& RedHat

Red Hat JBoss Web Server 5.5

Red Hat JBoss Web Server for OpenShift

Installing and using Red Hat JBoss Web Server for OpenShift

Last Updated: 2023-03-23

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

Installing and using Red Hat JBoss Web Server for OpenShift

Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Guide to using Red Hat JBoss Web Server for OpenShift

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ... ittt ittt tttiaeeeeetenneaaeeennnaneennns 3
CHAPTER L. INTRODUGCTION ittt ettt ittt et ee et enaneeaneeeaneenneeeaneeeaneennneennes 4
1.1. OVERVIEW OF RED HAT JBOSS WEB SERVER FOR OPENSHIFT 4
CHAPTER 2. BEFORE YOU BEGIN .. i ittt i tttteee e tnneneeeennnaasesnnnaeeeeennnnns 5
2.1. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND JWS FOR OPENSHIFT 5
2.2. VERSION COMPATIBILITY AND SUPPORT 5
2.3. SUPPORTED ARCHITECTURES BY JBOSS WEB SERVER 5
2.4. HEALTH CHECKS FOR RED HAT CONTAINER IMAGES 5
CHAPTER 3. GET ST AR T E D .ottt ittt et e et et e et aaeeeaneeeaneeannesaneesaneennneenns 6
3.1 INITIAL SETUP 6
3.2. CONFIGURE AUTHENTICATION TO THE RED HAT CONTAINER REGISTRY 6
3.3.IMPORT THE LATEST RED HAT JBOSS WEB SERVER IMAGE STREAMS AND TEMPLATES 6
Import command for JDK 8 7
Import command for JDK 11 7
3.3.1. Update Commands 7

3.4. USING THE JWS FOR OPENSHIFT SOURCE-TO-IMAGE (521) PROCESS 8
3.4.1. Create a JWS for OpenShift application using existing maven binaries 8
3.4.2. Example: Creating a JWS for OpenShift application using existing maven binaries 10
3.4.2.1. Prerequisites: 10
3.4.2.2. To setup the example application on OpenShift 1

3.4.3. Create a JWS for OpenShift application from source code 13

3.5. ADDING ADDITIONAL JAR FILES IN TOMCAT/LIB/ DIRECTORY 14
CHAPTER 4. JWS OPE R AT O R 1.ttt ittt ettt et e ettt aate e et eeaneeaneeeaneenaneeenneenneenns 16
4.1. JBOSS WEB SERVER OPERATOR 16
4.1.1. OpenShift Operators 16
4.1.2. Installing the JWS Operator 16
4.1.2.1. Prerequisites 16
4.1.2.2. Installing the JWS Operator - web console 16
4.1.2.3. Installing the JWS Operator - command line interface 17

4.1.3. Deploying an existing JWS image 19
4.1.4. Deleting Operators from a cluster 20
4.1.4.1. Prerequisites 20
4.1.4.2. Deleting an operator from a cluster - web console 20
4.1.4.3. Deleting an operator from a cluster - command line interface 20

4..5. Additional resources 21
CHAPTER 5. REFERENCE ... ittt ittt ettt et ettt anteeaeeeneeeaneenaneennneeaneesaneenns 22
5.1. SOURCE-TO-IMAGE (S2I) 22
5.1.1. Using maven artifact repository mirrors with JWS for OpenShift 22
5.1.2. Scripts included on the Red Hat JBoss Web Server for OpenShift image 23
5.1.3. JWS for OpenShift datasources 23
5.1.4. JWS for OpenShift compatible environment variables 24

5.2. VALVES ON JWS FOR OPENSHIFT 25
5.2.1. JWS for OpenShift compatible environmental variables (valve component) 25

5.3. CHECKING LOGS 26

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

CHAPTER 1. INTRODUCTION

1.1. OVERVIEW OF RED HAT JBOSS WEB SERVER FOR OPENSHIFT

The Apache Tomcat 9 component of Red Hat JBoss Web Server (JWS) 5.5 is available as a
containerized image designed for OpenShift. Developers can use this image to build, scale, and test
Java web applications for deployment across hybrid cloud environments.

For more information about supported configurations of the Middleware products running on OpenShift,
refer to the article Support of Red Hat Middleware products and components on Red Hat OpenShift .

https://access.redhat.com/articles/5115291

CHAPTER 2. BEFORE YOU BEGIN

CHAPTER 2. BEFORE YOU BEGIN

2.1. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND
JWS FOR OPENSHIFT

The differences between the JWS for OpenShift images and the regular release of JWS are:
® The location of JWS_HOME inside a JWS for OpenShift image is: /opt/jws-5.5/.

e Allload balancing is handled by the OpenShift router, not Apache HTTP Server mod_cluster or
mod_jk connectors.

Documentation for JWS functionality not specific to JWS for OpenShift images is found in the Red Hat
JBoss Web Server documentation.

2.2. VERSION COMPATIBILITY AND SUPPORT

See the xPaa$S table on the OpenShift Container Platform Tested 3.X Integrations page and OpenShift
Container Platform Tested 4.X Integrations page for details about OpenShift image version
compatibility.

IMPORTANT

The 5.5 version of JWS for OpenShift images and application templates should be
used for deploying new applications.

The 5.4 version of JWS for OpenShift images and application templates are deprecated
and no longer receives updates.

2.3. SUPPORTED ARCHITECTURES BY JBOSS WEB SERVER
JBoss Web server supports the following architectures:

* x86_64 (AMD64)

e IBM Z (s390x) in the OpenShift environment

e IBM Power (ppc64le) in the OpenShift environment

Different images are supported for different architectures. The example codes in this guide
demonstrate the commands for x86_64 architecture. If you are using other architectures, specify the
relevant image name in the commands. See the Red Hat Container Catalog for more information about
images.

2.4. HEALTH CHECKS FOR RED HAT CONTAINER IMAGES

All container images available for OpenShift have a health rating associated with it. You can find the
health rating for Red Hat JBoss Web Server by navigating to the catalog of container images, searching
for JBoss Web Server and selecting the 5.5 version.

For more information on how OpenShift container can be tested for liveliness and readiness, please
refer to the following documentation

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Web_Server/
https://access.redhat.com/articles/2176281
https://access.redhat.com/articles/4128421
https://catalog.redhat.com/software/containers/search
https://catalog.redhat.com/software/containers/search
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/applications/index#application-health

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

CHAPTER 3. GET STARTED

3.1. INITIAL SETUP

Before you follow the instructions in this guide, you must ensure that an OpenShift cluster is already
installed and configured as a prerequisite. For more information about installing and configuring
OpenShift clusters, see the OpenShift Container Platform Installing guide.

NOTE

The JWS for OpenShift application templates are distributed for Tomcat 9.

3.2. CONFIGURE AUTHENTICATION TO THE RED HAT CONTAINER
REGISTRY

Before you can import and use the Red Hat JBoss Web Server image, you must first configure
authentication to the Red Hat Container Registry.

Red Hat recommends that you create an authentication token using a registry service account to
configure access to the Red Hat Container Registry. This means that you don't have to use or store your
Red Hat account’s username and password in your OpenShift configuration.

1. Follow the instructions on Red Hat Customer Portal to create an authentication token using a
registry service account.

2. Download the YAML file containing the OpenShift secret for the token. You can download the
YAML file from the OpenShift Secret tab on your token’s Token Information page.

3. Create the authentication token secret for your OpenShift project using the YAML file that you
downloaded:

I oc create -f 1234567_myserviceaccount-secret.yaml

4. Configure the secret for your OpenShift project using the following commands, replacing the
secret name below with the name of your secret created in the previous step.

oc secrets link default 1234567-myserviceaccount-pull-secret --for=pull
oc secrets link builder 1234567-myserviceaccount-pull-secret --for=pull

See the OpenShift documentation for more information on other methods for configuring access to
secured registries.

See the Red Hat Customer Portal for more information on configuring authentication to the Red Hat
Container Registry.

3.3.IMPORT THE LATEST RED HAT JBOSS WEB SERVER IMAGE
STREAMS AND TEMPLATES

You must import the latest Red Hat JBoss Web Server for OpenShift image streams and templates for
your JDK into the namespace of your OpenShift project.

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.8/html-single/installing/index
https://access.redhat.com/RegistryAuthentication#registry-service-accounts-for-shared-environments-4
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-managing-images#allowing-pods-to-reference-images-from-other-secured-registries
https://access.redhat.com/RegistryAuthentication

CHAPTER 3. GET STARTED

NOTE

Login to the Red Hat Container Registry using your Customer Portal credentials to
import the Red Hat JBoss Web Server image streams, templates and update image
streams. For more information, see Red Hat Container Registry Authentication .

Import command for JDK 8

for resource in \

jws55-openjdk8-tomcat9-ubi8-basic-s2i.json \
jws55-openjdk8-tomcat9-ubi8-https-s2i.json \
jws55-openjdk8-tomcat9-ubi8-image-stream.json

do

oc replace -n openshift --force -f \
https://raw.githubusercontent.com/jboss-container-images/jposs-webserver-5-openshift-
image/jws55el8-v1.0/templates/${resource}

done

This command imports the following image streams and templates.
® The RHEL8 JDK 8 imagestream: jpboss-webserver55-openjdk8-tomcat9-openshift-rhel8
e All templates specified in the command.

Import command for JDK 11

for resource in \

jwsb55-openjdki1-tomcat9-ubi8-basic-s2i.json \
jws55-openjdki11-tomcat9-ubi8-https-s2i.json \
jwsb55-openjdk11-tomcat9-ubi8-image-stream.json

do

oc replace -n openshift --force -f \
https://raw.githubusercontent.com/jboss-container-images/jposs-webserver-5-openshift-
image/jws55el8-v1.0/templates/${resource}

done

This command imports the following image streams and templates.
® The RHEL8 JDK 11image stream: jposs-webserver55-openjdkil-tomcat9-openshift-rhel8

e All templates specified in the command.

3.3.1. Update Commands

® |norder to update the core JWS 5.5 tomcat 9 OpenJDK8 RHEL8 OpenShift, you must execute

$ oc -n openshift import-image \
jboss-webserver55-openjdk8-tomcat9-openshift-rhel8:1.0

® |norder to update the core JWS 5.5 tomcat 9 OpenJDKI11 RHEL8 OpenShift image, you must
execute

$ oc -n openshift import-image \
jboss-webserver55-openjdk11-tomcat9-openshift-rhel8:1.0

https://access.redhat.com/RegistryAuthentication

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

NOTE

The 1.0 tag at the end of each image you import refers to the stream version that is set in
the image stream.

3.4. USING THE JWS FOR OPENSHIFT SOURCE-TO-IMAGE (52I)
PROCESS

To run and configure the JWS for OpenShift images, use the OpenShift S2I process with the application
template parameters and environment variables.

The S2I process for the JWS for OpenShift images works as follows:

e |f there is a Maven settings.xml file in the configuration/source directory, it is moved to
$HOME/.m2/ of the new image.
See the Apache Maven Project website for more information on Maven and the Maven
settings.xml file.

e |[f there is a pom.xml file in the source repository, a Maven build is triggered using the contents
of the SMAVEN_ARGS environment variable.
By default, the package goal is used with the openshift profile, including the arguments for
skipping tests (-DskipTests) and enabling the Red Hat GA repository (-
Dcom.redhat.xpaas.repo.redhatga).

® The results of a successful Maven build are copied to /opt/jws-5.5/tomcat/webapps. This
includes all WAR files from the source directory specified by the $ARTIFACT_DIR environment

variable. The default value of SARTIFACT_DIR is the target/ directory.
Use the MAVEN_ARGS_APPEND environment variable to modify the Maven arguments.

e Al WAR files from the deployments/source directory are copied to /opt/jws-
5.5/tomcat/webapps.

e Allfiles in the configuration/source directory are copied to /opt/jws-5.5/tomcat/conf/
(excluding the Maven settings.xml file).

e Allfiles in the lib/source directory are copied to /opt/jws-5.5/tomcat/lib/.

NOTE
If you want to use custom Tomcat configuration files, the file names should be

the same as for a normal Tomcat installation. For example, context.xml and
server.xml.

See the Artifact Repository Mirrors section for guidance on configuring the S2I process to use a custom
Maven artifacts repository mirror.

3.4.1. Create a JWS for OpenShift application using existing maven binaries

Existing applications are deployed on OpenShift using the oc start-build command.
Prerequisite: An existing .war, .ear, or .jar of the application to deploy on JWS for OpenShift.

1. Prepare the directory structure on the local file system.

https://github.com/jboss-container-images/jboss-webserver-5-openshift-image/blob/webserver53-dev/templates/jws53-openjdk11-tomcat9-image-stream.json#L49
https://maven.apache.org/settings.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/builds/index#builds-binary-source_creating-build-inputs

CHAPTER 3. GET STARTED

Create a source directory containing any content required by your application not included in
the binary (if required, see Using the JWS for OpenShift Source-to-Image (S2I) process), then
create a subdirectory deployments/:

I $ mkdir -p <build_dir>/deployments
. Copy the binaries (.war,.ear,.jar) to deployments/:

I $ cp /path/to/binary/<filenames_with_extensions> <build_dir>/deployments/

NOTE

Application archives in the deployments/ subdirectory of the source directory
are copied to the $JWS_HOME/tomcat/webapps/ directory of the image being
built on OpenShift. For the application to deploy, the directory hierarchy
containing the web application data must be structured correctly (see

Section 3.4, “"Using the JWS for OpenShift Source-to-Image (S2I) process”).

. Login to the OpenShift instance:
I $ oc login <url>

. Create a new project if required:

I $ oc new-project <project-name>

. ldentify the JWS for OpenShift image stream to use for your application with oc get is -n
openshift:

$ oc get is -n openshift | grep "jboss-webserver | cut -f1 -d '’

jboss-webserver50-tomcat9-openshift

NOTE

The option -n openshift specifies the project to use. oc get is -n openshift
retrieves (get) the image stream resources (is) from the openshift project.

. Create the new build configuration, specifying image stream and application name:

$ oc new-build --binary=true \
--image-stream=jboss-webserver<version>-openjdk8-tomcat9-openshift-rhel8:latest \
--name=<my-jws-on-openshift-app>

. Instruct OpenShift to use the source directory created above for binary input of the OpenShift
image build:

I $ oc start-build <my-jws-on-openshift-app> --from-dir=./<build_dir> --follow

. Create a new OpenShift application based on the image:

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

I $ oc new-app <my-jws-on-openshift-app>
9. Expose the service to make the application accessible to users:

to check the name of the service to expose
$ oc get svc -0 name

service/<my-jws-on-openshift-app>

to expose the service
$ oc expose svc/my-jws-on-openshift-app

route "my-jws-on-openshift-app" exposed
10. Retrieve the address of the exposed route:

I oc get routes --no-headers -0 custom-columns='host:spec.host' my-jws-on-openshift-app

1. To access the application in your browser: http://<address_of_exposed_route> /<my-war-ear-
jar-filename-without-extension>

3.4.2. Example: Creating a JWS for OpenShift application using existing maven
binaries

The example below uses the tomcat-websocket-chat quickstart using the procedure from Section 3.4.],
“Create a JWS for OpenShift application using existing maven binaries”.

3.4.2.1. Prerequisites:
A. Get the WAR application archive or build the application locally.

® Clone the source code:

I $ git clone https://github.com/jboss-openshift/openshift-quickstarts.git

® Configure the Red Hat JBoss Middleware Maven Repository

o Additional information for the Red Hat JBoss Middleware Maven Repository

® Build the application:

I $ cd openshift-quickstarts/tomcat-websocket-chat/

$ mvn clean package

[INFO] Scanning for projects...
[INFO]
[INFO]
[INFQO] Building Tomcat websocket example 1.2.0.Final
[INFO]

[INFO]
[INFO] BUILD SUCCESS

10

https://github.com/jboss-openshift/openshift-quickstarts/tree/master/tomcat-websocket-chat
https://github.com/jboss-openshift/openshift-quickstarts.git
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.2/html/development_guide/using_maven_with_eap#use_the_maven_repository
https://access.redhat.com/maven-repository

CHAPTER 3. GET STARTED

[INFO] --
[INFO] Total time: 01:28 min

[INFO] Finished at: 2018-01-16T15:59:16+10:00

[INFO] Final Memory: 19M/271M

[INFO] --

B. Prepare the directory structure on the local file system.
Create the source directory for the binary build on your local file system and the deployments/
subdirectory. Copy the WAR archive to deployments/:

[tomcat-websocket-chat]$ Is

pom.xml README.md src/ target/
I $ mkdir -p ocp/deployments

I $ cp target/websocket-chat.war ocp/deployments/

3.4.2.2. To setup the example application on OpenShift

1. Login to the OpenShift instance:
I $ oc login <url>

2. Create a new project if required:
I $ oc new-project jws-bin-demo

3. Identify the JWS for OpenShift image stream to use for your application with oc get is -n
openshift:

$ oc get is -n openshift | grep "jboss-webserver | cut -f1 -d '’

jboss-webserver50-tomcat9-openshift
4. Create new build configuration, specifying image stream and application name:

$ oc new-build --binary=true \
--image-stream=jboss-webserver<version>-openjdk8-tomcat9-openshift-rhel8:latest\
--name=jws-wsch-app

--> Found image 8c3b85b (4 weeks old) in image stream "openshift/jooss-
webserver<version>-tomcat9-openshift” under tag "latest” for "jposs-webserver<version>"

JBoss Web Server 5.0
Platform for building and running web applications on JBoss Web Server 5.0 - Tomcat v9

Tags: builder, java, tomcat9

* A source build using binary input will be created
* The resulting image will be pushed to image stream "jws-wsch-app:latest”

1

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

12

* A binary build was created, use 'start-build --from-dir' to trigger a new build

--> Creating resources with label build=jws-wsch-app ...
imagestream "jws-wsch-app" created
buildconfig "jws-wsch-app" created

--> Success

5. Start the binary build. Instruct OpenShift to use source directory for the binary input for the
OpenShift image build:

$ *oc start-build jws-wsch-app --from-dir=./ocp --follow*

Uploading directory "ocp" as binary input for the build ...
build "jws-wsch-app-1" started
Receiving source from STDIN as archive ...

Copying all deployments war artifacts from /home/jooss/source/deployments directory into
“/opt/jws-5.5/tomcat/webapps’ for later deployment...
''nome/jboss/source/deployments/websocket-chat.war' -> '/opt/jws-
5.5/tomcat/webapps/websocket-chat.war'

Pushing image 172.30.202.111:5000/jws-bin-demo/jws-wsch-app:latest ...
Pushed 0/7 layers, 7% complete

Pushed 1/7 layers, 14% complete

Pushed 2/7 layers, 29% complete

Pushed 3/7 layers, 49% complete

Pushed 4/7 layers, 62% complete

Pushed 5/7 layers, 92% complete

Pushed 6/7 layers, 100% complete

Pushed 7/7 layers, 100% complete

Push successful

6. Create a new OpenShift application based on the image:

$ oc new-app jws-wsch-app

--> Found image e5f3a6b (About a minute old) in image stream "jws-bin-demo/jws-wsch-app"
under tag "latest" for "jws-wsch-app"

JBoss Web Server 5.0

Platform for building and running web applications on JBoss Web Server 5.0 - Tomcat v9
Tags: builder, java, tomcat9

* This image will be deployed in deployment config "jws-wsch-app"
* Ports 8080/tcp, 8443/tcp, 8778/tcp will be load balanced by service "jws-wsch-app"
* Other containers can access this service through the hostname "jws-wsch-app"

--> Creating resources ...
deploymentconfig "jws-wsch-app" created
service "jws-wsch-app" created
--> Success
Application is not exposed. You can expose services to the outside world by executing one

CHAPTER 3. GET STARTED

or more of the commands below:
'oc expose svc/jws-wsch-app'
Run 'oc status' to view your app.

7. Expose the service to make the application accessible to users:

to check the name of the service to expose
$ oc get svc -0 name

service/jws-wsch-app

to expose the service
$ oc expose svc/jws-wsch-app

route "jws-wsch-app" exposed
8. Retrieve the address of the exposed route:
I oc get routes --no-headers -0 custom-columns="'host:spec.host' jws-wsch-app
9. Access the application in your browser: http://<address_of_exposed_route>/websocket-chat

3.4.3. Create a JWS for OpenShift application from source code

For detailed instructions on creating new OpenShift applications from source code, see OpenShift.com
- Creating an application from source code.

NOTE

. Before proceeding, ensure that the applications' data is structured correctly (see
- Section 3.4, “Using the JWS for OpenShift Source-to-Image (S2I) process”).

1. Login to the OpenShift instance:
I $ oc login <url>
2. Create a new project if required:
I $ oc new-project <project-name>

3. Identify the JWS for OpenShift image stream to use for your application with oc get is -n
openshift:

$ oc get is -n openshift | grep "jboss-webserver | cut -f1 -d '’

jboss-webserver50-tomcat9-openshift

4. Create the new OpenShift application from source code using Red Hat JBoss Web Server for
OpenShift images, use the --image-stream option:

$ oc new-app \
<source_code _location>\

13

https://docs.openshift.com/container-platform/latest/applications/creating_applications/creating-applications-using-cli.html#applications-create-using-cli-source-code_creating-applications-using-cli

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

--image-stream=jboss-webserver<version>-openjdk8-tomcat9-openshift-rhel8\
--name=<openshift_application _name>

For Example:

$ oc new-app \
https://github.com/jboss-openshift/openshift-quickstarts.git#master \
--image-stream=jboss-webserver<version>-openjdk8-tomcat9-openshift-rhel8\
--context-dir="tomcat-websocket-chat' \

--name=jws-wsch-app

The source code is added to the image and the source code is compiled. The build
configuration and services are also created.

5. To expose the application:

to check the name of the service to expose
$ oc get svc -0 name

service/<openshift_application _name>

to expose the service
$ oc expose svc/<openshift_application_name>

route "<openshift_application _name>" exposed

6. Toretrieve the address of the exposed route:

oc get routes --no-headers -0 custom-columns="host:spec.host'
<openshift_application _name>

7. To access the application in your browser:
http://<address_of_exposed_route>/<java_application_name>

3.5. ADDING ADDITIONAL JAR FILES INTomMcAT/LIBs DIRECTORY

Additional jar files can be added to tomcat/lib/ directory using docker.
For adding jar files in tomcat/lib/

1. Get the image started in docker

I docker run --network host -i -t -p 8080:8080 ImageURL

2. Find the CONTAINER ID

I docker ps | grep <ImageName>

3. Copy the library to tomcat/lib/ directory

I docker cp <yourLibrary> <CONTAINER ID>:/opt/jws-5.5/tomcat/lib/

4. Commit the changes to a new image

14

https://github.com/jboss-openshift/openshift-quickstarts.git#master

CHAPTER 3. GET STARTED

I docker commit <CONTAINER ID> <NEW IMAGE NAME>

5. Create a new image tag

I docker tag <NEW IMAGE NAME>:latest <NEW IMAGE REGISTRY URL>:<TAG>

6. Push the image to a registry

I docker push <NEW IMAGE REGISTRY URL>

15

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

CHAPTER 4. JWS OPERATOR

4.1. JBOSS WEB SERVER OPERATOR

4.1.1. OpenShift Operators

The Operator Framework is a toolkit to manage Kubernetes native applications, called Operators, in an
effective, automated, and scalable way. Operators make it easy to manage complex stateful applications
on top of Kubernetes. All Operators are based around 3 key components: The Operator SDK, The
Operator Lifecycle Manager, and OperatorHub.io. These tools allow you to develop your own operators,
manage any operators you are using on your Kubernetes cluster, and discover or share any Operators
the community creates.

The Red Hat JBoss Web Server project provides an Operator to manage its OpenShift images. This
section covers how to build, test, and package the OpenShift Operator for JWS.

For full instructions on cluster setup please refer to the Openshift Documentation subsection ‘Install’

Additionally, The JWS operator uses different environment variables than the JWS-on-OpenShift
setup. A full listing of these parameters can be found here.

IMPORTANT

At this time, the Use Session Clustering functionality is available as technology preview
(not supported). The clustering is Off by default. The current operator version uses the
DNS Membership Provider which is limited due to DNS limitations.
InetAddress.getAlIByName() results are cached and as a result, session replications may
not work while scaling up.

This guide covers installation, deployment, and deletion of the JWS Operator in detail. For a faster, but
less detailed, guide Please refer to the quickstarts guide .

IMPORTANT

Currently, we only support JWS 5.4 images. Images older than 5.4 are NOT supported.

4.1.2. Installing the JWS Operator

This section covers the installation of the JWS Operator on the OpenShift Container Platform.

4.1.2.1. Prerequisites

® OpenShift Container Platform cluster using an account with cluster admin permissions (web
console only)

® OpenShift Container Platform cluster using an account with operator installation permissions

® oc tool installed on your local system (CLI only)

4.1.2.2. Installing the JWS Operator - web console

1. Navigate to the ‘Operators’ tab, found in the menu on the left-hand side

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/
https://github.com/web-servers/jws-operator/blob/master/Parameters.md
https://github.com/web-servers/jws-operator/blob/master/QuickStart.md

2.

4.1.2.3.

CHAPTER 4. JWS OPERATOR

This will open OpenShift OperatorHub. From here, search for JWS and select the 'JWS
Operator’

A new menu should appear - Select your desired Capacity Level and then click ‘Install’ at the top
to install the Operator.

You are now able to set up the operator installation. You will specify the following 3 options:

e |nstallation Mode: Specify a specific namespace on your cluster to install. If you do not
specify this, it will install the operator to all namespaces on your cluster by default.

® Update Channel: The JWS operator is currently available only through one channel.

® Approval Strategy: You can choose Automatic or Manual updates. If you choose Automatic
updates for an installed Operator, when a new version of that Operator is available,
Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your
Operator without human intervention. If you select Manual updates, when a newer version of
an Operator is available, OLM creates an update request. As a cluster administrator, you
must then manually approve that update request to have the Operator updated to the new
version.

Click ‘Install’ at the bottom. If you selected Manual Approval Strategy, you must approve the
install plan before installation is complete. The JWS Operator will now appear in the ‘Installed
Operators’ section of the ‘Operators’ tab.

Installing the JWS Operator - command line interface

Inspect the JWS operator to verify its supported installModes and available channels using the
following commands:

$ oc get packagemanifests -n openshift-marketplace | grep jws
jws-operator Red Hat Operators 16h

$ oc describe packagemanifests jws-operator -n openshift-marketplace | grep "Catalog
Source"
Catalog Source: redhat-operators

. An OperatorGroup is an OLM resource that selects target namespaces in which to generate

required RBAC access for all Operators in the same namespace as the OperatorGroup.

The namespace to which you subscribe the Operator must have an OperatorGroup that
matches the InstallMode of the Operator, either the AllNamespaces or SingleNamespace mode.
If the Operator you intend to install uses the AllNamespaces, then the openshift-operators
namespace already has an appropriate OperatorGroup in place.

However, if the Operator uses the SingleNamespace mode, exactly one OperatorGroup has to
be created in that namespace. To check actual list of OperatorGroups use the following
command:

I $ oc get operatorgroups -n <project_name>

Example of an output for OperatorGroup listing:

NAME AGE
mygroup 17h

17

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

18

NOTE

The web console version of this procedure handles the creation of the
OperatorGroup and Subscription objects automatically behind the scenes for you
when choosing SingleNamespace mode.

® Create an OperatorGroup object YAML file, for example:
OperatorGroupExample.yaml:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: <operatorgroup_name>
namespace: <project_name>
spec:
targetNamespaces:
- <project_name>

<project_name?> is the namespace of the project where you install the operator (oc project -
q). <operatorgroup_name> is the name of the OperatorGroup.

® Create the OperatorGroup object using the following command:

I $ oc apply -f OperatorGroupExample.yaml

3. Create a subscription object YAML file, for example jws-operator-sub.yaml. Configure your

Subscription object YAML file to look as follows:

apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: jws-operator
namespace: <project_name>
spec:
channel: alpha
name: jws-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

<project_name?> is the namespace of the project where you install the operator (oc project -q).
to install in all namespace use openshift-operators.

The source is the Catalog Source. This is the value from the $ oc describe packagemanifests
jws-operator -n openshift-marketplace | grep "Catalog Source:" command we ran in step 1
of this section. The value should be redhat-operators.

. Create the Subscription object from the YAML file with the following command:

I $ oc apply -f jws-operator-sub.yaml
To verify a successful installation, run the following command:

I $ oc get csv -n <project_name>

CHAPTER 4. JWS OPERATOR

NAME DISPLAY VERSION REPLACES PHASE
jws-operator.V1.0.0 JBoss Web Server 1.0.0 Succeeded
Operator

4.1.3. Deploying an existing JWS image

1. Ensure your operator is installed with the following command:

$ oc get deployment.apps/jws-operator
NAME READY UP-TO-DATE AVAILABLE AGE
jws-operator 1/1 1 1 15h

Or if you need a more detailed output:
I $ oc describe deployment.apps/jws-operator

2. Prepare your image and push it to the desired location. In this example it is pushed to
quay.io/<USERNAME>/tomcat-demo:latest

3. Create a Custom Resource WebServer .yaml file. In this example a file called
webservers_cr.yaml is used. Your file should follow this format:

apiVersion: web.servers.org/vialphai
kind: WebServer
metadata:
name: example-image-webserver
spec:
Add fields here
applicationName: jws-app
replicas: 2
weblmage:
applicationlmage: quay.io/<USERNAME>/tomcat-demo:latest

4. Deploy your webapp, from the directory in which you created it, with the following command:

$ oc apply -f webservers_cr.yaml
webserver/example-image-webserver created

NOTE

The operator will create a route automatically. You can verify the route with the
following command:

I $ oc get routes

For more information on routes, please see the OpenShift documentation

5. If you need delete the webserver you created in step 4:

I $ oc delete webserver example-image-webserver

19

https://docs.openshift.com/container-platform/4.7/networking/routes/route-configuration.html

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

OR

I $ oc delete -f webservers_cr.yaml

4.1.4. Deleting Operators from a cluster

4.1.4.1. Prerequisites

® OpenShift Container platform cluster with admin privileges (Alternatively, you can circumvent
this requirement by following these instructions)

® oc tool installed on your local system (CLI only)

4.1.4.2. Deleting an operator from a cluster - web console
1. In the left hand menu, click ‘Operators’ = ‘Installed Operators’
2. Underneath ‘Operator Details’ select the ‘Actions’ menu, and then click ‘Uninstall Operator’

3. Selecting this option will remove the Operator, any Operator deployments, and Pods.
HOWEVER removing the Operator will not remove any of its custom resource definitions or
custom resources, including CRDs or CRs. If your operator has deployed applications on the
cluster or configured off-cluster resources, these will continue to run and need to be cleaned up
manually.

4.1.4.3. Deleting an operator from a cluster - command line interface

1. Check the current version of the subscribed operator in the currentCSV field by using the
following command:

$ oc get subscription jws-operator -n <project_name> -o yaml | grep currentCSV

f:currentCSV: {}
currentCSV: jws-operator.v1.0.0

NOTE

In the above command, <project_names refers to the namespace of the project
where you installed the operator. If your operator was installed to all namespaces,
use openshift-operators in place of <project_names.

2. Delete the operator's subscription using the following command:

I $ oc delete subscription jws-operator -n <project_name>

NOTE
In the above command, <project_names refers to the namespace of the project

where you installed the operator. If your operator was installed to all namespaces,
use openshift-operators in place of <project_names.

3. Delete the CSV for the operator in the target namespace using the currentCSV value from the
previous step, using the following command:

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html/operators/administrator-tasks#olm-creating-policy

CHAPTER 4. JWS OPERATOR

I $ oc delete clusterserviceversion <currentCSV> -n <project_name>

where <currentCSVs is the value obtained in step 1

$ oc delete clusterserviceversion jws-operator.v1.0.0
clusterserviceversion.operators.coreos.com "jws-operator.v1.0.0" deleted

NOTE

In the above command, <project_names refers to the namespace of the project
where you installed the operator. If your operator was installed to all namespaces,
use openshift-operators in place of <project_names.

4.1.5. Additional resources

For additional information on Operators, you may refer to the formal OpenShift Documentation:
What are Operators?
And

Openshift Container Platform

21

https://docs.openshift.com/dedicated/4/operators/olm-what-operators-are.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html/operators/index

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

CHAPTER 5. REFERENCE

5.1. SOURCE-TO-IMAGE (S2I)

The Red Hat JBoss Web Server for OpenShift image includes S2I scripts and Maven.

5.1.1. Using maven artifact repository mirrors with JWS for OpenShift

A Maven repository holds build artifacts and dependencies, such as the project jars, library jars, plugins
or any other project specific artifacts. It also defines locations to download artifacts from while
performing the S2I build. Along with using the Maven Central Repository, some organizations also
deploy a local custom repository (mirror).
Benefits of using a local mirror are:

® Availability of a synchronized mirror, which is geographically closer and faster.

® Greater control over the repository content.

® Possibility to share artifacts across different teams (developers, Cl), without the need to rely on
public servers and repositories.

® |mproved build times.
A Maven repository manager can serve as local cache to a mirror. Assuming that the repository manager
is already deployed and reachable externally at http;//10.0.0.1:8080/repository/internal/, the S2I build
can use this repository. To use an internal Maven repository, add the MAVEN_MIRROR_URL

environment variable to the build configuration of the application.

For a new build configuration, use the --build-env option with oc hew-app or oc new-build:

$ oc new-app \
https://github.com/jboss-openshift/openshift-quickstarts.git#master \
--image-stream=jboss-webserver<version>-openjdk8-tomcat9-openshift-rhel8:latest*
--context-dir="tomcat-websocket-chat' \
--build-env MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/\
--name=jws-wsch-app

For an existing build configuration:

1. ldentify the build configuration which requires the MAVEN_MIRROR_URL variable:

$ oc get bc -0 name

buildconfig/jws

2. Add the MAVEN_MIRROR_URL environment variable to buildconfig/jws:

$ oc env bc/jws MAVEN_MIRROR_URL="http://10.0.0.1:8080/repository/internal/"

buildconfig "jws" updated

3. Verify the build configuration has updated:

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html-single/builds/index#build-strategy-s2i_build-strategies
https://maven.apache.org/repository/index.html
https://maven.apache.org/repository-management.html
https://github.com/jboss-openshift/openshift-quickstarts.git#master

CHAPTER 5. REFERENCE

$ oc env bc/jws --list

buildconfigs jws
MAVEN_MIRROR_URL=http://10.0.0.1:8080/repository/internal/

4. Schedule a new build of the application using oc start-build

NOTE

During application build, Maven dependencies are download from the repository
manager, instead of the default public repositories. Once the build has finished, the mirror
contains all the dependencies retrieved and used during the build.

5.1.2. Scripts included on the Red Hat JBoss Web Server for OpenShift image

run
runs Catalina (Tomcat)
assemble

uses Maven to build the source, create package (.war) and move it to the
$JWS_HOME/tomcat/webapps directory.

5.1.3. JWS for OpenShift datasources

There are 3 types of data sources:

1. Default Internal Datasources: These are PostgreSQL, MySQL, and MongoDB. These
datasources are available on OpenShift by default through the Red Hat Registry and do not
require additional environment files to be configured for image streams. To make a database
discoverable and used as a datasource, set the DB_SERVICE_PREFIX_MAPPING environment
variable to the name of the OpenShift service.

2. Other Internal Datasources: These are datasources not available by default through the Red
Hat Registry but run on OpenShift. Configuration of these datasources is provided by
environment files added to OpenShift Secrets.

3. External Datasources: Datasources not run on OpenShift.Configuration of external
datasources is provided by environment files added to OpenShift Secrets.

The datasources environment files are added to the OpenShift Secret for the project. These
environment files are then called within the template using the ENV_FILES environment property.

Datasources are automatically created based on the value of certain environment variables. The most
important environment variable is DB_SERVICE_PREFIX_MAPPING.
DB_SERVICE_PREFIX_MAPPING defines JNDI mappings for the datasources. The allowed value for
this variable is a comma-separated list of POOLNAME-DATABASETYPE=PREFIX triplets, where:

® POOLNAME is used as the pool-name in the datasource.

e DATABASETYPE is the database driver to use.

® PREFIX is the prefix used in the names of environment variables that are used to configure the
datasource.

23

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

For each POOLNAME-DATABASETYPE=PREFIX triplet defined in the
DB_SERVICE_PREFIX_MAPPING environment variable, the launch script creates a separate
datasource, which is executed when running the image.

For a full listing of datasource configuration environment variables, please see the Datasource

Configuration Environment Variables list given here.

5.1.4. JWS for OpenShift compatible environment variables

The build configuration can be modified by including environment variables to the Source-to-Image
build command (see Section 5.1.1, “Using maven artifact repository mirrors with JWS for OpenShift”).
The valid environment variables for the Red Hat JBoss Web Server for OpenShift images are:

Variable Name

Display Name

Description

Example Value

ARTIFACT_DIR

APPLICATION_NAME

CONTEXT_DIR

GITHUB_WEBHOOK_S
ECRET

GENERIC_WEBHOOK_
SECRET

HOSTNAME_HTTP

HOSTNAME_HTTPS

IMAGE_STREAM_NAM

ESPACE

JWS_HTTPS_SECRET

24

N/A

Application Name

Context Directory

Github Webhook Secret

Generic Webhook
Secret

Custom HTTP Route
Hostname

Custom HTTPS Route
Hostname

Imagestream
Namespace

Secret Name

.war, .ear, and .jar files
from this directory will
be copied into the
deployments
directory

The name for the
application

Path within Git project
to build; empty for root
project directory

Github trigger secret

Generic build trigger
secret

Custom hostname for
http service route.
Leave blank for default
hostname

Custom hostname for
https service route.
Leave blank for default
hostname

Namespace in which the
ImageStreams for Red
Hat Middleware images
are installed

The name of the secret
containing the
certificate files

target

jws-app

tomcat-websocket-chat

Expression from: [a-zA-
Z0-9]§8}

Expression from: [a-zA-
Z0-9]§8}

<application-name>-
<project>.<default-
domain-suffix>

<application-name>-
<project>.<default-
domain-suffix>

openshift

jws-app-secret

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.3/html/getting_started_with_jboss_eap_for_openshift_container_platform/reference_information#reference_datasources

Variable Name

JWS_HTTPS_CERTIFIC
ATE

JWS_HTTPS_CERTIFIC
ATE_KEY

JWS_HTTPS_CERTIFIC
ATE_PASSWORD

JWS_ADMIN_USERNA
ME

JWS_ADMIN_PASSWO
RD

SOURCE_REPOSITORY
_URL

SOURCE_REPOSITORY
_REFERENCE

IMAGE_STREAM_NAM
ESPACE

MAVEN_MIRROR_URL

Display Name

Certificate Name

Certificate Key Name

Certificate Password

JWS Admin Username

JWS Admin Password

Git Repository URL

Git Reference

Imagestream
Namespace

Maven Mirror URL

Description

The name of the
certificate file within the
secret

The name of the
certificate key file within
the secret

The Certificate
Password

JWS Admin account
username

JWS Admin account
password

Git source URI for
Application

Git branch/tag
reference

Namespace in which the
ImageStreams for Red
Hat Middleware images
are installed

URL of a Maven
mirror/repository
manager to configure.

5.2. VALVES ON JWS FOR OPENSHIFT

CHAPTER 5. REFERENCE

Example Value

server.crt

server.key

P5sswOrd

ADMIN

P5swOrd

https://github.com/jbo
ss-
openshift/openshift-
quickstarts.git

12

openshift

http://10.0.0.1:8080/rep
ository/internal/

5.2.1. JWS for OpenShift compatible environmental variables (valve component)

You can define the following environment variables to insert the valve component into the request
processing pipeline for the associated Catalina container.

Variable Name

ENABLE_ACCESS_LOG

Description

Example Value

Enable the Access Log Valve true
to log access messages to the
standard output channel.

Default Value

false

25

https://github.com/jboss-openshift/openshift-quickstarts.git

Red Hat JBoss Web Server 5.5 Red Hat JBoss Web Server for OpenShift

5.3. CHECKING LOGS

To view the OpenShift logs or the logs provided by a running container’s console:

I $ oc logs -f <pod_name> <container_name>

Access logs are stored in /opt/jws-5.5/tomcat/logs/.

26

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION
	1.1. OVERVIEW OF RED HAT JBOSS WEB SERVER FOR OPENSHIFT

	CHAPTER 2. BEFORE YOU BEGIN
	2.1. THE DIFFERENCE BETWEEN RED HAT JBOSS WEB SERVER AND JWS FOR OPENSHIFT
	2.2. VERSION COMPATIBILITY AND SUPPORT
	2.3. SUPPORTED ARCHITECTURES BY JBOSS WEB SERVER
	2.4. HEALTH CHECKS FOR RED HAT CONTAINER IMAGES

	CHAPTER 3. GET STARTED
	3.1. INITIAL SETUP
	3.2. CONFIGURE AUTHENTICATION TO THE RED HAT CONTAINER REGISTRY
	3.3. IMPORT THE LATEST RED HAT JBOSS WEB SERVER IMAGE STREAMS AND TEMPLATES
	Import command for JDK 8
	Import command for JDK 11
	3.3.1. Update Commands

	3.4. USING THE JWS FOR OPENSHIFT SOURCE-TO-IMAGE (S2I) PROCESS
	3.4.1. Create a JWS for OpenShift application using existing maven binaries
	3.4.2. Example: Creating a JWS for OpenShift application using existing maven binaries
	3.4.2.1. Prerequisites:
	3.4.2.2. To setup the example application on OpenShift

	3.4.3. Create a JWS for OpenShift application from source code

	3.5. ADDING ADDITIONAL JAR FILES IN TOMCAT/LIB/ DIRECTORY

	CHAPTER 4. JWS OPERATOR
	4.1. JBOSS WEB SERVER OPERATOR
	4.1.1. OpenShift Operators
	4.1.2. Installing the JWS Operator
	4.1.2.1. Prerequisites
	4.1.2.2. Installing the JWS Operator - web console
	4.1.2.3. Installing the JWS Operator - command line interface

	4.1.3. Deploying an existing JWS image
	4.1.4. Deleting Operators from a cluster
	4.1.4.1. Prerequisites
	4.1.4.2. Deleting an operator from a cluster - web console
	4.1.4.3. Deleting an operator from a cluster - command line interface

	4.1.5. Additional resources

	CHAPTER 5. REFERENCE
	5.1. SOURCE-TO-IMAGE (S2I)
	5.1.1. Using maven artifact repository mirrors with JWS for OpenShift
	5.1.2. Scripts included on the Red Hat JBoss Web Server for OpenShift image
	5.1.3. JWS for OpenShift datasources
	5.1.4. JWS for OpenShift compatible environment variables

	5.2. VALVES ON JWS FOR OPENSHIFT
	5.2.1. JWS for OpenShift compatible environmental variables (valve component)

	5.3. CHECKING LOGS

