‘® redhat.

Red Hat JBoss Fuse 6.2

Migration Guide

Migrating to Red Hat JBoss Fuse 6.2

Last Updated: 2017-09-27






Red Hat JBoss Fuse 6.2 Migration Guide

Migrating to Red Hat JBoss Fuse 6.2

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com



Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

.In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This quide lays out the issues a user will encounter when upgrading to the latest version of Red
Hat JBoss Fuse.



Table of Contents

Table of Contents

CHAPTER 1. MIGRATION OVERVIEW ..ttt ittt ittt eiieeeinseennneenanccnnnees 3
1.1. UPGRADED COMPONENTS 3
1.2. NEW ROLE-BASED ACCESS CONTROL 4
1.3. SECURITY CHANGES 5
1.4. MIGRATING MAVEN PROJECTS 5

CHAPTER 2. UPGRADING TO A PRE-PATCHED DISTRIBUTION ...ttt iiiiiiiiiiiiiiieeianen 8
WHAT IS A PRE-PATCHED DISTRIBUTION? 8
INSTALLING A PRE-PATCHED DISTRIBUTION 8
IMPORTANT NOTES AND LIMITATIONS 8

CHAPTER 3. DEPRECATED AND REMOVED FEATURES ... ittt iiiiieineennnees 9

SERVICEMIX MAVEN ARCHETYPES NOT SUPPORTED 9
FUSE APPLICATION BUNDLES 9
JBI CONTAINER 9
APACHE OPENJPA IS DEPRECATED 9
SPRING DYNAMIC MODULES (SPRING-DM) IS DEPRECATED 9
THE CAMEL-INFINISPAN COMPONENT HAS BEEN REMOVED FROM JBOSS FUSE 6.2 9

CHAPTER 4. CONSOLE CHANGES ... ittt iiiieteiteeeiaeeenaseesasecsascesnnccnnnees n
FABRIC:MQ-CREATE COMMAND "
FABRIC:PROFILE-CREATE COMMAND "
FABRIC:PROFILE-EDIT COMMAND "
FABRIC:EXPORT AND FABRIC:IMPORT COMMANDS "

CHAPTER 5. APACHE ACTIVEMQ ISSUES .. ittt ittt ittt ieiieeineenaneennnon. 12
5.1. MIGRATING CLIENTS 12
5.2. NEW FEATURES 12
5.3. DEPENDENCY UPGRADES 13
5.4. API CHANGES 13

CHAPTER 6. APACHE CAMEL ISSUES ...ttt ittt itiititiiteeeineeennecennscenancannns 14
6.1. SUMMARY OF APACHE CAMEL 2.12 TO APACHE CAMEL 2.15.1 MIGRATION 14
6.2. SPRING FRAMEWORK 17
6.3. PRODUCT DEPENDENCIES 18
6.4. API CHANGES 21
6.5. COMPONENT UPDATES 21
6.6. MISCELLANEOUS CHANGES 24

CHAPTER 7. APACHE CXF ISSUES ...ttt ittt ttiitttiiteteisetensoeennscesnscennncannns 27
7.1. SUMMARY OF APACHE CXF 2.7.0 TO 3.0.X MIGRATION 27
7.2. NEW FEATURES 27
7.3. PACKAGING OF BUNDLES/JARS 27
7.4. XML SCHEMA NAMESPACES 28
7.5. API CHANGES 28
7.6. DEPENDENCIES 32
7.7. MISCELLANEOUS CHANGES 33



Red Hat JBoss Fuse 6.2 Migration Guide




CHAPTER 1. MIGRATION OVERVIEW

CHAPTER 1. MIGRATION OVERVIEW

Abstract

This chapter highlights some of the key points that might affect your applications, when migrating from
JBoss Fuse 6.1 to JBoss Fuse 6.2. For a detailed description of the changes made to each of the
components, see the relevant chapters for Apache ActiveMQ, Apache Camel, and Apache CXF.

1.1.UPGRADED COMPONENTS

Version upgrades

Many of the major components in JBoss Fuse and JBoss A-MQ 6.2 have been upgraded. The following
versions are used in JBoss Fuse:

Table 1.1. Component Versions

Component Version for 6.1 Version for 6.2
Apache ActiveMQ 5.9.0 5.11.0

Apache Camel 2.12.0 2.15.1

Apache CXF 2.7.0 3.04

Apache Karaf 2.3.x 24.0

Fabric8 (was Fuse Fabric) 1.0.0 1.2.0

Spring framework 3.2.x 3.2.x

XA transactions

If you have deployed any transaction code that relies on the Apache Aries auto-enlisting XA wrapper,
you should note that this feature is no longer installed by default. To enable the Aries XA wrapper
service, you must now install the connector features, as follows:

I JBossFuse:karaf@root> features:install connector

Apache ActiveMQ changes

The changes resulting from the upgrade to version 5.11.0 are detailed in Chapter 5, Apache ActiveMQ
Issues.

Apache Camel changes

The changes resulting from the upgrade to version 2.15.1 are detailed in Chapter 6, Apache Camel
Issues.



Red Hat JBoss Fuse 6.2 Migration Guide

The most important changes are:

e The Camel SAP component has been refactored into ten separate sub-components and now
also supports sending and receiving IDoc documents. For details, see chapter "SAP
Component" in "Apache Camel Component Reference".

e Camel supports a new REST DSL, which makes it easy to define REST services in a Camel
route. For details, see chapter "Defining REST Services" in "Apache Camel Development
Guide".
Apache CXF changes

The changes resulting from the upgrade to version 3.0.4 are detailed in Chapter 7, Apache CXF Issues
The most important changes are:

e The cxf-apibundle and the cxf-rt-core bundle are no longer available in Apache CXF
3.0.x. For details, see Section 7.3, “Packaging of Bundles/JARs” .

e Thehttp://cxf.apache.org/jaxrs namespace has been changed to
http://cxf.apache.org/jaxrs-client in Apache CXF 3.0.x. For details, see Section 7.4,
“XML Schema Namespaces”.

1.2. NEW ROLE-BASED ACCESS CONTROL

Overview

JBoss Fuse 6.2 has a new role-based access control (RBAC) feature, which is enabled by default in the
container. The new RBAC system offers differentiated access to the container, depending on which
roles have been assigned to a user. The RBAC imposes access controls on the Karaf console (so that
only administrators can access the full range of commands and command options) and imposes access
controls on the JMX protocol (so that access control is applied to the Fuse Management Console).

Standardized roles

Table 1.2, “Standard Roles for Access Control” lists and describes the standard roles that are used
throughout the JMX ACLs and the command console ACLs.

Table 1.2. Standard Roles for Access Control

Roles Description

Monitor,Operator,Maintainer Grants read-only access to the container.

Deployer,Auditor Grants read-write access at the appropriate level for
ordinary users, who want to deploy and run
applications. But blocks access to sensitive
container configuration settings.

Administrator,SuperUser Grants unrestricted access to the container.

Migrating user data for RBAC


https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/SAP.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Development_Guide/RestServices.html

CHAPTER 1. MIGRATION OVERVIEW

When migrating to JBoss Fuse 6.2, you must modify your user data, so that users are assigned one of
the standard roles from Table 1.2, “Standard Roles for Access Control”.
Reference

For more details about role-based access control, see section "Role-Based Access Control" in
"Security Guide".

1.3. SECURITY CHANGES

Overriding the default JAAS realm in Fabric

In JBoss Fuse 6.2, the rank of the default ZookeeperLoginModule JAAS module (which is installed
by default in a Fabric container) has changed to 99, and the name of the default realmis karaf.In
previous releases, the rank of ZookeeperLoginModule realm was just 1.

Hence, if you want to override the default karaf in the context of Fabric, you must define a new realm
named karaf, with a rank attribute that is greater than or equal to 100.

Enabling LDAP authentication in a Fabric

In particular, this change affects the configuration needed to enable LDAP authentication in a Fabric. In
this case, the rank attribute of the jaas:config elementin the JAAS realm configuration file must
be increased to at least 100 (recommended is 200). For details, see section "Procedure for a Fabric" in
"Security Guide".

1.4. MIGRATING MAVEN PROJECTS

Overview

JBoss Fuse 6.1 now has a JBoss Fuse BOM (Bill of Materials), which defines the versions of all the JBoss
Fuse Maven artifacts. You can use the BOM to simplify migration of your Maven POM files. Instead of
updating the version elements on each Maven dependency, all you need to do is to import the latest
JBoss Fuse BOM, which defines default versions for all of the dependencies provided by JBoss Fuse.

JBoss Fuse BOM

The JBoss Fuse BOM is a parent POM that defines the versions for all of the Maven artifacts provided
by JBoss Fuse. The JBoss Fuse BOM exploits Maven's dependency management mechanism to specify
default versions for the Maven artifacts, so that it is no longer necessary to specify the artifact versions
explicitly in your POM.

Current version of the JBoss Fuse BOM

The easiest way to discover the current version of the JBoss Fuse BOM is to examine one of the
sample pom. xml files from the quickstarts examples. For example, in the
InstallDir/quickstarts/eip/pom.xml file, you can find a line that defines the JBoss Fuse BOM
version, as follows:

<project ...>

<properties>


https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Security_Guide/RBAC.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Security_Guide/ESBLDAPTutorialEnableAuthentication.html#topic-34735

Red Hat JBoss Fuse 6.2 Migration Guide

<!-- the version of the JBoss Fuse BOM, defining all the
dependency versions -->
<jboss.fuse.bom.version>6.2.0.redhat-133</jboss.fuse.bom.version>
</properties>

</project>

How to migrate Maven dependencies using the JBoss Fuse BOM

To migrate Maven dependencies using the JBoss Fuse BOM, open the Maven pom. xml file for your
project and edit it as follows:

1. Define the JBoss Fuse BOM version as a property in your pom. xml file, using the current BOM
version. For example:

<project ...>
<properties>

<jboss.fuse.bom.version>6.2.0.redhat-
133</jboss.fuse.bom.version>
</properties>

</project>

2. Reference the JBoss Fuse BOM parent POM in a dependencyManagement element, so that it
defines default versions for the artifacts provided by JBoss Fuse. Add the following
dependencyManagement element to your pom.xml file:

<project ...>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.jboss.fuse.bom</groupId>
<artifactId>jboss-fuse-parent</artifactId>
<version>${jboss.fuse.bom.version}</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>

</project>

3. Now delete all of the version elements in your JBoss Fuse dependencies. All of the versions
defined in the JBoss Fuse BOM will be applied automatically to your dependencies (through
the Maven dependency management mechanism). For example, if you already had some
Apache Camel dependencies, as follows:

<dependencies>
<dependency>
<groupId>org.apache.camel</groupId>



CHAPTER 1. MIGRATION OVERVIEW

<artifactId>camel-core</artifactId>
<version>2.15.1.redhat-620133</version>
</dependency>
<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-blueprint</artifactId>
<version>2.15.1.redhat-620133</version>
</dependency>
<dependency>
<groupIld>org.apache.camel</groupId>
<artifactId>camel-jetty</artifactId>
<version>2.15.1.redhat-620133</version>
</dependency>

</dependencies>
You would delete the version elements, so that the dependencies are specified as follows:

<dependencies>

<dependency>
<groupIld>org.apache.camel</groupId>
<artifactId>camel-core</artifactId>

</dependency>

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-blueprint</artifactId>

</dependency>

<dependency>
<groupId>org.apache.camel</groupId>
<artifactId>camel-jetty</artifactId>

</dependency>

</dependencies>

4. In future, when you migrate to a later version of JBoss Fuse, all that you need to do to upgrade
your pom.xml file is to edit the jboss.fuse.bom.version property, so that it references
the new version of the JBoss Fuse BOM.



Red Hat JBoss Fuse 6.2 Migration Guide

CHAPTER 2. UPGRADING TO A PRE-PATCHED DISTRIBUTION

WHAT IS A PRE-PATCHED DISTRIBUTION?

For version 6.2.0 of JBoss Fuse, pre-patched distributions are made available for the first time. A pre-
patched distribution is an installation of the 6.2.0 GA version which has had the specified patch applied
to it. This pre-patched installation is then re-packaged as an archive and made available for download.

For example, the following pre-patched distribution, which incorporates patch P1, is currently available
for download:

I Red Hat JBoss Fuse Pre-patched 6.2.0 P1

INSTALLING A PRE-PATCHED DISTRIBUTION

To install a pre-patched distribution, extract the downloaded archive file into a directory on your file
system. The distribution is now ready for use as a standalone container (but not as a Fabric container—
see the notes and limitations).

IMPORTANT NOTES AND LIMITATIONS

The pre-patched distribution is not equivalent to a complete rebuild of the product. This has some
important implications, as follows:

e A pre-patched distribution is intended primarily to be used as a standalone container (that is,
non-Fabric).

e |f you do create a fabric using the pre-patched distribution (for example, using
fabric:create), the Fabric container reverts to the unpatched, GA version of the product.

e To upgrade the Fabric to the relevant patch level, you must download the required patch (or
paches) and follow the standard Fabric patching procedure, as described in.

e From version 6.2.1 of JBoss Fuse, the patching process will be improved so that pre-patched
distributions can also be used to create properly patched Fabric containers.



CHAPTER 3. DEPRECATED AND REMOVED FEATURES

CHAPTER 3. DEPRECATED AND REMOVED FEATURES

SERVICEMIX MAVEN ARCHETYPES NOT SUPPORTED

The ServiceMix Maven archetypes (with a groupId of org.apache.servicemix.tooling) are no
longer supported and are not available in 6.2. You can use the fabric8 Maven archetypes instead
(which provide similar functionality). The fabric8 archetypes have a groupId of
io.fabric8.archetypes and the following fabric8 archetypes are available:

karaf-camel-amg-archetype
karaf-camel-cbr-archetype
karaf-camel-cxf-code-first-archetype
karaf-camel-cxf-contract-first-archetype
karaf-camel-dozer-wiki-archetype
karaf-camel-drools-archetype
karaf-camel-eips-archetype
karaf-camel-errorhandler-archetype
karaf-camel-log-archetype
karaf-camel-log-wiki-archetype
karaf-camel-webservice-archetype
karaf-rest-archetype
karaf-secure-rest-archetype
karaf-secure-soap-archetype
karaf-soap-archetype

FUSE APPLICATION BUNDLES

Fuse Application Bundles (FABs) are no longer supported and are not available in 6.2. Instead of using
FABs, it is recommended that you repackage your code as an OSGi bundle, for deployment into the
JBoss Fuse container.

JBI CONTAINER

The Java Business Integration (JBI) container has been removed from JBoss Fuse 6.2.

APACHE OPENJPA IS DEPRECATED

The Apache OpenJPA implementation of the Java Persistence API (JPA) is deprecated in 6.2. It is
recommended that you use the Hibernate implementation instead.

SPRING DYNAMIC MODULES (SPRING-DM) IS DEPRECATED

Spring-DM (which integrates Spring XML with the OSGi service layer) is deprecated in 6.2 and you
should use the Blueprint framework instead. Using Blueprint does not prevent you from using the
Spring framework: the latest version of Spring is compatible with Blueprint.

THE CAMEL-INFINISPAN COMPONENT HAS BEEN REMOVED FROM
JBOSS FUSE 6.2


https://openjpa.apache.org/
http://hibernate.org/orm/

Red Hat JBoss Fuse 6.2 Migration Guide

The camel-infinispan component is notincluded in JBoss Fuse 6.2. It is recommended that you
use the camel - jbossdatagrid component instead. For details on how to install it, see Red Hat JBoss
Data Grid and Red Hat JBoss Fuse in the Red Hat JBoss Data Grid Getting Started guide.

You can use any supported combination of JBoss Data Grid in a given container, where the list of

certified versions is listed in the JBoss Data Grid support matrix. For some examples of how to use
JBoss Data Grid with JBoss Fuse, see https://github.com/jbossdemocentral/jdg-fuse-demos.

10


https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Grid/6.5/html/Getting_Started_Guide/sect-Red_Hat_JBoss_Data_Grid_and_Red_Hat_JBoss_Fuse.html
https://access.redhat.com/articles/115883#
https://github.com/jbossdemocentral/jdg-fuse-demos

CHAPTER 4. CONSOLE CHANGES

CHAPTER 4. CONSOLE CHANGES

FABRIC:MQ-CREATE COMMAND
The following argument names have changed in JBoss Fuse 6.2:
e --portsto --port

e --networks to --network

FABRIC:PROFILE-CREATE COMMAND
The following argument names have changed in JBoss Fuse 6.2:

e --parentsto --parent

FABRIC:PROFILE-EDIT COMMAND

The following argument names have changed in JBoss Fuse 6.2:
e --repositoriesto --repository
e --featuresto --feature
e --libsto --1lib

e --bundlesto --bundle

FABRIC:EXPORT AND FABRIC:IMPORT COMMANDS

The fabric:export and fabric:import commands have been removed in JBoss Fuse 6.2, and are
now replaced by the corresponding zk: export and zk:import commands. To gain access to these
Zookeeper commands, you must install the fabric-zookeeper -commands feature.

NOTE

The zk: export and zk: import commands interact purely with the Zookeeper
registry. For example, you cannot use these commands to export or import Fabric
profile data, which is now stored in the container's Git repository.

1



Red Hat JBoss Fuse 6.2 Migration Guide

CHAPTER 5. APACHE ACTIVEMAQ ISSUES

Abstract

JBoss Fuse 6.2 uses Apache ActiveMQ 5.11.0. Since the last release, Apache ActiveMQ has been
upgraded from version 5.9.0 to version 5.11.0. This introduces a few migration issues.

5.1. MIGRATING CLIENTS

Migrating Apache ActiveMQ clients

In general, it is recommended that you update your Apache ActiveMQ clients at the same time that
you update the brokers, in order to guarantee compatibility between clients and brokers.

It is possible, in some cases, that older client versions might be interoperable with later broker
versions. The Openwire protocol supports version negotiation, such that an old client can negotiate the
lowest common version with its peer and use that version. But JBoss Fuse does not have a
comprehensive test suite for testing compatibility between all of the different versions of Apache

ActiveMQ. Hence, to be sure of compatibility, it is recommended that you upgrade your clients along
with your brokers to use the same version.

5.2. NEW FEATURES

ActiveMQ 5.10.0

In ActiveMQ 5.10.0, the following new features have been introduced:
e Hardened MQTT support
e Hardened AMQP support
e Hardened LevelDB store

e Improved RAR/JCA adapter

Improved Runtime configuration plugin

ActiveMQ 5.11.0

In ActiveMQ 5.11.0, the following new features have been introduced:

o Destination import/export for lock down mode. Use the destinationsPlugin on the broker
to import/export broker destinations to s a specified location. For example:

<plugins>
<destinationsPlugin location="/workspace/destinations"/>
</plugins>

e Dynamic Camel root loading. Allows routes to modified on the fly without restarting the broker.
To take advantage of this feature, you must define a camelroutesBrokerPlugin plug-inin
the broker configuration, as follows:

12



CHAPTER 5. APACHE ACTIVEMQ ISSUES

<plugins>
<camelroutesBrokerPlugin routesFile="routes.xml" />
</plugins>

Where the routes. xml file must be in the same location as the broker configuration file.

e MQTT: QOS2 mapped to virtual topics. Can be enabled using the transport option, ?
transport.subscriptionStrategy="mqtt-virtual-topic-subscriptions".

e Start scripts simplification

o Recover scheduler database option

5.3. DEPENDENCY UPGRADES

Spring framework

JBoss Fuse and JBoss Fuse use Spring framework version 3.2.

Apache Karaf

JBoss Fuse and JBoss Fuse use Apache Karaf version 2.4.0.

5.4. API CHANGES

JMS streams

JMS streams are now deprecated. If you need to send very large messages, it is recommended that you
use an out-of-bounds transport, such as FTP, instead. In particular, the
org.apache.activemq.ActiveMQInputStreamand ActiveMQOutputStream classes are
deprecated, as are the ActiveMQConnection.createInputStreamand
ActiveMQConnection.createQutputStream methods.

Camel ActiveMQ component

Removed the org.apache.activemq.camel.converter.IdentityMessageReuseConverter
class from the Camel ActiveMQ component (activemq-camel).

13



Red Hat JBoss Fuse 6.2 Migration Guide

CHAPTER 6. APACHE CAMEL ISSUES

6.1. SUMMARY OF APACHE CAMEL 2.12 TO APACHE CAMEL 2.15.1
MIGRATION

Overview

Red Hat JBoss Fuse 6.2.0.redhat-133 uses Apache Camel 2.15.1. Since the last release, Apache Camel
has been upgraded from version 2.12 to version 2.15.1. This introduces a few migration issues.

Spring framework

Spring 3.0.x and Spring 3.1.x are no longer supported. You must use Spring 3.2.x.

The camel-infinispan component has been removed from JBoss Fuse 6.2

The camel-infinispan component is notincluded in JBoss Fuse 6.2. It is recommended that you
use the camel - jbossdatagrid component instead. For details on how to install it, see Red Hat JBoss
Data Grid and Red Hat JBoss Fuse in the Red Hat JBoss Data Grid Getting Started quide.

You can use any supported combination of JBoss Data Grid in a given container, where the list of

certified versions is listed in the JBoss Data Grid support matrix. For some examples of how to use
JBoss Data Grid with JBoss Fuse, see https://github.com/jbossdemocentral/jdg-fuse-demos.

New Camel components

The following new Camel components have been added in Apache Camel version 2.13:

HDFS2 component
Integration with HDFS using Hadoop 2.x client

JGroups component

provides exchange of messages between Camel infrastructure and JGroups clusters.

Apache Kafka component

Integration with Apache Kafka

OptaPlanner component

To use OptaPlanner for problem solving plans.

Splunk component

Enables you to publish and search for events in Splunk.

Amazon SWF component

For managing workflows running on Amazon's Simple Workflow Service.

The following new Camel components have been added in Apache Camel version 2.14:

AHC-WS component

14


https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Data_Grid/6.5/html/Getting_Started_Guide/sect-Red_Hat_JBoss_Data_Grid_and_Red_Hat_JBoss_Fuse.html
https://access.redhat.com/articles/115883#
https://github.com/jbossdemocentral/jdg-fuse-demos
http://www.jgroups.org/
http://www.optaplanner.org/
http://aws.amazon.com/swf

CHAPTER 6. APACHE CAMEL ISSUES

Provides Websocket based endpoints for a client communicating with external servers over
Websocket.

Atmosphere Websocket component

Provides Websocket based endpoints for a serviet communicating with external clients over
Websocket (as a servlet accepting websocket connections from external clients).

Box component

Provides access to all of the Box.com APIs accessible using box-java-sdk-v2.

Dropbox component

Enables you to treat Dropbox remote folders as a producer or consumer of messages.

Metrics component

Enables you to collect various metrics directly from Camel routes (using Metrics).

Netty4 component

A socket communication component, based on the Netty project version 4.

Netty4-HTTP component

An extension to Netty4 component to facilitate HTTP transport.

Olingo2 component

Uses Apache Olingo version 2.0 APlIs to interact with OData 2.0 and 3.0 compliant services.

Openshift component

A component for managing your OpenShift applications.

Google Drive component

Provides access to the Google Drive file storage service via the Google Drive Web APlIs.

Gora component

Enables you to work with NoSQL databases using the Apache Gora framework.
REST component
Enables you to define REST endpoints using the Rest DSL and plug-in to other Camel components

as the REST transport.

Spark-REST component
Enables you to define REST endpoints using the Spark REST Java library using the Rest DSL.

Schematron component

An XML-based language for validating XML instance documents.

Swagger component

Enables users to create APl docs for any REST-defined routes and endpoints in a CamelContext file.

15


https://github.com/box/box-java-sdk-v2/
https://www.dropbox.com/
http://metrics.codahale.com/
http://netty.io/
http://netty.io/
http://olingo.apache.org/
https://www.openshift.com/
http://drive.google.com
https://developers.google.com/drive/v2/reference
http://gora.apache.org/
http://camel.apache.org/rest-dsl.html
http://sparkjava.com/
http://camel.apache.org/rest-dsl.html

Red Hat JBoss Fuse 6.2 Migration Guide

The following new Camel components have been added in Apache Camel version 2.15:

Beanstalk component

For working with Amazon Beanstalk jobs.

Cassandra component

Cassandra CQL3 support.

Chunk component

For templating with Chunk engine.

Docker component

To communicate with Docker.

Dozer component

Now also as a component to convert messages using the Dozer type conversion framework.

GitHub component

For integrating with github.

Google Calendar component

Provides access to Google Calendar through the Google Calendar Web APIs.

Google Mail component

Provides access to Gmail via the Google Mail Web APIs.

Hipchat component

To integrate with the Hipchat service.

PGEvent component

For sending/receiving notifications in PostgreSQL via the pgjdbc-ng driver.

JIRA component

For integrating with JIRA issue tracker.

Kura component

For deploying Camel OSGi routes into Eclipse Kura M2M container.

SCR component

For using Camel with SCR (OSGi declarative services) on OSGi containers such as Apache Karaf.

Spring Boot component

For using Camel with Spring Boot.

Test-Spring40 component

For testing with Spring 4.0.x. camel-test-springis for Spring 4.1.x onwards.

16


https://github.com/
http://google.com/calendar
https://developers.google.com/google-apps/calendar/v3/reference/
http://gmail.com/
https://developers.google.com/gmail/api/v1/reference/
https://eclipse.org/kura/
http://felix.apache.org/documentation/subprojects/apache-felix-maven-scr-plugin/scr-annotations.html

CHAPTER 6. APACHE CAMEL ISSUES

Scheduler component

For timer based scheduler using a scheduled thread pool and with more functionality.

New languages

The following new expression languages have been added in Apache Camel version 2.13:

JSonPath

A language syntax (similar to XPath) for extracting parts of JSon messages.

The following new expression languages have been added in Apache Camel version 2.14:

XMLTokenizer

A truly XML-aware tokenizer that can be used with the Splitter as the conventional Tokenizer to
efficiently and effectively tokenize XML documents.

New DSL

The following new DSL commands have been added in Apache Camel version 2.15:

removeProperties

A DSL command to remove exchange properties.

New Maven archetypes

The following new Apache Camel Maven archetypes have been added in Apache Camel versions 2.13,
2.14,and 2.15:

e camel-archetype-cxf-code-first-blueprint

e camel-archetype-cxf-contract-first-blueprint

6.2. SPRING FRAMEWORK

Spring version

Since Apache Camel 2.13, the version of Spring that you can use with Apache Camel must be 3.2 (or
later). Spring 3.0.x and 3.1.x are not supported.

New schema location

If you explicitly specify the location of the Spring schema in your Spring configuration files, you must
change the schema location to point at the 3.2 Spring schema.

The Spring 3.2 schema is located at the following Web page:

I http://www.springframework.org/schema/beans/spring-beans-3.2.xsd

17



Red Hat JBoss Fuse 6.2 Migration Guide

For example, assuming your schema locations are specified in the root beans element, you could
specify the new Spring schema location as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-
3.2.xsd">

Spring 3.2 new features

For a summary of the new features in Spring 3.2, see New Features and Enhancements in Spring 3.2.

Using the Spring registry in Apache Camel

Since Apache Camel 2.11, when using Spring's bean registry with Camel, Camel also looks up Spring's
ancestor application contexts.

6.3. PRODUCT DEPENDENCIES

Apache CXF version

Since Apache Camel 2.12, the CXF component requires Apache CXF 2.7.x.

Jetty version

Since Apache Camel 2.13, the Jetty component is updated to Jetty 8.1.12.

Component dependencies

In Apache Camel 2.13, 2.14, and 2.15 some components have had their third party dependencies
upgraded, as follows:

e ActiveMQ 5.8.0 to 5.11.0

e AHC1.7.20t01.8.3

e APNS0.1.6t00.2.3

e Atomikos 3.8.0 to 3.9.3

e AWS-SDK1.5.1t01.8.9.1

e Avro17.3t01.7.5

e BeanlO 2.0.6 to 2.0.7

e C(Classmate from 0.8.0t01.0.0
e Codehale Metrics 3.0 to 3.1

e Commons Codec1.81t01.9

18


http://docs.spring.io/spring/docs/3.2.0.RELEASE/spring-framework-reference/html/new-in-3.2.html

Commons Httpclient 4.2.5 t0 4.3.3
Commons Httpcore 4.2.4 t0 4.3.2
CXF 2.7.6 t0 3.0.4

Deltaspike 0.7 to 1.0.1

Disruptor 3.3.0 to 3.3.2

Dozer 5.4.0 to 5.5.1

Ehcache 2.7.2 t0 2.8.3
Elasticsearch 0.20.6 t01.0.0

FOP 1.0 to 1.1

Groovy 2.2.2102.3.4

Guava14.0.1t018.0

CHAPTER 6. APACHE CAMEL ISSUES

Hadoop 1.2.0 to 1.2.1. Hadoop 2.3.0 supported by camel-hdfs2 component.

Hapi 2.1t0 2.2

Hazelcast 2.6 to 3.4

Hibernate Validator 5.0.1.Final to 5.0.3.Final

ICal4j1.0.4 t01.0.5.2
Jackson 2.2.2 to 2.3.2
JAX-B 2.2.7 to 2.2.11
Jclouds 1.6.2-incubating to 1.7.0
Jettison1.3.4 t0 1.3.5
Jetty 7.6.9 to 8.1.12
JLine 0.9.94 to 2.11
Jodatime 2.1t0 2.3
JRuby 1.7.4 t0 1.7.18
JSCH 0.1.49 to 0.1.51
JsonPath1.1.0 t0 1.2.0
LevelDb JNI1.7 to 1.8.
Lucene 3.6.0 to 4.6.1

MongoDB Java Driver 2.11.2 to 2.12.0

19



Red Hat JBoss Fuse 6.2 Migration Guide

20

Mustache 0.8.12 to 0.8.13

MVEL 2.1.6.Final to 2.1.7.Final

MyBatis 3.2.2 to 3.2.5

Netty3 3.8.0.Final to 3.9.0.Final

OGNL 3.0.6 t0 3.0.8

Pax Logging 1.6.10 to 1.7.1

Protobuf 2.3 to 2.5

Qpid 0.20 to 0.26

Quartz 2.2.0 to 2.2.1

RabbitMQ amgp Java Client 3.1.3 t0 3.3.0
Restlet 2.0.15 to 2.2.1

RxJava 0.11.1t01.0.5

Saxon 9.5.0.2 to 9.5.1-4

Scala 2.10.2 to 2.11.2

Servlet AP1 2.5 to 3.0

Shiro to 1.2.3.

SIf4j1.7.5t01.7.6

Snappy 1.0.4.1 10 1.1.0.1

SNMP4J 2.2.2t0 2.3.0

SolrJ 3.6.2 to 4.6.1

Spring Batch 2.2.1.RELEASE to 2.2.2.RELEASE
Spring Integration 2.2.4.RELEASE to 2.2.6.RELEASE
Spring Redis 1.0.4.RELEASE to 1.3.4.RELEASE
Spring Security 3.1.7.RELEASE to 3.2.5.RELEASE
Spring WS 2.1.3.RELEASE to 2.1.4.RELEASE
SSHD 0.8.0 to 0.11.0

StompJMS 1.17 to 1.19

TestNG 6.8.5 to 6.8.7

Twitter4j 3.0.3 to 4.0.1



CHAPTER 6. APACHE CAMEL ISSUES

Weld 1.1.5.Final to 1.1.18.Final

XBean Spring 3.14 to 3.16

XmlSec1.5.5t01.5.6

XStream1.4.4to1.4.7

6.4. API CHANGES

API changes

The following changes have been made to the Java API:

CamelContext

Since Apache Camel 2.13, added getRegistry(T) method to
org.apache.camel.CamelContext class.

Since Apache Camel 2.14, added startAl1Routes method to
org.apache.camel.CamelContext class.

HttpClientConfigurer

Since Apache Camel 2.13, the signature of the configureHttpClient (HttpClient client)
method from the org.apache.camel.component.http4.HttpClientConfigurer interface
has been changed to configureHttpClient (HttpClientBuilder clientBuilder).

ManagedCamelContextMBean

Since Apache Camel 2.14, the duplicate getMessageHistory method has been removed from the
org.apache.camel.api.management .mbean.ManagedCamelContextMBean interface. Use
the isMessageHistory method instead.

SynchronizationRouteAware

Since Apache Camel 2.14, added the org.apache.camel. spi.SynchronizationRouteAware
class.

UnitOfWork

Since Apache Camel 2.14, added the beforeRoute and the afterRoute methods to the
org.apache.camel.spi.UnitOfWorkinterface.

Moved classes

Since Apache Camel version 2.14, the following classes have moved to a different package or renamed:

e Renamed org.apache.camel.component.syslog.Rfc3164SyslogDataFormat to
org.apache.camel.component.syslog.SyslogDataFormat

6.5. COMPONENT UPDATES

Jetty component

21



Red Hat JBoss Fuse 6.2 Migration Guide
Since Apache Camel version 2.13.0, upgraded from 7.6.x to 8.1.x.

Hazelcast component

Since Apache Camel version 2.13.0, the Hazelcast component uses Object instead of String as the
key type.

Since Apache Camel version 2.13.0, the atomic number producer uses a different atomic number name.
This is due to the bug fix, CAMEL-6833 (previously, the wrong atomic number name was used).

Since Apache Camel version 2.13.0, the instance consumer writes headers to the in message
(previously, the instance consumer was incorrectly writing headers to the out message instead of the
in message).

Since Apache Camel version 2.13.0, the erroneous header value, envict, sent by the map/multimap
consumer has now been corrected to evicted.

APNS component

Since Apache Camel version 2.13.0, the NON_BLOCKING enum value has been removed from the APNS
component, because it is no longer support in APNS itself.

Language component

Since Apache Camel version 2.13.0, the Language component no longer caches the compiled script,
because that could cause unwanted side-effects. You can set cacheScript=true to enable the
previous behaviour, if you are sure that your script does not cause such side-effects.

Netty HTTP

Since Apache Camel version 2.13.0, the default value of the urlDecodeHeaders option on the Netty
HTTP component has been changed from true to false.

Since Apache Camel version 2.14, Netty HTTP now removes the headerFilterStrategy option
after resolving it.
Cache component

Since Apache Camel version 2.13.0, the Cache component no longer includes the ehcache . xml
configuration file. The default EHCache configuration is used instead, if you do not specify a
configuration file explicitly.

CDI component

Since Apache Camel version 2.13.0, the CDI component has been upgraded from DeltaSpike 0.3 to 0.5,
which may affect upgrades.

SJMS component

Since Apache Camel version 2.13.0, when creating a consumer, the default value of NoLocal has
changed from true to false.

ServletListener component

22


https://issues.apache.org/jira/browse/CAMEL-6833

CHAPTER 6. APACHE CAMEL ISSUES

Since Apache Camel version 2.13.0, added beforeAddRoutes and afterAddRoutes methods to
org.apache.camel.component.servletlistener.CamelContextLifecycle class.

Twitter component

Since Apache Camel version 2.14, the useSs1 option has been removed, because SSL/TLS is now
always enabled (this is enforced by Twitter).

Restlet component

Since Apache Camel version 2.14, the Restlet component has been fixed to return error code 405
(instead of 404), if a HTTP method is not allowed.

JMS and ActiveMQ components

Since Apache Camel version 2.14, routes starting with a JMS endpoint will now shut down the
consumer (implemented by MessageListenerContainer) quicker when CamelContext is being
stopped. This can help to achieve a cleaner shutdown, as otherwise some JMS clients might attempt to
re-connect or fail over during the shutdown . If you want to disable this behaviour, so that the routes
keep accepting messages during Camel shutdown, set acceptMessagesWhileStopping=true.

Bean component

Since Apache Camel version 2.14, this component caches the bean by default (that is, a single instance
of the bean is used and re-used). This behaviour can be turned off by setting cache=false, which
implies that a new instance of the bean is created for every method invocation (that is, there is no re-
use).

XSLT component

Since Apache Camel version 2.15, the transformerFactory option now uses the with the #BeanID
syntax to reference a bean instance.

Metrics component

Since Apache Camel version 2.15, Java endpoint API has been refactored somewhat.

CSV component

Since Apache Camel version 2.15, upgraded to Apache Commons CSV version 1.x, which has a different
API to the 0.x version.

SJMS component

Since Apache Camel version 2.15, the API has been refactored.

Swagger component

Since Apache Camel version 2.15, the need for runtime-specific servlets in Swagger has been
eliminated. You can just use the default servlet, which is provided out of the box.

Mail component

23



Red Hat JBoss Fuse 6.2 Migration Guide

Since Apache Camel version 2.15, no longer sends headers whose key starts with Camel, as those are
consider internal headers and should not be included in the sent emails.

SNMP component

Since Apache Camel version 2.15, the delay option has changed from using seconds to milliseconds as
the time unit.

Bean component

Since Apache Camel version 2.15, you cannot use the Bean component as a consumer endpoint (from,
at the start of a route). To get the same effect, you can start the route with a scheduler endpoint and
send to a bean instance (using to("bean:BeanID") or beanRef ("BeanID")).

6.6. MISCELLANEOUS CHANGES

DefaultTimeoutMap class

Since Apache Camel version 2.13.0, you must call the start method on the
org.apache.camel. support.DefaultTimeoutMap<K, V> class to initialize the map before use.

@ExcludeRoutes annotation

Since Apache Camel version 2.13.0, the @ExcludeRoutes test annotation now accepts only classes
implementing the RoutesBuilder interface.

MBean naming

Since Apache Camel version 2.13.0, the MBean names registered by Camel JMX no longer include the
hostname in the context part. For example, in previous versions the context name would have the
format, context=myHost/myCamelId, whereas now it has the format, context=myCamelId. Having
the hostname in the MBean name makes things more complicated, because the MBean name changes
depending on the host. The option, includeHostName, can be set to truein order to restore the old
behaviour.

Since Apache Camel version 2.13.0, MBean naming in OSGi has been cleaned up to use simpler naming,
with the MBean name now set to the OSGi symbolicName by default. In previous versions, it was
possible for MBean names to have repeated bundle IDs—for example, context=114-114-camel-6.

jmxAgent element

Since Apache Camel version 2.13.0, the default value of the jmxAgent element's createConnector
attribute has changed from true to false.

Since Apache Camel version 2.13.0, JMX Load statistics have been disabled by default. You can now
explicitly enable statistics by setting loadStatisticsEnabled=true on the jmxAgent element.
onException Java DSL command

Since Apache Camel version 2.13.0, when using the onException.backOffMultiplier or
collisionAvoidancePercent or collisionAvoidanceFactor options, back-off or collision
avoidance is automatically enabled. In previous versions, it was also necessary to call

24



CHAPTER 6. APACHE CAMEL ISSUES

useExponentialBackOff or useCollisionAvoidance as well. The errorHandler DSL command
has the same behaviour.
Spring XML shutting down beans

Since Apache Camel version 2.13.0, the camelContext bean will, by default, shut down before all
other beans in Spring XML. This ensures a cleaner shutdown of the Camel context. If you prefer to
revert to the old behaviour, you can set the new camelContext attribute, shutdownEager, to
false.

onCompletion DSL command

Since Apache Camel version 2.14, now runs without a thread pool by default. To restore the old
behaviour, set the paralllelProcessingoption to true.

startAllIRoutes method

Since Apache Camel version 2.14, setting autoStartup to false, and startinga CamelContext for
the second time does not start the routes. Instead use the new startAllRoutes method on
CamelContext to start all the routes.

Unit testing with Spring

Since Apache Camel version 2.15, unit testing with Spring 3.x now requires the camel-test-spring3
component. The camel-test-spring40 component is for testing with Spring 4.0.x and the camel-
test-spring component is for testing with Spring 4.1.

Jetty 7.x

Since Apache Camel version 2.15, Jetty 7 has been dropped and is no longer supported.

Simple language and properties syntax

Since Apache Camel version 2.15, the property placeholder syntax has changed. It is now possible to
specify a default value, using the syntax ${properties:Key:DefaultVal}. Also, the syntax for
overriding the properties file location has been changed from ${properties:Location:Key} to
${properties-location:Location:Key} (to avoid clashing with the new syntax for specifying
default values).

Karaf camel:backlog-tracer-* commands

Since Apache Camel version 2.15, the Karaf console commands for the Camel backlog tracer
(backlog-tracer-dump, backlog-tracer-info, backlog-tracer-start, backlog-tracer-
stop) have been removed, because they are not suitable for a command-line environment.

InflightRepository interface

Since Apache Camel version 2.15, the org.apache.camel.spi.InflightRepository interface
now includes additional methods for browsing in-flight exchanges.

exchangePattern URI option

25



Red Hat JBoss Fuse 6.2 Migration Guide

Since Apache Camel version 2.15, when using the to DSL command or the recipientList DSL
command, the exchange pattern specified by adding ?2exchangePattern=Pattern to the endpoint
URI now takes precedence as the pattern that is used for invoking the endpoint.

Default class loader in CamelContext

Since Apache Camel version 2.15, the class loader, DefaultClassLoader, now falls back to use the
application context classloader that may have been set on CamelContext to better be able to load
classes/resources from the classpath in different runtime environments.

Removing a route

Since Apache Camel version 2.15, removing a route now also remove its static endpoints from the
EndpointRegistry (if those endpoints are not shared and used by other routes). Note, however, that
any dynamic endpoints created as a result of using dynamic Enterprise Integration Patterns such as
recipient list, routing slip, dynamic router or similar, are not removed from the EndpointRegistry
when the route is removed.

Model classes

Since Apache Camel version 2.15, all boolean isProperty methods on the model classes have been
removed, in order to ensure the model has consistent Java bean getter/setter style, with exactly one
getter and one setter of each type.

Stream caching

Since Apache Camel version 2.15, added the copy method to StreamCache API for stream caching

@UriEndpoint annotation

Since Apache Camel version 2.15, if you use the @UriEndpoint annotation when implementing a
custom Camel component, you must now also specify the syntax attribute to document the URI
syntax of the endpoint.

ScalaRouteBuilder class

Since Apache Camel version 2.15, Scala developers should use the ScalaRouteBuilder class instead
of the RouteBuilder class.

Exchange property language

The exchange property language has been renamed from property to exchangeProperty,in order
to avoid ambiquity and confusion with properties as a general term.

26



CHAPTER 7. APACHE CXF ISSUES

CHAPTER 7. APACHE CXF ISSUES

7.1. SUMMARY OF APACHE CXF 2.7.0 TO 3.0.X MIGRATION

Overview

JBoss Fuse uses Apache CXF 3.0.x. Since the last release, Apache CXF has been upgraded from version
2.7.0 to version 3.0.x. This introduces a few migration issues.

7.2. NEW FEATURES

Client proxy support for java.io.Closeable interface

When you close a client proxy using the java.io.Closeable interface (which is supported, for example, by
the JaxWsClientProxy class), any open request/response sequences are now terminated For example,
if proxy is an instance of JaxWsClientProxy, you can close the proxy as follows:

I ((java.io.Closeable)proxy).close()

7.3. PACKAGING OF BUNDLES/JARS

Refactored cxf-api and cxf-rt-core bundles

The cxf-api bundle and the cxf-rt-core bundle are no longer available in Apache CXF 3.0.x. These
bundles have been refactored as follows: the cxf-api bundle content has been split up, with the Java
API moving to the new cxf-core bundle and the WSDL interfaces moving to the new cxf-rt-wsdl
bundle; the cxf-rt-core bundle content is now provided in the new cxf-core bundle (which also
now incorporates the Java API).

These changes are summarized in Table 7.1, “Equivalent bundles for cxf-api and cxf-rt-core” .

Table 7.1. Equivalent bundles for cxf-api and cxf-rt-core

2.7.0 Bundles 3.0.x Bundles (equivalent)

cxf-api cxf-rt-wsdl
cxf-core
cxf-rt-core cxf-core

DynamicClientFactory class

The DynamicClientFactory has been moved from the JAXB data binding bundle, cxf-rt-
databinding- jaxb, to the Simple frontend bundle, cxf-rt-frontend-simple.

27


http://docs.oracle.com/javase/6/docs/api/java/io/Closeable.html

Red Hat JBoss Fuse 6.2 Migration Guide

NOTE

You are strongly encouraged to use the JaxWsDynamicClientFactory subclass
instead of DynamicClientFactory.

New cxf-rt-rs-client bundle

JAX-RS 2.0 Client APl and CXF specific WebClient and proxy client code is now made available in the
new cxf-rt-rs-client bundle. See also the section called “http://cxf.apache.org/jaxrs
namespace”.

7.4. XML SCHEMA NAMESPACES

http://cxf.apache.org/jaxrs namespace

For JAX-RS client endpoints, the http://cxf.apache.org/jaxrs namespace has been changed to
http://cxf.apache.org/jaxrs-client in Apache CXF 3.0.x. This namespace change affects the
jaxrs:client element, but the jaxrs:server and jaxrs:model continue to use the
http://cxf.apache.org/jaxrs namespace, as before.

7.5. API CHANGES

Removed classes

The following classes and interfaces have been removed in Apache CXF 3.0.x:

org.apache.cxf.bus.CXFBusImpl
org.apache.cxf.databinding.BaseDataReader
org.apache.cxf.databinding.BaseDataWriter
org.apache.cxf.transports.http.QueryHandler
org.apache.cxf.transports.http.StemMatchingQueryHandler
org.apache.cxf.transports.http.internal.QueryHandlerRegistryImpl
org.apache.cxf.helpers.XMLUtils
org.apache.cxf.ws.addressing.impl.AddressingPropertiesImpl
org.apache.cxf.common.xmlschema.XmlSchemaConstants
org.apache.cxf.common.util.SOAPConstants
org.apache.cxf.frontend.MethodDispatcher
org.apache.cxf.jaxb.JAXBToStringBuilder
org.apache.cxf.jaxb.JAXBToStringStyle
org.apache.cxf.interceptor.URIMappingInterceptor
org.apache.cxf.jaxrs.ext.form.Form
org.apache.cxf.jaxrs.ext.ParameterHandler
org.apache.cxf.jaxrs.ext.RequestHandler
org.apache.cxf.jaxrs.ext.ResponseHandler

org.apache.cxf.Bus.run() method

The org.apache.cxf.Bus.run() method has been removed, because it is no longer used.

org.apache.cxf.transport.Destination.getBackChannel method

28



CHAPTER 7. APACHE CXF ISSUES

The two unused parameters of the org.apache.cxf.transport.Destination.getBackChannel
method (normally passed as null) have been removed. That is, in previous versions, the
getBackChannel method had the following signature:

Conduit
getBackChannel(Message inMessage, Message unusedl, EndpointReferenceType
unused?2)

In version 3.0.x, the getBackChannel method now has the following signature:

Conduit
getBackChannel(Message inMessage)

Spring XML files

All files of the form /META-INF/cxf/cxf-extension-ExtensionName .xml have been removed in
version 3.0.x. At one time, it was necessary to xi:include such files into your Spring XML file, in
order to use a particular extension feature. These files have not been needed and have been
deprecated for a long time.

org.apache.cxf.transport.Conduitinitiator and DestinationFactory interfaces

Some of the methods of the org.apache.cxf.transport.ConduitInitiator and
DestinationFactory interfaces now take an additional parameter of type, org.apache.cxf.Bus.
In particular, ConduitInitiator defines the following method signatures in version 3.0.x:

Conduit getConduit(EndpointInfo targetInfo, Bus bus)
throws IOException;

Conduit getConduit(EndpointInfo localInfo, EndpointReferenceType target,
Bus bus)

throws IOException;

Set<String> getUriPrefixes();
List<String> getTransportIds();

And DestinationFactory defines the following method signatures in version 3.0.x:

Destination getDestination(EndpointInfo ei, Bus bus)
throws IOException;

Set<String> getUriPrefixes();

List<String> getTransportIds();

bus-extensions.xml file

When implementing an extension to the CXF Bus, the bus-extensions.xml file is no longer
supported. Instead, use the approach of defining a bus-extensions. txt file. In the JAR file that
implements your Bus extension, create the file, META-INF/cxf/bus-extensions. txt, and in this
file list the classname of the class that implements the extension. The CXF Bus will automatically
instantiate your extension class when it is needed.

29



Red Hat JBoss Fuse 6.2 Migration Guide

Refactored XML parsing utilities

All code for StAX-based XML parsing and writing has been moved into the
org.apache.cxf.staxutils.StaxUtils class and DOM-based utility code to the
org.apache.cxf.helpers.DOMUtils class. The org.apache.cxf.helpers.XMLUtils class has
been eliminated.

AddressingProperties interface is now a class

Theorg.apache.cxf.ws.addressing.AddressingProperties interface has been turnedinto a
concrete class, which can be created directly using new. The AddressingPropertiesImpl class has
been removed.

Policy classes in the org.apache.cxf.ws.policy package

Many of the classes in the org.apache.cxf.ws.policy package, such as AlternativeSelector
and PolicyEngine, have modified method signatures, which now pass the current Message as an
additional parameter (where appropriate). This makes it possible to use the message context to select
a policy alternative. However, you must keep in mind that the selected alternative is probably cached
and therefore, if the contextual information changes, the alternative might not be recalculated.

New supportNotAvailableErrorsOnly property on FailoverTargetSelector

By default, the org.apache.cxf.clustering.FailoverTargetSelector class triggers failover
only for HTTP 404 and HTTP 503 status errors. If you would prefer to fail over for all HTTP errors, set
the new supportNotAvailableErrorsOnly property to false.

ServletController not overriding endpoint addresses by default

Theorg.apache.cxf.transport.servlet.ServletController class does not override
endpoint addresses by default, because this would have unwanted side-effects, if an endpoint is
accessed through multiple paths. If you would like to revert to the old behaviour, set disable-
address-updates parameter to false on the CXFServlet class.

SchemaValidation annotation

The enabled property (previously deprecated) has been removed from the
org.apache.cxf.annotations.@SchemaValidation annotation. Use the
@Schemavalidation. type property to control the validation instead.

FactoryType annotation

Inthe org.apache.cxf.annotations.@FactoryType annotation, the FactoryType.Type
enumeration no longer includes the value, Spring. In version 3.0.x, to select Spring, set
factoryClass=SpringBeanFactory.class.

org.apache.cxf.jaxrs.ext.form.Form class

Theorg.apache.cxf.jaxrs.ext.form.Formhas been removed in version 3.0.x. Use the JAX-RS
2.0org.apache.cxf.jaxrs.ext.form.Formclass instead. For example, you would replace the
following (obsolete) JAX-RS 1.0 code:

30



CHAPTER 7. APACHE CXF ISSUES

// JAX-RS 1.0 (obsolete)
import org.apache.cxf.jaxrs.ext.form.Form;

Form form = new Form().set("a", "b");
With the following JAX-RS 2.0 compliant code:

// JAX-RS 2.0
import javax.ws.rs.core.Form;

Form form = new Form().param("a", "b");

org.apache.cxf.jaxrs.ext.ParameterHandler<T> interface

The org.apache.cxf.jaxrs.ext.ParameterHandler<T> interface has been removed in Apache
CXF 3.0.x. Use the javax.ws.rs.ext.ParamConverterProvider class instead, which can be used
both on the client side and on the server side.

org.apache.cxf.jaxrs.ext.RequestHandler and ResponseHandler interfaces

The org.apache.cxf.jaxrs.ext.RequestHandler and ResponseHandler filters have been
removed in Apache CXF 3.0.x. Use the javax.ws.rs.container.ContainerRequestFilter and
ContainerResponseFilter interfaces instead.

For example, to define your own CustomerRequestFilter and CustomResponseFilter filter
classes, you could write code like the following:

// Java
import javax.ws.rs.container.ContainerRequestFilter;
import javax.ws.rs.container.ContainerResponseFilter;

public class CustomRequestFilter implements ContainerRequestFilter {
public void filter(ContainerRequestContext context) {

}
¥

public class CustomResponseFilter implements ContainerResponseFilter {
public void filter(ContainerRequestContext inContext,
ContainerResponseContext outContext) {

}

JaxWsClientProxy.getClient(proxy) and ClientProxy.getClient(proxy)

It is no longer necessary to call the getClient (proxy) method on the
org.apache.cxf.jaxws.JaxWsClientProxy class (for the JAX-WS front-end) or the
org.apache.cxf.frontend.ClientProxy class (for the simple front-end) in order to convert a
proxy object to aorg.apache.cxf.endpoint.Client object. Because the proxies now implement
the Client interface directly, you can simply cast a proxy object directly toa Client object.

31



Red Hat JBoss Fuse 6.2 Migration Guide

javax.annotation.Resource annotation

The javax.annotation.Resource annotation can no longer be used to annotate JAX-RS context
properties. For the JAX-RS binding, only the javax.ws.rs.core.Context annotation is supported
from now on.

7.6. DEPENDENCIES

javax.mail dependency

The direct dependency on a javax.mail implementation has been removed and the Apache CXF
Maven POM files do not pull one in transitively in version 3.0.x. For most users, this will not be a
problem. However, if your application uses MTOM or Soap with Attachments (or similar feature) that
requires some of the DataContentHandler classes from the mail implementations, you might need
to add the dependency to your classpath or Maven POM file.

cxf-bundle no longer supported

In the Apache CXF versions prior to 2.6, it was possible to include all of the Apache CXF modules in
your application by adding a dependency on the cxf-bundle artifact to your Maven pom.xml file—for
example:

<project>

<dependencies>
<dependency>
<groupIld>org.apache.cxf</groupIld>
<artifactId>cxf-bundle</artifactId>
<version>...</version>
</dependency>

</dependencies>
</project>

From Apache CXF 2.6 onwards, however, the cxf-bundle artifact is no longer available. Instead of
adding a single dependency on the cxf -bundle artifact, it is now necessary to add dependencies for
each of the individual Apache CXF modules that your application depends on. For example, the basic
set of Maven dependencies you would need for a simple JAX-WS Java application is as follows:

<project>
<dependencies>

<dependency>
<groupIld>org.apache.cxf</groupIld>
<artifactId>cxf-rt-frontend-jaxws</artifactId>
<version>3.0.4.redhat-620133</version>

</dependency>

<dependency>
<groupIld>org.apache.cxf</groupIld>
<artifactId>cxf-rt-transports-http</artifactId>
<version>3.0.4.redhat-620133</version>

</dependency>

<dependency>

<groupIld>org.apache.cxf</groupIld>

32



CHAPTER 7. APACHE CXF ISSUES

<artifactId>cxf-rt-transports-http-jetty</artifactId>
<version>3.0.4.redhat-620133</version>

</dependency>

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-web</artifactId>
<version>3.0.6.RELEASE</version>

</dependency>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<scope>test</scope>

</dependency>

</dependencies>
</project>

7.7. MISCELLANEOUS CHANGES

Changed behaviour when providing WSDL location

If the WSDL location passed into Apache CXF is not valid (through the Java API or the XML API),
previous versions of Apache CXF could in some cases ignore the error and proceed as if null was

passed for the WSDL location. Apache CXF 3.0 now always throws an exception, if the WSDL location is
invalid.

33



	Table of Contents
	CHAPTER 1. MIGRATION OVERVIEW
	1.1. UPGRADED COMPONENTS
	Version upgrades
	XA transactions
	Apache ActiveMQ changes
	Apache Camel changes
	Apache CXF changes

	1.2. NEW ROLE-BASED ACCESS CONTROL
	Overview
	Standardized roles
	Migrating user data for RBAC
	Reference

	1.3. SECURITY CHANGES
	Overriding the default JAAS realm in Fabric
	Enabling LDAP authentication in a Fabric

	1.4. MIGRATING MAVEN PROJECTS
	Overview
	JBoss Fuse BOM
	Current version of the JBoss Fuse BOM
	How to migrate Maven dependencies using the JBoss Fuse BOM


	CHAPTER 2. UPGRADING TO A PRE-PATCHED DISTRIBUTION
	WHAT IS A PRE-PATCHED DISTRIBUTION?
	INSTALLING A PRE-PATCHED DISTRIBUTION
	IMPORTANT NOTES AND LIMITATIONS

	CHAPTER 3. DEPRECATED AND REMOVED FEATURES
	SERVICEMIX MAVEN ARCHETYPES NOT SUPPORTED
	FUSE APPLICATION BUNDLES
	JBI CONTAINER
	APACHE OPENJPA IS DEPRECATED
	SPRING DYNAMIC MODULES (SPRING-DM) IS DEPRECATED
	THE CAMEL-INFINISPAN COMPONENT HAS BEEN REMOVED FROM JBOSS FUSE 6.2

	CHAPTER 4. CONSOLE CHANGES
	FABRIC:MQ-CREATE COMMAND
	FABRIC:PROFILE-CREATE COMMAND
	FABRIC:PROFILE-EDIT COMMAND
	FABRIC:EXPORT AND FABRIC:IMPORT COMMANDS

	CHAPTER 5. APACHE ACTIVEMQ ISSUES
	5.1. MIGRATING CLIENTS
	Migrating Apache ActiveMQ clients

	5.2. NEW FEATURES
	ActiveMQ 5.10.0
	ActiveMQ 5.11.0

	5.3. DEPENDENCY UPGRADES
	Spring framework
	Apache Karaf

	5.4. API CHANGES
	JMS streams
	Camel ActiveMQ component


	CHAPTER 6. APACHE CAMEL ISSUES
	6.1. SUMMARY OF APACHE CAMEL 2.12 TO APACHE CAMEL 2.15.1 MIGRATION
	Overview
	Spring framework
	The camel-infinispan component has been removed from JBoss Fuse 6.2
	New Camel components
	New languages
	New DSL
	New Maven archetypes

	6.2. SPRING FRAMEWORK
	Spring version
	New schema location
	Spring 3.2 new features
	Using the Spring registry in Apache Camel

	6.3. PRODUCT DEPENDENCIES
	Apache CXF version
	Jetty version
	Component dependencies

	6.4. API CHANGES
	API changes
	Moved classes

	6.5. COMPONENT UPDATES
	Jetty component
	Hazelcast component
	APNS component
	Language component
	Netty HTTP
	Cache component
	CDI component
	SJMS component
	ServletListener component
	Twitter component
	Restlet component
	JMS and ActiveMQ components
	Bean component
	XSLT component
	Metrics component
	CSV component
	SJMS component
	Swagger component
	Mail component
	SNMP component
	Bean component

	6.6. MISCELLANEOUS CHANGES
	DefaultTimeoutMap class
	@ExcludeRoutes annotation
	MBean naming
	jmxAgent element
	onException Java DSL command
	Spring XML shutting down beans
	onCompletion DSL command
	startAllRoutes method
	Unit testing with Spring
	Jetty 7.x
	Simple language and properties syntax
	Karaf camel:backlog-tracer-* commands
	InflightRepository interface
	exchangePattern URI option
	Default class loader in CamelContext
	Removing a route
	Model classes
	Stream caching
	@UriEndpoint annotation
	ScalaRouteBuilder class
	Exchange property language


	CHAPTER 7. APACHE CXF ISSUES
	7.1. SUMMARY OF APACHE CXF 2.7.0 TO 3.0.X MIGRATION
	Overview

	7.2. NEW FEATURES
	Client proxy support for java.io.Closeable interface

	7.3. PACKAGING OF BUNDLES/JARS
	Refactored cxf-api and cxf-rt-core bundles
	DynamicClientFactory class
	New cxf-rt-rs-client bundle

	7.4. XML SCHEMA NAMESPACES
	http://cxf.apache.org/jaxrs namespace

	7.5. API CHANGES
	Removed classes
	org.apache.cxf.Bus.run() method
	org.apache.cxf.transport.Destination.getBackChannel method
	Spring XML files
	org.apache.cxf.transport.ConduitInitiator and DestinationFactory interfaces
	bus-extensions.xml file
	Refactored XML parsing utilities
	AddressingProperties interface is now a class
	Policy classes in the org.apache.cxf.ws.policy package
	New supportNotAvailableErrorsOnly property on FailoverTargetSelector
	ServletController not overriding endpoint addresses by default
	SchemaValidation annotation
	FactoryType annotation
	org.apache.cxf.jaxrs.ext.form.Form class
	org.apache.cxf.jaxrs.ext.ParameterHandler<T> interface
	org.apache.cxf.jaxrs.ext.RequestHandler and ResponseHandler interfaces
	JaxWsClientProxy.getClient(proxy) and ClientProxy.getClient(proxy)
	javax.annotation.Resource annotation

	7.6. DEPENDENCIES
	javax.mail dependency
	cxf-bundle no longer supported

	7.7. MISCELLANEOUS CHANGES
	Changed behaviour when providing WSDL location



