
Red Hat JBoss Fuse 6.2

Tooling Tutorials

Building Solutions with Red Hat JBoss Fuse Tooling

Last Updated: 2017-09-27

Red Hat JBoss Fuse 6.2 Tooling Tutorials

Building Solutions with Red Hat JBoss Fuse Tooling

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide contains a number of simple tutorials that demonstrate how to use the tooling provided
by Red Hat JBoss Fuse Tooling to develop and test applications.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. USING THE FUSE TOOLING RESOURCE FILES
PREREQUISITES
DOWNLOADING AND INSTALLING THE PREFABRICATED MESSAGE FILES
DOWNLOADING AND INSTALLING THE PREFABRICATED CAMEL CONTEXT FILES

CHAPTER 2. TO CREATE A NEW ROUTE
GOALS
PREREQUISITES
CREATING THE FUSE PROJECT
CREATING THE NEW ROUTING CONTEXT
CREATING THE ROUTE
CREATING TEST MESSAGES
NEXT STEPS
FURTHER READING

CHAPTER 3. TO RUN A ROUTE
GOALS
PREREQUISITES
RUNNING THE ROUTE
VERIFYING THE ROUTE
FURTHER READING

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER
GOALS
PREREQUISITES
ADDING AND CONFIGURING A CONTENT-BASED ROUTER
ADDING AND CONFIGURING LOGGING
ADDING AND CONFIGURING MESSAGE HEADERS
ADDING AND CONFIGURING AN OTHERWISE BRANCH
NEXT STEPS
FURTHER READING

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT
GOALS
PREREQUISITES
RECONFIGURING THE EXISTING ROUTE FOR DIRECT CONNECTION
ADDING THE SECOND ROUTE
BUILDING AND CONFIGURING THE USA BRANCH OF THE SECOND ROUTE
BUILDING AND CONFIGURING THE GREAT BRITAIN BRANCH OF THE SECOND ROUTE
BUILDING AND CONFIGURING THE GERMANY BRANCH OF THE SECOND ROUTE
BUILDING AND CONFIGURING THE FRANCE BRANCH OF THE SECOND ROUTE
SAVING THE NEW ROUTING CONTEXT
NEXT STEPS
FURTHER READING

CHAPTER 6. TO DEBUG A ROUTING CONTEXT
GOALS
PREREQUISITES
SETTING BREAKPOINTS
STEPPING THROUGH THE CBRROUTE ROUTING CONTEXT
CHANGING THE VALUE OF A VARIABLE
NEXT STEPS

4
4
4
4

6
6
6
8

10
12
15
18
18

19
19
19
19

20
21

22
22
22
22
24
24
25
27
28

29
29
29
29
30
30
32
33
34
35
37
38

39
39
39
39
41
46
51

Table of Contents

1

. .

. .

. .

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE
GOALS
PREREQUISITES
ACCESSING FUSE INTEGRATION PERSPECTIVE
STARTING MESSAGE TRACING
DROPPING MESSAGES ON THE RUNNING CBRROUTE PROJECT
INITIALIZING AND CONFIGURING MESSAGES VIEW
ARRANGING DIAGRAM VIEW
STEPPING THROUGH MESSAGE TRACES
FINISHING UP
NEXT STEPS

CHAPTER 8. TO TEST A ROUTE WITH JUNIT
OVERVIEW
GOALS
PREREQUISITES
DELETING THE EXISTING TEST CASE
CREATING THE NEW TEST CASE
MODIFYING THE CAMELCONTEXTXMLTEST FILE
MODIFYING THE POM.XML FILE
RUNNING THE JUNIT TEST
FURTHER READING

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO RED HAT JBOSS FUSE
GOALS
PREREQUISITES
DEFINING A RED HAT JBOSS FUSE SERVER
CONFIGURING THE PUBLISHING OPTIONS
STARTING UP RED HAT JBOSS FUSE SERVER
CONNECTING TO THE JBOSS FUSE 6.2 RUNTIME SERVER
UNINSTALLING THE CBRROUTE PROJECT

52
52
52
52
54
55
56
58
58
59
60

61
61
61
61
62
62
66
69
72
73

74
74
74
74
78
79
80
82

Red Hat JBoss Fuse 6.2 Tooling Tutorials

2

Table of Contents

3

CHAPTER 1. USING THE FUSE TOOLING RESOURCE FILES

Abstract

Experienced users may want to focus only on the tutorials that demonstrate the tooling's new
features. To do so, you need to download and install the requisite resource files. The prefabricated
message files are used by all tutorials, but the prefabricated Camel Context files are specific to
particular tutorials. With the exception of Chapter 2, To Create a New Route and Chapter 8, To Test a
Route with JUnit, using these prefabricated resource files enables you to complete most tutorials in any
order. Without them, you must complete each tutorial sequentially, as the code generated by one
tutorial is the starting point for the next tutorial.

PREREQUISITES

You must complete Chapter 2, To Create a New Route, to create the project, the new routing context,
and the folder that will hold the test messages. The code generated by this tutorial is used by
Chapter 3, To Run a Route and by Chapter 4, To Add a Content-Based Router.

You must successfully complete Chapter 8, To Test a Route with JUnit to generate a valid JUnit test
case before you can successfully complete Chapter 9, To Publish a Fuse Project to Red Hat JBoss Fuse.

DOWNLOADING AND INSTALLING THE PREFABRICATED MESSAGE
FILES

Six prefabricated message files named message1.xml, message2.xml,..., message6.xml are used in
all of the tutorials. These files are provided in a downloadable Messages.zip file. Follow the
instructions for downloading and installing the messages in the section called “Creating test
messages”.

DOWNLOADING AND INSTALLING THE PREFABRICATED CAMEL
CONTEXT FILES

Two prefabricated Camel Context files named camelContext5.xml, and camelContext6.xml are
used in one or more of the tutorials. These files are provided in a downloadable .zip file.

1. Click here to download the camelContexts.zip file.

2. Unzip the camelContexts.zip file in a convenient location external to the CBRroute
project's workspace.

3. Delete the existing camelContext.xml file from the
CBRroute/src/main/resources/OSGI-INF/blueprint/ folder.

4. Install the camelContext#.xml file that corresponds to the tutorial that you want to
complete in the vacated CBRroute/src/main/resources/OSGI-INF/blueprint/ folder.

Use prefabricated Camel Context file: To complete tutorials:

camelContext5.xml To Add Another Route to the CBR Routing
Context

Red Hat JBoss Fuse 6.2 Tooling Tutorials

4

files/camelContexts.zip

camelContext6.xml To Debug a Routing Context

To Trace a Message Through a Route

To Test a Route with JUnit

Use prefabricated Camel Context file: To complete tutorials:

5. Rename the camelContext#.xml file camelContext.xml.

6. In the Red Hat JBoss Fuse: Tooling Tutorials guide, follow the instructions for completing the
target tutorial.

CHAPTER 1. USING THE FUSE TOOLING RESOURCE FILES

5

CHAPTER 2. TO CREATE A NEW ROUTE

Abstract

This tutorial walks you through the process of creating a new Fuse project, adding a route to it, and
adding two endpoints to the route. It assumes that you have already set up your workspace and that
Red Hat JBoss Fuse Tooling is running inside Red Hat JBoss Developer Studio.

GOALS

In this tutorial you will:

create a Fuse project

create a new routing context

create a route

add endpoints to the route

connect the endpoints

configure the endpoints

create a folder in your project to store test messages that you create for your route

create the test messages

PREREQUISITES

NOTE

You can use Fuse Integration perspective to work through all of the tutorials in this
guide. However, because JBoss perspective provides more room for the route editor's
canvas to expand as you build the routing context, this and other tutorials use JBoss
perspective.

As you proceed through the remaining tutorials, you may find that you prefer using
Fuse Integration perspective exclusively.

When you first start up JBoss Developer Studio, it opens in JBoss perspective, as shown in Figure 2.1,
“JBoss View on initial startup”.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

6

Figure 2.1. JBoss View on initial startup

To provide more space for the canvas to expand as you build your projects:

1. Close the JBoss Central tab.

NOTE

You can reopen a view whenever you need it. You can also drag the border of a
view or panel to increase or decrease the space it occupies in the workspace.

2. Close the JMX Navigator view at bottom, left of the workspace.

3. Drag Outline view from top, right of the workspace, and drop it in the spot previously
occupied by the JMX Navigator view.

Your JBoss perspective should now look like that shown in Figure 2.2, “JBoss View rearranged ” :

CHAPTER 2. TO CREATE A NEW ROUTE

7

Figure 2.2. JBoss View rearranged

NOTE

You can restore an open perspective to its original, default layout at any time by right-
clicking the perspective's icon on the menubar to open its context menu, and then
clicking Reset.

CREATING THE FUSE PROJECT

To create a Fuse project, in JBoss perspective:

1. On the Toolbar, select File → New → Fuse Project to open the New Fuse project wizard, as
shown in Figure 2.3.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

8

Figure 2.3. New Fuse project location page

2. Enter CBRroute in the Project Name field.

3. Click Next> to open the New Fuse Project details page, as shown in Figure 2.4.

Figure 2.4. New Fuse project details page

4. Select camel-archetype-blueprint.

CHAPTER 2. TO CREATE A NEW ROUTE

9

5. Enter tutorial in the Group Id: field.

6. Enter cbr-route in the Artifact Id: field.

7. The Version: field defaults to 1.0.0-SNAPSHOT. To change it, enter a different version
identifier.

8. The Package: field defaults to tutorial.cbr.route, the name of the package that
contains camel-archetype-blueprint. To include the route in a different package, enter
the name of that package.

9. Click Finish.

NOTE

Click No when the Open Associated Perspective? dialog asks whether
you want to open the Fuse Integration perspective now.

This procedure creates a Fuse project, CBRroute, in Project Explorer that contains
everything needed to create and run routes. As shown in Figure 2.5, the files generated for
CBRroute include:

CBRroute/pom.xml (Maven project file)

CBRroute/src/main/resources/OSGI-INF/blueprint/blueprint.xml (Blueprint
XML file containing the routing rules)

Figure 2.5. Generated project files

NOTE

When you create a new project, the Fuse Tooling downloads from the Maven repository
all of the files it needs to build the project. This operation can take several minutes.

CREATING THE NEW ROUTING CONTEXT

To create the new routing context:

1. In Project Explorer, locate CBRroute/src/main/resources/OSGI-
INF/blueprint/blueprint.xml.

2. Right-click it to open the context menu, then select Delete.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

10

You're going to replace the old blueprint.xml file with your own to create a new route.

3. In the Delete dialog, click OK to confirm the operation.

4. In Project Explorer, select CBRroute/src/main/resources/OSGI-INF/blueprint.

5. Right-click it to open the context menu.

6. Select New → Camel XML File to open the Camel XML File wizard, as shown in Figure 2.6.

Figure 2.6. Camel XML File wizard

7. Check that /CBRroute/src/main/resources/OSGI-INF/blueprint appears in the

Container: field. Otherwise enter it manually, or select it using the button.

NOTE

The button opens a dialog that displays the folders of all active
projects, which you can browse to find and select the files you need.

8. Check that camelContext.xml appears in the File Name: field. Otherwise enter it
manually.

9. Check that OSGI Blueprint appears in the Framework field, or select it from the field's drop-
down list.

10. Click Finish.

The camelContext.xml file opens in the route editor's Design view, displayed as an empty
canvas, as shown in Figure 2.7.

CHAPTER 2. TO CREATE A NEW ROUTE

11

Figure 2.7. New camelContext .xml file in Design view

11. Click the Source tab at the bottom, left of the canvas to open the new camelContext.xml
file in the route editor's Source view, as shown in Figure 2.8, “New camelContext file in
source view”.

Figure 2.8. New camelContext file in source view

CREATING THE ROUTE

To create the route:

1. Click the Design tab at the bottom, left of the canvas to return to the route editor's Design
view.

2. Drag a File component () from the Palette's Components drawer to the canvas.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

12

NOTE

The File component changes to a file:directoryNam... node on the
canvas.

3. Drag another File component from the Palette's Components drawer to the canvas.

4. Select the first file:directoryName node you dragged onto the canvas.

The Properties editor, located below the canvas, displays the node's property fields for
editing.

5. Select the Advanced tab, as shown in Figure 2.9.

Figure 2.9. File source property editor

6. On the Path tab, click the button next to the Directory Name field, to browse to the
src/data folder you previously created in your CBRroute project.

7. Click Open.

The full path appears in the Directory Name field.

8. Delete everything in the path string, except src/data.

9. Click the Consumer tab, and enable the Noop option by clicking its check box.

The Noop option prevents the message#.xml files being deleted from the src/data folder,
and it enables idempotency to ensure that each message#.xml file is consumed only once.

10. Click the Generic tab to open the file node's Details page

Figure 2.10. File Details page

The tooling automatically populates the Uri field with the Directory name and Noop
properties you configured on the Advanced tab.

11. Select the second file:directoryName node you dragged onto the canvas.

CHAPTER 2. TO CREATE A NEW ROUTE

13

12. In the Generic tab's Uri field, replace directoryName with target/messages/others.
Leave the other fields blank.

Figure 2.11. File destination property editor

NOTE

The target/messages/others folder will be created at runtime.

13. On the canvas, select the first file: node (file:src/data?noop=true), and drag it's

connector arrow () to the second file node (file:target/messages/others), then
release it.

A segmented line connects the two endpoints, as shown in Figure 2.12.

Figure 2.12. Completed route, diagram view

NOTE

You can drag the line's bendpoint (orange dot) to change the angle of the line's
segments. Doing so creates two new bendpoints, one on either side of the
original. This behavior enables you to easily adjust your diagram to
accommodate increasingly complex routes.

14. To quickly align the connected endpoints, right-click the canvas to open the context menu, and
then select Layout Diagram.

15. Select File → Save to save the route.

16. Click the Source tab at bottom, left of the canvas.

Source view displays the XML for the route. The camelContext element will look like
Example 2.1.

Example 2.1. XML for CBRroute

<?xml version="1.0" encoding="UTF-8"?>
 <blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"

Red Hat JBoss Fuse 6.2 Tooling Tutorials

14

CREATING TEST MESSAGES

Before you can run your route, you need to create test messages to send through it.

1. In Project Explorer, right-click CBRroute/src to open the context menu.

2. Select New → Folder to open the New Folder wizard:

3. Check that CBRroute/src appears in the Enter or select the parent folder: field.
Otherwise enter it manually, or select it from the graphical representation of the project's
hierarchy

4. In the Folder name: field, enter data, and then click Finish.

The new data folder appears in Project Explorer, under the src folder:

 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-
blueprint.xsd">

 <camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">
 <route>
 <from uri="file:src/data?noop=true"/>
 <to uri="file:target/messages/others"/>
 </route>
 </camelContext>

 </blueprint>

CHAPTER 2. TO CREATE A NEW ROUTE

15

5. In Project Explorer, right-click CBRroute to open the context menu.

6. Click New → Fuse Message to open the Fuse Message File wizard:

7. Check that CBRroute/src/data appears in the Enter or select the parent folder field.
Otherwise enter it manually, or select it from the graphical representation of the project's
hierarchy.

8. In File Name:, enter message1.xml.

9. Click Finish to open the test message, message1.xml, in Design View:

10. Click the Source tab at the bottom, right of the canvas to switch to Source view:

Red Hat JBoss Fuse 6.2 Tooling Tutorials

16

11. In Source view, enter this text:

12. Save the file.

13. Click Messages.zip to download the five remaining preconstructed test message files
(message2.xml through message6.xml), and then unpack them into the
CBRroute/src/data folder. You will use all six test messages in the remaining Fuse Tooling
tutorials.

Table 2.1 shows the contents of each preconstructed message file.

Table 2.1. Preconstructed test messages

msg# <name> <city> <country> <animal> <quantity
>

<maxAllo
wed>

2 San Diego
Zoo

San Diego USA giraffe 3 2

3 London
Zoo

London Great
Britain

penguin 12 20

<?xml version="1.0" encoding="UTF-8"?>

<order>
 <customer>
 <name>Brooklyn Zoo</name>
 <city>Brooklyn</city>
 <country>USA</country>
 </customer>
 <orderline>
 <animal>wombat</animal>
 <quantity>15</quantity>
 <maxAllowed>25</maxAllowed>
 </orderline>
</order>

CHAPTER 2. TO CREATE A NEW ROUTE

17

files/Messages.zip

4 Bristol Zoo Bristol Great
Britain

emu 5 4

5 Paris Zoo Paris France giraffe 2 2

6 Hellabrunn
Gardens

Munich Germany penguin 18 20

msg# <name> <city> <country> <animal> <quantity
>

<maxAllo
wed>

NEXT STEPS

After you have created and designed your route, you can run it by deploying it into your local Apache
Camel runtime, as described in Chapter 3, To Run a Route.

FURTHER READING

To learn more about:

using the editor, see Red Hat JBoss Fuse Tooling: JBoss Fuse Tooling User Guide at
https://access.redhat.com/documentation/en-
US/Red_Hat_JBoss_Fuse/6.2/html/Tooling_User_Guide/RiderEditRoute.html

Apache Camel endpoints, see Red Hat JBoss Fuse: Component Reference.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

18

https://access.redhat.com/site/documentation/JBoss_Fuse/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/index.html

CHAPTER 3. TO RUN A ROUTE

Abstract

This tutorial walks you through the process of running a route.

GOALS

In this tutorial you will:

run a route as a local Apache Camel Context (without tests)

send messages through the route

examine the messages received by the endpoints

PREREQUISITES

To complete this tutorial you will need the CBRroute project created in Chapter 2, To Create a New
Route.

RUNNING THE ROUTE

To run the route:

1. Open the CBRroute project you created in the section called “Creating the Fuse project” .

2. In Project Explorer, select CBRroute/src/main/resources/OSGi-
INF/blueprint/camelContext.xml .

3. Right-click it to open the context menu, then select Run As → Local Camel Context (without
tests).

NOTE

If you select Local Camel Context instead, the tooling automatically runs the
routing context against the supplied JUnit test, and it will fail. In the Chapter 8,
To Test a Route with JUnit tutorial, you will replace the supplied JUnit test with
one you create for the this project.

The Console panel opens to display log messages that reflect the progress of the project's
execution. At the beginning, Maven downloads the resources necessary to update the local
Maven repository, which may take a few minutes.

Messages similar to the following indicate that the route executed successfully.

[INFO] Starting Camel ... [mel.test.blueprint.Main.main()]
MainSupport INFO Apache Camel 2.13.2 starting
[mel.test.blueprint.Main.main()] Activator INFO Camel activator
starting [mel.test.blueprint.Main.main()] Activator INFO Camel
activator started [mel.test.blueprint.Main.main()] BlueprintExtender
INFO No quiesce support is available, so blueprint components will

CHAPTER 3. TO RUN A ROUTE

19

not participate in quiesce operations [Blueprint Extender: 1]
BlueprintContainerImpl INFO Bundle cbr-route is waiting for
namespace handlers [http://camel.apache.org/schema/blueprint] [
Blueprint Extender: 1] BlueprintCamelContext INFO Apache Camel
2.13.2 (CamelContext: blueprintContext) is starting [Blueprint
Extender: 1] ManagedManagementStrategy INFO JMX is enabled
[heysmbp.home:1099/jmxrmi/camel] DefaultManagementAgent INFO JMX
Connector thread started and listening at:
service:jmx:rmi:///jndi/rmi://janemurpheysmbp.home:1099/jmxrmi/camel
[Blueprint Extender: 1] BlueprintCamelContext INFO
AllowUseOriginalMessage is enabled. If access to the original
message is not needed, then its recommended to turn this option off
as it may improve performance. [Blueprint Extender: 1]
BlueprintCamelContext INFO StreamCaching is not in use. If using
streams then its recommended to enable stream caching. See more
details at http://camel.apache.org/stream-caching.html [Blueprint
Extender: 1] FileEndpoint INFO Endpoint is configured with noop=true
so forcing endpoint to be idempotent as well [Blueprint Extender:
1] FileEndpoint INFO Using default memory based idempotent
repository with cache max size: 1000 [Blueprint Extender: 1]
XPathBuilder INFO Created default XPathFactory
com.sun.org.apache.xpath.internal.jaxp.XPathFactoryImpl@46e48d4 [
Blueprint Extender: 1] BlueprintCamelContext INFO Route: Route1
started and consuming from: Endpoint[file://src/data?noop=true] [
Blueprint Extender: 1] BlueprintCamelContext INFO Total 1 routes, of
which 1 is started. [Blueprint Extender: 1] BlueprintCamelContext
INFO Apache Camel 2.13.2 (CamelContext: blueprintContext) started in
1.073 seconds

4. To shutdown the route, click located at the top, right of the Console panel.

VERIFYING THE ROUTE

To verify that the route executed properly:

1. In Project Explorer, select CBRroute.

2. Right-click it to open the context menu, then select Refresh.

3. In Project Explorer, locate the folder target/messages/ and expand it, as shown in
Figure 3.1.

Figure 3.1. Target message destination in Project Explorer tree

Red Hat JBoss Fuse 6.2 Tooling Tutorials

20

4. Verify that the target/messages/others folder contains the six message files,
message1.xml through message6.xml.

5. Double-click message1.xml to open it in the editor's Design view, then select the Source
tab at the bottom, left of the canvas to see the xml code.

It's contents should match that shown in Example 3.1.

Example 3.1. Contents of message1.xml

FURTHER READING

To learn more about:

configuring runtime profiles, see Red Hat JBoss Fuse Tooling: JBoss Fuse Tooling User Guide
at https://access.redhat.com/documentation/en-
US/Red_Hat_JBoss_Fuse/6.2/html/Tooling_User_Guide/RiderEditRunProfile.html.

deploying Apache Camel applications see Red Hat JBoss Fuse: Deploying into the Container .

<?xml version="1.0" encoding="UTF-8"?>

<order>
 <customer>
 <name>Brooklyn Zoo</name>
 <city>Brooklyn</city>
 <country>USA</country>
 </customer>
 <orderline>
 <animal>wombat</animal>
 <quantity>15</quantity>
 <maxAllowed>25</maxAllowed>
 </orderline>
</order>

CHAPTER 3. TO RUN A ROUTE

21

https://access.redhat.com/site/documentation/JBoss_Fuse/
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Deploying_into_the_Container/index.html

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

Abstract

This tutorial walks you through adding a content-based router with logging to a route.

GOALS

In this tutorial you will:

add a content-based router to your route

configure the content-based router

add a log endpoint to each output branch of the content-based router

add a SetHeader EIP after each log endpoint

add an Otherwise branch to the content-based router

PREREQUISITES

To complete this tutorial you will need the CBRroute project you created in Chapter 2, To Create a New
Route.

ADDING AND CONFIGURING A CONTENT-BASED ROUTER

To add and configure a content-based router for your route:

1. In Project Explorer, double-click CBRroute/src/main/resources/OSGI-
INF/blueprint/camelContext.xml to open your CBRroute project.

2. Select the connector joining the two file: nodes file:src/data?noop=true and
file:target/messages/others.

3. Right-click it to open the context menu, and select Remove to delete the connector.

NOTE

Alternatively, you can delete the connector by selecting it, then selecting
Delete from the toolbar's Edit menu.

4. On the canvas, select the terminal file: node, file:target/messages/others, and in the
Properties editor, change the Uri and Id properties to:

Uri:—file:target/messages/validOrders

Id:—toValid

Then drag the node out of the way. You will connect it to another node later in this tutorial.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

22

5. On the canvas, select the starting file: node, file:src/data?noop=true, and right-click
it to open the context menu.

6. Select Add → Routing → Choice.

A choice node () appears on the canvas connected to the starting file: node.

7. In the Properties editor, enter choice1 in the Id field.

8. On the canvas, select the choice node, then right-click it to open the context menu.

9. Select Add → Routing → When.

A when node appears on the canvas connected to the choice node. The Properties editor
opens, displaying the when node's property fields for you to edit, as shown:

NOTE

When a required property is blank, the Properties editor marks it with . The
number of properties that require configuring is displayed in the title bar. Error
icons and message disappear when you configure the required properties.

10. In the Expression field, enter /order/orderline/quantity/text() >
/order/orderline/maxAllowed/text() .

This expression determines which messages will transit this path in the route.

11. From the Language drop-down menu, select xpath.

12. In the Id field, enter when1.

Figure 4.1 shows the when1 node configured.

Figure 4.1. when1 configuration

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

23

ADDING AND CONFIGURING LOGGING

To add logging to your route:

1. On the canvas, select the when1 node, and then right-click it to open the context menu.

2. Select Add → Components → Log.

A log node appears on the canvas, connected to the when1 node. The Properties editor
opens, displaying the log node's property fields for you to edit.

3. In the Message field, enter quantity requested exceeds the maximum allowed -
contact customer.

4. In the Id field, enter log1.

Figure 4.2 shows the log1 node configured.

Figure 4.2. Log1 configuration

NOTE

In Fuse Integration perspective's Messages View, the tooling inserts the
contents of the log node's Id field in the Trace Node Id column for message
instances, when tracing is enabled on the route (see Figure 7.11, “Fuse
Integration perspective's message tracing components”). In the Console, it
adds the contents of the log node's Message field to the log data whenever the
route runs.

ADDING AND CONFIGURING MESSAGE HEADERS

To add and configure message headers:

1. On the canvas, select the log1 node, and then right-click it to open the context menu.

2. Select Add → Transformation → SetHeader.

A setHeader node () appears on the canvas, connected to the log 1 node. The
Properties editor opens, displaying the setHeader node's property fields for you to edit, as
shown:

Red Hat JBoss Fuse 6.2 Tooling Tutorials

24

3. In the Header Name field, enter Destination.

4. In the Expression field, enter InvalidOrders.

5. Select constant from the Language drop-down menu.

6. In the Id field, enter setHead1.

Figure 4.3 shows the setHead1 node configured.

Figure 4.3. setHead1 configuration

7. On the canvas, select the setHead1 node, and then right-click it to open the context menu.

8. Select Add → Components → File.

A file:directoryName node appears on the canvas, connected to the setHead1 node. The
Properties editor opens, displaying the file:directoryName node's property fields for
you to edit.

9. On the Generic tab, replace directoryName with target/messages/invalidOrders in the
Uri field, and enter toInvalid in the Id field.

ADDING AND CONFIGURING AN OTHERWISE BRANCH

To add and configure the otherwise branch to your route:

1. On the canvas, reselect the Choice node, then right-click it to open the context menu.

2. Select Add → Routing → Otherwise.

An otherwise node appears on the canvas, connected to the choice node. The Properties
editor opens, displaying the otherwise node's property fields for you to edit.

3. In the Id field, enter else2 .

The else2 node will eventually route to the terminal file: node
(file:target/messages/validOrders) any message that does not match the XPath
expression set for the when1 node.

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

25

4. On the canvas, select the else2 node, and then right-click it to open the context menu.

5. Select Add → Components → Log.

A log node appears on the canvas, connected to the else2 node. The Properties editor
opens, displaying the log node's property fields for you to edit.

6. In the Message field, enter valid order - process, and in the Id field, enter log2.

7. On the canvas, select the log2 node, and then right-click it to open the context menu.

8. Select Add → Transformation → SetHeader.

A setHeader node () appears on the canvas, connected to the log2 node. The
Properties editor opens, displaying the setHeader node's property fields for you to edit.

9. In the Header Name field, enter Destination.

10. In the Expression field, enter Dispatcher.

11. Select constant from the Language drop-down menu.

12. In the Id field, enter setHead2.

13. On the canvas, drag the terminal file: node, file:target/messages/validOrders,
close to the setHead2 node.

14. Select the setHead2 node, and then drag its connector arrow () to the terminal file:
node and release it.

15. To quickly realign all of the nodes on the canvas, right-click the canvas to open the context
menu, and then select Layout Diagram.

The route on the canvas should resemble Figure 4.4.

Figure 4.4. Completed content-based router with logs and message headers

16. On the toolbar, select File → Save to save the completed route.

17. Click the Source tab at the bottom, left of the canvas to display the XML for the route.

The camelContext element will look like that shown in Example 4.1.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

26

Example 4.1. XML for content-based router

NEXT STEPS

You can run the new route as described in the section called “Running the route” .

After you run it, you can easily verify whether the route executed properly by checking the target
destinations in Project Explorer:

1. Select CBRroute.

2. Right-click it to open the context menu, then select Refresh.

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0

http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-
blueprint.xsd">

 <camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">
 <route>
 <from uri="file:src/data?noop=true"/>
 <choice id="choice1">
 <when id="when1">
 <xpath>/order/orderline/quantity/text() >
/order/orderline/maxAllowed/text()</xpath>
 <log message="quantity requested exceeds maximum allowed
- contact customer" id="log1"/>
 <setHeader headerName="Destination" id="setHead1">
 <constant>InvalidOrders</constant>
 </setHeader>
 <to uri="file:target/messages/invalidOrders"
id="toInvalid"/>
 </when>
 <otherwise id="else2">
 <log message="valid order - process" id="log2"/>
 <setHeader headerName="Destination" id="setHead2">
 <constant>Dispatcher</constant>
 </setHeader>
 <to uri="file:target/messages/validOrders" id="toValid"/>
 </otherwise>
 </choice>
 </route>
 </camelContext>
</blueprint>

CHAPTER 4. TO ADD A CONTENT-BASED ROUTER

27

3. Under the project root node (CBRroute), locate the folder target/messages/ and expand it,
as shown in Figure 4.5.

Figure 4.5. Target message destinations in Project Explorer

4. Check that the target/messages/invalidOrders folder contains message2.xml and
message4.xml.

In these messages, the value of the quantity element should exceed the value of the
maxAllowed element.

5. Check that the target/messages/validOrders folder contains the four message files that
contain valid orders: message1.xml, message3.xml , message5.xml and message6.xml.

In these messages, the value of the quantity element should be less than or equal to the value
of the maxAllowed element.

NOTE

To view message content, double-click each message to open it in the route
editor's xml editor.

FURTHER READING

To learn more about message enrichment see:

the Red Hat JBoss Fuse: Apache Camel Development Guide

the Red Hat JBoss Fuse 6.x documentation

Red Hat JBoss Fuse 6.2 Tooling Tutorials

28

https://access.redhat.com/site/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Development_Guide/index.html
https://access.redhat.com/documentation/en/red-hat-jboss-fuse/

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING
CONTEXT

Abstract

This tutorial walks you through adding a second route to the camelContext.xml file in the CBRroute
project. The second route:

takes messages directly from the terminal end of the first route's otherwise branch

sorts the messages according to customers' country

sends each message to the corresponding CBRroute/target/messages/<country>
directory

GOALS

In this tutorial you will:

reconfigure the existing route for direct connection to a second route

add a second route to your camelContext

configure the new route to take messages directly from the otherwise branch of the first route

add a content-based router to the new route

add and configure a message header, logging, and target destination to each output branch of
the new route's content-based router

PREREQUISITES

To complete this tutorial you will need the CBRroute project you modified in Chapter 4, To Add a
Content-Based Router.

NOTE

If you skipped any tutorial after Chapter 2, To Create a New Route, you can use the
prefabricated camelContext5.xml file to work through this tutorial (for details, see
Chapter 1, Using the Fuse Tooling Resource Files).

RECONFIGURING THE EXISTING ROUTE FOR DIRECT CONNECTION

To configure the existing route for direct connection with the new route:

1. Open your CBRroute/src/main/resources/OSGI-
INF/blueprint/camelContext.xml in the route editor.

2. Click the canvas to display the existing route's properties in the Properties editor.

3. Enter Route1 in the Id field.

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

29

4. Select the terminal file: node file:target/messages/toValid to display its properties
in the Properties editor.

5. In the Uri field, delete the existing text, and then enter direct:OrderFulfillment.

6. In the Id field, enter toFulfill.

ADDING THE SECOND ROUTE

NOTE

The route editor displays each route in a multiroute routing context on its own slice of
canvas.

To add a route to the routing context:

1. Select Routes → Add Route.

The tooling adds another route to your camelContext, and the route editor opens a clean
canvas for you to construct the second route.

Outline view, shown here, displays both routes and their components. Clicking on a route in
Outline view displays it on the route editor's canvas.

Or you can switch between routes by selecting Routes → Route:RouteName on the menu bar,
where RouteName is the string you entered in the route's Id field in the Properties editor.

2. Click the canvas to display the new route's properties in the Properties editor.

3. Enter Route2 in the Id field.

BUILDING AND CONFIGURING THE USA BRANCH OF THE SECOND
ROUTE

With Route2 displayed on the route editor's canvas:

1. Drag an Generic element () from the Palette's Components drawer onto the canvas.

2. In the Properties editor, enter direct:OrderFulfillment in the Uri field.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

30

3. Right-click the direct:OrderFulfi... node to open the context menu, and select Add →
Routing → Choice.

4. In the Properties editor, enter choice2 in the Id field.

5. Right-click the choice2 node to open the context menu, and select Add → Routing → When.

6. In the Properties editor:

Enter /order/customer/country = 'USA' in the Expression field.

Select xpath from the Language drop-down menu.

Enter when/usa in the Id field.

7. Right-click the when/usa node to open the context menu, and select Add → Transformation
→ SetHeader.

8. In the Properties editor:

Enter Destination in the Header Name field.

Enter USA in the Expression field.

Select constant from the Language drop-down menu.

Enter setHead_usa in the Id field,

9. Right-click the setHead_usa node to open the context menu, and select Add → Components
→ Log.

10. In the Properties editor:

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

31

Enter Valid order - ship animals to USA customer in the Message field.

Enter log_usa in the Id field.

11. Right-click the log_usa node to open the context menu, and select Add → Components →
File.

12. In the Properties editor:

Replace directoryName with target/messages/USA in the Uri field.

Enter toUS in the Id field.

The USA branch of Route2 should look like this:

BUILDING AND CONFIGURING THE GREAT BRITAIN BRANCH OF THE
SECOND ROUTE

With Route2 displayed on the canvas:

1. Right-click the choice2 node again to open the context menu, and select Add → Routing →
When.

2. In the Properties editor:

Enter /order/customer/country = 'Great Britain' in the Expression field.

Select xpath from the Language drop-down menu.

Enter when/gb in the Id field.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

32

3. Right-click the when/gb node to open the context menu, and select Add → Transformation →
SetHeader.

4. In the Properties editor:

Enter Destination in the Header Name field.

Enter UK in the Expression field.

Select constant from the Language drop-down menu.

EntersetHead_uk in the Id field,

5. Right-click the setHead_uk node to open the context menu, and select Add → Components
→ Log.

6. In the Properties editor:

Enter Valid order - ship animals to UK customer in the Message field.

Enter log_uk in the Id field.

7. Right-click the log_uk node to open the context menu, and select Add → Components →
File.

8. In the Properties editor:

Replace directoryName with target/messages/GreatBritain in the Uri field.

Enter toUK in the Id field.

The Great Britain branch of Route2 should look like this:

BUILDING AND CONFIGURING THE GERMANY BRANCH OF THE
SECOND ROUTE

With Route2 displayed on the canvas:

1. Right-click the choice2 node again to open the context menu, and select Add → Routing →
When.

2. In the Properties editor:

Enter /order/customer/country = 'Germany' in the Expression field.

Select xpath from the Language drop-down menu.

Enter when/ger in the Id field.

3. Right-click the when/ger node to open the context menu, and select Add → Transformation
→ SetHeader.

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

33

4. In the Properties editor:

Enter Destination in the Header Name field.

Enter Germany in the Expression field.

Select constant from the Language drop-down menu.

Enter setHead_ger in the Id field,

5. Right-click the setHead_ger node to open the context menu, and select Add → Components
→ Log.

6. In the Properties editor:

Enter Valid order - ship animals to Germany customer in the Message field.

Enter log_ger in the Id field.

7. Right-click the log_ger node to open the context menu, and select Add → Components →
File.

8. In the Properties editor:

Replace directoryName with target/messages/Germany in the Uri field.

Enter toGR in the Id field.

The Germany branch of Route2 should look like this:

BUILDING AND CONFIGURING THE FRANCE BRANCH OF THE SECOND
ROUTE

With Route2 displayed on the canvas:

1. Right-click the choice2 node again to open the context menu, and select Add → Routing →
Otherwise.

2. In the Properties editor:

Enter else/fr in the Id field.

3. Right-click the else/fr node to open the context menu, and select Add → Transformation →
SetHeader.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

34

4. In the Properties editor:

Enter Destination in the Header Name field.

Enter France in the Expression field.

Select constant from the Language drop-down menu.

Enter setHead_fr in the Id field,

5. Right-click the setHead_fr node to open the context menu, and select Add → Components
→ Log.

6. In the Properties editor:

Enter Valid order - ship animals to France customer in the Message field.

Enter log_fr in the Id field.

7. Right-click the log_fr node to open the context menu, and select Add → Components →
File.

8. In the Properties editor:

Replace directoryName with target/messages/France in the Uri field.

Enter toFR in the Id field.

The France branch of Route2 should look like this:

SAVING THE NEW ROUTING CONTEXT

1. On the toolbar, select File → Save to save the routing context.

The routes on the canvas should look like this:

Figure 5.1. Completed route1

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

35

Figure 5.2. Completed route2

2. Click the Source tab at the bottom, left of the canvas to display the XML for the route.

The camelContext element should look like that shown in Example 5.1.

Example 5.1. XML for dual-route content-based router

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:camel="http://camel.apache.org/schema/blueprint"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://camel.apache.org/schema/blueprint
 http://camel.apache.org/schema/blueprint/camel-
blueprint.xsd">

 <camelContext trace="false"
xmlns="http://camel.apache.org/schema/blueprint">
 <route id="Route1">
 <from uri="file:src/data?noop=true"/>
 <choice id="choice1">
 <when id="when1">
 <xpath>/order/orderline/quantity/text() >
/order/orderline/maxAllowed/text()</xpath>
 <log message="quantity requested exceeds maximum allowed
- contact customer" id="log1"/>
 <setHeader headerName="Destination" id="setHead1">
 <constant>InvalidOrders</constant>
 </setHeader>
 <to uri="file:target/messages/invalidOrders"
id="toInvalid"/>
 </when>
 <otherwise id="else2">
 <log message="valid order - process" id="log2"/>

Red Hat JBoss Fuse 6.2 Tooling Tutorials

36

NEXT STEPS

You can run the new route as described in the section called “Running the route” .

 <setHeader headerName="Destination" id="setHead2">
 <constant>Dispatcher</constant>
 </setHeader>
 <to uri="direct:OrderFulfillment" id="toFulfill"/>
 </otherwise>
 </choice>
 </route>
 <route id="Route2">
 <from uri="direct:OrderFulfillment"/>
 <choice id="choice2">
 <when id="when/usa">
 <xpath>/order/customer/country = 'USA'</xpath>
 <setHeader headerName="Destination" id="setHead_usa">
 <constant>USA</constant>
 </setHeader>
 <log message="Valid order - ship animals to USA customer"
id="log_usa"/>
 <to uri="file:target/messages/USA" id="toUS"/>
 </when>
 <when id="when/gb">
 <xpath>/order/customer/country = 'Great Britain'</xpath>
 <setHeader headerName="Destination" id="setHead_uk">
 <constant>UK</constant>
 </setHeader>
 <log message="Valid order - ship animals to UK customer"
id="log_uk"/>
 <to uri="file:target/messages/GreatBritain" id="toUK"/>
 </when>
 <when id="when/ger">
 <xpath>/order/customer/country = 'Germany'</xpath>
 <setHeader headerName="Destination" id="setHead_ger">
 <constant>Germany</constant>
 </setHeader>
 <log message="Valid order - ship animals to Germany
customer" id="log_ger"/>
 <to uri="file:target/messages/Germany" id="toGR"/>
 </when>
 <otherwise id="else/fr">
 <setHeader headerName="Destination" id="setHead_fr">
 <constant>France</constant>
 </setHeader>
 <log message="Valid order - ship animals to France
customer" id="log_fr"/>
 <to uri="file:target/messages/France" id="toFR"/>
 </otherwise>
 </choice>
 </route>
 </camelContext>
</blueprint>

CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT

37

Check the end of the Console's output. You should see these lines:

Check the target destinations in Project Explorer to verify that the routes executed properly:

1. Select CBRroute.

2. Right-click it to open the context menu, then select Refresh.

3. Expand the folder target/messages/ as shown in Figure 5.3. The message*.xml files
should be dispersed in your target destinations like this:

Figure 5.3. Target message destinations in Project Explorer

NOTE

To view message content, double-click a message to open it in the route editor's
xml editor.

FURTHER READING

To learn more about the direct component see the Red Hat JBoss Fuse: Apache Camel Component
Reference at Red Hat JBoss Fuse 6.x documentation

Red Hat JBoss Fuse 6.2 Tooling Tutorials

38

https://access.redhat.com/documentation/en/red-hat-jboss-fuse/

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

Abstract

The Camel debugger works only on the routing context. The routing context and each node with a
breakpoint set must have a unique ID. You can set them manually or let the tooling set them
automatically.

GOALS

In this tutorial you will:

In Source view, enter a unique ID for the camelContext element

In Design view, set breakpoints on the nodes of interest in Route1

Switch to Route2, and set breakpoints on the nodes of interest

Invoke the Camel debugger

Step through the route, examining route and message variables as they change

Step through the route again, changing the value of message variables and observing the
effects

PREREQUISITES

To complete this tutorial you will need the CBRroute project you updated in Chapter 5, To Add
Another Route to the CBR Routing Context.

NOTE

If you skipped any tutorial after Chapter 2, To Create a New Route you can use the
prefabricated camelContext6.xml file to work through this tutorial (for details, see
Chapter 1, Using the Fuse Tooling Resource Files).

SETTING BREAKPOINTS

You can set both conditional and unconditional breakpoints, but in this tutorial, you will set
unconditional breakpoints only.

1. If necessary, open your CBRroute/src/main/resources/OSGI-
INF/blueprint/camelContext.xml in the route editor.

By default, the route editor displays Route1 on the canvas.

2. Click the Source tab at the bottom of the route editor to switch to Source view.

3. In the camelContext element, add id="blueprintContext" like this:

<camelContext trace="false" id="blueprintContext"
 xmlns="http://camel.apache.org/schema/blueprint">

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

39

4. Click File → Save to save your routing context file.

5. Click the Design tab at the bottom of the route editor to switch to Design view.

6. Select the choice1 node, and then click its icon to set an unconditional breakpoint.

NOTE

In the route editor, you can disable or delete a specific breakpoint by clicking

the node's icon or its icon, respectively. You can delete all set
breakpoints by right-clicking the canvas and selecting Delete all
breakpoints.

NOTE

If you had not already set unique ID on the camelContext element and the
nodes in your routing context, the Please Confirm dialog would have
appeared now prompting you to let the tooling do it for you.

7. Repeat Step 6 to set an unconditional breakpoint on the following Route1 nodes:

log1

setHead1

toInvalid

log2

setHead2

toFulfill

8. Click File → Save to save your routing context file.

9. Click Routes → Route2 to open Route2 on the canvas.

10. Repeat Step 6 to set an unconditional breakpoint on the following Route2 nodes:

choice2

setHead_usa

log_usa

toUSA

setHead_uk

Red Hat JBoss Fuse 6.2 Tooling Tutorials

40

log_uk

toUK

setHead_ger

log_ger

toGR

setHead_fr

log_fr

toFR

11. Click File → Save to save your routing context file.

NOTE

Each time you modify your routing context, be sure to save it before you invoke the
Camel debugger, otherwise the changes you made will not be included in the debugging
session.

STEPPING THROUGH THE CBRROUTE ROUTING CONTEXT

You can step through the routing context in two ways:

Step over ()—Jumps to the next node of execution in the routing context, regardless of
breakpoints.

Resume ()—Jumps to the next active breakpoint in the routing context.

NOTE

You can temporarily narrow then later re-expand the debugger's focus by disabling and
re-enabling the breakpoints you set in the routing context. This enables you, for
example, to focus on problematic nodes in your routing context. To do so, open the
Breakpoints tab and clear the check box of each breakpoint you want to temporarily

disable. Then use to step through the route. It will skip over the disabled
breakpoints.

1. In Project Explorer, expand the root node CBRroute to expose the camelContext.xml
file in the Camel Contexts folder.

2. Right-click the camelContext.xml file to open its context menu, and then click Debug As...
→ Local Camel Context (without tests) .

NOTE

If you select Local Camel Context, it will fail to run because you have not yet
created a JUnit test for the CBRroute project. You will do that later in Chapter 8,
To Test a Route with JUnit.

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

41

The Camel debugger suspends execution at the first breakpoint it encounters and asks
whether you want to open Debug perspective now.

3. Click Yes.

NOTE

If you click No, the confirmation pane appears several more times. After the
third refusal, it disappears, and the Camel debugger resumes execution. To
interact with the debugger at this point, you need to open the Debug
perspective by clicking Window → Open Perspective → Debug.

Debug perspective opens with the routing context suspended at choice1 in Route1
[camelContext] as shown in Debug view.

NOTE

Breakpoints are held for a maximum of five minutes before the debugger
automatically resumes, moving on to the next breakpoint or to the end of the
routing context, whichever comes next.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

42

4. In Variables view, expand the nodes to expose the variables and values available for each
node.

As you step through the routing context, the variables whose values have changed since the
last breakpoint are highlighted in yellow. You may need to expand the nodes at each
breakpoint to reveal variables that have changed.

5. Click to step to the next breakpoint, log2 in Route1 [camelContext].

6. Expand the nodes in Variables view to examine the variables that have changed since the
last breakpoint at choice1 in Route1 [camelContext].

7. Click to step to the next breakpoint, setHead2 in Route1 [camelContext].

Examine the variables that changed since the breakpoint at log2 in Route1
[camelContext].

8. In Debug view, click log2 in Route1 [camelContext] to populate Variables view with
the variable values from the breakpoint log2 in Route1 [camelContext] for a quick
comparison.

In Debug view, you can switch between breakpoints within the same message flow to quickly
compare and monitor changing variable values in Variables view.

NOTE

Message flows can vary in length. For messages that transit the
invalidOrders branch of Route1, the message flow is short. For messages
that transit the validOrders branch of Route1, which continues on to
Route2, the message flow is longer.

9. Continue stepping through the routing context. When one message completes the routing
context and the next message enters it, the new message flow appears in Debug view, tagged
with a new breadcrumb ID.

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

43

In this case, ID-janemurpheysmbp-home-55986-1423155548173-0-3 identifies the
second message flow, corresponding to message2.xml having entered the routing context.
Breadcrumb IDs are incremented by 2.

NOTE

Exchange and Message IDs are identical and remain unchanged throughout a
message's passage through the routing context. Their IDs are constructed from
the message flow's breadcrumb ID, and incremented by 1. So, in the case of
message2.xml, its ExchangeId and MessageId are ID-janemurpheysmbp-
home-55986-1423155548173-0-4.

10. When message3.xml enters the breakpoint choice1 in Route1 [camelContext],
examine the Processor variables. The values displayed are the metrics accumulated for
message1.xml and message2.xml, which previously transited the routing context.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

44

Timing metrics are in milliseconds.

11. Continue stepping each message through the routing context, examining variables and console
output at each processing step. When message6.xml enters the breakpoint toGR in
Route2 [camelContext], the debugger begins shutting down the breadcrumb threads.

12. In the Menu bar, click to terminate the Camel debugger. This will cause the Console to
terminate, but you will have to manually clear the output.

NOTE

With a thread or endpoint selected under the Camel Context node in Debug

view, you need to click twice—first to terminate the thread or endpoint and
second to terminate the Camel Context, thus the session.

13. In the Menu bar, right-click to open the context menu, and then select Close to close
Debug perspective.

Doing so automatically returns you to JBoss perspective.

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

45

14. In Project Explorer, open the project's context menu, and select Refresh to refresh the
display.

NOTE

If you terminated the session prematurely, before all messages transited the
routing context, you might see, under the CBRroute/CamelContexts/ folder,
a file that looks like
this:target/.CamelContextInDebug_xxxxxxxxxxxxxxxxxx_temp/camel
Context.xml. To remove it, open Project Explorer's context menu and
click Refresh.

15. Expand the CBRroute/target/messages/* directories to check that the messages were
delivered to their expected destinations:

16. Leave the routing context as is, with all previous breakpoints set and enabled.

CHANGING THE VALUE OF A VARIABLE

In this session, you will add variables to a watch list to easily check how their values change as
messages pass through the routing context. You will also change the value of a variable in the body of
two messages and observe how the change affects each message's route through the routing context.

Follow Step 1 through Step 3 in the section called “Stepping through the CBRroute routing context” to
rerun the Camel debugger on the CBRroute project.

1. With message1 stopped at the first breakpoint, choice1 in Route1
[camelContext.xml], add the variables NodeId and RouteId (in the Exchange category)
and MessageBody and CamelFileName (in the Message category) to the watch list.

For each of the four variables:

a. In Variables view, expand the appropriate category to expose the target variable:

b. Right-click the variable (in this case, NodeId in the Exchange category) to open the
context menu and select Watch:

Red Hat JBoss Fuse 6.2 Tooling Tutorials

46

The Expressions tab opens, listing the variable you selected to watch:

c. Repeat Step 1.b for each of the three remaining variables.

d. Switch back to Variables view.

2. Step message1 through the routing context until it reaches the fourth breakpoint, toFulfill
in Route1 [camelContext.xml].

3. In Variables view, expand the Message category.

4. Repeat Step 1.b to add the variable Destination to the watch list.

Expressions view should now contain these variables:

NOTE

The pane below the list of variables displays the value of the selected variable.

NOTE

Expressions view retains all variables you add to the list until you explicitly
remove them.

5. Step message1 through the rest of the routing context.

6. Stop message2 at choice1 in Route1 [camelContext.xml].

7. In Variables view, expand the Message category to expose the MessageBody variable.

8. Right-click MessageBody to open its context menu, and select Change Value... .

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

47

9. Change the value of quantity from 3 to 2.

This changes the in-memory value only.

10. Click OK.

11. Switch to Expressions view, and select the MessageBody variable.

The pane below the list of variables displays the entire body of message2, making it easy to
check the current value of order items:

NOTE

Creating a watch list makes it easy for you to quickly check the current value of
multiple variables of interest.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

48

12. Click to step to the next breakpoint.

Instead of following the branch leading to InvalidOrders, message2 now follows the branch
leading to toFulfill.

13. Step message2 through the routing context, checking Debug view, Variables view, and
Console output at each step.

14. Stop message3 at choice1 in Route1 [camelContext.xml].

15. Switch to Breakpoints view, and disable all breakpoints (12) between choice1 and
toFulfill:

16. Switch back to Variables view.

17. Click to step to the next breakpoint.

The debugger jumps to toFulFill in Route1 [camelContext.xml].

18. Click again to step to the next breakpoint.

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

49

The debugger jumps to toUK in Route2 [camelContext.xml].

19. Switch to Breakpoints view, and re-enable all disabled breakpoints.

20. Switch back to Variables view.

21. Click to step to the next breakpoint, and stop message4 at choice1 in Route1
[camelContext.xml].

22. Right-click MessageBody to open its context menu, and select Change Value....

23. Change the value of quantity from 5 to 4.

24. Click OK.

25. Switch to Expressions view, and select the MessageBody variable to check the value of
quantity in the body of message4.

26. Repeat Step 12 and Step 13 to step message4 through the routing context.

27. Click repeatedly to quickly step message5 and message6 through the routing context.

28. In the Menu bar, click to terminate the Camel debugger.

This will also cause the Console to terminate, but you will have to click its button to clear
the output.

29. In the Menu bar, right-click to open the context menu, and then select Close to close
Debug perspective.

Doing so automatically returns you to JBoss perspective.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

50

30. In Project Explorer, open the project's context menu, and select Refresh to refresh the
display.

31. Expand the CBRroute/target/messages/* directories to check whether the messages
were delivered as expected:

You should see that no messages were sent to the invalidOrders folder. Instead,
message2.xml should appear in the USA folder, and message4.xml should appear the
GreatBritain folder.

NEXT STEPS

Next you will trace messages through your routing context to see where you can optimize and fine
tune your routing context's performance, as described in Chapter 7, To Trace a Message Through a
Route.

CHAPTER 6. TO DEBUG A ROUTING CONTEXT

51

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

Abstract

This tutorial walks you through the process of tracing a message through a route.

GOALS

In this tutorial you will:

run the CBRroute in the Fuse Integration perspective

enable tracing on the CBRroute

drop messages onto the CBRroute and track them through all route nodes

PREREQUISITES

To complete this tutorial you will need the CBRroute project you updated in Chapter 5, To Add
Another Route to the CBR Routing Context.

NOTE

If you skipped any tutorial after Chapter 2, To Create a New Route, you can use the
prefabricated camelContext6.xml file to work through this tutorial (for details, see
Chapter 1, Using the Fuse Tooling Resource Files).

ACCESSING FUSE INTEGRATION PERSPECTIVE

To open Fuse Integration perspective and optimally arrange its layout:

1. Select Window → Open Perspective → Other... → Fuse Integration to open the Fuse
Integration perspective, as shown in Figure 7.1.

NOTE

You can use the Open Perspective icon () in the perspectives tab to
access the list of available perspectives.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

52

Figure 7.1. Fuse Integration perspective

NOTE

To make it easy to access a Camel Context .xml file, especially when a project
consists of multiple contexts, the tooling lists them in the Camel Contexts
folder, beneath the project's root folder in Project Explorer; for example:

2. Drag the Diagram View tab and the Shell tab, located to the left of the JMX Navigator
tab, and drop them to the right of the JMX Navigator tab, as shown in Figure 7.2.

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

53

Figure 7.2. Fuse Integration perspective rearranged

This layout will provide more space for Diagram View to display the route's nodes in a
graphical representation, enabling you to visually trace the path that messages take in
traversing the routing context.

STARTING MESSAGE TRACING

To start message tracing on the CBRroute project:

1. In Project Explorer, expand the CBRroute project to expose the
src/main/resources/OSGI-INF/blueprint/camelContext.xml file.

2. Select Run As → Local Camel Context (without tests) from the camelContext.xml file's
context menu.

3. In JMX Navigator, expand Local Processes.

4. Double click Local Camel Context[Id][Disconnected] to connect to it and expand the
elements of your route, as shown in Figure 7.3, “Route elements in JMX Navigator” .

Red Hat JBoss Fuse 6.2 Tooling Tutorials

54

Figure 7.3. Route elements in JMX Navigator

5. Right-click the blueprintContext node to open the context menu, and select Start Tracing.

The tooling displays a graphical representation of your route in Diagram View, as shown in
Figure 7.4.

Figure 7.4. Routes' graphical representation

DROPPING MESSAGES ON THE RUNNING CBRROUTE PROJECT

To drop messages on the running CBRroute project:

1. In Project Explorer, expand CBRroute/src/data, so you can access the message files
(message1.xml through message6.xml), as shown in Figure 7.5, “Message files in CBRroute
project”.

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

55

Figure 7.5. Message files in CBRroute project

2. Drag message1.xml and drop it on the blueprintContext>Endpoints>file>src/data?
noop=true node in JMX Navigator, as shown in Figure 7.6.

Figure 7.6. Local Camel Context tree expanded to input source node

As the message traverses the route, the tooling traces and records its passage at each step.
To update Diagram View with the new message count, you need to click the
blueprintContext node in JMX Navigator.

NOTE

The Local Camel Context[xxx] tree collapses to the blueprintContext
node after you drop the next message on the input src node. You need not re-
expand it. When dragging the other messages, hover over each node in the tree
to expose the next node, until you reach the src/data?noop=true node. Then
drop the message on it. This method prevents the tooling from redrawing the
graphical representation in Diagram View.

INITIALIZING AND CONFIGURING MESSAGES VIEW

You need to initialize Messages View before it will display message traces. You also need to
configure the columns in Messages View to persist across all message traces.

1. Switch from Console to Messages View.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

56

2. Click the blueprintContext node in JMX Navigator to initialize Messages View with
message1.xml's details.

NOTE

You can control columnar layout in all of the tooling's tables. Use the drag
method to temporarily rearrange tabular format. For example, drag a column's
border rule to expand or contract its width. To hide a column, totally contract its
borders. Drag the column header to relocate a column within the table. For your
arrangement to persist, you must use the View Menu → Configure Columns...
method instead.

3. In Messages View, click the icon on the panel's menu bar, and select Configure
Columns... to open the Configure Columns wizard, as shown in Figure 7.7.

Figure 7.7. Configure Columns defaults

NOTE

Notice that the message header, Destination, which you set for the messages
in your routing context, appears in the list.

You can include or exclude items from Messages View by selecting or deselecting them. You
can rearrange the columnar order in which items appear in Messages View by highlighting
individual, selected items and moving them up or down in the list.

4. In the Configure Columns wizard, select and order the items as shown in Figure 7.8.

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

57

Figure 7.8. Configure Columns set

These items and their order will persist in Messages View until you change them again.

ARRANGING DIAGRAM VIEW

To see all message flow paths clearly, you'll probably need to rearrange the nodes by dragging them to
fit neatly in Diagram View. You may also need to adjust the size of the other views and tabs in Red
Hat JBoss Developer Studio to allow Diagram View to expand.

STEPPING THROUGH MESSAGE TRACES

To step through the message traces:

1. In Messages View, click the (Refresh button) on top, right of the panel's menu bar to
populate the view with message1.xml's message traces.

Each time you drop a message on the input src node in JMX Navigator, you need to refresh
Messages View to populate it with the message traces.

2. Click one of the message traces to see more details about it in Properties view, as shown in
Figure 7.9.

Figure 7.9. Message trace selected

The tooling displays the details about a message trace (including message headers when they
are set) in the top half of the Properties panel and the contents of the message instance in
the bottom half of the Properties panel. So, if your application sets headers at any step
within a route, you can check the Message Details to see whether they were set as
expected.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

58

You can step through the message instances by highlighting each one to see how a particular
message traversed the route and whether it was processed as expected at each step in the
route.

In Diagram View, the associated step in the route is highlighted, as shown in Figure 7.10.

Figure 7.10. Diagram View: message trace node

FINISHING UP

1. Drag message2.xml and drop it on theblueprintContext>Endpoints>file>src/data?
noop=true node in JMX Navigator.

Hover over each node in the tree until you expose the src/data?noop=true node, then drop
message2.xml on it.

2. Switch from Console to Messages View.

3. In Messages View, click the (Refresh button) on top, right of the panel's menu bar to
populate the view with message2.xml's message traces.

NOTE

You can repeat Step 2 through Step 2 for the remaining messages in
CBRroute/src/data/ at any time, as long as tracing remains enabled.

On each subsequent drop, remember to click the (Refresh button) on the
panel's menu bar to populate Messages View with the new message traces.

As shown in Figure 7.11, the tooling draws the route in Diagram View, tagging paths exiting a
processing step with timing and performance metrics (in milliseconds). Only the metric Total
exchanges is displayed in the diagram.

CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE

59

Figure 7.11. Fuse Integration perspective's message tracing components

Hovering over the displayed metrics reveals additional metrics about message flow, as shown
in Figure 7.12.

Figure 7.12. Additional message metrics

mean time the step took to process a message

maximum time the step took to process a message

minimum time the step took to process a message

4. When done:

In JMX Navigator, right-click blueprintContext and select Stop Tracing Context from
the context menu.

Open the Console and click the button in the upper right of the panel to stop the

Console. Then click the button to clear console output.

NEXT STEPS

After you create a JUnit test case for your project, you can run your project with it, as described in
Chapter 8, To Test a Route with JUnit.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

60

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

Abstract

This tutorial walks you through the process of using the New Camel Test Case wizard to create a test
case for your route and using it test the route.

OVERVIEW

The New Camel JUnit Test Case wizard generates a boilerplate JUnit test case. This means
that when you create or modify a route (for example, adding more processors to it), you'll need to
modify the generated test case to add expectations and assertions specific to the new route you've
created, so the test is valid for the new route.

GOALS

In this tutorial you will:

delete the existing JUnit test case

generate a new JUnit test case for the CBRroute project

modify the newly generated JUnit test case

modify the CBRroute project's pom.xml file

run the CBRroute with the New JUnit test case

observe the output

PREREQUISITES

To complete this tutorial you will need the CBRroute project you used in Chapter 7, To Trace a Message
Through a Route

NOTE

If you skipped any tutorial after Chapter 2, To Create a New Route, you can use the
prefabricated camelContext6.xml file to work through this tutorial (for details, see
Chapter 1, Using the Fuse Tooling Resource Files).

Delete any trace-generated messages from the CBRroute project's /src/data/ directory and
/target/messages/ subdirectories in Project Explorer. Trace-generated messages begin with
the ID- prefix. For example, Figure 8.1, “Trace-generated messages” shows six trace-generated
messages:

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

61

Figure 8.1. Trace-generated messages

Select all trace-generated messages in batch, right-click to open the context menu, and select Delete.

DELETING THE EXISTING TEST CASE

To delete the existing Apache Camel test case:

1. In Project Explorer, expand src/test/java to expose the CamelContextXmlTest file,
as shown in Figure 8.2.

Figure 8.2. CamelContextXmlTest.java file location

2. Right-click it to open the context menu, and select Delete.

A dialog box opens asking you to confirm deletion of the test case file.

3. Click OK.

4. Verify that the existing test case has been deleted by right-clicking CBRroute and selecting
Refresh.

The src/test/java/tutorial.cbr.route directory should be empty.

CREATING THE NEW TEST CASE

To create a new Apache Camel test case:

1. In Project Explorer, select src/test/java.

2. Right-click it to open the context menu, and then select New → Camel Test Case to open the
New Camel JUnit Test Case wizard, as shown in Figure 8.3.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

62

Figure 8.3. New Camel JUnit Test Case wizard

3. Make sure the Source folder field contains CBRroute/src/test/java.

NOTE

If needed, you can click to find the proper folder.

4. The Package field defaults to tutorial.cbr.route. To include the test case in a different
package, enter the name of the package.

5. In the Camel XML file under test field, enter src/main/resources/OSGI-

INF/blueprint/camelContext.xml, or use to open a file explorer,
configured to screen for XML files, to locate the file.

NOTE

The Name field defaults to CamelContextXmlTest for the name of the test file.

6. Click Next> to open the Test Endpoints page, shown in Figure 8.4.

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

63

Figure 8.4. Test Endpoints page

7. By default, all endpoints are selected and will be included in the test case. Leave them
selected for this tutorial.

NOTE

You can select or deselect all endpoints by clicking the Select All or
Deselect All button, or you can select and deselect individual endpoints by
clicking the check box next to each.

8. Click Finish.

NOTE

If prompted, add JUnit to the build path.

The artifacts for the test are added to your project and appear in Project Explorer under
src/test/java. The class implementing the test case opens in the tooling's Java editor:

package tutorial.cbr.route;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.test.blueprint.CamelBlueprintTestSupport;
import org.junit.Test;

public class CamelContextXmlTest extends CamelBlueprintTestSupport {

 // TODO Create test message bodies that work for the route(s) being
tested
 // Expected message bodies
 protected Object[] expectedBodies = {

Red Hat JBoss Fuse 6.2 Tooling Tutorials

64

 "<something id='1'>expectedBody1</something>",
 "<something id='2'>expectedBody2</something>";
 // Templates to send to input endpoints
 @Produce(uri = "file:src/data?noop=true")
 protected ProducerTemplate inputEndpoint;
 // Mock endpoints used to consume messages from the output endpoints and
then perform assertions
 @EndpointInject(uri = "mock:output")
 protected MockEndpoint outputEndpoint;
 @EndpointInject(uri = "mock:output2")
 protected MockEndpoint output2Endpoint;
 @EndpointInject(uri = "mock:output3")
 protected MockEndpoint output3Endpoint;
 @EndpointInject(uri = "mock:output4")
 protected MockEndpoint output4Endpoint;
 @EndpointInject(uri = "mock:output5")
 protected MockEndpoint output5Endpoint;

 @Test
 public void testCamelRoute() throws Exception {
 // Create routes from the output endpoints to our mock endpoints so we
can assert expectations
 context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("file:target/messages/Germany").to(output4Endpoint);
 from("file:target/messages/GreatBritain").to(output3Endpoint);
 from("file:target/messages/USA").to(output2Endpoint);
 from("file:target/messages/France").to(output5Endpoint);
 from("file:target/messages/invalidOrders").to(outputEndpoint);
 }
 });

 // Define some expectations

 // TODO Ensure expectations make sense for the route(s) we're testing
 output4Endpoint.expectedBodiesReceivedInAnyOrder(expectedBodies);

 // Send some messages to input endpoints
 for (Object expectedBody : expectedBodies) {
 inputEndpoint.sendBody(expectedBody);
 }

 // Validate our expectations
 assertMockEndpointsSatisfied();
 }

 @Override
 protected String getBlueprintDescriptor() {
 return "OSGI-INF/blueprint/camelContext.xml";
 }

}

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

65

This generated JUnit test case is insufficient for the CBRroute project, and it will fail to run
successfully. You need to modify it and the project's pom.xml, as described in the section called
“Modifying the CamelContextXmlTest file ” and the section called “Modifying the pom.xml file” .

MODIFYING THE CAMELCONTEXTXMLTEST FILE

You need to modify the CamelContextXmlTest.java file to:

import several classes that support required file functions

create variables for holding the content of the various source .xml files

read the content of the source .xml files

define appropriate expectations

1. In Project Explorer, expand the CBRroute project to expose the CamelContextXmlTest
item.

2. Double-click CamelContextXmlTest to open the file in the route editor.

3. In the route editor, click the expand button next to import
org.apache.camel.EndpointInject; to expand the list.

4. Add the three lines shown here:

5. Scroll down to the lines that follow directly after // Expected message bodies.

6. Replace those lines—protected Object[] expectedBodies={
expectedBody2</something>"};— with the protected String body#; lines shown
here:

Red Hat JBoss Fuse 6.2 Tooling Tutorials

66

7. Scroll down to the line public void testcamelRoute() throws Exception {, and
insert directly after it the lines body# = FileUtils.readFileToString(new
File("src/data/message#.xml")); shown here:

8. Scroll down to the lines that follow directly after // TODO Ensure expectations make
sense for the route(s) we're testing.

9. Replace the block of code that begins with
output4Endpoint.expectedBodiesReceivedInAnyOrder(expectedBodies); and
ends with ...inputEndpoint.sendBody(expectedBody); } with the lines shown here:

Leave the remaining code as is.

10. Save the file.

11. Check that your updated CamelContextXmlTest.java file has the required modifications. It
should look something like this:

package tutorial.cbr.route;

import org.apache.camel.EndpointInject;
import org.apache.camel.Produce;
import org.apache.camel.ProducerTemplate;
import org.apache.camel.builder.RouteBuilder;

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

67

import org.apache.camel.component.mock.MockEndpoint;
import org.apache.camel.test.blueprint.CamelBlueprintTestSupport;
import org.apache.commons.io.FileUtils;
import org.junit.Test;

import java.io.File;
import java.util.Scanner;

public class CamelContextXmlTest extends CamelBlueprintTestSupport {

 // TODO Create test message bodies that work for the route(s) being
tested
 // Expected message bodies

 // To assert that everything works as it should, read the content
of created xml files.
 protected String body1;
 protected String body2;
 protected String body3;
 protected String body4;
 protected String body5;
 protected String body6;

 // Templates to send to input endpoints
 @Produce(uri = "file:src/data?noop=true")
 protected ProducerTemplate inputEndpoint;
 // Mock endpoints used to consume messages from the output
 // endpoints and then perform assertions
 @EndpointInject(uri = "mock:output")
 protected MockEndpoint outputEndpoint;
 @EndpointInject(uri = "mock:output2")
 protected MockEndpoint output2Endpoint;
 @EndpointInject(uri = "mock:output3")
 protected MockEndpoint output3Endpoint;
 @EndpointInject(uri = "mock:output4")
 protected MockEndpoint output4Endpoint;
 @EndpointInject(uri = "mock:output5")
 protected MockEndpoint output5Endpoint;

 @Test
 public void testCamelRoute() throws Exception {
 // Easy way of reading content of xml files to a String object.
 // But you must add dependency on commons-io project to pom.xml
 body1 = FileUtils.readFileToString(new
File("src/data/message1.xml"));
 body3 = FileUtils.readFileToString(new
File("src/data/message3.xml"));
 body5 = FileUtils.readFileToString(new
File("src/data/message5.xml"));
 body6 = FileUtils.readFileToString(new
File("src/data/message6.xml"));

 // Invalid orders.
 body2 = FileUtils.readFileToString(new
File("src/data/message2.xml"));

Red Hat JBoss Fuse 6.2 Tooling Tutorials

68

MODIFYING THE POM.XML FILE

You need to add a dependency on the commons-io project to the CBRroute project's pom.xml file.

1. In Project Explorer, double-click pom.xml, located below the target folder, to open the
file in the route editor.

2. Click the pom.xml tab at the bottom of the page to open the file for editing.

3. Add these lines to the end of the <dependencies> section:

 body4 = FileUtils.readFileToString(new
File("src/data/message4.xml"));

 // Create routes from the output endpoints to our mock endpoints
 // so we can assert expectations
 context.addRoutes(new RouteBuilder() {
 @Override
 public void configure() throws Exception {
 from("file:target/messages/Germany").to(output4Endpoint);
 from("file:target/messages/GreatBritain").to(output3Endpoint);
 from("file:target/messages/USA").to(output2Endpoint);
 from("file:target/messages/France").to(output5Endpoint);
 from("file:target/messages/invalidOrders").to(outputEndpoint);
 }
 });

 // Define some expectations

 // TODO Ensure expectations make sense for the route(s) we're
testing

 // Invalid orders
 outputEndpoint.expectedBodiesReceived(body2, body4);

 // For each country one order
 output2Endpoint.expectedBodiesReceived(body1);
 output3Endpoint.expectedBodiesReceived(body3);
 output4Endpoint.expectedBodiesReceived(body6);
 output5Endpoint.expectedBodiesReceived(body5);

 // Validate our expectations
 assertMockEndpointsSatisfied();
 }

 @Override
 protected String getBlueprintDescriptor() {
 return "OSGI-INF/blueprint/camelContext.xml";
 }

}

<dependency>
 <groupId>commons-io</groupId>

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

69

4. Save the file.

The contents of the entire pom.xml file should look like this:

 <artifactId>commons-io</artifactId>
 <version>2.4</version>
 <scope>test</scope>
</dependency>

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>tutorial</groupId>
 <artifactId>cbr-route</artifactId>
 <version>1.0.0-SNAPSHOT</version>
 <packaging>bundle</packaging>
 <name>A Camel Blueprint Route</name>
 <url>http://www.myorganization.org</url>
 <properties>

<project.reporting.outputEncoding>UTF-8</project.reporting.outputEnc
oding>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-core</artifactId>
 <version>2.15.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-blueprint</artifactId>
 <version>2.15.0</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.7</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.7</version>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>1.7.7</version>
 </dependency>
 <dependency>
 <groupId>log4j</groupId>

Red Hat JBoss Fuse 6.2 Tooling Tutorials

70

 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-test-blueprint</artifactId>
 <version>2.15.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.camel<</groupId>
 <artifactId>camel-infinispan</artifactId>
 <version>2.15.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-jgroups</artifactId>
 <version>2.15.0</version>
 </dependency>
 <dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-test</artifactId>
 <version>2.15.0</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>commons-io</groupId>
 <artifactId>commons-io</artifactId>
 <version>2.4</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <encoding>UTF-8</encoding>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.7</version>
 <extensions>true</extensions>
 <configuration>

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

71

RUNNING THE JUNIT TEST

To run the test:

1. Switch to JBoss perspective to free up more workspace.

2. Select the project root, CBRroute, in the Project Explorer.

3. Open the context menu.

4. Select Run As → JUnit Test.

NOTE

By default, JUnit view opens in the sidebar. (To provide a better view, drag it to
the bottom, right panel that displays the Console, Servers, and Properties
tabs.)

5. If the test runs successfully, you'll see something like this:

Figure 8.5. Successful JUnit run

If the test fails, you'll see something like this:

 <instructions>
 <Bundle-SymbolicName>cbr-route</Bundle-SymbolicName>
 <Private-Package>tutorial.cbr.route.*</Private-Package>
 <Import-Package>*</Import-Package>
 </instructions>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-maven-plugin</artifactId>
 <version>2.15.0</version>
 <configuration>
 <useBlueprint>true</useBlueprint>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Red Hat JBoss Fuse 6.2 Tooling Tutorials

72

Figure 8.6. Failed JUnit run

NOTE

JUnit will fail if your execution environment is not set to Java SE 7 or above. The
message bar at the top of the JUnit tab will display an error message indicating
that it cannot find the correct SDK.

To resolve the issue, open the project's context menu, and select Run As → Run
Configurations → JRE tab . Click the Environments button next to the
Execution environment: field to locate and select a Java SE 7 environment.

6. Examine the output and take action to resolve any test failures.

To see more of the errors displayed in the JUnit panel, click on the panel's menu bar to
maximize the view. You can also check the surefire reports in the surefire-reports tab in
Project Explorer, as shown in Figure 8.7.

Figure 8.7. JUnit surefire reports

Before you run the JUnit test case again, delete any JUnit-generated test messages from the
CBRroute project's /src/data folder in Project Explorer (see Figure 8.1, “Trace-
generated messages”).

FURTHER READING

To learn more about JUnit testing:

see JUnit

CHAPTER 8. TO TEST A ROUTE WITH JUNIT

73

http://www.junit.org/

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO RED HAT
JBOSS FUSE

Abstract

This tutorial walks you through the process of deploying an Apache Camel project into Red Hat JBoss
Fuse. It assumes that you have an instance of Red Hat JBoss Fuse installed on the same machine on
which you are running the Red Hat JBoss Fuse Tooling.

GOALS

In this tutorial you will:

define a Red Hat JBoss Fuse server

configure the publishing options

start up the Red Hat JBoss Fuse server and publish the CBRroute project

connect to the Red Hat JBoss Fuse server

verify whether the CBRroute project's bundle was successfully built and published

uninstall the CBRroute project

PREREQUISITES

To complete this tutorial you will need

access to a Red Hat JBoss Fuse 6.2 instance

the CBRroute project you updated in Chapter 8, To Test a Route with JUnit

DEFINING A RED HAT JBOSS FUSE SERVER

To define a server:

1. Open Fuse Integration perspective.

2. Click the Servers tab in the lower, right panel to open the Servers view.

3. Click the link No servers are available. Click this link to create a new
server... to open the Define a New Server page.

NOTE

To define a new server when one is already defined, right-click inside Servers
view to open the context menu, and then select New → Server.

4. Expand the JBoss Fuse node to expose the available server options:

Red Hat JBoss Fuse 6.2 Tooling Tutorials

74

5. Click JBoss Fuse 6.2 Server.

6. Accept the defaults for Server's host name (localhost) and Server name (JBoss Fuse 6.2
Runtime Server), and then click Next to open the JBoss Fuse Runtime page:

NOTE

If you do not have JBoss Fuse 6.2 already installed, you can download it now
using the Download and install runtime... link.

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO RED HAT JBOSS FUSE

75

NOTE

If you have already defined a JBoss Fuse 6.2 server, the tooling skips this page,
and instead displays the configuration details page shown in Step 11.

7. Accept the default for Name (JBoss Fuse 6.2 Runtime).

8. In Home Directory, enter the path where the JBoss Fuse 6.2 installation is located, or click
Browse to find and select it.

9. Select the runtime JRE from the drop-down menu next to Execution Environment.

Select either JavaSE-1.7 or JavaSE-1.8. If neither appears as an option, click the
Environments... button and select either version from the list.

NOTE

The JBoss Fuse 6.2 server requires Java 7 or Java 8. To select either version for
the Execution Environment, you must have previously installed it.

10. Leave the Alternate JRE option as is.

11. Click Next to save the runtime definition for JBoss Fuse 6.2 Server and open the JBoss Fuse
server configuration details page:

12. Accept the default for SSH Port (8101).

The runtime uses the SSH port to connect to the server's Karaf shell. If this default is
incorrect, you can discover the correct port number by looking in the Red Hat JBoss Fuse
installDir/etc/org.apache.karaf.shell.cfg file.

13. In User Name, enter the name used to log into the server.

This is a user name stored in the Red Hat JBoss Fuse installDir/etc/users.properties file.

NOTE

If the default user has been activated (uncommented) in the
/etc/users.properties file, the tooling autofills User Name and Password
with the default user's name and password, as shown in Step 11.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

76

If one has not been set, you can either add one to that file using the format
user=password,role (for example, joe=secret,Administrator), or you can set one
using the karaf jaas command set:

jaas:realms—to list the realms

jaas:manage --index 1—to edit the first (server) realm

jaas:useradd <username> <password>—to add a user and associated password

jaas:roleadd <username> Administrator—to specify the new user's role

jaas:update—to update the realm with the new user information

If a jaas realm has already been selected for the server, you can discover the user name by
issuing the command JBossFuse:karaf@root>jaas:users.

14. In Password:, enter the password required for User name to log into the server.

This is the password set either in Red Hat JBoss Fuse's installDir/etc/users.properties
file or by the karaf jaas commands.

15. Click Next to open the Add and Remove resources page:

16. Select CBRroute, and click Add> to assign it to the JBoss Fuse server.

17. Click Finish.

JBoss Fuse 6.2 Runtime Server [stopped] appears in Servers view.

18. In Servers view, expand JBoss Fuse 6.2 Runtime Server [stopped]:

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO RED HAT JBOSS FUSE

77

The CBRroute module and JMX[Disconnected] appear as nodes under JBoss Fuse 6.2
Runtime Server [stopped] entry.

CONFIGURING THE PUBLISHING OPTIONS

Using publishing options, you can configure how and when your CBRroute project is published to a
running server:

Automatically, immediately upon saving changes made to the project

Automatically, at configured intervals after you have changed and saved the project

Manually, when you select a publish operation

In this tutorial, you are going to configure immediate publishing upon saving changes to the CBRroute
project. To do so:

1. In Servers view, double-click the JBoss Fuse 6.2 Runtime Server [stopped] entry
to open the server's editor:

2. On the server editor's Overview page, expand the Publishing section to expose the
options.

Make sure the option Automatically publish when resources change is enabled.

Change the value of Publishing interval to speed up or delay publishing the project when
changes have been made.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

78

NOTE

To configure manual publishing:

disable the If server started, publish changes immediately option
on the server's Add and Remove page

enable the Never publish automatically option on the server editor's
Overview page

Then to manually publish changes made to selective resources configured on the
running server, use the Full Publish option on the resource's context menu in Servers
view. The Incremental Publish option is not supported and clicking it results in a full
publish.

STARTING UP RED HAT JBOSS FUSE SERVER

Because you enabled the automatic publishing option, when you start up the JBoss Fuse 6.2
Runtime Server, the publish mechanism automatically publishes the CBRroute to the server.

1. In Servers view, select JBoss Fuse 6.2 Runtime Server and click to start it.

IMPORTANT

A warning that the host identification has changed may appear. Click yes to
replace the key ONLY if the JBoss Fuse 6.2 server runtime is installed on the
same machine where Red Hat JBoss Fuse Tooling is running! Otherwise click no
and contact your system administrator.

2. Wait a few seconds for JBoss Fuse 6.2 Server to start up. When it does:

Shell view displays the JBoss Fuse splash screen:

Servers view displays:

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO RED HAT JBOSS FUSE

79

JBoss Fuse 6.2 Runtime Server [Started, Synchronized]

NOTE

For a server, synchronized means that all modules published on the
server are identical to their local counterparts.

CBRroute [Started, Synchronized]

NOTE

For a module, synchronized means that the published module is
identical to its local counterpart. Because automatic publishing is
enabled, changes made to the CBRroute project are published in
seconds (according to the value of the Publishing interval).

JMX[Disconnected]

JMX Navigator displays JBoss Fuse 6.2 Runtime Server[Disconnected]:

CONNECTING TO THE JBOSS FUSE 6.2 RUNTIME SERVER

When you connect to the JBoss Fuse 6.2 Runtime Server, you can see the published elements
of your CBRroute project and interact with them.

1. In Servers view, double-click JMX[Disconnected] to connect to the runtime server.

Red Hat JBoss Fuse 6.2 Tooling Tutorials

80

IMPORTANT

If the CBRroute project contains a failed JUnit test, the published module will
not be started nor its bundle installed. The published module will appear in
Servers view under JBoss Fuse 6.2 Runtime Server[Started,
Synchronized] as CBRroute[Synchronized].

You need to correct the JUnit test case (see the section called “Modifying the
CamelContextXmlTest file ” for details) so that it runs on the CBRroute without
errors, and save the updated test file. Saving the test file will trigger immediate
publishing when that option is enabled. The module should then be started and
its bundle installed.

2. Expand the Camel node in JMX Navigator to expose the elements of the CBRroute.

You can interact with the CBRroute routing context using either Servers view or JMX
Navigator, but JMX Navigator provides more room to expand the routing context's nodes,
making it easier for you to access them.

NOTE

Once the blueprintCamel node appears in JMX Navigator under Server
Connections (or in Servers view under JMX[Connected]), you can start
tracing on it, as described in Chapter 7, To Trace a Message Through a Route.

3. Click the Bundles node to populate Properties view with the list of bundles installed on the
JBoss Fuse 6.2 Runtime Server.

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO RED HAT JBOSS FUSE

81

Start typing cbr-route in Properties view's Search tool to quickly determine whether your
project's cbr-route bundle is included in the list. Note that it is the last bundle in the list,
identified by its Symbolic Name , cbr-route, which is the Artifact Id you gave it in Step 6
when you created the CBRroute project.

NOTE

Alternatively, you can issue the list command in Shell view to see a generated
list of installed bundles.

UNINSTALLING THE CBRROUTE PROJECT

NOTE

You do not need to disconnect the JMX connection or stop the server to uninstall a
published resource.

To remove the CBRroute resource from JBoss Fuse 6.2 Runtime Server:

1. In Servers view, right-click JBoss Fuse 6.2 Runtime Server to open the context menu.

2. Select Add and Remove :

Red Hat JBoss Fuse 6.2 Tooling Tutorials

82

3. In the Configured column, select CBRroute, and then click Remove to move the CBRroute
resource to the Available column.

4. Click Finish.

5. In Servers view, right-click JMX[Connected] to open the context menu, and then click
Refresh.

The Camel tree under JMX[Connected] disappears.

NOTE

In JMX Navigator, the Camel tree under Server Connections > JBoss
Fuse 6.2 Runtime Server[Connected] also disappears.

6. With the Bundles page displayed, start typing cbr-route in Properties view's Search tool to
verify that the bundle has been removed.

CHAPTER 9. TO PUBLISH A FUSE PROJECT TO RED HAT JBOSS FUSE

83

	Table of Contents
	CHAPTER 1. USING THE FUSE TOOLING RESOURCE FILES
	PREREQUISITES
	DOWNLOADING AND INSTALLING THE PREFABRICATED MESSAGE FILES
	DOWNLOADING AND INSTALLING THE PREFABRICATED CAMEL CONTEXT FILES

	CHAPTER 2. TO CREATE A NEW ROUTE
	GOALS
	PREREQUISITES
	CREATING THE FUSE PROJECT
	CREATING THE NEW ROUTING CONTEXT
	CREATING THE ROUTE
	CREATING TEST MESSAGES
	NEXT STEPS
	FURTHER READING

	CHAPTER 3. TO RUN A ROUTE
	GOALS
	PREREQUISITES
	RUNNING THE ROUTE
	VERIFYING THE ROUTE
	FURTHER READING

	CHAPTER 4. TO ADD A CONTENT-BASED ROUTER
	GOALS
	PREREQUISITES
	ADDING AND CONFIGURING A CONTENT-BASED ROUTER
	ADDING AND CONFIGURING LOGGING
	ADDING AND CONFIGURING MESSAGE HEADERS
	ADDING AND CONFIGURING AN OTHERWISE BRANCH
	NEXT STEPS
	FURTHER READING

	CHAPTER 5. TO ADD ANOTHER ROUTE TO THE CBR ROUTING CONTEXT
	GOALS
	PREREQUISITES
	RECONFIGURING THE EXISTING ROUTE FOR DIRECT CONNECTION
	ADDING THE SECOND ROUTE
	BUILDING AND CONFIGURING THE USA BRANCH OF THE SECOND ROUTE
	BUILDING AND CONFIGURING THE GREAT BRITAIN BRANCH OF THE SECOND ROUTE
	BUILDING AND CONFIGURING THE GERMANY BRANCH OF THE SECOND ROUTE
	BUILDING AND CONFIGURING THE FRANCE BRANCH OF THE SECOND ROUTE
	SAVING THE NEW ROUTING CONTEXT
	NEXT STEPS
	FURTHER READING

	CHAPTER 6. TO DEBUG A ROUTING CONTEXT
	GOALS
	PREREQUISITES
	SETTING BREAKPOINTS
	STEPPING THROUGH THE CBRROUTE ROUTING CONTEXT
	CHANGING THE VALUE OF A VARIABLE
	NEXT STEPS

	CHAPTER 7. TO TRACE A MESSAGE THROUGH A ROUTE
	GOALS
	PREREQUISITES
	ACCESSING FUSE INTEGRATION PERSPECTIVE
	STARTING MESSAGE TRACING
	DROPPING MESSAGES ON THE RUNNING CBRROUTE PROJECT
	INITIALIZING AND CONFIGURING MESSAGES VIEW
	ARRANGING DIAGRAM VIEW
	STEPPING THROUGH MESSAGE TRACES
	FINISHING UP
	NEXT STEPS

	CHAPTER 8. TO TEST A ROUTE WITH JUNIT
	OVERVIEW
	GOALS
	PREREQUISITES
	DELETING THE EXISTING TEST CASE
	CREATING THE NEW TEST CASE
	MODIFYING THE CAMELCONTEXTXMLTEST FILE
	MODIFYING THE POM.XML FILE
	RUNNING THE JUNIT TEST
	FURTHER READING

	CHAPTER 9. TO PUBLISH A FUSE PROJECT TO RED HAT JBOSS FUSE
	GOALS
	PREREQUISITES
	DEFINING A RED HAT JBOSS FUSE SERVER
	CONFIGURING THE PUBLISHING OPTIONS
	STARTING UP RED HAT JBOSS FUSE SERVER
	CONNECTING TO THE JBOSS FUSE 6.2 RUNTIME SERVER
	UNINSTALLING THE CBRROUTE PROJECT

