
Red Hat OpenStack Platform 17.1

Configuring Red Hat OpenStack Platform
networking

Managing the OpenStack Networking service (neutron)

Last Updated: 2024-04-01

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack
Platform networking

Managing the OpenStack Networking service (neutron)

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A cookbook for common OpenStack Networking tasks.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING
1.1. MANAGING YOUR RHOSP NETWORKS
1.2. NETWORKING SERVICE COMPONENTS
1.3. MODULAR LAYER 2 (ML2) NETWORKING
1.4. ML2 NETWORK TYPES
1.5. MODULAR LAYER 2 (ML2) MECHANISM DRIVERS
1.6. OPEN VSWITCH
1.7. OPEN VIRTUAL NETWORK (OVN)
1.8. MODULAR LAYER 2 (ML2) TYPE AND MECHANISM DRIVER COMPATIBILITY
1.9. EXTENSION DRIVERS FOR THE RHOSP NETWORKING SERVICE

CHAPTER 2. WORKING WITH ML2/OVN
2.1. LIST OF COMPONENTS IN THE RHOSP OVN ARCHITECTURE
2.2. ML2/OVN DATABASES
2.3. THE OVN-CONTROLLER SERVICE ON COMPUTE NODES
2.4. OVN METADATA AGENT ON COMPUTE NODES
2.5. THE OVN COMPOSABLE SERVICE
2.6. LAYER 3 HIGH AVAILABILITY WITH OVN
2.7. ACTIVE-ACTIVE CLUSTERED DATABASE SERVICE MODEL
2.8. DEPLOYING A CUSTOM ROLE WITH ML2/OVN
2.9. SR-IOV WITH ML2/OVN AND NATIVE OVN DHCP

CHAPTER 3. MANAGING PROJECT NETWORKS
3.1. VLAN PLANNING
3.2. TYPES OF NETWORK TRAFFIC
3.3. IP ADDRESS CONSUMPTION
3.4. VIRTUAL NETWORKING
3.5. ADDING NETWORK ROUTING
3.6. EXAMPLE NETWORK PLAN
3.7. CREATING A NETWORK
3.8. WORKING WITH SUBNETS
3.9. CREATING A SUBNET
3.10. ADDING A ROUTER
3.11. PURGING ALL RESOURCES AND DELETING A PROJECT
3.12. DELETING A ROUTER
3.13. DELETING A SUBNET
3.14. DELETING A NETWORK

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS
4.1. OVERVIEW OF THE OPENSTACK NETWORKING TOPOLOGY
4.2. PLACEMENT OF OPENSTACK NETWORKING SERVICES
4.3. CONFIGURING FLAT PROVIDER NETWORKS
4.4. HOW DOES THE FLAT PROVIDER NETWORK PACKET FLOW WORK?
4.5. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK CONNECTIONS ON FLAT PROVIDER
NETWORKS
4.6. CONFIGURING VLAN PROVIDER NETWORKS
4.7. HOW DOES THE VLAN PROVIDER NETWORK PACKET FLOW WORK?

8

9

10

11
11

13
13
14
15
16
16
17
17

18
18
19

20
20
20
21
22
22
26

27
27
27
29
29
29
29
30
32
33
34
35
35
35
36

37
37
37
38
40

44
46
49

Table of Contents

1

. .

. .

. .

4.8. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK CONNECTIONS ON VLAN PROVIDER
NETWORKS
4.9. ENABLING MULTICAST SNOOPING FOR PROVIDER NETWORKS IN AN ML2/OVS DEPLOYMENT
4.10. ENABLING MULTICAST IN AN ML2/OVN DEPLOYMENT
4.11. ENABLING COMPUTE METADATA ACCESS
4.12. FLOATING IP ADDRESSES

CHAPTER 5. MANAGING FLOATING IP ADDRESSES
5.1. CREATING FLOATING IP POOLS
5.2. ASSIGNING A SPECIFIC FLOATING IP
5.3. CREATING AN ADVANCED NETWORK
5.4. ASSIGNING A RANDOM FLOATING IP
5.5. CREATING MULTIPLE FLOATING IP POOLS
5.6. CONFIGURING FLOATING IP PORT FORWARDING
5.7. CREATING PORT FORWARDING FOR A FLOATING IP
5.8. BRIDGING THE PHYSICAL NETWORK
5.9. ADDING AN INTERFACE
5.10. DELETING AN INTERFACE

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS
6.1. BASIC PING TESTING
6.2. VIEWING CURRENT PORT STATUS
6.3. TROUBLESHOOTING CONNECTIVITY TO VLAN PROVIDER NETWORKS
6.4. REVIEWING THE VLAN CONFIGURATION AND LOG FILES
6.5. PERFORMING BASIC ICMP TESTING WITHIN THE ML2/OVN NAMESPACE
6.6. TROUBLESHOOTING FROM WITHIN PROJECT NETWORKS (ML2/OVS)
6.7. PERFORMING ADVANCED ICMP TESTING WITHIN THE NAMESPACE (ML2/OVS)
6.8. CREATING ALIASES FOR OVN TROUBLESHOOTING COMMANDS
6.9. MONITORING OVN LOGICAL FLOWS
6.10. MONITORING OPENFLOWS
6.11. MONITORING OVN DATABASE STATUS
6.12. VALIDATING YOUR ML2/OVN DEPLOYMENT
6.13. SETTING THE LOGGING MODE FOR ML2/OVN
6.14. FIXING OVN CONTROLLERS THAT FAIL TO REGISTER ON EDGE SITES
6.15. ML2/OVN LOG FILES

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING
7.1. PLANNING YOUR PHYSICAL NETWORK ENVIRONMENT
7.2. CONFIGURING A CISCO CATALYST SWITCH

7.2.1. About trunk ports
7.2.2. Configuring trunk ports for a Cisco Catalyst switch
7.2.3. About access ports
7.2.4. Configuring access ports for a Cisco Catalyst switch
7.2.5. About LACP port aggregation
7.2.6. Configuring LACP on the physical NIC
7.2.7. Configuring LACP for a Cisco Catalyst switch
7.2.8. About MTU settings
7.2.9. Configuring MTU settings for a Cisco Catalyst switch
7.2.10. About LLDP discovery
7.2.11. Configuring LLDP for a Cisco Catalyst switch

7.3. CONFIGURING A CISCO NEXUS SWITCH
7.3.1. About trunk ports
7.3.2. Configuring trunk ports for a Cisco Nexus switch
7.3.3. About access ports

53
55
57
59
59

60
60
60
62
62
65
65
66
68
69
69

71
71
73
74
75
76
77
78
79
80
84
85
87
89
90
92

93
93
93
93
94
95
95
96
96
97
98
98
99
99

100
100
100
100

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

2

. .

. .

7.3.4. Configuring access ports for a Cisco Nexus switch
7.3.5. About LACP port aggregation
7.3.6. Configuring LACP on the physical NIC
7.3.7. Configuring LACP for a Cisco Nexus switch
7.3.8. About MTU settings
7.3.9. Configuring MTU settings for a Cisco Nexus 7000 switch
7.3.10. About LLDP discovery
7.3.11. Configuring LLDP for a Cisco Nexus 7000 switch

7.4. CONFIGURING A CUMULUS LINUX SWITCH
7.4.1. About trunk ports
7.4.2. Configuring trunk ports for a Cumulus Linux switch
7.4.3. About access ports
7.4.4. Configuring access ports for a Cumulus Linux switch
7.4.5. About LACP port aggregation
7.4.6. About MTU settings
7.4.7. Configuring MTU settings for a Cumulus Linux switch
7.4.8. About LLDP discovery
7.4.9. Configuring LLDP for a Cumulus Linux switch

7.5. CONFIGURING A EXTREME EXOS SWITCH
7.5.1. About trunk ports
7.5.2. Configuring trunk ports on an Extreme Networks EXOS switch
7.5.3. About access ports
7.5.4. Configuring access ports for an Extreme Networks EXOS switch
7.5.5. About LACP port aggregation
7.5.6. Configuring LACP on the physical NIC
7.5.7. Configuring LACP on an Extreme Networks EXOS switch
7.5.8. About MTU settings
7.5.9. Configuring MTU settings on an Extreme Networks EXOS switch
7.5.10. About LLDP discovery
7.5.11. Configuring LLDP settings on an Extreme Networks EXOS switch

7.6. CONFIGURING A JUNIPER EX SERIES SWITCH
7.6.1. About trunk ports
7.6.2. Configuring trunk ports for a Juniper EX Series switch
7.6.3. About access ports
7.6.4. Configuring access ports for a Juniper EX Series switch
7.6.5. About LACP port aggregation
7.6.6. Configuring LACP on the physical NIC
7.6.7. Configuring LACP for a Juniper EX Series switch
7.6.8. About MTU settings
7.6.9. Configuring MTU settings for a Juniper EX Series switch
7.6.10. About LLDP discovery
7.6.11. Configuring LLDP for a Juniper EX Series switch

CHAPTER 8. CONFIGURING MAXIMUM TRANSMISSION UNIT (MTU) SETTINGS
8.1. MTU OVERVIEW
8.2. CONFIGURING MTU SETTINGS IN DIRECTOR
8.3. REVIEWING THE RESULTING MTU CALCULATION

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC
9.1. QOS RULES
9.2. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES
9.3. CONTROLLING MINIMUM BANDWIDTH BY USING QOS POLICIES

9.3.1. Using Networking service back-end enforcement to enforce minimum bandwidth

100
101
101
102
102
102
103
103
103
103
103
104
104
105
105
105
105
106
106
106
106
106
107
107
107
108
108
109
109
109
109
109
109
110
110
111
111
111

113
113
114
114

115
115
116
116

117
117
119
123
124

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

9.3.2. Scheduling instances by using minimum bandwidth QoS policies
9.4. LIMITING NETWORK TRAFFIC BY USING QOS POLICIES
9.5. PRIORITIZING NETWORK TRAFFIC BY USING DSCP MARKING QOS POLICIES
9.6. APPLYING QOS POLICIES TO PROJECTS BY USING NETWORKING SERVICE RBAC

CHAPTER 10. CONFIGURING BRIDGE MAPPINGS
10.1. OVERVIEW OF BRIDGE MAPPINGS
10.2. TRAFFIC FLOW
10.3. CONFIGURING BRIDGE MAPPINGS
10.4. MAINTAINING BRIDGE MAPPINGS FOR OVS

10.4.1. Cleaning up OVS patch ports manually
10.4.2. Cleaning up OVS patch ports automatically

CHAPTER 11. VLAN-AWARE INSTANCES
11.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS
11.2. ENABLING VLAN TRANSPARENCY IN ML2/OVN DEPLOYMENTS
11.3. REVIEWING THE TRUNK PLUG-IN
11.4. CREATING A TRUNK CONNECTION
11.5. ADDING SUBPORTS TO THE TRUNK
11.6. CONFIGURING AN INSTANCE TO USE A TRUNK
11.7. CONFIGURING NETWORKING SERVICE RPC TIMEOUT
11.8. UNDERSTANDING TRUNK STATES

CHAPTER 12. CONFIGURING RBAC POLICIES
12.1. OVERVIEW OF RBAC POLICIES
12.2. CREATING RBAC POLICIES
12.3. REVIEWING RBAC POLICIES
12.4. DELETING RBAC POLICIES
12.5. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

CHAPTER 13. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)
13.1. UNDERSTANDING DISTRIBUTED VIRTUAL ROUTING (DVR)

13.1.1. Overview of Layer 3 routing
13.1.2. Routing flows
13.1.3. Centralized routing

13.2. DVR OVERVIEW
13.3. DVR KNOWN ISSUES AND CAVEATS
13.4. SUPPORTED ROUTING ARCHITECTURES
13.5. MIGRATING CENTRALIZED ROUTERS TO DISTRIBUTED ROUTING
13.6. DEPLOYING ML2/OVN OPENSTACK WITH DISTRIBUTED VIRTUAL ROUTING (DVR) DISABLED

13.6.1. Additional resources

CHAPTER 14. PROJECT NETWORKING WITH IPV6
14.1. IPV6 SUBNET OPTIONS
14.2. CREATE AN IPV6 SUBNET USING STATEFUL DHCPV6

CHAPTER 15. MANAGING PROJECT QUOTAS
15.1. CONFIGURING PROJECT QUOTAS
15.2. L3 QUOTA OPTIONS
15.3. FIREWALL QUOTA OPTIONS
15.4. SECURITY GROUP QUOTA OPTIONS
15.5. MANAGEMENT QUOTA OPTIONS

CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS
16.1. ADVANTAGES OF ROUTED PROVIDER NETWORKS

127
130
135
137

138
138
138
139
140
141
141

143
143
143
145
145
147
148
151
152

153
153
153
154
154
155

156
156
156
156
156
157
157
158
158
159
160

161
161

164

166
166
166
166
166
167

168
168

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

4

. .

. .

. .

. .

. .

. .

. .

16.2. FUNDAMENTALS OF ROUTED PROVIDER NETWORKS
16.3. LIMITATIONS OF ROUTED PROVIDER NETWORKS
16.4. PREPARING FOR A ROUTED PROVIDER NETWORK
16.5. CREATING A ROUTED PROVIDER NETWORK
16.6. MIGRATING A NON-ROUTED NETWORK TO A ROUTED PROVIDER NETWORK

CHAPTER 17. CREATING CUSTOM VIRTUAL ROUTERS WITH ROUTER FLAVORS
17.1. ENABLING ROUTER FLAVORS AND CREATING SERVICE PROVIDERS FOR YOUR CUSTOM ROUTERS

17.2. CREATING A ROUTER FLAVOR
17.3. CREATING A CUSTOM VIRTUAL ROUTER WITH A ROUTER FLAVOR

CHAPTER 18. CONFIGURING ALLOWED ADDRESS PAIRS
18.1. OVERVIEW OF ALLOWED ADDRESS PAIRS
18.2. CREATING A PORT AND ALLOWING ONE ADDRESS PAIR
18.3. ADDING ALLOWED ADDRESS PAIRS

CHAPTER 19. CONFIGURING SECURITY GROUPS
19.1. CREATING A SECURITY GROUP
19.2. UPDATING SECURITY GROUP RULES
19.3. DELETING SECURITY GROUP RULES
19.4. DELETING A SECURITY GROUP
19.5. CONFIGURING SHARED SECURITY GROUPS

CHAPTER 20. LOGGING SECURITY GROUP ACTIONS
20.1. VERIFYING THAT SECURITY GROUP LOGGING IS ENABLED
20.2. CREATING LOG OBJECTS FOR SECURITY GROUPS
20.3. LISTING AND VIEWING LOG OBJECTS FOR SECURITY GROUPS
20.4. ENABLING AND DISABLING LOG OBJECTS FOR SECURITY GROUPS
20.5. RENAMING A LOG OBJECT FOR SECURITY GROUPS
20.6. DELETING A LOG OBJECT FOR SECURITY GROUPS
20.7. ACCESSING SECURITY GROUP LOG CONTENT
20.8. SAMPLE SECURITY GROUP LOG CONTENT
20.9. ADJUSTING RATE AND BURST LIMITS FOR SECURITY GROUP LOGGING

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS
21.1. CONFIGURING THE L2 POPULATION DRIVER
21.2. TUNING KEEPALIVED TO AVOID VRRP PACKET LOSS
21.3. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS
21.4. ASSIGNING DHCP ATTRIBUTES TO PORTS
21.5. ENABLING NUMA AFFINITY ON PORTS
21.6. LOADING KERNEL MODULES
21.7. LIMITING QUERIES TO THE METADATA SERVICE

CHAPTER 22. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)
22.1. RHOSP NETWORKING SERVICE WITHOUT HIGH AVAILABILITY (HA)
22.2. OVERVIEW OF LAYER 3 HIGH AVAILABILITY (HA)
22.3. LAYER 3 HIGH AVAILABILITY (HA) FAILOVER CONDITIONS
22.4. PROJECT CONSIDERATIONS FOR LAYER 3 HIGH AVAILABILITY (HA)
22.5. HIGH AVAILABILITY (HA) CHANGES TO THE RHOSP NETWORKING SERVICE
22.6. ENABLING LAYER 3 HIGH AVAILABILITY (HA) ON RHOSP NETWORKING SERVICE NODES
22.7. REVIEWING HIGH AVAILABILITY (HA) RHOSP NETWORKING SERVICE NODE CONFIGURATIONS

CHAPTER 23. USING AVAILABILITY ZONES TO MAKE NETWORK RESOURCES HIGHLY AVAILABLE
23.1. ABOUT NETWORKING SERVICE AVAILABILITY ZONES

168
169
169
172
178

181

181
182
184

186
186
187
187

189
189
191

192
192
192

195
196
196
197
197
198
198
198
198
199

201
201

203
204
207
209

211
212

215
215
215
216
216
216
217
218

220
220

Table of Contents

5

23.2. CONFIGURING NETWORK SERVICE AVAILABILITY ZONES FOR ML2/OVS
23.3. CONFIGURING NETWORK SERVICE AVAILABILITY ZONES WITH ML2/OVN
23.4. MANUALLY ASSIGNING AVAILABILITY ZONES TO NETWORKS AND ROUTERS

220
223
226

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

6

Table of Contents

7

PREFACE

NOTE

You cannot apply a role-based access control (RBAC)-shared security group directly to
an instance during instance creation. To apply an RBAC-shared security group to an
instance you must first create the port, apply the shared security group to that port, and
then assign that port to the instance. See Adding a security group to a port .

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

8

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_instances/index#adding-a-security-group-to-a-port_instances

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

9

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
We appreciate your input on our documentation. Tell us how we can make it better.

Providing documentation feedback in Jira

Use the Create Issue form to provide feedback on the documentation. The Jira issue will be created in
the Red Hat OpenStack Platform Jira project, where you can track the progress of your feedback.

1. Ensure that you are logged in to Jira. If you do not have a Jira account, create an account to
submit feedback.

2. Click the following link to open a the Create Issue page: Create Issue

3. Complete the Summary and Description fields. In the Description field, include the
documentation URL, chapter or section number, and a detailed description of the issue. Do not
modify any other fields in the form.

4. Click Create.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

10

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12336920&summary=Documentation feedback: %3CAdd summary here%3E&issuetype=1&description=<Include+the+documentation+URL,+the chapter+or+section+number,+and+a+detailed+description+of+the+issue.>&components=12391143&priority=10300

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING
The Networking service (neutron) is the software-defined networking (SDN) component of Red Hat
OpenStack Platform (RHOSP). The RHOSP Networking service manages internal and external traffic to
and from virtual machine instances and provides core services such as routing, segmentation, DHCP,
and metadata. It provides the API for virtual networking capabilities and management of switches,
routers, ports, and firewalls.

1.1. MANAGING YOUR RHOSP NETWORKS

With the Red Hat OpenStack Platform (RHOSP) Networking service (neutron) you can effectively meet
your site’s networking goals. You can:

Provide connectivity to VM instances within a project.
Project networks primarily enable general (non-privileged) projects to manage networks
without involving administrators. These networks are entirely virtual and require virtual routers
to interact with other project networks and external networks such as the Internet. Project
networks also usually provide DHCP and metadata services to VM (virtual machine) instances.
RHOSP supports the following project network types: flat, VLAN, VXLAN, GRE, and GENEVE.

For more information, see Managing project networks.

Connect VM instances to networks outside of a project.
Provider networks provide connectivity like project networks. But only administrative
(privileged) users can manage those networks because they interface with the physical network
infrastructure. RHOSP supports the following provider network types: flat and VLAN.

Inside project networks, you can use pools of floating IP addresses or a single floating IP
address to direct ingress traffic to your VM instances. Using bridge mappings, you can associate
a physical network name (an interface label) to a bridge created with OVS or OVN to allow
provider network traffic to reach the physical network.

For more information, see Connecting VM instances to physical networks .

Create a network that is optimized for the edge.
Operators can create routed provider networks that are typically used in edge deployments,
and rely on multiple layer 2 network segments instead of traditional networks that have only one
segment.

Routed provider networks simplify the cloud for end users because they see only one network.
For cloud operators, routed provider networks deliver scalabilty and fault tolerance. For
example, if a major error occurs, only one segment is impacted instead of the entire network
failing.

For more information, see Deploying routed provider networks .

Make your network resources highly available.
You can use availability zones (AZs) and Virtual Router Redundancy Protocol (VRRP) to keep
your network resources highly available. Operators group network nodes that are attached to
different power sources on different AZs. Next, operators schedule crucial services such as
DHCP, L3, FW, and so on to be on separate AZs.

RHOSP uses VRRP to make project routers and floating IP addresses highly available. An
alternative to centralized routing, Distributed Virtual Routing (DVR) offers an alternative routing
design based on VRRP that deploys the L3 agent and schedules routers on every Compute
node.

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING

11

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/manage-proj-network_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/connect-instance_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/deploy-routed-prov-networks_rhosp-network

For more information, see Using availability zones to make network resources highly available .

Secure your network at the port level.
Security groups provide a container for virtual firewall rules that control ingress (inbound to
instances) and egress (outbound from instances) network traffic at the port level. Security
groups use a default deny policy and only contain rules that allow specific traffic. Each port can
reference one or more security groups in an additive fashion. The firewall driver translates
security group rules to a configuration for the underlying packet filtering technology such as
iptables.

By default, security groups are stateful. In ML2/OVN deployments, you can also create stateless
security groups. A stateless security group can provide significant performance benefits. Unlike
stateful security groups, stateless security groups do not automatically allow returning traffic, so
you must create a complimentary security group rule to allow the return of related traffic.

For more information, see Configuring shared security groups .

Manage port traffic.
With allowed address pairs you identify a specific MAC address, IP address, or both to allow
network traffic to pass through a port regardless of the subnet. When you define allowed
address pairs, you are able to use protocols like VRRP (Virtual Router Redundancy Protocol)
that float an IP address between two VM instances to enable fast data plane failover.

For more information, see Configuring allowed address pairs.

Optimize large overlay networks.
Using the L2 Population driver you can enable broadcast, multicast, and unicast traffic to scale
out on large overlay networks.

For more information, see Configuring the L2 population driver .

Set ingress and egress limits for traffic on VM instances.
You can offer varying service levels for instances by using quality of service (QoS) policies to
apply rate limits to egress and ingress traffic. You can apply QoS policies to individual ports. You
can also apply QoS policies to a project network, where ports with no specific policy attached
inherit the policy.

For more information, see Configuring Quality of Service (QoS) policies .

Manage the amount of network resources RHOSP projects can create.
With the Networking service quota options you can set limits on the amount of network
resources project users can create. This includes resources such as ports, subnets, networks,
and so on.

For more information, see Managing project quotas.

Optimize your VM instances for Network Functions Virtualization (NFV).
Instances can send and receive VLAN-tagged traffic over a single virtual NIC. This is particularly
useful for NFV applications (VNFs) that expect VLAN-tagged traffic, allowing a single virtual
NIC to serve multiple customers or services.

In a VLAN transparent network, you set up VLAN tagging in the VM instances. The VLAN tags
are transferred over the network and consumed by the VM instances on the same VLAN, and
ignored by other instances and devices. VLAN trunks support VLAN-aware instances by
combining VLANs into a single trunked port.

For more information, see VLAN-aware instances.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

12

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/use-azs-make-network-nodes-ha_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/security-groups-configuring_rhosp-network#config-shared-security-groups_security-groups-configuring
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/config-allowed-address-pairs_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/common-network-tasks_rhosp-network#config-l2pop-driver_common-network-tasks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/config-qos-policies_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/manage-proj-quotas_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/vlan-aware-instances_rhosp-network

Control which projects can attach instances to a shared network.
Using role-based access control (RBAC) policies in the RHOSP Networking service, cloud
administrators can remove the ability for some projects to create networks and can instead
allow them to attach to pre-existing networks that correspond to their project.

For more information, see Configuring RBAC policies .

Control network access to and from instances.
You can control network and protocol access to and from instances by using security groups.
Security groups are sets of IP filter rules that, for example, allow users to perform an ICMP ping
on an instance, and run SSH to connect to an instance. The security group rules are applied to all
instances within a project.

For more information, see Configuring security groups.

Logging traffic flow events into and out of an instance.
You can create packet logs for security groups to monitor traffic flows into and out of a virtual
machine (VM) instance. Each log generates a stream of data about packet flow events and
appends it to a common log file on the Compute host from which the VM instance was launched.

For more information, see Logging security group actions .

1.2. NETWORKING SERVICE COMPONENTS

The Red Hat OpenStack Platform (RHOSP) Networking service (neutron) includes the following
components:

API server
The RHOSP networking API includes support for Layer 2 networking and IP Address
Management (IPAM), as well as an extension for a Layer 3 router construct that enables routing
between Layer 2 networks and gateways to external networks. RHOSP networking includes a
growing list of plug-ins that enable interoperability with various commercial and open source
network technologies, including routers, switches, virtual switches and software-defined
networking (SDN) controllers.

Modular Layer 2 (ML2) plug-in and agents
ML2 plugs and unplugs ports, creates networks or subnets, and provides IP addressing.

Messaging queue
Accepts and routes RPC requests between RHOSP services to complete API operations.

1.3. MODULAR LAYER 2 (ML2) NETWORKING

Modular Layer 2 (ML2) is the Red Hat OpenStack Platform (RHOSP) networking core plug-in. The ML2
modular design enables the concurrent operation of mixed network technologies through mechanism
drivers. Open Virtual Network (OVN) is the default mechanism driver used with ML2.

The ML2 framework distinguishes between the two kinds of drivers that can be configured:

Type drivers

Define how an RHOSP network is technically realized.
Each available network type is managed by an ML2 type driver, and they maintain any required type-
specific network state. Validating the type-specific information for provider networks, type drivers
are responsible for the allocation of a free segment in project networks. Examples of type drivers are
GENEVE, GRE, VXLAN, and so on.

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING

13

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/config-rbac-policies_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/security-groups-configuring_rhosp-network
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/security-group-logging_rhosp-network

Mechanism drivers

Define the mechanism to access an RHOSP network of a certain type.
The mechanism driver takes the information established by the type driver and applies it to the
networking mechanisms that have been enabled. Examples of mechanism drivers are Open Virtual
Networking (OVN) and Open vSwitch (OVS).

Mechanism drivers can employ L2 agents, and by using RPC interact directly with external devices or
controllers. You can use multiple mechanism and type drivers simultaneously to access different
ports of the same virtual network.

Additional resources

Section 1.8, “Modular Layer 2 (ML2) type and mechanism driver compatibility”

1.4. ML2 NETWORK TYPES

You can operate multiple network segments at the same time. ML2 supports the use and
interconnection of multiple network segments. You don’t have to bind a port to a network segment
because ML2 binds ports to segements with connectivity. Depending on the mechanism driver, ML2
supports the following network segment types:

Flat

VLAN

GENEVE tunnels

VXLAN and GRE tunnels

Flat

All virtual machine (VM) instances reside on the same network, which can also be shared with the
hosts. No VLAN tagging or other network segregation occurs.

VLAN

With RHOSP networking users can create multiple provider or project networks using VLAN IDs
(802.1Q tagged) that correspond to VLANs present in the physical network. This allows instances to
communicate with each other across the environment. They can also communicate with dedicated
servers, firewalls, load balancers and other network infrastructure on the same Layer 2 VLAN.
You can use VLANs to segment network traffic for computers running on the same switch. This
means that you can logically divide your switch by configuring the ports to be members of different
networks — they are basically mini-LANs that you can use to separate traffic for security reasons.

For example, if your switch has 24 ports in total, you can assign ports 1-6 to VLAN200, and ports 7-18
to VLAN201. As a result, computers connected to VLAN200 are completely separate from those on
VLAN201; they cannot communicate directly, and if they wanted to, the traffic must pass through a
router as if they were two separate physical switches. Firewalls can also be useful for governing which
VLANs can communicate with each other.

GENEVE tunnels

GENEVE recognizes and accommodates changing capabilities and needs of different devices in
network virtualization. It provides a framework for tunneling rather than being prescriptive about the
entire system. Geneve defines the content of the metadata flexibly that is added during

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

14

encapsulation and tries to adapt to various virtualization scenarios. It uses UDP as its transport
protocol and is dynamic in size using extensible option headers. Geneve supports unicast, multicast,
and broadcast. The GENEVE type driver is compatible with the ML2/OVN mechanism driver.

VXLAN and GRE tunnels

VXLAN and GRE use network overlays to support private communication between instances. An
RHOSP networking router is required to enable traffic to traverse outside of the GRE or VXLAN
project network. A router is also required to connect directly-connected project networks with
external networks, including the internet; the router provides the ability to connect to instances
directly from an external network using floating IP addresses. VXLAN and GRE type drivers are
compatible with the ML2/OVS mechanism driver.

Additional resources

Section 1.8, “Modular Layer 2 (ML2) type and mechanism driver compatibility”

1.5. MODULAR LAYER 2 (ML2) MECHANISM DRIVERS

Modular Layer 2 (ML2) plug-ins are implemented as mechanisms with a common code base. This
approach enables code reuse and eliminates much of the complexity around code maintenance and
testing.

You enable mechanism drivers using the Orchestration service (heat) parameter,
NeutronMechanismDrivers. Here is an example from a heat custom environment file:

parameter_defaults:
 ...
 NeutronMechanismDrivers: ansible,ovn,baremetal
 ...

The order in which you specify the mechanism drivers matters. In the earlier example, if you want to bind
a port using the baremetal mechanism driver, then you must specify baremetal before ansible.
Otherwise, the ansible driver will bind the port, because it precedes baremetal in the list of values for
NeutronMechanismDrivers.

Red Hat chose ML2/OVN as the default mechanism driver for all new deployments starting with RHOSP
15 because it offers immediate advantages over the ML2/OVS mechanism driver for most customers
today. Those advantages multiply with each release while we continue to enhance and improve the
ML2/OVN feature set.

Support is available for the deprecated ML2/OVS mechanism driver through the RHOSP 17 releases.
During this time, the ML2/OVS driver remains in maintenance mode, receiving bug fixes and normal
support, and most new feature development happens in the ML2/OVN mechanism driver.

In RHOSP 18.0, Red Hat plans to completely remove the ML2/OVS mechanism driver and stop
supporting it.

If your existing Red Hat OpenStack Platform (RHOSP) deployment uses the ML2/OVS mechanism
driver, start now to evaluate a plan to migrate to the mechanism driver. Migration is supported in
RHOSP 16.2 and will be supported in RHOSP 17.1. Migration tools are available in RHOSP 17.0 for test
purposes only.

Red Hat requires that you file a proactive support case before attempting a migration from ML2/OVS
to ML2/OVN. Red Hat does not support migrations without the proactive support case. See How to
open a proactive case for a planned activity on Red Hat OpenStack Platform?

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING

15

https://access.redhat.com/solutions/2186261

Additional resources

Neutron in Component, Plug-In, and Driver Support in Red Hat OpenStack Platform

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

1.6. OPEN VSWITCH

Open vSwitch (OVS) is a software-defined networking (SDN) virtual switch similar to the Linux software
bridge. OVS provides switching services to virtualized networks with support for industry standard
OpenFlow and sFlow. OVS can also integrate with physical switches using layer 2 features, such as STP,
LACP, and 802.1Q VLAN tagging. Open vSwitch version 1.11.0-1.el6 or later also supports tunneling with
VXLAN and GRE.

NOTE

To mitigate the risk of network loops in OVS, only a single interface or a single bond can
be a member of a given bridge. If you require multiple bonds or interfaces, you can
configure multiple bridges.

Additional resources

Network Interface Bonding in the Customizing your Red Hat OpenStack Platform deployment
guide.

1.7. OPEN VIRTUAL NETWORK (OVN)

Open Virtual Network (OVN), is a system to support logical network abstraction in virtual machine and
container environments. Sometimes called open source virtual networking for Open vSwitch, OVN
complements the existing capabilities of OVS to add native support for logical network abstractions,
such as logical L2 and L3 overlays, security groups and services such as DHCP.

A physical network comprises physical wires, switches, and routers. A virtual network extends a physical
network into a hypervisor or container platform, bridging VMs or containers into the physical network.
An OVN logical network is a network implemented in software that is insulated from physical networks by
tunnels or other encapsulations. This allows IP and other address spaces used in logical networks to
overlap with those used on physical networks without causing conflicts. Logical network topologies can
be arranged without regard for the topologies of the physical networks on which they run. Thus, VMs
that are part of a logical network can migrate from one physical machine to another without network
disruption.

The encapsulation layer prevents VMs and containers connected to a logical network from
communicating with nodes on physical networks. For clustering VMs and containers, this can be
acceptable or even desirable, but in many cases VMs and containers do need connectivity to physical
networks. OVN provides multiple forms of gateways for this purpose. An OVN deployment consists of
several components:

Cloud Management System (CMS)

integrates OVN into a physical network by managing the OVN logical network elements and
connecting the OVN logical network infrastructure to physical network elements. Some examples
include OpenStack and OpenShift.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

16

https://access.redhat.com/articles/1535373#Neutron
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#assembly_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_customizing-networks-for-the-rhosp-environment#assembly_network-interface-bonding

OVN databases

stores data representing the OVN logical and physical networks.

Hypervisors

run Open vSwitch and translate the OVN logical network into OpenFlow on a physical or virtual
machine.

Gateways

extends a tunnel-based OVN logical network into a physical network by forwarding packets between
tunnels and the physical network infrastructure.

1.8. MODULAR LAYER 2 (ML2) TYPE AND MECHANISM DRIVER
COMPATIBILITY

Refer to the following table when planning your Red Hat OpenStack Platform (RHOSP) data networks
to determine the network types each Modular Layer 2 (ML2) mechanism driver supports.

Table 1.1. Network types supported by ML2 mechanism drivers

Mechanism driver Supports these type drivers

Flat GRE VLAN VXLAN GENEVE

Open Virtual Network (OVN) Yes No Yes Yes [1] Yes

Open vSwitch (OVS) Yes Yes Yes Yes No

[1] ML2/OVN VXLAN support is limited to 4096 networks and 4096 ports per network. Also, ACLs that
rely on the ingress port do not work with ML2/OVN and VXLAN, because the ingress port is not passed.

1.9. EXTENSION DRIVERS FOR THE RHOSP NETWORKING SERVICE

The Red Hat OpenStack Platform (RHOSP) Networking service (neutron) is extensible. Extensions
serve two purposes: they allow the introduction of new features in the API without requiring a version
change and they allow the introduction of vendor specific niche functionality. Applications can
programmatically list available extensions by performing a GET on the /extensions URI. Note that this is
a versioned request; that is, an extension available in one API version might not be available in another.

The ML2 plug-in also supports extension drivers that allows other pluggable drivers to extend the core
resources implemented in the ML2 plug-in for network objects. Examples of extension drivers include
support for QoS, port security, and so on.

CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING

17

CHAPTER 2. WORKING WITH ML2/OVN
Red Hat OpenStack Platform (RHOSP) networks are managed by the Networking service (neutron).
The core of the Networking service is the Modular Layer 2 (ML2) plug-in, and the default mechanism
driver for RHOSP ML2 plug-in is the Open Virtual Networking (OVN) mechanism driver.

Earlier RHOSP versions used the Open vSwitch (OVS) mechanism driver by default, but Red Hat
recommends the ML2/OVN mechanism driver for most deployments.

2.1. LIST OF COMPONENTS IN THE RHOSP OVN ARCHITECTURE

The RHOSP OVN architecture replaces the OVS Modular Layer 2 (ML2) mechanism driver with the
OVN ML2 mechanism driver to support the Networking API. OVN provides networking services for the
Red Hat OpenStack platform.

As illustrated in Figure 2.1, the OVN architecture consists of the following components and services:

ML2 plug-in with OVN mechanism driver

The ML2 plug-in translates the OpenStack-specific networking configuration into the platform-
neutral OVN logical networking configuration. It typically runs on the Controller node.

OVN northbound (NB) database (ovn-nb)

This database stores the logical OVN networking configuration from the OVN ML2 plugin. It typically
runs on the Controller node and listens on TCP port 6641.

OVN northbound service (ovn-northd)

This service converts the logical networking configuration from the OVN NB database to the logical
data path flows and populates these on the OVN Southbound database. It typically runs on the
Controller node.

OVN southbound (SB) database (ovn-sb)

This database stores the converted logical data path flows. It typically runs on the Controller node
and listens on TCP port 6642.

OVN controller (ovn-controller)

This controller connects to the OVN SB database and acts as the open vSwitch controller to control
and monitor network traffic. It runs on all Compute and gateway nodes where
OS::Tripleo::Services::OVNController is defined.

OVN metadata agent (ovn-metadata-agent)

This agent creates the haproxy instances for managing the OVS interfaces, network namespaces
and HAProxy processes used to proxy metadata API requests. The agent runs on all Compute and
gateway nodes where OS::TripleO::Services::OVNMetadataAgent is defined.

OVS database server (OVSDB)

Hosts the OVN Northbound and Southbound databases. Also interacts with ovs-vswitchd to host
the OVS database conf.db.

NOTE

The schema file for the NB database is located in /usr/share/ovn/ovn-nb.ovsschema,
and the SB database schema file is in /usr/share/ovn/ovn-sb.ovsschema.

Figure 2.1. OVN architecture in a RHOSP environment

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

18

Figure 2.1. OVN architecture in a RHOSP environment

2.2. ML2/OVN DATABASES

In Red Hat OpenStack Platform ML2/OVN deployments, network configuration information passes
between processes through shared distributed databases. You can inspect these databases to verify the
status of the network and identify issues.

CHAPTER 2. WORKING WITH ML2/OVN

19

OVN northbound database

The northbound database (OVN_Northbound) serves as the interface between OVN and a cloud
management system such as Red Hat OpenStack Platform (RHOSP). RHOSP produces the
contents of the northbound database.
The northbound database contains the current desired state of the network, presented as a
collection of logical ports, logical switches, logical routers, and more. Every RHOSP Networking
service (neutron) object is represented in a table in the northbound database.

OVN southbound database

The southbound database (OVN_Southbound) holds the logical and physical configuration state for
OVN system to support virtual network abstraction. The ovn-controller uses the information in this
database to configure OVS to satisfy Networking service (neutron) requirements.

2.3. THE OVN-CONTROLLER SERVICE ON COMPUTE NODES

The ovn-controller service runs on each Compute node and connects to the OVN southbound (SB)
database server to retrieve the logical flows. The ovn-controller translates these logical flows into
physical OpenFlow flows and adds the flows to the OVS bridge (br-int).

To communicate with ovs-vswitchd and install the OpenFlow flows, the ovn-controller connects to
one of the active ovsdb-server servers (which host conf.db) using the UNIX socket path that was
passed when ovn-controller was started (for example unix:/var/run/openvswitch/db.sock).

The ovn-controller service expects certain key-value pairs in the external_ids column of the
Open_vSwitch table; puppet-ovn uses puppet-vswitch to populate these fields. The following
example shows the key-value pairs that puppet-vswitch configures in the external_ids column:

hostname=<HOST NAME>
ovn-encap-ip=<IP OF THE NODE>
ovn-encap-type=geneve
ovn-remote=tcp:OVN_DBS_VIP:6642

2.4. OVN METADATA AGENT ON COMPUTE NODES

The OVN metadata agent is configured in the tripleo-heat-templates/deployment/ovn/ovn-metadata-
container-puppet.yaml file and included in the default Compute role through
OS::TripleO::Services::OVNMetadataAgent. As such, the OVN metadata agent with default
parameters is deployed as part of the OVN deployment.

OpenStack guest instances access the Networking metadata service available at the link-local IP
address: 169.254.169.254. The neutron-ovn-metadata-agent has access to the host networks where the
Compute metadata API exists. Each HAProxy is in a network namespace that is not able to reach the
appropriate host network. HaProxy adds the necessary headers to the metadata API request and then
forwards the request to the neutron-ovn-metadata-agent over a UNIX domain socket.

The OVN Networking service creates a unique network namespace for each virtual network that enables
the metadata service. Each network accessed by the instances on the Compute node has a
corresponding metadata namespace (ovnmeta-<network_uuid>).

2.5. THE OVN COMPOSABLE SERVICE

Red Hat OpenStack Platform usually consists of nodes in pre-defined roles, such as nodes in Controller

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

20

Red Hat OpenStack Platform usually consists of nodes in pre-defined roles, such as nodes in Controller
roles, Compute roles, and different storage role types. Each of these default roles contains a set of
services that are defined in the core heat template collection.

In a default Red Hat OpenStack (RHOSP) deployment, the ML2/OVN composable service, ovn-dbs,
runs on Controller nodes. Because the service is composable, you can assign it to another role, such as a
Networker role. By choosing to assign the ML2/OVN service to another role you can reduce the load on
the Controller node, and implement a high-availability strategy by isolating the Networking service on
Networker nodes.

Related information

Deploying a custom role with ML2/OVN

SR-IOV with ML2/OVN and native OVN DHCP

2.6. LAYER 3 HIGH AVAILABILITY WITH OVN

OVN supports Layer 3 high availability (L3 HA) without any special configuration. OVN automatically
schedules the router port to all available gateway nodes that can act as an L3 gateway on the specified
external network. OVN L3 HA uses the gateway_chassis column in the OVN Logical_Router_Port
table. Most functionality is managed by OpenFlow rules with bundled active_passive outputs. The ovn-
controller handles the Address Resolution Protocol (ARP) responder and router enablement and
disablement. Gratuitous ARPs for FIPs and router external addresses are also periodically sent by the
ovn-controller.

NOTE

L3HA uses OVN to balance the routers back to the original gateway nodes to avoid any
nodes becoming a bottleneck.

BFD monitoring

OVN uses the Bidirectional Forwarding Detection (BFD) protocol to monitor the availability of the
gateway nodes. This protocol is encapsulated on top of the Geneve tunnels established from node to
node.

Each gateway node monitors all the other gateway nodes in a star topology in the deployment. Gateway
nodes also monitor the compute nodes to let the gateways enable and disable routing of packets and
ARP responses and announcements.

Each compute node uses BFD to monitor each gateway node and automatically steers external traffic,
such as source and destination Network Address Translation (SNAT and DNAT), through the active
gateway node for a given router. Compute nodes do not need to monitor other compute nodes.

NOTE

External network failures are not detected as would happen with an ML2-OVS
configuration.

L3 HA for OVN supports the following failure modes:

The gateway node becomes disconnected from the network (tunneling interface).

ovs-vswitchd stops (ovs-switchd is responsible for BFD signaling)

CHAPTER 2. WORKING WITH ML2/OVN

21

ovn-controller stops (ovn-controller removes itself as a registered node).

NOTE

This BFD monitoring mechanism only works for link failures, not for routing failures.

2.7. ACTIVE-ACTIVE CLUSTERED DATABASE SERVICE MODEL

Red Hat OpenStack Platform (RHOSP) ML2/OVN deployments use a clustered database service model
that applies the Raft consensus algorithm to enhance performance of OVS database protocol traffic
and provide faster, more reliable failover handling. Starting in RHOSP 17.0, the clustered database
service model replaces the pacemaker-based, active/backup model.

A clustered database operates on a cluster of at least three database servers on different hosts. Servers
use the Raft consensus algorithm to synchronize writes and share network traffic continuously across
the cluster. The cluster elects one server as the leader. All servers in the cluster can handle database
read operations, which mitigates potential bottlenecks on the control plane. Write operations are
handled by the cluster leader.

If a server fails, a new cluster leader is elected and the traffic is redistributed among the remaining
operational servers. The clustered database service model handles failovers more efficiently than the
pacemaker-based model did. This mitigates related downtime and complications that can occur with
longer failover times.

The leader election process requires a majority, so the fault tolerance capacity is limited by the highest
odd number in the cluster. For example, a three-server cluster continues to operate if one server fails. A
five-server cluster tolerates up to two failures. Increasing the number of servers to an even number does
not increase fault tolerance. For example, a four-server cluster cannot tolerate more failures than a
three-server cluster.

Most RHOSP deployments use three servers.

Clusters larger than five servers also work, with every two added servers allowing the cluster to tolerate
an additional failure, but write performance decreases.

For information on monitoring the status of the database servers, see Monitoring OVN database status.

2.8. DEPLOYING A CUSTOM ROLE WITH ML2/OVN

In a default Red Hat OpenStack (RHOSP) deployment, the ML2/OVN composable service runs on
Controller nodes. You can optionally use supported custom roles like those described in the following
examples.

Networker

Run the OVN composable services on dedicated networker nodes.

Networker with SR-IOV

Run the OVN composable services on dedicated networker nodes with SR-IOV.

Controller with SR-IOV

Run the OVN composable services on SR-IOV capable controller nodes.

You can also generate your own custom roles.

Limitations

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

22

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/neutron-troubleshoot_rhosp-network#monitoring-ovn-db-status_neutron-troubleshoot

The following limitations apply to the use of SR-IOV with ML2/OVN and native OVN DHCP in this
release.

All external ports are scheduled on a single gateway node because there is only one HA Chassis
Group for all of the ports.

North/south routing on VF(direct) ports on VLAN tenant networks does not work with SR-IOV
because the external ports are not colocated with the logical router’s gateway ports. See
https://bugs.launchpad.net/neutron/+bug/1875852.

Prerequisites

You know how to deploy custom roles.
For more information see Composable services and custom roles in the Customizing your Red
Hat OpenStack Platform deployment guide.

Procedure

1. Log in to the undercloud host as the stack user and source the stackrc file.

$ source stackrc

2. Choose the custom roles file that is appropriate for your deployment. Use it directly in the
deploy command if it suits your needs as-is. Or you can generate your own custom roles file that
combines other custom roles files.

Deployment Role Role File

Networker role Networker Networker.yaml

Networker role with
SR-IOV

NetworkerSriov NetworkerSriov.ya
ml

Co-located control
and networker with
SR-IOV

ControllerSriov ControllerSriov.ya
ml

3. (Optional) Generate a new custom roles data file that combines one of the custom roles files
listed earlier with other custom roles files.
Follow the instructions in Creating a roles_data file in the Customizing your Red Hat OpenStack
Platform deployment guide. Include the appropriate source role files depending on your
deployment.

4. (Optional) To identify specific nodes for the role, you can create a specific hardware flavor and
assign the flavor to specific nodes. Then use an environment file to define the flavor for the
role, and to specify a node count.
For more information, see the example in Creating a new role in the Customizing your Red Hat
OpenStack Platform deployment guide.

5. Create an environment file as appropriate for your deployment.

CHAPTER 2. WORKING WITH ML2/OVN

23

https://bugs.launchpad.net/neutron/+bug/1875852
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles#proc_creating-a-roles_data-file_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles#proc_creating-a-new-role_composable-services-and-custom-roles

Deployment Sample Environment File

Networker role neutron-ovn-dvr-ha.yaml

Networker role with SR-IOV ovn-sriov.yaml

6. Include the following settings as appropriate for your deployment.

Deployment Settings

Networker role

ControllerParameters:
 OVNCMSOptions: ""
ControllerSriovParameters:
 OVNCMSOptions: ""
NetworkerParameters:
 OVNCMSOptions: "enable-chassis-as-gw"
NetworkerSriovParameters:
 OVNCMSOptions: ""

Networker role with
SR-IOV OS::TripleO::Services::NeutronDhcpAgent: OS::Heat::None

ControllerParameters:
 OVNCMSOptions: ""
ControllerSriovParameters:
 OVNCMSOptions: ""
NetworkerParameters:
 OVNCMSOptions: ""
NetworkerSriovParameters:
 OVNCMSOptions: "enable-chassis-as-gw"

Co-located control
and networker with
SR-IOV

OS::TripleO::Services::NeutronDhcpAgent: OS::Heat::None

ControllerParameters:
 OVNCMSOptions: ""
ControllerSriovParameters:
 OVNCMSOptions: "enable-chassis-as-gw"
NetworkerParameters:
 OVNCMSOptions: ""
NetworkerSriovParameters:
 OVNCMSOptions: ""

7. Run the deployment command and include the core heat templates, other environment files,
and the custom roles data file in your deployment command with the -r option.

IMPORTANT

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

24

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates <core_heat_templates> \
-e <other_environment_files> \
-e /home/stack/templates/my-neutron-environment.yaml
-r mycustom_roles_file.yaml

Verification steps

1. Log in to the Controller or Networker node as the tripleo-admin user:

Example

ssh tripleo-admin@controller-0

2. Ensure that ovn_metadata_agent is running.

$ sudo podman ps | grep ovn_metadata

Sample output

a65125d9588d undercloud-0.ctlplane.localdomain:8787/rh-osbs ...
openstack-neutron-metadata-agent-ovn ...
kolla_start 23 hours ago Up 21 hours ago ovn_metadata_agent

3. Ensure that Controller nodes with OVN services or dedicated Networker nodes have been
configured as gateways for OVS.

$ sudo ovs-vsctl get Open_Vswitch . external_ids:ovn-cms-options

Sample output

enable-chassis-as-gw

Additional verification steps for SR-IOV deployments

1. Log in to a Compute node as the tripleo-admin user:

Example

ssh tripleo-admin@compute-0

2. Ensure that neutron_sriov_agent is running on Compute nodes.

sudo podman ps | grep neutron_sriov_agent

CHAPTER 2. WORKING WITH ML2/OVN

25

Sample output

f54cbbf4523a undercloud-0.ctlplane.localdomain:8787 ...
openstack-neutron-sriov-agent ...
kolla_start 23 hours ago Up 21 hours ago neutron_sriov_agent

3. Ensure that network-available SR-IOV NICs have been successfully detected.

$ sudo podman exec -uroot galera-bundle-podman-0 mysql nova \
-e 'select hypervisor_hostname,pci_stats from compute_nodes;'

Sample output

computesriov-1.localdomain {... {"dev_type": "type-PF", "physical_network"
: "datacentre", "trusted": "true"}, "count": 1}, ... {"dev_type": "type-VF",
"physical_network": "datacentre", "trusted": "true", "parent_ifname":
"enp7s0f3"}, "count": 5}, ...}

computesriov-0.localdomain {... {"dev_type": "type-PF", "physical_network":
"datacentre", "trusted": "true"}, "count": 1}, ... {"dev_type": "type-VF",
"physical_network": "datacentre", "trusted": "true", "parent_ifname":
"enp7s0f3"}, "count": 5}, ...}

Additional resources

Composable services and custom roles in the Customizing your Red Hat OpenStack Platform
deployment guide

overcloud deploy in the Command line interface reference

2.9. SR-IOV WITH ML2/OVN AND NATIVE OVN DHCP

You can deploy a custom role to use SR-IOV in an ML2/OVN deployment with native OVN DHCP. See
Section 2.8, “Deploying a custom role with ML2/OVN” .

Limitations

The following limitations apply to the use of SR-IOV with ML2/OVN and native OVN DHCP in this
release.

All external ports are scheduled on a single gateway node because there is only one HA Chassis
Group for all of the ports.

North/south routing on VF(direct) ports on VLAN tenant networks does not work with SR-IOV
because the external ports are not colocated with the logical router’s gateway ports. See
https://bugs.launchpad.net/neutron/+bug/1875852.

Additional resources

Composable services and custom roles in the Customizing your Red Hat OpenStack Platform
deployment guide.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

26

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/overcloud#overcloud_deploy
https://bugs.launchpad.net/neutron/+bug/1875852
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles

CHAPTER 3. MANAGING PROJECT NETWORKS
Project networks help you to isolate network traffic for cloud computing. Steps to create a project
network include planning and creating the network, and adding subnets and routers.

3.1. VLAN PLANNING

When you plan your Red Hat OpenStack Platform deployment, you start with a number of subnets, from
which you allocate individual IP addresses. When you use multiple subnets you can segregate traffic
between systems into VLANs.

For example, it is ideal that your management or API traffic is not on the same network as systems that
serve web traffic. Traffic between VLANs travels through a router where you can implement firewalls to
govern traffic flow.

You must plan your VLANs as part of your overall plan that includes traffic isolation, high availability, and
IP address utilization for the various types of virtual networking resources in your deployment.

NOTE

The maximum number of VLANs in a single network, or in one OVS agent for a network
node, is 4094. In situations where you require more than the maximum number of VLANs,
you can create several provider networks (VXLAN networks) and several network nodes,
one per network. Each node can contain up to 4094 private networks.

3.2. TYPES OF NETWORK TRAFFIC

You can allocate separate VLANs for the different types of network traffic that you want to host. For
example, you can have separate VLANs for each of these types of networks. Only the External network
must be routable to the external physical network. In this release, director provides DHCP services.

NOTE

You do not require all of the isolated VLANs in this section for every OpenStack
deployment. For example, if your cloud users do not create ad hoc virtual networks on
demand, then you may not require a project network. If you want each VM to connect
directly to the same switch as any other physical system, connect your Compute nodes
directly to a provider network and configure your instances to use that provider network
directly.

Provisioning network - This VLAN is dedicated to deploying new nodes using director over
PXE boot. OpenStack Orchestration (heat) installs OpenStack onto the overcloud bare metal
servers. These servers attach to the physical network to receive the platform installation image
from the undercloud infrastructure.

Internal API network - The OpenStack services use the Internal API network for
communication, including API communication, RPC messages, and database communication. In
addition, this network is used for operational messages between controller nodes. When
planning your IP address allocation, note that each API service requires its own IP address.
Specifically, you must plan IP addresses for each of the following services:

vip-msg (ampq)

vip-keystone-int

CHAPTER 3. MANAGING PROJECT NETWORKS

27

vip-glance-int

vip-cinder-int

vip-nova-int

vip-neutron-int

vip-horizon-int

vip-heat-int

vip-ceilometer-int

vip-swift-int

vip-keystone-pub

vip-glance-pub

vip-cinder-pub

vip-nova-pub

vip-neutron-pub

vip-horizon-pub

vip-heat-pub

vip-ceilometer-pub

vip-swift-pub

Storage - Block Storage, NFS, iSCSI, and other storage services. Isolate this network to
separate physical Ethernet links for performance reasons.

Storage Management - OpenStack Object Storage (swift) uses this network to synchronise
data objects between participating replica nodes. The proxy service acts as the intermediary
interface between user requests and the underlying storage layer. The proxy receives incoming
requests and locates the necessary replica to retrieve the requested data. Services that use a
Ceph back end connect over the Storage Management network, since they do not interact with
Ceph directly but rather use the front end service. Note that the RBD driver is an exception; this
traffic connects directly to Ceph.

Project networks - Neutron provides each project with their own networks using either VLAN
segregation (where each project network is a network VLAN), or tunneling using VXLAN or
GRE. Network traffic is isolated within each project network. Each project network has an IP
subnet associated with it, and multiple project networks may use the same addresses.

External - The External network hosts the public API endpoints and connections to the
Dashboard (horizon). You can also use this network for SNAT. In a production deployment, it is
common to use a separate network for floating IP addresses and NAT.

Provider networks - Use provider networks to attach instances to existing network
infrastructure. You can use provider networks to map directly to an existing physical network in
the data center, using flat networking or VLAN tags. This allows an instance to share the same
layer-2 network as a system external to the OpenStack Networking infrastructure.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

28

3.3. IP ADDRESS CONSUMPTION

The following systems consume IP addresses from your allocated range:

Physical nodes - Each physical NIC requires one IP address. It is common practice to dedicate
physical NICs to specific functions. For example, allocate management and NFS traffic to
distinct physical NICs, sometimes with multiple NICs connecting across to different switches for
redundancy purposes.

Virtual IPs (VIPs) for High Availability - Plan to allocate between one and three VIPs for each
network that controller nodes share.

3.4. VIRTUAL NETWORKING

The following virtual resources consume IP addresses in OpenStack Networking. These resources are
considered local to the cloud infrastructure, and do not need to be reachable by systems in the external
physical network:

Project networks - Each project network requires a subnet that it can use to allocate IP
addresses to instances.

Virtual routers - Each router interface plugging into a subnet requires one IP address. If you
want to use DHCP, each router interface requires two IP addresses.

Instances - Each instance requires an address from the project subnet that hosts the instance.
If you require ingress traffic, you must allocate a floating IP address to the instance from the
designated external network.

Management traffic - Includes OpenStack Services and API traffic. All services share a small
number of VIPs. API, RPC and database services communicate on the internal API VIP.

3.5. ADDING NETWORK ROUTING

To allow traffic to be routed to and from your new network, you must add its subnet as an interface to an
existing virtual router:

1. In the dashboard, select Project > Network > Routers.

2. Select your virtual router name in the Routers list, and click Add Interface.
In the Subnet list, select the name of your new subnet. You can optionally specify an IP address
for the interface in this field.

3. Click Add Interface.
Instances on your network can now communicate with systems outside the subnet.

3.6. EXAMPLE NETWORK PLAN

This example shows a number of networks that accommodate multiple subnets, with each subnet being
assigned a range of IP addresses:

Table 3.1. Example subnet plan

CHAPTER 3. MANAGING PROJECT NETWORKS

29

Subnet name Address range Number of addresses Subnet Mask

Provisioning network 192.168.100.1 -
192.168.100.250

250 255.255.255.0

Internal API network 172.16.1.10 - 172.16.1.250 241 255.255.255.0

Storage 172.16.2.10 - 172.16.2.250 241 255.255.255.0

Storage Management 172.16.3.10 - 172.16.3.250 241 255.255.255.0

Tenant network
(GRE/VXLAN)

172.16.4.10 - 172.16.4.250 241 255.255.255.0

External network (incl.
floating IPs)

10.1.2.10 - 10.1.3.222 469 255.255.254.0

Provider network
(infrastructure)

10.10.3.10 - 10.10.3.250 241 255.255.252.0

3.7. CREATING A NETWORK

Create a network so that your instances can communicate with each other and receive IP addresses
using DHCP. For more information about external network connections, see Bridging the physical
network.

When creating networks, it is important to know that networks can host multiple subnets. This is useful if
you intend to host distinctly different systems in the same network, and prefer a measure of isolation
between them. For example, you can designate that only webserver traffic is present on one subnet,
while database traffic traverses another. Subnets are isolated from each other, and any instance that
wants to communicate with another subnet must have their traffic directed by a router. Consider placing
systems that require a high volume of traffic amongst themselves in the same subnet, so that they do
not require routing, and can avoid the subsequent latency and load.

1. In the dashboard, select Project > Network > Networks.

2. Click +Create Network and specify the following values:

Field Description

Network Name Descriptive name, based on the role that the
network will perform. If you are integrating the
network with an external VLAN, consider
appending the VLAN ID number to the name.
For example, webservers_122, if you are
hosting HTTP web servers in this subnet, and
your VLAN tag is 122. Or you might use
internal-only if you intend to keep the network
traffic private, and not integrate the network
with an external network.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

30

Admin State Controls whether the network is immediately
available. Use this field to create the network in a
Down state, where it is logically present but
inactive. This is useful if you do not intend to
enter the network into production immediately.

Create Subnet Determines whether to create a subnet. For
example, you might not want to create a subnet
if you intend to keep this network as a
placeholder without network connectivity.

Field Description

3. Click the Next button, and specify the following values in the Subnet tab:

Field Description

Subnet Name Enter a descriptive name for the subnet.

Network Address Enter the address in CIDR format, which
contains the IP address range and subnet mask
in one value. To determine the address, calculate
the number of bits masked in the subnet mask
and append that value to the IP address range.
For example, the subnet mask 255.255.255.0 has
24 masked bits. To use this mask with the IPv4
address range 192.168.122.0, specify the address
192.168.122.0/24.

IP Version Specifies the internet protocol version, where
valid types are IPv4 or IPv6. The IP address
range in the Network Address field must match
whichever version you select.

Gateway IP IP address of the router interface for your
default gateway. This address is the next hop for
routing any traffic destined for an external
location, and must be within the range that you
specify in the Network Address field. For
example, if your CIDR network address is
192.168.122.0/24, then your default gateway is
likely to be 192.168.122.1.

Disable Gateway Disables forwarding and isolates the subnet.

4. Click Next to specify DHCP options:

Enable DHCP - Enables DHCP services for this subnet. You can use DHCP to automate the
distribution of IP settings to your instances.

IPv6 Address - Configuration Modes. If you create an IPv6 network, you must specify how
to allocate IPv6 addresses and additional information:

CHAPTER 3. MANAGING PROJECT NETWORKS

31

No Options Specified - Select this option if you want to set IP addresses manually, or if
you use a non OpenStack-aware method for address allocation.

SLAAC (Stateless Address Autoconfiguration) - Instances generate IPv6 addresses
based on Router Advertisement (RA) messages sent from the OpenStack Networking
router. Use this configuration to create an OpenStack Networking subnet with ra_mode
set to slaac and address_mode set to slaac.

DHCPv6 stateful - Instances receive IPv6 addresses as well as additional options (for
example, DNS) from the OpenStack Networking DHCPv6 service. Use this
configuration to create a subnet with ra_mode set to dhcpv6-stateful and
address_mode set to dhcpv6-stateful.

DHCPv6 stateless - Instances generate IPv6 addresses based on Router
Advertisement (RA) messages sent from the OpenStack Networking router. Additional
options (for example, DNS) are allocated from the OpenStack Networking DHCPv6
service. Use this configuration to create a subnet with ra_mode set to dhcpv6-stateless
and address_mode set to dhcpv6-stateless.

Allocation Pools - Range of IP addresses that you want DHCP to assign. For example, the
value 192.168.22.100,192.168.22.150 considers all up addresses in that range as available for
allocation.

DNS Name Servers - IP addresses of the DNS servers available on the network. DHCP
distributes these addresses to the instances for name resolution.

IMPORTANT

For strategic services such as DNS, it is a best practice not to host them on
your cloud. For example, if your cloud hosts DNS and your cloud becomes
inoperable, DNS is unavailable and the cloud components cannot do lookups
on each other.

Host Routes - Static host routes. First, specify the destination network in CIDR format,
followed by the next hop that you want to use for routing (for example, 192.168.23.0/24,
10.1.31.1). Provide this value if you need to distribute static routes to instances.

5. Click Create.
You can view the complete network in the Networks tab. You can also click Edit to change any
options as needed. When you create instances, you can configure them now to use its subnet,
and they receive any specified DHCP options.

3.8. WORKING WITH SUBNETS

Use subnets to grant network connectivity to instances. Each instance is assigned to a subnet as part of
the instance creation process, therefore it’s important to consider proper placement of instances to
best accommodate their connectivity requirements.

You can create subnets only in pre-existing networks. Remember that project networks in OpenStack
Networking can host multiple subnets. This is useful if you intend to host distinctly different systems in
the same network, and prefer a measure of isolation between them.

For example, you can designate that only webserver traffic is present on one subnet, while database
traffic traverse another.

Subnets are isolated from each other, and any instance that wants to communicate with another subnet

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

32

Subnets are isolated from each other, and any instance that wants to communicate with another subnet
must have their traffic directed by a router. Therefore, you can lessen network latency and load by
grouping systems in the same subnet that require a high volume of traffic between each other.

3.9. CREATING A SUBNET

To create a subnet, follow these steps:

1. In the dashboard, select Project > Network > Networks, and click the name of your network in
the Networks view.

2. Click Create Subnet, and specify the following values:

Field Description

Subnet Name Descriptive subnet name.

Network Address Address in CIDR format, which contains the IP
address range and subnet mask in one value. To
determine the CIDR address, calculate the
number of bits masked in the subnet mask and
append that value to the IP address range. For
example, the subnet mask 255.255.255.0 has 24
masked bits. To use this mask with the IPv4
address range 192.168.122.0, specify the address
192.168.122.0/24.

IP Version Internet protocol version, where valid types are
IPv4 or IPv6. The IP address range in the
Network Address field must match whichever
protocol version you select.

Gateway IP IP address of the router interface for your
default gateway. This address is the next hop for
routing any traffic destined for an external
location, and must be within the range that you
specify in the Network Address field. For
example, if your CIDR network address is
192.168.122.0/24, then your default gateway is
likely to be 192.168.122.1.

Disable Gateway Disables forwarding and isolates the subnet.

3. Click Next to specify DHCP options:

Enable DHCP - Enables DHCP services for this subnet. You can use DHCP to automate the
distribution of IP settings to your instances.

IPv6 Address - Configuration Modes. If you create an IPv6 network, you must specify how
to allocate IPv6 addresses and additional information:

No Options Specified - Select this option if you want to set IP addresses manually, or if
you use a non OpenStack-aware method for address allocation.

CHAPTER 3. MANAGING PROJECT NETWORKS

33

SLAAC (Stateless Address Autoconfiguration) - Instances generate IPv6 addresses
based on Router Advertisement (RA) messages sent from the OpenStack Networking
router. Use this configuration to create an OpenStack Networking subnet with ra_mode
set to slaac and address_mode set to slaac.

DHCPv6 stateful - Instances receive IPv6 addresses as well as additional options (for
example, DNS) from the OpenStack Networking DHCPv6 service. Use this
configuration to create a subnet with ra_mode set to dhcpv6-stateful and
address_mode set to dhcpv6-stateful.

DHCPv6 stateless - Instances generate IPv6 addresses based on Router
Advertisement (RA) messages sent from the OpenStack Networking router. Additional
options (for example, DNS) are allocated from the OpenStack Networking DHCPv6
service. Use this configuration to create a subnet with ra_mode set to dhcpv6-stateless
and address_mode set to dhcpv6-stateless.

Allocation Pools - Range of IP addresses that you want DHCP to assign. For example, the
value 192.168.22.100,192.168.22.150 considers all up addresses in that range as available for
allocation.

DNS Name Servers - IP addresses of the DNS servers available on the network. DHCP
distributes these addresses to the instances for name resolution.

Host Routes - Static host routes. First, specify the destination network in CIDR format,
followed by the next hop that you want to use for routing (for example, 192.168.23.0/24,
10.1.31.1). Provide this value if you need to distribute static routes to instances.

4. Click Create.
You can view the subnet in the Subnets list. You can also click Edit to change any options as
needed. When you create instances, you can configure them now to use its subnet, and they
receive any specified DHCP options.

3.10. ADDING A ROUTER

OpenStack Networking provides routing services using an SDN-based virtual router. Routers are a
requirement for your instances to communicate with external subnets, including those in the physical
network. Routers and subnets connect using interfaces, with each subnet requiring its own interface to
the router.

The default gateway of a router defines the next hop for any traffic received by the router. Its network is
typically configured to route traffic to the external physical network using a virtual bridge.

To create a router, complete the following steps:

1. In the dashboard, select Project > Network > Routers, and click Create Router.

2. Enter a descriptive name for the new router, and click Create router.

3. Click Set Gateway next to the entry for the new router in the Routers list.

4. In the External Network list, specify the network that you want to receive traffic destined for an
external location.

5. Click Set Gateway.
After you add a router, you must configure any subnets you have created to send traffic using
this router. You do this by creating interfaces between the subnet and the router.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

34

IMPORTANT

The default routes for subnets must not be overwritten. When the default route for a
subnet is removed, the L3 agent automatically removes the corresponding route in the
router namespace too, and network traffic cannot flow to and from the associated
subnet. If the existing router namespace route has been removed, to fix this problem,
perform these steps:

1. Disassociate all floating IPs on the subnet.

2. Detach the router from the subnet.

3. Re-attach the router to the subnet.

4. Re-attach all floating IPs.

3.11. PURGING ALL RESOURCES AND DELETING A PROJECT

Use the openstack project purge command to delete all resources that belong to a particular project
as well as deleting the project, too.

For example, to purge the resources of the test-project project, and then delete the project, run the
following commands:

openstack project list
+----------------------------------+--------------+
| ID | Name |
+----------------------------------+--------------+
02e501908c5b438dbc73536c10c9aac0	test-project
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+--------------+

openstack project purge --project 02e501908c5b438dbc73536c10c9aac0

3.12. DELETING A ROUTER

You can delete a router if it has no connected interfaces.

To remove its interfaces and delete a router, complete the following steps:

1. In the dashboard, select Project > Network > Routers, and click the name of the router that you
want to delete.

2. Select the interfaces of type Internal Interface, and click Delete Interfaces.

3. From the Routers list, select the target router and click Delete Routers.

3.13. DELETING A SUBNET

You can delete a subnet if it is no longer in use. However, if any instances are still configured to use the
subnet, the deletion attempt fails and the dashboard displays an error message.

Complete the following steps to delete a specific subnet in a network:

CHAPTER 3. MANAGING PROJECT NETWORKS

35

1. In the dashboard, select Project > Network > Networks.

2. Click the name of your network.

3. Select the target subnet, and click Delete Subnets.

3.14. DELETING A NETWORK

There are occasions where it becomes necessary to delete a network that was previously created,
perhaps as housekeeping or as part of a decommissioning process. You must first remove or detach any
interfaces where the network is still in use, before you can successfully delete a network.

To delete a network in your project, together with any dependent interfaces, complete the following
steps:

1. In the dashboard, select Project > Network > Networks.
Remove all router interfaces associated with the target network subnets.

To remove an interface, find the ID number of the network that you want to delete by clicking on
your target network in the Networks list, and looking at the ID field. All the subnets associated
with the network share this value in the Network ID field.

2. Navigate to Project > Network > Routers, click the name of your virtual router in the Routers
list, and locate the interface attached to the subnet that you want to delete.
You can distinguish this subnet from the other subnets by the IP address that served as the
gateway IP. You can further validate the distinction by ensuring that the network ID of the
interface matches the ID that you noted in the previous step.

3. Click the Delete Interface button for the interface that you want to delete.

4. Select Project > Network > Networks, and click the name of your network.

5. Click the Delete Subnet button for the subnet that you want to delete.

NOTE

If you are still unable to remove the subnet at this point, ensure it is not already
being used by any instances.

6. Select Project > Network > Networks, and select the network you would like to delete.

7. Click Delete Networks.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

36

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL
NETWORKS

You can directly connect your VM instances to an external network using flat and VLAN provider
networks.

4.1. OVERVIEW OF THE OPENSTACK NETWORKING TOPOLOGY

OpenStack Networking (neutron) has two categories of services distributed across a number of node
types.

Neutron server - This service runs the OpenStack Networking API server, which provides the
API for end-users and services to interact with OpenStack Networking. This server also
integrates with the underlying database to store and retrieve project network, router, and
loadbalancer details, among others.

Neutron agents - These are the services that perform the network functions for OpenStack
Networking:

neutron-dhcp-agent - manages DHCP IP addressing for project private networks.

neutron-l3-agent - performs layer 3 routing between project private networks, the external
network, and others.

Compute node - This node hosts the hypervisor that runs the virtual machines, also known as
instances. A Compute node must be wired directly to the network in order to provide external
connectivity for instances. This node is typically where the l2 agents run, such as neutron-
openvswitch-agent.

Additional resources

Section 4.2, “Placement of OpenStack Networking services”

4.2. PLACEMENT OF OPENSTACK NETWORKING SERVICES

The OpenStack Networking services can either run together on the same physical server, or on separate
dedicated servers, which are named according to their roles:

Controller node - The server that runs API service.

Network node - The server that runs the OpenStack Networking agents.

Compute node - The hypervisor server that hosts the instances.

The steps in this chapter apply to an environment that contains these three node types. If your
deployment has both the Controller and Network node roles on the same physical node, then you must
perform the steps from both sections on that server. This also applies for a High Availability (HA)
environment, where all three nodes might be running the Controller node and Network node services
with HA. As a result, you must complete the steps in sections applicable to Controller and Network nodes
on all three nodes.

Additional resources

Section 4.1, “Overview of the OpenStack Networking topology”

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

37

4.3. CONFIGURING FLAT PROVIDER NETWORKS

You can use flat provider networks to connect instances directly to the external network. This is useful if
you have multiple physical networks and separate physical interfaces, and intend to connect each
Compute and Network node to those external networks.

Prerequisites

You have multiple physical networks.
This example uses physical networks called physnet1, and physnet2, respectively.

You have separate physical interfaces.
This example uses separate physical interfaces, eth0 and eth1, respectively.

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-modules-environment.yaml

TIP

The Red Hat OpenStack Platform Orchestration service (heat) uses a set of plans called
templates to install and configure your environment. You can customize aspects of the
overcloud with a custom environment file , which is a special type of template that provides
customization for your orchestration templates.

2. In the YAML environment file under parameter_defaults, use the NeutronBridgeMappings to
specify which OVS bridges are used for accessing external networks.

Example

parameter_defaults:
 NeutronBridgeMappings: 'physnet1:br-net1,physnet2:br-net2'

3. In the custom NIC configuration template for the Controller and Compute nodes, configure the
bridges with interfaces attached.

Example

...
 - type: ovs_bridge
 name: br-net1
 mtu: 1500
 use_dhcp: false
 members:
 - type: interface
 name: eth0
 mtu: 1500
 use_dhcp: false
 primary: true

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

38

 - type: ovs_bridge
 name: br-net2
 mtu: 1500
 use_dhcp: false
 members:
 - type: interface
 name: eth1
 mtu: 1500
 use_dhcp: false
 primary: true
...

4. Run the openstack overcloud deploy command and include the templates and the
environment files, including this modified custom NIC template and the new environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

Verification

1. Create an external network (public1) as a flat network and associate it with the configured
physical network (physnet1).
Configure it as a shared network (using --share) to let other users create VM instances that
connect to the external network directly.

Example

openstack network create --share --provider-network-type flat --provider-physical-network
physnet1 --external public01

2. Create a subnet (public_subnet) using the openstack subnet create command.

Example

openstack subnet create --no-dhcp --allocation-pool
start=192.168.100.20,end=192.168.100.100 --gateway 192.168.100.1 --network public01
public_subnet

3. Create a VM instance and connect it directly to the newly-created external network.

Example

$ openstack server create --image rhel --flavor my_flavor --network public01 my_instance

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

39

Additional resources

Environment files in the Installing and managing Red Hat OpenStack Platform with director
guide

Including environment files in overcloud creation in the Installing and managing Red Hat
OpenStack Platform with director guide

network create in the Command line interface reference

subnet create in the Command line interface reference

server create in the Command line interface reference

4.4. HOW DOES THE FLAT PROVIDER NETWORK PACKET FLOW
WORK?

This section describes in detail how traffic flows to and from an instance with flat provider network
configuration.

The flow of outgoing traffic in a flat provider network

The following diagram describes the packet flow for traffic leaving an instance and arriving directly at an
external network. After you configure the br-ex external bridge, add the physical interface to the bridge,
and spawn an instance to a Compute node, the resulting configuration of interfaces and bridges
resembles the configuration in the following diagram (if using the iptables_hybrid firewall driver):

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

40

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/installing_and_managing_red_hat_openstack_platform_with_director/index#con_including-environment-files-in-overcloud-creation_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_create

1. Packets leave the eth0 interface of the instance and arrive at the linux bridge qbr-xx.

2. Bridge qbr-xx is connected to br-int using veth pair qvb-xx <-> qvo-xxx. This is because the
bridge is used to apply the inbound/outbound firewall rules defined by the security group.

3. Interface qvb-xx is connected to the qbr-xx linux bridge, and qvoxx is connected to the br-int
Open vSwitch (OVS) bridge.

An example configuration of `qbr-xx`Linux bridge:

 # brctl show
qbr269d4d73-e7 8000.061943266ebb no qvb269d4d73-e7
 tap269d4d73-e7

The configuration of qvo-xx on br-int:

 # ovs-vsctl show
 Bridge br-int
 fail_mode: secure
 Interface "qvof63599ba-8f"
 Port "qvo269d4d73-e7"
 tag: 5
 Interface "qvo269d4d73-e7"

NOTE

Port qvo-xx is tagged with the internal VLAN tag associated with the flat provider
network. In this example, the VLAN tag is 5. When the packet reaches qvo-xx, the VLAN
tag is appended to the packet header.

The packet is then moved to the br-ex OVS bridge using the patch-peer int-br-ex <-> phy-br-ex.

Example configuration of the patch-peer on br-int:

 # ovs-vsctl show
 Bridge br-int
 fail_mode: secure
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}

Example configuration of the patch-peer on br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port br-ex
 Interface br-ex
 type: internal

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

41

When this packet reaches phy-br-ex on br-ex, an OVS flow inside br-ex strips the VLAN tag (5) and
forwards it to the physical interface.

In the following example, the output shows the port number of phy-br-ex as 2.

 # ovs-ofctl show br-ex
OFPT_FEATURES_REPLY (xid=0x2): dpid:00003440b5c90dc6
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: OUTPUT SET_VLAN_VID SET_VLAN_PCP STRIP_VLAN SET_DL_SRC SET_DL_DST
SET_NW_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE

 2(phy-br-ex): addr:ba:b5:7b:ae:5c:a2
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max

The following output shows any packet that arrives on phy-br-ex (in_port=2) with a VLAN tag of 5
(dl_vlan=5). In addition, an OVS flow in br-ex strips the VLAN tag and forwards the packet to the
physical interface.

ovs-ofctl dump-flows br-ex
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=4703.491s, table=0, n_packets=3620, n_bytes=333744, idle_age=0, priority=1
actions=NORMAL
 cookie=0x0, duration=3890.038s, table=0, n_packets=13, n_bytes=1714, idle_age=3764,
priority=4,in_port=2,dl_vlan=5 actions=strip_vlan,NORMAL
 cookie=0x0, duration=4702.644s, table=0, n_packets=10650, n_bytes=447632, idle_age=0,
priority=2,in_port=2 actions=drop

If the physical interface is another VLAN-tagged interface, then the physical interface adds the tag to
the packet.

The flow of incoming traffic in a flat provider network

This section contains information about the flow of incoming traffic from the external network until it
arrives at the interface of the instance.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

42

1. Incoming traffic arrives at eth1 on the physical node.

2. The packet passes to the br-ex bridge.

3. The packet moves to br-int via the patch-peer phy-br-ex <--> int-br-ex.

In the following example, int-br-ex uses port number 15. See the entry containing 15(int-br-ex):

 # ovs-ofctl show br-int
OFPT_FEATURES_REPLY (xid=0x2): dpid:00004e67212f644d
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: OUTPUT SET_VLAN_VID SET_VLAN_PCP STRIP_VLAN SET_DL_SRC SET_DL_DST
SET_NW_SRC SET_NW_DST SET_NW_TOS SET_TP_SRC SET_TP_DST ENQUEUE
 15(int-br-ex): addr:12:4e:44:a9:50:f4
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max

Observing the traffic flow on br-int

1. When the packet arrives at int-br-ex, an OVS flow rule within the br-int bridge amends the
packet to add the internal VLAN tag 5. See the entry for actions=mod_vlan_vid:5:

 # ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

43

 cookie=0x0, duration=5351.536s, table=0, n_packets=12118, n_bytes=510456, idle_age=0,
priority=1 actions=NORMAL
 cookie=0x0, duration=4537.553s, table=0, n_packets=3489, n_bytes=321696, idle_age=0,
priority=3,in_port=15,vlan_tci=0x0000 actions=mod_vlan_vid:5,NORMAL
 cookie=0x0, duration=5350.365s, table=0, n_packets=628, n_bytes=57892, idle_age=4538,
priority=2,in_port=15 actions=drop
 cookie=0x0, duration=5351.432s, table=23, n_packets=0, n_bytes=0, idle_age=5351,
priority=0 actions=drop

2. The second rule manages packets that arrive on int-br-ex (in_port=15) with no VLAN tag
(vlan_tci=0x0000): This rule adds VLAN tag 5 to the packet
(actions=mod_vlan_vid:5,NORMAL) and forwards it to qvoxxx.

3. qvoxxx accepts the packet and forwards it to qvbxx, after stripping away the VLAN tag.

4. The packet then reaches the instance.

NOTE

VLAN tag 5 is an example VLAN that was used on a test Compute node with a flat
provider network; this value was assigned automatically by neutron-openvswitch-agent.
This value may be different for your own flat provider network, and can differ for the
same network on two separate Compute nodes.

Additional resources

Section 4.5, “Troubleshooting instance-physical network connections on flat provider networks”

4.5. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK
CONNECTIONS ON FLAT PROVIDER NETWORKS

The output provided in "How does the flat provider network packet flow work?" provides sufficient
debugging information for troubleshooting a flat provider network, should anything go wrong. The
following steps contain further information about the troubleshooting process.

Procedure

1. Review bridge_mappings.
Verify that the physical network name you use is consistent with the contents of the
bridge_mapping configuration.

Example

In this example, the physical network name is, physnet1.

$ openstack network show provider-flat

Sample output

...
| provider:physical_network | physnet1
...

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

44

Example

In this example, the contents of the bridge_mapping configuration is also, physnet1:

$ grep bridge_mapping /etc/neutron/plugins/ml2/openvswitch_agent.ini

Sample output

bridge_mappings = physnet1:br-ex

2. Review the network configuration.
Confirm that the network is created as external, and uses the flat type:

Example

In this example, details about the network, provider-flat, is queried:

$ openstack network show provider-flat

Sample output

...
| provider:network_type | flat |
| router:external | True |
...

3. Review the patch-peer.
Verify that br-int and br-ex are connected using a patch-peer int-br-ex <--> phy-br-ex.

$ ovs-vsctl show

Sample output

 Bridge br-int
 fail_mode: secure
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}

Sample output

Configuration of the patch-peer on br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port br-ex
 Interface br-ex
 type: internal

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

45

This connection is created when you restart the neutron-openvswitch-agent service, if
bridge_mapping is correctly configured in /etc/neutron/plugins/ml2/openvswitch_agent.ini.

Re-check the bridge_mapping setting if the connection is not created after you restart the
service.

4. Review the network flows.
Run ovs-ofctl dump-flows br-ex and ovs-ofctl dump-flows br-int, and review whether the
flows strip the internal VLAN IDs for outgoing packets, and add VLAN IDs for incoming packets.
This flow is first added when you spawn an instance to this network on a specific Compute node.

a. If this flow is not created after spawning the instance, verify that the network is created as
flat, is external, and that the physical_network name is correct. In addition, review the
bridge_mapping settings.

b. Finally, review the ifcfg-br-ex and ifcfg-ethx configuration. Ensure that ethX is added as a
port within br-ex, and that ifcfg-br-ex and ifcfg-ethx have an UP flag in the output of ip a.

Sample output

The following output shows eth1 is a port in br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port "eth1"
 Interface "eth1"

Example

The following example demonstrates that eth1 is configured as an OVS port, and that the
kernel knows to transfer all packets from the interface, and send them to the OVS bridge
br-ex. This can be observed in the entry, master ovs-system.

$ ip a
5: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-
system state UP qlen 1000

Additional resources

Section 4.4, “How does the flat provider network packet flow work?”

Configuring bridge mappings

4.6. CONFIGURING VLAN PROVIDER NETWORKS

When you connect multiple VLAN-tagged interfaces on a single NIC to multiple provider networks,
these new VLAN provider networks can connect VM instances directly to external networks.

Prerequisites

You have a physical network, with a range of VLANs.
This example uses a physical network called physnet1, with a range of VLANs, 171-172.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#configuring-bridge-mappings_rhosp-network

Your Network nodes and Compute nodes are connected to a physical network using a physical
interface.
This example uses Network nodes and Compute nodes that are connected to a physical
network, physnet1, using a physical interface, eth1.

The switch ports that these interfaces connect to must be configured to trunk the required
VLAN ranges.

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-modules-environment.yaml

TIP

The Red Hat OpenStack Platform Orchestration service (heat) uses a set of plans called
templates to install and configure your environment. You can customize aspects of the
overcloud with a custom environment file , which is a special type of template that provides
customization for your orchestration templates.

2. In the YAML environment file under parameter_defaults, use NeutronTypeDrivers to specify
your network type drivers.

Example

parameter_defaults:
 NeutronTypeDrivers: vxlan,flat,vlan

3. Configure the NeutronNetworkVLANRanges setting to reflect the physical network and VLAN
ranges in use:

Example

parameter_defaults:
 NeutronTypeDrivers: 'vxlan,flat,vlan'
 NeutronNetworkVLANRanges: 'physnet1:171:172'

4. Create an external network bridge (br-ex), and associate a port (eth1) with it.
This example configures eth1 to use br-ex:

Example

parameter_defaults:
 NeutronTypeDrivers: 'vxlan,flat,vlan'
 NeutronNetworkVLANRanges: 'physnet1:171:172'
 NeutronBridgeMappings: 'datacentre:br-ex,tenant:br-int'

5. Run the openstack overcloud deploy command and include the core templates and the
environment files, including this new environment file.

IMPORTANT

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

47

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

Verification

1. Create the external networks as type vlan, and associate them with the configured
physical_network.
Run the following example command to create two networks: one for VLAN 171, and another for
VLAN 172:

Example

$ openstack network create \
 --provider-network-type vlan \
 --provider-physical-network physnet1 \
 --provider-segment 171 \
 provider-vlan171

$ openstack network create \
 --provider-network-type vlan \
 --provider-physical-network physnet1 \
 --provider-segment 172 \
 provider-vlan172

2. Create a number of subnets and configure them to use the external network.
You can use either openstack subnet create or the dashboard to create these subnets. Ensure
that the external subnet details you have received from your network administrator are correctly
associated with each VLAN.

In this example, VLAN 171 uses subnet 10.65.217.0/24 and VLAN 172 uses 10.65.218.0/24:

Example

$ openstack subnet create \
 --network provider-vlan171 \
 --subnet-range 10.65.217.0/24 \
 --dhcp \
 --gateway 10.65.217.254 \
 subnet-provider-171

$ openstack subnet create \
 --network provider-vlan172 \
 --subnet-range 10.65.218.0/24 \

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

48

 --dhcp \
 --gateway 10.65.218.254 \
 subnet-provider-172

Additional resources

Custom network interface templates in the Installing and managing Red Hat OpenStack
Platform with director guide

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

network create in the Command line interface reference

subnet create in the Command line interface reference

4.7. HOW DOES THE VLAN PROVIDER NETWORK PACKET FLOW
WORK?

This section describes in detail how traffic flows to and from an instance with VLAN provider network
configuration.

The flow of outgoing traffic in a VLAN provider network

The following diagram describes the packet flow for traffic leaving an instance and arriving directly to a
VLAN provider external network. This example uses two instances attached to the two VLAN networks
(171 and 172). After you configure br-ex, add a physical interface to it, and spawn an instance to a
Compute node, the resulting configuration of interfaces and bridges resembles the configuration in the
following diagram:

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

49

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_defining-custom-network-interface-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_create

1. Packets leaving the eth0 interface of the instance arrive at the linux bridge qbr-xx connected to
the instance.

2. qbr-xx is connected to br-int using veth pair qvbxx <→ qvoxxx.

3. qvbxx is connected to the linux bridge qbr-xx and qvoxx is connected to the Open vSwitch
bridge br-int.

Example configuration of qbr-xx on the Linux bridge.

This example features two instances and two corresponding linux bridges:

brctl show
bridge name bridge id STP enabled interfaces
qbr84878b78-63 8000.e6b3df9451e0 no qvb84878b78-63
 tap84878b78-63

qbr86257b61-5d 8000.3a3c888eeae6 no qvb86257b61-5d
 tap86257b61-5d

The configuration of qvoxx on br-int:

 options: {peer=phy-br-ex}
 Port "qvo86257b61-5d"
 tag: 3

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

50

 Interface "qvo86257b61-5d"
 Port "qvo84878b78-63"
 tag: 2
 Interface "qvo84878b78-63"

qvoxx is tagged with the internal VLAN tag associated with the VLAN provider network. In this
example, the internal VLAN tag 2 is associated with the VLAN provider network provider-171
and VLAN tag 3 is associated with VLAN provider network provider-172. When the packet
reaches qvoxx, the this VLAN tag is added to the packet header.

The packet is then moved to the br-ex OVS bridge using patch-peer int-br-ex <→ phy-br-ex.
Example patch-peer on br-int:

 Bridge br-int
 fail_mode: secure
 Port int-br-ex
 Interface int-br-ex
 type: patch
 options: {peer=phy-br-ex}

Example configuration of the patch peer on br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port br-ex
 Interface br-ex
 type: internal

When this packet reaches phy-br-ex on br-ex, an OVS flow inside br-ex replaces the internal
VLAN tag with the actual VLAN tag associated with the VLAN provider network.

The output of the following command shows that the port number of phy-br-ex is 4:

ovs-ofctl show br-ex
 4(phy-br-ex): addr:32:e7:a1:6b:90:3e
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max

The following command shows any packet that arrives on phy-br-ex (in_port=4) which has VLAN tag 2
(dl_vlan=2). Open vSwitch replaces the VLAN tag with 171 (actions=mod_vlan_vid:171,NORMAL) and
forwards the packet to the physical interface. The command also shows any packet that arrives on phy-
br-ex (in_port=4) which has VLAN tag 3 (dl_vlan=3). Open vSwitch replaces the VLAN tag with 172
(actions=mod_vlan_vid:172,NORMAL) and forwards the packet to the physical interface. The
neutron-openvswitch-agent adds these rules.

ovs-ofctl dump-flows br-ex
NXST_FLOW reply (xid=0x4):
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=6527.527s, table=0, n_packets=29211, n_bytes=2725576, idle_age=0,
priority=1 actions=NORMAL

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

51

 cookie=0x0, duration=2939.172s, table=0, n_packets=117, n_bytes=8296, idle_age=58,
priority=4,in_port=4,dl_vlan=3 actions=mod_vlan_vid:172,NORMAL
 cookie=0x0, duration=6111.389s, table=0, n_packets=145, n_bytes=9368, idle_age=98,
priority=4,in_port=4,dl_vlan=2 actions=mod_vlan_vid:171,NORMAL
 cookie=0x0, duration=6526.675s, table=0, n_packets=82, n_bytes=6700, idle_age=2462,
priority=2,in_port=4 actions=drop

This packet is then forwarded to physical interface eth1.

The flow of incoming traffic in a VLAN provider network

The following example flow was tested on a Compute node using VLAN tag 2 for provider network
provider-171 and VLAN tag 3 for provider network provider-172. The flow uses port 18 on the integration
bridge br-int.

Your VLAN provider network may require a different configuration. Also, the configuration requirement
for a network may differ between two different Compute nodes.

The output of the following command shows int-br-ex with port number 18:

ovs-ofctl show br-int
 18(int-br-ex): addr:fe:b7:cb:03:c5:c1
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max

The output of the following command shows the flow rules on br-int.

ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=6770.572s, table=0, n_packets=1239, n_bytes=127795, idle_age=106,
priority=1 actions=NORMAL

 cookie=0x0, duration=3181.679s, table=0, n_packets=2605, n_bytes=246456, idle_age=0,
 priority=3,in_port=18,dl_vlan=172 actions=mod_vlan_vid:3,NORMAL

 cookie=0x0, duration=6353.898s, table=0, n_packets=5077, n_bytes=482582, idle_age=0,
 priority=3,in_port=18,dl_vlan=171 actions=mod_vlan_vid:2,NORMAL

 cookie=0x0, duration=6769.391s, table=0, n_packets=22301, n_bytes=2013101, idle_age=0,
priority=2,in_port=18 actions=drop

 cookie=0x0, duration=6770.463s, table=23, n_packets=0, n_bytes=0, idle_age=6770, priority=0
actions=drop

Incoming flow example

This example demonstrates the following br-int OVS flow:

cookie=0x0, duration=3181.679s, table=0, n_packets=2605, n_bytes=246456, idle_age=0,
priority=3,in_port=18,dl_vlan=172 actions=mod_vlan_vid:3,NORMAL

A packet with VLAN tag 172 from the external network reaches the br-ex bridge via eth1 on the
physical node.

The packet moves to br-int via the patch-peer phy-br-ex <-> int-br-ex.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

52

The packet matches the flow’s criteria (in_port=18,dl_vlan=172).

The flow actions (actions=mod_vlan_vid:3,NORMAL) replace the VLAN tag 172 with internal
VLAN tag 3 and forwards the packet to the instance with normal Layer 2 processing.

Additional resources

Section 4.4, “How does the flat provider network packet flow work?”

4.8. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK
CONNECTIONS ON VLAN PROVIDER NETWORKS

Refer to the packet flow described in "How does the VLAN provider network packet flow work?" when
troubleshooting connectivity in a VLAN provider network. In addition, review the following configuration
options:

Procedure

1. Verify that physical network name used in the bridge_mapping configuration matches the
physical network name.

Example

$ openstack network show provider-vlan171

Sample output

...
| provider:physical_network | physnet1
...

Example

$ grep bridge_mapping /etc/neutron/plugins/ml2/openvswitch_agent.ini

Sample output

In this sample output, the physical network name, physnet1, matches the name used in the
bridge_mapping configuration:

bridge_mappings = physnet1:br-ex

2. Confirm that the network was created as external, is type vlan, and uses the correct
segmentation_id value:

Example

$ openstack network show provider-vlan171

Sample output

...

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

53

provider:network_type	vlan
provider:physical_network	physnet1
provider:segmentation_id	171
...

3. Review the patch-peer.
Verify that br-int and br-ex are connected using a patch-peer int-br-ex <--> phy-br-ex.

$ ovs-vsctl show

This connection is created while restarting neutron-openvswitch-agent, provided that the
bridge_mapping is correctly configured in /etc/neutron/plugins/ml2/openvswitch_agent.ini.

Recheck the bridge_mapping setting if this is not created even after restarting the service.

4. Review the network flows.

a. To review the flow of outgoing packets, run ovs-ofctl dump-flows br-ex and ovs-ofctl
dump-flows br-int, and verify that the flows map the internal VLAN IDs to the external
VLAN ID (segmentation_id).

b. For incoming packets, map the external VLAN ID to the internal VLAN ID.
This flow is added by the neutron OVS agent when you spawn an instance to this network for
the first time.

c. If this flow is not created after spawning the instance, ensure that the network is created as
vlan, is external, and that the physical_network name is correct. In addition, re-check the
bridge_mapping settings.

d. Finally, re-check the ifcfg-br-ex and ifcfg-ethx configuration.
Ensure that br-ex includes port ethX, and that both ifcfg-br-ex and ifcfg-ethx have an UP
flag in the output of the ip a command.

Example

$ ovs-vsctl show

In this sample output, eth1 is a port in br-ex:

 Bridge br-ex
 Port phy-br-ex
 Interface phy-br-ex
 type: patch
 options: {peer=int-br-ex}
 Port "eth1"
 Interface "eth1"

Example

$ ip a

Sample output

In this sample output, eth1 has been added as a port, and that the kernel is configured to

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

54

In this sample output, eth1 has been added as a port, and that the kernel is configured to
move all packets from the interface to the OVS bridge br-ex. This is demonstrated by the
entry, master ovs-system.

5: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq master ovs-
system state UP qlen 1000

Additional resources

Section 4.7, “How does the VLAN provider network packet flow work?”

4.9. ENABLING MULTICAST SNOOPING FOR PROVIDER NETWORKS
IN AN ML2/OVS DEPLOYMENT

To prevent flooding multicast packets to every port in a Red Hat OpenStack Platform (RHOSP)
provider network, you must enable multicast snooping. In RHOSP deployments that use the Modular
Layer 2 plug-in with the Open vSwitch mechanism driver (ML2/OVS), you do this by declaring the
RHOSP Orchestration (heat) NeutronEnableIgmpSnooping parameter in a YAML-formatted
environment file.

IMPORTANT

You should thoroughly test and understand any multicast snooping configuration before
applying it to a production environment. Misconfiguration can break multicasting or cause
erratic network behavior.

Prerequisites

Your configuration must only use ML2/OVS provider networks.

Your physical routers must also have IGMP snooping enabled.
That is, the physical router must send IGMP query packets on the provider network to solicit
regular IGMP reports from multicast group members to maintain the snooping cache in OVS
(and for physical networking).

An RHOSP Networking service security group rule must be in place to allow inbound IGMP to
the VM instances (or port security disabled).
In this example, a rule is created for the ping_ssh security group:

Example

$ openstack security group rule create --protocol igmp --ingress ping_ssh

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-ovs-environment.yaml

TIP

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

55

TIP

The Orchestration service (heat) uses a set of plans called templates to install and configure
your environment. You can customize aspects of the overcloud with a custom environment file,
which is a special type of template that provides customization for your heat templates.

2. In the YAML environment file under parameter_defaults, set NeutronEnableIgmpSnooping
to true.

parameter_defaults:
 NeutronEnableIgmpSnooping: true
 ...

IMPORTANT

Ensure that you add a whitespace character between the colon (:) and true.

3. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-ovs-
environment.yaml

Verification

Verify that the multicast snooping is enabled.

Example

sudo ovs-vsctl list bridge br-int

Sample output

...
mcast_snooping_enable: true
...
other_config: {mac-table-size="50000", mcast-snooping-disable-flood-unregistered=True}
...

Additional resources

Neutron in Component, Plug-In, and Driver Support in Red Hat OpenStack Platform

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

56

https://access.redhat.com/articles/1535373#Neutron

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

Networking (neutron) Parameters in the Overcloud parameters guide

Creating a security group in the Creating and managing instances guide

4.10. ENABLING MULTICAST IN AN ML2/OVN DEPLOYMENT

To support multicast traffic, modify the deployment’s security configuration to allow multicast traffic to
reach the virtual machine (VM) instances in the multicast group. To prevent multicast traffic flooding,
enable IGMP snooping.

IMPORTANT

Test and understand any multicast snooping configuration before applying it to a
production environment. Misconfiguration can break multicasting or cause erratic
network behavior.

Prerequisites

An OpenStack deployment with the ML2/OVN mechanism driver.

Procedure

1. Configure security to allow multicast traffic to the appropriate VM instances. For instance,
create a pair of security group rules to allow IGMP traffic from the IGMP querier to enter and
exit the VM instances, and a third rule to allow multicast traffic.

Example

A security group mySG allows IGMP traffic to enter and exit the VM instances.

 openstack security group rule create --protocol igmp --ingress mySG

 openstack security group rule create --protocol igmp --egress mySG

Another rule allows multicast traffic to reach VM instances.

openstack security group rule create --protocol udp mySG

As an alternative to setting security group rules, some operators choose to selectively disable
port security on the network. If you choose to disable port security, consider and plan for any
related security risks.

2. Set the heat parameter NeutronEnableIgmpSnooping: True in an environment file on the
undercloud node. For instance, add the following lines to ovn-extras.yaml.

Example

parameter_defaults:
 NeutronEnableIgmpSnooping: True

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

57

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/overcloud_parameters/index#networking-neutron-parameters
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/creating_and_managing_instances/index#proc_creating-a-security-group_instances

3. Include the environment file in the openstack overcloud deploy command with any other
environment files that are relevant to your environment and deploy the overcloud.

$ openstack overcloud deploy \
--templates \
…
-e <other_overcloud_environment_files> \

-e ovn-extras.yaml \
…

Replace <other_overcloud_environment_files> with the list of environment files that are part
of your existing deployment.

Verification

1. Verify that the multicast snooping is enabled. List the northbound database Logical_Switch
table.

$ ovn-nbctl list Logical_Switch

Sample output

_uuid : d6a2fbcd-aaa4-4b9e-8274-184238d66a15
other_config : {mcast_flood_unregistered="false", mcast_snoop="true"}
...

The Networking Service (neutron) igmp_snooping_enable configuration is translated into the
mcast_snoop option set in the other_config column of the Logical_Switch table in the OVN
Northbound Database. Note that mcast_flood_unregistered is always “false”.

2. Show the IGMP groups.

$ ovn-sbctl list IGMP_group

Sample output

_uuid : 2d6cae4c-bd82-4b31-9c63-2d17cbeadc4e
address : "225.0.0.120"
chassis : 34e25681-f73f-43ac-a3a4-7da2a710ecd3
datapath : eaf0f5cc-a2c8-4c30-8def-2bc1ec9dcabc
ports : [5eaf9dd5-eae5-4749-ac60-4c1451901c56, 8a69efc5-38c5-48fb-bbab-
30f2bf9b8d45]
...

Additional resources

Neutron in Component, Plug-In, and Driver Support in Red Hat OpenStack Platform

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

58

https://access.redhat.com/articles/1535373#Neutron
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

4.11. ENABLING COMPUTE METADATA ACCESS

Instances connected as described in this chapter are directly attached to the provider external networks,
and have external routers configured as their default gateway. No OpenStack Networking (neutron)
routers are used. This means that neutron routers cannot be used to proxy metadata requests from
instances to the nova-metadata server, which may result in failures while running cloud-init. However,
this issue can be resolved by configuring the dhcp agent to proxy metadata requests. You can enable
this functionality in /etc/neutron/dhcp_agent.ini. For example:

enable_isolated_metadata = True

4.12. FLOATING IP ADDRESSES

You can use the same network to allocate floating IP addresses to instances, even if the floating IPs are
already associated with private networks. The addresses that you allocate as floating IPs from this
network are bound to the qrouter-xxx namespace on the Network node, and perform DNAT-SNAT to
the associated private IP address. In contrast, the IP addresses that you allocate for direct external
network access are bound directly inside the instance, and allow the instance to communicate directly
with external network.

CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS

59

CHAPTER 5. MANAGING FLOATING IP ADDRESSES
In addition to a having a private, fixed IP address, VM instances can have a public, or floating IP address
to communicate with other networks. The information in this section describes how to create and
manage floating IPs with the Red Hat OpenStack Platform (RHOSP) Networking service (neutron).

5.1. CREATING FLOATING IP POOLS

You can use floating IP addresses to direct ingress network traffic to your OpenStack instances. First,
you must define a pool of validly routable external IP addresses, which you can then assign to instances
dynamically. OpenStack Networking routes all incoming traffic destined for that floating IP to the
instance that you associate with the floating IP.

NOTE

OpenStack Networking allocates floating IP addresses to all projects (tenants) from the
same IP ranges in CIDR format. As a result, all projects can consume floating IPs from
every floating IP subnet. You can manage this behavior using quotas for specific projects.
For example, you can set the default to 10 for ProjectA and ProjectB, while setting the
quota for ProjectC to 0.

Procedure

When you create an external subnet, you can also define the floating IP allocation pool.

$ openstack subnet create --no-dhcp --allocation-pool
start=IP_ADDRESS,end=IP_ADDRESS --gateway IP_ADDRESS --network
SUBNET_RANGE NETWORK_NAME

If the subnet hosts only floating IP addresses, consider disabling DHCP allocation with the --no-
dhcp option in the openstack subnet create command.

Example

$ openstack subnet create --no-dhcp --allocation_pool
start=192.168.100.20,end=192.168.100.100 --gateway 192.168.100.1 --network
192.168.100.0/24 public

Verification

You can verify that the pool is configured properly by assigning a random floating IP to an
instance. (See the later link that follows.)

Additional resources

subnet create in the Command line interface reference

Assigning a random floating IP

5.2. ASSIGNING A SPECIFIC FLOATING IP

You can assign a specific floating IP address to a VM instance.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

60

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#assign-random-float-ip_manage-float-ip

Procedure

Allocate a floating IP address to an instance by using the openstack server add floating ip
command.

Example

$ openstack server add floating ip prod-serv1 192.0.2.200

Validation steps

Confirm that your floating IP is associated with your instance by using the openstack server
show command.

Example

$ openstack server show prod-serv1

Sample output

+-----------------------------+--+
| Field | Value |
+-----------------------------+--+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	nova
OS-EXT-STS:power_state	Running
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
OS-SRV-USG:launched_at	2021-08-11T14:45:37.000000
OS-SRV-USG:terminated_at	None
accessIPv4	
accessIPv6	
addresses	public=198.51.100.56,192.0.2.200
config_drive	
created	2021-08-11T14:44:54Z
flavor	review-ephemeral
	(8130dd45-78f6-44dc-8173-4d6426b8e520)
hostId	2308c8d8f60ed5394b1525122fb5bf8ea55c78b8
	0ec6157eca4488c9
id	aef3ca09-887d-4d20-872d-1d1b49081958
image	rhel8
	(20724bfe-93a9-4341-a5a3-78b37b3a5dfb)
key_name	example-keypair
name	prod-serv1
progress	0
project_id	bd7a8c4a19424cf09a82627566b434fa
properties	
security_groups	name='default'
status	ACTIVE
updated	2021-08-11T14:45:37Z
user_id	4b7e19a0d723310fd92911eb2fe59743a3a5cd32
	45f76ffced91096196f646b5
volumes_attached	
+-----------------------------+--+

CHAPTER 5. MANAGING FLOATING IP ADDRESSES

61

Additional resources

server add floating ip in the Command line interface reference

server show in the Command line interface reference

Assigning a random floating IP

5.3. CREATING AN ADVANCED NETWORK

Advanced network options are available for administrators, when creating a network in the Dashboard
from the Admin view. Use these options to specify projects and to define the network type that you
want to use.

Procedure

1. In the dashboard, select Admin > Networks > Create Network > Project.

2. Select the project that you want to host the new network with the Project drop-down list.

3. Review the options in Provider Network Type:

Local - Traffic remains on the local Compute host and is effectively isolated from any
external networks.

Flat - Traffic remains on a single network and can also be shared with the host. No VLAN
tagging or other network segregation takes place.

VLAN - Create a network using a VLAN ID that corresponds to a VLAN present in the
physical network. This option allows instances to communicate with systems on the same
layer 2 VLAN.

GRE - Use a network overlay that spans multiple nodes for private communication between
instances. Traffic egressing the overlay must be routed.

VXLAN - Similar to GRE, and uses a network overlay to span multiple nodes for private
communication between instances. Traffic egressing the overlay must be routed.

4. Click Create Network.
Review the Project Network Topology to validate that the network has been successfully
created.

Additional resources

Assigning a specific floating IP

Assigning a random floating IP

5.4. ASSIGNING A RANDOM FLOATING IP

You can dynamically allocate floating IP addresses to VM instances from a pool of external IP addresses.

Prerequisites

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

62

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_add_floating_ip
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_show
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#assign-random-float-ip_manage-float-ip
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#assign-specific-float-ip_manage-float-ip
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#assign-random-float-ip_manage-float-ip

A pool of routable external IP addresses.
For more information, see Section 5.1, “Creating floating IP pools” .

Procedure

1. Enter the following command to allocate a floating IP address from the pool. In this example, the
network is named public.

Example

$ openstack floating ip create public

Sample output

In the following example, the newly allocated floating IP is 192.0.2.200. You can assign it to an
instance.

+---------------------+--+
| Field | Value |
+---------------------+--+
fixed_ip_address	None
floating_ip_address	192.0.2.200
floating_network_id	f0dcc603-f693-4258-a940-0a31fd4b80d9
id	6352284c-c5df-4792-b168-e6f6348e2620
port_id	None
router_id	None
status	ACTIVE
+---------------------+--+

2. Enter the following command to locate your instance:

$ openstack server list

Sample output

+-------------+-------------+--------+-------------+-------+-------------+
| ID | Name | Status | Networks | Image | Flavor |
+-------------+-------------+--------+-------------+-------+-------------+
aef3ca09-88	prod-serv1	ACTIVE	public=198.	rhel8	review-
7d-4d20-872			51.100.56		ephemeral
d-1d1b49081					
958					
+-------------+-------------+--------+-------------+-------+-------------+

3. Associate the instance name or ID with the floating IP.

Example

$ openstack server add floating ip prod-serv1 192.0.2.200

Validation steps

CHAPTER 5. MANAGING FLOATING IP ADDRESSES

63

Enter the following command to confirm that your floating IP is associated with your instance.

Example

$ openstack server show prod-serv1

Sample output

+-----------------------------+--+
| Field | Value |
+-----------------------------+--+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	nova
OS-EXT-STS:power_state	Running
OS-EXT-STS:task_state	None
OS-EXT-STS:vm_state	active
OS-SRV-USG:launched_at	2021-08-11T14:45:37.000000
OS-SRV-USG:terminated_at	None
accessIPv4	
accessIPv6	
addresses	public=198.51.100.56,192.0.2.200
config_drive	
created	2021-08-11T14:44:54Z
flavor	review-ephemeral
	(8130dd45-78f6-44dc-8173-4d6426b8e520)
hostId	2308c8d8f60ed5394b1525122fb5bf8ea55c78b8
	0ec6157eca4488c9
id	aef3ca09-887d-4d20-872d-1d1b49081958
image	rhel8
	(20724bfe-93a9-4341-a5a3-78b37b3a5dfb)
key_name	example-keypair
name	prod-serv1
progress	0
project_id	bd7a8c4a19424cf09a82627566b434fa
properties	
security_groups	name='default'
status	ACTIVE
updated	2021-08-11T14:45:37Z
user_id	4b7e19a0d723310fd92911eb2fe59743a3a5cd32
	45f76ffced91096196f646b5
volumes_attached	
+-----------------------------+--+

Additional resources

floating ip create in the Command line interface reference

server add floating ip in the Command line interface reference

server show in the Command line interface reference

Creating floating IP pools

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

64

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/floating#floating_ip_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_add_floating_ip
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_show
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#create-float-ip-pools_manage-float-ip

5.5. CREATING MULTIPLE FLOATING IP POOLS

OpenStack Networking supports one floating IP pool for each L3 agent. Therefore, you must scale your
L3 agents to create additional floating IP pools.

Procedure

Make sure that in /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf
the property handle_internal_only_routers is set to True for only one L3 agent in your
environment. This option configures the L3 agent to manage only non-external routers.

Additional resources

Creating floating IP pools

Assigning a random floating IP

5.6. CONFIGURING FLOATING IP PORT FORWARDING

To enable users to set up port forwarding for floating IPs, you must enable the Red Hat OpenStack
Platform (RHOSP) Networking service (neutron) port_forwarding` service plug-in.

Prerequisites

You must have RHOSP administrator privileges.

The port_forwarding service plug-in requires that you also set the router service plug-in.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. In a custom environment YAML file, set the port_forwarding service plug-in:

parameter_defaults:
 NeutronPluginExtensions: "router,port_forwarding"

NOTE

The port_forwarding service plug-in requires that you also set the router service
plug-in.

4. If you use the ML2/OVS mechanism driver with the Networking service, you must also set the
port_forwarding extension for the OVS L3 agent:

parameter_defaults:
 NeutronPluginExtensions: "router,port_forwarding"
 NeutronL3AgentExtensions: "port_forwarding"

5. Deploy your overcloud and include the core heat templates, environment files, and this new

CHAPTER 5. MANAGING FLOATING IP ADDRESSES

65

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#create-float-ip-pools_common-network-tasks
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#assign-random-float-ip_common-network-tasks

5. Deploy your overcloud and include the core heat templates, environment files, and this new
custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

$ openstack overcloud deploy --templates \
 -e <your_environment_files> \
 -e /home/stack/templates/my-environment.yaml

RHOSP users can now set up port forwarding for floating IPs. For more information, see
Section 5.7, “Creating port forwarding for a floating IP” .

Verification

1. Source the overcloud credentials file.

Example

$ source ~/overcloudrc

2. Ensure that the Networking service has successfully loaded the port_forwarding and router
service plug-ins:

$ openstack extension list --network -c Name -c Alias --max-width 74 | \
grep -i -e 'Neutron L3 Router' -i -e floating-ip-port-forwarding

Sample output

A successful verification produces output similar to the following:

| Floating IP Port Forwarding | floating-ip-port-forwarding |
| Neutron L3 Router | router |

Additional resources

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

5.7. CREATING PORT FORWARDING FOR A FLOATING IP

You can use Red Hat OpenStack Platform Networking service (neutron) to set up port forwarding for a
floating IP.

Prerequisites

The Networking service must be running with the port_forwarding service plug-in loaded.
For information, see Section 5.6, “Configuring floating IP port forwarding” .

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

66

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

Procedure

1. Source your credentials file.

Example

$ source ~/overcloudrc

2. Use the following command to create port forwarding for a floating IP:

$ openstack floating ip port forwarding create \
--internal-ip-address <internal-ip-address> \
--port <port> \
--internal-protocol-port <port-number> \
--external-protocol-port <port-number> \
--protocol <protocol> \
<floating-ip>

Replace <internal-ip-address> with the internal, destination IP address.
This is the IP address that is associated with the instance on which the application is running.

Replace <port> with the name or ID of the Networking service port to which the instance is
attached.

Replace <port-number> in --internal-protocol-port with the internal, destination port
number.
This is the port number that the application running in the instance uses.

Replace <port-number> in --external-protocol-port with the external, source port number.
This is the port number that the application running outside of your RHOSP cloud uses.

Replace <protocol> with the protocol, such as TCP or UDP, used by the application that
receives the port-forwarded traffic.

Replace <floating-ip> with the floating IP whose specified port traffic you want to forward.

Example

This example creates port fowarding for an instance that is attached to the floating IP
198.51.100.47. The floating IP uses the Networking service port 1adfdb09-e8c6-4708-
b5aa-11f50fc22d62. When the Networking service detects incoming, external traffic
addressed to 198.51.100.47:80, it forwards the traffic to the internal IP address,
203.0.113.107, on TCP port, 8080:

$ openstack floating ip port forwarding create \
--internal-ip-address 203.0.113.107 \
--port 1adfdb09-e8c6-4708-b5aa-11f50fc22d62 \
--internal-protocol-port 8080 \
--external-protocol-port 80 \
--protocol tcp \
198.51.100.47

Verification

Confirm that the Networking service has established forwarding for the floating IP port.

CHAPTER 5. MANAGING FLOATING IP ADDRESSES

67

Example

The following example verifies successful port forwarding for the floating IP 198.51.100.47:

$ openstack floating ip port forwarding list 198.51.100.47 --max-width 74

Sample output

The output shows that traffic sent to the floating IP 198.51.100.47 on TCP port 80 is forwarded
to port 8080 on the instance with the internal address 203.0.113.107:

+----------+------------------+---------------------+---------------+---------------+----------+-------------
+
| ID | Internal Port ID | Internal IP Address | Internal Port | External Port | Protocol |
Description |
+----------+------------------+---------------------+---------------+---------------+----------+-------------
+
5cf204c7	1adfdb09-e8c6-47	203.0.113.107	8080	80	tcp	
-6825-45	08-b5aa-11f50fc2					
de-84ec-	2d62					
2eb507be						
543e						
+----------+------------------+---------------------+---------------+---------------+----------+-------------
+

Additional resources

floating ip port forwarding create in the Command line interface reference

5.8. BRIDGING THE PHYSICAL NETWORK

Bridge your virtual network to the physical network to enable connectivity to and from virtual instances.

In this procedure, the example physical interface, eth0, is mapped to the bridge, br-ex; the virtual bridge
acts as the intermediary between the physical network and any virtual networks.

As a result, all traffic traversing eth0 uses the configured Open vSwitch to reach instances.

To map a physical NIC to the virtual Open vSwitch bridge, complete the following steps:

Procedure

1. Open /etc/sysconfig/network-scripts/ifcfg-eth0 in a text editor, and update the following
parameters with values appropriate for the network at your site:

IPADDR

NETMASK GATEWAY

DNS1 (name server)
Here is an example:

vi /etc/sysconfig/network-scripts/ifcfg-eth0
DEVICE=eth0
TYPE=OVSPort

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

68

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/floating#floating_ip_port_forwarding_create

DEVICETYPE=ovs
OVS_BRIDGE=br-ex
ONBOOT=yes

2. Open /etc/sysconfig/network-scripts/ifcfg-br-ex in a text editor and update the virtual bridge
parameters with the IP address values that were previously allocated to eth0:

vi /etc/sysconfig/network-scripts/ifcfg-br-ex
DEVICE=br-ex
DEVICETYPE=ovs
TYPE=OVSBridge
BOOTPROTO=static
IPADDR=192.168.120.10
NETMASK=255.255.255.0
GATEWAY=192.168.120.1
DNS1=192.168.120.1
ONBOOT=yes

You can now assign floating IP addresses to instances and make them available to the physical
network.

Additional resources

Configuring bridge mappings

5.9. ADDING AN INTERFACE

You can use interfaces to interconnect routers with subnets so that routers can direct any traffic that
instances send to destinations outside of their intermediate subnet.

To add a router interface and connect the new interface to a subnet, complete these steps:

NOTE

This procedure uses the Network Topology feature. Using this feature, you can see a
graphical representation of all your virtual routers and networks while you to perform
network management tasks.

1. In the dashboard, select Project > Network > Network Topology.

2. Locate the router that you want to manage, hover your mouse over it, and click Add Interface.

3. Specify the Subnet that you want to connect to the router.
You can also specify an IP address. The address is useful for testing and troubleshooting
purposes, since a successful ping to this interface indicates that the traffic is routing as
expected.

4. Click Add interface.
The Network Topology diagram automatically updates to reflect the new interface connection
between the router and subnet.

5.10. DELETING AN INTERFACE

You can remove an interface to a subnet if you no longer require the router to direct traffic for the

CHAPTER 5. MANAGING FLOATING IP ADDRESSES

69

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#configuring-bridge-mappings_config-bridge-mappings

You can remove an interface to a subnet if you no longer require the router to direct traffic for the
subnet.

To delete an interface, complete the following steps:

1. In the dashboard, select Project > Network > Routers.

2. Click the name of the router that hosts the interface that you want to delete.

3. Select the interface type (Internal Interface), and click Delete Interfaces.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

70

CHAPTER 6. MONITORING AND TROUBLESHOOTING
NETWORKS

The diagnostic process of monitoring and troubleshooting network connectivity in Red Hat OpenStack
Platform is similar to the diagnostic process for physical networks. If you use VLANs, you can consider
the virtual infrastructure as a trunked extension of the physical network, rather than a wholly separate
environment. There are some differences between troubleshooting an ML2/OVS network and the
default, ML2/OVN network.

6.1. BASIC PING TESTING

The ping command is a useful tool for analyzing network connectivity problems. The results serve as a
basic indicator of network connectivity, but might not entirely exclude all connectivity issues, such as a
firewall blocking the actual application traffic. The ping command sends traffic to specific destinations,
and then reports back whether the attempts were successful.

NOTE

The ping command is an ICMP operation. To use ping, you must allow ICMP traffic to
traverse any intermediary firewalls.

Ping tests are most useful when run from the machine experiencing network issues, so it may be
necessary to connect to the command line via the VNC management console if the machine seems to
be completely offline.

For example, the following ping test command validates multiple layers of network infrastructure in
order to succeed; name resolution, IP routing, and network switching must all function correctly:

$ ping www.example.com

PING e1890.b.akamaiedge.net (125.56.247.214) 56(84) bytes of data.
64 bytes from a125-56.247-214.deploy.akamaitechnologies.com (125.56.247.214): icmp_seq=1
ttl=54 time=13.4 ms
64 bytes from a125-56.247-214.deploy.akamaitechnologies.com (125.56.247.214): icmp_seq=2
ttl=54 time=13.5 ms
64 bytes from a125-56.247-214.deploy.akamaitechnologies.com (125.56.247.214): icmp_seq=3
ttl=54 time=13.4 ms
^C

You can terminate the ping command with Ctrl-c, after which a summary of the results is presented.
Zero percent packet loss indicates that the connection was stable and did not time out.

--- e1890.b.akamaiedge.net ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 13.461/13.498/13.541/0.100 ms

The results of a ping test can be very revealing, depending on which destination you test. For example, in
the following diagram VM1 is experiencing some form of connectivity issue. The possible destinations
are numbered in blue, and the conclusions drawn from a successful or failed result are presented:

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

71

1. The internet - a common first step is to send a ping test to an internet location, such as
www.example.com.

Success: This test indicates that all the various network points in between the machine and
the Internet are functioning correctly. This includes the virtual and physical network
infrastructure.

Failure: There are various ways in which a ping test to a distant internet location can fail. If
other machines on your network are able to successfully ping the internet, that proves the
internet connection is working, and the issue is likely within the configuration of the local
machine.

2. Physical router - This is the router interface that the network administrator designates to direct
traffic onward to external destinations.

Success: Ping tests to the physical router can determine whether the local network and
underlying switches are functioning. These packets do not traverse the router, so they do
not prove whether there is a routing issue present on the default gateway.

Failure: This indicates that the problem lies between VM1 and the default gateway. The
router/switches might be down, or you may be using an incorrect default gateway. Compare
the configuration with that on another server that you know is functioning correctly. Try
pinging another server on the local network.

3. Neutron router - This is the virtual SDN (Software-defined Networking) router that Red Hat
OpenStack Platform uses to direct the traffic of virtual machines.

Success: Firewall is allowing ICMP traffic, the Networking node is online.

Failure: Confirm whether ICMP traffic is permitted in the security group of the instance.
Check that the Networking node is online, confirm that all the required services are running,
and review the L3 agent log (/var/log/neutron/l3-agent.log).

4. Physical switch - The physical switch manages traffic between nodes on the same physical

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

72

4. Physical switch - The physical switch manages traffic between nodes on the same physical
network.

Success: Traffic sent by a VM to the physical switch must pass through the virtual network
infrastructure, indicating that this segment is functioning correctly.

Failure: Check that the physical switch port is configured to trunk the required VLANs.

5. VM2 - Attempt to ping a VM on the same subnet, on the same Compute node.

Success: The NIC driver and basic IP configuration on VM1 are functional.

Failure: Validate the network configuration on VM1. Or, firewall on VM2 might simply be
blocking ping traffic. In addition, verify the virtual switching configuration and review the
Open vSwitch log files.

6.2. VIEWING CURRENT PORT STATUS

A basic troubleshooting task is to create an inventory of all of the ports attached to a router and
determine the port status (DOWN or ACTIVE).

Procedure

1. To view all the ports that attach to the router named r1, run the following command:

openstack port list --router r1

Sample output

+--------------------------------------+------+-------------------+--
--+
| id | name | mac_address | fixed_ips
|
+--------------------------------------+------+-------------------+--
--+
| b58d26f0-cc03-43c1-ab23-ccdb1018252a | | fa:16:3e:94:a7:df | {"subnet_id": "a592fdba-
babd-48e0-96e8-2dd9117614d3", "ip_address": "192.168.200.1"} |
| c45e998d-98a1-4b23-bb41-5d24797a12a4 | | fa:16:3e:ee:6a:f7 | {"subnet_id": "43f8f625-
c773-4f18-a691-fd4ebfb3be54", "ip_address": "172.24.4.225"} |
+--------------------------------------+------+-------------------+--
--+

2. To view the details of each port, run the following command. Include the port ID of the port that
you want to view. The result includes the port status, indicated in the following example as
having an ACTIVE state:

openstack port show b58d26f0-cc03-43c1-ab23-ccdb1018252a

Sample output

+-----------------------+--
+
| Field | Value |
+-----------------------+--

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

73

+
admin_state_up	True
allowed_address_pairs	
binding:host_id	node.example.com
binding:profile	{}
binding:vif_details	{"port_filter": true, "ovs_hybrid_plug": true}
binding:vif_type	ovs
binding:vnic_type	normal
device_id	49c6ebdc-0e62-49ad-a9ca-58cea464472f
device_owner	network:router_interface
extra_dhcp_opts	
fixed_ips	{"subnet_id": "a592fdba-babd-48e0-96e8-2dd9117614d3", "ip_address":
"192.168.200.1"}	
id	b58d26f0-cc03-43c1-ab23-ccdb1018252a
mac_address	fa:16:3e:94:a7:df
name	
network_id	63c24160-47ac-4140-903d-8f9a670b0ca4
security_groups	
status	ACTIVE
tenant_id	d588d1112e0f496fb6cac22f9be45d49
+-----------------------+--
+

3. Perform step 2 for each port to determine its status.

6.3. TROUBLESHOOTING CONNECTIVITY TO VLAN PROVIDER
NETWORKS

OpenStack Networking can trunk VLAN networks through to the SDN switches. Support for VLAN-
tagged provider networks means that virtual instances can integrate with server subnets in the physical
network.

Procedure

1. Ping the gateway with ping <gateway-IP-address>.
Consider this example, in which a network is created with these commands:

openstack network create --provider-network-type vlan --provider-physical-network phy-
eno1 --provider-segment 120 provider
openstack subnet create --no-dhcp --allocation-pool
start=192.168.120.1,end=192.168.120.153 --gateway 192.168.120.254 --network provider
public_subnet

In this example, the gateway IP address is 192.168.120.254.

$ ping 192.168.120.254

2. If the ping fails, do the following:

a. Confirm that you have network flow for the associated VLAN.
It is possible that the VLAN ID has not been set. In this example, OpenStack Networking is
configured to trunk VLAN 120 to the provider network. (See --
provider:segmentation_id=120 in the example in step 1.)

b. Confirm the VLAN flow on the bridge interface using the command, ovs-ofctl dump-flows

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

74

b. Confirm the VLAN flow on the bridge interface using the command, ovs-ofctl dump-flows
<bridge-name>.
In this example the bridge is named br-ex:

ovs-ofctl dump-flows br-ex

 NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=987.521s, table=0, n_packets=67897, n_bytes=14065247,
idle_age=0, priority=1 actions=NORMAL
 cookie=0x0, duration=986.979s, table=0, n_packets=8, n_bytes=648, idle_age=977,
priority=2,in_port=12 actions=drop

6.4. REVIEWING THE VLAN CONFIGURATION AND LOG FILES

To help validate or troubleshoot a deployment, you can:

verify the registration and status of Red Hat Openstack Platform (RHOSP) Networking service
(neutron) agents.

validate network configuration values such as VLAN ranges.

Procedure

1. Use the openstack network agent list command to verify that the RHOSP Networking service
agents are up and registered with the correct host names.

(overcloud)[stack@undercloud~]$ openstack network agent list
+--------------------------------------+--------------------+-----------------------+-------+----------------+
| id | agent_type | host | alive | admin_state_up |
+--------------------------------------+--------------------+-----------------------+-------+----------------+
| a08397a8-6600-437d-9013-b2c5b3730c0c | Metadata agent | rhelosp.example.com | :-)
| True |
| a5153cd2-5881-4fc8-b0ad-be0c97734e6a | L3 agent | rhelosp.example.com | :-) |
True |
| b54f0be7-c555-43da-ad19-5593a075ddf0 | DHCP agent | rhelosp.example.com | :-)
| True |
| d2be3cb0-4010-4458-b459-c5eb0d4d354b | Open vSwitch agent | rhelosp.example.com |
:-) | True |
+--------------------------------------+--------------------+-----------------------+-------+----------------+

2. Review /var/log/containers/neutron/openvswitch-agent.log. Look for confirmation that the
creation process used the ovs-ofctl command to configure VLAN trunking.

3. Validate external_network_bridge in the /etc/neutron/l3_agent.ini file. If there is a hardcoded
value in the external_network_bridge parameter, you cannot use a provider network with the
L3-agent, and you cannot create the necessary flows. The external_network_bridge value
must be in the format `external_network_bridge = "" `.

4. Check the network_vlan_ranges value in the /etc/neutron/plugin.ini file. For provider
networks, do not specify the numeric VLAN ID. Specify IDs only when using VLAN isolated
project networks.

5. Validate the OVS agent configuration file bridge mappings, to confirm that the bridge
mapped to phy-eno1 exists and is properly connected to eno1.

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

75

6.5. PERFORMING BASIC ICMP TESTING WITHIN THE ML2/OVN
NAMESPACE

As a basic troubleshooting step, you can attempt to ping an instance from an OVN metadata interface
that is on the same layer 2 network.

Prerequisites

RHOSP deployment, with ML2/OVN as the Networking service (neutron) default mechanism
driver.

Procedure

1. Log in to the overcloud using your Red Hat OpenStack Platform credentials.

2. Run the openstack server list command to obtain the name of a VM instance.

3. Run the openstack server show command to determine the Compute node on which the
instance is running.

Example

$ openstack server show my_instance -c OS-EXT-SRV-ATTR:host \
-c addresses

Sample output

+----------------------+---+
| Field | Value |
+----------------------+---+
OS-EXT-SRV-ATTR:host	compute0.ctlplane.example.com
addresses	finance-network1=192.0.2.2; provider-
	storage=198.51.100.13
+----------------------+---+

4. Log in to the Compute node host.

Example

$ ssh tripleo-admin@compute0.ctlplane

5. Run the ip netns list command to see the OVN metadata namespaces.

Sample output

ovnmeta-07384836-6ab1-4539-b23a-c581cf072011 (id: 1)
ovnmeta-df9c28ea-c93a-4a60-b913-1e611d6f15aa (id: 0)

6. Using the metadata namespace run an ip netns exec command to ping the associated network.

Example

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

76

$ sudo ip netns exec ovnmeta-df9c28ea-c93a-4a60-b913-1e611d6f15aa \
ping 192.0.2.2

Sample output

PING 192.0.2.2 (192.0.2.2) 56(84) bytes of data.
64 bytes from 192.0.2.2: icmp_seq=1 ttl=64 time=0.470 ms
64 bytes from 192.0.2.2: icmp_seq=2 ttl=64 time=0.483 ms
64 bytes from 192.0.2.2: icmp_seq=3 ttl=64 time=0.183 ms
64 bytes from 192.0.2.2: icmp_seq=4 ttl=64 time=0.296 ms
64 bytes from 192.0.2.2: icmp_seq=5 ttl=64 time=0.307 ms
^C
--- 192.0.2.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 122ms
rtt min/avg/max/mdev = 0.183/0.347/0.483/0.116 ms

Additional resources

server show in the Command line interface reference

6.6. TROUBLESHOOTING FROM WITHIN PROJECT NETWORKS
(ML2/OVS)

In Red Hat Openstack Platform (RHOSP) ML2/OVS networks, all project traffic is contained within
network namespaces so that projects can configure networks without interfering with each other. For
example, network namespaces allow different projects to have the same subnet range of 192.168.1.1/24
without interference between them.

Prerequisites

RHOSP deployment, with ML2/OVS as the Networking service (neutron) default mechanism
driver.

Procedure

1. Determine which network namespace contains the network, by listing all of the project networks
using the openstack network list command:

$ openstack network list

In this output, note that the ID for the web-servers network (9cb32fe0-d7fb-432c-b116-
f483c6497b08). The command appends the network ID to the network namespace, which
enables you to identify the namespace in the next step.

Sample output

+--------------------------------------+-------------+---+
| id | name | subnets |
+--------------------------------------+-------------+---+
| 9cb32fe0-d7fb-432c-b116-f483c6497b08 | web-servers | 453d6769-fcde-4796-a205-
66ee01680bba 192.168.212.0/24 |
| a0cc8cdd-575f-4788-a3e3-5df8c6d0dd81 | private | c1e58160-707f-44a7-bf94-
8694f29e74d3 10.0.0.0/24 |

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

77

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_show

| baadd774-87e9-4e97-a055-326bb422b29b | private | 340c58e1-7fe7-4cf2-96a7-
96a0a4ff3231 192.168.200.0/24 |
| 24ba3a36-5645-4f46-be47-f6af2a7d8af2 | public | 35f3d2cb-6e4b-4527-a932-
952a395c4bb3 172.24.4.224/28 |
+--------------------------------------+-------------+---+

2. List all the network namespaces using the ip netns list command:

ip netns list

The output contains a namespace that matches the web-servers network ID.

In this output, the namespace is qdhcp-9cb32fe0-d7fb-432c-b116-f483c6497b08.

Sample output

qdhcp-9cb32fe0-d7fb-432c-b116-f483c6497b08
qrouter-31680a1c-9b3e-4906-bd69-cb39ed5faa01
qrouter-62ed467e-abae-4ab4-87f4-13a9937fbd6b
qdhcp-a0cc8cdd-575f-4788-a3e3-5df8c6d0dd81
qrouter-e9281608-52a6-4576-86a6-92955df46f56

3. Examine the configuration of the web-servers network by running commands within the
namespace, prefixing the troubleshooting commands with ip netns exec <namespace>.
In this example, the route -n command is used.

Example

ip netns exec qrouter-62ed467e-abae-4ab4-87f4-13a9937fbd6b route -n

Sample output

Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 172.24.4.225 0.0.0.0 UG 0 0 0 qg-8d128f89-87
172.24.4.224 0.0.0.0 255.255.255.240 U 0 0 0 qg-8d128f89-87
192.168.200.0 0.0.0.0 255.255.255.0 U 0 0 0 qr-8efd6357-96

6.7. PERFORMING ADVANCED ICMP TESTING WITHIN THE
NAMESPACE (ML2/OVS)

You can troubleshoot Red Hat Openstack Platform (RHOSP) ML2/OVS networks, using a combination
of tcpdump and ping commands.

Prerequisites

RHOSP deployment, with ML2/OVS as the Networking service (neutron) default mechanism
driver.

Procedure

1. Capture ICMP traffic using the tcpdump command:

Example

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

78

Example

ip netns exec qrouter-62ed467e-abae-4ab4-87f4-13a9937fbd6b tcpdump -qnntpi any icmp

2. In a separate command line window, perform a ping test to an external network:

Example

ip netns exec qrouter-62ed467e-abae-4ab4-87f4-13a9937fbd6b ping www.example.com

3. In the terminal running the tcpdump session, observe detailed results of the ping test.

Sample output

tcpdump: listening on any, link-type LINUX_SLL (Linux cooked), capture size 65535 bytes
IP (tos 0xc0, ttl 64, id 55447, offset 0, flags [none], proto ICMP (1), length 88)
 172.24.4.228 > 172.24.4.228: ICMP host 192.168.200.20 unreachable, length 68
 IP (tos 0x0, ttl 64, id 22976, offset 0, flags [DF], proto UDP (17), length 60)
 172.24.4.228.40278 > 192.168.200.21: [bad udp cksum 0xfa7b -> 0xe235!] UDP, length 32

NOTE

When you perform a tcpdump analysis of traffic, you see the responding packets heading
to the router interface rather than to the VM instance. This is expected behavior, as the
qrouter performs Destination Network Address Translation (DNAT) on the return
packets.

6.8. CREATING ALIASES FOR OVN TROUBLESHOOTING COMMANDS

You run OVN commands, such as ovn-nbctl show, in the ovn_controller container. The container runs
on the Controller node and Compute nodes. To simplify your access to the commands, create and
source a script that defines aliases.

Prerequisites

Red Hat OpenStack Platform deployment with ML2/OVN as the default mechanism driver.

Procedure

1. Log in to the Controller host as a user that has the necessary privileges to access the OVN
containers.

Example

$ ssh tripleo-admin@controller-0.ctlplane

2. Create a shell script file that contains the ovn commands that you want to run.

Example

vi ~/bin/ovn-alias.sh

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

79

3. Add the ovn commands, and save the script file.

Example

In this example, the ovn-sbctl, ovn-nbctl, and ovn-trace commands have been added to an alias
file:

REMOTE_IP=$(sudo ovs-vsctl get open . external_ids:ovn-remote)
NBDB=$(echo $REMOTE_IP | sed 's/6642/6641/g')
SBDB=$REMOTE_IP
alias ovn-sbctl="sudo podman exec ovn_controller ovn-sbctl --db=$SBDB"
alias ovn-nbctl="sudo podman exec ovn_controller ovn-nbctl --db=$NBDB"
alias ovn-trace="sudo podman exec ovn_controller ovn-trace --db=$SBDB"

4. Repeat the steps in this procedure on the Compute host.

Validation

1. Source the script file.

Example

source ovn-alias.sh

2. Run a command to confirm that your script file works properly.

Example

ovn-nbctl show

Sample output

switch 26ce22db-1795-41bd-b561-9827cbd81778 (neutron-f8e79863-6c58-43d0-8f7d-
8ec4a423e13b) (aka internal_network)
 port 1913c3ae-8475-4b60-a479-df7bcce8d9c8
 addresses: ["fa:16:3e:33:c1:fc 192.168.254.76"]
 port 1aabaee3-b944-4da2-bf0a-573215d3f3d9
 addresses: ["fa:16:3e:16:cb:ce 192.168.254.74"]
 port 7e000980-59f9-4a0f-b76a-4fdf4e86f27b
 type: localport
 addresses: ["fa:16:3e:c9:30:ed 192.168.254.2"]

Additional resources

ovn-nbctl --help command

ovn-sbctl --help command

ovn-trace --help command

6.9. MONITORING OVN LOGICAL FLOWS

OVN uses logical flows that are tables of flows with a priority, match, and actions. These logical flows are

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

80

OVN uses logical flows that are tables of flows with a priority, match, and actions. These logical flows are
distributed to the ovn-controller running on each Red Hat Openstack Platform (RHOSP) Compute
node. Use the ovn-sbctl lflow-list command on the Controller node to view the full set of logical flows.

Prerequisites

RHOSP deployment with ML2/OVN as the Networking service (neutron) default mechanism
driver.

Create an alias file for the OVN database commands.
See, Section 6.8, “Creating aliases for OVN troubleshooting commands” .

Procedure

1. Log in to the Controller host as a user that has the necessary privileges to access the OVN
containers.

Example

$ ssh tripleo-admin@controller-0.ctlplane

2. Source the alias file for the OVN database commands.
For more information, see Section 6.8, “Creating aliases for OVN troubleshooting commands” .

Example

source ~/ovn-alias.sh

3. View the logical flows:

$ ovn-sbctl lflow-list

4. Inspect the output.

Sample output

Datapath: "sw0" (d7bf4a7b-e915-4502-8f9d-5995d33f5d10) Pipeline: ingress
 table=0 (ls_in_port_sec_l2), priority=100 , match=(eth.src[40]), action=(drop;)
 table=0 (ls_in_port_sec_l2), priority=100 , match=(vlan.present), action=(drop;)
 table=0 (ls_in_port_sec_l2), priority=50 , match=(inport == "sw0-port1" && eth.src ==
{00:00:00:00:00:01}), action=(next;)
 table=0 (ls_in_port_sec_l2), priority=50 , match=(inport == "sw0-port2" && eth.src ==
{00:00:00:00:00:02}), action=(next;)
 table=1 (ls_in_port_sec_ip), priority=0 , match=(1), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port1" && eth.src ==
00:00:00:00:00:01 && arp.sha == 00:00:00:00:00:01), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port1" && eth.src ==
00:00:00:00:00:01 && ip6 && nd && ((nd.sll == 00:00:00:00:00:00 || nd.sll ==
00:00:00:00:00:01) || ((nd.tll == 00:00:00:00:00:00 || nd.tll == 00:00:00:00:00:01)))), action=
(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port2" && eth.src ==
00:00:00:00:00:02 && arp.sha == 00:00:00:00:00:02), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port2" && eth.src ==
00:00:00:00:00:02 && ip6 && nd && ((nd.sll == 00:00:00:00:00:00 || nd.sll ==

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

81

00:00:00:00:00:02) || ((nd.tll == 00:00:00:00:00:00 || nd.tll == 00:00:00:00:00:02)))), action=
(next;)
 table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "sw0-port1" && (arp || nd)),
action=(drop;)
 table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "sw0-port2" && (arp || nd)),
action=(drop;)
 table=2 (ls_in_port_sec_nd), priority=0 , match=(1), action=(next;)
 table=3 (ls_in_pre_acl), priority=0, match=(1), action=(next;)
 table=4 (ls_in_pre_lb), priority=0 , match=(1), action=(next;)
 table=5 (ls_in_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)
 table=5 (ls_in_pre_stateful), priority=0 , match=(1), action=(next;)
 table=6 (ls_in_acl), priority=0 , match=(1), action=(next;)
 table=7 (ls_in_qos_mark), priority=0 , match=(1), action=(next;)
 table=8 (ls_in_lb), priority=0 , match=(1), action=(next;)
 table=9 (ls_in_stateful), priority=100 , match=(reg0[1] == 1), action=
(ct_commit(ct_label=0/1); next;)
 table=9 (ls_in_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_lb;)
 table=9 (ls_in_stateful), priority=0 , match=(1), action=(next;)
 table=10(ls_in_arp_rsp), priority=0 , match=(1), action=(next;)
 table=11(ls_in_dhcp_options), priority=0 , match=(1), action=(next;)
 table=12(ls_in_dhcp_response), priority=0 , match=(1), action=(next;)
 table=13(ls_in_l2_lkup), priority=100 , match=(eth.mcast), action=(outport =
"_MC_flood"; output;)
 table=13(ls_in_l2_lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:01), action=
(outport = "sw0-port1"; output;)
 table=13(ls_in_l2_lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:02), action=
(outport = "sw0-port2"; output;)
Datapath: "sw0" (d7bf4a7b-e915-4502-8f9d-5995d33f5d10) Pipeline: egress
 table=0 (ls_out_pre_lb), priority=0 , match=(1), action=(next;)
 table=1 (ls_out_pre_acl), priority=0 , match=(1), action=(next;)
 table=2 (ls_out_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)
 table=2 (ls_out_pre_stateful), priority=0 , match=(1), action=(next;)
 table=3 (ls_out_lb), priority=0 , match=(1), action=(next;)
 table=4 (ls_out_acl), priority=0 , match=(1), action=(next;)
 table=5 (ls_out_qos_mark), priority=0 , match=(1), action=(next;)
 table=6 (ls_out_stateful), priority=100 , match=(reg0[1] == 1), action=
(ct_commit(ct_label=0/1); next;)
 table=6 (ls_out_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_lb;)
 table=6 (ls_out_stateful), priority=0 , match=(1), action=(next;)
 table=7 (ls_out_port_sec_ip), priority=0 , match=(1), action=(next;)
 table=8 (ls_out_port_sec_l2), priority=100 , match=(eth.mcast), action=(output;)
 table=8 (ls_out_port_sec_l2), priority=50 , match=(outport == "sw0-port1" && eth.dst ==
{00:00:00:00:00:01}), action=(output;)
 table=8 (ls_out_port_sec_l2), priority=50 , match=(outport == "sw0-port2" && eth.dst ==
{00:00:00:00:00:02}), action=(output;)

Key differences between OVN and OpenFlow include:

OVN ports are logical entities that reside somewhere on a network, not physical ports on a
single switch.

OVN gives each table in the pipeline a name in addition to its number. The name describes
the purpose of that stage in the pipeline.

The OVN match syntax supports complex Boolean expressions.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

82

The actions supported in OVN logical flows extend beyond those of OpenFlow. You can
implement higher level features, such as DHCP, in the OVN logical flow syntax.

5. Run an OVN trace.
The ovn-trace command can simulate how a packet travels through the OVN logical flows, or
help you determine why a packet is dropped. Provide the ovn-trace command with the following
parameters:

DATAPATH

The logical switch or logical router where the simulated packet starts.

MICROFLOW

The simulated packet, in the syntax used by the ovn-sb database.

Example

This example displays the --minimal output option on a simulated packet and shows that the
packet reaches its destination:

$ ovn-trace --minimal sw0 'inport == "sw0-port1" && eth.src == 00:00:00:00:00:01 &&
eth.dst == 00:00:00:00:00:02'

Sample output

reg14=0x1,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x
0000
 output("sw0-port2");

Example

In more detail, the --summary output for this same simulated packet shows the full
execution pipeline:

$ ovn-trace --summary sw0 'inport == "sw0-port1" && eth.src == 00:00:00:00:00:01 &&
eth.dst == 00:00:00:00:00:02'

Sample output

The sample output shows:

The packet enters the sw0 network from the sw0-port1 port and runs the ingress
pipeline.

The outport variable is set to sw0-port2 indicating that the intended destination for this
packet is sw0-port2.

The packet is output from the ingress pipeline, which brings it to the egress pipeline for
sw0 with the outport variable set to sw0-port2.

The output action is executed in the egress pipeline, which outputs the packet to the
current value of the outport variable, which is sw0-port2.

reg14=0x1,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type
=0x0000

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

83

ingress(dp="sw0", inport="sw0-port1") {
 outport = "sw0-port2";
 output;
 egress(dp="sw0", inport="sw0-port1", outport="sw0-port2") {
 output;
 /* output to "sw0-port2", type "" */;
 };
};

Additional resources

Section 6.8, “Creating aliases for OVN troubleshooting commands”

ovn-sbctl --help command

ovn-trace --help command

6.10. MONITORING OPENFLOWS

You can use ovs-ofctl dump-flows command to monitor the OpenFlow flows on a logical switch in your
Red Hat Openstack Platform (RHOSP) network.

Prerequisites

RHOSP deployment with ML2/OVN as the Networking service (neutron) default mechanism
driver.

Procedure

1. Log in to the Controller host as a user that has the necessary privileges to access the OVN
containers.

Example

$ ssh tripleo-admin@controller-0.ctlplane

2. Run the ovs-ofctl dump-flows command.

Example

$ sudo ovs-ofctl dump-flows br-int

3. Inspect the output, which resembles the following output.

Sample output

$ ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=72.132s, table=0, n_packets=0, n_bytes=0, idle_age=72,
priority=10,in_port=1,dl_src=00:00:00:00:00:01 actions=resubmit(,1)
 cookie=0x0, duration=60.565s, table=0, n_packets=0, n_bytes=0, idle_age=60,
priority=10,in_port=2,dl_src=00:00:00:00:00:02 actions=resubmit(,1)

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

84

 cookie=0x0, duration=28.127s, table=0, n_packets=0, n_bytes=0, idle_age=28, priority=0
actions=drop
 cookie=0x0, duration=13.887s, table=1, n_packets=0, n_bytes=0, idle_age=13,
priority=0,in_port=1 actions=output:2
 cookie=0x0, duration=4.023s, table=1, n_packets=0, n_bytes=0, idle_age=4,
priority=0,in_port=2 actions=output:1

Additional resources

ovs-ofctl --help command

6.11. MONITORING OVN DATABASE STATUS

You can use the ovs-appctl command to monitor connections between OVN database servers.

Prerequisites

RHOSP deployment with ML2/OVN as the Networking service (neutron) default mechanism
driver.

Procedure

1. Log in to a Controller host as a user that has the necessary privileges to access the OVN
containers.
Monitoring from a server on a single Controller host provides the information you need to to
verify basic cluster health and to diagnose many types of problems. For a very thorough
analysis, perform this procedure on all Controllers.

Example

$ ssh tripleo-admin@compute-0

2. Run the ovs-appctl command.

Example: northbound database

$ ovs-appctl -t /var/lib/openvswitch/ovn/ovnnb_db.ctl cluster/status OVN_Northbound

Example: southbound database

ovs-appctl -t /var/lib/openvswitch/ovn/ovnsb_db.ctl cluster/status OVN_Southbound

3. Inspect the output, which resembles the following output.

Sample output: southbound database

This sample output was generated on server 1114, which was a follower at the time.

1114
Name: OVN_Southbound
Cluster ID: 017a (017add73-58f1-4fcd-ae35-bacc0f07ce57)
Server ID: 1114 (1114865d-4f42-443a-b758-d4431fc35748)
Address: tcp:[fd00:fd00:fd00:2000::4a]:6644

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

85

Status: cluster member
Role: follower
Term: 90
Leader: ca6e
Vote: ca6e

Last Election started 27881511 ms ago, reason: leadership_transfer
Last Election won: 27881503 ms ago
Election timer: 16000
Log: [51470, 51737]
Entries not yet committed: 0
Entries not yet applied: 0
Connections: ->ca6e ->0f90 <-ca6e <-0f90
Disconnections: 0
Servers:
 1114 (1114 at tcp:[fd00:fd00:fd00:2000::4a]:6644) (self)
 ca6e (ca6e at tcp:[fd00:fd00:fd00:2000::18f]:6644) last msg 5141 ms ago
 0f90 (0f90 at tcp:[fd00:fd00:fd00:2000::2e0]:6644) last msg 22106129 ms ago

Diagnostic indications from sample output

A right-pointing arrow (→) represents outbound connection from this server to another A left-
pointing arrow (←) represents inbound connection from another server to this server.

All servers are active and connected

Connections: ->ca6e ->0f90 <-ca6e <-0f90
This three-node cluster appears healthy. The server 1114 has inbound and outbound
connections with the other two servers, ca6e and 0f90.

A server is disconnected from the cluster

Connections: ->ca6e (->0f90) <-ca6e
The incoming connection from server 0f90 is not listed. The parenthesis around the
outgoing connection indicate that outbound messages to 0f90 failed. For most situations,
connecting to any server in the cluster provides enough information to determine whether
there are issues with the cluster. Running the diagnostics on all servers provides more
detailed information and might detect problems that you cannot detect from a single server.

The cluster has lost quorum

Role: candidate
...
Leader: unknown

This server is a candidate and the leader is unknown.

The ovsdb-server is down on this node

2024-03-27T22:10:28Z|00001|unixctl|WARN|failed to connect to
/var/lib/openvswitch/ovn/ovnsb_db.ctl
ovs-appctl: cannot connect to "/var/lib/openvswitch/ovn/ovnsb_db.ctl" (Connection
refused)

<exits with non-zero status>

In this case, you cannot get all the information you need from a single server. For example,

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

86

In this case, you cannot get all the information you need from a single server. For example,
you cannot determine whether the other servers are running. If the server is down, run ovs-
appctl on another server.

Time since last message to leader from each follower (only updated on leader)

Servers:
 1114 (1114 at tcp:[fd00:fd00:fd00:2000::4a]:6644) next_index=51737
match_index=51736 last msg 224 ms ago
 ca6e (ca6e at tcp:[fd00:fd00:fd00:2000::18f]:6644) (self) next_index=51470
match_index=51736
 0f90 (0f90 at tcp:[fd00:fd00:fd00:2000::2e0]:6644) next_index=51737
match_index=51736 last msg 224 ms ago

Log on to the cluster leader host and run ovs-appctl. Note that a new leader can be elected
at any time.

Additional resources

ovs-appctl --help command

6.12. VALIDATING YOUR ML2/OVN DEPLOYMENT

Validating the ML2/OVN networks on your Red Hat OpenStack Platform (RHOSP) deployment consists
of creating a test network and subnet and performing diagnostic tasks such as verifying that specfic
containers are running.

Prerequisites

New deployment of RHOSP, with ML2/OVN as the Networking service (neutron) default
mechanism driver.

Create an alias file for the OVN database commands.
See, Section 6.8, “Creating aliases for OVN troubleshooting commands” .

Procedure

1. Create a test network and subnet.

NETWORK_ID=\
$(openstack network create internal_network | awk '/\| id/ {print $4}')

openstack subnet create internal_subnet \
--network $NETWORK_ID \
--dns-nameserver 8.8.8.8 \
--subnet-range 192.168.254.0/24

If you encounter errors, perform the steps that follow.

2. Verify that the relevant containers are running on the Controller host:

a. Log in to the Controller host as a user that has the necessary privileges to access the OVN
containers.

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

87

Example

$ ssh tripleo-admin@controller-0.ctlplane

b. Enter the following command:

$ sudo podman ps -a --format="{{.Names}}"|grep ovn

As shown in the following sample, the output should list the OVN containers:

Sample output

container-puppet-ovn_controller
ovn_cluster_north_db_server
ovn_cluster_south_db_server
ovn_cluster_northd
ovn_controller

3. Verify that the relevant containers are running on the Compute host:

a. Log in to the Compute host as a user that has the necessary privileges to access the OVN
containers.

Example

$ ssh tripleo-admin@compute-0.ctlplane

b. Enter the following command:

$ sudo podman ps -a --format="{{.Names}}"|grep ovn

As shown in the following sample, the output should list the OVN containers:

Sample output

container-puppet-ovn_controller
ovn_metadata_agent
ovn_controller

4. Inspect log files for error messages.

grep -r ERR /var/log/containers/openvswitch/ /var/log/containers/neutron/

5. Source an alias file to run the OVN database commands.
For more information, see Section 6.8, “Creating aliases for OVN troubleshooting commands” .

Example

$ source ~/ovn-alias.sh

6. Query the northbound and southbound databases to check for responsiveness.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

88

ovn-nbctl show
ovn-sbctl show

7. Attempt to ping an instance from an OVN metadata interface that is on the same layer 2
network.
For more information, see Section 6.5, “Performing basic ICMP testing within the ML2/OVN
namespace”.

8. If you need to contact Red Hat for support, perform the steps described in this Red Hat
Solution, How to collect all required logs for Red Hat Support to investigate an OpenStack
issue.

Additional resources

network create in the Command line interface reference

subnet create in the Command line interface reference

Section 6.8, “Creating aliases for OVN troubleshooting commands”

ovn-nbctl --help command

ovn-sbctl --help command

6.13. SETTING THE LOGGING MODE FOR ML2/OVN

Set ML2/OVN logging to debug mode for additional troubleshooting information. Set logging back to
info mode to use less disk space when you do not need additional debugging information.

Prerequisites

Red Hat OpenStack Platform deployment with ML2/OVN as the default mechanism driver.

Procedure

1. Log in to the Controller or Compute node where you want to set the logging mode as a user
that has the necessary privileges to access the OVN containers.

Example

$ ssh tripleo-admin@controller-0.ctlplane

2. Set the ML2/OVN logging mode.

Debug logging mode

$ sudo podman exec -it ovn_controller ovn-appctl -t ovn-controller vlog/set dbg

Info logging mode

$ sudo podman exec -it ovn_controller ovn-appctl -t ovn-controller vlog/set info

Verification

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

89

https://access.redhat.com/solutions/2055933
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_create

Verification

Confirm that the ovn-controller container log now contains debug messages:

$ sudo grep DBG /var/log/containers/openvswitch/ovn-controller.log

Sample output

You should see recent log messages that contain the string |DBG|:

2022-09-29T20:52:54.638Z|00170|vconn(ovn_pinctrl0)|DBG|unix:/var/run/openvswitch/br-
int.mgmt: received: OFPT_ECHO_REQUEST (OF1.5) (xid=0x0): 0 bytes of payload
2022-09-29T20:52:54.638Z|00171|vconn(ovn_pinctrl0)|DBG|unix:/var/run/openvswitch/br-
int.mgmt: sent (Success): OFPT_ECHO_REPLY (OF1.5) (xid=0x0): 0 bytes of payload

Confirm that the ovn-controller container log contains a string similar to the following:

...received request vlog/set["info"], id=0

Additional resources

Section 6.15, “ML2/OVN log files”

6.14. FIXING OVN CONTROLLERS THAT FAIL TO REGISTER ON EDGE
SITES

Issue

OVN controllers on Red Hat OpenStack Platform (RHOSP) edge sites fail to register.

NOTE

This error can occur on RHOSP 17.1 ML2/OVN deployments that were updated from
an earlier RHOSP version—RHOSP 16.1.7 and earlier or RHOSP 16.2.0.

Sample error

The error encountered is similar to the following:

2021-04-12T09:14:48.994Z|04754|ovsdb_idl|WARN|transaction error: {"details":"Transaction
causes multiple rows in \"Encap\" table to have identical values (geneve and \"10.14.2.7\") for
index on columns \"type\" and \"ip\". First row, with UUID 3973cad5-eb8a-4f29-85c3-
c105d861c0e0, was inserted by this transaction. Second row, with UUID f06b71a8-4162-475b-
8542-d27db3a9097a, existed in the database before this transaction and was not modified by the
transaction.","error":"constraint violation"}

Cause

If the ovn-controller process replaces the hostname, it registers another chassis entry which
includes another encap entry. For more information, see BZ#1948472.

Resolution

Follow these steps to resolve the problem:

1. If you have not already, create aliases for the necessary OVN database commands that you

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

90

https://bugzilla.redhat.com/show_bug.cgi?id=1948472

1. If you have not already, create aliases for the necessary OVN database commands that you
will use later in this procedure.
For more information, see Creating aliases for OVN troubleshooting commands .

2. Log in to the Controller host as a user that has the necessary privileges to access the OVN
containers.

Example

$ ssh tripleo-admin@controller-0.ctlplane

3. Obtain the IP address from the /var/log/containers/openvswitch/ovn-controller.log

4. Confirm that the IP address is correct:

ovn-sbctl list encap |grep -a3 <IP address from ovn-controller.log>

5. Delete the chassis that contains IP address:

ovn-sbctl chassis-del <chassis-id>

6. Check the Chassis_Private table to confirm that chassis has been removed:

ovn-sbctl find Chassis_private chassis="[]"

7. If any entries are reported, remove them with the following command:

$ ovn-sbctl destroy Chassis_Private <listed_id>

8. Restart the following containers:

tripleo_ovn_controller

tripleo_ovn_metadata_agent

$ sudo systemctl restart tripleo_ovn_controller
$ sudo systemctl restart tripleo_ovn_metadata_agent

Verification

Confirm that OVN agents are running:

$ openstack network agent list -c "Agent Type" -c State -c Binary

Sample output

+------------------------------+-------+----------------------------+
| Agent Type | State | Binary |
+------------------------------+-------+----------------------------+
OVN Controller Gateway agent	UP	ovn-controller
OVN Controller Gateway agent	UP	ovn-controller
OVN Controller agent	UP	ovn-controller

CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS

91

| OVN Metadata agent | UP | neutron-ovn-metadata-agent |
| OVN Controller Gateway agent | UP | ovn-controller |
+------------------------------+-------+----------------------------+

6.15. ML2/OVN LOG FILES

Log files track events related to the deployment and operation of the ML2/OVN mechanism driver.

Table 6.1. ML2/OVN log files per node

Nodes Log Path
/var/log/containers/openvswi
tch...

Controller, Compute, Networking OVS northbound database server .../ovn-controller.log

Controller OVS northbound database server .../ovsdb-server-nb.log

Controller OVS southbound database server .../ovsdb-server-sb.log

Controller OVN northbound database server .../ovn-northd.log

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

92

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR
OPENSTACK NETWORKING

This chapter documents the common physical switch configuration steps required for OpenStack
Networking. Vendor-specific configuration is included for certain switches.

7.1. PLANNING YOUR PHYSICAL NETWORK ENVIRONMENT

The physical network adapters in your OpenStack nodes carry different types of network traffic, such as
instance traffic, storage data, or authentication requests. The type of traffic these NICs carry affects
how you must configure the ports on the physical switch.

First, you must decide which physical NICs oFn your Compute node you want to carry which types of
traffic. Then, when the NIC is cabled to a physical switch port, you must configure the switch port to allow
trunked or general traffic.

For example, the following diagram depicts a Compute node with two NICs, eth0 and eth1. Each NIC is
cabled to a Gigabit Ethernet port on a physical switch, with eth0 carrying instance traffic, and eth1
providing connectivity for OpenStack services:

Figure 7.1. Sample network layout

NOTE

This diagram does not include any additional redundant NICs required for fault tolerance.

Additional resources

Network Interface Bonding in the Customizing your Red Hat OpenStack Platform deployment
guide.

7.2. CONFIGURING A CISCO CATALYST SWITCH

7.2.1. About trunk ports

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

93

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_customizing-networks-for-the-rhosp-environment#assembly_network-interface-bonding

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

7.2.2. Configuring trunk ports for a Cisco Catalyst switch

If using a Cisco Catalyst switch running Cisco IOS, you might use the following configuration
syntax to allow traffic for VLANs 110 and 111 to pass through to your instances.
This configuration assumes that your physical node has an ethernet cable connected to
interface GigabitEthernet1/0/12 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

interface GigabitEthernet1/0/12
 description Trunk to Compute Node
 spanning-tree portfast trunk
 switchport trunk encapsulation dot1q
 switchport mode trunk
 switchport trunk native vlan 2
 switchport trunk allowed vlan 2,110,111

Use the following list to understand these parameters:

Field Description

interface GigabitEthernet1/0/12 The switch port that the NIC of the X node
connects to. Ensure that you replace the
GigabitEthernet1/0/12 value with the correct
port value for your environment. Use the show
interface command to view a list of ports.

description Trunk to Compute Node A unique and descriptive value that you can use
to identify this interface.

spanning-tree portfast trunk If your environment uses STP, set this value to
instruct Port Fast that this port is used to trunk
traffic.

switchport trunk encapsulation dot1q Enables the 802.1q trunking standard (rather
than ISL). This value varies depending on the
configuration that your switch supports.

switchport mode trunk Configures this port as a trunk port, rather than
an access port, meaning that it allows VLAN
traffic to pass through to the virtual switches.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

94

switchport trunk native vlan 2 Set a native VLAN to instruct the switch where
to send untagged (non-VLAN) traffic.

switchport trunk allowed vlan 2,110,111 Defines which VLANs are allowed through the
trunk.

Field Description

7.2.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

7.2.4. Configuring access ports for a Cisco Catalyst switch

Using the example from the Figure 7.1, “Sample network layout” diagram, GigabitEthernet1/0/13
(on a Cisco Catalyst switch) is configured as an access port for eth1.
In this configuration,your physical node has an ethernet cable connected to interface
GigabitEthernet1/0/12 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

interface GigabitEthernet1/0/13
 description Access port for Compute Node
 switchport mode access
 switchport access vlan 200
 spanning-tree portfast

These settings are described below:

Field Description

interface GigabitEthernet1/0/13 The switch port that the NIC of the X node
connects to. Ensure that you replace the
GigabitEthernet1/0/12 value with the correct
port value for your environment. Use the show
interface command to view a list of ports.

description Access port for Compute
Node

A unique and descriptive value that you can use
to identify this interface.

switchport mode access Configures this port as an access port, rather
than a trunk port.

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

95

switchport access vlan 200 Configures the port to allow traffic on VLAN
200. You must configure your Compute node
with an IP address from this VLAN.

spanning-tree portfast If using STP, set this value to instruct STP not to
attempt to initialize this as a trunk, allowing for
quicker port handshakes during initial
connections (such as server reboot).

Field Description

7.2.5. About LACP port aggregation

You can use Link Aggregation Control Protocol (LACP) to bundle multiple physical NICs together to
form a single logical channel. Also known as 802.3ad (or bonding mode 4 in Linux), LACP creates a
dynamic bond for load-balancing and fault tolerance. You must configure LACP at both physical ends:
on the physical NICs, and on the physical switch ports.

Additional resources

Network Interface Bonding in the Installing and managing Red Hat OpenStack Platform with
director guide.

7.2.6. Configuring LACP on the physical NIC

You can configure Link Aggregation Control Protocol (LACP) on a physical NIC.

Procedure

1. Edit the /home/stack/network-environment.yaml file:

- type: linux_bond
 name: bond1
 mtu: 9000
 bonding_options:{get_param: BondInterfaceOvsOptions};
 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

2. Configure the Open vSwitch bridge to use LACP:

BondInterfaceOvsOptions:
 "mode=802.3ad"

Additional resources

Network Interface Bonding in the Customizing your Red Hat OpenStack Platform deployment

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

96

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_network-interface-bonding

Network Interface Bonding in the Customizing your Red Hat OpenStack Platform deployment
guide.

7.2.7. Configuring LACP for a Cisco Catalyst switch

In this example, the Compute node has two NICs using VLAN 100:

Procedure

1. Physically connect both NICs on the Compute node to the switch (for example, ports 12 and 13).

2. Create the LACP port channel:

interface port-channel1
 switchport access vlan 100
 switchport mode access
 spanning-tree guard root

3. Configure switch ports 12 (Gi1/0/12) and 13 (Gi1/0/13):

sw01# config t
Enter configuration commands, one per line. End with CNTL/Z.

sw01(config) interface GigabitEthernet1/0/12
 switchport access vlan 100
 switchport mode access
 speed 1000
 duplex full
 channel-group 10 mode active
 channel-protocol lacp

interface GigabitEthernet1/0/13
 switchport access vlan 100
 switchport mode access
 speed 1000
 duplex full
 channel-group 10 mode active
 channel-protocol lacp

4. Review your new port channel. The resulting output lists the new port-channel Po1, with
member ports Gi1/0/12 and Gi1/0/13:

sw01# show etherchannel summary
<snip>

Number of channel-groups in use: 1
Number of aggregators: 1

Group Port-channel Protocol Ports
------+-------------+-----------+---
1 Po1(SD) LACP Gi1/0/12(D) Gi1/0/13(D)

NOTE

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

97

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_customizing-networks-for-the-rhosp-environment#assembly_network-interface-bonding

NOTE

Remember to apply your changes by copying the running-config to the startup-
config: copy running-config startup-config.

7.2.8. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

7.2.9. Configuring MTU settings for a Cisco Catalyst switch

Complete the steps in this example procedure to enable jumbo frames on your Cisco Catalyst 3750
switch.

1. Review the current MTU settings:

sw01# show system mtu

System MTU size is 1600 bytes
System Jumbo MTU size is 1600 bytes
System Alternate MTU size is 1600 bytes
Routing MTU size is 1600 bytes

2. MTU settings are changed switch-wide on 3750 switches, and not for individual interfaces. Run
the following commands to configure the switch to use jumbo frames of 9000 bytes. You might
prefer to configure the MTU settings for individual interfaces, if your switch supports this
feature.

sw01# config t
Enter configuration commands, one per line. End with CNTL/Z.

sw01(config)# system mtu jumbo 9000
Changes to the system jumbo MTU will not take effect until the next reload is done

NOTE

Remember to save your changes by copying the running-config to the startup-
config: copy running-config startup-config.

3. Reload the switch to apply the change.

IMPORTANT

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

98

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-max-mtu_cisco-catalyst

IMPORTANT

Reloading the switch causes a network outage for any devices that are
dependent on the switch. Therefore, reload the switch only during a scheduled
maintenance period.

sw01# reload
Proceed with reload? [confirm]

4. After the switch reloads, confirm the new jumbo MTU size.
The exact output may differ depending on your switch model. For example, System MTU might
apply to non-Gigabit interfaces, and Jumbo MTU might describe all Gigabit interfaces.

sw01# show system mtu

System MTU size is 1600 bytes
System Jumbo MTU size is 9000 bytes
System Alternate MTU size is 1600 bytes
Routing MTU size is 1600 bytes

7.2.10. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

7.2.11. Configuring LLDP for a Cisco Catalyst switch

Procedure

1. Run the lldp run command to enable LLDP globally on your Cisco Catalyst switch:

sw01# config t
Enter configuration commands, one per line. End with CNTL/Z.

sw01(config)# lldp run

2. View any neighboring LLDP-compatible devices:

sw01# show lldp neighbor
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

Device ID Local Intf Hold-time Capability Port ID
DEP42037061562G3 Gi1/0/11 180 B,T 422037061562G3:P1

Total entries displayed: 1

NOTE

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

99

NOTE

Remember to save your changes by copying the running-config to the startup-config:
copy running-config startup-config.

7.3. CONFIGURING A CISCO NEXUS SWITCH

7.3.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

7.3.2. Configuring trunk ports for a Cisco Nexus switch

If using a Cisco Nexus you might use the following configuration syntax to allow traffic for
VLANs 110 and 111 to pass through to your instances.
This configuration assumes that your physical node has an ethernet cable connected to
interface Ethernet1/12 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

interface Ethernet1/12
 description Trunk to Compute Node
 switchport mode trunk
 switchport trunk allowed vlan 2,110,111
 switchport trunk native vlan 2
end

7.3.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

7.3.4. Configuring access ports for a Cisco Nexus switch

Procedure

Using the example from the Figure 7.1, “Sample network layout” diagram, Ethernet1/13 (on a
Cisco Nexus switch) is configured as an access port for eth1. This configuration assumes that
your physical node has an ethernet cable connected to interface Ethernet1/13 on the physical
switch.

IMPORTANT

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

100

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

interface Ethernet1/13
 description Access port for Compute Node
 switchport mode access
 switchport access vlan 200

7.3.5. About LACP port aggregation

You can use Link Aggregation Control Protocol (LACP) to bundle multiple physical NICs together to
form a single logical channel. Also known as 802.3ad (or bonding mode 4 in Linux), LACP creates a
dynamic bond for load-balancing and fault tolerance. You must configure LACP at both physical ends:
on the physical NICs, and on the physical switch ports.

Additional resources

Network Interface Bonding in the Installing and managing Red Hat OpenStack Platform with
director guide.

7.3.6. Configuring LACP on the physical NIC

You can configure Link Aggregation Control Protocol (LACP) on a physical NIC.

Procedure

1. Edit the /home/stack/network-environment.yaml file:

- type: linux_bond
 name: bond1
 mtu: 9000
 bonding_options:{get_param: BondInterfaceOvsOptions};
 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

2. Configure the Open vSwitch bridge to use LACP:

BondInterfaceOvsOptions:
 "mode=802.3ad"

Additional resources

Network Interface Bonding in the Customizing your Red Hat OpenStack Platform deployment
guide.

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

101

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_network-interface-bonding
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_customizing-networks-for-the-rhosp-environment#assembly_network-interface-bonding

7.3.7. Configuring LACP for a Cisco Nexus switch

In this example, the Compute node has two NICs using VLAN 100:

Procedure

1. Physically connect the Compute node NICs to the switch (for example, ports 12 and 13).

2. Confirm that LACP is enabled:

(config)# show feature | include lacp
lacp 1 enabled

3. Configure ports 1/12 and 1/13 as access ports, and as members of a channel group.
Depending on your deployment, you can deploy trunk interfaces rather than access interfaces.

For example, for Cisco UCI the NICs are virtual interfaces, so you might prefer to configure
access ports exclusively. Often these interfaces contain VLAN tagging configurations.

interface Ethernet1/13
 description Access port for Compute Node
 switchport mode access
 switchport access vlan 200
 channel-group 10 mode active

interface Ethernet1/13
 description Access port for Compute Node
 switchport mode access
 switchport access vlan 200
 channel-group 10 mode active

NOTE

When you use PXE to provision nodes on Cisco switches, you might need to set the
options no lacp graceful-convergence and no lacp suspend-individual to bring up the
ports and boot the server. For more information, see your Cisco switch documentation.

7.3.8. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

7.3.9. Configuring MTU settings for a Cisco Nexus 7000 switch

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

102

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-max-mtu_cisco-nexus

Apply MTU settings to a single interface on 7000-series switches.

Procedure

Run the following commands to configure interface 1/12 to use jumbo frames of 9000 bytes:

interface ethernet 1/12
 mtu 9216
 exit

7.3.10. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

7.3.11. Configuring LLDP for a Cisco Nexus 7000 switch

Procedure

You can enable LLDP for individual interfaces on Cisco Nexus 7000-series switches:

interface ethernet 1/12
 lldp transmit
 lldp receive
 no lacp suspend-individual
 no lacp graceful-convergence

interface ethernet 1/13
 lldp transmit
 lldp receive
 no lacp suspend-individual
 no lacp graceful-convergence

NOTE

Remember to save your changes by copying the running-config to the startup-config:
copy running-config startup-config.

7.4. CONFIGURING A CUMULUS LINUX SWITCH

7.4.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

7.4.2. Configuring trunk ports for a Cumulus Linux switch

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

103

This configuration assumes that your physical node has transceivers connected to switch ports swp1 and
swp2 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

Use the following configuration syntax to allow traffic for VLANs 100 and 200 to pass through
to your instances.

auto bridge
iface bridge
 bridge-vlan-aware yes
 bridge-ports glob swp1-2
 bridge-vids 100 200

7.4.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

7.4.4. Configuring access ports for a Cumulus Linux switch

This configuration assumes that your physical node has an ethernet cable connected to the interface on
the physical switch. Cumulus Linux switches use eth for management interfaces and swp for
access/trunk ports.

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

Using the example from the Figure 7.1, “Sample network layout” diagram, swp1 (on a Cumulus
Linux switch) is configured as an access port.

auto bridge
iface bridge
 bridge-vlan-aware yes
 bridge-ports glob swp1-2
 bridge-vids 100 200

auto swp1
iface swp1
 bridge-access 100

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

104

auto swp2
iface swp2
 bridge-access 200

7.4.5. About LACP port aggregation

You can use Link Aggregation Control Protocol (LACP) to bundle multiple physical NICs together to
form a single logical channel. Also known as 802.3ad (or bonding mode 4 in Linux), LACP creates a
dynamic bond for load-balancing and fault tolerance. You must configure LACP at both physical ends:
on the physical NICs, and on the physical switch ports.

Additional resources

Network Interface Bonding in the Installing and managing Red Hat OpenStack Platform with
director guide.

7.4.6. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

7.4.7. Configuring MTU settings for a Cumulus Linux switch

Procedure

This example enables jumbo frames on your Cumulus Linux switch.

auto swp1
iface swp1
 mtu 9000

NOTE

Remember to apply your changes by reloading the updated configuration: sudo
ifreload -a

7.4.8. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

105

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_network-interface-bonding
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-max-mtu_cumulus-linux

process.

7.4.9. Configuring LLDP for a Cumulus Linux switch

By default, the LLDP service lldpd runs as a daemon and starts when the switch boots.

Procedure

To view all LLDP neighbors on all ports/interfaces, run the following command:

cumulus@switch$ netshow lldp
Local Port Speed Mode Remote Port Remote Host Summary
---------- --- --------- ----- ----- ----------- --------
eth0 10G Mgmt ==== swp6 mgmt-sw IP: 10.0.1.11/24
swp51 10G Interface/L3 ==== swp1 spine01 IP: 10.0.0.11/32
swp52 10G Interface/L ==== swp1 spine02 IP: 10.0.0.11/32

7.5. CONFIGURING A EXTREME EXOS SWITCH

7.5.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

7.5.2. Configuring trunk ports on an Extreme Networks EXOS switch

If using an X-670 series switch, refer to the following example to allow traffic for VLANs 110 and 111 to
pass through to your instances.

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

This configuration assumes that your physical node has an ethernet cable connected to
interface 24 on the physical switch. In this example, DATA and MNGT are the VLAN names.

#create vlan DATA tag 110
#create vlan MNGT tag 111
#configure vlan DATA add ports 24 tagged
#configure vlan MNGT add ports 24 tagged

7.5.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

106

operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

7.5.4. Configuring access ports for an Extreme Networks EXOS switch

This configuration assumes that your physical node has an ethernet cable connected to interface 10 on
the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

In this configuration example, on a Extreme Networks X-670 series switch, 10 is used as an
access port for eth1.

create vlan VLANNAME tag NUMBER
configure vlan Default delete ports PORTSTRING
configure vlan VLANNAME add ports PORTSTRING untagged

For example:

#create vlan DATA tag 110
#configure vlan Default delete ports 10
#configure vlan DATA add ports 10 untagged

7.5.5. About LACP port aggregation

You can use Link Aggregation Control Protocol (LACP) to bundle multiple physical NICs together to
form a single logical channel. Also known as 802.3ad (or bonding mode 4 in Linux), LACP creates a
dynamic bond for load-balancing and fault tolerance. You must configure LACP at both physical ends:
on the physical NICs, and on the physical switch ports.

Additional resources

Network Interface Bonding in the Installing and managing Red Hat OpenStack Platform with
director guide.

7.5.6. Configuring LACP on the physical NIC

You can configure Link Aggregation Control Protocol (LACP) on a physical NIC.

Procedure

1. Edit the /home/stack/network-environment.yaml file:

- type: linux_bond
 name: bond1
 mtu: 9000
 bonding_options:{get_param: BondInterfaceOvsOptions};

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

107

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_network-interface-bonding

 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

2. Configure the Open vSwitch bridge to use LACP:

BondInterfaceOvsOptions:
 "mode=802.3ad"

Additional resources

Network Interface Bonding in the Customizing your Red Hat OpenStack Platform deployment
guide.

7.5.7. Configuring LACP on an Extreme Networks EXOS switch

Procedure

In this example, the Compute node has two NICs using VLAN 100:

enable sharing MASTERPORT grouping ALL_LAG_PORTS lacp
configure vlan VLANNAME add ports PORTSTRING tagged

For example:

#enable sharing 11 grouping 11,12 lacp
#configure vlan DATA add port 11 untagged

NOTE

You might need to adjust the timeout period in the LACP negotiation script. For
more information, see
https://gtacknowledge.extremenetworks.com/articles/How_To/LACP-
configured-ports-interfere-with-PXE-DHCP-on-servers

7.5.8. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

108

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_customizing-networks-for-the-rhosp-environment#assembly_network-interface-bonding
https://gtacknowledge.extremenetworks.com/articles/How_To/LACP-configured-ports-interfere-with-PXE-DHCP-on-servers

Configuring maximum transmission unit (MTU) settings

7.5.9. Configuring MTU settings on an Extreme Networks EXOS switch

Procedure

Run the commands in this example to enable jumbo frames on an Extreme Networks EXOS
switch and configure support for forwarding IP packets with 9000 bytes:

enable jumbo-frame ports PORTSTRING
configure ip-mtu 9000 vlan VLANNAME

Example

enable jumbo-frame ports 11
configure ip-mtu 9000 vlan DATA

7.5.10. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

7.5.11. Configuring LLDP settings on an Extreme Networks EXOS switch

Procedure

In this example, LLDP is enabled on an Extreme Networks EXOS switch. 11 represents the port
string:

enable lldp ports 11

7.6. CONFIGURING A JUNIPER EX SERIES SWITCH

7.6.1. About trunk ports

With OpenStack Networking you can connect instances to the VLANs that already exist on your physical
network. The term trunk is used to describe a port that allows multiple VLANs to traverse through the
same port. Using these ports, VLANs can span across multiple switches, including virtual switches. For
example, traffic tagged as VLAN110 in the physical network reaches the Compute node, where the
8021q module directs the tagged traffic to the appropriate VLAN on the vSwitch.

7.6.2. Configuring trunk ports for a Juniper EX Series switch

Procedure

If using a Juniper EX series switch running Juniper JunOS, use the following configuration
syntax to allow traffic for VLANs 110 and 111 to pass through to your instances.

This configuration assumes that your physical node has an ethernet cable connected to

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

109

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-max-mtu_extreme-exos

This configuration assumes that your physical node has an ethernet cable connected to
interface ge-1/0/12 on the physical switch.

IMPORTANT

These values are examples. You must change the values in this example to match
those in your environment. Copying and pasting these values into your switch
configuration without adjustment can result in an unexpected outage.

 ge-1/0/12 {
 description Trunk to Compute Node;
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members [110 111];
 }
 native-vlan-id 2;
 }
 }
}

7.6.3. About access ports

Not all NICs on your Compute node carry instance traffic, and so you do not need to configure all NICs
to allow multiple VLANs to pass through. Access ports require only one VLAN, and might fulfill other
operational requirements, such as transporting management traffic or Block Storage data. These ports
are commonly known as access ports and usually require a simpler configuration than trunk ports.

7.6.4. Configuring access ports for a Juniper EX Series switch

This example on, a Juniper EX series switch, shows ge-1/0/13 as an access port for eth1.

+

IMPORTANT

These values are examples. You must change the values in this example to match those in
your environment. Copying and pasting these values into your switch configuration
without adjustment can result in an unexpected outage.

Procedure

This configuration assumes that your physical node has an ethernet cable connected to interface ge-
1/0/13 on the physical switch.

+

 ge-1/0/13 {
 description Access port for Compute Node
 unit 0 {
 family ethernet-switching {
 port-mode access;

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

110

 vlan {
 members 200;
 }
 native-vlan-id 2;
 }
 }
}

7.6.5. About LACP port aggregation

You can use Link Aggregation Control Protocol (LACP) to bundle multiple physical NICs together to
form a single logical channel. Also known as 802.3ad (or bonding mode 4 in Linux), LACP creates a
dynamic bond for load-balancing and fault tolerance. You must configure LACP at both physical ends:
on the physical NICs, and on the physical switch ports.

Additional resources

Network Interface Bonding in the Installing and managing Red Hat OpenStack Platform with
director guide.

7.6.6. Configuring LACP on the physical NIC

You can configure Link Aggregation Control Protocol (LACP) on a physical NIC.

Procedure

1. Edit the /home/stack/network-environment.yaml file:

- type: linux_bond
 name: bond1
 mtu: 9000
 bonding_options:{get_param: BondInterfaceOvsOptions};
 members:
 - type: interface
 name: nic3
 mtu: 9000
 primary: true
 - type: interface
 name: nic4
 mtu: 9000

2. Configure the Open vSwitch bridge to use LACP:

BondInterfaceOvsOptions:
 "mode=802.3ad"

Additional resources

Network Interface Bonding in the Customizing your Red Hat OpenStack Platform deployment
guide.

7.6.7. Configuring LACP for a Juniper EX Series switch

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

111

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_network-interface-bonding
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_customizing-networks-for-the-rhosp-environment#assembly_network-interface-bonding

In this example, the Compute node has two NICs using VLAN 100.

Procedure

1. Physically connect the Compute node’s two NICs to the switch (for example, ports 12 and 13).

2. Create the port aggregate:

chassis {
 aggregated-devices {
 ethernet {
 device-count 1;
 }
 }
}

3. Configure switch ports 12 (ge-1/0/12) and 13 (ge-1/0/13) to join the port aggregate ae1:

interfaces {
 ge-1/0/12 {
 gigether-options {
 802.3ad ae1;
 }
 }
 ge-1/0/13 {
 gigether-options {
 802.3ad ae1;
 }
 }
}

NOTE

For Red Hat OpenStack Platform director deployments, in order to PXE boot
from the bond, you must configure one of the bond members as lacp force-up
toensure that only one bond member comes up during introspection and first
boot. The bond member that you configure with lacp force-up must be the same
bond member that has the MAC address in instackenv.json (the MAC address
known to ironic must be the same MAC address configured with force-up).

4. Enable LACP on port aggregate ae1:

interfaces {
 ae1 {
 aggregated-ether-options {
 lacp {
 active;
 }
 }
 }
}

5. Add aggregate ae1 to VLAN 100:

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

112

interfaces {
 ae1 {
 vlan-tagging;
 native-vlan-id 2;
 unit 100 {
 vlan-id 100;
 }
 }
}

6. Review your new port channel. The resulting output lists the new port aggregate ae1 with
member ports ge-1/0/12 and ge-1/0/13:

> show lacp statistics interfaces ae1

Aggregated interface: ae1
LACP Statistics: LACP Rx LACP Tx Unknown Rx Illegal Rx
ge-1/0/12 0 0 0 0
ge-1/0/13 0 0 0 0

NOTE

Remember to apply your changes by running the commit command.

7.6.8. About MTU settings

You must adjust your MTU size for certain types of network traffic. For example, jumbo frames (9000
bytes) are required for certain NFS or iSCSI traffic.

NOTE

You must change MTU settings from end-to-end on all hops that the traffic is expected
to pass through, including any virtual switches.

Additional resources

Configuring maximum transmission unit (MTU) settings

7.6.9. Configuring MTU settings for a Juniper EX Series switch

This example enables jumbo frames on your Juniper EX4200 switch.

NOTE

The MTU value is calculated differently depending on whether you are using Juniper or
Cisco devices. For example, 9216 on Juniper would equal to 9202 for Cisco. The extra
bytes are used for L2 headers, where Cisco adds this automatically to the MTU value
specified, but the usable MTU will be 14 bytes smaller than specified when using Juniper.
So in order to support an MTU of 9000 on the VLANs, the MTU of 9014 would have to be
configured on Juniper.

Procedure

CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING

113

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-max-mtu_juniperex

1. For Juniper EX series switches, MTU settings are set for individual interfaces. These commands
configure jumbo frames on the ge-1/0/14 and ge-1/0/15 ports:

set interfaces ge-1/0/14 mtu 9216
set interfaces ge-1/0/15 mtu 9216

NOTE

Remember to save your changes by running the commit command.

2. If using a LACP aggregate, you will need to set the MTU size there, and not on the member
NICs. For example, this setting configures the MTU size for the ae1 aggregate:

 set interfaces ae1 mtu 9216

7.6.10. About LLDP discovery

The ironic-python-agent service listens for LLDP packets from connected switches. The collected
information can include the switch name, port details, and available VLANs. Similar to Cisco Discovery
Protocol (CDP), LLDP assists with the discovery of physical hardware during the director introspection
process.

7.6.11. Configuring LLDP for a Juniper EX Series switch

You can enable LLDP globally for all interfaces, or just for individual ones.

Procedure

Use the following too enable LLDP globally on your Juniper EX 4200 switch:

lldp {
 interface all{
 enable;
 }
 }
}

Use the following to enable LLDP for the single interface ge-1/0/14:

lldp {
 interface ge-1/0/14{
 enable;
 }
 }
}

NOTE

Remember to apply your changes by running the commit command.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

114

CHAPTER 8. CONFIGURING MAXIMUM TRANSMISSION UNIT
(MTU) SETTINGS

8.1. MTU OVERVIEW

OpenStack Networking can calculate the largest possible maximum transmission unit (MTU) size that
you can apply safely to instances. The MTU value specifies the maximum amount of data that a single
network packet can transfer; this number is variable depending on the most appropriate size for the
application. For example, NFS shares might require a different MTU size to that of a VoIP application.

NOTE

You can use the openstack network show <network_name> command to view the
largest possible MTU values that OpenStack Networking calculates. net-mtu is a neutron
API extension that is not present in some implementations. The MTU value that you
require can be advertised to DHCPv4 clients for automatic configuration, if supported by
the instance, as well as to IPv6 clients through Router Advertisement (RA) packets. To
send Router Advertisements, the network must be attached to a router.

You must configure MTU settings consistently from end-to-end. This means that the MTU setting must
be the same at every point the packet passes through, including the VM, the virtual network
infrastructure, the physical network, and the destination server.

For example, the circles in the following diagram indicate the various points where an MTU value must
be adjusted for traffic between an instance and a physical server. You must change the MTU value for
very interface that handles network traffic to accommodate packets of a particular MTU size. This is
necessary if traffic travels from the instance 192.168.200.15 through to the physical server 10.20.15.25:

Inconsistent MTU values can result in several network issues, the most common being random packet
loss that results in connection drops and slow network performance. Such issues are problematic to

CHAPTER 8. CONFIGURING MAXIMUM TRANSMISSION UNIT (MTU) SETTINGS

115

troubleshoot because you must identify and examine every possible network point to ensure it has the
correct MTU value.

8.2. CONFIGURING MTU SETTINGS IN DIRECTOR

This example demonstrates how to set the MTU using the NIC config templates. You must set the MTU
on the bridge, bond (if applicable), interface(s), and VLAN(s):

 -
 type: ovs_bridge
 name: br-isolated
 use_dhcp: false
 mtu: 9000 # <--- Set MTU
 members:
 -
 type: ovs_bond
 name: bond1
 mtu: 9000 # <--- Set MTU
 ovs_options: {get_param: BondInterfaceOvsOptions}
 members:
 -
 type: interface
 name: ens15f0
 mtu: 9000 # <--- Set MTU
 primary: true
 -
 type: interface
 name: enp131s0f0
 mtu: 9000 # <--- Set MTU
 -
 type: vlan
 device: bond1
 vlan_id: {get_param: InternalApiNetworkVlanID}
 mtu: 9000 # <--- Set MTU
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 -
 type: vlan
 device: bond1
 mtu: 9000 # <--- Set MTU
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}

8.3. REVIEWING THE RESULTING MTU CALCULATION

You can view the calculated MTU value, which is the largest possible MTU value that instances can use.
Use this calculated MTU value to configure all interfaces involved in the path of network traffic.

openstack network show <network>

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

116

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES
TO MANAGE DATA TRAFFIC

You can offer varying service levels for VM instances by using quality of service (QoS) policies to apply
rate limits to egress and ingress traffic on Red Hat OpenStack Platform (RHOSP) networks.

You can apply QoS policies to individual ports, or apply QoS policies to a project network, where ports
with no specific policy attached inherit the policy.

NOTE

Internal network owned ports, such as DHCP and internal router ports, are excluded from
network policy application.

You can apply, modify, or remove QoS policies dynamically. However, for guaranteed minimum
bandwidth QoS policies, you can only apply modifications when there are no instances that use any of
the ports the policy is assigned to.

9.1. QOS RULES

You can configure the following rule types to define a quality of service (QoS) policy in the Red Hat
OpenStack Platform (RHOSP) Networking service (neutron):

Minimum bandwidth (minimum_bandwidth)

Provides minimum bandwidth constraints on certain types of traffic. If implemented, best efforts are
made to provide no less than the specified bandwidth to each port on which the rule is applied.

Bandwidth limit (bandwidth_limit)

Provides bandwidth limitations on networks, ports, floating IPs (FIPs), and router gateway IPs. If
implemented, any traffic that exceeds the specified rate is dropped.

DSCP marking (dscp_marking)

Marks network traffic with a Differentiated Services Code Point (DSCP) value.

QoS policies can be enforced in various contexts, including virtual machine instance placements, floating
IP assignments, and gateway IP assignments.

Depending on the enforcement context and on the mechanism driver you use, a QoS rule affects egress
traffic (upload from instance), ingress traffic (download to instance), or both.

NOTE

Starting with Red Hat OpenStack Platform (RHOSP) 17.1, in ML2/OVN deployments, you
can enable minimum bandwidth and bandwidth limit egress policies for hardware
offloaded ports. You cannot enable ingress policies for hardware offloaded ports. For
more information, see Section 9.2, “Configuring the Networking service for QoS policies” .

Table 9.1. Supported traffic direction by driver (all QoS rule types)

Rule [8] Supported traffic direction by mechanism driver

ML2/OVS ML2/SR-IOV ML2/OVN

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

117

Minimum bandwidth Egress only [4][5] Egress only Currently, no support
[6]

Bandwidth limit Egress [1][2] and
ingress

Egress only [3] Egress and ingress

DSCP marking Egress only N/A Egress only [7]

[1] The OVS egress bandwidth limit is performed in the TAP interface and is traffic policing, not traffic
shaping.

[2] In RHOSP 16.2.2 and later, the OVS egress bandwidth limit is supported in hardware offloaded ports
by applying the QoS policy in the network interface using ip link commands.

[3] The mechanism drivers ignore the max-burst-kbits parameter because they do not support it.

[4] Rule applies only to non-tunnelled networks: flat and VLAN.

[5] The OVS egress minimum bandwidth is supported in hardware offloaded ports by applying the QoS
policy in the network interface using ip link commands.

[6] https://bugzilla.redhat.com/show_bug.cgi?id=2060310

[7] ML2/OVN does not support DSCP marking on tunneled protocols.

[8] RHOSP does not support QoS for trunk ports.

Table 9.2. Supported traffic direction by driver for placement reporting and scheduling (minimum
bandwidth only)

Enforcement type Supported traffic by direction mechanism driver

ML2/OVS ML2/SR-IOV ML2/OVN

Placement Egress and ingress Egress and ingress Currently, no support

Table 9.3. Supported traffic direction by driver for enforcement types (bandwidth limit only)

Enforcement type Supported traffic direction by mechanism driver

ML2/OVS ML2/OVN

Floating IP Egress and ingress Egress and ingress

Gateway IP Egress and ingress Egress and ingress [1]

[1] Technology preview in RHOSP 17.1. See BZ 2088291.

Additional resources

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

118

https://bugzilla.redhat.com/show_bug.cgi?id=2060310
https://bugzilla.redhat.com/show_bug.cgi?id=2088291

Creating and applying a bandwidth limit QoS policy and rule

Creating and applying a guaranteed minimum bandwidth QoS policy and rule

Creating and applying a DSCP marking QoS policy and rule for egress traffic

9.2. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES

The quality of service feature in the Red Hat OpenStack Platform (RHOSP) Networking service
(neutron) is provided through the qos service plug-in. With the ML2/OVS and ML2/OVN mechanism
drivers, qos is loaded by default. However, this is not true for ML2/SR-IOV.

When using the qos service plug-in with the ML2/OVS and ML2/SR-IOV mechanism drivers, you must
also load the qos extension on their respective agents.

The following list summarizes the tasks that you must perform to configure the Networking service for
QoS. The task details follow this list:

For all types of QoS policies:

Add the qos service plug-in.

Add qos extension for the agents (OVS and SR-IOV only).

In ML2/OVN deployments, you can enable minimum bandwidth and bandwidth limit egress
policies for hardware offloaded ports. You cannot enable ingress policies for hardware
offloaded ports.

Additional tasks for scheduling VM instances using minimum bandwidth policies only:

Specify the hypervisor name if it differs from the name that the Compute service (nova)
uses.

Configure the resource provider ingress and egress bandwidths for the relevant agents on
each Compute node.

(Optional) Mark vnic_types as not supported.

Additional task for DSCP marking policies on systems that use ML/OVS with tunneling only:

Set dscp_inherit to true.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Confirm that the qos service plug-in is not already loaded.

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

119

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index?#bandwidth-limit
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index?#guaranteed-min-bw
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index?#dcsp-marking-egress-traffic

$ openstack network qos policy list

If the qos service plug-in is not loaded, then you receive a ResourceNotFound error. If you do
not receive the error, then the plug-in is loaded and you do not need to perform the steps in this
topic.

4. Create a YAML custom environment file.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

5. Your environment file must contain the keywords parameter_defaults. On a new line below
parameter_defaults add qos to the NeutronServicePlugins parameter:

parameter_defaults:
 NeutronServicePlugins: "qos"

6. If you use ML2/OVS and ML2/SR-IOV mechanism drivers, then you must also load the qos
extension on the agent, by using either the NeutronAgentExtensions or the
NeutronSriovAgentExtensions variable, respectively:

ML2/OVS

parameter_defaults:
 NeutronServicePlugins: "qos"
 NeutronAgentExtensions: "qos"

ML2/SR-IOV

parameter_defaults:
 NeutronServicePlugins: "qos"
 NeutronSriovAgentExtensions: "qos"

7. In ML2/OVN deployments, you can enable egress minimum and maximum bandwidth policies
for hardware offloaded ports. To do this, set the OvnHardwareOffloadedQos parameter to
true:

parameter_defaults:
 NeutronServicePlugins: "qos"
 OvnHardwareOffloadedQos: true

8. If you want to schedule VM instances by using minimum bandwidth QoS policies, then you must
also do the following:

a. Add placement to the list of plug-ins and ensure the list also includes qos:

parameter_defaults:
 NeutronServicePlugins: "qos,placement"

b. If the hypervisor name matches the canonical hypervisor name used by the Compute
service (nova), skip to step 7.iii.

If the hypervisor name does not match the canonical hypervisor name used by the Compute

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

120

If the hypervisor name does not match the canonical hypervisor name used by the Compute
service, specify the alternative hypervisor name, using
resource_provider_default_hypervisor:

ML2/OVS

parameter_defaults:
 NeutronServicePlugins: "qos,placement"
 ExtraConfig:
 Neutron::agents::ml2::ovs::resource_provider_default_hypervisor: %
{hiera('fqdn_canonical')}

ML2/SR-IOV

parameter_defaults:
 NeutronServicePlugins: "qos,placement"
 ExtraConfig:
 Neutron::agents::ml2::sriov::resource_provider_default_hypervisor: %
{hiera('fqdn_canonical')}

IMPORTANT

Another method for setting the alternative hypervisor name is to use
resource_provider_hypervisor:

ML2/OVS

parameter_defaults:
 ExtraConfig:

Neutron::agents::ml2::ovs::resource_provider_hypervisors:"ens5:%
{hiera('fqdn_canonical')},ens6:%{hiera('fqdn_canonical')}"

ML2/SR-IOV

parameter_defaults:
 ExtraConfig:
 Neutron::agents::ml2::sriov::resource_provider_hypervisors:
 "ens5:%{hiera('fqdn_canonical')},ens6:%
{hiera('fqdn_canonical')}"

c. Configure the resource provider ingress and egress bandwidths for the relevant agents on
each Compute node that needs to provide a minimum bandwidth.
You can configure egress, ingress, or both, using the following formats:

Configure only egress bandwidth, in kbps:

NeutronOvsResourceProviderBandwidths: <bridge0>:<egress_kbps>:,<bridge1>:
<egress_kbps>:,...,<bridgeN>:<egress_kbps>:

Configure only ingress bandwidth, in kbps:

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

121

NeutronOvsResourceProviderBandwidths: <bridge0>::<ingress_kbps>,<bridge1>::
<ingress_kbps>,...,<bridgeN>::<ingress_kbps>

Configure both egress and ingress bandwidth, in kbps:

NeutronOvsResourceProviderBandwidths: <bridge0>:<egress_kbps>:
<ingress_kbps>,<bridge1>:<egress_kbps>:<ingress_kbps>,...,<bridgeN>:
<egress_kbps>:<ingress_kbps>

Example - OVS agent

To configure the resource provider ingress and egress bandwidths for the OVS agent,
add the following configuration to your network environment file:

parameter_defaults:
 ...
 NeutronBridgeMappings: physnet0:br-physnet0
 NeutronOvsResourceProviderBandwidths: br-physnet0:10000000:10000000

Example - SRIOV agent

To configure the resource provider ingress and egress bandwidths for the SRIOV agent,
add the following configuration to your network environment file:

parameter_defaults:
 ...
 NeutronML2PhysicalNetworkMtus: physnet0:1500,physnet1:1500
 NeutronSriovResourceProviderBandwidths:
ens5:40000000:40000000,ens6:40000000:40000000

d. Optional: To mark vnic_types as not supported when multiple ML2 mechanism drivers
support them by default and multiple agents are being tracked in the Placement service,
also add the following configuration to your environment file:

Example - OVS agent

parameter_defaults:
 ...
 NeutronOvsVnicTypeBlacklist: direct

Example - SRIOV agent

parameter_defaults:
 ...
 NeutronSriovVnicTypeBlacklist: direct

9. If you want to create DSCP marking policies and use ML2/OVS with a tunneling protocol
(VXLAN or GRE), then under NeutronAgentExtensions, add the following lines:

parameter_defaults:
 ...
 ControllerExtraConfig:

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

122

 neutron::config::server_config:
 agent/dscp_inherit:
 value: true

When dscp_inherit is true, the Networking service copies the DSCP value of the inner header
to the outer header.

10. Run the deployment command and include the core heat templates, other environment files,
and this new custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e <other_environment_files> \
-e /home/stack/templates/my-neutron-environment.yaml

Verification

Confirm that the qos service plug-in is loaded:

$ openstack network qos policy list

If the qos service plug-in is loaded, then you do not receive a ResourceNotFound error.

Additional resources

Extension drivers for the RHOSP Networking service

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

Section 9.3.1, “Using Networking service back-end enforcement to enforce minimum bandwidth”

Section 9.3.2, “Scheduling instances by using minimum bandwidth QoS policies”

Section 9.4, “Limiting network traffic by using QoS policies”

Section 9.5, “Prioritizing network traffic by using DSCP marking QoS policies”

9.3. CONTROLLING MINIMUM BANDWIDTH BY USING QOS POLICIES

For the Red Hat OpenStack Platform (RHOSP) Networking service (neutron), a guaranteed minimum
bandwidth QoS rule can be enforced in two distinct contexts: Networking service back-end
enforcement and resource allocation scheduling enforcement.

The network back end, ML2/OVS or ML2/SR-IOV, attempts to guarantee that each port on which the
rule is applied has no less than the specified network bandwidth.

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

123

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/configuring_red_hat_openstack_platform_networking/networking-overview_rhosp-network#extension-drivers-network-service_network-overview
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

When you use resource allocation scheduling bandwidth enforcement, the Compute service (nova) only
places VM instances on hosts that support the minimum bandwidth.

You can apply QoS minumum bandwidth rules using Networking service back-end enforcement,
resource allocation scheduling enforcement, or both.

The following table identifies the Modular Layer 2 (ML2) mechanism drivers that support minimum
bandwidth QoS policies.

Table 9.4. ML2 mechanism drivers that support minimum bandwidth QoS

ML2 mechanism driver Agent VNIC types

ML2/SR-IOV sriovnicswitch direct

ML2/OVS openvswitch normal

Additional resources

Section 9.3.1, “Using Networking service back-end enforcement to enforce minimum bandwidth”

Section 9.3.2, “Scheduling instances by using minimum bandwidth QoS policies”

9.3.1. Using Networking service back-end enforcement to enforce minimum
bandwidth

You can guarantee a minimum bandwidth for network traffic for ports by applying Red Hat OpenStack
Platform (RHOSP) quality of service (QoS) policies to the ports. These ports must be backed by a flat or
VLAN physical network.

NOTE

Currently, the Modular Layer 2 plug-in with the Open Virtual Network mechanism driver
(ML2/OVN) does not support minimum bandwidth QoS rules.

Prerequisites

The RHOSP Networking service (neutron) must have the qos service plug-in loaded. (This is
the default.)

Do not mix ports with and without bandwidth guarantees on the same physical interface,
because this might cause denial of necessary resources (starvation) to the ports without a
guarantee.

TIP

Create host aggregates to separate ports with bandwidth guarantees from those ports without
bandwidth guarantees.

Procedure

1. Source your credentials file.

Example

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

124

Example

$ source ~/overcloudrc

2. Confirm that the qos service plug-in is loaded in the Networking service:

$ openstack network qos policy list

If the qos service plug-in is not loaded, then you receive a ResourceNotFound error, and you
must load the qos services plug-in before you can continue. For more information, see
Section 9.2, “Configuring the Networking service for QoS policies” .

3. Identify the ID of the project you want to create the QoS policy for:

$ openstack project list

Sample output

+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
4b0b98f8c6c040f38ba4f7146e8680f5	auditors
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+----------+

4. Using the project ID from the previous step, create a QoS policy for the project.

Example

In this example, a QoS policy named guaranteed_min_bw is created for the admin project:

$ openstack network qos policy create --share \
 --project 98a2f53c20ce4d50a40dac4a38016c69 guaranteed_min_bw

5. Configure the rules for the policy.

Example

In this example, QoS rules for ingress and egress with a minimum bandwidth of 40000000 kbps
are created for the policy named guaranteed_min_bw:

$ openstack network qos rule create \
 --type minimum-bandwidth --min-kbps 40000000 \
 --ingress guaranteed_min_bw

$ openstack network qos rule create \
 --type minimum-bandwidth --min-kbps 40000000 \
 --egress guaranteed_min_bw

6. Configure a port to apply the policy to.

Example

In this example, the guaranteed_min_bw policy is applied to port ID, 56x9aiw1-2v74-144x-

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

125

In this example, the guaranteed_min_bw policy is applied to port ID, 56x9aiw1-2v74-144x-
c2q8-ed8w423a6s12:

$ openstack port set --qos-policy guaranteed_min_bw \
 56x9aiw1-2v74-144x-c2q8-ed8w423a6s12

Verification

ML2/SR-IOV
Using root access, log in to the Compute node, and show the details of the virtual functions that
are held in the physical function.

Example

ip -details link show enp4s0f1

Sample output

50: enp4s0f1: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 9000 qdisc mq
master mx-bond state UP mode DEFAULT group default qlen 1000
 link/ether 98:03:9b:9d:73:74 brd ff:ff:ff:ff:ff:ff permaddr 98:03:9b:9d:73:75 promiscuity 0
minmtu 68 maxmtu 9978
 bond_slave state BACKUP mii_status UP link_failure_count 0 perm_hwaddr
98:03:9b:9d:73:75 queue_id 0 addrgenmode eui64 numtxqueues 320 numrxqueues 40
gso_max_size 65536 gso_max_segs 65535 portname p1 switchid 74739d00039b0398
 vf 0 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off
 vf 1 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off
 vf 2 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off
 vf 3 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off
 vf 4 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off
 vf 5 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off
 vf 6 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off
 vf 7 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off
 vf 8 link/ether fa:16:3e:2a:d2:7f brd ff:ff:ff:ff:ff:ff, tx rate 999 (Mbps), max_tx_rate
999Mbps, spoof checking off, link-state disable, trust off, query_rss off
 vf 9 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking off, link-state disable,
trust off, query_rss off

ML2/OVS
Using root access, log in to the compute node, show the tc rules and classes on the physical
bridge interface.

Example

tc class show dev mx-bond

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

126

Sample output

class htb 1:11 parent 1:fffe prio 0 rate 4Gbit ceil 34359Mbit burst 9000b cburst 8589b
class htb 1:1 parent 1:fffe prio 0 rate 72Kbit ceil 34359Mbit burst 9063b cburst 8589b
class htb 1:fffe root rate 34359Mbit ceil 34359Mbit burst 8589b cburst 8589b

Additional resources

network qos policy create in the Command line interface reference

network qos rule create in the Command line interface reference

port set in the Command line interface reference

9.3.2. Scheduling instances by using minimum bandwidth QoS policies

You can apply a minimum bandwidth QoS policy to a port to guarantee that the host on which its Red
Hat OpenStack Platform (RHOSP) VM instance is spawned has a minimum network bandwidth.

Prerequisites

The RHOSP Networking service (neutron) must have the qos and placement service plug-ins
loaded. The qos service plug-in is loaded by default.

The Networking service must support the following API extensions:

agent-resources-synced

port-resource-request

qos-bw-minimum-ingress

You must use the ML2/OVS or ML2/SR-IOV mechanism drivers.

You can only modify a minimum bandwidth QoS policy when there are no instances using any of
the ports the policy is assigned to. The Networking service cannot update the Placement API
usage information if a port is bound.

The Placement service must support microversion 1.29.

The Compute service (nova) must support microversion 2.72.

Procedure

1. Source your credentials file.

Example

$ source ~/overcloudrc

2. Confirm that the qos service plug-in is loaded in the Networking service:

$ openstack network qos policy list

If the qos service plug-in is not loaded, then you receive a ResourceNotFound error, and you

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

127

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_policy_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port#port_set

If the qos service plug-in is not loaded, then you receive a ResourceNotFound error, and you
must load the qos services plug-in before you can continue. For more information, see
Section 9.2, “Configuring the Networking service for QoS policies” .

3. Identify the ID of the project you want to create the QoS policy for:

$ openstack project list

Sample output

+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
4b0b98f8c6c040f38ba4f7146e8680f5	auditors
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+----------+

4. Using the project ID from the previous step, create a QoS policy for the project.

Example

In this example, a QoS policy named guaranteed_min_bw is created for the admin project:

$ openstack network qos policy create --share \
 --project 98a2f53c20ce4d50a40dac4a38016c69 guaranteed_min_bw

5. Configure the rules for the policy.

Example

In this example, QoS rules for ingress and egress with a minimum bandwidth of 40000000 kbps
are created for the policy named guaranteed_min_bw:

$ openstack network qos rule create \
 --type minimum-bandwidth --min-kbps 40000000 \
 --ingress guaranteed_min_bw
$ openstack network qos rule create \
 --type minimum-bandwidth --min-kbps 40000000 \
 --egress guaranteed_min_bw

6. Configure a port to apply the policy to.

Example

In this example, the guaranteed_min_bw policy is applied to port ID, 56x9aiw1-2v74-144x-
c2q8-ed8w423a6s12:

$ openstack port set --qos-policy guaranteed_min_bw \
 56x9aiw1-2v74-144x-c2q8-ed8w423a6s12

Verification

1. Log in to the undercloud host as the stack user.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

128

2. Source the undercloud credentials file:

$ source ~/stackrc

3. List all the available resource providers:

$ openstack --os-placement-api-version 1.17 resource provider list

Sample output

+--------------------------------------+---+------------+----
----------------------------------+--------------------------------------+
| uuid | name | generation |
root_provider_uuid | parent_provider_uuid |
+--------------------------------------+---+------------+----
----------------------------------+--------------------------------------+
| 31d3d88b-bc3a-41cd-9dc0-fda54028a882 | dell-r730-014.localdomain |
28 | 31d3d88b-bc3a-41cd-9dc0-fda54028a882 | None |
| 6b15ddce-13cf-4c85-a58f-baec5b57ab52 | dell-r730-063.localdomain |
18 | 6b15ddce-13cf-4c85-a58f-baec5b57ab52 | None |
| e2f5082a-c965-55db-acb3-8daf9857c721 | dell-r730-063.localdomain:NIC Switch agent
| 0 | 6b15ddce-13cf-4c85-a58f-baec5b57ab52 | 6b15ddce-13cf-4c85-a58f-
baec5b57ab52 |
| d2fb0ef4-2f45-53a8-88be-113b3e64ba1b | dell-r730-014.localdomain:NIC Switch agent
| 0 | 31d3d88b-bc3a-41cd-9dc0-fda54028a882 | 31d3d88b-bc3a-41cd-9dc0-
fda54028a882 |
| f1ca35e2-47ad-53a0-9058-390ade93b73e | dell-r730-063.localdomain:NIC Switch
agent:enp6s0f1 | 13 | 6b15ddce-13cf-4c85-a58f-baec5b57ab52 | e2f5082a-c965-55db-
acb3-8daf9857c721 |
| e518d381-d590-5767-8f34-c20def34b252 | dell-r730-014.localdomain:NIC Switch
agent:enp6s0f1 | 19 | 31d3d88b-bc3a-41cd-9dc0-fda54028a882 | d2fb0ef4-2f45-53a8-
88be-113b3e64ba1b |
+--------------------------------------+---+------------+----
----------------------------------+--------------------------------------+

4. Check the bandwidth a specific resource provides.

(undercloud)$ openstack --os-placement-api-version 1.17 \
 resource provider inventory list <rp_uuid>

Example

In this example, the bandwidth provided by interface enp6s0f1 on the host dell-r730-014 is
checked, using the resource provider UUID, e518d381-d590-5767-8f34-c20def34b252:

[stack@dell-r730-014 nova]$ openstack --os-placement-api-version 1.17 \
 resource provider inventory list e518d381-d590-5767-8f34-c20def34b252

Sample output

+----------------------------+------------------+----------+------------+----------+-----------+----------+
| resource_class | allocation_ratio | min_unit | max_unit | reserved | step_size |
total |
+----------------------------+------------------+----------+------------+----------+-----------+----------+

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

129

| NET_BW_EGR_KILOBIT_PER_SEC | 1.0 | 1 | 2147483647 | 0 | 1 |
10000000 |
| NET_BW_IGR_KILOBIT_PER_SEC | 1.0 | 1 | 2147483647 | 0 | 1 |
10000000 |
+----------------------------+------------------+----------+------------+----------+-----------+----------+

5. To check claims against the resource provider when instances are running, run the following
command:

(undercloud)$ openstack --os-placement-api-version 1.17 \
 resource provider show --allocations <rp_uuid>

Example

In this example, claims against the resource provider are checked on the host, dell-r730-014,
using the resource provider UUID, e518d381-d590-5767-8f34-c20def34b252:

[stack@dell-r730-014 nova]$ openstack --os-placement-api-version 1.17 resource provider
show --allocations e518d381-d590-5767-8f34-c20def34b252 -f value -c allocations

Sample output

{3cbb9e07-90a8-4154-8acd-b6ec2f894a83: {resources:
{NET_BW_EGR_KILOBIT_PER_SEC: 1000000, NET_BW_IGR_KILOBIT_PER_SEC:
1000000}}, 8848b88b-4464-443f-bf33-5d4e49fd6204: {resources:
{NET_BW_EGR_KILOBIT_PER_SEC: 1000000, NET_BW_IGR_KILOBIT_PER_SEC:
1000000}}, 9a29e946-698b-4731-bc28-89368073be1a: {resources:
{NET_BW_EGR_KILOBIT_PER_SEC: 1000000, NET_BW_IGR_KILOBIT_PER_SEC:
1000000}}, a6c83b86-9139-4e98-9341-dc76065136cc: {resources:
{NET_BW_EGR_KILOBIT_PER_SEC: 3000000, NET_BW_IGR_KILOBIT_PER_SEC:
3000000}}, da60e33f-156e-47be-a632-870172ec5483: {resources:
{NET_BW_EGR_KILOBIT_PER_SEC: 1000000, NET_BW_IGR_KILOBIT_PER_SEC:
1000000}}, eb582a0e-8274-4f21-9890-9a0d55114663: {resources:
{NET_BW_EGR_KILOBIT_PER_SEC: 3000000, NET_BW_IGR_KILOBIT_PER_SEC:
3000000}}}

Additional resources

network qos policy create in the Command line interface reference

network qos rule create in the Command line interface reference

port set in the Command line interface reference

9.4. LIMITING NETWORK TRAFFIC BY USING QOS POLICIES

You can create a Red Hat OpenStack Platform (RHOSP) Networking service (neutron) quality of service
(QoS) policy that limits the bandwidth on your RHOSP networks, ports, or floating IPs, and drops any
traffic that exceeds the specified rate.

Prerequisites

The Networking service must have the qos service plug-in loaded. (The plug-in is loaded by
default.)

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

130

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_policy_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port#port_set

Procedure

1. Source your credentials file.

Example

$ source ~/overcloudrc

2. Confirm that the qos service plug-in is loaded in the Networking service:

$ openstack network qos policy list

If the qos service plug-in is not loaded, then you receive a ResourceNotFound error, and you
must load the qos services plug-in before you can continue. For more information, see
Section 9.2, “Configuring the Networking service for QoS policies” .

3. Identify the ID of the project you want to create the QoS policy for:

$ openstack project list

Sample output

+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
4b0b98f8c6c040f38ba4f7146e8680f5	auditors
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+----------+

4. Using the project ID from the previous step, create a QoS policy for the project.

Example

In this example, a QoS policy named bw-limiter is created for the admin project:

$ openstack network qos policy create --share --project
98a2f53c20ce4d50a40dac4a38016c69 bw-limiter

5. Configure the rules for the policy.

NOTE

You can add more than one rule to a policy, as long as the type or direction of
each rule is different. For example, You can specify two bandwidth-limit rules,
one with egress and one with ingress direction.

Example

In this example, QoS ingress and egress rules are created for the policy named bw-limiter with a
bandwidth limit of 50000 kbps and a maximum burst size of 50000 kbps:

$ openstack network qos rule create --type bandwidth-limit \

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

131

 --max-kbps 50000 --max-burst-kbits 50000 --ingress bw-limiter

$ openstack network qos rule create --type bandwidth-limit \
 --max-kbps 50000 --max-burst-kbits 50000 --egress bw-limiter

6. You can create a port with a policy attached to it, or attach a policy to a pre-existing port.

Example - create a port with a policy attached

In this example, the policy bw-limiter is associated with port port2:

$ openstack port create --qos-policy bw-limiter --network private port2

Sample output

+-----------------------+--+
| Field | Value |
+-----------------------+--+
admin_state_up	UP
allowed_address_pairs	
binding_host_id	
binding_profile	
binding_vif_details	
binding_vif_type	unbound
binding_vnic_type	normal
created_at	2022-07-04T19:20:24Z
data_plane_status	None
description	
device_id	
device_owner	
dns_assignment	None
dns_name	None
extra_dhcp_opts	
fixed_ips	ip_address='192.0.2.210', subnet_id='292f8c-...'
id	f51562ee-da8d-42de-9578-f6f5cb248226
ip_address	None
mac_address	fa:16:3e:d9:f2:ba
name	port2
network_id	55dc2f70-0f92-4002-b343-ca34277b0234
option_name	None
option_value	None
port_security_enabled	False
project_id	98a2f53c20ce4d50a40dac4a38016c69
qos_policy_id	8491547e-add1-4c6c-a50e-42121237256c
revision_number	6
security_group_ids	0531cc1a-19d1-4cc7-ada5-49f8b08245be
status	DOWN
subnet_id	None
tags	[]
trunk_details	None
updated_at	2022-07-04T19:23:00Z
+-----------------------+--+

Example - attach a policy to a pre-existing port

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

132

In this example, the policy bw-limiter is associated with port1:

$ openstack port set --qos-policy bw-limiter port1

Verification

Confirm that the bandwith limit policy is applied to the port.

Obtain the policy ID.

Example

In this example, the QoS policy, bw-limiter is queried:

$ openstack network qos policy show bw-limiter

Sample output

+-------------------+---+
| Field | Value |
+-------------------+---+
description	
id	8491547e-add1-4c6c-a50e-42121237256c
is_default	False
name	bw-limiter
project_id	98a2f53c20ce4d50a40dac4a38016c69
revision_number	4
rules	[{u'max_kbps': 50000, u'direction': u'egress',
	u'type': u'bandwidth_limit',
	u'id': u'0db48906-a762-4d32-8694-3f65214c34a6',
	u'max_burst_kbps': 50000,
	u'qos_policy_id': u'8491547e-add1-4c6c-a50e-42121237256c'},
	[{u'max_kbps': 50000, u'direction': u'ingress',
	u'type': u'bandwidth_limit',
	u'id': u'faabef24-e23a-4fdf-8e92-f8cb66998834',
	u'max_burst_kbps': 50000,
	u'qos_policy_id': u'8491547e-add1-4c6c-a50e-42121237256c'}]
shared	False
+-------------------+---+

Query the port, and confirm that its policy ID matches the one obtained in the previous step.

Example

In this example, port1 is queried:

$ openstack port show port1

Sample output

+-------------------------+--+
| Field | Value |
+-------------------------+--+
| admin_state_up | UP |

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

133

| allowed_address_pairs | ip_address='192.0.2.128', mac_address='fa:16:3e:e1:eb:73'
|
binding_host_id	compute-2.redhat.local
binding_profile	
binding_vif_details	port_filter='True'
binding_vif_type	ovs
binding_vnic_type	normal
created_at	2022-07-04T19:07:56
data_plane_status	None
description	
device_id	53abd2c4-955d-4b44-b6ad-f106e3f15df0
device_owner	compute:nova
dns_assignment	fqdn='host-192-0-2-213.openstacklocal.', hostname='my-host3',
	ip_address='192.0.2.213'
dns_domain	None
dns_name	
extra_dhcp_opts	
fixed_ips	ip_address='192.0.2..213', subnet_id='641d1db2-3b40-437b-b87b-
63	
	079a7063ca'
	ip_address='2001:db8:0:f868:f816:3eff:fee1:eb73', subnet_id='c7ed0
	70a-d2ee-4380-baab-6978932a7dcc'
id	56x9aiw1-2v74-144x-c2q8-ed8w423a6s12
location	cloud='', project.domain_id=, project.domain_name=, project.id='7c
	b99d752fdb4944a2208ec9ee019226', project.name=,
region_name='regio	
	nOne', zone=
mac_address	fa:16:3e:e1:eb:73
name	port2
network_id	55dc2f70-0f92-4002-b343-ca34277b0234
port_security_enabled	True
project_id	98a2f53c20ce4d50a40dac4a38016c69
propagate_uplink_status	None
qos_policy_id	8491547e-add1-4c6c-a50e-42121237256c
resource_request	None
revision_number	6
security_group_ids	4cdeb836-b5fd-441e-bd01-498d758704fd
status	ACTIVE
tags	
trunk_details	None
updated_at	2022-07-04T19:11:41Z
+-------------------------+--+

Additional resources

network qos rule create in the Command line interface reference

network qos rule set in the Command line interface reference

network qos rule delete in the Command line interface reference

network qos rule list in the Command line interface reference

9.5. PRIORITIZING NETWORK TRAFFIC BY USING DSCP MARKING QOS

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

134

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_set
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_delete
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_list

9.5. PRIORITIZING NETWORK TRAFFIC BY USING DSCP MARKING QOS
POLICIES

You can use differentiated services code point (DSCP) to implement quality of service (QoS) policies
on your Red Hat OpenStack Platform (RHOSP) network by embedding relevant values in the IP headers.
The RHOSP Networking service (neutron) QoS policies can use DSCP marking to manage only egress
traffic on neutron ports and networks.

Prerequisites

The Networking service must have the qos service plug-in loaded. (This is the default.)

You must use the ML2/OVS or ML2/OVN mechanism drivers.

Procedure

1. Source your credentials file.

Example

$ source ~/overcloudrc

2. Confirm that the qos service plug-in is loaded in the Networking service:

$ openstack network qos policy list

If the qos service plug-in is not loaded, then you receive a ResourceNotFound error, and you
must configure the Networking service before you can continue. For more information, see
Section 9.2, “Configuring the Networking service for QoS policies” .

3. Identify the ID of the project you want to create the QoS policy for:

$ openstack project list

Sample output

+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
4b0b98f8c6c040f38ba4f7146e8680f5	auditors
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+----------+

4. Using the project ID from the previous step, create a QoS policy for the project.

Example

In this example, a QoS policy named qos-web-servers is created for the admin project:

openstack network qos policy create --project 98a2f53c20ce4d50a40dac4a38016c69 qos-
web-servers

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

135

5. Create a DSCP rule and apply it to a policy.

Example

In this example, a DSCP rule is created using DSCP mark 18 and is applied to the qos-web-
servers policy:

openstack network qos rule create --type dscp-marking --dscp-mark 18 qos-web-servers

Sample output

Created a new dscp_marking_rule:
+-----------+--------------------------------------+
| Field | Value |
+-----------+--------------------------------------+
| dscp_mark | 18 |
| id | d7f976ec-7fab-4e60-af70-f59bf88198e6 |
+-----------+--------------------------------------+

6. You can change the DSCP value assigned to a rule.

Example

In this example, the DSCP mark value is changed to 22 for the rule, d7f976ec-7fab-4e60-af70-
f59bf88198e6, in the qos-web-servers policy:

$ openstack network qos rule set --dscp-mark 22 qos-web-servers d7f976ec-7fab-4e60-af70-
f59bf88198e6

7. You can delete a DSCP rule.

Example

In this example, the DSCP rule, d7f976ec-7fab-4e60-af70-f59bf88198e6, in the qos-web-
servers policy is deleted:

$ openstack network qos rule delete qos-web-servers d7f976ec-7fab-4e60-af70-
f59bf88198e6

Verification

Confirm that the DSCP rule is applied to the QoS policy.

Example

In this example, the DSCP rule, d7f976ec-7fab-4e60-af70-f59bf88198e6 is applied to the QoS
policy, qos-web-servers:

$ openstack network qos rule list qos-web-servers

Sample output

+-----------+--------------------------------------+
| dscp_mark | id |

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

136

+-----------+--------------------------------------+
| 18 | d7f976ec-7fab-4e60-af70-f59bf88198e6 |
+-----------+--------------------------------------+

Additional resources

network qos rule create in the Command line interface reference

network qos rule set in the Command line interface reference

network qos rule delete in the Command line interface reference

network qos rule list in the Command line interface reference

9.6. APPLYING QOS POLICIES TO PROJECTS BY USING
NETWORKING SERVICE RBAC

With the Red Hat OpenStack Platform (RHOSP) Networking service (neutron), you can add a role-
based access control (RBAC) for quality of service (QoS) policies. As a result, you can apply QoS
policies to individual projects.

Prerequisities

You must have one or more QoS policies available.

Procedure

Create an RHOSP Networking service RBAC policy associated with a specific QoS policy, and
assign it to a specific project:

$ openstack network rbac create --type qos_policy --target-project <project_name |
project_ID> --action access_as_shared <QoS_policy_name | QoS_policy_ID>

Example

For example, you might have a QoS policy that allows for lower-priority network traffic, named
bw-limiter. Using a RHOSP Networking service RBAC policy, you can apply the QoS policy to a
specific project:

$ openstack network rbac create --type qos_policy --target-project
80bf5732752a41128e612fe615c886c6 --action access_as_shared bw-limiter

Additional resources

network rbac create in the Command line interface reference

Section 9.3.1, “Using Networking service back-end enforcement to enforce minimum bandwidth”

Section 9.3.2, “Scheduling instances by using minimum bandwidth QoS policies”

Section 9.4, “Limiting network traffic by using QoS policies”

Section 9.5, “Prioritizing network traffic by using DSCP marking QoS policies”

CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC

137

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_set
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_delete
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_qos_rule_list
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_rbac_create

CHAPTER 10. CONFIGURING BRIDGE MAPPINGS
In Red Hat OpenStack Platform (RHOSP), a bridge mapping associates a physical network name (an
interface label) to a bridge created with the Modular Layer 2 plug-in mechanism drivers Open vSwitch
(OVS) or Open Virtual Network (OVN). The RHOSP Networking service (neutron) uses bridge
mappings to allow provider network traffic to reach the physical network.

The topics included in this section are:

Section 10.1, “Overview of bridge mappings”

Section 10.2, “Traffic flow”

Section 10.3, “Configuring bridge mappings”

Section 10.4, “Maintaining bridge mappings for OVS”

Section 10.4.1, “Cleaning up OVS patch ports manually”

Section 10.4.2, “Cleaning up OVS patch ports automatically”

10.1. OVERVIEW OF BRIDGE MAPPINGS

In the Red Hat OpenStack Platform (RHOSP) Networking service (neutron), you use bridge mappings
to allow provider network traffic to reach the physical network. Traffic leaves the provider network from
the qg-xxx interface of the router and arrives at the intermediate bridge (br-int).

The next part of the data path varies depending on which mechanism driver your deployment uses:

ML2/OVS: a patch port between br-int and br-ex allows the traffic to pass through the bridge
of the provider network and out to the physical network.

ML2/OVN: the Networking service creates a patch port on a hypervisor only when there is a VM
bound to the hypervisor and the VM requires the port.

You configure the bridge mapping on the network node on which the router is scheduled. Router traffic
can egress using the correct physical network, as represented by the provider network.

NOTE

The Networking service supports only one bridge for each physical network. Do not map
more than one physical network to the same bridge.

10.2. TRAFFIC FLOW

Each external network is represented by an internal VLAN ID, which is tagged to the router qg-xxx port.
When a packet reaches phy-br-ex, the br-ex port strips the VLAN tag and moves the packet to the
physical interface and then to the external network.

The return packet from the external network arrives on br-ex and moves to br-int using phy-br-ex <->
int-br-ex. When the packet is going through br-ex to br-int, the packet’s external VLAN ID is replaced by
an internal VLAN tag in br-int, and this allows qg-xxx to accept the packet.

In the case of egress packets, the packet’s internal VLAN tag is replaced with an external VLAN tag in
br-ex (or in the external bridge that is defined in the NeutronNetworkVLANRanges parameter).

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

138

10.3. CONFIGURING BRIDGE MAPPINGS

To modify the bridge mappings that the Red Hat OpenStack Platform (RHOSP) Networking service
(neutron) uses to connect provider network traffic with the physical network, you modify the necessary
heat parameters and redeploy your overcloud.

Prerequisites

You must be able to access the underclod host as the stack user.

You must configure bridge mappings on the network node on which the router is scheduled.

You must also configure bridge mappings for your Compute nodes.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my_bridge_mappings.yaml

4. Your environment file must contain the keywords parameter_defaults. Add the
NeutronBridgeMappings heat parameter with values that are appropriate for your site after
the parameter_defaults keyword.

Example

In this example, the NeutronBridgeMappings parameter associates the physical names,
datacentre and tenant, the bridges br-ex and br-tenant, respectively.

parameter_defaults:
 NeutronBridgeMappings: "datacentre:br-ex,tenant:br-tenant"

NOTE

When the NeutronBridgeMappings parameter is not used, the default maps the
external bridge on hosts (br-ex) to a physical name (datacentre).

5. If you are using a flat network, add its name using the NeutronFlatNetworks parameter.

Example

In this example, the parameter associates physical name datacentre with bridge br-ex, and
physical name tenant with bridge br-tenant."

CHAPTER 10. CONFIGURING BRIDGE MAPPINGS

139

parameter_defaults:
 NeutronBridgeMappings: "datacentre:br-ex,tenant:br-tenant"
 NeutronFlatNetworks: "my_flat_network"

NOTE

When the NeutronFlatNetworks parameter is not used, the default is
datacentre.

6. If you are using a VLAN network, specify the network name along with the range of VLANs it
accesses by using the NeutronNetworkVLANRanges parameter.

Example

In this example, the NeutronNetworkVLANRanges parameter specifies the VLAN range of 1 -
1000 for the tenant network:

parameter_defaults:
 NeutronBridgeMappings: "datacentre:br-ex,tenant:br-tenant"
 NeutronNetworkVLANRanges: "tenant:1:1000"

7. Run the deployment command and include the core heat templates, environment files, and this
new custom environment file.

$ openstack overcloud deploy --templates \
 -e <your_environment_files> \
 -e /home/stack/templates/my_bridge_mappings.yaml

8. Perform the following steps:

a. Using the network VLAN ranges, create the provider networks that represent the
corresponding external networks. (You use the physical name when creating neutron
provider networks or floating IP networks.)

b. Connect the external networks to your project networks with router interfaces.

Additional resources

Updating the format of your network configuration files in the Installing and managing Red Hat
OpenStack Platform with director guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

10.4. MAINTAINING BRIDGE MAPPINGS FOR OVS

After removing any OVS bridge mappings, you must perform a subsequent cleanup to ensure that the
bridge configuration is cleared of any associated patch port entries. You can perform this operation in
the following ways:

Manual port cleanup - requires careful removal of the superfluous patch ports. No outages of
network connectivity are required.

Automated port cleanup - performs an automated cleanup, but requires an outage, and requires

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

140

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_configuring-overcloud-networking_installing-director-on-the-undercloud#assembly_updating-the-format-of-your-network-configuration-files_overcloud_networking
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

Automated port cleanup - performs an automated cleanup, but requires an outage, and requires
that the necessary bridge mappings be re-added. Choose this option during scheduled
maintenance windows when network connectivity outages can be tolerated.

NOTE

When OVN bridge mappings are removed, the OVN controller automatically cleans up
any associated patch ports.

10.4.1. Cleaning up OVS patch ports manually

After removing any OVS bridge mappings, you must also remove the associated patch ports.

Prerequisites

The patch ports that you are cleaning up must be Open Virtual Switch (OVS) ports.

A system outage is not required to perform a manual patch port cleanup.

You can identify the patch ports to cleanup by their naming convention:

In br-$external_bridge patch ports are named phy-<external bridge name> (for example,
phy-br-ex2).

In br-int patch ports are named int-<external bridge name> (for example, int-br-ex2).

Procedure

1. Use ovs-vsctl to remove the OVS patch ports associated with the removed bridge mapping
entry:

ovs-vsctl del-port br-ex2 datacentre
ovs-vsctl del-port br-tenant tenant

2. Restart neutron-openvswitch-agent:

service neutron-openvswitch-agent restart

10.4.2. Cleaning up OVS patch ports automatically

After removing any OVS bridge mappings, you must also remove the associated patch ports.

NOTE

When OVN bridge mappings are removed, the OVN controller automatically cleans up
any associated patch ports.

Prerequisites

The patch ports that you are cleaning up must be Open Virtual Switch (OVS) ports.

Cleaning up patch ports automatically with the neutron-ovs-cleanup command causes a
network connectivity outage, and should be performed only during a scheduled maintenance
window.

CHAPTER 10. CONFIGURING BRIDGE MAPPINGS

141

Use the flag --ovs_all_ports to remove all patch ports from br-int, cleaning up tunnel ends from
br-tun, and patch ports from bridge to bridge.

The neutron-ovs-cleanup command unplugs all patch ports (instances, qdhcp/qrouter, among
others) from all OVS bridges.

Procedure

1. Run the neutron-ovs-cleanup command with the --ovs_all_ports flag.

IMPORTANT

Performing this step will result in a total networking outage.

/usr/bin/neutron-ovs-cleanup
--config-file /etc/neutron/plugins/ml2/openvswitch_agent.ini
--log-file /var/log/neutron/ovs-cleanup.log --ovs_all_ports

2. Restore connectivity by redeploying the overcloud.
When you rerun the openstack overcloud deploy command, your bridge mapping values are
reapplied.

NOTE

After a restart, the OVS agent does not interfere with any connections that are
not present in bridge_mappings. So, if you have br-int connected to br-ex2, and
br-ex2 has some flows on it, removing br-int from the bridge_mappings
configuration does not disconnect the two bridges when you restart the OVS
agent or the node.

Additional resources

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

142

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

CHAPTER 11. VLAN-AWARE INSTANCES

11.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS

VM instances can send and receive VLAN-tagged traffic over a single virtual NIC. This is particularly
useful for NFV applications (VNFs) that expect VLAN-tagged traffic, allowing a single virtual NIC to
serve multiple customers or services.

In ML2/OVN deployments you can support VLAN-aware instances using VLAN transparent networks.
As an alternative in ML2/OVN or ML2/OVS deployments, you can support VLAN-aware instances using
trunks.

In a VLAN transparent network, you set up VLAN tagging in the VM instances. The VLAN tags are
transferred over the network and consumed by the instances on the same VLAN, and ignored by other
instances and devices. In a VLAN transparent network, the VLANs are managed in the instance. You do
not need to set up the VLAN in the OpenStack Networking Service (neutron).

VLAN trunks support VLAN-aware instances by combining VLANs into a single trunked port. For
example, a project data network can use VLANs or tunneling (VXLAN, GRE, or Geneve) segmentation,
while the instances see the traffic tagged with VLAN IDs. Network packets are tagged immediately
before they are injected to the instance and do not need to be tagged throughout the entire network.

The following table compares certain features of VLAN transparent networks and VLAN trunks.

 Transparent Trunk

Mechanism driver
support

ML2/OVN ML2/OVN, ML2/OVS

VLAN setup
managed by

VM instance OpenStack Networking Service
(neutron)

IP assignment Configured in VM instance Assigned by DHCP

VLAN ID Flexible. You can set the VLAN ID in the
instance

Fixed. Instances must use the
VLAN ID configured in the trunk

11.2. ENABLING VLAN TRANSPARENCY IN ML2/OVN DEPLOYMENTS

Enable VLAN transparency if you need to send VLAN tagged traffic between virtual machine (VM)
instances. In a VLAN transparent network you can configure the VLANS directly in the VMs without
configuring them in neutron.

Prerequisites

Deployment of Red Hat OpenStack Platform 16.1 or higher, with ML2/OVN as the mechanism
driver.

Provider network of type VLAN or Geneve. Do not use VLAN transparency in deployments with
flat type provider networks.

Ensure that the external switch supports 802.1q VLAN stacking using ethertype 0x8100 on both

CHAPTER 11. VLAN-AWARE INSTANCES

143

Ensure that the external switch supports 802.1q VLAN stacking using ethertype 0x8100 on both
VLANs. OVN VLAN transparency does not support 802.1ad QinQ with outer provider VLAN
ethertype set to 0x88A8 or 0x9100.

You must have RHOSP administrator privileges.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the stackrc undercloud credentials file:

$ source ~/stackrc

3. In an environment file on the undercloud node, set the EnableVLANTransparency parameter
to true. For example, add the following lines to ovn-extras.yaml.

parameter_defaults:
 EnableVLANTransparency: true

4. Include the environment file in the openstack overcloud deploy command with any other
environment files that are relevant to your environment and deploy the overcloud:

$ openstack overcloud deploy \
--templates \
…
-e <other_overcloud_environment_files> \

-e ovn-extras.yaml \
…

Replace <other_overcloud_environment_files> with the list of environment files that are part
of your existing deployment.

5. Create the network using the --transparent-vlan argument.

Example

$ openstack network create network-name --transparent-vlan

6. Set up a VLAN interface on each participating VM.
Set the interface MTU to 4 bytes less than the MTU of the underlay network to accommodate
the extra tagging required by VLAN transparency. For example, if the underlay network MTU is
1500, set the interface MTU to 1496.

The following example command adds a VLAN interface on eth0 with an MTU of 1496. The
VLAN is 50 and the interface name is vlan50:

Example

$ ip link add link eth0 name vlan50 type vlan id 50 mtu 1496
$ ip link set vlan50 up
$ ip addr add 192.128.111.3/24 dev vlan50

7. Choose one of these alternatives for the IP address you created on the VLAN interface inside

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

144

7. Choose one of these alternatives for the IP address you created on the VLAN interface inside
the VM in step 4:

Set an allowed address pair on the VM port.

Example

The following example sets an allowed address pair on port, fv82gwk3-qq2e-yu93-go31-
56w7sf476mm0, by using 192.128.111.3 and optionally adding a MAC address,
00:40:96:a8:45:c4:

$ openstack port set --allowed-address \
ip-address=192.128.111.3,mac-address=00:40:96:a8:45:c4 \
fv82gwk3-qq2e-yu93-go31-56w7sf476mm0

Disable port security on the port.
Disabling port security provides a practical alternative when it is not possible to list all of the
possible combinations in allowed address pairs.

Example

The following example disables port security on port fv82gwk3-qq2e-yu93-go31-
56w7sf476mm0:

$ openstack port set --no-security-group \
--disable-port-security \
fv82gwk3-qq2e-yu93-go31-56w7sf476mm0

Verification

1. Ping between two VMs on the VLAN using the vlan50 IP address.

2. Use tcpdump on eth0 to see if the packets arrive with the VLAN tag intact.

Additional resources

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

port set in the Command line interface reference

11.3. REVIEWING THE TRUNK PLUG-IN

During a Red Hat openStack deployment, the trunk plug-in is enabled by default. You can review the
configuration on the controller nodes:

On the controller node, confirm that the trunk plug-in is enabled in the /var/lib/config-
data/puppet-generated/neutron/etc/neutron/neutron.conf file:

service_plugins=router,qos,trunk

11.4. CREATING A TRUNK CONNECTION

CHAPTER 11. VLAN-AWARE INSTANCES

145

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port#port_set

To implement trunks for VLAN-tagged traffic, create a parent port and attach the new port to an
existing neutron network. When you attach the new port, OpenStack Networking adds a trunk
connection to the parent port you created. Next, create subports. These subports connect VLANs to
instances, which allow connectivity to the trunk. Within the instance operating system, you must also
create a sub-interface that tags traffic for the VLAN associated with the subport.

1. Identify the network that contains the instances that require access to the trunked VLANs. In
this example, this is the public network:

openstack network list
+--------------------------------------+---------+--------------------------------------+
| ID | Name | Subnets |
+--------------------------------------+---------+--------------------------------------+
| 82845092-4701-4004-add7-838837837621 | private | 434c7982-cd96-4c41-a8c9-
b93adbdcb197 |
| 8d8bc6d6-5b28-4e00-b99e-157516ff0050 | public | 3fd811b4-c104-44b5-8ff8-
7a86af5e332c |
+--------------------------------------+---------+--------------------------------------+

2. Create the parent trunk port, and attach it to the network that the instance connects to. In this
example, create a neutron port named parent-trunk-port on the public network. This trunk is the
parent port, as you can use it to create subports.

openstack port create --network public parent-trunk-port
+-----------------------+---+
| Field | Value |
+-----------------------+---+
admin_state_up	UP
allowed_address_pairs	
binding_host_id	
binding_profile	
binding_vif_details	
binding_vif_type	unbound
binding_vnic_type	normal
created_at	2016-10-20T02:02:33Z
description	
device_id	
device_owner	
extra_dhcp_opts	
fixed_ips	ip_address='172.24.4.230', subnet_id='dc608964-9af3-4fed-9f06-
6d3844fb9b9b'	
headers	
id	20b6fdf8-0d43-475a-a0f1-ec8f757a4a39
mac_address	fa:16:3e:33:c4:75
name	parent-trunk-port
network_id	871a6bd8-4193-45d7-a300-dcb2420e7cc3
project_id	745d33000ac74d30a77539f8920555e7
project_id	745d33000ac74d30a77539f8920555e7
revision_number	4
security_groups	59e2af18-93c6-4201-861b-19a8a8b79b23
status	DOWN
updated_at	2016-10-20T02:02:33Z
+-----------------------+---+

3. Create a trunk using the port that you created in step 2. In this example the trunk is named

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

146

3. Create a trunk using the port that you created in step 2. In this example the trunk is named
parent-trunk.

openstack network trunk create --parent-port parent-trunk-port parent-trunk
+-----------------+--------------------------------------+
| Field | Value |
+-----------------+--------------------------------------+
admin_state_up	UP
created_at	2016-10-20T02:05:17Z
description	
id	0e4263e2-5761-4cf6-ab6d-b22884a0fa88
name	parent-trunk
port_id	20b6fdf8-0d43-475a-a0f1-ec8f757a4a39
revision_number	1
status	DOWN
sub_ports	
tenant_id	745d33000ac74d30a77539f8920555e7
updated_at	2016-10-20T02:05:17Z
+-----------------+--------------------------------------+

4. View the trunk connection:

openstack network trunk list
+--------------------------------------+--------------+--------------------------------------+-------------+
| ID | Name | Parent Port | Description |
+--------------------------------------+--------------+--------------------------------------+-------------+
| 0e4263e2-5761-4cf6-ab6d-b22884a0fa88 | parent-trunk | 20b6fdf8-0d43-475a-a0f1-
ec8f757a4a39 | |
+--------------------------------------+--------------+--------------------------------------+-------------+

5. View the details of the trunk connection:

openstack network trunk show parent-trunk
+-----------------+--------------------------------------+
| Field | Value |
+-----------------+--------------------------------------+
admin_state_up	UP
created_at	2016-10-20T02:05:17Z
description	
id	0e4263e2-5761-4cf6-ab6d-b22884a0fa88
name	parent-trunk
port_id	20b6fdf8-0d43-475a-a0f1-ec8f757a4a39
revision_number	1
status	DOWN
sub_ports	
tenant_id	745d33000ac74d30a77539f8920555e7
updated_at	2016-10-20T02:05:17Z
+-----------------+--------------------------------------+

11.5. ADDING SUBPORTS TO THE TRUNK

1. Create a neutron port.
This port is a subport connection to the trunk. You must also specify the MAC address that you
assigned to the parent port:

CHAPTER 11. VLAN-AWARE INSTANCES

147

openstack port create --network private --mac-address fa:16:3e:33:c4:75 subport-trunk-port
+-----------------------+--+
| Field | Value |
+-----------------------+--+
admin_state_up	UP
allowed_address_pairs	
binding_host_id	
binding_profile	
binding_vif_details	
binding_vif_type	unbound
binding_vnic_type	normal
created_at	2016-10-20T02:08:14Z
description	
device_id	
device_owner	
extra_dhcp_opts	
fixed_ips	ip_address='10.0.0.11', subnet_id='1a299780-56df-4c0b-a4c0-
c5a612cef2e8'	
headers	
id	479d742e-dd00-4c24-8dd6-b7297fab3ee9
mac_address	fa:16:3e:33:c4:75
name	subport-trunk-port
network_id	3fe6b758-8613-4b17-901e-9ba30a7c4b51
project_id	745d33000ac74d30a77539f8920555e7
project_id	745d33000ac74d30a77539f8920555e7
revision_number	4
security_groups	59e2af18-93c6-4201-861b-19a8a8b79b23
status	DOWN
updated_at	2016-10-20T02:08:15Z
+-----------------------+--+

NOTE

If you receive the error HttpException: Conflict, confirm that you are creating
the subport on a different network to the one that has the parent trunk port. This
example uses the public network for the parent trunk port, and private for the
subport.

2. Associate the port with the trunk (parent-trunk), and specify the VLAN ID (55):

openstack network trunk set --subport port=subport-trunk-port,segmentation-
type=vlan,segmentation-id=55 parent-trunk

11.6. CONFIGURING AN INSTANCE TO USE A TRUNK

You must configure the VM instance operating system to use the MAC address that the Red Hat
OpenStack Platform (RHOSP) Networking service (neutron) assigned to the subport. You can also
configure the subport to use a specific MAC address during the subport creation step.

Prerequisites

If you are performing live migrations of your Compute nodes, ensure that the RHOSP
Networking service RPC response timeout is appropriately set for your RHOSP deployment.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

148

The RPC response timeout value can vary between sites and is dependent on the system speed.
The general recommendation is to set the value to at least 120 seconds per/100 trunk ports.
The best practice is to measure the trunk port bind process time for your RHOSP deployment,
and then set the RHOSP Networking service RPC response timeout appropriately. Try to keep
the RPC response timeout value low, but also provide enough time for the RHOSP Networking
service to receive an RPC response. For more information, see Section 11.7, “Configuring
Networking service RPC timeout”.

Procedure

1. Review the configuration of your network trunk, using the network trunk command.

Example

$ openstack network trunk list

Sample output

+---------------------+--------------+---------------------+-------------+
| ID | Name | Parent Port | Description |
+---------------------+--------------+---------------------+-------------+
| 0e4263e2-5761-4cf6- | parent-trunk | 20b6fdf8-0d43-475a- | |
| ab6d-b22884a0fa88 | | a0f1-ec8f757a4a39 | |
+---------------------+--------------+---------------------+-------------+

Example

$ openstack network trunk show parent-trunk

Sample output

+-----------------+--+
| Field | Value |
+-----------------+--+
admin_state_up	UP
created_at	2021-10-20T02:05:17Z
description	
id	0e4263e2-5761-4cf6-ab6d-b22884a0fa88
name	parent-trunk
port_id	20b6fdf8-0d43-475a-a0f1-ec8f757a4a39
revision_number	2
status	DOWN
sub_ports	port_id='479d742e-dd00-4c24-8dd6-b7297fab3ee9', segm
	entation_id='55', segmentation_type='vlan'
tenant_id	745d33000ac74d30a77539f8920555e7
updated_at	2021-08-20T02:10:06Z
+-----------------+--+

2. Create an instance that uses the parent port-id as its vNIC.

Example

CHAPTER 11. VLAN-AWARE INSTANCES

149

openstack server create --image cirros --flavor m1.tiny --security-group default --key-name
sshaccess --nic port-id=20b6fdf8-0d43-475a-a0f1-ec8f757a4a39 testInstance

Sample output

+--------------------------------------+---------------------------------+
| Property | Value |
+--------------------------------------+---------------------------------+
OS-DCF:diskConfig	MANUAL
OS-EXT-AZ:availability_zone	
OS-EXT-SRV-ATTR:host	-
OS-EXT-SRV-ATTR:hostname	testinstance
OS-EXT-SRV-ATTR:hypervisor_hostname	-
OS-EXT-SRV-ATTR:instance_name	
OS-EXT-SRV-ATTR:kernel_id	
OS-EXT-SRV-ATTR:launch_index	0
OS-EXT-SRV-ATTR:ramdisk_id	
OS-EXT-SRV-ATTR:reservation_id	r-juqco0el
OS-EXT-SRV-ATTR:root_device_name	-
OS-EXT-SRV-ATTR:user_data	-
OS-EXT-STS:power_state	0
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
OS-SRV-USG:launched_at	-
OS-SRV-USG:terminated_at	-
accessIPv4	
accessIPv6	
adminPass	uMyL8PnZRBwQ
config_drive	
created	2021-08-20T03:02:51Z
description	-
flavor	m1.tiny (1)
hostId	
host_status	
id	88b7aede-1305-4d91-a180-67e7eac
	8b70d
image	cirros (568372f7-15df-4e61-a05f
	-10954f79a3c4)
key_name	sshaccess
locked	False
metadata	{}
name	testInstance
os-extended-volumes:volumes_attached	[]
progress	0
security_groups	default
status	BUILD
tags	[]
tenant_id	745d33000ac74d30a77539f8920555e
	7
updated	2021-08-20T03:02:51Z
user_id	8c4aea738d774967b4ef388eb41fef5
	e
+--------------------------------------+---------------------------------+

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

150

Additional resources

Configuring Networking service RPC timeout

11.7. CONFIGURING NETWORKING SERVICE RPC TIMEOUT

There can be situations when you must modify the Red Hat OpenStack Platform (RHOSP) Networking
service (neutron) RPC response timeout. For example, live migrations for Compute nodes that use
trunk ports can fail if the timeout value is too low.

The RPC response timeout value can vary between sites and is dependent on the system speed. The
general recommendation is to set the value to at least 120 seconds per/100 trunk ports.

If your site uses trunk ports, the best practice is to measure the trunk port bind process time for your
RHOSP deployment, and then set the RHOSP Networking service RPC response timeout appropriately.
Try to keep the RPC response timeout value low, but also provide enough time for the RHOSP
Networking service to receive an RPC response.

By using a manual hieradata override, rpc_response_timeout, you can set the RPC response timeout
value for the RHOSP Networking service.

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-modules-environment.yaml

TIP

The RHOSP Orchestration service (heat) uses a set of plans called templates to install and
configure your environment. You can customize aspects of the overcloud with a custom
environment file, which is a special type of template that provides customization for your heat
templates.

2. In the YAML environment file under ExtraConfig, set the appropriate value (in seconds) for
rpc_response_timeout. (The default value is 60 seconds.)

Example

parameter_defaults:
 ExtraConfig:
 neutron::rpc_response_timeout: 120

NOTE

The RHOSP Orchestration service (heat) updates all RHOSP nodes with the
value you set in the custom environment file, however this value only impacts the
RHOSP Networking components.

3. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

CHAPTER 11. VLAN-AWARE INSTANCES

151

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#proc_config-network-svc-rpc-timeout_vlan-aware-instances

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-modules-
environment.yaml

Additional resources

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

11.8. UNDERSTANDING TRUNK STATES

ACTIVE: The trunk is working as expected and there are no current requests.

DOWN: The virtual and physical resources for the trunk are not in sync. This can be a temporary
state during negotiation.

BUILD: There has been a request and the resources are being provisioned. After successful
completion the trunk returns to ACTIVE.

DEGRADED: The provisioning request did not complete, so the trunk has only been partially
provisioned. It is recommended to remove the subports and try again.

ERROR: The provisioning request was unsuccessful. Remove the resource that caused the error
to return the trunk to a healthier state. Do not add more subports while in the ERROR state, as
this can cause more issues.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

152

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

CHAPTER 12. CONFIGURING RBAC POLICIES

12.1. OVERVIEW OF RBAC POLICIES

Role-based access control (RBAC) policies in OpenStack Networking allow granular control over shared
neutron networks. OpenStack Networking uses a RBAC table to control sharing of neutron networks
among projects, allowing an administrator to control which projects are granted permission to attach
instances to a network.

As a result, cloud administrators can remove the ability for some projects to create networks and can
instead allow them to attach to pre-existing networks that correspond to their project.

12.2. CREATING RBAC POLICIES

This example procedure demonstrates how to use a role-based access control (RBAC) policy to grant a
project access to a shared network.

1. View the list of available networks:

openstack network list
+--------------------------------------+-------------+---+
| id | name | subnets |
+--------------------------------------+-------------+---+
| fa9bb72f-b81a-4572-9c7f-7237e5fcabd3 | web-servers | 20512ffe-ad56-4bb4-b064-
2cb18fecc923 192.168.200.0/24 |
| bcc16b34-e33e-445b-9fde-dd491817a48a | private | 7fe4a05a-4b81-4a59-8c47-
82c965b0e050 10.0.0.0/24 |
| 9b2f4feb-fee8-43da-bb99-032e4aaf3f85 | public | 2318dc3b-cff0-43fc-9489-
7d4cf48aaab9 172.24.4.224/28 |
+--------------------------------------+-------------+---+

2. View the list of projects:

openstack project list
+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
4b0b98f8c6c040f38ba4f7146e8680f5	auditors
519e6344f82e4c079c8e2eabb690023b	services
80bf5732752a41128e612fe615c886c6	demo
98a2f53c20ce4d50a40dac4a38016c69	admin
+----------------------------------+----------+

3. Create a RBAC entry for the web-servers network that grants access to the auditors project
(4b0b98f8c6c040f38ba4f7146e8680f5):

openstack network rbac create --type network --target-project
4b0b98f8c6c040f38ba4f7146e8680f5 --action access_as_shared web-servers
Created a new rbac_policy:
+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
| action | access_as_shared |
| id | 314004d0-2261-4d5e-bda7-0181fcf40709 |

CHAPTER 12. CONFIGURING RBAC POLICIES

153

object_id	fa9bb72f-b81a-4572-9c7f-7237e5fcabd3
object_type	network
target_project	4b0b98f8c6c040f38ba4f7146e8680f5
project_id	98a2f53c20ce4d50a40dac4a38016c69
+----------------+--------------------------------------+

As a result, users in the auditors project can connect instances to the web-servers network.

12.3. REVIEWING RBAC POLICIES

1. Run the openstack network rbac list command to retrieve the ID of your existing role-based
access control (RBAC) policies:

openstack network rbac list
+--------------------------------------+-------------+--------------------------------------+
| id | object_type | object_id |
+--------------------------------------+-------------+--------------------------------------+
| 314004d0-2261-4d5e-bda7-0181fcf40709 | network | fa9bb72f-b81a-4572-9c7f-
7237e5fcabd3 |
| bbab1cf9-edc5-47f9-aee3-a413bd582c0a | network | 9b2f4feb-fee8-43da-bb99-
032e4aaf3f85 |
+--------------------------------------+-------------+--------------------------------------+

2. Run the openstack network rbac-show command to view the details of a specific RBAC entry:

openstack network rbac show 314004d0-2261-4d5e-bda7-0181fcf40709
+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
action	access_as_shared
id	314004d0-2261-4d5e-bda7-0181fcf40709
object_id	fa9bb72f-b81a-4572-9c7f-7237e5fcabd3
object_type	network
target_project	4b0b98f8c6c040f38ba4f7146e8680f5
project_id	98a2f53c20ce4d50a40dac4a38016c69
+----------------+--------------------------------------+

12.4. DELETING RBAC POLICIES

1. Run the openstack network rbac list command to retrieve the ID of your existing role-based
access control (RBAC) policies:

openstack network rbac list
+--------------------------------------+-------------+--------------------------------------+
| id | object_type | object_id |
+--------------------------------------+-------------+--------------------------------------+
| 314004d0-2261-4d5e-bda7-0181fcf40709 | network | fa9bb72f-b81a-4572-9c7f-
7237e5fcabd3 |
| bbab1cf9-edc5-47f9-aee3-a413bd582c0a | network | 9b2f4feb-fee8-43da-bb99-
032e4aaf3f85 |
+--------------------------------------+-------------+--------------------------------------+

2. Run the openstack network rbac delete command to delete the RBAC, using the ID of the

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

154

2. Run the openstack network rbac delete command to delete the RBAC, using the ID of the
RBAC that you want to delete:

openstack network rbac delete 314004d0-2261-4d5e-bda7-0181fcf40709
Deleted rbac_policy: 314004d0-2261-4d5e-bda7-0181fcf40709

12.5. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

You can grant role-based access control (RBAC) policy access to external networks (networks with
gateway interfaces attached) using the --action access_as_external parameter.

Complete the steps in the following example procedure to create a RBAC for the web-servers network
and grant access to the engineering project (c717f263785d4679b16a122516247deb):

Create a new RBAC policy using the --action access_as_external option:

openstack network rbac create --type network --target-project
c717f263785d4679b16a122516247deb --action access_as_external web-servers
 Created a new rbac_policy:
+----------------+--------------------------------------+
| Field | Value |
+----------------+--------------------------------------+
action	access_as_external
id	ddef112a-c092-4ac1-8914-c714a3d3ba08
object_id	6e437ff0-d20f-4483-b627-c3749399bdca
object_type	network
target_project	c717f263785d4679b16a122516247deb
project_id	c717f263785d4679b16a122516247deb
+----------------+--------------------------------------+

As a result, users in the engineering project are able to view the network or connect instances to
it:

$ openstack network list
+--------------------------------------+-------------+--+
| id | name | subnets |
+--------------------------------------+-------------+--+
| 6e437ff0-d20f-4483-b627-c3749399bdca | web-servers | fa273245-1eff-4830-b40c-
57eaeac9b904 192.168.10.0/24 |
+--------------------------------------+-------------+--+

CHAPTER 12. CONFIGURING RBAC POLICIES

155

CHAPTER 13. CONFIGURING DISTRIBUTED VIRTUAL
ROUTING (DVR)

13.1. UNDERSTANDING DISTRIBUTED VIRTUAL ROUTING (DVR)

When you deploy Red Hat OpenStack Platform you can choose between a centralized routing model or
DVR.

Each model has advantages and disadvantages. Use this document to carefully plan whether centralized
routing or DVR better suits your needs.

New default RHOSP deployments use DVR and the Modular Layer 2 plug-in with the Open Virtual
Network mechanism driver (ML2/OVN).

DVR is disabled by default in ML2/OVS deployments.

13.1.1. Overview of Layer 3 routing

The Red Hat OpenStack Platform Networking service (neutron) provides routing services for project
networks. Without a router, VM instances in a project network can communicate with other instances
over a shared L2 broadcast domain. Creating a router and assigning it to a project network allows the
instances in that network to communicate with other project networks or upstream (if an external
gateway is defined for the router).

13.1.2. Routing flows

Routing services in Red Hat OpenStack Platform (RHOSP) can be categorized into three main flows:

East-West routing - routing of traffic between different networks in the same project. This
traffic does not leave the RHOSP deployment. This definition applies to both IPv4 and IPv6
subnets.

North-South routing with floating IPs - Floating IP addressing is a one-to-one network
address translation (NAT) that can be modified and that floats between VM instances. While
floating IPs are modeled as a one-to-one association between the floating IP and a Networking
service (neutron) port, they are implemented by association with a Networking service router
that performs the NAT translation. The floating IPs themselves are taken from the uplink
network that provides the router with external connectivity. As a result, instances can
communicate with external resources (such as endpoints on the internet) or the other way
around. Floating IPs are an IPv4 concept and do not apply to IPv6. It is assumed that the IPv6
addressing used by projects uses Global Unicast Addresses (GUAs) with no overlap across the
projects, and therefore can be routed without NAT.

North-South routing without floating IPs (also known as SNAT) - The Networking service
offers a default port address translation (PAT) service for instances that do not have allocated
floating IPs. With this service, instances can communicate with external endpoints through the
router, but not the other way around. For example, an instance can browse a website on the
internet, but a web browser outside cannot browse a website hosted within the instance. SNAT
is applied for IPv4 traffic only. In addition, Networking service networks that are assigned GUAs
prefixes do not require NAT on the Networking service router external gateway port to access
the outside world.

13.1.3. Centralized routing

Originally, the Networking service (neutron) was designed with a centralized routing model where a

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

156

Originally, the Networking service (neutron) was designed with a centralized routing model where a
project’s virtual routers, managed by the neutron L3 agent, are all deployed in a dedicated node or
cluster of nodes (referred to as the Network node, or Controller node). This means that each time a
routing function is required (east/west, floating IPs or SNAT), traffic would traverse through a dedicated
node in the topology. This introduced multiple challenges and resulted in sub-optimal traffic flows. For
example:

Traffic between instances flows through a Controller node - when two instances need to
communicate with each other using L3, traffic has to hit the Controller node. Even if the
instances are scheduled on the same Compute node, traffic still has to leave the Compute
node, flow through the Controller, and route back to the Compute node. This negatively
impacts performance.

Instances with floating IPs receive and send packets through the Controller node - the external
network gateway interface is available only at the Controller node, so whether the traffic is
originating from an instance, or destined to an instance from the external network, it has to flow
through the Controller node. Consequently, in large environments the Controller node is subject
to heavy traffic load. This would affect performance and scalability, and also requires careful
planning to accommodate enough bandwidth in the external network gateway interface. The
same requirement applies for SNAT traffic.

To better scale the L3 agent, the Networking service can use the L3 HA feature, which distributes the
virtual routers across multiple nodes. In the event that a Controller node is lost, the HA router will
failover to a standby on another node and there will be packet loss until the HA router failover
completes.

13.2. DVR OVERVIEW

Distributed Virtual Routing (DVR) offers an alternative routing design. DVR isolates the failure domain
of the Controller node and optimizes network traffic by deploying the L3 agent and schedule routers on
every Compute node. DVR has these characteristics:

East-West traffic is routed directly on the Compute nodes in a distributed fashion.

North-South traffic with floating IP is distributed and routed on the Compute nodes. This
requires the external network to be connected to every Compute node.

North-South traffic without floating IP is not distributed and still requires a dedicated Controller
node.

The L3 agent on the Controller node uses the dvr_snat mode so that the node serves only
SNAT traffic.

The neutron metadata agent is distributed and deployed on all Compute nodes. The metadata
proxy service is hosted on all the distributed routers.

13.3. DVR KNOWN ISSUES AND CAVEATS

Support for DVR is limited to the ML2 core plug-in and the Open vSwitch (OVS) mechanism
driver or ML2/OVN mechanism driver. Other back ends are not supported.

On ML2/OVS DVR deployments, network traffic for the Red Hat OpenStack Platform Load-
balancing service (octavia) goes through the Controller and network nodes, instead of the
compute nodes.

With an ML2/OVS mechanism driver network back end and DVR, it is possible to create VIPs.

CHAPTER 13. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)

157

With an ML2/OVS mechanism driver network back end and DVR, it is possible to create VIPs.
However, the IP address assigned to a bound port using allowed_address_pairs, should match
the virtual port IP address (/32).
If you use a CIDR format IP address for the bound port allowed_address_pairs instead, port
forwarding is not configured in the back end, and traffic fails for any IP in the CIDR expecting to
reach the bound IP port.

SNAT (source network address translation) traffic is not distributed, even when DVR is enabled.
SNAT does work, but all ingress/egress traffic must traverse through the centralized Controller
node.

In ML2/OVS deployments, IPv6 traffic is not distributed, even when DVR is enabled. All
ingress/egress traffic goes through the centralized Controller node. If you use IPv6 routing
extensively with ML2/OVS, do not use DVR.
Note that in ML2/OVN deployments, all east/west traffic is always distributed, and north/south
traffic is distributed when DVR is configured.

In ML2/OVS deployments, DVR is not supported in conjunction with L3 HA. If you use DVR with
Red Hat OpenStack Platform 17.1 director, L3 HA is disabled. This means that routers are still
scheduled on the Network nodes (and load-shared between the L3 agents), but if one agent
fails, all routers hosted by this agent fail as well. This affects only SNAT traffic. The
allow_automatic_l3agent_failover feature is recommended in such cases, so that if one
network node fails, the routers are rescheduled to a different node.

For ML2/OVS environments, the DHCP server is not distributed and is deployed on a Controller
node. The ML2/OVS neutron DCHP agent, which manages the DHCP server, is deployed in a
highly available configuration on the Controller nodes, regardless of the routing design
(centralized or DVR).

Compute nodes require an interface on the external network attached to an external bridge.
They use this interface to attach to a VLAN or flat network for an external router gateway, to
host floating IPs, and to perform SNAT for VMs that use floating IPs.

In ML2/OVS deployments, each Compute node requires one additional IP address. This is due
to the implementation of the external gateway port and the floating IP network namespace.

VLAN, GRE, and VXLAN are all supported for project data separation. When you use GRE or
VXLAN, you must enable the L2 Population feature. The Red Hat OpenStack Platform director
enforces L2 Population during installation.

13.4. SUPPORTED ROUTING ARCHITECTURES

Red Hat OpenStack Platform (RHOSP) supports both centralized, high-availability (HA) routing and
distributed virtual routing (DVR) in the RHOSP versions listed:

RHOSP centralized HA routing support began in RHOSP 8.

RHOSP distributed routing support began in RHOSP 12.

13.5. MIGRATING CENTRALIZED ROUTERS TO DISTRIBUTED ROUTING

This section contains information about upgrading to distributed routing for Red Hat OpenStack
Platform deployments that use L3 HA centralized routing.

Procedure

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

158

1. Upgrade your deployment and validate that it is working correctly.

2. Run the director stack update to configure DVR.

3. Confirm that routing functions correctly through the existing routers.

4. You cannot transition an L3 HA router to distributed directly. Instead, for each router, disable
the L3 HA option, and then enable the distributed option:

a. Disable the router:

Example

$ openstack router set --disable router1

b. Clear high availability:

Example

$ openstack router set --no-ha router1

c. Configure the router to use DVR:

Example

$ openstack router set --distributed router1

d. Enable the router:

Example

$ openstack router set --enable router1

e. Confirm that distributed routing functions correctly.

Additional resources

Deploying DVR with ML2 OVS

13.6. DEPLOYING ML2/OVN OPENSTACK WITH DISTRIBUTED
VIRTUAL ROUTING (DVR) DISABLED

New Red Hat OpenStack Platform (RHOSP) deployments default to the neutron Modular Layer 2 plug-
in with the Open Virtual Network mechanism driver (ML2/OVN) and DVR.

In a DVR topology, compute nodes with floating IP addresses route traffic between virtual machine
instances and the network that provides the router with external connectivity (north-south traffic).
Traffic between instances (east-west traffic) is also distributed.

You can optionally deploy with DVR disabled. This disables north-south DVR, requiring north-south
traffic to traverse a controller or networker node. East-west routing is always distributed in an an
ML2/OVN deployment, even when DVR is disabled.

Prerequisites

CHAPTER 13. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)

159

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#deploying-dvr

Prerequisites

RHOSP 17.1 distribution ready for customization and deployment.

Procedure

1. Create a custom environment file, and add the following configuration:

parameter_defaults:
 NeutronEnableDVR: false

2. To apply this configuration, deploy the overcloud, adding your custom environment file to the
stack along with your other environment files. For example:

(undercloud) $ openstack overcloud deploy --templates \
 -e [your environment files]
 -e /home/stack/templates/<custom-environment-file>.yaml

13.6.1. Additional resources

Understanding distributed virtual routing (DVR) in the Configuring Red Hat OpenStack Platform
networking guide.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

160

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#understand-dvr_config-dvr

CHAPTER 14. PROJECT NETWORKING WITH IPV6

14.1. IPV6 SUBNET OPTIONS

When you create IPv6 subnets in a Red Hat OpenStack Platform (RHOSP) project network you can
specify address mode and Router Advertisement mode to obtain a particular result as described in the
following table.

NOTE

RHOSP does not support IPv6 prefix delegation from an external entity in ML2/OVN
deployments. You must obtain the Global Unicast Address prefix from your external
prefix delegation router and set it by using the subnet-range argument during creation
of a IPv6 subnet.

For example:

openstack subnet create
--subnet-range 2002:c000:200::64
--no-dhcp
--gateway 2002:c000:2fe::
--dns-nameserver 2002:c000:2fe::
--network provider
provider-subnet-2002:c000:200::

RA Mode Address Mode Result

CHAPTER 14. PROJECT NETWORKING WITH IPV6

161

ipv6_ra_mode=not set ipv6-address-mode=slaac The instance receives an IPv6
address from the external router
(not managed by OpenStack
Networking) using Stateless
Address Autoconfiguration
(SLAAC).

NOTE

OpenStack
Networking
supports only
EUI-64 IPv6
address
assignment for
SLAAC. This
allows for
simplified IPv6
networking, as
hosts self-assign
addresses based
on the base 64-
bits plus the MAC
address. You
cannot create
subnets with a
different netmask
and
address_assign_ty
pe of SLAAC.

RA Mode Address Mode Result

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

162

ipv6_ra_mode=not set ipv6-address-mode=dhcpv6-
stateful

The instance receives an IPv6
address and optional information
from OpenStack Networking
(dnsmasq) using DHCPv6
stateful.

ipv6_ra_mode=not set ipv6-address-mode=dhcpv6-
stateless

The instance receives an IPv6
address from the external router
using SLAAC, and optional
information from OpenStack
Networking (dnsmasq) using
DHCPv6 stateless.

ipv6_ra_mode=slaac ipv6-address-mode=not-set The instance uses SLAAC to
receive an IPv6 address from
OpenStack Networking (radvd).

ipv6_ra_mode=dhcpv6-stateful ipv6-address-mode=not-set The instance receives an IPv6
address and optional information
from an external DHCPv6 server
using DHCPv6 stateful.

ipv6_ra_mode=dhcpv6-stateless ipv6-address-mode=not-set The instance receives an IPv6
address from OpenStack
Networking (radvd) using SLAAC,
and optional information from an
external DHCPv6 server using
DHCPv6 stateless.

ipv6_ra_mode=slaac ipv6-address-mode=slaac The instance receives an IPv6
address from OpenStack
Networking (radvd) using SLAAC.

ipv6_ra_mode=dhcpv6-stateful ipv6-address-mode=dhcpv6-
stateful

The instance receives an IPv6
address from OpenStack
Networking (dnsmasq) using
DHCPv6 stateful, and optional
information from OpenStack
Networking (dnsmasq) using
DHCPv6 stateful.

ipv6_ra_mode=dhcpv6-stateless ipv6-address-mode=dhcpv6-
stateless

The instance receives an IPv6
address from OpenStack
Networking (radvd) using SLAAC,
and optional information from
OpenStack Networking
(dnsmasq) using DHCPv6
stateless.

RA Mode Address Mode Result

CHAPTER 14. PROJECT NETWORKING WITH IPV6

163

14.2. CREATE AN IPV6 SUBNET USING STATEFUL DHCPV6

You can create an IPv6 subnet in a Red Hat OpenStack (RHOSP) project network.

For example, you can create an IPv6 subnet using Stateful DHCPv6 in network named database-servers
in a project named QA.

Procedure

1. Retrieve the project ID of the Project where you want to create the IPv6 subnet. These values
are unique between OpenStack deployments, so your values differ from the values in this
example.

openstack project list
+----------------------------------+----------+
| ID | Name |
+----------------------------------+----------+
25837c567ed5458fbb441d39862e1399	QA
f59f631a77264a8eb0defc898cb836af	admin
4e2e1951e70643b5af7ed52f3ff36539	demo
8561dff8310e4cd8be4b6fd03dc8acf5	services
+----------------------------------+----------+

2. Retrieve a list of all networks present in OpenStack Networking (neutron), and note the name of
the network where you want to host the IPv6 subnet:

openstack network list
+--------------------------------------+------------------+--
---------+
| id | name | subnets |
+--------------------------------------+------------------+--
---------+
| 8357062a-0dc2-4146-8a7f-d2575165e363 | private | c17f74c4-db41-4538-af40-
48670069af70 10.0.0.0/24 |
| 31d61f7d-287e-4ada-ac29-ed7017a54542 | public | 303ced03-6019-4e79-a21c-
1942a460b920 172.24.4.224/28 |
| 6aff6826-4278-4a35-b74d-b0ca0cbba340 | database-servers |
|
+--------------------------------------+------------------+--
---------+

3. Include the project ID, network name, and ipv6 address mode in the openstack subnet create
command:

openstack subnet create --ip-version 6 --ipv6-address-mode dhcpv6-stateful --project
25837c567ed5458fbb441d39862e1399 --network database-servers --subnet-range
fdf8:f53b:82e4::53/125 subnet_name

Created a new subnet:
+-------------------+--+
| Field | Value |
+-------------------+--+
allocation_pools	{"start": "fdf8:f53b:82e4::52", "end": "fdf8:f53b:82e4::56"}
cidr	fdf8:f53b:82e4::53/125
dns_nameservers	

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

164

enable_dhcp	True
gateway_ip	fdf8:f53b:82e4::51
host_routes	
id	cdfc3398-997b-46eb-9db1-ebbd88f7de05
ip_version	6
ipv6_address_mode	dhcpv6-stateful
ipv6_ra_mode	
name	
network_id	6aff6826-4278-4a35-b74d-b0ca0cbba340
tenant_id	25837c567ed5458fbb441d39862e1399
+-------------------+--+

Validation steps

1. Validate this configuration by reviewing the network list. Note that the entry for database-
servers now reflects the newly created IPv6 subnet:

openstack network list
+--------------------------------------+------------------+--
---------+
| id | name | subnets |
+--------------------------------------+------------------+--
---------+
| 6aff6826-4278-4a35-b74d-b0ca0cbba340 | database-servers | cdfc3398-997b-46eb-9db1-
ebbd88f7de05 fdf8:f53b:82e4::50/125 |
| 8357062a-0dc2-4146-8a7f-d2575165e363 | private | c17f74c4-db41-4538-af40-
48670069af70 10.0.0.0/24 |
| 31d61f7d-287e-4ada-ac29-ed7017a54542 | public | 303ced03-6019-4e79-a21c-
1942a460b920 172.24.4.224/28 |
+--------------------------------------+------------------+--
---------+

Result

As a result of this configuration, instances that the QA project creates can receive a DHCP IPv6
address when added to the database-servers subnet:

openstack server list
+--------------------------------------+------------+--------+------------+-------------+---------------------
----------------+
| ID | Name | Status | Task State | Power State | Networks
|
+--------------------------------------+------------+--------+------------+-------------+---------------------
----------------+
| fad04b7a-75b5-4f96-aed9-b40654b56e03 | corp-vm-01 | ACTIVE | - | Running |
database-servers=fdf8:f53b:82e4::52 |
+--------------------------------------+------------+--------+------------+-------------+---------------------
----------------+

Additional resources

To find the Router Advertisement mode and address mode combinations to achieve a particular result in
an IPv6 subnet, see IPv6 subnet options in the Configuring Red Hat OpenStack Platform networking .

CHAPTER 14. PROJECT NETWORKING WITH IPV6

165

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#ipv6-subnet-options_proj-network-ipv6
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index

CHAPTER 15. MANAGING PROJECT QUOTAS

15.1. CONFIGURING PROJECT QUOTAS

OpenStack Networking (neutron) supports the use of quotas to constrain the number of resources
created by tenants/projects.

Procedure

You can set project quotas for various network components in the /var/lib/config-
data/puppet-generated/neutron/etc/neutron/neutron.conf file.
For example, to limit the number of routers that a project can create, change the quota_router
value:

quota_router = 10

In this example, each project is limited to a maximum of 10 routers.

For a listing of the quota settings, see sections that immediately follow.

15.2. L3 QUOTA OPTIONS

Here are quota options available for layer 3 (L3) networking:

quota_floatingip - The number of floating IPs available to a project.

quota_network - The number of networks available to a project.

quota_port - The number of ports available to a project.

quota_router - The number of routers available to a project.

quota_subnet - The number of subnets available to a project.

quota_vip - The number of virtual IP addresses available to a project.

15.3. FIREWALL QUOTA OPTIONS

Here are quota options available for managing firewalls for projects:

quota_firewall - The number of firewalls available to a project.

quota_firewall_policy - The number of firewall policies available to a project.

quota_firewall_rule - The number of firewall rules available to a project.

15.4. SECURITY GROUP QUOTA OPTIONS

The Networking service quota engine manages security groups and security group rules, and it is not
possible to set all quotas to zero before creating the default security group (and the two default
security group rules that accepts all egress traffic for IPv4 and IPv6). When you create a new project,
the Networking service does not create the default security group until a network or a port is created, or
until you list the security group or the security group rules.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

166

Here are quota options available for managing the number of security groups that projects can create:

quota_security_group - The number of security groups available to a project.

quota_security_group_rule - The number of security group rules available to a project.

15.5. MANAGEMENT QUOTA OPTIONS

Here are additional options available to administrators for managing quotas for projects:

default_quota* - The default number of resources available to a project.

quota_health_monitor* - The number of health monitors available to a project.
Health monitors do not consume resources, however the quota option is available because
OpenStack Networking considers health monitors as resource consumers.

quota_member - The number of pool members available to a project.
Pool members do not consume resources, however the quota option is available because
OpenStack Networking considers pool members as resource consumers.

quota_pool - The number of pools available to a project.

CHAPTER 15. MANAGING PROJECT QUOTAS

167

CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS

16.1. ADVANTAGES OF ROUTED PROVIDER NETWORKS

In Red Hat OpenStack Platform (RHOSP), administrators can create routed provider networks. Routed
provider networks are typically used in edge deployments, and rely on multiple layer 2 network segments
instead of traditional networks that have only one segment.

Routed provider networks simplify the cloud for end users because they see only one network. For
administrators, routed provider networks deliver scalabilty and fault tolerance. For example, if a major
error occurs, only one segment is impacted instead of the entire network failing.

Before routed provider networks, administrators typically had to choose from one of the following
architectures:

A single, large layer 2 network

Multiple, smaller layer 2 networks

Single, large layer 2 networks become complex when scaling and reduce fault tolerance (increase failure
domains).

Multiple, smaller layer 2 networks scale better and shrink failure domains, but can introduce complexity
for end users.

Starting with RHOSP 16.2 and later, you can deploy routed provider networks using the Modular Layer 2
plug-in with the Open Virtual Network mechanism driver (ML2/OVN). (Routed provider network
support for the ML2/Open vSwitch (OVS) and SR-IOV mechanism drivers was introduced in RHOSP
16.1.1.)

Additional resources

Section 16.2, “Fundamentals of routed provider networks”

16.2. FUNDAMENTALS OF ROUTED PROVIDER NETWORKS

A routed provider network is different from other types of networks because of the one-to-one
association between a network subnet and a segment. In the past, the Red Hat OpenStack (RHOSP)
Networking service has not supported routed provider networks, because the Networking service
required that all subnets must either belong to the same segment or to no segment.

With routed provider networks, the IP addresses available to virtual machine (VM) instances depend on
the segment of the network available on the particular compute node. The Networking service port can
be associated with only one network segment.

Similar to conventional networking, layer 2 (switching) handles transit of traffic between ports on the
same network segment and layer 3 (routing) handles transit of traffic between segments.

The Networking service does not provide layer 3 services between segments. Instead, it relies on
physical network infrastructure to route subnets. Thus, both the Networking service and physical
network infrastructure must contain configuration for routed provider networks, similar to conventional
provider networks.

You can configure the Compute scheduler to filter Compute nodes that have affinity with routed

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

168

You can configure the Compute scheduler to filter Compute nodes that have affinity with routed
network segments, so that the scheduler places instances only on Compute nodes that are in the
required routed provider network segment.

If you require a DHCP-metadata service, you must define an availability zone for each edge site or
network segment, to ensure that the local DHCP agent is deployed.

Additional resources

Section 16.1, “Advantages of routed provider networks”

16.3. LIMITATIONS OF ROUTED PROVIDER NETWORKS

The known constraints of routed provider networks in Red Hat OpenStack Platform include:

North-south routing with central SNAT or a floating IP is not supported.

When using SR-IOV or PCI pass-through, physical network (physnet) names must be the same
in central and remote sites or segments. You cannot reuse segment IDs.

16.4. PREPARING FOR A ROUTED PROVIDER NETWORK

To create a routed provider network in Red Hat OpenStack Platform (RHOSP), you must first gather
the network information that is required to create it. You must configure the overcloud to create a
custom role that deploys a RHOSP Networking service (neutron) metadata agent for the Compute
nodes that contain the network segments. For environments that use the ML2/OVS mechanism driver,
in addition to the metadata agent, you must also include the NeutronDhcpAgent service on the
Compute nodes. On the Controllers that are running the Compute scheduler services, you must enable
scheduling support for routed provider networks.

Prerequisites

You must be a RHOSP user with the admin role.

Procedure

1. Gather the VLAN IDs from the tripleo-heat-templates/network_data.yaml file for the network
you want to create the routed provider network on, and assign unique physical network names
for each segment that you will create on the routed provider network. This enables reuse of the
same segmentation details between subnets.
Create a reference table to visualize the relationships between the VLAN IDs, segments, and
physical network names:

Table 16.1. Example - routed provider network segment definitions

Routed provider
network

VLAN ID Segment Physical network

multisegment1 128 segment1 provider1

multisegment1 129 segment2 provider2

2. Plan the routing between segments.

Each subnet on a segment must contain the gateway address of the router interface on that

CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS

169

Each subnet on a segment must contain the gateway address of the router interface on that
particular subnet. You need the subnet address in both IPv4 and IPv6 formats.

Table 16.2. Example - routing plan for routed provider network segments

Routed provider
network

Segment Subnet address Gateway address

multisegment1 segment1 (IPv4) 203.0.113.0/24 203.0.113.1

multisegment1 segment1 (IPv6) fd00:203:0:113::/64 fd00:203:0:113::1

multisegment1 segment2 (IPv4) 198.51.100.0/24 198.51.100.1

multisegment1 segment2 (IPv6) fd00:198:51:100::/64 fd00:198:51:100::1

3. Routed provider networks require that Compute nodes reside on different segments. Check the
templates/overcloud-baremetal-deployed.yaml file to ensure that every Compute host in a
routed provider network has direct connectivity to one of its segments.
For more information, see Provisioning bare metal nodes for the overcloud in the Installing and
managing Red Hat OpenStack Platform with director guide.

4. Ensure that the NeutronMetadataAgent service is included in templates/roles_data-
custom.yaml for the Compute nodes containing the segments:

...
- name: Compute
 ...
 ServicesDefault:
 - OS::TripleO::Services::NeutronMetadataAgent
...

For more information, see Composable services and custom roles in the Customizing your Red
Hat OpenStack Platform deployment guide.

5. When using the ML2/OVS mechanism driver, in addition to the NeutronMetadataAgent service,
also ensure that the NeutronDhcpAgent service is included in templates/roles_data-
custom.yaml for the Compute nodes containing the segments:

...
- name: Compute
 ...
 ServicesDefault:
 - OS::TripleO::Services::NeutronDhcpAgent
 - OS::TripleO::Services::NeutronMetadataAgent
...

TIP

Unlike conventional provider networks, a DHCP agent cannot support more than one segment
within a network. Deploy DHCP agents on the Compute nodes containing the segments rather
than on the network nodes to reduce the node count.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

170

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html//installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles

6. Create an routed provider network environment file, for example, rpn_env.yaml.

7. Configure DHCP to enable metadata support on isolated networks:

parameter_defaults:
 NeutronEnableIsolatedMetadata: true

8. Ensure that the segments service plug-in is loaded into the Networking service:

$ openstack extension list --network --max-width 80 | grep -E "Segment"

If the segments plug-in is missing, add it to the NeutronServicePlugins parameter:

Example

parameter_defaults:
 NeutronEnableIsolatedMetadata: true
 NeutronServicePlugins: 'router,qos,segments,trunk,placement'

IMPORTANT

When you add new values to the NeutronServicePlugins parameter, RHOSP
director overwrites any previously declared values with the ones that you are
adding. Therefore, when you are adding segments, you must also include any
previously declared Networking service plug-ins.

9. To verify the network with the Placement service before scheduling an instance on a host,
enable scheduling support for routed provider networks on the Controllers that are running the
Compute scheduler services.

Example

parameter_defaults:
 NeutronEnableIsolatedMetadata: true
 NeutronServicePlugins: 'router,qos,segments,trunk,placement'
 NovaSchedulerQueryPlacementForRoutedNetworkAggregates: true

10. Add your routed provider network environment file to the stack with your other environment
files and deploy the overcloud:

$ openstack overcloud deploy --templates \
 -e <your_environment_files> \
 -e /home/stack/templates/rpn_env.yaml

Next steps

Creating a routed provider network

Additional resources

Provisioning bare metal nodes for the overcloud in the Installing and managing Red Hat
OpenStack Platform with director guide

CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS

171

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html//installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_provisioning-bare-metal-nodes-for-the-overcloud_ironic_provisioning

Composable services and custom roles in the Customizing your Red Hat OpenStack Platform
deployment guide

16.5. CREATING A ROUTED PROVIDER NETWORK

Routed provider networks simplify the Red Hat OpenStack Platform (RHOSP) cloud for end users
because they see only one network. For administrators, routed provider networks deliver scalabilty and
fault tolerance.

When you perform this procedure, you create an routed provider network with two network segments.
Each segment contains one IPv4 subnet and one IPv6 subnet.

Prerequisites

Complete the steps in Section 16.4, “Preparing for a routed provider network” .

You must be a RHOSP user with the admin role.

Procedure

1. Create a VLAN provider network that includes a default segment.
In this example, the VLAN provider network is named multisegment1 and uses a physical
network called provider1 and a VLAN whose ID is 128:

Example

$ openstack network create --share --provider-physical-network provider1 \
 --provider-network-type vlan --provider-segment 128 multisegment1

Sample output

+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	UP
id	6ab19caa-dda9-4b3d-abc4-5b8f435b98d9
ipv4_address_scope	None
ipv6_address_scope	None
l2_adjacency	True
mtu	1500
name	multisegment1
port_security_enabled	True
provider:network_type	vlan
provider:physical_network	provider1
provider:segmentation_id	128
revision_number	1
router:external	Internal
shared	True
status	ACTIVE
subnets	
tags	[]
+---------------------------+--------------------------------------+

2. Rename the default network segment to segment1.

a. Obtain the segment ID:

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

172

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_composable-services-and-custom-roles

a. Obtain the segment ID:

$ openstack network segment list --network multisegment1

Sample output

+--------------------------------------+----------+--------------------------------------+--------------
+---------+
| ID | Name | Network | Network Type |
Segment |
+--------------------------------------+----------+--------------------------------------+--------------
+---------+
| 43e16869-ad31-48e4-87ce-acf756709e18 | None | 6ab19caa-dda9-4b3d-abc4-
5b8f435b98d9 | vlan | 128 |
+--------------------------------------+----------+--------------------------------------+--------------
+---------+

b. Using the segment ID, rename the network segment to segment1:

$ openstack network segment set --name segment1 43e16869-ad31-48e4-87ce-
acf756709e18

3. Create a second segment on the provider network.
In this example, the network segment uses a physical network called provider2 and a VLAN
whose ID is 129:

Example

$ openstack network segment create --physical-network provider2 \
 --network-type vlan --segment 129 --network multisegment1 segment2

Sample output

+------------------+--------------------------------------+
| Field | Value |
+------------------+--------------------------------------+
description	None
headers	
id	053b7925-9a89-4489-9992-e164c8cc8763
name	segment2
network_id	6ab19caa-dda9-4b3d-abc4-5b8f435b98d9
network_type	vlan
physical_network	provider2
revision_number	1
segmentation_id	129
tags	[]
+------------------+--------------------------------------+

4. Verify that the network contains the segment1 and segment2 segments:

$ openstack network segment list --network multisegment1

Sample output

CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS

173

+--------------------------------------+----------+--------------------------------------+--------------+-----
----+
| ID | Name | Network | Network Type | Segment |
+--------------------------------------+----------+--------------------------------------+--------------+-----
----+
| 053b7925-9a89-4489-9992-e164c8cc8763 | segment2 | 6ab19caa-dda9-4b3d-abc4-
5b8f435b98d9 | vlan | 129 |
| 43e16869-ad31-48e4-87ce-acf756709e18 | segment1 | 6ab19caa-dda9-4b3d-abc4-
5b8f435b98d9 | vlan | 128 |
+--------------------------------------+----------+--------------------------------------+--------------+-----
----+

5. Create one IPv4 subnet and one IPv6 subnet on the segment1 segment.
In this example, the IPv4 subnet uses 203.0.113.0/24:

Example

$ openstack subnet create \
 --network multisegment1 --network-segment segment1 \
 --ip-version 4 --subnet-range 203.0.113.0/24 \
 multisegment1-segment1-v4

Sample output

+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
allocation_pools	203.0.113.2-203.0.113.254
cidr	203.0.113.0/24
enable_dhcp	True
gateway_ip	203.0.113.1
id	c428797a-6f8e-4cb1-b394-c404318a2762
ip_version	4
name	multisegment1-segment1-v4
network_id	6ab19caa-dda9-4b3d-abc4-5b8f435b98d9
revision_number	1
segment_id	43e16869-ad31-48e4-87ce-acf756709e18
tags	[]
+-------------------+--------------------------------------+

In this example, the IPv6 subnet uses fd00:203:0:113::/64:

Example

$ openstack subnet create \
 --network multisegment1 --network-segment segment1 \
 --ip-version 6 --subnet-range fd00:203:0:113::/64 \
 --ipv6-address-mode slaac multisegment1-segment1-v6

Sample output

+-------------------+--+
| Field | Value |

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

174

+-------------------+--+
allocation_pools	fd00:203:0:113::2-fd00:203:0:113:ffff:ffff:ffff:ffff
cidr	fd00:203:0:113::/64
enable_dhcp	True
gateway_ip	fd00:203:0:113::1
id	e41cb069-9902-4c01-9e1c-268c8252256a
ip_version	6
ipv6_address_mode	slaac
ipv6_ra_mode	None
name	multisegment1-segment1-v6
network_id	6ab19caa-dda9-4b3d-abc4-5b8f435b98d9
revision_number	1
segment_id	43e16869-ad31-48e4-87ce-acf756709e18
tags	[]
+-------------------+--+

NOTE

By default, IPv6 subnets on provider networks rely on physical network
infrastructure for stateless address autoconfiguration (SLAAC) and router
advertisement.

6. Create one IPv4 subnet and one IPv6 subnet on the segment2 segment.
In this example, the IPv4 subnet uses 198.51.100.0/24:

Example

$ openstack subnet create \
 --network multisegment1 --network-segment segment2 \
 --ip-version 4 --subnet-range 198.51.100.0/24 \
 multisegment1-segment2-v4

Sample output

+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
allocation_pools	198.51.100.2-198.51.100.254
cidr	198.51.100.0/24
enable_dhcp	True
gateway_ip	198.51.100.1
id	242755c2-f5fd-4e7d-bd7a-342ca95e50b2
ip_version	4
name	multisegment1-segment2-v4
network_id	6ab19caa-dda9-4b3d-abc4-5b8f435b98d9
revision_number	1
segment_id	053b7925-9a89-4489-9992-e164c8cc8763
tags	[]
+-------------------+--------------------------------------+

In this example, the IPv6 subnet uses fd00:198:51:100::/64:

Example

CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS

175

$ openstack subnet create \
 --network multisegment1 --network-segment segment2 \
 --ip-version 6 --subnet-range fd00:198:51:100::/64 \
 --ipv6-address-mode slaac multisegment1-segment2-v6

Sample output

+-------------------+--+
| Field | Value |
+-------------------+--+
allocation_pools	fd00:198:51:100::2-fd00:198:51:100:ffff:ffff:ffff:ffff
cidr	fd00:198:51:100::/64
enable_dhcp	True
gateway_ip	fd00:198:51:100::1
id	b884c40e-9cfe-4d1b-a085-0a15488e9441
ip_version	6
ipv6_address_mode	slaac
ipv6_ra_mode	None
name	multisegment1-segment2-v6
network_id	6ab19caa-dda9-4b3d-abc4-5b8f435b98d9
revision_number	1
segment_id	053b7925-9a89-4489-9992-e164c8cc8763
tags	[]
+-------------------+--+

Verification

1. Verify that each IPv4 subnet associates with at least one DHCP agent:

$ openstack network agent list --agent-type dhcp --network multisegment1

Sample output

+--------------------------------------+------------+-------------+-------------------+-------+-------+------
--------------+
| ID | Agent Type | Host | Availability Zone | Alive | State | Binary
|
+--------------------------------------+------------+-------------+-------------------+-------+-------+------
--------------+
| c904ed10-922c-4c1a-84fd-d928abaf8f55 | DHCP agent | compute0001 | nova | :-)
| UP | neutron-dhcp-agent |
| e0b22cc0-d2a6-4f1c-b17c-27558e20b454 | DHCP agent | compute0101 | nova | :-)
| UP | neutron-dhcp-agent |
+--------------------------------------+------------+-------------+-------------------+-------+-------+------
--------------+

2. Verify that inventories were created for each segment IPv4 subnet in the Compute service
placement API.
Run this command for all segment IDs:

$ SEGMENT_ID=053b7925-9a89-4489-9992-e164c8cc8763
$ openstack resource provider inventory list $SEGMENT_ID

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

176

Sample output

In this sample output, only one of the segments is shown:

+----------------+------------------+----------+----------+-----------+----------+-------+
| resource_class | allocation_ratio | max_unit | reserved | step_size | min_unit | total |
+----------------+------------------+----------+----------+-----------+----------+-------+
| IPV4_ADDRESS | 1.0 | 1 | 2 | 1 | 1 | 30 |
+----------------+------------------+----------+----------+-----------+----------+-------+

3. Verify that host aggregates were created for each segment in the Compute service:

$ openstack aggregate list

Sample output

In this example, only one of the segments is shown:

+----+---+-------------------+
| Id | Name | Availability Zone |
+----+---+-------------------+
| 10 | Neutron segment id 053b7925-9a89-4489-9992-e164c8cc8763 | None |
+----+---+-------------------+

4. Launch one or more instances. Each instance obtains IP addresses according to the segment it
uses on the particular compute node.

NOTE

CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS

177

NOTE

If a fixed IP is specified by the user in the port create request, that particular IP is
allocated immediately to the port. However, creating a port and passing it to an
instance yields a different behavior than conventional networks. If the fixed IP is
not specified on the port create request, the Networking service defers
assignment of IP addresses to the port until the particular compute node
becomes apparent. For example, when you run this command:

$ openstack port create --network multisegment1 port1

Sample output

+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
admin_state_up	UP
binding_vnic_type	normal
id	6181fb47-7a74-4add-9b6b-f9837c1c90c4
ip_allocation	deferred
mac_address	fa:16:3e:34:de:9b
name	port1
network_id	6ab19caa-dda9-4b3d-abc4-5b8f435b98d9
port_security_enabled	True
revision_number	1
security_groups	e4fcef0d-e2c5-40c3-a385-9c33ac9289c5
status	DOWN
tags	[]
+-----------------------+--------------------------------------+

Additional resources

Section 16.4, “Preparing for a routed provider network”

network create in the Command line interface reference

network segment create in the Command line interface reference

subnet create in the Command line interface reference

port create in the Command line interface reference

16.6. MIGRATING A NON-ROUTED NETWORK TO A ROUTED
PROVIDER NETWORK

You can migrate a non-routed network to a routed provider network by associating the subnet of the
network with the ID of the network segment.

Prerequisites

The non-routed network you are migrating must contain only one segment and only one subnet.

IMPORTANT

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

178

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_segment_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port#port_create

IMPORTANT

In non-routed provider networks that contain multiple subnets or network
segments it is not possible to safely migrate to an routed provider network. In
non-routed networks, addresses from the subnet allocation pools are assigned to
ports without consideration of the network segment to which the port is bound.

Procedure

1. For the network that is being migrated, obtain the ID of the current network segment.

Example

$ openstack network segment list --network my_network

Sample output

+--------------------------------------+------+--------------------------------------+--------------+---------
+
| ID | Name | Network | Network Type | Segment |
+--------------------------------------+------+--------------------------------------+--------------+---------
+
| 81e5453d-4c9f-43a5-8ddf-feaf3937e8c7 | None | 45e84575-2918-471c-95c0-
018b961a2984 | flat | None |
+--------------------------------------+------+--------------------------------------+--------------+---------
+

2. For the network that is being migrated, obtain the ID of the current subnet.

Example

$ openstack network segment list --network my_network

Sample output

+--------------------------------------+-----------+--------------------------------------+---------------+
| ID | Name | Network | Subnet |
+--------------------------------------+-----------+--------------------------------------+---------------+
| 71d931d2-0328-46ae-93bc-126caf794307 | my_subnet | 45e84575-2918-471c-95c0-
018b961a2984 | 172.24.4.0/24 |
+--------------------------------------+-----------+--------------------------------------+---------------+

3. Verify that the current segment_id of the subnet has a value of None.

Example

$ openstack subnet show my_subnet --c segment_id

Sample output

+------------+-------+
| Field | Value |
+------------+-------+

CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS

179

| segment_id | None |
+------------+-------+

4. Change the value of the subnet segment_id to the network segment ID.
Here is an example:

$ openstack subnet set --network-segment 81e5453d-4c9f-43a5-8ddf-feaf3937e8c7
my_subnet

Verification

Verify that the subnet is now associated with the desired network segment.

Example

$ openstack subnet show my_subnet --c segment_id

Sample output

+------------+--------------------------------------+
| Field | Value |
+------------+--------------------------------------+
| segment_id | 81e5453d-4c9f-43a5-8ddf-feaf3937e8c7 |
+------------+--------------------------------------+

Additional resources

subnet show in the Command line interface reference

subnet set in the Command line interface reference

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

180

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_show
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/subnet#subnet_set

CHAPTER 17. CREATING CUSTOM VIRTUAL ROUTERS WITH
ROUTER FLAVORS

IMPORTANT

This content in this section is available in this release as a Technology Preview, and
therefore is not fully supported by Red Hat. It should only be used for testing, and
should not be deployed in a production environment. For more information, see
Technology Preview.

You can use router flavors to deploy custom virtual routers in your Red Hat OpenStack Platform
(RHOSP) ML2/OVN environments. After you enable the router flavors feature, you can create router
flavors and use them to create custom routers.

Within a RHOSP deployment you can combine virtual custom routers that are based on router flavors
with routers of the default OVN type.

This optional feature does not affect the operation of the default OVN virtual router. If you enable the
router flavor feature, the default OVN router is treated as the default flavor, with no impact on its
configuration or operation.

17.1. ENABLING ROUTER FLAVORS AND CREATING SERVICE
PROVIDERS FOR YOUR CUSTOM ROUTERS

Before you use the optional router flavors feature, a RHOSP administrator must enable the feature by
replacing the ovn-routers service with the ovn-router-flavors service and create a service provider for
each custom router.

You must deploy your service provider code in a module in the Networking service (neutron) directories.
Red Hat recommends the neutron.services.ovn_l3.service_providers.user_defined module.

You can find a sample service provider named UserDefined in the
neutron.services.ovn_l3.service_providers.user_defined module.

NOTE

The following procedure involves direct editing of .conf files on the Controller nodes. Red
Hat is developing heat template methods and OpenStack commands to replace this
direct editing method.

Prerequisites

You have a router flavor service provider created for your deployment.

You have access to the RHOSP Controller nodes and permission to update configuration files.

Procedure

1. On every Controller node, make the following changes to /var/lib/config-data/puppet-
generated/neutron/etc/neutron/neutron.conf and then restart the Networking service
(Neutron).

a. Change ovn-routers to ovn-router-flavors in the service_plugins list.

b. Create a service_providers section and add a service provider variable for each router

CHAPTER 17. CREATING CUSTOM VIRTUAL ROUTERS WITH ROUTER FLAVORS

181

https://access.redhat.com/support/offerings/production/scope_moredetail#TechnologyPreview

b. Create a service_providers section and add a service provider variable for each router
flavor that you plan to use.

Example

This example adds two service providers: user_defined_1 and user_defined_2.

[DEFAULT]
service_plugins = qos,ovn-router-flavors,trunk,segments,port_forwarding,log

...

[service_providers]
service_provider =
L3_ROUTER_NAT:user_defined_1:neutron.services.ovn_l3.service_providers.user_define
d.UserDefined_1
service_provider =
L3_ROUTER_NAT:user_defined_2:neutron.services.ovn_l3.service_providers.user_define
d.UserDefined_2

A router flavor service provider definition has the following elements:

Service provider constant

L3_ROUTER_NAT

Name

Name of the service provider, which is a descriptive string between two colon characters.
For example, :user_defined_1: and :user_defined_2:. The name must be unique within
the environment.

Path

Red Hat recommends using this path:
neutron.services.ovn_l3.service_providers.user_defined

Class

A python class name for the service provider. Each provider has its own class. For
example, UserDefined_1 and UserDefined_2.

Verification

Verify that your user defined service provider has been loaded:

 $ openstack network service provider list

If the procedure was successful the new service appears in the list.

 +-------------------------+-------+---------+
 | Service Type | Name | Default |
 +---------------+-----------------+---------+
L3_ROUTER_NAT	user_defined_1	False
L3_ROUTER_NAT	user_defined_1	False
L3_ROUTER_NAT	ovn	True
 +---------------+-----------------+---------+

17.2. CREATING A ROUTER FLAVOR

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

182

You can create router flavors that you use to create custom virtual routers in your Red Hat OpenStack
Platform (RHOSP) ML2/OVN deployment.

Prerequisites

You enabled the router flavors feature.

Procedure

1. Create a service profile for the router flavor:

The path in the --driver argument value is one of those that you created in the previous
procedure.

Example output

2. Create the router flavor:

Example output

3. Add the service profile to the router flavor as shown in the following example command:

 $ openstack network flavor profile create \
 --description "User defined router flavor profile" \
 --enable \
 --driver \
 neutron.services.ovn_l3.service_providers.user_defined.Userdefined_1

+-------------+--+
| Field | Value |
+-------------+--+
description	User defined router flavor profile
driver	neutron.services.ovn_l3.service_providers.user_defined.Userdefined_1
enabled	True
id	a717c92c-63f7-47e8-9efb-6ad0d61c4875
meta_info	
project_id	None
+-------------+--+

 $ openstack network flavor create \
 --service-type L3_ROUTER_NAT \
 --description "User defined flavor for routers in the L3 OVN plugin" \
 user-defined_router-flavor

 +---------------------+--+
 | Field | Value |
 +---------------------+--+
description	User defined flavor for routers in the L3 OVN plugin
enabled	True
id	e47c1c5c-629b-4c48-b49a-78abe6ac7696
name	user-defined-router-flavor
service_profile_ids	[]
service_type	L3_ROUTER_NAT
 +---------------------+--+

CHAPTER 17. CREATING CUSTOM VIRTUAL ROUTERS WITH ROUTER FLAVORS

183

17.3. CREATING A CUSTOM VIRTUAL ROUTER WITH A ROUTER
FLAVOR

After you enable the router flavor feature and create router flavors, you can create custom routers with
router flavors.

Prerequisites

You enabled the router flavors feature.

You created one or more router flavors.

Procedure

1. Get the router flavor ID:

$ openstack network flavor list -c ID -c Name

Example output

2. Create a custom router as shown in the following example:

$ openstack router create \
 --flavor-id 4b37f895-e78e-49df-a96b-1916550f9116 \
 user-defined-flavor-router

If you do not use the --flavor argument, the openstack router create command creates a
default OVN router.

3. List your deployment’s routers to verify the router creation:

$ openstack router list

Example output

 $ openstack network flavor add profile user-defined-router-flavor \
 a717c92c-63f7-47e8-9efb-6ad0d61c4875

+--------------------------------------+----------------------------+
| ID | Name |
+--------------------------------------+----------------------------+
| 4b37f895-e78e-49df-a96b-1916550f9116 | user-defined-router-flavor |
+--------------------------------------+----------------------------+

+--------------------------------------+---------------------------+--------------+
| ID | Name | Status | State
|Project |
+-------------------------------------+----------------------------+--------------+
| 21889ed3-b8df-4b0e-9a64-92ba9fab655d | ovn-flavor-router | ACTIVE | UP
| b807321af03f44dc808ff06bbc845804 |
| 9f5fec56-1829-4bad-abe5-7b4221649c8e | user-defined-flavor-router| ACTIVE | UP
| b807321af03f44dc808ff06bbc845804 |

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

184

| e9f25566-ff73-4a76-aeb4-969c819f9c47 | router1 | ACTIVE | UP
| 1bf97e3957654c0182a48727d619e00f |
+--------------------------------------+---------------------------+--------------+

CHAPTER 17. CREATING CUSTOM VIRTUAL ROUTERS WITH ROUTER FLAVORS

185

CHAPTER 18. CONFIGURING ALLOWED ADDRESS PAIRS

18.1. OVERVIEW OF ALLOWED ADDRESS PAIRS

In Red Hat OpenStack Platform (RHOSP) networking environments, an allowed address pair is when you
identify a specific MAC address, IP address, or both to allow network traffic to pass through a port
regardless of the subnet. When you define allowed address pairs, you are able to use protocols like
Virtual Router Redundancy Protocol (VRRP) that float an IP address between two VM instances to
enable fast data plane failover. A port whose IP address is a member of an allowed address pair of
another port is referred to as a virtual port (vport).

IMPORTANT

In RHOSP networking environments, when creating a VM instance, do not bind the
instance to a virtual port (vport). Instead, use a port whose IP address is not a member of
another port’s allowed address pair.

Binding a vport to an instance prevents the instance from spawning and produces an
error message similar to the following:

WARNING nova.virt.libvirt.driver [req-XXXX - - - default default] [instance:
XXXXXXXXX] Timeout waiting for [('network-vif-plugged', 'XXXXXXXXXX')] for
instance with vm_state building and task_state spawning.: eventlet.timeout.Timeout:
300 seconds

You define allowed address pairs using the Red Hat OpenStack Platform command-line client
openstack port command.

IMPORTANT

Be aware that you should not use the default security group with a wider IP address range
in an allowed address pair. Doing so can allow a single port to bypass security groups for
all other ports within the same network.

For example, this command impacts all ports in the network and bypasses all security
groups:

openstack port set --allowed-address mac-address=3e:37:09:4b,ip-
address=0.0.0.0/0 9e67d44eab334f07bf82fa1b17d824b6

NOTE

With an ML2/OVN mechanism driver network back end, it is possible to create VIPs.
However, the IP address assigned to a bound port using allowed_address_pairs, should
match the virtual port IP address (/32).

If you use a CIDR format IP address for the bound port allowed_address_pairs instead,
port forwarding is not configured in the back end, and traffic fails for any IP in the CIDR
expecting to reach the bound IP port.

Additional resources

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

186

port command in the Command line interface reference

Section 18.2, “Creating a port and allowing one address pair”

Section 18.3, “Adding allowed address pairs”

18.2. CREATING A PORT AND ALLOWING ONE ADDRESS PAIR

Creating a port with an allowed address pair enables network traffic to flow through the port regardless
of the subnet.

IMPORTANT

Do not use the default security group with a wider IP address range in an allowed address
pair. Doing so can allow a single port to bypass security groups for all other ports within
the same network.

Procedure

Use the following command to create a port and allow one address pair:

$ openstack port create --network <network> --allowed-address mac-address=
<mac_address>,ip-address=<ip_cidr> <port_name>

Additional resources

port command in the Command line interface reference

18.3. ADDING ALLOWED ADDRESS PAIRS

You can add an allowed address pair to a port to enable network traffic to flow through the port
regardless of the subnet.

IMPORTANT

Do not use the default security group with a wider IP address range in an allowed address
pair. Doing so can allow a single port to bypass security groups for all other ports within
the same network.

Procedure

Use the following command to add allowed address pairs:

$ openstack port set --allowed-address mac-address=<mac_address>,ip-address=<ip_cidr>
<port>

NOTE

You cannot set an allowed-address pair that matches the mac_address and
ip_address of a port. This is because such a setting has no effect since traffic
matching the mac_address and ip_address is already allowed to pass through
the port.

CHAPTER 18. CONFIGURING ALLOWED ADDRESS PAIRS

187

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port

Additional resources

port command in the Command line interface reference

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

188

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port

CHAPTER 19. CONFIGURING SECURITY GROUPS
Security groups are sets of IP filter rules that control network and protocol access to and from
instances, such as ICMP to allow you to ping an instance, and SSH to allow you to connect to an instance.
The security group rules are applied to all instances within a project.

All projects have a default security group called default, which is used when you do not specify a security
group for your instances. By default, the default security group allows all outgoing traffic and denies all
incoming traffic from any source other than instances in the same security group. You can either add
rules to the default security group or create a new security group for your project. You can apply one or
more security groups to an instance during instance creation. To apply a security group to a running
instance, apply the security group to a port attached to the instance.

When you create a security group, you can choose stateful or stateless in ML2/OVN deployments.

NOTE

Stateless security groups are not supported in ML2/OVS deployments.

Security groups are stateful by default and in most cases stateful security groups provide better control
with less administrative overhead.

A stateless security group can provide significant performance benefits, because it bypasses connection
tracking in the underlying firewall. But stateless security groups require more security group rules than
stateful security groups. Stateless security groups also offer less granularity in some cases.

Stateless security group advantages

Stateless security groups can be faster than stateful security groups

Stateless security groups are the only viable security group option in applications that
offload OpenFlow actions to hardware.

Stateless security group disadvantages

Stateless security group rules do not automatically allow returning traffic. For example, if you
create a rule to allow outgoing TCP traffic from a port that is in a stateless security group,
you must also create a rule that allows incoming replies. Stateful security groups
automatically allow the incoming replies.

Control over those incoming replies may not be as granular as the control provided by
stateful security groups.

In general, use the default stateful security group type unless your application is highly sensitive to
performance or uses hardware offloading of OpenFlow actions.

NOTE

You cannot apply a role-based access control (RBAC)-shared security group directly to
an instance during instance creation. To apply an RBAC-shared security group to an
instance you must first create the port, apply the shared security group to that port, and
then assign that port to the instance. See Adding a security group to a port .

19.1. CREATING A SECURITY GROUP

CHAPTER 19. CONFIGURING SECURITY GROUPS

189

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_instances/index#adding-a-security-group-to-a-port_instances

You can create a new security group to apply to instances and ports within a project.

Procedure

1. Optional: To ensure the security group you need does not already exist, review the available
security groups and their rules:

$ openstack security group list
$ openstack security group rule list <sec_group>

Replace <sec_group> with the name or ID of the security group that you retrieved from the
list of available security groups.

2. . Create your security group:

$ openstack security group create [--stateless] mySecGroup

Optional: Include the --stateless option to create a stateless security group. Security
groups are stateful by default.

NOTE

Only ML2/OVN deployments support stateless security groups.

3. Add rules to your security group:

$ openstack security group rule create --protocol <protocol> \
[--dst-port <port-range>] \
[--remote-ip <ip-address> | --remote-group <group>] \
[--ingress | --egress] mySecGroup

Replace <protocol> with the name of the protocol you want to allow to communicate with
your instances.

Optional: Replace <port-range> with the destination port or port range to open for the
protocol. Required for IP protocols TCP, UDP, and SCTP. Set to -1 to allow all ports for the
specified protocol. Separate port range values with a colon.

Optional: You can allow access only from specified IP addresses by using --remote-ip to
specify the remote IP address block, or --remote-group to specify that the rule only applies
to packets from interfaces that are a member of the remote group. If using --remote-ip,
replace <ip-address> with the remote IP address block. You can use CIDR notation. If using
--remote-group, replace <group> with the name or ID of the existing security group. If
neither option is specified, then access is allowed to all addresses, as the remote IP access
range defaults (IPv4 default: 0.0.0.0/0; IPv6 default: ::/0).

Specify the direction of network traffic the protocol rule applies to, either incoming
(ingress) or outgoing (egress). If not specified, defaults to ingress.

NOTE

If you created a stateless security group, and you created a rule to allow
outgoing TCP traffic from a port that is in the stateless security group, you
must also create a rule that allows incoming replies.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

190

4. Repeat step 3 until you have created rules for all the protocols that you want to allow to access
your instances. The following example creates a rule to allow SSH connections to instances in
the security group mySecGroup:

$ openstack security group rule create --protocol tcp \
 --dst-port 22 mySecGroup

19.2. UPDATING SECURITY GROUP RULES

You can update the rules of any security group that you have access to.

Procedure

1. Retrieve the name or ID of the security group that you want to update the rules for:

$ openstack security group list

2. Determine the rules that you need to apply to the security group.

3. Add rules to your security group:

$ openstack security group rule create --protocol <protocol> \
[--dst-port <port-range>] \
[--remote-ip <ip-address> | --remote-group <group>] \
[--ingress | --egress] <group_name>

Replace <protocol> with the name of the protocol you want to allow to communicate with
your instances.

Optional: Replace <port-range> with the destination port or port range to open for the
protocol. Required for IP protocols TCP, UDP, and SCTP. Set to -1 to allow all ports for the
specified protocol.Separate port range values with a colon.

Optional: You can allow access only from specified IP addresses by using --remote-ip to
specify the remote IP address block, or --remote-group to specify that the rule only applies
to packets from interfaces that are a member of the remote group. If using --remote-ip,
replace <ip-address> with the remote IP address block. You can use CIDR notation. If using
--remote-group, replace <group> with the name or ID of the existing security group. If
neither option is specified, then access is allowed to all addresses, as the remote IP access
range defaults (IPv4 default: 0.0.0.0/0; IPv6 default: ::/0).

Specify the direction of network traffic the protocol rule applies to, either incoming
(ingress) or outgoing (egress). If not specified, defaults to ingress.

Replace <group_name> with the name or ID of the security group that you want to apply
the rule to.

4. Repeat step 3 until you have created rules for all the protocols that you want to allow to access
your instances. The following example creates a rule to allow SSH connections to instances in
the security group mySecGroup:

$ openstack security group rule create --protocol tcp \
 --dst-port 22 mySecGroup

CHAPTER 19. CONFIGURING SECURITY GROUPS

191

19.3. DELETING SECURITY GROUP RULES

You can delete rules from a security group.

Procedure

1. Identify the security group that the rules are applied to:

$ openstack security group list

2. Retrieve IDs of the rules associated with the security group:

$ openstack security group show <sec-group>

3. Delete the rule or rules:

$ openstack security group rule delete <rule> [<rule> ...]

Replace <rule> with the ID of the rule to delete. You can delete more than one rule at a time by
specifying a space-delimited list of the IDs of the rules to delete.

19.4. DELETING A SECURITY GROUP

You can delete security groups that are not associated with any ports.

Procedure

1. Retrieve the name or ID of the security group that you want to delete:

$ openstack security group list

2. Retrieve a list of the available ports:

$ openstack port list

3. Check each port for an associated security group:

$ openstack port show <port-uuid> -c security_group_ids

If the security group you want to delete is associated with any of the ports, then you must first
remove the security group from the port. For more information, see Removing a security group
from a port.

4. Delete the security group:

$ openstack security group delete <group> [<group> ...]

Replace <group> with the ID of the group that you want to delete. You can delete more than
one group at a time by specifying a space-delimited list of the IDs of the groups to delete.

19.5. CONFIGURING SHARED SECURITY GROUPS

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

192

(defaultURL}/creating_and_managing_instances/assembly_providing-public-access-to-an-instance_instances#proc_removing-a-security-group-from-a-port

When you want one or more Red Hat OpenStack Platform (RHOSP) projects to be able to share data,
you can use the RHOSP Networking service (neutron) RBAC policy feature to share a security group.
You create security groups and Networking service role-based access control (RBAC) policies using the
OpenStack Client.

You can apply a security group directly to an instance during instance creation, or to a port on the
running instance.

NOTE

You cannot apply a role-based access control (RBAC)-shared security group directly to
an instance during instance creation. To apply an RBAC-shared security group to an
instance you must first create the port, apply the shared security group to that port, and
then assign that port to the instance. See Adding a security group to a port .

Prerequisites

You have at least two RHOSP projects that you want to share.

In one of the projects, the current project, you have created a security group that you want to
share with another project, the target project.
In this example, the ping_ssh security group is created:

Example

$ openstack security group create ping_ssh

Procedure

1. Log in to the overcloud for the current project that contains the security group.

2. Obtain the name or ID of the target project.

$ openstack project list

3. Obtain the name or ID of the security group that you want to share between RHOSP projects.

$ openstack security group list

4. Using the identifiers from the previous steps, create an RBAC policy using the openstack
network rbac create command.
In this example, the ID of the target project is 32016615de5d43bb88de99e7f2e26a1e. The ID of
the security group is 5ba835b7-22b0-4be6-bdbe-e0722d1b5f24:

Example

$ openstack network rbac create --target-project \
32016615de5d43bb88de99e7f2e26a1e --action access_as_shared \
--type security_group 5ba835b7-22b0-4be6-bdbe-e0722d1b5f24

--target-project

specifies the project that requires access to the security group.

TIP

CHAPTER 19. CONFIGURING SECURITY GROUPS

193

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_instances/index#adding-a-security-group-to-a-port_instances

TIP

You can share data between all projects by using the --target-all-projects argument instead
of --target-project <target-project>. By default, only the admin user has this privilege.

--action access_as_shared

specifies what the project is allowed to do.

--type

indicates that the target object is a security group.

5ba835b7-22b0-4be6-bdbe-e0722d1b5f24

is the ID of the particular security group which is being granted access to.

The target project is able to access the security group when running the OpenStack Client security
group commands, in addition to being able to bind to its ports. No other users (other than
administrators and the owner) are able to access the security group.

TIP

To remove access for the target project, delete the RBAC policy that allows it using the openstack
network rbac delete command.

Additional resources

Creating a security group in the Creating and managing instances guide

security group create in the Command line interface reference

network rbac create in the Command line interface reference

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

194

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_instances/assembly_providing-public-access-to-an-instance_instances#proc_creating-a-security-group_instances
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/security#security_group_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/network#network_rbac_create

CHAPTER 20. LOGGING SECURITY GROUP ACTIONS
To monitor traffic flows into and out of a virtual machine (VM) instance, you can create packet logs for
security groups. Each log generates a stream of data about packet flow events and appends it to a
common log file on the Compute host from which the VM instance was launched.

You can associate any instance port with one or more security groups and define one or more rules for
each security group. For example, you can create a rule to allow inbound SSH traffic to any virtual
machine in a security group. You can create another rule in the same security group to allow virtual
machines in that group to initiate and respond to ICMP (ping) messages.

Then you can create logs to record combinations of packet flow events. For example, the following
command creates a log to capture all ACCEPT events in the security group security-group1.

$ openstack network log create my-log1 \
--resource-type security_group \
--resource security-group1 \
--event ACCEPT

You can create multiple logs to capture data about specific combinations of security groups and packet
flow events.

You can configure the following parameters:

resource-type

You must set this required parameter to security_group.

resource (security group names)

You can optionally limit a log to a specific security group with the target argument. For example: --
resource security-group1. If you do not specify a resource, the log will capture events from all
security groups on the specified ports in the project.

event (types of events to log)

You can choose to log the following packet flow events:

DROP: Log one DROP log entry for each incoming or outgoing session that is dropped.

NOTE

If you log dropped traffic on one or more security groups, the Networking
service logs dropped traffic on all security groups.

ACCEPT: Log one ACCEPT log entry for each new session that is allowed by the security
group.

ALL (drop and accept): Log all DROP and ACCEPT events. If you do not set –event
ACCEPT or –event DROP, the Networking service defaults to ALL.

NOTE

The Networking service writes all log data to the same file on every Compute node:
/var/log/containers/openvswitch/ovn-controller.log.

CHAPTER 20. LOGGING SECURITY GROUP ACTIONS

195

20.1. VERIFYING THAT SECURITY GROUP LOGGING IS ENABLED

To prepare your deployment for network packet logging, ensure that the logging service plug-in and
logging extension are configured.

Procedure

1. Source a credentials file that gives you access to the overcloud with the RHOSP admin role.

2. Enter the following command.

$ openstack extension list --max-width 80 | grep logging

If the logging service plug-in and extension are configured properly, the output includes the
following:

| Logging API Extension | logging | Provides a logging API |

3. If the openstack extension list output does not include the Logging API Extension:

a. Add log to the NeutronPluginExtensions parameter in an environment file.

Example

parameter_defaults:
 NeutronPluginExtensions: "qos,port_security,log"

b. Run the openstack overcloud deploy command and include the core Orchestration
templates, environment files, and this environment file.

Additional resources

Creating your overcloud

20.2. CREATING LOG OBJECTS FOR SECURITY GROUPS

Create log objects with the resource type security_group.

Prerequisites

You have created security groups

You have created security group rules for the security groups

You have assigned ports to the security groups

Procedure

1. Source a credentials file that gives you access to the overcloud with the RHOSP admin role.

2. Create a log by using the openstack network log create command with the appropriate set of
arguments.

Example 1: Log ACCEPT events from the security group sg1 on all ports

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

196

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/installing_and_managing_red_hat_openstack_platform_with_director/assembly_provisioning-and-deploying-your-overcloud#proc_creating-your-overcloud_ironic_provisioning

$ openstack network log create my-log1 \
--resource-type security_group \
--resource sg1 \
–event ACCEPT

Example 2: Log ACCEPT events from all security groups on all ports

openstack network log create my-log3 \
--resource-type security_group \
–event ACCEPT

3. Verify that the log was created:

$ openstack network log list

20.3. LISTING AND VIEWING LOG OBJECTS FOR SECURITY GROUPS

You can list and view security group log objects.

Procedure

1. Source a credentials file that gives you access to the overcloud with the RHOSP admin role.

2. To list all log objects in a project:

$ openstack network log list

3. To view details of a log object:

$ openstack network log show <log_object_name>

Replace <log_object_name> with the name of the log object.

20.4. ENABLING AND DISABLING LOG OBJECTS FOR SECURITY
GROUPS

When you create a log object, it is enabled by default. You can disable or enable a log object.

Procedure

1. Source a credentials file that gives you access to the overcloud with the RHOSP admin role.

2. To disable a log object, enter the following command:

$ openstack network log set --disable <log_object_name>

Replace <log_object_name> with the name of the log object.

3. To enable a log object, enter the following command:

$ openstack network log set --enable <log_object_name>

CHAPTER 20. LOGGING SECURITY GROUP ACTIONS

197

Replace <log_object_name> with the name of the log object.

20.5. RENAMING A LOG OBJECT FOR SECURITY GROUPS

You can change the name of a log object.

Procedure

1. Source a credentials file that gives you access to the overcloud with the RHOSP admin role.

2. To rename a log object, enter the following command:

$ openstack network log set --name <new_log_object_name> <object>

Replace <new_log_object_name> with the new name of the log object. Replace <object> with the
old name or ID of the log object.

20.6. DELETING A LOG OBJECT FOR SECURITY GROUPS

You can delete log objects.

Procedure

1. Source a credentials file that gives you access to the overcloud with the RHOSP admin role.

2. To delete one or more log objects, enter the following command:

$ openstack network log delete <log_object_name> [<log_object_name> ...]

Replace <log_object_name> with the name of the log object to delete. To delete multiple log
objects, enter a list of log object names, separated by spaces.

20.7. ACCESSING SECURITY GROUP LOG CONTENT

The Networking service aggregates security group logs from all VM instances on a Compute node in one
location on the Compute node host: /var/log/containers/openvswitch/ovn-controller.log.

The log file contains other log objects. Security group log entries include the string acl_log.

20.8. SAMPLE SECURITY GROUP LOG CONTENT

Log content includes the following data:

A timestamp of the packet flow.

A status of the flow: ACCEPT or DROP.

An indication of the originator of the flow. For example, which project or log resource generated
the events.

An identifier of the associated instance interface (Neutron port ID).

Layer 2, 3 and 4 information such as MAC, address, port, and protocol.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

198

Example: logged data from an ACCEPT event

2022-11-30T03:29:12.868Z|00111|acl_log(ovn_pinctrl1)|INFO|name="neutron-bc53f8df-2318-4d08-
8e12-89e92b08deec", verdict=allow, severity=info, direction=from-lport:
udp,vlan_tci=0x0000,dl_src=fa:16:3e:70:c4:45,dl_dst=fa:16:3e:66:8b:18,nw_src=192.168.100.59,nw_dst
=192.168.100.1,nw_tos=0,nw_ecn=0,nw_ttl=64,tp_src=68,tp_dst=67

20.9. ADJUSTING RATE AND BURST LIMITS FOR SECURITY GROUP
LOGGING

To avoid overwhelming the control plane with the transmission of logging data, the Networking service
sets limits on the maximum number of packets logged per second. You can change this limit using the
NeutronOVNLoggingRateLimit parameter.

When logging packet transmission reaches the rate limit, the Networking service queues the excess
packets to be logged. You can change the maximum number of queued packets using the
NeutronOVNLoggingBurstLimit parameter.

The default values are NeutronOVNLoggingRateLimit:100 packets per second and
NeutronOVNLoggingBurstLimit:25 packets in queue. These are also the minimum required values. The
limits do not operate correctly with lower values.

Logging rate and burst limits do not limit control of data traffic. They limit only the transmission of
logging data.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Set the parameters in a custom environment file. For example, sg-logging.yaml.

Example

parameter_defaults:
...
 NeutronOVNLoggingRateLimit=450
 NeutronOVNLoggingBurstLimit=50

4. Run the deployment command and include the core Heat templates, other environment files,
and the custom roles data file in your deployment command with the -r option.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

CHAPTER 20. LOGGING SECURITY GROUP ACTIONS

199

$ openstack overcloud deploy --templates <core_heat_templates> \
-e <other_environment_files> \
-e /home/stack/templates/neutron-ovn-dvr-ha.yaml

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

200

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING
TASKS

Sometimes you might need to perform administration tasks on the Red Hat OpenStack Platform
Networking service (neutron) such as configuring the Layer 2 Population driver or specifying the name
assigned to ports by the internal DNS.

21.1. CONFIGURING THE L2 POPULATION DRIVER

The L2 Population driver is used in Networking service (neutron) ML2/OVS environments to enable
broadcast, multicast, and unicast traffic to scale out on large overlay networks. By default, Open vSwitch
GRE and VXLAN replicate broadcasts to every agent, including those that do not host the destination
network. This design requires the acceptance of significant network and processing overhead. The
alternative design introduced by the L2 Population driver implements a partial mesh for ARP resolution
and MAC learning traffic; it also creates tunnels for a particular network only between the nodes that
host the network. This traffic is sent only to the necessary agent by encapsulating it as a targeted
unicast.

Prerequisites

You must have RHOSP administrator privileges.

The Networking service must be using the ML2/OVS mechanism driver.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-environment.yaml

4. Your environment file must contain the keywords parameter_defaults. Under these keywords,
add the following lines:

parameter_defaults:
 NeutronMechanismDrivers: ['openvswitch', 'l2population']
 NeutronEnableL2Pop: 'True'
 NeutronEnableARPResponder: true

5. Run the deployment command and include the core heat templates, environment files, and this
new custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS

201

Example

$ openstack overcloud deploy --templates \
-e <your_environment_files> \
-e /home/stack/templates/my-environment.yaml

Verification

1. Obtain the IDs for the OVS agents.

$ openstack network agent list -c ID -c Binary

Sample output

+--------------------------------------+---------------------------+
| ID | Binary |
+--------------------------------------+---------------------------+
003a8750-a6f9-468b-9321-a6c03c77aec7	neutron-openvswitch-agent
02bbbb8c-4b6b-4ce7-8335-d1132df31437	neutron-l3-agent
0950e233-60b2-48de-94f6-483fd0af16ea	neutron-openvswitch-agent
115c2b73-47f5-4262-bc66-8538d175029f	neutron-openvswitch-agent
2a9b2a15-e96d-468c-8dc9-18d7c2d3f4bb	neutron-metadata-agent
3e29d033-c80b-4253-aaa4-22520599d62e	neutron-dhcp-agent
3ede0b64-213d-4a0d-9ab3-04b5dfd16baa	neutron-dhcp-agent
462199be-0d0f-4bba-94da-603f1c9e0ec4	neutron-sriov-nic-agent
54f7c535-78cc-464c-bdaa-6044608a08d7	neutron-l3-agent
6657d8cf-566f-47f4-856c-75600bf04828	neutron-metadata-agent
733c66f1-a032-4948-ba18-7d1188a58483	neutron-l3-agent
7e0a0ce3-7ebb-4bb3-9b89-8cccf8cb716e	neutron-openvswitch-agent
dfc36468-3a21-4a2d-84c3-2bc40f224235	neutron-metadata-agent
eb7d7c10-69a2-421e-bd9e-aec3edfe1b7c	neutron-openvswitch-agent
ef5219b4-ee49-4635-ad04-048291209373	neutron-sriov-nic-agent
f36c7af0-e20c-400b-8a37-4ffc5d4da7bd	neutron-dhcp-agent
+--------------------------------------+---------------------------+

2. Using an ID from one of the OVS agents, confirm that the L2 Population driver is set on the
OVS agent.

Example

This example verifies the configuration of the L2 Population driver on the neutron-
openvswitch-agent with ID 003a8750-a6f9-468b-9321-a6c03c77aec7:

$ openstack network agent show 003a8750-a6f9-468b-9321-a6c03c77aec7 -c configuration
-f json | grep l2_population

Sample output

 "l2_population": true,

3. Ensure that the ARP responder feature is enabled for the OVS agent.

Example

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

202

$ openstack network agent show 003a8750-a6f9-468b-9321-a6c03c77aec7 -c configuration
-f json | grep arp_responder_enabled

Sample output

 "arp_responder_enabled": true,

Additional resources

OVN supported DHCP options

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

21.2. TUNING KEEPALIVED TO AVOID VRRP PACKET LOSS

If the number of highly available (HA) routers on a single host is high, when an HA router fail over occurs,
the Virtual Router Redundancy Protocol (VRRP) messages might overflow the IRQ queues. This
overflow stops Open vSwitch (OVS) from responding and forwarding those VRRP messages.

To avoid VRRP packet overload, you must increase the VRRP advertisement interval using the
ha_vrrp_advert_int parameter in the ExtraConfig section for the Controller role.

Procedure

1. Log in to the undercloud as the stack user, and source the stackrc file to enable the director
command line tools.

Example

$ source ~/stackrc

2. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

TIP

The Red Hat OpenStack Platform Orchestration service (heat) uses a set of plans called
templates to install and configure your environment. You can customize aspects of the
overcloud with a custom environment file , which is a special type of template that provides
customization for your heat templates.

3. In the YAML environment file, increase the VRRP advertisement interval using the
ha_vrrp_advert_int argument with a value specific for your site. (The default is 2 seconds.)
You can also set values for gratuitous ARP messages:

ha_vrrp_garp_master_repeat

The number of gratuitous ARP messages to send at one time after the transition to the

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS

203

https://docs.openstack.org/neutron/latest/ovn/dhcp_opts.html
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

The number of gratuitous ARP messages to send at one time after the transition to the
master state. (The default is 5 messages.)

ha_vrrp_garp_master_delay

The delay for second set of gratuitous ARP messages after the lower priority advert is
received in the master state. (The default is 5 seconds.)

Example

parameter_defaults:
 ControllerExtraConfig:
 neutron::agents::l3::ha_vrrp_advert_int: 7
 neutron::config::l3_agent_config:
 DEFAULT/ha_vrrp_garp_master_repeat:
 value: 5
 DEFAULT/ha_vrrp_garp_master_delay:
 value: 5

4. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

Additional resources

2.1.2 Data Forwarding Rules, Subsection 2 in RFC 4541

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

21.3. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS

You can specify the name assigned to ports by the internal DNS when you enable the Red Hat
OpenStack Platform (RHOSP) Networking service (neutron) DNS domain for ports extension
(dns_domain_ports).

You enable the DNS domain for ports extension by declaring the RHOSP Orchestration (heat)
NeutronPluginExtensions parameter in a YAML-formatted environment file. Using a corresponding
parameter, NeutronDnsDomain, you specify your domain name, which overrides the default value,
openstacklocal. After redeploying your overcloud, you can use the OpenStack Client port commands,
port set or port create, with --dns-name to assign a port name.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

204

https://tools.ietf.org/html/rfc4541#section-2.1.2
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

IMPORTANT

You must enable the DNS domain for ports extension (dns_domain_ports) for DNS to
internally resolve names for ports in your RHOSP environment. Using the
NeutronDnsDomain default value, openstacklocal, means that the Networking service
does not internally resolve port names for DNS.

Also, when the DNS domain for ports extension is enabled, the Compute service automatically populates
the dns_name attribute with the hostname attribute of the instance during the boot of VM instances.
At the end of the boot process, dnsmasq recognizes the allocated ports by their instance hostname.

Procedure

1. Log in to the undercloud as the stack user, and source the stackrc file to enable the director
command line tools.

Example

$ source ~/stackrc

2. Create a custom YAML environment file (my-neutron-environment.yaml).

NOTE

Values inside parentheses are sample values that are used in the example
commands in this procedure. Substitute these sample values with values that are
appropriate for your site.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

TIP

The undercloud includes a set of Orchestration service templates that form the plan for your
overcloud creation. You can customize aspects of the overcloud with environment files, which
are YAML-formatted files that override parameters and resources in the core Orchestration
service template collection. You can include as many environment files as necessary.

3. In the environment file, add a parameter_defaults section. Under this section, add the DNS
domain for ports extension, dns_domain_ports.

Example

parameter_defaults:
 NeutronPluginExtensions: "qos,port_security,dns_domain_ports"

NOTE

If you set dns_domain_ports, ensure that the deployment does not also use
dns_domain, the DNS Integration extension. These extensions are incompatible,
and both extensions cannot be defined simultaneously.

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS

205

4. Also in the parameter_defaults section, add your domain name (example.com) using the
NeutronDnsDomain parameter.

Example

parameter_defaults:
 NeutronPluginExtensions: "qos,port_security,dns_domain_ports"
 NeutronDnsDomain: "example.com"

5. Run the openstack overcloud deploy command and include the core Orchestration templates,
environment files, and this new environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

Verification

1. Log in to the overcloud, and create a new port (new_port) on a network (public). Assign a DNS
name (my_port) to the port.

Example

$ source ~/overcloudrc
$ openstack port create --network public --dns-name my_port new_port

2. Display the details for your port (new_port).

Example

$ openstack port show -c dns_assignment -c dns_domain -c dns_name -c name new_port

Output

+-------------------------+--+
| Field | Value |
+-------------------------+--+
dns_assignment	fqdn='my_port.example.com',
	hostname='my_port',
	ip_address='10.65.176.113'
dns_domain	example.com
dns_name	my_port
name	new_port
+-------------------------+--+

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

206

Under dns_assignment, the fully qualified domain name (fqdn) value for the port contains a
concatenation of the DNS name (my_port) and the domain name (example.com) that you set
earlier with NeutronDnsDomain.

3. Create a new VM instance (my_vm) using the port (new_port) that you just created.

Example

$ openstack server create --image rhel --flavor m1.small --port new_port my_vm

4. Display the details for your port (new_port).

Example

$ openstack port show -c dns_assignment -c dns_domain -c dns_name -c name new_port

Output

+-------------------------+--+
| Field | Value |
+-------------------------+--+
dns_assignment	fqdn='my_vm.example.com',
	hostname='my_vm',
	ip_address='10.65.176.113'
dns_domain	example.com
dns_name	my_vm
name	new_port
+-------------------------+--+

Note that the Compute service changes the dns_name attribute from its original value
(my_port) to the name of the instance with which the port is associated (my_vm).

Additional resources

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

port in the Command line interface reference

server create in the Command line interface reference

21.4. ASSIGNING DHCP ATTRIBUTES TO PORTS

You can use Red Hat Openstack Plaform (RHOSP) Networking service (neutron) extensions to add
networking functions. You can use the extra DHCP option extension (extra_dhcp_opt) to configure
ports of DHCP clients with DHCP attributes. For example, you can add a PXE boot option such as tftp-
server, server-ip-address, or bootfile-name to a DHCP client port.

The value of the extra_dhcp_opt attribute is an array of DHCP option objects, where each object
contains an opt_name and an opt_value. IPv4 is the default version, but you can change this to IPv6 by
including a third option, ip-version=6.

When a VM instance starts, the RHOSP Networking service supplies port information to the instance

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS

207

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/server#server_create

When a VM instance starts, the RHOSP Networking service supplies port information to the instance
using DHCP protocol. If you add DHCP information to a port already connected to a running instance,
the instance only uses the new DHCP port information when the instance is restarted.

Some of the more common DHCP port attributes are: bootfile-name, dns-server, domain-name, mtu,
server-ip-address, and tftp-server. For the complete set of acceptable values for opt_name, refer to
the DHCP specification.

Prerequisites

You must have RHOSP administrator privileges.

Procedure

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-environment.yaml

4. Your environment file must contain the keywords parameter_defaults. Under these keywords,
add the extra DHCP option extension, extra_dhcp_opt.

Example

parameter_defaults:
 NeutronPluginExtensions: "qos,port_security,extra_dhcp_opt"

5. Run the deployment command and include the core heat templates, environment files, and this
new custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e <your_environment_files> \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/octavia.yaml \
-e /home/stack/templates/my-environment.yaml

Verification

1. Source your credentials file.

Example

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

208

Example

$ source ~/overcloudrc

2. Create a new port (new_port) on a network (public). Assign a valid attribute from the DHCP
specification to the new port.

Example

$ openstack port create --extra-dhcp-option \
name=domain-name,value=test.domain --extra-dhcp-option \
name=ntp-server,value=192.0.2.123 --network public new_port

3. Display the details for your port (new_port).

Example

$ openstack port show new_port -c extra_dhcp_opts

Sample output

+-----------------+---+
| Field | Value |
+-----------------+---+
| extra_dhcp_opts | ip_version='4', opt_name='domain-name', opt_value='test.domain' |
| | ip_version='4', opt_name='ntp-server', opt_value='192.0.2.123' |
+-----------------+---+

Additional resources

OVN supported DHCP options

Dynamic Host Configuration Protocol (DHCP) and Bootstrap Protocol (BOOTP) Parameters

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

port create in the Command line interface reference

port show in the Command line interface reference

21.5. ENABLING NUMA AFFINITY ON PORTS

To enable users to create instances with NUMA affinity on the port, you must load the Red Hat
Openstack Plaform (RHOSP) Networking service (neutron) extension, port_numa_affinity_policy.

Prerequisites

Access to the undercloud host and credentials for the stack user.

Procedure

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS

209

https://docs.openstack.org/neutron/latest/ovn/dhcp_opts.html
https://www.iana.org/assignments/bootp-dhcp-parameters/bootp-dhcp-parameters.xhtml
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port#port_create
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/command_line_interface_reference/port#port_show

1. Log in to the undercloud host as the stack user.

2. Source the undercloud credentials file:

$ source ~/stackrc

3. To enable the port_numa_affinity_policy extension, open the environment file where the
NeutronPluginExtensions parameter is defined, and add port_numa_affinity_policy to the
list:

parameter_defaults:
 NeutronPluginExtensions: "qos,port_numa_affinity_policy"

4. Add the environment file that you modified to the stack with your other environment files, and
redeploy the overcloud:

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

$ openstack overcloud deploy --templates \
-e <your_environment_files> \
-e /home/stack/templates/<custom_environment_file>.yaml

Verification

1. Source your credentials file.

Example

$ source ~/overcloudrc

2. Create a new port.
When you create a port, use one of the following options to specify the NUMA affinity policy to
apply to the port:

--numa-policy-required - NUMA affinity policy required to schedule this port.

--numa-policy-preferred - NUMA affinity policy preferred to schedule this port.

--numa-policy-legacy - NUMA affinity policy using legacy mode to schedule this port.

Example

$ openstack port create --network public \
 --numa-policy-legacy myNUMAAffinityPort

3. Display the details for your port.

Example

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

210

$ openstack port show myNUMAAffinityPort -c numa_affinity_policy

Sample output

When the extension is loaded, the Value column should read, legacy, preferred or required. If
the extension has failed to load, Value reads None:

+----------------------+--------+
| Field | Value |
+----------------------+--------+
| numa_affinity_policy | legacy |
+----------------------+--------+

Additional resources

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

Creating an instance with NUMA affinity on the port in the Creating and managing instances
guide

21.6. LOADING KERNEL MODULES

Some features in Red Hat OpenStack Platform (RHOSP) require certain kernel modules to be loaded.
For example, the OVS firewall driver requires you to load the nf_conntrack_proto_gre kernel module to
support GRE tunneling between two VM instances.

By using a special Orchestration service (heat) parameter, ExtraKernelModules, you can ensure that
heat stores configuration information about the required kernel modules needed for features like GRE
tunneling. Later, during normal module management, these required kernel modules are loaded.

Procedure

1. On the undercloud host, logged in as the stack user, create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-modules-environment.yaml

TIP

Heat uses a set of plans called templates to install and configure your environment. You can
customize aspects of the overcloud with a custom environment file , which is a special type of
template that provides customization for your heat templates.

2. In the YAML environment file under parameter_defaults, set ExtraKernelModules to the
name of the module that you want to load.

Example

ComputeParameters:

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS

211

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/creating_and_managing_instances/assembly_creating-an-instance_osp#proc_creating-an-instance-with-numa-affinity-on-the-port_instances

 ExtraKernelModules:
 nf_conntrack_proto_gre: {}
ControllerParameters:
 ExtraKernelModules:
 nf_conntrack_proto_gre: {}

3. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important as the parameters and resources
defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-modules-
environment.yaml

Verification

If heat has properly loaded the module, you should see output when you run the lsmod
command on the Compute node:

Example

sudo lsmod | grep nf_conntrack_proto_gre

Additional resources

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

21.7. LIMITING QUERIES TO THE METADATA SERVICE

To protect the RHOSP environment against cyber threats such as denial of service (DoS) attacks, the
Networking service (neutron) offers administrators the ability to limit the rate at which VM instances can
query the Compute metadata service. Administrators do this by assigning values to a set of parameters
in the metadata_rate_limiting section of the neutron.conf configuration file. The Networking service
uses these parameters to configure HAProxy servers to perform the rate limiting. The HAProxy servers
run inside L3 routers and DHCP agents in the OVS back end, and inside the metadata service in the
OVN back end.

Prerequisites

You have access to the RHOSP Compute nodes and permission to update configuration files.

Your RHOSP environment uses IPv4 networking. Currently, the Networking service does not
support metadata rate limiting on IPv6 networks.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

212

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

This procedure requires you to restart the OVN metadata service or the OVS metadata agent.
Schedule this activity for a maintenance window to minimize the operational impact of any
potential disruption.

Procedure

1. On every Compute node, in the metadata_rate_limiting section of /var/lib/config-
data/puppet-generated/neutron/etc/neutron/neutron.conf, set values for the following
parameters:

rate_limit_enabled

enables you to limit the rate of metadata requests. The default value is false. Set the value
to true to enable metadata rate limiting.

ip_versions

the IP version, 4, used for metadata IP addresses on which you want to control query rates.
RHOSP does not yet support metadata rate limiting for IPv6 networks.

base_window_duration

the time span, in seconds, during which query requests are limited. The default value is 10
seconds.

base_query_rate_limit

the maximum number of requests allowed during the base_window_duration. The default
value is 10 requests.

burst_window_duration

the time span, in seconds, that a request rate higher than the base_window_duration is
allowed. The default value is 10 seconds.

burst_query_rate_limit

the maximum number of requests allowed during the burst_window_duration. The default
value is 10 requests.

Example

In this example, the Networking service is configured for a base time and rate that allows
instances to query the IPv4 metadata service IP address 6 times over a 60 second period.
The Networking service is also configured for a burst time and rate that allows a higher rate
of 2 queries during shorter periods of 10 seconds each:

[metadata_rate_limiting]
rate_limit_enabled = True
ip_versions = 4
base_window_duration = 60
base_query_rate_limit = 6
burst_window_duration = 10
burst_query_rate_limit = 2

2. Restart the metadata service.
Depending on the Networking service mechanism driver your deployment uses, do one of the
following:

ML2/OVN

On the Compute nodes, restart tripleo_ovn_metadata_agent.service.

CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS

213

ML2/OVS

On the Compute nodes, restart tripleo_neutron_metadata_agent.service.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

214

CHAPTER 22. CONFIGURING LAYER 3 HIGH AVAILABILITY
(HA)

22.1. RHOSP NETWORKING SERVICE WITHOUT HIGH AVAILABILITY
(HA)

Red Hat OpenStack Platform (RHOSP) Networking service deployments without any high availability
(HA) features are vulnerable to physical node failures.

In a typical deployment, projects create virtual routers, which are scheduled to run on physical
Networking service Layer 3 (L3) agent nodes. This becomes an issue when you lose an L3 agent node
and the dependent virtual machines subsequently lose connectivity to external networks. Any floating IP
addresses are also unavailable. In addition, connectivity is lost between any networks that the router
hosts.

22.2. OVERVIEW OF LAYER 3 HIGH AVAILABILITY (HA)

This active/passive high availability (HA) configuration uses the industry standard VRRP (as defined in
RFC 3768) to protect project routers and floating IP addresses. A virtual router is randomly scheduled
across multiple Red Hat OpenStack Platform (RHOSP) Networking service nodes, with one designated
as the active router, and the remainder serving in a standby role.

NOTE

To deploy Layer 3 (L3) HA, you must maintain similar configuration on the redundant
Networking service nodes, including floating IP ranges and access to external networks.

In the following diagram, the active Router1 and Router2 routers are running on separate physical L3
Networking service agent nodes. L3 HA has scheduled backup virtual routers on the corresponding
nodes, ready to resume service in the case of a physical node failure. When the L3 agent node fails, L3
HA reschedules the affected virtual router and floating IP addresses to a working node:

During a failover event, instance TCP sessions through floating IPs remain unaffected, and migrate to
the new L3 node without disruption. Only SNAT traffic is affected by failover events.

The L3 agent is further protected when in an active/active HA mode.

Additional resources

CHAPTER 22. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)

215

Virtual Router Redundancy Protocol (VRRP)

22.3. LAYER 3 HIGH AVAILABILITY (HA) FAILOVER CONDITIONS

Layer 3 (L3) high availability (HA) for the Red Hat OpenStack Platform (RHOSP) Networking service
automatically reschedules protected resources in the following events:

The Networking service L3 agent node shuts down or otherwise loses power because of a
hardware failure.

The L3 agent node becomes isolated from the physical network and loses connectivity.

NOTE

Manually stopping the L3 agent service does not induce a failover event.

22.4. PROJECT CONSIDERATIONS FOR LAYER 3 HIGH AVAILABILITY
(HA)

Red Hat OpenStack Platform (RHOSP) Networking service Layer 3 (L3) high availability (HA)
configuration occurs in the back end and is invisible to the project. Projects can continue to create and
manage their virtual routers as usual, however there are some limitations to be aware of when designing
your L3 HA implementation:

L3 HA supports up to 255 virtual routers per project.

Internal VRRP messages are transported within a separate internal network, created
automatically for each project. This process occurs transparently to the user.

When implementing high availability (HA) routers on ML2/OVS, each L3 agent spawns haproxy
and neutron-keepalived-state-change-monitor processes for each router. Each process
consumes approximately 20MB of memory. By default, each HA router resides on three L3
agents and consumes resources on each of the nodes. Therefore, when sizing your RHOSP
networks, ensure that you have allocated enough memory to support the number of HA routers
that you plan to implement.

22.5. HIGH AVAILABILITY (HA) CHANGES TO THE RHOSP
NETWORKING SERVICE

The Red Hat OpenStack Platform (RHOSP) Networking service (neutron) API has been updated to
allow administrators to set the --ha=True/False flag when creating a router, which overrides the default
configuration of l3_ha in /var/lib/config-data/puppet-generated/neutron/etc/neutron/neutron.conf.

High availability (HA) changes to neutron-server:

Layer 3 (L3) HA assigns the active role randomly, regardless of the scheduler used by the
Networking service (whether random or leastrouter).

The database schema has been modified to handle allocation of virtual IP addresses (VIPs)
to virtual routers.

A transport network is created to direct L3 HA traffic.

HA changes to the Networking service L3 agent:

A new keepalived manager has been added, providing load-balancing and HA capabilities.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

216

https://datatracker.ietf.org/doc/html/rfc3768

A new keepalived manager has been added, providing load-balancing and HA capabilities.

IP addresses are converted to VIPs.

22.6. ENABLING LAYER 3 HIGH AVAILABILITY (HA) ON RHOSP
NETWORKING SERVICE NODES

During installation, Red Hat OpenStack Platform (RHOSP) director enables high availability (HA) for
virtual routers by default when you have at least two RHOSP Controllers and are not using distributed
virtual routing (DVR). Using an RHOSP Orchestration service (heat) parameter,
max_l3_agents_per_router, you can set the maximum number of RHOSP Networking service Layer 3
(L3) agents on which an HA router is scheduled.

Prerequisites

Your RHOSP deployment does not use DVR.

You have at least two RHOSP Controllers deployed.

Procedure

1. Log in to the undercloud as the stack user, and source the stackrc file to enable the director
command line tools.

Example

$ source ~/stackrc

2. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

TIP

The Orchestration service (heat) uses a set of plans called templates to install and configure
your environment. You can customize aspects of the overcloud with a custom environment file ,
which is a special type of template that provides customization for your heat templates.

3. Set the NeutronL3HA parameter to true in the YAML environment file. This ensures HA is
enabled even if director did not set it by default.

parameter_defaults:
 NeutronL3HA: 'true'

4. Set the maximum number of L3 agents on which an HA router is scheduled.
Set the max_l3_agents_per_router parameter to a value between the minimum and total
number of network nodes in your deployment. (A zero value indicates that the router is
scheduled on every agent.)

Example

CHAPTER 22. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)

217

parameter_defaults:
 NeutronL3HA: 'true'
 ControllerExtraConfig:
 neutron::server::max_l3_agents_per_router: 2

In this example, if you deploy four Networking service nodes, only two L3 agents protect each
HA virtual router: one active, and one standby.

If you set the value of max_l3_agents_per_router to be greater than the number of available
network nodes, you can scale out the number of standby routers by adding new L3 agents. For
every new L3 agent node that you deploy, the Networking service schedules additional standby
versions of the virtual routers until the max_l3_agents_per_router limit is reached.

5. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e [your-environment-files] \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/my-neutron-
environment.yaml

NOTE

When NeutronL3HA is set to true, all virtual routers that are created default to
HA routers. When you create a router, you can override the HA option by including
the --no-ha option in the openstack router create command:

openstack router create --no-ha

Additional resources

Environment files in the Customizing your Red Hat OpenStack Platform deployment guide

Including environment files in overcloud creation in the Customizing your Red Hat OpenStack
Platform deployment guide

22.7. REVIEWING HIGH AVAILABILITY (HA) RHOSP NETWORKING
SERVICE NODE CONFIGURATIONS

Procedure

Run the ip address command within the virtual router namespace to return a high availability
(HA) device in the result, prefixed with ha-.

ip netns exec qrouter-b30064f9-414e-4c98-ab42-646197c74020 ip address

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

218

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_environment-files_understanding-heat-templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/customizing_your_red_hat_openstack_platform_deployment/assembly_configuring-the-overcloud-with-the-orchestration-service#con_including-environment-files-in-overcloud-creation_understanding-heat-templates

<snip>
2794: ha-45249562-ec: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
noqueue state DOWN group default
link/ether 12:34:56:78:2b:5d brd ff:ff:ff:ff:ff:ff
inet 169.254.0.2/24 brd 169.254.0.255 scope global ha-54b92d86-4f

With Layer 3 HA enabled, virtual routers and floating IP addresses are protected against individual node
failure.

CHAPTER 22. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)

219

CHAPTER 23. USING AVAILABILITY ZONES TO MAKE
NETWORK RESOURCES HIGHLY AVAILABLE

Starting with version 16.2, Red Hat OpenStack Platform (RHOSP) supports RHOSP Networking service
(neutron) availability zones (AZs).

AZs enable you to make your RHOSP network resources highly available. You can group network nodes
that are attached to different power sources on different AZs, and then schedule crucial services to be
on separate AZs.

Often Networking service AZs are used in conjunction with Compute service (nova) AZs to ensure that
customers use specific virtual networks that are local to a physical site that workloads run on. For more
information on Distributed Compute Node architecture see, the Deploying a Distributed Compute Node
architecture guide.

23.1. ABOUT NETWORKING SERVICE AVAILABILITY ZONES

The required extensions that provide Red Hat OpenStack Platform (RHOSP) Networking service
(neutron) availability zones (AZ) functionality are availability_zone, router_availability_zone, and
network_availability_zone. The Modular Layer 2 plug-in with the Open vSwitch (ML2/OVS)
mechanism driver support all of these extensions.

NOTE

The Modular Layer 2 plug-in with the Open Virtual Network (ML2/OVN) mechanism
driver supports only router availability zones. ML2/OVN has a distributed DHCP server,
so supporting network AZs is unnecessary.

When you create your network resource, you can specify an AZ by using the OpenStack client command
line option, --availability-zone-hint. The AZ that you specify is added to the AZ hint list. However, the
AZ attribute is not actually set until the resource is scheduled. The actual AZ that is assigned to your
network resource can vary from the AZ that you specified with the hint option. The reasons for this
mismatch can be that there is a zone failure, or that the zone specified has no remaining capacity.

You can configure the Networking service for a default AZ, in case users fail to specify an AZ when they
create a network resource. In addition to setting a default AZ, you can also configure specific drivers to
schedule networks and routers on AZs.

Additional resources

Configuring Network service availability zones with ML2/OVS

Configuring Network service availability zones with ML2/OVN

Manually Assigning availability zones to networks and routers

23.2. CONFIGURING NETWORK SERVICE AVAILABILITY ZONES FOR
ML2/OVS

You can set one or more default availability zones (AZs) that are automatically assigned by the Red Hat
OpenStack Platform (RHOSP) Networking service (neutron) when users create networks and routers. In
addition, you can also set the network and router drivers that the Networking service uses to schedule
these resources for a respective AZ.

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

220

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_distributed_compute_node_dcn_architecture/index
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-network-service-azs-ovs_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-network-service-azs-ovn_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#assign-azs-network-resources_config_azs

The information contained in this topic is for deployments that run the RHOSP Networking service that
uses the Module Layer 2 plug-in with the Open vSwitch mechanism driver (ML2/OVS).

Prerequisites

Deployed RHOSP 16.2 or later.

Running the RHOSP Networking service that uses the ML2/OVS mechanism driver.

When using Networking service AZs in distributed compute node (DCN) environments, you must
match the Networking service AZ names to the Compute service (nova) AZ names.
For more information, see the Deploying a Distributed Compute Node architecture guide.

Procedure

1. Log in to the undercloud as the stack user, and source the stackrc file to enable the director
command line tools.

Example

$ source ~/stackrc

2. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

TIP

The Red Hat OpenStack Platform Orchestration service (heat) uses a set of plans called
templates to install and configure your environment. You can customize aspects of the
overcloud with a custom environment file , which is a special type of template that provides
customization for your heat templates.

3. In the YAML environment file, under parameter_defaults, enter the
NeutronDefaultAvailabilityZones parameter and one or more AZs. The Networking service
assigns these AZs if a user fails to specify an AZ with the --availability-zone-hint option when
creating a network or a router.

IMPORTANT

In DCN environments, you must match the Networking service AZ names with
Compute service AZ names.

Example

parameter_defaults:
 NeutronDefaultAvailabilityZones: 'az-central,az-datacenter2,az-datacenter1'

4. Determine the AZs for the DHCP and the L3 agents, by entering values for the parameters,
NeutronDhcpAgentAvailabilityZone and NeutronL3AgentAvailabilityZone, respectively.

Example

CHAPTER 23. USING AVAILABILITY ZONES TO MAKE NETWORK RESOURCES HIGHLY AVAILABLE

221

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_distributed_compute_node_dcn_architecture/index

Example

parameter_defaults:
 NeutronDefaultAvailabilityZones: 'az-central,az-datacenter2,az-datacenter1'
 NeutronL3AgentAvailabilityZone: 'az-central,az-datacenter2,az-datacenter1'
 NeutronDhcpAgentAvailabilityZone: 'az-central,az-datacenter2,az-datacenter1'

IMPORTANT

In DCN environments, define a single AZ for
NeutronDhcpAgentAvailabilityZone so that ports are scheduled in the AZ
relevant to the particular edge site.

5. By default, the network and router schedulers are AZAwareWeightScheduler and
AZLeastRoutersScheduler, respectively. If you want to change one or both of these, enter the
new schedulers with the NeutronNetworkSchedulerDriver and
NeutronRouterSchedulerDriver parameters, respectively.

Example

parameter_defaults:
 NeutronDefaultAvailabilityZones: 'az-central,az-datacenter2,az-datacenter1'
 NeutronL3AgentAvailabilityZone: 'az-central,az-datacenter2,az-datacenter1'
 NeutronDhcpAgentAvailabilityZone: 'az-central,az-datacenter2,az-datacenter1'
 NeutronNetworkSchedulerDriver:
'neutron.scheduler.dhcp_agent_scheduler.AZAwareWeightScheduler'
 NeutronRouterSchedulerDriver:
'neutron.scheduler.l3_agent_scheduler.AZLeastRoutersScheduler'

6. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e <your-environment-files> \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/\
my-neutron-environment.yaml

Verification

Confirm that availability zones are properly defined, by running the availability zone list
command.

Example

$ openstack availability zone list

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

222

Sample output

+----------------+-------------+
| Zone Name | Zone Status |
+----------------+-------------+
az-central	available
az-datacenter1	available
az-datacenter2	available
+----------------+-------------+

Additional resources

About Networking service availability zones

Configuring Network service availability zones with ML2/OVN

Manually Assigning availability zones to networks and routers

23.3. CONFIGURING NETWORK SERVICE AVAILABILITY ZONES WITH
ML2/OVN

You can set one or more default availability zones (AZs) that are automatically assigned by the Red Hat
OpenStack Platform (RHOSP) Networking service (neutron) when users create routers. In addition, you
can also set the router driver that the Networking service uses to schedule these resources for a
respective AZ.

The information contained in this topic is for deployments that run the RHOSP Networking service that
uses the Modular Layer 2 plug-in with the Open Virtual Network (ML2/OVN) mechanism driver.

NOTE

The ML2/OVN mechanism driver supports only router availability zones. ML2/OVN has a
distributed DHCP server, so supporting network AZs is unnecessary.

Prerequisites

Deployed RHOSP 16.2 or later.

Running the RHOSP Networking service that uses the ML2/OVN mechanism driver.

When using Networking service AZs in distributed compute node (DCN) environments, you must
match the Networking service AZ names to the Compute service (nova) AZ names.
For more information, see the Deploying a Distributed Compute Node architecture guide.

IMPORTANT

Ensure that all router gateway ports reside on the OpenStack Controller nodes
by setting OVNCMSOptions: 'enable-chassis-as-gw' and by providing one or
more AZ values for the OVNAvailabilityZone parameter. Performing these
actions prevent the routers from scheduling all chassis as potential hosts for the
router gateway ports.

Procedure

CHAPTER 23. USING AVAILABILITY ZONES TO MAKE NETWORK RESOURCES HIGHLY AVAILABLE

223

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#about-network-service-azs_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-network-service-azs-ovn_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#assign-azs-network-resources_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html/deploying_a_distributed_compute_node_dcn_architecture/index

1. Log in to the undercloud as the stack user, and source the stackrc file to enable the director
command line tools.

Example

$ source ~/stackrc

2. Create a custom YAML environment file.

Example

$ vi /home/stack/templates/my-neutron-environment.yaml

TIP

The Red Hat OpenStack Platform Orchestration service (heat) uses a set of plans called
templates to install and configure your environment. You can customize aspects of the
overcloud with a custom environment file , which is a special type of template that provides
customization for your heat templates.

3. In the YAML environment file, under parameter_defaults, enter the
NeutronDefaultAvailabilityZones parameter and one or more AZs.

IMPORTANT

In DCN environments, you must match the Networking service AZ names with
Compute service AZ names.

The Networking service assigns these AZs if a user fails to specify an AZ with the --availability-
zone-hint option when creating a network or a router.

Example

parameter_defaults:
 NeutronDefaultAvailabilityZones: 'az-central,az-datacenter2,az-datacenter1'

4. Determine the AZs for the gateway nodes (Controllers and Network nodes), by entering values
for the parameter, OVNAvailabilityZone.

IMPORTANT

The OVNAvailabilityZone parameter replaces the use of AZ values in the
OVNCMSOptions parameter. If you use the OVNAvailabilityZone parameter,
ensure that there are no AZ values in the OVNCMSOptions parameter.

Example

In this example, roles have been predefined for Controllers for the az-central AZ, and
Networkers for the datacenter1 and datacenter2 AZs:

parameter_defaults:
 NeutronDefaultAvailabilityZones: 'az-central,az-datacenter2,az-datacenter1'

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

224

 ControllerCentralParameters:
 OVNCMSOptions: 'enable-chassis-as-gw'
 OVNAvailabilityZone: 'az-central,az-datacenter2,az-datacenter1'
 NetworkerDatacenter1Parameters:
 OVNCMSOptions: 'enable-chassis-as-gw'
 OVNAvailabilityZone: 'az-datacenter1'
 NetworkerDatacenter2Parameters:
 OVNCMSOptions: 'enable-chassis-as-gw'
 OVNAvailabilityZone: 'az-datacenter2'

IMPORTANT

In DCN environments, define a single AZ for ControllerCentralParameter so
that ports are scheduled in the AZ relevant to the particular edge site.

5. By default, the router scheduler is AZLeastRoutersScheduler. If you want to change this, enter
the new scheduler with the NeutronRouterSchedulerDriver parameters.

Example

parameter_defaults:
 NeutronDefaultAvailabilityZones: 'az-central,az-datacenter2,az-datacenter1'
 ControllerCentralParameters:
 OVNCMSOptions: 'enable-chassis-as-gw'
 OVNAvailabilityZone: 'az-central,az-datacenter2,az-datacenter1'
 NetworkerDCN1Parameters:
 OVNCMSOptions: 'enable-chassis-as-gw'
 OVNAvailabilityZone: 'az-datacenter1'
 NetworkerDCN2Parameters:
 OVNCMSOptions: 'enable-chassis-as-gw'
 OVNAvailabilityZone: 'az-datacenter2'
 NeutronRouterSchedulerDriver:
'neutron.scheduler.l3_agent_scheduler.AZLeastRoutersScheduler'

6. Run the openstack overcloud deploy command and include the core heat templates,
environment files, and this new custom environment file.

IMPORTANT

The order of the environment files is important because the parameters and
resources defined in subsequent environment files take precedence.

Example

$ openstack overcloud deploy --templates \
-e <your-environment-files> \
-e /usr/share/openstack-tripleo-heat-templates/environments/services/\
my-neutron-environment.yaml

Verification

Confirm that availability zones are properly defined, by running the availability zone list
command.

CHAPTER 23. USING AVAILABILITY ZONES TO MAKE NETWORK RESOURCES HIGHLY AVAILABLE

225

Example

$ openstack availability zone list

Sample output

+----------------+-------------+
| Zone Name | Zone Status |
+----------------+-------------+
az-central	available
az-datacenter1	available
az-datacenter2	available
+----------------+-------------+

Additional resources

About Networking service availability zones

Configuring Network service availability zones with ML2/OVS

Manually Assigning availability zones to networks and routers

23.4. MANUALLY ASSIGNING AVAILABILITY ZONES TO NETWORKS
AND ROUTERS

You can manually assign a Red Hat OpenStack Platform (RHOSP) Networking service (neutron)
availability zone (AZ) when you create a RHOSP network or a router. AZs enable you to make your
RHOSP network resources highly available. You can group network nodes that are attached to different
power sources on different AZs, and then schedule nodes running crucial services to be on separate
AZs.

NOTE

If you fail to assign an AZ when creating a network or a router, the RHOSP Networking
service automatically assigns to the resource the value that was specified to the RHOSP
Orchestration service (heat) parameter. If no value is defined for
NeutronDefaultAvailabilityZones the resources are scheduled without any AZ
attributes.

For RHOSP Networking service agents that use the Modular Layer 2 plug-in with the
Open vSwitch (ML2/OVS) mechanism driver, if no AZ hint is supplied and no value
specified for NeutronDefaultAvailabilityZones, then the Compute service (nova) AZ
value is used to schedule the agent.

Prerequisites

Deployed RHOSP 16.2 or later.

Running the RHOSP Networking service that uses either the ML2/OVS or ML2/OVN (Open
Virtual Network) mechanism drivers.

Procedure

When you create a network on the overcloud using the OpenStack client, use the --availability-

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

226

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#about-network-service-azs_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-network-service-azs-ovs_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#assign-azs-network-resources_config_azs

When you create a network on the overcloud using the OpenStack client, use the --availability-
zone-hint option.

NOTE

The ML2/OVN mechanism driver supports only router availability zones.
ML2/OVN has a distributed DHCP server, so supporting network AZs is
unnecessary.

In the following example, a network (net1) is created and assigned to either AZ zone-1 or zone-
2:

Network example

$ openstack network create --availability-zone-hint zone-1 \
--availability-zone-hint zone-2 net1

Sample output

+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	UP
availability_zone_hints	zone-1
	zone-2
availability_zones	
created_at	2021-07-31T22:14:12Z
description	
headers	
id	ad88e059-e7fa-4cf7-8857-6731a2a3a554
ipv4_address_scope	None
ipv6_address_scope	None
mtu	1450
name	net1
port_security_enabled	True
project_id	cfd1889ac7d64ad891d4f20aef9f8d7c
provider:network_type	vxlan
provider:physical_network	None
provider:segmentation_id	77
revision_number	3
router:external	Internal
shared	False
status	ACTIVE
subnets	
tags	[]
updated_at	2021-07-31T22:14:13Z
+---------------------------+--------------------------------------+

When you create a router on the overcloud using the OpenStack client, use the --ha and --
availability-zone-hint options.
In the following example, a router (router1) is created and assigned to either AZ zone-1 or
zone-2:

Router example

CHAPTER 23. USING AVAILABILITY ZONES TO MAKE NETWORK RESOURCES HIGHLY AVAILABLE

227

$ openstack router create --ha --availability-zone-hint zone-1 \
--availability-zone-hint zone-2 router1

Sample output

+-------------------------+--------------------------------------+
| Field | Value |
+-------------------------+--------------------------------------+
admin_state_up	UP
availability_zone_hints	zone-1
	zone-2
availability_zones	
created_at	2021-07-31T22:16:54Z
description	
distributed	False
external_gateway_info	null
flavor_id	None
ha	False
headers	
id	ced10262-6cfe-47c1-8847-cd64276a868c
name	router1
project_id	cfd1889ac7d64ad891d4f20aef9f8d7c
revision_number	3
routes	
status	ACTIVE
tags	[]
updated_at	2021-07-31T22:16:56Z
+-------------------------+--------------------------------------+

Notice that the actual AZ is not assigned at the time that you create the network resource. The
RHOSP Networking service assigns the AZ when it schedules the resource.

Verification

Enter the appropriate OpenStack client show command to confirm in which zone the resource
is hosted.

Example

$ openstack network show net1

Sample output

+---------------------------+--------------------------------------+
| Field | Value |
+---------------------------+--------------------------------------+
admin_state_up	UP
availability_zone_hints	zone-1
	zone-2
availability_zones	zone-1
	zone-2
created_at	2021-07-31T22:14:12Z
description	
headers	

Red Hat OpenStack Platform 17.1 Configuring Red Hat OpenStack Platform networking

228

id	ad88e059-e7fa-4cf7-8857-6731a2a3a554
ipv4_address_scope	None
ipv6_address_scope	None
mtu	1450
name	net1
port_security_enabled	True
project_id	cfd1889ac7d64ad891d4f20aef9f8d7c
provider:network_type	vxlan
provider:physical_network	None
provider:segmentation_id	77
revision_number	3
router:external	Internal
shared	False
status	ACTIVE
subnets	
tags	[]
updated_at	2021-07-31T22:14:13Z
+---------------------------+--------------------------------------+

Additional resources

About Networking service availability zones

Configuring Network service availability zones with ML2/OVS

Configuring Network service availability zones with ML2/OVN

CHAPTER 23. USING AVAILABILITY ZONES TO MAKE NETWORK RESOURCES HIGHLY AVAILABLE

229

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#about-network-service-azs_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-network-service-azs-ovs_config_azs
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/17.1/html-single/configuring_red_hat_openstack_platform_networking/index#config-network-service-azs-ovn_config_azs

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO OPENSTACK NETWORKING
	1.1. MANAGING YOUR RHOSP NETWORKS
	1.2. NETWORKING SERVICE COMPONENTS
	1.3. MODULAR LAYER 2 (ML2) NETWORKING
	1.4. ML2 NETWORK TYPES
	1.5. MODULAR LAYER 2 (ML2) MECHANISM DRIVERS
	1.6. OPEN VSWITCH
	1.7. OPEN VIRTUAL NETWORK (OVN)
	1.8. MODULAR LAYER 2 (ML2) TYPE AND MECHANISM DRIVER COMPATIBILITY
	1.9. EXTENSION DRIVERS FOR THE RHOSP NETWORKING SERVICE

	CHAPTER 2. WORKING WITH ML2/OVN
	2.1. LIST OF COMPONENTS IN THE RHOSP OVN ARCHITECTURE
	2.2. ML2/OVN DATABASES
	2.3. THE OVN-CONTROLLER SERVICE ON COMPUTE NODES
	2.4. OVN METADATA AGENT ON COMPUTE NODES
	2.5. THE OVN COMPOSABLE SERVICE
	2.6. LAYER 3 HIGH AVAILABILITY WITH OVN
	2.7. ACTIVE-ACTIVE CLUSTERED DATABASE SERVICE MODEL
	2.8. DEPLOYING A CUSTOM ROLE WITH ML2/OVN
	2.9. SR-IOV WITH ML2/OVN AND NATIVE OVN DHCP

	CHAPTER 3. MANAGING PROJECT NETWORKS
	3.1. VLAN PLANNING
	3.2. TYPES OF NETWORK TRAFFIC
	3.3. IP ADDRESS CONSUMPTION
	3.4. VIRTUAL NETWORKING
	3.5. ADDING NETWORK ROUTING
	3.6. EXAMPLE NETWORK PLAN
	3.7. CREATING A NETWORK
	3.8. WORKING WITH SUBNETS
	3.9. CREATING A SUBNET
	3.10. ADDING A ROUTER
	3.11. PURGING ALL RESOURCES AND DELETING A PROJECT
	3.12. DELETING A ROUTER
	3.13. DELETING A SUBNET
	3.14. DELETING A NETWORK

	CHAPTER 4. CONNECTING VM INSTANCES TO PHYSICAL NETWORKS
	4.1. OVERVIEW OF THE OPENSTACK NETWORKING TOPOLOGY
	4.2. PLACEMENT OF OPENSTACK NETWORKING SERVICES
	4.3. CONFIGURING FLAT PROVIDER NETWORKS
	4.4. HOW DOES THE FLAT PROVIDER NETWORK PACKET FLOW WORK?
	4.5. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK CONNECTIONS ON FLAT PROVIDER NETWORKS
	4.6. CONFIGURING VLAN PROVIDER NETWORKS
	4.7. HOW DOES THE VLAN PROVIDER NETWORK PACKET FLOW WORK?
	4.8. TROUBLESHOOTING INSTANCE-PHYSICAL NETWORK CONNECTIONS ON VLAN PROVIDER NETWORKS
	4.9. ENABLING MULTICAST SNOOPING FOR PROVIDER NETWORKS IN AN ML2/OVS DEPLOYMENT
	4.10. ENABLING MULTICAST IN AN ML2/OVN DEPLOYMENT
	4.11. ENABLING COMPUTE METADATA ACCESS
	4.12. FLOATING IP ADDRESSES

	CHAPTER 5. MANAGING FLOATING IP ADDRESSES
	5.1. CREATING FLOATING IP POOLS
	5.2. ASSIGNING A SPECIFIC FLOATING IP
	5.3. CREATING AN ADVANCED NETWORK
	5.4. ASSIGNING A RANDOM FLOATING IP
	5.5. CREATING MULTIPLE FLOATING IP POOLS
	5.6. CONFIGURING FLOATING IP PORT FORWARDING
	5.7. CREATING PORT FORWARDING FOR A FLOATING IP
	5.8. BRIDGING THE PHYSICAL NETWORK
	5.9. ADDING AN INTERFACE
	5.10. DELETING AN INTERFACE

	CHAPTER 6. MONITORING AND TROUBLESHOOTING NETWORKS
	6.1. BASIC PING TESTING
	6.2. VIEWING CURRENT PORT STATUS
	6.3. TROUBLESHOOTING CONNECTIVITY TO VLAN PROVIDER NETWORKS
	6.4. REVIEWING THE VLAN CONFIGURATION AND LOG FILES
	6.5. PERFORMING BASIC ICMP TESTING WITHIN THE ML2/OVN NAMESPACE
	6.6. TROUBLESHOOTING FROM WITHIN PROJECT NETWORKS (ML2/OVS)
	6.7. PERFORMING ADVANCED ICMP TESTING WITHIN THE NAMESPACE (ML2/OVS)
	6.8. CREATING ALIASES FOR OVN TROUBLESHOOTING COMMANDS
	6.9. MONITORING OVN LOGICAL FLOWS
	6.10. MONITORING OPENFLOWS
	6.11. MONITORING OVN DATABASE STATUS
	6.12. VALIDATING YOUR ML2/OVN DEPLOYMENT
	6.13. SETTING THE LOGGING MODE FOR ML2/OVN
	6.14. FIXING OVN CONTROLLERS THAT FAIL TO REGISTER ON EDGE SITES
	6.15. ML2/OVN LOG FILES

	CHAPTER 7. CONFIGURING PHYSICAL SWITCHES FOR OPENSTACK NETWORKING
	7.1. PLANNING YOUR PHYSICAL NETWORK ENVIRONMENT
	7.2. CONFIGURING A CISCO CATALYST SWITCH
	7.2.1. About trunk ports
	7.2.2. Configuring trunk ports for a Cisco Catalyst switch
	7.2.3. About access ports
	7.2.4. Configuring access ports for a Cisco Catalyst switch
	7.2.5. About LACP port aggregation
	7.2.6. Configuring LACP on the physical NIC
	7.2.7. Configuring LACP for a Cisco Catalyst switch
	7.2.8. About MTU settings
	7.2.9. Configuring MTU settings for a Cisco Catalyst switch
	7.2.10. About LLDP discovery
	7.2.11. Configuring LLDP for a Cisco Catalyst switch

	7.3. CONFIGURING A CISCO NEXUS SWITCH
	7.3.1. About trunk ports
	7.3.2. Configuring trunk ports for a Cisco Nexus switch
	7.3.3. About access ports
	7.3.4. Configuring access ports for a Cisco Nexus switch
	7.3.5. About LACP port aggregation
	7.3.6. Configuring LACP on the physical NIC
	7.3.7. Configuring LACP for a Cisco Nexus switch
	7.3.8. About MTU settings
	7.3.9. Configuring MTU settings for a Cisco Nexus 7000 switch
	7.3.10. About LLDP discovery
	7.3.11. Configuring LLDP for a Cisco Nexus 7000 switch

	7.4. CONFIGURING A CUMULUS LINUX SWITCH
	7.4.1. About trunk ports
	7.4.2. Configuring trunk ports for a Cumulus Linux switch
	7.4.3. About access ports
	7.4.4. Configuring access ports for a Cumulus Linux switch
	7.4.5. About LACP port aggregation
	7.4.6. About MTU settings
	7.4.7. Configuring MTU settings for a Cumulus Linux switch
	7.4.8. About LLDP discovery
	7.4.9. Configuring LLDP for a Cumulus Linux switch

	7.5. CONFIGURING A EXTREME EXOS SWITCH
	7.5.1. About trunk ports
	7.5.2. Configuring trunk ports on an Extreme Networks EXOS switch
	7.5.3. About access ports
	7.5.4. Configuring access ports for an Extreme Networks EXOS switch
	7.5.5. About LACP port aggregation
	7.5.6. Configuring LACP on the physical NIC
	7.5.7. Configuring LACP on an Extreme Networks EXOS switch
	7.5.8. About MTU settings
	7.5.9. Configuring MTU settings on an Extreme Networks EXOS switch
	7.5.10. About LLDP discovery
	7.5.11. Configuring LLDP settings on an Extreme Networks EXOS switch

	7.6. CONFIGURING A JUNIPER EX SERIES SWITCH
	7.6.1. About trunk ports
	7.6.2. Configuring trunk ports for a Juniper EX Series switch
	7.6.3. About access ports
	7.6.4. Configuring access ports for a Juniper EX Series switch
	7.6.5. About LACP port aggregation
	7.6.6. Configuring LACP on the physical NIC
	7.6.7. Configuring LACP for a Juniper EX Series switch
	7.6.8. About MTU settings
	7.6.9. Configuring MTU settings for a Juniper EX Series switch
	7.6.10. About LLDP discovery
	7.6.11. Configuring LLDP for a Juniper EX Series switch

	CHAPTER 8. CONFIGURING MAXIMUM TRANSMISSION UNIT (MTU) SETTINGS
	8.1. MTU OVERVIEW
	8.2. CONFIGURING MTU SETTINGS IN DIRECTOR
	8.3. REVIEWING THE RESULTING MTU CALCULATION

	CHAPTER 9. USING QUALITY OF SERVICE (QOS) POLICIES TO MANAGE DATA TRAFFIC
	9.1. QOS RULES
	9.2. CONFIGURING THE NETWORKING SERVICE FOR QOS POLICIES
	9.3. CONTROLLING MINIMUM BANDWIDTH BY USING QOS POLICIES
	9.3.1. Using Networking service back-end enforcement to enforce minimum bandwidth
	9.3.2. Scheduling instances by using minimum bandwidth QoS policies

	9.4. LIMITING NETWORK TRAFFIC BY USING QOS POLICIES
	9.5. PRIORITIZING NETWORK TRAFFIC BY USING DSCP MARKING QOS POLICIES
	9.6. APPLYING QOS POLICIES TO PROJECTS BY USING NETWORKING SERVICE RBAC

	CHAPTER 10. CONFIGURING BRIDGE MAPPINGS
	10.1. OVERVIEW OF BRIDGE MAPPINGS
	10.2. TRAFFIC FLOW
	10.3. CONFIGURING BRIDGE MAPPINGS
	10.4. MAINTAINING BRIDGE MAPPINGS FOR OVS
	10.4.1. Cleaning up OVS patch ports manually
	10.4.2. Cleaning up OVS patch ports automatically

	CHAPTER 11. VLAN-AWARE INSTANCES
	11.1. VLAN TRUNKS AND VLAN TRANSPARENT NETWORKS
	11.2. ENABLING VLAN TRANSPARENCY IN ML2/OVN DEPLOYMENTS
	11.3. REVIEWING THE TRUNK PLUG-IN
	11.4. CREATING A TRUNK CONNECTION
	11.5. ADDING SUBPORTS TO THE TRUNK
	11.6. CONFIGURING AN INSTANCE TO USE A TRUNK
	11.7. CONFIGURING NETWORKING SERVICE RPC TIMEOUT
	11.8. UNDERSTANDING TRUNK STATES

	CHAPTER 12. CONFIGURING RBAC POLICIES
	12.1. OVERVIEW OF RBAC POLICIES
	12.2. CREATING RBAC POLICIES
	12.3. REVIEWING RBAC POLICIES
	12.4. DELETING RBAC POLICIES
	12.5. GRANTING RBAC POLICY ACCESS FOR EXTERNAL NETWORKS

	CHAPTER 13. CONFIGURING DISTRIBUTED VIRTUAL ROUTING (DVR)
	13.1. UNDERSTANDING DISTRIBUTED VIRTUAL ROUTING (DVR)
	13.1.1. Overview of Layer 3 routing
	13.1.2. Routing flows
	13.1.3. Centralized routing

	13.2. DVR OVERVIEW
	13.3. DVR KNOWN ISSUES AND CAVEATS
	13.4. SUPPORTED ROUTING ARCHITECTURES
	13.5. MIGRATING CENTRALIZED ROUTERS TO DISTRIBUTED ROUTING
	13.6. DEPLOYING ML2/OVN OPENSTACK WITH DISTRIBUTED VIRTUAL ROUTING (DVR) DISABLED
	13.6.1. Additional resources

	CHAPTER 14. PROJECT NETWORKING WITH IPV6
	14.1. IPV6 SUBNET OPTIONS
	14.2. CREATE AN IPV6 SUBNET USING STATEFUL DHCPV6

	CHAPTER 15. MANAGING PROJECT QUOTAS
	15.1. CONFIGURING PROJECT QUOTAS
	15.2. L3 QUOTA OPTIONS
	15.3. FIREWALL QUOTA OPTIONS
	15.4. SECURITY GROUP QUOTA OPTIONS
	15.5. MANAGEMENT QUOTA OPTIONS

	CHAPTER 16. DEPLOYING ROUTED PROVIDER NETWORKS
	16.1. ADVANTAGES OF ROUTED PROVIDER NETWORKS
	16.2. FUNDAMENTALS OF ROUTED PROVIDER NETWORKS
	16.3. LIMITATIONS OF ROUTED PROVIDER NETWORKS
	16.4. PREPARING FOR A ROUTED PROVIDER NETWORK
	16.5. CREATING A ROUTED PROVIDER NETWORK
	16.6. MIGRATING A NON-ROUTED NETWORK TO A ROUTED PROVIDER NETWORK

	CHAPTER 17. CREATING CUSTOM VIRTUAL ROUTERS WITH ROUTER FLAVORS
	17.1. ENABLING ROUTER FLAVORS AND CREATING SERVICE PROVIDERS FOR YOUR CUSTOM ROUTERS
	17.2. CREATING A ROUTER FLAVOR
	17.3. CREATING A CUSTOM VIRTUAL ROUTER WITH A ROUTER FLAVOR

	CHAPTER 18. CONFIGURING ALLOWED ADDRESS PAIRS
	18.1. OVERVIEW OF ALLOWED ADDRESS PAIRS
	18.2. CREATING A PORT AND ALLOWING ONE ADDRESS PAIR
	18.3. ADDING ALLOWED ADDRESS PAIRS

	CHAPTER 19. CONFIGURING SECURITY GROUPS
	19.1. CREATING A SECURITY GROUP
	19.2. UPDATING SECURITY GROUP RULES
	19.3. DELETING SECURITY GROUP RULES
	19.4. DELETING A SECURITY GROUP
	19.5. CONFIGURING SHARED SECURITY GROUPS

	CHAPTER 20. LOGGING SECURITY GROUP ACTIONS
	20.1. VERIFYING THAT SECURITY GROUP LOGGING IS ENABLED
	20.2. CREATING LOG OBJECTS FOR SECURITY GROUPS
	20.3. LISTING AND VIEWING LOG OBJECTS FOR SECURITY GROUPS
	20.4. ENABLING AND DISABLING LOG OBJECTS FOR SECURITY GROUPS
	20.5. RENAMING A LOG OBJECT FOR SECURITY GROUPS
	20.6. DELETING A LOG OBJECT FOR SECURITY GROUPS
	20.7. ACCESSING SECURITY GROUP LOG CONTENT
	20.8. SAMPLE SECURITY GROUP LOG CONTENT
	20.9. ADJUSTING RATE AND BURST LIMITS FOR SECURITY GROUP LOGGING

	CHAPTER 21. COMMON ADMINISTRATIVE NETWORKING TASKS
	21.1. CONFIGURING THE L2 POPULATION DRIVER
	21.2. TUNING KEEPALIVED TO AVOID VRRP PACKET LOSS
	21.3. SPECIFYING THE NAME THAT DNS ASSIGNS TO PORTS
	21.4. ASSIGNING DHCP ATTRIBUTES TO PORTS
	21.5. ENABLING NUMA AFFINITY ON PORTS
	21.6. LOADING KERNEL MODULES
	21.7. LIMITING QUERIES TO THE METADATA SERVICE

	CHAPTER 22. CONFIGURING LAYER 3 HIGH AVAILABILITY (HA)
	22.1. RHOSP NETWORKING SERVICE WITHOUT HIGH AVAILABILITY (HA)
	22.2. OVERVIEW OF LAYER 3 HIGH AVAILABILITY (HA)
	22.3. LAYER 3 HIGH AVAILABILITY (HA) FAILOVER CONDITIONS
	22.4. PROJECT CONSIDERATIONS FOR LAYER 3 HIGH AVAILABILITY (HA)
	22.5. HIGH AVAILABILITY (HA) CHANGES TO THE RHOSP NETWORKING SERVICE
	22.6. ENABLING LAYER 3 HIGH AVAILABILITY (HA) ON RHOSP NETWORKING SERVICE NODES
	22.7. REVIEWING HIGH AVAILABILITY (HA) RHOSP NETWORKING SERVICE NODE CONFIGURATIONS

	CHAPTER 23. USING AVAILABILITY ZONES TO MAKE NETWORK RESOURCES HIGHLY AVAILABLE
	23.1. ABOUT NETWORKING SERVICE AVAILABILITY ZONES
	23.2. CONFIGURING NETWORK SERVICE AVAILABILITY ZONES FOR ML2/OVS
	23.3. CONFIGURING NETWORK SERVICE AVAILABILITY ZONES WITH ML2/OVN
	23.4. MANUALLY ASSIGNING AVAILABILITY ZONES TO NETWORKS AND ROUTERS

