
Red Hat Single Sign-On 7.6

Red Hat Single Sign-On for OpenShift

For Use with Red Hat Single Sign-On 7.6

Last Updated: 2024-04-17

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

For Use with Red Hat Single Sign-On 7.6

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of basic information and instructions to get started with Red Hat Single Sign-On
7.6 for OpenShift

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO RED HAT SINGLE SIGN-ON FOR OPENSHIFT
1.1. WHAT IS RED HAT SINGLE SIGN-ON?
1.2. COMPARISON: RED HAT SINGLE SIGN-ON FOR OPENSHIFT IMAGE VERSUS RED HAT SINGLE SIGN-ON

1.3. TEMPLATES FOR USE WITH THIS SOFTWARE
1.3.1. Passthrough templates
1.3.2. Re-encryption templates

1.3.2.1. OpenShift 3.x
1.3.2.2. OpenShift 4.x

1.3.3. Other templates
1.4. VERSION COMPATIBILITY AND SUPPORT

CHAPTER 2. CONFIGURING RED HAT SINGLE SIGN-ON FOR OPENSHIFT
2.1. USING THE RED HAT SINGLE SIGN-ON FOR OPENSHIFT IMAGE STREAMS AND APPLICATION
TEMPLATES
2.2. DEPLOYING THE RED HAT SINGLE SIGN-ON IMAGE

2.2.1. Preparing for the deployment
2.2.2. Deploying the Red Hat Single Sign-On Image using the application template

2.2.2.1. Deploying the Template using OpenShift CLI
2.2.2.2. Deploying the Template using the OpenShift 3.x Web Console
2.2.2.3. Deploying the Template using the OpenShift 4.x Web Console

2.3. ACCESSING THE ADMINISTRATOR CONSOLE OF THE RED HAT SINGLE SIGN-ON POD

CHAPTER 3. PERFORMING ADVANCED PROCEDURES
3.1. DEPLOYING PASSTHROUGH TLS TERMINATION TEMPLATES

3.1.1. Preparing the deployment
3.1.2. Creating HTTPS and JGroups Keystores, and Truststore for the Red Hat Single Sign-On Server
3.1.3. Creating secrets
3.1.4. Deploying a Passthrough TLS template using the OpenShift CLI

3.1.4.1. oc command guidelines
3.1.4.2. Sample oc command

3.2. CUSTOMIZING THE HOSTNAME FOR THE RED HAT SINGLE SIGN-ON SERVER
3.3. CONNECTING TO AN EXTERNAL DATABASE
3.4. CLUSTERING

3.4.1. Configuring a JGroups discovery mechanism
3.4.1.1. Configuring DNS_PING on a single-stack configured cluster
3.4.1.2. Configuring DNS_PING on a dual-stack configured cluster
3.4.1.3. Configuring KUBE_PING

3.5. USING CUSTOM JDBC DRIVER
3.6. CREATING THE ADMINISTRATOR ACCOUNT FOR RED HAT SINGLE SIGN-ON SERVER

3.6.1. Creating the Administrator Account using template parameters
3.6.2. Creating the Administrator Account via a remote shell session to Red Hat Single Sign-On Pod

3.7. CUSTOMIZING THE DEFAULT BEHAVIOR OF THE RED HAT SINGLE SIGN-ON IMAGE
3.8. DEPLOYMENT PROCESS
3.9. RED HAT SINGLE SIGN-ON CLIENTS

3.9.1. Automatic and manual Red Hat Single Sign-On client registration methods
3.9.1.1. Automatic Red Hat Single Sign-On client registration
3.9.1.2. Manual Red Hat Single Sign-On client registration

3.10. USING RED HAT SINGLE SIGN-ON VAULT WITH OPENSHIFT SECRETS
3.11. LIMITATIONS

4

5
5

5
5
5
6
6
6
6
7

8

8
9
9

10
10
11
11

14

15
15
15
15
17
17
17
18
19

20
21
21
21
22
22
23
25
25
26
27
28
29
29
30
31
31

33

Table of Contents

1

. .

. .

CHAPTER 4. TUTORIALS
4.1. UPDATING A DATABASE FOR A NEW RED HAT SINGLE SIGN-ON FOR OPENSHIFT IMAGE VERSION

4.1.1. PostgreSQL version upgrade and database migration
4.1.2. Automatic database migration
4.1.3. Manual database migration

4.2. MIGRATING THE RED HAT SINGLE SIGN-ON SERVER’S DATABASE ACROSS ENVIRONMENTS
4.2.1. Deploying the Red Hat Single Sign-On PostgreSQL application template
4.2.2. (Optional) Creating additional realms and users to be exported
4.2.3. Export the Red Hat Single Sign-On database as a JSON file on the OpenShift pod
4.2.4. Retrieve and import the exported JSON file

4.3. CONFIGURING OPENSHIFT 3.11 TO USE RED HAT SINGLE SIGN-ON FOR AUTHENTICATION
4.3.1. Configuring Red Hat Single Sign-On Credentials
4.3.2. Configuring OpenShift Master for Red Hat Single Sign-On authentication
4.3.3. Logging in to OpenShift

4.4. CREATING AN OPENSHIFT APPLICATION FROM MAVEN BINARIES AND SECURING IT USING RED HAT
SINGLE SIGN-ON

4.4.1. Deploy Binary Build of EAP 6.4 / 7.1 JSP Service Invocation Application and Secure it Using Red Hat
Single Sign-On

4.4.1.1. Create Red Hat Single Sign-On Realm, Roles, and User for the EAP 6.4 / 7.1 JSP Application
4.4.1.2. Assign the user role to the realm management user
4.4.1.3. Prepare Red Hat Single Sign-On Authentication for OpenShift Deployment of the EAP 6.4 / 7.1 JSP
Application
4.4.1.4. Deploy binary build of the EAP 6.4 / 7.1 JSP application
4.4.1.5. Access the application

4.5. AUTOMATICALLY REGISTERING AN EAP APPLICATION IN RED HAT SINGLE SIGN-ON WITH AN
OPENID-CONNECT CLIENT

4.5.1. Preparing Red Hat Single Sign-On authentication for OpenShift deployment
4.5.2. Preparing the Red Hat Single Sign-On credentials
4.5.3. Deploy the Red Hat Single Sign-On-enabled JBoss EAP image
4.5.4. Log in to the JBoss EAP Server using Red Hat Single Sign-On

4.6. MANUALLY REGISTERING EAP APPLICATION IN RED HAT SINGLE SIGN-ON WITH SAML CLIENT
4.6.1. Preparing the Red Hat Single Sign-On credentials
4.6.2. Preparing Red Hat Single Sign-On authentication for OpenShift deployment
4.6.3. Modifying the secure-saml-deployments file
4.6.4. Configuring SAML Client Registration in the application web.xml
4.6.5. Deploying the application

CHAPTER 5. REFERENCE
5.1. ARTIFACT REPOSITORY MIRRORS
5.2. ENVIRONMENT VARIABLES

5.2.1. Information environment variables
5.2.2. Configuration environment variables
5.2.3. Template variables for all Red Hat Single Sign-On images
5.2.4. Template variables specific to sso76-ocp3-postgresql, sso76-ocp4-postgresql, sso76-ocp3-postgresql-
persistent, sso76-ocp4-postgresql-persistent, sso76-ocp3-x509-postgresql-persistent, and sso76-ocp4-
x509-postgresql-persistent
5.2.5. Template variables for general eap64 and eap71 S2I images
5.2.6. Template variables specific to eap64-sso-s2i and eap71-sso-s2i for automatic client registration
5.2.7. Template variables specific to eap64-sso-s2i and eap71-sso-s2i for automatic client registration with
SAML clients

5.3. EXPOSED PORTS

34
34
34
36
37
45
45
46
46
47
49
49
50
52

52

52
52
54

54
55
61

63
63
64
65
66
66
66
69
69
70
71

72
72
73
73
73
78

80
80
82

83
84

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO RED HAT SINGLE SIGN-ON
FOR OPENSHIFT

1.1. WHAT IS RED HAT SINGLE SIGN-ON?

Red Hat Single Sign-On is an integrated sign-on solution available as a Red Hat JBoss Middleware for
OpenShift containerized image. The Red Hat Single Sign-On for OpenShift image provides an
authentication server for users to centrally log in, log out, register, and manage user accounts for web
applications, mobile applications, and RESTful web services.

Red Hat Single Sign-On for OpenShift is available on the following platforms: x86_64, IBM Z, and IBM
Power Systems.

1.2. COMPARISON: RED HAT SINGLE SIGN-ON FOR OPENSHIFT
IMAGE VERSUS RED HAT SINGLE SIGN-ON

The Red Hat Single Sign-On for OpenShift image version number 7.6.8 is based on Red Hat Single
Sign-On 7.6.8. There are some important differences in functionality between the Red Hat Single Sign-
On for OpenShift image and Red Hat Single Sign-On that should be considered:

The Red Hat Single Sign-On for OpenShift image includes all of the functionality of Red Hat Single
Sign-On. In addition, the Red Hat Single Sign-On-enabled JBoss EAP image automatically handles
OpenID Connect or SAML client registration and configuration for .war deployments that contain
<auth-method>KEYCLOAK</auth-method> or <auth-method>KEYCLOAK-SAML</auth-method>
in their respective web.xml files.

1.3. TEMPLATES FOR USE WITH THIS SOFTWARE

Red Hat offers multiple OpenShift application templates using the Red Hat Single Sign-On for
OpenShift image version number 7.6.8. These templates define the resources needed to develop Red
Hat Single Sign-On 7.6.8 server based deployment. The templates can mainly be split into two
categories: passthrough templates and reencryption templates. Some other miscellaneous templates
also exist.

1.3.1. Passthrough templates

These templates require that HTTPS, JGroups keystores, and a truststore for the Red Hat Single Sign-
On server exist beforehand. They secure the TLS communication using passthrough TLS termination.

sso76-ocp3-https, sso76-ocp4-https: Red Hat Single Sign-On 7.6.8 backed by internal H2
database on the same pod.

sso76-ocp3-postgresql, sso76-ocp4-postgresql: Red Hat Single Sign-On 7.6.8 backed by
ephemeral PostgreSQL database on a separate pod.

sso76-ocp3-postgresql-persistent, sso76-ocp4-postgresql-persistent: Red Hat Single Sign-
On 7.6.8 backed by persistent PostgreSQL database on a separate pod.

NOTE

Templates for using Red Hat Single Sign-On with MySQL / MariaDB databases have
been removed and are not available since Red Hat Single Sign-On version 7.4.

CHAPTER 1. INTRODUCTION TO RED HAT SINGLE SIGN-ON FOR OPENSHIFT

5

1.3.2. Re-encryption templates

Separate re-encryption templates exist for OpenShift 3.x and for OpenShift 4.x

1.3.2.1. OpenShift 3.x

The OpenShift 3.x templates use the service-ca.crt CA bundle file as part of the Service Serving
Certificate Secrets to generate TLS certificates and keys for serving secure content. The Red Hat
Single Sign-On truststore is also created automatically, containing the
/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt CA certificate file, which is used to sign
the certificate for the HTTPS keystore.

The truststore for the Red Hat Single Sign-On server is pre-populated with the all known, trusted CA
certificate files found in the Java system path. These templates secure the TLS communication using
re-encryption TLS termination. The JGroups cluster traffic is authenticated using the AUTH protocol
and encrypted using the ASYM_ENCRYPT protocol.

sso76-ocp3-x509-https: Red Hat Single Sign-On 7.6.8 with auto-generated HTTPS keystore
and Red Hat Single Sign-On truststore, backed by internal H2 database.

sso76-ocp3-x509-postgresql-persistent: Red Hat Single Sign-On 7.6.8 with auto-generated
HTTPS keystore and Red Hat Single Sign-On truststore, backed by persistent PostgreSQL
database.

1.3.2.2. OpenShift 4.x

The OpenShift 4.x templates use the internal service serving x509 certificate secrets to automatically
create the HTTPS keystore used for serving secure content. These templates use a new service CA
bundle that contains the service.beta.openshift.io/inject-cabundle=true ConfigMap definition.

The truststore for the Red Hat Single Sign-On server is pre-populated with the all known, trusted CA
certificate files found in the Java system path. These templates secure the TLS communication using
re-encryption TLS termination. The JGroups cluster traffic is authenticated using the AUTH protocol
and encrypted using the ASYM_ENCRYPT protocol.

sso76-ocp4-x509-https: Red Hat Single Sign-On 7.6.8 with auto-generated HTTPS keystore
and Red Hat Single Sign-On truststore, backed by internal H2 database. The ASYM_ENCRYPT
JGroups protocol is used for encryption of cluster traffic.

sso76-ocp4-x509-postgresql-persistent: Red Hat Single Sign-On 7.6.8 with auto-generated
HTTPS keystore and Red Hat Single Sign-On truststore, backed by persistent PostgreSQL
database. The ASYM_ENCRYPT JGroups protocol is used for encryption of cluster traffic.

1.3.3. Other templates

Other templates that integrate with Red Hat Single Sign-On are also available:

eap64-sso-s2i: Red Hat Single Sign-On-enabled Red Hat JBoss Enterprise Application
Platform 6.4.

eap71-sso-s2i: Red Hat Single Sign-On-enabled Red Hat JBoss Enterprise Application Platform
7.1.

datavirt63-secure-s2i: Red Hat Single Sign-On-enabled Red Hat JBoss Data Virtualization 6.3.

These templates contain environment variables specific to Red Hat Single Sign-On that enable

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

6

https://docs.openshift.com/container-platform/3.11/dev_guide/secrets.html#service-serving-certificate-secrets
https://docs.openshift.com/container-platform/latest/cicd/builds/creating-build-inputs.html#builds-service-serving-certificate-secrets_creating-build-inputs
https://github.com/openshift/openshift-docs/blob/enterprise-4.1/release_notes/ocp-4-1-release-notes.adoc#service-ca-bundle-changes
https://docs.openshift.com/container-platform/4.1/authentication/certificates/service-serving-certificate.html#add-service-certificate-configmap_service-serving-certificate

These templates contain environment variables specific to Red Hat Single Sign-On that enable
automatic Red Hat Single Sign-On client registration when deployed.

Additional resources

Automatic and Manual Red Hat Single Sign-On Client Registration Methods

Passthrough TLS termination, OpenShift 3.11

Re-encryption TLS termination, OpenShift 3.11

Secured Routes, OpenShift 4.11

1.4. VERSION COMPATIBILITY AND SUPPORT

For details about OpenShift image version compatibility, see the Supported Configurations page.

NOTE

The Red Hat Single Sign-On for OpenShift image versions between 7.0 and 7.5 are
deprecated and they will no longer receive updates of image and application templates.

To deploy new applications, use the 7.6 version of the Red Hat Single Sign-On for OpenShift image
along with the application templates specific to this image version.

CHAPTER 1. INTRODUCTION TO RED HAT SINGLE SIGN-ON FOR OPENSHIFT

7

https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#passthrough-termination
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#re-encryption-termination
https://docs.openshift.com/container-platform/4.11/networking/routes/secured-routes.html
https://access.redhat.com/articles/2342861

CHAPTER 2. CONFIGURING RED HAT SINGLE SIGN-ON FOR
OPENSHIFT

2.1. USING THE RED HAT SINGLE SIGN-ON FOR OPENSHIFT IMAGE
STREAMS AND APPLICATION TEMPLATES

Red Hat JBoss Middleware for OpenShift images are pulled on demand from the secured Red Hat
Registry: registry.redhat.io, which requires authentication. To retrieve content, you will need to log into
the registry using the Red Hat account.

To consume container images from registry.redhat.io in shared environments such as OpenShift, it is
recommended for an administrator to use a Registry Service Account, also referred to as authentication
tokens, in place of an individual person’s Red Hat Customer Portal credentials.

Procedure

1. To create a Registry Service Account, navigate to the Registry Service Account Management
Application, and log in if necessary.

2. From the Registry Service Accounts page, click Create Service Account.

3. Provide a name for the Service Account, for example registry.redhat.io-sa. It will be prepended
with a fixed, random string.

a. Enter a description for the Service Account, for example Service account to consume
container images from registry.redhat.io..

b. Click Create.

4. After the Service Account was created, click the registry.redhat.io-sa link in the Account name
column of the table presented on the Registry Service Accounts page.

5. Finally, click the OpenShift Secret tab, and perform all steps listed on that page.

See the Red Hat Container Registry Authentication article for more information.

Procedure

1. Ensure that you are logged in as a cluster administrator or a user with project administrator
access to the global openshift project:

2. Choose a command based on your version of OpenShift Container Platform.

a. If you are running an OpenShift Container Platform v3 based cluster instance on (some) of
your master host(s), perform the following:

b. If you are running an OpenShift Container Platform v4 based cluster instance, log in to the
CLI as the kubeadmin user:

3. Run the following commands to update the core set of Red Hat Single Sign-On 7.6.8 resources

$ oc login -u system:admin

$ oc login -u kubeadmin -p password https://openshift.example.com:6443

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

8

https://catalog.redhat.com/
https://access.redhat.com/terms-based-registry/
https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/latest/cli_reference/openshift_cli/getting-started-cli.html#cli-logging-in_cli-developer-commands
https://docs.openshift.com/container-platform/latest/authentication/remove-kubeadmin.html#understanding-kubeadmin_removing-kubeadmin

3. Run the following commands to update the core set of Red Hat Single Sign-On 7.6.8 resources
for OpenShift in the openshift project.
If you are using an OpenShift 3.x cluster, use these commands:

If you are using an OpenShift 4.x cluster, use these commands:

4. Run the following command to install the Red Hat Single Sign-On 7.6.8 OpenShift image
streams in the openshift project:

2.2. DEPLOYING THE RED HAT SINGLE SIGN-ON IMAGE

2.2.1. Preparing for the deployment

Procedure

1. Log in to the OpenShift CLI with a user that holds the cluster:admin role.

2. Create a new project:

3. Add the view role to the default service account. This enables the service account to view all
the resources in the sso-app-demo namespace, which is necessary for managing the cluster.

$ for resource in sso76-image-stream.json \
 passthrough/ocp-3.x/sso76-ocp3-https.json \
 passthrough/ocp-3.x/sso76-ocp3-postgresql.json \
 passthrough/ocp-3.x/sso76-ocp3-postgresql-persistent.json \
 reencrypt/ocp-3.x/sso76-ocp3-x509-https.json \
 reencrypt/ocp-3.x/sso76-ocp3-x509-postgresql-persistent.json
do
 oc replace -n openshift --force -f \
 https://raw.githubusercontent.com/jboss-container-images/redhat-sso-7-openshift-
image/sso76-dev/templates/${resource}
done

$ for resource in sso76-image-stream.json \
 passthrough/ocp-4.x/sso76-ocp4-https.json \
 passthrough/ocp-4.x/sso76-ocp4-postgresql.json \
 passthrough/ocp-4.x/sso76-ocp4-postgresql-persistent.json \
 reencrypt/ocp-4.x/sso76-ocp4-x509-https.json \
 reencrypt/ocp-4.x/sso76-ocp4-x509-postgresql-persistent.json
do
 oc replace -n openshift --force -f \
 https://raw.githubusercontent.com/jboss-container-images/redhat-sso-7-openshift-
image/sso76-dev/templates/${resource}
done

$ oc -n openshift import-image rh-sso-7/sso76-openshift-rhel8:7.6 --
from=registry.redhat.io/rh-sso-7/sso76-openshift-rhel8:7.6 --confirm

$ oc new-project sso-app-demo

$ oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default

CHAPTER 2. CONFIGURING RED HAT SINGLE SIGN-ON FOR OPENSHIFT

9

https://docs.openshift.com/container-platform/latest/authentication/using-service-accounts-in-applications.html#default-service-accounts-and-roles_using-service-accounts

2.2.2. Deploying the Red Hat Single Sign-On Image using the application template

You can deploy the template using one of these interfaces:

OpenShift CLI

OpenShift 3.x web console

OpenShift 4.x web console

2.2.2.1. Deploying the Template using OpenShift CLI

Prerequisites

Perform the steps described in Using the Red Hat Single Sign-On for OpenShift Image Streams
and application templates.

Procedure

1. List the available Red Hat Single Sign-On application templates:

2. Deploy the selected one:

$ oc get templates -n openshift -o name | grep -o 'sso76.\+' | sort
sso76-ocp3-https
sso76-ocp3-postgresql
sso76-ocp3-postgresql-persistent
sso76-ocp3-x509-https
sso76-ocp3-x509-postgresql-persistent
sso76-ocp4-https
sso76-ocp4-postgresql
sso76-ocp4-postgresql-persistent
sso76-ocp4-x509-https
sso76-ocp4-x509-postgresql-persistent

$ oc new-app --template=sso76-ocp4-x509-https
--> Deploying template "openshift/sso76-ocp4-x509-https" to project sso-app-demo

 Red Hat Single Sign-On 7.6 (Ephemeral)

 An example Red Hat Single Sign-On 7 application. For more information about using this
template, see <link xlink:href="https://github.com/jboss-openshift/application-
templates">https://github.com/jboss-openshift/application-templates</link>.

 A new Red Hat Single Sign-On service has been created in your project. The admin
username/password for accessing the master realm using the Red Hat Single Sign-On
console is IACfQO8v/nR7llVSVb4Dye3TNRbXoXhRpAKTmiCRc. The HTTPS keystore used
for serving secure content, the JGroups keystore used for securing JGroups
communications, and server truststore used for securing Red Hat Single Sign-On requests
were automatically created using OpenShift's service serving x509 certificate secrets.

 * With parameters:
 * Application Name=sso
 * JGroups Cluster Password=jg0Rssom0gmHBnooDF3Ww7V4Mu5RymmB #
generated

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

10

2.2.2.2. Deploying the Template using the OpenShift 3.x Web Console

Prerequisites

Perform the steps described in Using the Red Hat Single Sign-On for OpenShift Image Streams
and application templates.

Procedure

1. Log in to the OpenShift web console and select the sso-app-demo project space.

2. Click Add to Project, then Browse Catalog to list the default image streams and templates.

3. Use the Filter by Keyword search bar to limit the list to those that match sso. You may need to
click Middleware, then Integration to show the desired application template.

4. Select an Red Hat Single Sign-On application template. This example uses Red Hat Single
Sign-On 7.6 (Ephemeral).

5. Click Next in the Information step.

6. From the Add to Project drop-down menu, select the sso-app-demo project space. Then click
Next.

7. Select Do not bind at this time radio button in the Binding step. Click Create to continue.

8. In the Results step, click the Continue to the project overview link to verify the status of the
deployment.

2.2.2.3. Deploying the Template using the OpenShift 4.x Web Console

Prerequisites

Perform the steps described in Using the Red Hat Single Sign-On for OpenShift Image Streams

 * Datasource Minimum Pool Size=
 * Datasource Maximum Pool Size=
 * Datasource Transaction Isolation=
 * ImageStream Namespace=openshift
 * Red Hat Single Sign-On Administrator Username=IACfQO8v # generated
 * Red Hat Single Sign-On Administrator
Password=nR7llVSVb4Dye3TNRbXoXhRpAKTmiCRc # generated
 * Red Hat Single Sign-On Realm=
 * Red Hat Single Sign-On Service Username=
 * Red Hat Single Sign-On Service Password=
 * Container Memory Limit=1Gi

--> Creating resources ...
 service "sso" created
 service "secure-sso" created
 service "sso-ping" created
 route "sso" created
 route "secure-sso" created
 deploymentconfig "sso" created
--> Success
 Run 'oc status' to view your app.

CHAPTER 2. CONFIGURING RED HAT SINGLE SIGN-ON FOR OPENSHIFT

11

Perform the steps described in Using the Red Hat Single Sign-On for OpenShift Image Streams
and application templates.

Procedure

1. Log in to the OpenShift web console and select the sso-app-demo project space.

2. On the left sidebar, click the Administrator tab and then click </> Developer.

3. Click From Catalog.

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

12

4. Search for sso.

5. Choose a template such as Red Hat Single Sign-On 7.6 on OpenJDK (Ephemeral).

6. Click Instantiate Template.

7. Adjust the template parameters if necessary and click Create.

8. Verify the Red Hat Single Sign-On for OpenShift image was deployed.

CHAPTER 2. CONFIGURING RED HAT SINGLE SIGN-ON FOR OPENSHIFT

13

2.3. ACCESSING THE ADMINISTRATOR CONSOLE OF THE RED HAT
SINGLE SIGN-ON POD

Procedure

1. After the template is deployed, identify the available routes.

2. Access the Red Hat Single Sign-On Admin Console.

3. Provide the login credentials for the administrator account .

$ oc get routes
NAME HOST/PORT
sso sso-sso-app-demo.openshift.example.com

https://sso-sso-app-demo.openshift.example.com/auth/admin

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

14

CHAPTER 3. PERFORMING ADVANCED PROCEDURES
This chapter describes advanced procedures, such as setting up keystores and a truststore for the Red
Hat Single Sign-On server, creating an administrator account, as well as an overview of available Red Hat
Single Sign-On client registration methods, and guidance on configuring clustering.

3.1. DEPLOYING PASSTHROUGH TLS TERMINATION TEMPLATES

You can deploy using these templates. They require HTTPS, JGroups keystores and the Red Hat Single
Sign-On server truststore to already exist, and therefore can be used to instantiate the Red Hat Single
Sign-On server pod using your custom HTTPS, JGroups keystores and Red Hat Single Sign-On server
truststore.

3.1.1. Preparing the deployment

Procedure

1. Log in to the OpenShift CLI with a user that holds the cluster:admin role.

2. Create a new project:

3. Add the view role to the default service account. This enables the service account to view all
the resources in the sso-app-demo namespace, which is necessary for managing the cluster.

3.1.2. Creating HTTPS and JGroups Keystores, and Truststore for the Red Hat
Single Sign-On Server

In this procedure, the openssl toolkit is used to generate a CA certificate to sign the HTTPS keystore,
and create a truststore for the Red Hat Single Sign-On server. The keytool, a package included with
the Java Development Kit, is then used to generate self-signed certificates for these keystores.

The Red Hat Single Sign-On application templates, using re-encryption TLS termination , do not require
or expect the HTTPS and JGroups keystores and Red Hat Single Sign-On server truststore to be
prepared beforehand.

The re-encryption templates use OpenShift’s internal Service serving certificate secrets to
automatically create the HTTPS and JGroups keystores. The Red Hat Single Sign-On server truststore
is also created automatically. It is pre-populated with the all known, trusted CA certificate files found in
the Java system path.

NOTE

If you want to provision the Red Hat Single Sign-On server using existing HTTPS /
JGroups keystores, use some of the passthrough templates instead.

Prerequisites

The Red Hat Single Sign-On application templates using passthrough TLS termination require the
following to be deployed:

$ oc new-project sso-app-demo

$ oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

15

https://docs.openshift.com/container-platform/latest/authentication/using-service-accounts-in-applications.html#default-service-accounts-and-roles_using-service-accounts

An HTTPS keystore used for encryption of https traffic,

The JGroups keystore used for encryption of JGroups communications between nodes in the
cluster, and

Red Hat Single Sign-On server truststore used for securing the Red Hat Single Sign-On
requests

NOTE

For production environments Red Hat recommends that you use your own SSL
certificate purchased from a verified Certificate Authority (CA) for SSL-encrypted
connections (HTTPS).

See the JBoss Enterprise Application Platform Security Guide for more information on
how to create a keystore with self-signed or purchased SSL certificates.

Create the HTTPS keystore:

Procedure

1. Generate a CA certificate. Pick and remember the password. Provide identical password, when
signing the certificate sign request with the CA certificate below:

2. Generate a private key for the HTTPS keystore. Provide mykeystorepass as the keystore
password:

3. Generate a certificate sign request for the HTTPS keystore. Provide mykeystorepass as the
keystore password:

4. Sign the certificate sign request with the CA certificate. Provide the same password that was
used to generate the CA certificate:

NOTE

To make the preceding command work on one line, the command includes the
process substitution (<() syntax). Be sure that your current shell environment
supports such syntax. Otherwise, you can encounter a syntax error near
unexpected token `(' message.

5. Import the CA certificate into the HTTPS keystore. Provide mykeystorepass as the keystore

$ openssl req -new -newkey rsa:4096 -x509 -keyout xpaas.key -out xpaas.crt -days 365 -subj
"/CN=xpaas-sso-demo.ca"

$ keytool -genkeypair -keyalg RSA -keysize 2048 -dname "CN=secure-sso-sso-app-
demo.openshift.example.com" -alias jboss -keystore keystore.jks

$ keytool -certreq -keyalg rsa -alias jboss -keystore keystore.jks -file sso.csr

$ openssl x509 -req -extfile <(printf "subjectAltName=DNS:secure-sso-sso-app-
demo.openshift.example.com") -CA xpaas.crt -CAkey xpaas.key -in sso.csr -out sso.crt -days
365 -CAcreateserial

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

16

https://access.redhat.com/documentation/en-us/jboss_enterprise_application_platform/6.1/html-single/security_guide/index#Generate_a_SSL_Encryption_Key_and_Certificate

5. Import the CA certificate into the HTTPS keystore. Provide mykeystorepass as the keystore
password. Reply yes to Trust this certificate? [no]: question:

6. Import the signed certificate sign request into the HTTPS keystore. Provide mykeystorepass
as the keystore password:

Generate a secure key for the JGroups keystore:

Provide password as the keystore password:

Import the CA certificate into a new Red Hat Single Sign-On server truststore:

Provide mykeystorepass as the truststore password. Reply yes to Trust this certificate? [no]:
question:

3.1.3. Creating secrets

Procedure

You create objects called secrets that OpenShift uses to hold sensitive information, such as passwords
or keystores.

1. Create the secrets for the HTTPS and JGroups keystores, and Red Hat Single Sign-On server
truststore, generated in the previous section.

2. Link these secrets to the default service account, which is used to run Red Hat Single Sign-On
pods.

Additional resources

What is a secret?

Default project service accounts and roles

3.1.4. Deploying a Passthrough TLS template using the OpenShift CLI

After you create keystores and secrets, deploy a passthrough TLS termination template by using the oc
command.

3.1.4.1. oc command guidelines

$ keytool -import -file xpaas.crt -alias xpaas.ca -keystore keystore.jks

$ keytool -import -file sso.crt -alias jboss -keystore keystore.jks

$ keytool -genseckey -alias secret-key -storetype JCEKS -keystore jgroups.jceks

$ keytool -import -file xpaas.crt -alias xpaas.ca -keystore truststore.jks

$ oc create secret generic sso-app-secret --from-file=keystore.jks --from-file=jgroups.jceks --
from-file=truststore.jks

$ oc secrets link default sso-app-secret

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

17

https://docs.openshift.com/container-platform/latest/cicd/builds/creating-build-inputs.html#builds-secrets-overview_creating-build-inputs
https://docs.openshift.com/container-platform/latest/authentication/using-service-accounts-in-applications.html#default-service-accounts-and-roles_using-service-accounts

In the following oc command, the values of SSO_ADMIN_USERNAME, SSO_ADMIN_PASSWORD,
HTTPS_PASSWORD, JGROUPS_ENCRYPT_PASSWORD, and SSO_TRUSTSTORE_PASSWORD
variables match the default values from the sso76-ocp4-https Red Hat Single Sign-On application
template.

For production environments, Red Hat recommends that you consult the on-site policy for your
organization for guidance on generating a strong user name and password for the administrator user
account of the Red Hat Single Sign-On server, and passwords for the HTTPS and JGroups keystores,
and the truststore of the Red Hat Single Sign-On server.

Also, when you create the template, make the passwords match the passwords provided when you
created the keystores. If you used a different username or password, modify the values of the
parameters in your template to match your environment.

NOTE

You can determine the alias names associated with the certificate by using the following
keytool commands. The keytool is a package included with the Java Development Kit.

The SSO_ADMIN_USERNAME, SSO_ADMIN_PASSWORD, and the SSO_REALM
template parameters in the following command are optional.

3.1.4.2. Sample oc command

$ keytool -v -list -keystore keystore.jks | grep Alias
Enter keystore password: mykeystorepass
Alias name: xpaas.ca
Alias name: jboss

$ keytool -v -list -keystore jgroups.jceks -storetype jceks | grep Alias
Enter keystore password: password
Alias name: secret-key

$ oc new-app --template=sso76-ocp4-https \
 -p HTTPS_SECRET="sso-app-secret" \
 -p HTTPS_KEYSTORE="keystore.jks" \
 -p HTTPS_NAME="jboss" \
 -p HTTPS_PASSWORD="mykeystorepass" \
 -p JGROUPS_ENCRYPT_SECRET="sso-app-secret" \
 -p JGROUPS_ENCRYPT_KEYSTORE="jgroups.jceks" \
 -p JGROUPS_ENCRYPT_NAME="secret-key" \
 -p JGROUPS_ENCRYPT_PASSWORD="password" \
 -p SSO_ADMIN_USERNAME="admin" \
 -p SSO_ADMIN_PASSWORD="redhat" \
 -p SSO_REALM="demorealm" \
 -p SSO_TRUSTSTORE="truststore.jks" \
 -p SSO_TRUSTSTORE_PASSWORD="mykeystorepass" \
 -p SSO_TRUSTSTORE_SECRET="sso-app-secret"
--> Deploying template "openshift/sso76-ocp4-https" to project sso-app-demo

 Red Hat Single Sign-On 7.6.8 (Ephemeral with passthrough TLS)

 An example Red Hat Single Sign-On 7 application. For more information about using this
template, see https://github.com/jboss-openshift/application-templates.

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

18

Additional resources

Passthrough TLS Termination

3.2. CUSTOMIZING THE HOSTNAME FOR THE RED HAT SINGLE SIGN-
ON SERVER

The hostname SPI introduced a flexible way to configure the hostname for the Red Hat Single Sign-On
server. The default hostname provider one is default. This provider provides enhanced functionality

 A new Red Hat Single Sign-On service has been created in your project. The admin
username/password for accessing the master realm via the Red Hat Single Sign-On console is
admin/redhat. Please be sure to create the following secrets: "sso-app-secret" containing the
keystore.jks file used for serving secure content; "sso-app-secret" containing the jgroups.jceks file
used for securing JGroups communications; "sso-app-secret" containing the truststore.jks file used
for securing Red Hat Single Sign-On requests.

 * With parameters:
 * Application Name=sso
 * Custom http Route Hostname=
 * Custom https Route Hostname=
 * Server Keystore Secret Name=sso-app-secret
 * Server Keystore Filename=keystore.jks
 * Server Keystore Type=
 * Server Certificate Name=jboss
 * Server Keystore Password=mykeystorepass
 * Datasource Minimum Pool Size=
 * Datasource Maximum Pool Size=
 * Datasource Transaction Isolation=
 * JGroups Secret Name=sso-app-secret
 * JGroups Keystore Filename=jgroups.jceks
 * JGroups Certificate Name=secret-key
 * JGroups Keystore Password=password
 * JGroups Cluster Password=yeSppLfp # generated
 * ImageStream Namespace=openshift
 * Red Hat Single Sign-On Administrator Username=admin
 * Red Hat Single Sign-On Administrator Password=redhat
 * Red Hat Single Sign-On Realm=demorealm
 * Red Hat Single Sign-On Service Username=
 * Red Hat Single Sign-On Service Password=
 * Red Hat Single Sign-On Trust Store=truststore.jks
 * Red Hat Single Sign-On Trust Store Password=mykeystorepass
 * Red Hat Single Sign-On Trust Store Secret=sso-app-secret
 * Container Memory Limit=1Gi

--> Creating resources ...
 service "sso" created
 service "secure-sso" created
 service "sso-ping" created
 route "sso" created
 route "secure-sso" created
 deploymentconfig "sso" created
--> Success
 Run 'oc status' to view your app.

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

19

over the original request provider which is now deprecated. Without additional settings, it uses the
request headers to determine the hostname similarly to the original request provider.

For configuration options of the default provider, refer to the Server Installation and Configuration
Guide. The frontendUrl option can be configured via SSO_FRONTEND_URL environment variable.

NOTE

For backward compatibility, SSO_FRONTEND_URL settings is ignored if
SSO_HOSTNAME is also set.

Another option of hostname provider is fixed, which allows configuring a fixed hostname. The latter
makes sure that only valid hostnames can be used and allows internal applications to invoke the Red Hat
Single Sign-On server through an alternative URL.

Procedure

Run the following commands to set the fixed hostname SPI provider for the Red Hat Single Sign-On
server:

1. Deploy the Red Hat Single Sign-On for OpenShift image with SSO_HOSTNAME environment
variable set to the desired hostname of the Red Hat Single Sign-On server.

2. Identify the name of the route for the Red Hat Single Sign-On service.

3. Change the host: field to match the hostname specified as the value of the SSO_HOSTNAME
environment variable above.

NOTE

Adjust the rh-sso-server.openshift.example.com value in the following
command as necessary.

$ oc patch route/sso --type=json -p '[{"op": "replace", "path": "/spec/host", "value": "rh-sso-
server.openshift.example.com"}]'

If successful, the previous command will return the following output:

route "sso" patched

3.3. CONNECTING TO AN EXTERNAL DATABASE

Red Hat Single Sign-On can be configured to connect to an external (to OpenShift cluster) database. In
order to achieve this, you need to modify the sso-{database name} Endpoints object to point to the
proper address. The procedure is described in the OpenShift manual.

$ oc new-app --template=sso76-ocp4-x509-https \
 -p SSO_HOSTNAME="rh-sso-server.openshift.example.com"

$ oc get routes
NAME HOST/PORT
sso sso-sso-app-demo.openshift.example.com

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

20

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_installation_and_configuration_guide/#_hostname
https://docs.openshift.com/container-platform/latest/networking/configuring_ingress_cluster_traffic/configuring-ingress-cluster-traffic-service-external-ip.html#nw-service-external-ip_configuring-ingress-cluster-traffic-service-external-ip

The easiest way to get started is to deploy Red Hat Single Sign-On from a template and then modify the
Endpoints object. You might also need to update some of the datasource configuration variables in the
DeploymentConfig. Once you’re done, just roll a new deployment out.

3.4. CLUSTERING

3.4.1. Configuring a JGroups discovery mechanism

Clustering in OpenShift is achieved through one of two discovery mechanisms: Kubernetes or DNS.
They can be set:

Either by configuring the JGroups protocol stack directly in the standalone-openshift.xml
configuration file with either the <kubernetes.KUBE_PING/> or <dns.DNS_PING/> elements,

Or by specifying the JGROUPS_PING_PROTOCOL environment variable which can be set to
either dns.DNS_PING or kubernetes.KUBE_PING.

The OpenShift 4.x templates are configured to use the dns.DNS_PING mechanism with the
spec.ipFamilyPolicy field set to PreferDualStack to enable dual-stack configured clusters by default .
However kubernetes.KUBE_PING is the default option used by the image if no value is specified for
the JGROUPS_PING_PROTOCOL environment variable.

3.4.1.1. Configuring DNS_PING on a single-stack configured cluster

For DNS_PING to work on IPv4 or IPv6 single-stack cluster, the following steps must be taken:

1. The OPENSHIFT_DNS_PING_SERVICE_NAME environment variable must be set to the name
of the ping service for the cluster. If not set, the server will act as if it is a single-node cluster (a
"cluster of one").

2. The OPENSHIFT_DNS_PING_SERVICE_PORT environment variables should be set to the
port number on which the ping service is exposed. The DNS_PING protocol will attempt to
discern the port from the SRV records, if it cannot discern the port, this variable will default to
8888.

3. A ping service which exposes the ping port must be defined. This service should be "headless"
(ClusterIP=None) and must have the following:

a. The port must be named for port discovery to work.

b. The spec.publishNotReadyAddresses field of this service must be set to "true". Omitting
the setting of this boolean will result in each node forming their own "cluster of one" during
startup, then merging their cluster into the other nodes' clusters after startup (as the other
nodes are not detected until after they have started).

Example definition of a ping service for use with DNS_PING on a single-stack (IPv4 or IPv6)
cluster

kind: Service
apiVersion: v1
spec:
 clusterIP: None
 ipFamilyPolicy: SingleStack
 ports:
 - name: ping

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

21

https://docs.openshift.com/container-platform/latest//virt/virtual_machines/vm_networking/virt-creating-service-vm.html#virt-dual-stack-support-services_virt-creating-service-vm

3.4.1.2. Configuring DNS_PING on a dual-stack configured cluster

Moreover, for the DNS_PING to work also on dual-network clusters that support both IPv4 and IPv6
address families, the spec.ipFamilyPolicy field of the ping service for the cluster must be set to
PreferDualStack or RequireDualStack. This setting ensures the control plane assigns both IPv4 and
IPv6 cluster IP addresses for the ping service on clusters that have dual-stack configured, enables
reverse DNS lookups for both IPv4 and IPv6 IP addresses to work properly, and creates corresponding
DNS SRV records for the ping headless service as illustrated below:

Example of ping service DNS SRV records on a dual-stack configured cluster with
spec.ipFamilyPolicy matching PreferDualStack

Example definition of a ping service for use with DNS_PING on dual-stack (IPv4 and IPv6)
cluster

3.4.1.3. Configuring KUBE_PING

For KUBE_PING to work, the following steps must be taken:

1. The KUBERNETES_NAMESPACE environment variable must be set. If not set, the server will
act as if it is a single-node cluster (a "cluster of one").

2. The KUBERNETES_LABELS environment variables should be set. If not set, pods outside of

 port: 8888
 publishNotReadyAddresses: true
 selector:
 deploymentConfig: sso
metadata:
 name: sso-ping
 annotations:
 description: "The JGroups ping port for clustering."

$ host -t SRV "${OPENSHIFT_DNS_PING_SERVICE_NAME}"
sso-ping.dual-stack-demo.svc.cluster.local has SRV record 0 50 8888 10-128-0-239.sso-ping.dual-
stack-demo.svc.cluster.local.
sso-ping.dual-stack-demo.svc.cluster.local has SRV record 0 50 8888 fd01-0-0-1--b8.sso-ping.dual-
stack-demo.svc.cluster.local.

kind: Service
apiVersion: v1
spec:
 clusterIP: None
 ipFamilyPolicy: PreferDualStack
 ports:
 - name: ping
 port: 8888
 publishNotReadyAddresses: true
 selector:
 deploymentConfig: sso
metadata:
 name: sso-ping
 annotations:
 description: "The JGroups ping port for clustering."

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

22

2. The KUBERNETES_LABELS environment variables should be set. If not set, pods outside of
your application (even if they are in your namespace) will try to join.

3. Authorization must be granted to the service account the pod is running under to be allowed to
access Kubernetes' REST api. You grant authorization on the command line. Refer to the
following policy commands examples:

Example 3.1. Policy commands

Using the default service account in the myproject namespace:

oc policy add-role-to-user view system:serviceaccount:myproject:default -n myproject

Using the sso-service-account in the myproject namespace:

oc policy add-role-to-user view system:serviceaccount:myproject:sso-service-account -n
myproject

NOTE

Since the kubernetes.KUBE_PING discovery mechanism does not require an extra ping
service for the cluster, it works using the aforementioned steps on both a single-stack
and a dual-stack configured clusters.

Refer to a dedicated section of JBoss EAP for OpenShift documentation to:

Explore available environment variables to encrypt JGroups traffic

Considerations for scaling up pods

3.5. USING CUSTOM JDBC DRIVER

To connect to any database, the JDBC driver for that database must be present and Red Hat Single
Sign-On configured properly. Currently, the only JDBC driver available in the image is the PostgreSQL
JDBC driver. For any other database, you need to extend the Red Hat Single Sign-On image with a
custom JDBC driver and a CLI script to register it and set up the connection properties. The following
steps illustrate how to do that, taking MariaDB driver as an example. Update the example for other
database drivers accordingly.

Procedure

1. Create an empty directory.

2. Download the JDBC driver binaries into this directory.

3. Create a new Dockerfile file in this directory with the following contents. For other databases,
replace mariadb-java-client-2.5.4.jar with the filename of the respective driver:

FROM rh-sso-7/sso76-openshift-rhel8:latest

COPY sso-extensions.cli /opt/eap/extensions/
COPY mariadb-java-client-2.5.4.jar /opt/eap/extensions/jdbc-driver.jar

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

23

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/index#configuring_jgroups_to_encrypt_cluster_traffic
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/getting_started_with_jboss_eap_for_openshift_container_platform/index#considerations_for_scaling_up_pods

4. Create a new sso-extensions.cli file in this directory with the following contents. Update the
values of the variables in italics according to the deployment needs:

5. In this directory, build your image by typing the following command, replacing the
project/name:tag with arbitrary name. docker can be used instead of podman.

6. After the build finishes, push your image to the registry used by OpenShift to deploy your image.
Refer to the OpenShift guide for details.

7. If you want to use this image with the custom JDBC driver that you built in the previous step
with the existing Red Hat Single Sign-On OpenShift DeploymentConfig that was previously
created by some Red Hat Single Sign-On OpenShift template, you need to patch the
DeploymentConfig definition. Enter the following command:

This command assumes the image stream name and tag combination of the Red Hat Single

batch

set DB_DRIVER_NAME=mariadb
set DB_USERNAME=username
set DB_PASSWORD=password
set DB_DRIVER=org.mariadb.jdbc.Driver
set DB_XA_DRIVER=org.mariadb.jdbc.MariaDbDataSource
set DB_JDBC_URL=jdbc:mariadb://jdbc-host/keycloak
set DB_EAP_MODULE=org.mariadb

set FILE=/opt/eap/extensions/jdbc-driver.jar

module add --name=$DB_EAP_MODULE --resources=$FILE --
dependencies=javax.api,javax.resource.api
/subsystem=datasources/jdbc-driver=$DB_DRIVER_NAME:add(\
 driver-name=$DB_DRIVER_NAME, \
 driver-module-name=$DB_EAP_MODULE, \
 driver-class-name=$DB_DRIVER, \
 driver-xa-datasource-class-name=$DB_XA_DRIVER \
)
/subsystem=datasources/data-source=KeycloakDS:remove()
/subsystem=datasources/data-source=KeycloakDS:add(\
 jndi-name=java:jboss/datasources/KeycloakDS, \
 enabled=true, \
 use-java-context=true, \
 connection-url=$DB_JDBC_URL, \
 driver-name=$DB_DRIVER_NAME, \
 user-name=$DB_USERNAME, \
 password=$DB_PASSWORD \
)

run-batch

$ podman build -t docker-registry-default/project/name:tag .

$ oc patch dc/sso --type=json -p '[{"op": "replace", "path":
"/spec/triggers/0/imageChangeParams/from/name", "value": "sso76-openshift-rhel8-image-
with-custom-jdbc-driver:latest"}]'
"sso" patched

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

24

https://docs.openshift.com/container-platform/latest/registry/accessing-the-registry.html#registry-accessing-directly_accessing-the-registry

This command assumes the image stream name and tag combination of the Red Hat Single
Sign-On image with the custom JDBC driver is "sso76-openshift-rhel8-image-with-custom-
jdbc-driver:latest."

3.6. CREATING THE ADMINISTRATOR ACCOUNT FOR RED HAT
SINGLE SIGN-ON SERVER

Red Hat Single Sign-On does not provide any pre-configured management account out of the box. This
administrator account is necessary for logging into the master realm’s management console and
performing server maintenance operations such as creating realms or users or registering applications
intended to be secured by Red Hat Single Sign-On.

The administrator account can be created:

By providing values for the SSO_ADMIN_USERNAME and SSO_ADMIN_PASSWORD
parameters, when deploying the Red Hat Single Sign-On application template, or

By a remote shell session to particular Red Hat Single Sign-On pod , if the Red Hat Single Sign-
On for OpenShift image is deployed without an application template.

NOTE

Red Hat Single Sign-On allows an initial administrator account to be created by the
Welcome Page web form, but only if the Welcome Page is accessed from localhost; this
method of administrator account creation is not applicable for the Red Hat Single Sign-
On for OpenShift image.

3.6.1. Creating the Administrator Account using template parameters

When deploying Red Hat Single Sign-On application template, the SSO_ADMIN_USERNAME and
SSO_ADMIN_PASSWORD parameters denote the username and password of the Red Hat Single Sign-
On server’s administrator account to be created for the master realm.

Both of these parameters are required. If not specified, they are auto generated and displayed as an
OpenShift instructional message when the template is instantiated.

The lifespan of the Red Hat Single Sign-On server’s administrator account depends upon the storage
type used to store the Red Hat Single Sign-On server’s database:

For an in-memory database mode (sso76-ocp3-https, sso76-ocp4-https, sso76-ocp3-x509-
https, and sso76-ocp4-x509-https templates), the account exists throughout the lifecycle of
the particular Red Hat Single Sign-On pod (stored account data is lost upon pod destruction),

For an ephemeral database mode (sso76-ocp3-postgresql and sso76-ocp4-postgresql
template), the account exists throughout the lifecycle of the database pod. Even if the Red Hat
Single Sign-On pod is destructed, the stored account data is preserved under the assumption
that the database pod is still running,

For persistent database mode (sso76-ocp3-postgresql-persistent, sso76-ocp4-postgresql-
persistent, sso76-ocp3-x509-postgresql-persistent, and sso76-ocp4-x509-postgresql-
persistent templates), the account exists throughout the lifecycle of the persistent medium
used to hold the database data. This means that the stored account data is preserved even
when both the Red Hat Single Sign-On and the database pods are destructed.

It is a common practice to deploy an Red Hat Single Sign-On application template to get the

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

25

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/getting_started_guide/index#create-admin_

It is a common practice to deploy an Red Hat Single Sign-On application template to get the
corresponding OpenShift deployment config for the application, and then reuse that deployment config
multiple times (every time a new Red Hat Single Sign-On application needs to be instantiated).

In the case of ephemeral or persistent database mode, after creating the RH_SSO server’s
administrator account, remove the SSO_ADMIN_USERNAME and SSO_ADMIN_PASSWORD variables
from the deployment config before deploying new Red Hat Single Sign-On applications.

Procedure

Run the following commands to prepare the previously created deployment config of the Red Hat
Single Sign-On application for reuse after the administrator account has been created:

1. Identify the deployment config of the Red Hat Single Sign-On application.

2. Clear the SSO_ADMIN_USERNAME and SSO_ADMIN_PASSWORD variables setting.

3.6.2. Creating the Administrator Account via a remote shell session to Red Hat
Single Sign-On Pod

You use the following commands to create an administrator account for the master realm of the Red
Hat Single Sign-On server, when deploying the Red Hat Single Sign-On for OpenShift image directly
from the image stream without using a template.

Prerequisite

Red Hat Single Sign-On application pod has been started.

Procedure

1. Identify the Red Hat Single Sign-On application pod.

2. Open a remote shell session to the Red Hat Single Sign-On for OpenShift container.

3. Create the Red Hat Single Sign-On server administrator account for the master realm at the
command line with the add-user-keycloak.sh script.

$ oc get dc -o name
deploymentconfig/sso
deploymentconfig/sso-postgresql

$ oc set env dc/sso \
 -e SSO_ADMIN_USERNAME="" \
 -e SSO_ADMIN_PASSWORD=""

$ oc get pods
NAME READY STATUS RESTARTS AGE
sso-12-pt93n 1/1 Running 0 1m
sso-postgresql-6-d97pf 1/1 Running 0 2m

$ oc rsh sso-12-pt93n
sh-4.2$

sh-4.2$ cd /opt/eap/bin/

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

26

NOTE

The 'sso_admin' / 'sso_password' credentials in the example above are for
demonstration purposes only. Refer to the password policy applicable within your
organization for guidance on how to create a secure user name and password.

4. Restart the underlying JBoss EAP server instance to load the newly added user account. Wait
for the server to restart properly.

WARNING

When restarting the server it is important to restart just the JBoss EAP
process within the running Red Hat Single Sign-On container, and not the
whole container. This is because restarting the whole container will recreate
it from scratch, without the Red Hat Single Sign-On server administration
account for the master realm.

5. Log in to the master realm’s Admin Console of the Red Hat Single Sign-On server using the
credentials created in the steps above. In the browser, navigate to http://sso-<project-name>.
<hostname>/auth/admin for the Red Hat Single Sign-On web server, or to https://secure-
sso-<project-name>.<hostname>/auth/admin for the encrypted Red Hat Single Sign-On web
server, and specify the user name and password used to create the administrator user.

Additional resources

Templates for use with this software

3.7. CUSTOMIZING THE DEFAULT BEHAVIOR OF THE RED HAT
SINGLE SIGN-ON IMAGE

You can change the default behavior of the Red Hat Single Sign-On image such as enabling
TechPreview features or enabling debugging. This section describes how to make this change by using
the JAVA_OPTS_APPEND variable.

Prerequisites

sh-4.2$./add-user-keycloak.sh \
 -r master \
 -u sso_admin \
 -p sso_password
Added 'sso_admin' to '/opt/eap/standalone/configuration/keycloak-add-user.json', restart
server to load user

sh-4.2$./jboss-cli.sh --connect ':reload'
{
 "outcome" => "success",
 "result" => undefined
}



CHAPTER 3. PERFORMING ADVANCED PROCEDURES

27

This procedure assumes that the Red Hat Single Sign-On for OpenShift image has been previously
deployed using one of the following templates:

sso76-ocp3-postgresql

sso76-ocp4-postgresql

sso76-ocp3-postgresql-persistent

sso76-ocp4-postgresql-persistent

sso76-ocp3-x509-postgresql-persistent

sso76-ocp4-x509-postgresql-persistent

Procedure

You can use the OpenShift web console or the CLI to change the default behavior.

If you use the OpenShift web console, you add the JAVA_OPTS_APPEND variable to the sso
deployment config. For example, to enable TechPreview features, you set the variable as follows:

If you use the CLI, use the following commands to enable TechPreview features when the Red Hat
Single Sign-On pod was deployed using a template that is mentioned under Prerequisites.

1. Scale down the Red Hat Single Sign-On pod:

NOTE

In the preceding command, sso-postgresql appears because a PostgreSQL
template was used to deploy the Red Hat Single Sign-On for OpenShift image.

2. Edit the deployment config to set the JAVA_OPTS_APPEND variable. For example, to enable
TechPreview features, you set the variable as follows:

3. Scale up the Red Hat Single Sign-On pod:

4. Test a TechPreview feature of your choice.

3.8. DEPLOYMENT PROCESS

JAVA_OPTS_APPEND="-Dkeycloak.profile=preview"

$ oc get dc -o name
deploymentconfig/sso
deploymentconfig/sso-postgresql

$ oc scale --replicas=0 dc sso
deploymentconfig "sso" scaled

$ oc env dc/sso -e "JAVA_OPTS_APPEND=-Dkeycloak.profile=preview"

$ oc scale --replicas=1 dc sso
deploymentconfig "sso" scaled

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

28

Once deployed, the sso76-ocp3-https, sso76-ocp4-https templates and either the sso76-ocp3-
x509-https or the sso76-ocp4-x509-https template create a single pod that contains both the
database and the Red Hat Single Sign-On servers. The sso76-ocp3-postgresql, sso76-ocp4-
postgresql, sso76-ocp3-postgresql-persistent, sso76-ocp4-postgresql-persistent, and either the
sso76-ocp3-x509-postgresql-persistent or the sso76-ocp4-x509-postgresql-persistent template
create two pods, one for the database server and one for the Red Hat Single Sign-On web server.

After the Red Hat Single Sign-On web server pod has started, it can be accessed at its custom
configured hostnames, or at the default hostnames:

http://sso-<project-name>.<hostname>/auth/admin: for the Red Hat Single Sign-On web
server, and

https://secure-sso-<project-name>.<hostname>/auth/admin: for the encrypted Red Hat
Single Sign-On web server.

Use the administrator user credentials to log in into the master realm’s Admin Console.

3.9. RED HAT SINGLE SIGN-ON CLIENTS

Clients are Red Hat Single Sign-On entities that request user authentication. A client can be an
application requesting Red Hat Single Sign-On to provide user authentication, or it can be making
requests for access tokens to start services on behalf of an authenticated user. See the Managing
Clients chapter of the Red Hat Single Sign-On documentation for more information.

Red Hat Single Sign-On provides OpenID-Connect and SAML client protocols.

OpenID-Connect is the preferred protocol and uses three different access types:

public: Useful for JavaScript applications that run directly in the browser and require no server
configuration.

confidential: Useful for server-side clients, such as EAP web applications, that need to perform
a browser login.

bearer-only: Useful for back-end services that allow bearer token requests.

It is required to specify the client type in the <auth-method> key of the application web.xml file. This
file is read by the image at deployment. Set the value of <auth-method> element to:

KEYCLOAK for the OpenID Connect client.

KEYCLOAK-SAML for the SAML client.

The following is an example snippet for the application web.xml to configure an OIDC client:

3.9.1. Automatic and manual Red Hat Single Sign-On client registration methods

A client application can be automatically registered to an Red Hat Single Sign-On realm by using

...
<login-config>
 <auth-method>KEYCLOAK</auth-method>
</login-config>
...

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

29

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/index#assembly-managing-clients_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/clients#oidc_clients
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/index#client-saml-configuration

A client application can be automatically registered to an Red Hat Single Sign-On realm by using
credentials passed in variables specific to the eap64-sso-s2i, eap71-sso-s2i, and datavirt63-secure-s2i
templates.

Alternatively, you can manually register the client application by configuring and exporting the Red Hat
Single Sign-On client adapter and including it in the client application configuration.

3.9.1.1. Automatic Red Hat Single Sign-On client registration

Automatic Red Hat Single Sign-On client registration is determined by Red Hat Single Sign-On
environment variables specific to the eap64-sso-s2i, eap71-sso-s2i, and datavirt63-secure-s2i
templates. The Red Hat Single Sign-On credentials supplied in the template are then used to register
the client to the Red Hat Single Sign-On realm during deployment of the client application.

The Red Hat Single Sign-On environment variables included in the eap64-sso-s2i, eap71-sso-s2i, and
datavirt63-secure-s2i templates are:

Variable Description

HOSTNAME_HTTP Custom hostname for http service route. Leave blank
for default hostname of <application-name>.
<project>.<default-domain-suffix>

HOSTNAME_HTTPS Custom hostname for https service route. Leave
blank for default hostname of <application-name>.
<project>.<default-domain-suffix>

SSO_URL The Red Hat Single Sign-On web server
authentication address: https://secure-sso-<project-
name>.<hostname>/auth

SSO_REALM The Red Hat Single Sign-On realm created for this
procedure.

SSO_USERNAME The name of the realm management user.

SSO_PASSWORD The password of the user.

SSO_PUBLIC_KEY The public key generated by the realm. It is located in
the Keys tab of the Realm Settings in the Red Hat
Single Sign-On console.

SSO_BEARER_ONLY If set to true, the OpenID Connect client is registered
as bearer-only.

SSO_ENABLE_CORS If set to true, the Red Hat Single Sign-On adapter
enables Cross-Origin Resource Sharing (CORS).

If the Red Hat Single Sign-On client uses the SAML protocol, the following additional variables need to
be configured:

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

30

Variable Description

SSO_SAML_KEYSTORE_SECRET Secret to use for access to SAML keystore. The
default is sso-app-secret.

SSO_SAML_KEYSTORE Keystore filename in the SAML keystore secret. The
default is keystore.jks.

SSO_SAML_KEYSTORE_PASSWORD Keystore password for SAML. The default is
mykeystorepass.

SSO_SAML_CERTIFICATE_NAME Alias for keys/certificate to use for SAML. The
default is jboss.

See Example Workflow: Automatically Registering EAP Application in Red Hat Single Sign-On with
OpenID-Connect Client for an end-to-end example of the automatic client registration method using an
OpenID-Connect client.

3.9.1.2. Manual Red Hat Single Sign-On client registration

Manual Red Hat Single Sign-On client registration is determined by the presence of a deployment file in
the client application’s ../configuration/ directory. These files are exported from the client adapter in the
Red Hat Single Sign-On web console. The name of this file is different for OpenID-Connect and SAML
clients:

OpenID-
Connect

../configuration/secure-deployments

SAML ../configuration/secure-saml-deployments

These files are copied to the Red Hat Single Sign-On adapter configuration section in the standalone-
openshift.xml at when the application is deployed.

There are two methods for passing the Red Hat Single Sign-On adapter configuration to the client
application:

Modify the deployment file to contain the Red Hat Single Sign-On adapter configuration so that
it is included in the standalone-openshift.xml file at deployment, or

Manually include the OpenID-Connect keycloak.json file, or the SAML keycloak-saml.xml file in
the client application’s ../WEB-INF directory.

See Example Workflow: Manually Configure an Application to Use Red Hat Single Sign-On
Authentication, Using SAML Client for an end-to-end example of the manual Red Hat Single Sign-On
client registration method using a SAML client.

3.10. USING RED HAT SINGLE SIGN-ON VAULT WITH OPENSHIFT
SECRETS

Several fields in the Red Hat Single Sign-On administration support obtaining the value of a secret from

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

31

Several fields in the Red Hat Single Sign-On administration support obtaining the value of a secret from
an external vault, see Server Administration Guide. The following example shows how to set up the file-
based plaintext vault in OpenShift and set it up to be used for obtaining an SMTP password.

Procedure

1. Specify a directory for the vault using the SSO_VAULT_DIR environment variable. You can
introduce the SSO_VAULT_DIR environment variable directly in the environment in your
deployment configuration. It can also be included in the template by addding the following
snippets at the appropriate places in the template:

NOTE

The files plaintext vault provider will be configured only when you set
SSO_VAULT_DIR environment variable.

2. Create a secret in your OpenShift cluster:

3. Mount a volume to your deployment config using the ${SSO_VAULT_DIR} as the path. For a
deployment that is already running:

4. After a pod is created you can use a customized string within your Red Hat Single Sign-On
configuration to refer to the secret. For example, for using mySMTPPsswd secret created in
this tutorial, you can use ${vault.smtp-password} within the master realm in the configuration
of the smtp password and it will be replaced by mySMTPPsswd when used.

"parameters": [
 ...
 {
 "displayName": "RH-SSO Vault Secret directory",
 "description": "Path to the RH-SSO Vault directory.",
 "name": "SSO_VAULT_DIR",
 "value": "",
 "required": false
 }
 ...
]

env: [
 ...
 {
 "name": "SSO_VAULT_DIR",
 "value": "${SSO_VAULT_DIR}"
 }
 ...
]

$ oc create secret generic rhsso-vault-secrets --from-literal=master_smtp-
password=mySMTPPsswd

$ oc set volume dc/sso --add --mount-path=${SSO_VAULT_DIR} --secret-name=rhsso-vault-
secrets

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

32

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_vault-administration

3.11. LIMITATIONS

OpenShift does not currently accept OpenShift role mapping from external providers. If Red Hat Single
Sign-On is used as an authentication gateway for OpenShift, users created in Red Hat Single Sign-On
must have the roles added using the OpenShift Administrator oc adm policy command.

For example, to allow an Red Hat Single Sign-On-created user to view a project namespace in
OpenShift:

$ oc adm policy add-role-to-user view <user-name> -n <project-name>

CHAPTER 3. PERFORMING ADVANCED PROCEDURES

33

CHAPTER 4. TUTORIALS
The tutorials in this chapter assume that you have an OpenShift instance similar to the one created by
performing the installation of the OpenShift Container Platform cluster .

4.1. UPDATING A DATABASE FOR A NEW RED HAT SINGLE SIGN-ON
FOR OPENSHIFT IMAGE VERSION

Note the following points related to the update:

Rolling updates from a previous versions of Red Hat Single Sign-On for OpenShift to version
7.6.8 are not supported as databases and caches are not backward compatible.

PostgreSQL server version 13 is required for the templates used for Red Hat Single Sign-On for
OpenShift 7.6.8. If you have an obsolete PostgreSQL version, you update the PostgreSQL
version before you update the database.

Instances from versions of the Red Hat Single Sign-On for OpenShift cannot be runnng before
upgrade. They cannot run concurrently against the same database.

Pre-generated scripts are not available. They are generated dynamically depending on the
database.

You have three choices for updating the database:

If you have an obsolete PostgreSQL server version, upgrade the PostgreSQL server and then
migrate the database.

Allow Red Hat Single Sign-On 7.6.8 to automatically migrate the database schema

Update the database manually

NOTE

By default the database is automatically migrated when you start Red Hat Single Sign-On
7.6.8 for the first time.

4.1.1. PostgreSQL version upgrade and database migration

The PostgreSQL server present in the Red Hat Single Sign-On 7.6.8 templates may be different from
the previously used version. For example, consider this scenario:

You are running a Red Hat Single Sign-On for OpenShift container image with PostgreSQL
pods using version 10 of the PostgreSQL server.

The Red Hat Single Sign-On 7.6.8 container images require the PostgreSQL pods to use
version 13 of the PostgreSQL server.

The following procedure describes how to upgrade the PostgreSQL version to 13 and then migrate the
database.

Procedure

1. Start by performing a database level backup.

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

34

https://docs.openshift.com/container-platform/latest/architecture/architecture-installation.html

2. Scale down the sso pod.

3. Edit dc/sso-postgresql.

Switch ImageStreamTag to :postgresql:13-el8.

4. Wait for the sso-postgresql pod to be running and stable.

5. Ensure the pod sso-postgresql has the correct version.

6. Unset the variable POSTGRESQL_UPGRADE and let the sso-postgresql pod deploy again.

7. Wait again for the sso-posgresql pod to be running and stable.

8. Run the following commands to update the core set of Red Hat Single Sign-On 7.6.8 resources
for OpenShift in the openshift project:
If you are using an OpenShift 3.x cluster, use these commands:

If you are using an OpenShift 4.x cluster, use these commands:

$ oc rsh <POSTGRE-SQL-POD> pg_dump -C <DATABASE> rhsso_db.bak

$ oc scale dc/sso --replicas=0

$ oc edit dc/sso-postgresql

- imageChangeParams:
 automatic: true
 containerNames:
 - sso-postgresql
 from:
 kind: ImageStreamTag
 name: postgresql:13-el8
 namespace: openshift

$ oc rsh dc/sso-postgresql /bin/bash -c "psql --version"
psql (PostgreSQL) 13.5

$ oc set env dc/sso-postgresql POSTGRESQL_UPGRADE-

$ for resource in sso76-image-stream.json \
 passthrough/ocp-3.x/sso76-ocp3-https.json \
 passthrough/ocp-3.x/sso76-ocp3-postgresql.json \
 passthrough/ocp-3.x/sso76-ocp3-postgresql-persistent.json \
 reencrypt/ocp-3.x/sso76-ocp3-x509-https.json \
 reencrypt/ocp-3.x/sso76-ocp3-x509-postgresql-persistent.json
do
 oc replace -n openshift --force -f \
 https://raw.githubusercontent.com/jboss-container-images/redhat-sso-7-openshift-
image/sso76-dev/templates/${resource}
done

$ for resource in sso76-image-stream.json \

CHAPTER 4. TUTORIALS

35

9. Run the following command to install the Red Hat Single Sign-On 7.6.8 OpenShift image
streams in the openshift project:

10. Update the image change trigger in the existing deployment config to reference the Red Hat
Single Sign-On 7.6.8 image.

11. Start rollout of the new Red Hat Single Sign-On 7.6.8 images based on the latest image defined
in the image change triggers.

12. Scale the sso pod back up to one replica.

NOTE

You might want to temporarily increase the Liveness and Readiness Probes
thresholds and values in seconds from dc/sso. This step performs a Database
Upgrade on the first boot, which might take a while.

NOTE

If you have more than one replica, consider scaling up to a single replica. After
Red Hat Single Sign-On starts, you can scale back to the original number of
replicas.

4.1.2. Automatic database migration

This process assumes that you are running a previous version of the Red Hat Single Sign-On for
OpenShift image, backed by a PostgreSQL database (deployed in ephemeral or persistent mode) that
is running in a separate pod.

Prerequisites

 passthrough/ocp-4.x/sso76-ocp4-https.json \
 passthrough/ocp-4.x/sso76-ocp4-postgresql.json \
 passthrough/ocp-4.x/sso76-ocp4-postgresql-persistent.json \
 reencrypt/ocp-4.x/sso76-ocp4-x509-https.json \
 reencrypt/ocp-4.x/sso76-ocp4-x509-postgresql-persistent.json
do
 oc replace -n openshift --force -f \
 https://raw.githubusercontent.com/jboss-container-images/redhat-sso-7-openshift-
image/sso76-dev/templates/${resource}
done

$ oc -n openshift import-image rh-sso-7/sso76-openshift-rhel8:7.6 --
from=registry.redhat.io/rh-sso-7/sso76-openshift-rhel8:7.6 --confirm

$ oc patch dc/sso --type=json -p '[{"op": "replace", "path":
"/spec/triggers/0/imageChangeParams/from/name", "value": "sso76-openshift-rhel8:7.6"}]'
"sso" patched

$ oc rollout latest dc/sso

$ oc scale --replicas=1 dc/sso

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

36

Perform the steps described in Preparing Red Hat Single Sign-On Authentication for OpenShift
Deployment.

Procedure

Use the following steps to automatically migrate the database schema:

1. Identify the deployment config used to deploy the containers, running previous version of the
Red Hat Single Sign-On for OpenShift image.

2. Stop all pods running the previous version of the Red Hat Single Sign-On for OpenShift image
in the current namespace. They cannot run concurrently against the same database.

3. Update the image change trigger in the existing deployment config to reference the Red Hat
Single Sign-On 7.6.8 image.

4. Start rollout of the new Red Hat Single Sign-On 7.6.8 images based on the latest image defined
in the image change triggers.

5. Deploy Red Hat Single Sign-On 7.6.8 containers using the modified deployment config.

6. (Optional) Verify the database has been successfully updated.

4.1.3. Manual database migration

The database migration process updates the data schema and performs manipulation of the data. This

$ oc get dc -o name --selector=application=sso
deploymentconfig/sso
deploymentconfig/sso-postgresql

$ oc scale --replicas=0 dc/sso
deploymentconfig "sso" scaled

$ oc patch dc/sso --type=json -p '[{"op": "replace", "path":
"/spec/triggers/0/imageChangeParams/from/name", "value": "sso76-openshift-rhel8:7.6"}]'
"sso" patched

$ oc rollout latest dc/sso
deploymentconfig "sso" rolled out

$ oc scale --replicas=1 dc/sso
deploymentconfig "sso" scaled

$ oc get pods --selector=application=sso
NAME READY STATUS RESTARTS AGE
sso-4-vg21r 1/1 Running 0 1h
sso-postgresql-1-t871r 1/1 Running 0 2h

$ oc logs sso-4-vg21r | grep 'Updating'
11:23:45,160 INFO
[org.keycloak.connections.jpa.updater.liquibase.LiquibaseJpaUpdaterProvider]
(ServerService Thread Pool -- 58) Updating database. Using changelog META-INF/jpa-
changelog-master.xml

CHAPTER 4. TUTORIALS

37

The database migration process updates the data schema and performs manipulation of the data. This
process also stops all pods running the previous version of the Red Hat Single Sign-On for OpenShift
image before dynamic generation of the SQL migration file.

NOTE

This process assumes that you are running a previous version of the Red Hat Single Sign-
On for OpenShift image that is backed by a PostgreSQL database (deployed in
ephemeral or persistent mode) and is running on a separate pod.

Procedure

Prepare your environment for script generation.

1. Configure Red Hat Single Sign-On 7.6.8 with the correct datasource,

2. Set the following configuration options in the standalone-openshift.xml file:

a. initializeEmpty=false,

b. migrationStrategy=manual, and

c. migrationExport to the location on the file system of the pod, where the output SQL
migration file should be stored (for example,
migrationExport="${jboss.home.dir}/keycloak-database-update.sql").

Additional resources

Database configuration

Procedure

Perform the following to generate the SQL migration file for the database:

1. Prepare template of OpenShift database migration job to generate the SQL file.

$ cat job-to-migrate-db-to-sso76.yaml.orig
apiVersion: batch/v1
kind: Job
metadata:
 name: job-to-migrate-db-to-sso76
spec:
 autoSelector: true
 parallelism: 0
 completions: 1
 template:
 metadata:
 name: job-to-migrate-db-to-sso76
 spec:
 containers:
 - env:
 - name: DB_SERVICE_PREFIX_MAPPING
 value: <<DB_SERVICE_PREFIX_MAPPING_VALUE>>
 - name: <<PREFIX>>_JNDI
 value: <<PREFIX_JNDI_VALUE>>
 - name: <<PREFIX>>_USERNAME

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

38

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_installation_and_configuration_guide/database-1#database_configuration
https://docs.openshift.com/container-platform/latest/nodes/jobs/nodes-nodes-jobs.html

2. From deployment config used to run the previous version of the Red Hat Single Sign-On for
OpenShift image, copy the datasource definition and database access credentials to
appropriate places of the template of the database migration job.
Use the following script to copy DB_SERVICE_PREFIX_MAPPING and
TX_DATABASE_PREFIX_MAPPING variable values, together with values of environment
variables specific to particular datasource (<PREFIX>_JNDI, <PREFIX>_USERNAME,
<PREFIX>_PASSWORD, and <PREFIX>_DATABASE) from the deployment config named
sso to the database job migration template named job-to-migrate-db-to-sso76.yaml.

NOTE

Although the DB_SERVICE_PREFIX_MAPPING environment variable allows a
comma-separated list of <name>-<database_type>=<PREFIX> triplets as its
value, this example script accepts only one datasource triplet definition for
demonstration purposes. You can modify the script for handling multiple
datasource definition triplets.

 value: <<PREFIX_USERNAME_VALUE>>
 - name: <<PREFIX>>_PASSWORD
 value: <<PREFIX_PASSWORD_VALUE>>
 - name: <<PREFIX>>_DATABASE
 value: <<PREFIX_DATABASE_VALUE>>
 - name: TX_DATABASE_PREFIX_MAPPING
 value: <<TX_DATABASE_PREFIX_MAPPING_VALUE>>
 - name: <<SERVICE_HOST>>
 value: <<SERVICE_HOST_VALUE>>
 - name: <<SERVICE_PORT>>
 value: <<SERVICE_PORT_VALUE>>
 image: <<SSO_IMAGE_VALUE>>
 imagePullPolicy: Always
 name: job-to-migrate-db-to-sso76
 # Keep the pod running after the SQL migration
 # file was generated, so we can retrieve it
 command:
 - "/bin/bash"
 - "-c"
 - "/opt/eap/bin/openshift-launch.sh || sleep 600"
 restartPolicy: Never

$ cp job-to-migrate-db-to-sso76.yaml.orig \
 job-to-migrate-db-to-sso76.yaml

$ cat mirror_sso_dc_db_vars.sh
#!/bin/bash

IMPORTANT:
#
If the name of the SSO deployment config differs from 'sso'
or if the file name of the YAML definition of the migration
job is different, update the following two variables
SSO_DC_NAME="sso"
JOB_MIGRATION_YAML="job-to-migrate-db-to-sso76.yaml"

Get existing variables of the $SSO_DC_NAME deployment config

CHAPTER 4. TUTORIALS

39

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html-single/red_hat_jboss_enterprise_application_platform_for_openshift/index#datasources

in an array
declare -a SSO_DC_VARS=(\
 $(oc set env dc/${SSO_DC_NAME} --list \
 | sed '/^#/d') \
)

Get the PREFIX used in the names of environment variables
PREFIX=$(\
 grep -oP 'DB_SERVICE_PREFIX_MAPPING=[^]+' \
 <<< "${SSO_DC_VARS[@]}" \
)
PREFIX=${PREFIX##*=}

Substitute:
* <<PREFIX>> with actual $PREFIX value and
* <<PREFIX with "<<$PREFIX" value
The order in which these replacements are made is important!
sed -i "s#<<PREFIX>>#${PREFIX}#g" ${JOB_MIGRATION_YAML}
sed -i "s#<<PREFIX#<<${PREFIX}#g" ${JOB_MIGRATION_YAML}

Construct the array of environment variables
specific to the datasource
declare -a DB_VARS=(JNDI USERNAME PASSWORD DATABASE)

Prepend $PREFIX to each item of the datasource array
DB_VARS=("${DB_VARS[@]/#/${PREFIX}_}")

Add DB_SERVICE_PREFIX_MAPPING and TX_DATABASE_PREFIX_MAPPING
variables to datasource array
DB_VARS=(\
 "${DB_VARS[@]}" \
 DB_SERVICE_PREFIX_MAPPING \
 TX_DATABASE_PREFIX_MAPPING \
)

Construct the SERVICE from DB_SERVICE_PREFIX_MAPPING
SERVICE=$(\
 grep -oP 'DB_SERVICE_PREFIX_MAPPING=[^]' \
 <<< "${SSO_DC_VARS[@]}" \
)
SERVICE=${SERVICE#*=}
SERVICE=${SERVICE%=*}
SERVICE=${SERVICE^^}
SERVICE=${SERVICE//-/_}

If the deployment config contains <<SERVICE>>_SERVICE_HOST
and <<SERVICE>>_SERVICE_PORT variables, add them to the
datasource array. Their values also need to be propagated into
yaml definition of the migration job.
HOST_PATTERN="${SERVICE}_SERVICE_HOST=[^]"
PORT_PATTERN="${SERVICE}_SERVICE_PORT=[^]"
if
 grep -Pq "${HOST_PATTERN}" <<< "${SSO_DC_VARS[@]}" &&
 grep -Pq "${PORT_PATTERN}" <<< "${SSO_DC_VARS[@]}"
then
 DB_VARS=(\

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

40

 "${DB_VARS[@]}" \
 "${SERVICE}_SERVICE_HOST" \
 "${SERVICE}_SERVICE_PORT" \
)
If they are not defined, delete their placeholder rows in
yaml definition file (since if not defined they are not
expanded which make the yaml definition invalid).
else
 for KEY in "HOST" "PORT"
 do
 sed -i "/SERVICE_${KEY}/d" ${JOB_MIGRATION_YAML}
 done
fi

Substitute:
* <<SERVICE_HOST>> with ${SERVICE}_SERVICE_HOST and
* <<SERVICE_HOST_VALUE>> with <<${SERVICE}_SERVICE_HOST_VALUE>>
The order in which replacements are made is important!
Do this for both "HOST" and "PORT"
for KEY in "HOST" "PORT"
do
 PATTERN_1="<<SERVICE_${KEY}>>"
 REPL_1="${SERVICE}_SERVICE_${KEY}"
 sed -i "s#${PATTERN_1}#${REPL_1}#g" ${JOB_MIGRATION_YAML}
 PATTERN_2="<<SERVICE_${KEY}_VALUE>>"
 REPL_2="<<${SERVICE}_SERVICE_${KEY}_VALUE>>"
 sed -i "s#${PATTERN_2}#${REPL_2}#g" ${JOB_MIGRATION_YAML}
done

Propagate the values of the datasource array items into
yaml definition of the migration job
for VAR in "${SSO_DC_VARS[@]}"
do
 IFS=$'=' read KEY VALUE <<< $VAR
 if grep -q $KEY <<< ${DB_VARS[@]}
 then
 KEY+="_VALUE"
 # Enwrap integer port value with double quotes
 if [[${KEY} =~ ${SERVICE}_SERVICE_PORT_VALUE]]
 then
 sed -i "s#<<${KEY}>>#\"${VALUE}\"#g" ${JOB_MIGRATION_YAML}
 # Character values do not need quotes
 else
 sed -i "s#<<${KEY}>>#${VALUE}#g" ${JOB_MIGRATION_YAML}
 fi
 # Verify that the value has been successfully propagated.
 if
 grep -q '(JNDI|USERNAME|PASSWORD|DATABASE)' <<< "${KEY}" &&
 grep -q "<<PREFIX${KEY#${PREFIX}}" ${JOB_MIGRATION_YAML} ||
 grep -q "<<${KEY}>>" ${JOB_MIGRATION_YAML}
 then
 echo "Failed to update value of ${KEY%_VALUE}! Aborting."
 exit 1
 else
 printf '%-60s%-40s\n' \
 "Successfully updated ${KEY%_VALUE} to:" \

CHAPTER 4. TUTORIALS

41

Run the script.

3. Build the Red Hat Single Sign-On 7.6.8 database migration image using the pre-configured
source and wait for the build to finish.

4. Update the template of the database migration job (job-to-migrate-db-to-sso76.yaml) with
reference to the built sso76-db-migration-image image.

 "$VALUE"
 fi
 fi
done

$ chmod +x ./mirror_sso_dc_db_vars.sh
$./mirror_sso_dc_db_vars.sh
Successfully updated DB_SERVICE_PREFIX_MAPPING to: sso-postgresql=DB
Successfully updated DB_JNDI to: java:jboss/datasources/KeycloakDS
Successfully updated DB_USERNAME to: userxOp
Successfully updated DB_PASSWORD to: tsWNhQHK
Successfully updated DB_DATABASE to: root
Successfully updated TX_DATABASE_PREFIX_MAPPING to: sso-postgresql=DB

$ oc get is -n openshift | grep sso76 | cut -d ' ' -f1
sso76-openshift-rhel8

$ oc new-build sso76-openshift-rhel8:7.6~https://github.com/iankko/openshift-
examples.git#KEYCLOAK-8500 \
 --context-dir=sso-manual-db-migration \
 --name=sso76-db-migration-image
--> Found image bf45ac2 (7 days old) in image stream "openshift/sso76-openshift-rhel8"
under tag "7.6" for "sso76-openshift-rhel8:7.6"

 Red Hat SSO 7.6.8

 Platform for running Red Hat SSO

 Tags: sso, sso7, keycloak

 * A source build using source code from https://github.com/iankko/openshift-
examples.git#KEYCLOAK-8500 will be created
 * The resulting image will be pushed to image stream "sso76-db-migration-image:latest"
 * Use 'start-build' to trigger a new build

--> Creating resources with label build=sso76-db-migration-image ...
 imagestream "sso76-db-migration-image" created
 buildconfig "sso76-db-migration-image" created
--> Success
 Build configuration "sso76-db-migration-image" created and build triggered.
 Run 'oc logs -f bc/sso76-db-migration-image' to stream the build progress.

$ oc logs -f bc/sso76-db-migration-image --follow
Cloning "https://github.com/iankko/openshift-examples.git#KEYCLOAK-8500" ...
...
Push successful

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

42

https://github.com/iankko/openshift-examples/tree/KEYCLOAK-8500/sso-manual-db-migration

a. Get the docker pull reference for the image.

b. Replace the <<SSO_IMAGE_VALUE>> field in the job template with the pull specification.

c. Verify that the field is updated.

5. Instantiate database migration job from the job template.

IMPORTANT

The database migration process handles the data schema update and performs
manipulation of the data, therefore, stop all pods running the previous version of
the Red Hat Single Sign-On for OpenShift image before dynamic generation of
the SQL migration file.

6. Identify the deployment config used to deploy the containers, running previous version of the
Red Hat Single Sign-On for OpenShift image.

7. Stop all pods running the previous version of the Red Hat Single Sign-On for OpenShift image
in the current namespace.

8. Run the database migration job and wait for the pod to be running correctly.

NOTE

$ PULL_REF=$(oc get istag -n $(oc project -q) --no-headers | grep sso76-db-migration-
image | tr -s ' ' | cut -d ' ' -f 2)

$ sed -i "s#<<SSO_IMAGE_VALUE>>#$PULL_REF#g" job-to-migrate-db-to-sso76.yaml

$ oc create -f job-to-migrate-db-to-sso76.yaml
job "job-to-migrate-db-to-sso76" created

$ oc get dc -o name --selector=application=sso
deploymentconfig/sso
deploymentconfig/sso-postgresql

$ oc scale --replicas=0 dc/sso
deploymentconfig "sso" scaled

$ oc get jobs
NAME DESIRED SUCCESSFUL AGE
job-to-migrate-db-to-sso76 1 0 3m

$ oc scale --replicas=1 job/job-to-migrate-db-to-sso76
job "job-to-migrate-db-to-sso76" scaled

$ oc get pods
NAME READY STATUS RESTARTS AGE
sso-postgresql-1-n5p16 1/1 Running 1 19h
job-to-migrate-db-to-sso76-b87bb 1/1 Running 0 1m
sso76-db-migration-image-1-build 0/1 Completed 0 27m

CHAPTER 4. TUTORIALS

43

NOTE

By default, the database migration job terminates automatically after 600
seconds after the migration file is generated. You can adjust this time period.

9. Get the dynamically generated SQL database migration file from the pod.

10. Inspect the keycloak-database-update.sql file for changes to be performed within manual
database update to Red Hat Single Sign-On 7.6.8 version.

11. Apply the database update manually.

Run the following commands if running some previous version of the Red Hat Single Sign-
On for OpenShift image, backed by the PostgreSQL database deployed in ephemeral or
persistent mode, running on a separate pod:

i. Copy the generated SQL migration file to the PostgreSQL pod.

ii. Start a shell session to the PostgreSQL pod.

iii. Use the psql tool to apply database update manually.

IMPORTANT

$ mkdir -p ./db-update
$ oc rsync job-to-migrate-db-to-sso76-b87bb:/opt/eap/keycloak-database-update.sql ./db-
update
receiving incremental file list
keycloak-database-update.sql

sent 30 bytes received 29,726 bytes 59,512.00 bytes/sec
total size is 29,621 speedup is 1.00

$ oc rsync --no-perms=true ./db-update/ sso-postgresql-1-n5p16:/tmp
sending incremental file list

sent 77 bytes received 11 bytes 176.00 bytes/sec
total size is 26,333 speedup is 299.24

$ oc rsh sso-postgresql-1-n5p16
sh-4.2$

sh-4.2$ alias psql="/opt/rh/rh-postgresql95/root/bin/psql"
sh-4.2$ psql --version
psql (PostgreSQL) 9.5.4
sh-4.2$ psql -U <PREFIX>_USERNAME -d <PREFIX>_DATABASE -W -f
/tmp/keycloak-database-update.sql
Password for user <PREFIX>_USERNAME:
INSERT 0 1
INSERT 0 1
...

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

44

IMPORTANT

Replace <PREFIX>_USERNAME and <PREFIX>_DATABASE with the
actual database credentials retrieved in previous section . Also use value
of <PREFIX>_PASSWORD as the password for the database, when
prompted.

iv. Close the shell session to the PostgreSQL pod. Continue with updating image change
trigger step.

12. Update the image change trigger in the existing deployment config to reference the Red Hat
Single Sign-On 7.6.8 image.

13. Start rollout of the new Red Hat Single Sign-On 7.6.8 images based on the latest image defined
in the image change triggers.

14. Deploy the Red Hat Single Sign-On 7.6.8 containers using the modified deployment config.

4.2. MIGRATING THE RED HAT SINGLE SIGN-ON SERVER’S
DATABASE ACROSS ENVIRONMENTS

This tutorial focuses on migrating the Red Hat Single Sign-On server database from one environment to
another or migrating to a different database.

Export and import of Red Hat Single Sign-On 7.6.8 database is triggered at Red Hat Single Sign-On
server boot time and its parameters are passed in via Java system properties. This means during one
Red Hat Single Sign-On server boot, only one of the possible migration actions, export or import, is
performed.

4.2.1. Deploying the Red Hat Single Sign-On PostgreSQL application template

Prerequisites

The steps described in the Preparing Red Hat Single Sign-On Authentication for OpenShift
Deployment section have been performed already.

Procedure

1. Log in to the OpenShift web console and select the sso-app-demo project space.

2. Click Add to project to list the default image streams and templates.

3. Use the Filter by keyword search bar to limit the list to those that match sso. You may need to

$ oc patch dc/sso --type=json -p '[{"op": "replace", "path":
"/spec/triggers/0/imageChangeParams/from/name", "value": "sso76-openshift-rhel8:7.6"}]'
"sso" patched

$ oc rollout latest dc/sso
deploymentconfig "sso" rolled out

$ oc scale --replicas=1 dc/sso
deploymentconfig "sso" scaled

CHAPTER 4. TUTORIALS

45

3. Use the Filter by keyword search bar to limit the list to those that match sso. You may need to
click See all to show the desired application template.

4. Select sso76-ocp4-postgresql Red Hat Single Sign-On application template. When deploying
the template ensure to keep the SSO_REALM variable unset (default value).

WARNING

When the SSO_REALM configuration variable is set on the Red Hat Single
Sign-On for OpenShift image, a database import is performed in order to
create the Red Hat Single Sign-On server realm requested in the variable.
For the database export to be performed correctly, the SSO_REALM
configuration variable cannot be simultaneously defined on such image.

5. Click Create to deploy the application template and start pod deployment. This may take a
couple of minutes.
Then access the Red Hat Single Sign-On web console at https://secure-sso-<sso-app-
demo>.<openshift32.example.com>/auth/admin using the administrator account .

NOTE

This example workflow uses a self-generated CA to provide an end-to-end
workflow for demonstration purposes. Accessing the Red Hat Single Sign-On
web console will prompt an insecure connection warning.
For production environments, Red Hat recommends that you use an SSL
certificate purchased from a verified Certificate Authority.

Additional resources

Importing and exporting the database

4.2.2. (Optional) Creating additional realms and users to be exported

When performing Red Hat Single Sign-On 7.6.8 server database export, only realms and users currently
in the database are exported. If the exported JSON file should include also additional Red Hat Single
Sign-On realms and users, these need to be created. Use these procedures.

1. Create a realm

2. Create a user

Upon their creation, the database can be exported.

Additional resources

Importing and exporting the database

4.2.3. Export the Red Hat Single Sign-On database as a JSON file on the OpenShift
pod



Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

46

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#assembly-exporting-importing_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single//server_administration_guide/index#proc-creating-a-realm_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single//server_administration_guide/index#proc-creating-user_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single//server_administration_guide/#assembly-exporting-importing_server_administration_guide

Prerequisites

New realms and users are created.

Procedure

1. Get the Red Hat Single Sign-On deployment config and scale it down to zero.

2. Instruct the Red Hat Single Sign-On 7.6.8 server deployed on Red Hat Single Sign-On for
OpenShift image to perform database export at Red Hat Single Sign-On server boot time.

3. Scale the Red Hat Single Sign-On deployment config back up. This will start the Red Hat Single
Sign-On server and export its database.

4. (Optional) Verify that the export was successful.

4.2.4. Retrieve and import the exported JSON file

Procedure

1. Retrieve the JSON file of the Red Hat Single Sign-On database from the pod.

$ oc get dc -o name
deploymentconfig/sso
deploymentconfig/sso-postgresql

$ oc scale --replicas=0 dc sso
deploymentconfig "sso" scaled

$ oc set env dc/sso \
 -e "JAVA_OPTS_APPEND= \
 -Dkeycloak.migration.action=export \
 -Dkeycloak.migration.provider=singleFile \
 -Dkeycloak.migration.file=/tmp/demorealm-export.json"

$ oc scale --replicas=1 dc sso
deploymentconfig "sso" scaled

$ oc get pods
NAME READY STATUS RESTARTS AGE
sso-4-ejr0k 1/1 Running 0 27m
sso-postgresql-1-ozzl0 1/1 Running 0 4h

$ oc logs sso-4-ejr0k | grep 'Export'
09:24:59,503 INFO [org.keycloak.exportimport.singlefile.SingleFileExportProvider]
(ServerService Thread Pool -- 57) Exporting model into file /tmp/demorealm-export.json
09:24:59,998 INFO [org.keycloak.services] (ServerService Thread Pool -- 57) KC-
SERVICES0035: Export finished successfully

$ oc get pods
NAME READY STATUS RESTARTS AGE
sso-4-ejr0k 1/1 Running 0 2m

CHAPTER 4. TUTORIALS

47

2. (Optional) Import the JSON file of the Red Hat Single Sign-On database into an Red Hat Single
Sign-On server running in another environment.

NOTE

For importing into an Red Hat Single Sign-On server not running on OpenShift,
see the Importing and exporting the database.

When the Red Hat Single Sign-On server is running as a Red Hat Single Sign-On 7.6.8 container
on OpenShift, use the Admin Console Export/Import function to import the resources from a
previously exported JSON file into the Red Hat Single Sign-On server’s database.

a. Log into the master realm’s Admin Console of the Red Hat Single Sign-On server using the
credentials used to create the administrator user. In the browser, navigate to http://sso-
<project-name>.<hostname>/auth/admin for the Red Hat Single Sign-On web server, or
to https://secure-sso-<project-name>.<hostname>/auth/admin for the encrypted Red
Hat Single Sign-On web server.

b. At the top of the sidebar choose the name of the Red Hat Single Sign-On realm, the users,
clients, realm roles, and client roles should be imported to. This example uses master realm.

c. Click the Import link under Manage section at the bottom of the sidebar.

d. In the page that opens, click Select file and then specify the location of the exported
demorealm-export.json JSON file on the local file system.

e. From the Import from realm drop-down menu, select the name of the Red Hat Single
Sign-On realm from which the data should be imported. This example uses master realm.

f. Choose which of users, clients, realm roles, and client roles should be imported (all of them
are imported by default).

g. Choose a strategy to perform, when a resource already exists (one of Fail, Skip, or
Overwrite).

NOTE

The attempt to import an object (user, client, realm role, or client role) fails if
object with the same identifier already exists in the current database. Use
Skip strategy to import the objects that are present in the demorealm-
export.json file, but do not exist in current database.

h. Click Import to perform the import.
When importing objects from a non-master realm to master realm or vice versa, after
clicking the Import button, it is sometimes possible to encounter an error like the following
one:

In such cases, it is necessary first to create the missing clients, having the Access Type set

sso-postgresql-1-ozzl0 1/1 Running 0 4h

$ oc rsync sso-4-ejr0k:/tmp/demorealm-export.json .

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

48

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#assembly-exporting-importing_server_administration_guide
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#assembly-exporting-importing_server_administration_guide

In such cases, it is necessary first to create the missing clients, having the Access Type set
to bearer-only. These clients can be created by manual copy of their characteristics from
the source Red Hat Single Sign-On server, on which the export JSON file was created, to
the target Red Hat Single Sign-On server, where the JSON file is imported. After creation
of the necessary clients, click the Import button again.

To suppress the above error message, it is needed to create the missing realm-
management client, of the bearer-only Access Type, and click the Import button again.

For Skip import strategy, the newly added objects are marked as ADDED and the object
which were skipped are marked as SKIPPED, in the Action column on the import result
page.

The Admin Console import allows you to overwrite resources if you choose (Overwrite
strategy). On a production system use this feature with caution.

4.3. CONFIGURING OPENSHIFT 3.11 TO USE RED HAT SINGLE SIGN-
ON FOR AUTHENTICATION

Configure OpenShift 3.11 to use the Red Hat Single Sign-On deployment as the authorization gateway
for OpenShift.

This example adds Red Hat Single Sign-On as an authentication method alongside the identity
providers configured during the installation of the OpenShift Container Platform cluster. Once
configured, the Red Hat Single Sign-On method will be also available (together with the configured
identity providers) for the user login to your OpenShift web console.

Additional resources

Identity providers

Installation of the OpenShift Container Platform cluster

4.3.1. Configuring Red Hat Single Sign-On Credentials

Prerequisites

The steps described in the Preparing Red Hat Single Sign-On Authentication for OpenShift
Deployment section have been performed already.

Procedure

Log in to the encrypted Red Hat Single Sign-On web server at https://secure-sso-sso-app-
demo.openshift32.example.com/auth/admin using the xref:sso-administrator-setup[administrator
account created during the Red Hat Single Sign-On deployment.

Create a Realm

1. Hover your cursor over the realm namespace (default is Master) at the top of the sidebar and
click Add Realm.

2. Enter a realm name (this example uses OpenShift) and click Create.

Create a User

Create a test user that can be used to demonstrate the Red Hat Single Sign-On-enabled OpenShift

CHAPTER 4. TUTORIALS

49

https://docs.openshift.com/container-platform/latest/authentication/understanding-identity-provider.html
https://docs.openshift.com/container-platform/latest/architecture/architecture-installation.html

Create a test user that can be used to demonstrate the Red Hat Single Sign-On-enabled OpenShift
login:

1. Click Users in the Manage sidebar to view the user information for the realm.

2. Click Add User.

3. Enter a valid Username (this example uses testuser) and any additional optional information
and click Save.

4. Edit the user configuration:

a. Click the Credentials tab in the user space and enter a password for the user.

b. Ensure the Temporary Password option is set to Off so that it does not prompt for a
password change later on, and click Reset Password to set the user password. A pop-up
window prompts for additional confirmation.

Create and Configure an OpenID-Connect Client

1. Click Clients in the Manage sidebar and click Create.

2. Enter the Client ID. This example uses openshift-demo .

3. Select a Client Protocol from the drop-down menu (this example uses openid-connect) and
click Save. You will be taken to the configuration Settings page of the openshift-demo client.

4. From the Access Type drop-down menu, select confidential. This is the access type for
server-side applications.

5. In the Valid Redirect URIs dialog, enter the URI for the OpenShift web console, which is
https://openshift.example.com:8443/* in this example.

The client Secret is needed to configure OpenID-Connect on the OpenShift master in the next section.
You can copy it now from under the Credentials tab. The secret is < 7b0384a2-b832-16c5-9d73-
2957842e89h7> for this example.

Additional resources

Managing OpenID Connect and SAML Clients

4.3.2. Configuring OpenShift Master for Red Hat Single Sign-On authentication

Log in to the OpenShift master CLI.

Prerequisites

You must have the permissions to edit the /etc/origin/master/master-config.yaml file.

Procedure

1. Edit the /etc/origin/master/master-config.yaml file and find the identityProviders section.
For example, in the case the OpenShift master is configured with the HTPassword identity
provider, the identityProviders section will look similar to the following one:

identityProviders:
- challenge: true

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

50

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single//server_administration_guide/index#assembly-managing-clients_server_administration_guide
https://docs.openshift.com/container-platform/latest/authentication/identity_providers/configuring-htpasswd-identity-provider.html

Add Red Hat Single Sign-On as a secondary identity provider with content similar to the
following snippet:

a. The Red Hat Single Sign-On Secret hash for the clientSecret can be found in the Red Hat
Single Sign-On web console: Clients → openshift-demo → Credentials

b. The endpoints for the urls can be found by making a request with the Red Hat Single Sign-
On application. For example:

The response includes the authorization_endpoint, token_endpoint, and
userinfo_endpoint.

c. This example workflow uses a self-generated CA to provide an end-to-end workflow for
demonstration purposes. For this reason, the ca is provided as < ca: xpaas.crt>. This CA
certificate must also be copied into the /etc/origin/master folder. This is not necessary if
using a certificate purchased from a verified Certificate Authority.

2. Save the configuration and restart the OpenShift master:

 login: true
 name: htpasswd_auth
 provider:
 apiVersion: v1
 file: /etc/origin/openshift-passwd
 kind: HTPasswdPasswordIdentityProvider

- name: rh_sso
 challenge: false
 login: true
 mappingMethod: add
 provider:
 apiVersion: v1
 kind: OpenIDIdentityProvider
 clientID: openshift-demo
 clientSecret: 7b0384a2-b832-16c5-9d73-2957842e89h7
 ca: xpaas.crt
 urls:
 authorize: https://secure-sso-sso-app-
demo.openshift32.example.com/auth/realms/OpenShift/protocol/openid-connect/auth
 token: https://secure-sso-sso-app-
demo.openshift32.example.com/auth/realms/OpenShift/protocol/openid-connect/token
 userInfo: https://secure-sso-sso-app-
demo.openshift32.example.com/auth/realms/OpenShift/protocol/openid-connect/userinfo
 claims:
 id:
 - sub
 preferredUsername:
 - preferred_username
 name:
 - name
 email:
 - email

<curl -k https://secure-sso-sso-app-
demo.openshift32.example.com/auth/realms/OpenShift/.well-known/openid-configuration
| python -m json.tool>

CHAPTER 4. TUTORIALS

51

4.3.3. Logging in to OpenShift

Procedure

1. Navigate to the OpenShift web console, which in this example is
https://openshift.example.com:8443/console.
The OpenShift login page now offers the options to log in either using htpasswd_auth or rh-
sso identity providers? The former is still available because it is present in the
/etc/origin/master/master-config.yaml.

2. Select rh-sso and log in to OpenShift with the testuser user created earlier in Red Hat Single
Sign-On.
No projects are visible to testuser until they are added in the OpenShift CLI. This is the only way
to provide user privileges in OpenShift because it currently does not accept external role
mapping.

3. To provide testuser view privileges for the sso-app-demo, use the OpenShift CLI:

4.4. CREATING AN OPENSHIFT APPLICATION FROM MAVEN
BINARIES AND SECURING IT USING RED HAT SINGLE SIGN-ON

To deploy existing applications on OpenShift, you can use the binary source capability.

4.4.1. Deploy Binary Build of EAP 6.4 / 7.1 JSP Service Invocation Application and
Secure it Using Red Hat Single Sign-On

The following example uses both app-jee-jsp and service-jee-jaxrs quickstarts to deploy EAP 6.4 / 7.1
JSP service application that authenticates using the Red Hat Single Sign-On.

Prerequisites

The Red Hat Single Sign-On for OpenShift image has been previously deployed using one of
the following templates:

sso76-ocp3-postgresql

sso76-ocp3-postgresql-persistent

sso76-ocp3-x509-postgresql-persistent

sso76-ocp4-postgresql

sso76-ocp4-postgresql-persistent

sso76-ocp4-x509-postgresql-persistent

4.4.1.1. Create Red Hat Single Sign-On Realm, Roles, and User for the EAP 6.4 / 7.1 JSP
Application

The EAP 6.4 / 7.1 JSP service application requires dedicated Red Hat Single Sign-On realm, username,

$ systemctl restart atomic-openshift-master

$ oc adm policy add-role-to-user view testuser -n sso-app-demo

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

52

https://openshift.example.com:8443/console
https://github.com/keycloak/keycloak-quickstarts/tree/latest/app-jee-jsp
https://github.com/keycloak/keycloak-quickstarts/tree/latest/service-jee-jaxrs

The EAP 6.4 / 7.1 JSP service application requires dedicated Red Hat Single Sign-On realm, username,
and password to be able to authenticate using Red Hat Single Sign-On. Perform the following steps
after the Red Hat Single Sign-On for OpenShift image has been deployed:

Create the Red Hat Single Sign-On Realm

1. Login to the Admin Console of the Red Hat Single Sign-On server.
https://secure-sso-sso-app-demo.openshift.example.com/auth/admin

Use the credentials of the Red Hat Single Sign-On administrator user .

2. Hover your cursor over the realm namespace (default is Master) at the top of the sidebar and
click Add Realm.

3. Enter a realm name (this example uses demo) and click Create.

Copy the Public Key

In the newly created demo realm, click the Keys tab, then select Active tab, and copy the public key of
type RSA that has been generated.

NOTE

The Red Hat Single Sign-On for OpenShift image version 7.6.8 generates multiple keys
by default, for example HS256, RS256, or AES. To copy the public key information for
the Red Hat Single Sign-On for OpenShift 7.6.8 image, click the Keys tab, then select
Active tab, and click the Public key button of that row in the keys table, where type of
the key matches RSA. Then select and copy the content of the pop-up window that
appears.

The information about the public key is necessary later to deploy the Red Hat Single Sign-On-enabled
EAP 6.4 / 7.1 JSP application.

Create Red Hat Single Sign-On Roles

The service-jee-jaxrs quickstart exposes three endpoints by the service:

public - Requires no authentication.

secured - Can be invoked by users with the user role.

admin - Can be invoked by users with the admin role.

Create user and admin roles in Red Hat Single Sign-On. These roles will be assigned to an Red Hat
Single Sign-On application user to authenticate access to user applications.

1. Click Roles in the Configure sidebar to list the roles for this realm.

NOTE

This is a new realm, so there should only be the default (offline_access and
uma_authorization) roles.

2. Click Add Role.

3. Enter the role name (user) and click Save.

CHAPTER 4. TUTORIALS

53

https://github.com/keycloak/keycloak-quickstarts/tree/latest/service-jee-jaxrs

Repeat these steps for the admin role.

Create the Red Hat Single Sign-On Realm Management User

1. Click Users in the Manage sidebar to view the user information for the realm.

2. Click Add User.

3. Enter a valid Username (this example uses the user appuser) and click Save.

4. Edit the user configuration:

a. Click the Credentials tab in the user space and enter a password for the user (this example
uses the password apppassword).

b. Ensure the Temporary Password option is set to Off so that it does not prompt for a
password change later on, and click Reset Password to set the user password. A pop-up
window will prompt you to confirm.

4.4.1.2. Assign the user role to the realm management user

Perform the following steps to tie the previously created appuser with the user Red Hat Single Sign-
On role:

1. Click Role Mappings to list the realm and client role configuration. In Available Roles, select the
user role created earlier, and click Add selected>.

2. Click Client Roles, select realm-management entry from the list, select each record in the
Available Roles list.

NOTE

You can select multiple items at once by holding the Ctrl key and simultaneously
clicking the first impersonation entry. While keeping the Ctrl key and the left
mouse button pressed, move to the end of the list to the view-clients entry and
ensure each record is selected.

3. Click Add selected> to assign the roles to the client.

4.4.1.3. Prepare Red Hat Single Sign-On Authentication for OpenShift Deployment of the
EAP 6.4 / 7.1 JSP Application

Procedure

1. Create a new project for the EAP 6.4 / 7.1 JSP application.

2. Add the view role to the default service account. This enables the service account to view all
the resources in the eap-app-demo namespace, which is necessary for managing the cluster.

3. The EAP template requires an SSL keystore and a JGroups keystore. This example uses

$ oc new-project eap-app-demo

$ oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

54

https://docs.openshift.com/container-platform/latest/authentication/using-service-accounts-in-applications.html#default-service-accounts-and-roles_using-service-accounts

3. The EAP template requires an SSL keystore and a JGroups keystore. This example uses
keytool, a package included with the Java Development Kit, to generate self-signed certificates
for these keystores.

a. Generate a secure key for the SSL keystore (this example uses password as password for
the keystore).

b. Generate a secure key for the JGroups keystore (this example uses password as password
for the keystore).

c. Generate the EAP 6.4 / 7.1 for OpenShift secrets with the SSL and JGroup keystore files.

d. Add the EAP application secret to the default service account.

4.4.1.4. Deploy binary build of the EAP 6.4 / 7.1 JSP application

Procedure

1. Clone the source code.

Configure the Red Hat JBoss Middleware Maven repository

2. Build both the service-jee-jaxrs and app-jee-jsp applications.

a. Build the service-jee-jaxrs application.

$ keytool -genkeypair \
-dname "CN=secure-eap-app-eap-app-demo.openshift.example.com" \
-alias https \
-storetype JKS \
-keystore eapkeystore.jks

$ keytool -genseckey \
-alias jgroups \
-storetype JCEKS \
-keystore eapjgroups.jceks

$ oc create secret generic eap-ssl-secret --from-file=eapkeystore.jks

$ oc create secret generic eap-jgroup-secret --from-file=eapjgroups.jceks

$ oc secrets link default eap-ssl-secret eap-jgroup-secret

$ git clone https://github.com/keycloak/keycloak-quickstarts.git

$ cd keycloak-quickstarts/service-jee-jaxrs/

$ mvn clean package -DskipTests
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Keycloak Quickstart: service-jee-jaxrs 3.1.0.Final
[INFO] --

CHAPTER 4. TUTORIALS

55

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/red_hat_single_sign-on_for_openshift/#Configuring-Keystores
https://docs.openshift.com/container-platform/latest/authentication/using-service-accounts-in-applications.html#default-service-accounts-and-roles_using-service-accounts
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/index#use_the_maven_repository
https://access.redhat.com/maven-repository
https://github.com/keycloak/keycloak-quickstarts/tree/latest/service-jee-jaxrs
https://github.com/keycloak/keycloak-quickstarts/tree/latest/app-jee-jsp

b. Comment out the app-jee-jsp/config/keycloak.json requirement of the maven-enforcer-
plugin plugin and build the app-jee-jsp application.

IMPORTANT

The app-jee-jsp quickstart requires you to configure the adapter, and that
the adapter configuration file (keycloak.json) is present in the config/
directory in the root of the quickstart to successfully build the quickstart. But
since this example configures the adapter later via selected environment
variables available for the EAP 6.4 / 7.1 for OpenShift image, it is not
necessary to specify the form of keycloak.json adapter configuration file at
this moment.

4. Prepare the directory structure on the local file system.
Application archives in the deployments/ subdirectory of the main binary build directory are
copied directly to the standard deployments directory of the image being built on OpenShift.
For the application to deploy, the directory hierarchy containing the web application data must
be correctly structured.

Create the main directory for the binary build on the local file system and deployments/
subdirectory within it. Copy the previously built WAR archives of both the service-jee-jaxrs and
app-jee-jsp quickstarts to the deployments/ subdirectory:

...
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 2.153 s
[INFO] Finished at: 2017-06-26T12:06:12+02:00
[INFO] Final Memory: 25M/241M
[INFO] --

service-jee-jaxrs]$ cd ../app-jee-jsp/

app-jee-jsp]$ sed -i /\<executions\>/s/^/\<\!--/ pom.xml

app-jee-jsp]$ sed -i '/\(<\/executions>\)/a\-->' pom.xml

app-jee-jsp]$ mvn clean package -DskipTests
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Keycloak Quickstart: app-jee-jsp 3.1.0.Final
[INFO] --
...
[INFO] Building war: /tmp/github/keycloak-quickstarts/app-jee-jsp/target/app-jsp.war
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 3.018 s
[INFO] Finished at: 2017-06-26T12:22:25+02:00
[INFO] Final Memory: 35M/310M
[INFO] --

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

56

https://github.com/keycloak/keycloak-quickstarts/tree/latest/app-jee-jsp

NOTE

The location of the standard deployments directory depends on the underlying
base image, that was used to deploy the application. See the following table:

Table 4.1. Standard Location of the Deployments Directory

Name of the Underlying Base Image(s) Standard Location of the Deployments
Directory

EAP for OpenShift 6.4 and 7.1 $JBOSS_HOME/standalone/deployme
nts

Java S2I for OpenShift /deployments

JWS for OpenShift $JWS_HOME/webapps

5. Identify the image stream for EAP 6.4 / 7.1 image.

6. Create new binary build, specifying image stream and application name.

NOTE

Replace --image-stream=jboss-eap71-openshift parameter with the --image-
stream=jboss-eap64-openshift one in the following oc command to deploy the
JSP application on top of JBoss EAP 6.4 for OpenShift image.

app-jee-jsp]$ ls
config pom.xml README.md src target

app-jee-jsp]$ mkdir -p sso-eap7-bin-demo/deployments

app-jee-jsp]$ cp target/app-jsp.war sso-eap7-bin-demo/deployments/

app-jee-jsp]$ cp ../service-jee-jaxrs/target/service.war sso-eap7-bin-demo/deployments/

app-jee-jsp]$ tree sso-eap7-bin-demo/
sso-eap7-bin-demo/
|__ deployments
 |__ app-jsp.war
 |__ service.war

1 directory, 2 files

$ oc get is -n openshift | grep eap | cut -d ' ' -f 1
jboss-eap64-openshift
jboss-eap71-openshift

$ oc new-build --binary=true \

CHAPTER 4. TUTORIALS

57

7. Start the binary build. Instruct oc executable to use main directory of the binary build we
created in previous step as the directory containing binary input for the OpenShift build. In the
working directory of app-jee-jsp issue the following command.

--image-stream=jboss-eap71-openshift \
--name=eap-app
--> Found image 31895a4 (3 months old) in image stream "openshift/jboss-eap71-openshift"
under tag "latest" for "jboss-eap71-openshift"

 JBoss EAP 7.4

 Platform for building and running Jakarta EE applications on JBoss EAP 7.4

 Tags: builder, javaee, eap, eap7

 * A source build using binary input will be created
 * The resulting image will be pushed to image stream "eap-app:latest"
 * A binary build was created, use 'start-build --from-dir' to trigger a new build

--> Creating resources with label build=eap-app ...
 imagestream "eap-app" created
 buildconfig "eap-app" created
--> Success

app-jee-jsp]$ oc start-build eap-app \
--from-dir=./sso-eap7-bin-demo/ \
--follow
Uploading directory "sso-eap7-bin-demo" as binary input for the build ...
build "eap-app-1" started
Receiving source from STDIN as archive ...
Copying all war artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...
Copying all ear artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...
Copying all rar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...
Copying all jar artifacts from /home/jboss/source/. directory into
/opt/eap/standalone/deployments for later deployment...
Copying all war artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...
'/home/jboss/source/deployments/app-jsp.war' -> '/opt/eap/standalone/deployments/app-
jsp.war'
'/home/jboss/source/deployments/service.war' ->
'/opt/eap/standalone/deployments/service.war'
Copying all ear artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...
Copying all rar artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...
Copying all jar artifacts from /home/jboss/source/deployments directory into
/opt/eap/standalone/deployments for later deployment...
Pushing image 172.30.82.129:5000/eap-app-demo/eap-app:latest ...
Pushed 6/7 layers, 86% complete
Pushed 7/7 layers, 100% complete
Push successful

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

58

8. Create a new OpenShift application based on the build.

9. Stop all running containers of the EAP 6.4 / 7.1 JSP application in the current namespace.

10. Further configure the EAP 6.4 / 7.1 JSP application prior the deployment.

a. Configure the application with proper details about the Red Hat Single Sign-On server
instance.

WARNING

Ensure to replace the value of SSO_PUBLIC_KEY variable below with
the actual content of the RSA public key for the demo realm, that has
been copied.

$ oc new-app eap-app
--> Found image 6b13d36 (2 minutes old) in image stream "eap-app-demo/eap-app" under
tag "latest" for "eap-app"

 eap-app-demo/eap-app-1:aa2574d9

 Platform for building and running Jakarta EE applications on JBoss EAP 7.4

 Tags: builder, javaee, eap, eap7

 * This image will be deployed in deployment config "eap-app"
 * Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service "eap-app"
 * Other containers can access this service through the hostname "eap-app"

--> Creating resources ...
 deploymentconfig "eap-app" created
 service "eap-app" created
--> Success
 Run 'oc status' to view your app.

$ oc get dc -o name
deploymentconfig/eap-app

$ oc scale dc/eap-app --replicas=0
deploymentconfig "eap-app" scaled



$ oc set env dc/eap-app \
-e HOSTNAME_HTTP="eap-app-eap-app-demo.openshift.example.com" \
-e HOSTNAME_HTTPS="secure-eap-app-eap-app-demo.openshift.example.com" \
-e SSO_DISABLE_SSL_CERTIFICATE_VALIDATION="true" \
-e SSO_USERNAME="appuser" \
-e SSO_PASSWORD="apppassword" \
-e SSO_REALM="demo" \
-e SSO_URL="https://secure-sso-sso-app-demo.openshift.example.com/auth" \

CHAPTER 4. TUTORIALS

59

b. Configure the application with details about both the SSL and JGroups keystore.

c. Define OpenShift volumes for both the SSL and JGroups secrets created earlier.

d. Configure the deployment config of the application to run application pods under the
default OpenShift service account (default setting).

11. Deploy container of the EAP 6.4 / 7.1 JSP application using the modified deployment config.

12. Expose the service as route.

-e
SSO_PUBLIC_KEY="MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAkdhXyK
x97oIoO6HwnV/MiX2EHO55Sn+ydsPzbjJevI5F31UvUco9uA8dGl6oM8HrnaWWv+i8Pvmla
RMhhl6Xs68vJTEc6d0soP+6A+aExw0coNRp2PDwvzsXVWPvPQg3+iytStxu3Icndx+gC0ZY
nxoRqL7rY7zKcQBScGEr78Nw6vZDwfe6d/PQ6W4xVErNytX9KyLFVAE1VvhXALyqEM/E
qYGLmpjw5bMGVKRXnhmVo9E88CkFDH8E+aPiApb/gFul1GJOv+G8ySLoR1c8Y3L29F7
C81odkVBp2yMm3RVFIGSPTjHqjO/nOtqYIfY4Wyw9mRIoY5SyW7044dZXRwIDAQAB"
\
-e SSO_SECRET="0bb8c399-2501-4fcd-a183-68ac5132868d"
deploymentconfig "eap-app" updated

$ oc set env dc/eap-app \
-e HTTPS_KEYSTORE_DIR="/etc/eap-secret-volume" \
-e HTTPS_KEYSTORE="eapkeystore.jks" \
-e HTTPS_PASSWORD="password" \
-e JGROUPS_ENCRYPT_SECRET="eap-jgroup-secret" \
-e JGROUPS_ENCRYPT_KEYSTORE_DIR="/etc/jgroups-encrypt-secret-volume" \
-e JGROUPS_ENCRYPT_KEYSTORE="eapjgroups.jceks" \
-e JGROUPS_ENCRYPT_PASSWORD="password"
deploymentconfig "eap-app" updated

$ oc volume dc/eap-app --add \
--name="eap-keystore-volume" \
--type=secret \
--secret-name="eap-ssl-secret" \
--mount-path="/etc/eap-secret-volume"
deploymentconfig "eap-app" updated

$ oc volume dc/eap-app --add \
--name="eap-jgroups-keystore-volume" \
--type=secret \
--secret-name="eap-jgroup-secret" \
--mount-path="/etc/jgroups-encrypt-secret-volume"
deploymentconfig "eap-app" updated

$ oc patch dc/eap-app --type=json \
-p '[{"op": "add", "path": "/spec/template/spec/serviceAccountName", "value": "default"}]'
"eap-app" patched

$ oc scale dc/eap-app --replicas=1
deploymentconfig "eap-app" scaled

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

60

4.4.1.5. Access the application

Access the application in your browser using the URL http://eap-app-eap-app-
demo.openshift.example.com/app-jsp. You should see output like on the following image:

Procedure

Perform the following to test the application:

1. Click the INVOKE PUBLIC button to access the public endpoint that doesn’t require
authentication.
You should see the Message: public output.

2. Click the LOGIN button to be redirected for user authentication to the Red Hat Single Sign-On
server instance against the demo realm.
Specify the username and password of the Red Hat Single Sign-On user configured earlier
(appuser / apppassword). Click Log in. The look of the application changes as detailed in the
following image:

$ oc get svc -o name
service/eap-app

$ oc get route
No resources found.

$ oc expose svc/eap-app
route "eap-app" exposed

$ oc get route
NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD
eap-app eap-app-eap-app-demo.openshift.example.com eap-app 8080-tcp
None

CHAPTER 4. TUTORIALS

61

3. Click the INVOKE SECURED button to access the secured endpoint.
You should see the Message: secured output.

4. Click the INVOKE ADMIN button to access the admin endpoint.
You should see 403 Forbidden output.

NOTE

The admin endpoint requires users with admin Red Hat Single Sign-On role to
invoke properly. Access for the appuser is forbidden because they only have
user role privilege, which allows them to access the secured endpoint.

Procedure

Perform the following steps to add the appuser to the admin Red Hat Single Sign-On role:

1. Access the Admin Console of the Red Hat Single Sign-On server’s instance.
https://secure-sso-sso-app-demo.openshift.example.com/auth/admin.

Use the credentials of the Red Hat Single Sign-On administrator user .

2. Click Users in the Manage sidebar to view the user information for the demo realm.

3. Click View all users button.

4. Click the ID link for the appuser or alternatively click the Edit button in the Actions column.

5. Click the Role Mappings tab.

6. Select admin entry from the Available Roles list in the Realm Roles row.

7. Click Add selected> button to add the admin role to the user.

8. Return to EAP 6.4 / 7.1 JSP service application.
http://eap-app-eap-app-demo.openshift.example.com/app-jsp .

9. Click the LOGOUT button to reload role mappings for the appuser.

10. Click the LOGIN button again and provider appuser credentials.

11. Click the INVOKE ADMIN button again.
You should see the Message: admin output already.

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

62

4.5. AUTOMATICALLY REGISTERING AN EAP APPLICATION IN RED
HAT SINGLE SIGN-ON WITH AN OPENID-CONNECT CLIENT

This example prepares Red Hat Single Sign-On realm, role, and user credentials for an EAP project using
an OpenID-Connect client adapter. These credentials are then provided in the EAP for OpenShift
template for automatic Red Hat Single Sign-On client registration. Once deployed, the Red Hat Single
Sign-On user can be used to authenticate and access JBoss EAP.

NOTE

This example uses a OpenID-Connect client but an SAML client could also be used. See
Red Hat Single Sign-On Clients and Automatic and Manual Red Hat Single Sign-On
Client Registration Methods for more information on the differences between OpenID-
Connect and SAML clients.

Prerequisites

The steps described in the Preparing Red Hat Single Sign-On Authentication for OpenShift
Deployment section have been performed already.

4.5.1. Preparing Red Hat Single Sign-On authentication for OpenShift deployment

Log in to the OpenShift CLI with a user that holds the cluster:admin role.

1. Create a new project:

2. Add the view role to the default service account. This enables the service account to view all
the resources in the eap-app-demo namespace, which is necessary for managing the cluster.

3. The EAP template requires an SSL keystore and a JGroups keystore.
This example uses keytool, a package included with the Java Development Kit, to generate self-
signed certificates for these keystores. The following commands will prompt for passwords.

a. Generate a secure key for the SSL keystore:

b. Generate a secure key for the JGroups keystore:

4. Generate the EAP for OpenShift secrets with the SSL and JGroup keystore files:

5. Add the EAP secret to the default service account:

$ oc new-project eap-app-demo

$ oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default

$ keytool -genkeypair -alias https -storetype JKS -keystore eapkeystore.jks

$ keytool -genseckey -alias jgroups -storetype JCEKS -keystore eapjgroups.jceks

$ oc create secret generic eap-ssl-secret --from-file=eapkeystore.jks
$ oc create secret generic eap-jgroup-secret --from-file=eapjgroups.jceks

$ oc secrets link default eap-ssl-secret eap-jgroup-secret

CHAPTER 4. TUTORIALS

63

https://docs.openshift.com/container-platform/latest/authentication/using-service-accounts-in-applications.html#default-service-accounts-and-roles_using-service-accounts

4.5.2. Preparing the Red Hat Single Sign-On credentials

Log in to the encrypted Red Hat Single Sign-On web server at https://secure-sso-<project-
name>.<hostname>/auth/admin using the administrator account created during the Red Hat Single
Sign-On deployment.

Procedure

Create a Realm

1. Hover your cursor over the realm namespace at the top of the sidebar and click Add Realm.

2. Enter a realm name (this example uses eap-demo) and click Create.

Copy the Public Key

In the newly created eap-demo realm, click the Keys tab and copy the generated public key. This
example uses the variable <realm-public-key> for brevity. This is used later to deploy the Red Hat Single
Sign-On-enabled JBoss EAP image.

Create a Role

Create a role in Red Hat Single Sign-On with a name that corresponds to the JEE role defined in the
web.xml of the example EAP application. This role is assigned to an Red Hat Single Sign-On application
user to authenticate access to user applications.

1. Click Roles in the Configure sidebar to list the roles for this realm. This is a new realm, so there
should only be the default offline_access role.

2. Click Add Role.

3. Enter the role name (this example uses the role eap-user-role) and click Save.

Create Users and Assign Roles

Create two users: - Assign the realm management user the realm-management roles to handle
automatic Red Hat Single Sign-On client registration in the Red Hat Single Sign-On server. - Assign the
application user the JEE role, created in the previous step, to authenticate access to user applications.

Create the realm management user :

1. Click Users in the Manage sidebar to view the user information for the realm.

2. Click Add User.

3. Enter a valid Username (this example uses the user eap-mgmt-user) and click Save.

4. Edit the user configuration. Click the Credentials tab in the user space and enter a password for
the user. After the password has been confirmed you can click Reset Password to set the user
password. A pop-up window prompts for additional confirmation.

5. Click Role Mappings to list the realm and client role configuration. In the Client Roles drop-
down menu, select realm-management and add all of the available roles to the user. This
provides the user Red Hat Single Sign-On server rights that can be used by the JBoss EAP
image to create clients.

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

64

Create the application user :

1. Click Users in the Manage sidebar to view the user information for the realm.

2. Click Add User.

3. Enter a valid Username and any additional optional information for the application user and click
Save.

4. Edit the user configuration. Click the Credentials tab in the user space and enter a password for
the user. After the password has been confirmed you can click Reset Password to set the user
password. A pop-up window prompts for additional confirmation.

5. Click Role Mappings to list the realm and client role configuration. In Available Roles, add the
role created earlier.

4.5.3. Deploy the Red Hat Single Sign-On-enabled JBoss EAP image

,Procedure

1. Return to the OpenShift web console and click Add to project to list the default image streams
and templates.

2. Use the Filter by keyword search bar to limit the list to those that match sso. You may need to
click See all to show the desired application template.

3. Select the eap71-sso-s2i image to list all of the deployment parameters. Include the following
Red Hat Single Sign-On parameters to configure the Red Hat Single Sign-On credentials
during the EAP build:

Variable Example Value

APPLICATION_NAME sso

HOSTNAME_HTTPS secure-sample-jsp.eap-app-
demo.openshift32.example.com

HOSTNAME_HTTP sample-jsp.eap-app-
demo.openshift32.example.com

SOURCE_REPOSITORY_URL https://repository-
example.com/developer/application

SSO_URL https://secure-sso-sso-app-
demo.openshift32.example.com/auth

SSO_REALM eap-demo

SSO_USERNAME eap-mgmt-user

SSO_PASSWORD password

SSO_PUBLIC_KEY <realm-public-key>

CHAPTER 4. TUTORIALS

65

HTTPS_KEYSTORE eapkeystore.jks

HTTPS_PASSWORD password

HTTPS_SECRET eap-ssl-secret

JGROUPS_ENCRYPT_KEYSTORE eapjgroups.jceks

JGROUPS_ENCRYPT_PASSWORD password

JGROUPS_ENCRYPT_SECRET eap-jgroup-secret

Variable Example Value

4. Click Create to deploy the JBoss EAP image.

It may take several minutes for the JBoss EAP image to deploy.

4.5.4. Log in to the JBoss EAP Server using Red Hat Single Sign-On

Procedure

1. Access the JBoss EAP application server and click Login. You are redirected to the Red Hat
Single Sign-On login.

2. Log in using the Red Hat Single Sign-On user created in the example. You are authenticated
against the Red Hat Single Sign-On server and returned to the JBoss EAP application server.

4.6. MANUALLY REGISTERING EAP APPLICATION IN RED HAT SINGLE
SIGN-ON WITH SAML CLIENT

This example prepares Red Hat Single Sign-On realm, role, and user credentials for an EAP project and
configures an EAP for OpenShift deployment. Once deployed, the Red Hat Single Sign-On user can be
used to authenticate and access JBoss EAP.

NOTE

This example uses a SAML client but an OpenID-Connect client could also be used. See
Red Hat Single Sign-On Clients and Automatic and Manual Red Hat Single Sign-On
Client Registration Methods for more information on the differences between SAML and
OpenID-Connect clients.

Prerequisites

The steps described in the Preparing Red Hat Single Sign-On Authentication for OpenShift
Deployment section have been performed already.

4.6.1. Preparing the Red Hat Single Sign-On credentials

Procedure

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

66

Log in to the encrypted Red Hat Single Sign-On web server at https://secure-sso-<project-
name>.<hostname>/auth/admin using the administrator account created during the Red Hat Single
Sign-On deployment.

Create a Realm

1. Hover your cursor over the realm namespace (default is Master) at the top of the sidebar and
click Add Realm.

2. Enter a realm name (this example uses saml-demo) and click Create.

Copy the Public Key

In the newly created saml-demo realm, click the Keys tab and copy the generated public key. This
example uses the variable realm-public-key for brevity. This is needed later to deploy the Red Hat
Single Sign-On-enabled JBoss EAP image.

Create a Role

Create a role in Red Hat Single Sign-On with a name that corresponds to the JEE role defined in the
web.xml of the example EAP application. This role will be assigned to an Red Hat Single Sign-On
application user to authenticate access to user applications.

1. Click Roles in the Configure sidebar to list the roles for this realm. This is a new realm, so there
should only be the default offline_access role.

2. Click Add Role.

3. Enter the role name (this example uses the role saml-user-role) and click Save.

Create Users and Assign Roles

Create two users: - Assign the realm management user the realm-management roles to handle
automatic Red Hat Single Sign-On client registration in the Red Hat Single Sign-On server. - Assign the
application user the JEE role, created in the previous step, to authenticate access to user applications.

Create the realm management user :

1. Click Users in the Manage sidebar to view the user information for the realm.

2. Click Add User.

3. Enter a valid Username (this example uses the user app-mgmt-user) and click Save.

4. Edit the user configuration. Click the Credentials tab in the user space and enter a password for
the user. After the password has been confirmed you can click Reset Password to set the user
password. A pop-up window prompts for additional confirmation.

Create the application user :

1. Click Users in the Manage sidebar to view the user information for the realm.

2. Click Add User.

3. Enter a valid Username and any additional optional information for the application user and click
Save.

4. Edit the user configuration. Click the Credentials tab in the user space and enter a password for

CHAPTER 4. TUTORIALS

67

4. Edit the user configuration. Click the Credentials tab in the user space and enter a password for
the user. After the password has been confirmed you can click Reset Password to set the user
password. A pop-up window prompts for additional confirmation.

5. Click Role Mappings to list the realm and client role configuration. In Available Roles, add the
role created earlier.

Create and Configure a SAML Client:

Clients are Red Hat Single Sign-On entities that request user authentication. This example configures a
SAML client to handle authentication for the EAP application. This section saves two files, keystore.jks
and keycloak-saml-subsystem.xml that are needed later in the procedure.

Create the SAML Client:

1. Click Clients in the Configure sidebar to list the clients in the realm. Click Create.

2. Enter a valid Client ID. This example uses sso-saml-demo.

3. In the Client Protocol drop-down menu, select saml.

4. Enter the Root URL for the application. This example uses https://demoapp-eap-app-
demo.openshift32.example.com.

5. Click Save.

Configure the SAML Client:

In the Settings tab, set the Root URL and the Valid Redirect URLs for the new sso-saml-demo client:

1. For the Root URL, enter the same address used when creating the client. This example uses
https://demoapp-eap-app-demo.openshift32.example.com.

2. For the Valid Redirect URLs, enter an address for users to be redirected to at when they log in
or out. This example uses a redirect address relative to the root https://demoapp-eap-app-
demo.openshift32.example.com/*.

Export the SAML Keys:

1. Click the SAML Keys tab in the sso-saml-demo client space and click Export.

2. For this example, leave the Archive Format as JKS. This example uses the default Key Alias of
sso-saml-demo and default Realm Certificate Alias of saml-demo.

3. Enter the Key Password and the Store Password. This example uses password for both.

4. Click Download and save the keystore-saml.jks file for use later.

5. Click the sso-saml-demo client to return to the client space ready for the next step.

Download the Client Adapter:

1. Click Installation.

2. Use the Format Option drop-down menu to select a format. This example uses Keycloak
SAML Wildfly/JBoss Subsystem.

3. Click Download and save the file keycloak-saml-subsystem.xml.

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

68

The keystore-saml.jks will be used with the other EAP keystores in the next section to create an
OpenShift secret for the EAP application project. Copy the keystore-saml.jks file to an OpenShift
node.
The keycloak-saml-subsystem.xml will be modified and used in the application deployment. Copy it
into the /configuration folder of the application as secure-saml-deployments.

4.6.2. Preparing Red Hat Single Sign-On authentication for OpenShift deployment

Log in to the OpenShift CLI with a user that holds the cluster:admin role.

Procedure

1. Create a new project:

2. Add the view role to the default service account. This enables the service account to view all
the resources in the eap-app-demo namespace, which is necessary for managing the cluster.

3. The EAP template requires an SSL keystore and a JGroups keystore.
This example uses keytool, a package included with the Java Development Kit, to generate self-
signed certificates for these keystores. The following commands will prompt for passwords.

a. Generate a secure key for the SSL keystore:

b. Generate a secure key for the JGroups keystore:

4. Generate the EAP for OpenShift secrets with the SSL and JGroup keystore files:

5. Add the EAP application secret to the EAP service account created earlier:

4.6.3. Modifying the secure-saml-deployments file

Prerequisites

The keycloak-saml-subsystem.xml, exported from the Red Hat Single Sign-On client in a
previous section, should have been copied into the /configuration folder of the application and
renamed secure-saml-deployments. EAP searches for this file when it starts and copies it to
the standalone-openshift.xml file inside the Red Hat Single Sign-On SAML adapter
configuration.

Procedure

$ oc new-project eap-app-demo

$ oc policy add-role-to-user view system:serviceaccount:$(oc project -q):default

$ keytool -genkeypair -alias https -storetype JKS -keystore eapkeystore.jks

$ keytool -genseckey -alias jgroups -storetype JCEKS -keystore eapjgroups.jceks

$ oc create secret generic eap-ssl-secret --from-file=eapkeystore.jks
$ oc create secret generic eap-jgroup-secret --from-file=eapjgroups.jceks

$ oc secrets link default eap-ssl-secret eap-jgroup-secret

CHAPTER 4. TUTORIALS

69

https://docs.openshift.com/container-platform/latest/authentication/using-service-accounts-in-applications.html#default-service-accounts-and-roles_using-service-accounts

Procedure

1. Open the /configuration/secure-saml-deployments file in a text editor.

2. Replace the YOUR-WAR.war value of the secure-deployment name tag with the application
.war file. This example uses sso-saml-demo.war.

3. Replace the SPECIFY YOUR LOGOUT PAGE! value of the logout page tag with the url to
redirect users when they log out of the application. This example uses /index.jsp.

4. Delete the <PrivateKeyPem> and <CertificatePem> tags and keys and replace it with keystore
information:

The mount path of the keystore-saml.jks (in this example /etc/eap-secret-volume/keystore-
saml.jks) can be specified in the application template with the parameter
EAP_HTTPS_KEYSTORE_DIR.
The aliases and passwords for the PrivateKey and the Certificate were configured when the
SAML Keys were exported from the Red Hat Single Sign-On client.

5. Delete the second <CertificatePem> tag and key and replace it with the the realm certificate
information:

The certificate alias and password were configured when the SAML Keys were exported from
the Red Hat Single Sign-On client.

6. Save and close the /configuration/secure-saml-deployments file.

4.6.4. Configuring SAML Client Registration in the application web.xml

The client type must also be specified by the <auth-method> key in the application web.xml. This file is
read by the image at deployment.

Open the application web.xml file and ensure it includes the following:

...
<Keys>
 <Key signing="true">
 <KeyStore file= "/etc/eap-secret-volume/keystore-saml.jks" password="password">
 <PrivateKey alias="sso-saml-demo" password="password"/>
 <Certificate alias="sso-saml-demo"/>
 </KeyStore>
 </Key>
</Keys>

...
<Keys>
 <Key signing="true">
 <KeyStore file="/etc/eap-secret-volume/keystore-saml.jks" password="password">
 <Certificate alias="saml-demo"/>
 </KeyStore>
 </Key>
</Keys>
...

...
<login-config>

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

70

4.6.5. Deploying the application

You do not need to include any Red Hat Single Sign-On configuration for the image because that has
been configured in the application itself. Navigating to the application login page redirects you to the
Red Hat Single Sign-On login. Log in to the application through Red Hat Single Sign-On using the
application user user created earlier.

 <auth-method>KEYCLOAK-SAML</auth-method>
</login-config>
...

CHAPTER 4. TUTORIALS

71

CHAPTER 5. REFERENCE

5.1. ARTIFACT REPOSITORY MIRRORS

A repository in Maven holds build artifacts and dependencies of various types (all the project jars, library
jar, plugins or any other project specific artifacts). It also specifies locations from where to download
artifacts from, while performing the S2I build. Besides using central repositories, it is a common practice
for organizations to deploy a local custom repository (mirror).

Benefits of using a mirror are:

Availability of a synchronized mirror, which is geographically closer and faster.

Ability to have greater control over the repository content.

Possibility to share artifacts across different teams (developers, CI), without the need to rely on
public servers and repositories.

Improved build times.

Often, a repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http://10.0.0.1:8080/repository/internal/, the S2I build
can then use this manager by supplying the MAVEN_MIRROR_URL environment variable to the build
configuration of the application using the following procedure:

Procedure

1. Identify the name of the build configuration to apply MAVEN_MIRROR_URL variable against.

2. Update build configuration of sso with a MAVEN_MIRROR_URL environment variable.

3. Verify the setting.

4. Schedule new build of the application.

NOTE

During application build, you will notice that Maven dependencies are pulled from the
repository manager, instead of the default public repositories. Also, after the build is
finished, you will see that the mirror is filled with all the dependencies that were retrieved
and used during the build.

$ oc get bc -o name
buildconfig/sso

$ oc set env bc/sso \
 -e MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"
buildconfig "sso" updated

$ oc set env bc/sso --list
buildconfigs sso
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

72

5.2. ENVIRONMENT VARIABLES

5.2.1. Information environment variables

The following information environment variables are designed to convey information about the image
and should not be modified by the user:

Table 5.1. Information Environment Variables

Variable Name Description Example Value

AB_JOLOKIA_AUTH_OPENSHIF
T

- true

AB_JOLOKIA_HTTPS - true

AB_JOLOKIA_PASSWORD_RAN
DOM

- true

JBOSS_IMAGE_NAME Image name, same as "name"
label.

rh-sso-7/sso76-openshift-rhel8

JBOSS_IMAGE_VERSION Image version, same as "version"
label.

7.6

JBOSS_MODULES_SYSTEM_PK
GS

- org.jboss.logmanager,jdk.nashor
n.api

5.2.2. Configuration environment variables

Configuration environment variables are designed to conveniently adjust the image without requiring a
rebuild, and should be set by the user as desired.

Table 5.2. Configuration Environment Variables

Variable Name Description Example Value

AB_JOLOKIA_AUTH_OPENSHIF
T

Switch on client authentication
for OpenShift TLS
communication. The value of this
parameter can be a relative
distinguished name which must
be contained in a presented
client’s certificate. Enabling this
parameter will automatically
switch Jolokia into https
communication mode. The
default CA cert is set to
/var/run/secrets/kubernetes.i
o/serviceaccount/ca.crt.

true

CHAPTER 5. REFERENCE

73

AB_JOLOKIA_CONFIG If set uses this file (including path)
as Jolokia JVM agent properties
(as described in Jolokia’s
reference manual). If not set, the
/opt/jolokia/etc/jolokia.prope
rties file will be created using the
settings as defined in this
document, otherwise the rest of
the settings in this document are
ignored.

/opt/jolokia/custom.properties

AB_JOLOKIA_DISCOVERY_ENA
BLED

Enable Jolokia discovery. Defaults
to false.

true

AB_JOLOKIA_HOST Host address to bind to. Defaults
to 0.0.0.0.

127.0.0.1

AB_JOLOKIA_HTTPS Switch on secure communication
with https. By default self-signed
server certificates are generated
if no serverCert configuration is
given in AB_JOLOKIA_OPTS.
NOTE: If the values is set to an
empty string, https is turned off. If
the value is set to a non empty
string, https is turned on.

true

AB_JOLOKIA_ID Agent ID to use ($HOSTNAME by
default, which is the container id).

openjdk-app-1-xqlsj

AB_JOLOKIA_OFF If set disables activation of Jolokia
(i.e. echos an empty value). By
default, Jolokia is enabled. NOTE:
If the values is set to an empty
string, https is turned off. If the
value is set to a non empty string,
https is turned on.

true

AB_JOLOKIA_OPTS Additional options to be
appended to the agent
configuration. They should be
given in the format "key=value,
key=value, …<200b> "

backlog=20

AB_JOLOKIA_PASSWORD Password for basic authentication.
By default authentication is
switched off.

mypassword

Variable Name Description Example Value

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

74

https://jolokia.org/reference/html/agents.html#agents-jvm

AB_JOLOKIA_PASSWORD_RAN
DOM

If set, a random value is
generated for
AB_JOLOKIA_PASSWORD, and
it is saved in the
/opt/jolokia/etc/jolokia.pw file.

true

AB_JOLOKIA_PORT Port to use (Default: 8778). 5432

AB_JOLOKIA_USER User for basic authentication.
Defaults to jolokia.

myusername

CONTAINER_CORE_LIMIT A calculated core limit as
described in CFS Bandwidth
Control.

2

GC_ADAPTIVE_SIZE_POLICY_W
EIGHT

The weighting given to the
current Garbage Collection (GC)
time versus previous GC times.

90

GC_MAX_HEAP_FREE_RATIO Maximum percentage of heap
free after GC to avoid shrinking.

40

GC_MAX_METASPACE_SIZE The maximum metaspace size. 100

GC_TIME_RATIO_MIN_HEAP_FR
EE_RATIO

Minimum percentage of heap free
after GC to avoid expansion.

20

GC_TIME_RATIO Specifies the ratio of the time
spent outside the garbage
collection (for example, the time
spent for application execution)
to the time spent in the garbage
collection.

4

JAVA_DIAGNOSTICS Set this to get some diagnostics
information to standard out when
things are happening.

true

JAVA_INITIAL_MEM_RATIO This is used to calculate a default
initial heap memory based the
maximal heap memory. The
default is 100 which means 100%
of the maximal heap is used for
the initial heap size. You can skip
this mechanism by setting this
value to 0 in which case no -Xms
option is added.

100

Variable Name Description Example Value

CHAPTER 5. REFERENCE

75

https://www.kernel.org/doc/Documentation/scheduler/sched-bwc.txt

JAVA_MAX_MEM_RATIO It is used to calculate a default
maximal heap memory based on a
containers restriction. If used in a
Docker container without any
memory constraints for the
container then this option has no
effect. If there is a memory
constraint then -Xmx is set to a
ratio of the container available
memory as set here. The default
is 50 which means 50% of the
available memory is used as an
upper boundary. You can skip this
mechanism by setting this value
to 0 in which case no -Xmx
option is added.

40

JAVA_OPTS_APPEND Server startup options. -
Dkeycloak.migration.action=expo
rt -
Dkeycloak.migration.provider=dir
-Dkeycloak.migration.dir=/tmp

MQ_SIMPLE_DEFAULT_PHYSIC
AL_DESTINATION

For backwards compatability, set
to true to use MyQueue and
MyTopic as physical destination
name defaults instead of
queue/MyQueue and
topic/MyTopic.

false

OPENSHIFT_KUBE_PING_LABE
LS

Clustering labels selector. app=sso-app

OPENSHIFT_KUBE_PING_NAME
SPACE

Clustering project namespace. myproject

SCRIPT_DEBUG If set to true, ensurses that the
bash scripts are executed with the
-x option, printing the commands
and their arguments as they are
executed.

true

SSO_ADMIN_PASSWORD Password of the administrator
account for the master realm of
the Red Hat Single Sign-On
server. Required. If no value is
specified, it is auto generated and
displayed as an OpenShift
Instructional message when the
template is instantiated.

adm-password

Variable Name Description Example Value

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

76

SSO_ADMIN_USERNAME Username of the administrator
account for the master realm of
the Red Hat Single Sign-On
server. Required. If no value is
specified, it is auto generated and
displayed as an OpenShift
Instructional message when the
template is instantiated.

admin

SSO_HOSTNAME Custom hostname for the Red
Hat Single Sign-On server. Not
set by default. If not set, the
request hostname SPI provider,
which uses the request headers to
determine the hostname of the
Red Hat Single Sign-On server is
used. If set, the fixed hostname
SPI provider, with the hostname
of the Red Hat Single Sign-On
server set to the provided variable
value, is used. See dedicated
Customizing Hostname for the
Red Hat Single Sign-On Server
section for additional steps to be
performed, when
SSO_HOSTNAME variable is set.

rh-sso-
server.openshift.example.com

SSO_REALM Name of the realm to be created
in the Red Hat Single Sign-On
server if this environment variable
is provided.

demo

SSO_SERVICE_PASSWORD The password for the Red Hat
Single Sign-On service user.

mgmt-password

SSO_SERVICE_USERNAME The username used to access the
Red Hat Single Sign-On service.
This is used by clients to create
the application client(s) within the
specified Red Hat Single Sign-On
realm. This user is created if this
environment variable is provided.

sso-mgmtuser

SSO_TRUSTSTORE The name of the truststore file
within the secret.

truststore.jks

SSO_TRUSTSTORE_DIR Truststore directory. /etc/sso-secret-volume

SSO_TRUSTSTORE_PASSWORD The password for the truststore
and certificate.

mykeystorepass

Variable Name Description Example Value

CHAPTER 5. REFERENCE

77

SSO_TRUSTSTORE_SECRET The name of the secret containing
the truststore file. Used for sso-
truststore-volume volume.

truststore-secret

Variable Name Description Example Value

Available application templates for Red Hat Single Sign-On for OpenShift can combine the
aforementioned configuration variables with common OpenShift variables (for example
APPLICATION_NAME or SOURCE_REPOSITORY_URL), product specific variables (e.g.
HORNETQ_CLUSTER_PASSWORD), or configuration variables typical to database images (e.g.
POSTGRESQL_MAX_CONNECTIONS) yet. All of these different types of configuration variables can
be adjusted as desired to achieve the deployed Red Hat Single Sign-On-enabled application will align
with the intended use case as much as possible. The list of configuration variables, available for each
category of application templates for Red Hat Single Sign-On-enabled applications, is described below.

5.2.3. Template variables for all Red Hat Single Sign-On images

Table 5.3. Configuration Variables Available For All Red Hat Single Sign-On Images

Variable Description

APPLICATION_NAME The name for the application.

DB_MAX_POOL_SIZE Sets xa-pool/max-pool-size for the configured
datasource.

DB_TX_ISOLATION Sets transaction-isolation for the configured
datasource.

DB_USERNAME Database user name.

HOSTNAME_HTTP Custom hostname for http service route. Leave blank
for default hostname, e.g.: <application-name>.
<project>.<default-domain-suffix>.

HOSTNAME_HTTPS Custom hostname for https service route. Leave
blank for default hostname, e.g.: <application-name>.
<project>.<default-domain-suffix>.

HTTPS_KEYSTORE The name of the keystore file within the secret. If
defined along with HTTPS_PASSWORD and
HTTPS_NAME, enable HTTPS and set the SSL
certificate key file to a relative path under
$JBOSS_HOME/standalone/configuration.

HTTPS_KEYSTORE_TYPE The type of the keystore file (JKS or JCEKS).

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

78

https://docs.openshift.com/container-platform/latest/openshift_images/using-templates.html

HTTPS_NAME The name associated with the server certificate (e.g.
jboss). If defined along with HTTPS_PASSWORD and
HTTPS_KEYSTORE, enable HTTPS and set the SSL
name.

HTTPS_PASSWORD The password for the keystore and certificate (e.g.
mykeystorepass). If defined along with
HTTPS_NAME and HTTPS_KEYSTORE, enable
HTTPS and set the SSL key password.

HTTPS_SECRET The name of the secret containing the keystore file.

IMAGE_STREAM_NAMESPACE Namespace in which the ImageStreams for Red Hat
Middleware images are installed. These
ImageStreams are normally installed in the openshift
namespace. You should only need to modify this if
you’ve installed the ImageStreams in a different
namespace/project.

JGROUPS_CLUSTER_PASSWORD JGroups cluster password.

JGROUPS_ENCRYPT_KEYSTORE The name of the keystore file within the secret.

JGROUPS_ENCRYPT_NAME The name associated with the server certificate (e.g.
secret-key).

JGROUPS_ENCRYPT_PASSWORD The password for the keystore and certificate (e.g.
password).

JGROUPS_ENCRYPT_SECRET The name of the secret containing the keystore file.

SSO_ADMIN_USERNAME Username of the administrator account for the
master realm of the Red Hat Single Sign-On server.
Required. If no value is specified, it is auto generated
and displayed as an OpenShift instructional message
when the template is instantiated.

SSO_ADMIN_PASSWORD Password of the administrator account for the
master realm of the Red Hat Single Sign-On server.
Required. If no value is specified, it is auto generated
and displayed as an OpenShift instructional message
when the template is instantiated.

SSO_REALM Name of the realm to be created in the Red Hat
Single Sign-On server if this environment variable is
provided.

Variable Description

CHAPTER 5. REFERENCE

79

SSO_SERVICE_USERNAME The username used to access the Red Hat Single
Sign-On service. This is used by clients to create the
application client(s) within the specified Red Hat
Single Sign-On realm. This user is created if this
environment variable is provided.

SSO_SERVICE_PASSWORD The password for the Red Hat Single Sign-On
service user.

SSO_TRUSTSTORE The name of the truststore file within the secret.

SSO_TRUSTSTORE_SECRET The name of the secret containing the truststore file.
Used for sso-truststore-volume volume.

SSO_TRUSTSTORE_PASSWORD The password for the truststore and certificate.

Variable Description

5.2.4. Template variables specific to sso76-ocp3-postgresql, sso76-ocp4-
postgresql, sso76-ocp3-postgresql-persistent, sso76-ocp4-postgresql-persistent,
sso76-ocp3-x509-postgresql-persistent, and sso76-ocp4-x509-postgresql-
persistent

Table 5.4. Configuration Variables Specific To Red Hat Single Sign-On-enabled PostgreSQL
Applications With Ephemeral Or Persistent Storage

Variable Description

DB_USERNAME Database user name.

DB_PASSWORD Database user password.

DB_JNDI Database JNDI name used by application to resolve
the datasource, e.g.
java:/jboss/datasources/postgresql

POSTGRESQL_MAX_CONNECTIONS The maximum number of client connections allowed.
This also sets the maximum number of prepared
transactions.

POSTGRESQL_SHARED_BUFFERS Configures how much memory is dedicated to
PostgreSQL for caching data.

5.2.5. Template variables for general eap64 and eap71 S2I images

Table 5.5. Configuration Variables For EAP 6.4 and EAP 7 Applications Built Via S2I

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

80

Variable Description

APPLICATION_NAME The name for the application.

ARTIFACT_DIR Artifacts directory.

AUTO_DEPLOY_EXPLODED Controls whether exploded deployment content
should be automatically deployed.

CONTEXT_DIR Path within Git project to build; empty for root
project directory.

GENERIC_WEBHOOK_SECRET Generic build trigger secret.

GITHUB_WEBHOOK_SECRET GitHub trigger secret.

HORNETQ_CLUSTER_PASSWORD HornetQ cluster administrator password.

HORNETQ_QUEUES Queue names.

HORNETQ_TOPICS Topic names.

HOSTNAME_HTTP Custom host name for http service route. Leave
blank for default host name, e.g.: <application-name>.
<project>.<default-domain-suffix>.

HOSTNAME_HTTPS Custom host name for https service route. Leave
blank for default host name, e.g.: <application-name>.
<project>.<default-domain-suffix>.

HTTPS_KEYSTORE_TYPE The type of the keystore file (JKS or JCEKS).

HTTPS_KEYSTORE The name of the keystore file within the secret. If
defined along with HTTPS_PASSWORD and
HTTPS_NAME, enable HTTPS and set the SSL
certificate key file to a relative path under
$JBOSS_HOME/standalone/configuration.

HTTPS_NAME The name associated with the server certificate (e.g.
jboss). If defined along with HTTPS_PASSWORD and
HTTPS_KEYSTORE, enable HTTPS and set the SSL
name.

HTTPS_PASSWORD The password for the keystore and certificate (e.g.
mykeystorepass). If defined along with
HTTPS_NAME and HTTPS_KEYSTORE, enable
HTTPS and set the SSL key password.

HTTPS_SECRET The name of the secret containing the keystore file.

CHAPTER 5. REFERENCE

81

IMAGE_STREAM_NAMESPACE Namespace in which the ImageStreams for Red Hat
Middleware images are installed. These
ImageStreams are normally installed in the openshift
namespace. You should only need to modify this if
you’ve installed the ImageStreams in a different
namespace/project.

JGROUPS_CLUSTER_PASSWORD JGroups cluster password.

JGROUPS_ENCRYPT_KEYSTORE The name of the keystore file within the secret.

JGROUPS_ENCRYPT_NAME The name associated with the server certificate (e.g.
secret-key).

JGROUPS_ENCRYPT_PASSWORD The password for the keystore and certificate (e.g.
password).

JGROUPS_ENCRYPT_SECRET The name of the secret containing the keystore file.

SOURCE_REPOSITORY_REF Git branch/tag reference.

SOURCE_REPOSITORY_URL Git source URI for application.

Variable Description

5.2.6. Template variables specific to eap64-sso-s2i and eap71-sso-s2i for automatic
client registration

Table 5.6. Configuration Variables For EAP 6.4 and EAP 7 Red Hat Single Sign-On-enabled
Applications Built Via S2I

Variable Description

SSO_URL Red Hat Single Sign-On server location.

SSO_REALM Name of the realm to be created in the Red Hat
Single Sign-On server if this environment variable is
provided.

SSO_USERNAME The username used to access the Red Hat Single
Sign-On service. This is used to create the
application client(s) within the specified Red Hat
Single Sign-On realm. This should match the
SSO_SERVICE_USERNAME specified through one
of the sso76- templates.

SSO_PASSWORD The password for the Red Hat Single Sign-On
service user.

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

82

SSO_PUBLIC_KEY Red Hat Single Sign-On public key. Public key is
recommended to be passed into the template to
avoid man-in-the-middle security attacks.

SSO_SECRET The Red Hat Single Sign-On client secret for
confidential access.

SSO_SERVICE_URL Red Hat Single Sign-On service location.

SSO_TRUSTSTORE_SECRET The name of the secret containing the truststore file.
Used for sso-truststore-volume volume.

SSO_TRUSTSTORE The name of the truststore file within the secret.

SSO_TRUSTSTORE_PASSWORD The password for the truststore and certificate.

SSO_BEARER_ONLY Red Hat Single Sign-On client access type.

SSO_DISABLE_SSL_CERTIFICATE_VALIDATION If true SSL communication between EAP and the
Red Hat Single Sign-On Server is insecure (i.e.
certificate validation is disabled with curl)

SSO_ENABLE_CORS Enable CORS for Red Hat Single Sign-On
applications.

Variable Description

5.2.7. Template variables specific to eap64-sso-s2i and eap71-sso-s2i for automatic
client registration with SAML clients

Table 5.7. Configuration Variables For EAP 6.4 and EAP 7 Red Hat Single Sign-On-enabled
Applications Built Via S2I Using SAML Protocol

Variable Description

SSO_SAML_CERTIFICATE_NAME The name associated with the server certificate.

SSO_SAML_KEYSTORE_PASSWORD The password for the keystore and certificate.

SSO_SAML_KEYSTORE The name of the keystore file within the secret.

SSO_SAML_KEYSTORE_SECRET The name of the secret containing the keystore file.

SSO_SAML_LOGOUT_PAGE Red Hat Single Sign-On logout page for SAML
applications.

CHAPTER 5. REFERENCE

83

5.3. EXPOSED PORTS

Port Number Description

8443 HTTPS

8778 Jolokia monitoring

Red Hat Single Sign-On 7.6 Red Hat Single Sign-On for OpenShift

84

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO RED HAT SINGLE SIGN-ON FOR OPENSHIFT
	1.1. WHAT IS RED HAT SINGLE SIGN-ON?
	1.2. COMPARISON: RED HAT SINGLE SIGN-ON FOR OPENSHIFT IMAGE VERSUS RED HAT SINGLE SIGN-ON
	1.3. TEMPLATES FOR USE WITH THIS SOFTWARE
	1.3.1. Passthrough templates
	1.3.2. Re-encryption templates
	1.3.2.1. OpenShift 3.x
	1.3.2.2. OpenShift 4.x

	1.3.3. Other templates

	1.4. VERSION COMPATIBILITY AND SUPPORT

	CHAPTER 2. CONFIGURING RED HAT SINGLE SIGN-ON FOR OPENSHIFT
	2.1. USING THE RED HAT SINGLE SIGN-ON FOR OPENSHIFT IMAGE STREAMS AND APPLICATION TEMPLATES
	2.2. DEPLOYING THE RED HAT SINGLE SIGN-ON IMAGE
	2.2.1. Preparing for the deployment
	2.2.2. Deploying the Red Hat Single Sign-On Image using the application template
	2.2.2.1. Deploying the Template using OpenShift CLI
	2.2.2.2. Deploying the Template using the OpenShift 3.x Web Console
	2.2.2.3. Deploying the Template using the OpenShift 4.x Web Console

	2.3. ACCESSING THE ADMINISTRATOR CONSOLE OF THE RED HAT SINGLE SIGN-ON POD

	CHAPTER 3. PERFORMING ADVANCED PROCEDURES
	3.1. DEPLOYING PASSTHROUGH TLS TERMINATION TEMPLATES
	3.1.1. Preparing the deployment
	3.1.2. Creating HTTPS and JGroups Keystores, and Truststore for the Red Hat Single Sign-On Server
	3.1.3. Creating secrets
	3.1.4. Deploying a Passthrough TLS template using the OpenShift CLI
	3.1.4.1. oc command guidelines
	3.1.4.2. Sample oc command

	3.2. CUSTOMIZING THE HOSTNAME FOR THE RED HAT SINGLE SIGN-ON SERVER
	3.3. CONNECTING TO AN EXTERNAL DATABASE
	3.4. CLUSTERING
	3.4.1. Configuring a JGroups discovery mechanism
	3.4.1.1. Configuring DNS_PING on a single-stack configured cluster
	3.4.1.2. Configuring DNS_PING on a dual-stack configured cluster
	3.4.1.3. Configuring KUBE_PING

	3.5. USING CUSTOM JDBC DRIVER
	3.6. CREATING THE ADMINISTRATOR ACCOUNT FOR RED HAT SINGLE SIGN-ON SERVER
	3.6.1. Creating the Administrator Account using template parameters
	3.6.2. Creating the Administrator Account via a remote shell session to Red Hat Single Sign-On Pod

	3.7. CUSTOMIZING THE DEFAULT BEHAVIOR OF THE RED HAT SINGLE SIGN-ON IMAGE
	3.8. DEPLOYMENT PROCESS
	3.9. RED HAT SINGLE SIGN-ON CLIENTS
	3.9.1. Automatic and manual Red Hat Single Sign-On client registration methods
	3.9.1.1. Automatic Red Hat Single Sign-On client registration
	3.9.1.2. Manual Red Hat Single Sign-On client registration

	3.10. USING RED HAT SINGLE SIGN-ON VAULT WITH OPENSHIFT SECRETS
	3.11. LIMITATIONS

	CHAPTER 4. TUTORIALS
	4.1. UPDATING A DATABASE FOR A NEW RED HAT SINGLE SIGN-ON FOR OPENSHIFT IMAGE VERSION
	4.1.1. PostgreSQL version upgrade and database migration
	4.1.2. Automatic database migration
	4.1.3. Manual database migration

	4.2. MIGRATING THE RED HAT SINGLE SIGN-ON SERVER’S DATABASE ACROSS ENVIRONMENTS
	4.2.1. Deploying the Red Hat Single Sign-On PostgreSQL application template
	4.2.2. (Optional) Creating additional realms and users to be exported
	4.2.3. Export the Red Hat Single Sign-On database as a JSON file on the OpenShift pod
	4.2.4. Retrieve and import the exported JSON file

	4.3. CONFIGURING OPENSHIFT 3.11 TO USE RED HAT SINGLE SIGN-ON FOR AUTHENTICATION
	4.3.1. Configuring Red Hat Single Sign-On Credentials
	4.3.2. Configuring OpenShift Master for Red Hat Single Sign-On authentication
	4.3.3. Logging in to OpenShift

	4.4. CREATING AN OPENSHIFT APPLICATION FROM MAVEN BINARIES AND SECURING IT USING RED HAT SINGLE SIGN-ON
	4.4.1. Deploy Binary Build of EAP 6.4 / 7.1 JSP Service Invocation Application and Secure it Using Red Hat Single Sign-On
	4.4.1.1. Create Red Hat Single Sign-On Realm, Roles, and User for the EAP 6.4 / 7.1 JSP Application
	4.4.1.2. Assign the user role to the realm management user
	4.4.1.3. Prepare Red Hat Single Sign-On Authentication for OpenShift Deployment of the EAP 6.4 / 7.1 JSP Application
	4.4.1.4. Deploy binary build of the EAP 6.4 / 7.1 JSP application
	4.4.1.5. Access the application

	4.5. AUTOMATICALLY REGISTERING AN EAP APPLICATION IN RED HAT SINGLE SIGN-ON WITH AN OPENID-CONNECT CLIENT
	4.5.1. Preparing Red Hat Single Sign-On authentication for OpenShift deployment
	4.5.2. Preparing the Red Hat Single Sign-On credentials
	4.5.3. Deploy the Red Hat Single Sign-On-enabled JBoss EAP image
	4.5.4. Log in to the JBoss EAP Server using Red Hat Single Sign-On

	4.6. MANUALLY REGISTERING EAP APPLICATION IN RED HAT SINGLE SIGN-ON WITH SAML CLIENT
	4.6.1. Preparing the Red Hat Single Sign-On credentials
	4.6.2. Preparing Red Hat Single Sign-On authentication for OpenShift deployment
	4.6.3. Modifying the secure-saml-deployments file
	4.6.4. Configuring SAML Client Registration in the application web.xml
	4.6.5. Deploying the application

	CHAPTER 5. REFERENCE
	5.1. ARTIFACT REPOSITORY MIRRORS
	5.2. ENVIRONMENT VARIABLES
	5.2.1. Information environment variables
	5.2.2. Configuration environment variables
	5.2.3. Template variables for all Red Hat Single Sign-On images
	5.2.4. Template variables specific to sso76-ocp3-postgresql, sso76-ocp4-postgresql, sso76-ocp3-postgresql-persistent, sso76-ocp4-postgresql-persistent, sso76-ocp3-x509-postgresql-persistent, and sso76-ocp4-x509-postgresql-persistent
	5.2.5. Template variables for general eap64 and eap71 S2I images
	5.2.6. Template variables specific to eap64-sso-s2i and eap71-sso-s2i for automatic client registration
	5.2.7. Template variables specific to eap64-sso-s2i and eap71-sso-s2i for automatic client registration with SAML clients

	5.3. EXPOSED PORTS

