
Red Hat AMQ Streams 2.2

Release Notes for AMQ Streams 2.2 on
OpenShift

Highlights of what's new and what's changed with this release of AMQ Streams on
OpenShift Container Platform

Last Updated: 2023-10-19

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on
OpenShift

Highlights of what's new and what's changed with this release of AMQ Streams on OpenShift
Container Platform

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The release notes summarize the new features, enhancements, and fixes introduced in the AMQ
Streams 2.2 release.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. FEATURES
1.1. AMQ STREAMS 2.2.X (LONG TERM SUPPORT)
1.2. OPENSHIFT CONTAINER PLATFORM SUPPORT
1.3. KAFKA 3.2.3 SUPPORT
1.4. SUPPORTING THE V1BETA2 API VERSION

1.4.1. Upgrading custom resources to v1beta2
1.5. SUPPORT FOR IBM Z AND LINUXONE ARCHITECTURE

1.5.1. Requirements for IBM Z and LinuxONE
1.5.2. Unsupported on IBM Z and LinuxONE

1.6. SUPPORT FOR IBM POWER ARCHITECTURE
1.6.1. Requirements for IBM Power
1.6.2. Unsupported on IBM Power

1.7. USESTRIMZIPODSETS FEATURE GATE (TECHNOLOGY PREVIEW)
1.8. USEKRAFT FEATURE GATE (DEVELOPMENT PREVIEW)
1.9. GENERAL AVAILABILITY FOR CRUISE CONTROL
1.10. CRUISE CONTROL SCALING AND REBALANCING MODES
1.11. DEBEZIUM FOR CHANGE DATA CAPTURE INTEGRATION
1.12. SERVICE REGISTRY

CHAPTER 2. ENHANCEMENTS
2.1. KAFKA 3.2.3 ENHANCEMENTS
2.2. TRACKING CRUISE CONTROL STATUS ON THE COMMAND LINE
2.3. RENEWING USER CERTIFICATES DURING THE MAINTENANCE TIME WINDOW
2.4. RENAMING CRUISE CONTROL TOPICS
2.5. USING CRUISE CONTROL WITHOUT ZOOKEEPER
2.6. CONFIGURING RACK AWARENESS FOR MIRRORMAKER 2.0
2.7. SETTING HEAP SIZES BASED ON THE PERCENTAGE OF AVAILABLE MEMORY

CHAPTER 3. TECHNOLOGY PREVIEWS
3.1. NEW FEATURE GATES
3.2. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

CHAPTER 4. KAFKA BREAKING CHANGES
4.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

CHAPTER 5. DEPRECATED FEATURES
5.1. OPENTRACING
5.2. JAVA 8
5.3. KAFKA MIRRORMAKER 1
5.4. CRUISE CONTROL TLS SIDECAR PROPERTIES
5.5. IDENTITY REPLICATION POLICY
5.6. LISTENERSTATUS TYPE PROPERTY
5.7. CRUISE CONTROL CAPACITY CONFIGURATION

CHAPTER 6. FIXED ISSUES
6.1. FIXED ISSUES FOR AMQ STREAMS 2.2.2
6.2. FIXED ISSUES FOR AMQ STREAMS 2.2.1
6.3. FIXED ISSUES FOR AMQ STREAMS 2.2.0

CHAPTER 7. KNOWN ISSUES
7.1. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS

4

5
5
5
5
5
6
6
6
7
7
7
7
7
7
8
9
9

10

11
11
11
11
11

12
12
13

14
14
14

15
15

16
16
16
16
16
16
17
17

18
18
18
18

20
20

Table of Contents

1

. .

. .

7.2. CRUISE CONTROL CPU UTILIZATION ESTIMATION
7.3. USER OPERATOR SCALABILITY

CHAPTER 8. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS

CHAPTER 9. IMPORTANT LINKS

21
23

24

25

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. FEATURES
AMQ Streams 2.2 and subsequent patch releases introduce the features described in this section.

AMQ Streams 2.2 on OpenShift is based on Kafka 3.2.3 and Strimzi 0.29.x.

NOTE

To view all the enhancements and bugs that are resolved in this release, see the AMQ
Streams Jira project.

1.1. AMQ STREAMS 2.2.X (LONG TERM SUPPORT)

AMQ Streams 2.2.x is the Long Term Support (LTS) offering for AMQ Streams.

The latest patch release is AMQ Streams 2.2.2. The AMQ Streams product images have changed to
version 2.2.2. The supported Kafka version remains at 3.2.3.

For information on the LTS terms and dates, see the AMQ Streams LTS Support Policy .

1.2. OPENSHIFT CONTAINER PLATFORM SUPPORT

AMQ Streams 2.2 is supported on OpenShift Container Platform 4.8 to 4.11.

For more information about the supported platform versions, see the AMQ Streams Supported
Configurations.

1.3. KAFKA 3.2.3 SUPPORT

AMQ Streams now supports Apache Kafka version 3.2.3.

AMQ Streams uses Kafka 3.2.3. Only Kafka distributions built by Red Hat are supported.

You must upgrade the Cluster Operator to AMQ Streams version 2.2 before you can upgrade brokers
and client applications to Kafka 3.2.3. For upgrade instructions, see Upgrading AMQ Streams .

Refer to the Kafka 3.1.0, Kafka 3.2.0 , Kafka 3.2.1 , and Kafka 3.2.3 Release Notes for additional
information.

NOTE

Kafka 3.1.x is supported only for the purpose of upgrading to AMQ Streams 2.2.

For more information on supported versions, see the AMQ Streams Component Details .

Kafka 3.2.3 uses ZooKeeper version 3.6.3, which is the same version as Kafka 3.1.0.

1.4. SUPPORTING THE V1BETA2 API VERSION

The v1beta2 API version for all custom resources was introduced with AMQ Streams 1.7. For AMQ
Streams 1.8, v1alpha1 and v1beta1 API versions were removed from all AMQ Streams custom
resources apart from KafkaTopic and KafkaUser.

Upgrade of the custom resources to v1beta2 prepares AMQ Streams for a move to Kubernetes CRD

CHAPTER 1. FEATURES

5

https://issues.redhat.com/issues/?filter=12396432
https://access.redhat.com/articles/6975608
https://access.redhat.com/articles/6644711
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-upgrade-str
https://archive.apache.org/dist/kafka/3.1.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.2.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.2.1/RELEASE_NOTES.html
https://www.apache.org/dist/kafka/3.2.3/RELEASE_NOTES.html
https://access.redhat.com/articles/6649131

Upgrade of the custom resources to v1beta2 prepares AMQ Streams for a move to Kubernetes CRD
v1, which is required for Kubernetes v1.22.

If you are upgrading from an AMQ Streams version prior to version 1.7:

1. Upgrade to AMQ Streams 1.7

2. Convert the custom resources to v1beta2

3. Upgrade to AMQ Streams 1.8

IMPORTANT

You must upgrade your custom resources to use API version v1beta2 before upgrading
to AMQ Streams version 2.2.

See Deploying and upgrading AMQ Streams .

1.4.1. Upgrading custom resources to v1beta2

To support the upgrade of custom resources to v1beta2, AMQ Streams provides an API conversion tool,
which you can download from the AMQ Streams software downloads page .

You perform the custom resources upgrades in two steps.

Step one: Convert the format of custom resources

Using the API conversion tool, you can convert the format of your custom resources into a format
applicable to v1beta2 in one of two ways:

Converting the YAML files that describe the configuration for AMQ Streams custom resources

Converting AMQ Streams custom resources directly in the cluster

Alternatively, you can manually convert each custom resource into a format applicable to v1beta2.
Instructions for manually converting custom resources are included in the documentation.

Step two: Upgrade CRDs to v1beta2

Next, using the API conversion tool with the crd-upgrade command, you must set v1beta2 as the
storage API version in your CRDs. You cannot perform this step manually.

For full instructions, see Upgrading AMQ Streams .

1.5. SUPPORT FOR IBM Z AND LINUXONE ARCHITECTURE

AMQ Streams 2.2 is enabled to run on IBM Z and LinuxONE s390x architecture.

Support for IBM Z and LinuxONE applies to AMQ Streams running with Kafka on OpenShift Container
Platform 4.10 and later.

1.5.1. Requirements for IBM Z and LinuxONE

OpenShift Container Platform 4.10 and later

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

6

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#assembly-upgrade-resources-str

1.5.2. Unsupported on IBM Z and LinuxONE

AMQ Streams on disconnected OpenShift Container Platform environments

AMQ Streams OPA integration

1.6. SUPPORT FOR IBM POWER ARCHITECTURE

AMQ Streams 2.2 is enabled to run on IBM Power ppc64le architecture.

Support for IBM Power applies to AMQ Streams running with Kafka on OpenShift Container Platform
4.9 and later.

1.6.1. Requirements for IBM Power

OpenShift Container Platform 4.9 and later

1.6.2. Unsupported on IBM Power

AMQ Streams on disconnected OpenShift Container Platform environments

1.7. USESTRIMZIPODSETS FEATURE GATE (TECHNOLOGY PREVIEW)

The UseStrimziPodSets feature gate controls a resource for managing pods called StrimziPodSet.
When the feature gate is enabled, this resource is used instead of the StatefulSets. AMQ Streams
handles the creation and management of pods instead of OpenShift. Using StrimziPodSets instead of
StatefulSets provides more control over the functionality.

The feature gate is at an alpha level of maturity, so should be treated as a technology preview.

The preview provides an opportunity to test the StrimziPodSet resource. The feature will be enabled by
default in release 2.3.

To enable the feature gate, specify +UseStrimziPodSets as a value for the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration.

Enabling the UseStrimziPodSets feature gate

See UseStrimziPodSets feature gate and Feature gate releases.

1.8. USEKRAFT FEATURE GATE (DEVELOPMENT PREVIEW)

As a Kafka cluster administrator, you can toggle a subset of features on and off using feature gates in
the Cluster Operator deployment configuration.

Apache Kafka is in the process of phasing out the need for ZooKeeper. With the new UseKRaft feature
gate enabled, you can try deploying a Kafka cluster in KRaft (Kafka Raft metadata) mode without
ZooKeeper.

This feature gate is at an alpha level of maturity, but it should be treated as a development preview.

env:
 - name: STRIMZI_FEATURE_GATES
 value: +UseStrimziPodSets

CHAPTER 1. FEATURES

7

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#ref-operator-use-strimzi-pod-sets-feature-gate-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#ref-operator-cluster-feature-gate-releases-str

CAUTION

This feature gate is experimental, intended only for development and testing, and must not be enabled
for a production environment.

To enable the UseKRaft feature gate, specify +UseKRaft and +USeStrimziPodSets as values for the
STRIMZI_FEATURE_GATES environment variable in the Cluster Operator configuration. The
UseKRaft feature gate depends on the UseStrimziPodSets feature gate.

Enabling the UseKRaft feature gate

Currently, the KRaft mode in AMQ Streams has the following major limitations:

Moving from Kafka clusters with ZooKeeper to KRaft clusters or the other way around is not
supported.

Upgrades and downgrades of Apache Kafka versions or the AMQ Streams operator are not
supported. Users might need to delete the cluster, upgrade the operator and deploy a new
Kafka cluster.

The Entity Operator (including the User Operator and Topic operator) is not supported. The
spec.entityOperator property must be removed from the Kafka custom resource.

simple authorization is not supported.

SCRAM-SHA-512 authentication is not supported.

JBOD storage is not supported. The type: jbod storage can be used, but the JBOD array can
contain only one disk.

Liveness and readiness probes are disabled.

All Kafka nodes have both the controller and broker KRaft roles. Kafka clusters with separate
controller and broker nodes are not supported.

See UseKRaft feature gate and Feature gate releases.

1.9. GENERAL AVAILABILITY FOR CRUISE CONTROL

Cruise Control moves from Technology Preview to General Availability (GA). You can deploy Cruise
Control and use it to rebalance your Kafka cluster using optimization goals — defined constraints on
CPU, disk, network load, and more. In a balanced Kafka cluster, the workload is more evenly distributed
across the broker pods.

Cruise Control is configured and deployed as part of a Kafka resource. You can use the default
optimization goals or modify them to suit your requirements. Example YAML configuration files for
Cruise Control are provided in examples/cruise-control/.

When Cruise Control is deployed, you can create KafkaRebalance custom resources to:

Generate optimization proposals from multiple optimization goals

env:
 - name: STRIMZI_FEATURE_GATES
 value: +UseKRaft, +USeStrimziPodSets

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

8

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#ref-operator-use-kraft-feature-gate-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#ref-operator-cluster-feature-gate-releases-str
https://github.com/linkedin/cruise-control

Rebalance a Kafka cluster based on an optimization proposal

Other Cruise Control features are not currently supported, including anomaly detection, notifications,
write-your-own goals, and changing the topic replication factor.

See Cruise Control for cluster rebalancing.

1.10. CRUISE CONTROL SCALING AND REBALANCING MODES

You can now generate optimization proposals for rebalancing operations in one of the following modes:

full

add-brokers

remove-brokers

Previously, the proposal was generated in full mode, where replicas might move across all brokers in a
cluster. Now you use the add-brokers and remove-brokers modes to take into account scaling up and
scaling down operations.

Use the add-brokers mode after scaling up. You specify new brokers and the rebalancing operation
moves replicas from existing brokers to the newly added brokers. This is a faster option than rebalancing
the whole cluster.

Use the remove-brokers mode before scaling down. You specify brokers you are going to remove,
which means that any replicas on those brokers are moved off in the rebalance operation.

See Rebalancing modes, Generating optimization proposals , and Approving optimization proposals .

1.11. DEBEZIUM FOR CHANGE DATA CAPTURE INTEGRATION

Red Hat Debezium is a distributed change data capture platform. It captures row-level changes in
databases, creates change event records, and streams the records to Kafka topics. Debezium is built on
Apache Kafka. You can deploy and integrate Debezium with AMQ Streams. Following a deployment of
AMQ Streams, you deploy Debezium as a connector configuration through Kafka Connect. Debezium
passes change event records to AMQ Streams on OpenShift. Applications can read these change event
streams and access the change events in the order in which they occurred.

Debezium has multiple uses, including:

Data replication

Updating caches and search indexes

Simplifying monolithic applications

Data integration

Enabling streaming queries

Debezium provides connectors (based on Kafka Connect) for the following common databases:

Db2

MongoDB

CHAPTER 1. FEATURES

9

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#cruise-control-concepts-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#con-optimization-proposals-modes-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-generating-optimization-proposals-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-approving-optimization-proposal-str

MySQL

PostgreSQL

SQL Server

For more information on deploying Debezium with AMQ Streams, refer to the product documentation.

1.12. SERVICE REGISTRY

You can use Service Registry as a centralized store of service schemas for data streaming. For Kafka,
you can use Service Registry to store Apache Avro or JSON schema.

Service Registry provides a REST API and a Java REST client to register and query the schemas from
client applications through server-side endpoints.

Using Service Registry decouples the process of managing schemas from the configuration of client
applications. You enable an application to use a schema from the registry by specifying its URL in the
client code.

For example, the schemas to serialize and deserialize messages can be stored in the registry, which are
then referenced from the applications that use them to ensure that the messages that they send and
receive are compatible with those schemas.

Kafka client applications can push or pull their schemas from Service Registry at runtime.

For more information on using Service Registry with AMQ Streams, refer to the Service Registry
documentation.

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

10

https://access.redhat.com/documentation/en-us/red_hat_integration/
https://access.redhat.com/documentation/en-us/red_hat_integration/#category-service-registry

CHAPTER 2. ENHANCEMENTS
AMQ Streams 2.2 adds a number of enhancements.

2.1. KAFKA 3.2.3 ENHANCEMENTS

For an overview of the enhancements introduced with Kafka 3.2.0, 3.2.1, and 3.2.3, refer to the Kafka
3.2.0 Release Notes, Kafka 3.2.1 Release Notes , and Kafka 3.2.3 Release Notes .

2.2. TRACKING CRUISE CONTROL STATUS ON THE COMMAND LINE

It is now easier to check the status of optimization proposals. Instead of inspecting the resource
configuration YAML, you can check the status on the command line.

When you run a proposal, run the following command and wait for the status of the optimization
proposal to change to ProposalReady:

PendingProposal

A PendingProposal status means the rebalance operator is polling the Cruise Control API to check
if the optimization proposal is ready.

ProposalReady

A ProposalReady status means the optimization proposal is ready for review and approval.

When the status changes to ProposalReady, the optimization proposal is ready to approve.

See Generating optimization proposals and Approving optimization proposals .

2.3. RENEWING USER CERTIFICATES DURING THE MAINTENANCE
TIME WINDOW

Maintenance time windows allow you to schedule certain rolling updates of your Kafka and ZooKeeper
clusters to start at a convenient time. Maintenance windows are now supported in the User Operator. If
you have deployed the User Operator using the Cluster Operator, and not as a standalone operator,
automatic renewal of user certificates is included in the schedule.

If you are deploying the standalone User Operator, you can configure the maintenance time window
during which expiring user certificates are renewed. You specify the time window as a Cron expression
for the STRIMZI_MAINTENANCE_TIME_WINDOWS environment variable.

See Deploying the standalone User Operator .

2.4. RENAMING CRUISE CONTROL TOPICS

It’s now possible to rename the topics related to metrics that are created automatically by Cruise
Control. You can use the following Cruise Control configuration properties to make the name change.

Example Cruise Control topic renaming

oc get kafkarebalance -o wide -w -n <namespace>

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka

CHAPTER 2. ENHANCEMENTS

11

https://archive.apache.org/dist/kafka/3.2.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.2.1/RELEASE_NOTES.html
https://www.apache.org/dist/kafka/3.2.3/RELEASE_NOTES.html
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-generating-optimization-proposals-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-approving-optimization-proposal-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#deploying-the-user-operator-standalone-str

If you change the names of the topics in an existing deployment, you need to remove the topics with the
old names manually.

See Configuring and deploying Cruise Control with Kafka .

2.5. USING CRUISE CONTROL WITHOUT ZOOKEEPER

Cruise Control now runs without ZooKeeper, using Kafka APIs instead. The TLS sidecar that was used
for secure communication with ZooKeeper has been removed.

The TLS sidecar configuration for Cruise Control in the Kafka resource is no longer required. For this
reason, the .spec.cruiseControl.tlsSidecar and .spec.cruiseControl.template.tlsSidecar properties
are now deprecated.

See Configuring and deploying Cruise Control with Kafka .

2.6. CONFIGURING RACK AWARENESS FOR MIRRORMAKER 2.0

You can now enable rack awareness in your MirrorMaker 2.0 resource configuration. This is a
specialized option intended for a deployment within the same location, not across regions. You can use
this option if you want connectors to consume from the closest replica rather than the leader replica.

A topologyKey in the rack configuration must match a node label containing the rack ID. In the
following example, the standard topology.kubernetes.io/zone label is specified.

Rack configuration for MirrorMaker 2.0

To consume from the closest replica, you must also enable the RackAwareReplicaSelector in the Kafka
broker configuration.

metadata:
 name: my-cluster
spec:
 # ...
 cruiseControl:
 # ...
 config: 1
 # ...
 metric.reporter.topic: cruise-control-metrics-reporter-topic-name
 partition.metric.sample.store.topic: cruise-control-partitions-metrics-name
 broker.metric.sample.store.topic: cruise-control-broker-metrics
 # ...
...

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaMirrorMaker2
metadata:
 name: my-mirror-maker2
spec:
 version: 3.2.3
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

12

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-configuring-deploying-cruise-control-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-configuring-deploying-cruise-control-str
https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Example rack configuration with enabled replica-aware selector

See Configuring Kafka MirrorMaker 2.0 and Rack schema reference.

2.7. SETTING HEAP SIZES BASED ON THE PERCENTAGE OF
AVAILABLE MEMORY

If you don’t specify heap sizes in your configuration, the Cluster Operator imposes default heap sizes
automatically. The Cluster Operator sets default maximum and minimum heap values based on a
percentage of the memory resource configuration. The available memory allocated by default is now
set at the levels shown in the following table.

Table 2.1. Default heap settings for components

Component Percent of available
memory allocated to
the heap

Maximum limit

Kafka 50% 5 GB

ZooKeeper 75% 2 GB

Kafka Connect 75% None

MirrorMaker 2.0 75% None

MirrorMaker 75% None

Cruise Control 75% None

Kafka Bridge 50% 31 Gi

See jvmOptions

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 rack:
 topologyKey: topology.kubernetes.io/zone
 config:
 # ...
 replica.selector.class: org.apache.kafka.common.replica.RackAwareReplicaSelector
 # ...

CHAPTER 2. ENHANCEMENTS

13

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-mirrormaker-replication-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#type-Rack-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#con-common-configuration-jvm-reference

CHAPTER 3. TECHNOLOGY PREVIEWS

IMPORTANT

Technology Preview features are not supported with Red Hat production service-level
agreements (SLAs) and might not be functionally complete; therefore, Red Hat does not
recommend implementing any Technology Preview features in production environments.
This Technology Preview feature provides early access to upcoming product innovations,
enabling you to test functionality and provide feedback during the development process.
For more information about support scope, see Technology Preview Features Support
Scope.

3.1. NEW FEATURE GATES

Previews of the UseKRaft and UseStrimziPodSets feature gates are now available.

See Chapter 1, Features.

3.2. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

Use the Kafka Static Quota plugin to set throughput and storage limits on brokers in your Kafka cluster.
You enable the plugin and set limits by configuring the Kafka resource. You can set a byte-rate
threshold and storage quotas to put limits on the clients interacting with your brokers.

Example Kafka Static Quota plugin configuration

See Setting limits on brokers using the Kafka Static Quota plugin .

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 config:
 client.quota.callback.class: io.strimzi.kafka.quotas.StaticQuotaCallback
 client.quota.callback.static.produce: 1000000
 client.quota.callback.static.fetch: 1000000
 client.quota.callback.static.storage.soft: 400000000000
 client.quota.callback.static.storage.hard: 500000000000
 client.quota.callback.static.storage.check-interval: 5

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

14

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-setting-broker-limits-str

CHAPTER 4. KAFKA BREAKING CHANGES
This section describes any changes to Kafka that required a corresponding change to AMQ Streams to
continue to work.

4.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

Kafka no longer includes the example file connectors FileStreamSourceConnector and
FileStreamSinkConnector in its CLASSPATH and plugin.path by default. AMQ Streams has been
updated so that you can still use these example connectors. The examples now have to be added to the
plugin path like any connector.

Two example connector configuration files are provided:

examples/connect/kafka-connect-build.yaml provides a Kafka Connect build configuration,
which you can deploy to build a new Kafka Connect image with the file connectors.

examples/connect/source-connector.yaml provides the configuration required to deploy the
file connectors as KafkaConnector resources.

See Deploying example KafkaConnector resources and Extending Kafka Connect with connector
plugins.

CHAPTER 4. KAFKA BREAKING CHANGES

15

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#proc-deploying-kafkaconnector-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/deploying_and_upgrading_amq_streams_on_openshift/index#using-kafka-connect-with-plug-ins-str

CHAPTER 5. DEPRECATED FEATURES
The features deprecated in this release, and that were supported in previous releases of AMQ Streams,
are outlined below.

5.1. OPENTRACING

Support for OpenTracing is deprecated.

The Jaeger clients are now retired and the OpenTracing project archived. As such, we cannot guarantee
their support for future Kafka versions. We are introducing a new tracing implementation based on the
OpenTelemetry project.

5.2. JAVA 8

Support for Java 8 was deprecated in Kafka 3.0.0 and AMQ Streams 2.0. Java 8 will be unsupported for
all AMQ Streams components, including clients, in the future.

AMQ Streams supports Java 11. Use Java 11 when developing new applications. Plan to migrate any
applications that currently use Java 8 to Java 11.

5.3. KAFKA MIRRORMAKER 1

Kafka MirrorMaker replicates data between two or more active Kafka clusters, within or across data
centers. Kafka MirrorMaker 1 is deprecated for Kafka 3.0.0 and will be removed in Kafka 4.0.0.
MirrorMaker 2.0 will be the only version available. MirrorMaker 2.0 is based on the Kafka Connect
framework, connectors managing the transfer of data between clusters.

As a consequence, the AMQ Streams KafkaMirrorMaker custom resource which is used to deploy Kafka
MirrorMaker 1 has been deprecated. The KafkaMirrorMaker resource will be removed from AMQ
Streams when Kafka 4.0.0 is adopted.

If you are using MirrorMaker 1 (referred to as just MirrorMaker in the AMQ Streams documentation), use
the KafkaMirrorMaker2 custom resource with the IdentityReplicationPolicy. MirrorMaker 2.0 renames
topics replicated to a target cluster. IdentityReplicationPolicy configuration overrides the automatic
renaming. Use it to produce the same active/passive unidirectional replication as MirrorMaker 1.

See Kafka MirrorMaker 2.0 cluster configuration .

5.4. CRUISE CONTROL TLS SIDECAR PROPERTIES

For this release, Cruise Control TLS sidecar has been removed . As a result, the
.spec.cruiseControl.tlsSidecar and .spec.cruiseControl.template.tlsSidecar properties are now
deprecated. The properties are ignored and will be removed in the future.

5.5. IDENTITY REPLICATION POLICY

Identity replication policy is used with MirrorMaker 2.0 to override the automatic renaming of remote
topics. Instead of prepending the name with the name of the source cluster, the topic retains its original
name. This optional setting is useful for active/passive backups and data migration.

The AMQ Streams Identity Replication Policy class
(io.strimzi.kafka.connect.mirror.IdentityReplicationPolicy) is now deprecated and will be removed in

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

16

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#assembly-mirrormaker-str

the future. You can update to use Kafka’s own Identity Replication Policy (class
org.apache.kafka.connect.mirror.IdentityReplicationPolicy).

See Kafka MirrorMaker 2.0 cluster configuration .

5.6. LISTENERSTATUS TYPE PROPERTY

The type property of ListenerStatus has been deprecated and will be removed in the future.
ListenerStatus is used to specify the addresses of internal and external listeners. Instead of using the
type, the addresses are now specified by name.

See ListenerStatus schema reference.

5.7. CRUISE CONTROL CAPACITY CONFIGURATION

The disk and cpuUtilization capacity configuration properties have been deprecated, are ignored, and
will be removed in the future. The properties were used in setting capacity limits in optimization
proposals to determine if resource-based optimization goals are being broken. Disk and CPU capacity
limits are now automatically generated by AMQ Streams.

See Cruise Control configuration.

CHAPTER 5. DEPRECATED FEATURES

17

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#assembly-mirrormaker-str
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#type-ListenerStatus-reference
https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#ref-cruise-control-configuration-str

CHAPTER 6. FIXED ISSUES
The following sections list the issues fixed in AMQ Streams 2.2.x. Red Hat recommends that you
upgrade to the latest patch release.

For details of the issues fixed in Kafka 3.2.0, 3.2.1, and 3.2.3, refer to the Kafka 3.2.0 Release Notes ,
Kafka 3.2.1 Release Notes , and Kafka 3.2.3 Release Notes .

6.1. FIXED ISSUES FOR AMQ STREAMS 2.2.2

The AMQ Streams 2.2.2 patch release (Long Term Support) is now available.

HTTP/2 DoS vulnerability (CVE-2023-44487)

The release addresses CVE-2023-44487, a critical Denial of Service (DoS) vulnerability in the HTTP/2
protocol. The vulnerability stems from mishandling multiplexed streams, allowing a malicious client to
repeatedly request new streams and promptly cancel them using an RST_STREAM frame. By doing so,
the attacker forces the server to expend resources setting up and tearing down streams without
reaching the server-side limit for active streams per connection. For more information on this
vulnerability, see the CVE-2023-44487 page for a description.

For additional details about the issues resolved in AMQ Streams 2.2.2, see AMQ Streams 2.2.x Resolved
Issues.

6.2. FIXED ISSUES FOR AMQ STREAMS 2.2.1

For additional details about the issues resolved in AMQ Streams 2.2.1, see AMQ Streams 2.2.x Resolved
Issues.

6.3. FIXED ISSUES FOR AMQ STREAMS 2.2.0

Table 6.1. Fixed issues

Issue Number Description

ENTMQST-3757 [KAFKA] MirrorMaker 2.0 negative lag

ENTMQST-3762 "VertxException: Thread blocked" during Topic Operator startup

ENTMQST-3775 Bridge should not use slf4j-api and log4j-api at the same time

ENTMQST-3862 Improve logging in KafkaRoller

ENTMQST-3867 Fix non-cascading deletion of the StrimziPodSet resources

ENTMQST-3897 Reconciliation failures for KafkaConnector resources are not counted in operator
metrics

ENTMQST-3918 Rolling update force-rolls pods during cluster startup

ENTMQST-3955 Add support for parsing storage in millibyte units

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

18

https://archive.apache.org/dist/kafka/3.2.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/3.2.1/RELEASE_NOTES.html
https://www.apache.org/dist/kafka/3.2.3/RELEASE_NOTES.html
https://access.redhat.com/security/cve/CVE-2023-44487
https://access.redhat.com/articles/7001384
https://access.redhat.com/articles/7001384
https://issues.redhat.com/browse/ENTMQST-3757
https://issues.redhat.com/browse/ENTMQST-3762
https://issues.redhat.com/browse/ENTMQST-3775
https://issues.redhat.com/browse/ENTMQST-3862
https://issues.redhat.com/browse/ENTMQST-3867
https://issues.redhat.com/browse/ENTMQST-3897
https://issues.redhat.com/browse/ENTMQST-3918
https://issues.redhat.com/browse/ENTMQST-3955

ENTMQST-3956 Fail reconciliation when invalid storage unit is used

ENTMQST-3958 Avoid unnecessary rolling updates of the Cruise Control deployment

ENTMQST-3972 Missing annotation ANNO_STRIMZI_IO_CLUSTER_CA_CERT_GENERATION on pods
cause errors in CO log during Kafka reconciliations

ENTMQST-3997 Kafka Connect Build should fail when curl download fails

ENTMQST-4017 Errors on KafkaRebalance custom resource not logged properly

ENTMQST-4071 Handle FIPS mode in the AMQ Streams Drain cleaner

ENTMQST-4264 [KAFKA] Unauthenticated clients may cause OutOfMemoryError on brokers

Issue Number Description

Table 6.2. Fixed common vulnerabilities and exposures (CVEs)

Issue Number Description

ENTMQST-3917 CVE-2020-36518 jackson-databind: denial of service via a large depth of nested
objects

ENTMQST-4049 CVE-2022-24823 netty: world readable temporary file containing sensitive data

ENTMQST-4050 CVE-2022-25647 com.google.code.gson-gson: Deserialization of Untrusted Data in
com.google.code.gson-gson

CHAPTER 6. FIXED ISSUES

19

https://issues.redhat.com/browse/ENTMQST-3956
https://issues.redhat.com/browse/ENTMQST-3958
https://issues.redhat.com/browse/ENTMQST-3972
https://issues.redhat.com/browse/ENTMQST-3997
https://issues.redhat.com/browse/ENTMQST-4017
https://issues.redhat.com/browse/ENTMQST-4071
https://issues.redhat.com/browse/ENTMQST-4264
https://issues.redhat.com/browse/ENTMQST-3917
https://issues.redhat.com/browse/ENTMQST-4049
https://issues.redhat.com/browse/ENTMQST-4050

CHAPTER 7. KNOWN ISSUES
This section lists the known issues for AMQ Streams 2.2 on OpenShift.

7.1. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS

The AMQ Streams Cluster Operator does not start on Internet Protocol version 6 (IPv6) clusters.

Workaround

There are two workarounds for this issue.

Workaround one: Set the KUBERNETES_MASTER environment variable

1. Display the address of the Kubernetes master node of your OpenShift Container Platform
cluster:

Copy the address of the master node.

2. List all Operator subscriptions:

3. Edit the Subscription resource for AMQ Streams:

4. In spec.config.env, add the KUBERNETES_MASTER environment variable, set to the address
of the Kubernetes master node. For example:

5. Save and exit the editor.

6. Check that the Subscription was updated:

oc cluster-info
Kubernetes master is running at <master_address>
...

oc get subs -n <operator_namespace>

oc edit sub amq-streams -n <operator_namespace>

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: amq-streams
 namespace: <operator_namespace>
spec:
 channel: amq-streams-1.8.x
 installPlanApproval: Automatic
 name: amq-streams
 source: mirror-amq-streams
 sourceNamespace: openshift-marketplace
 config:
 env:
 - name: KUBERNETES_MASTER
 value: MASTER-ADDRESS

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

20

7. Check that the Cluster Operator Deployment was updated to use the new environment
variable:

Workaround two: Disable hostname verification

1. List all Operator subscriptions:

2. Edit the Subscription resource for AMQ Streams:

3. In spec.config.env, add the KUBERNETES_DISABLE_HOSTNAME_VERIFICATION
environment variable, set to true. For example:

4. Save and exit the editor.

5. Check that the Subscription was updated:

6. Check that the Cluster Operator Deployment was updated to use the new environment
variable:

7.2. CRUISE CONTROL CPU UTILIZATION ESTIMATION

Cruise Control for AMQ Streams has a known issue that relates to the calculation of CPU utilization
estimation. CPU utilization is calculated as a percentage of the defined capacity of a broker pod. The
issue occurs when running Kafka brokers across nodes with varying CPU cores. For example, node1

oc get sub amq-streams -n <operator_namespace>

oc get deployment <cluster_operator_deployment_name>

oc get subs -n <operator_namespace>

oc edit sub amq-streams -n <operator_namespace>

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: amq-streams
 namespace: <operator_namespace>
spec:
 channel: amq-streams-1.8.x
 installPlanApproval: Automatic
 name: amq-streams
 source: mirror-amq-streams
 sourceNamespace: openshift-marketplace
 config:
 env:
 - name: KUBERNETES_DISABLE_HOSTNAME_VERIFICATION
 value: "true"

oc get sub amq-streams -n <operator_namespace>

oc get deployment <cluster_operator_deployment_name>

CHAPTER 7. KNOWN ISSUES

21

might have 2 CPU cores and node2 might have 4 CPU cores. In this situation, Cruise Control can
underestimate and overestimate CPU load of brokers The issue can prevent cluster rebalances when
the pod is under heavy load.

Workaround

There are two workarounds for this issue.

Workaround one: Equal CPU requests and limits

You can set CPU requests equal to CPU limits in Kafka.spec.kafka.resources. That way, all CPU
resources are reserved upfront and are always available. This configuration allows Cruise Control to
properly evaluate the CPU utilization when preparing the rebalance proposals based on CPU goals.

Workaround two: Exclude CPU goals

You can exclude CPU goals from the hard and default goals specified in the Cruise Control
configuration.

Example Cruise Control configuration without CPU goals

apiVersion: kafka.strimzi.io/v1beta2
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}
 cruiseControl:
 brokerCapacity:
 inboundNetwork: 10000KB/s
 outboundNetwork: 10000KB/s
 config:
 hard.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.MinTopicLeadersPerBrokerGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
 default.goals: >
 com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.MinTopicLeadersPerBrokerGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.PotentialNwOutGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskUsageDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundUsageDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal,

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

22

For more information, see Insufficient CPU capacity.

7.3. USER OPERATOR SCALABILITY

The User Operator can timeout when creating multiple users at the same time. Reconciliation can take
too long.

Workaround

If you encounter this issue, reduce the number of users you are creating at the same time. And wait until
they are ready before creating more users.

 com.linkedin.kafka.cruisecontrol.analyzer.goals.TopicReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderReplicaDistributionGoal,
 com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderBytesInDistributionGoal

CHAPTER 7. KNOWN ISSUES

23

https://access.redhat.com/documentation/en-us/red_hat_amq_streams/2.2/html-single/configuring_amq_streams_on_openshift/index#proc-generating-optimization-proposals-str

CHAPTER 8. SUPPORTED INTEGRATION WITH RED HAT
PRODUCTS

AMQ Streams 2.2 supports integration with the following Red Hat products.

Red Hat Single Sign-On

Provides OAuth 2.0 authentication and OAuth 2.0 authorization.

Red Hat 3scale API Management

Secures the Kafka Bridge and provides additional API management features.

Red Hat Debezium

Monitors databases and creates event streams.

Red Hat Service Registry

Provides a centralized store of service schemas for data streaming.

For information on the functionality these products can introduce to your AMQ Streams deployment,
refer to the product documentation.

Additional resources

Red Hat Single Sign-On Supported Configurations

Red Hat 3scale API Management Supported Configurations

Red Hat Debezium Supported Configurations

Red Hat Service Registry Supported Configurations

Red Hat AMQ Streams 2.2 Release Notes for AMQ Streams 2.2 on OpenShift

24

https://access.redhat.com/articles/2342861
https://access.redhat.com/articles/2798521
https://access.redhat.com/articles/4938181
https://access.redhat.com/articles/5208571

CHAPTER 9. IMPORTANT LINKS
AMQ Streams Supported Configurations

AMQ Streams Component Details

Revised on 2023-10-19 10:41:58 UTC

CHAPTER 9. IMPORTANT LINKS

25

https://access.redhat.com/articles/6644711
https://access.redhat.com/articles/6649131

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. FEATURES
	1.1. AMQ STREAMS 2.2.X (LONG TERM SUPPORT)
	1.2. OPENSHIFT CONTAINER PLATFORM SUPPORT
	1.3. KAFKA 3.2.3 SUPPORT
	1.4. SUPPORTING THE V1BETA2 API VERSION
	1.4.1. Upgrading custom resources to v1beta2

	1.5. SUPPORT FOR IBM Z AND LINUXONE ARCHITECTURE
	1.5.1. Requirements for IBM Z and LinuxONE
	1.5.2. Unsupported on IBM Z and LinuxONE

	1.6. SUPPORT FOR IBM POWER ARCHITECTURE
	1.6.1. Requirements for IBM Power
	1.6.2. Unsupported on IBM Power

	1.7. USESTRIMZIPODSETS FEATURE GATE (TECHNOLOGY PREVIEW)
	1.8. USEKRAFT FEATURE GATE (DEVELOPMENT PREVIEW)
	1.9. GENERAL AVAILABILITY FOR CRUISE CONTROL
	1.10. CRUISE CONTROL SCALING AND REBALANCING MODES
	1.11. DEBEZIUM FOR CHANGE DATA CAPTURE INTEGRATION
	1.12. SERVICE REGISTRY

	CHAPTER 2. ENHANCEMENTS
	2.1. KAFKA 3.2.3 ENHANCEMENTS
	2.2. TRACKING CRUISE CONTROL STATUS ON THE COMMAND LINE
	2.3. RENEWING USER CERTIFICATES DURING THE MAINTENANCE TIME WINDOW
	2.4. RENAMING CRUISE CONTROL TOPICS
	2.5. USING CRUISE CONTROL WITHOUT ZOOKEEPER
	2.6. CONFIGURING RACK AWARENESS FOR MIRRORMAKER 2.0
	2.7. SETTING HEAP SIZES BASED ON THE PERCENTAGE OF AVAILABLE MEMORY

	CHAPTER 3. TECHNOLOGY PREVIEWS
	3.1. NEW FEATURE GATES
	3.2. KAFKA STATIC QUOTA PLUGIN CONFIGURATION

	CHAPTER 4. KAFKA BREAKING CHANGES
	4.1. USING KAFKA’S EXAMPLE FILE CONNECTORS

	CHAPTER 5. DEPRECATED FEATURES
	5.1. OPENTRACING
	5.2. JAVA 8
	5.3. KAFKA MIRRORMAKER 1
	5.4. CRUISE CONTROL TLS SIDECAR PROPERTIES
	5.5. IDENTITY REPLICATION POLICY
	5.6. LISTENERSTATUS TYPE PROPERTY
	5.7. CRUISE CONTROL CAPACITY CONFIGURATION

	CHAPTER 6. FIXED ISSUES
	6.1. FIXED ISSUES FOR AMQ STREAMS 2.2.2
	6.2. FIXED ISSUES FOR AMQ STREAMS 2.2.1
	6.3. FIXED ISSUES FOR AMQ STREAMS 2.2.0

	CHAPTER 7. KNOWN ISSUES
	7.1. AMQ STREAMS CLUSTER OPERATOR ON IPV6 CLUSTERS
	7.2. CRUISE CONTROL CPU UTILIZATION ESTIMATION
	7.3. USER OPERATOR SCALABILITY

	CHAPTER 8. SUPPORTED INTEGRATION WITH RED HAT PRODUCTS
	CHAPTER 9. IMPORTANT LINKS

