‘® redhat.

Red Hat OpenStack Platform 11

Red Hat Ceph Storage for the Overcloud

Configuring an Overcloud to Use Red Hat Ceph Storage

Last Updated: 2018-04-23

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

Configuring an Overcloud to Use Red Hat Ceph Storage

OpenStack Team
rhos-docs@redhat.com

Legal Notice
Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information on using the Red Hat OpenStack Platform director to create an
Overcloud that uses Red Hat Ceph Storage. This includes recommendations for your Red Hat Ceph
Storage environment and instructions on how to implement an Overcloud with Ceph Storage nodes.

Table of Contents

Table of Contents

CHAPTER 1. INTRODUCTION ... ittt et i i et et a e e et e n s a e a e nasan e nnraennnnns 3
1.1. DEFINING CEPH STORAGE 3
1.2. USING CEPH STORAGE IN RED HAT OPENSTACK PLATFORM 3
1.3. SETTING REQUIREMENTS 3
1.4. DEFINING THE SCENARIOS 5

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGENODES¢cciiiiiiinnnnn, 6
2.1. INITIALIZING THE STACK USER 6
2.2. REGISTERING NODES 7
2.3. MANUALLY TAGGING THE NODES 9
2.4. DEPLOYING OTHER CEPH SERVICES ON DEDICATED NODES 10

2.4.1. Creating a Custom Role and Flavor for the Ceph MON Service 11

2.4.2. Creating a Custom Role and Flavor for the Ceph MDS Service 12

2.4.3. Configuring Port Assignments for Custom Roles 14
2.5. DEFINING THE ROOT DISK FOR CEPH STORAGE NODES 15
2.6. ENABLING CEPH STORAGE IN THE OVERCLOUD 17
2.7. MAPPING THE CEPH STORAGE NODE DISK LAYOUT 18
2.8. CLEANING CEPH STORAGE NODE DISKS 19
2.9. DEPLOY THE CEPH OBJECT GATEWAY 20
2.10. CONFIGURING THE BACKUP SERVICE TO USE CEPH 20
2.11. CONFIGURING MULTIPLE BONDED INTERFACES PER CEPH NODE 21

2.11.1. Configuring Bonding Module Directives 23
2.12. CUSTOMIZING THE CEPH STORAGE CLUSTER 24

2.12.1. Assigning Custom Attributes to Different Ceph Pools 25
2.13. ASSIGNING NODES AND FLAVORS TO ROLES 25
2.14. CREATING THE OVERCLOUD 27
2.15. ACCESSING THE OVERCLOUD 28
2.16. MONITORING CEPH STORAGE NODES 29
2.17. REBOOTING THE ENVIRONMENT 29
2.18. SCALING UP THE CEPH CLUSTER 30
2.19. SCALING DOWN AND REPLACING CEPH STORAGE NODES 32
2.20. ADDING AND REMOVING OSD DISKS FROM CEPH STORAGE NODES 34

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD 35
3.1. CONFIGURING THE EXISTING CEPH STORAGE CLUSTER 35
3.2. INITIALIZING THE STACK USER 37
3.3. REGISTERING NODES 37
3.4. MANUALLY TAGGING THE NODES 39
3.5. INTEGRATING WITH THE EXISTING CEPH STORAGE CLUSTER 40
3.6. BACKWARDS COMPATIBILITY WITH OLDER VERSIONS OF RED HAT CEPH STORAGE 40
3.7. ASSIGNING NODES AND FLAVORS TO ROLES 41
3.8. CREATING THE OVERCLOUD 41
3.9. ACCESSING THE OVERCLOUD 42

CHAPTER 4. CONCLUSION ...ttt et et i et et a e a s aa s aa e n s ansaaannannanrnnns 43

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING ACEPHCLUSTERcciiiivinnnnn, 44

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES 46

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

Red Hat OpenStack Platform director creates a cloud environment called the Overcloud. The director
provides the ability to configure extra features for an Overcloud. One of these extra features includes
integration with Red Hat Ceph Storage. This includes both Ceph Storage clusters created with the
director or existing Ceph Storage clusters. This guide provides information for integrating Ceph Storage
into your Overcloud through the director and configuration examples.

1.1. DEFINING CEPH STORAGE

Red Hat Ceph Storage is a distributed data object store designed to provide excellent performance,
reliability, and scalability. Distributed object stores are the future of storage, because they accommodate
unstructured data, and because clients can use modern object interfaces and legacy interfaces
simultaneously. At the heart of every Ceph deployment is the Ceph Storage Cluster, which consists of
two types of daemons:

Ceph OSD (Object Storage Daemon)

Ceph OSDs store data on behalf of Ceph clients. Additionally, Ceph OSDs utilize the CPU and
memory of Ceph nodes to perform data replication, rebalancing, recovery, monitoring and reporting
functions.

Ceph Monitor

A Ceph monitor maintains a master copy of the Ceph storage cluster map with the current state of the
storage cluster.

For more information about Red Hat Ceph Storage, see the Red Hat Ceph Storage Architecture Guide.

IMPORTANT

This guide only integrates Ceph Block storage and the Ceph Object Gateway (RGW). It
does not include Ceph File (CephFS) storage.

1.2. USING CEPH STORAGE IN RED HAT OPENSTACK PLATFORM

Red Hat OpenStack Platform director provides two main methods for integrating Red Hat Ceph Storage
into an Overcloud.

Creating an Overcloud with its own Ceph Storage Cluster

The director has the ability to create a Ceph Storage Cluster during the creation on the Overcloud.
The director creates a set of Ceph Storage nodes that use the Ceph OSD to store the data. In
addition, the director installs the Ceph Monitor service on the Overcloud’s Controller nodes. This
means if an organization creates an Overcloud with three highly available controller nodes, the Ceph
Monitor also becomes a highly available service.

Integrating a Existing Ceph Storage into an Overcloud

If you already have an existing Ceph Storage Cluster, you can integrate this during an Overcloud
deployment. This means you manage and scale the cluster outside of the Overcloud configuration.

1.3. SETTING REQUIREMENTS

This guide acts as supplementary information for the Director Installation and Usage guide. This means
the Requirements section also applies to this guide. Implement these requirements as necessary.

https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.3/architecture-guide/architecture-guide
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage#chap-Requirements

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

If using the Red Hat OpenStack Platform director to create Ceph Storage nodes, note the following
requirements for these nodes:

Processor
64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.
Memory

Memory requirements depend on the amount of storage space. Ideally, use at minimum 1 GB of
memory per 1 TB of hard disk space.

Disk Space

Storage requirements depends on the amount of memory. Ideally, use at minimum 1 GB of memory
per 1 TB of hard disk space.

Disk Layout
The recommended Red Hat Ceph Storage node configuration requires at least three or more disks in
a layout similar to the following:

e /dev/sda - The root disk. The director copies the main Overcloud image to the disk.

e /dev/sdb - The journal disk. This disk divides into partitions for Ceph OSD journals. For
example, /dev/sdb1, /dev/sdb2, /dev/sdb3, and onward. The journal disk is usually a solid
state drive (SSD) to aid with system performance.

e /dev/sdc and onward - The OSD disks. Use as many disks as necessary for your storage
requirements.

IMPORTANT

Erase all existing partitions on the disks targeted for journaling and OSDs before
deploying the Overcloud. In addition, the Ceph Storage OSDs and journal disks require
GPT disk labels, which you can configure as a part of the deployment. See Section 2.8,
“Cleaning Ceph Storage Node Disks” for more information.

Network Interface Cards

A minimum of one 1 Gbps Network Interface Cards, although it is recommended to use at least two
NICs in a production environment. Use additional network interface cards for bonded interfaces or to
delegate tagged VLAN traffic. It is recommended to use a 10 Gbps interface for storage node,
especially if creating an OpenStack Platform environment that serves a high volume of traffic.

Intelligent Platform Management Interface (IPMI)
Each Ceph node requires IPMI functionality on the server’s motherboard.

This guide also requires the following:

e An Undercloud host with the Red Hat OpenStack Platform director installed. See Installing the
Undercloud.

e Any additional hardware recommendation for Red Hat Ceph Storage. See the Red Hat Ceph
Storage Hardware Guide for these recommendations.

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage#chap-Installing_the_Undercloud
https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.3/hardware-guide/hardware-guide

CHAPTER 1. INTRODUCTION

IMPORTANT

The Ceph Monitor service is installed on the Overcloud’s Controller nodes. This means
you must provide adequate resources to alleviate performance issues. Ensure the
Controller nodes in your environment use at least 16 GB of RAM for memory and solid-
state drive (SSD) storage for the Ceph monitor data.

1.4. DEFINING THE SCENARIOS

This guide uses two scenarios:

e The first scenario creates an Overcloud with a Ceph Storage Cluster. This means the director
deploys the Ceph Storage Cluster.

e The second scenario integrates an existing Ceph Storage Cluster with an Overcloud. This
means you manage the Ceph Storage Cluster separate from Overcloud management.

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH
STORAGE NODES

This chapter describes how to use the director to create an Overcloud that includes its own Ceph
Storage Cluster. For instructions on how to create an Overcloud and integrate it with an existing Ceph
Storage Cluster, see Chapter 3, Integrating an Existing Ceph Storage Cluster with an Overcloudinstead.

The scenario described in this chapter consists of nine nodes in the Overcloud:

e Three Controller nodes with high availability. This includes the Ceph Monitor service on each
node.

e Three Red Hat Ceph Storage nodes in a cluster. These nodes contain the Ceph OSD service
and act as the actual storage.

e Three Compute nodes.

All machines in this scenario are bare metal systems using IPMI for power management. These nodes
do not require an operating system because the director copies a Red Hat Enterprise Linux 7 image to
each node.

The director communicates to each node through the Provisioning network during the introspection and
provisioning processes. All nodes connect to this network through the native VLAN. For this example, we
use 192.0.2.0/24 as the Provisioning subnet with the following IP address assignments:

Node Name IP Address MAC Address IPMI IP Address
Director 192.0.2.1 aa:aa:aa:aa:aa:aa

Controller 1 DHCP defined b1:b1:b1:b1:b1:b1 192.0.2.205
Controller 2 DHCP defined b2:b2:b2:b2:b2:b2 192.0.2.206
Controller 3 DHCP defined b3:03:b3:b3:b3:b3 192.0.2.207
Compute 1 DHCP defined cl:cl:cl:ci:cl:cl 192.0.2.208
Compute 2 DHCP defined c2:c2:c2:c2:c2:c2 192.0.2.209
Compute 3 DHCP defined ¢3:¢3:¢3:c3:c3:c3 192.0.2.210
Ceph 1 DHCP defined di1:d1:d1:d1:d1:d1 192.0.2.211
Ceph 2 DHCP defined d2:d2:d2:d2:d2:d2 192.0.2.212
Ceph 3 DHCP defined d3:d3:d3:d3:d3:d3 192.0.2.213

2.1. INITIALIZING THE STACK USER

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

Log into the director host as the stack user and run the following command to initialize your director
configuration:

I $ source ~/stackrc

This sets up environment variables containing authentication details to access the director’s CLI tools.

2.2. REGISTERING NODES

A node definition template (instackenv. json) is a JSON format file and contains the hardware and
power management details for registering nodes. For example:

{
"nodes": [
{
"mac": [
"pl:bl:b1l:bl:b1:b1"
1,
llcpull : |I4Il,
"memory":"6144",
Ildiskll : ll40||,

"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password":"p@55word!",
"pm_addr":"192.0.2.205"

llmacll : [
"b2:b2:b2:b2:b2:b2"
1,
"CpU" : |I4Il,
"memory":"6144",
lldiskll : ll40||,
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55wOrd!",
"pm_addr":"192.0.2.206"

"mac": [
"b3:b3:b3:b3:b3:b3"
1
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55weOrd!",
"pm_addr":"192.0.2.207"

Ilmacll . [

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

"cl:cl:cl:cl:cl:c1"
1
"CpU" : |I4Il,
"memory":"6144",
Ildiskll : ll40||’
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55werd!",
"pm_addr":"192.0.2.208"

"mac": [
"c2:c2:c2:c2:c2:c2"
1
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55weOrd!",
"pm_addr":"192.0.2.209"

"mac": [
"c3:c3:c3:¢c3:c3:c3"
1
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55wOrd!",
"pm_addr":"192.0.2.210"

"mac": [
"dl:d1:d1:d1:d1:d1"
1
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55weOrd!",
"pm_addr":"192.0.2.211"

"mac": [
"d2:d2:d2:d2:d2:d2"

1

"cpu":"4",

"memory":"6144",

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

Ildiskll : ll40||,
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55werd!",
"pm_addr":"192.0.2.212"

"mac": [
"d3:d3:d3:d3:d3:d3"
1,

Ileull : |I4Il,

"memory":"6144",

Ildiskll : ll40||,
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55weOrd!",
"pm_addr":"192.0.2.213"

After creating the template, save the file to the stack user’'s home directory
(/home/stack/instackenv. json), then import it into the director. Use the following command to
accomplish this:

I $ openstack baremetal import --json ~/instackenv.json

This imports the template and registers each node from the template into the director.

Assign the kernel and ramdisk images to all nodes:
I $ openstack baremetal configure boot

The nodes are now registered and configured in the director.

2.3. MANUALLY TAGGING THE NODES

After registering each node, you will need to inspect the hardware and tag the node into a specific profile.
Profile tags match your nodes to flavors, and in turn the flavors are assigned to a deployment role.

To inspect and tag new nodes, follow these steps:

1. Trigger hardware introspection to retrieve the hardware attributes of each node:

I $ openstack baremetal introspection bulk start

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes
for bare metal nodes.

2. Retrieve a list of your nodes to identify their UUIDs:

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

I $ ironic node-list

3. Add a profile option to the properties/capabilities parameter for each node to manually

tag a node to a specific profile.

For example, a typical deployment will use three profiles: control, compute, and ceph-

storage. The following commands tag three nodes for each profile:

$ ironic node-update la4e30da-b6dc-499d-ba87-0bd8a3819bco

add

properties/capabilities="'profile:control, boot_option:local’
$ ironic node-update 6fabala9-e2d8-4b7c-95a2-c7fbdc12129a add
properties/capabilities="'profile:control, boot_option:local’

$ ironic node-update 5e3b2f50-fcd9-4404-b0a2-59d79924b38e

add

properties/capabilities="'profile:control, boot_option:local’

$ ironic node-update 484587b2-b3b3-40d5-925b-a26a2fa3036f

add

properties/capabilities="profile:compute, boot_option:local’

$ ironic node-update d010460b-38f2-4800-9cc4-d69f0do67efe

add

properties/capabilities="profile:compute, boot_option:local’

$ ironic node-update d930e613-3e14-44b9-8240-4f3559801eab

add

properties/capabilities="profile:compute, boot_option:local’

$ ironic node-update da®cc61b-4882-45e0-9f43-fab65cf4e52b
properties/capabilities="profile:ceph-storage, boot_option
$ ironic node-update b9f70722-e124-4650-a9bl-aade8121b5ed
properties/capabilities="profile:ceph-storage, boot_option
$ ironic node-update 68bf8f29-7731-4148-bal6-efb31ab8d34f
properties/capabilities="profile:ceph-storage, boot_option

TIP

add

:local'

add

:local'

add

:local'

You can also configure a new custom profile that will allow you to tag a node for the Ceph MON
and Ceph MDS services. See Section 2.4, “Deploying Other Ceph Services on Dedicated

Nodes” for details.

The addition of the profile option tags the nodes into each respective profiles.

NOTE

As an alternative to manual tagging, use the Automated Health Check (AHC) Tools to

automatically tag larger numbers of nodes based on benchmarking data.

2.4. DEPLOYING OTHER CEPH SERVICES ON DEDICATED NODES

By default, the director deploys the Ceph MON and Ceph MDS services on the Controller nodes. This is
suitable for small deployments. However, with larger deployments we advise that you deploy the Ceph
MON and Ceph MDS services on dedicated nodes to improve the performance of your Ceph cluster. You

can do this by creating a custom role for either one.

NOTE

For detailed information about custom roles, see Creating a New Role from the Advanced

Overcloud Customization guide.

The director uses the following file as a default reference for all overcloud roles:

10

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization/#sect-Creating_a_New_Role
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization/

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

/usr/share/openstack-tripleo-heat-templates/roles_data.yaml

Copy this file to /home/stack/templates/ so you can add custom roles to it:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml
/home/stack/templates/roles_data_custom.yaml

You invoke the /home/stack/templates/roles_data_custom.yaml file later during overcloud
creation (Section 2.14, “Creating the Overcloud”). The following sub-sections describe how to configure
custom roles for either Ceph MON and Ceph MDS services.

2.4.1. Creating a Custom Role and Flavor for the Ceph MON Service

This section describes how to create a custom role (named CephMon) and flavor (named ceph-mon) for
the Ceph MON role. You should already have a copy of the default roles data file as described in
Section 2.4, “Deploying Other Ceph Services on Dedicated Nodes”.

1. Open the /home/stack/templates/roles_data_custom.yaml file.

2. Remove the service entry for the Ceph MON service (namely,
OS::TripleO::Services::CephMon) from under the Controller role:

[...]

- name: Controller # the 'primary'
CountDefault: 1
ServicesDefault:
- 0S::TripleO::Services: :CACerts
- 0S::TripleO::Services: :CephMds

role goes first

- 0S::TripleO::Services: :CephMon // g
- 0S::Triple0::Services: :CephExternal
- 0S::Triple0::Services: :CephRbdMirror
- 0S::Triple0::Services: :CephRgw
- 0S::Triple0::Services::CinderApi
[...]

ﬂ Comment out this line. This same service will be added to a custom role in the next step.

3. Atthe end of roles_data_custom.yaml, add a custom CephMon role containing the Ceph
MON service and all the other required node services. For example:

- name: CephMon

ServicesDefault:
- 0S::TripleO::Services: :CACerts
- 0S::Triple0::Services: :CephMon
- 0S::Triple0::Services: :Kernel
- 0S::Triple0::Services: :Ntp
- 0S::TripleO::Services: :Timezone
- 0S::Triple0::Services: :Snmp
- 0S::TripleO::Services: :Sshd
- 0S::TripleO::Services::TripleoPackages
- 0S::Triple0::Services::TripleoFirewall
- 0S::TripleO::Services::SensuClient

11

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

- 0S::TripleO::Services::FluentdClient
- 0S::TripleO::Services: :AuditD
- 0S::TripleO::Services::Collectd

4. Using the openstack flavor create command, define a new flavor named ceph-mon for
this role:

$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4
ceph-mon

NOTE

For more details about this command, run openstack flavor create --
help.

5. Map this flavor to a new profile, also named ceph-mon:
$ openstack flavor set --property "cpu_arch"="x86_64" --property

"capabilities:boot_option"="local" --property
"capabilities:profile"="ceph-mon" ceph-mon

NOTE
For more details about this command, run openstack flavor set --help.
Tag nodes into the new ceph-mon profile:

$ ironic node-update UUID add properties/capabilities='profile:ceph-
mon, boot_option:local'

See Section 2.3, “Manually Tagging the Nodes” for more details about tagging nodes. See also Tagging
Nodes Into Profiles for related information on custom role profiles.

IMPORTANT

After defining the custom role, you need to configure its port assignments. See
Section 2.4.3, “Configuring Port Assignments for Custom Roles” for instructions.

2.4.2. Creating a Custom Role and Flavor for the Ceph MDS Service

This section describes how to create a custom role (hamed CephMDS) and flavor (hamed ceph-mds) for
the Ceph MDS role. You should already have a copy of the default roles data file as described in
Section 2.4, “Deploying Other Ceph Services on Dedicated Nodes”.

1. Open the /home/stack/templates/roles_data_custom.yaml file.

2. Remove the service entry for the Ceph MDS service (namely,
OS::TripleO::Services::CephMds) from under the Controller role:

[...]
- name: Controller # the 'primary' role goes first
CountDefault: 1

12

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage/#sect-Tagging_Nodes_into_Profiles

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

ServicesDefault:

- 0S::TripleO::Services: :CACerts

- 0S::TripleO::Services: :CephMds // g
- 0S::Triple0::Services: :CephMon
- 0S::Triple0::Services: :CephExternal
- 0S::Triple0::Services: :CephRbdMirror
- 0S::Triple0::Services: :CephRgw
- 0S::Triple0::Services::CinderApi
[...]

ﬂ Comment out this line. This same service will be added to a custom role in the next step.

3. Atthe end of roles_data_custom.yaml, add a custom CephMDS role containing the Ceph
MDS service and all the other required node services. For example:

- name: CephMDS

ServicesDefault:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:
- 0S::TripleO:

The Ceph MDS service requires the admin keyring, which can be set by either Ceph MON
or Ceph Client service. As we are deploying Ceph MDS on a dedicated node (without the

:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:
:Services:

:CACerts
:CephMds
:cephclient // €
:Kernel

:Ntp

:Timezone

:Snmp

:Sshd
:TripleoPackages
:TripleoFirewall
:SensuClient
:FluentdClient
:AuditD
:Collectd

Ceph MON service), include the Ceph Client service on the role as well.

4. Using the openstack flavor create command, define a new flavor named ceph-mds for

this role:

I $ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4

ceph-mds

NOTE

For more details about this command, run openstack flavor create --

help.

5. Map this flavor to a new profile, also named ceph-mds:

$ openstack flavor set --property "cpu_arch"="x86_64" --property
"capabilities:boot_option"="local" --property
"capabilities:profile"="ceph-mds" ceph-mds

13

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

NOTE

For more details about this command, run openstack flavor set --help.
Tag nodes into the new ceph-mds profile:

$ ironic node-update UUID add properties/capabilities='profile:ceph-
mds, boot_option:local'

See Section 2.3, “Manually Tagging the Nodes” for more details about tagging nodes. See also Tagging
Nodes Into Profiles for related information on custom role profiles.

IMPORTANT

After defining the custom role, you need to configure its port assignments. See
Section 2.4.3, “Configuring Port Assignments for Custom Roles” for instructions.

2.4.3. Configuring Port Assignments for Custom Roles

The default Heat templates in /usr/share/openstack-tripleo-heat-templates/ provide the
necessary network settings for the default roles. These settings include how IP addresses and ports
should be assigned for each service on each node.

Custom roles (like CephMds in Section 2.4.2, “Creating a Custom Role and Flavor for the Ceph MDS
Service” and CephMon in Section 2.4.1, “Creating a Custom Role and Flavor for the Ceph MON
Service”) do not have the required port assignment Heat templates, so you need to define these yourself.
To do so, create a new Heat template named ports.yaml in /home/stack/templates containing
the following snippet for each custom role:

resource_registry:

0S::Triple0::ROLE: :Ports::ExternalPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/external.yaml

0S::Triple0::ROLE: :Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

0S::Triple0::ROLE: :Ports::StoragePort: /usr/share/openstack-tripleo-
heat-templates/network/ports/storage.yaml

0S::TripleO::ROLE: :Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml

0S::Triple0::ROLE: :Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml

0S::TripleO::ROLE: :Ports::ManagementPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/management.yaml

Replace ROLE with the custom role name. For example, if you create the CephMds and CephMon roles
(as described in Section 2.4.2, “Creating a Custom Role and Flavor for the Ceph MDS Service” and
Section 2.4.1, “Creating a Custom Role and Flavor for the Ceph MON Service”), your
/home/stack/templates/ports.yaml should contain:

resource_registry:

0S::Triple0: :CephMds: :Ports: :ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml

0S::TripleO::CephMds: :Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

0S::TripleO::CephMds: :Ports: :StoragePort: /usr/share/openstack-tripleo-

14

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage/#sect-Tagging_Nodes_into_Profiles

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

heat-templates/network/ports/storage.yaml
0S::TripleO::CephMds: :Ports: :StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml
0S::Triple0: :CephMds: :Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml
0S::Triple0: :CephMds: :Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

0S::Triple0: :CephMon: :Ports: :ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml

0S::TripleO::CephMon: :Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml

0S::TripleO::CephMon: :Ports: :StoragePort: /usr/share/openstack-tripleo-
heat-templates/network/ports/storage.yaml

0S::TripleO::CephMon: :Ports: :StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/storage_mgmt.yaml

0S::Triple0: :CephMon: :Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml

0S::TripleO: :CephMon: :Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/management.yaml

When you deploy the overcloud (Section 2.14, “Creating the Overcloud”), include the
/home/stack/templates/ports.yaml environment file. See Selecting Networks to Deploy (from
the Advanced Overcloud Customization guide) for more details on configuring port assignments for
custom roles.

2.5. DEFINING THE ROOT DISK FOR CEPH STORAGE NODES
Most Ceph Storage nodes use multiple disks. This means the director needs to identify the disk to use
for the root disk when provisioning a Ceph Storage node. There are several properties you can use to
help identify the root disk:

e model (String): Device identifier.

e vendor (String): Device vendor.

e serial (String): Disk serial number.

e wwhn (String): Unique storage identifier.

e size (Integer): Size of the device in GB.

In this example, we specify the drive to deploy the Overcloud image using the serial number of the disk to
determine the root device.

First, collect a copy of each node’s hardware information that the director obtained from the introspection.
This information is stored in the OpenStack Object Storage server (swift). Download this information to a
new directory:

$ mkdir swift-data

$ cd swift-data

$ export SWIFT_PASSWORD="sudo crudini --get /etc/ironic-
inspector/inspector.conf swift password’

15

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization/#sect-Selecting_Networks_to_Deploy
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

$ for node in $(ironic node-list | grep -v UUID| awk '{print $2}'); do
swift -U service:ironic -K $SWIFT_PASSWORD download ironic-inspector
inspector_data-$node; done

NOTE

This example uses the crudini command, which is available in the crudini package.

This downloads the data from each inspector_data object from introspection. All objects use the
node UUID as part of the object name:

$ 1s -1

inspector_data-15fcOedc-eb8d-4c7f-8dcO-a2a25d5e09e3
inspector_data-46b90a4d-769b-4b26-bb93-50eaefcdb3f4
inspector_data-662376ed-faa8-409c-b8ef-212f9754c9c7
inspector_data-6fc70fe4-92ea-457b-9713-eed499eda206
inspector_data-9238a73a-ec8b-4976-9409-3fcff9a8dca3
inspector_data-9cbhfe693-8d55-47c2-a9d5-10e059a14e07
inspector_data-ad31b32d-e607-4495-815c-2b55ee04cdbl
inspector_data-d376f613-bc3e-4c4b-ad21-847c4ec850f8

Check the disk information for each node. The following command displays each node ID and the disk
information:

$ for node in $(ironic node-list | grep -v UUID| awk '{print $2}'); do
echo "NODE: $node" ; cat inspector_data-$node | jq '.inventory.disks' ;
echo "----- ", done

For example, the data for one node might show three disk:

NODE: 15fcOedc-eb8d-4c7f-8dcO-a2a25d5e09e3

[
{
"size": 299439751168,
"rotational": true,
"vendor": "DELL",
"name": "/dev/sda",
"wwn_vendor_extension": "Oxlead4dcc412a9632b",
"wwn_with_extension": "0x61866da04f3807001ead4dcc412a9632b",
"model": "PERC H330 Mini",
"wwn'": "0x61866da04f380700",
"serial": "61866da04f3807001eaddcc412a9632b"
3
{
"size": 299439751168,
"rotational": true,
"vendor": "DELL",
"name": "/dev/sdb",
"wwn_vendor_extension": "Oxlead4el3cl2e36ad6",
"wwn_with_extension": "0x61866da04f380d001ead4el3cl2e36ad6",
"model": "PERC H330 Mini",
"wwn'": "0Ox61866da04f380d00",
"serial": "61866da04f380d001eadel3cl2e36ad6"
3

16

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

{
"size": 299439751168,
"rotational": true,
"vendor": "DELL",
"name": "/dev/sdc",
"wwn_vendor_extension": "Oxlead4e3lel2l1cfhb45",
"wwn_with_extension": "0x61866da04f37fcO0leade31el21cTb45",
"model": "PERC H330 Mini",
"wwn'": "0x61866da04f37fcO0",
"serial": "61866da04f37fc@0leade3lel21cfh45"
3

For this example, set the root device to disk 2, which has 61866da04f37fc001eade31el121cfh45 as
the serial number. This requires a change to the root_device parameter for the node definition:

$ ironic node-update 15fcOedc-eb8d-4c7f-8dc@-a2a25d5e09e3 add
properties/root_device="'{"serial": "61866da04f37fc00leade3lel21cfb45"}'

This helps the director identify the specific disk to use as the root disk. When we initiate our Overcloud
creation, the director provisions this node and writes the Overcloud image to this disk. The other disks
are used for mapping our Ceph Storage nodes.

IMPORTANT

Do not use name to set the root disk as this value can change when the node boots.

2.6. ENABLING CEPH STORAGE IN THE OVERCLOUD

The Overcloud image already contains the Ceph services and the necessary Puppet modules to
automatically configure both the Ceph OSD nodes and the Ceph Monitor on Controller clusters. The
Overcloud’s Heat template collection also contains the necessary procedures to enable your Ceph
Storage configuration.

However, the director requires some details to enable Ceph Storage and pass on the intended
configuration. You need an environment file to do this:

1. Create the file storage-environment.yaml in your stack user’s templates directory
(~/templates/).

NOTE

For the purposes of this document, ~/templates/storage-
environment.yaml will contain all the custom settings for your environment. It
will override all the default settings applied by the director to your overcloud.

2. If needed, set the following options in ~/templates/storage-environment.yaml as you
see fit:

Option Description Default value

CinderEnablelscsiBackend Enables the iISCSI backend false

17

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

Option Description Default value
CinderEnableRbdBackend Enables the Ceph Storage back end true
CinderBackupBackend Sets ceph or swift as the back end for ceph

volume backups; see Section 2.10, “Configuring
the Backup Service to Use Ceph” for related

details

NovaEnableRbdBackend Enables Ceph Storage for Nova ephemeral true.
storage

GlanceBackend Defines which back end the Image service rbd

should use: rbd (Ceph), swift, or file

GnocchiBackend Defines which back end the Telemetry service rbd
should use: rbd (Ceph), swift, or file

T

NOTE

You can omit an option from ~/templates/storage-environment.yaml if
you intend to use the default setting.

3. Add a parameter_defaults section to ~/templates/storage-environment.yaml. This
section will contain custom settings for your overcloud. For example, to set vxlan as the
network type of the networking service (neutron):

parameter_defaults:
NeutronNetworkType: vxlan

The contents of your environment file will change depending on the settings you apply in the sections that
follow. See Appendix A, Sample Environment File: Creating a Ceph Cluster for a finished example.

2.7. MAPPING THE CEPH STORAGE NODE DISK LAYOUT

The default mapping uses the root disk for Ceph Storage. However, most production environments use
multiple separate disks for storage and partitions for journaling. In this situation, you define a storage
map as part of your environment file (namely, ~/templates/storage-environment.yaml from
Section 2.6, “Enabling Ceph Storage in the Overcloud”).

Edit the storage-environment . yaml file and the following snippet to the parameter_defaults
section:

ExtraConfig:
ceph::profile::params: :osds:

This adds extra Hiera data to the Overcloud, which Puppet uses as custom parameters during
configuration. Use the ceph: :profile: :params: :osds parameter to map the relevant disks and
journal partitions. For example, a Ceph node with four disks might have the following assignments:

18

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

e /dev/sda - The root disk containing the Overcloud image

e /dev/sdb - The disk containing the journal partitions. This is usually a solid state disk (SSD) to
aid with system performance.

e /dev/sdc and /dev/sdd - The OSD disks

For this example, the mapping might contain the following:

ceph::profile::params: :osds:
'/dev/sdc':
journal: '/dev/sdb'
'/dev/sdd':
journal: '/dev/sdb'

If you do not want a separate disk for journals, use co-located journals on the OSD disks. Pass a blank
value to the journal parameters:

ceph::profile::params: :osds:
'/dev/sdb': {}
'/dev/sdc': {}
'/dev/sdd': {}

NOTE

In some nodes, disk paths (for example, /dev/sdb, /dev/sdc) may not point to the
exact same block device during reboots. If this is the case with your CephStorage nodes,
specify each disk through its /dev/disk/by-path/ symlink. For example:

ceph::profile::params: :osds:
'/dev/disk/by-path/pci-0000:00:17.0-ata-2-partl':
journal: '/dev/nvme®Onl'
'/dev/disk/by-path/pci-0000:00:17.0-ata-2-part2':
journal: '/dev/nvme®Onl'

This will ensure that the block device mapping is consistent throughout deployments.

For more information about naming conventions for storage devices, see Persistent
Naming.

You can also deploy Ceph nodes with different types of disks (for example, SSD and SATA disks on the
same physical host). In a typical Ceph deployment, this is configured through CRUSH maps, as
described in Placing Different Pools on Different OSDS. If you are mapping such a deployment, add the
following line to the ExtraConfig section of the storage-environment.yaml:

I ceph::osd_crush_update_on_start: false

Afterwards, save the ~/templates/storage-environment .yaml file so that when we deploy the
Overcloud, the Ceph Storage nodes use our disk mapping. We include this file in our deployment to
initiate our storage requirements.

2.8. CLEANING CEPH STORAGE NODE DISKS

19

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/persistent_naming.html
http://docs.ceph.com/docs/master/rados/operations/crush-map/#placing-different-pools-on-different-osds

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

The Ceph Storage OSDs and journal partitions require GPT disk labels. This means the additional disks
on Ceph Storage require conversion to GPT before installing the Ceph OSD services. For this to happen,
all metadata must be deleted from the disks; this will allow the director to set GPT labels on them.

You can set the director to delete all disk metadata by default by adding the following setting to
/usr/share/instack-undercloud/undercloud.conf:

I clean_nodes=true

With this option, the Bare Metal Provisioning service will run an additional step to boot the nodes and
clean the disks each time the node is set to available. This adds an additional power cycle after the
first introspection and before each deployment. The Bare Metal Provisioning service uses wipefs --
force --all to perform the clean.

' WARNING
A The wipefs --force --all will delete all data and metadata on the disk, but

does not perform a secure erase. A secure erase takes much longer.

2.9. DEPLOY THE CEPH OBJECT GATEWAY
The Ceph Object Gateway provides applications with an interface to object storage capabilities within a
Ceph storage cluster. Upon deploying the Ceph Object Gateway, you can then replace the default Object

Storage service (swift) with Ceph. For more information, see Object Gateway Guide for Red Hat
Enterprise Linux.

To enable a Ceph Object Gateway in your deployment, invoke the following environment file when
creating your overcloud:

/usr/share/openstack-tripleo-heat-templates/environments/ceph-radosgw.yaml
See Section 2.14, “Creating the Overcloud” for more details.

The Ceph Object Gateway acts as a drop-in replacement for the default Object Storage service. As
such, all other services that normally use swift can seamlessly start using the Ceph Object Gateway
instead without further configuration. For example, when configuring the Block Storage Backup service
(cinder-backup) to use the Ceph Object Gateway, set ceph as the target back end (see Section 2.10,
“Configuring the Backup Service to Use Ceph”).

2.10. CONFIGURING THE BACKUP SERVICE TO USE CEPH

The Block Storage Backup service (cinder -backup) is disabled by default. To enable it, invoke the
following environment file when creating your overcloud:

/usr/share/openstack-tripleo-heat-templates/environments/cinder -backup.yaml
See Section 2.14, “Creating the Overcloud” for more details.

When you enable cinder -backup (as in Section 2.9, “Deploy the Ceph Object Gateway”), you can

20

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/object-gateway-guide-for-red-hat-enterprise-linux#overview

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

configure it to store backups in Ceph. This involves adding the following line to the
parameter_defaults of your environment file (namely,~/templates/storage-
environment.yaml):

I CinderBackupBackend: ceph

2.11. CONFIGURING MULTIPLE BONDED INTERFACES PER CEPH
NODE

Using a bonded interface allows you to combine multiple NICs to add redundancy to a network
connection. If you have enough NICs on your Ceph nodes, you can take this a step further by creating
multiple bonded interfaces per node.

With this, you can then use a bonded interface for each network connection required by the node. This
provides both redundancy and a dedicated connection for each network.

The simplest implementation of this involves the use of two bonds, one for each storage network used
by the Ceph nodes. These networks are the following:

Front-end storage network (StorageNet)
The Ceph client uses this network to interact with its Ceph cluster.
Back-end storage network (StorageMgmtNet)

The Ceph cluster uses this network to balance data in accordance with the placement group policy of
the cluster. For more information, see Placement Groups (PG) (from the Red Hat Ceph Architecture
Guide).

Configuring this involves customizing a network interface template, as the director does not provide any
sample templates that deploy multiple bonded NICs. However, the director does provide a template that
deploys a single bonded interface — namely, /usr/share/openstack-tripleo-heat-
templates/network/config/bond-with-vlans/ceph-storage.yaml. You can add a bonded
interface for your additional NICs by defining it there.

NOTE

For more detailed instructions on how to do this, see Creating Custom Interface
Templates (from the Advanced Overcloud Customization guide). That section also
explains the different components of a bridge and bonding definition.

The following snippet contains the default definition for the single bonded interface defined by
/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans/ceph-storage.yaml:

type: ovs_bridge // g
name: br-bond
members:

type: ovs_bond // g

name: bondl // e

ovs_options: {get_param: BondInterfaceOvsOptions} a
members: // 9

type: interface

21

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/architecture-guide#placement_groups_pgs
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/architecture-guide
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization/#sect-Creating_Custom_Interface_Templates
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization/

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

name: nic2
primary: true

type: interface
name: nic3

type: vlan // G

device: bondl // a

vlan_id: {get_param: StorageNetworkVlanID}
addresses:

ip_netmask: {get_param: StorageIpSubnet}

type: vlan

device: bond1l

vlan_id: {get_param: StorageMgmtNetworkVlanID}
addresses:

ip_netmask: {get_param: StorageMgmtIpSubnet}

A single bridge named br -bond holds the bond defined by this template. This line defines the
bridge type, namely OVS.

The first member of the br -bond bridge is the bonded interface itself, named bond1. This line
defines the bond type of bond1, which is also OVS.

The default bond is named bond1, as defined in this line.

The ovs_options entry instructs director to use a specific set of bonding module directives.
Those directives are passed through the BondInterfaceOvsOptions, which you can also
configure in this same file. For instructions on how to configure this, see Section 2.11.1,
“Configuring Bonding Module Directives”.

o0 o o

The members section of the bond defines which network interfaces are bonded by bond1. In this
case, the bonded interface uses nic2 (set as the primary interface) and nic3.

o

G The br-bond bridge has two other members: namely, a VLAN for both front-end
(StorageNetwork) and back-end (StorageMgmtNetwork) storage networks.

Q The device parameter defines what device a VLAN should use. In this case, both VLANs will use
the bonded interface bond1.

With at least two more NICs, you can define an additional bridge and bonded interface. Then, you can
move one of the VLANSs to the new bonded interface. This results in added throughput and reliability for
both storage network connections.

When customizing /usr/share/openstack-tripleo-heat-
templates/network/config/bond-with-vlans/ceph-storage.yaml for this purpose, it is
advisable to also use Linux bonds (type: linux_bond) instead of the default OVS (type:
ovs_bond). This bond type is more suitable for enterprise production deployments.

The following edited snippet defines an additional OVS bridge (br -bond2) which houses a new Linux
bond named bond2. The bond2 interface uses two additional NICs (namely, nic4 and nic5) and will be
used solely for back-end storage network traffic:

22

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

type: ovs_bridge
name: br-bond
members:

type: linux_bond

name: bond1l

bonding_options: {get_param: BondInterfaceOvsOptions} // 'ﬂ’
members:

type: interface
name: nic2
primary: true

type: interface
name: nic3

type: vlan
device: bond1l
vlan_id: {get_param: StorageNetworkVlanID}

addresses:

ip_netmask: {get_param: StorageIpSubnet}

type: ovs_bridge
name: br-bond2
members:

type: linux_bond

name: bond2
bonding_options: {get_param: BondInterfaceOvsOptions}

members:

type: interface
name: nic4
primary: true

type: interface
name: nich

type: vlan
device: bondil
vlan_id: {get_param: StorageMgmtNetworkVlanID}

addresses:

ip_netmask: {get_param: StorageMgmtIpSubnet}

ﬂ As bond1 and bond2 are both Linux bonds (instead of OVS), they use bonding_options instead
of ovs_options to set bonding directives. For related information, see Section 2.11.1,
“Configuring Bonding Module Directives”.

For the full contents of this customized template, see Appendix B, Sample Custom Interface Template:
Multiple Bonded Interfaces.

2.11.1. Configuring Bonding Module Directives

23

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

After adding and configuring the bonded interfaces, use the BondInterfaceOvsOptions parameter to
set what directives each should use. You can find this in the parameters: section of
/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-
vlans/ceph-storage.yaml. The following snippet shows the default definition of this parameter
(namely, empty):

BondInterfaceOvsOptions:
default: ''
description: The ovs_options string for the bond interface. Set
things like lacp=active and/or bond_mode=balance-slb
using this option.
type: string

Define the options you need in the default: line. For example, to use 802.3ad (mode 4) and a LACP
rate of 1 (fast), use 'mode=4 lacp_rate=1', asin:

BondInterfaceOvsOptions:
default: 'mode=4 lacp_rate=1'
description: The bonding_options string for the bond interface. Set
things like lacp=active and/or bond_mode=balance-slb
using this option.
type: string

See Appendix C. Open vSwitch Bonding Options (from the Advanced Overcloud Optimization guide) for
other supported bonding options. For the full contents of the customized /usr/share/openstack-
tripleo-heat-templates/network/config/bond-with-vlans/ceph-storage.yaml
template, see Appendix B, Sample Custom Interface Template: Multiple Bonded Interfaces.

2.12. CUSTOMIZING THE CEPH STORAGE CLUSTER

It is possible to override the default configuration parameters for Ceph Storage nodes using the
ExtraConfig hook to define data to pass to the Puppet configuration. There are two methods to pass
this data:

Method 1: Modifying Puppet Defaults

You customize parameters provided to the ceph Puppet module during the overcloud configuration.
These parameters are a part of the ceph: :profile: :params Puppet class defined in
/etc/puppet/modules/ceph/manifests/profile/params.conf. For example, following
environment file snippet customizes the default osd_journal_size parameter from the

ceph: :profile: :params class and overrides any default:

parameter_defaults:
ExtraConfig:
ceph::profile::params::osd_journal_size: 2048

Add this content to an environment file (for example, ceph-settings.yaml) and include it when you
run the openstack overcloud deploy command in Section 2.14, “Creating the Overcloud”. For

example:

$ openstack overcloud deploy --templates -e /home/stack/templates/storage-
environment.yaml -e /home/stack/templates/ceph-settings.yaml

RMathad N Avhitvarmr Panfianivatinn Nafanillia

24

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization/#appe-Bonding_Options
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

WITUIVU <. AIVILLAl y wUlllIyUulduvll woiauily

If Method 1 does not include a specific parameter you need to configure, it is possible to provide arbitrary
Ceph Storage parameters using the ceph: :conf: :args Puppet class. This class accepts parameter
names using a stanza/key format and value to define the parameter’s value. These settings
configure the ceph. conf file on each node. For example, to change themax_open_files parameter
in the global section of the ceph. conf file, use the following structure in an environment file:

parameter_defaults:
ExtraConfig:
ceph::conf::args:
global/max_open_files:
value: 131072

Add this content to an environment file (for example, ceph-settings.yaml) and include it when you
run the openstack overcloud deploy command in Section 2.14, “Creating the Overcloud”. For
example:

$ openstack overcloud deploy --templates -e /home/stack/templates/storage-
environment.yaml -e /home/stack/templates/ceph-settings.yaml

The resulting ceph. conf file should be populated with the following:

[global]
max_open_files = 131072

2.12.1. Assigning Custom Attributes to Different Ceph Pools

By default, Ceph pools created through the director have the same placement group (pg_num and
pgp_num) and sizes. You can use either method in Section 2.12, “Customizing the Ceph Storage
Cluster” to override these settings globally; that is, doing so will apply the same values for all pools.

You can also apply different attributes to each Ceph pool. To do so, use the CephPools resource, as in:

parameter_defaults:
CephPools:
POOL:
size: 5
pg_num: 128
pgp_num: 128

Replace POOL with the name of the pool you want to configure with the size, pg_num, and pgp_num
settings that follow.

TIP

For typical pool configurations of common Ceph use cases, see the Ceph Placement Groups (PGs) per
Pool Calculator. This calculator is normally used to generate the commands for manually configuring
your Ceph pools. In this deployment, the director will configure the pools based on your specifications.

2.13. ASSIGNING NODES AND FLAVORS TO ROLES

Planning an overcloud deployment involves specifying how many nodes and which flavors to assign to

25

https://access.redhat.com/labs/cephpgc/

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

each role. Like all Heat template parameters, these role specifications are declared in the
parameter_defaults section of your environment file (in this case,~/templates/storage-

environment.yaml).
For this purpose, use the following parameters:

Table 2.1. Roles and Flavors for Overcloud Nodes

Heat Template Parameter Description

ControllerCount The number of Controller nodes to scale out

OvercloudControlFlavor The flavor to use for Controller nodes (control)

ComputeCount The number of Compute nodes to scale out

OvercloudComputeFlavor The flavor to use for Compute nodes (compute)

CephStorageCount The number of Ceph storage (OSD) nodes to scale
out

OvercloudCephStorageFlavor The flavor to use for Ceph Storage (OSD) nodes

(ceph-storage)

CephMonCount The number of dedicated Ceph MON nodes to scale
out

CephMdsCount The number of dedicated Ceph MDS nodes to scale
out

OvercloudCephMonFlavor The flavor to use for dedicated Ceph MON nodes
(ceph-mon)

OvercloudCephMdsFlavor The flavor to use for dedicated Ceph MDS nodes
(ceph-mds)

IMPORTANT

The CephMonCount, CephMdsCount, OvercloudCephMonFlavor, and
overcloudCephMdsFlavor parameters (along with the ceph-mon and ceph-mds
flavors) will only be valid if you created a custom CephMON and CephMds role, as
described in Section 2.4, “Deploying Other Ceph Services on Dedicated Nodes”.

For example, to configure the overcloud to deploy three nodes for each role (Controller, Compute, Ceph-
Storage, and CephMon), add the following to your parameter_defaults:

parameter_defaults:
ControllerCount: 3
OvercloudControlFlavor: control
ComputeCount: 3

26

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

OvercloudComputeFlavor: compute
CephStorageCount: 3
OvercloudCephStorageFlavor: ceph-storage
CephMonCount: 3

OvercloudCephMonFlavor: ceph-mon
CephMdsCount: 3

OvercloudCephMdsFlavor: ceph-mds

NOTE

See Creating the Overcloud with the CLI Tools from the Director Installation and Usage
guide for a more complete list of Heat template parameters.

2.14. CREATING THE OVERCLOUD

The creation of the Overcloud requires additional arguments for the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -r
/home/stack/templates/roles_data_custom.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-
radosgw.yaml \

-e /usr/share/openstack-tripleo-heat-templates/environments/cinder -
backup.yaml \

-e /home/stack/templates/storage-environment.yaml \

-e /home/stack/templates/ports.yaml \

--ntp-server pool.ntp.org

The above command uses the following options:

--templates - Creates the Overcloud from the default Heat template collection (namely,
/usr/share/openstack-tripleo-heat-templates/).

-r /home/stack/templates/roles_data_custom.yaml - Specifies the customized
roles definition file from Section 2.4, “Deploying Other Ceph Services on Dedicated Nodes”,
which adds custom roles for either Ceph MON or Ceph MDS services. These roles allow either
service to be installed on dedicated nodes.

-e /usr/share/openstack-tripleo-heat-templates/environments/ceph-
radosgw.yaml - Enables the Ceph Object Gateway, as described in Section 2.9, “Deploy the
Ceph Object Gateway”.

-e /usr/share/openstack-tripleo-heat-templates/environments/cinder -
backup.yaml - Enables the Block Storage Backup service (cinder -backup), as described in
Section 2.10, “Configuring the Backup Service to Use Ceph”.

-e /home/stack/templates/storage-environment.yaml - Adds the environment file
containing our Ceph Storage configuration.

-e /home/stack/templates/ports.yaml - Adds the Heat template that configures the
port assignments for custom roles (see Section 2.4.3, “Configuring Port Assignments for Custom
Roles” for details).

--ntp-server pool.ntp.org - Sets our NTP server.

27

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage/#sect-Creating_the_Overcloud_CLI
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage/

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

See Appendix A, Sample Environment File: Creating a Ceph Cluster for an overview of all the settings
used in /home/stack/templates/storage-environment.yaml.

TIP

You can also use an answers file to invoke all your templates and environment files. For example, you
can use the following command to deploy an identical overcloud:

$ openstack overcloud deploy -r
/home/stack/templates/roles_data_custom.yaml \

--answers-file /home/stack/templates/answers.yaml --ntp-server
pool.ntp.org

In this case, the answers file /home/stack/templates/answers.yaml contains:

templates: /usr/share/openstack-tripleo-heat-templates/
environments:

- /usr/share/openstack-tripleo-heat-templates/environments/ceph-
radosgw.yaml

- /usr/share/openstack-tripleo-heat-templates/environments/cinder-
backup.yaml

- /home/stack/templates/storage-environment.yaml

- /home/stack/templates/ports.yaml

See Including Environment Files in Overcloud Creation for more details

For a full list of options, run:
I $ openstack help overcloud deploy

For more information, see Creating the Overcloud with the CLI Tools in the Director Installation and
Usage guide.

The Overcloud creation process begins and the director provisions your nodes. This process takes some

time to complete. To view the status of the Overcloud creation, open a separate terminal as the stack
user and run:

$ source ~/stackrc
$ heat stack-list --show-nested

2.15. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your Overcloud from
the director host. The director saves this file (overcloudrc) in your stack user's home directory. Run
the following command to use this file:

I $ source ~/overcloudrc

This loads the necessary environment variables to interact with your Overcloud from the director host’s
CLI. To return to interacting with the director’s host, run the following command:

I $ source ~/stackrc

28

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage/#sect-Including_Environment_Files_in_Overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/director_installation_and_usage/#sect-Creating_the_Overcloud_CLI
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/director_installation_and_usage

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

2.16. MONITORING CEPH STORAGE NODES

After completing the Overcloud creation, we recommend that you check the status of the Ceph Storage
Cluster to ensure it is working properly. To do this, log into a Controller node as the heat -admin user:

$ nova list
$ ssh heat-admin@192.168.0.25

Check the health of the cluster:
I $ sudo ceph health

If the cluster has no issues, the command reports back HEALTH_OK. This means the cluster is safe to
use.

Check the status of the Ceph Monitor quorum:
I $ sudo ceph quorum_status

This shows the monitors participating in the quorum and which one is the leader.

Check if all Ceph OSDs are running:
I $ ceph osd stat

For more information on monitoring Ceph Storage clusters, see Monitoring in the Red Hat Ceph Storage
Administration Guide.

2.17. REBOOTING THE ENVIRONMENT
A situation might occur where you need to reboot the environment. For example, when you might need
to modify the physical servers, or you might need to recover from a power outage. In this situation, it is
important to make sure your Ceph Storage nodes boot correctly.
Make sure to boot the nodes in the following order:
e Boot all Ceph Monitor nodes first - This ensures the Ceph Monitor service is active in your
high availability cluster. By default, the Ceph Monitor service is installed on the Controller node.
If the Ceph Monitor is separate from the Controller in a custom role, make sure this custom Ceph

Monitor role is active.

e Boot all Ceph Storage nodes - This ensures the Ceph OSD cluster can connect to the active
Ceph Monitor cluster on the Controller nodes.

Use the following process to reboot the Ceph Storage nodes:

1. Log into a Ceph MON or Controller node and disable Ceph Storage cluster rebalancing
temporarily:

$ sudo ceph osd set noout
$ sudo ceph osd set norebalance

2. Select the first Ceph Storage node to reboot and log into it.

29

https://access.redhat.com/documentation/en/red-hat-ceph-storage/1.3/administration-guide/chapter-3-monitoring

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

3. Reboot the node:

I $ sudo reboot

4. Wait until the node boots.

5. Log into the node and check the cluster status:

I $ sudo ceph -s

Check that the pgmap reports all pgs as normal (active+clean).

6. Log out of the node, reboot the next node, and check its status. Repeat this process until you
have rebooted all Ceph storage nodes.

7. When complete, log into a Ceph MON or Controller node and enable cluster rebalancing again:

$ sudo ceph osd unset noout
$ sudo ceph osd unset norebalance

8. Perform a final status check to verify the cluster reports HEALTH_OK:

I $ sudo ceph status

If a situation occurs where all Overcloud nodes boot at the same time, the Ceph OSD services might not
start correctly on the Ceph Storage nodes. In this situation, reboot the Ceph Storage OSDs so they can
connect to the Ceph Monitor service. Run the following command on each Ceph Storage node:

I $ sudo systemctl restart 'ceph*'
Verify a HEALTH_OK status of the Ceph Storage node cluster with the following command:

I $ sudo ceph status

2.18. SCALING UP THE CEPH CLUSTER

You can scale up the number of Ceph Storage nodes in your overcloud by re-running the deployment
with the number of Ceph Storage nodes you need.

Before doing so, ensure that you have enough nodes for the updated deployment. These nodes must be
registered with the director and tagged accordingly.

Registering New Ceph Storage Nodes

To register new Ceph storage nodes with the director, follow these steps:

1. Log into the director host as the stack user and initialize your director configuration:

I $ source ~/stackrc

2. Define the hardware and power management details for the new nodes in a new node definition
template; for example, instackenv-scale. json.

30

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

3. Import this file to the OpenStack director:
I $ openstack baremetal import --json ~/instackenv-scale.json
Importing the node definition template registers each node defined there to the director.
4. Assign the kernel and ramdisk images to all nodes:

I $ openstack baremetal configure boot

NOTE

For more information about registering new nodes, see Section 2.2, “Registering Nodes”.

Manually Tagging New Nodes

After registering each node, you will need to inspect the hardware and tag the node into a specific profile.
Profile tags match your nodes to flavors, and in turn the flavors are assigned to a deployment role.

To inspect and tag new nodes, follow these steps:

1. Trigger hardware introspection to retrieve the hardware attributes of each node:

I $ openstack baremetal introspection bulk start

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes
for bare metal nodes.

2. Retrieve a list of your nodes to identify their UUIDs:

I $ ironic node-list

3. Add a profile option to the properties/capabilities parameter for each node to manually
tag a node to a specific profile.
For example, the following commands tag three additional nodes with the ceph-storage
profile:

$ ironic node-update 551d81f5-4df2-4e0f-93da-6c5de®b868f7 add
properties/capabilities="profile:ceph-storage,boot_option:local'
$ ironic node-update 5e735154-bd6b-42dd-9cc2-b6195c4196d7 add
properties/capabilities="profile:ceph-storage,boot_option:local'
$ ironic node-update 1a2b090c-299d-4c20-a25d-57dd21a7085b add
properties/capabilities="profile:ceph-storage,boot_option:local'

TIP
If the nodes you just tagged and registered use multiple disks, you can set the director to use a specific

root disk on each node. See Section 2.5, “Defining the Root Disk for Ceph Storage Nodes”for
instructions on how to do so.

31

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

Re-deploying the Overcloud with Additional Ceph Storage Nodes

After registering and tagging the new nodes, you can now scale up the number of Ceph Storage nodes
by re-deploying the overcloud. When you do, set the CephStorageCount parameter in the
parameter_defaults of your environment file (in this case,~/templates/storage-
environment.yaml). In Section 2.13, “Assigning Nodes and Flavors to Roles”, the overcloud is
configured to deploy with 3 Ceph Storage nodes. To scale it up to 6 nodes instead, use:

parameter_defaults:
ControllerCount: 3
OvercloudControlFlavor: control
ComputeCount: 3
OvercloudComputeFlavor: compute
CephStorageCount: 6
OvercloudCephStorageFlavor: ceph-storage
CephMonCount: 3
OvercloudCephMonFlavor: ceph-mon

Upon re-deployment with this setting, the overcloud should now have 6 Ceph Storage nodes instead of 3.

2.19. SCALING DOWN AND REPLACING CEPH STORAGE NODES

In some cases, you may need to scale down your Ceph cluster, or even replace a Ceph Storage node
(for example, if a Ceph Storage node is faulty). In either situation, you need to disable and rebalance any
Ceph Storage node you are removing from the Overcloud to ensure no data loss. This procedure
explains the process for replacing a Ceph Storage node.

NOTE

This procedure uses steps from the Red Hat Ceph Storage Administration Guideto
manually remove Ceph Storage nodes. For more in-depth information about manual
removal of Ceph Storage nodes, see Adding and Removing OSD Nodes from the Red
Hat Ceph Storage Administration Guide.

Log into either a Controller node or a Ceph Storage node as the heat -admin user. The director’s
stack user has an SSH key to access the heat -admin user.

List the OSD tree and find the OSDs for your node. For example, your node to remove might contain the
following OSDs:

-2 0.09998 host overcloud-cephstorage-0

0 0.04999 0sd.0 up 1.00000
1.00000

1 0.04999 osd.1 up 1.00000
1.00000

Disable the OSDs on the Ceph Storage node. In this case, the OSD IDs are 0 and 1.

[heat-admin@overcloud-controller-0 ~]$ sudo ceph osd out 0
[heat-admin@overcloud-controller-0 ~]$ sudo ceph osd out 1

The Ceph Storage cluster begins rebalancing. Wait for this process to complete. You can follow the
status using the following command:

32

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/2/html-single/administration_guide/#adding_and_removing_osd_nodes

CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES

I [heat-admin@overcloud-controller-0 ~]$ sudo ceph -w

Once the Ceph cluster completes rebalancing, log into the Ceph Storage node you are removing (in this
case, overcloud-cephstorage-0) as the heat-admin user and stop the node.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo systemctl disable ceph-o0sd@o
[heat-admin@overcloud-cephstorage-0 ~]$ sudo systemctl disable ceph-osd@1

While logged into overcloud-cephstorage-0, remove it from the CRUSH map so that it no longer
receives data.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd crush remove o0sd.®©
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd crush remove osd.1

Remove the OSD authentication key.
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph auth del osd.®
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph auth del osd.1

Remove the OSD from the cluster.

[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd rm 0
[heat-admin@overcloud-cephstorage-0 ~]$ sudo ceph osd rm 1

Leave the node and return to the director host as the stack user.

[heat-admin@overcloud-cephstorage-0 ~]$ exit
[stack@director ~]$

Disable the Ceph Storage node so the director does not reprovision it.

[stack@director ~]$ ironic node-list
[stack@director ~]$ ironic node-set-maintenance UUID true

Removing a Ceph Storage node requires an update to the overcloud stack in the director using the
local template files. First identify the UUID of the Overcloud stack:

I $ heat stack-list

Identify the UUIDs of the Ceph Storage node to delete:

I $ nova list

Run the following command to delete the node from the stack and update the plan accordingly:

$ openstack overcloud node delete --stack STACK UUID --templates -e
ENVIRONMENT_FILE NODE_UUID

33

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

IMPORTANT

If you passed any extra environment files when you created the overcloud, pass them
again here using the -e option to avoid making undesired changes to the overcloud. For
more information, see Modifying the Overcloud Environment (from Director Installation
and Usage).

Wait until the stack completes its update. Monitor the stack update using the heat stack-list --
show-nested command.

Add new nodes to the director’s node pool and deploy them as Ceph Storage nodes. Use the
CephStorageCount parameter in the parameter_defaults of your environment file (in this case,
~/templates/storage-environment.yaml) to define the total number of Ceph Storage nodes in
the Overcloud. For example:

parameter_defaults:
ControllerCount: 3
OvercloudControlFlavor: control
ComputeCount: 3
OvercloudComputeFlavor: compute
CephStorageCount: 3
OvercloudCephStorageFlavor: ceph-storage
CephMonCount: 3
OvercloudCephMonFlavor: ceph-mon

See Section 2.13, “Assigning Nodes and Flavors to Roles” for details on how to define the number of
nodes per role.

Upon updating your environment file, re-deploy the overcloud as normal:
I $ openstack overcloud deploy --templates -e ENVIRONMENT_FILES

The director provisions the new node and updates the entire stack with the new node’s detalils.

Log into a Controller node as the heat -admin user and check the status of the Ceph Storage node. For
example:

I [heat-admin@overcloud-controller-0 ~]$ sudo ceph status

Confirm that the value in the osdmap section matches the number of desired nodes in your cluster. The
Ceph Storage node you removed has now been replaced with a new node.

2.20. ADDING AND REMOVING OSD DISKS FROM CEPH STORAGE
NODES

In situations when an OSD disk fails and requires a replacement, use the standard instructions from the
Red Hat Ceph Storage Administration Guide:

e "Adding an OSD"

e "Removing an OSD"

34

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage#sect-Modifying_the_Overcloud_Environment
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/administration-guide/#adding_an_osd
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/administration-guide/#removing_an_osd

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE
CLUSTER WITH AN OVERCLOUD

This chapter describes how to create an Overcloud and integrate it with an existing Ceph Storage
Cluster. For instructions on how to create both Overcloud and Ceph Storage Cluster, see Chapter 2,
Creating an Overcloud with Ceph Storage Nodes instead.

The scenario described in this chapter consists of six nodes in the Overcloud:
e Three Controller nodes with high availability.
e Three Compute nodes.

The director will integrate a separate Ceph Storage Cluster with its own nodes into the Overcloud. You
manage this cluster independently from the Overcloud. For example, you scale the Ceph Storage cluster
using the Ceph management tools and not through the OpenStack Platform director. Consult the Red Hat
Ceph documentation for more information.

All OpenStack machines are bare metal systems using IPMI for power management. These nodes do
not require an operating system because the director copies a Red Hat Enterprise Linux 7 image to each
node.

The director communicates to the Controller and Compute nodes through the Provisioning network
during the introspection and provisioning processes. All nodes connect to this network through the native
VLAN. For this example, we use 192.0.2.0/24 as the Provisioning subnet with the following IP address
assignments:

Node Name IP Address MAC Address IPMI IP Address
Director 192.0.2.1 aa:aa:aa:aa:aa:aa

Controller 1 DHCP defined b1:b1:b1:b1:b1:b1 192.0.2.205
Controller 2 DHCP defined b2:b2:b2:b2:b2:b2 192.0.2.206
Controller 3 DHCP defined b3:03:b3:b3:b3:b3 192.0.2.207
Compute 1 DHCP defined cl:cl:cl:ci:cl:cl 192.0.2.208
Compute 2 DHCP defined c2:c2:c2:c2:c2:c2 192.0.2.209
Compute 3 DHCP defined ¢3:¢3:¢3:c3:c3:c3 192.0.2.210

3.1. CONFIGURING THE EXISTING CEPH STORAGE CLUSTER

1. Create the following pools in your Ceph cluster relevant to your environment:

e volumes: Storage for OpenStack Block Storage (cinder)

e images: Storage for OpenStack Image Storage (glance)

35

https://access.redhat.com/documentation/en/red-hat-ceph-storage/

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

e vms: Storage for instances
e backups: Storage for OpenStack Block Storage Backup (cinder-backup)

e metrics: Storage for OpenStack Telemetry Metrics (gnocchi)
Use the following commands as a guide:

[root@ceph ~]# ceph osd pool create volumes PGNUM
[root@ceph ~]# ceph osd pool create images PGNUM
[root@ceph ~]# ceph osd pool create vms PGNUM

[root@ceph ~]# ceph osd pool create backups PGNUM
[root@ceph ~]# ceph osd pool create metrics PGNUM

Replace PGNUM with the number of placement groups. We recommend approximately 100
per OSD. For example, the total number of OSDs multiplied by 100 divided by the number of
replicas (osd pool default size). You can also use the Ceph Placement Groups
(PGs) per Pool Calculator to determine a suitable value.

2. Create a client.openstack user in your Ceph cluster with the following capabilities:

e cap_mon:allow r

e cap_osd:allow class-read object_prefix rbd_children, allow rwx
pool=volumes, allow rwx pool=vms, allow rwx pool=images, allow rwx
pool=backups, allow rwx pool=metrics
Use the following command as a guide:

[root@ceph ~]# ceph auth add client.openstack mon 'allow r' osd
'allow class-read object_prefix rbd_children, allow rwx
pool=volumes, allow rwx pool=vms, allow rwx pool=images, allow
rwx pool=backups, allow rwx pool=metrics'

3. Next, note the Ceph client key created for the client.openstack user:

[root@ceph ~]# ceph auth list

client.openstack

key: AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJEXQASRNRQ==

caps: [mon] allow r

caps: [osd] allow class-read object_prefix rbd_children, allow rwx
pool=volumes, allow rwx pool=vms, allow rwx pool=images, allow rwx
pool=backups, allow rwx pool=metrics

The key value here (AQDLOh1VgEp6FRAAFzT7Zw+Y9V6JJExQAsRnRQ==) is your Ceph
client key.

4. Finally, note the file system ID of your Ceph Storage cluster. This value is specified with the
fsid setting in the configuration file of your cluster (under the [global] section):

[global]
fsid = 4b5c8c0a-ff60-454b-alb4-9747aa737d19

36

https://access.redhat.com/labs/cephpgc/

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD

NOTE

For more information about the Ceph Storage cluster configuration file, see
Configuration Reference (from the Red Hat Ceph Storage Configuration Guide).

The Ceph client key and file system ID will both be used later in Section 3.5, “Integrating with the Existing
Ceph Storage Cluster”.

3.2. INITIALIZING THE STACK USER

Log into the director host as the stack user and run the following command to initialize your director

configuration:

I $ source ~/stackrc

This sets up environment variables containing authentication details to access the director’s CLI tools.

3.3. REGISTERING NODES

A node definition template (instackenv. json) is a JSON format file and contains the hardware and
power management details for registering nodes. For example:

{
"nodes": [
{
"mac": [
"bb:bb:bb:bb:bb:bb"

1,
Ilcpull : |I4Il,
"memory":"6144",
Ildiskll : ll40||,

"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password":"p@55word!",
"pm_addr":"192.0.2.205"

"mac": [
"cc:cc:cc:cc:cc:cc"
1,
"CpU" : |I4Il,
"memory":"6144",
lldiskll . ll40||
. 4

"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password":"p@55word!",
"pm_addr":"192.0.2.206"

"mac": [
"dd:dd:dd:dd:dd:dd"
1,

37

https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/configuration-guide#configuration_reference
https://access.redhat.com/documentation/en/red-hat-ceph-storage/2/single/configuration-guide

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

"CpU" : |I4Il,
"memory":"6144",
Ildiskll : ll40||,

"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password":"p@55word!",
"pm_addr":"192.0.2.207"

"mac": [
"ee:ee:ee:ee:ee:ee"
1
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55werd!",
"pm_addr":"192.0.2.208"

"mac": [
"ffiffiff . ff:ff.ff"
1,
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55werd!",
"pm_addr":"192.0.2.209"

"mac": [
"99:99:99:99:99:99"
1
"cpu":"4",
"memory":"6144",
"disk":"40",
"arch":"x86_64",
"pm_type":"pxe_ipmitool",
"pm_user":"admin",
"pm_password" :"p@55weOrd!",
"pm_addr":"192.0.2.210"

After creating the template, save the file to the stack user’'s home directory
(/home/stack/instackenv. json), then import it into the director. Use the following command to
accomplish this:

I $ openstack baremetal import --json ~/instackenv.json

38

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD

This imports the template and registers each node from the template into the director.

Assign the kernel and ramdisk images to all nodes:
I $ openstack baremetal configure boot

The nodes are now registered and configured in the director.

3.4. MANUALLY TAGGING THE NODES

After registering each node, you will need to inspect the hardware and tag the node into a specific profile.
Profile tags match your nodes to flavors, and in turn the flavors are assigned to a deployment role.

To inspect and tag new nodes, follow these steps:

1. Trigger hardware introspection to retrieve the hardware attributes of each node:

I $ openstack baremetal introspection bulk start

IMPORTANT

Make sure this process runs to completion. This process usually takes 15 minutes
for bare metal nodes.

2. Retrieve a list of your nodes to identify their UUIDs:

I $ ironic node-list

3. Add a profile option to the properties/capabilities parameter for each node to manually
tag a node to a specific profile.
For example, to tag three nodes to use the control profile and another three nodes to use the
compute profile, run:

$ ironic node-update la4e30da-b6dc-499d-ba87-0bd8a3819bc® add
properties/capabilities="'profile:control, boot_option:local’
$ ironic node-update 6fabala9-e2d8-4b7c-95a2-c7fbdc12129a add
properties/capabilities="'profile:control, boot_option:local’
$ ironic node-update 5e3b2f50-fcd9-4404-b0a2-59d79924b38e add
properties/capabilities="profile:control, boot_option:local’
$ ironic node-update 484587b2-b3b3-40d5-925b-a26a2fa3036f add
properties/capabilities="profile:compute, boot_option:local’
$ ironic node-update d010460b-38f2-4800-9cc4-d69f0do67efe add
properties/capabilities="profile:compute, boot_option:local’
$ ironic node-update d930e613-3e14-44b9-8240-4f3559801ea6 add
properties/capabilities="profile:compute, boot_option:local’

The addition of the profile option tags the nodes into each respective profiles.

NOTE

As an alternative to manual tagging, use the Automated Health Check (AHC) Tools to
automatically tag larger numbers of nodes based on benchmarking data.

39

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

3.5. INTEGRATING WITH THE EXISTING CEPH STORAGE CLUSTER

Create a copy of /usr/share/openstack-tripleo-heat-templates/environments/puppet-
ceph-external.yaml to a directory in your stack user's home directory:

[stack@director ~]# mkdir templates
[stack@director ~]# cp /usr/share/openstack-tripleo-heat-
templates/environments/puppet-ceph-external.yaml ~/templates/.

Edit the file and set the following parameters:

e Set the CephExternal resource definition to an absolute path:

0S::Triple0::Services: :CephExternal: /usr/share/openstack-tripleo-heat-
templates/puppet/services/ceph-external.yaml

e Set the following three parameters using your Ceph Storage environment details:

o CephClientKey: the Ceph client key of your Ceph Storage cluster. This is the value ofkey
you retrieved earlier in Section 3.1, “Configuring the Existing Ceph Storage Cluster” (for
example, AQDLOh1VgEp6FRAAFZzT7Zw+Y9V6JJEXQASRNRQ==).

o CephExternalMonHost: a comma-delimited list of the IPs of all MON hosts in your Ceph
Storage cluster.

o CephClusterFSID: the file system ID of your Ceph Storage cluster. This is the value of
fsid in your Ceph Storage cluster configuration file, which you retrieved earlier in
Section 3.1, “Configuring the Existing Ceph Storage Cluster”(for example, 4b5c8c0a -
ff60-454b-alb4-9747aa737d19).

e Add the following parameter to set vx1lan as the neutron network type:

o NeutronNetworkType: vxlan

e If necessary, also set the name of the OpenStack pools and the client user using the following
parameters and values:

o CephClientUserName: openstack

o NovaRbdPoolName: vms

o CinderRbdPoolName: volumes

o GlanceRbdPoolName: images

o CinderBackupRbdPoolName: backups

o GnocchiRbdPoolName: metrics

3.6. BACKWARDS COMPATIBILITY WITH OLDER VERSIONS OF RED
HAT CEPH STORAGE

If you are integrating Red Hat OpenStack Platform with an external Ceph Storage Cluster from an earlier
version (that is, Red Hat Ceph Storage 1.3), you need to enable backwards compatibility. To do so, first

40

CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD

create an environment file (for example, /home/stack/templates/ceph-backwards-
compatibility.yaml) containing the following:

parameter_defaults:
RbdDefaultFeatures: 1

Include this file in your overcloud deployment, described in Section 3.8, “Creating the Overcloud”.

Alternatively, you can also uncomment the following line from /home/stack/templates/puppet-
ceph-external.yaml (which you copied earlier in Section 3.5, “Integrating with the Existing Ceph
Storage Cluster”):

I # RbdDefaultFeatures: 1

3.7. ASSIGNING NODES AND FLAVORS TO ROLES

Planning an overcloud deployment involves specifying how many nodes and which flavors to assign to
each role. Like all Heat template parameters, these role specifications are declared in the
parameter_defaults section of your environment file (in this case,~/templates/puppet -
ceph.yaml.).

For this purpose, use the following parameters:

Table 3.1. Roles and Flavors for Overcloud Nodes

Heat Template Parameter Description

ControllerCount The number of Controller nodes to scale out
OvercloudControlFlavor The flavor to use for Controller nodes (control)
ComputeCount The number of Compute nodes to scale out
OvercloudComputeFlavor The flavor to use for Compute nodes (compute)

For example, to configure the overcloud to deploy three nodes for each role (Controller and Compute),
add the following to your parameter_defaults:

parameter_defaults:
ControllerCount: 3
ComputeCount: 3
OvercloudControlFlavor: control
OvercloudComputeFlavor: compute

NOTE

See Creating the Overcloud with the CLI Tools from the Director Installation and Usage
guide for a more complete list of Heat template parameters.

3.8. CREATING THE OVERCLOUD

41

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage/#sect-Creating_the_Overcloud_CLI
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage/

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

The creation of the Overcloud requires additional arguments for the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -e -e
/home/stack/templates/puppet-ceph-external.yaml --ntp-server pool.ntp.org

The above command uses the following options:

e --templates - Creates the Overcloud from the default Heat template collection (namely,
/usr/share/openstack-tripleo-heat-templates/).

e -e /home/stack/templates/puppet-ceph-external.yaml - Adds an additional
environment file to the Overcloud deployment. In this case, it is the storage environment file
containing the configuration for the existing Ceph Storage Cluster.

e --ntp-server pool.ntp.org - Sets our NTP server.

For a full list of options, run:
I $ openstack help overcloud deploy

For more information, see Creating the Overcloud with the CLI Tools in the Director Installation and
Usage guide.

The Overcloud creation process begins and the director provisions your nodes. This process takes some
time to complete. To view the status of the Overcloud creation, open a separate terminal as the stack

user and run:

$ source ~/stackrc
$ heat stack-list --show-nested

This configures the Overcloud to use your external Ceph Storage cluster. Note that you manage this
cluster independently from the Overcloud. For example, you scale the Ceph Storage cluster using the
Ceph management tools and not through the OpenStack Platform director.

3.9. ACCESSING THE OVERCLOUD

The director generates a script to configure and help authenticate interactions with your Overcloud from
the director host. The director saves this file (overcloudrc) in your stack user's home directory. Run

the following command to use this file:
I $ source ~/overcloudrc

This loads the necessary environment variables to interact with your Overcloud from the director host’s
CLI. To return to interacting with the director’s host, run the following command:

I $ source ~/stackrc

42

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/director_installation_and_usage/#sect-Creating_the_Overcloud_CLI
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/12/html-single/director_installation_and_usage

CHAPTER 4. CONCLUSION

CHAPTER 4. CONCLUSION

This concludes the creation and configuration of Overcloud with Red Hat Ceph Storage. For general
Overcloud post-creation functions, see Performing Tasks after Overcloud Creation in the Director
Installation and Usage guide.

43

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage#chap-Performing_Tasks_after_Overcloud_Creation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/director_installation_and_usage

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A

CEPH CLUSTER

The following custom environment file uses many of the options described throughout Chapter 2,
Creating an Overcloud with Ceph Storage Nodes. This sample does not include any commented-out
options. For an overview on environment files, see Environment Files (from the Advanced Overcloud
Customization guide).

/home/stack/templates/storage-environment.yaml

® 6 6 o o

44

parameter_defaults: // g

CinderBackupBackend: ceph // 9

ExtraConfig:
ceph::profile::params::osds: // e
'/dev/sdc':
journal: '/dev/sdb'
'/dev/sdd"':

journal: '/dev/sdb'
CephPools: // a
volumes:

size: 5

pg_num: 128

pgp_num: 128
ControllerCount: 3 // 9
OvercloudControlFlavor: control
ComputeCount: 3
OvercloudComputeFlavor: compute
CephStorageCount: 3
OvercloudCephStorageFlavor: ceph-storage
CephMonCount: 3
OvercloudCephMonFlavor: ceph-mon
CephMdsCount: 3
OvercloudCephMdsFlavor: ceph-mds

NeutronNetworkType: vxlan // G

The parameter_defaults section modifies the default values for parameters in all templates.
Most of the entries listed here are described in Section 2.6, “Enabling Ceph Storage in the
Overcloud”.

If you are deploying the Ceph Object Gateway, you can use Ceph Object Storage (ceph-rgw) as a
backup target. To configure this, set CinderBackupBackend to swift. See Section 2.9, “Deploy
the Ceph Object Gateway” for details.

The ceph: :profile: :params: :0sds: : section defines a custom disk layout, as described in
Section 2.7, “Mapping the Ceph Storage Node Disk Layout”.

The CephPools section sets custom attributes for any Ceph pool. This example sets custom size,
pg_num, and pgp_num attributes for the volumes pool. See Section 2.12.1, “Assigning Custom
Attributes to Different Ceph Pools” for more details.

For each role, the *Count parameters assign a number of nodes while the Overcloud*Flavor
parameters assign a flavor. For example, ControllerCount: 3 assigns 3 nodes to the
Controller role, and OvercloudControlFlavor: control sets each of those roles to use the

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization#sect-Environment_Files
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html-single/advanced_overcloud_customization

APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A CEPH CLUSTER

control flavor. See Section 2.13, “Assigning Nodes and Flavors to Roles” for details.

NOTE

The CephMonCount, CephMdsCount, OvercloudCephMonFlavor, and
OovercloudCephMdsFlavor parameters (along with the ceph-mon and ceph-mds
flavors) will only be valid if you created a custom CephMON and CephMds role, as
described in Section 2.4, “Deploying Other Ceph Services on Dedicated Nodes”.

NeutronNetworkType: sets the network type that the neutron service should use (in this case,
vxlan).

45

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE:
MULTIPLE BONDED INTERFACES

The following template is a customized version of /usr/share/openstack-tripleo-heat-
templates/network/config/bond-with-vlans/ceph-storage.yaml. It features multiple
bonded interfaces to isolate back-end and front-end storage network traffic, along with redundancy for
both connections (as described in Section 2.11, “Configuring Multiple Bonded Interfaces Per Ceph
Node”). It also uses custom bonding options (namely, 'mode=4 lacp_rate=1"', as described in
Section 2.11.1, “Configuring Bonding Module Directives”).

/usr/share/openstack-tripleo-heat-templates/network/config/bond-with-vlans/ceph-
storage.yaml (custom)

heat_template_version: 2015-04-30

description: >
Software Config to drive os-net-config with 2 bonded nics on a bridge
with VLANs attached for the ceph storage role.

parameters:

ControlPlanelIp:
default: "'
description: IP address/subnet on the ctlplane network
type: string

ExternalIpSubnet:
default: "'
description: IP address/subnet on the external network
type: string

InternalApiIpSubnet:
default: "'
description: IP address/subnet on the internal API network
type: string

StorageIpSubnet:
default: "'
description: IP address/subnet on the storage network
type: string

StorageMgmtIpSubnet:
default: "'
description: IP address/subnet on the storage mgmt network
type: string

TenantIpSubnet:
default: "'
description: IP address/subnet on the tenant network
type: string

ManagementIpSubnet: # Only populated when including

environments/network-management.yaml

default: "'
description: IP address/subnet on the management network
type: string

BondInterfaceOvsOptions:
default: 'mode=4 lacp_rate=1'
description: The bonding_options string for the bond interface. Set

things like lacp=active and/or bond_mode=balance-slb
using this option.

type: string

46

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

constraints:
- allowed_pattern: "A((?!balance.tcp).)*$"
description: |
The balance-tcp bond mode is known to cause packet loss and
should not be used in BondInterfaceOvsOptions.
ExternalNetworkVvlanID:
default: 10
description: Vlan ID for the external network traffic.
type: number
InternalApiNetworkVlanID:
default: 20
description: Vlan ID for the internal_api network traffic.
type: number
StorageNetworkVvlanID:
default: 30
description: Vlan ID for the storage network traffic.
type: number
StorageMgmtNetworkVlanID:
default: 40
description: Vlan ID for the storage mgmt network traffic.
type: number
TenantNetworkVvlanID:
default: 50
description: Vlan ID for the tenant network traffic.
type: number
ManagementNetworkvlanID:
default: 60
description: Vlan ID for the management network traffic.
type: number
ControlPlaneSubnetCidr: # Override this via parameter_defaults
default: '24'
description: The subnet CIDR of the control plane network.
type: string
ControlPlaneDefaultRoute: # Override this via parameter_defaults
description: The default route of the control plane network.
type: string
ExternalInterfaceDefaultRoute: # Not used by default in this template
default: '10.0.0.1'
description: The default route of the external network.
type: string
ManagementInterfaceDefaultRoute: # Commented out by default in this
template
default: unset
description: The default route of the management network.
type: string
DnsServers: # Override this via parameter_defaults
default: []
description: A list of DNS servers (2 max for some implementations)
that will be added to resolv.conf.
type: comma_delimited_list
EC2MetadataIp: # Override this via parameter_defaults
description: The IP address of the EC2 metadata server.
type: string

resources:
OsNetConfigImpl:

47

Red Hat OpenStack Platform 11 Red Hat Ceph Storage for the Overcloud

type: 0S::Heat::StructuredConfig
properties:
group: os-apply-config
config:
os_net_config:
network_config:
type: interface
name: nicl
use_dhcp: false
dns_servers: {get_param: DnsServers}
addresses:
ip_netmask:
list_join:
_ l/l
- - {get_param: ControlPlanelIp}
- {get_param: ControlPlaneSubnetCidr}
routes:
ip_netmask: 169.254.169.254/32
next_hop: {get_param: EC2Metadatalp}

default: true
next_hop: {get_param: ControlPlaneDefaultRoute}

type: ovs_bridge
name: br-bond
members:
type: linux_bond
name: bond1l
bonding_options: {get_param: BondInterfaceOvsOptions}
members:
type: interface
name: nic2
primary: true

type: interface
name: nic3

type: vlan

device: bond1l

vlan_id: {get_param: StorageNetworkVlanID}
addresses:

ip_netmask: {get_param: StorageIpSubnet}

type: ovs_bridge
name: br-bond2
members:
type: linux_bond
name: bond2
bonding_options: {get_param: BondInterfaceOvsOptions}

48

APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

members:
type: interface
name: nic4
primary: true

type: interface
name: nich

type: vlan

device: bondi

vlan_id: {get_param: StorageMgmtNetworkVlanID}
addresses:

ip_netmask: {get_param: StorageMgmtIpSubnet}
outputs:
0S::stack_id:
description: The OsNetConfigImpl resource.
value: {get_resource: OsNetConfigImpl}

49

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. DEFINING CEPH STORAGE
	1.2. USING CEPH STORAGE IN RED HAT OPENSTACK PLATFORM
	1.3. SETTING REQUIREMENTS
	1.4. DEFINING THE SCENARIOS

	CHAPTER 2. CREATING AN OVERCLOUD WITH CEPH STORAGE NODES
	2.1. INITIALIZING THE STACK USER
	2.2. REGISTERING NODES
	2.3. MANUALLY TAGGING THE NODES
	2.4. DEPLOYING OTHER CEPH SERVICES ON DEDICATED NODES
	2.4.1. Creating a Custom Role and Flavor for the Ceph MON Service
	2.4.2. Creating a Custom Role and Flavor for the Ceph MDS Service
	2.4.3. Configuring Port Assignments for Custom Roles

	2.5. DEFINING THE ROOT DISK FOR CEPH STORAGE NODES
	2.6. ENABLING CEPH STORAGE IN THE OVERCLOUD
	2.7. MAPPING THE CEPH STORAGE NODE DISK LAYOUT
	2.8. CLEANING CEPH STORAGE NODE DISKS
	2.9. DEPLOY THE CEPH OBJECT GATEWAY
	2.10. CONFIGURING THE BACKUP SERVICE TO USE CEPH
	2.11. CONFIGURING MULTIPLE BONDED INTERFACES PER CEPH NODE
	2.11.1. Configuring Bonding Module Directives

	2.12. CUSTOMIZING THE CEPH STORAGE CLUSTER
	2.12.1. Assigning Custom Attributes to Different Ceph Pools

	2.13. ASSIGNING NODES AND FLAVORS TO ROLES
	2.14. CREATING THE OVERCLOUD
	2.15. ACCESSING THE OVERCLOUD
	2.16. MONITORING CEPH STORAGE NODES
	2.17. REBOOTING THE ENVIRONMENT
	2.18. SCALING UP THE CEPH CLUSTER
	2.19. SCALING DOWN AND REPLACING CEPH STORAGE NODES
	2.20. ADDING AND REMOVING OSD DISKS FROM CEPH STORAGE NODES

	CHAPTER 3. INTEGRATING AN EXISTING CEPH STORAGE CLUSTER WITH AN OVERCLOUD
	3.1. CONFIGURING THE EXISTING CEPH STORAGE CLUSTER
	3.2. INITIALIZING THE STACK USER
	3.3. REGISTERING NODES
	3.4. MANUALLY TAGGING THE NODES
	3.5. INTEGRATING WITH THE EXISTING CEPH STORAGE CLUSTER
	3.6. BACKWARDS COMPATIBILITY WITH OLDER VERSIONS OF RED HAT CEPH STORAGE
	3.7. ASSIGNING NODES AND FLAVORS TO ROLES
	3.8. CREATING THE OVERCLOUD
	3.9. ACCESSING THE OVERCLOUD

	CHAPTER 4. CONCLUSION
	APPENDIX A. SAMPLE ENVIRONMENT FILE: CREATING A CEPH CLUSTER
	APPENDIX B. SAMPLE CUSTOM INTERFACE TEMPLATE: MULTIPLE BONDED INTERFACES

