& RedHat

Red Hat Process Automation Manager
7.6

Implementing high available event-driven
decisioning using the decision engine on Red
Hat OpenShift Container Platform

Last Updated: 2021-04-06

Red Hat Process Automation Manager 7.6 Implementing high available
event-driven decisioning using the decision engine on Red Hat OpenShift
Container Platform

Red Hat Customer Content Services
brms-docs@redhat.com

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to implement high available event-driven decisioning using the
decision engine on Red Hat OpenShift Container Platform in Red Hat Process Automation Manager
7.6.

Table of Contents

Table of Contents
PREFACE . vttt e e e e e e e e e e e, 3

CHAPTER 1. HIGH AVAILABLE EVENT-DRIVEN DECISIONING ON RED HAT OPENSHIFT CONTAINER

I I 0 T] PP 4
CHAPTER 2. IMPLEMENTING THEHA CEP SERVER ... ittt it eineieeeannnns 5
CHAPTER 3. CREATING THE HA CEP CLIENT ..ttt ittt ettt tiete e reenieeeeaennnneenannnns 7
CHAPTER 4. REQUIREMENTS FORHA CEP CLIENTAND SERVERCODE ..., 8
kie-remote API 8
Explicit timestamps 8
Lambda expressions for non-memory actions 8
APPENDIX A. VERSIONING INFORMATION .ttt ettt et ete e eiieeeeaennnneenns 10

Red Hat Process Automation Manager 7.6 Implementing high available event-driven decisioning using the decisior

PREFACE

PREFACE

As a business rules developer, you can use high available event-driven decisioning, including Complex
Event Processing (CEP), in your code that uses the decision engine. You can implement high available
event-driven decisioning on Red Hat OpenShift Container Platform.

You cannot use a standard deployment of Red Hat Process Automation Manager on Red Hat OpenShift
Container Platform, as described in Deploying a Red Hat Process Automation Manager environment on
Red Hat OpenShift Container Platform using Operators, to implement high available event-driven
decisioning, because the standard deployment supports only stateless processing. You must therefore
create a custom implementation using the provided reference implementation.

Prerequisites

® A Red Hat OpenShift Container Platform 4.1 environment is available and a project is created.

A Kafka Cluster is deployed in the OpenShift environment with Red Hat AMQ Streams.

The OpenJDK Java development environment is installed.

Maven, Docker, and kubectl are installed.

The oc OpenShift command line tool is installed.

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.6/html-single/deploying_a_red_hat_process_automation_manager_environment_on_red_hat_openshift_container_platform_using_operators

Red Hat Process Automation Manager 7.6 Implementing high available event-driven decisioning using the decisior

CHAPTER 1. HIGH AVAILABLE EVENT-DRIVEN DECISIONING
ON RED HAT OPENSHIFT CONTAINER PLATFORM

You can use the decision engine to implement high available event-driven decisioning on Red Hat
OpenShift Container Platform.

An event models a fact that happened in a specific point in time. The decision engine offers a rich set of
temporal operators to compare, correlate, and accumulate events. In event-driven decisioning, the
decision engine processes complex series of decisions based on events. Every event can alter the state
of the engine, influencing decisions for subsequent events.

You cannot use a standard deployment of Red Hat Process Automation Manager on Red Hat OpenShift
Container Platform, as described in Deploying a Red Hat Process Automation Manager environment on
Red Hat OpenShift Container Platform using Operators, to run high available event-driven decisioning.
The deployment includes Process Server (KIE Server) pods, which remain independent of each other
when scaled. The states of the pods are not synchronized. Therefore, only stateless calls can be
processed reliably.

The Complex Event Processing (CEP) APl is useful for event-driven decisioning with the decision
engine. The decision engine uses CEP to detect and process multiple events within a collection of
events, to uncover relationships that exist between events, and to infer new data from the events and
their relationships. For more information about CEP in the decision engine, see Decision engine in Red
Hat Process Automation Manager.

You can implement high available event-driven decisioning on Red Hat OpenShift Container Platform
based on the reference implementation provided with Red Hat Process Automation Manager. This
implementation provides an environment with safe failover.

In this reference implementation, you can scale the pod with the processing code. The replicas of the
pod are not independent. One of the replicas is automatically designated /eader. If the leader ceases to
function, another replica is automatically made leader, and the processing continues without
interruption or data loss.

The election of the leader is implemented with Kubernetes ConfigMaps. Coordination of the leader with
other replicas is performed with exchanged messages through Kafka. The leader is always the first to
process an event. When processing is complete, the leader notifies other replicas. A replica that is not
the leader starts executing an event only after it has been completely processed on the leader.

When a new replica joins the cluster, this replica requests a snapshot of the current Drools session from
the leader. The leader can use a recent existing snapshot if one is available in a Kafka topic. If a recent
snapshot is not available, the leader produces a new snapshot on demand. After receiving the snapshot,
the new replica deserializes it and eventually executes the last events not included in the snapshot
before starting to process new events in coordination with the leader.

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.6/html-single/deploying_a_red_hat_process_automation_manager_environment_on_red_hat_openshift_container_platform_using_operators
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.6/html-single/decision_engine_in_red_hat_process_automation_manager#cep-con_decision-engine

CHAPTER 2. IMPLEMENTING THE HA CEP SERVEF

CHAPTER 2. IMPLEMENTING THE HA CEP SERVER

The high-availability (HA) CEP server runs on the Red Hat OpenShift Container Platform environment.
It includes all necessary Drools rules and other code required to process events.

You must prepare the source, build it, and then deploy it on Red Hat OpenShift Container Platform.

Prerequisites

You are logged into the project with administrator privilege using the oc command-line tool.

Procedure

1.

Download the rhpam-7.6.0-reference-implementation.zip product deliverable file from the
Software Downloads page of the Red Hat Customer Portal.

Extract the contents of the file and then uncompress the rhpam-7.6.0-openshift-drools-
hacep-distribution.zip file.

Change to the openshift-drools-hacep-distribution/sources directory.

Review and modify the server code based on the sample project in the sample-hacep-
project/sample-hacep-project-kjar directory. The complex event processing logic is defined by
the DRL rules in the src/main/resources/org.drools.cep subdirectory.

Build the project using the standard Maven command:

I mvn clean install -DskipTests

Enable the OpenShift operator for Red Hat AMQ Streams and then create an AMQ Streams
(kafka) cluster in the project. For information about installing Red Hat AMQ Streams, see Using
AMQ Streams on OpenShift.

To create the kafka topics that are required for operation of the server, remain in the openshift-
drools-hacep-distribution/sources directory and run the following commands:

oc apply -f kafka-topics/control.yaml

oc apply -f kafka-topics/events.yaml

oc apply -f kafka-topics/kiesessioninfos.yaml
oc apply -f kafka-topics/snapshot.yaml

In order to enable application access to the ConfigMap that is used in the leader election, you
must configure role-based access control. Change to the springboot directory and enter the
following commands:

oc create -f kubernetes/service-account.yaml
oc create -f kubernetes/role.yaml
oc create -f kubernetes/role-binding.yaml|

For more information about configuring role-based access control in Red Hat OpenShift
Container Platform, see Using RBAC to define and apply permissions in the Red Hat OpenShift
Container Platform product documentation.

In the springboot directory, enter the following commands to create the image for deployment
and push it into the repository configured for your OpenShift environment:

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhpam&productChanged=yes
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html/using_amq_streams_on_openshift/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html/authentication/using-rbac

Red Hat Process Automation Manager 7.6 Implementing high available event-driven decisioning using the decisior

oc new-build --binary --strategy=docker --name openshift-kie-springboot
oc start-build openshift-kie-springboot --from-dir=. --follow

10. Enter the following command to detect the name of the image that was built:

oc get is/openshift-kie-springboot -o template --template='{{range .status.tags}}{{range
.items}}{{.dockerImageReference}}{{end}}{{end}}'

11. Open the kubernetes/deployment.yamil file in a text editor.
12. Replace the existing image URL with the result of the previous command.

13. Remove all characters at the end f the line starting with the @ symbol, then add :latest to the
line. For example:

image: image-registry.openshift-image-registry.svc:5000/hacep/openshift-kie-
springboot:latest

14. Save the file.

15. Enter the following command to deploy the image:

I oc apply -f kubernetes/deployment.yaml

CHAPTER 3. CREATING THE HA CEP CLIENT

CHAPTER 3. CREATING THE HA CEP CLIENT

You must adapt your CEP client code to communicate with the HA CEP server image. You can use the
sample project included in the reference implementation for your client code. You can run your client
code inside or outside the OpenShift environment.

Procedure

1.

Download the rhpam-7.6.0-reference-implementation.zip product deliverable file from the
Software Downloads page of the Red Hat Customer Portal.

Extract the contents of the file and then uncompress the rhpam-7.6.0-openshift-drools-
hacep-distribution.zip file.

Change to the openshift-drools-hacep-distribution/sources directory.
Review and modify the client code based on the sample project in the sample-hacep-
project/sample-hacep-project-client directory. Ensure that the code fulfills the additional

requirements described in Chapter 4, Requirements for HA CEP client and server code .

In the sample-hacep-project/sample-hacep-project-client directory, generate a keystore,
using password as a password. Enter the following command:

I keytool -genkeypair -keyalg RSA -keystore src/main/resources/keystore.jks

Extract the HTTPS certificate from the OpenShift environment and add it to the keystore.
Enter the following commands:

oc extract secret/my-cluster-cluster-ca-cert --keys=ca.crt --to=- > src/main/resources/ca.crt
keytool -import -trustcacerts -alias root -file src/main/resources/ca.crt -keystore
src/main/resources/keystore.jks -storepass password -noprompt

In the src/main/resources subdirectory of the project, open the configuration.properties file
and replace <bootstrap-hostname> with the address that the route for the Kafka server
provides.

Build the project using the standard Maven command:

I mvn clean install

Change the sample-hacep-project-client project directory and enter the following command
to run the client:

I mvn exec:java -Dexec.mainClass="org.kie.hacep.sample.client.ClientProducerDemo"

This command executes the main method of the ClientProducerDemo class.

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhpam&productChanged=yes

Red Hat Process Automation Manager 7.6 Implementing high available event-driven decisioning using the decisior

CHAPTER 4. REQUIREMENTS FOR HA CEP CLIENT AND
SERVER CODE

When developing client and server code for high-availability CEP, you must follow certain additional
requirements.

kie-remote API
The client code must use the kie-remote APl and not the kie API. The kie-remote APl is specified in the
org.kie:kie-remote Maven artifact. You can find the source code in the kie-remote Maven module.

Explicit timestamps

The decision engine needs to determine the sequence in which events happen. For this reason, every
event must have an associated timestamp assigned to it. In a high-availability environment, make this
timestamp a property of the JavaBean that models the event. You must then annotate the event class
with the @Timestamp annotation, where the name of the timestamp attribute itself is the parameter, as
in the following example:

@Role(Role.Type.EVENT)
@Timestamp("myTime")
public class StockTickEvent implements Serializable {

private String company;
private double price;
private long myTime;

}

If you do not provide a timestamp attribute, Drools assigns a timestamp to every event based on the
time when the event is inserted by the client into a remote session. However, this mechanism depends
on the clocks on the client machines. If clocks between different clients diverge, inconsistencies can
occur between events inserted by these hosts.

Lambda expressions for non-memory actions

Working memory actions (actions to insert, modify, or delete information in the working memory of the
decision engine) must be processed on every node of the cluster. Actions that are not memory actions
must be executed only on the leader.

For example, the code might include the following rule:

rule FindAdult when
$p : Person(age >= 18)

then
modify($p) { setAdult(true) }; / working memory action
sendEmailTo($p); // side effect

end

When this rule is triggered, the person must be marked as an adult on every node. However, only the
leader must send the email, so that only one copy of the email is sent.

Therefore, in your code, you must wrap the email action (called a side effect) in a lambda expression, as
shown in the following example:

rule FindAdult when
$p : Person(age >= 18)
then

CHAPTER 4. REQUIREMENTS FOR HA CEP CLIENT AND SERVER CODE

modify($p) { setAdult(true) };
DroolsExecutor.getinstance().execute(() -> sendEmailTo($p));
end

Red Hat Process Automation Manager 7.6 Implementing high available event-driven decisioning using the decisior

APPENDIX A. VERSIONING INFORMATION

Documentation last updated on Monday, March 01, 2021.

10

	Table of Contents
	PREFACE
	CHAPTER 1. HIGH AVAILABLE EVENT-DRIVEN DECISIONING ON RED HAT OPENSHIFT CONTAINER PLATFORM
	CHAPTER 2. IMPLEMENTING THE HA CEP SERVER
	CHAPTER 3. CREATING THE HA CEP CLIENT
	CHAPTER 4. REQUIREMENTS FOR HA CEP CLIENT AND SERVER CODE
	kie-remote API
	Explicit timestamps
	Lambda expressions for non-memory actions

	APPENDIX A. VERSIONING INFORMATION

