESSES

71

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11203-271805+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Executing+Service+Nodes&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The defaultHandler property defines the default handler implementation (i.e. the Java class that
implements the WorkItemHandler interface and can be used to execute the service). This can
automatically be registered as the handler for that service when importing the service from the
repository.

The documentation property defines a documentation file that describes what the service does
and how it works. This property should refer to a HTML file with the given name in the same
folder as the extended configuration file (so it can be shown by the import wizard when browsing
the repository).

The dependencies property defines additional dependencies that are necessary to execute this
service. This usually includes the handler implementation jar but could also include additional
external dependencies. These dependencies should also be located on the repository on the
given location (relative to the folder where the extended configuration file is located), so they can
be downloaded by the import wizard when importing the service.

The root of the repository should also contain an index.conf file that references all the folders that
should be processed when searching for services in the repository. Each of those folders should then
contain:

An extended configuration file with the same name as the folder (e.g. Twitter.conf) that
defines the service task

The icon as references in the configuration file

The documentation as references in the configuration file

The dependencies as references in the configuration file (for example in a lib folder)

Include an additional index.conf in each sub-directory of the repository that can be used to scan
additional sub-folders. Note that the hierarchical structure of the repository is not shown when browsing
the repository using the import wizard, as the category property in the configuration file is used for that.

The example below explains how to import resources from the service repository when working with
JBoss Developer Studio.

Procedure 9.1. Import Resources From the Service Repository

1. Right click the project and select Import....

2. Select the source of the resources to import. i.e., Guvnor → Resources from Guvnor and click
Next.

3. Navigate to the resources. i.e., select the package where the resource is located in Guvnor and
highlight the resources. Click Menu.

4. Select the destination location for the resources and click Finish.

Report a bug

BRMS Business Process Management Guide

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11219-271812+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Service+Repository&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 10. HUMAN TASKS

10.1. HUMAN TASKS

Human Tasks are tasks within a process that must be carried out by human actors. BRMS Business
Process Management supports a human task node inside processes for modeling the interaction with
human actors. The human task node allows process designers to define the properties related to the
task that the human actor needs to execute; for example, the type of task, the actor, and the data
associated with the task can be defined by the human task node. A back-end human task service
manages the lifecycle of the tasks at runtime. The implementation of the human task service is based on
the WS-HumanTask specification, and the implementation is fully pluggable; this means users can
integrate their own human task solution if necessary.

To include human tasks in processes, the following steps are required:

Human tasks nodes must be included inside the process model.

A task management component must integrate with the BRMS BPM (BRMS 5.3 standalone
comes with the WS-HumanTask implementation included).

End users must interact with a human task client to request their tasks, claim and complete
tasks.

Report a bug

10.2. ADDING HUMAN TASKS TO PROCESSES

10.2.1. User Task Node

A user task node represents an atomic task that needs to be executed by a human actor.

NOTE

Human task nodes are considered the same as any other external service and must be
invoked as a domain-specific service, for further details see Section 9.1, “Domain-Specific
Service Nodes”

A user task node contains the following properties:

ID: The ID of the node (which is unique within one node container).

Name: The display name of the node.

TaskName: The name of the human task.

Priority: An integer indicating the priority of the human task.

CHAPTER 10. HUMAN TASKS

73

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11260-272385+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Human+Tasks&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Comment: A comment associated with the human task.

ActorId: The actor ID that is responsible for executing the human task. A list of actor ID's can be
specified using a comma (',') as separator.

GroupId: The group ID that is responsible for executing the human task. A list of group ID's can
be specified using a comma (',') as separator.

Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

Content: The data associated with this task.

Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor.

On entry and on exit actions: Action scripts that are executed upon entry and exit of this node.

Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has a
result variable "Result" that contains the data returned by the human actor. The variable
"ActorId" contains the ID of the actor that actually executed the task.

User task nodes can be edited in the properties view when editing in JBoss Developer Studio or in the
Properties window when editing in the process designer embedded in the BRMS user interface.

Report a bug

10.2.2. Dynamic Human Task Properties

Properties such as name, actorID, and priority can be added to the user task node when the process is
created; however, some properties in human tasks can be dependent on data that comes from another
part of the process instance that the node belongs to, making it necessary to add human task properties
dynamically. There are two ways to make human task properties dynamic.

#{expression}

Task parameters of type String can use #{expression} to embed the value of the given expression in
the String. For example, the comment related to a task might be "Please review this request from
user #{user}", where user is a variable in the process. At runtime, #{user} will be replaced by the
actual user name for that specific process instance. The value of #{expression} will be resolved when
creating human task and the #{...} will be replaced by the toString() value of the value it resolves to.
The expression could simply be the name of a variable (in which case it will be resolved to the value
of the variable), but more advanced MVEL expressions are possible as well; for example, #
{person.name.firstname} could be used as the expression. Note that this approach can only be used
for String parameters. Other parameters should use parameter mapping to map a value to that
parameter.

Parameter mapping

The value of a process variable (or a value derived from a variable) can be mapped to a task
parameter. For example, if a task needs to be assigned to a user whose ID is a variable in the
process, the task could be completed by mapping the ID variable to the parameter ActorId.

BRMS Business Process Management Guide

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11255-272411+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=User+Task+Node&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Report a bug

10.2.3. User and Group Assignment

Tasks can be assigned to one specific user, and the task will show up on the task list of the specified user
only. If a task is assigned to more than one user, any of those users can claim and execute the task.

Tasks can also be assigned to one or more groups, the task will show up on the task list for the specified
group, and any member of that group can claim and execute the task.

Report a bug

10.2.4. Standard Human Roles

Tasks and notifications within Business Process Management can be assigned to generic human roles.
The following list contains some of these generic roles:

Task Initiator - creates the task instance.

Task Stakeholders - are responsible for the outcome of the task instance.

Potential Owners - receive the task so they can complete it.

Actual Owner - actually performs the task.

Excluded Owners - may not reserve or start the task.

Business Administrators - perform the Task Stakeholders role but at a task type level.

Notification recipients - receive the notifications pertaining to the task.

NOTE

Task Stakeholder has no special authority within BRMS BPM 5.3.1; however, Business
Administrator has the authority to claim, stop, release, suspend, resume, skip, delegate,
forward, activate, and exit tasks even if they are not the task owner.

Report a bug

10.2.5. Task Escalation and Notification

In certain situations, the escalation of a task is necessary. For example, a user assigned to a task may be
unable to complete that task within a certain period of time. In such cases, tasks should be automatically
reassigned to another actor or group. Escalations can be defined for tasks that are in the following
statuses:

not started (READY or RESERVED)

not completed (IN_PROGRESS)

Whenever an escalation occurs, users and groups defined in it will be assigned to the task as potential
owners, replacing those who were previously assigned. If an actual owner is assigned to the task, the
escalation will reset and the task will be put in READY state.

CHAPTER 10. HUMAN TASKS

75

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11251-272454+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Dynamic+Human+Task+Properties&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11208-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=User+and+Group+Assignment&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=12397-333156+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Standard+Human+Roles&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The following is a list of attributes that can be specified during the escalation process:

Users. This attribute is a comma separated list of user ids that should be assigned to the task on
escalation. String values and expressions #{user-id} are acceptable for this attribute.

Groups. This comma separated list of group ids should be assigned to the task on escalation.
String values and expressions #{group-id} are acceptable for this attribute.

Expires At. This attribute defines the time an escalation should take place. It should be defined
as time definition (2m, 4h, 6d, etc.) in same way as for timers. String values and expressions #
{expiresAt} are acceptable for this attribute.

Type. This attribute identifies the type of task state the escalation should take place in (not-
started | not-completed).

Email notifications can be sent out through the 'Notifications' tab. It is very similar to escalation in terms
of definition. Email notifications can be sent for tasks that are in following statuses:

not started (READY or RESERVED)

not completed (IN_PROGRESS)

BRMS Business Process Management Guide

76

Email notifications have the following properties:

Type. This attribute identifies the type of task state on which escalation should take place (not-
started | not-completed).

Expires At. This time definition property determines when escalation should take place. It should
be defined as time definition (2m, 4h, 6d, etc.) in the same way as for timers. String values and
expressions #{expiresAt} are acceptable properties.

CHAPTER 10. HUMAN TASKS

77

From. An optional user or group id that will be used in the 'From' field for email messages; it
accepts Strings and expressions.

To Users. A comma separated list of user ids that will become recipients of the notification.

To Groups. A comma separated list of group ids that will become recipients of the notification.

Reply To. An optional user or group id that should receive replies to the notification.

Subject. The subject of the notification; it accepts Strings and expressions.

Body. The body of the notification; it accepts Strings and expressions.

Notifications can reference process variables by #{processVariable} and task variables by
${taskVariable}. Accordingly, process variables resolve at task creation time, and task variables resolve
at notification time. The following list contains several task variables that can be used while working with
notifications:

taskId: An internal id of a task instance.

processInstanceId: An internal id of a process instance that the task belongs to.

workItemId: An internal id of a work item that created this task.

processSessionId: A session internal id of a runtime engine.

owners: A list of users/groups that are potential owners of the task.

doc: A map that contains regular task variables.

Below is an example notification message that illustrates how different variables can be accessed.

<html>
 <body>
 ${owners[0].id} you have been assigned to a task (task-id ${taskId})

 You can access it in your task
 <a href="http://localhost:8080/jbpm-
console/app.html#errai_ToolSet_Tasks;Group_Tasks.3">inbox

 Important technical information that can be of use when working on
it

 - process instance id - ${processInstanceId}

 - work item id - ${workItemId}

 <hr/>

 Here are some task variables available:

 ActorId = ${doc['ActorId']}
 GroupId = ${doc['GroupId']}
 Comment = ${doc['Comment']}

 <hr/>
 Here are all potential owners for this task:

 $foreach{orgEntity : owners}
 Potential owner = ${orgEntity.id}

BRMS Business Process Management Guide

78

Report a bug

10.2.6. Data Mapping

10.2.6.1. Data Mapping

Human tasks typically present some data related to the task that needs to be performed to the actor that
is executing the task. Human tasks usually also request the actor to provide some result data related to
the execution of the task. Task forms are typically used to present this data to the actor and request
results.

Report a bug

10.2.6.2. Task Parameters

Data that needs to be displayed in a task form should be passed to the task using parameter mapping.
Parameter mapping allows you to copy the value of a process variable to a task parameter (as described
in Section 10.2.2, “Dynamic Human Task Properties”). This could be the customer name that needs to be
displayed in the task form, the actual request, etc. To copy data to the task, map the variable to a task
parameter. This parameter will then be accessible in the task form.

Report a bug

10.2.6.3. Task Results

Data that needs to be returned to the process should be mapped from the task back into process
variables, using result mapping. Result mapping allows you to copy the value of a task result to a process
variable. This could be some data that the actor filled in. To copy a task result to a process variable, map
the task result parameter to the variable in the result mapping. The value of the task result will then be
copied after completion of the task so it can be used in the remainder of the process.

Report a bug

10.2.7. Swimlanes

User tasks can be used in combination with swimlanes to assign multiple human tasks to the same
actor. Whenever the first task in a swimlane is created, and that task has an actorId specified, that
actorId will be assigned to all the tasks in that swimlane. Note that this would override the actorId of
subsequent tasks in that swimlane (if specified), so only the actorId of the first human task in a swimlane
will be taken into account, all others will then take the actorId as assigned in the first one.

 $end{}

 <i>Regards</i>
 </body>
</html>

CHAPTER 10. HUMAN TASKS

79

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=12496-334345+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Task+Escalation+and+Notification&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11220-272508+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Data+Mapping&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11227-272524+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Task+Parameters&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11286-274339+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Task+Results&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

To add a human task to a swimlane, first ensure the swimlane has been defined in the process. If it has
not been defined, define the swimlane by editing the swimlane property. Next, specify the name of the
swimlane as the value of the Swimlane parameter of the user task node.

Report a bug

10.2.8. Removing Tasks from the Database

Human tasks information can be removed from the database with the
org.jbpm.task.admin.TaskCleanUpProcessEventListener, which is a DefaultProcessEventListener that
archives and removes completed tasks with the associated process ID.

The TaskCleanUpProcessEventListener uses an instance of org.jbpm.task.admin.TasksAdmin, which
can be obtained from org.jbpm.task.service.TaskService#createTaskAdmin().

Example 10.1. Attaching the Event Listener

TasksAdmin admin = new TaskService(...).createTaskAdmin();
StatefulKnowledgeSession ksession = ...
ksession.addEventListener(new TaskCleanUpProcessEventListener(admin));

Report a bug

10.3. HUMAN TASK SERVICE

10.3.1. Human Task Service

Human tasks are similar to any other external service and are implemented as a domain-specific
service. Refer to Section 9.1, “Domain-Specific Service Nodes” for details about including domain-
specific services in a process. Because a human task is a domain-specific service, the process itself
contains a high-level, abstract description of the human tasks that need to be executed, and a work item
handler is responsible for binding this abstract tasks to a specific implementation. With this pluggable
work item handler approach, users can plug in the human task service that is provided, as described
below, or they can register their own implementation.

The default implementation of a human task service is based on the WS-HumanTask specification. It
manages the life cycle of the tasks (creation, claiming, completion, etc.) and stores the state of all the
tasks, task lists, etc. It also supports features like internationalization, calendar integration, different
types of assignments, delegation, deadlines, etc. It is implemented as part of the jbpm-human-task
module. The WS-HumanTask (WS-HT) specification can be downloaded from the following location
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf.

Report a bug

10.3.2. Task Life Cycle

Whenever a user task node is triggered during the execution of a process instance, a human task is
created, and the process only leaves that node when the human task has been completed or aborted.

BRMS Business Process Management Guide

80

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11210-274351+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Swimlanes&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=12503-335810+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Removing+Tasks+from+the+Database&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11221-274651+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Human+Task+Service&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The human task life cycle is as follows:

1. The task is created and starts at the 'created' stage.

2. The task is usually transferred to the 'Ready' stage automatically, and it is displayed on the task
lists of users who can claim the task.

3. A user claims the task and the status is set to 'Reserved'.

4. The user starts the task (executes the task) and the status is set to 'InProgress'

5. The user completes the task and specifies the result data of the task, and the status is set to
'Completed'. If the user was unable to complete the task, they indicate this with a fault response
(including the associated fault data) and the status is set to 'Failed.

The human task life cycle can also include the following steps:

Delegating or forwarding a task to be assigned to another user.

Revoking a task. After claiming a task, a user can revoke the task and it will become available
again to all the users who can claim it.

Temporarily suspending and resuming a task.

Stopping a task in progress.

Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed.

Report a bug

10.3.3. Integrate a Human Task Service

To integrate an alternative human task service, a custom work item handler must be registered. The
custom work item handler can be registered as follows:

By default, this handler will connect to the human task service on the local machine on port 5446. To
change the address and port of the human task service, invoke the setConnection(ipAddress, port)
method on the CommandBasedHornetQWSHumanTaskHandler.

The communication between the human task service and the process engine, or any task client, is done
by sending messages between the client and the server. HornetQ is the default transport mechanism for
client server communication.

Report a bug

10.3.4. Interacting with the Human Task Service

StatefulKnowledgeSession ksession = ...;
ksession.getWorkItemManager().registerWorkItemHandler("Human Task", new
CommandBasedHornetQWSHumanTaskHandler());

CHAPTER 10. HUMAN TASKS

81

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11201-274656+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Task+Life+Cycle&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11243-274697+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Integrate+a+Human+Task+Service&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The Business Central Console offers a graphical interface for users to interact with the human task
service, see Section 8.1, “Business Central Console” for more details. The human task service exposes
various methods to manage the life cycle of the tasks through a Java API.

A task client (class org.jbpm.task.service.TaskClient) offers the following methods for managing the life
cycle of human tasks:

All of the above methods take the following arguments:

taskId: The ID of the task. This is usually extracted from the currently selected task in the user
task list in the user interface.

userId: The ID of the user that is executing the action. This is usually the ID of the user that is
logged in to the application.

responseHandler: Communication with the task service is asynchronous, so you should use a
response handler that will be notified when the results are available.

When a message is invoked on the TaskClient, a message is created that will be sent to the server, and
the server will execute the logic that implements the correct action.

The following code sample shows how to create a task client and interact with the task service to create,
start and complete a task:

public void start(long taskId, String userId,
TaskOperationResponseHandler responseHandler)
public void stop(long taskId, String userId, TaskOperationResponseHandler
responseHandler)
public void release(long taskId, String userId,
TaskOperationResponseHandler responseHandler)
public void suspend(long taskId, String userId,
TaskOperationResponseHandler responseHandler)
public void resume(long taskId, String userId,
TaskOperationResponseHandler responseHandler)
public void skip(long taskId, String userId, TaskOperationResponseHandler
responseHandler)
public void delegate(long taskId, String userId, String targetUserId,
 TaskOperationResponseHandler responseHandler)
public void complete(long taskId, String userId, ContentData outputData,
 TaskOperationResponseHandler responseHandler)
...

//Use UUID.randomUUID() to ensure the HornetQ Connector has a unique name
 TaskClient client = new TaskClient(new
HornetQTaskClientConnector("HornetQConnector" + UUID.randomUUID(), new
HornetQTaskClientHandler(SystemEventListenerFactory.getSystemEventListener
())));
 client.connect("127.0.0.1", 5446);
 CommandBasedHornetQWSHumanTaskHandler handler = new
CommandBasedHornetQWSHumanTaskHandler(ksession);
 handler.setClient(client);
 handler.connect();
 ksession.getWorkItemManager().registerWorkItemHandler("Human Task",
handler);

// adding a task

BRMS Business Process Management Guide

82

Report a bug

10.3.5. User and Group Assignment

Tasks can be assigned to one or more users. If a task is assigned to one user, it will show up in that
user's task list. If the task is assigned to more than one user, any one of those users can claim and
execute the task. Tasks can also be assigned to groups, and any user who is a member of one of the
groups the task is assigned to can claim the task.

Users and groups need to be registered before tasks can be assigned to them. This can be done
dynamically.

The human tasks service does not maintain the relationships between users and groups. A user group
callback class must be created and listed in the jbpm-human-task.war/WEB-INF/web.xml file. The
default implementation, org.jbpm.task.service.DefaultUserGroupCallbackImpl, assigns all
users to all groups and is provided for testing purposes only.

To add the user group callback class open jbpm-human-task.war/WEB-INF/web.xml and add the
class as in the following example:

BlockingAddTaskResponseHandler addTaskResponseHandler = new
BlockingAddTaskResponseHandler();
Task task = ...;
client.addTask(task, null, addTaskResponseHandler);
long taskId = addTaskResponseHandler.getTaskId();

// getting tasks for user "bobba"
BlockingTaskSummaryResponseHandler taskSummaryResponseHandler =
 new BlockingTaskSummaryResponseHandler();
client.getTasksAssignedAsPotentialOwner("bobba", "en-UK",
taskSummaryResponseHandler);
List<TaskSummary> tasks = taskSummaryResponseHandler.getResults();

// starting a task
BlockingTaskOperationResponseHandler responseHandler =
 new BlockingTaskOperationResponseHandler();
client.start(taskId, "bobba", responseHandler);
responseHandler.waitTillDone(1000);

// completing a task
responseHandler = new BlockingTaskOperationResponseHandler();
client.complete(taskId, "bobba".getId(), null, responseHandler);
responseHandler.waitTillDone(1000);

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("org.jbpm.task");
TaskService taskService = new TaskService(emf,
SystemEventListenerFactory.getSystemEventListener());
TaskServiceSession taskSession = taskService.createSession();
// now register new users and groups
taskSession.addUser(new User("userA"));
taskSession.addGroup(new Group("groupA"));

<!-- use org.jbpm.task.service.DefaultUserGroupCallbackImpl to configure

CHAPTER 10. HUMAN TASKS

83

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11240-274723+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Interacting+with+the+Human+Task+Service&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The jbpm-human-task module contains a org.jbpm.task.RunTaskService class in the src/test/java source
folder that can be used to start a task server. It automatically adds users and groups as defined in
LoadUsers.mvel and LoadGroups.mvel configuration files, which are located in the
server/profile/deploy/jbpm-human-task.war/WEB-
INF/classes/org/jbpm/task/servlet/ directory.

Report a bug

10.3.6. Starting the Human Task Service

When using an independent human task service that the process engine communicates with, it is
necessary to start the service:

The task management component uses the Java Persistence API (JPA) to store all task information in a
persistent manner. To configure persistence, edit the persistence.xml configuration file.

The following example shows how to use the task management component with hibernate and an in-
memory H2 database. Please note that H2 databases are not supported in a production environment.
The following is provided as an example only, and providing create as the value for the
hibernate.hbm2ddl.auto property will result in the jBPM schemas being recreated every time the
server is restarted. The indexes should only be created once and then this functionality should be
disabled. This can be achieved by placing comment tags around the hibernate.hbm2ddl.auto property
after the schema has been created:

<!-- <property name="hibernate.hbm2ddl.auto" value="create" /> -->

sample user group callback for demo purpose-->
<init-param>
 <param-name>user.group.callback.class</param-name>
 <param-value>org.jbpm.task.service.DefaultUserGroupCallbackImpl</param-
value>
</init-param>

org.jbpm.task.service.TaskService taskService = new
org.jbpm.task.service.TaskService(
 emf, SystemEventListenerFactory.getSystemEventListener());

TaskServiceSession taskServiceSession = taskService.createSession();

//adding users to TaskServiceSession
taskServiceSession.addUser(new User("Administrator"));
taskServiceSession.addUser(new User("jsmith"));

LocalTaskService localTaskService = new LocalTaskService(taskService);
humanTaskHandler = new SyncWSHumanTaskHandler(localTaskService, ksession
);
humanTaskHandler.setLocal(true);
humanTaskHandler.connect();
ksession.getWorkItemManager().registerWorkItemHandler("Human Task",
humanTaskHandler);

//using HT API ...
List<TaskSummary> tasks =
localTaskService.getTasksAssignedAsPotentialOwner("jsmith", "en-US");

BRMS Business Process Management Guide

84

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11236-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=User+and+Group+Assignment&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
 version="1.0"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.jbpm.task">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <class>org.jbpm.task.Attachment</class>
 <class>org.jbpm.task.Content</class>
 <class>org.jbpm.task.BooleanExpression</class>
 <class>org.jbpm.task.Comment</class>
 <class>org.jbpm.task.Deadline</class>
 <class>org.jbpm.task.Comment</class>
 <class>org.jbpm.task.Deadline</class>
 <class>org.jbpm.task.Delegation</class>
 <class>org.jbpm.task.Escalation</class>
 <class>org.jbpm.task.Group</class>
 <class>org.jbpm.task.I18NText</class>
 <class>org.jbpm.task.Notification</class>
 <class>org.jbpm.task.EmailNotification</class>
 <class>org.jbpm.task.EmailNotificationHeader</class>
 <class>org.jbpm.task.PeopleAssignments</class>
 <class>org.jbpm.task.Reassignment</class>
 <class>org.jbpm.task.Status</class>
 <class>org.jbpm.task.Task</class>
 <class>org.jbpm.task.TaskData</class>
 <class>org.jbpm.task.SubTasksStrategy</class>
 <class>org.jbpm.task.OnParentAbortAllSubTasksEndStrategy</class>
 <class>org.jbpm.task.OnAllSubTasksEndParentEndStrategy</class>
 <class>org.jbpm.task.User</class>

 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.connection.driver_class"
value="org.h2.Driver"/>
 <property name="hibernate.connection.url" value="jdbc:h2:mem:mydb"
/>
 <property name="hibernate.connection.username" value="sa"/>
 <property name="hibernate.connection.password" value="sasa"/>
 <property name="hibernate.connection.autocommit" value="false" />
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="create" />
 <property name="hibernate.show_sql" value="true" />
 </properties>
 </persistence-unit>
</persistence>

CHAPTER 10. HUMAN TASKS

85

Report a bug

10.3.7. Starting the Human Task Service as a Web Application

The human task service can be started as a web application to simplify deployment. As part of the
application configuration, users can select a number of settings to be applied on startup. Configuration is
done via web.xml which is located in the jbpm-human-task-war/WEB-INF/ directory by setting init
parameters of the HumanTaskServiceServlet.

The following is a list of the supported parameters and their meaning:

General Settings:

task.persistence.unit: The name of persistence unit that will be used to build
EntityManagerFactory (default org.jbpm.task).

user.group.callback.class: The implementation of UserGroupCallback interface to be used to
resolve users and groups (default DefaultUserGroupCallbackImpl which is provided for testing
purposes).

escalated.deadline.handler.class: The implementation of EscalatedDeadlineHandler interface to
be used to handle escalations and notifications (default DefaultEscalatedDeadlineHandler).

user.info.class: The implementation of UserInfo interface to be used to resolve user/group
information such as email address and preferred language.

load.users: This specifies the location of a file that will be used to initially populate task server db
with users. It accepts two types of files: MVEL and properties; It must be suffixed with .mvel or
.properties. Location of the file can be either on classpath (with prefix classpath:) or valid URL.
NOTE: That with custom user files, Administrator user must always be present.

load.groups: This specifies the location of a file that will be used to initially populate task server
db with groups. It accepts two types of files: MVEL and properties; the file must be suffixed with
.mvel or .properties. Location of the file can be either on classpath (with prefix classpath:) or
valid URL.

Transport Settings:

active.config: The main parameter that controls what transport is configured for Task Server. By
default this is set to HornetQ, but it also accepts Mina and JMS.

Apache Mina:

mina.host: The host/ip address used to bind Apache Mina server (localhost).

mina.port: The port used to bind Apache Mina server (default 9123).

HornetQ:

hornetq.port: The port used to bind HornetQ server (default 5446).

JMS:

JMSTaskServer.connectionFactory: JNDI name of QueueConnectionFactory to look up (no
default).

BRMS Business Process Management Guide

86

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11224-337170+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Starting+the+Human+Task+Service&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

JMSTaskServer.transacted : A boolean flag that indicates if JMS session will be transacted or
not (no default).

JMSTaskServer.acknowledgeMode: Acknowledgment mode (default
DUPS_OK_ACKNOWLEDGE).

JMSTaskServer.queueName: The name of JMS queue (no default).

JMSTaskServer.responseQueueName: The name of JMS response queue (no default).

Report a bug

10.4. HUMAN TASK PERSISTENCE

10.4.1. Human Task Persistence

The model below is an entity relationship diagram (ERD) that shows the persistent entities used by the
Human Task service.

Figure 10.1. Human Task Service Data Model

The data model above is organized around 2 groups of entities:

The task entity which represents the main information for a task. (See the right-hand side of the
ERD above.)

The deadline, escalation, and notification entities represent deadlines and escalations
for tasks and notifications associated with those deadlines. (See the left-hand side of the ERD
above.)

Two other important entities in the data model are the i18ntext and organizationalentity.

CHAPTER 10. HUMAN TASKS

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11276-288246+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Starting+the+Human+Task+Service+as+a+Web+Application&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The i18ntext entity is used to store text which may be language related, such as names or
descriptions entered by users.

The organizationalentity entity represents a user.

The foreign key column in the tables in Section 10.4.2, “Task Related Entities” indicate whether or not a
column in a database table has a foreign key constraint on it. The null column describes whether or not
the database table column being describe can be null.

Please note, that if an entry is described as not allowing a null value and there is no associated entry, the
column will contain the value -1 or 0.

Report a bug

10.4.2. Task Related Entities

The task entity contains the information for describing a task.

Table 10.1. Task

Field Description Null Foreign Key

id The primary key of the
task identity

priority The priority of the task

allowedtodelegat
e

The group this task may
be delegated to

status The status of the task

previousstatus The previous status of
the task

actualowner_id The ID of the
organizational entity who
owns the task

createdby_id The ID of the
organizational entity who
created the task

createdon The timestamp
describing when this
task was created

BRMS Business Process Management Guide

88

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11246-274848+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Human+Task+Persistence&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

activationtime The timestamp
describing when this
task was activated

expirationtime The timestamp
describing when this
task will expire

skipable Whether or not this task
may be skipped

workitemid The ID of the work item
associated with this task
(see jBPM core schema)

processinstancei
d

The ID of the process
instance associated with
this task (see jBPM core
schema)

documentaccessty
pe

How a document
associated with the task
can be accessed

documenttype The type of data in the
document

documentcontenti
d

The ID of the content
entity containing the
document data

outputaccesstype How the output
document associated
with the task can be
accessed

outputtype The type of data in the
output document

outputcontentid The ID of the content
entity containing the
output document data

faultname The name of the fault
generated, if a fault
occurs

Field Description Null Foreign Key

CHAPTER 10. HUMAN TASKS

89

faultaccesstype How the document
associated with the fault
can be accessed

faulttype The type of data in the
fault document

faultcontentid The ID of the content
entity containing the
fault document data

parentid This is the ID of the
parent task

processid The name (ID) of the
associated process

processsessionid The ID of the associated
(knowledge) session

taskinitiator_id The ID of the
organizational entity who
created the task

Field Description Null Foreign Key

The subtasksstrategy entity is used to save the strategy that describes how parent and sub-tasks
should react when either parent or sub-tasks are ended.

Table 10.2. SubTasksStrategy

Field Description Null Foreign Key

id The primary key

dtype A discriminator column

name The name of the
strategy

task_id The primary key of the
associated task

The organizationalentity entity is extended to represent the different people assignments that are
part of the task.

BRMS Business Process Management Guide

90

Table 10.3. OrganizationalEntity

Field Description Null

id The primary key

dtype The discriminator column

The attachment entity describes attachments that have been added to the task.

Table 10.4. Attachment

Field Description Null Foreign Key

id The primary key

name The (file) name of the
attachment

accesstype How the attachment can
be accessed

attachedat When the attachment
was attached to the task

attachment_size The size (in bytes) of the
attachment

attachmentconten
tid

The ID of the content
entity storing the raw
data of the attachment

contenttype The MIME type of the
attachment data

attachedby_id The ID of the
organizationalen
tity entity that
attached the attachment

taskdata_attachm
ents_id

The ID of the task
entity to which this
attachment belongs

The task_comment entity describes comments added to tasks.

CHAPTER 10. HUMAN TASKS

91

Table 10.5. task_comment

Field Description Null Foreign Key

id The primary key

addedat The timestamp of when
the comment was added
to the task

text The text of the comment

addedby_id The primary key of the
associated
organizationalen
tity entity

taskdata_comment
s_id

The primary key of the
associated task entity

The delegation_delegates table is a join table for relationships between the task entity and the
organizationalentity.

Table 10.6. delegation_delegates

Field Description Null Foreign Key

task_id The primary key of the
associated task

entity_id The primary key of the
associated
organizationalen
tity

The peopleassignments_stakeholders table is a join table that describes which
organizationalentity entities are task stakeholders of a particular task.

Table 10.7. peopleassignments_stakeholders

Field Description Null Foreign Key

task_id The primary key of the
associated task entity

BRMS Business Process Management Guide

92

entity_id The primary key of the
associated
organizationalen
tity entity

Field Description Null Foreign Key

The peopleassignments_potowners table is a join table that describes which
organizationalentity entities are potential owners of a particular task.

Table 10.8. peopleassignments_potowners

Field Description Null Foreign Key

task_id The primary key of the
associated task entity

entity_id The primary key of the
associated
organizationalen
tity entity

The peopleassignments_exclowners table is a join table that describes which
organizationalentity entities are the excluded owners of a particular task.

Table 10.9. peopleassignments_exclowners

Field Description Null Foreign Key

task_id The primary key of the
associated task entity

entity_id The primary key of the
associated
organizationalen
tity entity

The peopleassignments_bas table is a join table that describes which organizationalentity
entities are business administrators of a particular task.

Table 10.10. peopleassignments_bas

Field Description Null Foreign Key

task_id The primary key of the
associated task entity

CHAPTER 10. HUMAN TASKS

93

entity_id The primary key of the
associated
organizationalen
tity entity

Field Description Null Foreign Key

The peopleassignments_recipients table is a join table that describes which
organizationalentity entities are notification recipients for a particular task.

Table 10.11. peopleassignments_recipients

Field Description Null Foreign Key

task_id The primary key of the
associated task entity

entity_id The primary key of the
associated
organizationalen
tity entity

Report a bug

10.4.3. Deadline, Escalation, and Notification Related Entities

The following paragraphs and tables describe the group of entities having to do with deadline,
escalation, and notification information.

The deadline entity represents a deadline for a task.

Table 10.12. deadline

Field Description Null Foreign Key

id The primary key

deadline_date The deadline date

escalated Whether or not the
deadline has been
escalated

BRMS Business Process Management Guide

94

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11273-274880+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Task+Related+Entities&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

deadlines_startd
eadline_id

The ID of the associated
task entity which uses
this deadline as its start
deadline.

deadlines_enddea
dline_id

The ID of the associated
task entity which uses
this deadline as its end
deadline.

Field Description Null Foreign Key

The escalation entity describes an escalation action that should be taken for a particular deadline.

Table 10.13. escalation

Field Description Null Foreign Key

id The primary key

name The name of the
escalation event

deadline_escalat
ion_id

The ID of the associated
deadline entity

The booleanexpression entity represents an expression that evaluates to a boolean. These
expressions are used to determine if a constraint should be applied.

Table 10.14. booleanexpression

Field Description Null Foreign Key

id The primary key

expression The expression text

type The type of expression

escalation_const
raints_id

The ID of the escalation
constraint used on the
expression

CHAPTER 10. HUMAN TASKS

95

The notification entity describes a notification generated by an escalation action.

Table 10.15. notification

Field Description Null Foreign Key

id The primary key

dtype The discriminator
column

priority The priority of the
notification

escalation_notif
ications_id

The ID of the associated
escalation entity

The email_header entity describes an email that will be sent as part of a notification.

Table 10.16. email_header

Field Description Null

id The primary key

fromaddress The email address the e-mail is
sent from

replytoaddress The reply-to address used in the
e-mail

language The language the email is written
in

subject The subject of the email

body The body of the email

The notification_email_header table is a join table that describes and qualifies which
email_header entities are part of a notification.

Table 10.17. notification_email_header

BRMS Business Process Management Guide

96

Field Description Null Foreign Key

notification_id Together with the
mapkey, this field is
part of the primary key.
This field refers to the
notification entity
that the
email_header is
associated with

mapkey Together with the
mapkey, this field is
part of the primary key.
This field describes what
the type is of the
associated
email_header

emailheaders_id The ID of the associated
email_header entity

The reassignment entity describes reassignments associated with escalations.

Table 10.18. reassignment

Field Description Null Foreign Key

id The primary key

escalation_reass
ignments_id

The ID of the associated
escalation entity

The reassignments_potentialowners table is a join table that describes which
organizationalentity entities are potential owners if a reassignment happens as part of an
escalation.

Table 10.19. reassignment_potentialowners

Field Description Null Foreign Key

task_id The primary key of the
associated
reassignment entity

CHAPTER 10. HUMAN TASKS

97

entity_id The primary key of the
associated
organizationalen
tity entity

Field Description Null Foreign Key

The notification_bas table is a join table that describes which business administrators will be
notified by a notification.

Table 10.20. notification_bas

Field Description Null Foreign Key

task_id The primary key of the
associated
notification entity

entity_id The primary key of the
associated
organizationalen
tity entity

The notification_recipients table is a join table that describes which recipients entities will
be received a notification.

Table 10.21. notification_recipients

Field Description Null Foreign Key

task_id The primary key of the
associated
notification entity

entity_id The primary key of the
associated
organizationalen
tity entity

The content entity represents the content of a document, output document, fault or other object.

Table 10.22. content

Field Description Null

id The primary key

BRMS Business Process Management Guide

98

content The content data

Field Description Null

The i18ntext entity is used by a number of other entities to store text fields. The deadline,
notification, reassignment, and task entities use this entity to store descriptions, subjects,
names, and other documentation.

Foreign keys can not be set to null, and any foreign key that is not being used will be set to 0.

Table 10.23. i18ntext

Field Description Null Foreign Key

id The primary key

language The language of the text

text The text

task_subjects_id The ID of the task
entity that this subject
refers to

task_names_id The ID of the task
entity this name refers to

task_description
s_id

The ID of the task
entity this description
refers to

reassignment_doc
umentation_id

The ID of the
reassignment entity
this documentation
refers to

notification_sub
jects_id

The ID of the
notification entity
this subject refers to

notification_nam
es_id

The ID of the
notification entity
this name refers to

CHAPTER 10. HUMAN TASKS

99

notification_doc
umentation_id

The ID of the
notification entity
this documentation
refers to

notification_des
criptions_id

The ID of the
notification entity
this description refers to

deadline_documen
tation_id

The ID of the
deadline entity this
documentation refers to

Field Description Null Foreign Key

Report a bug

BRMS Business Process Management Guide

100

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11270-274899+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Deadline%2C+Escalation%2C+and+Notification+Related+Entities&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 11. TESTING AND DEBUGGING

11.1. UNIT TESTING

11.1.1. Unit Testing

Business Processes should be designed at a high level with no implementation details; however, just
like other development artifacts, they still have a lifecycle; since business processes can be updated
dynamically, it is important that they are tested.

Unit tests are conducted to ensure processes behave as expected in specific use cases, for example, to
test the output based on the specific input. The helper class JbpmJUnitTestCase (in the jbpm-test
module) has been included to simplify unit testing. JbpmJUnitTestCase provides the following:

Helper methods to create a new knowledge base and session for a given set of processes.

Assert statements to check:

The state of a process instance (active, completed, aborted).

Which node instances are currently active.

Which nodes have been triggered (to check the path that has been followed).

The value of variables.

The image below contains a start event, a script task, and an end event. Within the example junit Test, a
new session is created, the process is started, and the process instance is verified based on successful
completion. It also checks whether these three nodes have been executed.

Figure 11.1. Example Hello World Process

Example 11.1. example junit Test

public class MyProcessTest extends JbpmJUnitTestCase {

 public void testProcess() {
 // create your session and load the given process(es)
 StatefulKnowledgeSession ksession =
createKnowledgeSession("sample.bpmn");
 // start the process
 ProcessInstance processInstance =
ksession.startProcess("com.sample.bpmn.hello");
 // check whether the process instance has completed successfully
 assertProcessInstanceCompleted(processInstance.getId(),
ksession);
 // check whether the given nodes were executed during the
process execution
 assertNodeTriggered(processInstance.getId(), "StartProcess",

CHAPTER 11. TESTING AND DEBUGGING

101

Report a bug

11.1.2. Helper Methods to Create Sessions

Several methods are provided to simplify the creation of a knowledge base and a session to interact with
the engine:

createKnowledgeBase(String... process):

Returns a new knowledge base containing all the processes in the given filenames (loaded from the
classpath).

createKnowledgeBase(Map<String, ResourceType> resources):

Returns a new knowledge base containing all the resources from the given filenames (loaded from
the classpath).

createKnowledgeBaseGuvnor(String... packages):

Returns a new knowledge base containing all the processes loaded from Guvnor (the process
repository) from the given packages.

createKnowledgeSession(KnowledgeBase kbase):

Creates a new stateful knowledge session from the given knowledge base.

restoreSession(StatefulKnowledgeSession ksession, boolean noCache):

Completely restores this session from the database; it can be used to recreate a session to simulate a
critical failure and test recovery. If noCache is true, the existing persistence cache will not be used to
restore the data.

Report a bug

11.1.3. Assertions

The following assertions are provided to simplify testing the current state of a process instance:

assertProcessInstanceActive(long processInstanceId, StatefulKnowledgeSession ksession):

Checks whether the process instance with the given ID is still active.

assertProcessInstanceCompleted(long processInstanceId, StatefulKnowledgeSession ksession):

Checks whether the process instance with the given ID has completed successfully.

assertProcessInstanceAborted(long processInstanceId, StatefulKnowledgeSession ksession):

Checks whether the process instance with the given ID was aborted.

"Hello", "EndProcess");
 }
}

BRMS Business Process Management Guide

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11217-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Unit+Testing&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11233-274941+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Helper+Methods+to+Create+Sessions&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

assertNodeActive(long processInstanceId, StatefulKnowledgeSession ksession, String... name):

Checks whether the process instance with the given ID contains at least one active node with the
given node name (for each of the given names).

assertNodeTriggered(long processInstanceId, String... nodeNames):

Checks for each given node name whether a node instance was triggered (but not necessarily active
anymore) during the execution of the process instance with the given node name (for each of the
given names).

getVariableValue(String name, long processInstanceId, StatefulKnowledgeSession ksession):

Retrieves the value of the variable with the given name from the given process instance; it can then
be used to check the value of process variables:

Report a bug

11.1.4. Testing Integration with External Services

Using domain-specific processes makes it possible to use testing handlers to verify whether or not
specific services are requested correctly.

A TestWorkItemHandler is provided by default that can be registered to collect all work items (each work
item represents one unit of work, for example, sending q specific email or invoking q specific service,
and it contains all the data related to that task) for a given type. The test handler can be queried during
unit testing to check whether specific work was actually requested during the execution of the process
and that the data associated with the work was correct.

The following example describes how a process that sends an email could be tested. The test case tests
whether an exception is raised when the email could not be sent (which is simulated by notifying the
engine that sending the email could not be completed). The test case uses a test handler that simply
registers when an email was requested and the data associated with the request. When the engine is
notified the email could not be sent (using abortWorkItem(..)), the unit test verifies that the process
handles this case successfully by logging this and generating an error, which aborts the process instance
in this case.

public void testProcess2() {
 // create your session and load the given process(es)
 StatefulKnowledgeSession ksession =
createKnowledgeSession("sample2.bpmn");
 // register a test handler for "Email"
 TestWorkItemHandler testHandler = new TestWorkItemHandler();

CHAPTER 11. TESTING AND DEBUGGING

103

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11216-274948+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Assertions&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Report a bug

11.1.5. Configuring Persistence

By default, persistence is turned off and processes exist in memory.

To turn persistence on, pass a boolean to the super constructor when creating the test case and
setPersistence to true as shown below:

Report a bug

11.2. DEBUGGING

11.2.1. Debugging

JBoss Developer Studio can be used to debug processes and examine the state of the running
processes.

Report a bug

11.2.2. The Process Instances View

 ksession.getWorkItemManager().registerWorkItemHandler("Email",
testHandler);
 // start the process
 ProcessInstance processInstance =
ksession.startProcess("com.sample.bpmn.hello2");
 assertProcessInstanceActive(processInstance.getId(), ksession);
 assertNodeTriggered(processInstance.getId(), "StartProcess", "Email");
 // check whether the email has been requested
 WorkItem workItem = testHandler.getWorkItem();
 assertNotNull(workItem);
 assertEquals("Email", workItem.getName());
 assertEquals("me@mail.com", workItem.getParameter("From"));
 assertEquals("you@mail.com", workItem.getParameter("To"));
 // notify the engine the email has been sent
 ksession.getWorkItemManager().abortWorkItem(workItem.getId());
 assertProcessInstanceAborted(processInstance.getId(), ksession);
 assertNodeTriggered(processInstance.getId(), "Gateway", "Failed",
"Error");
}

public class MyProcessTest extends JbpmJUnitTestCase {

 public MyProcessTest() {
 // configure this test to use persistence
 super(true);
 setPersistence(true);
 }
 ...

BRMS Business Process Management Guide

104

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11258-274961+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Testing+Integration+with+External+Services&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11264-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Configuring+Persistence&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11218-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Debugging&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

The process instances view shows the currently running process instances.

To open the process instances viewer, select Window → Show View → Other, then select Drools →
Process Instances.

The Sample Process Instances View below shows that there is currently one running process (instance),
currently executing one node instance, i.e. business rule task. When double-clicking a process instance,
the process instance viewer will graphically display the progress of the process instance.

Example 11.2. Sample Process Instances View

Report a bug

11.2.3. The Human Task View

The Human Task View can connect to a running human task service and request the relevant tasks for a
particular user (i.e. the tasks where the user is either a potential owner or the tasks that the user already
claimed and is executing). The life cycle of these tasks can then be executed, i.e. claiming or releasing a
task, starting or stopping the execution of a task, completing a task, etc.

To open the human task viewer, select Window → Show View → Other, then select jBPM Task →
Human Task View.

To configure the task service to connect to, select Window → Preferences → Drools Tasks and enter
the IP address, port, and language.

Example 11.3. Sample Human Task View

Report a bug

11.2.4. The Audit View

The audit view shows the audit log, which is a log of all events that were logged from the session. To
create a logger, use the KnowledgeRuntimeLoggerFactory to create a new logger and attach it to a
session. Note that using a threaded file logger will save the audit log to the file system at regular

CHAPTER 11. TESTING AND DEBUGGING

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11228-275010+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=The+Process+Instances+View&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11212-275026+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=The+Human+Task+View&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

intervals, and the audit viewer will then be able to show the latest state. The Threaded File Logger below
shows an example with the audit log file and the interval (in milliseconds) specified.

Example 11.4. Threaded File Logger

To open the audit view, select Window → Show View → Audit.

To open up an audit tree in the audit view, open the selected log file in the audit view or simply drag the
file into the audit view. A tree-based view is generated based on the audit log. An event is shown as a
sub node of another event if the child event is caused by (a direct consequence of) the parent event:

Report a bug

KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory
 .newThreadedFileLogger(ksession, "logdir/mylogfile", 1000);
// do something with the session here
logger.close();

BRMS Business Process Management Guide

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11199-275037+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=The+Audit+View&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 12. BUSINESS ACTIVITY MONITORING

12.1. BUSINESS ACTIVITY MONITORING

Processes should be monitored so that unexpected events or behaviors can be detected and responded
to as soon as possible. Business Activity Monitoring is real-time process monitoring that provides the
option to intervene directly or through automation, based on the analysis of the events.

IMPORTANT

Red Hat does not include a monitoring solution with JBoss BRMS 5.3.

Report a bug

CHAPTER 12. BUSINESS ACTIVITY MONITORING

107

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11289-276583+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Business+Activity+Monitoring&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

CHAPTER 13. INTEGRATION

13.1. INTEGRATION

The Business Process Management engine can be integrated with other technologies.

Report a bug

13.2. OSGI

OSGi is a dynamic module system for declarative services. Each jar in OSGi is called a bundle and has
its own classloader. Each bundle specifies the packages it exports (makes publicly available) and which
packages it imports (external dependencies). OSGi will use this information to wire the classloaders of
different bundles together; the key distinction is you don't specify what bundle you depend on or have a
single monolithic classpath; instead, you specify your package import and version, and OSGi attempts to
satisfy this from the available bundles.

All core jBPM jars (and core dependencies) are OSGi-enabled. That means that they contain
MANIFEST.MF files (in the META-INF directory) that describe their dependencies. These manifest files
are automatically generated by the build, and you can plug these jars directly into an OSGi environment.

The following jBPM jars are OGSi-enabled:

jbpm-flow

jbpm-flow-builder

jbpm-bpmn2

The example below looks up the necessary services in an OSGi environment using the service registry
and creates a session that can then be used to start processes, signal events, etc.

Example 13.1. OSGi Example

ServiceReference serviceRef = bundleContext.getServiceReference(
ServiceRegistry.class.getName());
ServiceRegistry registry = (ServiceRegistry) bundleContext.getService(
serviceRef);

KnowledgeBuilderFactoryService knowledgeBuilderFactoryService =
registry.get(KnowledgeBuilderFactoryService.class);
KnowledgeBaseFactoryService knowledgeBaseFactoryService = registry.get(
KnowledgeBaseFactoryService.class);
ResourceFactoryService resourceFactoryService = registry.get(
ResourceFactoryService.class);

KnowledgeBuilderConfiguration kbConf =
knowledgeBuilderFactoryService.newKnowledgeBuilderConfiguration(null,
getClass().getClassLoader());
KnowledgeBuilder kbuilder =
knowledgeBuilderFactoryService.newKnowledgeBuilder(kbConf);
kbuilder.add(resourceFactoryService.newClassPathResource(
"MyProcess.bpmn", Dummy.class), ResourceType.BPMN2);

BRMS Business Process Management Guide

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11281-275048+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Integration&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Report a bug

13.3. SPRING

A Spring XML configuration file can be used to easily define and configure knowledge bases and
sessions in a Spring environment, making it possible to access a session and invoke processes from
within a Spring application.

The Example SPring Configuration File below sets up a new session based on a knowledge base with
one process definition loaded from the classpath.

Example 13.2. Example Spring Configuration File

The following code loads the above Spring configuration, retrieves the session, and starts the process:

KnowledgeBaseConfiguration kbaseConf =
knowledgeBaseFactoryService.newKnowledgeBaseConfiguration(null,
getClass().getClassLoader());
KnowledgeBase kbase = knowledgeBaseFactoryService.newKnowledgeBase(
kbaseConf);
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jbpm="http://drools.org/schema/drools-spring"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://drools.org/schema/drools-spring
org/drools/container/spring/drools-spring-1.2.0.xsd>

 <jbpm:kbase id="kbase">
 <jbpm:resources>
 <jbpm:resource type="BPMN2" source="classpath:HelloWorld.bpmn2"/>
 </jbpm:resources>
 </jbpm:kbase>

 <jbpm:ksession id="ksession" type="stateful" kbase="kbase" />

</beans>

ClassPathXmlApplicationContext context =
 new ClassPathXmlApplicationContext("spring-conf.xml");
StatefulKnowledgeSession ksession = (StatefulKnowledgeSession)
context.getBean("ksession");
ksession.startProcess("com.sample.HelloWorld");

CHAPTER 13. INTEGRATION

109

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11284-291972+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=OSGi&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

Note that you can also inject the session in one of your domain objects; for example, add the following
fragment in the configuration file:

As a result, the session will be injected into the domain object and can then be accessed directly. For
example:

Report a bug

13.4. MAVEN

Maven integration is not supported by Red Hat in JBoss Enterprise BRMS 5.3.1 and the following is
provided as an example only.

Procedure 13.1. Importing the Drools and jBPM Jar Files to the Local Maven Repository

1. Download the deployable package zip file from the Red Hat Customer Support Portal at
https://access.redhat.com. Select Downloads → Download your software → BRMS Platform,
then select the version and JBoss BRMS 5.3.1.

2. Extract the zip archive.

3. Extract the jboss-brms-engine.zip and jboss-jbpm-engine.zip archives.

4. Run the following maven commands to import the Drools and jBPM jar files to the local maven
repository:

mvn install:install-file -Dfile=knowledge-api-5.3.1.BRMS.jar -
DgroupId=org.drools -DartifactId=knowledge-api -Dversion=5.3.1.BRMS
-Dpackaging=jar
mvn install:install-file -Dfile=drools-core-5.3.1.BRMS.jar -
DgroupId=org.drools -DartifactId=drools-core -Dversion=5.3.1.BRMS -
Dpackaging=jar
mvn install:install-file -Dfile=drools-compiler-5.3.1.BRMS.jar -
DgroupId=org.drools -DartifactId=drools-compiler -
Dversion=5.3.1.BRMS -Dpackaging=jar
mvn install:install-file -Dfile=drools-decisiontables-5.3.1.BRMS.jar
-DgroupId=org.drools -DartifactId=drools-decisiontables -
Dversion=5.3.1.BRMS -Dpackaging=jar
mvn install:install-file -Dfile=drools-templates-5.3.1.BRMS.jar -

<bean id="myObject" class="org.jbpm.sample.MyObject">
 <property name="session" ref="ksession" />
</bean>

public class MyObject {
 private StatefulKnowledgeSession ksession;
 public void setSession(StatefulKnowledgeSession ksession) {
 this.ksession = ksession;
 }
 public void doSomething() {
 ksession.startProcess("com.sample.HelloWorld");
 }
}

BRMS Business Process Management Guide

110

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11209-275067+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Spring&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation
https://access.redhat.com

DgroupId=org.drools -DartifactId=drools-templates -
Dversion=5.3.1.BRMS -Dpackaging=jar
mvn install:install-file -Dfile=drools-persistence-jpa-
5.3.1.BRMS.jar -DgroupId=org.drools -DartifactId=drools-persistence-
jpa -Dversion=5.3.1.BRMS -Dpackaging=jar
mvn install:install-file -Dfile=jbpm-flow-5.3.1.BRMS.jar -
DgroupId=org.jbpm -DartifactId=jbpm-flow -Dversion=5.3.1.BRMS -
Dpackaging=jar
mvn install:install-file -Dfile=jbpm-flow-builder-5.3.1.BRMS.jar -
DgroupId=org.jbpm -DartifactId=jbpm-flow-builder -
Dversion=5.3.1.BRMS -Dpackaging=jar
mvn install:install-file -Dfile=jbpm-bam-5.3.1.BRMS.jar -
DgroupId=org.jbpm -DartifactId=jbpm-bam -Dversion=5.3.1.BRMS -
Dpackaging=jar
mvn install:install-file -Dfile=jbpm-bpmn2-5.3.1.BRMS.jar -
DgroupId=org.jbpm -DartifactId=jbpm-bpmn2 -Dversion=5.3.1.BRMS -
Dpackaging=jar
mvn install:install-file -Dfile=jbpm-human-task-5.3.1.BRMS.jar -
DgroupId=org.jbpm -DartifactId=jbpm-human-task -Dversion=5.3.1.BRMS
-Dpackaging=jar
mvn install:install-file -Dfile=jbpm-persistence-jpa-5.3.1.BRMS.jar
-DgroupId=org.jbpm -DartifactId=jbpm-persistence-jpa -
Dversion=5.3.1.BRMS -Dpackaging=jar
mvn install:install-file -Dfile=jbpm-workitems-5.3.1.BRMS.jar -
DgroupId=org.jbpm -DartifactId=jbpm-workitems -Dversion=5.3.1.BRMS -
Dpackaging=jar

NOTE

The list of imported jar files above is not complete. Make sure you import all
drools, knowledge, and jbpm jar files.

A Maven pom.xml file defines project dependencies, which are automatically retrieved when building the
project with Maven. The following pom.xml file is an example that shows how to declare dependencies
for different use cases:

<?xml version="1.0" encoding="utf-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-maven-example</artifactId>
 <name>jBPM Maven Project</name>
 <version>1.0-SNAPSHOT</version>
 <brms-version>5.3.1.BRMS<brms-version>
 ...
 <dependencies>
 <!-- core dependencies -->
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>knowledge-api</artifactId>
 <version>${brms-version}</version>

CHAPTER 13. INTEGRATION

111

 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-core</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.mvel</groupId>
 <artifactId>mvel2</artifactId>
 <version>2.1.Beta6</version>
 </dependency>
 <dependency>
 <groupId>com.thoughtworks.xstream</groupId>
 <artifactId>xstream</artifactId>
 <version>1.3.1</version>
 </dependency>

 <!-- required to compile DRL -->
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-compiler</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.eclipse.jdt.core.compiler</groupId>
 <artifactId>ecj</artifactId>
 <version>3.5.1</version>
 </dependency>
 <dependency>
 <groupId>org.antlr</groupId>
 <artifactId>antlr-runtime</artifactId>
 <version>3.3</version>
 <exclusions>
 <exclusion>
 <groupId>org.antlr</groupId>
 <artifactId>stringtemplate</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

 <!-- required to compile decision tables -->
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-decisiontables</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-templates</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>net.sourceforge.jexcelapi</groupId>
 <artifactId>jxl</artifactId>
 <version>2.6.10</version>
 </dependency>

BRMS Business Process Management Guide

112

To use this as the basis for a project in Eclipse, either use M2Eclipse or use "mvn eclipse:eclipse" to
generate eclipse .project and .classpath files based on this pom.

Report a bug

 <!-- required for jBPM5 processes -->
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-flow</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-flow-builder</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-bam</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-bpmn2</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-human-task</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-persistence-jpa</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-workitems</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-persistence-jpa</artifactId>
 <version>${brms-version}</version>
 </dependency>
 <dependency>
 <groupId>com.google.protobuf</groupId>
 <artifactId>protobuf-java</artifactId>
 <version>2.4.1</version>
 </dependency>
 </dependencies>
</project>

CHAPTER 13. INTEGRATION

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Instance+Name%3A+Not+Defined%0ABuild%3A+CSProcessor+Builder+Version+1.7%0ABuild+Name%3A+11198%2C+BRMS+Business+Process+Management+Guide-5-5.3.1%0ABuild+Date%3A+11-12-2012+12%3A20%3A42&cf_build_id=11202-342288+11+Dec+2012+12%3A20+en-US+%5BLatest%5D&short_desc=Maven&product=JBoss+Enterprise+BRMS+Platform+5&component=Documentation

APPENDIX A. REVISION HISTORY

Revision 5.3.1-86.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 5.3.1-86 Tue Dec 11 2012 L Carlon
Updated documentation for the JBoss Enterprise BRMS Platform 5.3.1 release.

BRMS Business Process Management Guide

114

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION
	1.1. INTRODUCTION

	CHAPTER 2. BUSINESS PROCESS MANAGEMENT API
	2.1. THE API
	2.2. CREATE THE KNOWLEDGE BASE
	2.3. CREATE A SESSION
	2.4. EVENTS LISTENERS

	CHAPTER 3. PROCESS OVERVIEW
	3.1. PROCESS OVERVIEW
	3.2. PROCESS NODES
	3.3. PROCESS PROPERTIES
	3.4. EVENTS
	3.5. ACTIVITIES
	3.6. GATEWAYS
	3.7. DATA
	3.8. CONSTRAINTS
	3.9. TIMERS
	3.10. UPDATING PROCESSES
	3.11. PROCESS INSTANCE MIGRATION
	3.12. MULTI-THREADING
	3.12.1. Multi-threading
	3.12.2. Engine Execution

	3.13. ASYNCHRONOUS HANDLERS

	CHAPTER 4. BPMN 2.0 NOTATION
	4.1. BUSINESS PROCESS MODEL AND NOTATION (BPMN) 2.0 SPECIFICATION
	4.2. AN EXAMPLE BPMN 2.0 PROCESS

	CHAPTER 5. PROCESS DESIGNER
	5.1. PROCESS DESIGNER
	5.2. CONFIGURING THE PROCESS DESIGNER
	5.3. PROCESS CREATION AND VALIDATION
	5.4. IMPORTING EXISTING PROCESSES
	5.4.1. Importing Existing BPMN2 Processes
	5.4.2. Migrating jPDL 3.2 to BPMN2

	5.5. VIEW AND SHARE PROCESSES
	5.6. DEFINING DOMAIN-SPECIFIC SERVICE NODES
	5.7. CONNECTING TO A SERVICE REPOSITORY
	5.8. GENERATE PROCESS AND TASK FORMS

	CHAPTER 6. JBOSS DEVELOPER STUDIO
	6.1. JBOSS DEVELOPER STUDIO
	6.2. PROJECT CREATION
	6.3. PROCESS CREATION
	6.4. VALIDATION AND DEBUGGING

	CHAPTER 7. PERSISTENCE
	7.1. PERSISTENT
	7.2. RUNTIME STATE
	7.2.1. Runtime State
	7.2.2. Safe Points
	7.2.3. Binary Persistence

	7.3. CONFIGURING PERSISTENCE
	7.3.1. Configuring Persistence
	7.3.2. Adding Dependencies
	7.3.3. Configure the Engine to use Persistence
	7.3.4. Session ID
	7.3.4.1. Session ID

	7.3.5. Transactions

	7.4. HISTORY LOG
	7.4.1. History Log
	7.4.2. The Business Activity Monitoring Data Model
	7.4.3. Storing Process Events in a Database

	CHAPTER 8. BUSINESS CENTRAL CONSOLE
	8.1. BUSINESS CENTRAL CONSOLE
	8.2. BUSINESS CENTRAL CONSOLE AND BRMS INTEGRATION
	8.2.1. Business Central Console and BRMS Integration
	8.2.2. Configuring the Business Central Console
	8.2.3. User and Group Management

	8.3. LOG ON TO THE BUSINESS CENTRAL CONSOLE
	8.4. MANAGING PROCESS INSTANCES
	8.5. HUMAN TASK LISTS
	8.6. REGISTERING SERVICE HANDLERS
	8.7. ADDING NEW PROCESS AND TASK FORMS
	8.8. REST INTERFACE

	CHAPTER 9. DOMAIN-SPECIFIC PROCESSES
	9.1. DOMAIN-SPECIFIC SERVICE NODES
	9.2. DEFINE A WORK ITEM
	9.3. REGISTER THE WORK DEFINITION
	9.4. EXECUTING SERVICE NODES
	9.5. SERVICE REPOSITORY

	CHAPTER 10. HUMAN TASKS
	10.1. HUMAN TASKS
	10.2. ADDING HUMAN TASKS TO PROCESSES
	10.2.1. User Task Node
	10.2.2. Dynamic Human Task Properties
	10.2.3. User and Group Assignment
	10.2.4. Standard Human Roles
	10.2.5. Task Escalation and Notification
	10.2.6. Data Mapping
	10.2.6.1. Data Mapping
	10.2.6.2. Task Parameters
	10.2.6.3. Task Results

	10.2.7. Swimlanes
	10.2.8. Removing Tasks from the Database

	10.3. HUMAN TASK SERVICE
	10.3.1. Human Task Service
	10.3.2. Task Life Cycle
	10.3.3. Integrate a Human Task Service
	10.3.4. Interacting with the Human Task Service
	10.3.5. User and Group Assignment
	10.3.6. Starting the Human Task Service
	10.3.7. Starting the Human Task Service as a Web Application

	10.4. HUMAN TASK PERSISTENCE
	10.4.1. Human Task Persistence
	10.4.2. Task Related Entities
	10.4.3. Deadline, Escalation, and Notification Related Entities

	CHAPTER 11. TESTING AND DEBUGGING
	11.1. UNIT TESTING
	11.1.1. Unit Testing
	11.1.2. Helper Methods to Create Sessions
	11.1.3. Assertions
	11.1.4. Testing Integration with External Services
	11.1.5. Configuring Persistence

	11.2. DEBUGGING
	11.2.1. Debugging
	11.2.2. The Process Instances View
	11.2.3. The Human Task View
	11.2.4. The Audit View

	CHAPTER 12. BUSINESS ACTIVITY MONITORING
	12.1. BUSINESS ACTIVITY MONITORING

	CHAPTER 13. INTEGRATION
	13.1. INTEGRATION
	13.2. OSGI
	13.3. SPRING
	13.4. MAVEN

	APPENDIX A. REVISION HISTORY

