& RedHat

Red Hat Quay 3.2

Deploy Red Hat Quay on OpenShift

Deploy Red Hat Quay on OpenShift

Last Updated: 2020-04-30

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

Deploy Red Hat Quay on OpenShift

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploy Red Hat Quay on an OpenShift Cluster

Table of Contents

Table of Contents

o L 3
CHAPTER 1. OVERVIEW L i i i i i et ittt i e, 4
CHAPTER 2. ARCHITECTURE .. i i e i i ittt it cii i eas 5
CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT ... o i 6
CHAPTER 4.SETUP RED HAT QUAY SERVICES i e 7
4.1.SET UP RED HAT QUAY NAMESPACES AND SECRETS 7
4.2. ADD CLAIR IMAGE SCANNING TO RED HAT QUAY 15
4.3. ADD REPOSITORY MIRRORING RED HAT QUAY 17
CHAPTERS5.STARTING TOUSE RED HAT QUAY .. i e et 19
CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT CONFIGURATIONFILES 20
6.1. RED HAT QUAY NAMESPACES AND SECRETS 20
6.2. RED HAT QUAY STORAGE 20
6.3. RED HAT QUAY DATABASE 21
6.4. RED HAT QUAY AUTHORIZATION 22
6.5. REDIS DATABASE 23
6.6. RED HAT QUAY CONFIGURATION POD 24
6.7. RED HAT QUAY APPLICATION CONTAINER 25
6.8. CLAIR IMAGE SCANNING 27
6.9. REPOSITORY MIRRORING 31
ADDITIONAL RESOURCES 31

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

PREFACE

PREFACE

Red Hat Quay is an enterprise-quality container registry. Use Red Hat Quay to build and store container
images, then make them available to deploy across your enterprise. Red Hat is working on two
approaches to deploying Red Hat Quay on OpenShift:

® Deploy Red Hat Quay objects individually The current procedure in this guide provides a set
of yaml files that you deploy individually to set up your Red Hat Quay cluster. This procedure is
currently fully supported.

® Deploy Red Hat Quay with an Operator The Red Hat Quay Setup Operator is being developed
to provide a simpler method to deploy and manage a Red Hat Quay cluster. Although currently
available as Developer Preview, the setup portion of the Red Hat Quay Setup Operator
procedure is quite solid and represents the future direction of Red Hat Quay deployment on
OpenShift. We strongly recommend trying the Red Hat Quay Operator for non-production uses
and contributing to the project, if you are so inclined.

https://github.com/redhat-cop/quay-operator

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

CHAPTER 1. OVERVIEW

Features of Red Hat Quay include:
® High availability
® Geo-replication
® Repository mirroring (Technology Preview in Red Hat Quay v3.1, supported in v3.2)
® Docker v2, schema 2 (multiarch) support
® Continuous integration
® Security scanning with Clair
® Custom log rotation
® Zero downtime garbage collection
® 24/7 support
Red Hat Quay provides support for:

® Multiple authentication and access methods

Multiple storage backends

Custom certificates for Quay, Clair, and storage backends

Application registries

Different container image types

https://access.redhat.com/support/offerings/techpreview

CHAPTER 2. ARCHITECTURE

CHAPTER 2. ARCHITECTURE

Red Hat Quay is made up of several core components.
e Database: Used by Red Hat Quay as its primary metadata storage (not for image storage).
® Redis (key, value store) Stores live builder logs and the Red Hat Quay tutorial.

® Quay (container registry): Runs the quay container as a service, consisting of several
components in the pod.

e Clair: Scans container images for vulnerabilities and suggests fixes.
For supported deployments, you need to use one of the following types of storage:

® Public cloud storage: In public cloud environments, you should use the cloud provider's object
storage, such as Amazon S3 (for AWS) or Google Cloud Storage (for Google Cloud).

® Private cloud storage: In private clouds, an S3 or Swift compliant Object Store is needed, such
as Ceph RADOS, or OpenStack Swift.

Do not use "Locally mounted directory" Storage Engine for any production configurations. Mounted
NFS volumes are not supported. Local storage is meant for Red Hat Quay test-only installations.

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON
OPENSHIFT

Here are a few things you need to know before you begin the Red Hat Quay on OpenShift deployment:

® OpenShift cluster: You need a privileged account to an OpenShift 3.x or 4.x cluster on which to
deploy the Red Hat Quay. That account must have the ability to create namespaces at the
cluster scope. To use Red Hat Quay builders, OpenShift 3 is required.

® Storage: AWS cloud storage is used as an example in the following procedure. As an alternative,
you can create Ceph cloud storage using steps from the Set up Ceph section of the high
availability Red Hat Quay deployment guide. The following is a list of other supported cloud
storage:

o Amazon S3 (see S3 IAM Bucket Policy for details on configuring an S3 bucket policy for Red
Hat Quay)

o Azure Blob Storage

o Google Cloud Storage

o Ceph Object Gateway (RADOS)
o OpenStack Swift

o CloudFront + S3

o NooBaa S3 Storage (See Configuring Red Hat OpenShift Container Storage for Red Hat
Quay, currently Technology Preview)

® Services: The OpenShift cluster must have enough capacity to run the following containerized
services:

o Database: We recommend you use an enterprise-quality database for production use of
Red Hat Quay. PostgreSQL is used as an example in this document. Other options include:

B Crunchy Data PostgreSQL Operator: Although not supported directly by Red Hat, the
CrunchDB Operator is available from Crunchy Data for use with Red Hat Quay. If you
take this route, you should have a support contract with Crunchy Data and work directly
with them for usage guidance or issues relating to the operator and their database.

® |f your organization already has a high-availability (HA) database, you can use that
database with Red Hat Quay. See the Red Hat Quay Support Policy for details on
support for third-party databases and other components.

o Key-value database: Redis is used to serve live builder logs and Red Hat Quay tutorial
content to your Red Hat Quay configuration.

o Red Hat Quay. The quay container provides the features to manage the Red Hat Quay
registry.

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/deploy_red_hat_quay_-_high_availability/#set_up_ceph
https://access.redhat.com/solutions/3680151
https://access.redhat.com/articles/4356091
https://access.redhat.com/support/offerings/techpreview
https://access.crunchydata.com/documentation/postgres-operator/latest/
https://www.crunchydata.com/
https://access.redhat.com/support/policy/updates/rhquay/policies

CHAPTER 4. SET UP RED HAT QUAY SERVICES

CHAPTER 4. SET UP RED HAT QUAY SERVICES

Deploying Red Hat Quay on OpenShift requires you to create a set of yaml files. Although the oc
command is used to configure the Red Hat Quay registry here, you could use the OpenShift web Ul
instead, if you prefer.

Refer to Appendix A for the contents of these yaml files.

Here are a few things to keep in mind:

Your OpenShift account must have permission to create namespaces at the cluster scope.

Red Hat Quay runs under its own namespace inside a Kubernetes cluster, so that needs to be
created first. You can create it through the New project in the OpenShift web console or using
quay-enterprise-namespace.yaml (as described here).

You need a working enterprise-quality database. In our example, we illustrate PostgreSQL
(version 9.4 or above is required, although we recommend 9.6).

You can use an existing Redis service (needed for build logs and the Red Hat Quay tutorial) or
start one as described in this procedure.

Here are the major steps, detailed below, to complete a Red Hat Quay deployment on OpenShift:

1.

2.

Set up the Red Hat Quay namespace and secrets
Create the Red Hat Quay database

Create Red Hat Quay roles and privileges

Create the Redis deployment

Prepare to configure Red Hat Quay

Start the Red Hat Quay configuration user interface
Deploy the Red Hat Quay configuration

Add Clair image scanning

Add repository mirroring

4.1. SET UP RED HAT QUAY NAMESPACES AND SECRETS

1.

Get Red Hat Quay yaml files Create a set of yaml files in a directory on your local system from
the contents shown in Appendix A. Study each file to determine where you might need to make
modifications. You will use oc create to create the needed resources from those files.

Log in with oc cli Login as a user with cluster scope permissions to the OpenShift cluster. For
example:

I $ oc login -u system:admin

Create namespace. Run oc create quay-enterprise-namespace.yaml and then make quay-
enterprise the current project. All objects will be deployed to this namespace/project:

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

$ oc create -f quay-enterprise-namespace.yaml
namespace "quay-enterprise" created
$ oc project quay-enterprise

4. Create the secret for the Red Hat Quay configuration and appCreate the following secrets.
During Red Hat Quay configuration, the config.yaml, and optionally the ssl.cert and ssl.key, files
are added to the application’s secret, so they can be included with the resulting Red Hat Quay
application:

$ oc create -f quay-enterprise-config-secret.yaml
secret/quay-enterprise-config-secret created
$ oc create secret generic quay-enterprise-secret

5. Create the secret for quay.io This pull secret provides credentials to pull containers from the
Quay.io registry. Refer to Accessing Red Hat Red Hat Quay to get the credentials you need to
add to the quay-enterprise-redhat-quay-pull-secret.yaml file, then run oc create:

$ oc create -f quay-enterprise-redhat-quay-pull-secret.yaml
secret/redhat-quay-pull-secret created

6. Create the database. If you are not using your own enterprise-quality database
(recommended), this procedure illustrates how to set up a Postgresql database on an OpenShift
cluster. This entails creating AWS storage, a postgres deployment, and postgres service, then
adding an extension to the database (see the description of quay-storageclass.yaml in
Appendix A for information on adding encryption to your volumes):

$ oc create -f quay-storageclass.yaml
storageclass.storage.k8s.io/quay-storageclass created
$ oc create -f db-pvc.yaml
persistentvolumeclaim/postgres-storage created

$ oc create -f postgres-deployment.yaml
deployment.extensions/postgres-new created

$ oc create -f postgres-service.yaml

service/postgres created

$ oc get pods -n quay-enterprise
NAME READY STATUS RESTARTS AGE
pOstgres-xxxxxxxxxx-xxxxx 1/1 Running 0 3m26s

Run the following command, replacing the name of the postgres pod with your pod:

$ oc exec -it postgres-xxxxxxxxxx-xxxxx -n quay-enterprise -- /bin/bash -c 'echo "CREATE
EXTENSION IF NOT EXISTS pg_trgm" | /opt/rh/rh-postgresql10/root/usr/bin/psql -d quay'

NOTE

The -d database_name must not be omitted. If it is, the extension will be created
on the default PostgreSQL database.

7. Create a serviceaccount for the database Create a serviceaccount and grant it anyuid
privilege. Running the PostgreSQL deployment under anyuid lets you add persistent storage to
the deployment and allow it to store db metadata.

https://access.redhat.com/solutions/3533201

1.

12.

CHAPTER 4. SET UP RED HAT QUAY SERVICES

oc create serviceaccount postgres -n quay-enterprise

serviceaccount/postgres created

oc adm policy add-scc-to-user anyuid -z system:serviceaccount:quay-enterprise:postgres \
scc "anyuid" added to: ["'system:serviceaccount:quay-enterprise:system:serviceaccount:quay-
enterprise:postgres"|

Create the role and the role bindingRed Hat Quay has native Kubernetes integrations. These
integrations require Service Account to have access to the Kubernetes API. When Kubernetes
RBAC is enabled, Role Based Access Control policy manifests also have to be deployed. This
role will be used to run Red Hat Quay and also to write the config.yaml file that Red Hat Quay
creates at the end of the web interface setup:

$ oc create -f quay-servicetoken-role-k8s1-6.yaml
$ oc create -f quay-servicetoken-role-binding-k8s1-6.yaml

Add privilege: Make sure that the service account has root privileges, because Red Hat Quay
runs strictly under root (this will be changed in the future versions). Throughout this example,
the namespace is quay-enterprise:

$ oc adm policy add-scc-to-user anyuid \
system:serviceaccount:quay-enterprise:default

. Create Redis deployment If you haven't already deployed Redis, create a quay-enterprise-

redis.yaml file and deploy it:
I $ oc create -f quay-enterprise-redis.yaml

Set up to configure Red Hat Quay Red Hat Quay V3 added a tool for configuring the Red Hat
Quay service before deploying it. Although the config tool is in the same container as the full
Red Hat Quay service, it is deployed in a different way, as follows:

$ oc create -f quay-enterprise-config.yaml
$ oc create -f quay-enterprise-config-service-clusterip.yaml
$ oc create -f quay-enterprise-config-route.yaml

The quay configuration container is now set up to be accessed from port 443 from your Web
browser. Before creating the configuration, however, you need to create a route to the
permanent Red Hat Quay service. This is because we need the Red Hat Quay service's publicly
available FQDN when setting up the application.

Start the Red Hat Quay application Identify the Red Hat Quay Kubernetes service and create
a route for it, then start the Red Hat Quay application as follows:

$ oc create -f quay-enterprise-service-clusterip.yaml
service/quay-enterprise-clusterip created

$ oc create -f quay-enterprise-app-route.yaml
route.route.openshift.io/quay-enterprise created

$ oc create -f quay-enterprise-app-rc.yaml
deployment.extensions/quay-enterprise-app created

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

10

13.

14.

15.

16.

NOTE

The creation of the Red Hat Quay application (quay-enterprise-app pod) will not
complete until you have finished configuring the application. So don’t worry if you
see that pod remain in "ContainerCreating" status until the configuration is done.
At that point, the new configuration is fed to the application and it will change to
the "Running"” state.

You will need to know the route to the Red Hat Quay application when you do the configuration
step.

Begin to configure Red Hat Quay Open the public route to the Red Hat Quay configuration
container in a Web browser. To see the route to the quay configuration service, type the
following:

$ oc get route -n quay-enterprise quay-enterprise-config

NAME HOST/PORT PATH
SERVICES PORT TERMINATION WILDCARD

quay-enterprise-config quay-enterprise-config-quay-enterprise.apps.test.example.com quay-
enterprise-config <all> passthrough None

For this example, you would open this URL in your web browser: https://quay-enterprise-
config-quay-enterprise.apps.test.example.com

Log in as quayconfig When prompted, enter the username and password (the password was
set as an argument to the quay config container in: quay-enterprise-config.yaml):

® User Name: quayconfig
® Password: secret

You are prompted to select a configuration mode, as shown in the following figure:

+

Choose an option for the quay-enterprise namespace

@ O L.

Start new Modify configuration Populate this cluster
configuration for this for this cluster from a previously
cluster created configuration

Choose configuration mode: Select "Start new configuration for this cluster” The result of this
selection is the creation of a new configuration file (config.yaml) that you will use later for your
Red Hat Quay deployment.

Identify the database: For the initial setup, add the following information about the type and
location of the database to be used by Red Hat Quay:

https://quay-enterprise-config-quay-enterprise.apps.test.example.com

CHAPTER 4. SET UP RED HAT QUAY SERVICES

® Database Type: Choose MySQL or PostgreSQL. PostgreSQL is used with the example
shown here.

® Database Server: Identify the IP address or hostname of the database, along with the port
number if it is different from 3306.

® Username: Identify a user with full access to the database.
® Password: Enter the password you assigned to the selected user.

® Database Name: Enter the database name you assigned when you started the database
server.

® SSL Certificate: For production environments, you should provide an SSL certificate to
connect to the database.
To verify the NAME of the service (postgres), type the following:

$ oc get services -n quay-enterprise postgres
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
postgres NodePort 172.30.127.41 <none> 5432:32212/TCP 19h

The following figure shows an example of the screen for identifying the database used by
Red Hat Quay. The example yaml file sets the database server to postgres, the user name
to username, the password to password, and the database to quay:

Setup @

Please enter the connection details for your empty database. The schema will be created in the following step.

Database Type: Postgres w

Database Server: postgres

Username: Username

Password: seneesee

Database Name: quay

S5L Certificate: Browse... Mo file selected.

Validate Database Settings

17. Validate database: Select Validate Database Settings and proceed to the next screen.

18. Create Red Hat Quay superuser You need to set up an account with superuser privileges to
Red Hat Quay, to use for editing Red Hat Quay configuration settings. That information
includes a Username, Email address, and Password (entered twice).

The following figure shows an example of the Red Hat Quay Setup screen for setting up a Red
Hat Quay superuser account:

1

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

Setup ®_ — _©

A superuser is the main administrator of your Red Hat Quay . Only superusers can edit configuration settings.

Username

johnjones

Email address

johnjones@ example.com

Password

Repeat Password

Create Super User

Select Create Super User, and proceed to the next screen.

19. Identify settings: Go through each of the following settings. The minimum you must enter
includes:

® Server hosthame: The URL to the Red Hat Quay service is required.

® Redis hostname: The URL or IP address to the Redis service is required.
Here are all the settings you need to consider:

® Custom SSL Certificates Upload custom or self-signed SSL certificates for use by Red
Hat Quay. See Using SSL to protect connections to Red Hat Quay for details.
Recommended for high availability.

IMPORTANT

Using SSL certificates is recommended for both basic and high availability
deployments. If you decide to not use SSL, you must configure your
container clients to use your new Red Hat Quay setup as an insecure registry
as described in Test an Insecure Registry .

® Basic Configuration: Upload a company logo to rebrand your Red Hat Quay registry.

® Server Configuration: Hostname or IP address to reach the Red Hat Quay service, along
with TLS indication (recommended for production installations). To get the route to the
permanent Red Hat Quay service, type the following:

$ oc get route -n quay-enterprise quay-enterprise

NAME HOST/PORT PATH SERVICES
PORT TERMINATION WILDCARD

quay-enterprise quay-enterprise-quay-enterprise.apps.cnegus-
ocp.devcluster.openshift.com quay-enterprise-clusterip <all> None

12

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#using-ssl-to-protect-quay
https://docs.docker.com/registry/insecure/

CHAPTER 4. SET UP RED HAT QUAY SERVICES

See Using SSL to protect connections to Red Hat Quay . TLS termination can be done in
two different ways:

o On theinstance itself, with all TLS traffic governed by the nginx server in the quay
container (recommended).

o On the load balancer. This is not recommended. Access to Red Hat Quay could be lost
if the TLS setup is not done correctly on the load balancer.

Data Consistency Settings: Select to relax logging consistency guarantees to improve
performance and availability.

Time Machine: Allow older image tags to remain in the repository for set periods of time
and allow users to select their own tag expiration times.

redis: Identify the hostname or IP address (and optional password) to connect to the redis
service used by Red Hat Quay. To find the address of the redis service, type the following:

$ oc get services -n quay-enterprise quay-enterprise-redis
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
quay-enterprise-redis ClusterlP 172.30.207.35 <none> 6379/TCP 40m

Repository Mirroring: Choose the checkbox to Enable Repository Mirroring. With this
enabled, you can create repositories in your Red Hat Quay cluster that mirror selected
repositories from remote registries. Before you can enable repository mirroring, start the
repository mirroring worker as described later in this procedure.

Registry Storage: Identify the location of storage. A variety of cloud and local storage
options are available. Remote storage is required for high availability. Identify the Ceph
storage location if you are following the example for Red Hat Quay high availability storage.
On OpenShift, the example uses Amazon S3 storage.

Action Log Rotation and Archiving Select to enable log rotation, which moves logs older
than 30 days into storage, then indicate storage area.

Security Scanner: We recommend setting up the Clair security scanner after you have
completed the initial Red Hat Quay deployment. Clair setup is described after the end of
this procedure.

Application Registry: Enable an additional application registry that includes things like
Kubernetes manifests or Helm charts (see the App Registry specification).

BitTorrent-based download: Allow all registry images to be downloaded using BitTorrent
protocol (using the quayctl tool).

rkt Conversion: Allow rkt fetch to be used to fetch images from the Red Hat Quay registry.
Public and private GPG2 keys are needed (see Generating signing keys for ACI conversion
for details. This field is deprecated.

E-mail: Enable e-mail to use for notifications and user password resets.

Internal Authentication: Change default authentication for the registry from Local
Database to LDAP, Keystone (OpenStack), JWT Custom Authentication, or External
Application Token.

External Authorization (OAuth). Enable to allow GitHub or GitHub Enterprise to
authenticate to the registry.

13

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index#using-ssl-to-protect-quay
https://github.com/app-registry
https://github.com/coreos/quayctl
https://coreos.com/quay-enterprise/docs/latest/aci-signing-keys.html

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

14

® Google Authentication: Enable to allow Google to authenticate to the registry.

® Access settings: Basic username/password authentication is enabled by default. Other
authentication types that can be enabled include: external application tokens (user-
generated tokens used with docker or rkt commands), anonymous access (enable for public
access to anyone who can get to the registry), user creation (let users create their own
accounts), encrypted client password (require command-line user access to include
encrypted passwords), and prefix username autocompletion (disable to require exact
username matches on autocompletion).

o Registry Protocol Settings: Leave the Restrict V1 Push Support checkbox enabled to
restrict access to Docker V1 protocol pushes. Although Red Hat recommends against
enabling Docker V1 push protocol, if you do allow it, you must explicitly whitelist the
namespaces for which it is enabled.

® Dockerfile Build Support Enable to allow users to submit Dockerfiles to be built and
pushed to Red Hat Quay. This is not recommended for multitenant environments.

20. Save the changes Select Save Configuration Changes. You are presented with the following

21.

22.

Download Configuration screen:

Download Configuration @ — 5 — @ — @ — @ — -l.'a

Please download your new configuration. For more information, and next steps, please see the docs.

Warning: Your configuration and certificates are kept unencrypted. Please keep this file secure.

| Opening quay-config.tar.gz x
* Download Conﬁgurat‘ion You have chosen to open:
5] quay-config.tar.gz

which is: Gzip archive (1.0 KB)
from: blob:

What should Firefox do with this file?

':::'gpen with | Archive Manager (default) v

® Save File

[_IDo this automatically for files like this from now on.

| Cancel | ‘ OK |

Download configuration: Select the Download Configuration button and save the tarball
(quay-config.tar.gz) to a local directory. Save this file in case you want to deploy the config files
inside manually or just want a record of what you deployed.

Deploy configuration: Select to rollout the deployment. When prompted, click Populate
configuration to deployments to deploy the configuration to the Red Hat Quay application. In
a few minutes, you should see a green checkmark and the message "Configuration successfully
rolled out and deployed!"

CHAPTER 4. SET UP RED HAT QUAY SERVICES

NOTE

If for some reason the deployment doesn’t complete, try deleting the quay-
enterprise-app pod. OpenShift should create a new pod and pick up the needed
configuration. If that doesn’t work, unpack the configuration files (tar xvf quay-
config.tar.gz) and add them manually to the secret:

$ oc create secret generic quay-enterprise-config-secret -n quay-enterprise \
--from-file=config.yaml=/path/to/config.yaml \
--from-file=ssl.key=/path/to/ssl.key \
--from-file=ssl.cert=/path/to/ssl.cert

23. Check pods: In a couple of minutes (depending on your connection speed), Red Hat Quay
should be up and running and the following pods should be visible in the quay-enterprise
namespace You might get a mount error at first, but that should resolve itself:

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
postgres-5b4c5d7dd9-f8tqz 1/1 Running 0 46h
quay-enterprise-app-7899c7c77f-jrsrc 1/1 Running 0 45h
quay-enterprise-config-app-86bbbcd446-mwmmg 1/1 Running 0 46h
quay-enterprise-redis-684b9d6f55-tx6w9 1/1 Running 0 46h

24. Getthe URL for Red Hat Quay Type the following to get the hostname of the new Red Hat
Quay installation:

$ oc get routes -n quay-enterprise quay-enterprise

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

quay-enterprise quay-enterprise-quay-enterprise.apps.test.example.com quay-enterprise-
clusterip <all> None

25. Start using Red Hat Quay Open the hostname in a web browser to start using Red Hat Quay.

4.2. ADD CLAIRIMAGE SCANNING TO RED HAT QUAY

Setting up and deploying Clair image scanning for your Red Hat Quay deployment requires the following
basic steps:

® Setting up a database for Clair
® Creating authentication keys for Clair
® Deploying Clair

The following procedure assumes you already have a running Red Hat Quay cluster on an OpenShift
platform with the Red Hat Quay Setup container running in your browser:

1. Create the Clair database This example configures a postgresgl database to use with the Clair

image scanner. With the yaml files in the current directory, review those files for possible
modifications, then run the following:

15

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

$ oc create -f postgres-clair-storage.yaml
$ oc create -f postgres-clair-deployment.yami
$ oc create -f postgres-clair-service.yaml

2. Check Clair database objects: To view the Clair database objects, type:

$ oc get all | grep -i clair

pod/postgres-clair-xxxxxxxxx-xxxx 1/1 Running 0 3m45s
deployment.apps/postgres-clair 1/1 1 1 3m45s
service/postgres-clair NodePort 172.30.193.64 <none> 5432:30680/TCP 159m
replicaset.apps/postgres-clair-xx 1 1 1 3m45s

The output shows that the postgres-clair pod is running, postgres-clair was successfully
deployed, the postgres-clair service is available on the address and port shown, and 1replica set
of postgres-clair is active.

3. Open the Red Hat Quay Setup Ui Reload the Red Hat Quay Setup Ul and select "Modify
configuration for this cluster.”

4. Enable Security Scanning Scroll to the Security Scanner section and select the "Enable
Security Scanning" checkbox. From the fields that appear you need to create an authentication
key and enter the security scanner endpoint. Here's how:

® Generate key: Click "Create Key" and then type a name for the Clair private key and an
optional expiration date (if blank, the key never expires). Then select Generate Key.

® Copy the Clair key and PEM file Save the Key ID (to a notepad or similar) and download a
copy of the Private Key PEM file (named security_scanner.pem) by selecting "Download
Private Key" (if you lose this key, you will need to generate a new one).

5. Modify clair-config.yaml: Return to the shell and the directory holding your yaml files. Edit the
clair-config.yaml file and modify the following values:

® database.options.source: Make sure the host, port, dbname, user, password, and ssl mode
match those values you set when you create the postgres database for Clair.

® key id: Search for KEY_ID_HERE in this file and replace it with the contents of the key you
generated from the Red Hat Quay Setup screen in the Security Scanner section
(security_scanner.pam file).

e private_key_path: Identify the full path to the security_scanner.pem file you saved earlier.

6. Create the Clair config secret and service Run the following commands, identifying the paths
to your clair-config.yaml and security_scanner.pem files.

$ oc create secret generic clair-scanner-config-secret \
--from-file=config.yaml=/path/to/clair-config.yaml \
--from-file=security_scanner.pem=/path/to/security_scanner.pem

$ oc create -f clair-service.yaml

$ oc create -f clair-deployment.yaml

7. Get the clair-service endpoint In this example, the endpoint of of clair-service would be
http://172.30.133.227:6060:

16

http://172.30.133.227:6060

CHAPTER 4. SET UP RED HAT QUAY SERVICES

$ oc get service clair-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
clair-service ClusterlP 172.30.133.227 <none> 6060/TCP,6061/TCP 76s

8. Enter Security Scanner Endpoint Return to the Red Hat Quay Setup screen and fill in the
clair-service endpoint. For example, http://clair-service:6060

9. Deploy configuration: Select to save the configuration, then deploy it when prompted.
A green check mark will appear on the screen when the deployment is done. You can now start using

Clairimage scanning with Red Hat Quay. For information on the data sources available with the Clair
image scanner, see Using Clair data sources.

4.3. ADD REPOSITORY MIRRORING RED HAT QUAY
Enabling repository mirroring allows you to create container image repositories on your Red Hat Quay
cluster that exactly match the content of a selected external registry, then sync the contents of those
repositories on a regular schedule and on demand.
To add the repository mirroring feature to your Red Hat Quay cluster:

® Run the repository mirroring worker. To do this, you start a quay pod with the repomirror option.

® Select "Enable Repository Mirroring in the Red Hat Quay Setup tool.

® | oginto your Red Hat Quay Web Ul and begin creating mirrored repositories as described in
Repository Mirroring in Red Hat Quay .

The following procedure assumes you already have a running Red Hat Quay cluster on an OpenShift
platform, with the Red Hat Quay Setup container running in your browser:

NOTE

Instead of running repository mirroring in its own container, you could start the quay
application pod with the environment variable
QUAY_OVERRIDE_SERVICES=repomirrorworker=true. This causes the repomirror
worker to run inside the quay application pod instead of as a separate container.

1. Start the repo mirroring worker. Start the quay container in repomirror mode as follows:
I $ oc create -f quay-enterprise-mirror.yami

2. Loginto config tool Log into the Red Hat Quay Setup Web Ul (config tool).

3. Enable repository mirroring Scroll down the the Repository Mirroring section and select the
Enable Repository Mirroring check box, as shown here:

17

http://clair-service:6060
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html/manage_red_hat_quay/clair-initial-setup#clair-sources
https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index

18

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

4. Select HTTPS and cert verification: If you want to require HTTPS communications and verify

certificates during mirroring, select this check box.

& Repository Mirroring

If enabled, scheduled mirroring of repositories from remote registries will be available.

4 Enable Repository Mirroring

A repository mirror service must be running to use this feature. Documentation on setting up and running this service can be found at Running Repository Mirroring Service.

|| Require HTTPS and verify certificates of Quay registry during mirror.

5. Save configuration: Select the Save Configuration Changes button. Repository mirroring
should now be enabled on your Red Hat Quay cluster. Refer to Repository Mirroring in Red Hat
Quay for details on setting up your own mirrored container image repositories.

The server hostname you set with the config tools may not represent and endpoint that can be used to
copy images to a mirror configured for that server. In that case, you can set a

REPO_MIRROR_SERVER_HOSTNAME environment variable to identify the server’'s URL in a way that
it can be reached by a skopeo copy command.

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/manage_red_hat_quay/index

CHAPTER 5. STARTING TO USE RED HAT QUAY

CHAPTER 5. STARTING TO USE RED HAT QUAY

With Red Hat Quay now running, you can:
® Select Tutorial from the Quay home page to try the 15-minute tutorial. In the tutorial, you learn
to log into Quay, start a container, create images, push repositories, view repositories, and

change repository permissions with Quay.

e Refer to the Use Red Hat Quay for information on working with Red Hat Quay repositories.

19

https://access.redhat.com/documentation/en-us/red_hat_quay/3/html-single/use_red_hat_quay/

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT
CONFIGURATION FILES

The following yaml files were created to deploy Red Hat Quay on OpenShift. They are used throughout
the deployment procedure in this document. We recommend you copy the files from this document into
a directory, review the contents, and make any changes necessary for your deployment.

6.1. RED HAT QUAY NAMESPACES AND SECRETS

quay-enterprise-namespace.yaml|

apiVersion: vi
kind: Namespace ﬂ
metadata:

name: quay-enterprise 9

ﬂ Identifies the Kind as Namespace

9 Namespace is set to quay-enterprise throughout the yaml files

quay-enterprise-config-secret.yaml

apiVersion: vi
kind: Secret
metadata:
namespace: quay-enterprise
name: quay-enterprise-config-secret

quay-enterprise-redhat-quay-pull-secret.yaml

apiVersion: vi
kind: Secret
metadata:
namespace: quay-enterprise
name: redhat-quay-pull-secret
data:
.dockerconfigjson: <Add credentials> ﬂ
type: kubernetes.io/dockerconfigjson

ﬂ Change <Add credentials> to include the credentials shown from Accessing Red Hat Quay

6.2. RED HAT QUAY STORAGE

quay-storageclass.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

name: quay-storageclass

20

https://access.redhat.com/solutions/3533201

CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT CONFIGURATION FILES

parameters: ﬂ

type: gp2
provisioner: kubernetes.io/aws-ebs
reclaimPolicy: Delete

To encrypt the volume, add this to the parameters section (optionally replacing xfs with another
filesystem type):

encrypted: "true"
fsType: xfs (or other fs)
kmsKeyld:

6.3. RED HAT QUAY DATABASE

db-pvc.yaml

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: postgres-storage
namespace: quay-enterprise
spec:
accessModes:

- ReadWriteOnce
volumeMode: Filesystem
resources:

requests:

storage: 5Gi ﬂ
storageClassName: quay-storageclass

ﬂ The 5Gi creates 5 gigabytes of storage for use by the Postgres database.

postgres-deployment.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
name: postgres
namespace: quay-enterprise
spec:
replicas: 1 ﬂ
template:
metadata:
labels:
app: postgres
spec:
containers:
- name: postgres
image: registry.access.redhat.com/rhscl/postgresql-10-rhel7:1-35
imagePullPolicy: "lIfNotPresent"
ports:

21

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

- containerPort: 5432
env:
- name: POSTGRESQL _USER
value: "username"
- name: POSTGRESQL_DATABASE
value: "quay"
- name: POSTGRESQL_PASSWORD
value: "password" 6
volumeMounts:
- mountPath: /var/lib/pgsql/data
name: postgredb
serviceAccount: postgres
serviceAccountName: postgres
volumes:
- name: postgredb
persistentVolumeClaim:
claimName: postgres-storage

ﬂ Only one instance of the postgres database is defined here. Adjust replicas based on demand.
9 Replace "username” with a name for your Postgres user

9 Replace "password" with a password for your Postgres user

postgres-service.yaml

apiVersion: vi
kind: Service
metadata:
name: postgres
namespace: quay-enterprise
labels:
app: postgres
spec:
type: NodePort
ports:
- port: 5432
selector:
app: postgres

6.4. RED HAT QUAY AUTHORIZATION

quay-servicetoken-role-k8s1-6.yaml

apiVersion: rbac.authorization.k8s.io/vibetat
kind: Role
metadata:
name: quay-enterprise-serviceaccount
namespace: quay-enterprise
rules:
- apiGroups:

resources:

22

CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT CONFIGURATION FILES

- secrets
verbs:
- get
- put
- patch
- update

- apiGroups:
resources:
- namespaces
verbs:
- get

- apiGroups:
- extensions
- apps
resources:
- deployments
verbs:
- get
- list
- patch
- update
- watch

quay-servicetoken-role-binding-k8s1-6.yaml

apiVersion: rbac.authorization.k8s.io/vibetat
kind: RoleBinding
metadata:
name: quay-enterprise-secret-writer
namespace: quay-enterprise
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: quay-enterprise-serviceaccount
subjects:
- kind: ServiceAccount
name: default

6.5. REDIS DATABASE
quay-enterprise-redis.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
namespace: quay-enterprise
name: quay-enterprise-redis
labels:
quay-enterprise-component: redis
spec:
replicas: 1 0
selector:
matchLabels:

23

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

quay-enterprise-component: redis
template:
metadata:
namespace: quay-enterprise
labels:
quay-enterprise-component: redis
spec:
containers:
- name: redis-master
image: registry.access.redhat.com/rhscl/redis-32-rhel7
imagePullPolicy: "IfNotPresent”
ports:
- containerPort: 6379
apiVersion: vi
kind: Service
metadata:
namespace: quay-enterprise
name: quay-enterprise-redis
labels:
quay-enterprise-component: redis
spec:
ports:
- port: 6379
selector:
quay-enterprise-component: redis

ﬂ Only one instance of the redis database is defined here. Adjust replicas based on demand.

6.6. RED HAT QUAY CONFIGURATION POD
quay-enterprise-config.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
namespace: quay-enterprise
name: quay-enterprise-config-app
labels:
quay-enterprise-component: config-app
spec:
replicas: 1
selector:
matchLabels:
quay-enterprise-component: config-app
template:
metadata:
namespace: quay-enterprise
labels:
quay-enterprise-component: config-app
spec:
containers:
- name: quay-enterprise-config-app
image: quay.io/redhat/quay:v3.2.2

24

CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT CONFIGURATION FILES

ports:
- containerPort: 8443
command: ["/quay-registry/quay-entrypoint.sh"]
args: ["config", "secret"]
imagePullSecrets:

- name: redhat-quay-pull-secret
quay-enterprise-config-service-clusterip.yaml

apiVersion: vi
kind: Service
metadata:
namespace: quay-enterprise
name: quay-enterprise-config
spec:
type: ClusterIP
ports:
- protocol: TCP
name: https
port: 443
targetPort: 8443
selector:
quay-enterprise-component: config-app

quay-enterprise-config-route.yaml

apiVersion: vi
kind: Route
metadata:
name: quay-enterprise-config
namespace: quay-enterprise
spec:
to:
kind: Service
name: quay-enterprise-config
tls:
termination: passthrough

6.7. RED HAT QUAY APPLICATION CONTAINER

quay-enterprise-service-clusterip.yaml

apiVersion: vi
kind: Service
metadata:
namespace: quay-enterprise
name: quay-enterprise-clusterip
spec:
type: ClusterlP
ports:
- protocol: TCP
name: https
port: 443

25

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

targetPort: 8443
selector:
quay-enterprise-component: app

quay-enterprise-app-route.yaml

apiVersion: vi
kind: Route
metadata:
name: quay-enterprise
namespace: quay-enterprise
spec:
to:
kind: Service
name: quay-enterprise-clusterip
tls:
termination: passthrough

quay-enterprise-app-rc.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
namespace: quay-enterprise
name: quay-enterprise-app
labels:
quay-enterprise-component: app
spec:
replicas: 1 0
selector:
matchLabels:
quay-enterprise-component: app
template:
metadata:

namespace: quay-enterprise

labels:
quay-enterprise-component: app

spec:

volumes:

- name: configvolume
secret:
secretName: quay-enterprise-secret
containers:

- name: quay-enterprise-app
image: quay.io/redhat/quay:v3.2.2
ports:

- containerPort: 8443
volumeMounts:
- name: configvolume
readOnly: false
mountPath: /conf/stack
imagePullSecrets:
- name: redhat-quay-pull-secret

26

CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT CONFIGURATION FILES

ﬂ Only one instance of the quay container is defined here. Adjust replicas based on demand.

6.8. CLAIRIMAGE SCANNING

postgres-clair-storage.yaml

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: postgres-clair-storage
namespace: quay-enterprise
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi
storageClassName: quay-storageclass

postgres-clair-deployment.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
labels:
app: postgres-clair
name: postgres-clair
namespace: quay-enterprise
spec:
replicas: 1
selector:
matchLabels:
app: postgres-clair
template:
metadata:
labels:
app: postgres-clair
spec:
containers:
- env:
- name: POSTGRESQL _USER

value: clairﬂ

- name: POSTGRESQL_DATABASE
value: clairg

- name: POSTGRESQL_PASSWORD
value: test123 6

image: registry.access.redhat.com/rhscl/postgresql-10-rhel7:1-35

imagePullPolicy: IfNotPresent

name: postgres-clair

ports:

- containerPort: 5432
protocol: TCP

volumeMounts:

27

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

- mountPath: /var/lib/pgsql/data
name: postgredb
serviceAccount: postgres
serviceAccountName: postgres
volumes:
- name: postgredb
persistentVolumeClaim:
claimName: postgres-clair-storage

ﬂ Set the username for the Clair postgres database (clair by default)
9 Set the name of the Clair postgres database

9 Set the password for the Clair postgress user

postgres-clair-service.yaml

apiVersion: vi
kind: Service
metadata:

labels:
app: postgres-clair

name: postgres-clair

namespace: quay-enterprise
spec:

ports:

- nodePort: 30680
port: 5432
protocol: TCP
targetPort: 5432

selector:
app: postgres-clair

type: NodePort

clair-config.yaml

clair:
database:
type: pgsal
options:
source: host=postgres-clair port=5432 dbname=clair user=clair password=test123
sslmode=disable
cachesize: 16384
api:
The port at which Clair will report its health status. For example, if Clair is running at
https.//clair.mycompany.com, the health will be reported at
http://clair.mycompany.com:6061/health.
healthport: 6061

port: 6062
timeout: 900s

paginationkey can be any random set of characters. *Must be the same across all Clair
instances™.

28

CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT CONFIGURATION FILES

paginationkey: "XxoPtCUzrUv4JV5dS+yQ+MdW7yLEJnRMwigVY/bpgtQ="

updater:
interval defines how often Clair will check for updates from its upstream vulnerability databases.
interval: 6h
notifier:
attempts: 3
renotifyinterval: 1h
http:
QUAY_ENDPOINT defines the endpoint at which Quay Enterprise is running.
For example: https://myregistry.mycompany.com
endpoint: http://quay-enterprise-clusterip/secscan/notify
proxy: http:/localhost:6063

jwtproxy:
signer_proxy:
enabled: true
listen_addr: :6063
ca_key_file: /certificates/mitm.key # Generated internally, do not change.
ca_crt_file: /certificates/mitm.crt # Generated internally, do not change.
signer:
issuer: security_scanner
expiration_time: 5m
max_skew: 1m
nonce_length: 32
private_key:
type: preshared
options:
The ID of the service key generated for Clair. The ID is refurned when setting up
the key in [Quay Enterprise Setup](security-scanning.md)
key_id: cd40f1c6a63f574c68ce882258925374882fac2b2f535ae5f8157c429e0c4b2e g
private_key_path: /clair/config/security_scanner.pem

verifier_proxies:

- enabled: true
The port at which Clair will listen.
listen_addr: :6060

If Clair is to be served via TLS, uncomment these lines. See the "Running Clair under TLS"
section below for more information.

key _file: /config/clair.key

crt_file: /config/clair.crt

verifier:
CLAIR_ENDPOINT is the endpoint at which this Clair will be accessible. Note that the port
specified here must match the listen_addr port a few lines above this.
Example: https.://myclair.mycompany.com:6060
audience: http://clair-service:6060

upstream: http://localhost:6062
key_server:
type: keyregistry
options:
QUAY_ENDPOINT defines the endpoint at which Quay Enterprise is running.
Example: https.://myregistry.mycompany.com
registry: http://quay-enterprise-clusterip/keys/

29

Red Hat Quay 3.2 Deploy Red Hat Quay on OpenShift

ﬂ Check that the database options match those set earlier in postgres-clair-deployment.yaml.

9 Insert the Key ID matches the value from the key generated from the Red Hat Quay Setup screen.

clair-service.yaml

apiVersion: vi
kind: Service
metadata:
name: clair-service
namespace: quay-enterprise
spec:
ports:
- name: clair-api
port: 6060
protocol: TCP
targetPort: 6060
- name: clair-health
port: 6061
protocol: TCP
targetPort: 6061
selector:
quay-enterprise-component: clair-scanner
type: ClusterIP

clair-deployment.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
labels:
quay-enterprise-component: clair-scanner
name: clair-scanner
namespace: quay-enterprise
spec:
replicas: 1
selector:
matchLabels:
quay-enterprise-component: clair-scanner
template:
metadata:
labels:
quay-enterprise-component: clair-scanner
namespace: quay-enterprise
spec:
containers:
- image: quay.io/redhat/clair-jwt:v3.2.2
imagePullPolicy: IfNotPresent
name: clair-scanner
ports:
- containerPort: 6060
name: clair-api
protocol: TCP
- containerPort: 6061

30

CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT CONFIGURATION FILES

name: clair-health
protocol: TCP
volumeMounts:
- mountPath: /clair/config
name: configvolume
imagePullSecrets:
- name: redhat-quay-pull-secret
restartPolicy: Always
volumes:
- name: configvolume
secret:
secretName: clair-scanner-config-secret

6.9. REPOSITORY MIRRORING

quay-enterprise-mirror.yaml

apiVersion: extensions/vibetal
kind: Deployment
metadata:
namespace: quay-enterprise
name: quay-enterprise-mirror
labels:
quay-enterprise-component: mirror-app
spec:
replicas: 1
selector:
matchLabels:
quay-enterprise-component: mirror-app
template:
metadata:

namespace: quay-enterprise

labels:
quay-enterprise-component: mirror-app

spec:

containers:

- name: quay-enterprise-mirror-app
image: quay.io/redhat/quay:v3.2.2
ports:

- containerPort: 8443
command: ["/quay-registry/quay-entrypoint.sh"]
args: ["repomirror"]

imagePullSecrets:

- name: redhat-quay-pull-secret

ADDITIONAL RESOURCES

31

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW
	CHAPTER 2. ARCHITECTURE
	CHAPTER 3. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT
	CHAPTER 4. SET UP RED HAT QUAY SERVICES
	4.1. SET UP RED HAT QUAY NAMESPACES AND SECRETS
	4.2. ADD CLAIR IMAGE SCANNING TO RED HAT QUAY
	4.3. ADD REPOSITORY MIRRORING RED HAT QUAY

	CHAPTER 5. STARTING TO USE RED HAT QUAY
	CHAPTER 6. APPENDIX A: RED HAT QUAY ON OPENSHIFT CONFIGURATION FILES
	6.1. RED HAT QUAY NAMESPACES AND SECRETS
	6.2. RED HAT QUAY STORAGE
	6.3. RED HAT QUAY DATABASE
	6.4. RED HAT QUAY AUTHORIZATION
	6.5. REDIS DATABASE
	6.6. RED HAT QUAY CONFIGURATION POD
	6.7. RED HAT QUAY APPLICATION CONTAINER
	6.8. CLAIR IMAGE SCANNING
	6.9. REPOSITORY MIRRORING
	ADDITIONAL RESOURCES

