
Red Hat OpenShift Container Storage
4.5

Deploying and managing OpenShift Container
Storage using Google Cloud

How to install and manage

Last Updated: 2021-03-12

Red Hat OpenShift Container Storage 4.5 Deploying and managing
OpenShift Container Storage using Google Cloud

How to install and manage

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Read this document for instructions on installing and managing Red Hat OpenShift Container
Storage on Google Cloud. Deploying and managing OpenShift Container Storage on Google Cloud
is a Technology Preview feature. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during the
development process.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD
1.1. INSTALLING RED HAT OPENSHIFT CONTAINER STORAGE OPERATOR
1.2. CREATING AN OPENSHIFT CONTAINER STORAGE CLUSTER SERVICE IN INTERNAL MODE
1.3. CREATING A NEW BACKING STORE

CHAPTER 2. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT
2.1. VERIFYING THE STATE OF THE PODS
2.2. VERIFYING THE OPENSHIFT CONTAINER STORAGE CLUSTER IS HEALTHY
2.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY
2.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST

CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE
3.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE ON INTERNAL MODE
3.2. REMOVING MONITORING STACK FROM OPENSHIFT CONTAINER STORAGE
3.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT CONTAINER STORAGE

3.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSHIFT CONTAINER STORAGE

CHAPTER 4. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES
4.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT CONTAINER STORAGE
4.2. CONFIGURING MONITORING TO USE OPENSHIFT CONTAINER STORAGE
4.3. CLUSTER LOGGING FOR OPENSHIFT CONTAINER STORAGE

4.3.1. Configuring persistent storage
4.3.2. Configuring cluster logging to use OpenShift Container Storage

CHAPTER 5. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT CONTAINER
STORAGE

CHAPTER 6. SCALING STORAGE NODES
6.1. REQUIREMENTS FOR SCALING STORAGE NODES
6.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR OPENSHIFT CONTAINER STORAGE NODES
ON GOOGLE CLOUD INFRASTRUCTURE
6.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES

6.3.1. Adding a node on Google Cloud installer-provisioned infrastructure
6.3.2. Verifying the addition of a new node
6.3.3. Scaling up storage capacity

CHAPTER 7. MULTICLOUD OBJECT GATEWAY
7.1. ABOUT THE MULTICLOUD OBJECT GATEWAY
7.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR APPLICATIONS

7.2.1. Accessing the Multicloud Object Gateway from the terminal
7.2.2. Accessing the Multicloud Object Gateway from the MCG command-line interface

7.3. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD
7.3.1. Adding storage resources for hybrid or Multicloud using the MCG command line interface
7.3.2. Creating an s3 compatible Multicloud Object Gateway backingstore
7.3.3. Adding storage resources for hybrid and Multicloud using the user interface
7.3.4. Creating a new bucket class
7.3.5. Creating a new backing store

7.4. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS
7.4.1. Creating bucket classes to mirror data using the MCG command-line-interface
7.4.2. Creating bucket classes to mirror data using a YAML
7.4.3. Configuring buckets to mirror data using the user interface

4

5
5
7

10

14
14
15
16
17

19
19
22

25
26

28
28
30
32
33
34

37

39
39

39
41
41

42
42

43
43
43
43
45
48
48
49
51

53
55
57
57
58
58

Table of Contents

1

. .

. .

. .

7.5. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY
7.5.1. About bucket policies
7.5.2. Using bucket policies
7.5.3. Creating an AWS S3 user in the Multicloud Object Gateway

7.6. OBJECT BUCKET CLAIM
7.6.1. Dynamic Object Bucket Claim
7.6.2. Creating an Object Bucket Claim using the command line interface
7.6.3. Creating an Object Bucket Claim using the OpenShift Web Console

7.7. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY ADDING ENDPOINTS
7.7.1. S3 endpoints in the Multicloud Object Gateway
7.7.2. Scaling with storage nodes

CHAPTER 8. MANAGING PERSISTENT VOLUME CLAIMS
8.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT CONTAINER STORAGE
8.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS
8.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS
8.4. DYNAMIC PROVISIONING

8.4.1. About dynamic provisioning
8.4.2. Dynamic provisioning in OpenShift Container Storage
8.4.3. Available dynamic provisioning plug-ins

CHAPTER 9. REPLACING STORAGE NODES
9.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED
INFRASTRUCTURE
9.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

CHAPTER 10. REPLACING STORAGE DEVICES
10.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON GOOGLE CLOUD INSTALLER-
PROVISIONED INFRASTRUCTURE

60
60
61

62
64
64
66
69
71
71
72

75
75
76
77
77
77
78
78

80

80
81

83

83

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

2

Table of Contents

3

PREFACE
Red Hat OpenShift Container Storage 4.5 supports deployment on existing Red Hat OpenShift
Container Platform (OCP) Google Cloud clusters.

NOTE

Only internal Openshift Container Storage clusters are supported on Google Cloud. See
Planning your deployment for more information about deployment requirements.

To deploy OpenShift Container Storage in internal mode, follow the deployment process Deploying
OpenShift Container Storage on Google Cloud.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

4

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/planning_your_deployment/index

CHAPTER 1. DEPLOYING OPENSHIFT CONTAINER STORAGE
ON GOOGLE CLOUD

Deploying OpenShift Container Storage on OpenShift Container Platform using dynamic storage
devices provided by Google Cloud installer-provisioned infrastructure (IPI) enables you to create
internal cluster resources. This results in internal provisioning of the base services, which helps to make
additional storage classes available to applications.

NOTE

Only internal Openshift Container Storage clusters are supported on Google Cloud. See
Planning your deployment for more information about deployment requirements.

1. Install the Red Hat OpenShift Container Storage Operator .

2. Create the OpenShift Container Storage Cluster Service

3. Creating a new backing store

1.1. INSTALLING RED HAT OPENSHIFT CONTAINER STORAGE
OPERATOR

You can install Red Hat OpenShift Container Storage Operator using the Red Hat OpenShift Container
Platform Operator Hub. For information about the hardware and software requirements, see Planning
your deployment.

Prerequisites

You must be logged into the OpenShift Container Platform cluster.

You must have at least three worker nodes in the OpenShift Container Platform cluster.

NOTE

When you need to override the cluster-wide default node selector for OpenShift
Container Storage, you can use the following command in command line interface to
specify a blank node selector for the openshift-storage namespace:

$ oc annotate namespace openshift-storage openshift.io/node-selector=

Procedure

1. Click Operators → OperatorHub in the left pane of the OpenShift Web Console.

Figure 1.1. List of operators in the Operator Hub

CHAPTER 1. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD

5

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html/planning_your_deployment/index
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/#installing-openshift-container-storage-operator-using-the-operator-hub_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#creating-an-openshift-container-storage-service_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#creating-a-new-backing-store_gcp_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/planning_your_deployment/index

Figure 1.1. List of operators in the Operator Hub

2. Click on OpenShift Container Storage.
You can use the Filter by keyword text box or the filter list to search for OpenShift Container
Storage from the list of operators.

3. On the OpenShift Container Storage operator page, click Install.

4. On the Install Operator page, ensure the following options are selected:

a. Update Channel as stable-4.5

b. Installation Mode as A specific namespace on the cluster

c. Installed Namespace as Operator recommended namespace PR openshift-storage. If
Namespace openshift-storage does not exist, it will be created during the operator
installation.

d. Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic
by default.

Approval Strategy as Automatic.

NOTE

When you select the Approval Strategy as Automatic, approval is not
required either during fresh installation or when updating to the latest
version of OpenShift Container Storage.

i. Click Install

ii. Wait for the install to initiate. This may take up to 20 minutes.

iii. Click Operators → Installed Operators

iv. Ensure the Project is openshift-storage. By default, the Project is openshift-
storage.

v. Wait for the Status of OpenShift Container Storage to change to Succeeded.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

6

Approval Strategy as Manual.

NOTE

When you select the Approval Strategy as Manual, approval is required
during fresh installation or when updating to the latest version of
OpenShift Container Storage.

i. Click Install.

ii. On the Installed Operators page, click ocs-operator.

iii. On the Subscription Details page, click the Install Plan link.

iv. On the InstallPlan Details page, click Preview Install Plan.

v. Review the install plan and click Approve.

vi. Wait for the Status of the Components to change from Unknown to either
Created or Present.

vii. Click Operators → Installed Operators

viii. Ensure the Project is openshift-storage. By default, the Project is openshift-
storage.

ix. Wait for the Status of OpenShift Container Storage to change to Succeeded.

Verification steps

Verify that OpenShift Container Storage Operator shows the Status as Succeeded on the
Installed Operators dashboard.

1.2. CREATING AN OPENSHIFT CONTAINER STORAGE CLUSTER
SERVICE IN INTERNAL MODE

Use this procedure to create an OpenShift Container Storage Cluster Service after you install the
OpenShift Container Storage operator.

Prerequisites

The OpenShift Container Storage operator must be installed from the Operator Hub. For more
information, see Installing OpenShift Container Storage Operator using the Operator Hub .

Be aware that the default storage class of Google Cloud uses hard disk drive (HDD). To use
solid state drive (SSD) based disks for better performance, you need to create a storage class,
using pd-ssd as shown in the following ssd-storeageclass.yaml example:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: faster
provisioner: kubernetes.io/gce-pd

CHAPTER 1. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD

7

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/#installing-openshift-container-storage-operator-using-the-operator-hub_gcp

parameters:
 type: pd-ssd
volumeBindingMode: WaitForFirstConsumer

Procedure

1. Click Operators → Installed Operators from the OpenShift Web Console to view the installed
operators. Ensure that the Project selected is openshift-storage .

2. On the Installed Operators page, click Openshift Container Storage.

Figure 1.2. OpenShift Container Storage Operator page

3. On the Installed Operators → Operator Details page, perform either of the following to create
a Storage Cluster Service.

a. On the Details tab → Provided APIs → OCS Storage Cluster, click Create Instance.

Figure 1.3. Operator Details Page

b. Alternatively, select the Storage cluster tab and click Create OCS Cluster Service.

Figure 1.4. Storage Cluster tab

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

8

Figure 1.4. Storage Cluster tab

4. On the Create Storage Cluster page, ensure that the following options are selected:

Figure 1.5. Create Storage Cluster page

a. By default, Select Mode has Internal selected.

CHAPTER 1. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD

9

b. In the Nodes section, for the use of OpenShift Container Storage service, select a minimum
of three or a multiple of three worker nodes from the available list.
For cloud platforms with multiple availability zones, ensure that the Nodes are spread
across different Locations/availability zones.

NOTE

To find specific worker nodes in the cluster, you can filter nodes on the basis
of Name or Label.

Name allows you to search by name of the node

Label allows you to search by selecting the predefined label

For minimum starting node requirements, see Resource requirements section in Planning
guide.

c. Storage Class is set by default to standard for Google Cloud. However, if you created a
storage class to use SSD based disks for better performance, you need to select that
storage class.

d. Select OCS Service Capacity from drop down list.

NOTE

Once you select the initial storage capacity, cluster expansion will only be
performed using the selected usable capacity (times 3 of raw storage).

5. Click Create.

NOTE

The Create button is enabled only after selecting a minimum of three worker
nodes.

Upon successful deployment, a storage cluster with three storage devices gets created. These
devices get distributed across three of the selected nodes. The configuration uses a replication
factor of 3. To scale the initial cluster, see Scaling storage nodes .

Verification steps

To verify that OpenShift Container Storage is successfully installed, see Verifying your
OpenShift Container Storage installation.

1.3. CREATING A NEW BACKING STORE

This procedure is not mandatory. However, it is recommended to perform this procedure.

When you install OpenShift Container Storage on Google Cloud platform, noobaa-default-bucket-
class places data on noobaa-default-backing-store instead of Google Cloud storage. Hence, to use
OpenShift Container Storage Multicloud Object Gateway (MCG) managed object storage backed by
Google Cloud storage, you need to perform the following procedure.

Before you begin

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

10

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/planning_your_deployment/index#resource-requirements_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/managing_openshift_container_storage/index#scaling-storage-nodes_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#verifying-openshift-container-storage-deployment_gcp

Before you begin

1. Log in to Google Cloud web console.

2. Create Google Cloud storage bucket for MCG to store object data as described in Creating
storage buckets documentation. Make sure to have a service account with the Storage Admin
role.
It is recommended to use a separate Google Cloud project to limit this service account from
accessing other data.

3. Download the service account key in JSON format, which is required for the OpenShift
Container Storage configuration.

Prerequisites

Administrator access to OpenShift.

Procedure

To configure MCG to use Google Cloud storage account:

1. Log in to OpenShift Container Platform web console.

2. Click Operators → Installed Operators from the left pane of the OpenShift Web Console to
view the installed operators.

3. Click OpenShift Container Storage Operator.

4. On the OpenShift Container Storage Operator page, scroll right and click the Backing Store
tab.

Figure 1.6. OpenShift Container Storage Operator page with backing store tab

5. Click Create Backing Store.

Figure 1.7. Create Backing Store page

CHAPTER 1. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD

11

https://cloud.google.com/storage/docs/creating-buckets

Figure 1.7. Create Backing Store page

6. On the Create New Backing Store page, perform the following:

a. Enter a name for Backing Store Name.

b. Select Google Cloud Storage as the Provider.

c. Upload the private key JSON file for Secret key.

d. Enter the name of the storage bucket that you created inside the Google Cloud storage
account for Target Bucket. This allows you to create a connection that tells MCG that it can
use this bucket for the system.

e. Click Create Backing Store.

7. In the OpenShift Container Platform web console, click Installed Operators → OpenShift
Container Storage → Bucket Class.

8. Edit noobaa-default-bucket-class YAML specification field spec: placementPolicy: tiers: -
backingStores: to use the newly created backing store instead of noobaa-default-backing-
store.

Verification steps

1. Run the following command by using the MCG command line tool noobaa (from mcg rpm
package) to verify that the Google Cloud storage backing store that you created is in Ready
state.

$ noobaa status -n openshift-storage

2. Verify that the output shows the default bucket class in Ready state and uses the expected
backing store.

.

.

.

- Backing Stores -

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

12

NAME TYPE TARGET-BUCKET PHASE AGE
gcp-backing-store google-cloud-storage ocs-backing-store Ready 10m27s
noobaa-default-backing-store pv-pool Ready 1h58m21s

- Bucket Classes -

NAME PLACEMENT PHASE AGE
noobaa-default-bucket-class {Tiers:[{Placement: BackingStores:[gcp-backing-store]}]}
Ready 1h58m21s

CHAPTER 1. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD

13

CHAPTER 2. VERIFYING OPENSHIFT CONTAINER STORAGE
DEPLOYMENT

Use this section to verify that OpenShift Container Storage is deployed correctly.

2.1. VERIFYING THE STATE OF THE PODS

To determine if OpenShift Container storage is deployed successfully, you can verify that the pods are
in Running state.

Procedure

1. Click Workloads → Pods from the left pane of the OpenShift Web Console.

2. Select openshift-storage from the Project drop down list.
For more information on the expected number of pods for each component and how it varies
depending on the number of nodes, see Table 2.1, “Pods corresponding to OpenShift Container
storage cluster”.

3. Verify that the following pods are in running and completed state by clicking on the Running
and the Completed tabs:

Table 2.1. Pods corresponding to OpenShift Container storage cluster

Component Corresponding pods

OpenShift Container Storage Operator ocs-operator-*

(1 pod on any worker node)

Rook-ceph Operator rook-ceph-operator-*

(1 pod on any worker node)

Multicloud Object Gateway
noobaa-operator-* (1 pod on any worker
node)

noobaa-core-* (1 pod on any storage
node)

nooba-db-* (1 pod on any storage node)

noobaa-endpoint-* (1 pod on any storage
node)

noobaa-default-backing-store-
noobaa-pod-* (1 pod on any storage
node)

MON rook-ceph-mon-*

(3 pods distributed across storage nodes)

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

14

MGR rook-ceph-mgr-*

(1 pod on any storage node)

MDS rook-ceph-mds-ocs-storagecluster-
cephfilesystem-*

(2 pods distributed across storage nodes)

CSI
cephfs

csi-cephfsplugin-* (1 pod on each
worker node)

csi-cephfsplugin-provisioner-* (2
pods distributed across storage nodes)

rbd

csi-rbdplugin-* (1 pod on each worker
node)

csi-rbdplugin-provisioner-* (2 pods
distributed across storage nodes)

rook-ceph-drain-canary rook-ceph-drain-canary-*

(1 pod on each storage node)

rook-ceph-crashcollector rook-ceph-crashcollector-*

(1 pod on each storage node)

OSD
rook-ceph-osd-* (1 pod for each device)

rook-ceph-osd-prepare-ocs-
deviceset-* (1 pod for each device)

Component Corresponding pods

2.2. VERIFYING THE OPENSHIFT CONTAINER STORAGE CLUSTER IS
HEALTHY

You can verify health of OpenShift Container Storage cluster using the persistent storage dashboard.
For more information, see Monitoring OpenShift Container Storage .

Click Home → Overview from the left pane of the OpenShift Web Console and click Persistent
Storage tab.

In the Status card, verify that OCS Cluster has a green tick mark as shown in the following
image:

Figure 2.1. Health status card in Persistent Storage Overview Dashboard

CHAPTER 2. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT

15

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/monitoring_openshift_container_storage/index

Figure 2.1. Health status card in Persistent Storage Overview Dashboard

In the Details card, verify that the cluster information is displayed appropriately as follows:

Figure 2.2. Details card in Persistent Storage Overview Dashboard

2.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY

You can verify the health of the OpenShift Container Storage cluster using the object service
dashboard. For more information, see Monitoring OpenShift Container Storage .

Click Home → Overview from the left pane of the OpenShift Web Console and click the Object
Service tab.

In the Status card, verify that the Multicloud Object Gateway (MCG) storage displays a green

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/monitoring_openshift_container_storage/index

In the Status card, verify that the Multicloud Object Gateway (MCG) storage displays a green
tick icon as shown in following image:

Figure 2.3. Health status card in Object Service Overview Dashboard

In the Details card, verify that the MCG information is displayed appropriately as follows:

Figure 2.4. Details card in Object Service Overview Dashboard

2.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE
SPECIFIC STORAGE CLASSES EXIST

To verify the storage classes exists in the cluster:

Click Storage → Storage Classes from the left pane of the OpenShift Web Console.

Verify that the following storage classes are created with the OpenShift Container Storage
cluster creation:

ocs-storagecluster-ceph-rbd

ocs-storagecluster-cephfs

CHAPTER 2. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT

17

openshift-storage.noobaa.io

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

18

CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER
STORAGE

3.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE ON INTERNAL
MODE

Use the steps in this section to uninstall OpenShift Container Storage instead of the Uninstall option
from the user interface.

Prerequisites

Make sure that the OpenShift Container Storage cluster is in a healthy state. The deletion
might fail if some of the pods are not terminated successfully due to insufficient resources or
nodes. In case the cluster is in an unhealthy state, you should contact Red Hat Customer
Support before uninstalling OpenShift Container Storage.

Make sure that applications are not consuming persistent volume claims (PVCs) or object
bucket claims (OBCs) using the storage classes provided by OpenShift Container Storage.
PVCs and OBCs will be deleted during the uninstall process.

Procedure

1. Query for PVCs and OBCs that use the OpenShift Container Storage based storage class
provisioners.
For example :

$ oc get pvc -o=jsonpath='{range .items[?(@.spec.storageClassName=="ocs-storagecluster-
ceph-rbd")]}{"Name: "}{@.metadata.name}{" Namespace: "}{@.metadata.namespace}{"
Labels: "}{@.metadata.labels}{"\n"}{end}' --all-namespaces|awk '! (/Namespace: openshift-
storage/ && /app:noobaa/)' | grep -v noobaa-default-backing-store-noobaa-pvc

$ oc get pvc -o=jsonpath='{range .items[?(@.spec.storageClassName=="ocs-storagecluster-
cephfs")]}{"Name: "}{@.metadata.name}{" Namespace: "}{@.metadata.namespace}{"\n"}
{end}' --all-namespaces

$ oc get obc -o=jsonpath='{range .items[?(@.spec.storageClassName=="openshift-
storage.noobaa.io")]}{"Name: "}{@.metadata.name}{" Namespace: "}
{@.metadata.namespace}{"\n"}{end}' --all-namespaces

2. Follow these instructions to ensure that the PVCs and OBCs listed in the previous step are
deleted.
If you have created PVCs as a part of configuring the monitoring stack, cluster logging operator,
or image registry, then you must perform the clean up steps provided in the following sections
as required:

Section 3.2, “Removing monitoring stack from OpenShift Container Storage”

Section 3.3, “Removing OpenShift Container Platform registry from OpenShift Container
Storage”

Section 3.4, “Removing the cluster logging operator from OpenShift Container Storage”
For each of the remaining PVCs or OBCs, follow the steps mentioned below :

CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE

19

a. Determine the pod that is consuming the PVC or OBC.

b. Identify the controlling API object such as a Deployment, StatefulSet, DaemonSet ,
Job, or a custom controller.
Each API object has a metadata field known as OwnerReference. This is a list of
associated objects. The OwnerReference with the controller field set to true will point
to controlling objects such as ReplicaSet, StatefulSet,DaemonSet and so on.

c. Ensure that the API object is not consuming PVC or OBC provided by OpenShift
Container Storage. Either the object should be deleted or the storage should be
replaced. Ask the owner of the project to make sure that it is safe to delete or modify
the object.

NOTE

You can ignore the noobaa pods.

d. Delete the OBCs.

$ oc delete obc <obc name> -n <project name>

e. Delete any custom Bucket Class you have created.

$ oc get bucketclass -A | grep -v noobaa-default-bucket-class

$ oc delete bucketclass <bucketclass name> -n <project-name>

f. If you have created any custom Multi Cloud Gateway backingstores, delete them.

List and note the backingstores.

for bs in $(oc get backingstore -o name -n openshift-storage | grep -v noobaa-
default-backing-store); do echo "Found backingstore $bs"; echo "Its has the
following pods running :"; echo "$(oc get pods -o name -n openshift-storage |
grep $(echo ${bs} | cut -f2 -d/))"; done

Delete each of the backingstores listed above and confirm that the dependent
resources also get deleted.

for bs in $(oc get backingstore -o name -n openshift-storage | grep -v noobaa-
default-backing-store); do echo "Deleting Backingstore $bs"; oc delete -n
openshift-storage $bs; done

If any of the backingstores listed above were based on the pv-pool, ensure that the
corresponding pod and PVC are also deleted.

$ oc get pods -n openshift-storage | grep noobaa-pod | grep -v noobaa-default-
backing-store-noobaa-pod

$ oc get pvc -n openshift-storage --no-headers | grep -v noobaa-db | grep
noobaa-pvc | grep -v noobaa-default-backing-store-noobaa-pvc

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

20

g. Delete the remaining PVCs listed in Step 1.

$ oc delete pvc <pvc name> -n <project-name>

3. Delete the StorageCluster object and wait for the removal of the associated resources.

$ oc delete -n openshift-storage storagecluster --all --wait=true

4. Delete the namespace and wait till the deletion is complete. You will need to switch to another
project if openshift-storage is the active project.

a. Switch to another namespace if openshift-storage is the active namespace.
For example :

$ oc project default

b. Delete the openshift-storage namespace.

$ oc delete project openshift-storage --wait=true --timeout=5m

c. Wait for approximately five minutes and confirm if the project is deleted successfully.

$ oc get project openshift-storage

Output:

Error from server (NotFound): namespaces "openshift-storage" not found

NOTE

While uninstalling OpenShift Container Storage, if namespace is not deleted
completely and remains in Terminating state, perform the steps in the article
Troubleshooting and deleting remaining resources during Uninstall to
identify objects that are blocking the namespace from being terminated.

5. Clean up the storage operator artifacts on each node.

$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{
.items[*].metadata.name }'); do oc debug node/${i} -- chroot /host rm -rfv /var/lib/rook; done

Ensure you can see removed directory /var/lib/rook in the output.

Confirm that the directory no longer exists

$ for i in $(oc get node -l cluster.ocs.openshift.io/openshift-storage= -o jsonpath='{
.items[*].metadata.name }'); do oc debug node/${i} -- chroot /host ls -l /var/lib/rook; done

6. Delete the openshift-storage.noobaa.io storage class.

$ oc delete storageclass openshift-storage.noobaa.io --wait=true --timeout=5m

CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE

21

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/troubleshooting_openshift_container_storage/index#troubleshooting-and-deleting-remaining-resources-during-uninstall_rhocs

7. Unlabel the storage nodes.

$ oc label nodes --all cluster.ocs.openshift.io/openshift-storage-

$ oc label nodes --all topology.rook.io/rack-

NOTE

You can ignore the warnings displayed for the unlabeled nodes such as label
<label> not found.

8. Confirm all PVs are deleted. If there is any PV left in the Released state, delete it.

oc get pv | egrep 'ocs-storagecluster-ceph-rbd|ocs-storagecluster-cephfs'

oc delete pv <pv name>

9. Remove CustomResourceDefinitions.

$ oc delete crd backingstores.noobaa.io bucketclasses.noobaa.io
cephblockpools.ceph.rook.io cephclusters.ceph.rook.io cephfilesystems.ceph.rook.io
cephnfses.ceph.rook.io cephobjectstores.ceph.rook.io cephobjectstoreusers.ceph.rook.io
noobaas.noobaa.io ocsinitializations.ocs.openshift.io
storageclusterinitializations.ocs.openshift.io storageclusters.ocs.openshift.io
cephclients.ceph.rook.io --wait=true --timeout=5m

10. To ensure that OpenShift Container Storage is uninstalled completely, on the OpenShift
Container Platform Web Console,

a. Click Home → Overview to access the dashboard.

b. Verify that the Persistent Storage and Object Service tabs no longer appear next to the
Cluster tab.

3.2. REMOVING MONITORING STACK FROM OPENSHIFT CONTAINER
STORAGE

Use this section to clean up monitoring stack from OpenShift Container Storage.

The PVCs that are created as a part of configuring the monitoring stack are in the openshift-
monitoring namespace.

Prerequisites

PVCs are configured to use OpenShift Container Platform monitoring stack.
For information, see configuring monitoring stack.

Procedure

1. List the pods and PVCs that are currently running in the openshift-monitoring namespace.

$ oc get pod,pvc -n openshift-monitoring

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/monitoring/cluster-monitoring/configuring-the-monitoring-stack.html#configuring-the-cluster-monitoring-stack_configuring-monitoring

NAME READY STATUS RESTARTS AGE
pod/alertmanager-main-0 3/3 Running 0 8d
pod/alertmanager-main-1 3/3 Running 0 8d
pod/alertmanager-main-2 3/3 Running 0 8d
pod/cluster-monitoring-
operator-84457656d-pkrxm 1/1 Running 0 8d
pod/grafana-79ccf6689f-2ll28 2/2 Running 0 8d
pod/kube-state-metrics-
7d86fb966-rvd9w 3/3 Running 0 8d
pod/node-exporter-25894 2/2 Running 0 8d
pod/node-exporter-4dsd7 2/2 Running 0 8d
pod/node-exporter-6p4zc 2/2 Running 0 8d
pod/node-exporter-jbjvg 2/2 Running 0 8d
pod/node-exporter-jj4t5 2/2 Running 0 6d18h
pod/node-exporter-k856s 2/2 Running 0 6d18h
pod/node-exporter-rf8gn 2/2 Running 0 8d
pod/node-exporter-rmb5m 2/2 Running 0 6d18h
pod/node-exporter-zj7kx 2/2 Running 0 8d
pod/openshift-state-metrics-
59dbd4f654-4clng 3/3 Running 0 8d
pod/prometheus-adapter-
5df5865596-k8dzn 1/1 Running 0 7d23h
pod/prometheus-adapter-
5df5865596-n2gj9 1/1 Running 0 7d23h
pod/prometheus-k8s-0 6/6 Running 1 8d
pod/prometheus-k8s-1 6/6 Running 1 8d
pod/prometheus-operator-
55cfb858c9-c4zd9 1/1 Running 0 6d21h
pod/telemeter-client-
78fc8fc97d-2rgfp 3/3 Running 0 8d

NAME STATUS VOLUME
CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-0 Bound pvc-0d519c4f-
15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-1 Bound pvc-
0d5a9825-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-
rbd 8d
persistentvolumeclaim/my-alertmanager-claim-alertmanager-main-2 Bound pvc-
0d6413dc-15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-
rbd 8d
persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-0 Bound pvc-0b7c19b0-
15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d
persistentvolumeclaim/my-prometheus-claim-prometheus-k8s-1 Bound pvc-0b8aed3f-
15a5-11ea-baa0-026d231574aa 40Gi RWO ocs-storagecluster-ceph-rbd 8d

2. Edit the monitoring configmap.

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

3. Remove any config sections that reference the OpenShift Container Storage storage classes
as shown in the following example and save it.
Before editing

CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE

23

.

.

.
apiVersion: v1
data:
 config.yaml: |
 alertmanagerMain:
 volumeClaimTemplate:
 metadata:
 name: my-alertmanager-claim
 spec:
 resources:
 requests:
 storage: 40Gi
 storageClassName: ocs-storagecluster-ceph-rbd
 prometheusK8s:
 volumeClaimTemplate:
 metadata:
 name: my-prometheus-claim
 spec:
 resources:
 requests:
 storage: 40Gi
 storageClassName: ocs-storagecluster-ceph-rbd
kind: ConfigMap
metadata:
 creationTimestamp: "2019-12-02T07:47:29Z"
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 resourceVersion: "22110"
 selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
 uid: fd6d988b-14d7-11ea-84ff-066035b9efa8
.
.
.

After editing

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

24

.

.

.
apiVersion: v1
data:
 config.yaml: |
kind: ConfigMap
metadata:
 creationTimestamp: "2019-11-21T13:07:05Z"
 name: cluster-monitoring-config
 namespace: openshift-monitoring
 resourceVersion: "404352"
 selfLink: /api/v1/namespaces/openshift-monitoring/configmaps/cluster-monitoring-config
 uid: d12c796a-0c5f-11ea-9832-063cd735b81c
.
.
.

In this example, alertmanagerMain and prometheusK8s monitoring components are using the
OpenShift Container Storage PVCs.

4. Delete relevant PVCs. Make sure you delete all the PVCs that are consuming the storage
classes.

$ oc delete -n openshift-monitoring pvc <pvc-name> --wait=true --timeout=5m

3.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY
FROM OPENSHIFT CONTAINER STORAGE

Use this section to clean up OpenShift Container Platform registry from OpenShift Container Storage.
If you want to configure an alternative storage, see image registry

The PVCs that are created as a part of configuring OpenShift Container Platform registry are in the
openshift-image-registry namespace.

Prerequisites

The image registry should have been configured to use an OpenShift Container Storage PVC.

Procedure

1. Edit the configs.imageregistry.operator.openshift.io object and remove the content in the
storage section.

$ oc edit configs.imageregistry.operator.openshift.io

Before editing

CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE

25

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/registry/architecture-component-imageregistry

.

.

.
storage:
 pvc:
 claim: registry-cephfs-rwx-pvc
.
.
.

After editing

.

.

.
storage:
.
.
.

In this example, the PVC is called registry-cephfs-rwx-pvc, which is now safe to delete.

2. Delete the PVC.

$ oc delete pvc <pvc-name> -n openshift-image-registry --wait=true --timeout=5m

3.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM
OPENSHIFT CONTAINER STORAGE

Use this section to clean up the cluster logging operator from OpenShift Container Storage.

The PVCs that are created as a part of configuring cluster logging operator are in openshift-logging
namespace.

Prerequisites

The cluster logging instance should have been configured to use OpenShift Container Storage
PVCs.

Procedure

1. Remove the ClusterLogging instance in the namespace.

$ oc delete clusterlogging instance -n openshift-logging --wait=true --timeout=5m

The PVCs in the openshift-logging namespace are now safe to delete.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

26

2. Delete PVCs.

$ oc delete pvc <pvc-name> -n openshift-logging --wait=true --timeout=5m

CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE

27

CHAPTER 4. CONFIGURE STORAGE FOR OPENSHIFT
CONTAINER PLATFORM SERVICES

You can use OpenShift Container Storage to provide storage for OpenShift Container Platform
services such as image registry, monitoring, and logging.

The process for configuring storage for these services depends on the infrastructure used in your
OpenShift Container Storage deployment.

WARNING

Always ensure that you have plenty of storage capacity for these services. If the
storage for these critical services runs out of space, the cluster becomes inoperable
and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these
services. See Configuring the Curator schedule and the Modifying retention time for
Prometheus metrics data sub section of Configuring persistent storage in the
OpenShift Container Platform documentation for details.

If you do run out of storage space for these services, contact Red Hat Customer
Support.

4.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT CONTAINER
STORAGE

OpenShift Container Platform provides a built in Container Image Registry which runs as a standard
workload on the cluster. A registry is typically used as a publication target for images built on the cluster
as well as a source of images for workloads running on the cluster.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the
Container Image Registry. On Google Cloud, it is not required to change the storage for the registry.

WARNING

This process does not migrate data from an existing image registry to the new
image registry. If you already have container images in your existing registry, back up
your registry before you complete this process, and re-register your images when
this process is complete.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Container Storage Operator is installed and running in the openshift-storage





Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/logging/index#cluster-logging-curator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html/monitoring/cluster-monitoring#configuring-persistent-storage

OpenShift Container Storage Operator is installed and running in the openshift-storage
namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed
operators.

Image Registry Operator is installed and running in the openshift-image-registry namespace. In
OpenShift Web Console, click Administration → Cluster Settings → Cluster Operators to view
cluster operators.

A storage class with provisioner openshift-storage.cephfs.csi.ceph.com is available. In
OpenShift Web Console, click Storage → Storage Classes to view available storage classes.

Procedure

1. Create a Persistent Volume Claim for the Image Registry to use.

a. In OpenShift Web Console, click Storage → Persistent Volume Claims.

b. Set the Project to openshift-image-registry.

c. Click Create Persistent Volume Claim.

i. From the list of available storage classes retrieved above, specify the Storage Class
with the provisioner openshift-storage.cephfs.csi.ceph.com.

ii. Specify the Persistent Volume Claim Name, for example, ocs4registry.

iii. Specify an Access Mode of Shared Access (RWX).

iv. Specify a Size of at least 100 GB.

v. Click Create.
Wait until the status of the new Persistent Volume Claim is listed as Bound.

2. Configure the cluster’s Image Registry to use the new Persistent Volume Claim.

a. Click Administration →Custom Resource Definitions.

b. Click the Config custom resource definition associated with the
imageregistry.operator.openshift.io group.

c. Click the Instances tab.

d. Beside the cluster instance, click the Action Menu (⋮) → Edit Config.

e. Add the new Persistent Volume Claim as persistent storage for the Image Registry.

i. Add the following under spec:, replacing the existing storage: section if necessary.

 storage:
 pvc:
 claim: <new-pvc-name>

For example:

 storage:
 pvc:
 claim: ocs4registry

CHAPTER 4. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

29

ii. Click Save.

3. Verify that the new configuration is being used.

a. Click Workloads → Pods.

b. Set the Project to openshift-image-registry.

c. Verify that the new image-registry-* pod appears with a status of Running, and that the
previous image-registry-* pod terminates.

d. Click the new image-registry-* pod to view pod details.

e. Scroll down to Volumes and verify that the registry-storage volume has a Type that
matches your new Persistent Volume Claim, for example, ocs4registry.

4.2. CONFIGURING MONITORING TO USE OPENSHIFT CONTAINER
STORAGE

OpenShift Container Storage provides a monitoring stack that is comprised of Prometheus and
AlertManager.

Follow the instructions in this section to configure OpenShift Container Storage as storage for the
monitoring stack.

IMPORTANT

Monitoring will not function if it runs out of storage space. Always ensure that you have
plenty of storage capacity for monitoring.

Red Hat recommends configuring a short retention intervals for this service. See the
Modifying retention time for Prometheus metrics data sub section of Configuring
persistent storage in the OpenShift Container Platform documentation for details.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Container Storage Operator is installed and running in the openshift-storage
namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed
operators.

Monitoring Operator is installed and running in the openshift-monitoring namespace. In
OpenShift Web Console, click Administration → Cluster Settings → Cluster Operators to view
cluster operators.

A storage class with provisioner openshift-storage.rbd.csi.ceph.com is available. In OpenShift
Web Console, click Storage → Storage Classes to view available storage classes.

Procedure

1. In OpenShift Web Console, go to Workloads → Config Maps.

2. Set the Project dropdown to openshift-monitoring.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/monitoring/index#configuring-persistent-storage

3. Click Create Config Map.

4. Define a new cluster-monitoring-config Config Map using the following example.
Replace the content in angle brackets (<, >) with your own values, for example, retention: 24h
or storage: 40Gi.

Replace the storageClassName with the storageclass that uses the provisioner openshift-
storage.rbd.csi.ceph.com. In the example given below the name of the storageclass is ocs-
storagecluster-ceph-rbd.

Example cluster-monitoring-config Config Map

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |
 prometheusK8s:
 retention: <time to retain monitoring files, e.g. 24h>
 volumeClaimTemplate:
 metadata:
 name: ocs-prometheus-claim
 spec:
 storageClassName: ocs-storagecluster-ceph-rbd
 resources:
 requests:
 storage: <size of claim, e.g. 40Gi>
 alertmanagerMain:
 volumeClaimTemplate:
 metadata:
 name: ocs-alertmanager-claim
 spec:
 storageClassName: ocs-storagecluster-ceph-rbd
 resources:
 requests:
 storage: <size of claim, e.g. 40Gi>

5. Click Create to save and create the Config Map.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the pods.

a. Go to Storage → Persistent Volume Claims.

b. Set the Project dropdown to openshift-monitoring.

c. Verify that 5 Persistent Volume Claims are visible with a state of Bound, attached to three
alertmanager-main-* pods, and two prometheus-k8s-* pods.

Monitoring storage created and bound

CHAPTER 4. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

31

2. Verify that the new alertmanager-main-* pods appear with a state of Running.

a. Click the new alertmanager-main-* pods to view the pod details.

b. Scroll down to Volumes and verify that the volume has a Type, ocs-alertmanager-claim
that matches one of your new Persistent Volume Claims, for example, ocs-alertmanager-
claim-alertmanager-main-0.

Persistent Volume Claims attached to alertmanager-main-* pod

3. Verify that the new prometheus-k8s-* pods appear with a state of Running.

a. Click the new prometheus-k8s-* pods to view the pod details.

b. Scroll down to Volumes and verify that the volume has a Type, ocs-prometheus-claim
that matches one of your new Persistent Volume Claims, for example, ocs-prometheus-
claim-prometheus-k8s-0.

Persistent Volume Claims attached to prometheus-k8s-* pod

4.3. CLUSTER LOGGING FOR OPENSHIFT CONTAINER STORAGE

You can deploy cluster logging to aggregate logs for a range of OpenShift Container Platform services.
For information about how to deploy cluster logging, see Deploying cluster logging .

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/logging/index#cluster-logging-deploying

Upon initial OpenShift Container Platform deployment, OpenShift Container Storage is not configured
by default and the OpenShift Container Platform cluster will solely rely on default storage available from
the nodes. You can edit the default configuration of OpenShift logging (ElasticSearch) to be backed by
OpenShift Container Storage to have OpenShift Container Storage backed logging (Elasticsearch).

IMPORTANT

Always ensure that you have plenty of storage capacity for these services. If you run out
of storage space for these critical services, the logging application becomes inoperable
and very difficult to recover.

Red Hat recommends configuring shorter curation and retention intervals for these
services. See Cluster logging curator in the OpenShift Container Platform
documentation for details.

If you run out of storage space for these services, contact Red Hat Customer Support.

4.3.1. Configuring persistent storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the storage
class name and size parameters. The Cluster Logging Operator creates a Persistent Volume Claim for
each data node in the Elasticsearch cluster based on these parameters. For example:

spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "ocs-storagecluster-ceph-rbd”
 size: "200G"

This example specifies that each data node in the cluster will be bound to a Persistent Volume Claim
that requests 200GiB of ocs-storagecluster-ceph-rbd storage. Each primary shard will be backed by a
single replica. A copy of the shard is replicated across all the nodes and are always available and the
copy can be recovered if at least two nodes exist due to the single redundancy policy. For information
about Elasticsearch replication policies, see Elasticsearch replication policy in About deploying and
configuring cluster logging.

NOTE

Omission of the storage block will result in a deployment backed by default storage. For
example:

spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage: {}

For more information, see Configuring cluster logging.

CHAPTER 4. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/logging/index#cluster-logging-curator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/logging/index#cluster-logging-about_cluster-logging
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/logging/index#cluster-logging-configuring

4.3.2. Configuring cluster logging to use OpenShift Container Storage

Follow the instructions in this section to configure OpenShift Container Storage as storage for the
OpenShift cluster logging.

NOTE

You can obtain all the logs when you configure logging for the first time in OpenShift
Container Storage. However, after you uninstall and reinstall logging, the old logs are
removed and only the new logs are processed.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Container Storage Operator is installed and running in the openshift-storage
namespace.

Cluster logging Operator is installed and running in the openshift-logging namespace.

Procedure

1. Click Administration → Custom Resource Definitions from the left pane of the OpenShift
Web Console.

2. On the Custom Resource Definitions page, click ClusterLogging.

3. On the Custom Resource Definition Overview page, select View Instances from the Actions
menu or click the Instances Tab.

4. On the Cluster Logging page, click Create Cluster Logging.
You might have to refresh the page to load the data.

5. In the YAML, replace the storageClassName with the storageclass that uses the provisioner
openshift-storage.rbd.csi.ceph.com. In the example given below the name of the
storageclass is ocs-storagecluster-ceph-rbd:

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: ocs-storagecluster-ceph-rbd
 size: 200G
 redundancyPolicy: "SingleRedundancy"
 visualization:
 type: "kibana"
 kibana:
 replicas: 1

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

34

 curation:
 type: "curator"
 curator:
 schedule: "30 3 * * *"
 collection:
 logs:
 type: "fluentd"
 fluentd: {}

6. Click Save.

Verification steps

1. Verify that the Persistent Volume Claims are bound to the elasticsearch pods.

a. Go to Storage → Persistent Volume Claims.

b. Set the Project dropdown to openshift-logging.

c. Verify that Persistent Volume Claims are visible with a state of Bound, attached to
elasticsearch-* pods.

Figure 4.1. Cluster logging created and bound

2. Verify that the new cluster logging is being used.

a. Click Workload → Pods.

b. Set the Project to openshift-logging.

c. Verify that the new elasticsearch-* pods appear with a state of Running.

d. Click the new elasticsearch-* pod to view pod details.

e. Scroll down to Volumes and verify that the elasticsearch volume has a Type that matches
your new Persistent Volume Claim, for example, elasticsearch-elasticsearch-cdm-
9r624biv-3.

f. Click the Persistent Volume Claim name and verify the storage class name in the
PersistenVolumeClaim Overview page.

NOTE

CHAPTER 4. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES

35

NOTE

Make sure to use a shorter curator time to avoid PV full scenario on PVs attached to
Elasticsearch pods.

You can configure Curator to delete Elasticsearch data based on retention settings. It is
recommended that you set the following default index data retention of 5 days as a
default.

config.yaml: |
 openshift-storage:
 delete:
 days: 5

For more details, see Curation of Elasticsearch Data .

NOTE

To uninstall the cluster logging backed by Persistent Volume Claim, use the procedure
removing the cluster logging operator from OpenShift Container Storage in the uninstall
chapter of the respective deployment guide.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/logging/index#cluster-logging-curator

CHAPTER 5. BACKING OPENSHIFT CONTAINER PLATFORM
APPLICATIONS WITH OPENSHIFT CONTAINER STORAGE

You cannot directly install OpenShift Container Storage during the OpenShift Container Platform
installation. However, you can install OpenShift Container Storage on an existing OpenShift Container
Platform by using the Operator Hub and then configure the OpenShift Container Platform applications
to be backed by OpenShift Container Storage.

Prerequisites

OpenShift Container Platform is installed and you have administrative access to OpenShift Web
Console.

OpenShift Container Storage is installed and running in the openshift-storage namespace.

Procedure

1. In the OpenShift Web Console, perform one of the following:

Click Workloads → Deployments.
In the Deployments page, you can do one of the following:

Select any existing deployment and click Add Storage option from the Action menu
(⋮).

Create a new deployment and then add storage.

i. Click Create Deployment to create a new deployment.

ii. Edit the YAML based on your requirement to create a deployment.

iii. Click Create.

iv. Select Add Storage from the Actions drop down menu on the top right of the
page.

Click Workloads → Deployment Configs.
In the Deployment Configs page, you can do one of the following:

Select any existing deployment and click Add Storage option from the Action menu
(⋮).

Create a new deployment and then add storage.

i. Click Create Deployment Config to create a new deployment.

ii. Edit the YAML based on your requirement to create a deployment.

iii. Click Create.

iv. Select Add Storage from the Actions drop down menu on the top right of the
page.

2. In the Add Storage page, you can choose one of the following options:

Click the Use existing claim option and select a suitable PVC from the drop down list.

CHAPTER 5. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT CONTAINER STORAGE

37

Click the Create new claim option.

a. Select the appropriate CephFS or RBD storage class from the Storage Class drop
down list.

b. Provide a name for the Persistent Volume Claim.

c. Select ReadWriteOnce (RWO) or ReadWriteMany (RWX) access mode.

NOTE

ReadOnlyMany (ROX) is deactivated as it is not supported.

d. Select the size of the desired storage capacity.

NOTE

You cannot resize the storage capacity after the creation of Persistent
Volume Claim.

3. Specify the mount path and subpath (if required) for the mount path volume inside the
container.

4. Click Save.

Verification steps

1. Depending on your configuration, perform one of the following:

Click Workloads → Deployments.

Click Workloads → Deployment Configs.

2. Set the Project as required.

3. Click the deployment for you which you added storage to view the deployment details.

4. Scroll down to Volumes and verify that your deployment has a Type that matches the
Persistent Volume Claim that you assigned.

5. Click the Persistent Volume Claim name and verify the storage class name in the
PersistenVolumeClaim Overview page.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

38

CHAPTER 6. SCALING STORAGE NODES
To scale the storage capacity of OpenShift Container Storage, you can do either of the following:

Scale up storage nodes - Add storage capacity to the existing OpenShift Container Storage
worker nodes

Scale out storage nodes - Add new worker nodes containing storage capacity

6.1. REQUIREMENTS FOR SCALING STORAGE NODES

Before you proceed to scale the storage nodes, refer to the following sections to understand the node
requirements for your specific Red Hat OpenShift Container Storage instance:

Platform requirements

Storage device requirements

Dynamic storage devices

Capacity planning

WARNING

Always ensure that you have plenty of storage capacity.

If storage ever fills completely, it is not possible to add capacity or delete or migrate
content away from the storage to free up space. Completely full storage is very
difficult to recover.

Capacity alerts are issued when cluster storage capacity reaches 75% (near-full)
and 85% (full) of total capacity. Always address capacity warnings promptly, and
review your storage regularly to ensure that you do not run out of storage space.

If you do run out of storage space completely, contact Red Hat Customer Support.

6.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR
OPENSHIFT CONTAINER STORAGE NODES ON GOOGLE CLOUD
INFRASTRUCTURE

Use this procedure to add storage capacity and performance to your configured Red Hat OpenShift
Container Storage worker nodes.

Prerequisites

A running OpenShift Container Storage Platform

Administrative privileges on the OpenShift Web Console

Procedure



CHAPTER 6. SCALING STORAGE NODES

39

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/planning_your_deployment/index#platform-requirements_rhocs
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/planning_your_deployment/index#dynamic_storage_devices
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/planning_your_deployment/index#capacity_planning

Procedure

1. Navigate to the OpenShift Web Console.

2. Click on Operators on the left navigation bar.

3. Select Installed Operators.

4. In the window, click OpenShift Container Storage Operator:

5. In the top navigation bar, scroll right and click Storage Cluster tab.

6. The visible list should have only one item. Click (⋮) on the far right to extend the options menu.

7. Select Add Capacity from the options menu.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

40

From this dialog box, you can set the requested additional capacity and the storage class. Add
capacity will show the capacity selected at the time of installation and will allow to add the
capacity only in this increment. Set the storage class to standard if you are using the default
storage class that uses HDD. However, if you created a storage class to use SSD based disks for
better performance, you need to select that storage class.

NOTE

The effectively provisioned capacity will be three times as much as what you see
in the Raw Capacity field because OpenShift Container Storage uses a replica
count of 3.

8. Once you are done with your setting, click Add. You might need to wait a couple of minutes for
the storage cluster to reach Ready state.

Verification steps

1. Navigate to Overview → Persistent Storage tab, then check the Capacity breakdown card.

2. Note that the capacity increases based on your selections.

IMPORTANT

As of OpenShift Container Storage 4.2, cluster reduction, whether by reducing OSDs or
nodes, is not supported.

6.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES

To scale out storage capacity, you need to perform the following:

Add a new node to increase the storage capacity when existing worker nodes are already
running at their maximum supported OSDs, which is the increment of 3 OSDs of the capacity
selected during initial configuration.

Verify that the new node is added successfully

Scale up the storage capacity after the node is added

6.3.1. Adding a node on Google Cloud installer-provisioned infrastructure

Prerequisites

You must be logged into OpenShift Container Platform (OCP) cluster.

CHAPTER 6. SCALING STORAGE NODES

41

Procedure

1. Navigate to Compute → Machine Sets.

2. On the machine set where you want to add nodes, select Edit Machine Count.

3. Add the amount of nodes, and click Save.

4. Click Compute → Nodes and confirm if the new node is in Ready state.

5. Apply the OpenShift Container Storage label to the new node.

a. For the new node, Action menu (⋮) → Edit Labels.

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

NOTE

It is recommended to add 3 nodes each in different zones. You must add 3 nodes and
perform this procedure for all of them.

Verification steps

To verify that the new node is added, see Section 6.3.2, “Verifying the addition of a new node” .

6.3.2. Verifying the addition of a new node

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

6.3.3. Scaling up storage capacity

After you add a new node to OpenShift Container Storage, you must scale up the storage capacity as
described in Scaling up storage by adding capacity .

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

42

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#proc_scaling-up-storage-by-adding-capacity-to-your-openshift-container-storage-nodes-on-aws-vmware-infrastructure_gcp

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

7.1. ABOUT THE MULTICLOUD OBJECT GATEWAY

The Multicloud Object Gateway (MCG) is a lightweight object storage service for OpenShift, allowing
users to start small and then scale as needed on-premise, in multiple clusters, and with cloud-native
storage.

7.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR
APPLICATIONS

You can access the object service with any application targeting AWS S3 or code that uses AWS S3
Software Development Kit (SDK). Applications need to specify the MCG endpoint, an access key, and a
secret access key. You can use your terminal or the MCG CLI to retrieve this information.

Prerequisites

A running OpenShift Container Storage Platform

Download the MCG command-line interface for easier management:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found at Download RedHat OpenShift Container Storage page .

You can access the relevant endpoint, access key, and secret access key two ways:

Section 7.2.1, “Accessing the Multicloud Object Gateway from the terminal”

Section 7.2.2, “Accessing the Multicloud Object Gateway from the MCG command-line
interface”

7.2.1. Accessing the Multicloud Object Gateway from the terminal

Procedure

Run the describe command to view information about the MCG endpoint, including its access key
(AWS_ACCESS_KEY_ID value) and secret access key (AWS_SECRET_ACCESS_KEY value):

oc describe noobaa -n openshift-storage

The output will look similar to the following:

Name: noobaa
Namespace: openshift-storage
Labels: <none>
Annotations: <none>
API Version: noobaa.io/v1alpha1
Kind: NooBaa
Metadata:
 Creation Timestamp: 2019-07-29T16:22:06Z

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

43

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

 Generation: 1
 Resource Version: 6718822
 Self Link: /apis/noobaa.io/v1alpha1/namespaces/openshift-storage/noobaas/noobaa
 UID: 019cfb4a-b21d-11e9-9a02-06c8de012f9e
Spec:
Status:
 Accounts:
 Admin:
 Secret Ref:
 Name: noobaa-admin
 Namespace: openshift-storage
 Actual Image: noobaa/noobaa-core:4.0
 Observed Generation: 1
 Phase: Ready
 Readme:

 Welcome to NooBaa!

 Welcome to NooBaa!

 NooBaa Core Version:
 NooBaa Operator Version:

 Lets get started:

 1. Connect to Management console:

 Read your mgmt console login information (email & password) from secret: "noobaa-admin".

 kubectl get secret noobaa-admin -n openshift-storage -o json | jq '.data|map_values(@base64d)'

 Open the management console service - take External IP/DNS or Node Port or use port
forwarding:

 kubectl port-forward -n openshift-storage service/noobaa-mgmt 11443:443 &
 open https://localhost:11443

 2. Test S3 client:

 kubectl port-forward -n openshift-storage service/s3 10443:443 &
1

 NOOBAA_ACCESS_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r
'.data.AWS_ACCESS_KEY_ID|@base64d')
2

 NOOBAA_SECRET_KEY=$(kubectl get secret noobaa-admin -n openshift-storage -o json | jq -r
'.data.AWS_SECRET_ACCESS_KEY|@base64d')
 alias s3='AWS_ACCESS_KEY_ID=$NOOBAA_ACCESS_KEY
AWS_SECRET_ACCESS_KEY=$NOOBAA_SECRET_KEY aws --endpoint https://localhost:10443 --
no-verify-ssl s3'
 s3 ls

 Services:
 Service Mgmt:
 External DNS:

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

44

1

2

3

 https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
 https://a3406079515be11eaa3b70683061451e-1194613580.us-east-
2.elb.amazonaws.com:443
 Internal DNS:
 https://noobaa-mgmt.openshift-storage.svc:443
 Internal IP:
 https://172.30.235.12:443
 Node Ports:
 https://10.0.142.103:31385
 Pod Ports:
 https://10.131.0.19:8443
 serviceS3:
 External DNS: 3
 https://s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
 https://a340f4e1315be11eaa3b70683061451e-943168195.us-east-2.elb.amazonaws.com:443
 Internal DNS:
 https://s3.openshift-storage.svc:443
 Internal IP:
 https://172.30.86.41:443
 Node Ports:
 https://10.0.142.103:31011
 Pod Ports:
 https://10.131.0.19:6443

access key (AWS_ACCESS_KEY_ID value)

secret access key (AWS_SECRET_ACCESS_KEY value)

MCG endpoint

NOTE

The output from the oc describe noobaa command lists the internal and external DNS
names that are available. When using the internal DNS, the traffic is free. The external
DNS uses Load Balancing to process the traffic, and therefore has a cost per hour.

7.2.2. Accessing the Multicloud Object Gateway from the MCG command-line
interface

Prerequisites

Download the MCG command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

Procedure

Run the status command to access the endpoint, access key, and secret access key:

noobaa status -n openshift-storage

The output will look similar to the following:

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

45

INFO[0000] Namespace: openshift-storage
INFO[0000]
INFO[0000] CRD Status:
INFO[0003] � Exists: CustomResourceDefinition "noobaas.noobaa.io"
INFO[0003] � Exists: CustomResourceDefinition "backingstores.noobaa.io"
INFO[0003] � Exists: CustomResourceDefinition "bucketclasses.noobaa.io"
INFO[0004] � Exists: CustomResourceDefinition "objectbucketclaims.objectbucket.io"
INFO[0004] � Exists: CustomResourceDefinition "objectbuckets.objectbucket.io"
INFO[0004]
INFO[0004] Operator Status:
INFO[0004] � Exists: Namespace "openshift-storage"
INFO[0004] � Exists: ServiceAccount "noobaa"
INFO[0005] � Exists: Role "ocs-operator.v0.0.271-6g45f"
INFO[0005] � Exists: RoleBinding "ocs-operator.v0.0.271-6g45f-noobaa-f9vpj"
INFO[0006] � Exists: ClusterRole "ocs-operator.v0.0.271-fjhgh"
INFO[0006] � Exists: ClusterRoleBinding "ocs-operator.v0.0.271-fjhgh-noobaa-pdxn5"
INFO[0006] � Exists: Deployment "noobaa-operator"
INFO[0006]
INFO[0006] System Status:
INFO[0007] � Exists: NooBaa "noobaa"
INFO[0007] � Exists: StatefulSet "noobaa-core"
INFO[0007] � Exists: Service "noobaa-mgmt"
INFO[0008] � Exists: Service "s3"
INFO[0008] � Exists: Secret "noobaa-server"
INFO[0008] � Exists: Secret "noobaa-operator"
INFO[0008] � Exists: Secret "noobaa-admin"
INFO[0009] � Exists: StorageClass "openshift-storage.noobaa.io"
INFO[0009] � Exists: BucketClass "noobaa-default-bucket-class"
INFO[0009] � (Optional) Exists: BackingStore "noobaa-default-backing-store"
INFO[0010] � (Optional) Exists: CredentialsRequest "noobaa-cloud-creds"
INFO[0010] � (Optional) Exists: PrometheusRule "noobaa-prometheus-rules"
INFO[0010] � (Optional) Exists: ServiceMonitor "noobaa-service-monitor"
INFO[0011] � (Optional) Exists: Route "noobaa-mgmt"
INFO[0011] � (Optional) Exists: Route "s3"
INFO[0011] � Exists: PersistentVolumeClaim "db-noobaa-core-0"
INFO[0011] � System Phase is "Ready"
INFO[0011] � Exists: "noobaa-admin"

#------------------#
#- Mgmt Addresses -#
#------------------#

ExternalDNS : [https://noobaa-mgmt-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
https://a3406079515be11eaa3b70683061451e-1194613580.us-east-2.elb.amazonaws.com:443]
ExternalIP : []
NodePorts : [https://10.0.142.103:31385]
InternalDNS : [https://noobaa-mgmt.openshift-storage.svc:443]
InternalIP : [https://172.30.235.12:443]
PodPorts : [https://10.131.0.19:8443]

#--------------------#
#- Mgmt Credentials -#
#--------------------#

email : admin@noobaa.io
password : HKLbH1rSuVU0I/souIkSiA==

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

46

1

2

3

#----------------#
#- S3 Addresses -#
#----------------#

1
ExternalDNS : [https://s3-openshift-storage.apps.mycluster-cluster.qe.rh-ocs.com
https://a340f4e1315be11eaa3b70683061451e-943168195.us-east-2.elb.amazonaws.com:443]
ExternalIP : []
NodePorts : [https://10.0.142.103:31011]
InternalDNS : [https://s3.openshift-storage.svc:443]
InternalIP : [https://172.30.86.41:443]
PodPorts : [https://10.131.0.19:6443]

#------------------#
#- S3 Credentials -#
#------------------#

2
AWS_ACCESS_KEY_ID : jVmAsu9FsvRHYmfjTiHV
3

AWS_SECRET_ACCESS_KEY : E//420VNedJfATvVSmDz6FMtsSAzuBv6z180PT5c

#------------------#
#- Backing Stores -#
#------------------#

NAME TYPE TARGET-BUCKET PHASE AGE
noobaa-default-backing-store aws-s3 noobaa-backing-store-15dc896d-7fe0-4bed-9349-
5942211b93c9 Ready 141h35m32s

#------------------#
#- Bucket Classes -#
#------------------#

NAME PLACEMENT PHASE AGE
noobaa-default-bucket-class {Tiers:[{Placement: BackingStores:[noobaa-default-backing-store]}]}
Ready 141h35m33s

#-----------------#
#- Bucket Claims -#
#-----------------#

No OBC's found.

endpoint

access key

secret access key

You now have the relevant endpoint, access key, and secret access key in order to connect to your
applications.

Example 7.1. Example

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

47

If AWS S3 CLI is the application, the following command will list buckets in OCS:

AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
aws --endpoint <ENDPOINT> --no-verify-ssl s3 ls

7.3. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD

7.3.1. Adding storage resources for hybrid or Multicloud using the MCG command
line interface

The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider
and clusters.

To do so, add a backing storage that can be used by the MCG.

Prerequisites

Download the MCG command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

Alternatively, you can install the mcg package from the OpenShift Container Storage RPMs
found here Download RedHat OpenShift Container Storage page .

Procedure

1. From the MCG command-line interface, run the following command:

noobaa backingstore create <backing-store-type> <backingstore_name> --access-key=
<AWS ACCESS KEY> --secret-key=<AWS SECRET ACCESS KEY> --target-bucket
<bucket-name>

a. Replace <backing-store-type> with your relevant backing store type: aws-s3, google-
cloud-store, azure-blob, s3-compatible, or ibm-cos.

b. Replace <backingstore_name> with the name of the backingstore.

c. Replace <AWS ACCESS KEY> and <AWS SECRET ACCESS KEY> with an AWS access
key ID and secret access key you created for this purpose.

d. Replace <bucket-name> with an existing AWS bucket name. This argument tells NooBaa
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "aws-resource"
INFO[0002] � Created: Secret "backing-store-secret-aws-resource"

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

48

https://access.redhat.com/downloads/content/547/ver=4/rhel---8/4/x86_64/packages

You can also add storage resources using a YAML:

1. Create a secret with the credentials:

apiVersion: v1
kind: Secret
metadata:
 name: <backingstore-secret-name>
type: Opaque
data:
 AWS_ACCESS_KEY_ID: <AWS ACCESS KEY ID ENCODED IN BASE64>
 AWS_SECRET_ACCESS_KEY: <AWS SECRET ACCESS KEY ENCODED IN BASE64>

a. You must supply and encode your own AWS access key ID and secret access key using
Base64, and use the results in place of <AWS ACCESS KEY ID ENCODED IN BASE64>
and <AWS SECRET ACCESS KEY ENCODED IN BASE64>.

b. Replace <backingstore-secret-name> with a unique name.

2. Apply the following YAML for a specific backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: bs
 namespace: noobaa
spec:
 awsS3:
 secret:
 name: <backingstore-secret-name>
 namespace: noobaa
 targetBucket: <bucket-name>
 type: <backing-store-type>

a. Replace <bucket-name> with an existing AWS bucket name. This argument tells NooBaa
which bucket to use as a target bucket for its backing store, and subsequently, data storage
and administration.

b. Replace <backingstore-secret-name> with the name of the secret created in the previous
step.

c. Replace <backing-store-type> with your relevant backing store type: aws-s3, google-
cloud-store, azure-blob, s3-compatible, or ibm-cos.

7.3.2. Creating an s3 compatible Multicloud Object Gateway backingstore

The Multicloud Object Gateway can use any S3 compatible object storage as a backing store, for
example, Red Hat Ceph Storage’s RADOS Gateway (RGW). The following procedure shows how to
create an S3 compatible Multicloud Object Gateway backing store for Red Hat Ceph Storage’s RADOS
Gateway. Note that when RGW is deployed, Openshift Container Storage operator creates an S3
compatible backingstore for Multicloud Object Gateway automatically.

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

49

Procedure

1. From the Multicloud Object Gateway (MCG) command-line interface, run the following NooBaa
command:

noobaa backingstore create s3-compatible rgw-resource --access-key=<RGW ACCESS
KEY> --secret-key=<RGW SECRET KEY> --target-bucket=<bucket-name> --
endpoint=http://rook-ceph-rgw-ocs-storagecluster-cephobjectstore.openshift-
storage.svc.cluster.local:80

a. To get the <RGW ACCESS KEY> and <RGW SECRET KEY>, run the following command
using your RGW user secret name:

oc get secret <RGW USER SECRET NAME> -o yaml

b. Decode the access key ID and the access key from Base64 and keep them.

c. Replace <RGW USER ACCESS KEY> and <RGW USER SECRET ACCESS KEY> with
the appropriate, decoded data from the previous step.

d. Replace <bucket-name> with an existing RGW bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.
The output will be similar to the following:

INFO[0001] � Exists: NooBaa "noobaa"
INFO[0002] � Created: BackingStore "rgw-resource"
INFO[0002] � Created: Secret "backing-store-secret-rgw-resource"

You can also create the backingstore using a YAML:

1. Create a CephObjectStore user. This also creates a secret containing the RGW credentials:

apiVersion: ceph.rook.io/v1
kind: CephObjectStoreUser
metadata:
 name: <RGW-Username>
 namespace: openshift-storage
spec:
 store: ocs-storagecluster-cephobjectstore
 displayName: "<Display-name>"

a. Replace <RGW-Username> and <Display-name> with a unique username and display
name.

2. Apply the following YAML for an S3-Compatible backing store:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: <backingstore-name>

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

50

 namespace: openshift-storage
spec:
 s3Compatible:
 endpoint: http://rook-ceph-rgw-ocs-storagecluster-cephobjectstore.openshift-
storage.svc.cluster.local:80
 secret:
 name: <backingstore-secret-name>
 namespace: openshift-storage
 signatureVersion: v4
 targetBucket: <RGW-bucket-name>
 type: s3-compatible

a. Replace <backingstore-secret-name> with the name of the secret that was created with
CephObjectStore in the previous step.

b. Replace <bucket-name> with an existing RGW bucket name. This argument tells Multicloud
Object Gateway which bucket to use as a target bucket for its backing store, and
subsequently, data storage and administration.

7.3.3. Adding storage resources for hybrid and Multicloud using the user interface

Procedure

1. In your OpenShift Storage console, navigate to Overview → Object Service → select the
noobaa link:

2. Select the Resources tab in the left, highlighted below. From the list that populates, select Add
Cloud Resource:

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

51

3. Select Add new connection:

4. Select the relevant native cloud provider or S3 compatible option and fill in the details:

5. Select the newly created connection and map it to the existing bucket:

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

52

6. Repeat these steps to create as many backing stores as needed.

NOTE

Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.

7.3.4. Creating a new bucket class

Bucket class is a CRD representing a class of buckets that defines tiering policies and data placements
for an Object Bucket Class (OBC).

Use this procedure to create a bucket class in OpenShift Container Storage.

Procedure

1. Click Operators → Installed Operators from the left pane of the OpenShift Web Console to
view the installed operators.

2. Click OpenShift Container Storage Operator.

3. On the OpenShift Container Storage Operator page, scroll right and click the Bucket Class tab.

Figure 7.1. OpenShift Container Storage Operator page with Bucket Class tab

4. Click Create Bucket Class.

5. On the Create new Bucket Class page, perform the following:

a. Enter a Bucket Class Name and click Next.

Figure 7.2. Create Bucket Class page

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

53

Figure 7.2. Create Bucket Class page

b. In Placement Policy, select Tier 1 - Policy Type and click Next. You can choose either one of
the options as per your requirements.

Spread allows spreading of the data across the chosen resources.

Mirror allows full duplication of the data across the chosen resources.

Click Add Tier to add another policy tier.

Figure 7.3. Tier 1 - Policy Type selection page

c. Select atleast one Backing Store resource from the available list if you have selected Tier 1
- Policy Type as Spread and click Next. Alternatively, you can also create a new backing
store.

Figure 7.4. Tier 1 - Backing Store selection page

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

54

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/managing_openshift_container_storage/index#creating-a-new-backing-store_rhocs

Figure 7.4. Tier 1 - Backing Store selection page

NOTE

You need to select atleast 2 backing stores when you select Policy Type as Mirror in
previous step.

a. Review and confirm Bucket Class settings.

Figure 7.5. Bucket class settings review page

b. Click Create Bucket Class.

Verification steps

1. Click Operators → Installed Operators.

2. Click OpenShift Container Storage Operator.

3. Search for the new Bucket Class or click Bucket Class tab to view all the Bucket Classes.

7.3.5. Creating a new backing store

Use this procedure to create a new backing store in OpenShift Container Storage.

Prerequisites

Administrator access to OpenShift.

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

55

Procedure

1. Click Operators → Installed Operators from the left pane of the OpenShift Web Console to
view the installed operators.

2. Click OpenShift Container Storage Operator.

3. On the OpenShift Container Storage Operator page, scroll right and click the Backing Store
tab.

Figure 7.6. OpenShift Container Storage Operator page with backing store tab

4. Click Create Backing Store.

Figure 7.7. Create Backing Store page

5. On the Create New Backing Store page, perform the following:

a. Enter a Backing Store Name.

b. Select a Provider.

c. Select a Region.

d. Enter an Endpoint. This is optional.

e. Select a Secret from drop down list, or create your own secret. Optionally, you can Switch
to Credentials view which lets you fill in the required secrets.
For more information on creating an OCP secret, see the section Creating the secret in the
Openshift Container Platform documentation.

Each backingstore requires a different secret. For more information on creating the secret

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

56

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/authentication_and_authorization/index#identity-provider-creating-secret_configuring-basic-authentication-identity-provider

for a particular backingstore, see the Section 7.3.1, “Adding storage resources for hybrid or
Multicloud using the MCG command line interface” and follow the procedure for the
addition of storage resources using a YAML.

NOTE

This menu is relevant for all providers except Google Cloud and local PVC.

f. Enter Target bucket. The target bucket is a container storage that is hosted on the remote
cloud service. It allows you to create a connection that tells MCG that it can use this bucket
for the system.

6. Click Create Backing Store.

Verification steps

1. Click Operators → Installed Operators.

2. Click OpenShift Container Storage Operator.

3. Search for the new backing store or click Backing Store tab to view all the backing stores.

7.4. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS

The Multicloud Object Gateway (MCG) simplifies the process of spanning data across cloud provider
and clusters.

Prerequisites

You must first add a backing storage that can be used by the MCG, see Section 7.3, “Adding
storage resources for hybrid or Multicloud”.

Then you create a bucket class that reflects the data management policy, mirroring.

Procedure

You can set up mirroring data three ways:

Section 7.4.1, “Creating bucket classes to mirror data using the MCG command-line-interface”

Section 7.4.2, “Creating bucket classes to mirror data using a YAML”

Section 7.4.3, “Configuring buckets to mirror data using the user interface”

7.4.1. Creating bucket classes to mirror data using the MCG command-line-interface

1. From the MCG command-line interface, run the following command to create a bucket class
with a mirroring policy:

$ noobaa bucketclass create mirror-to-aws --backingstores=azure-resource,aws-resource --
placement Mirror

2. Set the newly created bucket class to a new bucket claim, generating a new bucket that will be
mirrored between two locations:

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

57

$ noobaa obc create mirrored-bucket --bucketclass=mirror-to-aws

7.4.2. Creating bucket classes to mirror data using a YAML

1. Apply the following YAML. This YAML is a hybrid example that mirrors data between local Ceph
storage and AWS:

apiVersion: noobaa.io/v1alpha1
kind: BucketClass
metadata:
 name: hybrid-class
 labels:
 app: noobaa
spec:
 placementPolicy:
 tiers:
 - tier:
 mirrors:
 - mirror:
 spread:
 - cos-east-us
 - mirror:
 spread:
 - noobaa-test-bucket-for-ocp201907291921-11247_resource

2. Add the following lines to your standard Object Bucket Claim (OBC):

additionalConfig:
 bucketclass: mirror-to-aws

For more information about OBCs, see Section 7.6, “Object Bucket Claim” .

7.4.3. Configuring buckets to mirror data using the user interface

1. In your OpenShift Storage console, navigate to Overview → Object Service → select the
noobaa link:

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

58

2. Click the buckets icon on the left side. You will see a list of your buckets:

3. Click the bucket you want to update.

4. Click Edit Tier 1 Resources:

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

59

5. Select Mirror and check the relevant resources you want to use for this bucket. In the following
example, we mirror data between on prem Ceph RGW to AWS:

6. Click Save.

NOTE

Resources created in NooBaa UI cannot be used by OpenShift UI or MCG CLI.

7.5. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY

OpenShift Container Storage supports AWS S3 bucket policies. Bucket policies allow you to grant users
access permissions for buckets and the objects in them.

7.5.1. About bucket policies

Bucket policies are an access policy option available for you to grant permission to your AWS S3 buckets
and objects. Bucket policies use JSON-based access policy language. For more information about
access policy language, see AWS Access Policy Language Overview .

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

60

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html

7.5.2. Using bucket policies

Prerequisites

A running OpenShift Container Storage Platform

Access to the Multicloud Object Gateway, see Section 7.2, “Accessing the Multicloud Object
Gateway with your applications”

Procedure

To use bucket policies in the Multicloud Object Gateway:

1. Create the bucket policy in JSON format. See the following example:

{
 "Version": "NewVersion",
 "Statement": [
 {
 "Sid": "Example",
 "Effect": "Allow",
 "Principal": [
 "john.doe@example.com"
],
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::john_bucket"
]
 }
]
}

There are many available elements for bucket policies. For details on these elements and
examples of how they can be used, see AWS Access Policy Language Overview .

For more examples of bucket policies, see AWS Bucket Policy Examples .

Instructions for creating S3 users can be found in Section 7.5.3, “Creating an AWS S3 user in
the Multicloud Object Gateway”.

2. Using AWS S3 client, use the put-bucket-policy command to apply the bucket policy to your S3
bucket:

aws --endpoint ENDPOINT --no-verify-ssl s3api put-bucket-policy --bucket MyBucket --
policy BucketPolicy

Replace ENDPOINT with the S3 endpoint

Replace MyBucket with the bucket to set the policy on

Replace BucketPolicy with the bucket policy JSON file

Add --no-verify-ssl if you are using the default self signed certificates

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

61

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

For example:

aws --endpoint https://s3-openshift-storage.apps.gogo44.noobaa.org --no-verify-ssl s3api
put-bucket-policy -bucket MyBucket --policy file://BucketPolicy

For more information on the put-bucket-policy command, see the AWS CLI Command
Reference for put-bucket-policy.

NOTE

The principal element specifies the user that is allowed or denied access to a resource,
such as a bucket. Currently, Only NooBaa accounts can be used as principals. In the case
of object bucket claims, NooBaa automatically create an account obc-account.
<generated bucket name>@noobaa.io.

NOTE

Bucket policy conditions are not supported.

7.5.3. Creating an AWS S3 user in the Multicloud Object Gateway

Prerequisites

A running OpenShift Container Storage Platform

Access to the Multicloud Object Gateway, see Section 7.2, “Accessing the Multicloud Object
Gateway with your applications”

Procedure

1. In your OpenShift Storage console, navigate to Overview → Object Service → select the
noobaa link:

2. Under the Accounts tab, click Create Account:

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

62

https://docs.aws.amazon.com/cli/latest/reference/s3api/put-bucket-policy.html

3. Select S3 Access Only, provide the Account Name, for example, john.doe@example.com. Click
Next:

4. Select S3 default placement, for example, noobaa-default-backing-store. Select Buckets
Permissions. A specific bucket or all buckets can be selected. Click Create:

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

63

mailto:john.doe@example.com

7.6. OBJECT BUCKET CLAIM

An Object Bucket Claim can be used to request an S3 compatible bucket backend for your workloads.

You can create an Object Bucket Claim three ways:

Section 7.6.1, “Dynamic Object Bucket Claim”

Section 7.6.2, “Creating an Object Bucket Claim using the command line interface”

Section 7.6.3, “Creating an Object Bucket Claim using the OpenShift Web Console”

An object bucket claim creates a new bucket and an application account in NooBaa with permissions to
the bucket, including a new access key and secret access key. The application account is allowed to
access only a single bucket and can’t create new buckets by default.

7.6.1. Dynamic Object Bucket Claim

Similar to Persistent Volumes, you can add the details of the Object Bucket claim to your application’s
YAML, and get the object service endpoint, access key, and secret access key available in a
configuration map and secret. It is easy to read this information dynamically into environment variables
of your application.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

64

Procedure

1. Add the following lines to your application YAML:

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 name: <obc-name>
spec:
 generateBucketName: <obc-bucket-name>
 storageClassName: openshift-storage.noobaa.io

These lines are the Object Bucket Claim itself.

a. Replace <obc-name> with the a unique Object Bucket Claim name.

b. Replace <obc-bucket-name> with a unique bucket name for your Object Bucket Claim.

2. You can add more lines to the YAML file to automate the use of the Object Bucket Claim. The
example below is the mapping between the bucket claim result, which is a configuration map
with data and a secret with the credentials. This specific job will claim the Object Bucket from
NooBaa, which will create a bucket and an account.

apiVersion: batch/v1
kind: Job
metadata:
 name: testjob
spec:
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - image: <your application image>
 name: test
 env:
 - name: BUCKET_NAME
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_NAME
 - name: BUCKET_HOST
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_HOST
 - name: BUCKET_PORT
 valueFrom:
 configMapKeyRef:
 name: <obc-name>
 key: BUCKET_PORT
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: <obc-name>
 key: AWS_ACCESS_KEY_ID
 - name: AWS_SECRET_ACCESS_KEY

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

65

 valueFrom:
 secretKeyRef:
 name: <obc-name>
 key: AWS_SECRET_ACCESS_KEY

a. Replace all instances of <obc-name> with your Object Bucket Claim name.

b. Replace <your application image> with your application image.

3. Apply the updated YAML file:

oc apply -f <yaml.file>

a. Replace <yaml.file> with the name of your YAML file.

4. To view the new configuration map, run the following:

oc get cm <obc-name> -o yaml

a. Replace obc-name with the name of your Object Bucket Claim.
You can expect the following environment variables in the output:

BUCKET_HOST - Endpoint to use in the application

BUCKET_PORT - The port available for the application

The port is related to the BUCKET_HOST. For example, if the BUCKET_HOST is
https://my.example.com, and the BUCKET_PORT is 443, the endpoint for the
object service would be https://my.example.com:443.

BUCKET_NAME - Requested or generated bucket name

AWS_ACCESS_KEY_ID - Access key that is part of the credentials

AWS_SECRET_ACCESS_KEY - Secret access key that is part of the credentials

7.6.2. Creating an Object Bucket Claim using the command line interface

When creating an Object Bucket Claim using the command-line interface, you get a configuration map
and a Secret that together contain all the information your application needs to use the object storage
service.

Prerequisites

Download the MCG command-line interface:

subscription-manager repos --enable=rh-ocs-4-for-rhel-8-x86_64-rpms
yum install mcg

Procedure

1. Use the command-line interface to generate the details of a new bucket and credentials. Run
the following command:

noobaa obc create <obc-name> -n openshift-storage

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

66

https://my.example.com
https://my.example.com:443

Replace <obc-name> with a unique Object Bucket Claim name, for example, myappobc.

Additionally, you can use the --app-namespace option to specify the namespace where the
Object Bucket Claim configuration map and secret will be created, for example, myapp-
namespace.

Example output:

INFO[0001] � Created: ObjectBucketClaim "test21obc"

The MCG command-line-interface has created the necessary configuration and has informed
OpenShift about the new OBC.

2. Run the following command to view the Object Bucket Claim:

oc get obc -n openshift-storage

Example output:

NAME STORAGE-CLASS PHASE AGE
test21obc openshift-storage.noobaa.io Bound 38s

3. Run the following command to view the YAML file for the new Object Bucket Claim:

oc get obc test21obc -o yaml -n openshift-storage

Example output:

apiVersion: objectbucket.io/v1alpha1
kind: ObjectBucketClaim
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 generation: 2
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 resourceVersion: "40756"
 selfLink: /apis/objectbucket.io/v1alpha1/namespaces/openshift-
storage/objectbucketclaims/test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
spec:
 ObjectBucketName: obc-openshift-storage-test21obc
 bucketName: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
 generateBucketName: test21obc
 storageClassName: openshift-storage.noobaa.io
status:
 phase: Bound

4. Inside of your openshift-storage namespace, you can find the configuration map and the secret

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

67

4. Inside of your openshift-storage namespace, you can find the configuration map and the secret
to use this Object Bucket Claim. The CM and the secret have the same name as the Object
Bucket Claim. To view the secret:

oc get -n openshift-storage secret test21obc -o yaml

Example output:

Example output:
apiVersion: v1
data:
 AWS_ACCESS_KEY_ID: c0M0R2xVanF3ODR3bHBkVW94cmY=
 AWS_SECRET_ACCESS_KEY:
Wi9kcFluSWxHRzlWaFlzNk1hc0xma2JXcjM1MVhqa051SlBleXpmOQ==
kind: Secret
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"
 finalizers:
 - objectbucket.io/finalizer
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
 - apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ObjectBucketClaim
 name: test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
 resourceVersion: "40751"
 selfLink: /api/v1/namespaces/openshift-storage/secrets/test21obc
 uid: 65117c1c-f662-11e9-9094-0a5305de57bb
type: Opaque

The secret gives you the S3 access credentials.

5. To view the configuration map:

oc get -n openshift-storage cm test21obc -o yaml

Example output:

apiVersion: v1
data:
 BUCKET_HOST: 10.0.171.35
 BUCKET_NAME: test21obc-933348a6-e267-4f82-82f1-e59bf4fe3bb4
 BUCKET_PORT: "31242"
 BUCKET_REGION: ""
 BUCKET_SUBREGION: ""
kind: ConfigMap
metadata:
 creationTimestamp: "2019-10-24T13:30:07Z"

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

68

 finalizers:
 - objectbucket.io/finalizer
 labels:
 app: noobaa
 bucket-provisioner: openshift-storage.noobaa.io-obc
 noobaa-domain: openshift-storage.noobaa.io
 name: test21obc
 namespace: openshift-storage
 ownerReferences:
 - apiVersion: objectbucket.io/v1alpha1
 blockOwnerDeletion: true
 controller: true
 kind: ObjectBucketClaim
 name: test21obc
 uid: 64f04cba-f662-11e9-bc3c-0295250841af
 resourceVersion: "40752"
 selfLink: /api/v1/namespaces/openshift-storage/configmaps/test21obc
 uid: 651c6501-f662-11e9-9094-0a5305de57bb

The configuration map contains the S3 endpoint information for your application.

7.6.3. Creating an Object Bucket Claim using the OpenShift Web Console

You can create an Object Bucket Claim (OBC) using the OpenShift Web Console.

Prerequisites

Administrative access to the OpenShift Web Console.

In order for your applications to communicate with the OBC, you need to use the configmap and
secret. For more information about this, see Section 7.6.1, “Dynamic Object Bucket Claim” .

Procedure

1. Log into the OpenShift Web Console.

2. On the left navigation bar, click Storage → Object Bucket Claims.

3. Click Create Object Bucket Claim:

4. Enter a name for your object bucket claim and select the appropriate storage class based on
your deployment, internal or external, from the dropdown menu:
Internal mode

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

69

The following storage classes, which were created after deployment, are available for use:

ocs-storagecluster-ceph-rgw uses the Ceph Object Gateway (RGW)

openshift-storage.noobaa.io uses the Multicloud Object Gateway

External mode

The following storage classes, which were created after deployment, are available for use:

ocs-external-storagecluster-ceph-rgw uses the Ceph Object Gateway (RGW)

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

70

openshift-storage.noobaa.io uses the Multicloud Object Gateway

NOTE

The RGW OBC storage class is only available with fresh installations of
OpenShift Container Storage version 4.5. It does not apply to clusters
upgraded from previous OpenShift Container Storage releases.

5. Click Create.
Once you create the OBC, you are redirected to its detail page:

Additional Resources

Section 7.6, “Object Bucket Claim”

7.7. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY
ADDING ENDPOINTS

The Multicloud Object Gateway performance may vary from one environment to another. In some cases,
specific applications require faster performance which can be easily addressed by scaling S3 endpoints.

The Multicloud Object Gateway resource pool is a group of NooBaa daemon containers that provide
two types of services enabled by default:

Storage service

S3 endpoint service

7.7.1. S3 endpoints in the Multicloud Object Gateway

The S3 endpoint is a service that every Multicloud Object Gateway provides by default that handles the
heavy lifting data digestion in the Multicloud Object Gateway. The endpoint service handles the inline
data chunking, deduplication, compression, and encryption, and it accepts data placement instructions
from the Multicloud Object Gateway.

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

71

7.7.2. Scaling with storage nodes

Prerequisites

A running OpenShift Container Storage cluster on OpenShift Container Platform with access to
the Multicloud Object Gateway.

A storage node in the Multicloud Object Gateway is a NooBaa daemon container attached to one or
more Persistent Volumes and used for local object service data storage. NooBaa daemons can be
deployed on Kubernetes nodes. This can be done by creating a Kubernetes pool consisting of
StatefulSet pods.

Procedure

1. In the Multicloud Object Gateway user interface, from the Overview page, click Add Storage
Resources:

2. In the window, click Deploy Kubernetes Pool:

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

72

3. In the Create Pool step create the target pool for the future installed nodes.

4. In the Configure step, configure the number of requested pods and the size of each PV. For
each new pod, one PV is be created.

CHAPTER 7. MULTICLOUD OBJECT GATEWAY

73

5. In the Review step, you can find the details of the new pool and select the deployment method
you wish to use: local or external deployment. If local deployment is selected, the Kubernetes
nodes will deploy within the cluster. If external deployment is selected, you will be provided with
a YAML file to run externally.

6. All nodes will be assigned to the pool you chose in the first step, and can be found under
Resources → Storage resources → Resource name:

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

74

CHAPTER 8. MANAGING PERSISTENT VOLUME CLAIMS

IMPORTANT

Expanding PVCs is not supported for PVCs backed by OpenShift Container Storage.

8.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT
CONTAINER STORAGE

Follow the instructions in this section to configure OpenShift Container Storage as storage for an
application pod.

Prerequisites

You have administrative access to OpenShift Web Console.

OpenShift Container Storage Operator is installed and running in the openshift-storage
namespace. In OpenShift Web Console, click Operators → Installed Operators to view installed
operators.

The default storage classes provided by OpenShift Container Storage are available. In
OpenShift Web Console, click Storage → Storage Classes to view default storage classes.

Procedure

1. Create a Persistent Volume Claim (PVC) for the application to use.

a. In OpenShift Web Console, click Storage → Persistent Volume Claims.

b. Set the Project for the application pod.

c. Click Create Persistent Volume Claim.

i. Specify a Storage Class provided by OpenShift Container Storage.

ii. Specify the PVC Name, for example, myclaim.

iii. Select the required Access Mode.

iv. Specify a Size as per application requirement.

v. Click Create and wait until the PVC is in Bound status.

2. Configure a new or existing application pod to use the new PVC.

For a new application pod, perform the following steps:

i. Click Workloads →Pods.

ii. Create a new application pod.

iii. Under the spec: section, add volume: section to add the new PVC as a volume for the
application pod.

volumes:

CHAPTER 8. MANAGING PERSISTENT VOLUME CLAIMS

75

 - name: <volume_name>
 persistentVolumeClaim:
 claimName: <pvc_name>

For example:

volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

For an existing application pod, perform the following steps:

i. Click Workloads →Deployment Configs.

ii. Search for the required deployment config associated with the application pod.

iii. Click on its Action menu (⋮) → Edit Deployment Config.

iv. Under the spec: section, add volume: section to add the new PVC as a volume for the
application pod and click Save.

volumes:
 - name: <volume_name>
 persistentVolumeClaim:
 claimName: <pvc_name>

For example:

volumes:
 - name: mypd
 persistentVolumeClaim:
 claimName: myclaim

3. Verify that the new configuration is being used.

a. Click Workloads → Pods.

b. Set the Project for the application pod.

c. Verify that the application pod appears with a status of Running.

d. Click the application pod name to view pod details.

e. Scroll down to Volumes section and verify that the volume has a Type that matches your
new Persistent Volume Claim, for example, myclaim.

8.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS

Use this procedure to view the status of a PVC request.

Prerequisites

Administrator access to OpenShift Container Storage.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

76

Procedure

1. Log in to OpenShift Web Console.

2. Click Storage → Persistent Volume Claims

3. Search for the required PVC name by using the Filter textbox. You can also filter the list of
PVCs by Name or Label to narrow down the list

4. Check the Status column corresponding to the required PVC.

5. Click the required Name to view the PVC details.

8.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS

Use this procedure to review and address Persistent Volume Claim (PVC) request events.

Prerequisites

Administrator access to OpenShift Web Console.

Procedure

1. Log in to OpenShift Web Console.

2. Click Home → Overview → Persistent Storage

3. Locate the Inventory card to see the number of PVCs with errors.

4. Click Storage → Persistent Volume Claims

5. Search for the required PVC using the Filter textbox.

6. Click on the PVC name and navigate to Events

7. Address the events as required or as directed.

8.4. DYNAMIC PROVISIONING

8.4.1. About dynamic provisioning

The StorageClass resource object describes and classifies storage that can be requested, as well as
provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass
objects can also serve as a management mechanism for controlling different levels of storage and
access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators (storage-
admin) define and create the StorageClass objects that users can request without needing any intimate
knowledge about the underlying storage volume sources.

The OpenShift Container Platform persistent volume framework enables this functionality and allows
administrators to provision a cluster with persistent storage. The framework also gives users a way to
request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Platform. While
all of them can be statically provisioned by an administrator, some types of storage are created
dynamically using the built-in provider and plug-in APIs.

CHAPTER 8. MANAGING PERSISTENT VOLUME CLAIMS

77

8.4.2. Dynamic provisioning in OpenShift Container Storage

Red Hat OpenShift Container Storage is software-defined storage that is optimised for container
environments. It runs as an operator on OpenShift Container Platform to provide highly integrated and
simplified persistent storage management for containers.

OpenShift Container Storage supports a variety of storage types, including:

Block storage for databases

Shared file storage for continuous integration, messaging, and data aggregation

Object storage for archival, backup, and media storage

Version 4.5 uses Red Hat Ceph Storage to provide the file, block, and object storage that backs
persistent volumes, and Rook.io to manage and orchestrate provisioning of persistent volumes and
claims. NooBaa provides object storage, and its Multicloud Gateway allows object federation across
multiple cloud environments (available as a Technology Preview).

In OpenShift Container Storage 4.5, the Red Hat Ceph Storage Container Storage Interface (CSI) driver
for RADOS Block Device (RBD) and Ceph File System (CephFS) handles the dynamic provisioning
requests. When a PVC request comes in dynamically, the CSI driver has the following options:

Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on
Ceph RBDs with volume mode Block

Create a PVC with ReadWriteOnce (RWO) access that is based on Ceph RBDs with volume
mode Filesystem

Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on
CephFS for volume mode Filesystem

The judgement of which driver (RBD or CephFS) to use is based on the entry in the storageclass.yaml
file.

8.4.3. Available dynamic provisioning plug-ins

OpenShift Container Platform provides the following provisioner plug-ins, which have generic
implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new
storage resources:

Storage type Provisioner plug-in name Notes

OpenStack Cinder kubernetes.io/cinder

AWS Elastic Block Store (EBS) kubernetes.io/aws-ebs For dynamic provisioning when
using multiple clusters in different
zones, tag each node with
Key=kubernetes.io/cluster/<c
luster_name>,Value=
<cluster_id> where
<cluster_name> and
<cluster_id> are unique per
cluster.

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

78

AWS Elastic File System (EFS) Dynamic provisioning is
accomplished through the EFS
provisioner pod and not through a
provisioner plug-in.

Azure Disk kubernetes.io/azure-disk

Azure File kubernetes.io/azure-file The persistent-volume-binder
ServiceAccount requires
permissions to create and get
Secrets to store the Azure
storage account and keys.

GCE Persistent Disk (gcePD) kubernetes.io/gce-pd In multi-zone configurations, it is
advisable to run one OpenShift
Container Platform cluster per
GCE project to avoid PVs from
being created in zones where no
node in the current cluster exists.

VMware vSphere kubernetes.io/vsphere-
volume

Storage type Provisioner plug-in name Notes

IMPORTANT

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or
third-party provider as per the relevant documentation.

CHAPTER 8. MANAGING PERSISTENT VOLUME CLAIMS

79

https://www.vmware.com/support/vsphere.html

CHAPTER 9. REPLACING STORAGE NODES
You can choose one of the following procedures to replace storage nodes:

Section 9.1, “Replacing operational nodes on Google Cloud installer-provisioned infrastructure”

Section 9.2, “Replacing failed nodes on Google Cloud installer-provisioned infrastructure”

9.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD
INSTALLER-PROVISIONED INFRASTRUCTURE

Use this procedure to replace an operational node on Google Cloud installer-provisioned infrastructure
(IPI).

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the node that needs to be replaced. Take a note of its Machine Name.

3. Mark the node as unschedulable using the following command:

$ oc adm cordon <node_name>

4. Drain the node using the following command:

$ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets

IMPORTANT

This activity may take at least 5-10 minutes or more. Ceph errors generated
during this period are temporary and are automatically resolved when the new
node is labeled and functional.

5. Click Compute → Machines. Search for the required machine.

6. Besides the required machine, click the Action menu (⋮) → Delete Machine.

7. Click Delete to confirm the machine deletion. A new machine is automatically created.

8. Wait for new machine to start and transition into Running state.

IMPORTANT

This activity may take at least 5-10 minutes or more.

9. Click Compute → Nodes, confirm if the new node is in Ready state.

10. Apply the OpenShift Container Storage label to the new node using any one of the following:

From User interface

a. For the new node, click Action Menu (⋮) → Edit Labels

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

80

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

From Command line interface

Execute the following command to apply the OpenShift Container Storage label to the
new node:

$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

Verification steps

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. If verification steps fail, kindly contact Red Hat Support .

9.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-
PROVISIONED INFRASTRUCTURE

Perform this procedure to replace a failed node which is not operational on Google Cloud installer-
provisioned infrastructure (IPI) for OpenShift Container Storage.

Procedure

1. Log in to OpenShift Web Console and click Compute → Nodes.

2. Identify the faulty node and click on its Machine Name.

3. Click Actions → Edit Annotations, and click Add More.

4. Add machine.openshift.io/exclude-node-draining and click Save.

5. Click Actions → Delete Machine, and click Delete.

6. A new machine is automatically created, wait for new machine to start.

IMPORTANT

This activity may take at least 5-10 minutes or more. Ceph errors generated
during this period are temporary and are automatically resolved when the new
node is labeled and functional.

7. Click Compute → Nodes, confirm if the new node is in Ready state.

CHAPTER 9. REPLACING STORAGE NODES

81

https://access.redhat.com/support

8. Apply the OpenShift Container Storage label to the new node using any one of the following:

From User interface

a. For the new node, click Action Menu (⋮) → Edit Labels

b. Add cluster.ocs.openshift.io/openshift-storage and click Save.

From Command line interface

Execute the following command to apply the OpenShift Container Storage label to the
new node:

$ oc label node <new_node_name> cluster.ocs.openshift.io/openshift-storage=""

9. [Optional]: If the failed Google Cloud instance is not removed automatically, terminate the
instance from Google Cloud console.

Verification steps

1. Execute the following command and verify that the new node is present in the output:

$ oc get nodes --show-labels | grep cluster.ocs.openshift.io/openshift-storage= |cut -d' ' -f1

2. Click Workloads → Pods, confirm that at least the following pods on the new node are in
Running state:

csi-cephfsplugin-*

csi-rbdplugin-*

3. Verify that all other required OpenShift Container Storage pods are in Running state.

4. If verification steps fail, kindly contact Red Hat Support .

Red Hat OpenShift Container Storage 4.5 Deploying and managing OpenShift Container Storage using Google Cloud

82

https://access.redhat.com/support

CHAPTER 10. REPLACING STORAGE DEVICES

10.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON
GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

When you need to replace a device in a dynamically created storage cluster on an Google Cloud
installer-provisioned infrastructure, you must replace the storage node. For information about how to
replace nodes, see:

Replacing operational nodes on Google Cloud installer-provisioned infrastructure

Replacing failed nodes on Google Cloud installer-provisioned infrastructures .

CHAPTER 10. REPLACING STORAGE DEVICES

83

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#replacing-operational-nodes-on-google-cloud-installer-provisioned-infrastructure_gcp
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.5/html-single/deploying_and_managing_openshift_container_storage_using_google_cloud/index#replacing-failed-nodes-on-google-cloud-installer-provisioned-infrastructures_gcp

	Table of Contents
	PREFACE
	CHAPTER 1. DEPLOYING OPENSHIFT CONTAINER STORAGE ON GOOGLE CLOUD
	1.1. INSTALLING RED HAT OPENSHIFT CONTAINER STORAGE OPERATOR
	1.2. CREATING AN OPENSHIFT CONTAINER STORAGE CLUSTER SERVICE IN INTERNAL MODE
	1.3. CREATING A NEW BACKING STORE

	CHAPTER 2. VERIFYING OPENSHIFT CONTAINER STORAGE DEPLOYMENT
	2.1. VERIFYING THE STATE OF THE PODS
	2.2. VERIFYING THE OPENSHIFT CONTAINER STORAGE CLUSTER IS HEALTHY
	2.3. VERIFYING THE MULTICLOUD OBJECT GATEWAY IS HEALTHY
	2.4. VERIFYING THAT THE OPENSHIFT CONTAINER STORAGE SPECIFIC STORAGE CLASSES EXIST

	CHAPTER 3. UNINSTALLING OPENSHIFT CONTAINER STORAGE
	3.1. UNINSTALLING OPENSHIFT CONTAINER STORAGE ON INTERNAL MODE
	3.2. REMOVING MONITORING STACK FROM OPENSHIFT CONTAINER STORAGE
	3.3. REMOVING OPENSHIFT CONTAINER PLATFORM REGISTRY FROM OPENSHIFT CONTAINER STORAGE
	3.4. REMOVING THE CLUSTER LOGGING OPERATOR FROM OPENSHIFT CONTAINER STORAGE

	CHAPTER 4. CONFIGURE STORAGE FOR OPENSHIFT CONTAINER PLATFORM SERVICES
	4.1. CONFIGURING IMAGE REGISTRY TO USE OPENSHIFT CONTAINER STORAGE
	4.2. CONFIGURING MONITORING TO USE OPENSHIFT CONTAINER STORAGE
	4.3. CLUSTER LOGGING FOR OPENSHIFT CONTAINER STORAGE
	4.3.1. Configuring persistent storage
	4.3.2. Configuring cluster logging to use OpenShift Container Storage

	CHAPTER 5. BACKING OPENSHIFT CONTAINER PLATFORM APPLICATIONS WITH OPENSHIFT CONTAINER STORAGE
	CHAPTER 6. SCALING STORAGE NODES
	6.1. REQUIREMENTS FOR SCALING STORAGE NODES
	6.2. SCALING UP STORAGE BY ADDING CAPACITY TO YOUR OPENSHIFT CONTAINER STORAGE NODES ON GOOGLE CLOUD INFRASTRUCTURE
	6.3. SCALING OUT STORAGE CAPACITY BY ADDING NEW NODES
	6.3.1. Adding a node on Google Cloud installer-provisioned infrastructure
	6.3.2. Verifying the addition of a new node
	6.3.3. Scaling up storage capacity

	CHAPTER 7. MULTICLOUD OBJECT GATEWAY
	7.1. ABOUT THE MULTICLOUD OBJECT GATEWAY
	7.2. ACCESSING THE MULTICLOUD OBJECT GATEWAY WITH YOUR APPLICATIONS
	7.2.1. Accessing the Multicloud Object Gateway from the terminal
	7.2.2. Accessing the Multicloud Object Gateway from the MCG command-line interface

	7.3. ADDING STORAGE RESOURCES FOR HYBRID OR MULTICLOUD
	7.3.1. Adding storage resources for hybrid or Multicloud using the MCG command line interface
	7.3.2. Creating an s3 compatible Multicloud Object Gateway backingstore
	7.3.3. Adding storage resources for hybrid and Multicloud using the user interface
	7.3.4. Creating a new bucket class
	7.3.5. Creating a new backing store

	7.4. MIRRORING DATA FOR HYBRID AND MULTICLOUD BUCKETS
	7.4.1. Creating bucket classes to mirror data using the MCG command-line-interface
	7.4.2. Creating bucket classes to mirror data using a YAML
	7.4.3. Configuring buckets to mirror data using the user interface

	7.5. BUCKET POLICIES IN THE MULTICLOUD OBJECT GATEWAY
	7.5.1. About bucket policies
	7.5.2. Using bucket policies
	7.5.3. Creating an AWS S3 user in the Multicloud Object Gateway

	7.6. OBJECT BUCKET CLAIM
	7.6.1. Dynamic Object Bucket Claim
	7.6.2. Creating an Object Bucket Claim using the command line interface
	7.6.3. Creating an Object Bucket Claim using the OpenShift Web Console

	7.7. SCALING MULTICLOUD OBJECT GATEWAY PERFORMANCE BY ADDING ENDPOINTS
	7.7.1. S3 endpoints in the Multicloud Object Gateway
	7.7.2. Scaling with storage nodes

	CHAPTER 8. MANAGING PERSISTENT VOLUME CLAIMS
	8.1. CONFIGURING APPLICATION PODS TO USE OPENSHIFT CONTAINER STORAGE
	8.2. VIEWING PERSISTENT VOLUME CLAIM REQUEST STATUS
	8.3. REVIEWING PERSISTENT VOLUME CLAIM REQUEST EVENTS
	8.4. DYNAMIC PROVISIONING
	8.4.1. About dynamic provisioning
	8.4.2. Dynamic provisioning in OpenShift Container Storage
	8.4.3. Available dynamic provisioning plug-ins

	CHAPTER 9. REPLACING STORAGE NODES
	9.1. REPLACING OPERATIONAL NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE
	9.2. REPLACING FAILED NODES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

	CHAPTER 10. REPLACING STORAGE DEVICES
	10.1. REPLACING OPERATIONAL OR FAILED STORAGE DEVICES ON GOOGLE CLOUD INSTALLER-PROVISIONED INFRASTRUCTURE

