
Red Hat Single Sign-On 7.6

Authorization Services Guide

For Use with Red Hat Single Sign-On 7.6

Last Updated: 2024-04-17

Red Hat Single Sign-On 7.6 Authorization Services Guide

For Use with Red Hat Single Sign-On 7.6

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide consists of information for authorization services for Red Hat Single Sign-On 7.6

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. AUTHORIZATION SERVICES OVERVIEW
1.1. ARCHITECTURE

1.1.1. The authorization process
1.1.1.1. Resource management
1.1.1.2. Permission and policy management
1.1.1.3. Policy enforcement

1.1.2. Authorization services
1.1.2.1. Token endpoint
1.1.2.2. Protection API

1.2. TERMINOLOGY
1.2.1. Resource Server
1.2.2. Resource
1.2.3. Scope
1.2.4. Permission
1.2.5. Policy
1.2.6. Policy provider
1.2.7. Permission ticket

CHAPTER 2. GETTING STARTED
2.1. SECURING A SERVLET APPLICATION
2.2. CREATING A REALM AND A USER
2.3. ENABLING AUTHORIZATION SERVICES
2.4. BUILD, DEPLOY, AND TEST YOUR APPLICATION

2.4.1. Obtaining the adapter configuration
2.4.2. Building and deploying the application
2.4.3. Testing the application
2.4.4. Next steps

2.5. AUTHORIZATION QUICKSTARTS

CHAPTER 3. MANAGING RESOURCE SERVERS
3.1. CREATING A CLIENT APPLICATION
3.2. ENABLING AUTHORIZATION SERVICES

3.2.1. Resource server settings
3.3. DEFAULT CONFIGURATION

3.3.1. Changing the default configuration
3.4. EXPORT AND IMPORT AUTHORIZATION CONFIGURATION

3.4.1. Exporting a configuration file
3.4.2. Importing a configuration file

CHAPTER 4. MANAGING RESOURCES AND SCOPES
4.1. VIEWING RESOURCES
4.2. CREATING RESOURCES

4.2.1. Resource attributes
4.2.2. Typed resources
4.2.3. Resource owners
4.2.4. Managing resources remotely

CHAPTER 5. MANAGING POLICIES
5.1. USER-BASED POLICY

5.1.1. Configuration

5

6
7
8
8
9
9

10
10
10
11
11
11

12
12
12
13
13

14
14
14
16
18
19

20
20
22
22

24
24
26
28
29
30
31
31
32

33
33
33
34
34
34
35

36
36
37

Table of Contents

1

. .

. .

. .

5.2. ROLE-BASED POLICY
5.2.1. Configuration
5.2.2. Defining a role as required

5.3. JAVASCRIPT-BASED POLICY
5.3.1. Creating a JS policy from a deployed JAR file
5.3.2. Examples

5.3.2.1. Checking for attributes from the evaluation context
5.3.2.2. Checking for attributes from the current identity
5.3.2.3. Checking for roles granted to the current identity
5.3.2.4. Checking for roles granted to an user
5.3.2.5. Checking for roles granted to a group
5.3.2.6. Pushing arbitrary claims to the resource server
5.3.2.7. Checking for group membership
5.3.2.8. Mixing different access control mechanisms

5.4. TIME-BASED POLICY
5.4.1. Configuration

5.5. AGGREGATED POLICY
5.5.1. Configuration
5.5.2. Decision strategy for aggregated policies

5.6. CLIENT-BASED POLICY
5.6.1. Configuration

5.7. GROUP-BASED POLICY
5.7.1. Configuration
5.7.2. Extending access to child groups

5.8. CLIENT SCOPE-BASED POLICY
5.8.1. Configuration
5.8.2. Defining a client scope as required

5.9. REGEX-BASED POLICY
5.9.1. Configuration

5.10. POSITIVE AND NEGATIVE LOGIC
5.11. POLICY EVALUATION API

5.11.1. The evaluation context

CHAPTER 6. MANAGING PERMISSIONS
6.1. CREATING RESOURCE-BASED PERMISSION

6.1.1. Configuration
6.1.2. Typed resource permission

6.2. CREATING SCOPE-BASED PERMISSIONS
6.2.1. Configuration

6.3. POLICY DECISION STRATEGIES

CHAPTER 7. EVALUATING AND TESTING POLICIES
7.1. PROVIDING IDENTITY INFORMATION
7.2. PROVIDING CONTEXTUAL INFORMATION
7.3. PROVIDING THE PERMISSIONS

CHAPTER 8. AUTHORIZATION SERVICES
8.1. DISCOVERING AUTHORIZATION SERVICES ENDPOINTS AND METADATA
8.2. OBTAINING PERMISSIONS

8.2.1. Client authentication methods
8.2.2. Pushing claims

8.2.2.1. Pushing claims Using UMA
8.3. USER-MANAGED ACCESS

8.3.1. Authorization process

37
38
39
39
40
40
40
40
40
41
41
41

42
42
42
43
44
45
45
46
46
46
47
48
48
49
49
50
50
51
51
52

54
54
55
55
56
57
57

59
59
59
59

60
60
61

64
64
65
65
66

Red Hat Single Sign-On 7.6 Authorization Services Guide

2

. .

8.3.2. Submitting permission requests
8.3.3. Managing access to users resources

8.4. PROTECTION API
8.4.1. What is a PAT and how to obtain it
8.4.2. Managing resources

8.4.2.1. Creating a resource
8.4.2.2. Creating user-managed resources
8.4.2.3. Updating resources
8.4.2.4. Deleting resources
8.4.2.5. Querying resources

8.4.3. Managing permission requests
8.4.3.1. Creating permission ticket
8.4.3.2. Other non UMA-compliant endpoints

8.4.3.2.1. Creating permission ticket
8.4.3.2.2. Getting permission tickets
8.4.3.2.3. Updating permission ticket
8.4.3.2.4. Deleting permission ticket

8.4.4. Managing resource permissions using the Policy API
8.4.4.1. Associating a permission with a resource
8.4.4.2. Removing a permission
8.4.4.3. Querying permission

8.5. REQUESTING PARTY TOKEN
8.5.1. Introspecting a requesting party token
8.5.2. Obtaining Information about an RPT
8.5.3. Do I need to invoke the server every time I want to introspect an RPT?

8.6. AUTHORIZATION CLIENT JAVA API
8.6.1. Maven dependency
8.6.2. Configuration
8.6.3. Creating the authorization client
8.6.4. Obtaining user entitlements
8.6.5. Creating a resource using the protection API
8.6.6. Introspecting an RPT

CHAPTER 9. POLICY ENFORCERS
9.1. CONFIGURATION
9.2. CLAIM INFORMATION POINT

9.2.1. Obtaining information from the HTTP request
9.2.2. Obtaining information from an external HTTP service
9.2.3. Static claims
9.2.4. Claim information provider SPI

9.3. OBTAINING THE AUTHORIZATION CONTEXT
9.4. USING THE AUTHORIZATIONCONTEXT TO OBTAIN AN AUTHORIZATION CLIENT INSTANCE
9.5. JAVASCRIPT INTEGRATION

9.5.1. Handling authorization responses from a UMA-Protected resource server
9.5.2. Obtaining entitlements
9.5.3. Authorization request
9.5.4. Obtaining the RPT

9.6. CONFIGURING TLS/HTTPS

67
68
69
70
71
71
72
72
72
73
73
74
75
75
75
76
76
76
76
78
78
79
79
79
80
81
81
81

82
82
83
83

84
85
88
88
89
89
90
91

92
92
93
94
95
95
95

Table of Contents

3

Red Hat Single Sign-On 7.6 Authorization Services Guide

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. AUTHORIZATION SERVICES OVERVIEW
Red Hat Single Sign-On supports fine-grained authorization policies and is able to combine different
access control mechanisms such as:

Attribute-based access control (ABAC)

Role-based access control (RBAC)

User-based access control (UBAC)

Context-based access control (CBAC)

Rule-based access control

Using JavaScript

Time-based access control

Support for custom access control mechanisms (ACMs) through a Service Provider
Interface (SPI)

Red Hat Single Sign-On is based on a set of administrative UIs and a RESTful API, and provides the
necessary means to create permissions for your protected resources and scopes, associate those
permissions with authorization policies, and enforce authorization decisions in your applications and
services.

Resource servers (applications or services serving protected resources) usually rely on some kind of
information to decide if access should be granted to a protected resource. For RESTful-based resource
servers, that information is usually obtained from a security token, usually sent as a bearer token on
every request to the server. For web applications that rely on a session to authenticate users, that
information is usually stored in a user’s session and retrieved from there for each request.

Frequently, resource servers only perform authorization decisions based on role-based access control
(RBAC), where the roles granted to the user trying to access protected resources are checked against
the roles mapped to these same resources. While roles are very useful and used by applications, they
also have a few limitations:

Resources and roles are tightly coupled and changes to roles (such as adding, removing, or
changing an access context) can impact multiple resources

Changes to your security requirements can imply deep changes to application code to reflect
these changes

Depending on your application size, role management might become difficult and error-prone

It is not the most flexible access control mechanism. Roles do not represent who you are and
lack contextual information. If you have been granted a role, you have at least some access.

Considering that today we need to consider heterogeneous environments where users are distributed
across different regions, with different local policies, using different devices, and with a high demand for
information sharing, Red Hat Single Sign-On Authorization Services can help you improve the
authorization capabilities of your applications and services by providing:

Resource protection using fine-grained authorization policies and different access control
mechanisms

Red Hat Single Sign-On 7.6 Authorization Services Guide

6

Centralized Resource, Permission, and Policy Management

Centralized Policy Decision Point

REST security based on a set of REST-based authorization services

Authorization workflows and User-Managed Access

The infrastructure to help avoid code replication across projects (and redeploys) and quickly
adapt to changes in your security requirements.

1.1. ARCHITECTURE

From a design perspective, Authorization Services is based on a well-defined set of authorization
patterns providing these capabilities:

Policy Administration Point (PAP)
Provides a set of UIs based on the Red Hat Single Sign-On Administration Console to manage
resource servers, resources, scopes, permissions, and policies. Part of this is also accomplished
remotely through the use of the Protection API.

Policy Decision Point (PDP)
Provides a distributable policy decision point to where authorization requests are sent and
policies are evaluated accordingly with the permissions being requested. For more information,
see Obtaining Permissions.

Policy Enforcement Point (PEP)
Provides implementations for different environments to actually enforce authorization
decisions at the resource server side. Red Hat Single Sign-On provides some built-in Policy
Enforcers.

Policy Information Point (PIP)
Being based on Red Hat Single Sign-On Authentication Server, you can obtain attributes from
identities and runtime environment during the evaluation of authorization policies.

CHAPTER 1. AUTHORIZATION SERVICES OVERVIEW

7

1.1.1. The authorization process

Three main processes define the necessary steps to understand how to use Red Hat Single Sign-On to
enable fine-grained authorization to your applications:

Resource Management

Permission and Policy Management

Policy Enforcement

1.1.1.1. Resource management

Resource Management involves all the necessary steps to define what is being protected.

First, you need to specify Red Hat Single Sign-On what are you looking to protect, which usually
represents a web application or a set of one or more services. For more information on resource servers
see Terminology.

Resource servers are managed using the Red Hat Single Sign-On Administration Console. There you can
enable any registered client application as a resource server and start managing the resources and
scopes you want to protect.

A resource can be a web page, a RESTFul resource, a file in your file system, an EJB, and so on. They can
represent a group of resources (just like a Class in Java) or they can represent a single and specific
resource.

For instance, you might have a Bank Account resource that represents all banking accounts and use it to
define the authorization policies that are common to all banking accounts. However, you might want to

Red Hat Single Sign-On 7.6 Authorization Services Guide

8

define specific policies for Alice Account (a resource instance that belongs to a customer), where only
the owner is allowed to access some information or perform an operation.

Resources can be managed using the Red Hat Single Sign-On Administration Console or the Protection
API. In the latter case, resource servers are able to manage their resources remotely.

Scopes usually represent the actions that can be performed on a resource, but they are not limited to
that. You can also use scopes to represent one or more attributes within a resource.

1.1.1.2. Permission and policy management

Once you have defined your resource server and all the resources you want to protect, you must set up
permissions and policies.

This process involves all the necessary steps to actually define the security and access requirements
that govern your resources.

Policies define the conditions that must be satisfied to access or perform operations on something
(resource or scope), but they are not tied to what they are protecting. They are generic and can be
reused to build permissions or even more complex policies.

For instance, to allow access to a group of resources only for users granted with a role "User Premium",
you can use RBAC (Role-based Access Control).

Red Hat Single Sign-On provides a few built-in policy types (and their respective policy providers)
covering the most common access control mechanisms. You can even create policies based on rules
written using JavaScript.

Once you have your policies defined, you can start defining your permissions. Permissions are coupled
with the resource they are protecting. Here you specify what you want to protect (resource or scope)
and the policies that must be satisfied to grant or deny permission.

1.1.1.3. Policy enforcement

Policy Enforcement involves the necessary steps to actually enforce authorization decisions to a
resource server. This is achieved by enabling a Policy Enforcement Point or PEP at the resource server
that is capable of communicating with the authorization server, ask for authorization data and control
access to protected resources based on the decisions and permissions returned by the server.

CHAPTER 1. AUTHORIZATION SERVICES OVERVIEW

9

Red Hat Single Sign-On provides some built-in Policy Enforcers implementations that you can use to
protect your applications depending on the platform they are running on.

1.1.2. Authorization services

Authorization services consist of the following RESTFul endpoints:

Token Endpoint

Resource Management Endpoint

Permission Management Endpoint

Each of these services provides a specific API covering the different steps involved in the authorization
process.

1.1.2.1. Token endpoint

OAuth2 clients (such as front end applications) can obtain access tokens from the server using the
token endpoint and use these same tokens to access resources protected by a resource server (such as
back end services). In the same way, Red Hat Single Sign-On Authorization Services provide extensions
to OAuth2 to allow access tokens to be issued based on the processing of all policies associated with
the resource(s) or scope(s) being requested. This means that resource servers can enforce access to
their protected resources based on the permissions granted by the server and held by an access token.
In Red Hat Single Sign-On Authorization Services the access token with permissions is called a
Requesting Party Token or RPT for short.

Additional resources

Obtaining Permissions

1.1.2.2. Protection API

The Protection API is a set of UMA-compliant endpoint-providing operations for resource servers to
help them manage their resources, scopes, permissions, and policies associated with them. Only
resource servers are allowed to access this API, which also requires a uma_protection scope.

The operations provided by the Protection API can be organized in two main groups:

Red Hat Single Sign-On 7.6 Authorization Services Guide

10

https://docs.kantarainitiative.org/uma/wg/oauth-uma-federated-authz-2.0-09.html

Resource Management

Create Resource

Delete Resource

Find by Id

Query

Permission Management

Issue Permission Tickets

NOTE

By default, Remote Resource Management is enabled. You can change that using the
Red Hat Single Sign-On Administration Console and only allow resource management
through the console.

When using the UMA protocol, the issuance of Permission Tickets by the Protection API is an important
part of the whole authorization process. As described in a subsequent section, they represent the
permissions being requested by the client and that are sent to the server to obtain a final token with all
permissions granted during the evaluation of the permissions and policies associated with the resources
and scopes being requested.

Additional resources

Protection API

1.2. TERMINOLOGY

Before going further, it is important to understand these terms and concepts introduced by Red Hat
Single Sign-On Authorization Services.

1.2.1. Resource Server

Per OAuth2 terminology, a resource server is the server hosting the protected resources and capable of
accepting and responding to protected resource requests.

Resource servers usually rely on some kind of information to decide whether access to a protected
resource should be granted. For RESTful-based resource servers, that information is usually carried in a
security token, typically sent as a bearer token along with every request to the server. Web applications
that rely on a session to authenticate users usually store that information in the user’s session and
retrieve it from there for each request.

In Red Hat Single Sign-On, any confidential client application can act as a resource server. This client’s
resources and their respective scopes are protected and governed by a set of authorization policies.

1.2.2. Resource

A resource is part of the assets of an application and the organization. It can be a set of one or more
endpoints, a classic web resource such as an HTML page, and so on. In authorization policy terminology,
a resource is the object being protected.

Every resource has a unique identifier that can represent a single resource or a set of resources. For

CHAPTER 1. AUTHORIZATION SERVICES OVERVIEW

11

Every resource has a unique identifier that can represent a single resource or a set of resources. For
instance, you can manage a Banking Account Resource that represents and defines a set of
authorization policies for all banking accounts. But you can also have a different resource named Alice’s
Banking Account, which represents a single resource owned by a single customer, which can have its own
set of authorization policies.

1.2.3. Scope

A resource’s scope is a bounded extent of access that is possible to perform on a resource. In
authorization policy terminology, a scope is one of the potentially many verbs that can logically apply to
a resource.

It usually indicates what can be done with a given resource. Example of scopes are view, edit, delete, and
so on. However, scope can also be related to specific information provided by a resource. In this case, you
can have a project resource and a cost scope, where the cost scope is used to define specific policies
and permissions for users to access a project’s cost.

1.2.4. Permission

Consider this simple and very common permission:

A permission associates the object being protected with the policies that must be evaluated to
determine whether access is granted.

X CAN DO Y ON RESOURCE Z

where …​

X represents one or more users, roles, or groups, or a combination of them. You can
also use claims and context here.

Y represents an action to be performed, for example, write, view, and so on.

Z represents a protected resource, for example, "/accounts".

Red Hat Single Sign-On provides a rich platform for building a range of permission strategies ranging
from simple to very complex, rule-based dynamic permissions. It provides flexibility and helps to:

Reduce code refactoring and permission management costs

Support a more flexible security model, helping you to easily adapt to changes in your security
requirements

Make changes at runtime; applications are only concerned about the resources and scopes
being protected and not how they are protected.

1.2.5. Policy

A policy defines the conditions that must be satisfied to grant access to an object. Unlike permissions,
you do not specify the object being protected but rather the conditions that must be satisfied for
access to a given object (for example, resource, scope, or both). Policies are strongly related to the
different access control mechanisms (ACMs) that you can use to protect your resources. With policies,
you can implement strategies for attribute-based access control (ABAC), role-based access control
(RBAC), context-based access control, or any combination of these.

Red Hat Single Sign-On leverages the concept of policies and how you define them by providing the

Red Hat Single Sign-On 7.6 Authorization Services Guide

12

concept of aggregated policies, where you can build a "policy of policies" and still control the behavior of
the evaluation. Instead of writing one large policy with all the conditions that must be satisfied for access
to a given resource, the policies implementation in Red Hat Single Sign-On Authorization Services
follows the divide-and-conquer technique. That is, you can create individual policies, then reuse them
with different permissions and build more complex policies by combining individual policies.

1.2.6. Policy provider

Policy providers are implementations of specific policy types. Red Hat Single Sign-On provides built-in
policies, backed by their corresponding policy providers, and you can create your own policy types to
support your specific requirements.

Red Hat Single Sign-On provides a SPI (Service Provider Interface) that you can use to plug in your own
policy provider implementations.

1.2.7. Permission ticket

A permission ticket is a special type of token defined by the User-Managed Access (UMA) specification
that provides an opaque structure whose form is determined by the authorization server. This structure
represents the resources and/or scopes being requested by a client, the access context, as well as the
policies that must be applied to a request for authorization data (requesting party token [RPT]).

In UMA, permission tickets are crucial to support person-to-person sharing and also person-to-
organization sharing. Using permission tickets for authorization workflows enables a range of scenarios
from simple to complex, where resource owners and resource servers have complete control over their
resources based on fine-grained policies that govern the access to these resources.

In the UMA workflow, permission tickets are issued by the authorization server to a resource server,
which returns the permission ticket to the client trying to access a protected resource. Once the client
receives the ticket, it can make a request for an RPT (a final token holding authorization data) by
sending the ticket back to the authorization server.

For more information on permission tickets, see User-Managed Access and the UMA specification.

CHAPTER 1. AUTHORIZATION SERVICES OVERVIEW

13

https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-09.html

CHAPTER 2. GETTING STARTED
Before you can use this tutorial, you need to complete the installation of Red Hat Single Sign-On and
create the initial admin user as shown in the Getting Started Guide tutorial. There is one caveat to this.
You have to run a separate JBoss EAP instance on the same machine as Red Hat Single Sign-On
Server. This separate instance will run your Java Servlet application. Because of this you will have to run
the Red Hat Single Sign-On under a different port so that there are no port conflicts when running on
the same machine. Use the jboss.socket.binding.port-offset system property on the command line.
The value of this property is a number that will be added to the base value of every port opened by Red
Hat Single Sign-On Server.

To boot Red Hat Single Sign-On Server:

Linux/Unix

$.../bin/standalone.sh -Djboss.socket.binding.port-offset=100

Windows

> ...\bin\standalone.bat -Djboss.socket.binding.port-offset=100

After installing and booting both servers you should be able to access Red Hat Single Sign-On Admin
Console at http://localhost:8180/auth/admin/ and also the JBoss EAP instance at
http://localhost:8080.

Additional resources

For more details about installing and configuring JBoss EAP instances, see Securing
Applications and Services Guide.

2.1. SECURING A SERVLET APPLICATION

The purpose of this getting started guide is to get you up and running as quickly as possible so that you
can experiment with and test various authorization features provided by Red Hat Single Sign-On. This
quick tour relies heavily on the default database and server configurations and does not cover complex
deployment options. For more information on features or configuration options, see the appropriate
sections in this documentation.

This guide explains key concepts about Red Hat Single Sign-On Authorization Services:

Enabling fine-grained authorization for a client application

Configuring a client application to be a resource server, with protected resources

Defining permissions and authorization policies to govern access to protected resources

Enabling policy enforcement in your applications.

2.2. CREATING A REALM AND A USER

The first step in this tutorial is to create a realm and a user in that realm. Then, within the realm we will
create a single client application, which then becomes a resource server for which you need to enable
authorization services.

Red Hat Single Sign-On 7.6 Authorization Services Guide

14

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/getting_started_guide/
http://localhost:8180/auth/admin/
http://localhost:8080
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/securing_applications_and_services_guide/

Procedure

1. Create a realm with a name hello-world-authz . Once created, a page similar to the following is
displayed:

Realm hello-world-authz

2. Click Users.
The user list page displays where you can create a user.

3. Click Add User.

4. Complete the Username, Email, First Name, and Last Name fields.

5. Toggle User Enabled to ON

6. Click Save.

Add User

CHAPTER 2. GETTING STARTED

15

7. Set a password for the user by clicking the Credentials tab.

Set user password

8. Complete the New Password and Password Confirmation fields with a password and click the
Temporary switch to OFF.

9. Click Set Password to set the user’s password.

2.3. ENABLING AUTHORIZATION SERVICES

You can enable authorization services in an existing client application configured to use the OpenID
Connect Protocol. You can also create a client using the following procedure.

Procedure

1. Click Clients to start creating a client application.

2. Fill in the Client ID, Client Protocol, and Root URL fields.

Create client application

Red Hat Single Sign-On 7.6 Authorization Services Guide

16

3. Click Save.
The Client Settings page is displayed.

4. Select confidential in the Access Type field and toggle Authorization Enabled to ON

5. Click Save.
A new Authorization tab is displayed for the client.

Client Settings

6. Click the Authorization tab.
An Authorization Settings page similar to the following is displayed:

Authorization settings

CHAPTER 2. GETTING STARTED

17

When you enable authorization services for a client application, Red Hat Single Sign-On automatically
creates several default settings for your client authorization configuration.

Additional resources

Enabling authorization services

Default configuration

2.4. BUILD, DEPLOY, AND TEST YOUR APPLICATION

Now that the app-authz-vanilla resource server (or client) is properly configured and authorization
services are enabled, it can be deployed to the server.

The project and code for the application you are going to deploy is available in Red Hat Single Sign-On
Quickstarts Repository. You will need the following installed on your machine and available in your PATH
before you can continue:

Java JDK 8

Apache Maven 3.1.1 or higher

Git

You can obtain the code by cloning the repository at https://github.com/redhat-developer/redhat-sso-
quickstarts. Use the branch matching the version of Red Hat Single Sign-On in use.

Follow these steps to download the code.

Clone Project

$ git clone https://github.com/redhat-developer/redhat-sso-quickstarts

The application we are about to build and deploy is located at

$ cd redhat-sso-quickstarts/app-authz-jee-vanilla

Red Hat Single Sign-On 7.6 Authorization Services Guide

18

https://github.com/redhat-developer/redhat-sso-quickstarts
https://github.com/redhat-developer/redhat-sso-quickstarts

2.4.1. Obtaining the adapter configuration

You must first obtain the adapter configuration before building and deploying the application.

Procedure

1. Log into the Admin Console.

2. Click Clients in the menu.

3. In the client listing, click the app-authz-vanilla client application. The Client Settings page
opens.

Client Settings

4. Click the Installation tab.

5. From the Format Option item list, select Keycloak OIDC JSON.
The adapter configuration is displayed in JSON format.

6. Click Download.

Adapter configuration

CHAPTER 2. GETTING STARTED

19

7. Move the file keycloak.json to the app-authz-jee-vanilla/config directory.

8. Optionally, specify a redirection URL.
By default, the policy enforcer responds with a 403 status code when the user lacks permission
to access protected resources on the resource server. However, you can also specify a
redirection URL for unauthorized users. To specify a redirection URL, edit the keycloak.json file
that you updated and replace the policy-enforcer configuration with the following:

This change specifies to the policy enforcer to redirect users to a /app-authz-vanilla/error.jsp
page if a user does not have the necessary permissions to access a protected resource, rather
than an unhelpful 403 Unauthorized message.

2.4.2. Building and deploying the application

To build and deploy the application execute the following command:

$ cd redhat-sso-quickstarts/app-authz-jee-vanilla
$ mvn clean package wildfly:deploy

2.4.3. Testing the application

If your application was successfully deployed, you can access it at http://localhost:8080/app-authz-
vanilla. The Red Hat Single Sign-On Login page opens.

Login page

"policy-enforcer": {
 "on-deny-redirect-to" : "/app-authz-vanilla/error.jsp"
}

Red Hat Single Sign-On 7.6 Authorization Services Guide

20

http://localhost:8080/app-authz-vanilla

Procedure

1. Log in as alice using the password you specified for that user. The following page is displayed:

Hello World Authz main page

The default settings defined by Red Hat Single Sign-On when you enable authorization services
for a client application provide a simple policy that always grants access to the resources
protected by this policy.

You can start by changing the default permissions and policies and test how your application responds,
or even create new policies using the different policy types provided by Red Hat Single Sign-On.

There are a plenty of things you can do now to test this application. For example, you can change the
default policy by clicking the Authorization tab for the client, then client on the Policies tab, then click

CHAPTER 2. GETTING STARTED

21

on the Default Policy in the list. Now we are going to change the Logic to Negative using the dropdown
list in this page.

1. Log out of the demo application and log in again.
You can no longer access the application.

Additional resources

Policy types

2.4.4. Next steps

There are additional things you can do, such as:

Create a scope, define a policy and permission for it, and test it on the application side. Can the
user perform an action (or anything else represented by the scope you created)?

Create different types of policies and associate these policies with the Default Permission.

Apply multiple policies to the Default Permission and test the behavior. For example, combine
multiple policies and change the Decision Strategy accordingly.

Additional resources

For more information about how to view and test permissions inside your application see
Obtaining the authorization context .

2.5. AUTHORIZATION QUICKSTARTS

In addition to the app-authz-jee-vanilla quickstart that was used as a sample application in the previous
section, the Red Hat Single Sign-On Quickstarts Repository contains other applications that make use
of the authorization services described in this documentation.

The authorization quickstarts have been designed so that authorization services are displayed in
different scenarios and using different technologies and integrations. It is not meant as a comprehensive
set of all the possible use cases involving authorization but they should provide a starting point for users

Red Hat Single Sign-On 7.6 Authorization Services Guide

22

https://github.com/redhat-developer/redhat-sso-quickstarts

interested in understanding how the authorization services can be used in their own applications.

Each quickstart has a README file with instructions on how to build, deploy, and test the sample
application. The following table provides a brief description of the available authorization quickstarts:

Table 2.1. Authorization quickstarts

Name Description

app-authz-jee-servlet Demonstrates how to enable fine-grained
authorization to a Jakarta EE application in order to
protect specific resources and build a dynamic menu
based on the permissions obtained from a Red Hat
Single Sign-On Server.

app-authz-jee-vanilla Demonstrates how to enable fine-grained
authorization to a Jakarta EE application and use the
default authorization settings to protect all resources
in the application.

app-authz-rest-springboot Demonstrates how to protect a SpringBoot REST
service using Red Hat Single Sign-On Authorization
Services.

app-authz-springboot Demonstrates how to write a SpringBoot Web
application where both authentication and
authorization aspects are managed by Red Hat
Single Sign-On.

app-authz-uma-photoz A simple application based on
HTML5+AngularJS+JAX-RS that demonstrates how
to enable User-Managed Access to your application
and let users to manage permissions for their
resources.

CHAPTER 2. GETTING STARTED

23

https://github.com/keycloak/keycloak-quickstarts/tree/latest/app-authz-jee-servlet
https://github.com/keycloak/keycloak-quickstarts/tree/latest/app-authz-jee-vanilla
https://github.com/keycloak/keycloak-quickstarts/tree/latest/app-authz-rest-springboot
https://github.com/keycloak/keycloak-quickstarts/tree/latest/app-authz-springboot
https://github.com/keycloak/keycloak-quickstarts/tree/latest/app-authz-uma-photoz

CHAPTER 3. MANAGING RESOURCE SERVERS
According to the OAuth2 specification, a resource server is a server hosting the protected resources
and capable of accepting and responding to protected resource requests.

In Red Hat Single Sign-On, resource servers are provided with a rich platform for enabling fine-grained
authorization for their protected resources, where authorization decisions can be made based on
different access control mechanisms.

Any client application can be configured to support fine-grained permissions. In doing so, you are
conceptually turning the client application into a resource server.

3.1. CREATING A CLIENT APPLICATION

The first step to enable Red Hat Single Sign-On Authorization Services is to create the client application
that you want to turn into a resource server.

Procedure

1. Click Clients.

Clients

2. On this page, click Create.

Add Client

Red Hat Single Sign-On 7.6 Authorization Services Guide

24

3. Type the Client ID of the client. For example, my-resource-server.

4. Type the Root URL for your application. For example:

http://${host}:${port}/my-resource-server

5. Click Save. The client is created and the client Settings page opens. A page similar to the
following is displayed:

Client Settings

CHAPTER 3. MANAGING RESOURCE SERVERS

25

3.2. ENABLING AUTHORIZATION SERVICES

To turn your OIDC Client Application into a resource server and enable fine-grained authorization,
select Access type confidential and click the Authorization Enabled switch to ON then click Save.

Enabling authorization services

Red Hat Single Sign-On 7.6 Authorization Services Guide

26

A new Authorization tab is displayed for this client. Click the Authorization tab and a page similar to the
following is displayed:

Resource server settings

CHAPTER 3. MANAGING RESOURCE SERVERS

27

The Authorization tab contains additional sub-tabs covering the different steps that you must follow to
actually protect your application’s resources. Each tab is covered separately by a specific topic in this
documentation. But here is a quick description about each one:

Settings
General settings for your resource server. For more details about this page see the Resource
Server Settings section.

Resource
From this page, you can manage your application’s resources.

Authorization Scopes
From this page, you can manage scopes.

Policies
From this page, you can manage authorization policies and define the conditions that must be
met to grant a permission.

Permissions
From this page, you can manage the permissions for your protected resources and scopes by
linking them with the policies you created.

Evaluate
From this page, you can simulate authorization requests and view the result of the evaluation of
the permissions and authorization policies you have defined.

Export Settings
From this page, you can export the authorization settings to a JSON file.

3.2.1. Resource server settings

On the Resource Server Settings page, you can configure the policy enforcement mode, allow remote
resource management, and export the authorization configuration settings.

Policy Enforcement Mode
Specifies how policies are enforced when processing authorization requests sent to the server.

Enforcing

(default mode) Requests are denied by default even when there is no policy associated with

Red Hat Single Sign-On 7.6 Authorization Services Guide

28

(default mode) Requests are denied by default even when there is no policy associated with
a given resource.

Permissive
Requests are allowed even when there is no policy associated with a given resource.

Disabled
Disables the evaluation of all policies and allows access to all resources.

Decision Strategy
This configurations changes how the policy evaluation engine decides whether or not a resource
or scope should be granted based on the outcome from all evaluated permissions. Affirmative
means that at least one permission must evaluate to a positive decision in order grant access to
a resource and its scopes. Unanimous means that all permissions must evaluate to a positive
decision in order for the final decision to be also positive. As an example, if two permissions for a
same resource or scope are in conflict (one of them is granting access and the other is denying
access), the permission to the resource or scope will be granted if the choosen strategy is
Affirmative. Otherwise, a single deny from any permission will also deny access to the resource
or scope.

Remote Resource Management
Specifies whether resources can be managed remotely by the resource server. If false,
resources can be managed only from the administration console.

3.3. DEFAULT CONFIGURATION

When you create a resource server, Red Hat Single Sign-On creates a default configuration for your
newly created resource server.

The default configuration consists of:

A default protected resource representing all resources in your application.

A policy that always grants access to the resources protected by this policy.

A permission that governs access to all resources based on the default policy.

The default protected resource is referred to as the default resource and you can view it if you navigate
to the Resources tab.

Default resource

This resource defines a Type, namely urn:my-resource-server:resources:default and a URI /*. Here,

CHAPTER 3. MANAGING RESOURCE SERVERS

29

the URI field defines a wildcard pattern that indicates to Red Hat Single Sign-On that this resource
represents all the paths in your application. In other words, when enabling policy enforcement for your
application, all the permissions associated with the resource will be examined before granting access.

The Type mentioned previously defines a value that can be used to create typed resource permissions
that must be applied to the default resource or any other resource you create using the same type.

The default policy is referred to as the only from realm policy and you can view it if you navigate to the
Policies tab.

Default policy

This policy is a JavaScript-based policy defining a condition that always grants access to the resources
protected by this policy. If you click this policy you can see that it defines a rule as follows:

Lastly, the default permission is referred to as the default permission and you can view it if you navigate
to the Permissions tab.

Default Permission

This permission is a resource-based permission, defining a set of one or more policies that are applied to
all resources with a given type.

3.3.1. Changing the default configuration

You can change the default configuration by removing the default resource, policy, or permission
definitions and creating your own.

The default resource is created with an URI that maps to any resource or path in your application using a

// by default, grants any permission associated with this policy
$evaluation.grant();

Red Hat Single Sign-On 7.6 Authorization Services Guide

30

The default resource is created with an URI that maps to any resource or path in your application using a
/* pattern. Before creating your own resources, permissions and policies, make sure the default
configuration doesn’t conflict with your own settings.

NOTE

The default configuration defines a resource that maps to all paths in your application. If
you are about to write permissions to your own resources, be sure to remove the Default
Resource or change its URIS fields to a more specific paths in your application.
Otherwise, the policy associated with the default resource (which by default always
grants access) will allow Red Hat Single Sign-On to grant access to any protected
resource.

3.4. EXPORT AND IMPORT AUTHORIZATION CONFIGURATION

The configuration settings for a resource server (or client) can be exported and downloaded. You can
also import an existing configuration file for a resource server. Importing and exporting a configuration
file is helpful when you want to create an initial configuration for a resource server or to update an
existing configuration. The configuration file contains definitions for:

Protected resources and scopes

Policies

Permissions

3.4.1. Exporting a configuration file

Procedure

1. Navigate to the Resource Server Settings page.

2. Click the Export Settings tab.

3. On this page, click Export.

Export Settings

The configuration file is exported in JSON format and displayed in a text area, from which you can copy

CHAPTER 3. MANAGING RESOURCE SERVERS

31

The configuration file is exported in JSON format and displayed in a text area, from which you can copy
and paste. You can also click Download to download the configuration file and save it.

3.4.2. Importing a configuration file

You can import a configuration file for a resource server.

Procedure

1. Navigate to the Resource Server Settings page.

Import Settings

2. Click Select file and choose a file containing the configuration that you want to import.

Red Hat Single Sign-On 7.6 Authorization Services Guide

32

CHAPTER 4. MANAGING RESOURCES AND SCOPES
Resource management is straightforward and generic. After creating a resource server, you can start
creating the resources and scopes that you want to protect. Resources and scopes can be managed by
navigating to the Resource and Authorization Scopes tabs, respectively.

4.1. VIEWING RESOURCES

On the Resource page, you see a list of the resources associated with a resource server.

Resources

The resource list provides information about the protected resources, such as:

Type

URIS

Owner

Associated scopes, if any

Associated permissions

From this list, you can also directly create a permission by clicking Create Permission for the resource
for which you want to create the permission.

NOTE

Before creating permissions for your resources, be sure you have already defined the
policies that you want to associate with the permission.

4.2. CREATING RESOURCES

Creating a resource is straightforward and generic. Your main concern is the granularity of the resources
you create. In other words, resources can be created to represent a set of one or more resources and
the way you define them is crucial to managing permissions.

To create a new resource, click Create in the right upper corner of the resource listing.

Add resource

CHAPTER 4. MANAGING RESOURCES AND SCOPES

33

In Red Hat Single Sign-On, a resource defines a small set of information that is common to different
types of resources, such as:

Name
A human-readable and unique string describing this resource.

Type
A string uniquely identifying the type of a set of one or more resources. The type is a string used
to group different resource instances. For example, the default type for the default resource
that is automatically created is urn:resource-server-name:resources:default

URIS
URIS that provides the locations/addresses for the resource. For HTTP resources, the URIS are
usually the relative paths used to serve these resources.

Scopes
One or more scopes to associate with the resource.

4.2.1. Resource attributes

Resources may have attributes associated with them. These attributes can be used to provide additional
information about a resource and to provide additional information to policies when evaluating
permissions associated with a resource.

Each attribute is a key and value pair where the value can be a set of one or many strings. Multiple values
can be defined for an attribute by separating each value with a comma.

4.2.2. Typed resources

The type field of a resource can be used to group different resources together, so they can be
protected using a common set of permissions.

4.2.3. Resource owners

Resources also have an owner. By default, resources are owned by the resource server.

However, resources can also be associated with users, so you can create permissions based on the
resource owner. For example, only the resource owner is allowed to delete or update a given resource.

Red Hat Single Sign-On 7.6 Authorization Services Guide

34

4.2.4. Managing resources remotely

Resource management is also exposed through the Protection API to allow resource servers to remotely
manage their resources.

When using the Protection API, resource servers can be implemented to manage resources owned by
their users. In this case, you can specify the user identifier to configure a resource as belonging to a
specific user.

NOTE

Red Hat Single Sign-On provides resource servers complete control over their resources.
In the future, we should be able to allow users to control their own resources as well as
approve authorization requests and manage permissions, especially when using the UMA
protocol.

CHAPTER 4. MANAGING RESOURCES AND SCOPES

35

CHAPTER 5. MANAGING POLICIES
As mentioned previously, policies define the conditions that must be satisfied before granting access to
an object.

Procedure

1. Click the Policy tab to view all policies associated with a resource server.

Policies

On this tab, you can view the list of previously created policies as well as create and edit a policy.

2. To create a new policy, select a policy type from the Create policy item list in the upper right
corner.
Details about each policy type are described in this section.

5.1. USER-BASED POLICY

You can use this type of policy to define conditions for your permissions where a set of one or more
users is permitted to access an object.

To create a new user-based policy, select User in the item list in the upper right corner of the policy
listing.

Add a User Policy

Red Hat Single Sign-On 7.6 Authorization Services Guide

36

5.1.1. Configuration

Name
A human-readable and unique string identifying the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description
A string containing details about this policy.

Users
Specifies which users are given access by this policy.

Logic
The logic of this policy to apply after the other conditions have been evaluated.

Additional resources

Positive and negative logic

5.2. ROLE-BASED POLICY

You can use this type of policy to define conditions for your permissions where a set of one or more roles
is permitted to access an object.

By default, roles added to this policy are not specified as required and the policy will grant access if the
user requesting access has been granted any of these roles. However, you can specify a specific role as
required if you want to enforce a specific role. You can also combine required and non-required roles,
regardless of whether they are realm or client roles.

Role policies can be useful when you need more restricted role-based access control (RBAC), where
specific roles must be enforced to grant access to an object. For instance, you can enforce that a user
must consent to allowing a client application (which is acting on the user’s behalf) to access the user’s

CHAPTER 5. MANAGING POLICIES

37

resources. You can use Red Hat Single Sign-On Client Scope Mapping to enable consent pages or even
enforce clients to explicitly provide a scope when obtaining access tokens from a Red Hat Single Sign-
On server.

To create a new role-based policy, select Role in the item list in the upper right corner of the policy
listing.

Add Role Policy

5.2.1. Configuration

Name
A human-readable and unique string describing the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description
A string containing details about this policy.

Realm Roles
Specifies which realm roles are permitted by this policy.

Client Roles
Specifies which client roles are permitted by this policy. To enable this field must first select a
Client.

Logic
The logic of this policy to apply after the other conditions have been evaluated.

Additional resources

Positive and negative logic

Red Hat Single Sign-On 7.6 Authorization Services Guide

38

5.2.2. Defining a role as required

When creating a role-based policy, you can specify a specific role as Required. When you do that, the
policy will grant access only if the user requesting access has been granted all the required roles. Both
realm and client roles can be configured as such.

Example of a required role

To specify a role as required, select the Required checkbox for the role you want to configure as
required.

Required roles can be useful when your policy defines multiple roles but only a subset of them are
mandatory. In this case, you can combine realm and client roles to enable an even more fine-grained
role-based access control (RBAC) model for your application. For example, you can have policies
specific for a client and require a specific client role associated with that client. Or you can enforce that
access is granted only in the presence of a specific realm role. You can also combine both approaches
within the same policy.

5.3. JAVASCRIPT-BASED POLICY

WARNING

If your policy implementation is using Attribute based access control (ABAC) as in
the examples below, then please make sure that users are not able to edit the
protected attributes and the corresponding attributes are read-only. See the
details in the Threat model mitigation chapter .



CHAPTER 5. MANAGING POLICIES

39

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_administration_guide/#_read_only_user_attributes

You can use this type of policy to define conditions for your permissions using JavaScript. It is one of the
rule-based policy types supported by Red Hat Single Sign-On, and provides flexibility to write any policy
based on the Evaluation API.

To create a new JavaScript-based policy, select JavaScript in the item list in the upper right corner of
the policy listing.

NOTE

By default, JavaScript Policies can not be uploaded to the server. You should prefer
deploying your JS Policies directly to the server as described in JavaScript Providers.

5.3.1. Creating a JS policy from a deployed JAR file

Red Hat Single Sign-On allows you to deploy a JAR file in order to deploy scripts to the server. Please,
take a look at JavaScript Providers for more details.

Once you have your scripts deployed, you should be able to select the scripts you deployed from the list
of available policy providers.

5.3.2. Examples

5.3.2.1. Checking for attributes from the evaluation context

Here is a simple example of a JavaScript-based policy that uses attribute-based access control (ABAC)
to define a condition based on an attribute obtained from the execution context:

5.3.2.2. Checking for attributes from the current identity

Here is a simple example of a JavaScript-based policy that uses attribute-based access control (ABAC)
to define a condition based on an attribute obtained associated with the current identity:

Where these attributes are mapped from whatever claim is defined in the token that was used in the
authorization request.

5.3.2.3. Checking for roles granted to the current identity

You can also use Role-Based Access Control (RBAC) in your policies. In the example below, we check if

const context = $evaluation.getContext();
const contextAttributes = context.getAttributes();

if (contextAttributes.containsValue('kc.client.network.ip_address', '127.0.0.1')) {
 $evaluation.grant();
}

const context = $evaluation.getContext();
const identity = context.getIdentity();
const attributes = identity.getAttributes();
const email = attributes.getValue('email').asString(0);

if (email.endsWith('@keycloak.org')) {
 $evaluation.grant();
}

Red Hat Single Sign-On 7.6 Authorization Services Guide

40

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/#_script_providers
https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_developer_guide/#_script_providers

You can also use Role-Based Access Control (RBAC) in your policies. In the example below, we check if
a user is granted with a keycloak_user realm role:

Or you can check if a user is granted with a my-client-role client role, where my-client is the client id of
the client application:

5.3.2.4. Checking for roles granted to an user

To check for realm roles granted to an user:

Or for client roles granted to an user:

5.3.2.5. Checking for roles granted to a group

To check for realm roles granted to a group:

5.3.2.6. Pushing arbitrary claims to the resource server

To push arbitrary claims to the resource server in order to provide additional information on how
permissions should be enforced:

const context = $evaluation.getContext();
const identity = context.getIdentity();

if (identity.hasRealmRole('keycloak_user')) {
 $evaluation.grant();
}

const context = $evaluation.getContext();
const identity = context.getIdentity();

if (identity.hasClientRole('my-client', 'my-client-role')) {
 $evaluation.grant();
}

const realm = $evaluation.getRealm();

if (realm.isUserInRealmRole('marta', 'role-a')) {
 $evaluation.grant();
}

const realm = $evaluation.getRealm();

if (realm.isUserInClientRole('marta', 'my-client', 'some-client-role')) {
 $evaluation.grant();
}

const realm = $evaluation.getRealm();

if (realm.isGroupInRole('/Group A/Group D', 'role-a')) {
 $evaluation.grant();
}

CHAPTER 5. MANAGING POLICIES

41

5.3.2.7. Checking for group membership

5.3.2.8. Mixing different access control mechanisms

You can also use a combination of several access control mechanisms. The example below shows how
roles(RBAC) and claims/attributes(ABAC) checks can be used within the same policy. In this case we
check if user is granted with admin role or has an e-mail from keycloak.org domain:

NOTE

When writing your own rules, keep in mind that the $evaluation object is an object
implementing org.keycloak.authorization.policy.evaluation.Evaluation. For more
information about what you can access from this interface, see the Evaluation API.

5.4. TIME-BASED POLICY

You can use this type of policy to define time conditions for your permissions.

To create a new time-based policy, select Time in the item list in the upper right corner of the policy
listing.

Add Time Policy

const permission = $evaluation.getPermission();

// decide if permission should be granted

if (granted) {
 permission.addClaim('claim-a', 'claim-a');
 permission.addClaim('claim-a', 'claim-a1');
 permission.addClaim('claim-b', 'claim-b');
}

const realm = $evaluation.getRealm();

if (realm.isUserInGroup('marta', '/Group A/Group B')) {
 $evaluation.grant();
}

const context = $evaluation.getContext();
const identity = context.getIdentity();
const attributes = identity.getAttributes();
const email = attributes.getValue('email').asString(0);

if (identity.hasRealmRole('admin') || email.endsWith('@keycloak.org')) {
 $evaluation.grant();
}

Red Hat Single Sign-On 7.6 Authorization Services Guide

42

5.4.1. Configuration

Name
A human-readable and unique string describing the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description
A string containing details about this policy.

Not Before
Defines the time before which access must not be granted. Permission is granted only if the
current date/time is later than or equal to this value.

Not On or After
Defines the time after which access must not be granted. Permission is granted only if the
current date/time is earlier than or equal to this value.

Day of Month
Defines the day of month that access must be granted. You can also specify a range of dates. In
this case, permission is granted only if the current day of the month is between or equal to the
two values specified.

Month
Defines the month that access must be granted. You can also specify a range of months. In this
case, permission is granted only if the current month is between or equal to the two values
specified.

Year

Defines the year that access must be granted. You can also specify a range of years. In this case,

CHAPTER 5. MANAGING POLICIES

43

Defines the year that access must be granted. You can also specify a range of years. In this case,
permission is granted only if the current year is between or equal to the two values specified.

Hour
Defines the hour that access must be granted. You can also specify a range of hours. In this
case, permission is granted only if current hour is between or equal to the two values specified.

Minute
Defines the minute that access must be granted. You can also specify a range of minutes. In this
case, permission is granted only if the current minute is between or equal to the two values
specified.

Logic
The logic of this policy to apply after the other conditions have been evaluated.

Access is only granted if all conditions are satisfied. Red Hat Single Sign-On will perform an AND based
on the outcome of each condition.

Additional resources

Positive and negative logic

5.5. AGGREGATED POLICY

As mentioned previously, Red Hat Single Sign-On allows you to build a policy of policies, a concept
referred to as policy aggregation. You can use policy aggregation to reuse existing policies to build more
complex ones and keep your permissions even more decoupled from the policies that are evaluated
during the processing of authorization requests.

To create a new aggregated policy, select Aggregated in the item list located in the right upper corner
of the policy listing.

Add an aggregated policy

Red Hat Single Sign-On 7.6 Authorization Services Guide

44

Let’s suppose you have a resource called Confidential Resource that can be accessed only by users from
the keycloak.org domain and from a certain range of IP addresses. You can create a single policy with
both conditions. However, you want to reuse the domain part of this policy to apply to permissions that
operates regardless of the originating network.

You can create separate policies for both domain and network conditions and create a third policy based
on the combination of these two policies. With an aggregated policy, you can freely combine other
policies and then apply the new aggregated policy to any permission you want.

NOTE

When creating aggregated policies, be mindful that you are not introducing a circular
reference or dependency between policies. If a circular dependency is detected, you
cannot create or update the policy.

5.5.1. Configuration

Name
A human-readable and unique string describing the policy. We strongly suggest that you use
names that are closely related with your business and security requirements, so you can identify
them more easily and also know what they mean.

Description
A string with more details about this policy.

Apply Policy
Defines a set of one or more policies to associate with the aggregated policy. To associate a
policy you can either select an existing policy or create a new one by selecting the type of the
policy you want to create.

Decision Strategy
The decision strategy for this permission.

Logic
The logic of this policy to apply after the other conditions have been evaluated.

Additional resources

Positive and negative logic

5.5.2. Decision strategy for aggregated policies

When creating aggregated policies, you can also define the decision strategy that will be used to
determine the final decision based on the outcome from each policy.

Unanimous
The default strategy if none is provided. In this case, all policies must evaluate to a positive
decision for the final decision to be also positive.

Affirmative
In this case, at least one policy must evaluate to a positive decision in order for the final decision
to be also positive.

Consensus

In this case, the number of positive decisions must be greater than the number of negative

CHAPTER 5. MANAGING POLICIES

45

In this case, the number of positive decisions must be greater than the number of negative
decisions. If the number of positive and negative decisions is the same, the final decision will be
negative.

5.6. CLIENT-BASED POLICY

You can use this type of policy to define conditions for your permissions where a set of one or more
clients is permitted to access an object.

To create a new client-based policy, select Client in the item list in the upper right corner of the policy
listing.

Add a Client Policy

5.6.1. Configuration

Name
A human-readable and unique string identifying the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description
A string containing details about this policy.

Clients
Specifies which clients are given access by this policy.

Logic
The logic of this policy to apply after the other conditions have been evaluated.

Additional resources

Positive and negative logic

5.7. GROUP-BASED POLICY

You can use this type of policy to define conditions for your permissions where a set of one or more

Red Hat Single Sign-On 7.6 Authorization Services Guide

46

You can use this type of policy to define conditions for your permissions where a set of one or more
groups (and their hierarchies) is permitted to access an object.

To create a new group-based policy, select Group in the item list in the upper right corner of the policy
listing.

Group Policy

5.7.1. Configuration

Name
A human-readable and unique string describing the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description
A string containing details about this policy.

Groups Claim
Specifies the name of the claim in the token holding the group names and/or paths. Usually,
authorization requests are processed based on an ID Token or Access Token previously issued
to a client acting on behalf of some user. If defined, the token must include a claim from where
this policy is going to obtain the groups the user is a member of. If not defined, user’s groups are
obtained from your realm configuration.

Groups
Allows you to select the groups that should be enforced by this policy when evaluating
permissions. After adding a group, you can extend access to children of the group by marking
the checkbox Extend to Children. If left unmarked, access restrictions only applies to the
selected group.

CHAPTER 5. MANAGING POLICIES

47

Logic
The logic of this policy to apply after the other conditions have been evaluated.

Additional resources

Positive and negative logic

5.7.2. Extending access to child groups

By default, when you add a group to this policy, access restrictions will only apply to members of the
selected group.

Under some circumstances, it might be necessary to allow access not only to the group itself but to any
child group in the hierarchy. For any group added you can mark a checkbox Extend to Children in order
to extend access to child groups.

Extending access to child groups

In the example above, the policy is granting access for any user member of IT or any of its children.

5.8. CLIENT SCOPE-BASED POLICY

You can use this type of policy to define conditions for your permissions where a set of one or more
client scopes is permitted to access an object.

By default, client scopes added to this policy are not specified as required and the policy will grant
access if the client requesting access has been granted any of these client scopes. However, you can
specify a specific client scope as required if you want to enforce a specific client scope.

Red Hat Single Sign-On 7.6 Authorization Services Guide

48

To create a new client scope-based policy, select Client Scope in the item list in the upper right corner
of the policy listing.

Add Client Scope Policy

5.8.1. Configuration

Name
A human-readable and unique string describing the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description
A string containing details about this policy.

Client Scopes
Specifies which client scopes are permitted by this policy.

Logic
The logic of this policy to apply after the other conditions have been evaluated.

Additional resources

Positive and negative logic

5.8.2. Defining a client scope as required

When creating a client scope-based policy, you can specify a specific client scope as Required. When
you do that, the policy will grant access only if the client requesting access has been granted all the
required client scopes.

Example of required client scope

CHAPTER 5. MANAGING POLICIES

49

To specify a client scope as required, select the Required checkbox for the client scope you want to
configure as required.

Required client scopes can be useful when your policy defines multiple client scopes but only a subset of
them are mandatory.

5.9. REGEX-BASED POLICY

You can use this type of policy to define regex conditions for your permissions.

To create a new regex-based policy, select Regex in the item list in the upper right corner of the policy
listing.

Add Regex Policy

5.9.1. Configuration

Name

A human-readable and unique string describing the policy. A best practice is to use names that

Red Hat Single Sign-On 7.6 Authorization Services Guide

50

A human-readable and unique string describing the policy. A best practice is to use names that
are closely related to your business and security requirements, so you can identify them more
easily.

Description
A string containing details about this policy.

Target Claim
Specifies the name of the target claim in the token.

Regex Pattern
Specifies the regex pattern.

Logic
The Logic of this policy to apply after the other conditions have been evaluated.

5.10. POSITIVE AND NEGATIVE LOGIC

Policies can be configured with positive or negative logic. Briefly, you can use this option to define
whether the policy result should be kept as it is or be negated.

For example, suppose you want to create a policy where only users not granted with a specific role
should be given access. In this case, you can create a role-based policy using that role and set its Logic
field to Negative. If you keep Positive, which is the default behavior, the policy result will be kept as it is.

5.11. POLICY EVALUATION API

When writing rule-based policies using JavaScript, Red Hat Single Sign-On provides an Evaluation API
that provides useful information to help determine whether a permission should be granted.

This API consists of a few interfaces that provide you access to information, such as

The permission being evaluated, representing both the resource and scopes being requested.

The attributes associated with the resource being requested

Runtime environment and any other attribute associated with the execution context

Information about users such as group membership and roles

The main interface is org.keycloak.authorization.policy.evaluation.Evaluation, which defines the
following contract:

public interface Evaluation {

 /**
 * Returns the {@link ResourcePermission} to be evaluated.
 *
 * @return the permission to be evaluated
 */
 ResourcePermission getPermission();

 /**
 * Returns the {@link EvaluationContext}. Which provides access to the whole evaluation runtime
context.

CHAPTER 5. MANAGING POLICIES

51

When processing an authorization request, Red Hat Single Sign-On creates an Evaluation instance
before evaluating any policy. This instance is then passed to each policy to determine whether access is
GRANT or DENY.

Policies determine this by invoking the grant() or deny() methods on an Evaluation instance. By default,
the state of the Evaluation instance is denied, which means that your policies must explicitly invoke the
grant() method to indicate to the policy evaluation engine that permission should be granted.

Additional resources

JavaDocs Documentation .

5.11.1. The evaluation context

The evaluation context provides useful information to policies during their evaluation.

 *
 * @return the evaluation context
 */
 EvaluationContext getContext();

 /**
 * Returns a {@link Realm} that can be used by policies to query information.
 *
 * @return a {@link Realm} instance
 */
 Realm getRealm();

 /**
 * Grants the requested permission to the caller.
 */
 void grant();

 /**
 * Denies the requested permission.
 */
 void deny();
}

public interface EvaluationContext {

 /**
 * Returns the {@link Identity} that represents an entity (person or non-person) to which the
permissions must be granted, or not.
 *
 * @return the identity to which the permissions must be granted, or not
 */
 Identity getIdentity();

 /**
 * Returns all attributes within the current execution and runtime environment.
 *
 * @return the attributes within the current execution and runtime environment

Red Hat Single Sign-On 7.6 Authorization Services Guide

52

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/api_documentation/index

From this interface, policies can obtain:

The authenticated Identity

Information about the execution context and runtime environment

The Identity is built based on the OAuth2 Access Token that was sent along with the authorization
request, and this construct has access to all claims extracted from the original token. For example, if you
are using a Protocol Mapper to include a custom claim in an OAuth2 Access Token you can also access
this claim from a policy and use it to build your conditions.

The EvaluationContext also gives you access to attributes related to both the execution and runtime
environments. For now, there only a few built-in attributes.

Table 5.1. Execution and Runtime Attributes

Name Description Type

kc.time.date_time Current date and time String. Format MM/dd/yyyy
hh:mm:ss

kc.client.network.ip_address IPv4 address of the client String

kc.client.network.host Client’s host name String

kc.client.id The client id String

kc.client.user_agent The value of the 'User-Agent'
HTTP header

String[]

kc.realm.name The name of the realm String

 */
 Attributes getAttributes();
}

CHAPTER 5. MANAGING POLICIES

53

CHAPTER 6. MANAGING PERMISSIONS
A permission associates the object being protected and the policies that must be evaluated to decide
whether access should be granted.

After creating the resources you want to protect and the policies you want to use to protect these
resources, you can start managing permissions. To manage permissions, click the Permissions tab when
editing a resource server.

Permissions

Permissions can be created to protect two main types of objects:

Resources

Scopes

To create a permission, select the permission type you want to create from the item list in the upper
right corner of the permission listing. The following sections describe these two types of objects in more
detail.

6.1. CREATING RESOURCE-BASED PERMISSION

A resource-based permission defines a set of one or more resources to protect using a set of one or
more authorization policies.

To create a new resource-based permission, select Resource-based in the item list in the upper right
corner of the permission listing.

Add Resource Permission

Red Hat Single Sign-On 7.6 Authorization Services Guide

54

6.1.1. Configuration

Name
A human-readable and unique string describing the permission. A best practice is to use names
that are closely related to your business and security requirements, so you can identify them
more easily.

Description
A string containing details about this permission.

Apply To Resource Type
Specifies if the permission is applied to all resources with a given type. When selecting this field,
you are prompted to enter the resource type to protect.

Resource Type
Defines the resource type to protect. When defined, this permission is evaluated for all
resources matching that type.

Resources
Defines a set of one or more resources to protect.

Apply Policy
Defines a set of one or more policies to associate with a permission. To associate a policy you
can either select an existing policy or create a new one by selecting the type of the policy you
want to create.

Decision Strategy
The Decision Strategy for this permission.

6.1.2. Typed resource permission

Resource permissions can also be used to define policies that are to be applied to all resources with a
given type. This form of resource-based permission can be useful when you have resources sharing
common access requirements and constraints.

Frequently, resources within an application can be categorized (or typed) based on the data they
encapsulate or the functionality they provide. For example, a financial application can manage different

CHAPTER 6. MANAGING PERMISSIONS

55

banking accounts where each one belongs to a specific customer. Although they are different banking
accounts, they share common security requirements and constraints that are globally defined by the
banking organization. With typed resource permissions, you can define common policies to apply to all
banking accounts, such as:

Only the owner can manage his account

Only allow access from the owner’s country and/or region

Enforce a specific authentication method

To create a typed resource permission, click Apply to Resource Type when creating a new resource-
based permission. With Apply to Resource Type set to On, you can specify the type that you want to
protect as well as the policies that are to be applied to govern access to all resources with type you have
specified.

Example of a typed resource permission

6.2. CREATING SCOPE-BASED PERMISSIONS

A scope-based permission defines a set of one or more scopes to protect using a set of one or more
authorization policies. Unlike resource-based permissions, you can use this permission type to create
permissions not only for a resource, but also for the scopes associated with it, providing more granularity
when defining the permissions that govern your resources and the actions that can be performed on
them.

To create a new scope-based permission, select Scope-based in the item list in the upper right corner
of the permission listing.

Add Scope Permission

Red Hat Single Sign-On 7.6 Authorization Services Guide

56

6.2.1. Configuration

Name
A human-readable and unique string describing the permission. A best practice is to use names
that are closely related to your business and security requirements, so you can identify them
more easily.

Description
A string containing details about this permission.

Resource
Restricts the scopes to those associated with the selected resource. If none is selected, all
scopes are available.

Scopes
Defines a set of one or more scopes to protect.

Apply Policy
Defines a set of one or more policies to associate with a permission. To associate a policy you
can either select an existing policy or create a new one by selecting the type of the policy you
want to create.

Decision Strategy
The Decision Strategy for this permission.

6.3. POLICY DECISION STRATEGIES

When associating policies with a permission, you can also define a decision strategy to specify how to
evaluate the outcome of the associated policies to determine access.

Unanimous
The default strategy if none is provided. In this case, all policies must evaluate to a positive
decision for the final decision to be also positive.

Affirmative

In this case, at least one policy must evaluate to a positive decision for the final decision to be

CHAPTER 6. MANAGING PERMISSIONS

57

In this case, at least one policy must evaluate to a positive decision for the final decision to be
also positive.

Consensus
In this case, the number of positive decisions must be greater than the number of negative
decisions. If the number of positive and negative decisions is equal, the final decision will be
negative.

Red Hat Single Sign-On 7.6 Authorization Services Guide

58

CHAPTER 7. EVALUATING AND TESTING POLICIES
When designing your policies, you can simulate authorization requests to test how your policies are being
evaluated.

You can access the Policy Evaluation Tool by clicking the Evaluate tab when editing a resource server.
There you can specify different inputs to simulate real authorization requests and test the effect of your
policies.

Policy evaluation tool

7.1. PROVIDING IDENTITY INFORMATION

The Identity Information filters can be used to specify the user requesting permissions.

7.2. PROVIDING CONTEXTUAL INFORMATION

The Contextual Information filters can be used to define additional attributes to the evaluation
context, so that policies can obtain these same attributes.

7.3. PROVIDING THE PERMISSIONS

The Permissions filters can be used to build an authorization request. You can request permissions for a
set of one or more resources and scopes. If you want to simulate authorization requests based on all
protected resources and scopes, click Add without specifying any Resources or Scopes.

When you’ve specified your desired values, click Evaluate.

CHAPTER 7. EVALUATING AND TESTING POLICIES

59

CHAPTER 8. AUTHORIZATION SERVICES
Red Hat Single Sign-On Authorization Services are built on top of well-known standards such as the
OAuth2 and User-Managed Access specifications.

OAuth2 clients (such as front end applications) can obtain access tokens from the server using the
token endpoint and use these same tokens to access resources protected by a resource server (such as
back end services). In the same way, Red Hat Single Sign-On Authorization Services provide extensions
to OAuth2 to allow access tokens to be issued based on the processing of all policies associated with
the resource(s) or scope(s) being requested. This means that resource servers can enforce access to
their protected resources based on the permissions granted by the server and held by an access token.
In Red Hat Single Sign-On Authorization Services the access token with permissions is called a
Requesting Party Token or RPT for short.

In addition to the issuance of RPTs, Red Hat Single Sign-On Authorization Services also provides a set
of RESTful endpoints that allow resources servers to manage their protected resources, scopes,
permissions and policies, helping developers to extend or integrate these capabilities into their
applications in order to support fine-grained authorization.

8.1. DISCOVERING AUTHORIZATION SERVICES ENDPOINTS AND
METADATA

Red Hat Single Sign-On provides a discovery document from which clients can obtain all necessary
information to interact with Red Hat Single Sign-On Authorization Services, including endpoint locations
and capabilities.

The discovery document can be obtained from:

Where ${host}:${port} is the hostname (or IP address) and port where Red Hat Single Sign-On is
running and ${realm} is the name of a realm in Red Hat Single Sign-On.

As a result, you should get a response as follows:

Each of these endpoints expose a specific set of capabilities:

token_endpoint

A OAuth2-compliant Token Endpoint that supports the urn:ietf:params:oauth:grant-

curl -X GET \
 http://${host}:${port}/auth/realms/${realm}/.well-known/uma2-configuration

{

 // some claims are expected here

 // these are the main claims in the discovery document about Authorization Services endpoints
location
 "token_endpoint": "http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token",
 "token_introspection_endpoint": "http://${host}:${port}/auth/realms/${realm}/protocol/openid-
connect/token/introspect",
 "resource_registration_endpoint":
"http://${host}:${port}/auth/realms/${realm}/authz/protection/resource_set",
 "permission_endpoint": "http://${host}:${port}/auth/realms/${realm}/authz/protection/permission",
 "policy_endpoint": "http://${host}:${port}/auth/realms/${realm}/authz/protection/uma-policy"
}

Red Hat Single Sign-On 7.6 Authorization Services Guide

60

A OAuth2-compliant Token Endpoint that supports the urn:ietf:params:oauth:grant-
type:uma-ticket grant type. Through this endpoint clients can send authorization requests and
obtain an RPT with all permissions granted by Red Hat Single Sign-On.

token_introspection_endpoint
A OAuth2-compliant Token Introspection Endpoint which clients can use to query the server to
determine the active state of an RPT and to determine any other information associated with
the token, such as the permissions granted by Red Hat Single Sign-On.

resource_registration_endpoint
A UMA-compliant Resource Registration Endpoint which resource servers can use to manage
their protected resources and scopes. This endpoint provides operations create, read, update
and delete resources and scopes in Red Hat Single Sign-On.

permission_endpoint
A UMA-compliant Permission Endpoint which resource servers can use to manage permission
tickets. This endpoint provides operations create, read, update, and delete permission tickets in
Red Hat Single Sign-On.

8.2. OBTAINING PERMISSIONS

To obtain permissions from Red Hat Single Sign-On you send an authorization request to the token
endpoint. As a result, Red Hat Single Sign-On will evaluate all policies associated with the resource(s)
and scope(s) being requested and issue an RPT with all permissions granted by the server.

Clients are allowed to send authorization requests to the token endpoint using the following parameters:

grant_type
This parameter is required. Must be urn:ietf:params:oauth:grant-type:uma-ticket.

ticket
This parameter is optional. The most recent permission ticket received by the client as part of
the UMA authorization process.

claim_token
This parameter is optional. A string representing additional claims that should be considered by
the server when evaluating permissions for the resource(s) and scope(s) being requested. This
parameter allows clients to push claims to Red Hat Single Sign-On. For more details about all
supported token formats see claim_token_format parameter.

claim_token_format
This parameter is optional. A string indicating the format of the token specified in the
claim_token parameter. Red Hat Single Sign-On supports two token formats:
urn:ietf:params:oauth:token-type:jwt and https://openid.net/specs/openid-connect-core-
1_0.html#IDToken. The urn:ietf:params:oauth:token-type:jwt format indicates that the
claim_token parameter references an access token. The https://openid.net/specs/openid-
connect-core-1_0.html#IDToken indicates that the claim_token parameter references an
OpenID Connect ID Token.

rpt
This parameter is optional. A previously issued RPT which permissions should also be evaluated
and added in a new one. This parameter allows clients in possession of an RPT to perform
incremental authorization where permissions are added on demand.

permission
This parameter is optional. A string representing a set of one or more resources and scopes the

CHAPTER 8. AUTHORIZATION SERVICES

61

https://openid.net/specs/openid-connect-core-1_0.html#IDToken
https://openid.net/specs/openid-connect-core-1_0.html#IDToken

client is seeking access. This parameter can be defined multiple times in order to request
permission for multiple resource and scopes. This parameter is an extension to
urn:ietf:params:oauth:grant-type:uma-ticket grant type in order to allow clients to send
authorization requests without a permission ticket. The format of the string must be:
RESOURCE_ID#SCOPE_ID. For instance: Resource A#Scope A, Resource A#Scope A,
Scope B, Scope C, Resource A, #Scope A.

audience
This parameter is optional. The client identifier of the resource server to which the client is
seeking access. This parameter is mandatory in case the permission parameter is defined. It
serves as a hint to Red Hat Single Sign-On to indicate the context in which permissions should
be evaluated.

response_include_resource_name
This parameter is optional. A boolean value indicating to the server whether resource names
should be included in the RPT’s permissions. If false, only the resource identifier is included.

response_permissions_limit
This parameter is optional. An integer N that defines a limit for the amount of permissions an
RPT can have. When used together with rpt parameter, only the last N requested permissions
will be kept in the RPT.

submit_request
This parameter is optional. A boolean value indicating whether the server should create
permission requests to the resources and scopes referenced by a permission ticket. This
parameter only has effect if used together with the ticket parameter as part of a UMA
authorization process.

response_mode
This parameter is optional. A string value indicating how the server should respond to
authorization requests. This parameter is specially useful when you are mainly interested in
either the overall decision or the permissions granted by the server, instead of a standard
OAuth2 response. Possible values are:

decision
Indicates that responses from the server should only represent the overall decision by
returning a JSON with the following format:

If the authorization request does not map to any permission, a 403 HTTP status code is
returned instead.

permissions
Indicates that responses from the server should contain any permission granted by the
server by returning a JSON with the following format:

{
 'result': true
}

[
 {
 'rsid': 'My Resource'
 'scopes': ['view', 'update']
 },

Red Hat Single Sign-On 7.6 Authorization Services Guide

62

If the authorization request does not map to any permission, a 403 HTTP status code is
returned instead.

Example of a authorization request when a client is seeking access to two resources protected by a
resource server.

Example of a authorization request when a client is seeking access to any resource and scope protected
by a resource server.

Example of an authorization request when a client is seeking access to a UMA protected resource after
receiving a permission ticket from the resource server as part of the authorization process:

If Red Hat Single Sign-On assessment process results in issuance of permissions, it issues the RPT with
which it has associated the permissions:

Red Hat Single Sign-On responds to the client with the RPT

The response from the server is just like any other response from the token endpoint when using some
other grant type. The RPT can be obtained from the access_token response parameter. If the client is
not authorized, Red Hat Single Sign-On responds with a 403 HTTP status code:

Red Hat Single Sign-On denies the authorization request

 ...
]

curl -X POST \
 http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token \
 -H "Authorization: Bearer ${access_token}" \
 --data "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket" \
 --data "audience={resource_server_client_id}" \
 --data "permission=Resource A#Scope A" \
 --data "permission=Resource B#Scope B"

curl -X POST \
 http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token \
 -H "Authorization: Bearer ${access_token}" \
 --data "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket" \
 --data "audience={resource_server_client_id}"

curl -X POST \
 http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token \
 -H "Authorization: Bearer ${access_token}" \
 --data "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket" \
 --data "ticket=${permission_ticket}

HTTP/1.1 200 OK
Content-Type: application/json
...
{
 "access_token": "${rpt}",
}

CHAPTER 8. AUTHORIZATION SERVICES

63

8.2.1. Client authentication methods

Clients need to authenticate to the token endpoint in order to obtain an RPT. When using the
urn:ietf:params:oauth:grant-type:uma-ticket grant type, clients can use any of these authentication
methods:

Bearer Token
Clients should send an access token as a Bearer credential in an HTTP Authorization header to
the token endpoint.

Example: an authorization request using an access token to authenticate to the
token endpoint

This method is especially useful when the client is acting on behalf of a user. In this case, the
bearer token is an access token previously issued by Red Hat Single Sign-On to some client
acting on behalf of a user (or on behalf of itself). Permissions will be evaluated considering the
access context represented by the access token. For instance, if the access token was issued to
Client A acting on behalf of User A, permissions will be granted depending on the resources and
scopes to which User A has access.

Client Credentials
Clients can use any of the client authentication methods supported by Red Hat Single Sign-On.
For instance, client_id/client_secret or JWT.

Example: an authorization request using client id and client secret to authenticate
to the token endpoint

8.2.2. Pushing claims

When obtaining permissions from the server you can push arbitrary claims in order to have these claims
available to your policies when evaluating permissions.

If you are obtaining permissions from the server without using a permission ticket (UMA flow), you can
send an authorization request to the token endpoint as follows:

HTTP/1.1 403 Forbidden
Content-Type: application/json
...
{
 "error": "access_denied",
 "error_description": "request_denied"
}

curl -X POST \
 http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token \
 -H "Authorization: Bearer ${access_token}" \
 --data "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket"

curl -X POST \
 http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token \
 -H "Authorization: Basic cGhvdGg6L7Jl13RmfWgtkk==pOnNlY3JldA==" \
 --data "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket"

Red Hat Single Sign-On 7.6 Authorization Services Guide

64

The claim_token parameter expects a BASE64 encoded JSON with a format similar to the example
below:

The format expects one or more claims where the value for each claim must be an array of strings.

8.2.2.1. Pushing claims Using UMA

For more details about how to push claims when using UMA and permission tickets, please take a look at
Permission API

8.3. USER-MANAGED ACCESS

Red Hat Single Sign-On Authorization Services is based on User-Managed Access or UMA for short.
UMA is a specification that enhances OAuth2 capabilities in the following ways:

Privacy
Nowadays, user privacy is becoming a huge concern, as more and more data and devices are
available and connected to the cloud. With UMA and Red Hat Single Sign-On, resource servers
can enhance their capabilities in order to improve how their resources are protected in respect
to user privacy where permissions are granted based on policies defined by the user.

Party-to-Party Authorization
Resource owners (e.g.: regular end-users) can manage access to their resources and authorize
other parties (e.g: regular end-users) to access these resources. This is different than OAuth2
where consent is given to a client application acting on behalf of a user, with UMA resource
owners are allowed to consent access to other users, in a completely asynchronous manner.

Resource Sharing
Resource owners are allowed to manage permissions to their resources and decide who can
access a particular resource and how. Red Hat Single Sign-On can then act as a sharing
management service from which resource owners can manage their resources.

Red Hat Single Sign-On is a UMA 2.0 compliant authorization server that provides most UMA
capabilities.

As an example, consider a user Alice (resource owner) using an Internet Banking Service (resource
server) to manage her Bank Account (resource). One day, Alice decides to open her bank account to
Bob (requesting party), a accounting professional. However, Bob should only have access to view
(scope) Alice’s account.

As a resource server, the Internet Banking Service must be able to protect Alice’s Bank Account. For

curl -X POST \
 http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token \
 --data "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket" \
 --data "claim_token=ewogICAib3JnYW5pemF0aW9uIjogWyJhY21lIl0KfQ==" \
 --data "claim_token_format=urn:ietf:params:oauth:token-type:jwt" \
 --data "client_id={resource_server_client_id}" \
 --data "client_secret={resource_server_client_secret}" \
 --data "audience={resource_server_client_id}"

{
 "organization" : ["acme"]
}

CHAPTER 8. AUTHORIZATION SERVICES

65

As a resource server, the Internet Banking Service must be able to protect Alice’s Bank Account. For
that, it relies on Red Hat Single Sign-On Resource Registration Endpoint to create a resource in the
server representing Alice’s Bank Account.

At this moment, if Bob tries to access Alice’s Bank Account, access will be denied. The Internet Banking
Service defines a few default policies for banking accounts. One of them is that only the owner, in this
case Alice, is allowed to access her bank account.

However, Internet Banking Service in respect to Alice’s privacy also allows her to change specific policies
for the banking account. One of these policies that she can change is to define which people are allowed
to view her bank account. For that, Internet Banking Service relies on Red Hat Single Sign-On to
provide to Alice a space where she can select individuals and the operations (or data) they are allowed to
access. At any time, Alice can revoke access or grant additional permissions to Bob.

8.3.1. Authorization process

In UMA, the authorization process starts when a client tries to access a UMA protected resource server.

A UMA protected resource server expects a bearer token in the request where the token is an RPT.
When a client requests a resource at the resource server without a RPT:

Client requests a protected resource without sending an RPT

The resource server sends a response back to the client with a permission ticket and a as_uri parameter
with the location of a Red Hat Single Sign-On server to where the ticket should be sent in order to
obtain an RPT.

Resource server responds with a permission ticket

The permission ticket is a special type of token issued by Red Hat Single Sign-On Permission API. They
represent the permissions being requested (e.g.: resources and scopes) as well any other information
associated with the request. Only resource servers are allowed to create those tokens.

Now that the client has a permission ticket and also the location of a Red Hat Single Sign-On server, the
client can use the discovery document to obtain the location of the token endpoint and send an
authorization request.

Client sends an authorization request to the token endpoint to obtain an RPT

If Red Hat Single Sign-On assessment process results in issuance of permissions, it issues the RPT with

curl -X GET \
 http://${host}:${port}/my-resource-server/resource/1bfdfe78-a4e1-4c2d-b142-fc92b75b986f

HTTP/1.1 401 Unauthorized
WWW-Authenticate: UMA realm="${realm}",
 as_uri="https://${host}:${port}/auth/realms/${realm}",
 ticket="016f84e8-f9b9-11e0-bd6f-0021cc6004de"

curl -X POST \
 http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token \
 -H "Authorization: Bearer ${access_token}" \
 --data "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket" \
 --data "ticket=${permission_ticket}

Red Hat Single Sign-On 7.6 Authorization Services Guide

66

If Red Hat Single Sign-On assessment process results in issuance of permissions, it issues the RPT with
which it has associated the permissions:

Red Hat Single Sign-On responds to the client with the RPT

The response from the server is just like any other response from the token endpoint when using some
other grant type. The RPT can be obtained from the access_token response parameter. In case the
client is not authorized to have permissions Red Hat Single Sign-On responds with a 403 HTTP status
code:

Red Hat Single Sign-On denies the authorization request

8.3.2. Submitting permission requests

As part of the authorization process, clients need first to obtain a permission ticket from a UMA
protected resource server in order to exchange it with an RPT at the Red Hat Single Sign-On Token
Endpoint.

By default, Red Hat Single Sign-On responds with a 403 HTTP status code and a request_denied error
in case the client can not be issued with an RPT.

Red Hat Single Sign-On denies the authorization request

Such response implies that Red Hat Single Sign-On could not issue an RPT with the permissions
represented by a permission ticket.

In some situations, client applications may want to start an asynchronous authorization flow and let the
owner of the resources being requested decide whether or not access should be granted. For that,
clients can use the submit_request request parameter along with an authorization request to the token
endpoint:

HTTP/1.1 200 OK
Content-Type: application/json
...
{
 "access_token": "${rpt}",
}

HTTP/1.1 403 Forbidden
Content-Type: application/json
...
{
 "error": "access_denied",
 "error_description": "request_denied"
}

HTTP/1.1 403 Forbidden
Content-Type: application/json
...
{
 "error": "access_denied",
 "error_description": "request_denied"
}

CHAPTER 8. AUTHORIZATION SERVICES

67

When using the submit_request parameter, Red Hat Single Sign-On will persist a permission request
for each resource to which access was denied. Once created, resource owners can check their account
and manage their permissions requests.

You can think about this functionality as a Request Access button in your application, where users can
ask other users for access to their resources.

8.3.3. Managing access to users resources

Users can manage access to their resources using the Red Hat Single Sign-On User Account Service. To
enable this functionality, you must first enable User-Managed Access for your realm.

Procedure

1. Log into the Admin Console.

2. Click Realm Settings in the menu.

3. Toggle User-Managed Access to ON.

4. Click My Resources in the menu option. A page displays with the following options.

Manage Permission Requests that Need my approval

This section contains a list of all permission requests awaiting approval. These requests are

curl -X POST \
 http://${host}:${port}/auth/realms/${realm}/protocol/openid-connect/token \
 -H "Authorization: Bearer ${access_token}" \
 --data "grant_type=urn:ietf:params:oauth:grant-type:uma-ticket" \
 --data "ticket=${permission_ticket} \
 --data "submit_request=true"

Red Hat Single Sign-On 7.6 Authorization Services Guide

68

This section contains a list of all permission requests awaiting approval. These requests are
connected to the parties (users) requesting access to a particular resource. Users are
allowed to approve or deny these requests.

Manage My resources
This section contains a list of all resources owned by the user. Users can click on a resource
for more details and share the resource with others.

Manage Resources shared with me
This section contains a list of all resources shared with the user.

Manage Your requests waiting approval
This section contains a list of permission requests sent by the user that are waiting for the
approval of another user or resource owner.

When you click on a specific resource to make changes, the following page displays:

This page provides the following options:

Manage People with access to this resource
This section contains a list of people with access to this resource. Users are allowed to revoke
access by clicking on the Revoke button or by removing a specific Permission.

Share the resource with others
By typing the username or e-mail of another user, the user is able to share the resource and
select the permissions he wants to grant access.

8.4. PROTECTION API

The Protection API provides a UMA-compliant set of endpoints providing:

Resource Management
With this endpoint, resource servers can manage their resources remotely and enable policy
enforcers to query the server for the resources that need protection.

Permission Management
In the UMA protocol, resource servers access this endpoint to create permission tickets. Red
Hat Single Sign-On also provides endpoints to manage the state of permissions and query
permissions.

Policy API

CHAPTER 8. AUTHORIZATION SERVICES

69

Red Hat Single Sign-On leverages the UMA Protection API to allow resource servers to manage
permissions for their users. In addition to the Resource and Permission APIs, Red Hat Single
Sign-On provides a Policy API from where permissions can be set to resources by resource
servers on behalf of their users.

An important requirement for this API is that only resource servers are allowed to access its endpoints
using a special OAuth2 access token called a protection API token (PAT). In UMA, a PAT is a token with
the scope uma_protection.

8.4.1. What is a PAT and how to obtain it

A protection API token (PAT) is a special OAuth2 access token with a scope defined as
uma_protection. When you create a resource server, Red Hat Single Sign-On automatically creates a
role, uma_protection, for the corresponding client application and associates it with the client’s service
account.

Service Account granted with uma_protection role

Resource servers can obtain a PAT from Red Hat Single Sign-On like any other OAuth2 access token.
For example, using curl:

The example above is using the client_credentials grant type to obtain a PAT from the server. As a
result, the server returns a response similar to the following:

curl -X POST \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d 'grant_type=client_credentials&client_id=${client_id}&client_secret=${client_secret}' \
 "http://localhost:8080/auth/realms/${realm_name}/protocol/openid-connect/token"

{
 "access_token": ${PAT},
 "expires_in": 300,
 "refresh_expires_in": 1800,
 "refresh_token": ${refresh_token},

Red Hat Single Sign-On 7.6 Authorization Services Guide

70

NOTE

Red Hat Single Sign-On can authenticate your client application in different ways. For
simplicity, the client_credentials grant type is used here, which requires a client_id and a
client_secret. You can choose to use any supported authentication method.

8.4.2. Managing resources

Resource servers can manage their resources remotely using a UMA-compliant endpoint.

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set

This endpoint provides operations outlined as follows (entire path omitted for clarity):

Create resource set description: POST /resource_set

Read resource set description: GET /resource_set/{_id}

Update resource set description: PUT /resource_set/{_id}

Delete resource set description: DELETE /resource_set/{_id}

List resource set descriptions: GET /resource_set

For more information about the contract for each of these operations, see UMA Resource Registration
API.

8.4.2.1. Creating a resource

To create a resource you must send an HTTP POST request as follows:

By default, the owner of a resource is the resource server. If you want to define a different owner, such

 "token_type": "bearer",
 "id_token": ${id_token},
 "not-before-policy": 0,
 "session_state": "ccea4a55-9aec-4024-b11c-44f6f168439e"
}

curl -v -X POST \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set \
 -H 'Authorization: Bearer '$pat \
 -H 'Content-Type: application/json' \
 -d '{
 "name":"Tweedl Social Service",
 "type":"http://www.example.com/rsrcs/socialstream/140-compatible",
 "icon_uri":"http://www.example.com/icons/sharesocial.png",
 "resource_scopes":[
 "read-public",
 "post-updates",
 "read-private",
 "http://www.example.com/scopes/all"
]
 }'

CHAPTER 8. AUTHORIZATION SERVICES

71

https://docs.kantarainitiative.org/uma/wg/oauth-uma-federated-authz-2.0-09.html#reg-api

By default, the owner of a resource is the resource server. If you want to define a different owner, such
as an specific user, you can send a request as follows:

Where the property owner can be set with the username or the identifier of the user.

8.4.2.2. Creating user-managed resources

By default, resources created via Protection API can not be managed by resource owners through the
User Account Service.

To create resources and allow resource owners to manage these resources, you must set
ownerManagedAccess property as follows:

8.4.2.3. Updating resources

To update an existing resource, send an HTTP PUT request as follows:

8.4.2.4. Deleting resources

To delete an existing resource, send an HTTP DELETE request as follows:

curl -v -X POST \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set \
 -H 'Authorization: Bearer '$pat \
 -H 'Content-Type: application/json' \
 -d '{
 "name":"Alice Resource",
 "owner": "alice"
 }'

curl -v -X POST \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set \
 -H 'Authorization: Bearer '$pat \
 -H 'Content-Type: application/json' \
 -d '{
 "name":"Alice Resource",
 "owner": "alice",
 "ownerManagedAccess": true
 }'

curl -v -X PUT \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set/{resource_id} \
 -H 'Authorization: Bearer '$pat \
 -H 'Content-Type: application/json' \
 -d '{
 "_id": "Alice Resource",
 "name":"Alice Resource",
 "resource_scopes": [
 "read"
]
 }'

Red Hat Single Sign-On 7.6 Authorization Services Guide

72

8.4.2.5. Querying resources

To query the resources by id, send an HTTP GET request as follows:

To query resources given a name, send an HTTP GET request as follows:

By default, the name filter will match any resource with the given pattern. To restrict the query to only
return resources with an exact match, use:

To query resources given an uri, send an HTTP GET request as follows:

To query resources given an owner, send an HTTP GET request as follows:

To query resources given an type, send an HTTP GET request as follows:

To query resources given an scope, send an HTTP GET request as follows:

When querying the server for permissions use parameters first and max results to limit the result.

8.4.3. Managing permission requests

Resource servers using the UMA protocol can use a specific endpoint to manage permission requests.
This endpoint provides a UMA-compliant flow for registering permission requests and obtaining a
permission ticket.

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/permission

A permission ticket is a special security token type representing a permission request. Per the UMA
specification, a permission ticket is:

A correlation handle that is conveyed from an authorization server to a resource server, from a

curl -v -X DELETE \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set/{resource_id} \
 -H 'Authorization: Bearer '$pat

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set/{resource_id}

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set?name=Alice
Resource

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set?name=Alice
Resource&exactName=true

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set?uri=/api/alice

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set?owner=alice

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set?type=albums

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/resource_set?scope=read

CHAPTER 8. AUTHORIZATION SERVICES

73

resource server to a client, and ultimately from a client back to an authorization server, to enable
the authorization server to assess the correct policies to apply to a request for authorization
data.

In most cases, you won’t need to deal with this endpoint directly. Red Hat Single Sign-On provides a
policy enforcer that enables UMA for your resource server so it can obtain a permission ticket from the
authorization server, return this ticket to client application, and enforce authorization decisions based on
a final requesting party token (RPT).

The process of obtaining permission tickets from Red Hat Single Sign-On is performed by resource
servers and not regular client applications, where permission tickets are obtained when a client tries to
access a protected resource without the necessary grants to access the resource. The issuance of
permission tickets is an important aspects when using UMA as it allows resource servers to:

Abstract from clients the data associated with the resources protected by the resource server

Register in the Red Hat Single Sign-On authorization requests which in turn can be used later in
workflows to grant access based on the resource’s owner consent

Decouple resource servers from authorization servers and allow them to protect and manage
their resources using different authorization servers

Client wise, a permission ticket has also important aspects that its worthy to highlight:

Clients don’t need to know about how authorization data is associated with protected resources.
A permission ticket is completely opaque to clients.

Clients can have access to resources on different resource servers and protected by different
authorization servers

These are just some of the benefits brought by UMA where other aspects of UMA are strongly based on
permission tickets, specially regarding privacy and user controlled access to their resources.

8.4.3.1. Creating permission ticket

To create a permission ticket, send an HTTP POST request as follows:

When creating tickets you can also push arbitrary claims and associate these claims with the ticket:

curl -X POST \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/permission \
 -H 'Authorization: Bearer '$pat \
 -H 'Content-Type: application/json' \
 -d '[
 {
 "resource_id": "{resource_id}",
 "resource_scopes": [
 "view"
]
 }
]'

curl -X POST \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/permission \
 -H 'Authorization: Bearer '$pat \
 -H 'Content-Type: application/json' \

Red Hat Single Sign-On 7.6 Authorization Services Guide

74

Where these claims will be available to your policies when evaluating permissions for the resource and
scope(s) associated with the permission ticket.

8.4.3.2. Other non UMA-compliant endpoints

8.4.3.2.1. Creating permission ticket

To grant permissions for a specific resource with id {resource_id} to a user with id {user_id}, as an owner
of the resource send an HTTP POST request as follows:

8.4.3.2.2. Getting permission tickets

You can use any of these query parameters:

scopeId

resourceId

owner

requester

granted

returnNames

first

max

 -d '[
 {
 "resource_id": "{resource_id}",
 "resource_scopes": [
 "view"
],
 "claims": {
 "organization": ["acme"]
 }
 }
]'

curl -X POST \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/permission/ticket \
 -H 'Authorization: Bearer '$access_token \
 -H 'Content-Type: application/json' \
 -d '{
 "resource": "{resource_id}",
 "requester": "{user_id}",
 "granted": true,
 "scopeName": "view"
 }'

curl http://${host}:${port}/auth/realms/${realm_name}/authz/protection/permission/ticket \
 -H 'Authorization: Bearer '$access_token

CHAPTER 8. AUTHORIZATION SERVICES

75

8.4.3.2.3. Updating permission ticket

8.4.3.2.4. Deleting permission ticket

8.4.4. Managing resource permissions using the Policy API

Red Hat Single Sign-On leverages the UMA Protection API to allow resource servers to manage
permissions for their users. In addition to the Resource and Permission APIs, Red Hat Single Sign-On
provides a Policy API from where permissions can be set to resources by resource servers on behalf of
their users.

The Policy API is available at:

http://${host}:${port}/auth/realms/${realm_name}/authz/protection/uma-policy/{resource_id}

This API is protected by a bearer token that must represent a consent granted by the user to the
resource server to manage permissions on his behalf. The bearer token can be a regular access token
obtained from the token endpoint using:

Resource Owner Password Credentials Grant Type

Token Exchange, in order to exchange an access token granted to some client (public client) for
a token where audience is the resource server

8.4.4.1. Associating a permission with a resource

To associate a permission with a specific resource you must send a HTTP POST request as follows:

curl -X PUT \
 http://${host}:${port}/auth/realms/${realm_name}/authz/protection/permission/ticket \
 -H 'Authorization: Bearer '$access_token \
 -H 'Content-Type: application/json' \
 -d '{
 "id": "{ticket_id}"
 "resource": "{resource_id}",
 "requester": "{user_id}",
 "granted": false,
 "scopeName": "view"
 }'

curl -X DELETE
http://${host}:${port}/auth/realms/${realm_name}/authz/protection/permission/ticket/{ticket_id} \
 -H 'Authorization: Bearer '$access_token

curl -X POST \
 http://localhost:8180/auth/realms/photoz/authz/protection/uma-policy/{resource_id} \
 -H 'Authorization: Bearer '$access_token \
 -H 'Cache-Control: no-cache' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "Any people manager",
 "description": "Allow access to any people manager",

Red Hat Single Sign-On 7.6 Authorization Services Guide

76

In the example above we are creating and associating a new permission to a resource represented by
resource_id where any user with a role people-manager should be granted with the read scope.

You can also create policies using other access control mechanisms, such as using groups:

Or a specific client:

Or even using a custom policy using JavaScript:

NOTE

Upload Scripts is Deprecated and will be removed in future releases. This feature is
disabled by default.

To enable start the server with -Dkeycloak.profile.feature.upload_scripts=enabled .
For more details see Profiles.

 "scopes": ["read"],
 "roles": ["people-manager"]
}'

curl -X POST \
 http://localhost:8180/auth/realms/photoz/authz/protection/uma-policy/{resource_id} \
 -H 'Authorization: Bearer '$access_token \
 -H 'Cache-Control: no-cache' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "Any people manager",
 "description": "Allow access to any people manager",
 "scopes": ["read"],
 "groups": ["/Managers/People Managers"]
}'

curl -X POST \
 http://localhost:8180/auth/realms/photoz/authz/protection/uma-policy/{resource_id} \
 -H 'Authorization: Bearer '$access_token \
 -H 'Cache-Control: no-cache' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "Any people manager",
 "description": "Allow access to any people manager",
 "scopes": ["read"],
 "clients": ["my-client"]
}'

curl -X POST \
 http://localhost:8180/auth/realms/photoz/authz/protection/uma-policy/{resource_id} \
 -H 'Authorization: Bearer '$access_token \
 -H 'Cache-Control: no-cache' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "Any people manager",
 "description": "Allow access to any people manager",

CHAPTER 8. AUTHORIZATION SERVICES

77

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.6/html-single/server_installation_and_configuration_guide/#profiles

It is also possible to set any combination of these access control mechanisms.

To update an existing permission, send an HTTP PUT request as follows:

8.4.4.2. Removing a permission

To remove a permission associated with a resource, send an HTTP DELETE request as follows:

8.4.4.3. Querying permission

To query the permissions associated with a resource, send an HTTP GET request as follows:

http://${host}:${port}/auth/realms/${realm}/authz/protection/uma-policy?resource={resource_id}

To query the permissions given its name, send an HTTP GET request as follows:

To query the permissions associated with a specific scope, send an HTTP GET request as follows:

http://${host}:${port}/auth/realms/${realm}/authz/protection/uma-policy?scope=read

To query all permissions, send an HTTP GET request as follows:

http://${host}:${port}/auth/realms/${realm}/authz/protection/uma-policy

 "scopes": ["read"],
 "condition": "my-deployed-script.js"
}'

curl -X PUT \
 http://localhost:8180/auth/realms/photoz/authz/protection/uma-policy/{permission_id} \
 -H 'Authorization: Bearer '$access_token \
 -H 'Content-Type: application/json' \
 -d '{
 "id": "21eb3fed-02d7-4b5a-9102-29f3f09b6de2",
 "name": "Any people manager",
 "description": "Allow access to any people manager",
 "type": "uma",
 "scopes": [
 "album:view"
],
 "logic": "POSITIVE",
 "decisionStrategy": "UNANIMOUS",
 "owner": "7e22131a-aa57-4f5f-b1db-6e82babcd322",
 "roles": [
 "user"
]
}'

curl -X DELETE \
 http://localhost:8180/auth/realms/photoz/authz/protection/uma-policy/{permission_id} \
 -H 'Authorization: Bearer '$access_token

http://${host}:${port}/auth/realms/${realm}/authz/protection/uma-policy?name=Any people manager

Red Hat Single Sign-On 7.6 Authorization Services Guide

78

When querying the server for permissions use parameters first and max results to limit the result.

8.5. REQUESTING PARTY TOKEN

A requesting party token (RPT) is a JSON web token (JWT) digitally signed using JSON web signature
(JWS). The token is built based on the OAuth2 access token previously issued by Red Hat Single Sign-
On to a specific client acting on behalf of a user or on its own behalf.

When you decode an RPT, you see a payload similar to the following:

From this token you can obtain all permissions granted by the server from the permissions claim.

Also note that permissions are directly related with the resources/scopes you are protecting and
completely decoupled from the access control methods that were used to actually grant and issue these
same permissions.

8.5.1. Introspecting a requesting party token

Sometimes you might want to introspect a requesting party token (RPT) to check its validity or obtain
the permissions within the token to enforce authorization decisions on the resource server side.

There are two main use cases where token introspection can help you:

When client applications need to query the token validity to obtain a new one with the same or
additional permissions

When enforcing authorization decisions at the resource server side, especially when none of the
built-in policy enforcers fits your application

8.5.2. Obtaining Information about an RPT

The token introspection is essentially a OAuth2 token introspection-compliant endpoint from which you
can obtain information about an RPT.

http://${host}:${port}/auth/realms/${realm_name}/protocol/openid-connect/token/introspect

{
 "authorization": {
 "permissions": [
 {
 "resource_set_id": "d2fe9843-6462-4bfc-baba-b5787bb6e0e7",
 "resource_set_name": "Hello World Resource"
 }
]
 },
 "jti": "d6109a09-78fd-4998-bf89-95730dfd0892-1464906679405",
 "exp": 1464906971,
 "nbf": 0,
 "iat": 1464906671,
 "sub": "f1888f4d-5172-4359-be0c-af338505d86c",
 "typ": "kc_ett",
 "azp": "hello-world-authz-service"
}

CHAPTER 8. AUTHORIZATION SERVICES

79

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7662

To introspect an RPT using this endpoint, you can send a request to the server as follows:

NOTE

The request above is using HTTP BASIC and passing the client’s credentials (client ID
and secret) to authenticate the client attempting to introspect the token, but you can use
any other client authentication method supported by Red Hat Single Sign-On.

The introspection endpoint expects two parameters:

token_type_hint
Use requesting_party_token as the value for this parameter, which indicates that you want to
introspect an RPT.

token
Use the token string as it was returned by the server during the authorization process as the
value for this parameter.

As a result, the server response is:

If the RPT is not active, this response is returned instead:

8.5.3. Do I need to invoke the server every time I want to introspect an RPT?

No. Just like a regular access token issued by a Red Hat Single Sign-On server, RPTs also use the JSON
web token (JWT) specification as the default format.

If you want to validate these tokens without a call to the remote introspection endpoint, you can decode

curl -X POST \
 -H "Authorization: Basic aGVsbG8td29ybGQtYXV0aHotc2VydmljZTpzZWNyZXQ=" \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d 'token_type_hint=requesting_party_token&token=${RPT}' \
 "http://localhost:8080/auth/realms/hello-world-authz/protocol/openid-connect/token/introspect"

{
 "permissions": [
 {
 "resource_id": "90ccc6fc-b296-4cd1-881e-089e1ee15957",
 "resource_name": "Hello World Resource"
 }
],
 "exp": 1465314139,
 "nbf": 0,
 "iat": 1465313839,
 "aud": "hello-world-authz-service",
 "active": true
}

{
 "active": false
}

Red Hat Single Sign-On 7.6 Authorization Services Guide

80

If you want to validate these tokens without a call to the remote introspection endpoint, you can decode
the RPT and query for its validity locally. Once you decode the token, you can also use the permissions
within the token to enforce authorization decisions.

This is essentially what the policy enforcers do. Be sure to:

Validate the signature of the RPT (based on the realm’s public key)

Query for token validity based on its exp, iat, and aud claims

Additional resources

JSON web token (JWT)

policy enforcers

8.6. AUTHORIZATION CLIENT JAVA API

Depending on your requirements, a resource server should be able to manage resources remotely or
even check for permissions programmatically. If you are using Java, you can access the Red Hat Single
Sign-On Authorization Services using the Authorization Client API.

It is targeted for resource servers that want to access the different endpoints provided by the server
such as the Token Endpoint, Resource, and Permission management endpoints.

8.6.1. Maven dependency

8.6.2. Configuration

The client configuration is defined in a keycloak.json file as follows:

realm (required)
The name of the realm.

auth-server-url (required)
The base URL of the Red Hat Single Sign-On server. All other Red Hat Single Sign-On pages
and REST service endpoints are derived from this. It is usually in the form https://host:port/auth.

<dependencies>
 <dependency>
 <groupId>org.keycloak</groupId>
 <artifactId>keycloak-authz-client</artifactId>
 <version>${KEYCLOAK_VERSION}</version>
 </dependency>
</dependencies>

{
 "realm": "hello-world-authz",
 "auth-server-url" : "http://localhost:8080/auth",
 "resource" : "hello-world-authz-service",
 "credentials": {
 "secret": "secret"
 }
}

CHAPTER 8. AUTHORIZATION SERVICES

81

https://datatracker.ietf.org/doc/html/rfc7519

resource (required)
The client-id of the application. Each application has a client-id that is used to identify the
application.

credentials (required)
Specifies the credentials of the application. This is an object notation where the key is the
credential type and the value is the value of the credential type.

The configuration file is usually located in your application’s classpath, the default location from where
the client is going to try to find a keycloak.json file.

8.6.3. Creating the authorization client

Considering you have a keycloak.json file in your classpath, you can create a new AuthzClient instance
as follows:

8.6.4. Obtaining user entitlements

Here is an example illustrating how to obtain user entitlements:

Here is an example illustrating how to obtain user entitlements for a set of one or more resources:

 // create a new instance based on the configuration defined in a keycloak.json located in your
classpath
 AuthzClient authzClient = AuthzClient.create();

// create a new instance based on the configuration defined in keycloak.json
AuthzClient authzClient = AuthzClient.create();

// create an authorization request
AuthorizationRequest request = new AuthorizationRequest();

// send the entitlement request to the server in order to
// obtain an RPT with all permissions granted to the user
AuthorizationResponse response = authzClient.authorization("alice", "alice").authorize(request);
String rpt = response.getToken();

System.out.println("You got an RPT: " + rpt);

// now you can use the RPT to access protected resources on the resource server

// create a new instance based on the configuration defined in keycloak.json
AuthzClient authzClient = AuthzClient.create();

// create an authorization request
AuthorizationRequest request = new AuthorizationRequest();

// add permissions to the request based on the resources and scopes you want to check access
request.addPermission("Default Resource");

// send the entitlement request to the server in order to
// obtain an RPT with permissions for a single resource
AuthorizationResponse response = authzClient.authorization("alice", "alice").authorize(request);
String rpt = response.getToken();

Red Hat Single Sign-On 7.6 Authorization Services Guide

82

8.6.5. Creating a resource using the protection API

8.6.6. Introspecting an RPT

System.out.println("You got an RPT: " + rpt);

// now you can use the RPT to access protected resources on the resource server

// create a new instance based on the configuration defined in keycloak.json
AuthzClient authzClient = AuthzClient.create();

// create a new resource representation with the information we want
ResourceRepresentation newResource = new ResourceRepresentation();

newResource.setName("New Resource");
newResource.setType("urn:hello-world-authz:resources:example");

newResource.addScope(new ScopeRepresentation("urn:hello-world-authz:scopes:view"));

ProtectedResource resourceClient = authzClient.protection().resource();
ResourceRepresentation existingResource = resourceClient.findByName(newResource.getName());

if (existingResource != null) {
 resourceClient.delete(existingResource.getId());
}

// create the resource on the server
ResourceRepresentation response = resourceClient.create(newResource);
String resourceId = response.getId();

// query the resource using its newly generated id
ResourceRepresentation resource = resourceClient.findById(resourceId);

System.out.println(resource);

// create a new instance based on the configuration defined in keycloak.json
AuthzClient authzClient = AuthzClient.create();

// send the authorization request to the server in order to
// obtain an RPT with all permissions granted to the user
AuthorizationResponse response = authzClient.authorization("alice", "alice").authorize();
String rpt = response.getToken();

// introspect the token
TokenIntrospectionResponse requestingPartyToken =
authzClient.protection().introspectRequestingPartyToken(rpt);

System.out.println("Token status is: " + requestingPartyToken.getActive());
System.out.println("Permissions granted by the server: ");

for (Permission granted : requestingPartyToken.getPermissions()) {
 System.out.println(granted);
}

CHAPTER 8. AUTHORIZATION SERVICES

83

CHAPTER 9. POLICY ENFORCERS
Policy Enforcement Point (PEP) is a design pattern and as such you can implement it in different ways.
Red Hat Single Sign-On provides all the necessary means to implement PEPs for different platforms,
environments, and programming languages. Red Hat Single Sign-On Authorization Services presents a
RESTful API, and leverages OAuth2 authorization capabilities for fine-grained authorization using a
centralized authorization server.

A PEP is responsible for enforcing access decisions from the Red Hat Single Sign-On server where
these decisions are taken by evaluating the policies associated with a protected resource. It acts as a
filter or interceptor in your application in order to check whether or not a particular request to a
protected resource can be fulfilled based on the permissions granted by these decisions.

Permissions are enforced depending on the protocol you are using. When using UMA, the policy
enforcer always expects an RPT as a bearer token in order to decide whether or not a request can be
served. That means clients should first obtain an RPT from Red Hat Single Sign-On before sending
requests to the resource server.

However, if you are not using UMA, you can also send regular access tokens to the resource server. In
this case, the policy enforcer will try to obtain permissions directly from the server.

If you are using any of the Red Hat Single Sign-On OIDC adapters, you can easily enable the policy
enforcer by adding the following property to your keycloak.json file:

keycloak.json

When you enable the policy enforcer all requests sent your application are intercepted and access to
protected resources will be granted depending on the permissions granted by Red Hat Single Sign-On
to the identity making the request.

Policy enforcement is strongly linked to your application’s paths and the resources you created for a
resource server using the Red Hat Single Sign-On Administration Console. By default, when you create a
resource server, Red Hat Single Sign-On creates a default configuration for your resource server so you
can enable policy enforcement quickly.

{
 "policy-enforcer": {}
}

Red Hat Single Sign-On 7.6 Authorization Services Guide

84

9.1. CONFIGURATION

To enable policy enforcement for your application, add the following property to your keycloak.json file:

keycloak.json

Or a little more verbose if you want to manually define the resources being protected:

Here is a description of each configuration option:

policy-enforcer
Specifies the configuration options that define how policies are actually enforced and optionally

{
 "policy-enforcer": {}
}

{
 "policy-enforcer": {
 "user-managed-access" : {},
 "enforcement-mode" : "ENFORCING",
 "paths": [
 {
 "path" : "/someUri/*",
 "methods" : [
 {
 "method": "GET",
 "scopes" : ["urn:app.com:scopes:view"]
 },
 {
 "method": "POST",
 "scopes" : ["urn:app.com:scopes:create"]
 }
]
 },
 {
 "name" : "Some Resource",
 "path" : "/usingPattern/{id}",
 "methods" : [
 {
 "method": "DELETE",
 "scopes" : ["urn:app.com:scopes:delete"]
 }
]
 },
 {
 "path" : "/exactMatch"
 },
 {
 "name" : "Admin Resources",
 "path" : "/usingWildCards/*"
 }
]
 }
}

CHAPTER 9. POLICY ENFORCERS

85

the paths you want to protect. If not specified, the policy enforcer queries the server for all
resources associated with the resource server being protected. In this case, you need to ensure
the resources are properly configured with a URIS property that matches the paths you want to
protect.

user-managed-access
Specifies that the adapter uses the UMA protocol. If specified, the adapter queries the
server for permission tickets and returns them to clients according to the UMA specification.
If not specified, the policy enforcer will be able to enforce permissions based on regular
access tokens or RPTs. In this case, before denying access to the resource when the token
lacks permission, the policy enforcer will try to obtain permissions directly from the server.

enforcement-mode
Specifies how policies are enforced.

ENFORCING
(default mode) Requests are denied by default even when there is no policy associated
with a given resource.

PERMISSIVE
Requests are allowed even when there is no policy associated with a given resource.

DISABLED
Completely disables the evaluation of policies and allows access to any resource. When
enforcement-mode is DISABLED applications are still able to obtain all permissions
granted by Red Hat Single Sign-On through the Authorization Context

on-deny-redirect-to
Defines a URL where a client request is redirected when an "access denied" message is
obtained from the server. By default, the adapter responds with a 403 HTTP status code.

path-cache
Defines how the policy enforcer should track associations between paths in your application
and resources defined in Red Hat Single Sign-On. The cache is needed to avoid
unnecessary requests to a Red Hat Single Sign-On server by caching associations between
paths and protected resources.

lifespan
Defines the time in milliseconds when the entry should be expired. If not provided,
default value is 30000. A value equal to 0 can be set to completely disable the cache. A
value equal to -1 can be set to disable the expiry of the cache.

max-entries
Defines the limit of entries that should be kept in the cache. If not provided, default
value is 1000.

paths
Specifies the paths to protect. This configuration is optional. If not defined, the policy
enforcer will discover all paths by fetching the resources you defined to your application in
Red Hat Single Sign-On, where these resources are defined with URIS representing some
paths in your application.

name
The name of a resource on the server that is to be associated with a given path. When
used in conjunction with a path, the policy enforcer ignores the resource’s URIS
property and uses the path you provided instead.

Red Hat Single Sign-On 7.6 Authorization Services Guide

86

path
(required) A URI relative to the application’s context path. If this option is specified, the
policy enforcer queries the server for a resource with a URI with the same value.
Currently a very basic logic for path matching is supported. Examples of valid paths are:

Wildcards: /*

Suffix: /*.html

Sub-paths: /path/*

Path parameters: /resource/{id}

Exact match: /resource

Patterns: /{version}/resource, /api/{version}/resource, /api/{version}/resource/*

methods
The HTTP methods (for example, GET, POST, PATCH) to protect and how they are
associated with the scopes for a given resource in the server.

method
The name of the HTTP method.

scopes
An array of strings with the scopes associated with the method. When you associate
scopes with a specific method, the client trying to access a protected resource (or
path) must provide an RPT that grants permission to all scopes specified in the list.
For example, if you define a method POST with a scope create, the RPT must
contain a permission granting access to the create scope when performing a POST
to the path.

scopes-enforcement-mode
A string referencing the enforcement mode for the scopes associated with a
method. Values can be ALL or ANY. If ALL, all defined scopes must be granted in
order to access the resource using that method. If ANY, at least one scope should
be granted in order to gain access to the resource using that method. By default,
enforcement mode is set to ALL.

enforcement-mode
Specifies how policies are enforced.

ENFORCING
(default mode) Requests are denied by default even when there is no policy
associated with a given resource.

DISABLED

claim-information-point
Defines a set of one or more claims that must be resolved and pushed to the Red Hat
Single Sign-On server in order to make these claims available to policies. See Claim
Information Point for more details.

lazy-load-paths
Specifies how the adapter should fetch the server for resources associated with paths in
your application. If true, the policy enforcer is going to fetch resources on-demand
accordingly with the path being requested. This configuration is specially useful when you

CHAPTER 9. POLICY ENFORCERS

87

don’t want to fetch all resources from the server during deployment (in case you have
provided no paths) or in case you have defined only a sub set of paths and want to fetch
others on-demand.

http-method-as-scope
Specifies how scopes should be mapped to HTTP methods. If set to true, the policy
enforcer will use the HTTP method from the current request to check whether or not access
should be granted. When enabled, make sure your resources in Red Hat Single Sign-On are
associated with scopes representing each HTTP method you are protecting.

claim-information-point
Defines a set of one or more global claims that must be resolved and pushed to the Red
Hat Single Sign-On server in order to make these claims available to policies. See Claim
Information Point for more details.

9.2. CLAIM INFORMATION POINT

A Claim Information Point (CIP) is responsible for resolving claims and pushing these claims to the Red
Hat Single Sign-On server in order to provide more information about the access context to policies.
They can be defined as a configuration option to the policy-enforcer in order to resolve claims from
different sources, such as:

HTTP Request (parameters, headers, body, etc)

External HTTP Service

Static values defined in configuration

Any other source by implementing the Claim Information Provider SPI

When pushing claims to the Red Hat Single Sign-On server, policies can base decisions not only on who
a user is but also by taking context and contents into account, based on who, what, why, when, where,
and which for a given transaction. It is all about Contextual-based Authorization and how to use runtime
information in order to support fine-grained authorization decisions.

9.2.1. Obtaining information from the HTTP request

Here are several examples showing how you can extract claims from an HTTP request:

keycloak.json

"policy-enforcer": {
 "paths": [
 {
 "path": "/protected/resource",
 "claim-information-point": {
 "claims": {
 "claim-from-request-parameter": "{request.parameter['a']}",
 "claim-from-header": "{request.header['b']}",
 "claim-from-cookie": "{request.cookie['c']}",
 "claim-from-remoteAddr": "{request.remoteAddr}",
 "claim-from-method": "{request.method}",
 "claim-from-uri": "{request.uri}",
 "claim-from-relativePath": "{request.relativePath}",
 "claim-from-secure": "{request.secure}",

Red Hat Single Sign-On 7.6 Authorization Services Guide

88

9.2.2. Obtaining information from an external HTTP service

Here are several examples showing how you can extract claims from an external HTTP Service:

keycloak.json

9.2.3. Static claims

keycloak.json

 "claim-from-json-body-object": "{request.body['/a/b/c']}",
 "claim-from-json-body-array": "{request.body['/d/1']}",
 "claim-from-body": "{request.body}",
 "claim-from-static-value": "static value",
 "claim-from-multiple-static-value": ["static", "value"],
 "param-replace-multiple-placeholder": "Test {keycloak.access_token['/custom_claim/0']} and
{request.parameter['a']} "
 }
 }
 }
]
 }

"policy-enforcer": {
 "paths": [
 {
 "path": "/protected/resource",
 "claim-information-point": {
 "http": {
 "claims": {
 "claim-a": "/a",
 "claim-d": "/d",
 "claim-d0": "/d/0",
 "claim-d-all": ["/d/0", "/d/1"]
 },
 "url": "http://mycompany/claim-provider",
 "method": "POST",
 "headers": {
 "Content-Type": "application/x-www-form-urlencoded",
 "header-b": ["header-b-value1", "header-b-value2"],
 "Authorization": "Bearer {keycloak.access_token}"
 },
 "parameters": {
 "param-a": ["param-a-value1", "param-a-value2"],
 "param-subject": "{keycloak.access_token['/sub']}",
 "param-user-name": "{keycloak.access_token['/preferred_username']}",
 "param-other-claims": "{keycloak.access_token['/custom_claim']}"
 }
 }
 }
 }
]
 }

CHAPTER 9. POLICY ENFORCERS

89

9.2.4. Claim information provider SPI

The Claim Information Provider SPI can be used by developers to support different claim information
points in case none of the built-ins providers are enough to address their requirements.

For example, to implement a new CIP provider you need to implement
org.keycloak.adapters.authorization.ClaimInformationPointProviderFactory and
ClaimInformationPointProvider and also provide the file META-
INF/services/org.keycloak.adapters.authorization.ClaimInformationPointProviderFactory in your
application`s classpath.

Example of org.keycloak.adapters.authorization.ClaimInformationPointProviderFactory:

Every CIP provider must be associated with a name, as defined above in the
MyClaimInformationPointProviderFactory.getName method. The name will be used to map the
configuration from the claim-information-point section in the policy-enforcer configuration to the
implementation.

When processing requests, the policy enforcer will call the
MyClaimInformationPointProviderFactory.create method in order to obtain an instance of
MyClaimInformationPointProvider. When called, any configuration defined for this particular CIP
provider (via claim-information-point) is passed as a map.

"policy-enforcer": {
 "paths": [
 {
 "path": "/protected/resource",
 "claim-information-point": {
 "claims": {
 "claim-from-static-value": "static value",
 "claim-from-multiple-static-value": ["static", "value"],
 }
 }
 }
]
 }

public class MyClaimInformationPointProviderFactory implements
ClaimInformationPointProviderFactory<MyClaimInformationPointProvider> {

 @Override
 public String getName() {
 return "my-claims";
 }

 @Override
 public void init(PolicyEnforcer policyEnforcer) {

 }

 @Override
 public MyClaimInformationPointProvider create(Map<String, Object> config) {
 return new MyClaimInformationPointProvider(config);
 }
}

Red Hat Single Sign-On 7.6 Authorization Services Guide

90

Example of ClaimInformationPointProvider:

9.3. OBTAINING THE AUTHORIZATION CONTEXT

When policy enforcement is enabled, the permissions obtained from the server are available through
org.keycloak.AuthorizationContext. This class provides several methods you can use to obtain
permissions and ascertain whether a permission was granted for a particular resource or scope.

Obtaining the Authorization Context in a Servlet Container

NOTE

For more details about how you can obtain a KeycloakSecurityContext consult the
adapter configuration. The example above should be sufficient to obtain the context
when running an application using any of the servlet containers supported by Red Hat
Single Sign-On.

The authorization context helps give you more control over the decisions made and returned by the
server. For example, you can use it to build a dynamic menu where items are hidden or shown depending
on the permissions associated with a resource or scope.

public class MyClaimInformationPointProvider implements ClaimInformationPointProvider {

 private final Map<String, Object> config;

 public MyClaimInformationPointProvider(Map<String, Object> config) {
 this.config = config;
 }

 @Override
 public Map<String, List<String>> resolve(HttpFacade httpFacade) {
 Map<String, List<String>> claims = new HashMap<>();

 // put whatever claim you want into the map

 return claims;
 }
}

 HttpServletRequest request = ... // obtain javax.servlet.http.HttpServletRequest
 KeycloakSecurityContext keycloakSecurityContext =
 (KeycloakSecurityContext) request
 .getAttribute(KeycloakSecurityContext.class.getName());
 AuthorizationContext authzContext =
 keycloakSecurityContext.getAuthorizationContext();

if (authzContext.hasResourcePermission("Project Resource")) {
 // user can access the Project Resource
}

if (authzContext.hasResourcePermission("Admin Resource")) {
 // user can access administration resources
}

CHAPTER 9. POLICY ENFORCERS

91

The AuthorizationContext represents one of the main capabilities of Red Hat Single Sign-On
Authorization Services. From the examples above, you can see that the protected resource is not
directly associated with the policies that govern them.

Consider some similar code using role-based access control (RBAC):

Although both examples address the same requirements, they do so in different ways. In RBAC, roles
only implicitly define access for their resources. With Red Hat Single Sign-On you gain the capability to
create more manageable code that focuses directly on your resources whether you are using RBAC,
attribute-based access control (ABAC), or any other BAC variant. Either you have the permission for a
given resource or scope, or you don’t.

Now, suppose your security requirements have changed and in addition to project managers, PMOs can
also create new projects.

Security requirements change, but with Red Hat Single Sign-On there is no need to change your
application code to address the new requirements. Once your application is based on the resource and
scope identifier, you need only change the configuration of the permissions or policies associated with a
particular resource in the authorization server. In this case, the permissions and policies associated with
the Project Resource and/or the scope urn:project.com:project:create would be changed.

9.4. USING THE AUTHORIZATIONCONTEXT TO OBTAIN AN
AUTHORIZATION CLIENT INSTANCE

The AuthorizationContext can also be used to obtain a reference to the Authorization Client API
configured to your application:

In some cases, resource servers protected by the policy enforcer need to access the APIs provided by
the authorization server. With an AuthzClient instance in hands, resource servers can interact with the
server in order to create resources or check for specific permissions programmatically.

9.5. JAVASCRIPT INTEGRATION

The Red Hat Single Sign-On Server comes with a JavaScript library you can use to interact with a

if (authzContext.hasScopePermission("urn:project.com:project:create")) {
 // user can create new projects
}

if (User.hasRole('user')) {
 // user can access the Project Resource
}

if (User.hasRole('admin')) {
 // user can access administration resources
}

if (User.hasRole('project-manager')) {
 // user can create new projects
}

 ClientAuthorizationContext clientContext = ClientAuthorizationContext.class.cast(authzContext);
 AuthzClient authzClient = clientContext.getClient();

Red Hat Single Sign-On 7.6 Authorization Services Guide

92

resource server protected by a policy enforcer. This library is based on the Red Hat Single Sign-On
JavaScript adapter, which can be integrated to allow your client to obtain permissions from a Red Hat
Single Sign-On Server.

You can obtain this library from a running a Red Hat Single Sign-On Server instance by including the
following script tag in your web page:

Once you do that, you can create a KeycloakAuthorization instance as follows:

The keycloak-authz.js library provides two main features:

Obtain permissions from the server using a permission ticket, if you are accessing a UMA
protected resource server.

Obtain permissions from the server by sending the resources and scopes the application wants
to access.

In both cases, the library allows you to easily interact with both resource server and Red Hat Single Sign-
On Authorization Services to obtain tokens with permissions your client can use as bearer tokens to
access the protected resources on a resource server.

9.5.1. Handling authorization responses from a UMA-Protected resource server

If a resource server is protected by a policy enforcer, it responds to client requests based on the
permissions carried along with a bearer token. Typically, when you try to access a resource server with a
bearer token that is lacking permissions to access a protected resource, the resource server responds
with a 401 status code and a WWW-Authenticate header.

See UMA Authorization Process for more information.

What your client needs to do is extract the permission ticket from the WWW-Authenticate header
returned by the resource server and use the library to send an authorization request as follows:

<script src="http://.../auth/js/keycloak-authz.js"></script>

const keycloak = ... // obtain a Keycloak instance from keycloak.js library
const authorization = new KeycloakAuthorization(keycloak);

HTTP/1.1 401 Unauthorized
WWW-Authenticate: UMA realm="${realm}",
 as_uri="https://${host}:${port}/auth/realms/${realm}",
 ticket="016f84e8-f9b9-11e0-bd6f-0021cc6004de"

// prepare a authorization request with the permission ticket
const authorizationRequest = {};
authorizationRequest.ticket = ticket;

// send the authorization request, if successful retry the request
Identity.authorization.authorize(authorizationRequest).then(function (rpt) {
 // onGrant
}, function () {
 // onDeny
}, function () {
 // onError
});

CHAPTER 9. POLICY ENFORCERS

93

The authorize function is completely asynchronous and supports a few callback functions to receive
notifications from the server:

onGrant: The first argument of the function. If authorization was successful and the server
returned an RPT with the requested permissions, the callback receives the RPT.

onDeny: The second argument of the function. Only called if the server has denied the
authorization request.

onError: The third argument of the function. Only called if the server responds unexpectedly.

Most applications should use the onGrant callback to retry a request after a 401 response. Subsequent
requests should include the RPT as a bearer token for retries.

9.5.2. Obtaining entitlements

The keycloak-authz.js library provides an entitlement function that you can use to obtain an RPT from
the server by providing the resources and scopes your client wants to access.

Example about how to obtain an RPT with permissions for all resources and scopes the user
can access

Example about how to obtain an RPT with permissions for specific resources and scopes

When using the entitlement function, you must provide the client_id of the resource server you want to
access.

The entitlement function is completely asynchronous and supports a few callback functions to receive
notifications from the server:

onGrant: The first argument of the function. If authorization was successful and the server
returned an RPT with the requested permissions, the callback receives the RPT.

onDeny: The second argument of the function. Only called if the server has denied the
authorization request.

onError: The third argument of the function. Only called if the server responds unexpectedly.

authorization.entitlement('my-resource-server-id').then(function (rpt) {
 // onGrant callback function.
 // If authorization was successful you'll receive an RPT
 // with the necessary permissions to access the resource server
});

authorization.entitlement('my-resource-server', {
 "permissions": [
 {
 "id" : "Some Resource"
 }
]
}).then(function (rpt) {
 // onGrant
});

Red Hat Single Sign-On 7.6 Authorization Services Guide

94

9.5.3. Authorization request

Both authorize and entitlement functions accept an authorization request object. This object can be
set with the following properties:

permissions
An array of objects representing the resource and scopes. For instance:

metadata
An object where its properties define how the authorization request should be processed by the
server.

response_include_resource_name
A boolean value indicating to the server if resource names should be included in the RPT’s
permissions. If false, only the resource identifier is included.

response_permissions_limit
An integer N that defines a limit for the amount of permissions an RPT can have. When used
together with rpt parameter, only the last N requested permissions will be kept in the RPT

submit_request
A boolean value indicating whether the server should create permission requests to the
resources and scopes referenced by a permission ticket. This parameter will only take effect
when used together with the ticket parameter as part of a UMA authorization process.

9.5.4. Obtaining the RPT

If you have already obtained an RPT using any of the authorization functions provided by the library, you
can always obtain the RPT as follows from the authorization object (assuming that it has been initialized
by one of the techniques shown earlier):

9.6. CONFIGURING TLS/HTTPS

When the server is using HTTPS, ensure your adapter is configured as follows:

keycloak.json

const authorizationRequest = {
 "permissions": [
 {
 "id" : "Some Resource",
 "scopes" : ["view", "edit"]
 }
]
}

const rpt = authorization.rpt;

{
 "truststore": "path_to_your_trust_store",
 "truststore-password": "trust_store_password"
}

CHAPTER 9. POLICY ENFORCERS

95

The configuration above enables TLS/HTTPS to the Authorization Client, making possible to access a
Red Hat Single Sign-On Server remotely using the HTTPS scheme.

NOTE

It is strongly recommended that you enable TLS/HTTPS when accessing the Red Hat
Single Sign-On Server endpoints.

Red Hat Single Sign-On 7.6 Authorization Services Guide

96

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. AUTHORIZATION SERVICES OVERVIEW
	1.1. ARCHITECTURE
	1.1.1. The authorization process
	1.1.1.1. Resource management
	1.1.1.2. Permission and policy management
	1.1.1.3. Policy enforcement

	1.1.2. Authorization services
	1.1.2.1. Token endpoint
	1.1.2.2. Protection API

	1.2. TERMINOLOGY
	1.2.1. Resource Server
	1.2.2. Resource
	1.2.3. Scope
	1.2.4. Permission
	1.2.5. Policy
	1.2.6. Policy provider
	1.2.7. Permission ticket

	CHAPTER 2. GETTING STARTED
	2.1. SECURING A SERVLET APPLICATION
	2.2. CREATING A REALM AND A USER
	2.3. ENABLING AUTHORIZATION SERVICES
	2.4. BUILD, DEPLOY, AND TEST YOUR APPLICATION
	2.4.1. Obtaining the adapter configuration
	2.4.2. Building and deploying the application
	2.4.3. Testing the application
	2.4.4. Next steps

	2.5. AUTHORIZATION QUICKSTARTS

	CHAPTER 3. MANAGING RESOURCE SERVERS
	3.1. CREATING A CLIENT APPLICATION
	3.2. ENABLING AUTHORIZATION SERVICES
	3.2.1. Resource server settings

	3.3. DEFAULT CONFIGURATION
	3.3.1. Changing the default configuration

	3.4. EXPORT AND IMPORT AUTHORIZATION CONFIGURATION
	3.4.1. Exporting a configuration file
	3.4.2. Importing a configuration file

	CHAPTER 4. MANAGING RESOURCES AND SCOPES
	4.1. VIEWING RESOURCES
	4.2. CREATING RESOURCES
	4.2.1. Resource attributes
	4.2.2. Typed resources
	4.2.3. Resource owners
	4.2.4. Managing resources remotely

	CHAPTER 5. MANAGING POLICIES
	5.1. USER-BASED POLICY
	5.1.1. Configuration

	5.2. ROLE-BASED POLICY
	5.2.1. Configuration
	5.2.2. Defining a role as required

	5.3. JAVASCRIPT-BASED POLICY
	5.3.1. Creating a JS policy from a deployed JAR file
	5.3.2. Examples
	5.3.2.1. Checking for attributes from the evaluation context
	5.3.2.2. Checking for attributes from the current identity
	5.3.2.3. Checking for roles granted to the current identity
	5.3.2.4. Checking for roles granted to an user
	5.3.2.5. Checking for roles granted to a group
	5.3.2.6. Pushing arbitrary claims to the resource server
	5.3.2.7. Checking for group membership
	5.3.2.8. Mixing different access control mechanisms

	5.4. TIME-BASED POLICY
	5.4.1. Configuration

	5.5. AGGREGATED POLICY
	5.5.1. Configuration
	5.5.2. Decision strategy for aggregated policies

	5.6. CLIENT-BASED POLICY
	5.6.1. Configuration

	5.7. GROUP-BASED POLICY
	5.7.1. Configuration
	5.7.2. Extending access to child groups

	5.8. CLIENT SCOPE-BASED POLICY
	5.8.1. Configuration
	5.8.2. Defining a client scope as required

	5.9. REGEX-BASED POLICY
	5.9.1. Configuration

	5.10. POSITIVE AND NEGATIVE LOGIC
	5.11. POLICY EVALUATION API
	5.11.1. The evaluation context

	CHAPTER 6. MANAGING PERMISSIONS
	6.1. CREATING RESOURCE-BASED PERMISSION
	6.1.1. Configuration
	6.1.2. Typed resource permission

	6.2. CREATING SCOPE-BASED PERMISSIONS
	6.2.1. Configuration

	6.3. POLICY DECISION STRATEGIES

	CHAPTER 7. EVALUATING AND TESTING POLICIES
	7.1. PROVIDING IDENTITY INFORMATION
	7.2. PROVIDING CONTEXTUAL INFORMATION
	7.3. PROVIDING THE PERMISSIONS

	CHAPTER 8. AUTHORIZATION SERVICES
	8.1. DISCOVERING AUTHORIZATION SERVICES ENDPOINTS AND METADATA
	8.2. OBTAINING PERMISSIONS
	8.2.1. Client authentication methods
	8.2.2. Pushing claims
	8.2.2.1. Pushing claims Using UMA

	8.3. USER-MANAGED ACCESS
	8.3.1. Authorization process
	8.3.2. Submitting permission requests
	8.3.3. Managing access to users resources

	8.4. PROTECTION API
	8.4.1. What is a PAT and how to obtain it
	8.4.2. Managing resources
	8.4.2.1. Creating a resource
	8.4.2.2. Creating user-managed resources
	8.4.2.3. Updating resources
	8.4.2.4. Deleting resources
	8.4.2.5. Querying resources

	8.4.3. Managing permission requests
	8.4.3.1. Creating permission ticket
	8.4.3.2. Other non UMA-compliant endpoints

	8.4.4. Managing resource permissions using the Policy API
	8.4.4.1. Associating a permission with a resource
	8.4.4.2. Removing a permission
	8.4.4.3. Querying permission

	8.5. REQUESTING PARTY TOKEN
	8.5.1. Introspecting a requesting party token
	8.5.2. Obtaining Information about an RPT
	8.5.3. Do I need to invoke the server every time I want to introspect an RPT?

	8.6. AUTHORIZATION CLIENT JAVA API
	8.6.1. Maven dependency
	8.6.2. Configuration
	8.6.3. Creating the authorization client
	8.6.4. Obtaining user entitlements
	8.6.5. Creating a resource using the protection API
	8.6.6. Introspecting an RPT

	CHAPTER 9. POLICY ENFORCERS
	9.1. CONFIGURATION
	9.2. CLAIM INFORMATION POINT
	9.2.1. Obtaining information from the HTTP request
	9.2.2. Obtaining information from an external HTTP service
	9.2.3. Static claims
	9.2.4. Claim information provider SPI

	9.3. OBTAINING THE AUTHORIZATION CONTEXT
	9.4. USING THE AUTHORIZATIONCONTEXT TO OBTAIN AN AUTHORIZATION CLIENT INSTANCE
	9.5. JAVASCRIPT INTEGRATION
	9.5.1. Handling authorization responses from a UMA-Protected resource server
	9.5.2. Obtaining entitlements
	9.5.3. Authorization request
	9.5.4. Obtaining the RPT

	9.6. CONFIGURING TLS/HTTPS

