
Red Hat Process Automation Manager
7.12

Developing process services in Red Hat
Process Automation Manager

Last Updated: 2023-02-02

Red Hat Process Automation Manager 7.12 Developing process services in
Red Hat Process Automation Manager

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to develop process services and case definitions with Red Hat
Process Automation Manager using Business Process Model and Notation (BPMN) 2.0 models. This
document also describes concepts and options for process and case management.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

PART I. DESIGNING BUSINESS PROCESSES USING BPMN MODELS

CHAPTER 1. BUSINESS PROCESSES

CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER BPMN AND DMN MODELERS
2.1. INSTALLING THE RED HAT PROCESS AUTOMATION MANAGER VS CODE EXTENSION BUNDLE
2.2. CONFIGURING THE RED HAT PROCESS AUTOMATION MANAGER STANDALONE EDITORS

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0
4.1. RED HAT PROCESS AUTOMATION MANAGER SUPPORT FOR BPMN2
4.2. BPMN2 EVENTS IN PROCESS DESIGNER

4.2.1. Start events
4.2.2. Intermediate events
4.2.3. End events

4.3. BPMN2 TASKS IN PROCESS DESIGNER
4.4. BPMN2 CUSTOM TASKS IN PROCESS DESIGNER
4.5. BPMN2 SUB-PROCESSES IN PROCESS DESIGNER
4.6. BPMN2 GATEWAYS IN PROCESS DESIGNER
4.7. BPMN2 CONNECTING OBJECTS IN PROCESS DESIGNER
4.8. BPMN2 SWIMLANES IN PROCESS DESIGNER
4.9. BPMN2 ARTIFACTS IN PROCESS DESIGNER

4.9.1. Creating data object

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL
5.1. CREATING BUSINESS RULES TASKS
5.2. CREATING SCRIPT TASKS
5.3. CREATING SERVICE TASKS
5.4. CREATING USER TASKS

5.4.1. Setting the user task assignment strategy
5.5. BPMN2 USER TASK LIFE CYCLE IN PROCESS DESIGNER
5.6. BPMN2 TASK PERMISSION MATRIX IN PROCESS DESIGNER
5.7. MAKING A COPY OF A BUSINESS PROCESS
5.8. RESIZING ELEMENTS AND USING THE ZOOM FUNCTION TO VIEW BUSINESS PROCESSES
5.9. GENERATING PROCESS DOCUMENTATION IN BUSINESS CENTRAL

CHAPTER 6. VARIABLES
6.1. VARIABLE TAGS
6.2. DEFINING GLOBAL VARIABLES
6.3. DEFINING PROCESS VARIABLES
6.4. DEFINING LOCAL VARIABLES
6.5. EDITING PROCESS VARIABLE VALUES

CHAPTER 7. ACTION SCRIPTS

CHAPTER 8. TIMERS
8.1. SUPPORTED TIMERS FOR RED HAT PROCESS AUTOMATION MANAGER
8.2. CONFIGURING TIMERS WITH DELAY AND PERIOD
8.3. CONFIGURING TIMERS WITH ISO-8601 DATE FORMAT

10

11

12

13

14
14
15

19

21
22
27
28
30
34
36
39
47
51

54
54
55
56

58
61

62
63
68
70
71
71
72
73
74

76
76
78
79
80
81

82

83
83
83
83

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

8.4. CONFIGURING TIMERS WITH PROCESS VARIABLES
8.5. UPDATING TIMERS IN A RUNNING PROCESS INSTANCE

CHAPTER 9. CONSTRAINTS

CHAPTER 10. DEPLOYING A BUSINESS PROCESS IN BUSINESS CENTRAL

CHAPTER 11. EXECUTING A BUSINESS PROCESS IN BUSINESS CENTRAL

CHAPTER 12. TESTING A BUSINESS PROCESS
12.1. TESTING INTEGRATION WITH EXTERNAL SERVICES

CHAPTER 13. PROCESS DEFINITIONS AND PROCESS INSTANCES IN BUSINESS CENTRAL
13.1. STARTING A PROCESS INSTANCE FROM THE PROCESS DEFINITIONS PAGE
13.2. STARTING A PROCESS INSTANCE FROM THE PROCESS INSTANCES PAGE
13.3. PROCESS DEFINITIONS IN XML

CHAPTER 14. FORMS IN BUSINESS CENTRAL
14.1. FORM MODELER
14.2. GENERATING PROCESS AND TASK FORMS IN BUSINESS CENTRAL
14.3. MANUALLY CREATING FORMS IN BUSINESS CENTRAL
14.4. DOCUMENT ATTACHMENTS IN A FORM OR PROCESS

14.4.1. Setting the document marshalling strategy
14.4.1.1. Using a custom document marshalling strategy for a content management system (CMS)

14.4.2. Creating a document variable in a business process
14.4.3. Mapping task inputs and outputs to the document variable

CHAPTER 15. ADVANCED PROCESS CONCEPTS AND TASKS
15.1. INVOKING A DECISION MODEL AND NOTATION (DMN) SERVICE IN A BUSINESS PROCESS

CHAPTER 16. ADDITIONAL RESOURCES

PART II. INTERACTING WITH PROCESSES AND TASKS

CHAPTER 17. BUSINESS PROCESSES IN BUSINESS CENTRAL
17.1. KNOWLEDGE WORKER USER

CHAPTER 18. KNOWLEDGE WORKER TASKS IN BUSINESS CENTRAL
18.1. STARTING A TASK
18.2. STOPPING A TASK
18.3. DELEGATING A TASK
18.4. CLAIMING A TASK
18.5. RELEASING A TASK
18.6. BULK ACTIONS ON TASKS

18.6.1. Claiming tasks in bulk
18.6.2. Releasing tasks in bulk
18.6.3. Resuming tasks in bulk
18.6.4. Suspending tasks in bulk
18.6.5. Reassigning tasks in bulk

CHAPTER 19. TASK FILTERING IN BUSINESS CENTRAL
19.1. MANAGING TASK LIST COLUMNS
19.2. FILTERING TASKS USING BASIC FILTERS
19.3. FILTERING TASKS USING ADVANCED FILTERS
19.4. MANAGING TASKS USING DEFAULT FILTER
19.5. VIEWING TASK VARIABLES USING BASIC FILTERS
19.6. VIEWING TASK VARIABLES USING ADVANCED FILTERS

84
84

86

87

88

90
94

96
97
97
97

100
100
101
102
102
103
104
110
110

112
112

118

119

120
120

121
121
121
121
122
122
122
123
123
123
124
124

126
126
126
127
127
128
128

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 20. PROCESS INSTANCE FILTERING IN BUSINESS CENTRAL
20.1. FILTERING PROCESS INSTANCES USING BASIC FILTERS
20.2. FILTERING PROCESS INSTANCES USING ADVANCED FILTERS
20.3. MANAGING PROCESS INSTANCES USING DEFAULT FILTER
20.4. VIEWING PROCESS INSTANCE VARIABLES USING BASIC FILTERS
20.5. VIEWING PROCESS INSTANCE VARIABLES USING ADVANCED FILTERS

CHAPTER 21. CONFIGURING EMAILS IN TASK NOTIFICATION

CHAPTER 22. SETTING THE DUE DATE AND PRIORITY OF A TASK

CHAPTER 23. VIEWING AND ADDING COMMENTS TO A TASK

CHAPTER 24. VIEWING THE HISTORY LOG OF A TASK

CHAPTER 25. VIEWING THE HISTORY LOG OF A PROCESS INSTANCE

PART III. MANAGING AND MONITORING BUSINESS PROCESSES IN BUSINESS CENTRAL

CHAPTER 26. PROCESS MONITORING

CHAPTER 27. PROCESS DEFINITIONS AND PROCESS INSTANCES IN BUSINESS CENTRAL
27.1. STARTING A PROCESS INSTANCE FROM THE PROCESS DEFINITIONS PAGE
27.2. STARTING A PROCESS INSTANCE FROM THE PROCESS INSTANCES PAGE
27.3. GENERATING PROCESS DOCUMENTATION IN BUSINESS CENTRAL

CHAPTER 28. PROCESS INSTANCE MANAGEMENT
28.1. PROCESS INSTANCE FILTERING
28.2. CREATING A CUSTOM PROCESS INSTANCE LIST
28.3. MANAGING PROCESS INSTANCES USING A DEFAULT FILTER
28.4. VIEWING PROCESS INSTANCE VARIABLES USING BASIC FILTERS
28.5. VIEWING PROCESS INSTANCE VARIABLES USING ADVANCED FILTERS
28.6. ABORTING A PROCESS INSTANCE USING BUSINESS CENTRAL
28.7. SIGNALING PROCESS INSTANCES FROM BUSINESS CENTRAL
28.8. ASYNCHRONOUS SIGNAL EVENTS

28.8.1. Configuring asynchronous signals for intermediate events
28.8.2. Configuring asynchronous signals for end events

28.9. PROCESS INSTANCE OPERATIONS

CHAPTER 29. TASK MANAGEMENT
29.1. TASK FILTERING
29.2. CREATING CUSTOM TASK FILTERS
29.3. MANAGING TASKS USING A DEFAULT FILTER
29.4. VIEWING TASK VARIABLES USING BASIC FILTERS
29.5. VIEWING TASK VARIABLES USING ADVANCED FILTERS
29.6. MANAGING CUSTOM TASKS IN BUSINESS CENTRAL
29.7. USER TASK ADMINISTRATION
29.8. BULK ACTIONS ON TASKS

29.8.1. Claiming tasks in bulk
29.8.2. Releasing tasks in bulk
29.8.3. Resuming tasks in bulk
29.8.4. Suspending tasks in bulk
29.8.5. Reassigning tasks in bulk

CHAPTER 30. MANAGING LOG DATA
30.1. SETTING UP AUTOMATIC CLEANUP JOB

130
130
130
131
131
132

133

134

135

136

137

138

139

140
141
141
141

143
144
144
145
145
146
146
147
147
147
148
149

150
151

154
156
157
157
158
161

162
162
163
163
163
164

165
165

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

30.2. MANUAL CLEANUP
30.3. REMOVING LOGS FROM THE DATABASE
30.4. RUNNING A CUSTOM QUERY ON THE RED HAT PROCESS AUTOMATION MANAGER DATABASE

30.4.1. Parameters for the ExecuteSQLQueryCommand command

CHAPTER 31. EXECUTION ERROR MANAGEMENT
31.1. VIEWING PROCESS EXECUTION ERRORS IN BUSINESS CENTRAL
31.2. MANAGING EXECUTION ERRORS
31.3. ERROR FILTERING
31.4. AUTO-ACKNOWLEDGING EXECUTION ERRORS
31.5. CLEANING UP THE ERROR LIST

CHAPTER 32. PROCESS INSTANCE MIGRATION
32.1. INSTALLING THE PROCESS INSTANCE MIGRATION SERVICE
32.2. CREATING A MIGRATION PLAN
32.3. EDITING A MIGRATION PLAN
32.4. EXPORTING A MIGRATION PLAN
32.5. EXECUTING A MIGRATION PLAN
32.6. DELETING A MIGRATION PLAN

PART IV. DESIGNING AND BUILDING CASES FOR CASE MANAGEMENT

CHAPTER 33. CASE MANAGEMENT

CHAPTER 34. CASE MANAGEMENT MODEL AND NOTATION

CHAPTER 35. CASE FILES
35.1. CONFIGURING CASE ID PREFIXES
35.2. CONFIGURING CASE ID EXPRESSIONS

CHAPTER 36. SUBCASES

CHAPTER 37. AD HOC AND DYNAMIC TASKS

CHAPTER 38. ADDING DYNAMIC TASKS AND PROCESSES TO A CASE USING THE KIE SERVER REST API

38.1. CREATING A DYNAMIC USER TASK USING THE KIE SERVER REST API
38.2. CREATING A DYNAMIC SERVICE TASK USING THE KIE SERVER REST API
38.3. CREATING A DYNAMIC SUB-PROCESS USING THE KIE SERVER REST API

CHAPTER 39. COMMENTS

CHAPTER 40. CASE ROLES
40.1. CREATING CASE ROLES
40.2. ROLE AUTHORIZATION
40.3. ASSIGNING A TASK TO A ROLE
40.4. MODIFYING CASE ROLE ASSIGNMENTS DURING RUN TIME USING SHOWCASE
40.5. MODIFYING CASE ROLE ASSIGNMENTS DURING RUN TIME USING REST API

CHAPTER 41. STAGES
41.1. DEFINING A STAGE
41.2. CONFIGURING STAGE ACTIVATION AND COMPLETION CONDITIONS
41.3. ADDING A DYNAMIC TASK TO A STAGE

CHAPTER 42. MILESTONES
42.1. CONFIGURING AND TRIGGERING MILESTONES

166
166
168
169

170
170
170
171

174
176

178
178
180
182
182
183
184

185

186

187

188
188
189

192

195

196
197
198

200

202

203
204
205
205
207
208

212
212
213
214

216
216

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

4

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 43. VARIABLE TAGS

CHAPTER 44. CASE EVENT LISTENER

CHAPTER 45. RULES IN CASE MANAGEMENT
45.1. USING RULES TO DRIVE CASES

CHAPTER 46. CASE MANAGEMENT SECURITY
46.1. CONFIGURING SECURITY FOR CASE MANAGEMENT

CHAPTER 47. CLOSING CASES
47.1. CLOSING A CASE USING THE KIE SERVER REST API
47.2. CLOSING A CASE IN THE SHOWCASE APPLICATION

CHAPTER 48. CANCELING OR DESTROYING A CASE
48.1. CASE LOG REMOVAL FROM THE DATABASE

CHAPTER 49. ADDITIONAL RESOURCES

PART V. USING THE SHOWCASE APPLICATION FOR CASE MANAGEMENT

CHAPTER 50. CASE MANAGEMENT

CHAPTER 51. CASE MANAGEMENT SHOWCASE APPLICATION
Showcase Support

CHAPTER 52. INSTALLING AND LOGGING IN TO THE SHOWCASE APPLICATION

CHAPTER 53. CASE ROLES

CHAPTER 54. STARTING DYNAMIC TASKS AND PROCESSES

CHAPTER 55. STARTING AN IT ORDERS CASE IN THE SHOWCASE APPLICATION

CHAPTER 56. COMPLETING THE IT_ORDERS CASE USING SHOWCASE AND BUSINESS CENTRAL

CHAPTER 57. ADDITIONAL RESOURCES

PART VI. CUSTOM TASKS AND WORK ITEM HANDLERS

CHAPTER 58. MANAGING CUSTOM TASKS IN BUSINESS CENTRAL

CHAPTER 59. CREATING WORK ITEM HANDLER PROJECTS

CHAPTER 60. WORK ITEM HANDLER PROJECT CUSTOMIZATION

CHAPTER 61. WORK ITEM DEFINITIONS
61.1. @WID ANNOTATION
61.2. TEXT FILE

CHAPTER 62. DEPLOYING CUSTOM TASKS
62.1. USING A BUSINESS CENTRAL CUSTOM TASK REPOSITORY
62.2. UPLOADING JAR ARTIFACT TO BUSINESS CENTRAL
62.3. MANUALLY COPYING WORK ITEM DEFINITIONS TO BUSINESS CENTRAL MAVEN REPOSITORY

CHAPTER 63. REGISTERING CUSTOM TASKS
63.1. REGISTERING CUSTOM TASKS USING THE DEPLOYMENT DESCRIPTOR INSIDE BUSINESS CENTRAL

63.2. REGISTERING CUSTOM TASKS USING THE DEPLOYMENT DESCRIPTOR OUTSIDE BUSINESS
CENTRAL

219

222

224
224

228
228

230
230
230

232
232

235

236

237

238
238

239

241

243

247

250

256

257

258

262

265

267
267
270

273
273
273
273

274

274

275

Table of Contents

5

. .

. .

. .

. .

. .

CHAPTER 64. PLACING CUSTOM TASKS

PART VII. PROCESS ENGINE IN RED HAT PROCESS AUTOMATION MANAGER

CHAPTER 65. PROCESS ENGINE IN RED HAT PROCESS AUTOMATION MANAGER

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE
66.1. KIE BASE AND KIE SESSION

66.1.1. KIE base
66.1.2. KIE session
66.1.3. ProcessRuntime interface
66.1.4. Correlation Keys

66.2. RUNTIME MANAGER
66.2.1. Runtime manager strategies
66.2.2. Typical usage scenario for the runtime manager
66.2.3. Runtime environment configuration object
66.2.4. Runtime environment builder
66.2.5. Registration of handlers and listeners for runtime engines

66.2.5.1. Registering work item handlers using a file
66.2.5.2. Registration of handlers and listeners in a CDI environment

66.3. SERVICES IN THE PROCESS ENGINE
66.3.1. Modules for process engine services
66.3.2. Deployment service
66.3.3. Definition service
66.3.4. Process service
66.3.5. Runtime Data Service
66.3.6. User Task Service
66.3.7. Quartz-based timer service
66.3.8. Query service

66.3.8.1. Key classes of the query service
66.3.8.2. Using the query service in a typical scenario

66.3.9. Advanced query service
66.3.10. Process instance migration service

Known limitations of process instance migration
66.3.11. Deployments and different process versions

Activation and Deactivation of deployments
Invocation of the latest version of a process

66.3.12. Deployment synchronization
66.4. THREADS IN THE PROCESS ENGINE
66.5. EXECUTION ERRORS IN THE PROCESS ENGINE

66.5.1. Execution error types and filters
66.6. EVENT LISTENERS IN THE PROCESS ENGINE

66.6.1. Interfaces for event listeners
66.6.1.1. Interfaces for process event listeners
66.6.1.2. Interfaces for task lifecycle event listeners

66.6.2. Timing of calls to event listeners
66.6.3. Practices for development of event listeners
66.6.4. Registration of event listeners
66.6.5. KieRuntimeLogger event listener

66.7. PROCESS ENGINE CONFIGURATION

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE
67.1. PERSISTENCE OF PROCESS RUNTIME STATES

67.1.1. Safe points for persistence

277

278

279

281
281
282
283
283
285
286
289
291
292
293
297
298
299
300
300
301
302
303
314
325
326
327
328
330
331

333
336
336
337
337
338
339
339
341

342
342
342
344
346
346
347
347
348

352
352
352

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

6

. .

. .

67.2. THE PERSISTENT AUDIT LOG
67.2.1. The process engine audit log data model
67.2.2. Configuration for storing the process events log in a database
67.2.3. Configuration for sending the process events log to a JMS queue
67.2.4. Auditing of variables

Custom indexers
67.3. TRANSACTIONS IN THE PROCESS ENGINE

67.3.1. Registration of a transaction manager
67.3.2. Configuring container-managed transactions
67.3.3. Transaction retries

67.4. CONFIGURATION OF PERSISTENCE IN THE PROCESS ENGINE
67.4.1. Configuration in the persistence.xml file
67.4.2. Configuration of data sources for process engine persistence
67.4.3. Dependencies for persistence
67.4.4. Creating a KIE session with persistence
67.4.5. Persistence in the runtime manager

67.5. PERSISTING PROCESS VARIABLES IN A SEPARATE DATABASE SCHEMA IN RED HAT PROCESS
AUTOMATION MANAGER

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS
68.1. INTEGRATION WITH APACHE MAVEN

68.1.1. Maven artifacts as deployment units
68.1.2. Dependency management with Maven

Maven repositories
68.2. INTEGRATION WITH CDI

68.2.1. Deployment service for CDI
68.2.2. Form provider service for CDI
68.2.3. Runtime data service for CDI
68.2.4. Definition service for CDI
68.2.5. CDI integration configuration

68.2.5.1. Runtime manager as a CDI bean
68.3. INTEGRATION WITH SPRING

68.3.1. Direct use of the runtime manager API in Spring
68.3.1.1. RuntimeEnvironmentFactoryBean bean
68.3.1.2. RuntimeManagerFactoryBean bean
68.3.1.3. TaskServiceFactoryBean bean
68.3.1.4. Configuring a sample runtime manager with a Spring application
68.3.1.5. Additional configuration options for the runtime manager in the Spring framework

68.3.2. Process engine services with Spring
68.3.2.1. Configuring process engine services with a Spring application

68.4. INTEGRATION WITH EJB
68.4.1. Implementations for EJB services

Transactions
Identity provider
Deployment synchronization
EJB scheduler service
UserGroupCallback and UserInfo implementation selection

68.4.2. Local EJB interfaces
68.4.3. Remote EJB interfaces
68.4.4. Remote EJB client

68.5. INTEGRATION WITH OSGI

APPENDIX A. VERSIONING INFORMATION

353
353
360
361
361

364
365
365
367
368
368
369
369
370
371
372

373

379
379
379
381

383
384
384
385
386
386
387
390
392
392
393
393
394
394
396
397
398
400
401
401
401
402
402
402
403
403
405
406

407

Table of Contents

7

. .APPENDIX B. CONTACT INFORMATION 408

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

8

Table of Contents

9

PREFACE
As a developer of business processes, you can use Red Hat Process Automation Manager to develop
process services and case definitions using Business Process Model and Notation (BPMN) 2.0 models.
BPMN process models are graphical representations of the steps required to achieve a business goal.
For more information about BPMN, see the Object Management Group (OMG) Business Process Model
and Notation 2.0 specification.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

10

https://www.omg.org/spec/BPMN/2.0/About-BPMN

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

11

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. DESIGNING BUSINESS PROCESSES USING BPMN
MODELS

As a business processes developer, you can use Business Central in Red Hat Process Automation
Manager or the Red Hat Process Automation Manager BPMN modeler in VS Code to design business
processes to meet specific business requirements. This document describes business processes and the
concepts and options for creating them using the process designer in Red Hat Process Automation
Manager. This document also describes the BPMN2 elements in Red Hat Process Automation Manager.
For more details about BPMN2, see the Business Process Model and Notation Version 2.0 specification.

Prerequisites

Red Hat JBoss Enterprise Application Platform 7.4 is installed. For details, see Red Hat JBoss
Enterprise Application Platform 7.4 Installation Guide.

Red Hat Process Automation Manager is installed and configured with KIE Server. For more
information, see Installing and configuring Red Hat Process Automation Manager on Red Hat
JBoss EAP 7.4.

Red Hat Process Automation Manager is running and you can log in to Business Central with
the developer role. For more information, see Planning a Red Hat Process Automation Manager
installation.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

12

https://www.omg.org/spec/BPMN/2.0/About-BPMN
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-install-on-eap
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning

CHAPTER 1. BUSINESS PROCESSES
A business process is a diagram that describes the order for a series of steps that must be executed and
consists of predefined nodes and connections. Each node represents one step in the process while the
connections specify how to transition from one node to another.

A typical business process consists of the following components:

The header section that comprises global elements such as the name of the process, imports,
and variables

The nodes section that contains all the different nodes that are part of the process

The connections section that links these nodes to each other to create a flow chart

Figure 1.1. Business process

Red Hat Process Automation Manager contains the legacy process designer and the new process
designer for creating business process diagrams. The new process designer has an improved layout and
feature set and continues to be developed. Until all features of the legacy process designer are
completely implemented in the new process designer, both designers are available in Business Central
for you to use.

NOTE

The legacy process designer in Business Central is deprecated in Red Hat Process
Automation Manager 7.12.0. It will be removed in a future Red Hat Process Automation
Manager release. The legacy process designer will not receive any new enhancements or
features. If you intend to use the new process designer, start migrating your processes to
the new designer. Create all new processes in the new process designer. For information
about migrating to the new designer, see Managing projects in Business Central .

CHAPTER 1. BUSINESS PROCESSES

13

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/deploying_and_managing_red_hat_process_automation_manager_services#migrating-from-legacy-designer-proc

CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER
BPMN AND DMN MODELERS

Red Hat Process Automation Manager provides the following extensions or applications that you can
use to design Business Process Model and Notation (BPMN) process models and Decision Model and
Notation (DMN) decision models using graphical modelers.

Business Central: Enables you to view and design BPMN models, DMN models, and test
scenario files in a related embedded designer.
To use Business Central, you can set up a development environment containing a Business
Central to design business rules and processes, and a KIE Server to execute and test the
created business rules and processes.

Red Hat Process Automation Manager VS Code extension: Enables you to view and design
BPMN models, DMN models, and test scenario files in Visual Studio Code (VS Code). The VS
Code extension requires VS Code 1.46.0 or later.
To install the Red Hat Process Automation Manager VS Code extension, select the Extensions
menu option in VS Code and search for and install the Red Hat Business Automation Bundle
extension.

Standalone BPMN and DMN editors: Enable you to view and design BPMN and DMN models
embedded in your web applications. To download the necessary files, you can either use the
NPM artifacts from the NPM registry or download the JavaScript files directly for the DMN
standalone editor library at https://<YOUR_PAGE>/dmn/index.js and for the BPMN
standalone editor library at https://<YOUR_PAGE>/bpmn/index.js.

2.1. INSTALLING THE RED HAT PROCESS AUTOMATION MANAGER VS
CODE EXTENSION BUNDLE

Red Hat Process Automation Manager provides a Red Hat Business Automation Bundle VS Code
extension that enables you to design Decision Model and Notation (DMN) decision models, Business
Process Model and Notation (BPMN) 2.0 business processes, and test scenarios directly in VS Code. VS
Code is the preferred integrated development environment (IDE) for developing new business
applications. Red Hat Process Automation Manager also provides individual DMN Editor and BPMN
Editor VS Code extensions for DMN or BPMN support only, if needed.

IMPORTANT

The editors in the VS Code are partially compatible with the editors in the Business
Central, and several Business Central features are not supported in the VS Code.

Prerequisites

The latest stable version of VS Code is installed.

Procedure

1. In your VS Code IDE, select the Extensions menu option and search for Red Hat Business
Automation Bundle for DMN, BPMN, and test scenario file support.
For DMN or BPMN file support only, you can also search for the individual DMN Editor or
BPMN Editor extensions.

2. When the Red Hat Business Automation Bundle extension appears in VS Code, select it and
click Install.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

14

https://www.npmjs.com/package/@kogito-tooling/kie-editors-standalone
https://code.visualstudio.com/

3. For optimal VS Code editor behavior, after the extension installation is complete, reload or
close and re-launch your instance of VS Code.

After you install the VS Code extension bundle, any .dmn, .bpmn, or .bpmn2 files that you open or
create in VS Code are automatically displayed as graphical models. Additionally, any .scesim files that
you open or create are automatically displayed as tabular test scenario models for testing the
functionality of your business decisions.

If the DMN, BPMN, or test scenario modelers open only the XML source of a DMN, BPMN, or test
scenario file and displays an error message, review the reported errors and the model file to ensure that
all elements are correctly defined.

NOTE

For new DMN or BPMN models, you can also enter dmn.new or bpmn.new in a web
browser to design your DMN or BPMN model in the online modeler. When you finish
creating your model, you can click Download in the online modeler page to import your
DMN or BPMN file into your Red Hat Process Automation Manager project in VS Code.

2.2. CONFIGURING THE RED HAT PROCESS AUTOMATION MANAGER
STANDALONE EDITORS

Red Hat Process Automation Manager provides standalone editors that are distributed in a self-
contained library providing an all-in-one JavaScript file for each editor. The JavaScript file uses a
comprehensive API to set and control the editor.

You can install the standalone editors using the following methods:

Download each JavaScript file manually

Use the NPM package

Procedure

1. Install the standalone editors using one of the following methods:
Download each JavaScript file manually: For this method, follow these steps:

a. Download the JavaScript files.

b. Add the downloaded Javascript files to your hosted application.

c. Add the following <script> tag to your HTML page:

Script tag for your HTML page for the DMN editor

<script src="https://<YOUR_PAGE>/dmn/index.js"></script>

Script tag for your HTML page for the BPMN editor

<script src="https://<YOUR_PAGE>/bpmn/index.js"></script>

Use the NPM package: For this method, follow these steps:

a. Add the NPM package to your package.json file:

CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER BPMN AND DMN MODELERS

15

Adding the NPM package

npm install @kogito-tooling/kie-editors-standalone

b. Import each editor library to your TypeScript file:

Importing each editor

import * as DmnEditor from "@kogito-tooling/kie-editors-standalone/dist/dmn"
import * as BpmnEditor from "@kogito-tooling/kie-editors-standalone/dist/bpmn"

2. After you install the standalone editors, open the required editor by using the provided editor
API, as shown in the following example for opening a DMN editor. The API is the same for each
editor.

Opening the DMN standalone editor

Use the following parameters with the editor API:

Table 2.1. Example parameters

Parameter Description

container HTML element in which the editor is appended.

initialContent Promise to a DMN model content. This parameter can be
empty, as shown in the following examples:

Promise.resolve("")

Promise.resolve("
<DIAGRAM_CONTENT_DIRECTLY_HERE>")

fetch("MyDmnModel.dmn").then(content ⇒
content.text())

const editor = DmnEditor.open({
 container: document.getElementById("dmn-editor-container"),
 initialContent: Promise.resolve(""),
 readOnly: false,
 origin: "",
 resources: new Map([
 [
 "MyIncludedModel.dmn",
 {
 contentType: "text",
 content: Promise.resolve("")
 }
]
])
});

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

16

readOnly (Optional) Enables you to allow changes in the editor. Set to false
(default) to allow content editing and true for read-only
mode in editor.

origin (Optional) Origin of the repository. The default value is
window.location.origin.

resources (Optional) Map of resources for the editor. For example, this
parameter is used to provide included models for the DMN
editor or work item definitions for the BPMN editor. Each
entry in the map contains a resource name and an object
that consists of content-type (text or binary) and
content (similar to the initialContent parameter).

Parameter Description

The returned object contains the methods that are required to manipulate the editor.

Table 2.2. Returned object methods

Method Description

getContent(): Promise<string> Returns a promise containing the editor content.

setContent(path: string, content:
string): void

Sets the content of the editor.

getPreview(): Promise<string> Returns a promise containing an SVG string of the current
diagram.

subscribeToContentChanges(ca
llback: (isDirty: boolean) ⇒
void): (isDirty: boolean) ⇒ void

Sets a callback to be called when the content changes in
the editor and returns the same callback to be used for
unsubscription.

unsubscribeToContentChanges(
callback: (isDirty: boolean) ⇒
void): void

Unsubscribes the passed callback when the content
changes in the editor.

markAsSaved(): void Resets the editor state that indicates that the content in
the editor is saved. Also, it activates the subscribed
callbacks related to content change.

undo(): void Undoes the last change in the editor. Also, it activates the
subscribed callbacks related to content change.

redo(): void Redoes the last undone change in the editor. Also, it
activates the subscribed callbacks related to content
change.

CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER BPMN AND DMN MODELERS

17

close(): void Closes the editor.

getElementPosition(selector:
string): Promise<Rect>

Provides an alternative to extend the standard query
selector when an element lives inside a canvas or a video
component. The selector parameter must follow the
<PROVIDER>:::<SELECT> format, such as
Canvas:::MySquare or Video:::PresenterHand. This
method returns a Rect representing the element position.

envelopeApi:
MessageBusClientApi<KogitoEd
itorEnvelopeApi>

This is an advanced editor API. For more information about
advanced editor API, see MessageBusClientApi and
KogitoEditorEnvelopeApi.

Method Description

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

18

https://github.com/kiegroup/kogito-tooling/blob/master/packages/envelope-bus/src/api/index.ts#L43-L56
https://github.com/kiegroup/kogito-tooling/blob/master/packages/editor/src/api/KogitoEditorEnvelopeApi.ts#L34-L41

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN
MODELS USING MAVEN

You can use Maven archetypes to develop DMN and BPMN models in VS Code using the Red Hat
Process Automation Manager VS Code extension instead of Business Central. You can then integrate
your archetypes with your Red Hat Process Automation Manager decision and process services in
Business Central as needed. This method of developing DMN and BPMN models is helpful for building
new business applications using the Red Hat Process Automation Manager VS Code extension.

Procedure

1. In a command terminal, navigate to a local folder where you want to store the new Red Hat
Process Automation Manager project.

2. Enter the following command to use a Maven archtype to generate a project within a defined
folder:

Generating a project using Maven archetype

mvn archetype:generate \
 -DarchetypeGroupId=org.kie \
 -DarchetypeArtifactId=kie-kjar-archetype \
 -DarchetypeVersion=7.59.0.Final-redhat-00006

This command generates a Maven project with required dependencies and generates required
directories and files to build your business application. You can use the Git version control
system (recommended) when developing a project.

If you want to generate multiple projects in the same directory, specify the artifactId and
groupId of the generated business application by adding -DgroupId=<groupid> -DartifactId=
<artifactId> to the previous command.

3. In your VS Code IDE, click File, select Open Folder, and navigate to the folder that is generated
using the previous command.

4. Before creating the first asset, set a package for your business application, for example,
org.kie.businessapp, and create respective directories in the following paths:

PROJECT_HOME/src/main/java

PROJECT_HOME/src/main/resources

PROJECT_HOME/src/test/resources

For example, you can create PROJECT_HOME/src/main/java/org/kie/businessapp for
org.kie.businessapp package.

5. Use VS Code to create assets for your business application. You can create the assets
supported by Red Hat Process Automation Manager VS Code extension using the following
ways:

To create a business process, create a new file with .bpmn or .bpmn2 in
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as Process.bpmn.

To create a DMN model, create a new file with .dmn in

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN

19

To create a DMN model, create a new file with .dmn in
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as
AgeDecision.dmn.

To create a test scenario simulation model, create a new file with .scesim in
PROJECT_HOME/src/main/java/org/kie/businessapp directory, such as
TestAgeScenario.scesim.

6. After you create the assets in your Maven archetype, navigate to the root directory (contains
pom.xml) of the project in the command line and run the following command to build the
knowledge JAR (KJAR) of your project:

mvn clean install

If the build fails, address any problems described in the command line error messages and try
again to validate the project until the build is successful. However, if the build is successful, you
can find the artifact of your business application in PROJECT_HOME/target directory.

NOTE

Use mvn clean install command often to validate your project after each major
change during development.

You can deploy the generated knowledge JAR (KJAR) of your business application on a running KIE
Server using the REST API. For more information about using REST API, see Interacting with Red Hat
Process Automation Manager using KIE APIs.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

20

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/deploying_and_managing_red_hat_process_automation_manager_services#assembly-kie-apis

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION
VERSION 2.0

The Business Process Modeling and Notation Version 2.0 (BPMN2) specification is an Object
Management Group (OMG) specification that defines standards for graphically representing a business
process, defines execution semantics for the elements, and provides process definitions in XML format.

A process is defined or determined by its process definition. It exists in a knowledge base and is
identified by its ID.

Table 4.1. General process properties

Label Description

Name Enter the name of the process.

Documentation Describes the process. The text in this field is included in the process
documentation, if applicable.

ID Enter an identifier for this process, for example orderItems.

Package Enter the package location for this process in your Red Hat Process
Automation Manager project, for example org.acme.

ProcessType Specify whether the process is public or private. (Currently not supported.)

Version Enter the artifact version for the process.

Ad hoc Select this option if this process is an ad hoc sub-process.

Process Instance Description Enter a description of the purpose of the process.

Imports Click to open the Imports window and add any data type classes required
for your process, or you can select an already defined data type.

Executable Select this option to make the process executable part of your Red Hat
Process Automation Manager project.

SLA Due Date Enter the service level agreement (SLA) expiration date.

Process Variables Add any process variables for the process. Process variables are visible
within the specific process instance. Process variables are initialized at
process creation and destroyed on process completion. Variable tags
provide greater control over variable behavior, for example whether the
variable is tagged as required or readonly. For more information about
variable tags, see Chapter 6, Variables.

Metadata Attributes Add any custom metadata attribute name and value that you want to use
for custom event listeners, such as a listener to implement some action
when a metadata attribute is present.

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

21

Global Variables Add any global variables for the process. Global variables are visible to all
process instances and assets in a project. Global variables are typically used
by business rules and constraints and are created dynamically by the rules
or constraints.

Label Description

A process is a container for a set of modeling elements. It contains elements that specify the execution
workflow of a business process or its parts using flow objects and flows. Each process has its own
BPMN2 diagram. Red Hat Process Automation Manager contains the new process designer for creating
BPMN2 diagrams and the legacy process designer to open the old BPMN2 diagram with .bpmn2
extension. The new process designer has an improved layout and feature set and continues to develop.
By default, the new diagrams are created in the new process designer.

4.1. RED HAT PROCESS AUTOMATION MANAGER SUPPORT FOR
BPMN2

With Red Hat Process Automation Manager, you can model your business processes using the BPMN
2.0 standard. You can then use Red Hat Process Automation Manager to run, manage, and monitor
these business processes. The full BPMN 2.0 specification also includes details on how to represent
items such as choreographies and collaboration. However, Red Hat Process Automation Manager uses
only the parts of the specification that you can use to specify executable processes. This includes
almost all elements and attributes as defined in the Common Executable subclass of the BPMN2
specification, extended with some additional elements and attributes.

The following table contains a list of icons used to indicate whether a BPMN2 element is supported in
the legacy process designer, the legacy and new process designer, or not supported.

Table 4.2. Support status icons

Key Description

Supported in the legacy and new process designer

Supported in the legacy process designer only

Not supported

Elements that have no icon do not exist in the BPMN2 specification.

Table 4.3. BPMN2 catching events

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

22

Element Name Start Intermediate

None

Message

Timer

Error

Escalation

Cancel

Compensation

Conditional

Link

Signal

Multiple

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

23

Parallel Multiple

Element Name Start Intermediate

Table 4.4. BPMN2 throwing and non-interrupting events

Element Name Throwing Non-interrupting

 End Intermediate Start Intermediate

None

Message

Timer

Error

Escalation

Cancel

Compensation

Conditional

Link

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

24

Signal

Terminate

Multiple

Parallel Multiple

Element Name Throwing Non-interrupting

Table 4.5. BPMN2 elements

Element type Element Supported

Task Business rule

 Script

 User task

 Service task

Sub-processes, including multiple
instance sub-processes

Embedded

 Ad hoc

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

25

 Reusable

 Event

Gateways Inclusive

 Exclusive

 Parallel

 Event-based

 Complex

Connecting objects Sequence flows

 Association flows

Swimlanes Swimlanes

Artifacts Group

Element type Element Supported

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

26

 Text annotation

 Data object

Element type Element Supported

For more information about the background and applications of BPMN2, see the OMG Business
Process Model and Notation (BPMN) Version 2.0 specification.

4.2. BPMN2 EVENTS IN PROCESS DESIGNER

An event is something that happens to a business process. BPMN2 supports three categories of events:

Start

End

Intermediate

A start event catches an event trigger, an end event throws an event trigger, and an intermediate event
can both catch and throw event triggers.

The following business process diagram shows examples of events:

In this example, the following events occurred:

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

27

https://www.omg.org/spec/BPMN/2.0/About-BPMN/

The ATM Card Inserted signal start event is triggered when the signal is received.

The timeout intermediate event is an interrupting event based on a timer trigger. This means
that the Wait for PIN sub-process is canceled when the timer event is triggered.

Depending on the inputs to the process, either end event associated with the Validate User Pin
task or the end event associated with the Inform User of Timeout task ends the process.

4.2.1. Start events

Use start events to indicate the start of a business process. A start event cannot have an incoming
sequence flow and must have only one outgoing sequence flow. You can use none start events in top-
level processes, embedded sub-process, callable sub-processes, and event sub-processes.

All start events, with the exception of the none start event, are catch events. For example, a signal start
event starts the process only when the referenced signal (event trigger) is received. You can configure
start events in event sub-processes to be interrupting or non-interrupting. An interrupting start event
for an event sub-process stops or interrupts the execution of the containing or parent process. A non-
interrupting start event does not stop or interrupt the execution of the containing or parent process.

Table 4.6. Start events

Start event type Top-level sub-processes

 Interrupt Non-interrupt

None

Conditional

Compensation

Error

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

28

Escalation

Message

Signal

Timer

Start event type Top-level sub-processes

None

The none start event is a start event without a trigger condition. A process or a sub-process can contain
at most one none start event, which is triggered on process or sub-process start by default, and the
outgoing flow is taken immediately.

When you use a none start event in a sub-process, the execution of the process flow is transferred from
the parent process into the sub-process and the none start event is triggered. This means that the
token (the current location within the process flow) is passed from the parent process into the sub-
process activity and the none start event of the sub-process generates a token of its own.

Conditional

The conditional start event is a start event with a Boolean condition definition. The execution is
triggered when the condition is first evaluated to false and then to true. The process execution starts
only if the condition is evaluated to true after the start event has been instantiated.

A process can contain multiple conditional start events.

Compensation

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

29

A compensation start event is used to start a compensation event sub-process when using a sub-
process as the target activity of a compensation intermediate event.

Error

A process or sub-process can contain multiple error start events, which are triggered when an error
object with a particular ErrorRef property is received. The error object can be produced by an error end
event. It indicates an incorrect process ending. The process instance with the error start event starts
execution after it has received the respective error object. The error start event is executed immediately
upon receiving the error object and its outgoing flow is taken.

Escalation

The escalation start event is a start event that is triggered by an escalation with a particular escalation
code. Processes can contain multiple escalation start events. The process instance with an escalation
start event starts its execution when it receives the defined escalation object. The process is
instantiated and the escalation start event is executed immediately and its outgoing flow is taken.

Message

A process or an event sub-process can contain multiple message start events, which are triggered by a
particular message. The process instance with a message start event only starts its execution from this
event after it has received the respective message. After the message is received, the process is
instantiated and its message start event is executed immediately (its outgoing flow is taken).

Because a message can be consumed by an arbitrary number of processes and process elements,
including no elements, one message can trigger multiple message start events and therefore instantiate
multiple processes.

Signal

The signal start event is triggered by a signal with a particular signal code. A process can contain multiple
signal start events. The signal start event only starts its execution within the process instance after the
instance has received the respective signal. Then, the signal start event is executed and its outgoing
flow is taken.

Timer

The timer start event is a start event with a timing mechanism. A process can contain multiple timer start
events, which are triggered at the start of the process, after which the timing mechanism is applied.

When you use a timer start event in a sub-process, execution of the process flow is transferred from the
parent process into the sub-process and the timer start event is triggered. The token is taken from the
parent sub-process activity and the timer start event of the sub-process is triggered and waits for the
timer to trigger. After the time defined by the timing definition has been reached, the outgoing flow is
taken.

4.2.2. Intermediate events

Intermediate events drive the flow of a business process. Intermediate events are used to either catch
or throw an event during the execution of the business process. These events are placed between the
start and end events and can also be used on the boundary of an activity, like a sub-process or a human
task, as a catch event. In the BPMN modeler, you can set a data output in the Data Output and
Assignments field for a boundary event, which is used in a further process to access the process
instance details. Note that the compensation events do not support the feature of setting a data output
variable.

For example, you can set the following data output variables for a boundary event:

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

30

nodeInstance: Carries the node instance details to use in a further process when the boundary
event is triggered.

signal: Carries the name of the signal.

event: Carries the event details.

workItem: Carries the work item details. This variable can be set for work item or user task.

The boundary catch events can be configured as interrupting or non-interrupting. An interrupting
boundary catch event cancels the bound activity whereas a non-interrupting event does not.

An intermediate event handles a particular situation that occurs during process execution. The situation
is a trigger for an intermediate event. In a process, intermediate events with one outgoing flow can be
placed on an activity boundary.

If the event occurs while the activity is being executed, the event triggers its execution to the outgoing
flow. One activity may have multiple boundary intermediate events. Note that depending on the
behavior you require from the activity with the boundary intermediate event, you can use either of the
following intermediate event types:

Interrupting: The activity execution is interrupted and the execution of the intermediate event
is triggered.

Non-interrupting: The intermediate event is triggered and the activity execution continues.

Table 4.7. Intermediate events

Intermediate
event type

Catching Boundary Throwing

 Interrupt Non-interrupt

Message

Timer

Error

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

31

Signal

Conditional

Compensation

Escalation

Link

Intermediate
event type

Catching Boundary Throwing

Message

A message intermediate event is an intermediate event that enables you to manage a message object.
Use one of the following events:

A throwing message intermediate event produces a message object based on the defined
properties.

A catching message intermediate event listens for a message object with the defined
properties.

Timer

A timer intermediate event enables you to delay workflow execution or to trigger the workflow execution

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

32

periodically. It represents a timer that can trigger one or multiple times after a specified period of time.
When the timer intermediate event is triggered, the timer condition, which is the defined time, is
checked and the outgoing flow is taken. When the timer intermediate event is placed in the process
workflow, it has one incoming flow and one outgoing flow. Its execution starts when the incoming flow
transfers to the event. When a timer intermediate event is placed on an activity boundary, the execution
is triggered at the same time as the activity execution.

The timer is canceled if the timer element is canceled, for example by completing or aborting the
enclosing process instance.

Conditional

A conditional intermediate event is an intermediate event with a boolean condition as its trigger. The
event triggers further workflow execution when the condition evaluates to true and its outgoing flow is
taken.

The event must define the Expression property. When a conditional intermediate event is placed in the
process workflow, it has one incoming flow, one outgoing flow, and its execution starts when the
incoming flow transfers to the event. When a conditional intermediate event is placed on an activity
boundary, the execution is triggered at the same time as the activity execution. Note that if the event is
non-interrupting, the event triggers continuously while the condition is true.

Signal

A signal intermediate event enables you to produce or consume a signal object. Use either of the
following options:

A throwing signal intermediate event produces a signal object based on the defined properties.

A catching signal intermediate event listens for a signal object with the defined properties.

Error

An error intermediate event is an intermediate event that can be used only on an activity boundary. It
enables the process to react to an error end event in the respective activity. The activity must not be
atomic. When the activity finishes with an error end event that produces an error object with the
respective ErrorCode property, the error intermediate event catches the error object and execution
continues to its outgoing flow.

Compensation

A compensation intermediate event is a boundary event attached to an activity in a transaction sub-
process. It can finish with a compensation end event or a cancel end event. The compensation
intermediate event must be associated with a flow, which is connected to the compensation activity.

The activity associated with the boundary compensation intermediate event is executed if the
transaction sub-process finishes with the compensation end event. The execution continues with the
respective flow.

Escalation

An escalation intermediate event is an intermediate event that enables you to produce or consume an
escalation object. Depending on the action the event element should perform, you need to use either of
the following options:

A throwing escalation intermediate event produces an escalation object based on the defined
properties.

A catching escalation intermediate event listens for an escalation object with the defined

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

33

A catching escalation intermediate event listens for an escalation object with the defined
properties.

Link

A link intermediate event is an intermediate event that makes the process diagram easier to understand
without adding additional logic to the process. Link intermediate event is limited to a single process
level, for example, link intermediate event cannot connect a parent process with a sub-process.

Use either of the following options:

A throwing link intermediate event produces a link object based on the defined properties.

A catching link intermediate event listens for a link object with the defined properties.

4.2.3. End events

End events are used to end a business process and may not have any outgoing sequence flows. There
may be multiple end events in a business process. All end events, with the exception of the none and
terminate end events, are throw events.

End events indicate the completion of a business process. An end event is a node that ends a particular
workflow. It has one or more incoming sequence flows and no outgoing flow.

A process must contain at least one end event.

During run time, an end event finishes the process workflow. The end event can finish only the workflow
that reached it, or all workflows in the process instance, depending on the end event type.

Table 4.8. End events

End event Icon

None

Message

Signal

Error

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

34

Compensation

Escalation

Terminate

End event Icon

None

The none end event specifies that no other special behavior is associated with the end of the process.

Message

When a flow enters a message end event, the flow finishes and the end event produces a message as
defined in its properties.

Signal

A throwing signal end event is used to finish a process or sub-process flow. When the execution flow
enters the element, the execution flow finishes and produces a signal identified by its SignalRef
property.

Error

The throwing error end event finishes the incoming workflow, which means consumes the incoming
token, and produces an error object. Any other running workflows in the process or sub-process remain
uninfluenced.

Compensation

A compensation end event is used to finish a transaction sub-process and trigger the compensation
defined by the compensation intermediate event attached to the boundary of the sub-process
activities.

Escalation

The escalation end event finishes the incoming workflow, which means consumes the incoming token,
and produces an escalation signal as defined in its properties, triggering the escalation process.

Terminate

The terminate end event finishes all execution flows in the specified process instance. Activities being
executed are canceled. The sub-process instance terminates if it reaches a terminate end event.

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

35

4.3. BPMN2 TASKS IN PROCESS DESIGNER

A task is an automatic activity that is defined in the process model and the smallest unit of work in a
process flow. The following task types defined in the BPMN2 specification are available in the Red Hat
Process Automation Manager process designer palette:

Business rule task

Script task

User task

Service task

None task

Table 4.9. Task

Business rule task

Script task

User task

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

36

Service task

None task

In addition, the BPMN2 specification provides the ability to create custom tasks. For more information
about custom tasks, see Section 4.4, “BPMN2 custom tasks in process designer” .

Business rule task

A business rule task defines a way to make a decision either through a DMN model or a rule flow group.

When a process reaches a business rule task defined by a DMN model, the process engine executes the
DMN model decision with the inputs provided.

When a process reaches a business rule task defined by a rule flow group, the process engine begins
executing the rules in the defined rule flow group. When there are no more active rules in the rule flow
group, the execution continues to the next element. During the rule flow group execution, new
activations belonging to the active rule flow group can be added to the agenda because these
activations are changed by other rules.

Script task

A script task represents a script to be executed during the process execution.

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

37

The associated script can access process variables and global variables. Review the following list before
using a script task:

Avoid low-level implementation details in the process. A script task can be used to manipulate
variables, but consider using a service task or a custom task when modelling more complex
operations.

Ensure that the script is executed immediately, otherwise use an asynchronous service task.

Avoid contacting external services through a script task. Use a service task to model
communication with an external service.

Ensure scripts do not throw exceptions. Runtime exceptions should be caught and managed, for
example, inside the script or transformed into signals or errors that can then be handled inside
the process.

When a script task is reached during execution, the script is executed and the outgoing flow is taken.

User task

User tasks are tasks in the process workflow that cannot be performed automatically by the system and
therefore require the intervention of a human user, the actor.

On execution, the User task element is instantiated as a task that appears in the list of tasks of one or
more actors. If a User task element defines the Groups attribute, it is displayed in task lists of all users
that are members of the group. Any user who is a member of the group can claim the task.

After it is claimed, the task disappears from the task list of the other users.

User tasks are implemented as domain-specific tasks and serve as a base for custom tasks.

Service task

Service tasks are tasks that do not require human interaction. They are completed automatically by an
external software service.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

38

None task

None tasks are completed on activation. This is a conceptual model only. A none task is never actually
executed by an IT system.

4.4. BPMN2 CUSTOM TASKS IN PROCESS DESIGNER

The BPMN2 specification supports the ability to extend the bpmn2:task element to create custom
tasks in a software implementation. Similar to standard BPMN tasks, custom tasks identify actions to be
completed in a business process model, but they also include specialized functionality, such as
compatibility with an external service of a specific type (REST, email, or web service) or checkpoint
behavior within a process (milestone).

Red Hat Process Automation Manager provides the following predefined custom tasks under Custom
Tasks in the BPMN modeler palette:

Table 4.10. Supported custom tasks

Custom task type Custom task node

Rest

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

39

Email

Log

WebService

Milestone

DecisionTask

Custom task type Custom task node

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

40

BusinessRuleTask

KafkaPublishMessages

Custom task type Custom task node

For more information about enabling or disabling custom tasks in Business Central, see Chapter 58,
Managing custom tasks in Business Central .

In the BPMN modeler, you can configure the following general properties for a selected custom task:

Table 4.11. General custom task properties

Label Description

Name Identifies the name of the task. You can also double-click the task node to
edit the name.

Documentation Describes the task. The text in this field is included in the process
documentation, if applicable.

Is Async Determines whether this task is invoked asynchronously.

AdHoc Autostart Determines whether this is an ad hoc task that is started automatically. This
option enables the task to automatically start when the process is created
instead of being started by a signal event.

On Entry Action Defines a Java, JavaScript, or MVEL script that directs an action at the start
of the task.

On Exit Action Defines a Java, JavaScript, or MVEL script that directs an action at the end
of the task.

SLA Due Date Specifies the duration (string type) when the service level agreement (SLA)
expires. You can specify the duration in days, minutes, seconds, and
milliseconds. For example, 1m value in SLA due date field indicates one
minute.

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

41

Assignments Defines data input and output for the task.

Metadata Attributes Defines the custom metadata attribute name and value that you want to
use for custom event listeners, such as a listener to implement some action
when a metadata attribute is present.

The Metadata Attributes enable the new metaData extensions to BPMN
diagrams and modify the behavior of the overall task.

Label Description

Rest

A rest custom task is used to invoke a remote RESTful service or perform an HTTP request from a
process.

To use the rest custom task, you can set the URL, HTTP method, and credentials in the process
modeler. When a process reaches a rest custom task, it generates an HTTP request and returns the
response as a string.

You can click Assignments in the Properties panel to open the REST Data I/O window. In the REST
Data I/O window, you can configure the data input and output as required. For example, to execute a
rest custom task, enter the following data inputs in Data Inputs and Assignments fields:

Url: Endpoint URL for the REST service. This attribute is mandatory.

Method: Method of the endpoint called, such as GET, and POST. The default value is GET.

ContentType: Data type when sending data. This attribute is mandatory for POST and PUT
requests.

ContentTypeCharset: Character set for the ContentType.

Content: Data you want to send. This attribute supports backward compatibility, use the
ContentData attribute instead.

ContentData: Data you want to send. This attribute is mandatory for POST and PUT requests.

ConnectTimeout: Connection timeout (in seconds). The default value is 60000 milliseconds.
You must provide the input value in milliseconds.

ReadTimeout: Timeout (in seconds) on response. The default value is 60000 milliseconds. You
must provide the input value in milliseconds.

Username: User name for authentication.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

42

Password: Password for authentication.

AuthUrl: URL that is handling authentication.

AuthType: Type of URL that is handling authentication.

HandleResponseErrors (Optional): Instructs handler to throw errors in case of an unsuccessful
response codes (except 2XX).

ResultClass: Valid name of the class to which the response is unmarshalled. If not provided, then
the raw response is returned in a string format.

AcceptHeader: Value of the accept header.

AcceptCharset: Character set of the accept header.

Headers: Headers to pass for REST call, such as content-type=text/html.

You can add the following data output in Data Outputs and Assignments to store the output of the
task execution:

Result: Output variable (object type) of the rest custom task.

Email

An email custom task is used to send an email from a process. It contains email body associated with it.

When an email custom task is activated, the email data is assigned to the data input property of the
task. An email custom task completes when the associated email is sent.

You can click Assignments in the Properties panel to open the Email Data I/O window. In the Email
Data I/O window, you can configure the data input as required. For example, to execute an email
custom task, enter the following data inputs in Data Inputs and Assignments fields:

Body: Body of the email.

From: Email address of the sender.

Subject: Subject of the email.

To: Email address of the recipient. You can specify multiple email addresses separated by
semicolon (;).

Template (Optional): Template to generate body of the email. The Template attribute
overrides the Body parameter, if entered.

Reply-To: Email address to which reply message is sent.

Cc: Email address of the copied recipient. You can specify multiple email addresses separated

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

43

Cc: Email address of the copied recipient. You can specify multiple email addresses separated
by semicolon (;).

Bcc: Email address of the blind copied recipient. You can specify multiple email addresses
separated by semicolon (;).

Attachments: Email attachment to send along with the email.

Debug: Flag to enable the debug logging.

Log

A log custom task is used to log a message from a process. When a business process reaches a log
custom task, the message data is assigned to the data input property.

A log custom task completes when the associated message is logged. You can click Assignments in the
Properties panel to open the Log Data I/O window. In the Log Data I/O window, you can configure the
data input as required. For example, to execute a log custom task, enter the following data inputs in
Data Inputs and Assignments fields:

Message: Log message from the process.

WebService

A web service custom task is used to invoke a web service from a process. This custom task serves as a
web service client with the web service response stored as a string.

To invoke a web service from a process, you must use the correct task type. You can click Assignments
in the Properties panel to open the WS Data I/O window. In the WS Data I/O window, you can
configure the data input and output as required. For example, to execute a web service task, enter the
following data inputs in Data Inputs and Assignments fields:

Endpoint: Endpoint location of the web service to invoke.

Interface: Name of a service, such as Weather.

Mode: Mode of a service, such as SYNC, ASYNC, or ONEWAY.

Namespace: Namespace of the web service, such as http://ws.cdyne.com/WeatherWS/.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

44

Operation: Method name to call.

Parameter: Object or array to be sent for the operation.

Url: URL of the web service, such as http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL.

You can add the following data output in Data Outputs and Assignments to store the output of the
task execution:

Result: Output variable (object type) of the web service task.

Milestone

A milestone represents a single point of achievement within a process instance. You can use milestones
to flag certain events to trigger other tasks or track the progress of the process.

Milestones are useful for Key Performance Indicator (KPI) tracking or for identifying the tasks that are
still to be completed. Milestones can occur at the end of a stage in a process or they can be the result of
achieving other milestones.

Milestones can reach the following states during process execution:

Active: A milestone condition has been defined for the milestone node but it has not been met.

Completed: A milestone condition has been met (if applicable), the milestone has been
achieved, and the process can proceed to the next task or can end.

You can click Assignments in the Properties panel to open the Milestone Data I/O window. In the
Milestone Data I/O window, you can configure the data input as required. For example, to execute a
milestone, enter the following data inputs in Data Inputs and Assignments fields:

Condition: Condition for the milestone to meet. For example, you can enter a Java expression
(string data type) that uses a process variable.

DecisionTask

A decision task is used to execute a DMN diagram and invoke a decision engine service from a process.
By default, a decision task maps to the DMN decision.

You can use decision tasks to make an operational decision in a process. Decision tasks are useful for

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

45

You can use decision tasks to make an operational decision in a process. Decision tasks are useful for
identifying key decisions in a process that need to be made.

You can click Assignments in the Properties panel to open the Decision Task Data I/O window. In the
Decision Task Data I/O window, you can configure the data input as required. For example, to execute
a decision task, enter the following data inputs in Data Inputs and Assignments fields:

Decision: Decision for a process to make.

Language: Language of the decision task, defaults to DMN.

Model: Name of the DMN model.

Namespace: Namespace of the DMN model.

BusinessRuleTask

A business rule task is used to evaluate a DRL rule and invoke a decision engine service from a process.
By default, a business rule task maps to the DRL rules.

You can use business rule tasks to evaluate key business rules in a business process. You can click
Assignments in the Properties panel to open the Business Rule Task Data I/O window. In the
Business Rule Task Data I/O window, you can configure the data input as required. For example, to
execute a business rule task, enter the following data inputs in Data Inputs and Assignments fields:

KieSessionName: Name of the KIE session.

KieSessionType: Type of the KIE session.

Language: Language of the business rule task, defaults to DRL.

KafkaPublishMessages

A Kafka work item is used to send events to a Kafka topic. This custom task includes a work item handler,
which uses the Kafka producer to send messages to a specific Kafka server topic. For example,
KafkaPublishMessages task publishes messages from a process to a Kafka topic.

You can click Assignments in the Properties panel to open the KafkaPublishMessages Data I/O
window. In the KafkaPublishMessages Data I/O window, you can configure the data input and output
as required. For example, to execute a Kafka work item, enter the following data inputs in Data Inputs

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

46

and Assignments fields:

Key: Key of the Kafka message to be sent.

Topic: Name of a Kafka topic.

Value: Value of the Kafka message to be sent.

You can add the following data output in Data Outputs and Assignments to store the output of the
work item execution:

Result: Output variable (string type) of the work item.

For more information about KafkaPublishMessages in a business process, see Integrating Red Hat
Process Automation Manager with Red Hat AMQ Streams.

4.5. BPMN2 SUB-PROCESSES IN PROCESS DESIGNER

A sub-process is an activity that contains nodes. You can embed part of the main process within a sub-
process. You can also include variable definitions within the sub-process. These variables are accessible
to all nodes inside the sub-process.

A sub-process must have at least one incoming connection and one outgoing connection. A terminate
end event inside a sub-process ends the sub-process instance but does not automatically end the
parent process instance. A sub-process ends when there are no more active elements in it.

The following sub-process types are supported in Red Hat Process Automation Manager:

Embedded sub-process: A sub-process that is a part of the parent process execution and
shares the parent process data, along with declaring its own local sub-process variables.

Ad hoc sub-process: A sub-process that has no strict element execution order.

Reusable sub-process: A sub-process that is independent of its parent process.

Event sub-process: A sub-process that is only triggered on a start event or a timer.

Multi-instance sub-process: A sub-process that is instantiated multiple times.

In the following example, the Place order sub-process checks whether sufficient stock is available to
place the order and updates the stock information if the order can be placed. The customer is then
notified through the main process based on whether or not the order was placed.

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

47

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/integrating_red_hat_process_automation_manager_with_other_products_and_components#assembly-integrating-amq-streams

Embedded sub-process

An embedded sub-process encapsulates a part of the process. It must contain a start event and at least
one end event. Note that the element enables you to define local sub-process variables that are
accessible to all elements inside this container.

AdHoc sub-process

An ad hoc sub-process or process contains a number of embedded inner activities and is intended to be
executed with a more flexible ordering compared to the typical process flow. Unlike regular processes,
an ad hoc sub-process does not contain a complete, structured BPMN2 diagram description, for
example, from start event to end event. Instead, the ad hoc sub-process contains only activities,
sequence flows, gateways, and intermediate events. An ad hoc sub-process can also contain data
objects and data associations. The activities within the ad hoc sub-processes are not required to have
incoming and outgoing sequence flows. However, you can specify sequence flows between some of the
contained activities. When used, sequence flows provide the same ordering constraints as in a regular
process. To have any meaning, intermediate events must have outgoing sequence flows and they can
be triggered multiple times while the ad hoc sub-process is active.

Reusable sub-process

Reusable sub-processes appear collapsed within the parent process. To configure a reusable sub-

process, select the reusable sub-process, click , and expand Implementation/Execution. Set the
following properties:

Called Element: The ID of the sub-process that the activity calls and instantiates.

Independent: If selected, the sub-process is started as an independent process. If not selected,
the active sub-process is canceled when the parent process is terminated.

Abort Parent: If selected, non-independent reusable sub-processes can abort the parent
process when there is an error during the execution of the called process instance. For example,
when there’s an error when trying to invoke the sub-process or when the sub-process instance is
aborted. This property is visible only when the Independent property is not selected. The
following rules apply:

If the reusable sub-process is independent, Abort parent is not available.

If the reusable sub-process is not independent, Abort parent is available.

Wait for completion: If selected, the specified On Exit Action is not performed until the called
sub-process instance is terminated. The parent process execution continues when the On Exit
Action completes. This property is selected (set to true) by default.

Is Async: Select if the task should be invoked asynchronously and cannot be executed instantly.

Multiple Instance: Select to execute the sub-process elements a specified number of times. If
selected, the following options are available:

MI Execution mode: Indicates if the multiple instances execute in parallel or sequentially. If
set to Sequential, new instances are not created until the previous instance completes.

MI Collection input: Select a variable that represents a collection of elements for which new
instances are created. The sub-process is instantiated as many times as the size of the
collection.

MI Data Input: Specifies the name of the variable containing the selected element in the
collection. The variable is used to access elements in the collection.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

48

MI Collection output: Optional variable that represents the collection of elements that will
gather the output of the multi-instance node.

MI Data Output: Specifies the name of the variable that is added to the output collection
that you selected in the MI Collection output property.

MI Completion Condition (mvel): MVEL expression that is evaluated on each completed
instance to check if the specified multiple instance node can complete. If it evaluates to
true, all remaining instances are canceled.

On Entry Action: A Java or MVEL script that specifies an action at the start of the task.

On Exit Action: A Java or MVEL script that specifies an action at the end of the task.

SLA Due Date: The date that the service level agreement (SLA) expires. You can specify the
duration in days, minutes, seconds, and milliseconds. For example, 1m value in SLA due date
field indicates one minute.

Metadata Attributes: Add any custom metadata attribute name and value that you want to use
for custom event listeners, such as a listener to implement some action when a metadata
attribute is present.

Figure 4.1. Reusable sub-process properties

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

49

Figure 4.1. Reusable sub-process properties

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

50

You can open the sub-process in a new editor in Business Central by clicking the Place order task in the
main process and then clicking the Open Sub-process task icon.

Event sub-process

An event sub-process becomes active when its start event is triggered. It can interrupt the parent
process context or run in parallel with it.

With no outgoing or incoming connections, only an event or a timer can trigger the sub-process. The
sub-process is not part of the regular control flow. Although self-contained, it is executed in the context
of the bounding process.

Use an event sub-process within a process flow to handle events that happen outside of the main
process flow. For example, while booking a flight, two events may occur:

Cancel booking (interrupting)

Check booking status (non-interrupting)

You can model both of these events using the event sub-process.

Multiple instance sub-process

A multiple instances sub-process is instantiated multiple times when its execution is triggered. The
instances are created sequentially or parallelly. If you set the sequential mode, a new sub-process
instance is created only after the previous instance has finished. However, when you set the parallel
mode, all the sub-process instances are created at once.

A multiple instances sub-process has one incoming connection and one outgoing connection.

4.6. BPMN2 GATEWAYS IN PROCESS DESIGNER

Gateways are used to create or synchronize branches in the workflow using a set of conditions called the
gating mechanism. BPMN2 supports two types of gateways:

Converging gateways, merging multiple flows into one flow

Diverging gateways, splitting one flow into multiple flows

One gateway cannot have multiple incoming and multiple outgoing flows.

In the following business process diagram, the XOR gateway evaluates only the incoming flow whose

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

51

In the following business process diagram, the XOR gateway evaluates only the incoming flow whose
condition evaluates to true:

In this example, the customer details are verified by a user and the process is assigned to a user for
approval. If approved, an approval notification is sent to the user. If the event of the request is rejected,
a rejection notification is sent to the user.

Table 4.12. Gateway elements

Element type Icon

exclusive (XOR)

Inclusive

Parallel

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

52

Event

Element type Icon

Exclusive

In an exclusive diverging gateway, only the first incoming flow whose condition evaluates to true is
chosen. In a converging gateway, the next node is triggered for each triggered incoming flow.

The gateway triggers exactly one outgoing flow. The flow with the constraint evaluated to true and the
lowest priority number is taken.

IMPORTANT

Ensure that at least one of the outgoing flows evaluates to true at run time. Otherwise,
the process instance terminates with a runtime exception.

The converging gateway enables a workflow branch to continue to its outgoing flow as soon as it reaches
the gateway. When one of the incoming flows triggers the gateway, the workflow continues to the
outgoing flow of the gateway. If it is triggered from more than one incoming flow, it triggers the next
node for each trigger.

Inclusive

With an inclusive diverging gateway, the incoming flow is taken and all outgoing flows that evaluate to
true are taken. Connections with lower priority numbers are triggered before triggering higher priority
connections. Priorities are evaluated but the BPMN2 specification does not guarantee the priority order.
Avoid depending on the priority attribute in your workflow.

IMPORTANT

Ensure that at least one of the outgoing flows evaluates to true at run time. Otherwise,
the process instance terminates with a runtime exception.

A converging inclusive gateway merges all incoming flows previously created by an inclusive diverging
gateway. It acts as a synchronizing entry point for the inclusive gateway branches.

Parallel

Use a parallel gateway to synchronize and create parallel flows. With a parallel diverging gateway, the
incoming flow is taken, all outgoing flows are taken simultaneously. With a converging parallel gateway,
the gateway waits until all incoming flows have entered and only then triggers the outgoing flow.

Event

An event-based gateway is only diverging and enables you to react to possible events as opposed to the
data-based exclusive gateway, which reacts to the process data. The outgoing flow is taken based on

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

53

the event that occurs. Only one outgoing flow is taken at a time. The gateway might act as a start event,
where the process is instantiated only if one of the intermediate events connected to the event-based
gateway occurs.

4.7. BPMN2 CONNECTING OBJECTS IN PROCESS DESIGNER

Connecting objects create an association between two BPMN2 elements. When a connecting object is
directed, the association is sequential and indicates that one of the elements is executed immediately
before the other, within an instance of the process. Connecting objects can start and end at the top,
bottom, right, or left of the process elements being associated. The OMG BPMN2 specification allows
you to use your discretion, placing connecting objects in a way that makes the process behavior easy to
understand and follow.

BPMN2 supports two main types of connecting objects:

Sequence flows: Connect elements of a process and define the order in which those elements
are executed within an instance.

Association flows: Connect the elements of a process without execution semantics. Association
flows can be undirected or unidirectional.

NOTE

The new process designer supports only undirected association flows. The legacy
designer supports one direction and Unidirectional flows.

4.8. BPMN2 SWIMLANES IN PROCESS DESIGNER

Swimlanes are process elements that visually group tasks related to one group or user. You can use user
tasks in combination with swimlanes to assign multiple user tasks to the same actor, due to Autoclaim
property of the swimlanes. When a potential owner of a group claims the first task in a swimlane, then
other tasks are directly assigned to the same owner. Therefore, the claim for other tasks is not needed
by the remaining owners of the group. The Autoclaim property enables the auto-assignment of the
tasks that are related to a swimlane.

NOTE

If the remaining user tasks in a swimlane contain multiple predefined ActorIds, then the
user tasks are not assigned automatically.

In the following example, an analyst lane consists of two user tasks:

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

54

In the following example, an analyst lane consists of two user tasks:

The Group field in the Update Customer Details and Resolve Customer Issue tasks contain the value
analyst. When the process is started, and the Update Customer Details task is claimed, started, or
completed by an analyst, and the Resolve Customer Issue task is claimed and assigned to the user who
completed the first task. However, if only the Update Customer Details task contains the analyst group
assigned, and the second task contains no user or group assignments, and the process stops after the
first task completes.

You can disable the Autoclaim property of the swimlanes. If the Autoclaim property is disabled, then
the tasks related to a swimlane are not assigned automatically. By default, the value of Autoclaim
property is set as true. If needed, you can also change the default value for the Autoclaim property
from project settings in Business Central or using the deployment descriptor file.

To change the default value of Autoclaim property of swimlanes in Business Central:

1. Go to project Settings.

2. Open Deployment → Environment entries.

3. Enter the following values in the given fields:

Name - Autoclaim

Value - "false”

If you want to set the environment entry in the XML deployment descriptor, add the following code to
the kie-deployment-descriptor.xml file:

4.9. BPMN2 ARTIFACTS IN PROCESS DESIGNER

<environment-entries>
 ..
 <environment-entry>
 <resolver>mvel</resolver>
 <identifier>new String ("false")</identifier>
 <parameters/>
 <name>Autoclaim</name>
 </environment-entry>
 ..
</environment-entries>

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

55

Artifacts are used to provide additional information about a process. An artifact is any object depicted in
the BPMN2 diagram that is not part of the process workflow. Artifacts have no incoming or outgoing
flow objects.The purpose of artifacts is to provide additional information required to understand the
diagram. The artifacts table lists the artifacts supported in the legacy process designer.

Table 4.13. Artifacts

Artifact type Description

Group Organizes tasks or processes that have significance in the overall process.
Group artifacts are not supported in the new process designer.

Text annotation Provides additional textual information for the BPMN2 diagram.

Data object Displays the data flowing through a process in the BPMN2 diagram.

4.9.1. Creating data object

Data objects represent, for example, documents used in a process in physical and digital form. Data
objects appear as a page with a folded top right corner. The following procedure is a generic overview of
creating a data object.

NOTE

In Red Hat Process Automation Manager 7.12.0, limited support for data objects is
provided that excludes support for data inputs, data outputs, and associations.

Procedure

1. Create a business process.

2. In the process designer, select the Artifacts → Data Object from the tool palette.

3. Either drag and drop a data object onto the process designer canvas or click a blank area of the
canvas.

4. If necessary, in the upper-right corner of the screen, click the Properties icon.

5. Add or define the data object information listed in the following table as required.

Table 4.14. Data object parameters

Label Description

Name The name of the data object. You can also double-click the data
object shape to edit the name.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

56

Metadata Attributes Add any custom metadata attribute name and value that you want to
use for custom event listeners, such as a listener to implement some
action when a metadata attribute is present.

The Metadata Attributes enable the new metaData extensions to
BPMN diagrams and modify the behavior of the overall data object.

Type Select a type of the data object.

IMPORTANT

When you define a data type for a data object, you
can use the same data type for other data type fields
in Properties, such as Imports and Data
Assignments.

Label Description

6. Click Save.

CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0

57

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS
CENTRAL

The process designer is the Red Hat Process Automation Manager process modeler. The output of the
modeler is a BPMN 2.0 process definition file. The definition is used as input for the Red Hat Process
Automation Manager process engine, which creates a process instance based on the definition.

The procedures in this section provide a general overview of how to create a simple business process.
For a more detailed business process example, see Getting started with process services .

Prerequisites

You have created or imported a Red Hat Process Automation Manager project. For more
information about creating projects, see Managing projects in Business Central .

You have created the required users. User privileges and settings are controlled by the roles
assigned to a user and the groups that a user belongs to. For more information about creating
users, see Installing and configuring Red Hat Process Automation Manager on Red Hat JBoss
EAP 7.4.

Procedure

1. In Business Central, go to Menu → Design → Projects.

2. Click the project name to open the project’s asset list.

3. Click Add Asset → Business Process.

4. In the Create new Business Process wizard, enter the following values:

Business Process: New business process name

Package: Package location for your new business process, for example
com.myspace.myProject

5. Click Ok to open the process designer.

6. In the upper-right corner, click the Properties icon and add your business process
property information, such as process data and variables:

a. Scroll down and expand Process Data.

b. Click next to Process Variables and define the process variables that you want to use
in your business process.

Table 5.1. General process properties

Label Description

Name Enter the name of the process.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

58

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-process-services
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/deploying_and_managing_red_hat_process_automation_manager_services#assembly-managing-projects
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#eap-users-create-proc_install-on-eap

Documentation Describes the process. The text in this field is included in the process
documentation, if applicable.

ID Enter an identifier for this process, such as orderItems.

Package Enter the package location for this process in your Red Hat Process
Automation Manager project, such as org.acme.

ProcessType Specify whether the process is public or private (or null, if not
applicable).

Version Enter the artifact version for the process.

Ad hoc Select this option if this process is an ad hoc sub-process.

Process Instance
Description

Enter a description of the purpose of the process.

Imports Click to open the Imports window and add any data object classes
required for your process.

Executable Select this option to make the process executable part of your Red
Hat Process Automation Manager project.

SLA Due Date Enter the service level agreement (SLA) expiration date.

Process Variables Add any process variables for the process. Process variables are
visible within the specific process instance. Process variables are
initialized at process creation and destroyed on process completion.
Variable Tags provide greater control over variable behavior, for
example whether the variable is required or readonly. For more
information about variable tags, see Chapter 6, Variables.

Metadata Attributes Add any custom metadata attribute name and value that you want to
use for custom event listeners, such as a listener to implement some
action when a metadata attribute is present.

Global Variables Add any global variables for the process. Global variables are visible
to all process instances and assets in a project. Global variables are
typically used by business rules and constraints, and are created
dynamically by the rules or constraints.

Label Description

The Metadata Attributes entries are similar to Process Variables tags in that they enable new
metaData extensions to BPMN diagrams. However, process variable tags modify the behavior
of specific process variables, such as whether a certain variable is required or readonly,
whereas metadata attributes are key-value definitions that modify the behavior of the overall
process.

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

59

For example, the following custom metadata attribute riskLevel and value low in a BPMN
process correspond to a custom event listener for starting the process:

Figure 5.1. Example metadata attribute and value in the BPMN modeler

Example metadata attribute and value in the BPMN file

Example event listener with metadata value

7. In the process designer canvas, use the left toolbar to drag and drop BPMN components to
define your business process logic, connections, events, tasks, or other elements.

NOTE

<bpmn2:process id="approvals" name="approvals" isExecutable="true"
processType="Public">
 <bpmn2:extensionElements>
 <tns:metaData name="riskLevel">
 <tns:metaValue><![CDATA[low]]></tns:metaValue>
 </tns:metaData>
 </bpmn2:extensionElements>

public class MyListener implements ProcessEventListener {
 ...
 @Override
 public void beforeProcessStarted(ProcessStartedEvent event) {
 Map < String, Object > metadata =
event.getProcessInstance().getProcess().getMetaData();
 if (metadata.containsKey("low")) {
 // Implement some action for that metadata attribute
 }
 }
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

60

NOTE

A task and event in Red Hat Process Automation Manager expect one incoming
and one outgoing flow. If you want to design a business process with multiple
incoming and multiple outgoing flows, then consider redesigning the business
process using gateways. Using gateways makes the logic apparent, which a
sequence flow is executing. Therefore, gateways are considered as a best
practice for multiple connections.

However, if it is a must to use multiple connections for a task or an event, then
you must set the JVM (Java virtual machine) system property
jbpm.enable.multi.con to true. When Business Central and KIE Server run on
different servers, then ensure that both of them contains the
jbpm.enable.multi.con system property as enabled otherwise, the process
engine throws an exception.

8. After you add and define all components of the business process, click Save to save the
completed business process.

5.1. CREATING BUSINESS RULES TASKS

Business rules tasks are used to make decisions through a Decision Model and Notation (DMN) model or
rule flow group.

Procedure

1. Create a business process.

2. In the process designer, select the Activities tool from the tool palette.

3. Select Business Rule.

4. Click a blank area of the process designer canvas.

5. If necessary, in the upper-right corner of the screen, click the Properties icon.

6. Add or define the task information listed in the following table as required.

Table 5.2. Business rule task parameters

Label Description

Name The name of the business rule task. You can also double-click the
business rule task shape to edit the name.

Rule Language The output language for the task. Select Decision Model and
Notation (DMN) or Drools (DRL).

Rule Flow Group The rule flow group associated with this business task. Select a rule
flow group from the list or specify a new rule flow group.

On Entry Action A Java, JavaScript, or MVEL script that specifies an action at the
start of the task.

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

61

On Exit Action A Java, JavaScript, or MVEL script that specifies an action at the end
of the task.

Is Async Select if this task should be invoked asynchronously. Make tasks
asynchronous if they cannot be executed instantaneously, for
example a task performed by an outside service.

AdHoc Autostart Select if this is an ad hoc task that should be started automatically.
AdHoc Autostart enables the task to automatically start when the
process or case instance is created instead of being starting by a
start task. It is often used in case management.

SLA Due Date The date that the service level agreement (SLA) expires.

Assignments Click to add local variables.

Metadata Attributes Add any custom metadata attribute name and value that you want to
use for custom event listeners, such as a listener to implement some
action when a metadata attribute is present.

The Metadata Attributes enable the new metaData extensions to
BPMN diagrams and modify the behavior of the overall task.

Label Description

7. Click Save.

5.2. CREATING SCRIPT TASKS

Script tasks are used to execute a piece of code written in Java, JavaScript, or MVEL. They contain code
snippets that specify the action of the script task. You can include global and process variables in your
scripts.

Note that MVEL accepts any valid Java code and additionally provides support for nested access of
parameters. For example, the MVEL equivalent of the Java call person.getName() is person.name.
MVEL also provides other improvements over Java and MVEL expressions are generally more
convenient for business users.

Procedure

1. Create a business process.

2. In the process designer, select the Activities tool from the tool palette.

3. Select Script.

4. Click a blank area of the process designer canvas.

5. If necessary, in the upper-right corner of the screen, click the Properties icon.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

62

6. Add or define the task information listed in the following table as required.

Table 5.3. Script task parameters

Label Description

Name The name of the script task. You can also double-click the script task
shape to edit the name.

Documentation Enter a description of the task. The text in this field is included in the
process documentation. Click the Documentation tab in the upper-
left side of the process designer canvas to view the process
documentation.

Script Enter a script in Java, JavaScript, or MVEL to be executed by the
task, and select the script type.

Is Async Select if this task should be invoked asynchronously. Make tasks
asynchronous if they cannot be executed instantaneously, for
example a task performed by an outside service.

AdHoc Autostart Select if this is an ad hoc task that should be started automatically.
AdHoc Autostart enables the task to automatically start when the
process or case instance is created instead of being starting by a
start task. It is often used in case management.

Metadata Attributes Add any custom metadata attribute name and value that you want to
use for custom event listeners, such as a listener to implement some
action when a metadata attribute is present.

The Metadata Attributes enable the new metaData extensions to
BPMN diagrams and modify the behavior of the overall task.

7. Click Save.

5.3. CREATING SERVICE TASKS

A service task is a task that executes an action based on a web service call or in a Java class method.
Examples of service tasks include sending emails and logging messages when performing these tasks.
You can define the parameters (input) and results (output) associated with a service task. You can also
define wrapped parameters that contain all inputs into a single object. To define wrapped parameters,
create a new work item handler using Wrapped` : `True in the data assignment. A Service Task should
have one incoming connection and one outgoing connection.

Procedure

1. In Business Central, select the Admin icon in the top-right corner of the screen and select
Artifacts.

2. Click Upload to open the Artifact upload window.

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

63

3. Choose the .jar file and click .

IMPORTANT

The .jar file contains data types (data objects) and Java classes for web service
and Java service tasks respectively.

4. Create a project you want to use.

5. Go to your project Settings → Dependencies.

6. Click Add from repository, locate the uploaded .jar file, and click Select.

7. Open your project Settings → Work Item Handler.

8. Enter the following values in the given fields:

Name - Service Task

Value - new org.jbpm.process.workitem.bpmn2.ServiceTaskHandler(ksession,
classLoader)

9. Save the project.

Example of creating web service task

The default implementation of a service task in the BPMN2 specification is a web service. The
web service support is based on the Apache CXF dynamic client, which provides a dedicated
service task handler that implements the WorkItemHandler interface:

org.jbpm.process.workitem.bpmn2.ServiceTaskHandler

To create a service task using web service, you must configure the web service:

a. Create a business process.

b. If necessary, in the upper-right corner of the screen, click the Properties icon.

c. Click in the Imports property to open the Imports window.

d. Click +Add next to the WSDL Imports to import the required WSDL (Web Services
Description Language) values. For example:

Location: http://localhost:8080/sample-ws-1/SimpleService?wsdl
The location points to the WSDL file of your service.

Namespace: http://bpmn2.workitem.process.jbpm.org/
The namespace must match targetNamespace from your WSDL file.

e. In the process designer, select the Activities tool from the tool palette.

f. Select Service Task.

g. Click a blank area of the process designer canvas.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

64

h. Add or define the task information listed in the following table as required.

Table 5.4. Web service task parameters

Label Description

Name The name of the service task. You can also double-click the service
task shape to edit the name.

Documentation Enter a description of the task. The text in this field is included in
the process documentation. Click the Documentation tab in the
upper-left side of the process designer canvas to view the process
documentation.

Implementation Specify a web service.

Interface The service used to implement the script, such as
CountriesPortService.

Operation The operation that is called by the interface, such as getCountry.

Assignments Click to add local variables.

AdHoc Autostart Select if this is an ad hoc task that should be started automatically.
AdHoc Autostart enables the task to automatically start when the
process or case instance is created instead of being starting by a
start task. It is often used in case management.

Is Async Select if this task should be invoked asynchronously. Make tasks
asynchronous if they cannot be executed instantaneously, for
example a task performed by an outside service.

Is Multiple Instance Select if this task has multiple instances.

MI Execution mode Select if the multiple instances execute in parallel or sequentially.

MI Collection input Specify a variable that represents a collection of elements for
which new instances are created, such as inputCountryNames.

MI Data Input Specify the input data assignment that is transferred to a web
service, such as Parameter.

MI Collection output The array list in which values returned from the web service task is
stored, such as outputCountries.

MI Data Output Specify the output data assignment for the web service task,
which stores the result of class execution on the server, such as
Result.

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

65

MI Completion Condition
(mvel)

Specify the MVEL expression that is evaluated on each completed
instance to check if the specified multiple instance node can
complete.

On Entry Action A Java, JavaScript, or MVEL script that specifies an action at the
start of the task.

On Exit Action A Java, JavaScript, or MVEL script that specifies an action at the
end of the task.

SLA Due Date The date that the service level agreement (SLA) expires.

Metadata Attributes Add any custom metadata attribute name and value that you want
to use for custom event listeners, such as a listener to implement
some action when a metadata attribute is present.

The Metadata Attributes enable the new metaData extensions to
BPMN diagrams and modify the behavior of the overall task.

Label Description

Example of creating Java service task

When you create a service task using Java method, then the method can only contain one
parameter and returns a single value. To create a service task using a Java method, you must
add the Java class to the dependencies of the project:

a. Create a business process.

b. In the process designer, select the Activities tool from the tool palette.

c. Select Service Task.

d. Click a blank area of the process designer canvas.

e. If necessary, in the upper-right corner of the screen, click the Properties icon.

f. Add or define the task information listed in the following table as required.

Table 5.5. Java service task parameters

Label Description

Name The name of the service task. You can also double-click the service
task shape to edit the name.

Documentation Enter a description of the task. The text in this field is included in
the process documentation. Click the Documentation tab in the
upper-left side of the process designer canvas to view the process
documentation.

Implementation Specify the task is implemented in Java.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

66

Interface The class used to implement the script, such as
org.xyz.HelloWorld.

Operation The method that is called by the interface, such as sayHello.

Assignments Click to add local variables.

AdHoc Autostart Select if this is an ad hoc task that should be started automatically.
AdHoc Autostart enables the task to automatically start when the
process or case instance is created instead of being starting by a
start task. It is often used in case management.

Is Async Select if this task should be invoked asynchronously. Make tasks
asynchronous if they cannot be executed instantaneously, for
example a task performed by an outside service.

Is Multiple Instance Select if this task has multiple instances.

MI Execution mode Select if the multiple instances execute in parallel or sequentially.

MI Collection input Specify a variable that represents a collection of elements for
which new instances are created, such as InputCollection.

MI Data Input Specify the input data assignment that is transferred to a Java
class. For example, you can set the input data assignments as
Parameter and ParameterType. ParameterType represents
the type of Parameter and sends arguments to the execution of
Java method.

MI Collection output The array list in which values returned from the Java class is
stored, such as OutputCollection.

MI Data Output Specify the output data assignment for Java service task, which
stores the result of class execution on the server, such as Result.

MI Completion Condition
(mvel)

Specify the MVEL expression that is evaluated on each completed
instance to check if the specified multiple instance node can
complete. For example, OutputCollection.size() <= 3 indicates
more than three people are not addressed.

On Entry Action A Java, JavaScript, or MVEL script that specifies an action at the
start of the task.

On Exit Action A Java, JavaScript, or MVEL script that specifies an action at the
end of the task.

SLA Due Date The date that the service level agreement (SLA) expires.

Label Description

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

67

Metadata Attributes Add any custom metadata attribute name and value that you want
to use for custom event listeners, such as a listener to implement
some action when a metadata attribute is present.

The Metadata Attributes enable the new metaData extensions to
BPMN diagrams and modify the behavior of the overall task.

Label Description

10. Click Save.

5.4. CREATING USER TASKS

User tasks are used to include human actions as input to the business process.

Procedure

1. Create a business process.

2. In the process designer, select the Activities tool from the tool palette.

3. Select User.

4. Drag and drop a user task onto the process designer canvas.

5. If necessary, in the upper-right corner of the screen, click the Properties icon.

6. Add or define the task information listed in the following table as required.

Table 5.6. User task parameters

Label Description

Name The name of the user task. You can also double-click the user task
shape to edit the name.

Documentation Enter a description of the task. The text in this field is included in the
process documentation. Click the Documentation tab in the upper-
left side of the process designer canvas to view the process
documentation.

Task Name The name of the human task.

Subject Enter a subject for the task.

Actors The actors responsible for executing the human task. Click Add to add
a row then select an actor from the list or click New to add a new
actor.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

68

Groups The groups responsible for executing the human task. Click Add to
add a row then select a group from the list or click New to add a new
group.

Assignments Local variables for this task. Click to open the Task Data I/O window
then add data inputs and outputs as required. You can also add MVEL
expressions as data input and output assignments. For more
information about the MVEL language, see Language Guide for 2.0.

Reassignments Specify a different actor to complete this task.

Notifications Click to specify notifications associated with the task.

Is Async Select if this task should be invoked asynchronously. Make tasks
asynchronous if they cannot be executed instantaneously, for
example a task performed by an outside service.

Skippable Select if this task is not mandatory.

Priority Specify a priority for the task.

Description Enter a description for the human task.

Created By The user that created this task.

AdHoc Autostart Select if this is an ad hoc task that should be started automatically.
AdHoc Autostart enables the task to automatically start when the
process or case instance is created instead of being starting by a
start task. It is often used in case management.

Multiple Instance Select if this task has multiple instances.

On Entry Action A Java, JavaScript, or MVEL script that specifies an action at the
start of the task.

On Exit Action A Java, JavaScript, or MVEL script that specifies an action at the end
of the task.

Content The content of the script.

SLA Due Date The date that the service level agreement (SLA) expires.

Label Description

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

69

http://mvel.documentnode.com/

Metadata Attributes Add any custom metadata attribute name and value that you want to
use for custom event listeners, such as a listener to implement some
action when a metadata attribute is present.

The Metadata Attributes enable the new metaData extensions to
BPMN diagrams and modify the behavior of the overall task.

Label Description

7. Click Save.

5.4.1. Setting the user task assignment strategy

The user task assignment strategy is used to automatically assign the tasks to a suitable user. The
assignment strategy allows more efficient task allocation based on the associated properties, such as
potential owners, task priority, and task data. org.jbpm.task.assignment.strategy is the system
property for the user task assignment strategy in Red Hat Process Automation Manager. You can also
explicitly define an assignment strategy for a user task in Business Central.

Prerequisites

You have created a project in Business Central.

You must set the org.jbpm.task.assignment.enabled system property to true.

Procedure

1. Create a business process.
For more information about creating a business process in Business Central, see Chapter 5,
Creating a business process in Business Central .

2. Create a user task.
For more information about creating a user task in Business Central, see Section 5.4, “Creating
user tasks”.

3. In the upper-right corner of the screen, click the Properties icon.

4. Expand Implementation/Execution and click below to Assignments, to open the Data
I/O window.

5. Add a data input with the name AssignmentStrategy, with the type String, and with the
constant source, such as the strategy name.

NOTE

If AssignmentStrategy is set as null, then no assignment strategy is used for the
task.

6. Click Ok.
The AssignmentStrategy variable is added as a data input to the user task.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

70

5.5. BPMN2 USER TASK LIFE CYCLE IN PROCESS DESIGNER

You can trigger a user task element during the process instance execution to create a user task. The
user task service of the task execution engine executes the user task instance. The process instance
continues the execution only when the associated user task is completed or aborted. A user task life
cycle is as follows:

When a process instance enters a user task element, the user task is in the Created stage.

Created stage is a transient stage and the user task enters the Ready stage immediately. The
task appears in the task list of all the actors who are allowed to execute the task.

When an actor claims the user task, the task becomes Reserved.

NOTE

If a user task has a single potential actor, the task is assigned to that actor upon creation.

When an actor who claimed the user task starts the execution, the status of the user task
changes to InProgress.

Once an actor completes the user task, the status changes to Completed or Failed depending
on the execution outcome.

There are also several other life cycle methods, including:

Delegating or forwarding a user task so the user task is assigned to another actor.

Revoking a user task, then the user task is no longer claimed by a single actor but is available to
all actors who are allowed to take it.

Suspending and resuming a user task.

Stopping a user task that is in progress.

Skipping a user task, in which the execution of the task is suspended.

For more information about the user task life cycle, see the Web Services Human Task specification.

5.6. BPMN2 TASK PERMISSION MATRIX IN PROCESS DESIGNER

The user task permission matrix summarizes the actions that are allowed for specific user roles. The user
roles are as follows:

Potential owner: User who can claim the task, which was claimed earlier and is released and
forwarded. The tasks with Ready status can be claimed, and the potential owner becomes the
actual owner of the task.

Actual owner: User who claims the task and progresses the task to completion or failure.

Business administrator: Super user who can modify the status or progress with the task at any
point of the task life cycle.

The following permission matrix represents the authorizations for all operations that modify a task.

+ indicates that the user role is allowed to do the specified operation.

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

71

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

- indicates that the user role is not allowed to do the specified operation, or the operation does
not match with the user’s role.

Table 5.7. Main operations permissions matrix

Operation Potential owner Actual owner Business administrator

activate - - +

claim + - +

complete - + +

delegate + + +

fail - + +

forward + + +

nominate - - +

release - + +

remove - - +

resume + + +

skip + + +

start + + +

stop - + +

suspend + + +

5.7. MAKING A COPY OF A BUSINESS PROCESS

You can make a copy of a business process in Business Central and modify the copied process as
needed.

Procedure

1. In the business process designer, click Copy in the upper-right toolbar.

2. In the Make a Copy window, enter a new name for the copied business process, select the
target package, and optionally add a comment.

3. Click Make a Copy.

4. Modify the copied business process as needed and click Save to save the updated business

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

72

4. Modify the copied business process as needed and click Save to save the updated business
process.

5.8. RESIZING ELEMENTS AND USING THE ZOOM FUNCTION TO VIEW
BUSINESS PROCESSES

You can resize individual elements in a business process and zoom in or out to modify the view of your
business process.

Procedure

1. In the business process designer, select the element and click the red dot in the lower-right
corner of the element.

2. Drag the red dot to resize the element.

Figure 5.2. Resize an element

3. To zoom in or out to view the entire diagram, click the plus or minus sign on the lower-right side
of the canvas.

Figure 5.3. Enlarge or shrink a business process

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

73

Figure 5.3. Enlarge or shrink a business process

5.9. GENERATING PROCESS DOCUMENTATION IN BUSINESS
CENTRAL

In the process designer in Business Central, you can view and print a report of the process definition.
The process documentation summarizes the components, data, and visual flow of the process in a
format (PDF) that you can print and share more easily.

Procedure

1. In Business Central, navigate to a project that contains a business process and select the
process.

2. In the process designer, click the Documentation tab to view the summary of the process file,
and click Print in the top-right corner of the window to print the PDF report.

Figure 5.4. Generate process documentation

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

74

Figure 5.4. Generate process documentation

CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL

75

CHAPTER 6. VARIABLES
Variables store data that is used during runtime. Process designer uses three types of variables:

Global variables

Global variables are visible to all process instances and assets in a particular session. They are intended
to be used primarily by business rules and by constraints and are created dynamically by rules or
constraints.

Process variables

Process variables are defined as properties in the BPMN2 definition file and are visible within the
process instance. They are initialized at process creation and destroyed on process completion.

Local variables

Local variables are associated with and available within specific process elements, such as activities.
They are initialized when the element context is initialized, that is, when the execution workflow enters
the node and execution of the onEntry action has finished, if applicable. They are destroyed when the
element context is destroyed, that is, when the execution workflow leaves the element.

An element, such as a process, sub-process, or task can only access variables in its own and parent
contexts. An element cannot access a variable defined in the element’s child element. Therefore, when
an elements requires access to a variable during runtime, its own context is searched first.

If the variable cannot be found directly in the element’s context, the immediate parent context is
searched. The search continues until the process context is reached. In case of global variables, the
search is performed directly on the session container.

If the variable cannot be found, a read access request returns null and a write access produces an error
message, and the process continues its execution. Variables are searched for based on their ID.

6.1. VARIABLE TAGS

For greater control over variable behavior, you can tag process variables and local variables in the BPMN
process file. Tags are simple string values that you add as metadata to a specific variable.

Red Hat Process Automation Manager supports the following tags for process variables and local
variables:

required: Sets the variable as a requirement in order to start a process instance. If a process
instance starts without the required variable, Red Hat Process Automation Manager generates a
VariableViolationException error.

readonly: Indicates that the variable is for informational purposes only and can be set only once
during process instance execution. If the value of a read-only variable is modified at any time,
Red Hat Process Automation Manager generates a VariableViolationException error.

restricted: A special tag that is used with the VariableGuardProcessEventListener to indicate
that permission is granted to modify the variable based on the required and the existing role.
VariableGuardProcessEventListener is extended from DefaultProcessEventListener and
supports two different constructors:

VariableGuardProcessEventListener

public VariableGuardProcessEventListener(String requiredRole, IdentityProvider

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

76

VariableGuardProcessEventListener

Therefore, you must add an event listener to the session with the allowed role name and
identity provider that returns the user role as shown in the following example:

In the previous example, the VariableGuardProcessEventListener method verifies if a variable
is tagged with a security constraint tag (restricted). If the user does not have the required role,
then Red Hat Process Automation Manager generates a VariableViolationException error.

NOTE

The variable tags that appear in the Business Central UI, for example internal, input,
output, business-relevant, and tracked are not supported in Red Hat Process
Automation Manager.

You can add the tag directly to the BPMN process source file as a customTags metadata property with
the tag value defined in the format ![CDATA[TAG_NAME]].

For example, the following BPMN process applies the required tag to an approver process variable:

Figure 6.1. Example variable tagged in the BPMN modeler

identityProvider) {
 this("restricted", requiredRole, identityProvider);
}

public VariableGuardProcessEventListener(String tag, String requiredRole,
IdentityProvider identityProvider) {
 this.tag = tag;
 this.requiredRole = requiredRole;
 this.identityProvider = identityProvider;
}

ksession.addEventListener(new VariableGuardProcessEventListener("AdminRole",
myIdentityProvider));

CHAPTER 6. VARIABLES

77

Figure 6.1. Example variable tagged in the BPMN modeler

Example variable tagged in a BPMN file

You can use more than one tag for a variable where applicable. You can also define custom variable tags
in your BPMN files to make variable data available to Red Hat Process Automation Manager process
event listeners. Custom tags do not influence the Red Hat Process Automation Manager runtime as the
standard variable tags do and are for informational purposes only. You define custom variable tags in
the same customTags metadata property format that you use for standard Red Hat Process
Automation Manager variable tags.

6.2. DEFINING GLOBAL VARIABLES

Global variables exist in a knowledge session and can be accessed and are shared by all assets in that
session. They belong to the particular session of the Knowledge Base and they are used to pass
information to the engine. Every global variable defines its ID and item subject reference. The ID serves
as the variable name and must be unique within the process definition. The item subject reference
defines the data type the variable stores.

<bpmn2:property id="approver" itemSubjectRef="ItemDefinition_9" name="approver">
 <bpmn2:extensionElements>
 <tns:metaData name="customTags">
 <tns:metaValue><![CDATA[required]]></tns:metaValue>
 </tns:metaData>
 </bpmn2:extensionElements>
</bpmn2:property>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

78

IMPORTANT

The rules are evaluated at the moment the fact is inserted. Therefore, if you are using a
global variable to constrain a fact pattern and the global is not set, the system returns a
NullPointerException.

Global variables are initialized either when the process with the variable definition is added to the session
or when the session is initialized with globals as its parameters.

Values of global variables can typically be changed during the assignment, which is a mapping between a
process variable and an activity variable. The global variable is then associated with the local activity
context, local activity variable, or by a direct call to the variable from a child context.

Prerequisites

You have created a project in Business Central and it contains at least one business process
asset.

Procedure

1. Open a business process asset.

2. Click a blank area of the process designer canvas.

3. Click the Properties icon on the upper-right side of the screen to open the Properties panel.

4. If necessary, expand the Process section.

5. In the Global Variables sub-section, click the plus icon.

6. Enter a name for the variable in the Name box.

7. Select a data type from the Data Type menu.

6.3. DEFINING PROCESS VARIABLES

Process variables are defined as properties in the BPMN2 definition file and are visible within the
process instance. They are initialized at process creation and destroyed on process completion.

A process variable is a variable that exists in a process context and can be accessed by its process or its
child elements. Process variables belong to a particular process instance and cannot be accessed by
other process instances. Every process variable defines its ID and item subject reference: the ID serves
as the variable name and must be unique within the process definition. The item subject reference
defines the data type the variable stores.

Process variables are initialized when the process instance is created. Their value can be changed by the
process activities using the Assignment, when the global variable is associated with the local Activity
context, local Activity variable, or by a direct call to the variable from a child context.

Note that process variables should be mapped to local variables.

Prerequisites

You have created a project in Business Central and it contains at least one business process
asset.

CHAPTER 6. VARIABLES

79

Procedure

1. Open a business process asset.

2. Click a blank area of the process designer canvas.

3. Click the Properties icon on the upper-right side of the screen to open the Properties panel.

4. If necessary, expand the Process Data section.

5. In the Process Variables sub-section, click the plus icon.

6. Enter a name for the variable in the Name box.

7. Select a data type from the Data Type menu.

6.4. DEFINING LOCAL VARIABLES

Local variables are available within their process element, such as an activity. They are initialized when
the element context is initialized, that is, when the execution workflow enters the node and execution of
the onEntry action has finished, if applicable. They are destroyed when the element context is
destroyed, that is, when the execution workflow leaves the element.

Values of local variables can be mapped to global or process variables. This enables you to maintain
relative independence of the parent element that accommodates the local variable. Such isolation might
help prevent technical exceptions.

A local variable is a variable that exists in a child element context of a process and can be accessed only
from within this context. Local variables belong to the particular element of a process.

For tasks, with the exception of the Script task, you can define Data Input Assignments and Data
Output Assignments in the Assignments property. Data Input Assignment defines variables that enter
the Task and therefore provide the entry data needed for the task execution. The Data Output
Assignments can refer to the context of the Task after execution to acquire output data.

User Tasks present data related to the actor that is executing the User Task. Additionally, User Tasks
also request the actor to provide result data related to the execution.

To request and provide the data, use task forms and map the data in the Data Input Assignment
parameter to a variable. Map the data provided by the user in the Data Output Assignment parameter if
you want to preserve the data as output.

Prerequisites

You have created a project in Business Central and it contains at least one business process
asset that has at least one task that is not a script task.

Procedure

1. Open a business process asset.

2. Select a task that is not a script task.

3. Click the Properties icon on the upper-right side of the screen to open the Properties panel.

4. Click the box under the Assignments sub-section. The Task Data I/O dialog box opens.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

80

5. Click Add next to Data Inputs and Assignments or Data Outputs and Assignments.

6. Enter a name for the local variable in the Name box.

7. Select a data type from the Data Type menu.

8. Select a source or target then click Save.

6.5. EDITING PROCESS VARIABLE VALUES

After starting a process instance, you can edit process variable values in Business Central. The
supported variables types are: Boolean, Float, Integer, and Enums.

Prerequisites

You have created a project in Business Central and have started a process instance.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. Select the Process Variables tab and click Edit for the variable name that you want to edit.

3. Add or change the Variable Value and click Save.

Figure 6.2. Variable value edit button in Business Central

CHAPTER 6. VARIABLES

81

CHAPTER 7. ACTION SCRIPTS
Action scripts are pieces of code that define the Script property or the interceptor action of an element.
Action scripts can access the global variables, process variables, and predefined variable kcontext.
kcontext is an instance of the ProcessContext interface. For more information about kcontext variable,
see the ProcessContext Javadoc.

Java and MVEL are supported as dialects for action script definitions. MVEL accepts valid Java code
and additionally provides support for nested access to parameters. For example, the MVEL call
person.name is equivalent of Java call person.getName().

Example action script in Java and MVEL dialects

// Java dialect
System.out.println(person.getName());

// MVEL dialect
System.out.println(person.name);

You can also use action scripts to view information about process instances. For example, use the
following commands to:

Return the ID of a process instance:

System.out.println(kcontext.getProcessInstance().getId());

Return the parent process instance ID if a process instance has a parent:

System.out.println(kcontext.getProcessInstance().getParentProcessInstanceId());

Return the ID of a process definition related to a process instance:

System.out.println(kcontext.getProcessInstance().getProcessId());

Return the name of a process definition related to a process instance:

System.out.println(kcontext.getProcessInstance().getProcessName());

Return the state of a process instance:

System.out.println(kcontext.getProcessInstance().getState());

To set a process variable in an action script, use kcontext.setVariable("VARIABLE_NAME", "VALUE").

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

82

https://docs.jboss.org/jbpm/v6.4/javadocs/org/kie/api/runtime/process/ProcessContext.html

CHAPTER 8. TIMERS
You can use timers to trigger logic after a certain period or to repeat specific actions at regular intervals.
Timers wait for a predefined amount of time before triggering once or repeatedly.

8.1. SUPPORTED TIMERS FOR RED HAT PROCESS AUTOMATION
MANAGER

Red Hat Process Automation Manager supports two types of timers:

Quartz: Recommended for use with Spring Boot and Tomcat

EJB: Recommended for use with Red Hat JBoss EAP, both on-premise and Red Hat OpenShift
Container Platform

NOTE

Do not use timers for the following business strategies:

Do not use timers as your process polling strategy. For example, instead of
directly calling the external service and adding a 1 second timer, use Fuse to
register an asynchronous route. Use the Fuse callback to fire an event for the
process to move on once the expected response is received. Create a work item
handler as part of your business strategy outside of your Business Process Model
and Notation (BPMN) process model and move the timer to the work item
handler.

Do not use timers to enforce safe points or commits during process execution.
Timers are designed to represent a period of time (duration) in a business
process and not for enforcing engine-specific behavior.

8.2. CONFIGURING TIMERS WITH DELAY AND PERIOD

You can set a timer with delay and a certain period. The delay specifies the waiting time after the node
activation, and the period defines the time between the subsequent trigger activation. The period value
0 results in a one-shot timer. You can specify the delay and period expression in [#d][#h][#m][#s][#
[ms]] form, indicating the number of days, hours, minutes, seconds, and milliseconds (default). For
example, the expression 1h indicates one hour waiting time before triggering the timer again.

8.3. CONFIGURING TIMERS WITH ISO-8601 DATE FORMAT

You can configure timers with ISO-8601 date format that supports both one-shot timers and
repeatable timers. You can define timers as date and time representation, time duration, or repeating
intervals. For example:

Date 2020-12-24T20:00:00.000+02:00 signifies that timer is triggered exactly on Christmas at
8:00 p.m.

Duration PT1S signifies that timer is triggered once after one second.

Repeating intervals R/PT1S signifies that timer is triggered every second with any limit.
Alternatively, R5/PT1S triggers the timer five times every second.

CHAPTER 8. TIMERS

83

8.4. CONFIGURING TIMERS WITH PROCESS VARIABLES

You can also specify timers using process variables, consisting of the string representation of delay and
period or ISO8601 date format. When you specify #{variable}, the engine parses the expression and
replaces the expression value with the variable. In a process, you can use timers using the following ways:

Add a timer event to a process flow. The process activation starts the timer and when the timer
is triggered (once or repeatedly), it activates the successor of the timer node. Subsequently, the
outgoing connection of a timer with a positive period value is triggered multiple times. When a
timer node is canceled, the associated timer is also canceled and no more triggers occur.

Associate timer as a boundary event with a sub-process or task.

8.5. UPDATING TIMERS IN A RUNNING PROCESS INSTANCE

In some cases, the scheduled timer needs to be rescheduled to accommodate the new requirements,
such as changing delay, period, or repeat limit. Updating a timer includes many low-level operations,
therefore, Red Hat Process Automation Manager provides the following command to perform the low-
level operations related to updating a timer as an atomic operation. The following command ensures
that all the operations are performed within the same transaction.

org.jbpm.process.instance.command.UpdateTimerCommand

NOTE

Only boundary timer events and intermediate timer events are supported to update.

You can reschedule the timer by specifying the two mandatory parameters and one of the three
optional parameter sets of the UpdateTimerCommand class.

Table 8.1. Parameters and parameter sets of UpdateTimerCommand class

Parameter or parameter set Type

process instance ID (Mandatory) long

timer node name (Mandatory) String

delay (Optional) long

period (Optional) long

repeat limit (Optional) init

Example rescheduling time event

// Start the process instance and record its ID:
long id = kieSession.startProcess(BOUNDARY_PROCESS_NAME).getId();

// Set the timer delay to 3 seconds:
kieSession.execute(new UpdateTimerCommand(id, BOUNDARY_TIMER_ATTACHED_TO_NAME,
3));

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

84

CHAPTER 8. TIMERS

85

CHAPTER 9. CONSTRAINTS
A constraint is a boolean expression that is evaluated when an element containing a constraint is
executed. You can use constraints in various parts of your process, such as in a diverging gateway.

Red Hat Process Automation Manager supports two types of constraints, including:

Code constraints: Constraints that are defined in Java, Javascript, Drools, or MVEL. Code
constraints can access the data in the working memory, including the global and process
variables. The following code constraint examples contain person as a variable in a process:

Example Java code constraint

return person.getAge() > 20;

Example MVEL code constraint

return person.age > 20;

Example Javascript code constraint

person.age > 20

Rule constraints: Constraints that are defined in the form of DRL rule conditions. Rule
constraints can access the data in the working memory, including global variables. However, rule
constraints cannot access the variables directly in a process but using a process instance. To
retrieve the reference of the parent process instance, use the processInstance variable of the
type WorkflowProcessInstance.

NOTE

You can insert a process instance into the session and update it if necessary, for
example, using Java code or an on-entry, on-exit, or explicit action in your
process.

The following example shows a rule constraint, searching for a person with the same name as
the value of the name variable in the process.

Example rule constraint with process variable assignment

processInstance : WorkflowProcessInstance()
Person(name == (processInstance.getVariable("name")))
add more constraints here ...

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

86

CHAPTER 10. DEPLOYING A BUSINESS PROCESS IN
BUSINESS CENTRAL

After you design your business process in Business Central, you can build and deploy your project in
Business Central to make the process available to KIE Server.

Prerequisites

KIE Server is deployed and connected to Business Central. For more information about KIE
Server configuration, see Installing and configuring Red Hat Process Automation Manager on
Red Hat JBoss EAP 7.4.

Procedure

1. In Business Central, go to Menu → Design → Projects.

2. Click the project that you want to deploy.

3. Click Deploy.

NOTE

You can also select the Build & Install option to build the project and publish the
KJAR file to the configured Maven repository without deploying to a KIE Server.
In a development environment, you can click Deploy to deploy the built KJAR file
to a KIE Server without stopping any running instances (if applicable), or click
Redeploy to deploy the built KJAR file and replace all instances. The next time
you deploy or redeploy the built KJAR, the previous deployment unit (KIE
container) is automatically updated in the same target KIE Server. In a production
environment, the Redeploy option is disabled and you can click Deploy only to
deploy the built KJAR file to a new deployment unit (KIE container) on a KIE
Server.

To configure the KIE Server environment mode, set the org.kie.server.mode
system property to org.kie.server.mode=development or
org.kie.server.mode=production. To configure the deployment behavior for a
corresponding project in Business Central, go to project Settings → General
Settings → Version and toggle the Development Mode option. By default, KIE
Server and all new projects in Business Central are in development mode. You
cannot deploy a project with Development Mode turned on or with a manually
added SNAPSHOT version suffix to a KIE Server that is in production mode.

To review project deployment details, click View deployment details in the deployment banner
at the top of the screen or in the Deploy drop-down menu. This option directs you to the Menu
→ Deploy → Execution Servers page.

CHAPTER 10. DEPLOYING A BUSINESS PROCESS IN BUSINESS CENTRAL

87

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-install-on-eap

CHAPTER 11. EXECUTING A BUSINESS PROCESS IN BUSINESS
CENTRAL

After you build and deploy the project that contains your business process, you can execute the defined
functionality for the business process.

As an example, this procedure uses the Mortgage_Process sample project in Business Central. In this
scenario, you input data into a mortgage application form acting as the mortgage broker. The
MortgageApprovalProcess business process runs and determines whether or not the applicant has
offered an acceptable down payment based on the decision rules defined in the project. The business
process either ends the rule testing or requests that the applicant increase the down payment to
proceed. If the application passes the business rule testing, the bank approver reviews the application
and either approves or denies the loan.

Prerequisites

KIE Server is deployed and connected to Business Central. For more information about KIE
Server configuration, see Installing and configuring Red Hat Process Automation Manager on
Red Hat JBoss EAP 7.4.

Procedure

1. In Business Central, go to Menu → Projects and select a space. The default space is MySpace.

2. In the upper-right corner of the window, click the arrow next to Add Project and select Try
Samples.

3. Select the Mortgage_Process sample and click Ok.

4. On the project page, select Mortgage_Process.

5. On the Mortgage_Process page, click Build.

6. After the project has built, click Deploy.

7. Go to Menu → Manage → Process Definitions.

8. Click anywhere in the MortgageApprovalProcess row to view the process details.

9. Click the Diagram tab to view the business process diagram in the editor.

10. Click New Process Instance to open the Application form and input the following values into
the form fields:

Down Payment: 30000

Years of amortization: 10

Name: Ivo

Annual Income: 60000

SSN: 123456789

Age of property: 8

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

88

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-install-on-eap

Address of property: Brno

Locale: Rural

Property Sale Price: 50000

11. Click Submit to start a new process instance. After starting the process instance, the Instance
Details view opens.

12. Click the Diagram tab to view the process flow within the process diagram. The state of the
process is highlighted as it moves through each task.

13. Click Menu → Manage → Tasks.
For this example, the user or users working on the corresponding tasks are members of the
following groups:

approver: For the Qualify task

broker: For the Correct Data and Increase Down Payment tasks

manager: For the Final Approval task

14. As the approver, review the Qualify task information, click Claim and then Start to start the
task, and then select Is mortgage application in limit? and click Complete to complete the
task flow.

15. In the Tasks page, click anywhere in the Final Approval row to open the Final Approval task.

16. Click Claim to claim responsibility for the task, and click Complete to finalize the loan approval
process.

NOTE

The Save and Release buttons are only used to either pause the approval process and
save the instance if you are waiting on a field value, or to release the task for another user
to modify.

CHAPTER 11. EXECUTING A BUSINESS PROCESS IN BUSINESS CENTRAL

89

CHAPTER 12. TESTING A BUSINESS PROCESS
A business process can be updated dynamically, which can cause errors, therefore testing a process
business is also a part of the business process life cycle similar to any other development artifact.

The unit test for a business process ensures that the process behaves as expected in a specific use case.
For example, you can test an output based on a particular input. To simplify unit testing, Red Hat
Process Automation Manager includes the org.jbpm.test.JbpmJUnitBaseTestCase class.

The JbpmJUnitBaseTestCase performs as a base test case class, which is used for Red Hat Process
Automation Manager related tests. The JbpmJUnitBaseTestCase provides the following usage areas:

JUnit life cycle methods

Table 12.1. JUnit life cycle methods

Method Description

setUp This method is annotated as @Before. It configures a data source
and EntityManagerFactory and deletes the session ID of a
singleton.

tearDown This method is annotated as @After. It removes history, closes
EntityManagerFactory and a data source, and disposes
RuntimeManager and RuntimeEngines.

Knowledge base and knowledge session management methods: To create a session, create
RuntimeManager and RuntimeEngine. Use the following methods to create and dispose
RuntimeManager:

Table 12.2. RuntimeManager and RuntimeEngine management methods

Method Description

createRuntimeManager Creates RuntimeManager for a given set of assets and selected
strategy.

disposeRuntimeManag
er

Disposes RuntimeManager that is active in the scope of the test.

getRuntimeEngine Creates new RuntimeEngine for the given context.

Assertions: To test the state of assets, use the following methods:

Table 12.3. RuntimeManager and RuntimeEngine Management Methods

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

90

Assertion Description

assertProcessInstance
Active(long
processInstanceId,
KieSession ksession)

Verifies whether a process instance with the given
processInstanceId is active.

assertProcessInstance
Completed(long
processInstanceId)

Verifies whether a process instance with the given
processInstanceId is completed. You can use this method if
session persistence is enabled, otherwise use
assertProcessInstanceNotActive(long processInstanceId,
KieSession ksession).

assertProcessInstance
Aborted(long
processInstanceId)

Verifies whether a process instance with the given
processInstanceId is aborted. You can use this method if session
persistence is enabled, otherwise use
assertProcessInstanceNotActive(long processInstanceId,
KieSession ksession).

assertNodeExists(Proc
essInstance process,
String… ​ nodeNames)

Verifies whether the specified process contains the given nodes.

assertNodeActive(long
processInstanceId,
KieSession ksession,
String… ​ name)

Verifies whether a process instance with the given
processInstanceId contains at least one active node with the
specified node names.

assertNodeTriggered(lo
ng processInstanceId,
String… ​ nodeNames)

Verifies whether a node instance is triggered for each given node
during the execution of the specified process instance.

assertProcessVarExists
(ProcessInstance
process, String… ​
processVarNames)

Verifies whether the given process contains the specified process
variables.

assertProcessNameEq
uals(ProcessInstance
process, String name)

Verifies whether the given name matches the specified process name.

assertVersionEquals(Pr
ocessInstance process,
String version)

Verifies whether the given process version matches the specified
process version.

Helper methods: Use following methods to create a new RuntimeManager and RuntimeEngine
for a given set of processes with or without using persistence. For more information about
persistence, see Process engine in Red Hat Process Automation Manager .

Table 12.4. RuntimeManager and RuntimeEngine Management Methods

CHAPTER 12. TESTING A BUSINESS PROCESS

91

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-process-engine

Method Description

setupPoolingDataSour
ce

Configures a data source.

getDs Returns the configured data source.

getEmf Returns the configured EntityManagerFactory.

getTestWorkItemHandl
er

Returns a test work item handler that can be registered in addition to
the default work item handler.

clearHistory Clears the history log.

The following example contains a start event, a script task, and an end event. The example JUnit test
creates a new session, starts the hello.bpmn process, and verifies whether the process instance is
completed and the StartProcess, Hello, and EndProcess nodes are executed.

Figure 12.1. Example JUnit Test of hello.bpmn Process

public class ProcessPersistenceTest extends JbpmJUnitBaseTestCase {

 public ProcessPersistenceTest() {
 super(true, true);
 }

 @Test
 public void testProcess() {

 createRuntimeManager("hello.bpmn");

 RuntimeEngine runtimeEngine = getRuntimeEngine();

 KieSession ksession = runtimeEngine.getKieSession();

 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

 assertProcessInstanceNotActive(processInstance.getId(), ksession);

 assertNodeTriggered(processInstance.getId(), "StartProcess", "Hello", "EndProcess");
 }
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

92

JbpmJUnitBaseTestCase supports all predefined RuntimeManager strategies as part of the unit
testing. Therefore, it is enough to specify the strategy that is used when you create a RuntimeManager
as part of a single test. The following example shows the use of the PerProcessInstance strategy in a
task service to manage user tasks:

public class ProcessHumanTaskTest extends JbpmJUnitBaseTestCase {

 private static final Logger logger = LoggerFactory.getLogger(ProcessHumanTaskTest.class);

 public ProcessHumanTaskTest() {
 super(true, false);
 }

 @Test
 public void testProcessProcessInstanceStrategy() {
 RuntimeManager manager = createRuntimeManager(Strategy.PROCESS_INSTANCE,
"manager", "humantask.bpmn");
 RuntimeEngine runtimeEngine = getRuntimeEngine(ProcessInstanceIdContext.get());
 KieSession ksession = runtimeEngine.getKieSession();
 TaskService taskService = runtimeEngine.getTaskService();

 int ksessionID = ksession.getId();
 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

 assertProcessInstanceActive(processInstance.getId(), ksession);
 assertNodeTriggered(processInstance.getId(), "Start", "Task 1");

 manager.disposeRuntimeEngine(runtimeEngine);
 runtimeEngine = getRuntimeEngine(ProcessInstanceIdContext.get(processInstance.getId()));

 ksession = runtimeEngine.getKieSession();
 taskService = runtimeEngine.getTaskService();

 assertEquals(ksessionID, ksession.getId());

 // let John execute Task 1
 List<TaskSummary> list = taskService.getTasksAssignedAsPotentialOwner("john", "en-UK");
 TaskSummary task = list.get(0);
 logger.info("John is executing task {}", task.getName());
 taskService.start(task.getId(), "john");
 taskService.complete(task.getId(), "john", null);

 assertNodeTriggered(processInstance.getId(), "Task 2");

 // let Mary execute Task 2
 list = taskService.getTasksAssignedAsPotentialOwner("mary", "en-UK");
 task = list.get(0);
 logger.info("Mary is executing task {}", task.getName());
 taskService.start(task.getId(), "mary");
 taskService.complete(task.getId(), "mary", null);

 assertNodeTriggered(processInstance.getId(), "End");
 assertProcessInstanceNotActive(processInstance.getId(), ksession);
 }
}

CHAPTER 12. TESTING A BUSINESS PROCESS

93

12.1. TESTING INTEGRATION WITH EXTERNAL SERVICES

Business processes often include the invocation of external services. Unit testing of a business process
enables you to register test handlers that verify whether the specific services are requested correctly,
and also provide test responses for the requested services.

To test the interaction with external services, use the default TestWorkItemHandler handler. You can
register the TestWorkItemHandler to collect all the work items of a particular type. Also,
TestWorkItemHandler contains data related to a task. A work item represents one unit of work, such as
sending a specific email or invoking a specific service. The TestWorkItemHandler verifies whether a
specific work item is requested during an execution of a process, and the associated data is correct.

The following example shows how to verify an email task and whether an exception is raised if the email
is not sent. The unit test uses a test handler that is executed when an email is requested and enables you
to test the data related to the email, such as the sender and recipient. Once the abortWorkItem()
method notifies the engine about the email delivery failure, the unit test verifies that the process
handles such case by generating an error and logging the action. In this case, the process instance is
eventually aborted.

Figure 12.2. Example email process

public void testProcess2() {

 createRuntimeManager("sample-process.bpmn");

 RuntimeEngine runtimeEngine = getRuntimeEngine();

 KieSession ksession = runtimeEngine.getKieSession();

 TestWorkItemHandler testHandler = getTestWorkItemHandler();

 ksession.getWorkItemManager().registerWorkItemHandler("Email", testHandler);

 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello2");

 assertProcessInstanceActive(processInstance.getId(), ksession);
 assertNodeTriggered(processInstance.getId(), "StartProcess", "Email");

 WorkItem workItem = testHandler.getWorkItem();
 assertNotNull(workItem);
 assertEquals("Email", workItem.getName());
 assertEquals("me@mail.com", workItem.getParameter("From"));
 assertEquals("you@mail.com", workItem.getParameter("To"));

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

94

 ksession.getWorkItemManager().abortWorkItem(workItem.getId());
 assertProcessInstanceNotActive(processInstance.getId(), ksession);
 assertNodeTriggered(processInstance.getId(), "Gateway", "Failed", "Error");

}

CHAPTER 12. TESTING A BUSINESS PROCESS

95

CHAPTER 13. PROCESS DEFINITIONS AND PROCESS
INSTANCES IN BUSINESS CENTRAL

A process definition is a Business Process Model and Notation (BPMN) 2.0 file that serves as a
container for a process and its BPMN diagram. The process definition shows all of the available
information about the business process, such as any associated sub-processes or the number of users
and groups that are participating in the selected definition.

A process definition also defines the import entry for imported processes that the process definition
uses, and the relationship entries.

BPMN2 source of a process definition

<definitions id="Definition"
 targetNamespace="http://www.jboss.org/drools"
 typeLanguage="http://www.java.com/javaTypes"
 expressionLanguage="http://www.mvel.org/2.0"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"Rule Task
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
 xmlns:g="http://www.jboss.org/drools/flow/gpd"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
 xmlns:tns="http://www.jboss.org/drools">

 <process>
 PROCESS
 </process>

 <bpmndi:BPMNDiagram>
 BPMN DIAGRAM DEFINITION
 </bpmndi:BPMNDiagram>

 </definitions>

After you have created, configured, and deployed your project that includes your business processes,
you can view the list of all the process definitions in Business Central Menu → Manage → Process
Definitions. You can refresh the list of deployed process definitions at any time by clicking the refresh
button in the upper-right corner.

The process definition list shows all the available process definitions that are deployed into the platform.
Click any of the process definitions listed to show the corresponding process definition details. This
displays information about the process definition, such as if there is a sub-process associated with it, or
how many users and groups exist in the process definition. The Diagram tab in the process definition
details page contains the BPMN2-based diagram of the process definition.

Within each selected process definition, you can start a new process instance for the process definition
by clicking the New Process Instance button in the upper-right corner. Process instances that you start
from the available process definitions are listed in Menu → Manage → Process Instances.

You can also define the default pagination option for all users under the Manage drop-down menu
(Process Definition, Process Instances, Tasks, Jobs, and Execution Errors) and in Menu → Track →
Task Inbox.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

96

For more information about process and task administration in Business Central, see Managing and
monitoring business processes in Business Central.

13.1. STARTING A PROCESS INSTANCE FROM THE PROCESS
DEFINITIONS PAGE

You can start a process instance in Menu → Manage → Process Definitions. This is useful for
environments where you are working with several projects or process definitions at the same time.

Prerequisites

A project with a process definition has been deployed in Business Central.

Procedure

1. In Business Central, go to Menu → Manage → Process Definitions.

2. Select the process definition for which you want to start a new process instance from the list.
The details page of the definition opens.

3. Click New Process Instance in the upper-right corner to start a new process instance.

4. Provide any required information for the process instance.

5. Click Submit to create the process instance.

6. View the new process instance in Menu → Manage → Process Instances.

13.2. STARTING A PROCESS INSTANCE FROM THE PROCESS
INSTANCES PAGE

You can create new process instances or view the list of all the running process instances in Menu →
Manage → Process Instances.

Prerequisites

A project with a process definition has been deployed in Business Central.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. Click New Process Instance in the upper-right corner and select the process definition for
which you want to start a new process instance from the drop-down list.

3. Provide any information required to start a new process instance.

4. Click Start to create the process instance.
The new process instance appears in the Manage Process Instances list.

13.3. PROCESS DEFINITIONS IN XML

You can create processes directly in XML format using the BPMN 2.0 specifications. The syntax of these

CHAPTER 13. PROCESS DEFINITIONS AND PROCESS INSTANCES IN BUSINESS CENTRAL

97

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-managing-and-monitoring-business-processes

You can create processes directly in XML format using the BPMN 2.0 specifications. The syntax of these
XML processes is defined using the BPMN 2.0 XML Schema Definition.

A process XML file consists of the following core sections:

process: This is the top part of the process XML that contains the definition of the different
nodes and their properties. The process XML file consists of exactly one <process> element.
This element contains parameters related to the process (its type, name, ID, and package
name), and consists of three subsections: a header section where process-level information
such as variables, globals, imports, and lanes are defined, a nodes section that defines each of
the nodes in the process, and a connections section that contains the connections between all
the nodes in the process.

BPMNDiagram: This is the lower part of the process XML file that contains all graphical
information, such as the location of the nodes. The nodes section contains a specific element
for each node and defines the various parameters and any sub-elements for that node type.

The following process XML file fragment shows a simple process that contains a sequence of a start
event, a script task that prints "Hello World" to the console, and an end event:

<?xml version="1.0" encoding="UTF-8"?>

<definitions
 id="Definition"
 targetNamespace="http://www.jboss.org/drools"
 typeLanguage="http://www.java.com/javaTypes"
 expressionLanguage="http://www.mvel.org/2.0"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
 xmlns:g="http://www.jboss.org/drools/flow/gpd"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.hello" name="Hello Process">
 <!-- nodes -->
 <startEvent id="_1" name="Start" />

 <scriptTask id="_2" name="Hello">
 <script>System.out.println("Hello World");</script>
 </scriptTask>

 <endEvent id="_3" name="End" >
 <terminateEventDefinition/>
 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />
 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />
 </process>

 <bpmndi:BPMNDiagram>
 <bpmndi:BPMNPlane bpmnElement="com.sample.hello" >

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

98

 <bpmndi:BPMNShape bpmnElement="_1" >
 <dc:Bounds x="16" y="16" width="48" height="48" />
 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_2" >
 <dc:Bounds x="96" y="16" width="80" height="48" />
 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_3" >
 <dc:Bounds x="208" y="16" width="48" height="48" />
 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_1-_2" >
 <di:waypoint x="40" y="40" />
 <di:waypoint x="136" y="40" />
 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_2-_3" >
 <di:waypoint x="136" y="40" />
 <di:waypoint x="232" y="40" />
 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>

</definitions>

CHAPTER 13. PROCESS DEFINITIONS AND PROCESS INSTANCES IN BUSINESS CENTRAL

99

CHAPTER 14. FORMS IN BUSINESS CENTRAL
A form is a layout definition for a page, defined as HTML, that is displayed as a dialog window to the user
during process and task instantiation. Task forms acquire data from a user for both the process and task
instance execution, whereas process forms take input and output from process variables.

The input is then mapped to the task using the data input assignment, which you can use inside of a task.
When the task is completed, the data is mapped as a data output assignment to provide the data to the
parent process instance.

14.1. FORM MODELER

Red Hat Process Automation Manager provides a custom editor for defining forms called Form
Modeler. With Form Modeler, you can generate forms for data objects, task forms, and process start
forms without writing code. Form Modeler includes a widget library for binding multiple data types and a
callback mechanism to send notifications when form values change. Form Modeler uses bean-based
validation and supports binding form fields to static or dynamic models.

Form Modeler includes the following features:

Form modeling user interface for forms

Form auto-generation from the data model or Java objects

Data binding for Java objects

Formula and expressions

Customized forms layouts

Forms embedding

Form Modeler comes with predefined field types that you place onto the canvas to create a form.

Figure 14.1. Example mortgage loan application form

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

100

Figure 14.1. Example mortgage loan application form

14.2. GENERATING PROCESS AND TASK FORMS IN BUSINESS
CENTRAL

You can generate a process form from your business process that is displayed at process instantiation
to the user who instantiated the process. You can also generate a task form from your business process
that is displayed at user task instantiation, when the execution flow reaches the task, to the actor of the
user task.

Procedure

1. In Business Central, go to Menu → Design → Projects.

2. Click the project name to open the asset view and then click the business process name.

3. In the process designer, click the process task that you want to create a form for (if applicable).

4. In the upper-right toolbar, click the Form Generation icon and select the forms that you want to
generate:

Generate process form: Generates the form for the entire process. This is the initial form
that a user must complete when the process instance is started.

Generate all forms: Generates the form for the entire process and for all user tasks.

Generate forms for selection: Generates the forms for the selected user task nodes.

Figure 14.2. Form generation menu

CHAPTER 14. FORMS IN BUSINESS CENTRAL

101

Figure 14.2. Form generation menu

The forms are created in the root directory of your project.

5. Go to the root directory of your project in Business Central, click the new form name, and use
the Form Modeler to customize the form to meet your requirements.

14.3. MANUALLY CREATING FORMS IN BUSINESS CENTRAL

You can create task and process forms manually from your project asset view. This is another way to
generate a form without selecting to generate forms from your business process. For example, the Form
Modeler now supports creating forms from external data objects.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Form.

3. Provide the following information in the Create new Form window:

Form name (must be unique)

Package name

Model type: Select either Business Process or Data Object.

For the Business Process model type, select your business process from the Select
Process drop-down menu, and then select the form that you want to create from the
Select Form drop-down menu.

For the Data Object model type, select one of your project data objects from the
Select Data Object from Project drop-down menu.

4. Click Ok to open the Form Modeler.

5. In the Components view on the left side of the Form Modeler, expand the Model Fields and
Form Controls menus and create a new form by dragging your required fields and form controls
to the canvas.

6. Click Save to save your changes.

14.4. DOCUMENT ATTACHMENTS IN A FORM OR PROCESS

Red Hat Process Automation Manager supports document attachments in forms using the Document
form field. With the Document form field, you can upload documents that are required as part of a form
or process.

To enable document attachments in forms and processes, complete the following procedures:

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

102

1. Set the document marshalling strategy.

2. Create a document variable in the business process.

3. Map the task inputs and outputs to the document variable.

14.4.1. Setting the document marshalling strategy

The document marshalling strategy for your project determines where documents are stored for use
with forms and processes. The default document marshalling strategy in Red Hat Process Automation
Manager is org.jbpm.document.marshalling.DocumentMarshallingStrategy. This strategy uses a
DocumentStorageServiceImpl class that stores documents locally in your PROJECT_HOME/.docs
folder. You can set this document marshalling strategy or a custom document marshalling strategy for
your project in Business Central or in the kie-deployment-descriptor.xml file.

Procedure

1. In Business Central, go to Menu → Design → Projects.

2. Select a project. The project Assets window opens.

3. Click the Settings tab.

Figure 14.3. Settings tab

4. Click Deployments → Marshalling Strategies→ Add Marshalling Strategy.

5. In the Name field, enter the identifier of a document marshalling strategy, and in the Resolver
drop-down menu, select the corresponding resolver type:

For single documents: Enter
org.jbpm.document.marshalling.DocumentMarshallingStrategy as the document
marshalling strategy and set the resolver type to Reflection.

For multiple documents: Enter new
org.jbpm.document.marshalling.DocumentCollectionImplMarshallingStrategy(new
org.jbpm.document.marshalling.DocumentMarshallingStrategy()) as the document
marshalling strategy and set the resolver type to MVEL.

For custom document support: Enter the identifier of the custom document marshalling
strategy and select the relevant resolver type.

6. Click Test to validate your deployment descriptor file.

7. Click Deploy to build and deploy the updated project.

CHAPTER 14. FORMS IN BUSINESS CENTRAL

103

Alternatively, if you are not using Business Central, you can navigate to
PROJECT_HOME/src/main/resources/META_INF/kie-deployment-descriptor.xml (if
applicable) and edit the deployment descriptor file with the required <marshalling-strategies>
elements.

8. Click Save.

Example deployment descriptor file with document marshalling strategy for multiple
documents

14.4.1.1. Using a custom document marshalling strategy for a content management system
(CMS)

The document marshalling strategy for your project determines where documents are stored for use
with forms and processes. The default document marshalling strategy in Red Hat Process Automation
Manager is org.jbpm.document.marshalling.DocumentMarshallingStrategy. This strategy uses a
DocumentStorageServiceImpl class that stores documents locally in your PROJECT_HOME/.docs
folder. If you want to store form and process documents in a custom location, such as in a centralized
content management system (CMS), add a custom document marshalling strategy to your project. You
can set this document marshalling strategy in Business Central or in the kie-deployment-
descriptor.xml file directly.

Procedure

1. Create a custom marshalling strategy .java file that includes an implementation of the
org.kie.api.marshalling.ObjectMarshallingStrategy interface. This interface enables you to
implement the variable persistence required for your custom document marshalling strategy.
The following methods in this interface help you create your strategy:

boolean accept(Object object): Determines if the specified object can be marshalled by
the strategy

byte[] marshal(Context context, ObjectOutputStream os, Object object): Marshals the
specified object and returns the marshalled object as byte[]

Object unmarshal(Context context, ObjectInputStream is, byte[] object, ClassLoader
classloader): Reads the object received as byte[] and returns the unmarshalled object

void write(ObjectOutputStream os, Object object): Same as the marshal method,

<deployment-descriptor
 xsi:schemaLocation="http://www.jboss.org/jbpm deployment-descriptor.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <persistence-unit>org.jbpm.domain</persistence-unit>
 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>
 <audit-mode>JPA</audit-mode>
 <persistence-mode>JPA</persistence-mode>
 <runtime-strategy>SINGLETON</runtime-strategy>
 <marshalling-strategies>
 <marshalling-strategy>
 <resolver>mvel</resolver>
 <identifier>new org.jbpm.document.marshalling.DocumentCollectionImplMarshallingStrategy(new
org.jbpm.document.marshalling.DocumentMarshallingStrategy());</identifier>
 </marshalling-strategy>
 </marshalling-strategies>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

104

void write(ObjectOutputStream os, Object object): Same as the marshal method,
provided for backward compatibility

Object read(ObjectInputStream os): Same as the unmarshal method, provided for
backward compatibility

The following code sample is an example ObjectMarshallingStrategy implementation for
storing and retrieving data from a Content Management Interoperability Services (CMIS)
system:

Example implementation for storing and retrieving data from a CMIS system

package org.jbpm.integration.cmis.impl;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.HashMap;

import org.apache.chemistry.opencmis.client.api.Folder;
import org.apache.chemistry.opencmis.client.api.Session;
import org.apache.chemistry.opencmis.commons.data.ContentStream;
import org.apache.commons.io.IOUtils;
import org.drools.core.common.DroolsObjectInputStream;
import org.jbpm.document.Document;
import org.jbpm.integration.cmis.UpdateMode;

import org.kie.api.marshalling.ObjectMarshallingStrategy;

public class OpenCMISPlaceholderResolverStrategy extends OpenCMISSupport implements
ObjectMarshallingStrategy {

 private String user;
 private String password;
 private String url;
 private String repository;
 private String contentUrl;
 private UpdateMode mode = UpdateMode.OVERRIDE;

 public OpenCMISPlaceholderResolverStrategy(String user, String password, String url,
String repository) {
 this.user = user;
 this.password = password;
 this.url = url;
 this.repository = repository;
 }

 public OpenCMISPlaceholderResolverStrategy(String user, String password, String url,
String repository, UpdateMode mode) {
 this.user = user;
 this.password = password;
 this.url = url;
 this.repository = repository;
 this.mode = mode;

CHAPTER 14. FORMS IN BUSINESS CENTRAL

105

 }

 public OpenCMISPlaceholderResolverStrategy(String user, String password, String url,
String repository, String contentUrl) {
 this.user = user;
 this.password = password;
 this.url = url;
 this.repository = repository;
 this.contentUrl = contentUrl;
 }

 public OpenCMISPlaceholderResolverStrategy(String user, String password, String url,
String repository, String contentUrl, UpdateMode mode) {
 this.user = user;
 this.password = password;
 this.url = url;
 this.repository = repository;
 this.contentUrl = contentUrl;
 this.mode = mode;
 }

 public boolean accept(Object object) {
 if (object instanceof Document) {
 return true;
 }
 return false;
 }

 public byte[] marshal(Context context, ObjectOutputStream os, Object object) throws
IOException {
 Document document = (Document) object;
 Session session = getRepositorySession(user, password, url, repository);
 try {
 if (document.getContent() != null) {
 String type = getType(document);
 if (document.getIdentifier() == null || document.getIdentifier().isEmpty()) {
 String location = getLocation(document);

 Folder parent = findFolderForPath(session, location);
 if (parent == null) {
 parent = createFolder(session, null, location);
 }
 org.apache.chemistry.opencmis.client.api.Document doc = createDocument(session,
parent, document.getName(), type, document.getContent());
 document.setIdentifier(doc.getId());
 document.addAttribute("updated", "true");
 } else {
 if (document.getContent() != null && "true".equals(document.getAttribute("updated"))) {
 org.apache.chemistry.opencmis.client.api.Document doc = updateDocument(session,
document.getIdentifier(), type, document.getContent(), mode);

 document.setIdentifier(doc.getId());
 document.addAttribute("updated", "false");
 }
 }
 }

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

106

 ByteArrayOutputStream buff = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(buff);
 oos.writeUTF(document.getIdentifier());
 oos.writeUTF(object.getClass().getCanonicalName());
 oos.close();
 return buff.toByteArray();
 } finally {
 session.clear();
 }
 }

 public Object unmarshal(Context context, ObjectInputStream ois, byte[] object, ClassLoader
classloader) throws IOException, ClassNotFoundException {
 DroolsObjectInputStream is = new DroolsObjectInputStream(new ByteArrayInputStream(
object), classloader);
 String objectId = is.readUTF();
 String canonicalName = is.readUTF();
 Session session = getRepositorySession(user, password, url, repository);
 try {
 org.apache.chemistry.opencmis.client.api.Document doc =
(org.apache.chemistry.opencmis.client.api.Document) findObjectForId(session, objectId);
 Document document = (Document) Class.forName(canonicalName).newInstance();
 document.setAttributes(new HashMap<String, String>());

 document.setIdentifier(objectId);
 document.setName(doc.getName());
 document.setLastModified(doc.getLastModificationDate().getTime());
 document.setSize(doc.getContentStreamLength());
 document.addAttribute("location", getFolderName(doc.getParents()) +
getPathAsString(doc.getPaths()));
 if (doc.getContentStream() != null && contentUrl == null) {
 ContentStream stream = doc.getContentStream();
 document.setContent(IOUtils.toByteArray(stream.getStream()));
 document.addAttribute("updated", "false");
 document.addAttribute("type", stream.getMimeType());
 } else {
 document.setLink(contentUrl + document.getIdentifier());
 }
 return document;
 } catch(Exception e) {
 throw new RuntimeException("Cannot read document from CMIS", e);
 } finally {
 is.close();
 session.clear();
 }
 }

 public Context createContext() {
 return null;
 }

 // For backward compatibility with previous serialization mechanism
 public void write(ObjectOutputStream os, Object object) throws IOException {
 Document document = (Document) object;
 Session session = getRepositorySession(user, password, url, repository);
 try {

CHAPTER 14. FORMS IN BUSINESS CENTRAL

107

 if (document.getContent() != null) {
 String type = document.getAttribute("type");
 if (document.getIdentifier() == null) {
 String location = document.getAttribute("location");

 Folder parent = findFolderForPath(session, location);
 if (parent == null) {
 parent = createFolder(session, null, location);
 }
 org.apache.chemistry.opencmis.client.api.Document doc = createDocument(session,
parent, document.getName(), type, document.getContent());
 document.setIdentifier(doc.getId());
 document.addAttribute("updated", "false");
 } else {
 if (document.getContent() != null && "true".equals(document.getAttribute("updated"))) {
 org.apache.chemistry.opencmis.client.api.Document doc = updateDocument(session,
document.getIdentifier(), type, document.getContent(), mode);

 document.setIdentifier(doc.getId());
 document.addAttribute("updated", "false");
 }
 }
 }
 ByteArrayOutputStream buff = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(buff);
 oos.writeUTF(document.getIdentifier());
 oos.writeUTF(object.getClass().getCanonicalName());
 oos.close();
 } finally {
 session.clear();
 }
 }

 public Object read(ObjectInputStream os) throws IOException, ClassNotFoundException {
 String objectId = os.readUTF();
 String canonicalName = os.readUTF();
 Session session = getRepositorySession(user, password, url, repository);
 try {
 org.apache.chemistry.opencmis.client.api.Document doc =
(org.apache.chemistry.opencmis.client.api.Document) findObjectForId(session, objectId);
 Document document = (Document) Class.forName(canonicalName).newInstance();

 document.setIdentifier(objectId);
 document.setName(doc.getName());
 document.addAttribute("location", getFolderName(doc.getParents()) +
getPathAsString(doc.getPaths()));
 if (doc.getContentStream() != null) {
 ContentStream stream = doc.getContentStream();
 document.setContent(IOUtils.toByteArray(stream.getStream()));
 document.addAttribute("updated", "false");
 document.addAttribute("type", stream.getMimeType());
 }
 return document;
 } catch(Exception e) {
 throw new RuntimeException("Cannot read document from CMIS", e);
 } finally {

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

108

2. In Business Central, go to Menu → Design → Projects.

3. Click the project name and click Settings.

Figure 14.4. Settings tab

4. Click Deployments → Marshalling Strategies→ Add Marshalling Strategy.

5. In the Name field, enter the identifier of the custom document marshalling strategy, such as
org.jbpm.integration.cmis.impl.OpenCMISPlaceholderResolverStrategy in this example.

6. Select the relevant option from the Resolver drop-down menu, such as Reflection in this
example.

7. Click Test to validate your deployment descriptor file.

8. Click Deploy to build and deploy the updated project.
Alternatively, if you are not using Business Central, you can navigate to
PROJECT_HOME/src/main/resources/META_INF/kie-deployment-descriptor.xml (if
applicable) and edit the deployment descriptor file with the required <marshalling-strategies>
elements.

Example deployment descriptor file with custom document marshalling strategy

 session.clear();
 }
 }

}

<deployment-descriptor
 xsi:schemaLocation="http://www.jboss.org/jbpm deployment-descriptor.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <persistence-unit>org.jbpm.domain</persistence-unit>
 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>
 <audit-mode>JPA</audit-mode>
 <persistence-mode>JPA</persistence-mode>
 <runtime-strategy>SINGLETON</runtime-strategy>
 <marshalling-strategies>
 <marshalling-strategy>
 <resolver>reflection</resolver>
 <identifier>
 org.jbpm.integration.cmis.impl.OpenCMISPlaceholderResolverStrategy

CHAPTER 14. FORMS IN BUSINESS CENTRAL

109

9. To enable documents stored in a custom location to be attached to forms and processes, create
a document variable in the relevant processes and map task inputs and outputs to that
document variable in Business Central.

14.4.2. Creating a document variable in a business process

After you set a document marshalling strategy, create a document variable in the related process to
upload documents to a human task and for the document or documents to be visible in the Process
Instances view in Business Central.

Prerequisites

You have set a document marshalling strategy as described in Section 14.4.1, “Setting the
document marshalling strategy”.

Procedure

1. In Business Central, go to Menu → Design → Projects.

2. Click the project name to open the asset view and click the business process name.

3. Click the canvas and click on the right side of the window to open the Properties panel.

4. Expand Process Data and click and enter the following values:

Name: document

Custom Type: org.jbpm.document.Document for a single document or
org.jbpm.document.DocumentCollection for multiple documents

14.4.3. Mapping task inputs and outputs to the document variable

If you want to view or modify the attachments inside of task forms, create assignments inside of the task
inputs and outputs.

Prerequisites

You have a project that contains a business process asset that has at least one user task.

Procedure

1. In Business Central, go to Menu → Design → Projects.

2. Click the project name to open the asset view and click the business process name.

3. Click a user task and click on the right side of the window to open the Properties panel.

 </identifier>
 </marshalling-strategy>
 </marshalling-strategies>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

110

4. Expand Implementation/Execution and next to Assignments, click to open the Data I/O
window.

5. Next to Data Inputs and Assignments, click Add and enter the following values:

Name: taskdoc_in

Data Type: org.jbpm.document.Document for a single document or
org.jbpm.document.DocumentCollection for multiple documents

Source: document

6. Next to Data Outputs and Assignments, click Add and enter the following values:

Name: taskdoc_out

Data Type: org.jbpm.document.Document for a single document or
org.jbpm.document.DocumentCollection for multiple documents

Target: document

The Source and Target fields contain the name of the process variable you created earlier.

7. Click Save.

CHAPTER 14. FORMS IN BUSINESS CENTRAL

111

CHAPTER 15. ADVANCED PROCESS CONCEPTS AND TASKS

15.1. INVOKING A DECISION MODEL AND NOTATION (DMN) SERVICE
IN A BUSINESS PROCESS

You can use Decision Model and Notation (DMN) to model a decision service graphically in a decision
requirements diagram (DRD) in Business Central and then invoke that DMN service as part of a business
process in Business Central. Business processes interact with DMN services by identifying the DMN
service and mapping business data between DMN inputs and the business process properties.

As an illustration, this procedure uses an example TrainStation project that defines train routing logic.
This example project contains the following data object and DMN components designed in Business
Central for the routing decision logic:

Example Train object

Figure 15.1. Example Compute Rail DMN model

Figure 15.2. Example Rail DMN decision table

public class Train {

 private String departureStation;

 private String destinationStation;

 private BigDecimal railNumber;

 // Getters and setters
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

112

Figure 15.2. Example Rail DMN decision table

Figure 15.3. Example tTrain DMN data type

For more information about creating DMN models in Business Central, see Designing a decision service
using DMN models.

Prerequisites

All required data objects and DMN model components are defined in the project.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Select or create the business process asset in which you want to invoke the DMN service.

3. In the process designer, use the left toolbar to drag and drop BPMN components as usual to
define your overall business process logic, connections, events, tasks, or other elements.

4. To incorporate a DMN service in the business process, add a Business Rule task from the left
toolbar or from the start-node options and insert the task in the relevant location in the process
flow.

For this example, the following Accept Train business process incorporates the DMN service in

CHAPTER 15. ADVANCED PROCESS CONCEPTS AND TASKS

113

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_decision_services_in_red_hat_process_automation_manager#assembly-dmn-models

For this example, the following Accept Train business process incorporates the DMN service in
the Route To Rail node:

Figure 15.4. Example Accept Train business process with a DMN service

5. Select the business rule task node that you want to use for the DMN service, click Properties in
the upper-right corner of the process designer, and under Implementation/Execution, define
the following fields:

Rule Language: Select DMN.

Namespace: Enter the unique namespace from the DMN model file. Example:
https://www.drools.org/kie-dmn

Decision Name: Enter the name of the DMN decision node that you want to invoke in the
selected process node. Example: Rail

DMN Model Name: Enter the DMN model name. Example: Compute Rail

IMPORTANT

When you explore the root node, ensure that the Namespace and DMN
Model Name fields consist of the same value in BPMN as DMN diagram.

6. Under Data Assignments → Assignments, click the Edit icon and add the DMN input and
output data to define the mapping between the DMN service and the process data.
For the Route To Rail DMN service node in this example, you add an input assignment for Train
that corresponds to the input node in the DMN model, and add an output assignment for Rail
that corresponds to the decision node in the DMN model. The Data Type must match the type
that you set for that node in the DMN model, and the Source and Target definition is the
relevant variable or field for the specified object.

Figure 15.5. Example input and output mapping for the Route To Rail DMN service node

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

114

Figure 15.5. Example input and output mapping for the Route To Rail DMN service node

7. Click Save to save the data input and output data.

8. Define the remainder of your business process according to how you want the completed DMN
service to be handled.
For this example, the Properties → Implementation/Execution → On Exit Action value is set
to the following code to store the rail number after the Route To Rail DMN service is complete:

Example code for On Exit Action

If the rail number is not computed, the process reaches a No Appropriate Rail end error node
that is defined with the following condition expression:

Figure 15.6. Example condition for No Appropriate Rail end error node

train.setRailNumber(rail);

CHAPTER 15. ADVANCED PROCESS CONCEPTS AND TASKS

115

Figure 15.6. Example condition for No Appropriate Rail end error node

If the rail number is computed, the process reaches an Accept Train script task that is defined
with the following condition expression:

Figure 15.7. Example condition for Accept Train script task node

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

116

The Accept Train script task also uses the following script in Properties →
Implementation/Execution → Script to print a message about the train route and current rail:

9. After you define your business process with the incorporated DMN service, save your process in
the process designer, deploy the project, and run the corresponding process definition to invoke
the DMN service.
For this example, when you deploy the TrainStation project and run the corresponding process
definition, you open the process instance form for the Accept Train process definition and set
the departure station and destination station fields to test the execution:

Figure 15.8. Example process instance form for the Accept Train process definition

After the process is executed, a message appears in the server log with the train route that you
specified:

Example server log output for the Accept Train process

Train from: Zagreb, to: Belgrade, is on rail: 1

com.myspace.trainstation.Train t =
 (com.myspace.trainstation.Train) kcontext.getVariable("train");
System.out.println("Train from: " + t.getDepartureStation() +
 ", to: " + t.getDestinationStation() +
 ", is on rail: " + t.getRailNumber());

CHAPTER 15. ADVANCED PROCESS CONCEPTS AND TASKS

117

CHAPTER 16. ADDITIONAL RESOURCES
Getting started with process services

Managing and monitoring business processes in Business Central

Interacting with processes and tasks

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

118

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-process-services
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-managing-and-monitoring-business-processes
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-interacting-with-processes

PART II. INTERACTING WITH PROCESSES AND TASKS
As a knowledge worker, you use Business Central in Red Hat Process Automation Manager to run
processes and tasks of the business process application developed by citizen developers. A business
process is a series of steps that are executed as defined in the process flow. To effectively interact with
processes and tasks, you must have a clear understanding of the business process and be able to
determine the current step of a process or task. You can start and stop tasks; search and filter tasks and
process instances; delegate, claim, and release tasks; set a due date and priority of tasks; view and add
comments to tasks; and view the task history log.

Prerequisites

Red Hat Process Automation Manager is installed. For installation options, see Planning a Red
Hat Process Automation Manager installation.

PART II. INTERACTING WITH PROCESSES AND TASKS

119

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning

CHAPTER 17. BUSINESS PROCESSES IN BUSINESS CENTRAL
A business process application created by a citizen developer in Business Central depicts the flow of the
business process as a series of steps. Each step executes according to the process flow chart. A process
can consist of one or more smaller discrete tasks. As a knowledge worker, you work on processes and
tasks that occur during business process execution.

As an example, using Red Hat Process Automation Manager, the mortgage department of a financial
institution can automate the complete business process for a mortgage loan. When a new mortgage
request comes in, a new process instance is created in the mortgage application. Because all requests
follow the same set of rules for processing, consistency in every step is ensured. This results in an
efficient process that reduces processing time and effort.

17.1. KNOWLEDGE WORKER USER

Consider the example of a customer account representative processing mortgage loan requests at a
financial institution. As a customer account representative, you can perform the following tasks:

Accept and decline mortgage requests

Search and filter through requests

Delegate, claim, and release requests

Set a due date and priority on requests

View and comment on requests

View the request history log

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

120

CHAPTER 18. KNOWLEDGE WORKER TASKS IN BUSINESS
CENTRAL

A task is a part of the business process flow that a given user can claim and perform. You can handle
tasks in Menu → Track → Task Inbox in Business Central. It displays the task list for the logged-in user.
A task can be assigned to a particular user, multiple users, or to a group of users. If a task is assigned to
multiple users or a group of users, it is visible in the task lists of all the users and any user can claim the
task. When a task is claimed by a user, it is removed from the task list of other users.

18.1. STARTING A TASK

You can start user tasks in Menu → Manage → Tasks and in Menu → Track → Task Inbox in Business
Central.

NOTE

Ensure that you are logged in and have appropriate permissions for starting and stopping
tasks.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the task to open it.

3. On the Work tab of the task page, click Start. Once you start a task, its status changes to
InProgress.
You can view the status of tasks on the Task Inbox as well as on the Manage Tasks page.

NOTE

Only users with the process-admin role can view the task list on the Manage Tasks
page. Users with the admin role can access the Manage Tasks page, however they see
only an empty task list.

18.2. STOPPING A TASK

You can stop user tasks from the Tasks and Task Inbox page.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the task to open it.

3. On the Work tab of the task page, click Complete.

18.3. DELEGATING A TASK

After tasks are created in Business Central, you can delegate them to others.

NOTE

CHAPTER 18. KNOWLEDGE WORKER TASKS IN BUSINESS CENTRAL

121

NOTE

A user assigned with any role can delegate, claim, or release tasks visible to the user. On
the Task Inbox page, the Actual Owner column displays the name of the current owner
of the task.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the task to open it.

3. On the task page, click the Assignments tab.

4. In the User field, enter the name of the user or group you want to delegate the task to.

5. Click Delegate. Once a task is delegated, the owner of the task changes.

18.4. CLAIMING A TASK

After tasks are created in Business Central, you can claim the released tasks. A user can claim a task
from the Task Inbox page only if the task is assigned to a group the user belongs to.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the task to open it.

3. On the Work tab of the task page, click Claim.

4. To claim the released task from the Task Inbox page, do any of the following tasks:

Click Claim from the three dots in the Actions column.

Click Claim and Work from the three dots in the Actions column to open, view, and modify
the details of a task.

The user who claims a task becomes the owner of the task.

18.5. RELEASING A TASK

After tasks are created in Business Central, you can release your tasks for others to claim.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the task to open it.

3. On the task page, click Release. A released task has no owner.

18.6. BULK ACTIONS ON TASKS

In the Tasks and Task Inbox pages in Business Central, you can perform bulk actions over multiple tasks

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

122

In the Tasks and Task Inbox pages in Business Central, you can perform bulk actions over multiple tasks
in a single operation.

NOTE

If a specified bulk action is not permitted based on the task status, a notification is
displayed and the operation is not executed on that particular task.

18.6.1. Claiming tasks in bulk

After you create tasks in Business Central, you can claim the available tasks in bulk.

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To claim the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Claim.

4. To confirm, click Claim on the Claim selected tasks window.

For each task selected, a notification is displayed showing the result.

18.6.2. Releasing tasks in bulk

You can release your owned tasks in bulk for others to claim.

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To release the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Release.

4. To confirm, click Release on the Release selected tasks window.

For each task selected, a notification is displayed showing the result.

18.6.3. Resuming tasks in bulk

If there are suspended tasks in Business Central, you can resume them in bulk.

Procedure

CHAPTER 18. KNOWLEDGE WORKER TASKS IN BUSINESS CENTRAL

123

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To resume the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Resume.

4. To confirm, click Resume on the Resume selected tasks window.

For each task selected, a notification is displayed showing the result.

18.6.4. Suspending tasks in bulk

After you create tasks in Business Central, you can suspend the tasks in bulk.

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To suspend the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Suspend.

4. To confirm, click Suspend on the Suspend selected tasks window.

For each task selected, a notification is displayed showing the result.

18.6.5. Reassigning tasks in bulk

After you create tasks in Business Central, you can reassign your tasks in bulk and delegate them to
others.

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To reassign the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Reassign.

4. In the Tasks reassignment window, enter the user ID of the user to whom you want to reassign
the tasks.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

124

5. Click Delegate.

For each task selected, a notification is displayed showing the result.

CHAPTER 18. KNOWLEDGE WORKER TASKS IN BUSINESS CENTRAL

125

CHAPTER 19. TASK FILTERING IN BUSINESS CENTRAL
Business Central provides built-in filters to help you search tasks. You can filter tasks by attributes such
as Status, Filter By, Process Definition Id, and Created On. It is also possible to create custom task
filters using the Advanced Filters option. The newly created custom filter is added to the Saved Filters
pane, which is accessible by clicking on the star icon on the left of the Task Inbox page.

19.1. MANAGING TASK LIST COLUMNS

In the task list on the Task Inbox and Manage Tasks windows, you can specify what columns to view and
you can change the order of columns to better manage task information.

NOTE

Only users with the process-admin role can view the task list on the Manage Tasks
page. Users with the admin role can access the Manage Tasks page, however they see
only an empty task list.

Procedure

1. In Business Central, go to Menu → Manage → Tasks or Menu → Track → Task Inbox.

2. On the Manage Task or Task Inbox page, click the Show/hide columns icon to the right of
Bulk Actions.

3. Select or deselect columns to display. As you make changes to the list, columns in the task list
appear or disappear.

4. To rearrange the columns, drag the column heading to a new position. Note that your pointer
must change to the icon shown in the following illustration before you can drag the column:

5. To save your changes as a filter, click Save Filters, enter a name, and click Save.

6. To use your new filter, click the Saved Filters icon (star) on the left of the screen and select
your filter from the list.

19.2. FILTERING TASKS USING BASIC FILTERS

Business Central provides basic filters for filtering and searching through tasks based on their attributes
such as Status, Filter By, Process Definition Id, and Created On.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the filter icon on the left of the page to expand the Filters pane
and select the filters you want to use:

Status: Filter tasks based on their status.

Filter By: Filter tasks based on Id, Task, Correlation Key, Actual Owner, or Process

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

126

Filter By: Filter tasks based on Id, Task, Correlation Key, Actual Owner, or Process
Instance Description attribute.

Process Definition Id: Filter tasks based on process definition ids.

Created On: Filter tasks based on their creation date.

You can use the Advanced Filters option to create custom filters in Business Central.

19.3. FILTERING TASKS USING ADVANCED FILTERS

You can create custom task filters using the Advanced Filters option in Business Central.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the advanced filters icon on the left of the page to expand the
Advanced Filters panel.

3. In the Advanced Filters panel, enter the filter name and description, and click Add New.

4. Select an attribute from the Select column drop-down list, such as Name. The content of the
drop-down changes to Name != value1.

5. Click the drop-down again and choose the required logical query. For the Name attribute,
choose equals to.

6. Change the value of the text field to the name of the task you want to filter.

NOTE

The name must match the value defined in the business process of the project.

7. Click Save and the tasks are filtered according to the filter definition.

8. Click the star icon to open the Saved Filters pane.
In the Saved Filters pane, you can view the saved advanced filters.

19.4. MANAGING TASKS USING DEFAULT FILTER

You can set a task filter as a default filter using the Saved Filter option in Business Central. A default
filter will be executed every time when the page is open by the user.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox or go to Menu → Manage → Tasks.

2. On the Task Inbox page or the Manage Tasks page, click the star icon on the left of the page to
expand the Saved Filters panel.
In the Saved Filters panel, you can view the saved advanced filters.

Default filter selection for Tasks or Task Inbox

CHAPTER 19. TASK FILTERING IN BUSINESS CENTRAL

127

3. In the Saved Filters panel, set a saved task filter as the default filter.

19.5. VIEWING TASK VARIABLES USING BASIC FILTERS

Business Central provides basic filters to view task variables in Manage Tasks and Task Inbox. You can
view the task variables of the task as columns using Show/hide columns.

Procedure

1. In Business Central, go to Menu → Manage → Tasks or go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the filter icon on the left of the page to expand the Filters panel

3. In the Filters panel, select the Task Name.
The filter is applied to the current task list.

4. Click Show/hide columns on the upper right of the tasks list and the task variables of the
specified task id will be displayed.

5. Click the star icon to open the Saved Filters panel.
In the Saved Filters panel, you can view all the saved advanced filters.

19.6. VIEWING TASK VARIABLES USING ADVANCED FILTERS

You can use the Advanced Filters option in Business Central to view task variables in Manage Tasks
and Task Inbox. When you create a filter with the task defined, you can view the task variables of the
task as columns using Show/hide columns.

Procedure

1. In Business Central, go to Menu → Manage → Tasks or go to Menu → Track → Task Inbox.

2. On the Manage Tasks page or the Task Inbox page, click the advanced filters icon to expand
the Advanced Filters panel.

3. In the Advanced Filters panel, enter the name and description of the filter, and click Add New.

4. From the Select column list, select the name attribute. The value will change to name != value1.

5. From the Select column list, select equals to for the logical query.

6. In the text field, enter the name of the task.

7. Click Save and the filter is applied on the current task list.

8. Click Show/hide columns on the upper right of the tasks list and the task variables of the

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

128

8. Click Show/hide columns on the upper right of the tasks list and the task variables of the
specified task id will be displayed.

9. Click the star icon to open the Saved Filters panel.
In the Saved Filters panel, you can view all the saved advanced filters.

CHAPTER 19. TASK FILTERING IN BUSINESS CENTRAL

129

CHAPTER 20. PROCESS INSTANCE FILTERING IN BUSINESS
CENTRAL

Business Central now provides you with basic and advanced filters to help you filter and search through
process instances. You can filter processes by attributes such as State, Errors, Filter By, Name, Start
Date, and Last update. You can also create custom filters using the Advanced Filters option. The newly
created custom filter is added to the Saved Filters pane, which is accessible by clicking on the star icon
on the left of the Manage Process Instances page.

NOTE

All users except those with manager or rest-all roles can access and filter process
instances in Business Central.

20.1. FILTERING PROCESS INSTANCES USING BASIC FILTERS

Business Central provides basic filters for filtering and searching through process instances based on
their attributes such as State, Errors, Filter By, Name, Start Date, and Last update.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the filter icon on the left of the page to expand
the Filters pane and select the filters you want to use:

State: Filter process instances based on their state (Active, Aborted, Completed, Pending,
and Suspended).

Errors: Filter process instances that contain at least one or no errors.

Filter By: Filter process instances based on Id, Initiator, Correlation Key, or Description
attribute.

Name: Filter process instances based on process definition name.

Definition ID: The ID of the instance definition.

Deployment ID: The ID of the instance deployment.

SLA Compliance: SLA compliance status (Aborted, Met, N/A, Pending, and Violated).

Parent Process ID: The ID of the parent process instance.

Start Date: Filter process instances based on their creation date.

Last update: Filter process instances based on their last modified date.

You can also use the Advanced Filters option to create custom filters in Business Central.

20.2. FILTERING PROCESS INSTANCES USING ADVANCED FILTERS

You can create custom process instance filters using the Advanced Filters option in Business Central.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

130

Procedure

1. In Business Central, click Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the Advanced Filters icon.

3. In the Advanced Filters pane, enter the name and description of the filter, and click Add New.

4. Select an attribute from the Select column drop-down list, for example, processName. The
content of the drop-down changes to processName != value1.

5. Click the drop-down again and choose the required logical query. For the processName
attribute, choose equals to.

6. Change the value of the text field to the name of the process you want to filter.

NOTE

The processName must match the value defined in the business process of the
project.

7. Click Save and the processes are filtered according to the filter definition.

8. Click the star icon to open the Saved Filters pane.
In the Saved Filters pane, you can view all the saved advanced filters.

20.3. MANAGING PROCESS INSTANCES USING DEFAULT FILTER

You can set a process instance filter as a default filter using the Saved Filter option in Business Central.
A default filter will be executed every time when the page is open by the user.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the star icon on the left of the page to expand
the Saved Filters panel.
In the Saved Filters panel, you can view the saved advanced filters.

Default filter selection for Process Instances

3. In the Saved Filters panel, set a saved process instance filter as the default filter.

20.4. VIEWING PROCESS INSTANCE VARIABLES USING BASIC
FILTERS

CHAPTER 20. PROCESS INSTANCE FILTERING IN BUSINESS CENTRAL

131

Business Central provides basic filters to view process instance variables. You can view the process
instance variables of the process as columns using Show/hide columns.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the filter icon on the left of the page to expand
the Filters panel.

3. In the Filters panel, select the Definition Id.
The filter is applied on the current process instance list.

4. Click Show/hide columns on the upper right of the process instances list and the process
instance variables of the specified process id will be displayed.

5. Click the star icon to open the Saved Filters panel.
In the Saved Filters panel, you can view all the saved advanced filters.

20.5. VIEWING PROCESS INSTANCE VARIABLES USING ADVANCED
FILTERS

You can use the Advanced Filters option in Business Central to view process instance variables. When
you create a filter over the column processId, you can view the process instance variables of the
process as columns using Show/hide columns.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the advanced filters icon to expand the
Advanced Filters panel.

3. In the Advanced Filters panel, enter the name and description of the filter, and click Add New.

4. From the Select column list, select the processId attribute. The value will change to processId
!= value1.

5. From the Select column list, select equals to for the logical query.

6. In the text field, enter the name of the process id.

7. Click Save and the filter is applied on the current process instance list.

8. Click Show/hide columns on the upper right of the process instances list and the process
instance variables of the specified process id will be displayed.

9. Click the star icon to open the Saved Filters panel.
In the Saved Filters panel, you can view all the saved advanced filters.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

132

CHAPTER 21. CONFIGURING EMAILS IN TASK NOTIFICATION
Earlier it was possible to send notifications only to users or group of users in Business Central. Now you
can directly add any email addresses as well.

Prerequisites

You have created a project in Business Central.

Procedure

1. Create a business process.
For more information about creating a business process in Business Central, see Chapter 5,
Creating a business process in Business Central .

2. Create a user task.
For more information about creating a user task in Business Central, see Section 5.4, “Creating
user tasks”.

3. In the upper-right corner of the screen, click the Properties icon.

4. Expand Implementation/Execution and click next to Notifications, to open the
Notifications window.

5. Click Add.

6. In the Notifications window, enter an email address in the To: email(s) field to set the
recipients of the task notification emails.
You can add multiple email addresses separated by comma.

7. Enter the subject and body of the email.

8. Click Ok.
You can see the added email addresses in the To: email(s) column in the Notifications window.

9. Click Ok.

CHAPTER 21. CONFIGURING EMAILS IN TASK NOTIFICATION

133

CHAPTER 22. SETTING THE DUE DATE AND PRIORITY OF A
TASK

You can set the priority, due date, and time of a task in Business Central from the Task Inbox page.
Note that all users may not have permissions for setting priority and the due date of a task.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the task to open it.

3. On the task page, click the Details tab.

4. In the Due Date field, select the required date from the calendar and the due time from the
drop-down list.

5. In the Priority field, select the required priority.

6. Click Update.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

134

CHAPTER 23. VIEWING AND ADDING COMMENTS TO A TASK
You can add comments to a task and also view the existing comments of a task in Business Central.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the task to open it.

3. On the task page, click the Work tab or the Comments tab.

4. In the Comment field, enter the task related comment and click Add Comment icon.
All task related comments are displayed in a tabular form in the Work as well as Comments tab.

NOTE

To select or clear the Show task comments at work tab check box, go to the Business
Central home page, click the Settings icon and select the Process Administration
option. Only users with the admin role have access to enable or disable this feature.

CHAPTER 23. VIEWING AND ADDING COMMENTS TO A TASK

135

CHAPTER 24. VIEWING THE HISTORY LOG OF A TASK
You can view the history log of a task in Business Central from the Logs tab of task. The history log lists
all the events in the "Date Time: Task event" format.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the task to open it.

3. On the task page, click the Logs tab.
All events that take place during the task life cycle is listed in the Logs tab.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

136

CHAPTER 25. VIEWING THE HISTORY LOG OF A PROCESS
INSTANCE

You can view the history log of a process instance in Business Central from its Logs tab. The log lists all
the events in the Date Time: Event Node Type: Event Type format.

You can filter the logs based on Event Node Type and Event Type. You can also view the details of the
human nodes in the logs.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Process Instances page, click the process instance whose log you want to view.

3. On the instance page, click the Logs tab.

4. Select the required check boxes from Event Node Type and Event Type pane to filter the log
as per your need.

5. To view additional information regarding human nodes, expand Details.

6. Click Reset to revert to the default filter selection.
All events that occur in a process instance life cycle are listed in the Logs tab.

CHAPTER 25. VIEWING THE HISTORY LOG OF A PROCESS INSTANCE

137

PART III. MANAGING AND MONITORING BUSINESS
PROCESSES IN BUSINESS CENTRAL

As a process administrator, you can use Business Central in Red Hat Process Automation Manager to
manage and monitor process instances and tasks running on a number of projects. From Business
Central you can start a new process instance, verify the state of all process instances, and abort
processes. You can view the list of jobs and tasks associated with your processes, as well as understand
and communicate any process errors.

Prerequisites

Red Hat JBoss Enterprise Application Platform 7.4 is installed. For more information, see Red
Hat JBoss Enterprise Application Platform 7.4 Installation Guide.

Red Hat Process Automation Manager is installed. For more information, see Planning a Red
Hat Process Automation Manager installation.

Red Hat Process Automation Manager is running and you can log in to Business Central with
the process-admin role. For more information, see Planning a Red Hat Process Automation
Manager installation.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

138

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning

CHAPTER 26. PROCESS MONITORING
Red Hat Process Automation Manager provides real-time monitoring for your business processes and
includes the following capabilities:

Business managers can monitor processes in real time.

Customers can monitor the current status of their requests.

Administrators can easily monitor any errors related to process execution.

CHAPTER 26. PROCESS MONITORING

139

CHAPTER 27. PROCESS DEFINITIONS AND PROCESS
INSTANCES IN BUSINESS CENTRAL

A process definition is a Business Process Model and Notation (BPMN) 2.0 file that serves as a
container for a process and its BPMN diagram. The process definition shows all of the available
information about the business process, such as any associated sub-processes or the number of users
and groups that are participating in the selected definition.

A process definition also defines the import entry for imported processes that the process definition
uses, and the relationship entries.

BPMN2 source of a process definition

<definitions id="Definition"
 targetNamespace="http://www.jboss.org/drools"
 typeLanguage="http://www.java.com/javaTypes"
 expressionLanguage="http://www.mvel.org/2.0"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"Rule Task
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
 xmlns:g="http://www.jboss.org/drools/flow/gpd"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
 xmlns:tns="http://www.jboss.org/drools">

 <process>
 PROCESS
 </process>

 <bpmndi:BPMNDiagram>
 BPMN DIAGRAM DEFINITION
 </bpmndi:BPMNDiagram>

 </definitions>

After you have created, configured, and deployed your project that includes your business processes,
you can view the list of all the process definitions in Business Central Menu → Manage → Process
Definitions. You can refresh the list of deployed process definitions at any time by clicking the refresh
button in the upper-right corner.

The process definition list shows all the available process definitions that are deployed into the platform.
Click any of the process definitions listed to show the corresponding process definition details. This
displays information about the process definition, such as if there is a sub-process associated with it, or
how many users and groups exist in the process definition. The Diagram tab in the process definition
details page contains the BPMN2-based diagram of the process definition.

Within each selected process definition, you can start a new process instance for the process definition
by clicking the New Process Instance button in the upper-right corner. Process instances that you start
from the available process definitions are listed in Menu → Manage → Process Instances.

You can also define the default pagination option for all users under the Manage drop-down menu
(Process Definition, Process Instances, Tasks, Jobs, and Execution Errors) and in Menu → Track →
Task Inbox.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

140

27.1. STARTING A PROCESS INSTANCE FROM THE PROCESS
DEFINITIONS PAGE

You can start a process instance in Menu → Manage → Process Definitions. This is useful for
environments where you are working with several projects or process definitions at the same time.

Prerequisites

A project with a process definition has been deployed in Business Central.

Procedure

1. In Business Central, go to Menu → Manage → Process Definitions.

2. Select the process definition for which you want to start a new process instance from the list.
The details page of the definition opens.

3. Click New Process Instance in the upper-right corner to start a new process instance.

4. Provide any required information for the process instance.

5. Click Submit to create the process instance.

6. View the new process instance in Menu → Manage → Process Instances.

27.2. STARTING A PROCESS INSTANCE FROM THE PROCESS
INSTANCES PAGE

You can create new process instances or view the list of all the running process instances in Menu →
Manage → Process Instances.

Prerequisites

A project with a process definition has been deployed in Business Central.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. Click New Process Instance in the upper-right corner and select the process definition for
which you want to start a new process instance from the drop-down list.

3. Provide any information required to start a new process instance.

4. Click Start to create the process instance.
The new process instance appears in the Manage Process Instances list.

27.3. GENERATING PROCESS DOCUMENTATION IN BUSINESS
CENTRAL

In the process designer in Business Central, you can view and print a report of the process definition.
The process documentation summarizes the components, data, and visual flow of the process in a
format (PDF) that you can print and share more easily.

CHAPTER 27. PROCESS DEFINITIONS AND PROCESS INSTANCES IN BUSINESS CENTRAL

141

Procedure

1. In Business Central, navigate to a project that contains a business process and select the
process.

2. In the process designer, click the Documentation tab to view the summary of the process file,
and click Print in the top-right corner of the window to print the PDF report.

Figure 27.1. Generate process documentation

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

142

CHAPTER 28. PROCESS INSTANCE MANAGEMENT
To view process instances, in Business Central click Menu → Manage → Process Instances.

+ NOTE: Each row in the Manage Process Instances list represents a process instance from a particular
process definition. Each instance has its own internal state of the information that the process is
manipulating. Click a process instance to view the corresponding tabs with runtime information related
to the process.

Figure 28.1. Process instance tab view

Instance Details: Provides an overview about what is going on inside the process. It displays the
current state of the instance and the current activity that is being executed.

Process Variables: Displays all of the process variables that are being manipulated by the
instance, with the exception of the variables that contain documents. You can edit the process
variable value and view its history.

Documents: Displays process documents if the process contains a variable of the type
org.jbpm.Document. This enables access, download, and manipulation of the attached
documents.

Logs: Displays process instance logs for the end users. For more information, see Interacting
with processes and tasks.

Diagram: Tracks the progress of the process instance through the BPMN2 diagram. The node
or nodes of the process flow that are in progress are highlighted in red. Reusable sub-processes
appear collapsed within the parent process. Double-click on the reusable sub-process node to
open its diagram from the parent process diagram.

CHAPTER 28. PROCESS INSTANCE MANAGEMENT

143

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#interacting-with-processes-viewing-process-instance-history-log-proc_interacting-with-processes

For information on user credentials and conditions to be met to access KIE Server runtime data, see
Planning a Red Hat Process Automation Manager installation .

28.1. PROCESS INSTANCE FILTERING

For process instances in Menu → Manage → Process Instances, you can use the Filters and Advanced
Filters panels to sort process instances as needed.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the Filters icon on the left of the page to select
the filters that you want to use:

State: Filter process instances based on their state (Active, Aborted, Completed, Pending,
and Suspended).

Errors: Filter process instances that contain at least one or no errors.

Filter By: Filter process instances based on the following attributes:

Id: Filter by process instance ID.
Input: Numeric

Initiator: Filter by the user ID of the process instance initiator.
The user ID is a unique value, and depends on the ID management system.

Input: String

Correlation key: Filter by correlation key.
Input: String

Description: Filter by process instance description.
Input: String

Name: Filter process instances based on process definition name.

Definition ID: The ID of the instance definition.

Deployment ID: The ID of the instance deployment.

SLA Compliance: SLA compliance status (Aborted, Met, N/A, Pending, and Violated).

Parent Process ID: The ID of the parent process.

Start Date: Filter process instances based on their creation date.

Last update: Filter process instances based on their last modified date.

You can also use the Advanced Filters option to create custom filters in Business Central.

28.2. CREATING A CUSTOM PROCESS INSTANCE LIST

You can view the list of all the running process instances in Menu → Manage → Process Instances in
Business Central. From this page, you can manage the instances during run time and monitor their

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

144

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning

execution. You can customize which columns are displayed, the number of rows displayed per page, and
filter the results. You can also create a custom process instance list.

Prerequisites

A project with a process definition has been deployed in Business Central.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. In the Manage Process Instances page, click the advanced filters icon on the left to open the
list of process instance Advanced Filters options.

3. In the Advanced Filters panel, enter the name and description of the filter that you want to use
for your custom process instance list, and click Add New.

4. From the list of filter values, select the parameters and values to configure the custom process
instance list, and click Save.
A new filter is created and immediately applied to the process instances list. The filter is also
saved in the Saved Filters list. You can access saved filters by clicking the star icon on the left
side of the Manage Process Instances page.

28.3. MANAGING PROCESS INSTANCES USING A DEFAULT FILTER

You can set a process instance filter as a default filter using the Saved Filter option in Business Central.
A default filter will be executed every time when the page is open by the user.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the star icon on the left of the page to expand
the Saved Filters panel.
In the Saved Filters panel, you can view the saved advanced filters.

Default filter selection for Process Instances

3. In the Saved Filters panel, set a saved process instance filter as the default filter.

28.4. VIEWING PROCESS INSTANCE VARIABLES USING BASIC
FILTERS

Business Central provides basic filters to view process instance variables. You can view the process
instance variables of the process as columns using Show/hide columns.

CHAPTER 28. PROCESS INSTANCE MANAGEMENT

145

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the filter icon on the left of the page to expand
the Filters panel.

3. In the Filters panel, select the Definition Id and select a definition ID from the list.
The filter is applied to the current process instance list.

4. Click columns icon (to the right of Bulk Actions) in the upper-right of the screen to display or
hide columns in the process instances table.

5. Click the star icon to open the Saved Filters panel.
In the Saved Filters panel, you can view all the saved advanced filters.

28.5. VIEWING PROCESS INSTANCE VARIABLES USING ADVANCED
FILTERS

You can use the Advanced Filters option in Business Central to view process instance variables. When
you create a filter over the column processId, you can view the process instance variables of the
process as columns using Show/hide columns.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. On the Manage Process Instances page, click the advanced filters icon to expand the
Advanced Filters panel.

3. In the Advanced Filters panel, enter the name and description of the filter, and click Add New.

4. From the Select column list, select the processId attribute. The value will change to processId
!= value1.

5. From the Select column list, select equals to for the query.

6. In the text field, enter the name of the process id.

7. Click Save and the filter is applied on the current process instance list.

8. Click the columns icon (to the right of Bulk Actions) in the upper-right of the process instances
list and the process instance variables of the specified process ID will be displayed.

9. Click the star icon to open the Saved Filters panel.
In the Saved Filters panel, you can view all the saved advanced filters.

28.6. ABORTING A PROCESS INSTANCE USING BUSINESS CENTRAL

If a process instance becomes obsolete, you can abort the process instance in Business Central.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances to view the list of available
process instances.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

146

2. Select the process instance you want to abort from the list.

3. In the process details page, click the Abort button in the upper-right corner.

28.7. SIGNALING PROCESS INSTANCES FROM BUSINESS CENTRAL

You can signal a process instance from Business Central.

Prerequisites

A project with a process definition has been deployed in Business Central.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances.

2. Locate the required process instance, click the button and select Signal from the drop-down
menu.

3. Fill the following fields:

Signal Name: Corresponds to the SignalRef or MessageRef attributes of the signal. This
field is required.

NOTE

You can also send a Message event to the process by adding the Message-
prefix in front of the MessageRef value.

Signal Data: Corresponds to data accompanying the signal. This field is optional.

NOTE

When using the Business Central user interface, you can only signal Signal intermediate
catch events.

28.8. ASYNCHRONOUS SIGNAL EVENTS

When several process instances from different process definitions are waiting for the same signal, they
are executed sequentially in the same thread. But, if one of those process instances throws a runtime
exception, all the other process instances are affected and usually result in a rolled back transaction. To
avoid this situation, Red Hat Process Automation Manager supports using asynchronous signals events
for:

Throwing intermediate signal events

End events

28.8.1. Configuring asynchronous signals for intermediate events

Intermediate events drive the flow of a business process. Intermediate events are used to either catch
or throw an event during the execution of the business process. An intermediate event handles a
particular situation that occurs during process execution. A throwing signal intermediate event produces

CHAPTER 28. PROCESS INSTANCE MANAGEMENT

147

a signal object based on the defined properties.

You can configure an asynchronous signal for intermediate events in Business Central.

Prerequisites

You have created a project in Business Central and it contains at least one business process
asset.

A project with a process definition has been deployed in Business Central.

Procedure

1. Open a business process asset.

2. In the process designer canvas, drag and drop the Intermediate Signal from the left toolbar.

3. In the upper-right corner, click to open the Properties panel.

4. Expand Data Assignments.

5. Click the box under the Assignments sub-section. The Task Data I/O dialog box opens.

6. Click Add next to Data Inputs and Assignments.

7. Enter a name of the throw event as async in the Name field.

8. Leave the Data Type and Source fields blank.

9. Click OK.

It will automatically set the executor service on each session. This ensures that each process instance is
signaled in a different transaction.

28.8.2. Configuring asynchronous signals for end events

End events indicate the completion of a business process. All end events, with the exception of the none
and terminate end events, are throw events. A throwing signal end event is used to finish a process or
sub-process flow. When the execution flow enters the element, the execution flow finishes and
produces a signal identified by its SignalRef property.

You can configure an asynchronous signal for end events in Business Central.

Prerequisites

You have created a project in Business Central and it contains at least one business process
asset.

A project with a process definition has been deployed in Business Central.

Procedure

1. Open a business process asset.

2. In the process designer canvas, drag and drop the End Signal from the left toolbar.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

148

3. In the upper-right corner, click to open the Properties panel.

4. Expand Data Assignments.

5. Click the box under the Assignments sub-section. The Task Data I/O dialog box opens.

6. Click Add next to Data Inputs and Assignments.

7. Enter a name of the throw event as async in the Name field.

8. Leave the Data Type and Source fields blank.

9. Click OK.

It will automatically set the executor service on each session. This ensures that each process instance is
signaled in a different transaction.

28.9. PROCESS INSTANCE OPERATIONS

Process instance administration API exposes the following operations for the process engine and the
individual process instance.

get process nodes - by process instance id: Returns all nodes, including all embedded sub-
processes that exist in the process instance. You must retrieve the nodes from the specified
process instance to ensure that the node exists and includes a valid ID so that it can be used by
other administration operations.

cancel node instance - by process instance id and node instance id: Cancels a node instance
within a process instance using the process and node instance IDs.

retrigger node instance - by process instance id and node instance id: Re-triggers a node
instance by canceling the active node instance and creates a new node instance of the same
type using the process and node instance IDs.

update timer - by process instance id and timer id: Updates the timer expiration of an active
timer based on the time elapsed since the timer was scheduled. For example, if a timer was
initially created with delay of one hour and after thirty minutes you set it to update in two hours,
it expires in one and a half hours from the time it was updated.

delay: The duration after the timer expires.

period: The interval between the timer expiration for cycle timers.

repeat limit: Limits the expiration for a specified number for cycle timers.

update timer relative to current time - by process instance id and timer id: Updates the timer
expiration of an active timer based on the current time. For example, if a timer was initially
created with delay of one hour and after thirty minutes you set it to update in two hours, it
expires in two hours from the time it was updated.

list timer instances - by process instance id: Returns all active timers for a specified process
instance.

trigger node - by process instance id and node id: Triggers any node in a process instance at
any time.

CHAPTER 28. PROCESS INSTANCE MANAGEMENT

149

CHAPTER 29. TASK MANAGEMENT
Tasks that are assigned to the current user appear in Menu → Track → Task Inbox in Business Central.
You can click a task to open and begin working on it.

A user task can be assigned to a particular user, multiple users, or to a group. If assigned to multiple
users or a group it appears in the task lists of all assigned users and any of the possible actors can claim
the task. When a task is assigned to another user it no longer appears in your Task Inbox.

Business administrators can view and manage all user tasks from the Tasks page in Business Central,
located under Menu → Manage → Tasks. Users with the admin or process-admin role can access the
Tasks page but do not have access rights to view and manage tasks by default.

To manage all the tasks, a user must be specified as a process administrator by defining any of the
following conditions:

User is specified as task admin user. The default value is Administrator.

User belongs to the task administrators group. The default value is Administrators.

You can configure the user and user group assignment with the org.jbpm.ht.admin.user and
org.jbpm.ht.admin.group system properties.

You can open, view, and modify the details of a task, such as the due date, the priority, or the task
description, by clicking a task in the list. The following tabs are available in the task page:

Work: Displays basic details about the task and the task owner. You can click the Claim button
to claim the task. To undo the claim process, click the Release button.

Details: Displays information such as task description, status, and due date.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

150

Assignments: Displays the current owner of the task and enables you to delegate the task to
another person or group.

Comments: Displays comments added by task user(s). You can delete an existing comment and
add a new comment.

Admin: Displays the potential owner of the task and enables you to forward the task to another
person or group. It also displays the actual owner of the task and you can send a reminder to the
actual owner of the task.

Logs: Displays task logs containing task life cycle events (such as task started, claimed,
completed), updates made to task fields (such as task due date and priority).

You can filter the tasks based on the filter parameters available by clicking the Filters icon on the left
side of the page. For more information about filtering, see Section 29.1, “Task filtering”.

In addition to these, you can create custom filters to filter tasks based on the query parameters you
define. For more information about custom tasks filters, see Section 29.2, “Creating custom task filters” .

29.1. TASK FILTERING

For tasks in Menu → Manage → Tasks and in Menu → Track → Task Inbox, you can use the Filters and
Advanced Filters panels to sort tasks as needed.

Figure 29.1. Filtering Tasks - Default View

CHAPTER 29. TASK MANAGEMENT

151

The Manage Tasks page is only available to administrators and process administrators.

You can filter tasks by the following attributes in the Filters panel:

Status

Filter by task status. You can select more than one status to display results that meet any of the
selected states. Removing the status filter displays all processes, regardless of status.
The following filter states are available:

Completed

Created

Error

Exited

Failed

InProgress

Obsolete

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

152

Ready

Reserved

Suspended

Id

Filter by process instance ID.
Input: Numeric

Task

Filter by task name.
Input: String

Correlation key

Filter by correlation key.
Input: String

Actual Owner

Filter by the task owner.
The actual owner refers to the user responsible for executing the task. The search is based on user
ID, which is a unique value and depends on the ID management system.

Input: String

Process Instance Description

Filter by process instance description.
Input: String

Task Name

Filter by task name.

Process Definition Id

Filter by process definition Id.

SLA Compliance

Filter by SLA compliance state.
The following filter states are available:

Aborted

Met

N/A

Pending

Violated

Created On

Filtering by date or time.
This filter has the following quick filter options:

CHAPTER 29. TASK MANAGEMENT

153

Last Hour

Today

Last 24 Hours

Last 7 Days

Last 30 Days

Custom
Selecting Custom date and time filtering opens a calendar tool for selecting a date and time
range.

Figure 29.2. Search by Date

29.2. CREATING CUSTOM TASK FILTERS

You can create a custom task filter based on a provided query in Menu → Manage → Tasks, or in Menu
→ Track → Task Inbox for tasks assigned to the current user.

Procedure

1. In Business Central, go to Menu → Manage → Tasks

2. In the Manage Tasks page, click the advanced filters icon on the left to open the list of
Advanced Filters options.

3. In the Advanced Filters panel, enter the name and description of the filter, and click Add New.

4. In the Select column drop-down menu, choose name.
The content of the drop-down menu changes to name != value1.

5. Click the drop-down menu again and choose equals to.

6. Rewrite the value of the text field to the name of the task you want to filter. Note that the name
must match the value defined in the associated business process:

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

154

7. Click Ok to save the custom task filter.

After you apply the filter with a specified restriction, the set of configurable columns is based on
the specific custom task filter and contains the following column options:

CHAPTER 29. TASK MANAGEMENT

155

29.3. MANAGING TASKS USING A DEFAULT FILTER

You can set a task filter as a default filter using the Saved Filter option in Business Central. A default
filter will be executed every time when the page is open by the user.

Procedure

1. In Business Central, go to Menu → Track → Task Inbox or go to Menu → Manage → Tasks

2. On the Task Inbox page or the Manage Tasks page, click the star icon on the left of the page to
expand the Saved Filters panel.
In the Saved Filters panel, you can view the saved advanced filters.

Default filter selection for Tasks or Task Inbox

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

156

3. In the Saved Filters panel, set a saved task filter as the default filter.

29.4. VIEWING TASK VARIABLES USING BASIC FILTERS

Business Central provides basic filters to view task variables in Manage Tasks and Task Inbox. You can
view the task variables of the task as columns using Show/hide columns.

Procedure

1. In Business Central, go to Menu → Manage → Tasks or go to Menu → Track → Task Inbox.

2. On the Task Inbox page, click the filter icon on the left of the page to expand the Filters panel

3. In the Filters panel, select the Task Name.
The filter is applied on the current task list.

4. Click Show/hide columns on the upper right of the tasks list and the task variables of the
specified task id will be displayed.

5. Click the star icon to open the Saved Filters panel.
In the Saved Filters panel, you can view all the saved advanced filters.

29.5. VIEWING TASK VARIABLES USING ADVANCED FILTERS

You can use the Advanced Filters option in Business Central to view task variables in Manage Tasks
and Task Inbox. When you create a filter with the task defined, you can view the task variables of the
task as columns using Show/hide columns.

Procedure

1. In Business Central, go to Menu → Manage → Tasks or go to Menu → Track → Task Inbox.

2. On the Manage Tasks page or the Task Inbox page, click the advanced filters icon to expand
the Advanced Filters panel.

3. In the Advanced Filters panel, enter the name and description of the filter, and click Add New.

4. From the Select column list, select the name attribute. The value will change to name != value1.

5. From the Select column list, select equals to for the logical query.

6. In the text field, enter the name of the task.

7. Click Save and the filter is applied on the current task list.

8. Click Show/hide columns on the upper right of the tasks list and the task variables of the

CHAPTER 29. TASK MANAGEMENT

157

8. Click Show/hide columns on the upper right of the tasks list and the task variables of the
specified task id will be displayed.

9. Click the star icon to open the Saved Filters panel.
In the Saved Filters panel, you can view all the saved advanced filters.

29.6. MANAGING CUSTOM TASKS IN BUSINESS CENTRAL

Custom tasks (work items) are tasks that can run custom logic. You can customize and reuse custom
tasks across multiple business processes or across all projects in Business Central. You can also add
custom elements in the designer palette, including name, icon, sub-category, input and output
parameters, and documentation. Red Hat Process Automation Manager provides a set of custom tasks
within the custom task repository in Business Central. You can enable or disable the default custom
tasks and upload custom tasks into Business Central to implement the tasks in the relevant processes.

NOTE

Red Hat Process Automation Manager includes a limited set of supported custom tasks.
Custom tasks that are not included in Red Hat Process Automation Manager are not
supported.

Procedure

1. In Business Central, click in the upper-right corner and select Custom Tasks
Administration.
This page lists the custom task installation settings and available custom tasks for processes in
projects throughout Business Central. The custom tasks that you enable on this page become
available in the project-level settings where you can then install each custom task to be used in
processes. The way in which the custom tasks are installed in a project is determined by the
global settings that you enable or disable under Settings on this Custom Tasks Administration
page.

2. Under Settings, enable or disable each setting to determine how the available custom tasks are
implemented when a user installs them at the project level.
The following custom task settings are available:

Install as Maven artifact: Uploads the custom task JAR file to the Maven repository that is
configured with Business Central, if the file is not already present.

Install custom task dependencies into project: Adds any custom task dependencies to the
pom.xml file of the project where the task is installed.

Use version range when installing custom task into project: Uses a version range instead
of a fixed version of a custom task that is added as a project dependency. Example: [7.16,)
instead of 7.16.0.Final

3. Enable or disable (set to ON or OFF) any available custom tasks as needed. Custom tasks that
you enable are displayed in project-level settings for all projects in Business Central.

Figure 29.3. Enable custom tasks and custom task settings

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

158

Figure 29.3. Enable custom tasks and custom task settings

4. To add a custom task, click Add Custom Task, browse to the relevant JAR file, and click the
Upload icon. If a class implements a WorkItemHandler, you can replace annotations with a .wid
file by adding the file to Business Central separately.

5. Optional: To remove a custom task, click remove on the row of the custom task you want to
remove and click Ok to confirm removal.

6. After you configure all required custom tasks, navigate to a project in Business Central and go
to the project Settings → Custom Tasks page to view the available custom tasks that you
enabled.

7. For each custom task, click Install to make the task available to the processes in that project or
click Uninstall to exclude the task from the processes in the project.

8. If you are prompted for additional information when you install a custom task, enter the required
information and click Install again.
The required parameters for the custom task depend on the type of task. For example, rule and
decision tasks require artifact GAV information (Group ID, Artifact ID, Version), email tasks
require host and port access information, and REST tasks require API credentials. Other custom
tasks might not require any additional parameters.

Figure 29.4. Install custom tasks for use in processes

CHAPTER 29. TASK MANAGEMENT

159

Figure 29.4. Install custom tasks for use in processes

9. Click Save.

10. Return to the project page, select or add a business process in the project, and in the process
designer palette, select the Custom Tasks option to view the available custom tasks that you
enabled and installed:

Figure 29.5. Access installed custom tasks in process designer

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

160

Figure 29.5. Access installed custom tasks in process designer

29.7. USER TASK ADMINISTRATION

User tasks enable you to include human actions as input to the business processes that you create. User
task administration provides methods to manipulate user and group task assignments, data handling,
time-based automatic notifications, and reassignments.

The following user task operations are available in Business Central:

add/remove potential owners - by task id: Adds or removes users and groups using the task
ID.

add/remove excluded owners - by task id: Adds or removes excluded owners using the task
ID.

CHAPTER 29. TASK MANAGEMENT

161

add/remove business administrators - by task id: Adds or removes business administrators
using the task ID.

add task inputs - by task id: Provides a way to modify task input content after a task is created
using the task ID.

remove task inputs - by task id: Removes task input variables using the task ID.

remove task output - by task id: Removes task output variables using the task ID.

schedules new reassignment to given users/groups after given time elapses - by task id:
Schedules automatic reassignment based on the time expression and the state of the task:

reassign if not started: Used if the task was not moved to the InProgress state.

reassign if not completed: Used if the task was not moved to the Completed state.

schedules new email notification to given users/groups after given time elapses - by task id:
Schedules automatic email notification based on the time expression and the state of the task:

notify if not started: Used if the task was not moved to the InProgress state.

notify if not completed: Used if the task was not moved to the Completed state.

list scheduled task notifications - by task id: Returns all active task notifications using the task
ID.

list scheduled task reassignments - by task id: Returns all active tasks reassignments using the
task ID.

cancel task notification - by task id and notification id: Cancels and unschedules task
notification using the task ID.

cancel task reassignment - by task id and reassignment id: Cancels and unschedules task
reassignment using the task ID.

29.8. BULK ACTIONS ON TASKS

In the Tasks and Task Inbox pages in Business Central, you can perform bulk actions over multiple tasks
in a single operation.

NOTE

If a specified bulk action is not permitted based on the task status, a notification is
displayed and the operation is not executed on that particular task.

29.8.1. Claiming tasks in bulk

After you create tasks in Business Central, you can claim the available tasks in bulk.

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

162

To view the Tasks page, select Menu → Manage → Tasks.

2. To claim the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Claim.

4. To confirm, click Claim on the Claim selected tasks window.

For each task selected, a notification is displayed showing the result.

29.8.2. Releasing tasks in bulk

You can release your owned tasks in bulk for others to claim.

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To release the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Release.

4. To confirm, click Release on the Release selected tasks window.

For each task selected, a notification is displayed showing the result.

29.8.3. Resuming tasks in bulk

If there are suspended tasks in Business Central, you can resume them in bulk.

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To resume the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Resume.

4. To confirm, click Resume on the Resume selected tasks window.

For each task selected, a notification is displayed showing the result.

29.8.4. Suspending tasks in bulk

After you create tasks in Business Central, you can suspend the tasks in bulk.

CHAPTER 29. TASK MANAGEMENT

163

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To suspend the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Suspend.

4. To confirm, click Suspend on the Suspend selected tasks window.

For each task selected, a notification is displayed showing the result.

29.8.5. Reassigning tasks in bulk

After you create tasks in Business Central, you can reassign your tasks in bulk and delegate them to
others.

Procedure

1. In Business Central, complete one of the following steps:

To view the Task Inbox page, select Menu → Track → Task Inbox.

To view the Tasks page, select Menu → Manage → Tasks.

2. To reassign the tasks in bulk, on the Task Inbox page or the Manage Tasks page, select two or
more tasks from the Task table.

3. From the Bulk Actions drop-down list, select Bulk Reassign.

4. In the Tasks reassignment window, enter the user ID of the user to whom you want to reassign
the tasks.

5. Click Delegate.

For each task selected, a notification is displayed showing the result.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

164

CHAPTER 30. MANAGING LOG DATA
Red Hat Process Automation Manager manages the required maintenance runtime data. It removes
some data automatically, including the following data types:

Process instance data, which is removed upon process instance completion.

Work item data, which is removed upon work item completion.

Task instance data, which is removed upon completion of a process to which the given task
belongs.

Runtime data that is not cleaned automatically includes session information data that is based on the
selected runtime strategy.

Singleton strategy ensures that runtime data of session information is not automatically
removed.

Per request strategy allows automatic removal when a request is terminated.

Per process instances automatically removes process instance data when a process instance is
mapped to a session that is completed or aborted.

Red Hat Process Automation Manager also provides audit log data tables. You can use these tables to
keep track of current and past process instances. By default, Red Hat Process Automation Manager
does not remove any data from audit log tables.

There are three ways to manage and maintain the audit data tables:

You can set up an automatic cleanup of these tables using Business Central, as described in
Section 30.1, “Setting up automatic cleanup job”.

You can remove information from the tables manually using the Java API, as described in
Section 30.2, “Manual cleanup” .

You can run a custom query on the Red Hat Process Automation Manager database, including
the audit log tables, as described in Section 30.4, “Running a custom query on the Red Hat
Process Automation Manager database”.

30.1. SETTING UP AUTOMATIC CLEANUP JOB

You can set up an automatic cleanup job in Business Central.

Procedure

1. In Business Central, go to Manage > Jobs.

2. Click New Job.

3. Enter values for Business Key, Due On, and Retries fields.

4. Enter the following command into the Type field.

org.jbpm.executor.commands.LogCleanupCommand

5. To configure parameters, complete the following steps:
a. Click the Advanced tab.

CHAPTER 30. MANAGING LOG DATA

165

a. Click the Advanced tab.

b. Click Add Parameter.

c. In the Key column, enter a parameter.

d. In the Value column, enter a parameter.

For the list of parameters for the command, see Section 30.3, “Removing logs from the
database”.

6. Click Create.

Business Central creates the automatic cleanup job.

30.2. MANUAL CLEANUP

To perform manual cleanup, you can use the audit Java API. The audit API consists of the following
areas:

Table 30.1. Audit API areas

Name Description

Process audit It is used to clean up process, node and variable logs that are accessible
in the jbpm-audit module.

For example, you can access the module as follows:
org.jbpm.process.audit.JPAAuditLogService

Task audit It is used to clean up tasks and events that are accessible in the jbpm-
human-task-audit module.

For example, you can access the module as follows:
org.jbpm.services.task.audit.service.TaskJPAAuditService

Executor jobs It is used to clean up executor jobs and errors that are accessible in the
jbpm-executor module.

For example, you can access the module as follows:
org.jbpm.executor.impl.jpa.ExecutorJPAAuditService

30.3. REMOVING LOGS FROM THE DATABASE

Use LogCleanupCommand executor command to clean up the data, which is using the database space.
The LogCleanupCommand consists of logic to automatically clean up all or selected data.

There are several configuration options that you can use with the LogCleanupCommand:

Table 30.2. LogCleanupCommand parameters table

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

166

Name Description Is Exclusive

SkipProcessLog Indicates whether process and node instances, and
process variables log cleanup is skipped when the
command runs. The default value is false.

No, it is used with other
parameters.

SkipTaskLog Indicates if the task audit and event log cleanup are
skipped. The default value is false.

No, it is used with other
parameters.

SkipExecutorLog Indicates if Red Hat Process Automation Manager
executor entries cleanup is skipped. The default
value is false.

No, it is used with other
parameters.

SingleRun Indicates if a job routine runs only once. The default
value is false.

No, it is used with other
parameters.

NextRun Schedules the next job execution. The default value
is 24h.

For example, set to 12h for jobs to be executed
every 12 hours. The schedule is ignored if you set
SingleRun to true, unless you set both SingleRun
and NextRun. If both are set, the NextRun schedule
takes priority. The ISO format can be used to set the
precise date.

No, it is used with other
parameters.

OlderThan Logs that are older than the specified date are
removed. The date format is YYYY-MM-DD.
Usually, this parameter is used for single run jobs.

Yes, it is not used with
OlderThanPeriod
parameter.

OlderThanPeriod Logs that are older than the specified timer
expression are removed. For example, set 30d to
remove logs, which are older than 30 days.

Yes, it is not used with
OlderThan parameter.

ForProcess Specifies process definition ID for logs that are
removed.

No, it is used with other
parameters.

RecordsPerTransacti
on

Indicates the number of records in a transaction that
is removed. The default value is 0, indicating all the
records.

No, it is used with other
parameters.

ForDeployment Specifies deployment ID of the logs that are
removed.

No, it is used with other
parameters.

EmfName Persistence unit name that is used to perform delete
operation.

Not applicable

NOTE

CHAPTER 30. MANAGING LOG DATA

167

NOTE

LogCleanupCommand does not remove any active instances, such as running process
instances, task instances, or executor jobs.

30.4. RUNNING A CUSTOM QUERY ON THE RED HAT PROCESS
AUTOMATION MANAGER DATABASE

You can use the ExecuteSQLQueryCommand executor command to run a custom query on the Red
Hat Process Automation Manager database, including the audit log data tables. You can set up a job
that runs this command in Business Central.

Procedure

1. In Business Central, select Manage > Jobs.

2. Click New Job.

3. Enter values for Business Key, Due On, and Retries fields.

4. Enter the following command into the Type field.

org.jbpm.executor.commands.ExecuteSQLQueryCommand

5. To configure parameters, complete the following steps:

a. Open the Advanced tab.

b. Click Add Parameter.

c. In the Key column, enter a parameter value.

d. In the Value column, enter a parameter value.

For the list of parameters for the command, see Section 30.4.1, “Parameters for the
ExecuteSQLQueryCommand command”.

6. Click Create. Business Central creates the custom query job.

7. Optional: If you want to retrieve the results of the query, complete the following steps:

a. In the list of jobs that Business Central displays, find the job that you started. If the job is
not present in the list, remove any filters from the Active filters list.

b. Record the id value for the job.

c. Using a web browser, access the Swagger documentation on your KIE Server at
<kie_server_address>/docs, for example, http://localhost:8080/kie-server/docs/.

d. Click the GET /server/jobs/{jobId} request.

e. In the jobId field, enter the id value that you recorded.

f. From the withErrors list, select true.

g. From the withData list, select true.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

168

h. Click Execute.

i. Review the Server response field. If the SQL query succeeded, the result is under the
"response-data" key.

30.4.1. Parameters for the ExecuteSQLQueryCommand command

The ExecuteSQLQueryCommand executor command runs a custom query on the Red Hat Process
Automation Manager database, including the audit log tables. For the schema for the audit log tables,
see Process engine in Red Hat Process Automation Manager .

You can configure the following parameters for the ExecuteSQLQueryCommand command.

Table 30.3. ExecuteSQLQueryCommand parameters table

Name Description

SingleRun true if the query can be triggered once. false if the query can be triggered
multiple times.

EmfName name of the persistence unit to be used to run the query

businessKey The business key to use with the query. If configuring the command in Business
Central, use the business key that you set for the job

SQL The native SQL query to execute. Preface parameters with the : character

parametersList List of all parameters in the SQL query. Separate the parameters with the ,
character

SQL parameter name The value for the SQL parameter. Create a separate command parameter for
every SQL parameter

For example, you might use a query with two parameters:

Set the following parameters for the ExecuteSQLQueryCommand command:

SQL: SELECT * FROM RequestInfo WHERE id = :paramId AND businessKey = :paramKey ;

parametersList: paramId,paramKey

paramId: The value for id

paramKey: The value for businessKey

SELECT * FROM RequestInfo WHERE id = :paramId AND businessKey = :paramKey

CHAPTER 30. MANAGING LOG DATA

169

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#auditlog-datamodel-ref_process-engine

CHAPTER 31. EXECUTION ERROR MANAGEMENT
When an execution error occurs for a business process, the process stops and reverts to the most recent
stable state (the closest safe point) and continues its execution. If an error of any kind is not handled by
the process the entire transaction rolls back, leaving the process instance in the previous wait state.
Execution errors are visible to the caller that sent the request to the process engine.

Users with process administrator (process-admin) or administrator (admin) roles can access execution
error messages in Business Central. Execution error messaging provides the following primary benefits:

Better traceability

Visibility in case of critical processes

Reporting and analytics based on error situations

External system error handling and compensation

31.1. VIEWING PROCESS EXECUTION ERRORS IN BUSINESS CENTRAL

You can view process errors in two locations in Business Central:

Menu → Manage → Process Instances

Menu → Manage → Execution Errors

In the Manage Process Instances page, the Errors column displays the number of errors, if any, for the
current process instance.

Prerequisites

An error has occurred while running a process in Business Central.

Procedure

1. In Business Central, go to Menu → Manage → Process Instances and hover over the number
shown in the Errors column.

2. Click the number of errors shown in the Errors column to navigate to the Manage Execution
Errors page.
The Manage Execution Errors page shows a list of errors for all process instances.

31.2. MANAGING EXECUTION ERRORS

By definition, every process error that is detected and stored is unacknowledged and must be handled
by someone or something (in case of automatic error recovery). You can view a filtered list of errors that
were or were not acknowledged. Acknowledging an error saves the user information and time stamp for
traceability.

Procedure

1. In Business Central, select Menu → Manage → Execution Errors.

2. Select an error from the list to open the Details tab. The Details tab displays information about
the error or errors.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

170

3. Click the Acknowledge button to acknowledge the error. You can view acknowledged errors
later by selecting Yes on the Acknowledged filter in the Manage Execution Errors page.
If the error is related to a task, a Go to Task button is displayed.

4. Optional: Click the Go to Task button, if applicable, to view the associated job information in the
Manage Tasks page.
In the Manage Tasks page, you can restart, reschedule, or retry the corresponding task.

31.3. ERROR FILTERING

For execution errors in the Manage Execution Errors screen, you can use the Filters panel to display
only the errors that fit chosen criteria.

Prerequisites

The Manage Execution Errors screen is open.

Procedure

Make changes in the Filters panel on the left side of the screen as necessary:

Figure 31.1. Filtering Errors - Default View

CHAPTER 31. EXECUTION ERROR MANAGEMENT

171

Figure 31.1. Filtering Errors - Default View

Type

Filter execution errors by type. You can select multiple type filters. If you deselect all types, all errors
are displayed, regardless of type.
The following execution error types are available:

DB

Task

Process

Job

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

172

Process Instance Id

Filter by process instance ID.
Input: Numeric

Job Id

Filter by job ID. The job id is created automatically when the job is created.
Input: Numeric

Id

Filter by process instance ID.
Input: Numeric

Acknowledged

Filter errors that have been or have not been acknowledged.

Error Date

Filtering by the date or time that the error occurred.
This filter has the following quick filter options:

Last Hour

Today

Last 24 Hours

Last 7 Days

Last 30 Days

Custom
Select the Custom option to open a calendar tool for selecting a date and time range.

Figure 31.2. Search by Date

CHAPTER 31. EXECUTION ERROR MANAGEMENT

173

31.4. AUTO-ACKNOWLEDGING EXECUTION ERRORS

By default, execution errors are unacknowledged when they occur. To avoid the need to acknowledge
every execution error manually, you can configure jobs to auto-acknowledge some or all execution
errors.

NOTE

If you configure an auto-acknowledge job, the job runs every day by default. To auto-
acknowledge execution errors only once, set the SingleRun parameter to true.

Procedure

1. In Business Central, select Menu → Manage → Jobs.

2. In the top right of the screen, click New Job.

3. Enter any identifier for the job in the Business Key field.

4. In the Type field, enter the type of the auto-acknowledge job:

org.jbpm.executor.commands.error.JobAutoAckErrorCommand: Acknowledge all
execution errors of type Job where the job to which the error relates is now cancelled,
completed, or rescheduled for another execution.

org.jbpm.executor.commands.error.TaskAutoAckErrorCommand: Acknowledge all
execution errors of type Task where the task to which the error relates is in an exit state
(completed, failed, exited, obsolete).

org.jbpm.executor.commands.error.ProcessAutoAckErrorCommand: Acknowledge all
execution errors of any type where the process instance from which the error originates is
already finished (completed or aborted), or the task from which the error originates is
already finished.

5. Select a Due On time for the job to be completed:

To run the job immediately, select the Run now option.

To run the job at a specific time, select Run later. A date and time field appears next to the
Run later option. Click the field to open the calendar and schedule a specific time and date
for the job.

Figure 31.3. Example of scheduling an auto-acknowledge job

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

174

Figure 31.3. Example of scheduling an auto-acknowledge job

6. By default, after the initial run the job runs once every day . To change this setting, complete
the following steps:

a. Click the Advanced tab.

b. Click the Add Parameter button.

c. Enter the configuration parameter you want to apply to the job:

If you want the job to run only once, add the SingleRun parameter with the value of
true.

If you want he job to run periodically, add the NextRun parameter with the value of a
valid time expression, such as 2h, 5d, 1m, and so on.

d. Optional: To set a custom entity manager factory name, enter the EmfName parameter.

Figure 31.4. Example of setting parameters for an auto-acknowledge job

CHAPTER 31. EXECUTION ERROR MANAGEMENT

175

Figure 31.4. Example of setting parameters for an auto-acknowledge job

7. Click Create to create the job and return to the Manage Jobs page.

31.5. CLEANING UP THE ERROR LIST

The process engine stores execution errors in the ExecutionErrorInfo database table. If you want to
clean up the table and remove errors permanently, you can schedule a job with the
org.jbpm.executor.commands.ExecutionErrorCleanupCommand command.

The command deletes execution errors that are associated with completed or aborted process
instances.

Procedure

1. In Business Central, select Menu → Manage → Jobs.

2. In the top right of the screen, click New Job.

3. Type any identifier for the job into the Business Key field.

4. In the Type field, enter org.jbpm.executor.commands.ExecutionErrorCleanupCommand.

5. Select a Due On time for the job to be completed:

To run the job immediately, select the Run now option.

To run the job at a specific time, select Run later. A date and time field appears next to the
Run later option. Click the field to open the calendar and schedule a specific time and date
for the job.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

176

6. Click the Advanced tab.

7. Add any of the following parameters as necessary:

DateFormat: The format for dates in parameters. If not set, yyyy-MM-dd is used, as in the
pattern of the SimpleDateFormat class.

EmfName: Name of the custom entity manager factory to be used for queries.

SingleRun: Schedules the job for a single execution. If set to true, the job runs once and is
not scheduled for repeated execution.

NextRun: Schedules the job for repeated execution in a time period. The value must be a
valid time expression, for example, 1d, 5h, 10m.

OlderThan: Deletes only errors that are older than a set date. The value must be a date.

OlderThanPeriod: Deletes only errors that are older than a given time period, compared to
the current time. The value must be a valid time expression, for example, 1d, 5h, 10m.

ForProcess: Deletes only errors that are related to a process definition. The value must be
the identifier of the process definiton.

ForProcessInstance: Deletes only errors that are related to a process instance. The value
must be the identifier of the process instance.

ForDeployment: Deletes only errors that are related to a deployment identifier. The value
must be the deployment identifier.

CHAPTER 31. EXECUTION ERROR MANAGEMENT

177

CHAPTER 32. PROCESS INSTANCE MIGRATION
Process instance migration (PIM) is a standalone service containing a user interface and a back-end. It is
packaged as a Quarkus mutable JAR file. You can use the PIM service to define the migration between
two different process definitions, known as a migration plan. The user can then apply the migration plan
to the running process instance in a specific KIE Server.

For more information about the PIM service, see Process Instance Migration Service in KIE (Drools,
OptaPlanner and jBPM).

32.1. INSTALLING THE PROCESS INSTANCE MIGRATION SERVICE

You can use the process instance migration (PIM) service to create, export and execute migration plans.
The PIM service is provided through a GitHub repository. To install the PIM service, clone the GitHub
repository, then run the service and access it in a web browser.

Prerequisites

You have defined processes in a backup-ed Red Hat Process Automation Manager
development environment.

Java Runtime Environment (JRE) version 11 or later is installed.

Procedure

1. Download the rhpam-7.12.0-add-ons.zip file from the Software Downloads page for Red Hat
Process Automation Manager 7.12.

2. Extract the rhpam-7.12.0-add-ons.zip file.

3. Extract the rhpam-7.12.0-process-migration-service.zip file.

4. Enter the following commands to create the database tables. Replace <user> with your user
name and <host> with the name of the local host:

$ psql -U <user> -h <host> -d rhpam7 -f ~/process-migration/ddl-scripts/postgres/postgresql-
quartz-schema.sql
$ psql -U <user> -h <host> -d rhpam7 -f ~/process-migration/ddl-scripts/postgres/postgresql-
pim-schema.sql

5. Change directory to the process-migration directory.

6. Use a text editor to create the servers.yaml configuration file with the following content and
save in the process-migration directory. In this example, replace <user_name> and
<password> with the credentials to log in to the KieServer.

7. Use a text editor to create the datasource.yaml configuration file with the following content
datasource.yaml and save in the process-migration directory. In this example, replace
<user_name> and <password> with the credentials to log in to the database:

kieservers:
 - host: http://localhost:8080/kie-server/services/rest/server
 username: <user_name>
 password: <password>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

178

https://github.com/kiegroup/droolsjbpm-integration/tree/master/process-migration-service
https://github.com/kiegroup
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhpam&productChanged=yes

8. Rebuild the quarkus-run.jar file to include the PostgreSQL driver:

$ java -jar -Dquarkus.launch.rebuild=true -Dquarkus.datasource.db-kind=postgresql quarkus-
app/quarkus-run.jar

The output of this command should be similar to the following example:

INFO [io.qua.dep.QuarkusAugmentor] (main) Quarkus augmentation completed in 2657ms

9. Run the quarkus-app JAR file:

$ java -jar -Dquarkus.http.port=8090 -
Dquarkus.config.locations=servers.yaml,datasource.yaml quarkus-app/quarkus-run.jar

This command returns output similar to the following example:

__ ____ __ _____ ___ __ ____ ______
 --/ __ \/ / / / _ | / _ \/ //_/ / / / __/
 -/ /_/ / /_/ / __ |/ , _/ ,< / /_/ /\ \
--________/_/ |_/_/|_/_/|_|____/___/
2022-03-11 13:04:18,261 INFO [org.fly.cor.int.lic.VersionPrinter] (main) Flyway Community
Edition 7.14.0 by Redgate
2022-03-11 13:04:18,262 INFO [org.fly.cor.int.dat.bas.BaseDatabaseType] (main) Database:
jdbc:postgresql://localhost:5432/rhpam7 (PostgreSQL 13.4)
2022-03-11 13:04:18,280 INFO [org.fly.cor.int.com.DbMigrate] (main) Current version of
schema "public": 1.0
2022-03-11 13:04:18,281 INFO [org.fly.cor.int.com.DbMigrate] (main) Schema "public" is up
to date. No migration necessary.
2022-03-11 13:04:18,601 INFO [org.qua.imp.jdb.JobStoreCMT] (main) Freed 0 triggers from
'acquired' / 'blocked' state.
2022-03-11 13:04:18,603 INFO [org.qua.imp.jdb.JobStoreCMT] (main) Recovering 0 jobs
that were in-progress at the time of the last shut-down.
2022-03-11 13:04:18,603 INFO [org.qua.imp.jdb.JobStoreCMT] (main) Recovery complete.
2022-03-11 13:04:18,603 INFO [org.qua.imp.jdb.JobStoreCMT] (main) Removed 0
'complete' triggers.
2022-03-11 13:04:18,603 INFO [org.qua.imp.jdb.JobStoreCMT] (main) Removed 0 stale
fired job entries.
2022-03-11 13:04:18,624 INFO [org.kie.ser.api.mar.MarshallerFactory] (main) Marshaller
extensions init
2022-03-11 13:04:18,710 INFO [org.kie.pro.ser.imp.KieServiceImpl] (main) Loaded kie
server configuration for:
org.kie.processmigration.model.config.KieServers$KieServer9579928Impl@4b6b5352
2022-03-11 13:04:18,715 INFO [org.kie.pro.ser.RecoveryService] (main) Resuming ongoing
migrations ...
2022-03-11 13:04:18,856 INFO [io.quarkus] (main) process-migration-service 7.59.0.Final-
redhat-00006 on JVM (powered by Quarkus 2.2.3.Final-redhat-00013) started in 1.443s.

quarkus:
 datasource:
 db-kind: postgresql
 jdbc:
 url: jdbc:postgresql://localhost:5432/rhpam7
 username: <user_name>
 password: <password>

CHAPTER 32. PROCESS INSTANCE MIGRATION

179

Listening on: http://0.0.0.0:8090
2022-03-11 13:04:18,857 INFO [io.quarkus] (main) Profile prod activated.
2022-03-11 13:04:18,857 INFO [io.quarkus] (main) Installed features: [agroal, cdi, config-
yaml, flyway, hibernate-orm, hibernate-orm-panache, jdbc-db2, jdbc-h2, jdbc-mariadb, jdbc-
mssql, jdbc-mysql, jdbc-oracle, jdbc-postgresql, narayana-jta, quartz, resteasy, resteasy-
jackson, scheduler, security, security-jdbc, security-ldap, security-properties-file, smallrye-
context-propagation, smallrye-health]

10. To access the Process Instance Migration application, enter http://localhost:8090/ in a web
browser .

11. When prompted, enter the user name admin and the password admin1!. The Process Instance
Migration console appears.

32.2. CREATING A MIGRATION PLAN

You can define the migration between two different process definitions, known as a migration plan, in
the process instance migration (PIM) service web UI.

Prerequisites

You have defined processes in a backup-ed Red Hat Process Automation Manager
development environment.

The process instance migration service is running.

Procedure

1. Enter http://localhost:8080 in a web browser.

2. Log in to the PIM service.

3. In the upper right corner of the Process Instance Migration page, from the KIE Service list
select the KIE Service you want to add a migration plan for.

4. Click Add Plan. The Add Migration Plan Wizard window opens.

5. In the Name field, enter a name for the migration plan.

6. Optional: In the Description field, enter a description for the migration plan.

7. Click Next.

8. In the Source ContainerID field, enter the source container ID.

9. In the Source ProcessId field, enter the source process ID.

10. Click Copy Source To Target.

11. In the Target ContainerID field, update the target container ID.

12. Click Retrieve Definition from backend and click Next.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

180

13. From the Source Nodes list, select the source node you want to map.

14. From the Target Nodes list, select the target node you want to map.

15. If the Source Process Definition Diagram pane is not displayed, click Show Source Diagram.

16. If the Target Process Definition Diagram pane is not displayed, click Show Target Diagram.

17. Optional: To modify the view in the diagram panes, perform any of the following tasks:

To select text, select the icon.

To pan, select the icon.

To zoom in, select the icon.

To zoom out, select the icon.

CHAPTER 32. PROCESS INSTANCE MIGRATION

181

To fit to viewer, select the icon.

18. Click Map these two nodes.

19. Click Next.

20. Optional: To export as a JSON file, click Export.

21. In the Review & Submit tab, review the plan and click Submit Plan.

22. Optional: To export as a JSON file, click Export.

23. Review the response and click Close.

32.3. EDITING A MIGRATION PLAN

You can edit a migration plan in the process instance migration (PIM) service web UI. You can modify
the migration plan name, description, specified nodes, and process instances.

Prerequisites

You have defined processes in a backup-ed Red Hat Process Automation Manager
development environment.

The PIM service is running.

Procedure

1. Enter http://localhost:8080 in a web browser.

2. Log in to the PIM service.

3. On the Process Instance Migration page, select the Edit Migration Plan icon on the
row of the migration plan you want to edit. The Edit Migration Plan window opens.

4. On each tab, modify the details you want to change.

5. Click Next.

6. Optional: To export as a JSON file, click Export.

7. In the Review & Submit tab, review the plan and click Submit Plan.

8. Optional: To export as a JSON file, click Export.

9. Review the response and click Close.

32.4. EXPORTING A MIGRATION PLAN

You can export migration plans as a JSON file using the process instance migration (PIM) service web
UI.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

182

Prerequisites

You have defined processes in a backup-ed Red Hat Process Automation Manager
development environment.

The PIM service is running.

Procedure

1. Enter http://localhost:8080 in a web browser.

2. Log in to the PIM service.

3. On the Process Instance Migration page, select the Export Migration Plan icon on
the row of the migration plan you want to execute. The Export Migration Plan window opens.

4. Review and click Export.

32.5. EXECUTING A MIGRATION PLAN

You can execute the migration plan in the process instance migration (PIM) service web UI.

Prerequisites

You have defined processes in a backup-ed Red Hat Process Automation Manager
development environment.

The PIM service is running.

Procedure

1. Enter http://localhost:8080 in a web browser.

2. Log in to the PIM service.

3. On the Process Instance Migration page, select the Execute Migration Plan icon on
the row of the migration plan you want to execute. The Execute Migration Plan Wizard window
opens.

4. From the migration plan table, select the check box on the row of each running process instance
you want to migrate, and click Next.

5. In the Callback URL field, enter the callback URL.

6. To the right of Run migration, perform one of the following tasks:

To execute the migration immediately, select Now.

To schedule the migration, select Schedule and in the text field, enter the date and time,
for example 06/20/2019 10:00 PM.

7. Click Next.

CHAPTER 32. PROCESS INSTANCE MIGRATION

183

8. Optional: To export as a JSON file, click Export.

9. Click Execute Plan.

10. Optional: To export as a JSON file, click Export.

11. Check the response and click Close.

32.6. DELETING A MIGRATION PLAN

You can delete a migration plan in the process instance migration (PIM) service web UI.

Prerequisites

You have defined processes in a backup-ed Red Hat Process Automation Manager
development environment.

The PIM service is running.

Procedure

1. Enter http://localhost:8080 in a web browser.

2. Log in to the PIM service.

3. On the Process Instance Migration page, select the Delete icon on the row of the
migration plan you want to delete. The Delete Migration Plan window opens.

4. Click Delete to confirm deletion.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

184

PART IV. DESIGNING AND BUILDING CASES FOR CASE
MANAGEMENT

As a developer, you can use Business Central to configure Red Hat Process Automation Manager assets
for case management.

Case management differs from Business Process Management (BPM). It focuses more on the actual
data being handled throughout the case rather than on the sequence of steps taken to complete a goal.
Case data is the most important piece of information in automated case handling, while business
context and decision-making are in the hands of the human case worker.

Red Hat Process Automation Manager includes the IT_Orders sample project in Business Central. This
document refers to the sample project to explain case management concepts and provide examples.

The Getting started with case management tutorial describes how to create and test a new IT_Orders
project in Business Central. After reviewing the concepts in this guide, follow the procedures in the
tutorial to ensure that you are able to successfully create, deploy, and test your own case project.

Prerequisites

Red Hat JBoss Enterprise Application Platform 7.4 is installed. For information about installing
Red Hat JBoss Enterprise Application Platform 7.4, see Red Hat JBoss Enterprise Application
Platform 7.4 Installation Guide.

Red Hat Process Automation Manager is installed. For information about installing Red Hat
Process Automation Manager, see Planning a Red Hat Process Automation Manager installation .

Red Hat Process Automation Manager is running and you can log in to Business Central with
the user role. For information about users and permissions, see Planning a Red Hat Process
Automation Manager installation.

The Showcase application is deployed. For information about how to install and log in to the
Showcase application, see Using the Showcase application for case management .

PART IV. DESIGNING AND BUILDING CASES FOR CASE MANAGEMENT

185

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-case-management
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-showcase-application

CHAPTER 33. CASE MANAGEMENT
Case management is an extension of Business Process Management (BPM) that enables you to manage
adaptable business processes.

BPM is a management practice used to automate tasks that are repeatable and have a common
pattern, with a focus on optimization by perfecting a process. Business processes are usually modeled
with clearly defined paths leading to a business goal. This requires a lot of predictability, usually based on
mass-production principles. However, many real-world applications cannot be described completely
from start to finish (including all possible paths, deviations, and exceptions). Using a process-oriented
approach in certain cases can lead to complex solutions that are hard to maintain.

Case management provides problem resolution for non-repeatable, unpredictable processes as
opposed to the efficiency-oriented approach of BPM for routine, predictable tasks. It manages one-off
situations when the process cannot be predicted in advance. A case definition usually consists of loosely
coupled process fragments that can be connected directly or indirectly to lead to certain milestones and
ultimately a business goal, while the process is managed dynamically in response to changes that occur
during run time.

In Red Hat Process Automation Manager, case management includes the following core process engine
features:

Case file instance

A per case runtime strategy

Case comments

Milestones

Stages

Ad hoc fragments

Dynamic tasks and processes

Case identifier (correlation key)

Case lifecycle (close, reopen, cancel, destroy)

A case definition is always an ad hoc process definition and does not require an explicit start node. The
case definition is the main entry point for the business use case.

A process definition is introduced as a supporting construct of the case and can be invoked either as
defined in the case definition or dynamically to bring in additional processing when required. A case
definition defines the following new objects:

Activities (required)

Case file (required)

Milestones

Roles

Stages

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

186

CHAPTER 34. CASE MANAGEMENT MODEL AND NOTATION
You can use Business Central to import, view, and modify the content of Case Management Model and
Notation (CMMN) files. When authoring a project, you can import your case management model and
then select it from the asset list to view or modify it in a standard XML editor.

The following CMMN constructs are currently available:

Tasks (human task, process task, decision task, case task)

Discretionary tasks (same as above)

Stages

Milestones

Case file items

Sentries (entry and exit)

The following tasks are not supported:

Required

Repeat

Manual activation

Sentries for individual tasks are limited to entry criteria while entry and exit criteria are supported for
stages and milestones. Decision tasks map by default to a DMN decision. Event listeners are not
supported.

Red Hat Process Automation Manager does not provide any modeling capabilities for CMMN and
focuses solely on the execution of the model.

CHAPTER 34. CASE MANAGEMENT MODEL AND NOTATION

187

CHAPTER 35. CASE FILES
A case instance is a single instance of a case definition and encapsulates the business context. All case
instance data is stored in the case file, which is accessible to all process instances that might participate
in the particular case instance. Each case instance and its case file are completely isolated from the
other cases. Only users assigned to a required case role can access the case file.

A case file is used in case management as a repository of data for the entire case instance. It contains all
roles, data objects, the data map, and any other data. The case can be closed and reopened at a later
date with the same case file attached. A case instance can be closed at any time and does not require a
specific resolution to be completed.

The case file can also include embedded documentation, references, PDF attachments, web links, and
other options.

35.1. CONFIGURING CASE ID PREFIXES

The caseId parameter is a string value that is the identifier of the case instance. You can configure the
Case ID Prefix in Red Hat Process Automation Manager designer to distinguish different types of
cases.

The following procedures uses the IT_Orders sample project to demonstrate how to create unique case
ID prefixes for specific business needs.

Prerequisites

The IT_Orders sample project is open in Business Central.

Procedure

1. In Business Central, go to Menu → Design → Projects. If there are existing projects, you can
access the samples by clicking the MySpace default space and selecting Try Samples from the
Add Project drop-down menu. If there are no existing projects, click Try samples.

2. Select IT_Orders and click Ok.

3. In the Assets window, click the orderhardware business process to open the designer.

4. Click on an empty space on the canvas and in the upper-right corner, click the Properties
icon.

5. Scroll down and expand Case Management.

6. In the Case ID Prefix field, enter an ID value. The ID format is internally defined as ID-
XXXXXXXXXX, where XXXXXXXXXX is a generated number that provides a unique ID for the
case instance.
If a prefix is not provided, the default prefix is CASE with the following identifiers:

CASE-0000000001

CASE-0000000002

CASE-0000000003

You can specify any prefix. For example, if you specify the prefix IT, the following identifiers are

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

188

You can specify any prefix. For example, if you specify the prefix IT, the following identifiers are
generated:

IT-0000000001

IT-0000000002

IT-0000000003

Figure 35.1. Case ID Prefix field

35.2. CONFIGURING CASE ID EXPRESSIONS

The following procedures uses the IT_Orders sample project to demonstrate how set metadata
attribute keys to customize expressions for generating the caseId.

Prerequisites

The IT_Orders sample project is open in Business Central.

Procedure

1. In Business Central, go to Menu → Design → Projects. If there are existing projects, you can
access the samples by clicking the MySpace default space and selecting Try Samples from the
Add Project drop-down menu. If there are no existing projects, click Try samples.

2. Select IT_Orders and click Ok.

3. In the Assets window, click the orderhardware business process to open the designer.

4. Click on an empty space on the canvas and in the upper-right corner, click the Properties
icon.

5. Expand the Advanced menu to access the Metadata Attributes fields.

6. Specify one of the following functions for the customCaseIdPrefix metadata attribute:

LPAD: Left padding

RPAD: Right padding

TRUNCATE: Truncate

UPPER: Upper case

Figure 35.2. Setting the UPPER function for the customCaseIdPrefix metadata attribute

CHAPTER 35. CASE FILES

189

Figure 35.2. Setting the UPPER function for the customCaseIdPrefix metadata attribute

In this example, type is a variable set in the Case File Variables field, which during runtime a
user may define to it the value type1. UPPER is a pre-built function to uppercase a variable, and
IT- is a static prefix. The results are dynamic case IDs such as IT-TYPE1-0000000001, IT-TYPE1-
0000000002, and IT-TYPE1-0000000003.

Figure 35.3. Case File Variables

If the customCaseIdPrefixIsSequence case metadata attribute is set to false (default value is
true), the case instance will not create any sequence and the caseIdPrefix expression is the
case ID. For example, if generating case IDs based on social security numbers, no specific
sequence or instance identifiers are required.

The customCaseIdPrefixIsSequence metadata attribute is optionally added and set to false
(default value is true) to disable the numeric sequences for the case IDs. This is useful if an
expression used for custom case IDs already contains a case file variable to express unique
business identifiers instead of the generic sequence values. For example, if generating case IDs
based on social security numbers, no specific sequence or instance identifiers are required. For
the example below, SOCIAL_SECURITY_NUMBER is also a variable declared as a case file
variable.

Figure 35.4. customCaseIdPrefixIsSequence metadata attribute

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

190

Figure 35.4. customCaseIdPrefixIsSequence metadata attribute

The IS_PREFIX_SEQUENCE case file variable is optionally added as a flag during runtime to
disable or enable the sequence generation for case IDs. For example, there is no need to create
a sequence suffix for medical insurance coverage for an individual. For a multi-family insurance
policy, the company might set the IS_PREFIX_SEQUENCE case variable to true to aggregate
a sequence number for each member of the family.

The result of using the customCaseIdPrefixIsSequence metadata attribute statically as false
or using the IS_PREFIX_SEQUENCE case file variable and setting during runtime for it the
value false, is the same.

Figure 35.5. IS_PREFIX_SEQUENCE case variable

CHAPTER 35. CASE FILES

191

CHAPTER 36. SUBCASES
Subcases provide the flexibility to compose complex cases that consist of other cases. This means that
you can split large and complex cases into multiple layers of abstraction and even multiple case projects.
This is similar to splitting a process into multiple sub-processes.

A subcase is another case definition that is invoked from within another case instance or a regular
process instance. It has all of the capabilities of a regular case instance:

It has a dedicated case file.

It is isolated from any other case instance.

It has its own set of case roles.

It has its own case prefix.

You can use the process designer to add subcases to your case definition. A subcase is a case within
your case project, similar to having a sub-process within your process. Subcases can also be added to a
regular business process. Doing this enables you to start a case from within a process instance.

For more information about adding a subcase to your case definition, see Getting started with case
management.

The Sub Case Data I/O window supports the following set of input parameters that enable you to
configure and start the subcase:

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

192

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-case-management

Independent

Optional indicator that tells the process engine whether or not the case instance is independent. If it
is independent, the main case instance does not wait for its completion. The value of this property is
false by default.

GroupRole_XXX

Optional group to case role mapping. The role names belonging to this case instance can be
referenced here, meaning that participants of the main case can be mapped to participants of the
subcase. This means that the group assigned to the main case is automatically assigned to the
subcase, where XXX is the role name and the value of the property is the value of the group role
assignment.

DataAccess_XXX

Optional data access restrictions where XXX is the name of the data item and the value of the
property is the access restrictions.

DestroyOnAbort

Optional indicator that tells the process engine whether to cancel or destroy the subcase when the
subcase activity is aborted. The default value is true.

UserRole_XXX

CHAPTER 36. SUBCASES

193

Optional user to case role mapping. You can reference the case instance role names here, meaning
that an owner of the main case can be mapped to an owner of the subcase. The person assigned to
the main case is automatically assigned to the subcase, where XXX is the role name and the value of
the property is the value of the user role assignment.

Data_XXX

Optional data mapping from this case instance or business process to a subcase, where XXX is the
name of the data in the subcase being targeted. This parameter can be provided as many times as
needed.

DeploymentId

Optional deployment ID (or container ID in the context of KIE Server) that indicates where the
targeted case definition is located.

CaseDefinitionId

The mandatory case definition ID to be started.

CaseId

The case instance ID of the subcase after it is started.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

194

CHAPTER 37. AD HOC AND DYNAMIC TASKS
You can use case management to carry out tasks ad hoc, rather than following a strict end-to-end
process. You can also add tasks to a case dynamically during run time.

Ad hoc tasks are defined in the case modeling phase. Ad hoc tasks that are not configured as AdHoc
Autostart are optional and might not be used during a case. Therefore, they must be triggered by a
signal event or by a Java API.

Dynamic tasks are defined during the case execution and are not present in the case definition model.
Dynamic tasks address specific needs that arise during the case. They can be added to the case and
worked on at any time using a case application, as demonstrated in the Red Hat Process Automation
Manager Showcase application. Dynamic tasks can also be added by Java and Remote API calls.

Dynamic tasks can be user or service activities, while ad hoc tasks can be any type of task. For more
information about task types, see "BPMN2 tasks in process designer" in Designing business processes
using BPMN models.

Dynamic processes are any reusable sub-process from a case project.

Ad hoc nodes with no incoming connections are configured in the node’s AdHoc Autostart property
and are triggered automatically when the case instance is started.

Ad hoc tasks are optional tasks that are configured in a case definition. Because they are ad hoc, they
must be triggered in some way, usually by a signal event or Java API call.

CHAPTER 37. AD HOC AND DYNAMIC TASKS

195

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-designing-business-processes

CHAPTER 38. ADDING DYNAMIC TASKS AND PROCESSES TO
A CASE USING THE KIE SERVER REST API

You can add dynamic tasks and processes to a case during run time to address unforeseen changes that
can occur during the lifecycle of a case. Dynamic activities are not defined in the case definition and
therefore they cannot be signaled the way that a defined ad hoc task or process can.

You can add the following dynamic activities to a case:

User tasks

Service tasks (any type that is implemented as a work item)

Reusable sub-processes

Dynamic user and service tasks are added to a case instance and immediately executed. Depending on
the nature of a dynamic task, it might start and wait for completion (user task) or directly complete after
execution (service task). For dynamic sub-processes, the process engine requires a KJAR containing
the process definition for that dynamic process to locate the process by its ID and execute it. This sub-
process belongs to the case and has access to all of the data in the case file.

You can use the Swagger REST API application to create dynamic tasks and sub-processes.

Prerequisites

You are logged in to Business Central and a case instance has been started using the Showcase
application. For more information about using Showcase, see Using the Showcase application for
case management.

Procedure

1. In a web browser, open the following URL:
http://localhost:8080/kie-server/docs

2. Open the list of available endpoints under Case instances :: Case Management.

3. Locate the POST method endpoints for creating dynamic activities.
POST /server/containers/{id}/cases/instances/{caseId}/tasks

Adds a dynamic task (user or service depending on the payload) to the case instance.

POST /server/containers/{id}/cases/instances/{caseId}/stages/{caseStageId}/tasks

Adds a dynamic task (user or service depending on the payload) to specific stage within the
case instance.

POST /server/containers/{id}/cases/instances/{caseId}/processes/{pId}

Adds a dynamic sub-process identified by the process ID to case instance.

POST
/server/containers/{id}/cases/instances/{caseId}/stages/{caseStageId}/processes/{pId}

Adds a dynamic sub-process identified by process ID to stage within a case instance.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

196

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-showcase-application
http://localhost:8080/kie-server/docs

4. To open the Swagger UI, click the REST endpoint required to create the dynamic task or
process.

5. Click Try it out and enter the parameters and body required to create the dynamic activity.

6. Click Execute to create the dynamic task or sub-process using the REST API.

38.1. CREATING A DYNAMIC USER TASK USING THE KIE SERVER REST
API

You can create a dynamic user task during case run time using the REST API. To create a dynamic user
task, you must provide the following information:

Task name

Task subject (optional, but recommended)

Actors or groups (or both)

Input data

Use the following procedure to create a dynamic user task for the IT_Orders sample project available in
Business Central using the Swagger REST API tool. The same endpoint can be used for REST API
without Swagger.

Prerequisites

You are logged in to Business Central and an IT Orders case instance has been started using the
Showcase application. For more information about using Showcase, see Using the Showcase
application for case management.

Procedure

1. In a web browser, open the following URL:
http://localhost:8080/kie-server/docs.

2. Open the list of available endpoints under Case instances :: Case Management.

3. Click click the following POST method endpoint to open the details:
/server/containers/{id}/cases/instances/{caseId}/tasks

4. Click Try it out and then input the following parameters:

Table 38.1. Parameters

Name Description

id itorders

CHAPTER 38. ADDING DYNAMIC TASKS AND PROCESSES TO A CASE USING THE KIE SERVER REST API

197

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-showcase-application
http://localhost:8080/kie-server/docs

caseId IT-0000000001

Name Description

Request body

{
 "name" : "RequestManagerApproval",
 "data" : {
 "reason" : "Fixed hardware spec",
 "caseFile_hwSpec" : "#{caseFile_hwSpec}"
 },
 "subject" : "Ask for manager approval again",
 "actors" : "manager",
 "groups" : ""
}

5. In the Swagger application, click Execute to create the dynamic task.

This procedure creates a new user task associated with case IT-000000001. The task is assigned to the
person assigned to the manager case role. This task has two input variables:

reason

caseFile_hwSpec: defined as an expression to allow run time capturing of a process or case
data.

Some tasks include a form that provides a user-friendly UI for the task, which you can locate by task
name. In the IT Orders case, the RequestManagerApproval task includes the form
RequestManagerApproval-taskform.form in its KJAR.

After it is created, the task appears in the assignee’s Task Inbox in Business Central.

38.2. CREATING A DYNAMIC SERVICE TASK USING THE KIE SERVER
REST API

Service tasks are usually less complex than user tasks, although they might need more data to execute
properly. Service tasks require the following information:

name: The name of the activity

nodeType: The type of node that will be used to find the work item handler

data: The map of the data to properly deal with execution

During case run time, you can create a dynamic service task with the same endpoint as a user task, but
with a different body payload.

Use the following procedure using the Swagger REST API to create a dynamic service task for the
IT_Orders sample project available in Business Central. You can use the same endpoint for REST API
without Swagger.

Prerequisites

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

198

You are logged in to Business Central and an IT Orders case instance has been started using the
Showcase application. For more information about using Showcase, see Using the Showcase
application for case management.

Procedure

1. In a web browser, open the following URL:
http://localhost:8080/kie-server/docs

2. Open the list of available endpoints under Case instances :: Case Management.

3. Click the following POST method endpoint to open the details:
/server/containers/{id}/cases/instances/{caseId}/stages/{caseStageId}/tasks

4. Click Try it out and then enter the following parameters:

Table 38.2. Parameters

Name Description

id itorders

caseId IT-0000000001

Request body

{
 "name" : "InvokeService",
 "data" : {
 "Parameter" : "Fixed hardware spec",
 "Interface" : "org.jbpm.demo.itorders.services.ITOrderService",
 "Operation" : "printMessage",
 "ParameterType" : "java.lang.String"
 },
 "nodeType" : "Service Task"
}

5. In the Swagger application, click Execute to create the dynamic task.

In this example, a Java-based service is executed. It consists of an interface with the public class
org.jbpm.demo.itorders.services.ITOrderService and the public printMessage method with a single
String argument. When executed, the parameter value is passed to the method for execution.

Numbers, names, and other types of data given to create service tasks depend on the implementation
of a service task’s handler. In the example provided, the
org.jbpm.process.workitem.bpmn2.ServiceTaskHandler handler is used.

NOTE

CHAPTER 38. ADDING DYNAMIC TASKS AND PROCESSES TO A CASE USING THE KIE SERVER REST API

199

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-showcase-application
http://localhost:8080/kie-server/docs

NOTE

For any custom service tasks, ensure the handler is registered in the deployment
descriptor in the Work Item Handlers section, where the name is the same as the
nodeType used for creating a dynamic service task. For more information about
registering the deployment descriptor, see Developing process services in Red Hat
Process Automation Manager.

38.3. CREATING A DYNAMIC SUB-PROCESS USING THE KIE SERVER
REST API

When creating a dynamic sub-process, only optional data is provided. There are no special parameters
as there are when creating dynamic tasks.

The following procedure describes how to use the Swagger REST API to create a dynamic sub-process
task for the IT_Orders sample project available in Business Central. The same endpoint can be used for
REST API without Swagger.

Prerequisites

You are logged in to Business Central and an IT Orders case instance has been started using the
Showcase application. For more information about using Showcase, see Using the Showcase
application for case management.

Procedure

1. In a web browser, open the following URL:
http://localhost:8080/kie-server/docs.

2. Open the list of available endpoints under Case instances :: Case Management.

3. Click the following POST method endpoint to open the details:
/server/containers/{id}/cases/instances/{caseId}/processes/{pId}

4. Click Try it out and enter the following parameters:

Table 38.3. Parameters

Name Description

id itorders

caseId IT-0000000001

pId itorders-data.place-order

The pId is the process ID of the sub-process to be created.

Request body

{
 "placedOrder" : "Manually"
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

200

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#registering_custom_tasks_using_the_deployment_descriptor_inside_business_central
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-showcase-application
http://localhost:8080/kie-server/docs

5. In the Swagger application, click Execute to start the dynamic sub-process.

In this example, the place-order sub-process has been started in the IT Orders case with the case ID IT-
0000000001. You can see this process in Business Central under Menu → Manage → Process
Instances.

If the described example has executed correctly, the place-order process appears in the list of process
instances. Open the details of the process and note that the correlation key for the process includes the
IT Orders case instance ID, and the Process Variables list includes the variable placedOrder with the
value Manually, as delivered in the REST API body.

CHAPTER 38. ADDING DYNAMIC TASKS AND PROCESSES TO A CASE USING THE KIE SERVER REST API

201

CHAPTER 39. COMMENTS
In case management, comments facilitate collaboration within the case instance, and allow case workers
to easily communicate with each other to exchange information.

Comments are bound to the case instance. Case instances are part of the case file, so you can use
comments to take action on the instances. Basic text-based comments can have a complete operations
set, similar to CRUD (create, read, update, and delete).

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

202

CHAPTER 40. CASE ROLES
Case roles provide an additional layer of abstraction for user participation in case handling. Roles, users,
and groups are used for different purposes in case management.

Roles

Roles drive the authorization for a case instance and are used for user activity assignments. A user or
one or more groups can be assigned to the owner role. The owner is whoever the case belongs to.
Roles are not restricted to a single set of people or groups as part of a case definition. Use roles to
specify task assignments instead of assigning a specific user or group to a task assignment to ensure
that the case remains dynamic.

Groups

A group is a collection of users who are able to carry out a particular task or have a set of specified
responsibilities. You can assign any number of people to a group and assign any group to a role. You
can add or change members of a group at any time. Do not hard code a group to a particular task.

Users

A user is an individual who can be given a particular task when you assign them a role or add them to a
group.

NOTE

Do not create a user called unknown in process engine or KIE Server. The unknown
user account is a reserved system name with superuser access. The unknown user
account performs tasks related to the SLA violation listener when there are no users
logged in.

The following example illustrates how the preceding case management concepts apply to a hotel
reservation with the following information:

Role: Guest

Group: Receptionist, Maid

User: Marilyn

The Guest role assignment affects the specific work of the associated case and is unique to all case
instances. Every case instance will have its own role assignments. The number of users or groups that
can be assigned to a role is limited by the case Cardinality, which is set during role creation in the
process designer and case definition. For example, the hotel reservation case has only one guest while
the IT_Orders sample project has two suppliers of IT hardware.

When roles are defined, ensure that roles are not hard-coded to a single set of people or groups as part
of case definition and that they can differ for each case instance. This is why case role assignments are
important.

Role assignments can be assigned or removed when a case starts or at any time when a case is active.
Although roles are optional, use roles in case definitions to maintain an organized workflow.

IMPORTANT

Always use roles for task assignments instead of actual user or group names. This ensures
that the case and user or group assignments can be made as late as required.

CHAPTER 40. CASE ROLES

203

Roles are assigned to users or groups and authorized to perform tasks when a case instance is started.

40.1. CREATING CASE ROLES

You can create and define case roles in the case definition when you design the case in the process
designer. Case roles are configured on the case definition level to keep them separate from the actors
involved in handling the case instance. Roles can be assigned to user tasks or used as contact references
throughout the case lifecycle, but they are not defined in the case as a specific user or group of users.

Case instances include the individuals that are actually handling the case work. Assign roles when
starting a new case instance. In order to keep cases flexible, you can modify case role assignment during
case run time, although doing this has no effect on tasks already created based on the previous role
assignment. The actor assigned to a role is flexible but the role itself remains the same for each case.

Prerequisites

A case project that has a case definition exists in Business Central.

The case definition asset is open in the process designer.

Procedure

1. To define the roles involved in the case, click on an empty space in the editor’s canvas, and click

 to open the Properties menu.

2. Expand Case Management to add a case role.
The case role requires a name for the role and a case cardinality. Case cardinality is the number
of actors that are assigned to the role in any case instance. For example, the IT_Orders sample
case management project includes the following roles:

Figure 40.1. ITOrders Case Roles

In this example, you can assign only one actor (a user or a group) as the case owner and assign
only one actor to the manager role. The supplier role can have two actors assigned. Depending
on the case, you can assign any number of actors to a particular role based on the configured

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

204

case cardinality of the role.

40.2. ROLE AUTHORIZATION

Roles are authorized to perform specific case management tasks when starting a new case instance
using the Showcase application or the REST API.

Use the following procedure to start a new IT Orders case using the REST API.

Prerequisites

The IT_Orders sample project has been imported in Business Central and deployed to KIE
Server.

Procedure

1. Create a POST REST API call with the following endpoint:
http://host:port/kie-
server/services/rest/server/containers/itorders/cases/itorders.orderhardware/instances

itorders: The container alias that has been deployed to KIE Server.

itorders.orderhardware: The name of the case definition.

2. Provide the following role configuration in the request body:

This starts a new case with defined roles, as well as autostart activities, which are started and
ready to be worked on. Two of the roles are user assignments (owner and manager) and the
third is a group assignment (supplier).

After the case instance is successfully started, the case instance returns the IT-0000000001
case ID.

For information about how to start a new case instance using the Showcase application, see Using the
Showcase application for case management.

40.3. ASSIGNING A TASK TO A ROLE

Case management processes need to be as flexible as possible to accommodate changes that can
happen dynamically during run time. This includes changing user assignments for new case instances or
for active cases. For this reason, ensure that you do not hard code roles to a single set of users or groups
in the case definition. Instead, role assignments can be defined on the task nodes in the case definition,
with users or groups assigned to the roles on case creation.

{
 "case-data" : { },
 "case-user-assignments" : {
 "owner" : "cami",
 "manager" : "cami"
 },
 "case-group-assignments" : {
 "supplier" : "IT"
 }
}

CHAPTER 40. CASE ROLES

205

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-showcase-application

Red Hat Process Automation Manager contains a predefined selection of node types to simplify
business process creation. The predefined node panel is located on the left side of the diagram editor.

Prerequisites

A case definition has been created with case roles configured at the case definition level. For
more information about creating case roles, see Section 40.1, “Creating case roles”.

Procedure

1. Open the Activities menu in the designer palette and drag the user or service task that you
want to add to your case definition onto the process designer canvas.

2. With the task node selected, click to open the Properties panel on the right side of the
designer.

3. Expand Implementation/Execution, click Add below the Actors property and either select or
type the name of the role to which the task will be assigned. You can use the Groups property in
the same way for group assignments.

For example, in the IT_Orders sample project, the Manager approval user task is assigned to

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

206

For example, in the IT_Orders sample project, the Manager approval user task is assigned to
the manager role:

In this example, after the Prepare hardware spec user task has been completed, the user
assigned to the manager role will receive the Manager approval task in their Task Inbox in
Business Central.

The user assigned to the role can be changed during the case run time, but the task itself continues to
have the same role assignment. For example, the person originally assigned to the manager role might
need to take time off (if they become ill, for example), or they might unexpectedly leave the company.
To respond to this change in circumstances, you can edit the manager role assignment so that someone
else can be assigned the tasks associated with that role.

For information about how to change role assignments during case run time, see Section 40.4,
“Modifying case role assignments during run time using Showcase” or Section 40.5, “Modifying case role
assignments during run time using REST API”.

40.4. MODIFYING CASE ROLE ASSIGNMENTS DURING RUN TIME
USING SHOWCASE

You can change case instance role assignments during case run time using the Showcase application.
Roles are defined in the case definition and assigned to tasks in the case lifecycle. Roles cannot change
during run time because they are predefined, but you can change the actors assigned to the roles to
change who is responsible for carrying out case tasks.

Prerequisites

An active case instance with users or groups is already assigned to at least one case role.

Procedure

1. In the Showcase application, click the case you want to work on in the Case list to open the case

CHAPTER 40. CASE ROLES

207

1. In the Showcase application, click the case you want to work on in the Case list to open the case
overview.

2. Locate the role assignment that you want to change in the Roles box in the lower-right corner
of the page.

3. To remove a single user or group from the role assignment, click the next to the
assignment. In the confirmation window, click Remove to remove the user or group from the
role.

4. To remove all role assignments from a role, click the next to the role and select the Remove
all assignments option. In the confirmation window, click Remove to remove all user and group
assignments from the role.

5. To change the role assignment from one user or group to another, click the next to the role
and select the Edit option.

6. In the Edit role assignment window, delete the name of the assignee that you want to remove
from the role assignment. Type the name of the user you want to assign to the role into the
User field or the group you want to assign in the Group field.
At least one user or group must be assigned when editing a role assignment.

7. Click Assign to complete the role assignment.

40.5. MODIFYING CASE ROLE ASSIGNMENTS DURING RUN TIME
USING REST API

You can change case instance role assignments during case run time using the REST API or Swagger

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

208

application. Roles are defined in the case definition and assigned to tasks in the case life cycle. Roles
cannot change during run time because they are predefined, but you can change the actors assigned to
the roles to change who is responsible for carrying out case tasks.

The following procedure includes examples based on the IT_Orders sample project. You can use the
same REST API endpoints in the Swagger application or any other REST API client, or using Curl.

Prerequisites

An IT Orders case instance has been started with owner, manager, and supplier roles already
assigned to actors.

Procedure

1. Retrieve the list of current role assignments using a GET request on the following endpoint:
http://localhost:8080/kie-
server/services/rest/server/containers/{id}/cases/instances/{caseId}/roles

Table 40.1. Parameters

Name Description

id itorders

caseId IT-0000000001

This returns the following response:

2. To change the user assigned to the manager role, you must first remove the role assignment
from the user Katy using DELETE.
/server/containers/{id}/cases/instances/{caseId}/roles/{caseRoleName}

Include the following information in the Swagger client request:

Table 40.2. Parameters

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<case-role-assignment-list>
 <role-assignments>
 <name>owner</name>
 <users>Aimee</users>
 </role-assignments>
 <role-assignments>
 <name>manager</name>
 <users>Katy</users>
 </role-assignments>
 <role-assignments>
 <name>supplier</name>
 <groups>Lenovo</groups>
 </role-assignments>
</case-role-assignment-list>

CHAPTER 40. CASE ROLES

209

Name Description

id itorders

caseId IT-0000000001

caseRoleName manager

user Katy

Click Execute.

3. Execute the GET request from the first step again to check that the manager role no longer has
a user assigned:

4. Assign the user Cami to the manager role using a PUT request on the following endpoint:
/server/containers/{id}/cases/instances/{caseId}/roles/{caseRoleName}

Include the following information in the Swagger client request:

Table 40.3. Parameters

Name Description

id itorders

caseId IT-0000000001

caseRoleName manager

user Cami

Click Execute.

5. Execute the GET request from the first step again to check that the manager role is now

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<case-role-assignment-list>
 <role-assignments>
 <name>owner</name>
 <users>Aimee</users>
 </role-assignments>
 <role-assignments>
 <name>manager</name>
 </role-assignments>
 <role-assignments>
 <name>supplier</name>
 <groups>Lenovo</groups>
 </role-assignments>
</case-role-assignment-list>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

210

5. Execute the GET request from the first step again to check that the manager role is now
assigned to Cami:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<case-role-assignment-list>
 <role-assignments>
 <name>owner</name>
 <users>Aimee</users>
 </role-assignments>
 <role-assignments>
 <name>manager</name>
 <users>Cami</users>
 </role-assignments>
 <role-assignments>
 <name>supplier</name>
 <groups>Lenovo</groups>
 </role-assignments>
</case-role-assignment-list>

CHAPTER 40. CASE ROLES

211

CHAPTER 41. STAGES
Case management stages are a collection of tasks. A stage is an ad hoc sub-process that can be defined
using the process designer and may include other case management nodes, such as a milestone. A
milestone can also be configured as completed when a stage or a number of stages are completed.
Therefore, a milestone may be activated or achieved by the completion of a stage, and a stage may
include a milestone or a number of milestones.

For example, in a patient triage case, the first stage may consist of observing and noting any obvious
physical symptoms or a description from the patient of what their symptoms are, followed by a second
stage for tests, and a third for diagnosis and treatment.

There are three ways to complete a stage:

By completion condition.

By terminal end event.

By setting the Completion Condition to autocomplete, which will automatically complete the
stage when there are no active tasks left in the stage.

41.1. DEFINING A STAGE

A stage can be modeled in BPMN2 using the process designer. Stages are a way of grouping related
tasks in a way that clearly defines activities that, if the stage is activated, must complete before the next
stage of the case commences. For example, the IT_Orders case definition can also be defined using
stages in the following way:

Figure 41.1. IT_Orders project stages example

Procedure

1. From the predefined node panel located on the left side of the diagram editor, drag and drop an
Adhoc sub-process node onto the design canvas and provide a name for the stage node.

2. Define how the stage is activated:

If the stage is being activated by an incoming node, connect the stage with a sequence flow
line from the incoming node.

If the stage is instead being activated by a signal event, configure the SignalRef on the
signal node with the name of the stage that you configured in the first step.

Alternatively, configure the AdHocActivationCondition property to activate the stage

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

212

Alternatively, configure the AdHocActivationCondition property to activate the stage
when the condition has been met.

3. Re-size the node as required to provide room to add the task nodes for the stage.

4. Add the relevant tasks to the stage and configure them as required.

5. Optional: Configure a completion condition for the stage. As an ad hoc sub-process, stages are
configured as autocomplete by default, which means that the stage will automatically complete
and trigger the next activity in the case definition once all instances in the stage are no longer
active.
To change the completion condition, select the stage node and open the Properties panel on
the right, expand Implementation/Execution, and modify the AdHocCompletionCondition
property field with a free-form Drools expression for the completion condition you require. For
more information about stage completion conditions, see Section 41.2, “Configuring stage
activation and completion conditions”.

6. Once the stage has been configured, connect it to the next activity in the case definition using a
sequence flow line.

41.2. CONFIGURING STAGE ACTIVATION AND COMPLETION
CONDITIONS

Stages can be triggered by a start node, intermediate node, or manually using an API call.

You can configure stages with both activation and completion conditions using free-form Drools rules,
the same way that milestone completion conditions are configured. For example, in the IT_Orders
sample project, the Milestone 2: Order shipped completion condition
(org.kie.api.runtime.process.CaseData(data.get("shipped") == true)) can also be used as the
completion condition for the Order delivery stage represented here:

Figure 41.2. IT_Orders project stages example

Activation conditions can also be configured using a free-form Drools rule to configure the
AdHocActivationCondition property to activate a stage.

Prerequisites

You have created a case definition in the Business Central process designer.

You have added an ad hoc sub-process to the case definition that is to be used as a stage.

CHAPTER 41. STAGES

213

Procedure

1. With the stage selected, click to open the Properties panel on the right side of the
designer.

2. Expand Implementation/Execution and in the AdHocActivationCondition property editor
define an activation condition for the start node. For example, set autostart: true to make the
stage automatically activated when a new case instance is started.

3. The AdHocCompletionCondition is set to autocomplete by default. To change this, input a
completion condition using a free-form Drools expression. For example, set
org.kie.api.runtime.process.CaseData(data.get("ordered") == true) to activate the second
stage in the example shown previously.

For more examples and information about the conditions used in the IT_Orders sample project, see
Getting started with case management .

41.3. ADDING A DYNAMIC TASK TO A STAGE

Dynamic tasks can be added to a case stage during run time using a REST API request. This is similar to
adding a dynamic task to a case instance, but you must also define the caseStageId of the stage to
which the task is added.

Use the following procedure to add a dynamic task to a stage in the IT_Orders sample project available
in Business Central using the Swagger REST API tool. The same endpoint can be used for the REST API
without Swagger.

Prerequisites

The IT_Orders sample project BPMN2 case definition has been reconfigured to use stages
instead of milestones, as demonstrated in the provided example. For information about
configuring stages for case management, see Section 41.1, “Defining a stage” .

Procedure

1. Start a new case using the Showcase application. For more information about using Showcase,
see Using the Showcase application for case management .
Because this case is designed using stages, the case details page shows stage tracking:

The first stage starts automatically when the case instance is created.

2. As a manager user, approve the hardware specification in Business Central under Menu →
Track → Task Inbox, then check the progress of the case.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

214

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-case-management
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-showcase-application

a. In Business Central, click Menu → Manage → Process Instances and open the active case
instance IT-0000000001.

b. Click Diagram to see the case progress.

3. In a web browser, open the following URL:
http://localhost:8080/kie-server/docs.

4. Open the list of available endpoints under Case instances :: Case Management.

5. Click click the following POST method endpoint to open the details:
/server/containers/{id}/cases/instances/{caseId}/stages/{caseStageId}/tasks

6. Click Try it out to complete the following parameters:

Table 41.1. Parameters

Name Description

id itorders

caseId IT-0000000001

caseStageId Order delivery

The caseStageId is the name of the stage in the case definition where the dynamic task is to be
created. This can be any dynamic or service task payload. See Developing process services in
Red Hat Process Automation Manager.

After the dynamic task has been added to the stage, it must be completed in order for the stage to
complete and for the case process to move on to the next item in the case flow.

CHAPTER 41. STAGES

215

http://localhost:8080/kie-server/docs
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#case-management-dynamic-service-task-API-proc

CHAPTER 42. MILESTONES
Milestones are a special service task that can be configured in the case definition designer by adding the
milestone node to the process designer palette. When creating a new case definition, a milestone
configured as AdHoc Autostart is included on the design palette by default. Newly created milestones
are not set to AdHoc Autostart by default.

Case management milestones generally occur at the end of a stage, but they can also be the result of
achieving other milestones. A milestone always requires a condition to be defined in order to track
progress. Milestones react to case file data when data is added to a case. A milestone represents a
single point of achievement within the case instance. It can be used to flag certain events, which can be
useful for Key Performance Indicator (KPI) tracking or identifying the tasks that are still to be
completed.

Milestones can be in any of the following states during case execution:

Active: The condition has been defined on the milestone but it has not been met.

Completed: The milestone condition has been met, the milestone has been achieved, and the
case can proceed to the next task.

Terminated: The milestone is no longer a part of the case process and is no longer required.

While a milestone is available or completed it can be triggered manually by a signal or automatically if
AdHoc Autostart is configured when a case instance starts. Milestones can be triggered as many times
as required, however, it is directly achieved when the condition is met.

42.1. CONFIGURING AND TRIGGERING MILESTONES

Case milestones can be configured to start automatically when a case instance starts or they can
triggered using a signal, which is configured manually during the case design.

Prerequisites

A case project has been created in Business Central.

A case definition has been created.

Procedure

1. From the predefined node panel located on the left side of the diagram editor, drag and drop a
Milestone object onto the palette.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

216

2. With the milestone selected, click to open the Properties panel on the right side of the
designer.

3. Expand Data Assignments to add a completion condition. Milestones include a Condition
parameter by default.

4. To define the completion condition for the milestone, select Constant from the Source list. The
condition must be provided using the Drools syntax.

5. Expand Implementation/Execution to configure the AdHoc Autostart property.

Click the check box to set this property to true for milestones that are required to start
automatically when a case instance starts.

Leave the check box empty to set this property to false for milestones that are to be
triggered by a signal event.

6. Optional: Configure a signal event to trigger a milestone once a case goal has been reached.

a. With the signal event selected in the case design palette, open the Properties panel on the
right.

b. Set the Signal Scope property to Process Instance.

c. Open the SignalRef expression editor and type the name of the milestone to be triggered.

CHAPTER 42. MILESTONES

217

7. Click Save.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

218

CHAPTER 43. VARIABLE TAGS
Variables store data that is used during runtime. For greater control over variable behavior, you can tag
case variables and local variables in the BPMN case file. Tags are simple string values that you add as
metadata to a specific variable.

Red Hat Process Automation Manager supports the following tags for case and local variables:

required: Sets the variable as a requirement in order to start a case. If a case starts without the
required variable, Red Hat Process Automation Manager generates a
VariableViolationException error.

readonly: Indicates that the variable is for informational purposes only and can be set only once
during case execution. If the value of a read-only variable is modified at any time, Red Hat
Process Automation Manager generates a VariableViolationException error.

restricted: A tag that is used with the VariableGuardProcessEventListener to indicate that
permission is granted to modify the variable based on the existing role. The restricted tag can
be replaced by any other tag name if using the second constructor that passes the new tag
name.

The VariableGuardProcessEventListener class is extended from the DefaultProcessEventListener
class and supports two different constructors:

VariableGuardProcessEventListener

VariableGuardProcessEventListener

Therefore, you must add an event listener to the session with the allowed role name and identity
provider that returns the user role as shown in the following example:

In the previous example, the VariableGuardProcessEventListener method verifies if a variable
is tagged with a security constraint tag (restricted). If the user does not have the required role
(for example, AdminRole), then Red Hat Process Automation Manager generates a
VariableViolationException error. NOTE: The variable tags that appear in the Business Central
UI, for example internal, input, output, business-relevant, and tracked are not supported in
Red Hat Process Automation Manager.

You can add the tag directly to the BPMN process source file as a customTags metadata property with
the tag value defined in the format ![CDATA[TAG_NAME]].

public VariableGuardProcessEventListener(String requiredRole, IdentityProvider
identityProvider) {
 this("restricted", requiredRole, identityProvider);
}

public VariableGuardProcessEventListener(String tag, String requiredRole, IdentityProvider
identityProvider) {
 this.tag = tag;
 this.requiredRole = requiredRole;
 this.identityProvider = identityProvider;
}

ksession.addEventListener(new VariableGuardProcessEventListener("AdminRole",
myIdentityProvider));

CHAPTER 43. VARIABLE TAGS

219

For example, the following BPMN process applies the required tag to an approved process variable:

Figure 43.1. Example variable tagged in the BPMN modeler

Example variable tagged in a BPMN file

You can use more than one tag for a variable where applicable. You can also define custom variable tags
in your BPMN files to make variable data available to Red Hat Process Automation Manager process
event listeners. Custom tags do not influence the Red Hat Process Automation Manager runtime as the

<bpmn2:property id="approved" itemSubjectRef="ItemDefinition_9" name="approved">
 <bpmn2:extensionElements>
 <tns:metaData name="customTags">
 <tns:metaValue><![CDATA[required]]></tns:metaValue>
 </tns:metaData>
 </bpmn2:extensionElements>
</bpmn2:property>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

220

standard variable tags do and are for informational purposes only. You define custom variable tags in
the same customTags metadata property format that you use for standard Red Hat Process
Automation Manager variable tags.

CHAPTER 43. VARIABLE TAGS

221

CHAPTER 44. CASE EVENT LISTENER
The CaseEventListener listener is used to initiate notifications for case-related events and operations
that are invoked on a case instance. Implement the case event listener by overriding the methods as
needed for your particular use case.

You can configure the listener using the deployment descriptors located in Business Central in Menu →
Design → PROJECT_NAME → Settings → Deployments.

When a new project is created, a kie-deployment-descriptor.xml file is generated with default values.

CaseEventListener methods

public interface CaseEventListener extends EventListener {

 default void beforeCaseStarted(CaseStartEvent event) {
 };

 default void afterCaseStarted(CaseStartEvent event) {
 };

 default void beforeCaseClosed(CaseCloseEvent event) {
 };

 default void afterCaseClosed(CaseCloseEvent event) {
 };

 default void beforeCaseCancelled(CaseCancelEvent event) {
 };

 default void afterCaseCancelled(CaseCancelEvent event) {
 };

 default void beforeCaseDestroyed(CaseDestroyEvent event) {
 };

 default void afterCaseDestroyed(CaseDestroyEvent event) {
 };

 default void beforeCaseReopen(CaseReopenEvent event) {
 };

 default void afterCaseReopen(CaseReopenEvent event) {
 };

 default void beforeCaseCommentAdded(CaseCommentEvent event) {
 };

 default void afterCaseCommentAdded(CaseCommentEvent event) {
 };

 default void beforeCaseCommentUpdated(CaseCommentEvent event) {
 };

 default void afterCaseCommentUpdated(CaseCommentEvent event) {
 };

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

222

 default void beforeCaseCommentRemoved(CaseCommentEvent event) {
 };

 default void afterCaseCommentRemoved(CaseCommentEvent event) {
 };

 default void beforeCaseRoleAssignmentAdded(CaseRoleAssignmentEvent event) {
 };

 default void afterCaseRoleAssignmentAdded(CaseRoleAssignmentEvent event) {
 };

 default void beforeCaseRoleAssignmentRemoved(CaseRoleAssignmentEvent event) {
 };

 default void afterCaseRoleAssignmentRemoved(CaseRoleAssignmentEvent event) {
 };

 default void beforeCaseDataAdded(CaseDataEvent event) {
 };

 default void afterCaseDataAdded(CaseDataEvent event) {
 };

 default void beforeCaseDataRemoved(CaseDataEvent event) {
 };

 default void afterCaseDataRemoved(CaseDataEvent event) {
 };

 default void beforeDynamicTaskAdded(CaseDynamicTaskEvent event) {
 };

 default void afterDynamicTaskAdded(CaseDynamicTaskEvent event) {
 };

 default void beforeDynamicProcessAdded(CaseDynamicSubprocessEvent event) {
 };

 default void afterDynamicProcessAdded(CaseDynamicSubprocessEvent event) {
 };
}

CHAPTER 44. CASE EVENT LISTENER

223

CHAPTER 45. RULES IN CASE MANAGEMENT
Cases are data-driven, rather than following a sequential flow. The steps required to resolve a case rely
on data, which is provided by people involved in the case, or the system can be configured to trigger
further actions based on the data available. In the latter case, you can use business rules to decide what
further actions are required for the case to continue or reach a resolution.

Data can be inserted into the case file at any point during the case. The decision engine constantly
monitors case file data, meaning that rules react to data that is contained in the case file. Using rules to
monitor and respond to changes in the case file data provides a level of automation that drives cases
forward.

45.1. USING RULES TO DRIVE CASES

Refer to the case management IT_Orders sample project in Business Central.

Suppose that the particular hardware specification provided by the supplier is incorrect or invalid. The
supplier needs to provide a new, valid order so that the case can continue. Rather than wait for the
manager to reject the invalid specification and create a new request for the supplier, you can create a
business rule that will react immediately when the case data indicates that the provided specification is
invalid. It can then create a new hardware specification request for the supplier.

The following procedure demonstrates how to create and use a business rule to execute this scenario.

Prerequisites

The IT_Orders sample project is open in Business Central, but it is not deployed to KIE Server.

The ServiceRegistry is part of the jbpm-services-api module, and must be available on the
class path.

NOTE

If building the project outside of Business Central, the following dependencies
must be added to the project:

org.jbpm:jbpm-services-api

org.jbpm:jbpm-case-mgmt-api

Procedure

1. Create the following business rule file called validate-document.drl:

package defaultPackage;

import java.util.Map;
import java.util.HashMap;
import org.jbpm.casemgmt.api.CaseService;
import org.jbpm.casemgmt.api.model.instance.CaseFileInstance;
import org.jbpm.document.Document;
import org.jbpm.services.api.service.ServiceRegistry;

rule "Invalid document name - reupload"
when

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

224

This business rule detects when a file named invalid.pdf is uploaded to the case file. It then
removes the invalid.pdf document and creates a new instance of the Prepare hardware spec
user task.

2. Click Deploy to build the IT_Orders project and deploy it to a KIE Server.

NOTE

You can also select the Build & Install option to build the project and publish the
KJAR file to the configured Maven repository without deploying to a KIE Server.
In a development environment, you can click Deploy to deploy the built KJAR file
to a KIE Server without stopping any running instances (if applicable), or click
Redeploy to deploy the built KJAR file and replace all instances. The next time
you deploy or redeploy the built KJAR, the previous deployment unit (KIE
container) is automatically updated in the same target KIE Server. In a production
environment, the Redeploy option is disabled and you can click Deploy only to
deploy the built KJAR file to a new deployment unit (KIE container) on a KIE
Server.

To configure the KIE Server environment mode, set the org.kie.server.mode
system property to org.kie.server.mode=development or
org.kie.server.mode=production. To configure the deployment behavior for a
corresponding project in Business Central, go to project Settings → General
Settings → Version and toggle the Development Mode option. By default, KIE
Server and all new projects in Business Central are in development mode. You
cannot deploy a project with Development Mode turned on or with a manually
added SNAPSHOT version suffix to a KIE Server that is in production mode.

3. Create a file called invalid.pdf and save it locally.

4. Create a file called valid-spec.pdf and save it locally.

5. In Business Central, go to Menu → Projects → IT_Orders to open the IT_Orders project.

6. Click Import Asset in the upper-right corner of the page.

7. Upload the validate-document.drl file to the default package (src/main/resources) and click
Ok.

 $caseData : CaseFileInstance()
 Document(name == "invalid.pdf") from $caseData.getData("hwSpec")

then

 System.out.println("Hardware specification is invalid");
 $caseData.remove("hwSpec");
 update($caseData);
 CaseService caseService = (CaseService)
ServiceRegistry.get().service(ServiceRegistry.CASE_SERVICE);
 caseService.triggerAdHocFragment($caseData.getCaseId(), "Prepare hardware spec",
null);
end

CHAPTER 45. RULES IN CASE MANAGEMENT

225

The validate-document.drl rule is shown in the rule editor. Click Save or close to exit the rule
editor.

8. Open the Showcase application by either clicking the Apps launcher (if it is installed), or go to
http://localhost:8080/rhpam-case-mgmt-showcase/jbpm-cm.html.

9. Click Start Case for the IT_Orders project.
In this example, Aimee is the case owner, Katy is the manager, and the supplier group is
supplier.

10. Log out of Business Central, and log back in as a user that belongs to the supplier group.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

226

http://localhost:8080/rhpam-case-mgmt-showcase/jbpm-cm.html

11. Go to Menu → Track → Task Inbox.

12. Open the Prepare hardware spec task and click Claim. This assigns the task to the logged in
user.

13. Click Start and click to locate the invalid.pdf hardware specification file. Click to
upload the file.

14. Click Complete.
The value in the Task Inbox for the Prepare hardware spec is Ready.

15. In Showcase, click Refresh in the upper-right corner. Notice that a Prepare hardware task
message appears in the Completed column and another appears in the In Progress column.

This is because the first Prepare hardware spec task has been completed with the
specification file invalid.pdf. As a result, the business rule causes the task and file to be
discarded, and a new user task created.

16. In the Business Central Task Inbox, repeat the previous steps to upload the valid-spec.pdf file
instead of invalid.pdf.

CHAPTER 45. RULES IN CASE MANAGEMENT

227

CHAPTER 46. CASE MANAGEMENT SECURITY
Cases are configured at the case definition level with case roles. These are generic participants that are
involved in case handling. These roles can be assigned to user tasks or used as contact references. Roles
are not hard-coded to specific users or groups to keep the case definition independent of the actual
actors involved in any given case instance. You can modify case role assignments at any time as long as
case instance is active, though modifying a role assignment does not affect tasks already created based
on the previous role assignment.

Case instance security is enabled by default. The case definition prevents case data from being
accessed by users who do not belong to the case. Unless a user has a case role assignment (either
assigned as user or a group member) then they are not able to access the case instance.

Case security is one of the reasons why it is recommended that you assign case roles when starting a
case instance, as this will prevent tasks being assigned to users who should not have access to the case.

46.1. CONFIGURING SECURITY FOR CASE MANAGEMENT

You can turn off case instance authorization by setting the following system property to false:

org.jbpm.cases.auth.enabled

This system property is just one of the security components for case instances. In addition, you can
configure case operations at the execution server level using the case-authorization.properties file,
available at the root of the class path of the execution server application (kie-server.war/WEB-
INF/classes).

Using a simple configuration file for all possible case definitions encourages you to think about case
management as domain-specific. AuthorizationManager for case security is pluggable, which allows you
to include custom code for specific security handling.

You can restrict the following case instance operations to case roles:

CANCEL_CASE

DESTROY_CASE

REOPEN_CASE

ADD_TASK_TO_CASE

ADD_PROCESS_TO_CASE

ADD_DATA

REMOVE_DATA

MODIFY_ROLE_ASSIGNMENT

MODIFY_COMMENT

Prerequisites

The Red Hat Process Automation Manager KIE Server is not running.

Procedure

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

228

1. Open the JBOSS_HOME/standalone/deployments/kie-server.war/WEB-INF/classes/case-
authorization.properties file in your preferred editor.
By default, the file contains the following operation restrictions:

CLOSE_CASE=owner,admin
CANCEL_CASE=owner,admin
DESTROY_CASE=owner,admin
REOPEN_CASE=owner,admin

2. Add or remove role permissions for these operations as needed:

a. To remove permission for a role to perform an operation, remove it from the list of
authorized roles for that operation in the case-authorization.properties file. For example,
removing the admin role from the CLOSE_CASE operation restricts permission to close a
case to the case owner for all cases.

b. To give a role permission to perform a case operation, add it to the list of authorized roles
for that operation in the case-authorization.properties file. For example, to allow anyone
with the manager role to perform a CLOSE_CASE operation, add it to the list of roles,
separated by a comma:
CLOSE_CASE=owner,admin,manager

3. To add role restrictions to other case operations listed in the file, remove the # from the line and
list the role names in the following format:
OPERATION=role1,role2,roleN

Operations in the file that begin with # have restrictions ignored and can be performed by
anyone involved in the case.

4. When you have finished assigning role permissions, save and close the case-
authorization.properties file.

5. Start the execution server.
The case authorization settings apply to all cases on the execution server.

CHAPTER 46. CASE MANAGEMENT SECURITY

229

CHAPTER 47. CLOSING CASES
A case instance can be completed when there are no more activities to be performed and the business
goal is achieved, or it can be closed prematurely. Usually the case owner closes the case when all work is
completed and the case goals have been met. When you close a case, consider adding a comment about
why the case instance is being closed.

A closed case can be reopened later with the same case ID if required. When a case is reopened, stages
that were active when the case was closed will be active when the case is reopened.

You can close case instances remotely using KIE Server REST API requests or directly in the Showcase
application.

47.1. CLOSING A CASE USING THE KIE SERVER REST API

You can use a REST API request to close a case instance. Red Hat Process Automation Manager
includes the Swagger client, which includes endpoints and documentation for REST API requests.
Alternatively, you can use the same endpoints to make API calls using your preferred client or Curl.

Prerequisites

A case instance has been started using Showcase.

You are able to authenticate API requests as a user with the admin role.

Procedure

1. Open the Swagger REST API client in a web browser:
http://localhost:8080/kie-server/docs

2. Under Case Instances :: Case Management, open the POST request with the following
endpoint:
/server/containers/{id}/cases/instances/{caseId}

3. Click Try it out and fill in the required parameters:

Table 47.1. Parameters

Name Description

id itorders

caseId IT-0000000001

4. Optional: Include a comment to be included in the case file. To leave a comment, type it into the
body text field as a String.

5. Click Execute to close the case.

6. To confirm the case is closed, open the Showcase application and change the case list status to
Closed.

47.2. CLOSING A CASE IN THE SHOWCASE APPLICATION

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

230

http://localhost:8080/kie-server/docs

A case instance is complete when no more activities need to be performed and the business goal has
been achieved. After a case is complete, you can close the case to indicate that the case is complete
and that no further work is required. When you close a case, consider adding a specific comment about
why you are closing the case. If needed, you can reopen the case later with the same case ID.

You can use the Showcase application to close a case instance at any time. From Showcase, you can
easily view the details of the case or leave a comment before closing it.

Prerequisites

You are logged in to the Showcase application and are the owner or administrator for a case
instance that you want to close.

Procedure

1. In the Showcase application, locate the case instance you want to close from the list of case
instances.

2. To close the case without viewing the details first, click Close.

3. To close the case from the case details page, click the case in the list to open it.
From the case overview page you can add comments to the case and verify that you are closing
the correct case based on the case information.

4. Click Close to close the case.

5. Click Back to Case List in the upper-left corner of the page to return to the Showcase case list
view.

6. Click the drop-down list next to Status and select Canceled to view the list of closed and
canceled cases.

CHAPTER 47. CLOSING CASES

231

CHAPTER 48. CANCELING OR DESTROYING A CASE
Cases can be canceled if they are no longer required and do not require any case work to be performed.
Cases that are canceled can be reopened later with the same case instance ID and case file data. In
some cases, you might want to permanently destroy a case so that it cannot be reopened.

Cases can only be canceled or destroyed using an API request. Red Hat Process Automation Manager
includes the Swagger client, which includes endpoints and documentation for REST API requests.
Alternatively, you can use the same endpoints to make API calls using your preferred client or Curl.

Prerequisites

A case instance has been started using Showcase.

You are able to authenticate API requests as a user with the admin role.

Procedure

1. Open the Swagger REST API client in a web browser:
http://localhost:8080/kie-server/docs

2. Under Case Instances :: Case Management, open the DELETE request with the following
endpoint:
/server/containers/{id}/cases/instances/{caseId}

You can cancel a case using the DELETE request. Optionally, you can also destroy the case
using the destroy parameter.

3. Click Try it out and fill in the required parameters:

Table 48.1. Parameters

Name Description

id itorders

caseId IT-0000000001

destroy true

(Optional. Permanently destroys the case. This parameter
is false by default.)

4. Click Execute to cancel (or destroy) the case.

5. To confirm the case is canceled, open the Showcase application and change the case list status
to Canceled. If the case has been destroyed, it will no longer appear in any case list.

48.1. CASE LOG REMOVAL FROM THE DATABASE

Use the CaseLogCleanupCommand to clean up cases, such as canceled cases that are using up
database space. The CaseLogCleanupCommand command contains logic to automatically clean-up all
or selected cases.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

232

http://localhost:8080/kie-server/docs

You can use the following configuration options with the CaseLogCleanupCommand command:

Table 48.2. CaseLogCleanupCommand parameters table

Name Description Is Exclusive

SkipProcessLog Indicates whether or not the
process and node instances, along
with the process variable log
clean-up will be skipped when the
command runs. Default value:
false

No, can be used with other
parameters

SkipTaskLog Indicates whether or not the task
audit, the task event, and the task
variable log clean-up will be
skipped when the command runs.
Default value: false

No, can be used with other
parameters

SkipExecutorLog Indicates if the Red Hat Process
Automation Manager executor
entries clean-up will be skipped
when the command runs. Default
value: false

No, can be used with other
parameters

SingleRun Indicates if the job routine will run
only once. Default value: false

No, can be used with other
parameters

NextRun Schedules the next job execution.
For example, set to 12h for jobs
to be executed every 12 hours.
The schedule is ignored if you set
SingleRun to true, unless you set
both SingleRun and NextRun. If
both are set, the NextRun
schedule takes priority. The ISO
format can be used to set the
precise date. Default value: 24h

No, can be used with other
parameters

OlderThan Logs older than the specified date
are removed. The date format is
YYYY-MM-DD. Usually, this
parameter is used for single run
jobs.

Yes, cannot be used when the
OlderThanPeriod parameter is
used

OlderThanPeriod Logs older than the specified
timer expression are removed.
For example, set 30d to remove
logs older than 30 days.

Yes, cannot be used when the
OlderThan parameter is used

ForCaseDefId Specifies the case definition ID of
the logs that are removed.

No, can be used with other
parameters

CHAPTER 48. CANCELING OR DESTROYING A CASE

233

ForDeployment Specifies the deployment ID of
the logs that are removed.

No, can be used with other
parameters

EmfName The persistence unit name used
to perform the delete operation.
Default value: org.jbpm.domain

N/A

DateFormat Specifies the date format for
time-related parameters. Default
value: yyyy-MM-dd

No, can be used with other
parameters

Status Status of the case instances of
the logs that are removed.

No, can be used with other
parameters

Name Description Is Exclusive

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

234

CHAPTER 49. ADDITIONAL RESOURCES
Getting started with case management

Using the Showcase application for case management

CHAPTER 49. ADDITIONAL RESOURCES

235

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-case-management
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-showcase-application

PART V. USING THE SHOWCASE APPLICATION FOR CASE
MANAGEMENT

As a case worker or process administrator, you can use the Showcase application to manage and
monitor case management applications while case work is carried out in Business Central.

Case management differs from business process management (BPM) in that it focuses on the actual
data being handled throughout the case and less on the sequence of steps taken to complete a goal.
Case data is the most important piece of information in case handling, while business context and
decision-making is in the hands of the human case worker.

Use this document to install the Showcase application and start a case instance using the IT_Orders
sample case management project in Business Central. Use Business Central to complete the tasks
required to complete an IT Orders case.

Prerequisites

Red Hat JBoss Enterprise Application Platform 7.4 is installed. For installation information, see
Red Hat JBoss Enterprise Application Platform 7.4 Installation Guide .

Red Hat Process Automation Manager is installed on Red Hat JBoss EAP and configured with
KIE Server. For more information see Installing and configuring Red Hat Process Automation
Manager on Red Hat JBoss EAP 7.4.

KieLoginModule is configured in standalone-full.xml. This is required to connect to KIE Server.
For more information about configuring KIE Server, see Planning a Red Hat Process Automation
Manager installation.

Red Hat Process Automation Manager is running and you can log in to Business Central with a
user that has both kie-server and user roles. For more information about roles, see Planning a
Red Hat Process Automation Manager installation.

The IT_Orders sample project has been imported in Business Central and deployed to KIE
Server. For more information about case management, see Getting started with case
management.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

236

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/installation_guide/
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-install-on-eap
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/installing_and_configuring_red_hat_process_automation_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-case-management

CHAPTER 50. CASE MANAGEMENT
Case management is an extension of Business Process Management (BPM) that enables you to manage
adaptable business processes.

BPM is a management practice used to automate tasks that are repeatable and have a common
pattern, with a focus on optimization by perfecting a process. Business processes are usually modeled
with clearly defined paths leading to a business goal. This requires a lot of predictability, usually based on
mass-production principles. However, many real-world applications cannot be described completely
from start to finish (including all possible paths, deviations, and exceptions). Using a process-oriented
approach in certain cases can lead to complex solutions that are hard to maintain.

Case management provides problem resolution for non-repeatable, unpredictable processes as
opposed to the efficiency-oriented approach of BPM for routine, predictable tasks. It manages one-off
situations when the process cannot be predicted in advance. A case definition usually consists of loosely
coupled process fragments that can be connected directly or indirectly to lead to certain milestones and
ultimately a business goal, while the process is managed dynamically in response to changes that occur
during run time.

In Red Hat Process Automation Manager, case management includes the following core process engine
features:

Case file instance

A per case runtime strategy

Case comments

Milestones

Stages

Ad hoc fragments

Dynamic tasks and processes

Case identifier (correlation key)

Case lifecycle (close, reopen, cancel, destroy)

A case definition is always an ad hoc process definition and does not require an explicit start node. The
case definition is the main entry point for the business use case.

A process definition is introduced as a supporting construct of the case and can be invoked either as
defined in the case definition or dynamically to bring in additional processing when required. A case
definition defines the following new objects:

Activities (required)

Case file (required)

Milestones

Roles

Stages

CHAPTER 50. CASE MANAGEMENT

237

CHAPTER 51. CASE MANAGEMENT SHOWCASE APPLICATION
The Showcase application is included in the Red Hat Process Automation Manager distribution to
demonstrate the capabilities of case management in an application environment. Showcase is intended
to be used as a proof of concept that aims to show the interaction between business process
management (BPM) and case management. You can use the application to start, close, monitor, and
interact with cases.

Showcase must be installed in addition to the Business Central application and KIE Server. The
Showcase application is required to start new case instances, however the case work is still performed in
Business Central.

After a case instance is created and is being worked on, you can monitor the case in the Showcase
application by clicking the case in the Case List to open the case Overview page.

Showcase Support
The Showcase application is not an integral part of Red Hat Process Automation Manager and is
intended for demonstration purposes for case management. Showcase is provided to encourage
customers to adopt and modify it to work for their specific needs. The content of the application itself
does not carry product-specific Service Level Agreements (SLAs). We encourage you to report issues,
request for enhancements, and any other feedback for consideration in Showcase updates.

Red Hat Support will provide guidance on the use of this template on a commercially reasonable basis
for its intended use, excluding the provided example UI code provided within.

NOTE

Production support is limited to the Red Hat Process Automation Manager distribution.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

238

https://access.redhat.com/support/offerings/production/soc

CHAPTER 52. INSTALLING AND LOGGING IN TO THE
SHOWCASE APPLICATION

The Showcase application is included with the Red Hat Process Automation Manager 7.12 distribution in
the add-ons Zip file. The purpose of this application is to demonstrate the functionality of case
management in Red Hat Process Automation Manager and enable you to interact with cases created in
Business Central. You can install the Showcase application in a Red Hat JBoss Enterprise Application
Platform instance or on OpenShift. This procedure describes how to install the Showcase application in
Red Hat JBoss EAP.

Prerequisites

Business Central and KIE Server are installed in a Red Hat JBoss EAP instance.

You have created a user with kie-server and user roles. Only users with the user role are able
to log in to the Showcase application. Users also require the kie-server role to perform remote
operations on the running KIE Server.

Business Central is not running.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Process Automation Manager

Version: 7.12

2. Download Red Hat Process Automation Manager 7.12 Add Ons (rhpam-7.12.0-add-ons.zip).

3. Extract the rhpam-7.12.0-add-ons.zip file. The rhpam-7.12-case-mgmt-showcase-eap7-
deployable.zip file is in the unzipped directory.

4. Extract the rhpam-7.12-case-mgmt-showcase-eap7-deployable.zip archive to a temporary
directory. In the following examples this directory is called TEMP_DIR.

5. Copy the contents of the _TEMP_DIR/rhpam-7.12-case-mgmt-showcase-eap7-
deployable/jboss-eap-7.4 directory to EAP_HOME.
When asked to overwrite files or merge directories, select Yes.

WARNING

Ensure the names of the Red Hat Process Automation Manager
deployments you copy do not conflict with your existing deployments in the
Red Hat JBoss EAP instance.

6. Add the following system property to your deployment’s jboss-eap-
7.4/standalone/configuration/standalone-full.xml file:

<property name="org.jbpm.casemgmt.showcase.url" value="/rhpam-case-mgmt-



CHAPTER 52. INSTALLING AND LOGGING IN TO THE SHOWCASE APPLICATION

239

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

<property name="org.jbpm.casemgmt.showcase.url" value="/rhpam-case-mgmt-
showcase"/>

7. In a terminal application, navigate to EAP_HOME/bin and run the standalone configuration to
start Business Central:
./standalone.sh -c standalone-full.xml

8. In a web browser, enter localhost:8080/business-central.
If Red Hat Process Automation Manager has been configured to run from a domain name,
replace localhost with the domain name, for example:

http://www.example.com:8080/business-central

9. In the upper-right corner in Business Central, click the Apps launcher button to launch Case
Management Showcase in a new browser window.

10. Log in to the Showcase application using your Business Central user credentials.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

240

CHAPTER 53. CASE ROLES
Case roles provide an additional layer of abstraction for user participation in case handling. Roles, users,
and groups are used for different purposes in case management.

Roles

Roles drive the authorization for a case instance and are used for user activity assignments. A user or
one or more groups can be assigned to the owner role. The owner is whoever the case belongs to.
Roles are not restricted to a single set of people or groups as part of a case definition. Use roles to
specify task assignments instead of assigning a specific user or group to a task assignment to ensure
that the case remains dynamic.

Groups

A group is a collection of users who are able to carry out a particular task or have a set of specified
responsibilities. You can assign any number of people to a group and assign any group to a role. You
can add or change members of a group at any time. Do not hard code a group to a particular task.

Users

A user is an individual who can be given a particular task when you assign them a role or add them to a
group.

NOTE

Do not create a user called unknown in process engine or KIE Server. The unknown
user account is a reserved system name with superuser access. The unknown user
account performs tasks related to the SLA violation listener when there are no users
logged in.

The following example illustrates how the preceding case management concepts apply to a hotel
reservation with the following information:

Role: Guest

Group: Receptionist, Maid

User: Marilyn

The Guest role assignment affects the specific work of the associated case and is unique to all case
instances. Every case instance will have its own role assignments. The number of users or groups that
can be assigned to a role is limited by the case Cardinality, which is set during role creation in the
process designer and case definition. For example, the hotel reservation case has only one guest while
the IT_Orders sample project has two suppliers of IT hardware.

When roles are defined, ensure that roles are not hard-coded to a single set of people or groups as part
of case definition and that they can differ for each case instance. This is why case role assignments are
important.

Role assignments can be assigned or removed when a case starts or at any time when a case is active.
Although roles are optional, use roles in case definitions to maintain an organized workflow.

IMPORTANT

Always use roles for task assignments instead of actual user or group names. This ensures
that the case and user or group assignments can be made as late as required.

CHAPTER 53. CASE ROLES

241

Roles are assigned to users or groups and authorized to perform tasks when a case instance is started.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

242

CHAPTER 54. STARTING DYNAMIC TASKS AND PROCESSES
You can add dynamic tasks and processes to a case during run time. Dynamic actions are a way to
address changing situations, where an unanticipated change during the case requires a new task or
process to be incorporated into the case.

Use a case application to add a dynamic task during run time. For demonstration purposes, the Business
Central distribution includes a Showcase application where you can start a new dynamic task or process
for the IT Orders application.

Prerequisites

KIE Server is deployed and connected to Business Central.

The IT Orders project is deployed to KIE Server.

The Showcase application .war file has been deployed alongside Business Central.

Procedure

1. With the IT_Orders_New project deployed and running in KIE Server, in a web browser, navigate
to the Showcase login page http://localhost:8080/rhpam-case-mgmt-showcase/.
Alternatively, if you have configured Business Central to display the Apps launcher button, use
it to open a new browser window with the Showcase login page.

2. Log in to the Showcase application using your Business Central login credentials.

3. Select an active case instance from the list to open it.

4. Under Overview → Actions → Available, click the button next to New user task or New
process task to add a new task or process task.

Figure 54.1. Showcase dynamic actions

CHAPTER 54. STARTING DYNAMIC TASKS AND PROCESSES

243

http://localhost:8080/rhpam-case-mgmt-showcase/

Figure 54.1. Showcase dynamic actions

To create a dynamic user task, start a New user task and complete the required
information:

To create a dynamic process task, start a new process task and complete the required
information:

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

244

5. To view a dynamic user task in Business Central, click Menu → Track → Task Inbox. The user
task that was added dynamically using the Showcase application appears in the Task Inbox of
users assigned to the task during task creation.

a. Click the dynamic task in the Task Inbox to open the task. A number of action tabs are
available from this page.

b. Using the actions available under the task tabs, you can begin working on the task.

c. In the Showcase application, click the refresh button in the upper-right corner. Case tasks
and processes that are in progress appear under Overview → Actions → In progress.

d. When you have completed working on the task, click the Complete button under the Work
tab.

e. In the Showcase application, click the refresh button in the upper-right corner. The
completed task appears under Overview → Actions → Completed.

6. To view a dynamic process task in Business Central, click Menu → Manage → Process
Instances.

CHAPTER 54. STARTING DYNAMIC TASKS AND PROCESSES

245

a. Click the dynamic process instance in the list of available process instances to view
information about the process instance.

b. In the Showcase application, click the refresh button in the upper-right corner. Case tasks
and processes that are in progress appear under Overview → Actions → In progress.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

246

CHAPTER 55. STARTING AN IT ORDERS CASE IN THE
SHOWCASE APPLICATION

You can start a new case instance for the IT Orders sample case management project in the Showcase
application.

The IT Orders sample case management project includes the following roles:

owner: The employee who is making the hardware order request. There can be only one of
these roles.

manager: The employee’s manager; the person who will approve or deny the requested
hardware. There is only one manager in the IT Orders project.

supplier: The available suppliers of IT hardware in the system. There is usually more than one
supplier.

These roles are configured at the case definition level:

Figure 55.1. ITOrders Case Roles

Assign users or groups to these roles when starting a new case file instance.

Prerequisites

You have imported and deployed the IT Orders sample project in Business Central.

You have installed and logged in to the Showcase application as instructed in Chapter 52,
Installing and logging in to the Showcase application .

Procedure

1. In the Showcase application, start a new case instance by clicking the Start Case button.

2. Select the Order for IT hardware case name from the list and complete the role information as
shown:

CHAPTER 55. STARTING AN IT ORDERS CASE IN THE SHOWCASE APPLICATION

247

In this example, Aimee is the case owner, Katy is the manager, and the supplier group is
supplier.

3. Click Start to start the case instance.

4. Select the case from the Case List. The Overview page opens.
From the Overview page, you can monitor the case progress, add comments, start new dynamic
tasks and processes, and complete and close cases.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

248

NOTE

Cases can be started and closed using the Showcase application, but they cannot be
reopened using this application. You can only reopen a case using a JMS or REST API call.

CHAPTER 55. STARTING AN IT ORDERS CASE IN THE SHOWCASE APPLICATION

249

CHAPTER 56. COMPLETING THE IT_ORDERS CASE USING
SHOWCASE AND BUSINESS CENTRAL

When a case instance is started using the Showcase application, tasks that are configured as AdHoc
Autostart in the case definition are automatically assigned and made available to users with the role
assignment for each task. Case workers can then work on the tasks in Business Central and complete
them to move the case forward.

In the IT_Orders case project, the following case definition nodes are configured with the AdHoc
Autostart property:

Prepare hardware spec

Hardware spec ready

Manager decision

Milestone 1: Order placed

Of these, the only user task is Prepare hardware spec, which is assigned to the supplier group. This is
the first human task to be completed in the IT Orders case. When this task is complete, the Manager
approval task becomes available to the user assigned to the manager role, and after the rest of the
case work is finished, the Customer satisfaction survey task is assigned to the case owner for
completion.

Prerequisites

As the wbadmin user, you have started an IT_Orders case in the Showcase application.

Procedure

1. Log out of Business Central and log back in as a user that belongs to the supplier group.

2. Go to Menu → Track → Task Inbox.

3. Open the Prepare hardware spec task and click Claim. This assigns the task to the logged in
user.

4. Click Start and click to locate the hardware specification file. Click to upload the file.

5. Click Complete.

6. In Showcase, click Refresh in the upper-right corner. Notice that the Prepare hardware task

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

250

6. In Showcase, click Refresh in the upper-right corner. Notice that the Prepare hardware task
user task and the Hardware spec ready milestone appear in the Completed column.

7. In Business Central, go to Menu → Track → Task Inbox. Open the Manager approval task for
wbadmin.

a. Click Claim and then click Start.

b. Check the approve box for the task that includes the valid-spec.pdf file, then click
Complete.

8. Go to Menu → Manage → Process Instances and open the Order for IT hardware process
instance.

a. Open the Diagram tab. Note that the Place order task is complete.

b. Refresh the Showcase page to see that the Manager approval task and the Manager
decision milestone are in the Completed column. The Milestones pane in the lower-left
corner of the Showcase overview page also shows the completed and pending milestones.

CHAPTER 56. COMPLETING THE IT_ORDERS CASE USING SHOWCASE AND BUSINESS CENTRAL

251

9. In Business Central go to Menu → Manage → Tasks. Click the Place order task to open it.

a. Click Claim and then click Start.

b. Select the Is order placed check box and click Complete.

The process instance diagram now shows the Milestones 2: Order shipped case progress:

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

252

c. Refresh the Showcase page to view the case progress.

10. Go to Menu → Manage → Process Instances and open the Order for IT hardware.

a. Open the Process Variables tab. Locate the caseFile_shipped variable and click Edit.

b. In the Edit window, type true and click Save.

c. Refresh the Showcase page. Note that the Milestone 2: Order shipped milestone is shown
as Completed.
The final milestone, Milestone 3: Delivered to customer is In progress.

11. Go to Menu → Manage → Process Instances and open the Order for IT hardware.

a. Open the Process Variables tab. Locate the caseFile_delivered variable and click Edit.

b. In the Edit window, type true and click Save.

c. Refresh the Showcase page. Note that the Milestone 3: Delivered to customer milestone
is shown as Completed. All milestones under the Milestones pane in the lower-left corner
are shown as complete.
The final task of the IT Orders case, Customer satisfaction survey is shown under In
progress.

CHAPTER 56. COMPLETING THE IT_ORDERS CASE USING SHOWCASE AND BUSINESS CENTRAL

253

12. In Business Central go to Menu → Track → Task Inbox. Click the Customer satisfaction
survey task to open it.
This task is already reserved for wbadmin.

13. Click Start and fill out the survey.

14. Click Complete.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

254

15. Go to Menu → Manage → Process Instances and open the Order for IT hardware process
instance.

a. Open the Diagram tab. This shows that all required case process nodes are complete and
there is nothing left to do for this case instance.

b. Refresh the Showcase page and note that there are no actions under In progress.

16. In Showcase, type a comment in to the field under Comments. Click to add the comment
to the case file.

17. Click Close in the upper-right corner of the Showcase page to complete and close the case.

CHAPTER 56. COMPLETING THE IT_ORDERS CASE USING SHOWCASE AND BUSINESS CENTRAL

255

CHAPTER 57. ADDITIONAL RESOURCES
Designing and building cases for case management

Getting started with case management

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

256

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-designing-and-building-cases
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/getting_started_with_red_hat_process_automation_manager#assembly-getting-started-case-management

PART VI. CUSTOM TASKS AND WORK ITEM HANDLERS
As a business rules developer, you can create custom tasks and work item handlers to execute custom
code within your process flows and extend the operations available for use in Red Hat Process
Automation Manager. You can use custom tasks to develop operations that Red Hat Process
Automation Manager does not directly provide and include them in process diagrams. Custom tasks and
work item handlers support Business Central, standalone editors, and Visual Studio Code (VSCode).
This chapter describes how to use Business Central to create, manage, and deploy custom tasks and
work item handlers.

In Business Central, each task in a process diagram has a WorkItemDefinition Java class with an
associated WorkItemHandler Java class. You can define a WorkItemDefinition using an MVFLEX
Expression Language (MVEL) map as part of a MVEL list in a .wid file. Place the .wid file in the global
directory under the project root or in the directory of the BPMN file. The work item handler contains
Java code registered with Business Central and implements
org.kie.api.runtime.process.WorkItemHandler.

The Java code of the work item handler is executed when the task is triggered. You can customize and
register a work item handler to execute your own Java code in custom tasks.

Prerequisites

Business Central is deployed and is running on a web or application server.

You are logged in to Business Central.

Maven is installed.

The host has access to the Internet. The build process uses the Internet for downloading Maven
packages from external repositories.

Your system has access to the Red Hat Maven repository either locally or online

PART VI. CUSTOM TASKS AND WORK ITEM HANDLERS

257

CHAPTER 58. MANAGING CUSTOM TASKS IN BUSINESS
CENTRAL

Custom tasks (work items) are tasks that can run custom logic. You can customize and reuse custom
tasks across multiple business processes or across all projects in Business Central. You can also add
custom elements in the designer palette, including name, icon, sub-category, input and output
parameters, and documentation. Red Hat Process Automation Manager provides a set of custom tasks
within the custom task repository in Business Central. You can enable or disable the default custom
tasks and upload custom tasks into Business Central to implement the tasks in the relevant processes.

NOTE

Red Hat Process Automation Manager includes a limited set of supported custom tasks.
Custom tasks that are not included in Red Hat Process Automation Manager are not
supported.

Procedure

1. In Business Central, click in the upper-right corner and select Custom Tasks
Administration.
This page lists the custom task installation settings and available custom tasks for processes in
projects throughout Business Central. The custom tasks that you enable on this page become
available in the project-level settings where you can then install each custom task to be used in
processes. The way in which the custom tasks are installed in a project is determined by the
global settings that you enable or disable under Settings on this Custom Tasks Administration
page.

2. Under Settings, enable or disable each setting to determine how the available custom tasks are
implemented when a user installs them at the project level.
The following custom task settings are available:

Install as Maven artifact: Uploads the custom task JAR file to the Maven repository that is
configured with Business Central, if the file is not already present.

Install custom task dependencies into project: Adds any custom task dependencies to the
pom.xml file of the project where the task is installed.

Use version range when installing custom task into project: Uses a version range instead
of a fixed version of a custom task that is added as a project dependency. Example: [7.16,)
instead of 7.16.0.Final

3. Enable or disable (set to ON or OFF) any available custom tasks as needed. Custom tasks that
you enable are displayed in project-level settings for all projects in Business Central.

Figure 58.1. Enable custom tasks and custom task settings

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

258

Figure 58.1. Enable custom tasks and custom task settings

4. To add a custom task, click Add Custom Task, browse to the relevant JAR file, and click the
Upload icon. If a class implements a WorkItemHandler, you can replace annotations with a .wid
file by adding the file to Business Central separately.

5. Optional: To remove a custom task, click remove on the row of the custom task you want to
remove and click Ok to confirm removal.

6. After you configure all required custom tasks, navigate to a project in Business Central and go
to the project Settings → Custom Tasks page to view the available custom tasks that you
enabled.

7. For each custom task, click Install to make the task available to the processes in that project or
click Uninstall to exclude the task from the processes in the project.

8. If you are prompted for additional information when you install a custom task, enter the required
information and click Install again.
The required parameters for the custom task depend on the type of task. For example, rule and
decision tasks require artifact GAV information (Group ID, Artifact ID, Version), email tasks
require host and port access information, and REST tasks require API credentials. Other custom
tasks might not require any additional parameters.

Figure 58.2. Install custom tasks for use in processes

CHAPTER 58. MANAGING CUSTOM TASKS IN BUSINESS CENTRAL

259

Figure 58.2. Install custom tasks for use in processes

9. Click Save.

10. Return to the project page, select or add a business process in the project, and in the process
designer palette, select the Custom Tasks option to view the available custom tasks that you
enabled and installed:

Figure 58.3. Access installed custom tasks in process designer

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

260

Figure 58.3. Access installed custom tasks in process designer

CHAPTER 58. MANAGING CUSTOM TASKS IN BUSINESS CENTRAL

261

CHAPTER 59. CREATING WORK ITEM HANDLER PROJECTS
Create the software project to contain all configurations, mappings, and executable code for the
custom task.

You can create a work item handler from scratch or use a Maven archetype to create an example
project. Red Hat Process Automation Manager provides the jbpm-workitems-archetype from the Red
Hat Maven repository for this purpose.

Procedure

1. Open the command line and create a directory where you will build your work item handler such
as workitem-home:

$ mkdir workitem-home

2. Check the Maven settings.xml file and ensure that the Red Hat Maven repository is included in
the repository list.

NOTE

Setting up Maven is outside the scope of this guide.

For example, to add the online Red Hat Maven repository to your Maven settings.xml file:

<settings>
 <profiles>
 <profile>
 <id>my-profile</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>redhat-ga</id>
 <url>http://maven.repository.redhat.com/ga/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
 </repository>
 ...
 </repositories>
 </profile>
 </profiles>
 ...
</settings>

3. Find the Red Hat library version and perform one of the following tasks:

To find the library version online, see What is the mapping between Red Hat Process
Automation Manager and the Maven library version?.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

262

https://access.redhat.com/solutions/3405361

To find the library version offline, check Implementation-Version in business-
central.war/META-INF/MANIFEST.MF or Implementation-Version in kie-
server.war/META-INF/MANIFEST.MF.

4. In the workitem-home directory, execute the following command:

$ mvn archetype:generate \
-DarchetypeGroupId=org.jbpm \
-DarchetypeArtifactId=jbpm-workitems-archetype \
-DarchetypeVersion=<redhat-library-version> \
-Dversion=1.0.0-SNAPSHOT \
-DgroupId=com.redhat \
-DartifactId=myworkitem \
-DclassPrefix=MyWorkItem

Table 59.1. Parameter descriptions

Parameter Description

-DarchetypeGroupId Specific to the archetype and must remain unchanged.

-DarchetypeArtifactId Specific to the archetype and must remain unchanged.

-DarchetypeVersion Red Hat library version that is searched for when Maven
attempts to download the jbpm-workitems-archetype
artifact.

-Dversion Version of your specific project. For example, 1.0.0-
SNAPSHOT.

-DgroupId Maven group of your specific project. For example,
com.redhat.

-DartifactId Maven ID of your specific project. For example,
myworkitem.

-DclassPrefix String added to the beginning of Java classes when Maven
generates the classes for easier identification. For example,
MyWorkItem.

A myworkitem folder is created in the workitem-home directory. For example:

assembly/
 assembly.xml
src/
 main/
 java/
 com/
 redhat/
 MyWorkItemWorkItemHandler.java
 repository/
 resources/

CHAPTER 59. CREATING WORK ITEM HANDLER PROJECTS

263

 test/
 java/
 com/
 redhat/
 MyWorkItemWorkItemHandlerTest.java
 MyWorkItemWorkItemIntegrationTest.java
 resources/
 com/
 redhat/
pom.xml

5. Add any Maven dependencies required by the work item handler class to the pom.xml file.

6. To create a deployable JAR for this project, in the parent project folder where the pom.xml file
is located, execute the following command:

$ mvn clean package

Several files are created in the target/ directory which include the following two main files:

Table 59.2. File descriptions

Parameter Description

myworkitems-<version>.jar Used for direct deployment to Red Hat Process
Automation Manager.

myworkitems-<version>.zip Used for deployment using a service repository.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

264

CHAPTER 60. WORK ITEM HANDLER PROJECT
CUSTOMIZATION

You can customize the code of a work item handler project. There are two Java methods required by a
work item handler, executeWorkItem and abortWorkItem.

Table 60.1. Java method descriptions

Java Method Description

executeWorkItem(WorkItem
workItem, WorkItemManager
manager)

Executed by default when the work item handler is run.

abortWorkItem(WorkItem workItem,
WorkItemManager manager)

Executed when the work item is aborted.

In both methods, the WorkItemDefinition parameter contains any of the parameters entered into the
custom task through a GUI or API call, and the WorkItem parameter is responsible for tracking the state
of the custom task.

Example code structure

Table 60.2. Parameter descriptions

public class MyWorkItemWorkItemHandler extends AbstractLogOrThrowWorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {
 try {
 RequiredParameterValidator.validate(this.getClass(), workItem);

 // sample parameters
 String sampleParam = (String) workItem.getParameter("SampleParam");
 String sampleParamTwo = (String) workItem.getParameter("SampleParamTwo");

 // complete workitem impl...

 // return results
 String sampleResult = "sample result";
 Map<String, Object> results = new HashMap<String, Object>();
 results.put("SampleResult", sampleResult);
 manager.completeWorkItem(workItem.getId(), results);
 } catch(Throwable cause) {
 handleException(cause);
 }
 }

 @Override
 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {
 // similar
 }
}

CHAPTER 60. WORK ITEM HANDLER PROJECT CUSTOMIZATION

265

Parameter Description

RequiredParameterValidator.validat
e(this.getClass(), workItem);

Checks that all parameters marked “required” are present. If
they are not, an IllegalArgumentException is thrown.

String sampleParam = (String)
workItem.getParameter("SamplePar
am");

Example of getting a parameter from the WorkItem class. The
name is always a string. For example, WorkItem. In the example,
SampleParam is always a string but the object associated with
it can be many things and require a cast in order to avoid errors.

// complete workitem impl… Executes the custom Java code when a parameter is received.

results.put("SampleResult",
sampleResult);

Passes results to the custom task. The results are placed in the
data output areas of the custom task.

manager.completeWorkItem(workIt
em.getId(), results);

Marks the work item handler as complete. The
WorkItemManager controls the state of the work item and is
responsible for getting the WorkItem ID and associate the
results with the correct custom task.

abortWorkItem() Aborts the custom Java code. May be left blank if the work item
is not designed to be aborted

NOTE

Red Hat Process Automation Manager includes a limited set of supported custom tasks.
Custom tasks that are not included in Red Hat Process Automation Manager are not
supported.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

266

CHAPTER 61. WORK ITEM DEFINITIONS
Red Hat Process Automation Manager requires a work item definition (WID) file to identify the data
fields to show in Business Central and accept API calls. The WID file is a mapping between user
interactions with Red Hat Process Automation Manager and the data that is passed to the work item
handler. The WID file also handles the UI details such as the name of the custom task, the category it is
displayed as on the palette in Business Central, the icon used to designate the custom task, and the
work item handler the custom task will map to.

In Red Hat Process Automation Manager you can create a WID file in two ways:

Use a @Wid annotation when coding the work item handler.

Create a .wid text file. For example, definitions-example.wid.

61.1. @WID ANNOTATION

The @Wid annotation is automatically created when you generate a work item handler project using the
Maven archetype. You can also add the annotation manually.

@Wid Example

@Wid(widfile="MyWorkItemDefinitions.wid",
 name="MyWorkItemDefinitions",
 displayName="MyWorkItemDefinitions",
 icon="",
 defaultHandler="mvel: new com.redhat.MyWorkItemWorkItemHandler()",
 documentation = "myworkitem/index.html",
 parameters={
 @WidParameter(name="SampleParam", required = true),
 @WidParameter(name="SampleParamTwo", required = true)
 },
 results={
 @WidResult(name="SampleResult")
 },
 mavenDepends={
 @WidMavenDepends(group="com.redhat",
 artifact="myworkitem",
 version="7.52.0.Final-example-00007")
 },
 serviceInfo={
 @WidService(category = "myworkitem",
 description = "${description}",
 keywords = "",
 action = @WidAction(title = "Sample Title"),
 authinfo = @WidAuth(required = true,
 params = {"SampleParam", "SampleParamTwo"},
 paramsdescription = {"SampleParam", "SampleParamTwo"},
 referencesite = "referenceSiteURL"))
 }
)

Table 61.1. @Wid descriptions

CHAPTER 61. WORK ITEM DEFINITIONS

267

 Description

@Wid Top-level annotation to auto-generate WID files.

widfile Name of the file that is automatically created for the custom task when it is
deployed in Red Hat Process Automation Manager.

name Name of the custom task, used internally. This name must be unique to
custom tasks deployed in Red Hat Process Automation Manager.

displayName Displayed name of the custom task. This name is displayed in the palette in
Business Central.

icon Path from src/main/resources/ to an icon located in the current project.
The icon is displayed in the palette in Business Central. The icon, if specified,
must be a PNG or GIF file and 16x16 pixels. This value can be left blank to
use a default “Service Task” icon.

description Description of the custom task.

defaultHandler The work item handler Java class that is linked to the custom task. This
entry is in the format <language> : <class>. Red Hat Process
Automation Manager recommends using mvel as the language value for
this attribute but java can also be used. For more information about mvel,
see MVEL Documentation.

documentation Path to an HTML file in the current project that contains a description of the
custom task.

@WidParameter Child annotation of @Wid. Specifies values that will be populated in the
Business Central GUI or expected by API calls as data inputs for the custom
task. More than one parameter can be specified:

name - A name for the parameter.

NOTE

Due to the possibility of this name being used in API calls
over transfer methods such as REST or SOAP, this name
should not contain spaces or special characters.

required - Boolean value indicating whether the parameter is required for
the custom task to execute.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

268

http://mvel.documentnode.com/

@WidResult Child annotation of @Wid. Specifies values that will be populated in the
Business Central GUI or expected by API calls as data outputs for the
custom task. You can specify more than one result:

name - A name for the result.

NOTE

Due to the possibility of this name being used in API calls
over transfer methods such as REST or SOAP, this name
should not contain spaces or special characters.

@WidMavenDepends Child annotation of @Wid. Specifies Maven dependencies that will be
required for the correct functioning of the work item handler. You can
specify more than one dependency:

group - Maven group ID of the dependency.

artifact - Maven artifact ID of the dependency.

version - Maven version number of the dependency.

@WidService Child annotation of @Wid. Specifies values that will be populated in the
service repository.

category - The UI palette category that the handler will be placed. This
value should match the category field of the @Wid annotation.

description - Description of the handler that will be displayed in the
service repository.

keywords - Comma-separated list of keywords that apply to the handler.
Note: Currently not used by the Business Central service repository.

action - The @WidAction object.

authinfo - The @WidAuth object. Optional.

@WidAction Object of @WidService.

title - The title for the handler action.

description - The description for the handler action.

 Description

CHAPTER 61. WORK ITEM DEFINITIONS

269

@WidAuth Object of @WidService.

required - The boolean value that determines whether authentication is
required.

params - The array containing the authentication parameters required.

paramsdescription - The array containing the descriptions for each
authentication parameter.

referencesite - The URL to where the handler documentation can be
found. Note: Currently not used by the Business Central service repository.

 Description

61.2. TEXT FILE

A global WorkDefinitions WID text file is automatically generated by new projects when a business
process is added. The WID text file is similar to the JSON format but is not a completely valid JSON file.
You can open this file in Business Central. You can create additional WID files by selecting Add Asset >
Work item definitions from an existing project.

Text file example

The file is structured as a plain-text file using a JSON-like structure. The filename extension is .wid.

Table 61.2. Text file descriptions

 Description

[
 [
 "name" : "MyWorkItemDefinitions",
 "displayName" : "MyWorkItemDefinitions",
 "category" : "",
 "description" : "",
 "defaultHandler" : "mvel: new com.redhat.MyWorkItemWorkItemHandler()",
 "documentation" : "myworkitem/index.html",
 "parameters" : [
 "SampleParam" : new StringDataType(),
 "SampleParamTwo" : new StringDataType()
],
 "results" : [
 "SampleResult" : new StringDataType()
],
 "mavenDependencies" : [
 "com.redhat:myworkitem:7.52.0.Final-example-00007"
],
 "icon" : ""
]
]

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

270

name Name of the custom task, used internally. This name must be unique to
custom tasks deployed in Red Hat Process Automation Manager.

displayName Displayed name of the custom task. This name is displayed in the palette in
Business Central.

icon Path from src/main/resources/ to an icon located in the current project.
The icon is displayed in the palette in Business Central. The icon, if specified,
must be a PNG or GIF file and 16x16 pixels. This value can be left blank to
use a default “Service Task” icon.

category Name of a category within the Business Central palette under which this
custom task is displayed.

description Description of the custom task.

defaultHandler The work item handler Java class that is linked to the custom task. This
entry is in the format <language> : <class>. Red Hat Process
Automation Manager recommends using mvel as the language value for
this attribute but java can also be used. For more information about mvel,
see MVEL Documentation.

documentation Path to an HTML file in the current project that contains a description of the
custom task.

parameters Specifies the values to be populated in the Business Central GUI or
expected by API calls as data inputs for the custom task. Parameters use the
<key> : <DataType> format. Accepted data types are
StringDataType(), IntegerDataType(), and ObjectDataType(). More
than one parameter can be specified.

results Specifies the values to be populated in the Business Central GUI or
expected by API calls as data outputs for the custom task. Results use the
<key> : <DataType> format. Accepted data types are
StringDataType(), IntegerDataType(), and ObjectDataType(). More
than one result can be specified.

mavenDependencies Optional: Specifies Maven dependencies required for the correct
functioning of the work item handler. Dependencies can also be specified in
the work item handler pom.xml file. Dependencies are in the format
<group>:<artifact>:<version>. More than one dependency may be
specified

 Description

Red Hat Process Automation Manager tries to locate a .wid file in two locations by default:

Within Business Central in the project’s top-level global/ directory. This is the location of the
default WorkDefinitions.wid file that is created automatically when a project first adds a
business process asset.

CHAPTER 61. WORK ITEM DEFINITIONS

271

http://mvel.documentnode.com/

Within Business Central in the project’s src/main/resources/ directory. This is where WID files
created within a project in Business Central will be placed. A WID file may be created at any
level of a Java package, so a WID file created at a package location of <default> will be created
directly inside src/main/resources/ while a WID file created at a package location of
com.redhat will be created at src/main/resources/com/redhat/

WARNING

Red Hat Process Automation Manager does not validate that the value for the
defaultHandler tag is executable or is a valid Java class. Specifying incorrect or
invalid classes for this tag will return errors.



Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

272

CHAPTER 62. DEPLOYING CUSTOM TASKS
Work item handlers, as custom code, are created outside of Red Hat Process Automation Manager. To
use the code in your custom task, the code must be deployed to the server. Work item handler projects
must be Java JAR files that can be placed into a Maven repository.

In Red Hat Process Automation Manager you can deploy custom tasks using two methods:

Within a Business Central custom task repository. For more information, see Managing and
monitoring business processes in Business Central.

Outside of Business Central, you can manually copy the JAR files into the Maven repository.

62.1. USING A BUSINESS CENTRAL CUSTOM TASK REPOSITORY

You can enable, disable, and deploy custom tasks within a Business Central custom task repository. For
more information, see Managing custom tasks in Business Central .

62.2. UPLOADING JAR ARTIFACT TO BUSINESS CENTRAL

You can upload the work item handler JAR to the Business Central Maven repository using Business
Central admin settings.

Procedure

1. In Business Central, select the Admin icon in the top-right corner of the screen and select
Artifacts.

2. Click Upload.

3. In the Artifact Upload window, click the Choose File icon.

4. Navigate to the location of the work item handler JAR, select the file and click Open.

5. In the pop-up dialog, click the Upload icon.
The artifact is uploaded and can now be viewed on the Artifacts page and referenced.

62.3. MANUALLY COPYING WORK ITEM DEFINITIONS TO BUSINESS
CENTRAL MAVEN REPOSITORY

Business Central automatically creates or reuses the Maven repository folder. By default the location is
based on the location of the user launched Red Hat JBoss EAP. For example, the full default path would
be <startup location>/repositories/kie/global. It is possible to replicate a standard Maven repository
folder layout of <groupId>/<artifactId>/<versionId>/ in this folder and copy work item handler JAR files
to this location. For example:

<startup location>/repositories/kie/global/com/redhat/myworkitem/1.0.0-SNAPSHOT/myworkitems-
1.0.0-SNAPSHOT.jar

Any artifacts copied in this fashion are available to Red Hat Process Automation Manager without a
server restart. Viewing the artifact in the Business Central Artifacts page requires clicking Refresh.

CHAPTER 62. DEPLOYING CUSTOM TASKS

273

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#manage-service-tasks-proc_managing-and-monitoring-processes
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#manage-service-tasks-proc_managing-and-monitoring-processes

CHAPTER 63. REGISTERING CUSTOM TASKS
Red Hat Process Automation Manager must know how to associate a custom task work item with the
code executed by the work item handler. The work item definition file links the custom task with the
work item handler by name and Java class. The work item handler’s Java class has to be registered as
usable in Red Hat Process Automation Manager.

NOTE

Service repositories contain domain-specific services that provide integration of your
processes with different types of systems. Registering a custom task is not necessary
when using a service repository because the import process registers the custom task.

Red Hat Process Automation Manager creates a WID file by default for projects that contain at least
one business process. You can create a WID file when registering a work item handler or edit the default
WID file. For more information about WID file locations or formatting, see Chapter 61, Work item
definitions.

For non-service repository deployments, work item handlers can be registered in two ways:

Registering using the deployment descriptor.

Registering using the spring component registration.

63.1. REGISTERING CUSTOM TASKS USING THE DEPLOYMENT
DESCRIPTOR INSIDE BUSINESS CENTRAL

You can register a custom task work item with the work item handler using the deployment descriptor in
Business Central.

Procedure

1. In Business Central, go to Menu → Design → Projects and select the project name.

2. In the project pane, select Settings → Deployments → Work Item Handlers.

3. Click Add Work Item Handler.

4. In the Name field, enter the display name for the custom task.

5. From the Resolver list, select MVEL, Reflection or Spring.

6. In the Value field, enter the value based on the resolver type:

NOTE

The value fields may be filled automatically.

For MVEL, use the format new <full Java package>.<Java work item handler class
name>()
Example: new com.redhat.MyWorkItemWorkItemHandler()

For Reflection, use the format <full Java package>.<Java work item handler class
name>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

274

Example: com.redhat.MyWorkItemWorkItemHandler

For Spring, use the format <Spring bean identifier>
Example: workItemSpringBean

7. Click Save to save your changes

63.2. REGISTERING CUSTOM TASKS USING THE DEPLOYMENT
DESCRIPTOR OUTSIDE BUSINESS CENTRAL

You can register a custom task work item with the work item handler using the deployment descriptor
outside Business Central.

Procedure

1. In your Git project directory, open the file src/main/resources/META-INF/kie-deployment-
descriptor.xml.

2. Add the following content based on the resolver type under <work-item-handlers>:

For MVEL, add the following:

<work-item-handler>
 <resolver>mvel</resolver>
 <identifier>new com.redhat.MyWorkItemWorkItemHandler()</identifier>
 <parameters/>
 <name>MyWorkItem</name>
</work-item-handler>

For Reflections, add the following:

<work-item-handler>
 <resolver>reflection</resolver>
 <identifier>com.redhat.MyWorkItemWorkItemHandler</identifier>
 <parameters/>
 <name>MyWorkItem</name>
</work-item-handler>

For Spring, add the following and ensure the identifier is the identifier of a Spring bean:

<work-item-handler>
 <resolver>spring</resolver>
 <identifier>beanIdentifier</identifier>
 <parameters/>
 <name>MyWorkItem</name>
</work-item-handler>

NOTE

CHAPTER 63. REGISTERING CUSTOM TASKS

275

NOTE

If you are using Spring to discover and configure Spring beans, it is possible
to use an annotation of the org.springframework.stereotype.Component
class to automatically register work item handlers.

Within a work item handler, add the annotation @Component("<Name>")
before the declaration of the work item handler class. For example:
@Component("MyWorkItem") public class
MyWorkItemWorkItemHandler extends
AbstractLogOrThrowWorkItemHandler {

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

276

CHAPTER 64. PLACING CUSTOM TASKS
When a custom task is registered in Red Hat Process Automation Manager it appears in the process
designer palette. The custom task is named and categorized according to the entries in its
corresponding WID file.

Prerequisites

A custom task is registered in Red Hat Process Automation Manager. For more information, see
Chapter 63, Registering custom tasks .

The custom task is named and categorized according to the corresponding WID file. For more
information about WID file locations or formatting, see Chapter 61, Work item definitions .

Procedure

1. In Business Central, go to Menu → Design → Projects and click a project.

2. Select the business process that you want to add a custom task to.

3. Select the custom task from the palette and drag it to the BPMN2 diagram.

4. Optional: Change the custom task attributes. For example, change the data output and input
from the corresponding WID file.

NOTE

If the WID file is not visible in your project and no Work Item Definition object is visible in
the Others category of your project, you must register the custom task. For more
information about registering a custom task, Chapter 63, Registering custom tasks .

CHAPTER 64. PLACING CUSTOM TASKS

277

PART VII. PROCESS ENGINE IN RED HAT PROCESS
AUTOMATION MANAGER

As a business process analyst or developer, your understanding of the process engine in Red Hat
Process Automation Manager can help you design more effective business assets and a more scalable
process management architecture. The process engine implements the Business Process Management
(BPM) paradigm in Red Hat Process Automation Manager and manages and executes business assets
that comprise processes. This document describes concepts and functions of the process engine to
consider as you create your business process management system and process services in Red Hat
Process Automation Manager.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

278

CHAPTER 65. PROCESS ENGINE IN RED HAT PROCESS
AUTOMATION MANAGER

The process engine implements the Business Process Management (BPM) paradigm in Red Hat
Process Automation Manager. BPM is a business methodology that enables modeling, measuring, and
optimizing processes within an enterprise.

In BPM, a repeatable business process is represented as a workflow diagram. The Business Process
Model and Notation (BPMN) specification defines the available elements of this diagram. The process
engine implements a large subset of the BPMN 2.0 specification.

With the process engine, business analysts can develop the diagram itself. Developers can implement
the business logic of every element of the flow in code, making an executable business process. Users
can execute the business process and interact with it as necessary. Analysts can generate metrics that
reflect the efficiency of the process.

The workflow diagram consists of a number of nodes. The BPMN specification defines many kinds of
nodes, including the following principal types:

Event: Nodes representing something happening in the process or outside of the process.
Typical events are the start and the end of a process. An event can throw messages to other
processes and catch such messages. Circles on the diagram represent events.

Activity: Nodes representing an action that must be taken (whether automatically or with user
involvement). Typical events are a task, which represents an action taken within the process, and
a call to a sub-process. Rounded rectangles on the diagram represent activities.

Gateway: A branching or merging node. A typical gateway evaluates an expression and,
depending on the result, continues to one of several execution paths. Diamond shapes on the
diagram represent gateways.

When a user starts the process, a process instance is created. The process instance contains a set of
data, or context, stored in process variables. The state of a process instance includes all the context
data and also the current active node (or, in some cases, several active nodes).

Some of these variables can be initialized when a user starts the process. An activity can read from
process variables and write to process variables. A gateway can evaluate process variables to determine
the execution path.

For example, a purchase process in a shop can be a business process. The content of the user’s cart can
be the initial process context. At the end of execution, the process context can contain the payment
confirmation and shipment tracking details.

Optionally, you can use the BPMN data modeler in Business Central to design the model for the data in
process variables.

The workflow diagram is represented in code by an XML business process definition. The logic of events,
gateways, and sub-process calls are defined within the business process definition.

Some task types (for example, script tasks and the standard decision engine rule task) are implemented
in the engine. For other task types, including all custom tasks, when the task must be executed the
process engine executes a call using the Work Item Handler API . Code external to the engine can
implement this API, providing a flexible mechanism for implementing various tasks.

The process engine includes a number of predefined types of tasks. These types include a script task

CHAPTER 65. PROCESS ENGINE IN RED HAT PROCESS AUTOMATION MANAGER

279

The process engine includes a number of predefined types of tasks. These types include a script task
that runs user Java code, a service task that calls a Java method or a Web Service, a decision task that
calls a decision engine service, and other custom tasks (for example, REST and database calls).

Another predefined type of task is a user task , which includes interaction with a user. User tasks in the
process can be assigned to users and groups.

The process engine uses the KIE API to interact with other software components. You can run business
processes as services on a KIE Server and interact with them using a REST implementation of the KIE
API. Alternatively, you can embed business processes in your application and interact with them using
KIE API Java calls. In this case, you can run the process engine in any Java environment.

Business Central includes a user interface for users executing human tasks and a form modeler for
creating the web forms for human tasks. However, you can also implement a custom user interface that
interacts with the process engine using the KIE API.

The process engine supports the following additional features:

Support for persistence of the process information using the JPA standard. Persistence
preserves the state and context (data in process variables) of every process instance, so that
they are not lost in case any components are restarted or taken offline for some time. You can
use an SQL database engine to store the persistence information.

Pluggable support for transactional execution of process elements using the JTA standard. If
you use a JTA transaction manager, every element of the business process starts as a
transaction. If the element does not complete, the context of the process instance is restored to
the state in which it was before the element started.

Support for custom extension code, including new node types and other process languages.

Support for custom listener classes that are notified about various events.

Support for migrating running process instances to a new version of their process definition

The process engine can also be integrated with other independent core services:

The human task service can manage user tasks when human actors need to participate in the
process. It is fully pluggable and the default implementation is based on the WS-HumanTask
specification. The human task service manages the lifecycle of the tasks, task lists, task forms,
and some more advanced features like escalation, delegation, and rule-based assignments.

The history log can store all information about the execution of all the processes in the process
engine. While runtime persistence stores the current state of all active process instances, you
need the history log to ensure access to historic information. The history log contains all current
and historic states of all active and completed process instances. You can use the log to query
for any information related to the execution of process instances for monitoring and analysis.

Additional resources

Designing business processes using BPMN models

Interacting with Red Hat Process Automation Manager using KIE APIs

Java documentation for the public KIE API

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

280

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#assembly-designing-business-processes
https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/deploying_and_managing_red_hat_process_automation_manager_services#kie-server-commands-con_kie-apis
https://docs.jboss.org/drools/release/7.59.0.Final/kie-api-javadoc/index.html

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE
The process engine executes business processes. To define the processes, you create business assets,
including process definitions and custom tasks.

You can use the Core Engine API to load, execute, and manage processes in the process engine.

Several levels of control are available:

At the lowest level, you can directly create a KIE base and a KIE session. A KIE base represents all
the assets in a business process. A KIE session is an entity in the process engine that runs
instances of a business process. This level provides fine-grained control, but requires explicit
declaration and configuration of process instances, task handlers, event handlers, and other
process engine entities in your code.

You can use the RuntimeManager class to manage sessions and processes. This class provides
sessions for required process instances using a configurable strategy. It automatically
configures the interaction between the KIE session and task services. It disposes of process
engine entities that are no longer necessary, ensuring optimal use of resources. You can use a
fluent API to instantiate RuntimeManager with the necessary business assets and to configure
its environment.

You can use the Services API to manage the execution of processes. For example, the
deployment service deploys business assets into the engine, forming a deployment unit. The
process service runs a process from this deployment unit.
If you want to embed the process engine in your application, the Services API is the most
convenient option, because it hides the internal details of configuring and managing the engine.

Finally, you can deploy a KIE Server that loads business assets from KJAR files and runs
processes. KIE Server provides a REST API for loading and managing the processes. You can
also use Business Central to manage a KIE Server.
If you use KIE Server, you do not need to use the Core Engine API. For information about
deploying and managing processes on a KIE Server, see Packaging and deploying a Red Hat
Process Automation Manager project.

For the full reference information for all public process engine API calls, see the Java documentation.
Other API classes also exist in the code, but they are internal APIs that can be changed in later versions.
Use public APIs in applications that you develop and maintain.

66.1. KIE BASE AND KIE SESSION

A KIE base contains a reference to all process definitions and other assets relevant for a process. The
engine uses this KIE base to look up all information for the process, or for several processes, whenever
necessary.

You can load assets into a KIE base from various sources, such as a class path, file system, or process
repository. Creating a KIE base is a resource-heavy operation, as it involves loading and parsing assets
from various sources. You can dynamically modify the KIE base to add or remove process definitions
and other assets at run time.

After you create a KIE base, you can instantiate a KIE session based on this KIE base. Use this KIE session
to run processes based on the definitions in the KIE base.

When you use the KIE session to start a process, a new process instance is created. This instance
maintains a specific process state. Different instances in the same KIE session can use the same process
definition but have different states.

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

281

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/deploying_and_managing_red_hat_process_automation_manager_services#assembly-packaging-deploying
https://docs.jboss.org/drools/release/7.59.0.Final/kie-api-javadoc/index.html

Figure 66.1. KIE base and KIE session in the process engine

For example, if you develop an application to process sales orders, you can create one or more process
definitions that determine how an order should be processed. When starting the application, you first
need to create a KIE base that contains those process definitions. You can then create a session based
on this KIE base. When a new sales order comes in, start a new process instance for the order. This
process instance contains the state of the process for the specific sales request.

You can create many KIE sessions for the same KIE base and you can create many instances of the
process within the same KIE session. Creating a KIE session, and also creating a process instance within
the KIE session, uses far fewer resources than creating a KIE base. If you modify a KIE base, all the KIE
sessions that use it can use the modifications automatically.

In most simple use cases, you can use a single KIE session to execute all processes. You can also use
several sessions if needed. For example, if you want order processing for different customers to be
completely independent, you can create a KIE session for each customer. You can also use multiple
sessions for scalability reasons.

In typical applications you do not need to create a KIE base or KIE session directly. However, when you
use other levels of the process engine API, you can interact with elements of the API that this level
defines.

66.1.1. KIE base

The KIE base includes all process definitions and other assets that your application might need to
execute a business process.

To create a KIE base, use a KieHelper instance to load processes from various resources, such as the
class path or the file system, and to create a new KIE base.

The following code snippet shows how to create a KIE base consisting of only one process definition,
which is loaded from the class path.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

282

Creating a KIE base containing one process definition

The ResourceFactory class has similar methods to load resources from a file, a URL, an InputStream, a
Reader, and other sources.

NOTE

This "manual" process of creating a KIE base is simpler than other alternatives, but can
make an application hard to maintain. Use other methods of creating a KIE base, such as
the RuntimeManager class or the Services API, for applications that you expect to
develop and maintain over long periods of time.

66.1.2. KIE session

After creating and loading the KIE base, you can create a KIE session to interact with the process engine.
You can use this session to start and manage processes and to signal events.

The following code snippet creates a session based on the KIE base that you created previously and
then starts a process instance, referencing the ID in the process definition.

Creating a KIE session and starting a process instance

66.1.3. ProcessRuntime interface

The KieSession class exposes the ProcessRuntime interface, which defines all the session methods
for interacting with processes, as the following definition shows.

Definition of the ProcessRuntime interface

 KieHelper kieHelper = new KieHelper();
 KieBase kieBase = kieHelper
 .addResource(ResourceFactory.newClassPathResource("MyProcess.bpmn"))
 .build();

KieSession ksession = kbase.newKieSession();
ProcessInstance processInstance = ksession.startProcess("com.sample.MyProcess");

 /**
 * Start a new process instance. Use the process (definition) that
 * is referenced by the given process ID.
 *
 * @param processId The ID of the process to start
 * @return the ProcessInstance that represents the instance of the process that was started
 */
 ProcessInstance startProcess(String processId);

 /**
 * Start a new process instance. Use the process (definition) that
 * is referenced by the given process ID. You can pass parameters
 * to the process instance as name-value pairs, and these parameters set
 * variables of the process instance.
 *
 * @param processId the ID of the process to start

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

283

 * @param parameters the process variables to set when starting the process instance
 * @return the ProcessInstance that represents the instance of the process that was started
 */
 ProcessInstance startProcess(String processId,
 Map<String, Object> parameters);

 /**
 * Signals the process engine that an event has occurred. The type parameter defines
 * the type of event and the event parameter can contain additional information
 * related to the event. All process instances that are listening to this type
 * of (external) event will be notified. For performance reasons, use this type of
 * event signaling only if one process instance must be able to notify
 * other process instances. For internal events within one process instance, use the
 * signalEvent method that also include the processInstanceId of the process instance
 * in question.
 *
 * @param type the type of event
 * @param event the data associated with this event
 */
 void signalEvent(String type,
 Object event);

 /**
 * Signals the process instance that an event has occurred. The type parameter defines
 * the type of event and the event parameter can contain additional information
 * related to the event. All node instances inside the given process instance that
 * are listening to this type of (internal) event will be notified. Note that the event
 * will only be processed inside the given process instance. All other process instances
 * waiting for this type of event will not be notified.
 *
 * @param type the type of event
 * @param event the data associated with this event
 * @param processInstanceId the id of the process instance that should be signaled
 */
 void signalEvent(String type,
 Object event,
 long processInstanceId);

 /**
 * Returns a collection of currently active process instances. Note that only process
 * instances that are currently loaded and active inside the process engine are returned.
 * When using persistence, it is likely not all running process instances are loaded
 * as their state is stored persistently. It is best practice not to use this
 * method to collect information about the state of your process instances but to use
 * a history log for that purpose.
 *
 * @return a collection of process instances currently active in the session
 */
 Collection<ProcessInstance> getProcessInstances();

 /**
 * Returns the process instance with the given ID. Note that only active process instances
 * are returned. If a process instance has been completed already, this method returns
 * null.
 *
 * @param id the ID of the process instance

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

284

66.1.4. Correlation Keys

When working with processes, you might need to assign a business identifier to a process instance and
then use the identifier to reference the instance without storing the generated instance ID.

To provide such capabilities, the process engine uses the CorrelationKey interface, which can define
CorrelationProperties. A class that implements CorrelationKey can have either a single property
describing it or a multi-property set. The value of the property or a combination of values of several
properties refers to a unique instance.

The KieSession class implements the CorrelationAwareProcessRuntime interface to support
correlation capabilities. This interface exposes the following methods:

Methods of the CorrelationAwareProcessRuntime interface

 * @return the process instance with the given ID, or null if it cannot be found
 */
 ProcessInstance getProcessInstance(long processInstanceId);

 /**
 * Aborts the process instance with the given ID. If the process instance has been completed
 * (or aborted), or if the process instance cannot be found, this method will throw an
 * IllegalArgumentException.
 *
 * @param id the ID of the process instance
 */
 void abortProcessInstance(long processInstanceId);

 /**
 * Returns the WorkItemManager related to this session. This object can be used to
 * register new WorkItemHandlers or to complete (or abort) WorkItems.
 *
 * @return the WorkItemManager related to this session
 */
 WorkItemManager getWorkItemManager();

 /**
 * Start a new process instance. Use the process (definition) that
 * is referenced by the given process ID. You can pass parameters
 * to the process instance (as name-value pairs), and these parameters set
 * variables of the process instance.
 *
 * @param processId the ID of the process to start
 * @param correlationKey custom correlation key that can be used to identify the process instance
 * @param parameters the process variables to set when starting the process instance
 * @return the ProcessInstance that represents the instance of the process that was started
 */
 ProcessInstance startProcess(String processId, CorrelationKey correlationKey, Map<String,
Object> parameters);

 /**
 * Create a new process instance (but do not yet start it). Use the process
 * (definition) that is referenced by the given process ID.
 * You can pass to the process instance (as name-value pairs),
 * and these parameters set variables of the process instance.

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

285

Correlation is usually used with long-running processes. You must enable persistence if you want to
store correlation information permanently.

66.2. RUNTIME MANAGER

The RuntimeManager class provides a layer in the process engine API that simplifies and empowers its
usage. This class encapsulates and manages the KIE base and KIE session, as well as the task service
that provides handlers for all tasks in the process. The KIE session and the task service within the
runtime manager are already configured to work with each other and you do not need to provide such
configuration. For example, you do not need to register a human task handler and to ensure that it is
connected to the required service.

The runtime manager manages the KIE session according to a predefined strategy. The following
strategies are available:

Singleton: The runtime manager maintains a single KieSession and uses it for all the requested
processes.

Per Request: The runtime manager creates a new KieSession for every request.

Per Process Instance : The runtime manager maintains mapping between process instance and
KieSession and always provides the same KieSession whenever working with a given process
instance.

Regardless of the strategy, the RuntimeManager class ensures the same capabilities in initialization and
configuration of the process engine components:

KieSession instances are loaded with the same factories (either in memory or JPA based).

Work item handlers are registered on every KieSession instance (either loaded from the
database or newly created).

 * Use this method if you need a reference to the process instance before actually
 * starting it. Otherwise, use startProcess.
 *
 * @param processId the ID of the process to start
 * @param correlationKey custom correlation key that can be used to identify the process instance
 * @param parameters the process variables to set when creating the process instance
 * @return the ProcessInstance that represents the instance of the process that was created (but
not yet started)
 */
 ProcessInstance createProcessInstance(String processId, CorrelationKey correlationKey,
Map<String, Object> parameters);

 /**
 * Returns the process instance with the given correlationKey. Note that only active process
instances
 * are returned. If a process instance has been completed already, this method will return
 * null.
 *
 * @param correlationKey the custom correlation key assigned when the process instance was
created
 * @return the process instance identified by the key or null if it cannot be found
 */
 ProcessInstance getProcessInstance(CorrelationKey correlationKey);

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

286

Event listeners (Process, Agenda, WorkingMemory) are registered on every KIE session,
whether the session is loaded from the database or newly created.

The task service is configured with the following required components:

The JTA transaction manager

The same entity manager factory as the one used for KieSession instances

The UserGroupCallback instance that can be configured in the environment

The runtime manager also enables disposing the process engine cleanly. It provides dedicated methods
to dispose a RuntimeEngine instance when it is no longer needed, releasing any resources it might have
acquired.

The following code shows the definition of the RuntimeManager interface:

Definition of the RuntimeManager interface

public interface RuntimeManager {

 /**
 * Returns a <code>RuntimeEngine</code> instance that is fully initialized:
 *
 * KieSession is created or loaded depending on the strategy
 * TaskService is initialized and attached to the KIE session (through a listener)
 * WorkItemHandlers are initialized and registered on the KIE session
 * EventListeners (process, agenda, working memory) are initialized and added to the KIE
session
 *
 * @param context the concrete implementation of the context that is supported by given
<code>RuntimeManager</code>
 * @return instance of the <code>RuntimeEngine</code>
 */
 RuntimeEngine getRuntimeEngine(Context<?> context);

 /**
 * Unique identifier of the <code>RuntimeManager</code>
 * @return
 */
 String getIdentifier();

 /**
 * Disposes <code>RuntimeEngine</code> and notifies all listeners about that fact.
 * This method should always be used to dispose <code>RuntimeEngine</code> that is not
needed
 * anymore.

 * Do not use KieSession.dispose() used with RuntimeManager as it will break the internal
 * mechanisms of the manager responsible for clear and efficient disposal.

 * Disposing is not needed if <code>RuntimeEngine</code> was obtained within an active JTA
transaction,
 * if the getRuntimeEngine method was invoked during active JTA transaction, then disposing of
 * the runtime engine will happen automatically on transaction completion.
 * @param runtime
 */
 void disposeRuntimeEngine(RuntimeEngine runtime);

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

287

The RuntimeManager class also provides the RuntimeEngine class, which includes methods to get
access to underlying process engine components:

Definition of the RuntimeEngine interface

NOTE

An identifier of the RuntimeManager class is used as deploymentId during runtime
execution. For example, the identifier is persisted as deploymentId of a Task when the
Task is persisted. The deploymentID of a Task associates it with the RuntimeManager
when the Task is completed and the process instance is resumed.

The same deploymentId is also persisted as externalId in history log tables.

If you don’t specify an identifier when creating a RuntimeManager instance, a default
value is applied, depending on the strategy (for example, default-per-pinstance for
PerProcessInstanceRuntimeManager). That means your application uses the same
deployment of the RuntimeManager class in its entire lifecycle.

If you maintain multiple runtime managers in your application, you must specify a unique
identifier for every RuntimeManager instance.

For example, the deployment service maintains multiple runtime managers and uses the
GAV value of the KJAR file as an identifier. The same logic is used in Business Central and
in KIE Server, because they depend on the deployment service.

NOTE

 /**
 * Closes <code>RuntimeManager</code> and releases its resources. Call this method when
 * a runtime manager is not needed anymore. Otherwise it will still be active and operational.
 */
 void close();

}

public interface RuntimeEngine {

 /**
 * Returns the <code>KieSession</code> configured for this <code>RuntimeEngine</code>
 * @return
 */
 KieSession getKieSession();

 /**
 * Returns the <code>TaskService</code> configured for this <code>RuntimeEngine</code>
 * @return
 */
 TaskService getTaskService();
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

288

NOTE

When you need to interact with the process engine or task service from within a handler
or a listener, you can use the RuntimeManager interface to retrieve the RuntimeEngine
instance for the given process instance, and then use the RuntimeEngine instance to
retrieve the KieSession or TaskService instance. This approach ensures that the proper
state of the engine, managed according to the selected strategy, is preserved.

66.2.1. Runtime manager strategies

The RuntimeManager class supports the following strategies for managing KIE sessions.

Singleton strategy

This strategy instructs the runtime manager to maintain a single RuntimeEngine instance (and in
turn single KieSession and TaskService instances). Access to the runtime engine is synchronized
and, therefore, thread safe, although it comes with a performance penalty due to synchronization.
Use this strategy for simple use cases.

This strategy has the following characteristics:

It has a small memory footprint, with single instances of the runtime engine and the task
service.

It is simple and compact in design and usage.

It is a good fit for low-to-medium load on the process engine because of synchronized
access.

In this strategy, because of the single KieSession instance, all state objects (such as facts)
are directly visible to all process instances and vice versa.

The strategy is not contextual. When you retrieve instances of RuntimeEngine from a
singleton RuntimeManager, you do not need to take the Context instance into account.
Usually, you can use EmptyContext.get() as the context, although a null argument is
acceptable as well.

In this strategy, the runtime manager keeps track of the ID of the KieSession, so that the
same session remains in use after a RuntimeManager restart. The ID is stored as a serialized
file in a temporary location in the file system that, depending on the environment, can be one
of the following directories:

The value of the jbpm.data.dir system property

The value of the jboss.server.data.dir system property

The value of the java.io.tmpdir system property

WARNING

A combination of the Singleton strategy and the EJB Timer Scheduler might
raise Hibernate issues under load. Do not use this combination in production
applications. The EJB Timer Scheduler is the default scheduler in KIE Server.



CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

289

Per request strategy

This strategy instructs the runtime manager to provide a new instance of RuntimeEngine for every
request. One or more invocations of the process engine within a single transaction are considered a
single request.
The same instance of RuntimeEngine must be used within a single transaction to ensure
correctness of state. Otherwise, an operation completed in one call would not be visible in the next
call.

This strategy is stateless, as process state is preserved only within the request. When a request is
completed, the RuntimeEngine instance is permanently destroyed. If persistence is used,
information related to the KIE session is removed from the persistence database as well.

This strategy has the following characteristics:

It provides completely isolated process engine and task service operations for every request.

It is completely stateless, because facts are stored only for the duration of the request.

It is a good fit for high-load, stateless processes, where no facts or timers must be preserved
between requests.

In this strategy, the KIE session is only available during the life of a request and is destroyed
at the end of the request.

The strategy is not contextual. When you retrieve instances of RuntimeEngine from a per-
request RuntimeManager, you do not need to take the Context instance into account.
Usually, you can use EmptyContext.get() as the context, although a null argument is
acceptable as well.

Per process instance strategy

This strategy instructs RuntimeManager to maintain a strict relationship between a KIE session and a
process instance. Each KieSession is available as long as the ProcessInstance to which it belongs is
active.
This strategy provides the most flexible approach for using advanced capabilities of the process
engine, such as rule evaluation and isolation between process instances. It maximizes performance
and reduces potential bottlenecks introduced by synchronization. At the same time, unlike the
request strategy, it reduces the number of KIE sessions to the actual number of process instances,
rather than the total number of requests.

This strategy has the following characteristics:

It provides isolation for every process instance.

It maintains a strict relationship between KieSession and ProcessInstance to ensure that it
always delivers the same KieSession for a given ProcessInstance.

It merges the lifecycle of KieSession with ProcessInstance, and both are disposed when
the process instance completes or aborts.

It enables maintenance of data, such as facts and timers, in the scope of the process
instance. Only the process instance has access to the data.

It introduces some overhead because of the need to look up and load the KieSession for
the process instance.

It validates every usage of a KieSession so it cannot be used for other process instances. An

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

290

It validates every usage of a KieSession so it cannot be used for other process instances. An
exception is thrown if another process instance uses the same KieSession.

The strategy is contextual and accepts the following context instances:

EmptyContext or null: Used when starting a process instance because no process
instance ID is available yet

ProcessInstanceIdContext: Used after the process instance is created

CorrelationKeyContext: Used as an alternative to ProcessInstanceIdContext to use a
custom (business) key instead of the process instance ID

66.2.2. Typical usage scenario for the runtime manager

The typical usage scenario for the runtime manager consists of the following stages:

At application startup time, complete the following stage:

Build a RuntimeManager instance and keep it for the entire lifetime of the application, as it
is thread-safe and can be accessed concurrently.

At request time, complete the following stages:

Get RuntimeEngine from the RuntimeManager, using the proper context instance as
determined by the strategy that you configured for the RuntimeManager class.

Get the KieSession and TaskService objects from the RuntimeEngine.

Use the KieSession and TaskService objects for operations such as startProcess or
completeTask.

After completing processing, dispose RuntimeEngine using the
RuntimeManager.disposeRuntimeEngine method.

At application shutdown time, complete the following stage:

Close the RuntimeManager instance.

NOTE

When RuntimeEngine is obtained from RuntimeManager within an active JTA
transaction, you do not need to dispose RuntimeEngine at the end, as RuntimeManager
automatically disposes the RuntimeEngine on transaction completion (regardless of the
completion status: commit or rollback).

The following example shows how you can build a RuntimeManager instance and get a RuntimeEngine
instance (that encapsulates KieSession and TaskService classes) from it:

Building a RuntimeManager instance and then getting RuntimeEngine and KieSession

 // First, configure the environment to be used by RuntimeManager
 RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()
 .newDefaultInMemoryBuilder()
 .addAsset(ResourceFactory.newClassPathResource("BPMN2-ScriptTask.bpmn2"),

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

291

This example provides the simplest, or minimal, way of using RuntimeManager and RuntimeEngine
classes. It has the following characteristics:

The KieSession instance is created in memory, using the newDefaultInMemoryBuilder builder.

A single process, which is added as an asset, is available for execution.

The TaskService class is configured and attached to the KieSession instance through the
LocalHTWorkItemHandler interface to support user task capabilities within processes.

66.2.3. Runtime environment configuration object

The RuntimeManager class encapsulates internal process engine complexity, such as creating,
disposing, and registering handlers.

It also provides fine-grained control over process engine configuration. To set this configuration, you
must create a RuntimeEnvironment object and then use it to create the RuntimeManager object.

The following definition shows the methods available in the RuntimeEnvironment interface:

Methods in the RuntimeEnvironment interface

ResourceType.BPMN2)
 .get();

 // Next, create the RuntimeManager - in this case the singleton strategy is chosen
 RuntimeManager manager =
RuntimeManagerFactory.Factory.get().newSingletonRuntimeManager(environment);

 // Then get RuntimeEngine from the runtime manager, using an empty context because singleton
does not keep track
 // of runtime engine as there is only one
 RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());

 // Get the KieSession from the RuntimeEngine - already initialized with all handlers, listeners, and
other requirements
 // configured on the environment
 KieSession ksession = runtimeEngine.getKieSession();

 // Add invocations of the process engine here,
 // for example, ksession.startProcess(processId);

 // Finally, dispose the runtime engine
 manager.disposeRuntimeEngine(runtimeEngine);

 public interface RuntimeEnvironment {

 /**
 * Returns <code>KieBase</code> that is to be used by the manager
 * @return
 */
 KieBase getKieBase();

 /**
 * KieSession environment that is to be used to create instances of <code>KieSession</code>
 * @return

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

292

66.2.4. Runtime environment builder

To create an instance of RuntimeEnvironment that contains the required data, use the
RuntimeEnvironmentBuilder class. This class provides a fluent API to configure a
RuntimeEnvironment instance with predefined settings.

The following definition shows the methods in the RuntimeEnvironmentBuilder interface:

Methods in the RuntimeEnvironmentBuilder interface

 */
 Environment getEnvironment();

 /**
 * KieSession configuration that is to be used to create instances of <code>KieSession</code>
 * @return
 */
 KieSessionConfiguration getConfiguration();

 /**
 * Indicates if persistence is to be used for the KieSession instances
 * @return
 */
 boolean usePersistence();

 /**
 * Delivers a concrete implementation of <code>RegisterableItemsFactory</code> to obtain
handlers and listeners
 * that is to be registered on instances of <code>KieSession</code>
 * @return
 */
 RegisterableItemsFactory getRegisterableItemsFactory();

 /**
 * Delivers a concrete implementation of <code>UserGroupCallback</code> that is to be registered
on instances
 * of <code>TaskService</code> for managing users and groups.
 * @return
 */
 UserGroupCallback getUserGroupCallback();

 /**
 * Delivers a custom class loader that is to be used by the process engine and task service
instances
 * @return
 */
 ClassLoader getClassLoader();

 /**
 * Closes the environment, permitting closing of all dependent components such as ksession
factories
 */
 void close();

public interface RuntimeEnvironmentBuilder {

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

293

Use the RuntimeEnvironmentBuilderFactory class to obtain instances of
RuntimeEnvironmentBuilder. Along with empty instances with no settings, you can get builders with
several preconfigured sets of configuration options for the runtime manager.

The following definition shows the methods in the RuntimeEnvironmentBuilderFactory interface:

Methods in the RuntimeEnvironmentBuilderFactory interface

 public RuntimeEnvironmentBuilder persistence(boolean persistenceEnabled);

 public RuntimeEnvironmentBuilder entityManagerFactory(Object emf);

 public RuntimeEnvironmentBuilder addAsset(Resource asset, ResourceType type);

 public RuntimeEnvironmentBuilder addEnvironmentEntry(String name, Object value);

 public RuntimeEnvironmentBuilder addConfiguration(String name, String value);

 public RuntimeEnvironmentBuilder knowledgeBase(KieBase kbase);

 public RuntimeEnvironmentBuilder userGroupCallback(UserGroupCallback callback);

 public RuntimeEnvironmentBuilder registerableItemsFactory(RegisterableItemsFactory factory);

 public RuntimeEnvironment get();

 public RuntimeEnvironmentBuilder classLoader(ClassLoader cl);

 public RuntimeEnvironmentBuilder schedulerService(Object globalScheduler);

public interface RuntimeEnvironmentBuilderFactory {

 /**
 * Provides a completely empty <code>RuntimeEnvironmentBuilder</code> instance to manually
 * set all required components instead of relying on any defaults.
 * @return new instance of <code>RuntimeEnvironmentBuilder</code>
 */
 public RuntimeEnvironmentBuilder newEmptyBuilder();

 /**
 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:
 *
 * DefaultRuntimeEnvironment
 *
 * @return new instance of <code>RuntimeEnvironmentBuilder</code> that is already
preconfigured with defaults
 *
 * @see DefaultRuntimeEnvironment
 */
 public RuntimeEnvironmentBuilder newDefaultBuilder();

 /**
 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:
 *
 * DefaultRuntimeEnvironment

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

294

 *
 * but does not have persistence for the process engine configured so it will only store process
instances in memory
 * @return new instance of <code>RuntimeEnvironmentBuilder</code> that is already
preconfigured with defaults
 *
 * @see DefaultRuntimeEnvironment
 */
 public RuntimeEnvironmentBuilder newDefaultInMemoryBuilder();

 /**
 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:
 *
 * DefaultRuntimeEnvironment
 *
 * This method is tailored to work smoothly with KJAR files
 * @param groupId group id of kjar
 * @param artifactId artifact id of kjar
 * @param version version number of kjar
 * @return new instance of <code>RuntimeEnvironmentBuilder</code> that is already
preconfigured with defaults
 *
 * @see DefaultRuntimeEnvironment
 */
 public RuntimeEnvironmentBuilder newDefaultBuilder(String groupId, String artifactId, String
version);

 /**
 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:
 *
 * DefaultRuntimeEnvironment
 *
 * This method is tailored to work smoothly with KJAR files and use the kbase and ksession
settings in the KJAR
 * @param groupId group id of kjar
 * @param artifactId artifact id of kjar
 * @param version version number of kjar
 * @param kbaseName name of the kbase defined in kmodule.xml stored in kjar
 * @param ksessionName name of the ksession define in kmodule.xml stored in kjar
 * @return new instance of <code>RuntimeEnvironmentBuilder</code> that is already
preconfigured with defaults
 *
 * @see DefaultRuntimeEnvironment
 */
 public RuntimeEnvironmentBuilder newDefaultBuilder(String groupId, String artifactId, String
version, String kbaseName, String ksessionName);

 /**
 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:
 *
 * DefaultRuntimeEnvironment
 *
 * This method is tailored to work smoothly with KJAR files and use the release ID defined in the
KJAR
 * @param releaseId <code>ReleaseId</code> that described the kjar
 * @return new instance of <code>RuntimeEnvironmentBuilder</code> that is already

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

295

preconfigured with defaults
 *
 * @see DefaultRuntimeEnvironment
 */
 public RuntimeEnvironmentBuilder newDefaultBuilder(ReleaseId releaseId);

 /**
 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:
 *
 * DefaultRuntimeEnvironment
 *
 * This method is tailored to work smoothly with KJAR files and use the kbase, ksession, and release
ID settings in the KJAR
 * @param releaseId <code>ReleaseId</code> that described the kjar
 * @param kbaseName name of the kbase defined in kmodule.xml stored in kjar
 * @param ksessionName name of the ksession define in kmodule.xml stored in kjar
 * @return new instance of <code>RuntimeEnvironmentBuilder</code> that is already
preconfigured with defaults
 *
 * @see DefaultRuntimeEnvironment
 */
 public RuntimeEnvironmentBuilder newDefaultBuilder(ReleaseId releaseId, String kbaseName,
String ksessionName);

 /**
 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:
 *
 * DefaultRuntimeEnvironment
 *
 * It relies on KieClasspathContainer that requires the presence of kmodule.xml in the META-INF
folder which
 * defines the kjar itself.
 * Expects to use default kbase and ksession from kmodule.
 * @return new instance of <code>RuntimeEnvironmentBuilder</code> that is already
preconfigured with defaults
 *
 * @see DefaultRuntimeEnvironment
 */
 public RuntimeEnvironmentBuilder newClasspathKmoduleDefaultBuilder();

 /**
 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:
 *
 * DefaultRuntimeEnvironment
 *
 * It relies on KieClasspathContainer that requires the presence of kmodule.xml in the META-INF
folder which
 * defines the kjar itself.
 * @param kbaseName name of the kbase defined in kmodule.xml
 * @param ksessionName name of the ksession define in kmodule.xml
 * @return new instance of <code>RuntimeEnvironmentBuilder</code> that is already
preconfigured with defaults
 *
 * @see DefaultRuntimeEnvironment

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

296

The runtime manager also provides access to a TaskService object as an integrated component of a
RuntimeEngine object, configured to communicate with the KIE session. If you use one of the default
builders, the following configuration settings for the task service are present:

The persistence unit name is set to org.jbpm.persistence.jpa (for both process engine and
task service).

The human task handler is registered on the KIE session.

The JPA-based history log event listener is registered on the KIE session.

An event listener to trigger rule task evaluation (fireAllRules) is registered on the KIE session.

66.2.5. Registration of handlers and listeners for runtime engines

If you use the runtime manager API, the runtime engine object represents the process engine.

To extend runtime engines with your own handlers or listeners, you can implement the
RegisterableItemsFactory interface and then include it in the runtime environment using the
RuntimeEnvironmentBuilder.registerableItemsFactory() method. Then the runtime manager
automatically adds the handlers or listeners to every runtime engine it creates.

The following definition shows the methods in the RegisterableItemsFactory interface:

Methods in the RegisterableItemsFactory interface

 */
 public RuntimeEnvironmentBuilder newClasspathKmoduleDefaultBuilder(String kbaseName,
String ksessionName);

 /**
 * Returns new instances of <code>WorkItemHandler</code> that will be registered on
<code>RuntimeEngine</code>
 * @param runtime provides <code>RuntimeEngine</code> in case handler need to make use of it
internally
 * @return map of handlers to be registered - in case of no handlers empty map shall be returned.
 */
 Map<String, WorkItemHandler> getWorkItemHandlers(RuntimeEngine runtime);

 /**
 * Returns new instances of <code>ProcessEventListener</code> that will be registered on
<code>RuntimeEngine</code>
 * @param runtime provides <code>RuntimeEngine</code> in case listeners need to make use of it
internally
 * @return list of listeners to be registered - in case of no listeners empty list shall be returned.
 */
 List<ProcessEventListener> getProcessEventListeners(RuntimeEngine runtime);

 /**
 * Returns new instances of <code>AgendaEventListener</code> that will be registered on
<code>RuntimeEngine</code>
 * @param runtime provides <code>RuntimeEngine</code> in case listeners need to make use of it
internally
 * @return list of listeners to be registered - in case of no listeners empty list shall be returned.
 */
 List<AgendaEventListener> getAgendaEventListeners(RuntimeEngine runtime);

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

297

The process engine provides default implementations of RegisterableItemsFactory. You can extend
these implementations to define custom handlers and listeners.

The following available implementations might be useful:

org.jbpm.runtime.manager.impl.SimpleRegisterableItemsFactory: The simplest possible
implementation. It does not have any predefined content and uses reflection to produce
instances of handlers and listeners based on given class names.

org.jbpm.runtime.manager.impl.DefaultRegisterableItemsFactory: An extension of the
Simple implementation that introduces the same defaults as the default runtime environment
builder and still provides the same capabilities as the Simple implementation.

org.jbpm.runtime.manager.impl.cdi.InjectableRegisterableItemsFactory: An extension of
the Default implementation that is tailored for CDI environments and provides a CDI style
approach to finding handlers and listeners using producers.

66.2.5.1. Registering work item handlers using a file

You can register simple work item handlers, which are stateless or rely on the KieSession state, by
defining them in the CustomWorkItem.conf file and placing the file on the class path.

Procedure

1. Create a file named drools.session.conf in the META-INF subdirectory of the root of the class
path. For web applications the directory is WEB-INF/classes/META-INF.

2. Add the following line to the drools.session.conf file:

drools.workItemHandlers = CustomWorkItemHandlers.conf

3. Create a file named CustomWorkItemHandlers.conf in the same directory.

4. In the CustomWorkItemHandlers.conf file, define custom work item handlers using the MVEL
style, similar to the following example:

[
 "Log": new org.jbpm.process.instance.impl.demo.SystemOutWorkItemHandler(),
 "WebService": new
org.jbpm.process.workitem.webservice.WebServiceWorkItemHandler(ksession),
 "Rest": new org.jbpm.process.workitem.rest.RESTWorkItemHandler(),
 "Service Task" : new org.jbpm.process.workitem.bpmn2.ServiceTaskHandler(ksession)
]

Result

 /**
 * Returns new instances of <code>WorkingMemoryEventListener</code> that will be registered on
<code>RuntimeEngine</code>
 * @param runtime provides <code>RuntimeEngine</code> in case listeners need to make use of it
internally
 * @return list of listeners to be registered - in case of no listeners empty list shall be returned.
 */
 List<WorkingMemoryEventListener> getWorkingMemoryEventListeners(RuntimeEngine runtime);

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

298

The work item handlers that you listed are registered for any KIE session created by the application,
regardless of whether the application uses the runtime manager API.

66.2.5.2. Registration of handlers and listeners in a CDI environment

If your application uses the runtime manager API and runs in a CDI environment, your classes can
implement the dedicated producer interfaces to provide custom work item handlers and event listeners
to all runtime engines.

To create a work item handler, you must implement the WorkItemHandlerProducer interface.

Definition of the WorkItemHandlerProducer interface

To create an event listener, you must implement the EventListenerProducer interface. Annotate the
event listener producer with the proper qualifier to indicate the type of listeners that it provides. Use
one of the following annotations:

@Process for ProcessEventListener

@Agenda for AgendaEventListener

@WorkingMemory for WorkingMemoryEventListener

Definition of the EventListenerProducer interface

public interface WorkItemHandlerProducer {

 /**
 * Returns a map of work items (key = work item name, value= work item handler instance)
 * to be registered on the KieSession
 *

 * The following parameters are accepted:
 *
 * ksession
 * taskService
 * runtimeManager
 *
 *
 * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to
filter out
 * and provide valid instances for given owner
 * @param params - the owner might provide some parameters, usually KieSession, TaskService,
RuntimeManager instances
 * @return map of work item handler instances (recommendation is to always return new instances
when this method is invoked)
 */
 Map<String, WorkItemHandler> getWorkItemHandlers(String identifier, Map<String, Object>
params);
}

public interface EventListenerProducer<T> {

 /**
 * Returns a list of instances for given (T) type of listeners
 *

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

299

Package your implementations of these interfaces as a bean archive by including beans.xml in the
META-INF subdirectory. Place the bean archive on the application class path, for example, in WEB-
INF/lib for a web application. The CDI-based runtime manager discovers the packages and registers the
work item handlers and event listeners in every KieSession that it creates or loads from the data store.

The process engine provides certain parameters to the producers to enable stateful and advanced
operation. For example, the handlers or listeners can use the parameters to signal the process engine or
the process instance in case of an error. The process engine provides the following components as
parameters:

KieSession

TaskService

RuntimeManager

In addition, the identifier of the RuntimeManager class instance is provided as a parameter. You can
apply filtering to the identifier to decide whether this RuntimeManager instance receives the handlers
and listeners.

66.3. SERVICES IN THE PROCESS ENGINE

The process engine provides a set of high-level services, running on top of the runtime manager API.

The services provide the most convenient way to embed the process engine in your application. KIE
Server also uses these services internally.

When you use services, you do not need to implement your own handling of the runtime manager,
runtime engines, sessions, and other process engine entities. However, you can access the underlying
RuntimeManager objects through the services when necessary.

NOTE

If you use the EJB remote client for the services API, the RuntimeManager objects are
not available, because they would not operate correctly on the client side after
serialization.

66.3.1. Modules for process engine services

 * The following parameters are accepted:
 *
 * ksession
 * taskService
 * runtimeManager
 *
 * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to
filter out
 * and provide valid instances for given owner
 * @param params - the owner might provide some parameters, usually KieSession, TaskService,
RuntimeManager instances
 * @return list of listener instances (recommendation is to always return new instances when this
method is invoked)
 */
 List<T> getEventListeners(String identifier, Map<String, Object> params);
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

300

The process engine services are provided as a set of modules. These modules are grouped by their
framework dependencies. You can choose the suitable modules and use only these modules, without
making your application dependent on the frameworks that other modules use.

The following modules are available:

jbpm-services-api: Only API classes and interfaces

jbpm-kie-services: A code implementation of the services API in pure Java without any
framework dependencies

jbpm-services-cdi: A CDI wrapper on top of the core services implementation

jbpm-services-ejb-api: An extension of the services API to support EJB requirements

jbpm-services-ejb-impl: EJB wrappers on top of the core services implementation

jbpm-services-ejb-timer: A scheduler service based on the EJB timer service to support time-
based operations, such as timer events and deadlines

jbpm-services-ejb-client: An EJB remote client implementation, currently supporting only Red
Hat JBoss EAP

66.3.2. Deployment service

The deployment service deploys and undeploys units in the process engine.

A deployment unit represents the contents of a KJAR file. A deployment unit includes business assets,
such as process definitions, rules, forms, and data models. After deploying the unit you can execute the
processes it defines. You can also query the available deployment units.

Every deployment unit has a unique identifier string, deploymentId, also known as deploymentUnitId.
You can use this identifier to apply any service actions to the deployment unit.

In a typical use case for this service, you can load and unload multiple KJARs at the same time and, when
necessary, execute processes simultaneously.

The following code sample shows simple use of the deployment service.

Using the deployment service

The following definition shows the complete DeploymentService interface:

Definition of the DeploymentService interface

// Create deployment unit by providing the GAV of the KJAR
DeploymentUnit deploymentUnit = new KModuleDeploymentUnit(GROUP_ID, ARTIFACT_ID,
VERSION);
// Get the deploymentId for the deployed unit
String deploymentId = deploymentUnit.getIdentifier();
// Deploy the unit
deploymentService.deploy(deploymentUnit);
// Retrieve the deployed unit
DeployedUnit deployed = deploymentService.getDeployedUnit(deploymentId);
// Get the runtime manager
RuntimeManager manager = deployed.getRuntimeManager();

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

301

66.3.3. Definition service

When you deploy a process definition using the deployment service, the definition service automatically
scans the definition, parses the process, and extracts the information that the process engine requires.

You can use the definition service API to retrieve information about the process definition. The service
extracts this information directly from the BPMN2 process definition. The following information is
available:

Process definition such as ID, name, and description

Process variables including the name and type of every variable

Reusable sub-processes used in the process (if any)

Service tasks that represent domain-specific activities

User tasks including assignment information

Task data with input and output information

The following code sample shows simple use of the definition service. The processID must correspond
to the ID of a process definition in a KJAR file that you already deployed using the deployment service.

Using the definition service

public interface DeploymentService {

 void deploy(DeploymentUnit unit);

 void undeploy(DeploymentUnit unit);

 RuntimeManager getRuntimeManager(String deploymentUnitId);

 DeployedUnit getDeployedUnit(String deploymentUnitId);

 Collection<DeployedUnit> getDeployedUnits();

 void activate(String deploymentId);

 void deactivate(String deploymentId);

 boolean isDeployed(String deploymentUnitId);
}

String processId = "org.jbpm.writedocument";

Collection<UserTaskDefinition> processTasks =
bpmn2Service.getTasksDefinitions(deploymentUnit.getIdentifier(), processId);

Map<String, String> processData =
bpmn2Service.getProcessVariables(deploymentUnit.getIdentifier(), processId);

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

302

You can also use the definition service to scan a definition that you provide as BPMN2-compliant XML
content, without the use of a KJAR file. The buildProcessDefinition method provides this capability.

The following definition shows the complete DefinitionService interface:

Definition of the DefinitionService interface

66.3.4. Process service

The deployment and definition services prepare process data in the process engine. To execute
processes based on this data, use the process service. The process service supports interaction with the
process engine execution environment, including the following actions:

Starting a new process instance

Running a process as a single transaction

Working with an existing process instance, for example, signalling events, getting information
details, and setting values of variables

Working with work items

The process service is also a command executor. You can use it to execute commands on the KIE
session to extend its capabilities.

IMPORTANT

Map<String, String> taskInputMappings =
bpmn2Service.getTaskInputMappings(deploymentUnit.getIdentifier(), processId, "Write a Document"
);

public interface DefinitionService {

 ProcessDefinition buildProcessDefinition(String deploymentId, String bpmn2Content, ClassLoader
classLoader, boolean cache) throws IllegalArgumentException;

 ProcessDefinition getProcessDefinition(String deploymentId, String processId);

 Collection<String> getReusableSubProcesses(String deploymentId, String processId);

 Map<String, String> getProcessVariables(String deploymentId, String processId);

 Map<String, String> getServiceTasks(String deploymentId, String processId);

 Map<String, Collection<String>> getAssociatedEntities(String deploymentId, String processId);

 Collection<UserTaskDefinition> getTasksDefinitions(String deploymentId, String processId);

 Map<String, String> getTaskInputMappings(String deploymentId, String processId, String
taskName);

 Map<String, String> getTaskOutputMappings(String deploymentId, String processId, String
taskName);

}

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

303

IMPORTANT

The process service is optimized for runtime operations. Use it when you need to run a
process or to alter a process instance, for example, signal events or change variables. For
read operations, for example, showing available process instances, use the runtime data
service.

The following code sample shows deploying and running a process:

Deploying and runing a process using the deployment and process services

The startProcess method expects deploymentId as the first argument. Using this argument, you can
start processes in a certain deployment when your application might have multiple deployments.

For example, you might deploy different versions of the same process from different KJAR files. You
can then start the required version using the correct deploymentId.

The following definition shows the complete ProcessService interface:

Definition of the ProcessService interface

KModuleDeploymentUnit deploymentUnit = new KModuleDeploymentUnit(GROUP_ID,
ARTIFACT_ID, VERSION);

deploymentService.deploy(deploymentUnit);

long processInstanceId = processService.startProcess(deploymentUnit.getIdentifier(), "customtask");

ProcessInstance pi = processService.getProcessInstance(processInstanceId);

public interface ProcessService {

 /**
 * Starts a process with no variables
 *
 * @param deploymentId deployment identifier
 * @param processId process identifier
 * @return process instance IDentifier
 * @throws RuntimeException in case of encountered errors
 * @throws DeploymentNotFoundException in case a deployment with the given deployment
identifier does not exist
 * @throws DeploymentNotActiveException in case the deployment with the given deployment
identifier is not active
 */
 Long startProcess(String deploymentId, String processId);

 /**
 * Starts a process and sets variables
 *
 * @param deploymentId deployment identifier
 * @param processId process identifier
 * @param params process variables
 * @return process instance IDentifier
 * @throws RuntimeException in case of encountered errors
 * @throws DeploymentNotFoundException in case a deployment with the given deployment

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

304

identifier does not exist
 * @throws DeploymentNotActiveException in case the deployment with the given deployment
identifier is not active
 */
 Long startProcess(String deploymentId, String processId, Map<String, Object> params);

 /**
 * Starts a process with no variables and assigns a correlation key
 *
 * @param deploymentId deployment identifier
 * @param processId process identifier
 * @param correlationKey correlation key to be assigned to the process instance - must be unique
 * @return process instance IDentifier
 * @throws RuntimeException in case of encountered errors
 * @throws DeploymentNotFoundException in case a deployment with the given deployment
identifier does not exist
 * @throws DeploymentNotActiveException in case the deployment with the given deployment
identifier is not active
 */
 Long startProcess(String deploymentId, String processId, CorrelationKey correlationKey);

 /**
 * Starts a process, sets variables, and assigns a correlation key
 *
 * @param deploymentId deployment identifier
 * @param processId process identifier
 * @param correlationKey correlation key to be assigned to the process instance - must be unique
 * @param params process variables
 * @return process instance IDentifier
 * @throws RuntimeException in case of encountered errors
 * @throws DeploymentNotFoundException in case a deployment with the given deployment
identifier does not exist
 * @throws DeploymentNotActiveException in case the deployment with the given deployment
identifier is not active
 */
 Long startProcess(String deploymentId, String processId, CorrelationKey correlationKey,
Map<String, Object> params);

 /**
 * Run a process that is designed to start and finish in a single transaction.
 * This method starts the process and returns when the process completes.
 * It returns the state of process variables at the outcome of the process
 *
 * @param deploymentId deployment identifier for the KJAR file of the process
 * @param processId process identifier
 * @param params process variables
 * @return the state of process variables at the end of the process
 */
 Map<String, Object> computeProcessOutcome(String deploymentId, String processId,
Map<String, Object> params);

 /**
 * Starts a process at the listed nodes, instead of the normal starting point.
 * This method can be used for restarting a process that was aborted. However,
 * it does not restore the context of a previous process instance. You must
 * supply all necessary variables when calling this method.

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

305

 * This method does not guarantee that the process is started in a valid state.
 *
 * @param deploymentId deployment identifier
 * @param processId process identifier
 * @param params process variables
 * @param nodeIds list of BPMN node identifiers where the process must start
 * @return process instance IDentifier
 * @throws RuntimeException in case of encountered errors
 * @throws DeploymentNotFoundException in case a deployment with the given deployment
identifier does not exist
 * @throws DeploymentNotActiveException in case the deployment with the given deployment
identifier is not active
 */
 Long startProcessFromNodeIds(String deploymentId, String processId, Map<String, Object>
params, String... nodeIds);

 /**
 * Starts a process at the listed nodes, instead of the normal starting point,
 * and assigns a correlation key.
 * This method can be used for restarting a process that was aborted. However,
 * it does not restore the context of a previous process instance. You must
 * supply all necessary variables when calling this method.
 * This method does not guarantee that the process is started in a valid state.
 *
 * @param deploymentId deployment identifier
 * @param processId process identifier
 * @param key correlation key (must be unique)
 * @param params process variables
 * @param nodeIds list of BPMN node identifiers where the process must start.
 * @return process instance IDentifier
 * @throws RuntimeException in case of encountered errors
 * @throws DeploymentNotFoundException in case a deployment with the given deployment
identifier does not exist
 * @throws DeploymentNotActiveException in case the deployment with the given deployment
identifier is not active
 */
 Long startProcessFromNodeIds(String deploymentId, String processId, CorrelationKey key,
Map<String, Object> params, String... nodeIds);

 /**
 * Aborts the specified process
 *
 * @param processInstanceId process instance unique identifier
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void abortProcessInstance(Long processInstanceId);

 /**
 * Aborts the specified process
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId process instance unique identifier
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

306

not found
 */
 void abortProcessInstance(String deploymentId, Long processInstanceId);

 /**
 * Aborts all specified processes
 *
 * @param processInstanceIds list of process instance unique identifiers
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void abortProcessInstances(List<Long> processInstanceIds);

 /**
 * Aborts all specified processes
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceIds list of process instance unique identifiers
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void abortProcessInstances(String deploymentId, List<Long> processInstanceIds);

 /**
 * Signals an event to a single process instance
 *
 * @param processInstanceId the process instance unique identifier
 * @param signalName the ID of the signal in the process
 * @param event the event object to be passed with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void signalProcessInstance(Long processInstanceId, String signalName, Object event);

 /**
 * Signals an event to a single process instance
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId the process instance unique identifier
 * @param signalName the ID of the signal in the process
 * @param event the event object to be passed with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void signalProcessInstance(String deploymentId, Long processInstanceId, String signalName,
Object event);

 /**
 * Signal an event to a list of process instances
 *
 * @param processInstanceIds list of process instance unique identifiers
 * @param signalName the ID of the signal in the process

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

307

 * @param event the event object to be passed with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void signalProcessInstances(List<Long> processInstanceIds, String signalName, Object event);

 /**
 * Signal an event to a list of process instances
 *
 * @param deploymentId deployment to which the process instances belong
 * @param processInstanceIds list of process instance unique identifiers
 * @param signalName the ID of the signal in the process
 * @param event the event object to be passed with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void signalProcessInstances(String deploymentId, List<Long> processInstanceIds, String
signalName, Object event);

 /**
 * Signal an event to a single process instance by correlation key
 *
 * @param correlationKey the unique correlation key of the process instance
 * @param signalName the ID of the signal in the process
 * @param event the event object to be passed in with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given key was
not found
 */
 void signalProcessInstanceByCorrelationKey(CorrelationKey correlationKey, String signalName,
Object event);

 /**
 * Signal an event to a single process instance by correlation key
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param correlationKey the unique correlation key of the process instance
 * @param signalName the ID of the signal in the process
 * @param event the event object to be passed in with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given key was
not found
 */
 void signalProcessInstanceByCorrelationKey(String deploymentId, CorrelationKey correlationKey,
String signalName, Object event);

 /**
 * Signal an event to given list of correlation keys
 *
 * @param correlationKeys list of unique correlation keys of process instances
 * @param signalName the ID of the signal in the process
 * @param event the event object to be passed in with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with one of the given

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

308

keys was not found
 */
 void signalProcessInstancesByCorrelationKeys(List<CorrelationKey> correlationKeys, String
signalName, Object event);

 /**
 * Signal an event to given list of correlation keys
 *
 * @param deploymentId deployment to which the process instances belong
 * @param correlationKeys list of unique correlation keys of process instances
 * @param signalName the ID of the signal in the process
 * @param event the event object to be passed in with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with one of the given
keys was not found
 */
 void signalProcessInstancesByCorrelationKeys(String deploymentId, List<CorrelationKey>
correlationKeys, String signalName, Object event);

 /**
 * Signal an event to a any process instance that listens to a given signal and belongs to a given
deployment
 *
 * @param deployment identifier of the deployment
 * @param signalName the ID of the signal in the process
 * @param event the event object to be passed with the event
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 */
 void signalEvent(String deployment, String signalName, Object event);

 /**
 * Returns process instance information. Will return null if no
 * active process with the ID is found
 *
 * @param processInstanceId The process instance unique identifier
 * @return Process instance information
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 */
 ProcessInstance getProcessInstance(Long processInstanceId);

 /**
 * Returns process instance information. Will return null if no
 * active process with the ID is found
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId The process instance unique identifier
 * @return Process instance information
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 */
 ProcessInstance getProcessInstance(String deploymentId, Long processInstanceId);

 /**
 * Returns process instance information. Will return null if no
 * active process with that correlation key is found
 *
 * @param correlationKey correlation key assigned to the process instance

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

309

 * @return Process instance information
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 */
 ProcessInstance getProcessInstance(CorrelationKey correlationKey);

 /**
 * Returns process instance information. Will return null if no
 * active process with that correlation key is found
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param correlationKey correlation key assigned to the process instance
 * @return Process instance information
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 */
 ProcessInstance getProcessInstance(String deploymentId, CorrelationKey correlationKey);

 /**
 * Sets a process variable.
 * @param processInstanceId The process instance unique identifier
 * @param variableId The variable ID to set
 * @param value The variable value
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void setProcessVariable(Long processInstanceId, String variableId, Object value);

 /**
 * Sets a process variable.
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId The process instance unique identifier
 * @param variableId The variable id to set.
 * @param value The variable value.
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void setProcessVariable(String deploymentId, Long processInstanceId, String variableId, Object
value);

 /**
 * Sets process variables.
 *
 * @param processInstanceId The process instance unique identifier
 * @param variables map of process variables (key = variable name, value = variable value)
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void setProcessVariables(Long processInstanceId, Map<String, Object> variables);

 /**
 * Sets process variables.
 *
 * @param deploymentId deployment to which the process instance belongs

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

310

 * @param processInstanceId The process instance unique identifier
 * @param variables map of process variables (key = variable name, value = variable value)
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 void setProcessVariables(String deploymentId, Long processInstanceId, Map<String, Object>
variables);

 /**
 * Gets a process instance variable.
 *
 * @param processInstanceId the process instance unique identifier
 * @param variableName the variable name to get from the process
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 Object getProcessInstanceVariable(Long processInstanceId, String variableName);

 /**
 * Gets a process instance variable.
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId the process instance unique identifier
 * @param variableName the variable name to get from the process
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 Object getProcessInstanceVariable(String deploymentId, Long processInstanceId, String
variableName);

 /**
 * Gets a process instance variable values.
 *
 * @param processInstanceId The process instance unique identifier
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 Map<String, Object> getProcessInstanceVariables(Long processInstanceId);

 /**
 * Gets a process instance variable values.
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId The process instance unique identifier
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 Map<String, Object> getProcessInstanceVariables(String deploymentId, Long processInstanceId);

 /**
 * Returns all signals available in current state of given process instance

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

311

 *
 * @param processInstanceId process instance ID
 * @return list of available signals or empty list if no signals are available
 */
 Collection<String> getAvailableSignals(Long processInstanceId);

 /**
 * Returns all signals available in current state of given process instance
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId process instance ID
 * @return list of available signals or empty list if no signals are available
 */
 Collection<String> getAvailableSignals(String deploymentId, Long processInstanceId);

 /**
 * Completes the specified WorkItem with the given results
 *
 * @param id workItem ID
 * @param results results of the workItem
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws WorkItemNotFoundException in case a work item with the given ID was not found
 */
 void completeWorkItem(Long id, Map<String, Object> results);

 /**
 * Completes the specified WorkItem with the given results
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId process instance ID to which the work item belongs
 * @param id workItem ID
 * @param results results of the workItem
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws WorkItemNotFoundException in case a work item with the given ID was not found
 */
 void completeWorkItem(String deploymentId, Long processInstanceId, Long id, Map<String,
Object> results);

 /**
 * Abort the specified workItem
 *
 * @param id workItem ID
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws WorkItemNotFoundException in case a work item with the given ID was not found
 */
 void abortWorkItem(Long id);

 /**
 * Abort the specified workItem
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId process instance ID to which the work item belongs
 * @param id workItem ID
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws WorkItemNotFoundException in case a work item with the given ID was not found
 */

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

312

 void abortWorkItem(String deploymentId, Long processInstanceId, Long id);

 /**
 * Returns the specified workItem
 *
 * @param id workItem ID
 * @return The specified workItem
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws WorkItemNotFoundException in case a work item with the given ID was not found
 */
 WorkItem getWorkItem(Long id);

 /**
 * Returns the specified workItem
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId process instance ID to which the work item belongs
 * @param id workItem ID
 * @return The specified workItem
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws WorkItemNotFoundException in case a work item with the given ID was not found
 */
 WorkItem getWorkItem(String deploymentId, Long processInstanceId, Long id);

 /**
 * Returns active work items by process instance ID.
 *
 * @param processInstanceId process instance ID
 * @return The list of active workItems for the process instance
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 List<WorkItem> getWorkItemByProcessInstance(Long processInstanceId);

 /**
 * Returns active work items by process instance ID.
 *
 * @param deploymentId deployment to which the process instance belongs
 * @param processInstanceId process instance ID
 * @return The list of active workItems for the process instance
 * @throws DeploymentNotFoundException in case the deployment unit was not found
 * @throws ProcessInstanceNotFoundException in case a process instance with the given ID was
not found
 */
 List<WorkItem> getWorkItemByProcessInstance(String deploymentId, Long processInstanceId);

 /**
 * Executes the provided command on the underlying command executor (usually KieSession)
 * @param deploymentId deployment identifier
 * @param command actual command for execution
 * @return results of the command execution
 * @throws DeploymentNotFoundException in case a deployment with the given deployment
identifier does not exist
 * @throws DeploymentNotActiveException in case the deployment with the given deployment

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

313

66.3.5. Runtime Data Service

You can use the runtime data service to retrieve all runtime information about processes, such as
started process instances and executed node instances.

For example, you can build a list-based UI to show process definitions, process instances, tasks for a
given user, and other data, based on information provided by the runtime data service.

This service is optimized to be as efficient as possible while providing all required information.

The following examples show various usage of this service.

Retrieving all process definitions

Retrieving active process instances

Retrieving active nodes for a particular process instance

Retrieving tasks assigned to the user john

The runtime data service methods support two important parameters, QueryContext and QueryFilter.
QueryFilter is an extension of QueryContext. You can use these parameters to manage the result set,
providing pagination, sorting, and ordering. You can also use them to apply additional filtering when

identifier is not active for restricted commands (for example, start process)
 */
 public <T> T execute(String deploymentId, Command<T> command);

 /**
 * Executes the provided command on the underlying command executor (usually KieSession)
 * @param deploymentId deployment identifier
 * @param context context implementation to be used to get the runtime engine
 * @param command actual command for execution
 * @return results of the command execution
 * @throws DeploymentNotFoundException in case a deployment with the given deployment
identifier does not exist
 * @throws DeploymentNotActiveException in case the deployment with the given deployment
identifier is not active for restricted commands (for example, start process)
 */
 public <T> T execute(String deploymentId, Context<?> context, Command<T> command);

}

Collection definitions = runtimeDataService.getProcesses(new QueryContext());

Collection<processinstancedesc> instances = runtimeDataService.getProcessInstances(new
QueryContext());

Collection<nodeinstancedesc> instances =
runtimeDataService.getProcessInstanceHistoryActive(processInstanceId, new QueryContext());

List<tasksummary> taskSummaries =
runtimeDataService.getTasksAssignedAsPotentialOwner("john", new QueryFilter(0, 10));

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

314

searching for user tasks.

The following definition shows the methods of the RuntimeDataService interface:

Definition of the RuntimeDataService interface

public interface RuntimeDataService {
 /**
 * Represents type of node instance log entries
 *
 */
 enum EntryType {

 START(0),
 END(1),
 ABORTED(2),
 SKIPPED(3),
 OBSOLETE(4),
 ERROR(5);
 }

 // Process instance information

 /**
 * Returns a list of process instance descriptions
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the available process
instances
 */
 Collection<ProcessInstanceDesc> getProcessInstances(QueryContext queryContext);

 /**
 * Returns a list of all process instance descriptions with the given statuses and initiated by
<code>initiator</code>
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have
 * @param initiator the initiator of the {@link ProcessInstance}
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
match
 * the given criteria (states and initiator)
 */
 Collection<ProcessInstanceDesc> getProcessInstances(List<Integer> states, String initiator,
QueryContext queryContext);

 /**
 * Returns a list of process instance descriptions found for the given process ID and statuses and
initiated by <code>initiator</code>
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have
 * @param processId ID of the {@link Process} (definition) used when starting the process instance
 * @param initiator initiator of the {@link ProcessInstance}
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
match
 * the given criteria (states, processId, and initiator)
 */
 Collection<ProcessInstanceDesc> getProcessInstancesByProcessId(List<Integer> states, String

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

315

processId, String initiator, QueryContext queryContext);

 /**
 * Returns a list of process instance descriptions found for the given process name and statuses
and initiated by <code>initiator</code>
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have
 * @param processName name (not ID) of the {@link Process} (definition) used when starting the
process instance
 * @param initiator initiator of the {@link ProcessInstance}
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
match
 * the given criteria (states, processName and initiator)
 */
 Collection<ProcessInstanceDesc> getProcessInstancesByProcessName(List<Integer> states,
String processName, String initiator, QueryContext queryContext);

 /**
 * Returns a list of process instance descriptions found for the given deployment ID and statuses
 * @param deploymentId deployment ID of the runtime
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
match
 * the given criteria (deploymentId and states)
 */
 Collection<ProcessInstanceDesc> getProcessInstancesByDeploymentId(String deploymentId,
List<Integer> states, QueryContext queryContext);

 /**
 * Returns process instance descriptions found for the given processInstanceId. If no descriptions
are found, null is returned. At the same time, the method
 * fetches all active tasks (in status: Ready, Reserved, InProgress) to provide the information about
what user task is keeping each instance
 * and who owns the task (if the task is already claimed by a user)
 * @param processInstanceId ID of the process instance to be fetched
 * @return process instance information, in the form of a {@link ProcessInstanceDesc} instance
 */
 ProcessInstanceDesc getProcessInstanceById(long processInstanceId);

 /**
 * Returns the active process instance description found for the given correlation key. If none is
found, returns null. At the same time it
 * fetches all active tasks (in status: Ready, Reserved, InProgress) to provide information about
which user task is keeping each instance
 * and who owns the task (if the task is already claimed by a user)
 * @param correlationKey correlation key assigned to the process instance
 * @return process instance information, in the form of a {@link ProcessInstanceDesc} instance
 */
 ProcessInstanceDesc getProcessInstanceByCorrelationKey(CorrelationKey correlationKey);

 /**
 * Returns process instances descriptions (regardless of their states) found for the given correlation
key. If no descriptions are found, an empty list is returned
 * This query uses 'LIKE' to match correlation keys so it accepts partial keys. Matching
 * is performed based on a 'starts with' criterion

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

316

 * @param correlationKey correlation key assigned to the process instance
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
match
 * the given correlation key
 */
 Collection<ProcessInstanceDesc> getProcessInstancesByCorrelationKey(CorrelationKey
correlationKey, QueryContext queryContext);

 /**
 * Returns process instance descriptions, filtered by their states, that were found for the given
correlation key. If none are found, returns an empty list
 * This query uses 'LIKE' to match correlation keys so it accepts partial keys. Matching
 * is performed based on a 'starts with' criterion
 * @param correlationKey correlation key assigned to process instance
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
match
 * the given correlation key
 */
 Collection<ProcessInstanceDesc>
getProcessInstancesByCorrelationKeyAndStatus(CorrelationKey correlationKey, List<Integer> states,
QueryContext queryContext);

 /**
 * Returns a list of process instance descriptions found for the given process definition ID
 * @param processDefId ID of the process definition
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
match
 * the given criteria (deploymentId and states)
 */
 Collection<ProcessInstanceDesc> getProcessInstancesByProcessDefinition(String processDefId,
QueryContext queryContext);

 /**
 * Returns a list of process instance descriptions found for the given process definition ID, filtered
by state
 * @param processDefId ID of the process definition
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
match
 * the given criteria (deploymentId and states)
 */
 Collection<ProcessInstanceDesc> getProcessInstancesByProcessDefinition(String processDefId,
List<Integer> states, QueryContext queryContext);

 /**
 * Returns process instance descriptions that match process instances that have the given variable
defined, filtered by state
 * @param variableName name of the variable that process instance should have
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have. If
null, returns only active instances
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
have the given variable defined

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

317

 */
 Collection<ProcessInstanceDesc> getProcessInstancesByVariable(String variableName,
List<Integer> states, QueryContext queryContext);

 /**
 * Returns process instance descriptions that match process instances that have the given variable
defined and the value of the variable matches the given variableValue
 * @param variableName name of the variable that process instance should have
 * @param variableValue value of the variable to match
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have. If
null, returns only active instances
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the process instances that
have the given variable defined with the given value
 */
 Collection<ProcessInstanceDesc> getProcessInstancesByVariableAndValue(String variableName,
String variableValue, List<Integer> states, QueryContext queryContext);

 /**
 * Returns a list of process instance descriptions that have the specified parent
 * @param parentProcessInstanceId ID of the parent process instance
 * @param states list of possible state (int) values that the {@link ProcessInstance} can have. If
null, returns only active instances
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessInstanceDesc} instances representing the available process
instances
 */
 Collection<ProcessInstanceDesc> getProcessInstancesByParent(Long parentProcessInstanceId,
List<Integer> states, QueryContext queryContext);

 /**
 * Returns a list of process instance descriptions that are subprocesses of the specified process, or
subprocesses of those subprocesses, and so on. The list includes the full hierarchy of subprocesses
under the specified parent process
 * @param processInstanceId ID of the parent process instance
 * @return list of {@link ProcessInstanceDesc} instances representing the full hierarchy of this
process
 */
 Collection<ProcessInstanceDesc>
getProcessInstancesWithSubprocessByProcessInstanceId(Long processInstanceId, List<Integer>
states, QueryContext queryContext);

 // Node and Variable instance information

 /**
 * Returns the active node instance descriptor for the given work item ID, if the work item exists and
is active
 * @param workItemId identifier of the work item
 * @return NodeInstanceDesc for work item if it exists and is still active, otherwise null is returned
 */
 NodeInstanceDesc getNodeInstanceForWorkItem(Long workItemId);

 /**
 * Returns a trace of all active nodes for the given process instance ID
 * @param processInstanceId unique identifier of the process instance
 * @param queryContext control parameters for the result, such as sorting and paging

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

318

 * @return
 */
 Collection<NodeInstanceDesc> getProcessInstanceHistoryActive(long processInstanceId,
QueryContext queryContext);

 /**
 * Returns a trace of all executed (completed) nodes for the given process instance ID
 * @param processInstanceId unique identifier of the process instance
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return
 */
 Collection<NodeInstanceDesc> getProcessInstanceHistoryCompleted(long processInstanceId,
QueryContext queryContext);

 /**
 * Returns a complete trace of all executed (completed) and active nodes for the given process
instance ID
 * @param processInstanceId unique identifier of the process instance
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return {@link NodeInstance} information, in the form of a list of {@link NodeInstanceDesc}
instances,
 * that come from a process instance that matches the given criteria (deploymentId, processId)
 */
 Collection<NodeInstanceDesc> getProcessInstanceFullHistory(long processInstanceId,
QueryContext queryContext);

 /**
 * Returns a complete trace of all events of the given type (START, END, ABORTED, SKIPPED,
OBSOLETE or ERROR) for the given process instance
 * @param processInstanceId unique identifier of the process instance
 * @param queryContext control parameters for the result, such as sorting and paging
 * @param type type of events to be returned (START, END, ABORTED, SKIPPED, OBSOLETE or
ERROR). To return all events, use {@link #getProcessInstanceFullHistory(long, QueryContext)}
 * @return collection of node instance descriptions
 */
 Collection<NodeInstanceDesc> getProcessInstanceFullHistoryByType(long processInstanceId,
EntryType type, QueryContext queryContext);

 /**
 * Returns a trace of all nodes for the given node types and process instance ID
 * @param processInstanceId unique identifier of the process instance
 * @param nodeTypes list of node types to filter nodes of the process instance
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return collection of node instance descriptions
 */
 Collection<NodeInstanceDesc> getNodeInstancesByNodeType(long processInstanceId,
List<String> nodeTypes, QueryContext queryContext);

 /**
 * Returns a trace of all nodes for the given node types and correlation key
 * @param correlationKey correlation key
 * @param states list of states
 * @param nodeTypes list of node types to filter nodes of process instance
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return collection of node instance descriptions

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

319

 */
 Collection<NodeInstanceDesc> getNodeInstancesByCorrelationKeyNodeType(CorrelationKey
correlationKey, List<Integer> states, List<String> nodeTypes, QueryContext queryContext);

 /**
 * Returns a collection of all process variables and their current values for the given process
instance
 * @param processInstanceId process instance ID
 * @return information about variables in the specified process instance,
 * represented by a list of {@link VariableDesc} instances
 */
 Collection<VariableDesc> getVariablesCurrentState(long processInstanceId);

 /**
 * Returns a collection of changes to the given variable within the scope of a process instance
 * @param processInstanceId unique identifier of the process instance
 * @param variableId ID of the variable
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return information about the variable with the given ID in the specified process instance,
 * represented by a list of {@link VariableDesc} instances
 */
 Collection<VariableDesc> getVariableHistory(long processInstanceId, String variableId,
QueryContext queryContext);

 // Process information

 /**
 * Returns a list of process definitions for the given deployment ID
 * @param deploymentId deployment ID of the runtime
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessDefinition} instances representing processes that match
 * the given criteria (deploymentId)
 */
 Collection<ProcessDefinition> getProcessesByDeploymentId(String deploymentId, QueryContext
queryContext);

 /**
 * Returns a list of process definitions that match the given filter
 * @param filter regular expression
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of {@link ProcessDefinition} instances with a name or ID that matches the given
regular expression
 */
 Collection<ProcessDefinition> getProcessesByFilter(String filter, QueryContext queryContext);

 /**
 * Returns all process definitions available
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of all available processes, in the form a of a list of {@link ProcessDefinition}
instances
 */
 Collection<ProcessDefinition> getProcesses(QueryContext queryContext);

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

320

 /**
 * Returns a list of process definition identifiers for the given deployment ID
 * @param deploymentId deployment ID of the runtime
 * @param queryContext control parameters for the result, such as sorting and paging
 * @return list of all available process id's for a particular deployment/runtime
 */
 Collection<String> getProcessIds(String deploymentId, QueryContext queryContext);

 /**
 * Returns process definitions for the given process ID regardless of the deployment
 * @param processId ID of the process
 * @return collection of {@link ProcessDefinition} instances representing the {@link Process}
 * with the specified process ID
 */
 Collection<ProcessDefinition> getProcessesById(String processId);

 /**
 * Returns the process definition for the given deployment and process identifiers
 * @param deploymentId ID of the deployment (runtime)
 * @param processId ID of the process
 * @return {@link ProcessDefinition} instance, representing the {@link Process}
 * that is present in the specified deployment with the specified process ID
 */
 ProcessDefinition getProcessesByDeploymentIdProcessId(String deploymentId, String processId);

 // user task query operations

 /**
 * Return a task by its workItemId
 * @param workItemId
 * @return @{@link UserTaskInstanceDesc} task
 */
 UserTaskInstanceDesc getTaskByWorkItemId(Long workItemId);

 /**
 * Return a task by its taskId
 * @param taskId
 * @return @{@link UserTaskInstanceDesc} task
 */
 UserTaskInstanceDesc getTaskById(Long taskId);

 /**
 * Return a task by its taskId with SLA data if the withSLA param is true
 * @param taskId
 * @param withSLA
 * @return @{@link UserTaskInstanceDesc} task
 */
 UserTaskInstanceDesc getTaskById(Long taskId, boolean withSLA);

 /**
 * Return a list of assigned tasks for a Business Administrator user. Business
 * administrators play the same role as task stakeholders but at task type
 * level. Therefore, business administrators can perform the exact same
 * operations as task stakeholders. Business administrators can also observe
 * the progress of notifications
 *

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

321

 * @param userId identifier of the Business Administrator user
 * @param filter filter for the list of assigned tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksAssignedAsBusinessAdministrator(String userId, QueryFilter filter);

 /**
 * Return a list of assigned tasks for a Business Administrator user for with one of the listed
 * statuses
 * @param userId identifier of the Business Administrator user
 * @param statuses the statuses of the tasks to return
 * @param filter filter for the list of assigned tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksAssignedAsBusinessAdministratorByStatus(String userId,
List<Status> statuses, QueryFilter filter);

 /**
 * Return a list of tasks that a user is eligible to own
 *
 * @param userId identifier of the user
 * @param filter filter for the list of tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksAssignedAsPotentialOwner(String userId, QueryFilter filter);

 /**
 * Return a list of tasks the user or user groups are eligible to own
 *
 * @param userId identifier of the user
 * @param groupIds a list of identifiers of the groups
 * @param filter filter for the list of tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksAssignedAsPotentialOwner(String userId, List<String> groupIds,
QueryFilter filter);

 /**
 * Return a list of tasks the user is eligible to own and that are in one of the listed
 * statuses
 *
 * @param userId identifier of the user
 * @param status filter for the task statuses
 * @param filter filter for the list of tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksAssignedAsPotentialOwnerByStatus(String userId, List<Status>
status, QueryFilter filter);

 /**
 * Return a list of tasks the user or groups are eligible to own and that are in one of the listed
 * statuses
 * @param userId identifier of the user
 * @param groupIds filter for the identifiers of the groups
 * @param status filter for the task statuses
 * @param filter filter for the list of tasks

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

322

 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksAssignedAsPotentialOwner(String userId, List<String> groupIds,
List<Status> status, QueryFilter filter);

 /**
 * Return a list of tasks the user is eligible to own, that are in one of the listed
 * statuses, and that have an expiration date starting at <code>from</code>. Tasks that do not have
expiration date set
 * will also be included in the result set
 *
 * @param userId identifier of the user
 * @param status filter for the task statuses
 * @param from earliest expiration date for the tasks
 * @param filter filter for the list of tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksAssignedAsPotentialOwnerByExpirationDateOptional(String userId,
List<Status> status, Date from, QueryFilter filter);

 /**
 * Return a list of tasks the user has claimed, that are in one of the listed
 * statuses, and that have an expiration date starting at <code>from</code>. Tasks that do not have
expiration date set
 * will also be included in the result set
 *
 * @param userId identifier of the user
 * @param strStatuses filter for the task statuses
 * @param from earliest expiration date for the tasks
 * @param filter filter for the list of tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksOwnedByExpirationDateOptional(String userId, List<Status>
strStatuses, Date from, QueryFilter filter);

 /**
 * Return a list of tasks the user has claimed
 *
 * @param userId identifier of the user
 * @param filter filter for the list of tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksOwned(String userId, QueryFilter filter);

 /**
 * Return a list of tasks the user has claimed with one of the listed
 * statuses
 *
 * @param userId identifier of the user
 * @param status filter for the task statuses
 * @param filter filter for the list of tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksOwnedByStatus(String userId, List<Status> status, QueryFilter filter);

 /**

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

323

 * Get a list of tasks the Process Instance is waiting on
 *
 * @param processInstanceId identifier of the process instance
 * @return list of task identifiers
 */
 List<Long> getTasksByProcessInstanceId(Long processInstanceId);

 /**
 * Get filter for the tasks the Process Instance is waiting on that are in one of the
 * listed statuses
 *
 * @param processInstanceId identifier of the process instance
 * @param status filter for the task statuses
 * @param filter filter for the list of tasks
 * @return list of @{@link TaskSummary} task summaries
 */
 List<TaskSummary> getTasksByStatusByProcessInstanceId(Long processInstanceId, List<Status>
status, QueryFilter filter);

 /**
 * Get a list of task audit logs for all tasks owned by the user, applying a query filter to the list of tasks
 *
 *
 * @param userId identifier of the user that owns the tasks
 * @param filter filter for the list of tasks
 * @return list of @{@link AuditTask} task audit logs
 */
 List<AuditTask> getAllAuditTask(String userId, QueryFilter filter);

 /**
 * Get a list of task audit logs for all tasks that are active and owned by the user, applying a query
filter to the list of tasks
 *
 * @param userId identifier of the user that owns the tasks
 * @param filter filter for the list of tasks
 * @return list of @{@link AuditTask} audit tasks
 */
 List<AuditTask> getAllAuditTaskByStatus(String userId, QueryFilter filter);

 /**
 * Get a list of task audit logs for group tasks (actualOwner == null) for the user, applying a query
filter to the list of tasks
 *
 * @param userId identifier of the user that is associated with the group tasks
 * @param filter filter for the list of tasks
 * @return list of @{@link AuditTask} audit tasks
 */
 List<AuditTask> getAllGroupAuditTask(String userId, QueryFilter filter);

 /**
 * Get a list of task audit logs for tasks that are assigned to a Business Administrator user, applying a
query filter to the list of tasks
 *
 * @param userId identifier of the Business Administrator user
 * @param filter filter for the list of tasks

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

324

66.3.6. User Task Service

The user task service covers the complete lifecycle of an individual task, and you can use the service to
manage a user task from start to end.

Task queries are not a part of the user task service. Use the runtime data service to query for tasks. Use
the user task service for scoped operations on one task, including the following actions:

Modification of selected properties

Access to task variables

 * @return list of @{@link AuditTask} audit tasks
 */
 List<AuditTask> getAllAdminAuditTask(String userId, QueryFilter filter);

 /**
 * Gets a list of task events for the given task
 * @param taskId identifier of the task
 * @param filter for the list of events
 * @return list of @{@link TaskEvent} task events
 */
 List<TaskEvent> getTaskEvents(long taskId, QueryFilter filter);

 /**
 * Query on {@link TaskSummary} instances
 * @param userId the user associated with the tasks queried
 * @return {@link TaskSummaryQueryBuilder} used to create the query
 */
 TaskSummaryQueryBuilder taskSummaryQuery(String userId);

 /**
 * Gets a list of {@link TaskSummary} instances for tasks that define a given variable
 * @param userId the ID of the user associated with the tasks
 * @param variableName the name of the task variable
 * @param statuses the list of statuses that the task can have
 * @param queryContext the query context
 * @return a {@link List} of {@link TaskSummary} instances
 */
 List<TaskSummary> getTasksByVariable(String userId, String variableName, List<Status>
statuses, QueryContext queryContext);

 /**
 * Gets a list of {@link TaskSummary} instances for tasks that define a given variable and the
variable is set to the given value
 * @param userId the ID of the user associated with the tasks
 * @param variableName the name of the task variable
 * @param variableValue the value of the task variable
 * @param statuses the list of statuses that the task can have
 * @param context the query context
 * @return a {@link List} of {@link TaskSummary} instances
 */
 List<TaskSummary> getTasksByVariableAndValue(String userId, String variableName, String
variableValue, List<Status> statuses, QueryContext context);

}

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

325

Access to task attachments

Access to task comments

The user task service is also a command executor. You can use it to execute custom task commands.

The following example shows starting a process and interacting with a task in the process:

Starting a process and interacting with a user task in this process

66.3.7. Quartz-based timer service

The process engine provides a cluster-ready timer service using Quartz. You can use the service to
dispose or load your KIE session at any time. The service can manage how long a KIE session is active in
order to fire each timer appropriately.

The following example shows a basic Quartz configuration file for a clustered environment:

Quartz configuration file for a clustered environment

long processInstanceId =
processService.startProcess(deployUnit.getIdentifier(), "org.jbpm.writedocument");

List<Long> taskIds =
runtimeDataService.getTasksByProcessInstanceId(processInstanceId);

Long taskId = taskIds.get(0);

userTaskService.start(taskId, "john");
UserTaskInstanceDesc task = runtimeDataService.getTaskById(taskId);

Map<String, Object> results = new HashMap<String, Object>();
results.put("Result", "some document data");
userTaskService.complete(taskId, "john", results);

#==

Configure Main Scheduler Properties
#==

org.quartz.scheduler.instanceName = jBPMClusteredScheduler
org.quartz.scheduler.instanceId = AUTO

#==

Configure ThreadPool
#==

org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount = 5
org.quartz.threadPool.threadPriority = 5

#==

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

326

You must modify the previous example to fit your environment.

66.3.8. Query service

The query service provides advanced search capabilities that are based on Dashbuilder data sets.

With this approach, you can control how to retrieve data from underlying data store. You can use
complex JOIN statements with external tables such as JPA entities tables or custom systems database
tables.

The query service is built around the following two sets of operations:

Management operations:

Register a query definition

Replace a query definition

Unregister (remove) a query definition

Get a query definition

Get all registered query definitions

Runtime operations:

Simple query based on QueryParam as the filter provider

Advanced query based on QueryParamBuilder as the filter provider

Dashbuilder data sets provide support for multiple data sources, such as CSV, SQL, and Elastic Search.
However, the process engine uses a RDBMS-based backend and focuses on SQL-based data sets.

Therefore, the process engine query service is a subset of Dashbuilder data set capabilities that enables
efficient queries with a simple API.

Configure JobStore
#==

org.quartz.jobStore.misfireThreshold = 60000

org.quartz.jobStore.class=org.quartz.impl.jdbcjobstore.JobStoreCMT
org.quartz.jobStore.driverDelegateClass=org.quartz.impl.jdbcjobstore.StdJDBCDelegate
org.quartz.jobStore.useProperties=false
org.quartz.jobStore.dataSource=managedDS
org.quartz.jobStore.nonManagedTXDataSource=nonManagedDS
org.quartz.jobStore.tablePrefix=QRTZ_
org.quartz.jobStore.isClustered=true
org.quartz.jobStore.clusterCheckinInterval = 20000

#===
Configure Datasources
#===
org.quartz.dataSource.managedDS.jndiURL=jboss/datasources/psbpmsDS
org.quartz.dataSource.nonManagedDS.jndiURL=jboss/datasources/quartzNonManagedDS

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

327

66.3.8.1. Key classes of the query service

The query service relies on the following key classes:

QueryDefinition: Represents the definition of a data set. The definition consists of a unique
name, an SQL expression (the query) and the source, the JNDI name of the data source to use
when performing queries.

QueryParam: The basic structure that represents an individual query parameter or condition.
This structure consists of the column name, operator, and expected values.

QueryResultMapper: The class that maps raw dataset data (rows and columns) to an object
representation.

QueryParamBuilder: The class that builds query filters that are applied to the query definition
to invoke the query.

QueryResultMapper

QueryResultMapper maps data taken from a database (dataset) to an object representation. It is
similar to ORM providers such as hibernate, which map tables to entities.

Many object types can be used for representing dataset results. Therefore, existing mappers might not
always suit your needs. Mappers in QueryResultMapper are pluggable and you can provide your own
mapper when necessary, in order to transform dataset data into any type you need.

The process engine supplies the following mappers:

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceQueryMapper, registered with
the name ProcessInstances

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithVarsQueryMapper,
registered with the name ProcessInstancesWithVariables

org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithCustomVarsQueryMapper,
registered with the name ProcessInstancesWithCustomVariables

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceQueryMapper, registered with
the name UserTasks

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithVarsQueryMapper,
registered with the name UserTasksWithVariables

org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithCustomVarsQueryMappe
r, registered with name UserTasksWithCustomVariables

org.jbpm.kie.services.impl.query.mapper.TaskSummaryQueryMapper, registered with the
name TaskSummaries

org.jbpm.kie.services.impl.query.mapper.RawListQueryMapper, registered with the name
RawList

Each QueryResultMapper is registered with a unique string name. You can look up mappers by this
name instead of referencing the full class name. This feature is especially important when using EJB
remote invocation of services, because it avoids relying on a particular implementation on the client side.

To reference a QueryResultMapper by the string name, use NamedQueryMapper, which is a part of the

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

328

To reference a QueryResultMapper by the string name, use NamedQueryMapper, which is a part of the
jbpm-services-api module. This class acts as a delegate (lazy delegate) and looks up the actual mapper
when the query is performed.

Using NamedQueryMapper

QueryParamBuilder

QueryParamBuilder provides an advanced way of building filters for data sets.

By default, when you use a query method of QueryService that accepts zero or more QueryParam
instances, all of these parameters are joined with an AND operator, so a data entry must match all of
them.

However, sometimes more complicated relationships between parameters are required. You can use
QueryParamBuilder to build custom builders that provide filters at the time the query is issued.

One existing implementation of QueryParamBuilder is available in the process engine. It covers default
QueryParams that are based on the core functions.

These core functions are SQL-based conditions, including the following conditions:

IS_NULL

NOT_NULL

EQUALS_TO

NOT_EQUALS_TO

LIKE_TO

GREATER_THAN

GREATER_OR_EQUALS_TO

LOWER_THAN

LOWER_OR_EQUALS_TO

BETWEEN

IN

NOT_IN

Before invoking a query, the process engine invokes the build method of the QueryParamBuilder
interface as many times as necessary while the method returns a non-null value. Because of this
approach, you can build up complex filter options that could not be expressed by a simple list of
QueryParams.

The following example shows a basic implementation of QueryParamBuilder. It relies on the
DashBuilder Dataset API.

queryService.query("my query def", new NamedQueryMapper<Collection<ProcessInstanceDesc>>
("ProcessInstances"), new QueryContext());

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

329

Basic implementation of QueryParamBuilder

After implementing the builder, you can use an instance of this class when performing a query with the
QueryService service, as shown in the following example:

Running a query with the QueryService service

66.3.8.2. Using the query service in a typical scenario

The following procedure outlines the typical way in which your code might use the query service.

Procedure

1. Define the data set, which is a view of the data you want to use. Use the QueryDefinition class in
the services API to complete this operation:

Defining the data set

This example represents the simplest possible query definition.

public class TestQueryParamBuilder implements QueryParamBuilder<ColumnFilter> {

 private Map<String, Object> parameters;
 private boolean built = false;
 public TestQueryParamBuilder(Map<String, Object> parameters) {
 this.parameters = parameters;
 }

 @Override
 public ColumnFilter build() {
 // return null if it was already invoked
 if (built) {
 return null;
 }

 String columnName = "processInstanceId";

 ColumnFilter filter = FilterFactory.OR(
 FilterFactory.greaterOrEqualsTo((Long)parameters.get("min")),
 FilterFactory.lowerOrEqualsTo((Long)parameters.get("max")));
 filter.setColumnId(columnName);

 built = true;
 return filter;
 }

}

queryService.query("my query def", ProcessInstanceQueryMapper.get(), new QueryContext(),
paramBuilder);

SqlQueryDefinition query = new SqlQueryDefinition("getAllProcessInstances",
"java:jboss/datasources/ExampleDS");
query.setExpression("select * from processinstancelog");

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

330

The constructor requires the following parameters:

A unique name that identifies the query at run time

A JNDI data source name to use for performing queries with this definition
The parameter of the setExpression() method is the SQL statement that builds up the
data set view. Queries in the query service use data from this view and filter this data as
necessary.

2. Register the query:

Registering a query

3. If required, collect all the data from the dataset, without any filtering:

Collecting all the data from the dataset

This simple query uses defaults from QueryContext for paging and sorting.

4. If required, use a QueryContext object that changes the defaults of the paging and sorting:

Changing defaults using a QueryContext object

5. If required, use the query to filter data:

Using a query to filter data

With the query service, you can define what data to fetch and how to filter it. Limitation of the JPA
provider or other similar limitations do not apply. You can tailor database queries to your environment to
increase performance.

66.3.9. Advanced query service

queryService.registerQuery(query);

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",
ProcessInstanceQueryMapper.get(), new QueryContext());

QueryContext ctx = new QueryContext(0, 100, "start_date", true);

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",
ProcessInstanceQueryMapper.get(), ctx);

// single filter param
Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",
ProcessInstanceQueryMapper.get(), new QueryContext(),
QueryParam.likeTo(COLUMN_PROCESSID, true, "org.jbpm%"));

// multiple filter params (AND)
Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",
ProcessInstanceQueryMapper.get(), new QueryContext(),
 QueryParam.likeTo(COLUMN_PROCESSID, true, "org.jbpm%"),
 QueryParam.in(COLUMN_STATUS, 1, 3));

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

331

The advanced query service provides capabilities to search for processes and tasks, based on process
and task attributes, process variables, and internal variables of user tasks. The search automatically
covers all existing processes in the process engine.

The names and required values of attributes and variables are defined in QueryParam objects.

Process attributes include process instance ID, correlation key, process definition ID, and deployment
ID. Task attributes include task name, owner, and status.

The following search methods are available:

queryProcessByVariables: Search for process instances based on a list of process attributes
and process variable values. To be included in the result, a process instance must have the listed
attributes and the listed values in its process variables.

queryProcessByVariablesAndTask: Search for process instances based on a list of process
attributes, process variable values, and task variable values. To be included in the result, a
process instance must have the listed attributes and the listed values in its process variables. It
also must include a task with the listed values in its task variables.

queryUserTasksByVariables: Search for user tasks based on a list of task attributes, task
variable values, and process variable values. To be included in the result, a task must have the
listed attributes and listed values in its task variables. It also must be included in a process with
the listed values in its process variables.

The service is provided by the AdvanceRuntimeDataService class. The interface for this class also
defines predefined task and process attribute names.

Definition of the AdvanceRuntimeDataService interface

public interface AdvanceRuntimeDataService {

 String TASK_ATTR_NAME = "TASK_NAME";
 String TASK_ATTR_OWNER = "TASK_OWNER";
 String TASK_ATTR_STATUS = "TASK_STATUS";
 String PROCESS_ATTR_INSTANCE_ID = "PROCESS_INSTANCE_ID";
 String PROCESS_ATTR_CORRELATION_KEY = "PROCESS_CORRELATION_KEY";
 String PROCESS_ATTR_DEFINITION_ID = "PROCESS_DEFINITION_ID";
 String PROCESS_ATTR_DEPLOYMENT_ID = "PROCESS_DEPLOYMENT_ID";
 String PROCESS_COLLECTION_VARIABLES = "ATTR_COLLECTION_VARIABLES";

 List<ProcessInstanceWithVarsDesc> queryProcessByVariables(List<QueryParam> attributes,
 List<QueryParam> processVariables, QueryContext queryContext);

 List<ProcessInstanceWithVarsDesc> queryProcessByVariablesAndTask(List<QueryParam>
attributes,
 List<QueryParam> processVariables, List<QueryParam> taskVariables,
 List<String> potentialOwners, QueryContext queryContext);

 List<UserTaskInstanceWithPotOwnerDesc> queryUserTasksByVariables(List<QueryParam>
attributes,
 List<QueryParam> taskVariables, List<QueryParam> processVariables,
 List<String> potentialOwners, QueryContext queryContext);
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

332

66.3.10. Process instance migration service

The process instance migration service is a utility for migrating process instances from one deployment
to another. Process or task variables are not affected by the migration. However, the new deployment
can use a different process definition.

When migrating a process, the process instance migration service also automatically migrates all the
subprocesses of the process, the subprocesses of those subprocesses, and so on. If you attempt to
migrate a subprocess without migrating the parent process, the migration fails.

For the simplest approach to process migration, let active process instances finish and start new process
instances in the new deployment. If this approach is not suitable for your needs, consider the following
issues before starting process instance migration:

Backward compatibility

Data change

Need for node mapping

Whenever possible, create backward-compatible processes by extending process definitions. For
example, removing nodes from the process definition breaks compatibility. If you make such changes,
you must provide node mapping. Process instance migration uses node mapping if an active process
instance is in a node that has been removed.

A node map contains source node IDs from the old process definition mapped to target node IDs in the
new process definition. You can map nodes of the same type only, such as a user task to a user task.

Red Hat Process Automation Manager offers several implementations of the migration service:

Methods in the ProcessInstanceMigrationService interface that implement the migration
service

public interface ProcessInstanceMigrationService {
 /**
 * Migrates a given process instance that belongs to the source deployment into the target process ID
that belongs to the target deployment.
 * The following rules are enforced:
 *
 * the source deployment ID must point to an existing deployment
 * the process instance ID must point to an existing and active process instance
 * the target deployment must exist
 * the target process ID must exist in the target deployment
 *
 * Returns a migration report regardless of migration being successful or not; examine the report for
the outcome of the migration.
 * @param sourceDeploymentId deployment to which the process instance to be migrated belongs
 * @param processInstanceId ID of the process instance to be migrated
 * @param targetDeploymentId ID of the deployment to which the target process belongs
 * @param targetProcessId ID of the process to which the process instance should be migrated
 * @return returns complete migration report
 */
 MigrationReport migrate(String sourceDeploymentId, Long processInstanceId, String
targetDeploymentId, String targetProcessId);
 /**
 * Migrates a given process instance (with node mapping) that belongs to source deployment into the

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

333

target process ID that belongs to the target deployment.
 * The following rules are enforced:
 *
 * the source deployment ID must point to an existing deployment
 * the process instance ID must point to an existing and active process instance
 * the target deployment must exist
 * the target process ID must exist in the target deployment
 *
 * Returns a migration report regardless of migration being successful or not; examine the report for
the outcome of the migration.
 * @param sourceDeploymentId deployment to which the process instance to be migrated belongs
 * @param processInstanceId ID of the process instance to be migrated
 * @param targetDeploymentId ID of the deployment to which the target process belongs
 * @param targetProcessId ID of the process to which the process instance should be migrated
 * @param nodeMapping node mapping - source and target unique IDs of nodes to be mapped - from
process instance active nodes to new process nodes
 * @return returns complete migration report
 */
 MigrationReport migrate(String sourceDeploymentId, Long processInstanceId, String
targetDeploymentId, String targetProcessId, Map<String, String> nodeMapping);
 /**
 * Migrates given process instances that belong to the source deployment into a target process ID that
belongs to the target deployment.
 * The following rules are enforced:
 *
 * the source deployment ID must point to an existing deployment
 * the process instance ID must point to an existing and active process instance
 * the target deployment must exist
 * the target process ID must exist in the target deployment
 *
 * Returns a migration report regardless of migration being successful or not; examine the report for
the outcome of the migration.
 * @param sourceDeploymentId deployment to which the process instances to be migrated belong
 * @param processInstanceIds list of process instance IDs to be migrated
 * @param targetDeploymentId ID of the deployment to which the target process belongs
 * @param targetProcessId ID of the process to which the process instances should be migrated
 * @return returns complete migration report
 */
 List<MigrationReport> migrate(String sourceDeploymentId, List<Long> processInstanceIds, String
targetDeploymentId, String targetProcessId);
 /**
 * Migrates given process instances (with node mapping) that belong to the source deployment into a
target process ID that belongs to the target deployment.
 * The following rules are enforced:
 *
 * the source deployment ID must point to an existing deployment
 * the process instance ID must point to an existing and active process instance
 * the target deployment must exist
 * the target process ID must exist in the target deployment
 *
 * Returns a migration report regardless of migration being successful or not; examine the report for
the outcome of the migration.
 * @param sourceDeploymentId deployment to which the process instances to be migrated belong
 * @param processInstanceIds list of process instance ID to be migrated
 * @param targetDeploymentId ID of the deployment to which the target process belongs
 * @param targetProcessId ID of the process to which the process instances should be migrated

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

334

To migrate process instances on a KIE Server, use the following implementations. These methods are
similar to the methods in the ProcessInstanceMigrationService interface, providing the same
migration implementations for KIE Server deployments.

Methods in the ProcessAdminServicesClient interface that implement the migration service
for KIE Server deployments

You can migrate a single process instance or multiple process instances at once. If you migrate multiple
process instances, each instance is migrated in a separate transaction to ensure that the migrations do
not affect each other.

After migration is completed, the migrate method returns a MigrationReport object that contains the
following information:

The start and end dates of the migration.

The migration outcome (success or failure).

A log entry of the INFO, WARN, or ERROR type. The ERROR message terminates the
migration.

The following example shows a process instance migration:

Migrating a process instance in a KIE Server deployment

 * @param nodeMapping node mapping - source and target unique IDs of nodes to be mapped - from
process instance active nodes to new process nodes
 * @return returns list of migration reports one per each process instance
 */
 List<MigrationReport> migrate(String sourceDeploymentId, List<Long> processInstanceIds, String
targetDeploymentId, String targetProcessId, Map<String, String> nodeMapping);
}

public interface ProcessAdminServicesClient {

 MigrationReportInstance migrateProcessInstance(String containerId, Long processInstanceId,
String targetContainerId, String targetProcessId);

 MigrationReportInstance migrateProcessInstance(String containerId, Long processInstanceId,
String targetContainerId, String targetProcessId, Map<String, String> nodeMapping);

 List<MigrationReportInstance> migrateProcessInstances(String containerId, List<Long>
processInstancesId, String targetContainerId, String targetProcessId);

 List<MigrationReportInstance> migrateProcessInstances(String containerId, List<Long>
processInstancesId, String targetContainerId, String targetProcessId, Map<String, String>
nodeMapping);
}

import org.kie.server.api.model.admin.MigrationReportInstance;
import org.kie.server.api.marshalling.MarshallingFormat;
import org.kie.server.client.KieServicesClient;
import org.kie.server.client.KieServicesConfiguration;

public class ProcessInstanceMigrationTest{

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

335

Known limitations of process instance migration
The following situations can cause a failure of the migration or incorrect migration:

A new or modified task requires inputs that are not available in the migrated process instance.

You modify the tasks prior to the active task where the changes have an impact on further
processing.

You remove a human task that is currently active. To replace a human task, you must map it to
another human task.

You add a new task parallel to the single active task. As all branches in an AND gateway are not
activated, the process gets stuck.

You remove active timer events (these events are not changed in the database).

You fix or update inputs and outputs in an active task (the task data is not migrated).

If you apply mapping to a task node, only the task node name and description are mapped. Other task
fields, including the TaskName variable, are not mapped to the new task.

66.3.11. Deployments and different process versions

The deployment service puts business assets into an execution environment. However, in some cases
additional management is required to make the assets available in the correct context. Notably, if you
deploy several versions of the same process, you must ensure that process instances use the correct
version.

 private static final String SOURCE_CONTAINER = "com.redhat:MigrateMe:1.0";
 private static final String SOURCE_PROCESS_ID = "MigrateMe.MigrateMev1";
 private static final String TARGET_CONTAINER = "com.redhat:MigrateMe:2";
 private static final String TARGET_PROCESS_ID = "MigrateMe.MigrateMeV2";

 public static void main(String[] args) {

 KieServicesConfiguration config =
KieServicesFactory.newRestConfiguration("http://HOST:PORT/kie-server/services/rest/server",
"USERNAME", "PASSWORD");
 config.setMarshallingFormat(MarshallingFormat.JSON);
 KieServicesClient client = KieServicesFactory.newKieServicesClient(config);

 long sourcePid = client.getProcessClient().startProcess(SOURCE_CONTAINER,
SOURCE_PROCESS_ID);

 // Use the 'report' object to return migration results.
 MigrationReportInstance report =
client.getAdminClient().migrateProcessInstance(SOURCE_CONTAINER,
sourcePid,TARGET_CONTAINER, TARGET_PROCESS_ID);

 System.out.println("Was migration successful:" + report.isSuccessful());

 client.getProcessClient().abortProcessInstance(TARGET_CONTAINER, sourcePid);

 }
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

336

Activation and Deactivation of deployments
In some cases, a number of process instances are running on a deployment, and then you add a new
version of the same process to the runtime environment.

You might decide that new instances of this process definition must use the new version while the
existing active instances should continue with the previous version.

To enable this scenario, use the following methods of the deployment service:

activate: Activates a deployment so it can be available for interaction. You can list its process
definitions and start new process instances for this deployment.

deactivate: Deactivates a deployment. Disables the option to list process definitions and to
start new process instances of processes in the deployment. However, you can continue working
with the process instances that are already active, for example, signal events and interact with
user tasks.

You can use this feature for smooth transition between project versions without the need for process
instance migration.

Invocation of the latest version of a process
If you need to use the latest version of the project’s process, you can use the latest keyword to interact
with several operations in services. This approach is supported only when the process identifier remains
the same in all versions.

The following example explains the feature.

The initial deployment unit is org.jbpm:HR:1.0. It contains the first version of a hiring process.

After several weeks, you develop a new version and deploy it to the execution server as
org.jbpm:HR.2.0. It includes version 2 of the hiring process.

If you want to call the process and ensure that you use the latest version, you can use the following
deployment ID:

org.jbpm.HR:latest

If you use this deployment ID, the process engine finds the latest available version of the project. It uses
the following identifiers:

groupId: org.jbpm

artifactId: HR

The version numbers are compared by Maven rules to find the latest version.

The following code example shows deployment of multiple versions and interacting with the latest
version:

Deploying multiple versions of a process and interacting with the latest version

KModuleDeploymentUnit deploymentUnitV1 = new KModuleDeploymentUnit("org.jbpm", "HR", "1.0");
deploymentService.deploy(deploymentUnitV1);

long processInstanceId = processService.startProcess("org.jbpm:HR:LATEST", "customtask");
ProcessInstanceDesc piDesc = runtimeDataService.getProcessInstanceById(processInstanceId);

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

337

NOTE

This feature is also available in the KIE Server REST API. When sending a request with a
deployment ID, you can use LATEST as the version identifier.

Additional resources

Interacting with Red Hat Process Automation Manager using KIE APIs

66.3.12. Deployment synchronization

Process engine services include a deployment synchronizer that stores available deployments into a
database, including the deployment descriptor for every deployment.

The synchronizer also monitors this table to keep it in sync with other installations that might be using
the same data source. This functionality is especially important when running in a cluster or when
Business Central and a custom application must operate on the same artifacts.

By default, when running core services, you must configure synchronization. For EJB and CDI
extensions, synchronization is enabled automatically.

The following code sample configures synchronization:

Configuring synchronization

With this configuration, deployments are synchronized every three seconds with an initial delay of two
seconds.

// We have started a process with the project version 1
assertEquals(deploymentUnitV1.getIdentifier(), piDesc.getDeploymentId());

// Next we deploy version 2
KModuleDeploymentUnit deploymentUnitV2 = new KModuleDeploymentUnit("org.jbpm", "HR", "2.0");
deploymentService.deploy(deploymentUnitV2);

processInstanceId = processService.startProcess("org.jbpm:HR:LATEST", "customtask");
piDesc = runtimeDataService.getProcessInstanceById(processInstanceId);

// This time we have started a process with the project version 2
assertEquals(deploymentUnitV2.getIdentifier(), piDesc.getDeploymentId());

TransactionalCommandService commandService = new TransactionalCommandService(emf);

DeploymentStore store = new DeploymentStore();
store.setCommandService(commandService);

DeploymentSynchronizer sync = new DeploymentSynchronizer();
sync.setDeploymentService(deploymentService);
sync.setDeploymentStore(store);

DeploymentSyncInvoker invoker = new DeploymentSyncInvoker(sync, 2L, 3L, TimeUnit.SECONDS);
invoker.start();
....
invoker.stop();

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

338

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/deploying_and_managing_red_hat_process_automation_manager_services#kie-server-commands-con_kie-apis

66.4. THREADS IN THE PROCESS ENGINE

We can refer to two types of multi-threading: logical and technical. Technical multi-threading involves
multiple threads or processes that are started, for example, by a Java or C program. Logical multi-
threading happens in a BPM process, for example, after the process reaches a parallel gateway. In
execution logic, the original process splits into two processes that run in a parallel fashion.

Process engine code implements logical multi-threading using one technical thread.

The reason for this design choice is that multiple (technical) threads must be able to communicate state
information to each other if they are working on the same process. This requirement brings a number of
complications. The extra logic required for safe communication between threads, as well as the extra
overhead required to avoid race conditions and deadlocks, can negate any performance benefit of using
such threads.

In general, the process engine executes actions in series. For example, when the process engine
encounters a script task in a process, it executes the script synchronously and waits for it to complete
before continuing execution. In the same way, if a process encounters a parallel gateway, the process
engine sequentially triggers each of the outgoing branches, one after the other.

This is possible because execution is almost always instantaneous, meaning that it is extremely fast and
produces almost no overhead. As a result, sequential execution does not create any effects that a user
can notice.

Any code in a process that you supply is also executed synchronously and the process engine waits for it
to finish before continuing the process. For example, if you use a Thread.sleep(… ​) as part of a custom
script, the process engine thread is blocked during the sleep period.

When a process reaches a service task, the process engine also invokes the handler for the task
synchronously and waits for the completeWorkItem(… ​) method to return before continuing execution.
If your service handler is not instantaneous, implement the asynchronous execution independently in
your code.

For example, your service task might invoke an external service. The delay in invoking this service
remotely and waiting for the results might be significant. Therefore, invoke this service asynchronously.
Your handler must only invoke the service and then return from the method, then notify the process
engine later when the results are available. In the meantime, the process engine can continue execution
of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously. A human task
requires a human actor to respond to a request, and the process engine must not wait for this response.

When a human task node is triggered, the human task handler only creates a new task on the task list of
the assigned actor. The process engine is then able to continue execution on the rest of the process, if
necessary. The handler notifies the process engine asynchronously when the user has completed the
task.

66.5. EXECUTION ERRORS IN THE PROCESS ENGINE

Any part of process engine execution, including the task service, can throw an exception. An exception
can be any class that extends java.lang.Throwable.

Some exceptions are handled at the process level. Notably, a work item handler can throw a custom
exception that specifies a subprocess for error handling. For information about developing work item
handlers, see Custom tasks and work item handlers .

If an exception is not handled and reaches the process engine, it becomes an execution error. When an

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

339

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#custom-tasks-work-item-handler-project-customization-con-custom-tasks

If an exception is not handled and reaches the process engine, it becomes an execution error. When an
execution error happens, the process engine rolls back the current transaction and leaves the process in
the previous stable state. After that, the process engine continues the execution of the process from
that point.

Execution errors are visible to the caller that sent the request to the process engine. The process engine
also includes an extendable mechanism for handling execution errors and storing information about
them. This mechanism consists of the following components:

ExecutionErrorManager: The entry point for error handling. This class is integrated with
RuntimeManager, which is responsible for providing it to the underlying KieSession and
TaskService. ExecutionErrorManager provides access to other classes in the execution error
handling mechanism.
When the process engine creates a RuntimeManager instance, it also creates a corresponding
ExecutionErrorManager instance.

ExecutionErrorHandler: The primary class for error handling. This class is implemented in the
process engine and you normally do not need to customize or extend it directly.
ExecutionErrorHandler calls error filters to process particular errors and calls
ExecutionErrorStorage to store error information.
The ExecutionErrorHandler is bound to the life cycle of RuntimeEngine; it is created when a
new runtime engine is created and is destroyed when RuntimeEngine is disposed. A single
instance of the ExecutionErrorHandler is used within a given execution context or transaction.
Both KieSession and TaskService use that instance to inform the error handling about
processed nodes or tasks. ExecutionErrorHandler is informed about the following events:

Starting of processing of a node instance

Completion of processing of a node instance

Starting of processing of a task instance

Completion of processing of a task instance
The ExecutionErrorHandler uses this information to record the context for errors,
especially if the error itself does not provide process context information. For example,
database exceptions do not carry any process information.

ExecutionErrorStorage: The pluggable storage class for execution error information.
When the process engine creates a RuntimeManager instance, it also creates a corresponding
ExecutionErrorStorage instance. Then the ExecutionErrorHandler class calls this
ExecutionErrorStorage instance to store information abiout every execution error.

The default storage implementation uses a database table to store all the available information
for every error. Different detail levels might be available for different error types, as some errors
might not permit extraction of detailed information.

A number of filters that process particular types of execution errors. You can add custom filters.

By default, every execution error is recorded as unacknowledged. You can use Business Central to view
all recorded execution errors and to acknowledge them. You can also create jobs that automatically
acknowledge all or some execution errors.

For information about using Business Central to view execution errors and to create jobs that
acknowledge the errors automatically, see Managing and monitoring business processes in Business
Central.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

340

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/developing_process_services_in_red_hat_process_automation_manager#execution-error-management-con_managing-and-monitoring-processes

66.5.1. Execution error types and filters

Execution error handling attempts to catch and handle any kind of error. However, users might need to
handle different errors in different ways. Also, different detailed information is available for different
types of errors.

The error handling mechanism supports pluggable filters. Every filter processes a particular type of error.
You can add filters that process specific errors in different ways, overriding default processing.

A filter is an implementation of the ExecutionErrorFilter interface. This interface builds instances of
ExecutionError, which are later stored using the ExecutionErrorStorage class.

The ExecutionErrorFilter interface has the following methods:

accept: Indicates if an error can be processed by the filter

filter: Processes an error and returns the ExecutionError instance

getPriority: Indicates the priority for this filter

The execution error handler processes each error separately. For each error, it starts calling the accept
method of all registered filters, starting with the filters that have a lower priority value. If the accept
method of a filter returns true, the handler calls the filter method of the filter and does not call any
other filters.

Because of the priority system, only one filter processes any error. More specialized filters have lower
priority values. An error that is not accepted by any specialized filters reaches generic filters that have
higher priority values.

The ServiceLoader mechanism provides ExecutionErrorFilter instances. To register custom filters,
add their fully qualified class names to the META-
INF/services/org.kie.internal.runtime.error.ExecutionErrorFilter file of your service project.

Red Hat Process Automation Manager ships with the following execution error filters:

Table 66.1. ExecutionErrorFilters

Class name Type Priority

org.jbpm.runtime.manager.impl.error.filters.ProcessExecutionErr
orFilter

Process 100

org.jbpm.runtime.manager.impl.error.filters.TaskExecutionErrorF
ilter

Task 80

org.jbpm.runtime.manager.impl.error.filters.DBExecutionErrorFilt
er

DB 200

org.jbpm.executor.impl.error.JobExecutionErrorFilter Job 100

Filters are given a higher execution order based on the lowest value of the priority. Therefore, the
execution error handler invokes these filters in the following order:

1. Task

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

341

2. Process

3. Job

4. DB

66.6. EVENT LISTENERS IN THE PROCESS ENGINE

Every time that a process or task changes to a different point in its lifecycle, the process engine
generates an event. You can develop a class that receives and processes such events. This class is called
an event listener.

The process engine passes an event object to this class. The object provides access to related
information. For example, if the event is related to a process node, the object provides access to the
process instance and the node instance.

66.6.1. Interfaces for event listeners

You can use the following interfaces to develop event listeners for the process engine.

66.6.1.1. Interfaces for process event listeners

You can develop a class that implements the ProcessEventListener interface. This class can listen to
process-related events, such as starting or completing a process or entering and leaving a node.

The following source code shows the different methods of the ProcessEventListener interface:

The ProcessEventListener interface

public interface ProcessEventListener
 extends
 EventListener {

 /**
 * This listener method is invoked right before a process instance is being started.
 * @param event
 */
 void beforeProcessStarted(ProcessStartedEvent event);

 /**
 * This listener method is invoked right after a process instance has been started.
 * @param event
 */
 void afterProcessStarted(ProcessStartedEvent event);

 /**
 * This listener method is invoked right before a process instance is being completed (or aborted).
 * @param event
 */
 void beforeProcessCompleted(ProcessCompletedEvent event);

 /**
 * This listener method is invoked right after a process instance has been completed (or aborted).
 * @param event
 */

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

342

 void afterProcessCompleted(ProcessCompletedEvent event);

 /**
 * This listener method is invoked right before a node in a process instance is being triggered
 * (which is when the node is being entered, for example when an incoming connection triggers it).
 * @param event
 */
 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);

 /**
 * This listener method is invoked right after a node in a process instance has been triggered
 * (which is when the node was entered, for example when an incoming connection triggered it).
 * @param event
 */
 void afterNodeTriggered(ProcessNodeTriggeredEvent event);

 /**
 * This listener method is invoked right before a node in a process instance is being left
 * (which is when the node is completed, for example when it has performed the task it was
 * designed for).
 * @param event
 */
 void beforeNodeLeft(ProcessNodeLeftEvent event);

 /**
 * This listener method is invoked right after a node in a process instance has been left
 * (which is when the node was completed, for example when it performed the task it was
 * designed for).
 * @param event
 */
 void afterNodeLeft(ProcessNodeLeftEvent event);

 /**
 * This listener method is invoked right before the value of a process variable is being changed.
 * @param event
 */
 void beforeVariableChanged(ProcessVariableChangedEvent event);

 /**
 * This listener method is invoked right after the value of a process variable has been changed.
 * @param event
 */
 void afterVariableChanged(ProcessVariableChangedEvent event);

 /**
 * This listener method is invoked right before a process/node instance's SLA has been violated.
 * @param event
 */
 default void beforeSLAViolated(SLAViolatedEvent event) {}

 /**
 * This listener method is invoked right after a process/node instance's SLA has been violated.
 * @param event
 */
 default void afterSLAViolated(SLAViolatedEvent event) {}

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

343

You can implement any of these methods to process the corresponding event.

For the definition of the event classes that the process engine passes to the methods, see the
org.kie.api.event.process package in the Java documentation.

You can use the methods of the event class to retrieve other classes that contain all information about
the entities involved in the event.

The following example is a part of a node-related event, such as afterNodeLeft(), and retrieves the
process instance and node type.

Retrieving the process instance and node type in a node-related event

66.6.1.2. Interfaces for task lifecycle event listeners

You can develop a class that implements the TaskLifecycleEventListener interface. This class can
listen to events related to the lifecycle of tasks, such as assignment of an owner or completion of a task.

The following source code shows the different methods of the TaskLifecycleEventListener interface:

The TaskLifecycleEventListener interface

 /**
 * This listener method is invoked when a signal is sent
 * @param event
 */
 default void onSignal(SignalEvent event) {}

 /**
 * This listener method is invoked when a message is sent
 * @param event
 */
 default void onMessage(MessageEvent event) {}
}

WorkflowProcessInstance processInstance = event.getNodeInstance().getProcessInstance()
NodeType nodeType = event.getNodeInstance().getNode().getNodeType()

public interface TaskLifeCycleEventListener extends EventListener {

 public enum AssignmentType {
 POT_OWNER,
 EXCL_OWNER,
 ADMIN;
 }

 public void beforeTaskActivatedEvent(TaskEvent event);
 public void beforeTaskClaimedEvent(TaskEvent event);
 public void beforeTaskSkippedEvent(TaskEvent event);
 public void beforeTaskStartedEvent(TaskEvent event);
 public void beforeTaskStoppedEvent(TaskEvent event);
 public void beforeTaskCompletedEvent(TaskEvent event);
 public void beforeTaskFailedEvent(TaskEvent event);
 public void beforeTaskAddedEvent(TaskEvent event);
 public void beforeTaskExitedEvent(TaskEvent event);

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

344

https://docs.jboss.org/drools/release/7.59.0.Final/kie-api-javadoc/index.html

You can implement any of these methods to process the corresponding event.

For the definition of the event class that the process engine passes to the methods, see the
org.kie.api.task package in the Java documentation.

You can use the methods of the event class to retrieve the classes representing the task, task context,
and task metadata.

 public void beforeTaskReleasedEvent(TaskEvent event);
 public void beforeTaskResumedEvent(TaskEvent event);
 public void beforeTaskSuspendedEvent(TaskEvent event);
 public void beforeTaskForwardedEvent(TaskEvent event);
 public void beforeTaskDelegatedEvent(TaskEvent event);
 public void beforeTaskNominatedEvent(TaskEvent event);
 public default void beforeTaskUpdatedEvent(TaskEvent event){};
 public default void beforeTaskReassignedEvent(TaskEvent event){};
 public default void beforeTaskNotificationEvent(TaskEvent event){};
 public default void beforeTaskInputVariableChangedEvent(TaskEvent event, Map<String, Object>
variables){};
 public default void beforeTaskOutputVariableChangedEvent(TaskEvent event, Map<String,
Object> variables){};
 public default void beforeTaskAssignmentsAddedEvent(TaskEvent event, AssignmentType type,
List<OrganizationalEntity> entities){};
 public default void beforeTaskAssignmentsRemovedEvent(TaskEvent event, AssignmentType
type, List<OrganizationalEntity> entities){};

 public void afterTaskActivatedEvent(TaskEvent event);
 public void afterTaskClaimedEvent(TaskEvent event);
 public void afterTaskSkippedEvent(TaskEvent event);
 public void afterTaskStartedEvent(TaskEvent event);
 public void afterTaskStoppedEvent(TaskEvent event);
 public void afterTaskCompletedEvent(TaskEvent event);
 public void afterTaskFailedEvent(TaskEvent event);
 public void afterTaskAddedEvent(TaskEvent event);
 public void afterTaskExitedEvent(TaskEvent event);
 public void afterTaskReleasedEvent(TaskEvent event);
 public void afterTaskResumedEvent(TaskEvent event);
 public void afterTaskSuspendedEvent(TaskEvent event);
 public void afterTaskForwardedEvent(TaskEvent event);
 public void afterTaskDelegatedEvent(TaskEvent event);
 public void afterTaskNominatedEvent(TaskEvent event);
 public default void afterTaskReassignedEvent(TaskEvent event){};
 public default void afterTaskUpdatedEvent(TaskEvent event){};
 public default void afterTaskNotificationEvent(TaskEvent event){};
 public default void afterTaskInputVariableChangedEvent(TaskEvent event, Map<String, Object>
variables){};
 public default void afterTaskOutputVariableChangedEvent(TaskEvent event, Map<String, Object>
variables){};
 public default void afterTaskAssignmentsAddedEvent(TaskEvent event, AssignmentType type,
List<OrganizationalEntity> entities){};
 public default void afterTaskAssignmentsRemovedEvent(TaskEvent event, AssignmentType type,
List<OrganizationalEntity> entities){};

}

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

345

https://docs.jboss.org/drools/release/7.59.0.Final/kie-api-javadoc/index.html

66.6.2. Timing of calls to event listeners

A number of event listener calls are before and after events, for example, beforeNodeLeft() and
afterNodeLeft(), beforeTaskActivatedEvent() and afterTaskActivatedEvent().

The before and after event calls typically act like a stack. If event A directly causes event B, the
following sequence of calls happens:

Before A

Before B

After B

After A

For example, if leaving node X triggers node Y, all event calls related to triggering node Y occur
between the beforeNodeLeft and afterNodeLeft calls for node X.

In the same way, if starting a process directly causes some nodes to start, all nodeTriggered and
nodeLeft event calls occur between the beforeProcessStarted and afterProcessStarted calls.

This approach reflects cause and effect relationships between events. However, the timing and order of
after event calls are not always intuitive. For example, an afterProcessStarted call can happen after the
afterNodeLeft calls for some nodes in the process.

In general, to be notified when a particular event occurs, use the before call for the event. Use an after
call only if you want to make sure that all processing related to this event has ended, for example, when
you want to be notified when all steps associated with starting a particular process instance have been
completed.

Depending on the type of node, some nodes might only generate nodeLeft calls and others might only
generate nodeTriggered calls. For example, catch intermediate event nodes do not generate
nodeTriggered calls because they are not triggered by another process node. Similarly, throw
intermediate event nodes do not generate nodeLeft calls because these nodes do not have an outgoing
connection to another node.

66.6.3. Practices for development of event listeners

The process engine calls event listeners during processing of events or tasks. The calls happen within
process engine transactions and block execution. Therefore, the event listener can affect the logic and
performance of the process engine.

To ensure minimal disruption, follow the following guidelines:

Any action must be as short as possible.

A listener class must not have a state. The process engine can destroy and re-create a listener
class at any time.

If the listener modifies any resource that exists outside the scope of the listener method,
ensure that the resource is enlisted in the current transaction. The transaction might be rolled
back. In this case, if the modified resource is not a part of the transaction, the state of the
resource becomes inconsistent.
Database-related resources provided by Red Hat JBoss EAP are always enlisted in the current
transaction. In other cases, check the JTA information for the runtime environment that you are
using.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

346

Do not use logic that relies on the order of execution of different event listeners.

Do not include interactions with different entities outside the process engine within a listener.
For example, do not include REST calls for notification of events. Instead, use process nodes to
complete such calls. An exception is the output of logging information; however, a logging
listener must be as simple as possible.

You can use a listener to modify the state of the process or task that is involved in the event, for
example, to change its variables.

You can use a listener to interact with the process engine, for example, to send signals or to
interact with process instances that are not involved in the event.

66.6.4. Registration of event listeners

The KieSession class implements the RuleRuntimeEventManager interface that provides methods
for registering, removing, and listing event listeners, as shown in the following list.

Methods of the RuleRuntimeEventManager interface

However, in a typical case, do not use these methods.

If you are using the RuntimeManager interface, you can use the RuntimeEnvironment class to register
event listeners.

If you are using the Services API, you can add fully qualified class names of event listeners to the META-
INF/services/org.jbpm.services.task.deadlines.NotificationListener file in your project. The Services
API also registers some default listeners, including
org.jbpm.services.task.deadlines.notifications.impl.email.EmailNotificationListener, which can
send email notifications for events.

To exclude a default listener, you can add the fully qualified name of the listener to the
org.kie.jbpm.notification_listeners.exclude JVM system property.

66.6.5. KieRuntimeLogger event listener

The KieServices package contains the KieRuntimeLogger event listener that you can add to your KIE
session. You can use this listener to create an audit log. This log contains all the different events that
occurred at runtime.

NOTE

These loggers are intended for debugging purposes. They might be too detailed for
business-level process analysis.

The listener implements the following logger types:

Console logger: This logger writes out all the events to the console. The fully qualified class

 void addEventListener(AgendaEventListener listener);
 void addEventListener(RuleRuntimeEventListener listener);
 void removeEventListener(AgendaEventListener listener);
 void removeEventListener(RuleRuntimeEventListener listener);
 Collection<AgendaEventListener> getAgendaEventListeners();
 Collection<RuleRuntimeEventListener> getRuleRintimeEventListeners();

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

347

Console logger: This logger writes out all the events to the console. The fully qualified class
name for this logger is org.drools.core.audit.WorkingMemoryConsoleLogger.

File logger: This logger writes out all the events to a file using an XML representation. You can
use the log file in an IDE to generate a tree-based visualization of the events that occurred
during execution. The fully qualified class name for this logger is
org.drools.core.audit.WorkingMemoryFileLogger.
The file logger writes the events to disk only when closing the logger or when the number of
events in the logger reaches a predefined level. Therefore, it is not suitable for debugging
processes at runtime.

Threaded file logger: This logger writes the events to a file after a specified time interval. You
can use this logger to visualize the progress in real time while debugging processes. The fully
qualified class name for this logger is
org.drools.core.audit.ThreadedWorkingMemoryFileLogger.

When creating a logger, you must pass the KIE session as an argument. The file loggers also require the
name of the log file to be created. The threaded file logger requires the interval in milliseconds after
which the events are saved.

Always close the logger at the end of your application.

The following example shows the use of the file logger.

Using the file logger

The log file that is created by the file-based loggers contains an XML-based overview of all the events
that occurred during the runtime of the process.

66.7. PROCESS ENGINE CONFIGURATION

You can use several control parameters available to alter the process engine default behavior to suit the
requirements of your environment.

Set these parameters as JVM system properties, usually with the -D option when starting a program
such as an application server.

Table 66.2. Control parameters

Name Possible values Default value Description

 import org.kie.api.KieServices;
 import org.kie.api.logger.KieRuntimeLogger;
 ...
 KieRuntimeLogger logger = KieServices.Factory.get().getLoggers().newFileLogger(ksession, "test");
 // add invocations to the process engine here,
 // e.g. ksession.startProcess(processId);
 ...
 logger.close();

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

348

jbpm.ut.jndi.lookup String Alternative JNDI name
to be used when there is
no access to the default
name
(java:comp/UserTran
saction).

NOTE: The name must
be valid for the given
runtime environment.
Do not use this variable
if there is no access to
the default user
transaction JNDI name.

jbpm.enable.multi.co
n

true|false false Enable multiple
incoming and outgoing
sequence flows support
for activities

jbpm.business.calen
dar.properties

String /jbpm.business.cale
ndar.properties

Alternative class path
location of the business
calendar configuration
file

jbpm.overdue.timer.
delay

Long 2000 Specifies the delay for
overdue timers to allow
proper initialization, in
milliseconds

jbpm.process.name.
comparator

String Alternative comparator
class to enable starting
a process by name, by
default the
NumberVersionCom
parator comparator is
used

jbpm.loop.level.disa
bled

true|false true Enable or disable loop
iteration tracking for
advanced loop support
when using XOR
gateways

org.kie.mail.session String mail/jbpmMailSessio
n

Alternative JNDI name
for the mail session used
by Task Deadlines

Name Possible values Default value Description

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

349

jbpm.usergroup.call
back.properties

String /jbpm.usergroup.call
back.properties

Alternative class path
location for a user group
callback implementation
(LDAP, DB)

jbpm.user.group.ma
pping

String ${jboss.server.confi
g.dir}/roles.propertie
s

Alternative location of
the roles.properties
file for
JBossUserGroupCal
lbackImpl

jbpm.user.info.prope
rties

String /jbpm.user.info.prop
erties

Alternative class path
location of the user info
configuration (used by
LDAPUserInfoImpl)

org.jbpm.ht.user.sep
arator

String , Alternative separator of
actors and groups for
user tasks

org.quartz.properties String Location of the Quartz
configuration file to
activate the Quartz-
based timer service

jbpm.data.dir String ${jboss.server.data.d
ir} if available, otherwise
${java.io.tmpdir}

Location to store data
files produced by the
process engine

org.kie.executor.poo
l.size

Integer 1 Thread pool size for the
process engine executor

org.kie.executor.retr
y.count

Integer 3 Number of retries
attempted by the
process engine executor
in case of an error

org.kie.executor.inte
rval

Integer 0 Frequency used to
check for pending jobs
by the process engine
executor, in seconds. If
the value is 0, the check
is run once, during the
startup of the executor.

org.kie.executor.disa
bled

true|false true Disable the process
engine executor

Name Possible values Default value Description

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

350

org.kie.store.service
s.class

String org.drools.persisten
ce.jpa.KnowledgeSt
oreServiceImpl

Fully qualified name of
the class that
implements
KieStoreServices
that is responsible for
bootstrapping
KieSession instances

org.kie.jbpm.notifica
tion_listeners.exclud
e

String Fully qualified names of
event listeners that
must be excluded even
if they would otherwise
be used. Separate
multiple names with
commas. For example,
you can add
org.jbpm.services.ta
sk.deadlines.notifica
tions.impl.email.Ema
ilNotificationListener
to exclude the default
email notification
listener.

org.kie.jbpm.notifica
tion_listeners.includ
e

String Fully qualified names of
event listeners that
must be included.
Separate multiple
names with commas. If
you set this property,
only the listeners in this
property are included
and all other listeners
are excluded.

Name Possible values Default value Description

CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE

351

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE
PROCESS ENGINE

The process engine implements persistence for process states. The implementation uses the JPA
framework with an SQL database backend. It can also store audit log information in the database.

The process engine also enables transactional execution of processes using the JTA framework, relying
on the persistence backend to support the transactions.

67.1. PERSISTENCE OF PROCESS RUNTIME STATES

The process engine supports persistent storage of the runtime state of running process instances.
Because it stores the runtime states, it can continue execution of a process instance if the process
engine stopped or encountered a problem at any point.

The process engine also persistently stores the process definitions and the history logs of current and
previous process states.

You can use the persistence.xml file, specified by the JPA framework, to configure persistence in an
SQL database. You can plug in different persistence strategies. For more information about the
persistence.xml file, see Section 67.4.1, “Configuration in the persistence.xml file”.

By default, if you do not configure persistence in the process engine, process information, including
process instance states, is not made persistent.

When the process engine starts a process, it creates a process instance, which represents the execution
of the process in that specific context. For example, when executing a process that processes a sales
order, one process instance is created for each sales request.

The process instance contains the current runtime state and context of a process, including current
values of any process variables. However, it does not include information about the history of past states
of the process, as this information is not required for ongoing execution of a process.

When the runtime state of process instances is made persistent, you can restore the state of execution
of all running processes in case the process engine fails or is stopped. You can also remove a particular
process instance from memory and then restore it at a later time.

If you configure the process engine to use persistence, it automatically stores the runtime state into the
database. You do not need to trigger persistence in the code.

When you restore the state of the process engine from a database, all instances are automatically
restored to their last recorded state. Process instances automatically resume execution if they are
triggered, for example, by an expired timer, the completion of a task that was requested by the process
instance, or a signal being sent to the process instance. You do not need to load separate instances and
trigger their execution manually.

The process engine also automatically reloads process instances on demand.

67.1.1. Safe points for persistence

The process engine saves the state of a process instance to persistent storage at safe points during the
execution of the process.

When a process instance is started or resumes execution from a previous wait state, the process engine
continues the execution until no more actions can be performed. If no more actions can be performed, it

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

352

means that the process has completed or else has reached a wait state. If the process contains several
parallel paths, all the paths must reach a wait state.

This point in the execution of the process is considered a safe point. At this point, the process engine
stores the state of the process instance, and of any other process instances that were affected by the
execution, to persistent storage.

67.2. THE PERSISTENT AUDIT LOG

The process engine can store information about the execution of process instances, including the
successive historical states of the instances.

This information can be useful in many cases. For example, you might want to verify which actions have
been executed for a particular process instance or to monitor and analyze the efficiency of a particular
process.

However, storing history information in the runtime database would result in the database rapidly
increasing in size and would also affect the performance of the persistence layer. Therefore, history log
information is stored separately.

The process engine creates a log based on events that it generates during execution of processes. It
uses the event listener mechanism to receive events and extract the necessary information, then
persists this information to a database. The jbpm-audit module contains an event listener that stores
process-related information in a database using JPA.

You can use filters to limit the scope of the logged information.

67.2.1. The process engine audit log data model

You can query process engine audit log information to use it in different scenarios, for example, creating
a history log for one specific process instance or analyzing the performance of all instances of a specific
process.

The audit log data model is a default implementation. Depending on your use cases, you might also
define your own data model for storing the information you require. You can use process event listeners
to extract the information.

The data model contains three entities: one for process instance information, one for node instance
information, and one for process variable instance information.

The ProcessInstanceLog table contains the basic log information about a process instance.

Table 67.1. ProcessInstanceLog table fields

Field Description Nullable

id The primary key and ID of the log
entity

NOT NULL

correlationKey The correlation of this process
instance

duration Actual duration of this process
instance since its start date

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

353

end_date When applicable, the end date of
the process instance

externalId Optional external identifier used
to correlate to some elements,
for example, a deployment ID

user_identity Optional identifier of the user who
started the process instance

outcome The outcome of the process
instance. This field contains the
error code if the process instance
was finished with an error event.

parentProcessInstanceId The process instance ID of the
parent process instance, if
applicable

processid The ID of the process

processinstanceid The process instance ID NOT NULL

processname The name of the process

processtype The type of the instance (process
or case)

processversion The version of the process

sla_due_date The due date of the process
according to the service level
agreement (SLA)

slaCompliance The level of compliance with the
SLA

start_date The start date of the process
instance

status The status of the process
instance that maps to the process
instance state

Field Description Nullable

The NodeInstanceLog table contains more information about which nodes were executed inside each
process instance. Whenever a node instance is entered from one of its incoming connections or is exited
through one of its outgoing connections, information about the event is stored in this table.

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

354

Table 67.2. NodeInstanceLog table fields

Field Description Nullable

id The primary key and ID of the log
entity

NOT NULL

connection Actual identifier of the sequence
flow that led to this node instance

log_date The date of the event

externalId Optional external identifier used
to correlate to some elements,
for example, a deployment ID

nodeid The node ID of the corresponding
node in the process definition

nodeinstanceid The node instance ID

nodename The name of the node

nodetype The type of the node

processid The ID of the process that the
process instance is executing

processinstanceid The process instance ID NOT NULL

sla_due_date The due date of the node
according to the service level
agreement (SLA)

slaCompliance The level of compliance with the
SLA

type The type of the event (0 = enter, 1
= exit)

NOT NULL

workItemId (Optional, only for certain node
types) The identifier of the work
item

nodeContainerId The identifier of the container, if
the node is inside an embedded
sub-process node

referenceId The reference identifier

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

355

observation The original node instance ID and
job ID, if the node is of the
scheduled event type. You can
use this information to trigger the
job again.

Field Description Nullable

The VariableInstanceLog table contains information about changes in variable instances. By default,
the process engine generates log entries after a variable changes its value. The process engine can also
log entries before the changes.

Table 67.3. VariableInstanceLog table fields

Field Description Nullable

id The primary key and ID of the log
entity

NOT NULL

externalId Optional external identifier used
to correlate to some elements,
for example, a deployment ID

log_date The date of the event

processid The ID of the process that the
process instance is executing

processinstanceid The process instance ID NOT NULL

oldvalue The previous value of the variable
at the time that the log is made

value The value of the variable at the
time that the log is made

variableid The variable ID in the process
definition

variableinstanceid The ID of the variable instance

The AuditTaskImpl table contains information about user tasks.

Table 67.4. AuditTaskImpl table fields

Field Description Nullable

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

356

id The primary key and ID of the task
log entity

activationTime Time when this task was activated

actualOwner Actual owner assigned to this
task. This value is set only when
the owner claims the task.

createdBy User who created this task

createdOn Date when the task was created

deploymentId The ID of the deployment of
which this task is a part

description Description of the task

dueDate Due date set on this task

name Name of the task

parentId Parent task ID

priority Priority of the task

processId Process definition ID to which this
task belongs

processInstanceId Process instance ID with which
this task is associated

processSessionId KIE session ID used to create this
task

status Current status of the task

taskId Identifier of the task

workItemId Identifier of the work item
assigned on the process side to
this task ID

Field Description Nullable

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

357

lastModificationDate The date and time when the
process instance state was last
recorded in the persistence
database

Field Description Nullable

The BAMTaskSummary table collects information about tasks that is used by the BAM engine to build
charts and dashboards.

Table 67.5. BAMTaskSummary table fields

Field Description Nullable

pk The primary key and ID of the log
entity

NOT NULL

createdDate Date when the task was created

duration Duration since the task was
created

endDate Date when the task reached an
end state (complete, exit, fail,
skip)

processinstanceid The process instance ID

startDate Date when the task was started

status Current status of the task

taskId Identifier of the task

taskName Name of the task

userId User ID assigned to the task

optlock The version field that serves as its
optimistic lock value

The TaskVariableImpl table contains information about task variable instances.

Table 67.6. TaskVariableImpl table fields

Field Description Nullable

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

358

id The primary key and ID of the log
entity

NOT NULL

modificationDate Date when the variable was
modified most recently

name Name of the task

processid The ID of the process that the
process instance is executing

processinstanceid The process instance ID

taskId Identifier of the task

type Type of the variable: either input
or output of the task

value Variable value

Field Description Nullable

The TaskEvent table contains information about changes in task instances. Operations such as claim,
start, and stop are stored in this table to provide a timeline view of events that happened to the given
task.

Table 67.7. TaskEvent table fields

Field Description Nullable

id The primary key and ID of the log
entity

NOT NULL

logTime Date when this event was saved

message Log event message

processinstanceid The process instance ID

taskId Identifier of the task

type Type of the event. Types
correspond to life cycle phases of
the task

userId User ID assigned to the task

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

359

workItemId Identifier of the work item to
which the task is assigned

optlock The version field that serves as its
optimistic lock value

correlationKey Correlation key of the process
instance

processType Type of the process instance
(process or case)

currentOwner The current owner of the task

Field Description Nullable

67.2.2. Configuration for storing the process events log in a database

To log process history information in a database with a default data model, you must register the logger
on your session.

Registering the logger on your KIE session

To specify the database for storing the information, you must modify the persistence.xml file to
include the audit log classes: ProcessInstanceLog, NodeInstanceLog, and VariableInstanceLog.

Modified persistence.xml file that includes the audit log classes

KieSession ksession = ...;
ksession.addProcessEventListener(AuditLoggerFactory.newInstance(Type.JPA, ksession, null));

// invoke methods for your session here

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence
 version="2.0"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
 http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/persistence/orm_2_0.xsd"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/jbpm-ds</jta-data-source>
 <mapping-file>META-INF/JBPMorm.xml</mapping-file>
 <class>org.drools.persistence.info.SessionInfo</class>
 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>
 <class>org.drools.persistence.info.WorkItemInfo</class>
 <class>org.jbpm.persistence.correlation.CorrelationKeyInfo</class>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

360

67.2.3. Configuration for sending the process events log to a JMS queue

When the process engine stores events in the database with the default audit log implementation, the
database operation is completed synchronously, within the same transaction as the actual execution of
the process instance. This operation takes time, and on highly loaded systems it might have some impact
on database performance, especially when both the history log and the runtime data are stored in the
same database.

As an alternative, you can use the JMS-based logger that the process engine provides. You can
configure this logger to submit process log entries as messages to a JMS queue, instead of directly
persisting them in the database.

You can configure the JMS logger to be transactional, in order to avoid data inconsistencies if a process
engine transaction is rolled back.

Using the JMS audit logger

This is just one of the possible ways to configure JMS audit logger. You can use the
AuditLoggerFactory class to set additional configuration parameters.

67.2.4. Auditing of variables

By default, values of process and task variables are stored in audit tables as string representations. To
create string representations of non-string variable types, the process engine calls the

 <class>org.jbpm.persistence.correlation.CorrelationPropertyInfo</class>
 <class>org.jbpm.runtime.manager.impl.jpa.ContextMappingInfo</class>

 <class>org.jbpm.process.audit.ProcessInstanceLog</class>
 <class>org.jbpm.process.audit.NodeInstanceLog</class>
 <class>org.jbpm.process.audit.VariableInstanceLog</class>

 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.connection.release_mode" value="after_transaction"/>
 <property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform"/>
 </properties>
 </persistence-unit>
</persistence>

ConnectionFactory factory = ...;
Queue queue = ...;
StatefulKnowledgeSession ksession = ...;
Map<String, Object> jmsProps = new HashMap<String, Object>();
jmsProps.put("jbpm.audit.jms.transacted", true);
jmsProps.put("jbpm.audit.jms.connection.factory", factory);
jmsProps.put("jbpm.audit.jms.queue", queue);
ksession.addProcessEventListener(AuditLoggerFactory.newInstance(Type.JMS, ksession,
jmsProps));

// invoke methods one your session here

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

361

variable.toString() method. If you use a custom class for a variable, you can implement this method for
the class. In many cases this representation is sufficient.

However, sometimes a string representation in the logs might not be sufficient, especially when there is a
need for efficient queries by process or task variables. For example, a Person object, used as a value for
a variable, might have the following structure:

Example Person object, used as a process or task variable value

The toString() method provides a human-readable format. However, it might not be sufficient for a
search. A sample string value is Person [name="john", age="34"]. Searching through a large number of
such strings to find people of age 34 would make a database query inefficient.

To enable more efficient searching, you can audit variables using VariableIndexer objects, which extract
relevant parts of the variable for storage in the audit log.

Definition of the VariableIndexer interface

public class Person implements Serializable {

 private static final long serialVersionUID = -5172443495317321032L;
 private String name;
 private int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 @Override
 public String toString() {
 return "Person [name=" + name + ", age=" + age + "]";
 }
}

/**
 * Variable indexer that transforms a variable instance into another representation (usually string)
 * for use in log queries.
 *

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

362

The default indexer uses the toString() method to produce a single audit entry for a single variable.
Other indexers can return a list of objects from indexing a single variable.

To enable efficient queries for the Person type, you can build a custom indexer that indexes a Person
instance into separate audit entries, one representing the name and another representing the age.

Sample indexer for the Person type

 * @param <V> type of the object that will represent the indexed variable
 */
public interface VariableIndexer<V> {

 /**
 * Tests if this indexer can index a given variable
 *
 * NOTE: only one indexer can be used for a given variable
 *
 * @param variable variable to be indexed
 * @return true if the variable should be indexed with this indexer
 */
 boolean accept(Object variable);

 /**
 * Performs an index/transform operation on the variable. The result of this operation can be
 * either a single value or a list of values, to support complex type separation.
 * For example, when the variable is of the type Person that has name, address, and phone fields,
 * the indexer could build three entries out of it to represent individual fields:
 * person = person.name
 * address = person.address.street
 * phone = person.phone
 * this configuration allows advanced queries for finding relevant entries.
 * @param name name of the variable
 * @param variable actual variable value
 * @return
 */
 List<V> index(String name, Object variable);
}

public class PersonTaskVariablesIndexer implements TaskVariableIndexer {

 @Override
 public boolean accept(Object variable) {
 if (variable instanceof Person) {
 return true;
 }
 return false;
 }

 @Override
 public List<TaskVariable> index(String name, Object variable) {

 Person person = (Person) variable;
 List<TaskVariable> indexed = new ArrayList<TaskVariable>();

 TaskVariableImpl personNameVar = new TaskVariableImpl();
 personNameVar.setName("person.name");

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

363

The process engine can use this indexer to index values when they are of the Person type, while all other
variables are indexed with the default toString() method. Now, to query for process instances or tasks
that refer to a person with age 34, you can use the following query:

variable name: person.age

variable value: 34

As a LIKE type query is not used, the database server can optimize the query and make it efficient on a
large set of data.

Custom indexers
The process engine supports indexers for both process and task variables. However, it uses different
interfaces for the indexers, because they must produce different types of objects that represent an
audit view of the variable.

You must implement the following interfaces to build custom indexers:

For process variables: org.kie.internal.process.ProcessVariableIndexer

For task variables: org.kie.internal.task.api.TaskVariableIndexer

You must implement two methods for either of the interfaces:

accept: Indicates whether a type is handled by this indexer. The process engine expects that
only one indexer can index a given variable value, so it uses the first indexer that accepts the
type.

index: Indexes a value, producing a object or list of objects (usually strings) for inclusion in the
audit log.

After implementing the interface, you must package this implementation as a JAR file and list the
implementation in one of the following files:

For process variables, the META-
INF/services/org.kie.internal.process.ProcessVariableIndexer file, which lists fully qualified
class names of process variable indexers (single class name per line)

For task variables, the META-INF/services/org.kie.internal.task.api.TaskVariableIndexer file,
which lists fully qualified class names of task variable indexers (single class name per line)

The ServiceLoader mechanism discovers the indexers using these files. When indexing a process or

 personNameVar.setValue(person.getName());

 indexed.add(personNameVar);

 TaskVariableImpl personAgeVar = new TaskVariableImpl();
 personAgeVar.setName("person.age");
 personAgeVar.setValue(person.getAge()+"");

 indexed.add(personAgeVar);

 return indexed;
 }

}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

364

task variable, the process engine examines the registered indexers to find any indexer that accepts the
value of the variable. If no other indexer accepts the value, the process engine applies the default
indexer that uses the toString() method.

67.3. TRANSACTIONS IN THE PROCESS ENGINE

The process engine supports Java Transaction API (JTA) transactions.

The current version of the process engine does not support pure local transactions.

If you do not provide transaction boundaries inside your application, the process engine automatically
executes each method invocation on the process engine in a separate transaction.

Optionally, you can specify the transaction boundaries in the application code, for example, to combine
multiple commands into one transaction.

67.3.1. Registration of a transaction manager

You must register a transaction manager in the environment to use user-defined transactions.

The following sample code registers the transaction manager and uses JTA calls to specify transaction
boundaries.

Registering a transaction manager and using transactions

You must provide a jndi.properties file in you root class path to create a JNDI InitialContextFactory

// Create the entity manager factory
EntityManagerFactory emf =
EntityManagerFactoryManager.get().getOrCreate("org.jbpm.persistence.jpa");
TransactionManager tm = TransactionManagerServices.getTransactionManager();

// Set up the runtime environment
RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()
.newDefaultBuilder()
.addAsset(ResourceFactory.newClassPathResource("MyProcessDefinition.bpmn2"),
ResourceType.BPMN2)
 .addEnvironmentEntry(EnvironmentName.TRANSACTION_MANAGER, tm)
 .get();

// Get the KIE session
RuntimeManager manager =
RuntimeManagerFactory.Factory.get().newPerRequestRuntimeManager(environment);
RuntimeEngine runtime = manager.getRuntimeEngine(ProcessInstanceIdContext.get());
KieSession ksession = runtime.getKieSession();

// Start the transaction
UserTransaction ut = InitialContext.doLookup("java:comp/UserTransaction");
ut.begin();

// Perform multiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksession.startProcess("MyProcess");

// Commit the transaction
ut.commit();

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

365

You must provide a jndi.properties file in you root class path to create a JNDI InitialContextFactory
object, because transaction-related objects like UserTransaction, TransactionManager, and
TransactionSynchronizationRegistry are registered in JNDI.

If your project includes the jbpm-test module, this file is already included by default.

Otherwise, you must create the jndi.properties file with the following content:

Content of the jndi.properties file

This configuration assumes that the simple-jndi:simple-jndi artifact is present in the class path of your
project. You can also use a different JNDI implementation.

By default, the Narayana JTA transaction manager is used. If you want to use a different JTA
transaction manager, you can change the persistence.xml file to use the required transaction manager.
For example, if your application runs on Red Hat JBoss EAP version 7 or later, you can use the JBoss
transaction manager. In this case, change the transaction manager property in the persistence.xml file:

Transaction manager property in the persistence.xml file for the JBoss transaction manager

WARNING

Using the Singleton strategy of the RuntimeManager class with JTA transactions
(UserTransaction or CMT) creates a race condition. This race condition can result
in an IllegalStateException exception with a message similar to Process instance
XXX is disconnected.

To avoid this race condition, explicitly synchronize around the KieSession instance
when invoking the transaction in the user application code.

java.naming.factory.initial=org.jbpm.test.util.CloseSafeMemoryContextFactory
org.osjava.sj.root=target/test-classes/config
org.osjava.jndi.delimiter=/
org.osjava.sj.jndi.shared=true

<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform" />



synchronized (ksession) {
 try {
 tx.begin();

 // use ksession
 // application logic

 tx.commit();
 } catch (Exception e) {
 //...
 }
}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

366

67.3.2. Configuring container-managed transactions

If you embed the process engine in an application that executes in container-managed transaction
(CMT) mode, for example, EJB beans, you must complete additional configuration. This configuration is
especially important if the application runs on an application server that does not allow a CMT
application to access a UserTransaction instance from JNDI, for example, WebSphere Application
Server.

The default transaction manager implementation in the process engine relies on UserTransaction to
query transaction status and then uses the status to determine whether to start a transaction. In
environments that prevent access to a UserTransaction instance, this implementation fails.

To enable proper execution in CMT environments, the process engine provides a dedicated transaction
manager implementation: org.jbpm.persistence.jta.ContainerManagedTransactionManager. This
transaction manager expects that the transaction is active and always returns ACTIVE when the
getStatus() method is invoked. Operations such as begin, commit, and rollback are no-op methods,
because the transaction manager cannot affect these operations in container-managed transaction
mode.

NOTE

During process execution your code must propagate any exceptions thrown by the
engine to the container to ensure that the container rolls transactions back when
necessary.

To configure this transaction manager, complete the steps in this procedure.

Procedure

1. In your code, insert the transaction manager and persistence context manager into the
environment before creating or loading a session:

Inserting the transaction manager and persistence context manager into the
environment

2. In the persistence.xml file, configure the JPA provider. The following example uses hibernate
and WebSphere Application Server.

Configuring the JPA provider in the persistence.xml file

3. To dispose a KIE session, do not dispose it directly. Instead, execute the

Environment env = EnvironmentFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName.TRANSACTION_MANAGER, new
ContainerManagedTransactionManager());
env.set(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER, new
JpaProcessPersistenceContextManager(env));
env.set(EnvironmentName.TASK_PERSISTENCE_CONTEXT_MANAGER, new
JPATaskPersistenceContextManager(env));

<property name="hibernate.transaction.factory_class"
value="org.hibernate.transaction.CMTTransactionFactory"/>
<property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.WebSphereJtaPlatform"/>

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

367

3. To dispose a KIE session, do not dispose it directly. Instead, execute the
org.jbpm.persistence.jta.ContainerManagedTransactionDisposeCommand command. This
commands ensures that the session is disposed at the completion of the current transaction. In
the following example, ksession is the KieSession object that you want to dispose.

Disposing a KIE session using the ContainerManagedTransactionDisposeCommand
command

Directly disposing the session causes an exception at the completion of the transaction,
because the process engine registers transaction synchronization to clean up the session state.

67.3.3. Transaction retries

When the process engine commits a transaction, sometimes the commit operation fails because another
transaction is being committed at the same time. In this case, the process engine must retry the
transaction.

If several retries fail, the transaction fails permanently.

You can use JVM system properties to control the retrying process.

Table 67.8. System properties for retrying committing transactions

Property Values Default Description

org.kie.optlock.retries Integer 5 This property describes how many times the
process engine retries a transaction before
failing permanently.

org.kie.optlock.delay Integer 50 The delay time before the first retry, in
milliseconds.

org.kie.optlock.delayFac
tor

Integer 4 The multiplier for increasing the delay time
for each subsequent retry. With the default
values, the process engine waits 50
milliseconds before the first retry, 200
milliseconds before the second retry, 800
milliseconds before the third retry, and so on.

67.4. CONFIGURATION OF PERSISTENCE IN THE PROCESS ENGINE

If you use the process engine without configuring any persistence, it does not save runtime data to any
database; no in-memory database is available by default. You can use this mode if it is required for
performance reasons or when you want to manage persistence yourself.

To use JPA persistence in the process engine, you must configure it.

Configuration usually requires adding the necessary dependencies, configuring a data source, and
creating the process engine classes with persistence configured.

ksession.execute(new ContainerManagedTransactionDisposeCommand());

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

368

67.4.1. Configuration in the persistence.xml file

To use JPA persistence, you must add a persistence.xml persistence configuration to your class path to
configure JPA to use Hibernate and the H2 database (or any other database that you prefer). Place this
file in the META-INF directory of your project.

Sample persistence.xml file

The example refers to a jdbc/jbpm-ds data source. For instructions about configuring a data source,
see Section 67.4.2, “Configuration of data sources for process engine persistence” .

67.4.2. Configuration of data sources for process engine persistence

To configure JPA persistence in the process engine, you must provide a data source, which represents a
database backend.

If you run your application in an application server, such as Red Hat JBoss EAP, you can use the
application server to set up data sources, for example, by adding a data source configuration file in the
deploy directory. For instructions about creating data sources, see the documentation for the
application server.

If you deploy your application to Red Hat JBoss EAP, you can create a data source by creating a

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
 version="2.0"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
 http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/persistence/orm_2_0.xsd"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/jbpm-ds</jta-data-source>
 <mapping-file>META-INF/JBPMorm.xml</mapping-file>
 <class>org.drools.persistence.info.SessionInfo</class>
 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>
 <class>org.drools.persistence.info.WorkItemInfo</class>
 <class>org.jbpm.persistence.correlation.CorrelationKeyInfo</class>
 <class>org.jbpm.persistence.correlation.CorrelationPropertyInfo</class>
 <class>org.jbpm.runtime.manager.impl.jpa.ContextMappingInfo</class>

 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.connection.release_mode" value="after_transaction"/>
 <property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform"/>
 </properties>
 </persistence-unit>
</persistence>

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

369

If you deploy your application to Red Hat JBoss EAP, you can create a data source by creating a
configuration file in the deploy directory:

Example data source configuration file for Red Hat JBoss EAP

If your application runs in a plain Java environment, you can use Narayana and Tomcat DBCP by using
the DataSourceFactory class from the kie-test-util module supplied by Red Hat Process Automation
Manager. See the following code fragment. This example uses the H2 in-memory database in
combination with Narayana and Tomcat DBCP.

Example code configuring an H2 in-memory database data source

67.4.3. Dependencies for persistence

Persistence requires certain JAR artifact dependencies.

The jbpm-persistence-jpa.jar file is always required. This file contains the code for saving the runtime
state whenever necessary.

Depending on the persistence solution and database you are using, you might need additional
dependencies. The default configuration combination includes the following components:

Hibernate as the JPA persistence provider

H2 in-memory database

Narayana for JTA-based transaction management

Tomcat DBCP for connection pooling capabilities

This configuration requires the following additional dependencies:

jbpm-persistence-jpa (org.jbpm)

drools-persistence-jpa (org.drools)

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>jdbc/jbpm-ds</jndi-name>
 <connection-url>jdbc:h2:tcp://localhost/~/test</connection-url>
 <driver-class>org.h2.jdbcx.JdbcDataSource</driver-class>
 <user-name>sa</user-name>
 <password></password>
 </local-tx-datasource>
</datasources>

Properties driverProperties = new Properties();
driverProperties.put("user", "sa");
driverProperties.put("password", "sa");
driverProperties.put("url", "jdbc:h2:mem:jbpm-db;MVCC=true");
driverProperties.put("driverClassName", "org.h2.Driver");
driverProperties.put("className", "org.h2.jdbcx.JdbcDataSource");
PoolingDataSourceWrapper pdsw = DataSourceFactory.setupPoolingDataSource("jdbc/jbpm-ds",
driverProperties);

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

370

persistence-api (javax.persistence)

hibernate-entitymanager (org.hibernate)

hibernate-annotations (org.hibernate)

hibernate-commons-annotations (org.hibernate)

hibernate-core (org.hibernate)

commons-collections (commons-collections)

dom4j (org.dom4j)

jta (javax.transaction)

narayana-jta (org.jboss.narayana.jta)

tomcat-dbcp (org.apache.tomcat)

jboss-transaction-api_1.2_spec (org.jboss.spec.javax.transaction)

javassist (javassist)

slf4j-api (org.slf4j)

slf4j-jdk14 (org.slf4j)

simple-jndi (simple-jndi)

h2 (com.h2database)

jbpm-test (org.jbpm) only for testing, do not include this artifact in the production application

67.4.4. Creating a KIE session with persistence

If your code creates KIE sessions directly, you can use the JPAKnowledgeService class to create your
KIE session. This approach provides full access to the underlying configuration.

Procedure

1. Create a KIE session using the JPAKnowledgeService class, based on a KIE base, a KIE session
configuration (if necessary), and an environment. The environment must contain a reference to
the Entity Manager Factory that you use for persistence.

Creating a KIE session with persistence

// create the entity manager factory and register it in the environment
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// create a new KIE session that uses JPA to store the runtime state
StatefulKnowledgeSession ksession =
JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

371

2. To re-create a session from the database based on a specific session ID, use the
JPAKnowledgeService.loadStatefulKnowledgeSession() method:

Re-creating a KIE session from the persistence database

67.4.5. Persistence in the runtime manager

If your code uses the RuntimeManager class, use the RuntimeEnvironmentBuilder class to configure
the environment for persistence. By default, the runtime manager searches for the
org.jbpm.persistence.jpa persistence unit.

The following example creates a KieSession with an empty context.

Creating a KIE session with an empty context using the runtime manager

The previous example requires a KIE base as the kbase parameter. You can use a kmodule.xml KJAR
descriptor on the class path to build the KIE base.

Building a KIE base from a kmodule.xml KJAR descriptor

A kmodule.xml descriptor file can include an attribute for resource packages to scan to find and deploy
process engine workflows.

Sample kmodule.xml descriptor file

To control the persistence, you can use the RuntimeEnvironmentBuilder::entityManagerFactory
methods.

int sessionId = ksession.getId();

// invoke methods on your method here
ksession.startProcess("MyProcess");
ksession.dispose();

// re-create the session from database using the sessionId
ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null, env
);

RuntimeEnvironmentBuilder builder = RuntimeEnvironmentBuilder.Factory.get()
 .newDefaultBuilder()
 .knowledgeBase(kbase);
RuntimeManager manager = RuntimeManagerFactory.Factory.get()
 .newSingletonRuntimeManager(builder.get(), "com.sample:example:1.0");
RuntimeEngine engine = manager.getRuntimeEngine(EmptyContext.get());
KieSession ksession = engine.getKieSession();

KieServices ks = KieServices.Factory.get();
KieContainer kContainer = ks.getKieClasspathContainer();
KieBase kbase = kContainer.getKieBase("kbase");

<kmodule xmlns="http://jboss.org/kie/6.0.0/kmodule">
 <kbase name="kbase" packages="com.sample"/>
</kmodule>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

372

Controlling configuration of persistence in the runtime manager

After creating the ksession KIE session in this example, you can call methods in ksession, for example,
StartProcess(). The process engine persists the runtime state in the configured data source.

You can restore a process instance from persistent storage by using the process instance ID. The
runtime manager automatically re-creates the required session.

Re-creating a KIE session from the persistence database using a process instance ID

67.5. PERSISTING PROCESS VARIABLES IN A SEPARATE DATABASE
SCHEMA IN RED HAT PROCESS AUTOMATION MANAGER

When you create process variables to use within the processes that you define, Red Hat Process
Automation Manager stores those process variables as binary data in a default database schema. You
can persist process variables in a separate database schema for greater flexibility in maintaining and
implementing your process data.

For example, persisting your process variables in a separate database schema can help you perform the
following tasks:

Maintain process variables in human-readable format

Make the variables available to services outside of Red Hat Process Automation Manager

Clear the log of the default database tables in Red Hat Process Automation Manager without
losing process variable data

NOTE

This procedure applies to process variables only. This procedure does not apply to case
variables.

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");

RuntimeEnvironment runtimeEnv = RuntimeEnvironmentBuilder.Factory
 .get()
 .newDefaultBuilder()
 .entityManagerFactory(emf)
 .knowledgeBase(kbase)
 .get();

StatefulKnowledgeSession ksession = (StatefulKnowledgeSession)
RuntimeManagerFactory.Factory.get()
 .newSingletonRuntimeManager(runtimeEnv)
 .getRuntimeEngine(EmptyContext.get())
 .getKieSession();

RuntimeEngine runtime =
manager.getRuntimeEngine(ProcessInstanceIdContext.get(processInstanceId));

KieSession session = runtime.getKieSession();

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

373

Prerequisites

You have defined processes in Red Hat Process Automation Manager for which you want to
implement variables.

If you want to persist variables in a database schema outside of Red Hat Process Automation
Manager, you have created a data source and the separate database schema that you want to
use. For information about creating data sources, see Configuring Business Central settings and
properties.

Procedure

1. In the data object file that you use as a process variable, add the following elements to
configure variable persistence:

Example Person.java object configured for variable persistence

@javax.persistence.Entity 1
@javax.persistence.Table(name = "Person") 2
public class Person extends org.drools.persistence.jpa.marshaller.VariableEntity 3
implements java.io.Serializable { 4

 static final long serialVersionUID = 1L;

 @javax.persistence.GeneratedValue(strategy = javax.persistence.GenerationType.AUTO,
generator = "PERSON_ID_GENERATOR")
 @javax.persistence.Id 5
 @javax.persistence.SequenceGenerator(name = "PERSON_ID_GENERATOR",
sequenceName = "PERSON_ID_SEQ")
 private java.lang.Long id;

 private java.lang.String name;

 private java.lang.Integer age;

 public Person() {
 }

 public java.lang.Long getId() {
 return this.id;
 }

 public void setId(java.lang.Long id) {
 this.id = id;
 }

 public java.lang.String getName() {
 return this.name;
 }

 public void setName(java.lang.String name) {
 this.name = name;
 }

 public java.lang.Integer getAge() {

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

374

https://access.redhat.com/documentation/en-us/red_hat_process_automation_manager/7.12/html-single/managing_red_hat_process_automation_manager_and_kie_server_settings#managing-business-central-data-sources-con

1

2

3

4

5

Configures the data object as a persistence entity.

Defines the database table name used for the data object.

Creates a separate MappedVariable mapping table that maintains the relationship
between this data object and the associated process instance. If you do not need this
relationship maintained, you do not need to extend the VariableEntity class. Without this
extension, the data object is still persisted, but contains no additional data.

Configures the data object as a serializable object.

Sets a persistence ID for the object.

To make the data object persistable using Business Central, navigate to the data object file in
your project, click the Persistence icon in the upper-right corner of the window, and configure
the persistence behavior:

Figure 67.1. Persistence configuration in Business Central

 return this.age;
 }

 public void setAge(java.lang.Integer age) {
 this.age = age;
 }

 public Person(java.lang.Long id, java.lang.String name,
 java.lang.Integer age) {
 this.id = id;
 this.name = name;
 this.age = age;
 }

}

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

375

Figure 67.1. Persistence configuration in Business Central

2. In the pom.xml file of your project, add the following dependency for persistence support. This
dependency contains the VariableEntity class that you configured in your data object.

Project dependency for persistence

3. In the ~/META-INF/kie-deployment-descriptor.xml file of your project, configure the JPA
marshalling strategy and a persistence unit to be used with the marshaller. The JPA marshalling
strategy and persistence unit are required for objects defined as entities.

JPA marshaller and persistence unit configured in the kie-deployment-
descriptor.xml file

4. In the ~/META-INF directory of your project, create a persistence.xml file that specifies in
which data source you want to persist the process variable:

<dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-persistence-jpa</artifactId>
 <version>${rhpam.version}</version>
 <scope>provided</scope>
</dependency>

<marshalling-strategy>
 <resolver>mvel</resolver>
 <identifier>new
org.drools.persistence.jpa.marshaller.JPAPlaceholderResolverStrategy("myPersistenceUnit",
classLoader)</identifier>
 <parameters/>
</marshalling-strategy>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

376

1

Example persistence.xml file with data source configuration

Sets the data source in which the process variable is persisted

To configure the marshalling strategy, persistence unit, and data source using Business Central,
navigate to project Settings → Deployments → Marshalling Strategies and to project
Settings → Persistence:

Figure 67.2. JPA marshaller configuration in Business Central

Figure 67.3. Persistence unit and data source configuration in Business Central

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="2.0"
xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_2_0.xsd">
 <persistence-unit name="myPersistenceUnit" transaction-type="JTA">
 <provider>org.hibernate.jpa.HibernatePersistenceProvider</provider>
 <jta-data-source>java:jboss/datasources/ExampleDS</jta-data-source> 1
 <class>org.space.example.Person</class>
 <exclude-unlisted-classes>true</exclude-unlisted-classes>
 <properties>
 <property name="hibernate.dialect"
value="org.hibernate.dialect.PostgreSQLDialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.id.new_generator_mappings" value="false"/>
 <property name="hibernate.transaction.jta.platform"
value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform"/>
 </properties>
 </persistence-unit>
</persistence>

CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE

377

Figure 67.3. Persistence unit and data source configuration in Business Central

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

378

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS
You can integrate the process engine with several industry-standard Java frameworks, such as Apache
Maven, CDI, Spring, and EJB..

68.1. INTEGRATION WITH APACHE MAVEN

The process engine uses Maven for two main purposes:

To create KJAR artifacts, which are deployment units that the process engine can install into a
runtime environment for execution

To manage dependencies for building applications that embed the process engine

68.1.1. Maven artifacts as deployment units

The process engine provides a mechanism to deploy processes from Apache Maven artifacts. These
artifacts are in the JAR file format and are known as KJAR files , or informally KJARs. A KJAR file includes
a descriptor that defines a KIE base and KIE session. It also contains the business assets, including
process definitions, that the process engine can load into the KIE base.

The descriptor of a KJAR file is represented by an XML file named kie-deployment-descriptor.xml. The
descriptor can be empty, in which case the default configuration applies. It can also provide custom
configuration for the KIE base and KIE session.

An empty kie-deployment-descriptor.xml descriptor

With an empty kie-deployment-descriptor.xml descriptor, the following default configuration applies:

A single default KIE base is created with the following characteristics:

It contains all assets from all packages in the KJAR file

Its event processing mode is set to cloud

Its equality behaviour is set to identity

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployment-descriptor xsi:schemaLocation="http://www.jboss.org/jbpm deployment-descriptor.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <persistence-unit>org.jbpm.domain</persistence-unit>
 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>
 <audit-mode>JPA</audit-mode>
 <persistence-mode>JPA</persistence-mode>
 <runtime-strategy>SINGLETON</runtime-strategy>
 <marshalling-strategies/>
 <event-listeners/>
 <task-event-listeners/>
 <globals/>
 <work-item-handlers />
 <environment-entries/>
 <configurations/>
 <required-roles/>
 <remoteable-classes/>
</deployment-descriptor>

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

379

Its declarative agenda is disabled

For CDI applications, its scope is set to ApplicationScope

A single default stateless KIE session is created with the following characteristics:

It is bound to the single KIE base

Its clock type is set to real time

For CDI applications, its scope is set to ApplicationScope

A single default stateful KIE session is created with the following characteristics:

It is bound to the single KIE base

Its clock type is set to real time

For CDI applications, its scope is set to ApplicationScope

If you do not want to use the defaults, you can change all configuration settings using the kie-
deployment-descriptor.xml file. You can find the complete specification of all elements for this file in
the XSD schema.

The following sample shows a custom kie-deployment-descriptor.xml file that configures the runtime
engine. This example configures the most common options and includes a single work item handler. You
can also use the kie-deployment-descriptor.xml file to configure other options.

Sample custom kie-deployment-descriptor.xml file

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<deployment-descriptor xsi:schemaLocation="http://www.jboss.org/jbpm deployment-descriptor.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <persistence-unit>org.jbpm.domain</persistence-unit>
 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>
 <audit-mode>JPA</audit-mode>
 <persistence-mode>JPA</persistence-mode>
 <runtime-strategy>SINGLETON</runtime-strategy>
 <marshalling-strategies/>
 <event-listeners/>
 <task-event-listeners/>
 <globals/>
 <work-item-handlers>
 <work-item-handler>
 <resolver>mvel</resolver>
 <identifier>new org.jbpm.process.workitem.bpmn2.ServiceTaskHandler(ksession,
classLoader)</identifier>
 <parameters/>
 <name>Service Task</name>
 </work-item-handler>
 </work-item-handlers>
 <environment-entries/>
 <configurations/>
 <required-roles/>
 <remoteable-classes/>
</deployment-descriptor>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

380

https://github.com/kiegroup/droolsjbpm-knowledge/blob/7.59.0.Final/kie-internal/src/main/resources/deployment-descriptor.xsd

NOTE

If you use the RuntimeManager class, this class creates KieSession instances, not the
KieContainer class. However, the kie-deployment-descriptor.xml model is always used
as a base of the construction process. The KieContainer class always creates the
KieBase instance.

You can reference KJAR artifacts, like any other Maven artifacts, using the GAV (group, artifact,
version) value. When deploying units from KJAR files, the process engine uses the GAV value as the
release ID in the KIE API. You can use the GAV value to deploy KJAR artifacts into a runtime
environment, for example, a KIE Server.

68.1.2. Dependency management with Maven

When you build projects that embed the process engine, use Apache Maven to configure all
dependencies required by the process engine.

The process engine provides a set of BOMs (Bills of Material) to simplify declaring artifact
dependencies.

Use the top-level pom.xml file of your project to define dependency management for embedding the
process engine, as shown in the following example. The example includes the main runtime
dependencies, which are applicable whether the application is deployed on an application server, in a
servlet container, or as a standalone application.

This example also includes version properties for components that applications using the process engine
commonly need. Adjust the list of components and versions as necessary. You can view the third-party
dependency versions that the product team tests in the parent pom.xml file in the Github repository .

Maven dependency management settings for embedding the process engine

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <version.org.drools>
 </version.org.drools>
 <version.org.jbpm>7.59.0.Final-redhat-00006</version.org.jbpm>
 <hibernate.version>5.3.17.Final</hibernate.version>
 <hibernate.core.version>5.3.17.Final</hibernate.core.version>
 <slf4j.version>1.7.26</slf4j.version>
 <jboss.javaee.version>1.0.0.Final</jboss.javaee.version>
 <logback.version>1.2.9</logback.version>
 <h2.version>1.3.173</h2.version>
 <narayana.version>5.9.0.Final</narayana.version>
 <jta.version>1.0.1.Final</jta.version>
 <junit.version>4.13.1</junit.version>
 </properties>
 <dependencyManagement>
 <dependencies>
 <!-- define Drools BOM -->
 <dependency>
 <groupId>org.drools</groupId>
 <artifactId>drools-bom</artifactId>
 <type>pom</type>
 <version>${version.org.drools}</version>
 <scope>import</scope>

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

381

https://github.com/kiegroup/droolsjbpm-build-bootstrap/blob/7.59.0.Final/pom.xml

In modules that use the process engine Java API (KIE API), declare the necessary process engine
dependencies and other components that the modules require, as in the following example:

Dependencies for modules that use the KIE API

If your application uses persistence and transactions, you must add artifacts that implement the JTA and
JPA frameworks. Additional dependencies are required for testing the workflow components before
actual deployment.

The following example defines the dependencies that include Hibernate for JPA, the H2 database for
persistence, Narayana for JTA, and the components needed for testing. This example uses the test
scope. Adjust this example as necessary for your application. For production use, remove the test scope.

 </dependency>
 <!-- define jBPM BOM -->
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-bom</artifactId>
 <type>pom</type>
 <version>${version.org.jbpm}</version>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-flow</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-flow-builder</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-bpmn2</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-persistence-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-human-task-core</artifactId>
 </dependency>
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-runtime-manager</artifactId>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>${slf4j.version}</version>
 </dependency>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

382

Example test module dependencies for the process engine

With this configuration you can embed the process engine in your application and use the KIE API to
interact with processes, rules, and events.

Maven repositories

To use Red Hat product versions of Maven dependencies, you must configure the Red Hat JBoss

 <!-- test dependencies -->
 <dependency>
 <groupId>org.jbpm</groupId>
 <artifactId>jbpm-shared-services</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>${hibernate.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>${hibernate.core.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>${h2.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>jboss-transaction-api_1.2_spec</groupId>
 <artifactId>org.jboss.spec.javax.transaction</artifactId>
 <version>${jta.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.jboss.narayana.jta</groupId>
 <artifactId>narayana-jta</artifactId>
 <version>${narayana.version}</version>
 <scope>test</scope>
 </dependency>

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

383

To use Red Hat product versions of Maven dependencies, you must configure the Red Hat JBoss
Enterprise Maven repository in the top-level pom.xml file. For information about this repository, see
JBoss Enterprise Maven Repository.

Alternatively, download the rhpam-7.12.0-maven-repository.zip product deliverable file from the
Software Downloads page of the Red Hat Customer Portal and make the contents of this file available
as a local Maven repository.

68.2. INTEGRATION WITH CDI

The process engine supports integration with CDI automatically. You can use most of its API in the CDI
framework without any modification.

The process engine also provides some dedicated modules that are designed specifically for CDI
containers. The most important module is jbpm-services-cdi, which provides CDI wrappers for process
engine services. You can use these wrappers to integrate the process engine in CDI applications. The
module provides the following set of services:

DeploymentService

ProcessService

UserTaskService

RuntimeDataService

DefinitionService

These services are available for injection in any other CDI bean.

68.2.1. Deployment service for CDI

The DeploymentService service deploys and undeploys deployment units in the runtime environment.
When you deploy a unit using this service, the deployment unit becomes ready for execution and a
RuntimeManager instance is created for it. You can also use the DeploymentService to retrieve the
following objects:

The RuntimeManager instance for a given deployment ID

The DeployedUnit instance that represents the complete deployment unit for the given
deployment ID

The list of all deployed units known to the deployment service

By default, the deployment service does not save information about deployed units to any persistent
storage. In the CDI framework, the component that uses the service can save and restore deployment
unit information, for example, using a database, file, system, or repository.

The deployment service fires CDI events on deployment and undeployment. The component that uses
the service can process these events to store deployments and remove them from the store when they
are undeployed.

A DeploymentEvent with the @Deploy qualifier is fired on deployment of a unit

A DeploymentEvent with the @Undeploy qualifier is fired on undeployment of a unit

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

384

https://access.redhat.com/maven-repository
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhpam&productChanged=yes

You can use the CDI observer mechanism to get notification on these events.

The following example receives notification on deployment of a unit and can save the deployment:

Example of processing of a deployment event

The following example receives notification on deployment of a unit and can remove the deployment
from storage:

Example of processing of an undeployment event

Several implementations of the DeploymentService service are possible, so you must use qualifiers to
instruct the CDI container to inject a particular implementation. A matching implementation of
DeploymentUnit must exist for every implementation of DeploymentService.

The process engine provides the KmoduleDeploymentService implementation. This implementation is
designed to work with KmoduleDeploymentUnits, which are small descriptors that are included in a
KJAR file. This implementation is the typical solution for most use cases. The qualifier for this
implementation is @Kjar.

68.2.2. Form provider service for CDI

The FormProviderService service provides access to form representations, which are usually displayed
on the user interface for both process forms and user task forms.

The service relies on the concept of isolated form providers that can provide different capabilities and
be backed by different technologies. The FormProvider interface describes the contract for
implementations of form providers.

Definition of the FormProvider interface

Implementations of the FormProvider interface must define a priority value. When the
FormProviderService service needs to render a form, it calls the available providers in their priority
order.

The lower the priority value, the higher priority the provider gets. For example, a provider with a priority

 public void saveDeployment(@Observes @Deploy DeploymentEvent event) {
 // Store deployed unit information
 DeployedUnit deployedUnit = event.getDeployedUnit();
 }

 public void removeDeployment(@Observes @Undeploy DeploymentEvent event) {
 // Remove deployment with the ID event.getDeploymentId()
 }

public interface FormProvider {

 int getPriority();

 String render(String name, ProcessDesc process, Map<String, Object> renderContext);

 String render(String name, Task task, ProcessDesc process, Map<String, Object> renderContext);
}

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

385

of 5 is evaluated before a provider with a priority of 10. For each required form, the service iterates over
the available providers in the order of their priority, until one of them delivers the content. In the worst-
case scenario, a simple text-based form is returned.

The process engine provides the following implementations of FormProvider:

A provider that delivers forms created in the Form Modeller tool, with a priority of 2

A FreeMarker-based implementation that supports process and task forms, with a priority of 3

The default forms provider, returning a simple text-based form, used as a last resort if no other
provider delivers any content, with a priority of 1000

68.2.3. Runtime data service for CDI

The RuntimeDataService service provides access to data that is available at runtime, including the
following data:

The available processes to be executed, with various filters

The active process instances, with various filters

The process instance history

The process instance variables

The active and completed nodes of process instance

The default implementation of RuntimeDataService observes deployment events and indexes all
deployed processes to expose them to the calling components.

68.2.4. Definition service for CDI

The DefinitionService service provides access to process details that are stored as part of BPMN2
XML definitions.

NOTE

Before using any method that provides information, invoke the buildProcessDefinition()
method to populate the repository with process information that is retrieved from the
BPMN2 content.

The BPMN2DataService implementation provides access to the following data:

The overall description of the process for the given process definition

The collection of all user tasks found in the process definition

The information about the defined inputs for a user task node

The information about defined outputs for a user task node

The IDs of reusable processes (call activity) that are defined within a given process definition

The information about process variables that are defined within a given process definition

The information about all organizational entities (users and groups) that are included in the

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

386

The information about all organizational entities (users and groups) that are included in the
process definition. Depending on the particular process definition, the returned values for users
and groups can contain the following information:

The actual user or group name

The process variable that is used to get the actual user or group name on runtime, for
example, #{manager}

68.2.5. CDI integration configuration

To use the jbpm-services-cdi module in your CDI framework, you must provide some beans to satisfy
the dependencies of the included service implementations.

Several beans can be required, depending on the usage scenario:

The entity manager and entity manager factory

The user group callback for human tasks

The identity provider to pass authenticated user information to the services

When running in a JEE environment, such as Red Hat JBoss EAP, the following producer bean satisfies
all requirements of the jbpm-services-cdi module.

The producer bean that satisfies all requirements of the jbpm-services-cdi module in a JEE
environment

public class EnvironmentProducer {

 @PersistenceUnit(unitName = "org.jbpm.domain")
 private EntityManagerFactory emf;

 @Inject
 @Selectable
 private UserGroupInfoProducer userGroupInfoProducer;

 @Inject
 @Kjar
 private DeploymentService deploymentService;

 @Produces
 public EntityManagerFactory getEntityManagerFactory() {
 return this.emf;
 }

 @Produces
 public org.kie.api.task.UserGroupCallback produceSelectedUserGroupCalback() {
 return userGroupInfoProducer.produceCallback();
 }

 @Produces
 public UserInfo produceUserInfo() {
 return userGroupInfoProducer.produceUserInfo();
 }

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

387

The beans.xml file for the application must enable a proper alternative for user group info callback.
This alternative is taken based on the @Selectable qualifier.

Definition of the alternative for user group info callback in the beans.xml file`

NOTE

org.jbpm.kie.services.cdi.producer.JAASUserGroupInfoProducer is an example
value. This value is usually a good fit for Red Hat JBoss EAP, as it reuses security settings
on the application server, regardless of which security method the server uses, for
example, LDAP or database.

Optionally, you can provide several other producers to deliver WorkItemHandlers and Process,
Agenda, WorkingMemory event listeners. You can provide these components by implementing the
following interfaces:

Work item handler producer interface for process engine integration with CDI

 @Produces
 @Named("Logs")
 public TaskLifeCycleEventListener produceTaskAuditListener() {
 return new JPATaskLifeCycleEventListener(true);
 }

 @Produces
 public DeploymentService getDeploymentService() {
 return this.deploymentService;
 }

 @Produces
 public IdentityProvider produceIdentityProvider {
 return new IdentityProvider() {
 // implement IdentityProvider
 };
 }
}

<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee https://docs.jboss.org/cdi/beans_1_0.xsd">

 <alternatives>
 <class>org.jbpm.kie.services.cdi.producer.JAASUserGroupInfoProducer</class>
 </alternatives>

</beans>

/**
 * Enables providing custom implementations to deliver WorkItem name and WorkItemHandler
instance pairs
 * for the runtime.
 *

 * This interface is invoked by the RegisterableItemsFactory implementation (in particular
InjectableRegisterableItemsFactory

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

388

Event listener producer interface for process engine integration with CDI

 * in the CDI framework) for every KieSession. Always return new instances of objects to avoid
unexpected
 * results.
 *
 */
public interface WorkItemHandlerProducer {

 /**
 * Returns map of work items(key = work item name, value = work item handler instance)
 * to be registered on KieSession
 *

 * The following parameters might be given:
 *
 * ksession
 * taskService
 * runtimeManager
 *
 *
 * @param identifier - identifier of the owner - usually the RuntimeManager. This parameter allows
the producer to filter out
 * and provide valid instances for a given owner
 * @param params - the owner might provide some parameters, usually KieSession, TaskService,
RuntimeManager instances
 * @return map of work item handler instances (always return new instances when this method is
invoked)
 */
 Map<String, WorkItemHandler> getWorkItemHandlers(String identifier, Map<String, Object>
params);
}

/**
 * Enables defining custom producers for known EventListeners. There might be several
 * implementations that might provide a different listener instance based on the context in which they
are executed.
 *

 * This interface is invoked by the RegisterableItemsFactory implementation (in particular,
InjectableRegisterableItemsFactory
 * in the CDI framework) for every KieSession. Always return new instances of objects to avoid
unexpected results.
 *
 * @param <T> type of the event listener - ProcessEventListener, AgendaEventListener,
WorkingMemoryEventListener
 */
public interface EventListenerProducer<T> {

 /**
 * Returns list of instances for given (T) type of listeners
 *

 * Parameters that might be given are:
 *
 * ksession
 * taskService
 * runtimeManager
 *

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

389

The beans implementing these two interfaces are collected at runtime and invoked when the
RuntimeManager class builds a KieSession instance.

68.2.5.1. Runtime manager as a CDI bean

You can inject the RuntimeManager class as a CDI bean into any other CDI bean within your application.
The RuntimeEnvironment class must be properly produced to enable correct initialization of the
RuntimeManager instance.

The following CDI qualifiers reference the existing runtime manager strategies:

@Singleton

@PerRequest

@PerProcessInstance

For more information about the runtime manager, see Section 66.2, “Runtime manager”.

NOTE

Though you can inject the RuntimeManager class directly, the solution for most use
cases for frameworks such as CDI, EJB, or Spring is using services. The process engine
services implement many best practices for using the runtime manager.

To use the runtime manager, you must add the RuntimeEnvironment class to the producer that is
defined in the Section 68.2.5, “CDI integration configuration” section.

The producer bean that provides the RuntimeEnvironment class

 * @param identifier - identifier of the owner - usually RuntimeManager. This parameter allows the
producer to filter out
 * and provide valid instances for given owner
 * @param params - the owner might provide some parameters, usually KieSession, TaskService,
RuntimeManager instances
 * @return list of listener instances (always return new instances when this method is invoked)
 */
 List<T> getEventListeners(String identifier, Map<String, Object> params);
}

public class EnvironmentProducer {

 //Add the same producers as for services

 @Produces
 @Singleton
 @PerRequest
 @PerProcessInstance
 public RuntimeEnvironment produceEnvironment(EntityManagerFactory emf) {

 RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()
 .newDefaultBuilder()
 .entityManagerFactory(emf)
 .userGroupCallback(getUserGroupCallback())
 .registerableItemsFactory(InjectableRegisterableItemsFactory.getFactory(beanManager,

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

390

In this example, a single producer method is capable of providing the RuntimeEnvironment class for all
runtime manager strategies by specifying all qualifiers on the method level.

When the complete producer is available, the RuntimeManager class can be injected into a CDI bean in
the application:

Injecting the RuntimeManager class

If you inject the RuntimeManager class, only one instance of RuntimeManager might exist in the
application. In typical cases, use the DeploymentService service, which creates RuntimeManager
instances as necessary.

As an alternative to DeploymentService, you can inject the RuntimeManagerFactory class and then
the application can use it to create RuntimeManager instances. In this case, the EnvironmentProducer
definition is still required. The following example shows a simple ProcessEngine bean.

Example ProcessEngine bean

null))
 .addAsset(ResourceFactory.newClassPathResource("BPMN2-ScriptTask.bpmn2"),
ResourceType.BPMN2)
 .addAsset(ResourceFactory.newClassPathResource("BPMN2-UserTask.bpmn2"),
ResourceType.BPMN2)
 .get();
 return environment;
 }
}

public class ProcessEngine {

 @Inject
 @Singleton
 private RuntimeManager singletonManager;

 public void startProcess() {

 RuntimeEngine runtime = singletonManager.getRuntimeEngine(EmptyContext.get());
 KieSession ksession = runtime.getKieSession();

 ProcessInstance processInstance = ksession.startProcess("UserTask");

 singletonManager.disposeRuntimeEngine(runtime);
 }
}

public class ProcessEngine {

 @Inject
 private RuntimeManagerFactory managerFactory;

 @Inject
 private EntityManagerFactory emf;

 @Inject
 private BeanManager beanManager;

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

391

68.3. INTEGRATION WITH SPRING

While there are several ways to use the process engine with the Spring framework, two approaches are
most frequently used

Direct use of the Runtime Manager API

Use of process engine services

Both approaches are tested and valid.

If your application needs to use only one runtime manager, use the direct Runtime Manager API,
because it is the simplest way to use the process engine within a Spring application.

If your application needs to use multiple instances of the runtime manager, use process engine services,
which encapsulate best practices by providing a dynamic runtime environment.

68.3.1. Direct use of the runtime manager API in Spring

The runtime manager manages the process engine and task service in synchronization. For more
information about the runtime manager, see Section 66.2, “Runtime manager”.

To set up the runtime manager in the Spring framework, use the following factory beans:

org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean

org.kie.spring.factorybeans.RuntimeManagerFactoryBean

org.kie.spring.factorybeans.TaskServiceFactoryBean

These factory beans provide a standard way to configure the spring.xml file for your Spring application.

 public void startProcess() {
 RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()
 .newDefaultBuilder()
 .entityManagerFactory(emf)
 .addAsset(ResourceFactory.newClassPathResource("BPMN2-ScriptTask.bpmn2"),
ResourceType.BPMN2)
 .addAsset(ResourceFactory.newClassPathResource("BPMN2-UserTask.bpmn2"),
ResourceType.BPMN2)
 .registerableItemsFactory(InjectableRegisterableItemsFactory.getFactory(beanManager,
null))
 .get();

 RuntimeManager manager = managerFactory.newSingletonRuntimeManager(environment);
 RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());
 KieSession ksession = runtime.getKieSession();

 ProcessInstance processInstance = ksession.startProcess("UserTask");

 manager.disposeRuntimeEngine(runtime);
 manager.close();
 }

}

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

392

68.3.1.1. RuntimeEnvironmentFactoryBean bean

The RuntimeEnvironmentFactoryBean factory bean produces instances of RuntimeEnvironment.
These instances are required for creating RuntimeManager instances.

The bean supports creating the following types of RuntimeEnvironment instances with different
default configurations:

DEFAULT: The default, or most common, configuration for the runtime manager

EMPTY: A completely empty environment that you can configure manually

DEFAULT_IN_MEMORY: The same configuration as DEFAULT, but without persistence of the
runtime engine

DEFAULT_KJAR: The same configuration as DEFAULT, but assets are loaded from KJAR
artifacts, which are identified by the release ID or the GAV value

DEFAULT_KJAR_CL: The configuration is built from the kmodule.xml descriptor in a KJAR
artifact

Mandatory properties depend on the selected type. However, knowledge information must be present
for all types. This requirement means that one of the following kinds of information must be provided:

knowledgeBase

assets

releaseId

groupId, artifactId, version

For the DEFAULT, DEFAULT_KJAR, and DEFAULT_KJAR_CL types, you must also configure
persistence by providing the following parameters:

Entity manager factory

Transaction manager

The transaction manager must be the Spring transaction manager, because persistence and transaction
support is configured based on this transaction manager.

Optionally, you can provide an EntityManager instance instead of creating a new instance from
EntityManagerFactory, for example, you might use a shared entity manager from Spring.

All other properties are optional. They can override defaults that are determined by the selected type of
the runtime environment.

68.3.1.2. RuntimeManagerFactoryBean bean

The RuntimeManagerFactoryBean factory bean produces RuntimeManager instances of a given type,
based on the provided RuntimeEnvironment instance.

The supported types correspond to runtime manager strategies:

SINGLETON

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

393

PER_REQUEST

PER_PROCESS_INSTANCE

The default type, when no type is specified, is SINGLETON.

The identifier is a mandatory property, because every runtime manager must be uniquely identified. All
instances created by this factory are cached, so they can be properly disposed using the destroy
method (close()).

68.3.1.3. TaskServiceFactoryBean bean

The TaskServiceFactoryBean factory bean produces an instance of TaskService based on given
properties. You must provide the following mandatory properties:

Entity manager factory

Transaction manager

The transaction manager must be the Spring transaction manager, because persistence and transaction
support is configured based on this transaction manager.

Optionally, you can provide an EntityManager instance instead of creating a new instance from
EntityManagerFactory, for example, you might use a shared entity manager from Spring.

You can also set additional optional properties for the task service instance:

userGroupCallback: The implementation of UserGroupCallback that the task service must
use, the default value is MVELUserGroupCallbackImpl

userInfo: The implementation of UserInfo that the task service must use, the default value is
DefaultUserInfo

listener: A list of TaskLifeCycleEventListener listeners which must be notified upon various
operations on tasks

This factory bean creates a single instance of the task service. By design, this instance must be shared
across all beans in the Spring environment.

68.3.1.4. Configuring a sample runtime manager with a Spring application

The following procedure is an example of complete configuration for a single runtime manager within a
Spring application.

Procedure

1. Configure the entity manager factory and the transaction manager:

Configuring the entity manager factory and the transaction manager in the
spring.xml file

<bean id="jbpmEMF"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="org.jbpm.persistence.spring.jta"/>
</bean>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

394

These settings define the following persistence configuration:

JTA transaction manager (backed by Narayana JTA - for unit tests or servlet containers)

Entity manager factory for the org.jbpm.persistence.spring.jta persistence unit

2. Configure the business process resource:

Configuring the business process resource in the spring.xml file

These settings define a single process that is to be available for execution. The name of the
resource is sample.bpmn and it must be available on the class path. You can use the class path
as a simple way to include resources for trying out the process engine.

3. Configure the RuntimeEnvironment instance with the entity manager, transaction manager,
and resources:

Configuring the RuntimeEnvironment instance in the spring.xml file

<bean id="jbpmEM"
class="org.springframework.orm.jpa.support.SharedEntityManagerBean">
 <property name="entityManagerFactory" ref="jbpmEMF"/>
</bean>

<bean id="narayanaUserTransaction" factory-method="userTransaction"
class="com.arjuna.ats.jta.UserTransaction" />

<bean id="narayanaTransactionManager" factory-method="transactionManager"
class="com.arjuna.ats.jta.TransactionManager" />

<bean id="jbpmTxManager"
class="org.springframework.transaction.jta.JtaTransactionManager">
 <property name="transactionManager" ref="narayanaTransactionManager" />
 <property name="userTransaction" ref="narayanaUserTransaction" />
</bean>

<bean id="process" factory-method="newClassPathResource"
class="org.kie.internal.io.ResourceFactory">
 <constructor-arg>
 <value>jbpm/processes/sample.bpmn</value>
 </constructor-arg>
</bean>

<bean id="runtimeEnvironment"
class="org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean">
 <property name="type" value="DEFAULT"/>
 <property name="entityManagerFactory" ref="jbpmEMF"/>
 <property name="transactionManager" ref="jbpmTxManager"/>
 <property name="assets">
 <map>
 <entry key-ref="process"><util:constant static-
field="org.kie.api.io.ResourceType.BPMN2"/></entry>
 </map>
 </property>
</bean>

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

395

These settings define a default runtime environment for the runtime manager.

4. Create a RuntimeManager instance based on the environment:

Result

After these steps you can use the runtime manager to execute processes in the Spring environment,
using the EntityManagerFactory class and the JTA transaction manager.

You can find complete Spring configuration files for different strategies in the repository.

68.3.1.5. Additional configuration options for the runtime manager in the Spring framework

In addition to the configuration with the EntityManagerFactory class and the JTA transaction manager,
as described in Section 68.3.1.4, “Configuring a sample runtime manager with a Spring application” , you
can use other configuration options for the runtime manager in the Spring framework:

JTA and the SharedEntityManager class

Local Persistence Unit and the EntityManagerFactory class

Local Persistence Unit and SharedEntityManager class

If your application is configured with a Local Persistence Unit and uses the AuditService service to
query process engine history data, you must add the
org.kie.api.runtime.EnvironmentName.USE_LOCAL_TRANSACTIONS environment entry to the
RuntimeEnvironment instance configuration:

RuntimeEnvironment instance configuration for a Local Persistence Unit in the spring.xml
file

You can find more examples of configuration options in the repository: configuration files and test

<bean id="runtimeManager"
class="org.kie.spring.factorybeans.RuntimeManagerFactoryBean" destroy-method="close">
 <property name="identifier" value="spring-rm"/>
 <property name="runtimeEnvironment" ref="runtimeEnvironment"/>
</bean>

<bean id="runtimeEnvironment"
class="org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean">
...
 <property name="environmentEntries" ref="env" />
 </bean>
 ...

 <util:map id="env" key-type="java.lang.String" value-type="java.lang.Object">
 <entry>
 <key>
 <util:constant
 static-field="org.kie.api.runtime.EnvironmentName.USE_LOCAL_TRANSACTIONS" />
 </key>
 <value>true</value>
 </entry>
 </util:map>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

396

https://github.com/kiegroup/droolsjbpm-integration/blob/7.59.0.Final/kie-spring/src/test/resources/jbpm/jta-emf/

You can find more examples of configuration options in the repository: configuration files and test
cases.

68.3.2. Process engine services with Spring

You might want to create a dynamic Spring application, where you can add and remove business assets
such as process definitions, data models, rules, and forms without restarting the application.

In this case, use process engine services. Process engine services are designed as framework-agnostic,
and separate modules bring in the required framework-specific addons.

The jbpm-kie-services module contains the code logic of the services. A Spring application can
consume these pure Java services.

The only code you must add to your Spring application to configure process engine services is the
implementation of the IdentityProvider interface. This implementation depends on your security
configuration. The following example implementation uses Spring Security, though it might not cover all
available security features for a Spring application.

Implementation of the IdentityProvider interface using Spring Security

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

import org.kie.internal.identity.IdentityProvider;
import org.springframework.security.core.Authentication;
import org.springframework.security.core.GrantedAuthority;
import org.springframework.security.core.context.SecurityContextHolder;

public class SpringSecurityIdentityProvider implements IdentityProvider {

 public String getName() {

 Authentication auth = SecurityContextHolder.getContext().getAuthentication();
 if (auth != null && auth.isAuthenticated()) {
 return auth.getName();
 }
 return "system";
 }

 public List<String> getRoles() {
 Authentication auth = SecurityContextHolder.getContext().getAuthentication();
 if (auth != null && auth.isAuthenticated()) {
 List<String> roles = new ArrayList<String>();

 for (GrantedAuthority ga : auth.getAuthorities()) {
 roles.add(ga.getAuthority());
 }

 return roles;
 }

 return Collections.emptyList();
 }

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

397

https://github.com/kiegroup/droolsjbpm-integration/tree/7.59.0.Final/kie-spring/src/test/resources/jbpm
https://github.com/kiegroup/droolsjbpm-integration/tree/7.59.0.Final/kie-spring/src/test/java/org/kie/spring/jbpm

68.3.2.1. Configuring process engine services with a Spring application

The following procedure is an example of complete configuration for process engine services within a
Spring application.

Procedure

1. Configure transactons:

Configuring transactions in the spring.xml file

2. Configure JPA and persistence:

Configuring JPA and persistence in the spring.xml file

3. Configure security and user and group information providers:

Configuring security and user and group information providers in the spring.xml file

4. Configure the runtime manager factory. This factory is Spring context aware, so it can interact
with the Spring container in the correct way and support the necessary services, including the
transactional command service and the task service:

Configuring the runtime manager factory in the spring.xml file

 public boolean hasRole(String role) {
 return false;
 }

}

<context:annotation-config />
<tx:annotation-driven />
<tx:jta-transaction-manager />

<bean id="transactionManager"
class="org.springframework.transaction.jta.JtaTransactionManager" />

<bean id="entityManagerFactory"
class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean" depends-
on="transactionManager">
 <property name="persistenceXmlLocation" value="classpath:/META-INF/jbpm-
persistence.xml" />
</bean>

<util:properties id="roleProperties" location="classpath:/roles.properties" />

<bean id="userGroupCallback"
class="org.jbpm.services.task.identity.JBossUserGroupCallbackImpl">
 <constructor-arg name="userGroups" ref="roleProperties"></constructor-arg>
</bean>

<bean id="identityProvider" class="org.jbpm.spring.SpringSecurityIdentityProvider"/>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

398

5. Configure process engine services as Spring beans:

Configuring process engine services as Spring beans in the spring.xml file

<bean id="runtimeManagerFactory"
class="org.kie.spring.manager.SpringRuntimeManagerFactoryImpl">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="userGroupCallback" ref="userGroupCallback"/>
</bean>

<bean id="transactionCmdService"
class="org.jbpm.shared.services.impl.TransactionalCommandService">
 <constructor-arg name="emf" ref="entityManagerFactory"></constructor-arg>
</bean>

<bean id="taskService" class="org.kie.spring.factorybeans.TaskServiceFactoryBean"
destroy-method="close">
 <property name="entityManagerFactory" ref="entityManagerFactory"/>
 <property name="transactionManager" ref="transactionManager"/>
 <property name="userGroupCallback" ref="userGroupCallback"/>
 <property name="listeners">
 <list>
 <bean class="org.jbpm.services.task.audit.JPATaskLifeCycleEventListener">
 <constructor-arg value="true"/>
 </bean>
 </list>
 </property>
</bean>

<!-- Definition service -->
<bean id="definitionService"
class="org.jbpm.kie.services.impl.bpmn2.BPMN2DataServiceImpl"/>

<!-- Runtime data service -->
<bean id="runtimeDataService" class="org.jbpm.kie.services.impl.RuntimeDataServiceImpl">
 <property name="commandService" ref="transactionCmdService"/>
 <property name="identityProvider" ref="identityProvider"/>
 <property name="taskService" ref="taskService"/>
</bean>

<!-- Deployment service -->
<bean id="deploymentService"
class="org.jbpm.kie.services.impl.KModuleDeploymentService" depends-
on="entityManagerFactory" init-method="onInit">
 <property name="bpmn2Service" ref="definitionService"/>
 <property name="emf" ref="entityManagerFactory"/>
 <property name="managerFactory" ref="runtimeManagerFactory"/>
 <property name="identityProvider" ref="identityProvider"/>
 <property name="runtimeDataService" ref="runtimeDataService"/>
</bean>

<!-- Process service -->
<bean id="processService" class="org.jbpm.kie.services.impl.ProcessServiceImpl" depends-
on="deploymentService">
 <property name="dataService" ref="runtimeDataService"/>

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

399

Result

Your Spring application can use process engine services.

68.4. INTEGRATION WITH EJB

The process engine provides a complete integration layer for Enterprise Java Beans (EJB). This layer
supports both local and remote EJB interaction.

The following modules provide EJB services:

jbpm-services-ejb-api: The API module that extends the jbpm-services-api module with EJB-
specific interfaces and objects

jbpm-services-ejb-impl: An EJB extension for core services

jbpm-services-ejb-timer: A process engine Scheduler Service implementation based on the
EJB Timer Service

jbpm-services-ejb-client: An EJB remote client implementation for remote interaction, which
supports Red Hat JBoss EAP by default

The EJB layer is based on process engine services. It provides almost the same capabilities as the core
module, though some limitations exist if you use the remote interface.

The main limitation affects the deployment service, which, if it is used as a remote EJB service, supports
only the following methods:

deploy()

undeploy()

 <property name="deploymentService" ref="deploymentService"/>
</bean>

<!-- User task service -->
<bean id="userTaskService" class="org.jbpm.kie.services.impl.UserTaskServiceImpl"
depends-on="deploymentService">
 <property name="dataService" ref="runtimeDataService"/>
 <property name="deploymentService" ref="deploymentService"/>
</bean>

<!-- Register the runtime data service as a listener on the deployment service so it can
receive notification about deployed and undeployed units -->
<bean id="data"
class="org.springframework.beans.factory.config.MethodInvokingFactoryBean" depends-
on="deploymentService">
 <property name="targetObject" ref="deploymentService"></property>
 <property name="targetMethod"><value>addListener</value></property>
 <property name="arguments">
 <list>
 <ref bean="runtimeDataService"/>
 </list>
 </property>
</bean>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

400

activate()

deactivate()

isDeployed()

Other methods are excluded because they return instances of runtime objects, such as
RuntimeManager, which can not be used over the remote interface.

All other services provide the same functionality over EJB as the versions included in the core module.

68.4.1. Implementations for EJB services

As an extension of process engine core services, EJB services provide EJB-based execution semantics
and are based on various EJB-specific features.

DeploymentServiceEJBImpl is implemented as an EJB singleton with container-managed
concurrency. Its lock type is set to write.

DefinitionServiceEJBImpl is implemented as an EJB singleton with container-managed
concurrency. Its overall lock type is set to read and for the buildProcessDefinition() method
the lock type is set to write.

ProcessServiceEJBImpl is implemented as a stateless session bean.

RuntimeDataServiceEJBImpl is implemented as an EJB singleton. For the majority of methods
the lock type is set to read. For the following methods the lock type is set to write:

onDeploy()

onUnDeploy()

onActivate()

onDeactivate()

UserTaskServiceEJBImpl is implemented as a stateless session bean.

Transactions
The EJB container manages transactions in EJB services. For this reason, you do not need to set up any
transaction manager or user transaction within your application code.

Identity provider
The default identity provider is based on the EJBContext interface and relies on caller principal
information for both name and roles. The IdentityProvider interface provides two methods related to
roles:

getRoles() returns an empty list, because the EJBContext interface does not provide an option
to fetch all roles for a particular user

hasRole() delegates to the isCallerInRole() method of the context

To ensure that valid information is available to the EJB environment, you must follow standard JEE
security practices to authenticate and authorize users. If no authentication or authorization is configured
for EJB services, an anonymous user is always assumed.

If you use a different security model, you can use CDI-style injection for the IdentityProvider object for

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

401

EJB services. In this case, create a valid CDI bean that implements the
org.kie.internal.identity.IdentityProvider interface and make this bean available for injection with your
application. This implementation will take precedence over the EJBContext-based identity provider.

Deployment synchronization
Deployment synchronization is enabled by default and attempts to synchronize any deployments every
3 seconds. It is implemented as an EJB singleton with container-managed concurrency. Its lock type is
set to write. It uses the EJB timer service to schedule synchronization jobs.

EJB scheduler service
The process engine uses the scheduler service to handle time-based activities such as timer events and
deadlines. When running in an EJB environment, the process engine uses a scheduler based on the EJB
timer service. It registers this scheduler for all RuntimeManager instances.

You might need to use a configuration specific to an application server to support cluster operation.

UserGroupCallback and UserInfo implementation selection
The required implementation of UserGroupCallback and UserInfo interfaces might differ for various
applications. These interfaces can not be injected with EJB directly. You can use the following system
properties to select existing implementations or use custom implementations of these interfaces for the
process engine:

org.jbpm.ht.callback: This property selects the implementation for the UserGroupCallback
interface:

mvel: The default implementation, typically used for testing.

ldap: The LDAP-based implementation. This implementation requires additional
configuration in the jbpm.usergroup.callback.properties file.

db: The database-based implementation. This implementation requires additional
configuration in the jbpm.usergroup.callback.properties file.

jaas: An implementation that requests user information from the container.

props: A simple property-based callback. This implementation requires an additional
properties file that contains all users and groups.

custom: A custom implementation. You must provide the fully-qualified class name of the
implementation in the org.jbpm.ht.custom.callback system property.

org.jbpm.ht.userinfo: This property selects the implementation for the UserInfo interface:

ldap: The LDAP-based implementation. This implementation requires additional
configuration in the jbpm-user.info.properties file.

db: The database-based implementation. This implementation requires additional
configuration in the jbpm-user.info.properties file.

props: A simple property-based implementation. This implementation requires an additional
properties file that contains all user information.

custom: A custom implementation. You must provide the fully-qualified class name of the
implementation in the org.jbpm.ht.custom.userinfo system property.

Typically, set the system properties in the startup configuration of the application server or JVM. You

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

402

Typically, set the system properties in the startup configuration of the application server or JVM. You
can also set the properties in the code before using the services. For example, you can provide a custom
@Startup bean that configures these system properties.

68.4.2. Local EJB interfaces

The following local EJB service interfaces extend core services:

org.jbpm.services.ejb.api.DefinitionServiceEJBLocal

org.jbpm.services.ejb.api.DeploymentServiceEJBLocal

org.jbpm.services.ejb.api.ProcessServiceEJBLocal

org.jbpm.services.ejb.api.RuntimeDataServiceEJBLocal

org.jbpm.services.ejb.api.UserTaskServiceEJBLocal

You must use these interfaces as injection points and annotate them with @EJB:

Using local EJB service interfaces

After injecting these interfaces, invoke operations on them in the same way as on core modules. No
restrictions exist for using local interfaces.

68.4.3. Remote EJB interfaces

The following dedicated remote EJB interfaces extend core services:

org.jbpm.services.ejb.api.DefinitionServiceEJBRemote

org.jbpm.services.ejb.api.DeploymentServiceEJBRemote

org.jbpm.services.ejb.api.ProcessServiceEJBRemote

org.jbpm.services.ejb.api.RuntimeDataServiceEJBRemote

org.jbpm.services.ejb.api.UserTaskServiceEJBRemote

You can use these interfaces in the same way as local interfaces, with the exception of handling custom
types.

You can define custom types in two ways. Globally defined types are available on application classpath

@EJB
private DefinitionServiceEJBLocal bpmn2Service;

@EJB
private DeploymentServiceEJBLocal deploymentService;

@EJB
private ProcessServiceEJBLocal processService;

@EJB
private RuntimeDataServiceEJBLocal runtimeDataService;

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

403

You can define custom types in two ways. Globally defined types are available on application classpath
and included in the enterprise application. If you define a type locally to the deployment unit , the type is
declared in a project dependency (for example, in a KJAR file) and is resolved at deployment time.

Globally available types do not require any special handling. The EJB container automatically marshalls
the data when handling remote requests. However, local custom types are not visible to the EJB
container by default.

The process engine EJB services provide a mechanism to work with custom types. They provide the
following two additional types:

org.jbpm.services.ejb.remote.api.RemoteObject: A serializable wrapper class for single-value
parameters

org.jbpm.services.ejb.remote.api.RemoteMap: A dedicated java.util.Map implementation to
simplify remote invocation of service methods that accept custom object input. The internal
implementation of the map holds content that is already serialized, in order to avoid additional
serialization at sending time.
This implementation does not include some of the methods of java.util.Map that are usually not
used when sending data.

These special objects perform eager serialization to bytes using an ObjectInputStream object. They
remove the need for serialization of data in the EJB client/container. Because no serialization is needed,
it is not necessary to share the custom data model with the EJB container.

The following example code works with local types and remote EJB services:

Using local types with remote EJB services

In a similar way, you can use the RemoteObject class to send an event to a process instance:

// Start a process with custom types via remote EJB

Map<String, Object> parameters = new RemoteMap();
Person person = new org.jbpm.test.Person("john", 25, true);
parameters.put("person", person);

Long processInstanceId = processService.startProcess(deploymentUnit.getIdentifier(), "custom-data-
project.work-on-custom-data", parameters);

// Fetch task data and complete a task with custom types via remote EJB
Map<String, Object> data = userTaskService.getTaskInputContentByTaskId(taskId);

Person fromTaskPerson = data.get("_person");
fromTaskPerson.setName("John Doe");

RemoteMap outcome = new RemoteMap();
outcome.put("person_", fromTaskPerson);

userTaskService.complete(taskId, "john", outcome);

// Send an event with a custom type via remote EJB
Person person = new org.jbpm.test.Person("john", 25, true);

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

404

68.4.4. Remote EJB client

Remote client support is provided by implementation of the ClientServiceFactory interface that is a
facade for application server specific code:

Definition of the ClientServiceFactory interface

You can dynamically register implementations using the ServiceLoader mechanism. By default, only
one implementation is available in Red Hat JBoss EAP.

Each ClientServiceFactory implementation must provide a name. This name is used to register it within
the client registry. You can look up implementations by name.

The following code gets the default Red Hat JBoss EAP remote client:

Getting the default Red Hat JBoss EAP remote client

After retrieving a service you can use its methods.

RemoteObject myObject = new RemoteObject(person);

processService.signalProcessInstance(processInstanceId, "MySignal", myObject);

/**
 * Generic service factory used for remote lookups that are usually container specific.
 *
 */
public interface ClientServiceFactory {

 /**
 * Returns unique name of given factory implementation
 * @return
 */
 String getName();

 /**
 * Returns remote view of given service interface from selected application
 * @param application application identifier on the container
 * @param serviceInterface remote service interface to be found
 * @return
 * @throws NamingException
 */
 <T> T getService(String application, Class<T> serviceInterface) throws NamingException;
}

// Retrieve a valid client service factory
ClientServiceFactory factory = ServiceFactoryProvider.getProvider("JBoss");

// Set the application variable to the module name
String application = "sample-war-ejb-app";

// Retrieve the required service from the factory
DeploymentServiceEJBRemote deploymentService = factory.getService(application,
DeploymentServiceEJBRemote.class);

CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS

405

When working with Red Hat JBoss EAP and the remote client you can add the following Maven
dependency to bring in all EJB client libraries:

68.5. INTEGRATION WITH OSGI

All core process engine JAR files and core dependencies are OSGi-enabled. The following additional
process engine JAR files are also OSGI-enabled:

jbpm-flow

jbpm-flow-builder

jbpm-bpmn2

OSGi-enabled JAR files contain MANIFEST.MF files in the META-INF directory. These files contain
data such as the required dependencies. You can add such JAR files to an OSGi environment.

For additional information about the OSGi infrastructure, see the OSGI documentation.

NOTE

Support for integration with the OSGi framework is deprecated. It does not receive any
new enhancements or features and will be removed in a future release.

<dependency>
 <groupId>org.jboss.as</groupId>
 <artifactId>jboss-as-ejb-client-bom</artifactId>
 <version>7.4.1.Final</version> <!-- use the valid version for the server you run on -->
 <optional>true</optional>
 <type>pom</type>
</dependency>

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

406

https://www.osgi.org/resources/where-to-start/

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Wednesday, February 1, 2023.

APPENDIX A. VERSIONING INFORMATION

407

APPENDIX B. CONTACT INFORMATION
Red Hat Process Automation Manager documentation team: brms-docs@redhat.com

Red Hat Process Automation Manager 7.12 Developing process services in Red Hat Process Automation Manager

408

mailto:brms-docs@redhat.com

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PART I. DESIGNING BUSINESS PROCESSES USING BPMN MODELS
	CHAPTER 1. BUSINESS PROCESSES
	CHAPTER 2. RED HAT PROCESS AUTOMATION MANAGER BPMN AND DMN MODELERS
	2.1. INSTALLING THE RED HAT PROCESS AUTOMATION MANAGER VS CODE EXTENSION BUNDLE
	2.2. CONFIGURING THE RED HAT PROCESS AUTOMATION MANAGER STANDALONE EDITORS

	CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN
	CHAPTER 4. BUSINESS PROCESS MODELING AND NOTATION VERSION 2.0
	4.1. RED HAT PROCESS AUTOMATION MANAGER SUPPORT FOR BPMN2
	4.2. BPMN2 EVENTS IN PROCESS DESIGNER
	4.2.1. Start events
	4.2.2. Intermediate events
	4.2.3. End events

	4.3. BPMN2 TASKS IN PROCESS DESIGNER
	4.4. BPMN2 CUSTOM TASKS IN PROCESS DESIGNER
	4.5. BPMN2 SUB-PROCESSES IN PROCESS DESIGNER
	4.6. BPMN2 GATEWAYS IN PROCESS DESIGNER
	4.7. BPMN2 CONNECTING OBJECTS IN PROCESS DESIGNER
	4.8. BPMN2 SWIMLANES IN PROCESS DESIGNER
	4.9. BPMN2 ARTIFACTS IN PROCESS DESIGNER
	4.9.1. Creating data object

	CHAPTER 5. CREATING A BUSINESS PROCESS IN BUSINESS CENTRAL
	5.1. CREATING BUSINESS RULES TASKS
	5.2. CREATING SCRIPT TASKS
	5.3. CREATING SERVICE TASKS
	5.4. CREATING USER TASKS
	5.4.1. Setting the user task assignment strategy

	5.5. BPMN2 USER TASK LIFE CYCLE IN PROCESS DESIGNER
	5.6. BPMN2 TASK PERMISSION MATRIX IN PROCESS DESIGNER
	5.7. MAKING A COPY OF A BUSINESS PROCESS
	5.8. RESIZING ELEMENTS AND USING THE ZOOM FUNCTION TO VIEW BUSINESS PROCESSES
	5.9. GENERATING PROCESS DOCUMENTATION IN BUSINESS CENTRAL

	CHAPTER 6. VARIABLES
	6.1. VARIABLE TAGS
	6.2. DEFINING GLOBAL VARIABLES
	6.3. DEFINING PROCESS VARIABLES
	6.4. DEFINING LOCAL VARIABLES
	6.5. EDITING PROCESS VARIABLE VALUES

	CHAPTER 7. ACTION SCRIPTS
	CHAPTER 8. TIMERS
	8.1. SUPPORTED TIMERS FOR RED HAT PROCESS AUTOMATION MANAGER
	8.2. CONFIGURING TIMERS WITH DELAY AND PERIOD
	8.3. CONFIGURING TIMERS WITH ISO-8601 DATE FORMAT
	8.4. CONFIGURING TIMERS WITH PROCESS VARIABLES
	8.5. UPDATING TIMERS IN A RUNNING PROCESS INSTANCE

	CHAPTER 9. CONSTRAINTS
	CHAPTER 10. DEPLOYING A BUSINESS PROCESS IN BUSINESS CENTRAL
	CHAPTER 11. EXECUTING A BUSINESS PROCESS IN BUSINESS CENTRAL
	CHAPTER 12. TESTING A BUSINESS PROCESS
	12.1. TESTING INTEGRATION WITH EXTERNAL SERVICES

	CHAPTER 13. PROCESS DEFINITIONS AND PROCESS INSTANCES IN BUSINESS CENTRAL
	13.1. STARTING A PROCESS INSTANCE FROM THE PROCESS DEFINITIONS PAGE
	13.2. STARTING A PROCESS INSTANCE FROM THE PROCESS INSTANCES PAGE
	13.3. PROCESS DEFINITIONS IN XML

	CHAPTER 14. FORMS IN BUSINESS CENTRAL
	14.1. FORM MODELER
	14.2. GENERATING PROCESS AND TASK FORMS IN BUSINESS CENTRAL
	14.3. MANUALLY CREATING FORMS IN BUSINESS CENTRAL
	14.4. DOCUMENT ATTACHMENTS IN A FORM OR PROCESS
	14.4.1. Setting the document marshalling strategy
	14.4.1.1. Using a custom document marshalling strategy for a content management system (CMS)

	14.4.2. Creating a document variable in a business process
	14.4.3. Mapping task inputs and outputs to the document variable

	CHAPTER 15. ADVANCED PROCESS CONCEPTS AND TASKS
	15.1. INVOKING A DECISION MODEL AND NOTATION (DMN) SERVICE IN A BUSINESS PROCESS

	CHAPTER 16. ADDITIONAL RESOURCES
	PART II. INTERACTING WITH PROCESSES AND TASKS
	CHAPTER 17. BUSINESS PROCESSES IN BUSINESS CENTRAL
	17.1. KNOWLEDGE WORKER USER

	CHAPTER 18. KNOWLEDGE WORKER TASKS IN BUSINESS CENTRAL
	18.1. STARTING A TASK
	18.2. STOPPING A TASK
	18.3. DELEGATING A TASK
	18.4. CLAIMING A TASK
	18.5. RELEASING A TASK
	18.6. BULK ACTIONS ON TASKS
	18.6.1. Claiming tasks in bulk
	18.6.2. Releasing tasks in bulk
	18.6.3. Resuming tasks in bulk
	18.6.4. Suspending tasks in bulk
	18.6.5. Reassigning tasks in bulk

	CHAPTER 19. TASK FILTERING IN BUSINESS CENTRAL
	19.1. MANAGING TASK LIST COLUMNS
	19.2. FILTERING TASKS USING BASIC FILTERS
	19.3. FILTERING TASKS USING ADVANCED FILTERS
	19.4. MANAGING TASKS USING DEFAULT FILTER
	19.5. VIEWING TASK VARIABLES USING BASIC FILTERS
	19.6. VIEWING TASK VARIABLES USING ADVANCED FILTERS

	CHAPTER 20. PROCESS INSTANCE FILTERING IN BUSINESS CENTRAL
	20.1. FILTERING PROCESS INSTANCES USING BASIC FILTERS
	20.2. FILTERING PROCESS INSTANCES USING ADVANCED FILTERS
	20.3. MANAGING PROCESS INSTANCES USING DEFAULT FILTER
	20.4. VIEWING PROCESS INSTANCE VARIABLES USING BASIC FILTERS
	20.5. VIEWING PROCESS INSTANCE VARIABLES USING ADVANCED FILTERS

	CHAPTER 21. CONFIGURING EMAILS IN TASK NOTIFICATION
	CHAPTER 22. SETTING THE DUE DATE AND PRIORITY OF A TASK
	CHAPTER 23. VIEWING AND ADDING COMMENTS TO A TASK
	CHAPTER 24. VIEWING THE HISTORY LOG OF A TASK
	CHAPTER 25. VIEWING THE HISTORY LOG OF A PROCESS INSTANCE
	PART III. MANAGING AND MONITORING BUSINESS PROCESSES IN BUSINESS CENTRAL
	CHAPTER 26. PROCESS MONITORING
	CHAPTER 27. PROCESS DEFINITIONS AND PROCESS INSTANCES IN BUSINESS CENTRAL
	27.1. STARTING A PROCESS INSTANCE FROM THE PROCESS DEFINITIONS PAGE
	27.2. STARTING A PROCESS INSTANCE FROM THE PROCESS INSTANCES PAGE
	27.3. GENERATING PROCESS DOCUMENTATION IN BUSINESS CENTRAL

	CHAPTER 28. PROCESS INSTANCE MANAGEMENT
	28.1. PROCESS INSTANCE FILTERING
	28.2. CREATING A CUSTOM PROCESS INSTANCE LIST
	28.3. MANAGING PROCESS INSTANCES USING A DEFAULT FILTER
	28.4. VIEWING PROCESS INSTANCE VARIABLES USING BASIC FILTERS
	28.5. VIEWING PROCESS INSTANCE VARIABLES USING ADVANCED FILTERS
	28.6. ABORTING A PROCESS INSTANCE USING BUSINESS CENTRAL
	28.7. SIGNALING PROCESS INSTANCES FROM BUSINESS CENTRAL
	28.8. ASYNCHRONOUS SIGNAL EVENTS
	28.8.1. Configuring asynchronous signals for intermediate events
	28.8.2. Configuring asynchronous signals for end events

	28.9. PROCESS INSTANCE OPERATIONS

	CHAPTER 29. TASK MANAGEMENT
	29.1. TASK FILTERING
	29.2. CREATING CUSTOM TASK FILTERS
	29.3. MANAGING TASKS USING A DEFAULT FILTER
	29.4. VIEWING TASK VARIABLES USING BASIC FILTERS
	29.5. VIEWING TASK VARIABLES USING ADVANCED FILTERS
	29.6. MANAGING CUSTOM TASKS IN BUSINESS CENTRAL
	29.7. USER TASK ADMINISTRATION
	29.8. BULK ACTIONS ON TASKS
	29.8.1. Claiming tasks in bulk
	29.8.2. Releasing tasks in bulk
	29.8.3. Resuming tasks in bulk
	29.8.4. Suspending tasks in bulk
	29.8.5. Reassigning tasks in bulk

	CHAPTER 30. MANAGING LOG DATA
	30.1. SETTING UP AUTOMATIC CLEANUP JOB
	30.2. MANUAL CLEANUP
	30.3. REMOVING LOGS FROM THE DATABASE
	30.4. RUNNING A CUSTOM QUERY ON THE RED HAT PROCESS AUTOMATION MANAGER DATABASE
	30.4.1. Parameters for the ExecuteSQLQueryCommand command

	CHAPTER 31. EXECUTION ERROR MANAGEMENT
	31.1. VIEWING PROCESS EXECUTION ERRORS IN BUSINESS CENTRAL
	31.2. MANAGING EXECUTION ERRORS
	31.3. ERROR FILTERING
	31.4. AUTO-ACKNOWLEDGING EXECUTION ERRORS
	31.5. CLEANING UP THE ERROR LIST

	CHAPTER 32. PROCESS INSTANCE MIGRATION
	32.1. INSTALLING THE PROCESS INSTANCE MIGRATION SERVICE
	32.2. CREATING A MIGRATION PLAN
	32.3. EDITING A MIGRATION PLAN
	32.4. EXPORTING A MIGRATION PLAN
	32.5. EXECUTING A MIGRATION PLAN
	32.6. DELETING A MIGRATION PLAN

	PART IV. DESIGNING AND BUILDING CASES FOR CASE MANAGEMENT
	CHAPTER 33. CASE MANAGEMENT
	CHAPTER 34. CASE MANAGEMENT MODEL AND NOTATION
	CHAPTER 35. CASE FILES
	35.1. CONFIGURING CASE ID PREFIXES
	35.2. CONFIGURING CASE ID EXPRESSIONS

	CHAPTER 36. SUBCASES
	CHAPTER 37. AD HOC AND DYNAMIC TASKS
	CHAPTER 38. ADDING DYNAMIC TASKS AND PROCESSES TO A CASE USING THE KIE SERVER REST API
	38.1. CREATING A DYNAMIC USER TASK USING THE KIE SERVER REST API
	38.2. CREATING A DYNAMIC SERVICE TASK USING THE KIE SERVER REST API
	38.3. CREATING A DYNAMIC SUB-PROCESS USING THE KIE SERVER REST API

	CHAPTER 39. COMMENTS
	CHAPTER 40. CASE ROLES
	40.1. CREATING CASE ROLES
	40.2. ROLE AUTHORIZATION
	40.3. ASSIGNING A TASK TO A ROLE
	40.4. MODIFYING CASE ROLE ASSIGNMENTS DURING RUN TIME USING SHOWCASE
	40.5. MODIFYING CASE ROLE ASSIGNMENTS DURING RUN TIME USING REST API

	CHAPTER 41. STAGES
	41.1. DEFINING A STAGE
	41.2. CONFIGURING STAGE ACTIVATION AND COMPLETION CONDITIONS
	41.3. ADDING A DYNAMIC TASK TO A STAGE

	CHAPTER 42. MILESTONES
	42.1. CONFIGURING AND TRIGGERING MILESTONES

	CHAPTER 43. VARIABLE TAGS
	CHAPTER 44. CASE EVENT LISTENER
	CHAPTER 45. RULES IN CASE MANAGEMENT
	45.1. USING RULES TO DRIVE CASES

	CHAPTER 46. CASE MANAGEMENT SECURITY
	46.1. CONFIGURING SECURITY FOR CASE MANAGEMENT

	CHAPTER 47. CLOSING CASES
	47.1. CLOSING A CASE USING THE KIE SERVER REST API
	47.2. CLOSING A CASE IN THE SHOWCASE APPLICATION

	CHAPTER 48. CANCELING OR DESTROYING A CASE
	48.1. CASE LOG REMOVAL FROM THE DATABASE

	CHAPTER 49. ADDITIONAL RESOURCES
	PART V. USING THE SHOWCASE APPLICATION FOR CASE MANAGEMENT
	CHAPTER 50. CASE MANAGEMENT
	CHAPTER 51. CASE MANAGEMENT SHOWCASE APPLICATION
	Showcase Support

	CHAPTER 52. INSTALLING AND LOGGING IN TO THE SHOWCASE APPLICATION
	CHAPTER 53. CASE ROLES
	CHAPTER 54. STARTING DYNAMIC TASKS AND PROCESSES
	CHAPTER 55. STARTING AN IT ORDERS CASE IN THE SHOWCASE APPLICATION
	CHAPTER 56. COMPLETING THE IT_ORDERS CASE USING SHOWCASE AND BUSINESS CENTRAL
	CHAPTER 57. ADDITIONAL RESOURCES
	PART VI. CUSTOM TASKS AND WORK ITEM HANDLERS
	CHAPTER 58. MANAGING CUSTOM TASKS IN BUSINESS CENTRAL
	CHAPTER 59. CREATING WORK ITEM HANDLER PROJECTS
	CHAPTER 60. WORK ITEM HANDLER PROJECT CUSTOMIZATION
	CHAPTER 61. WORK ITEM DEFINITIONS
	61.1. @WID ANNOTATION
	61.2. TEXT FILE

	CHAPTER 62. DEPLOYING CUSTOM TASKS
	62.1. USING A BUSINESS CENTRAL CUSTOM TASK REPOSITORY
	62.2. UPLOADING JAR ARTIFACT TO BUSINESS CENTRAL
	62.3. MANUALLY COPYING WORK ITEM DEFINITIONS TO BUSINESS CENTRAL MAVEN REPOSITORY

	CHAPTER 63. REGISTERING CUSTOM TASKS
	63.1. REGISTERING CUSTOM TASKS USING THE DEPLOYMENT DESCRIPTOR INSIDE BUSINESS CENTRAL
	63.2. REGISTERING CUSTOM TASKS USING THE DEPLOYMENT DESCRIPTOR OUTSIDE BUSINESS CENTRAL

	CHAPTER 64. PLACING CUSTOM TASKS
	PART VII. PROCESS ENGINE IN RED HAT PROCESS AUTOMATION MANAGER
	CHAPTER 65. PROCESS ENGINE IN RED HAT PROCESS AUTOMATION MANAGER
	CHAPTER 66. CORE ENGINE API FOR THE PROCESS ENGINE
	66.1. KIE BASE AND KIE SESSION
	66.1.1. KIE base
	66.1.2. KIE session
	66.1.3. ProcessRuntime interface
	66.1.4. Correlation Keys

	66.2. RUNTIME MANAGER
	66.2.1. Runtime manager strategies
	66.2.2. Typical usage scenario for the runtime manager
	66.2.3. Runtime environment configuration object
	66.2.4. Runtime environment builder
	66.2.5. Registration of handlers and listeners for runtime engines
	66.2.5.1. Registering work item handlers using a file
	66.2.5.2. Registration of handlers and listeners in a CDI environment

	66.3. SERVICES IN THE PROCESS ENGINE
	66.3.1. Modules for process engine services
	66.3.2. Deployment service
	66.3.3. Definition service
	66.3.4. Process service
	66.3.5. Runtime Data Service
	66.3.6. User Task Service
	66.3.7. Quartz-based timer service
	66.3.8. Query service
	66.3.8.1. Key classes of the query service
	66.3.8.2. Using the query service in a typical scenario

	66.3.9. Advanced query service
	66.3.10. Process instance migration service
	Known limitations of process instance migration

	66.3.11. Deployments and different process versions
	Activation and Deactivation of deployments
	Invocation of the latest version of a process

	66.3.12. Deployment synchronization

	66.4. THREADS IN THE PROCESS ENGINE
	66.5. EXECUTION ERRORS IN THE PROCESS ENGINE
	66.5.1. Execution error types and filters

	66.6. EVENT LISTENERS IN THE PROCESS ENGINE
	66.6.1. Interfaces for event listeners
	66.6.1.1. Interfaces for process event listeners
	66.6.1.2. Interfaces for task lifecycle event listeners

	66.6.2. Timing of calls to event listeners
	66.6.3. Practices for development of event listeners
	66.6.4. Registration of event listeners
	66.6.5. KieRuntimeLogger event listener

	66.7. PROCESS ENGINE CONFIGURATION

	CHAPTER 67. PERSISTENCE AND TRANSACTIONS IN THE PROCESS ENGINE
	67.1. PERSISTENCE OF PROCESS RUNTIME STATES
	67.1.1. Safe points for persistence

	67.2. THE PERSISTENT AUDIT LOG
	67.2.1. The process engine audit log data model
	67.2.2. Configuration for storing the process events log in a database
	67.2.3. Configuration for sending the process events log to a JMS queue
	67.2.4. Auditing of variables
	Custom indexers

	67.3. TRANSACTIONS IN THE PROCESS ENGINE
	67.3.1. Registration of a transaction manager
	67.3.2. Configuring container-managed transactions
	67.3.3. Transaction retries

	67.4. CONFIGURATION OF PERSISTENCE IN THE PROCESS ENGINE
	67.4.1. Configuration in the persistence.xml file
	67.4.2. Configuration of data sources for process engine persistence
	67.4.3. Dependencies for persistence
	67.4.4. Creating a KIE session with persistence
	67.4.5. Persistence in the runtime manager

	67.5. PERSISTING PROCESS VARIABLES IN A SEPARATE DATABASE SCHEMA IN RED HAT PROCESS AUTOMATION MANAGER

	CHAPTER 68. INTEGRATION WITH JAVA FRAMEWORKS
	68.1. INTEGRATION WITH APACHE MAVEN
	68.1.1. Maven artifacts as deployment units
	68.1.2. Dependency management with Maven
	Maven repositories

	68.2. INTEGRATION WITH CDI
	68.2.1. Deployment service for CDI
	68.2.2. Form provider service for CDI
	68.2.3. Runtime data service for CDI
	68.2.4. Definition service for CDI
	68.2.5. CDI integration configuration
	68.2.5.1. Runtime manager as a CDI bean

	68.3. INTEGRATION WITH SPRING
	68.3.1. Direct use of the runtime manager API in Spring
	68.3.1.1. RuntimeEnvironmentFactoryBean bean
	68.3.1.2. RuntimeManagerFactoryBean bean
	68.3.1.3. TaskServiceFactoryBean bean
	68.3.1.4. Configuring a sample runtime manager with a Spring application
	68.3.1.5. Additional configuration options for the runtime manager in the Spring framework

	68.3.2. Process engine services with Spring
	68.3.2.1. Configuring process engine services with a Spring application

	68.4. INTEGRATION WITH EJB
	68.4.1. Implementations for EJB services
	Transactions
	Identity provider
	Deployment synchronization
	EJB scheduler service
	UserGroupCallback and UserInfo implementation selection

	68.4.2. Local EJB interfaces
	68.4.3. Remote EJB interfaces
	68.4.4. Remote EJB client

	68.5. INTEGRATION WITH OSGI

	APPENDIX A. VERSIONING INFORMATION
	APPENDIX B. CONTACT INFORMATION

