
Red Hat JBoss Fuse 6.2

Managing OSGi Dependencies

How to package applications for OSGi containers

Last Updated: 2017-09-27

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

How to package applications for OSGi containers

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2015 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The guide describes how Red Hat JBoss Fuse resolves dependencies and how to package
applications to load properly.

. .

. .

. .

Table of Contents

CHAPTER 1. BUNDLE CLASS LOADER
1.1. CLASS LOADER BASICS
1.2. CONFLICTING CLASSES
1.3. CLASS LOADING ALGORITHM

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES
2.1. OVERVIEW OF BUNDLE TYPES
2.2. SAMPLE OSGI APPLICATION
2.3. LIBRARY BUNDLE
2.4. API BUNDLE
2.5. PROVIDER BUNDLE
2.6. API/PROVIDER COMBINATION
2.7. API/PROVIDER BUILD-TIME COMBINATION
2.8. CONSUMER BUNDLE

CHAPTER 3. VERSIONING
3.1. SEMANTIC VERSIONING
3.2. EXPORT VERSIONING
3.3. AUTOMATIC IMPORT VERSIONING

3
3
4
5

7
7

11
12
15
17

20
23
26

31
31
35
36

Table of Contents

1

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

2

CHAPTER 1. BUNDLE CLASS LOADER

Abstract

This chapter introduces some basic OSGi class loading concepts. Ultimately, in order to understand the
relationship between a bundle and its dependencies, and to understand the meaning of importing and
exporting packages, it is essential to learn about the bundle class loader.

1.1. CLASS LOADER BASICS

Overview

If you are concerned about which version of a class your application uses, you inevitably have to start
dealing with class loaders. In Java, the class loader is the mechanism that controls where class
definitions come from and decides whether or not to allow a particular class definition to be used. So,
when it comes to versioning and security, class loaders play a central role.

Because version control is also important in OSGi, it follows that class loaders play a key role in the
OSGi architecture. One of the main aims of OSGi is to make class loading more flexible and more
manageable.

Bundle class loader

A fundamental rule in OSGi is that every bundle has its own class loader and this class loader is known as
the bundle class loader.

You might wonder whether it is really necessary to have a class loader for every bundle. The class
loader per bundle architecture is chosen for the following reasons:

A class loader encapsulates knowledge about where to find classes and a particular bundle
might have knowledge about finding classes that other bundles do not possess. For example, a
bundle can have private classes, not directly visible to other bundles.

In order to support the flexible OSGi class loading architecture, each bundle needs to be in
control of how and where it finds its classes.

Identity of a loaded class

In the context of OSGi, where a typical application depends on multiple class loaders (one for each
bundle), it is important to understand that the fully-qualified class name—for example,
org.foo.Hello—is not sufficient to identify a loaded class uniquely. In general, a loaded class is
uniquely identified by combining the classloader identity with the fully-qualified class name.

For example, if the class, org.foo.Hello, gets loaded by the bundle classloader for version 1.3 of
bundle A, the loaded class is uniquely identified by the combination of the class loader, A;1.3, and the
class name, org.foo.Hello. In this chapter, the following notation is used for the unique identity of
the loaded class:

Bundle class space

A;1.3/org.foo.Hello

CHAPTER 1. BUNDLE CLASS LOADER

3

The OSGi specification defines a bundle's class space to be the set of all classes accessible to the
bundle's class loader, where each class in the set is a unique instance, qualified by the class loader that
loaded it.

A bundle class space includes a bundle's private classes, as well as any public classes imported from
the bundle's dependencies.

Multiple copies of a loaded class

When you have multiple class loaders at parallel locations in the class loader hierarchy (which is the
case with the bundle class loaders), it is actually possible to load multiple, distinct, copies of the same
class.

For example, given the appropriate conditions, it is possible that version 1.3 of bundle A and version 2.0
of bundle B could both independently load the class, org.foo.Hello. In this case, you would have two
distinct loaded classes, as follows:

The OSGi framework is designed to prevent multiple copies of a class ever appearing in the same class
space, because this almost always causes errors at run time. On the other hand, it is permissible for
different copies of a class to be loaded into different class spaces. For example, it is perfectly alright for
separate applications running in an OSGi container to use different versions of the same class.

Class loader delegation

One of the key class loader concepts is class loader delegation, which is where a class loader, instead of
loading a class itself, asks another class loader to load the class. When class loader delegation occurs,
you need to distinguish between:[1]

Initial class loader

The class loader that is initially asked to load the class.

Effective class loader

The class loader that actually loads the class, after delegation is taken into account.

1.2. CONFLICTING CLASSES

Overview

One of the main aims of the OSGi class loading architecture is to avoid loading conflicting class
definitions into the same bundle class space. This section explains how such conflicts can arise in
practice.

Symbolic references

To explain the difficulties that can be caused by having multiple copies of a loaded class, we need the
concept of a symbolic reference to a class or interface. A symbolic reference is a point in your code
where a class name is used, except the actual definition of the class. For example, when a class name is
used to specify a return type, a parameter type, or a variable type, the class name is a symbolic
reference.

A;1.3/org.foo.Hello
B;2.0/org.foo.Hello

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

4

At run time, the JVM must resolve each symbolic reference by linking it to a specific instance of a
loaded class. Symbolic references are resolved using the same class loader as the class in which they
appear. For example, Example 1.1, “Symbolic Reference Used in a Class Cast” shows the definition of
the TestHello class, which is loaded by the class loader, A.

Example 1.1. Symbolic Reference Used in a Class Cast

IMPORTANT

Although the symbolic reference, org.foo.Hello, is initially loaded by class loader A,
this does not imply that the symbolic references must be resolved to
A/org.foo.Hello. If the initial class loader A decides to delegate to another class
loader, B, the symbolic reference could be resolved to B/org.foo.Hello instead (so
that B is the effective class loader). The delegation mechanism is crucial, because it
enables an OSGi bundle to re-use existing loaded classes and avoid class space
inconsistencies.

Class cast exceptions

When multiple class loaders are used in parallel (as happens in OSGi), there is a danger that a class
could be loaded more than once. This is undesirable, because it almost inevitably causes class cast
exceptions at run time.

For example, consider the TestHello class shown in Example 1.1, “Symbolic Reference Used in a Class
Cast”, where the org.foo.Hello symbolic reference has been resolved to A/org.foo.Hello. If you
also have a Hello object that is an instance of B/org.foo.Hello type, you will get a class cast
exception when you pass this object to the TestHello.useHelloObj(Object) method.
Specifically, in the line of code that performs the following cast:

The org.foo.Hello symbolic reference has been resolved to the A/org.foo.Hello type, but the
hello object is of B/org.foo.Hello type. Because the types do not match, you get the class cast
exception.

1.3. CLASS LOADING ALGORITHM

Overview

// Java
package org.bar;

// TestHello loaded by ClassLoader 'A'
public class TestHello {
 public void useHelloObj(Object hello) {
 org.foo.Hello h = (org.foo.Hello) hello;
 System.out.println(h.getGreeting());
 }
}

org.foo.Hello h = (org.foo.Hello) hello;

CHAPTER 1. BUNDLE CLASS LOADER

5

The OSGi bundle class loading algorithm plays a key role in the OSGi framework. Ultimately, it is this
algorithm that defines the relationship between a bundle and its dependencies.

Requirements on a bundle class loader

Here are some of the requirements that a bundle class loader must satisfy in order to support a flexible
and consistent class loading architecture:

In order to avoid loading multiple copies of a class, the bundle class loader must first of all try
to find the class in one of its dependent bundles.

The bundle class loader must never load a duplicate copy of a class into its class space.

Bundle class loading algorithm

The following is a simplified description of the bundle class loading algorithm (for example, it does not
enumerate all of the ways in which class loading can fail). For a full description of the algorithm, see the
Runtime Class Loading section of the OSGi Core Specification .

1. If the class belongs to one of the java.* packages or any packages listed in the
org.osgi.framework.bootdelegation property, the bundle class loader delegates to the
parent class loader.

2. If the class belongs to one of the packages listed in Import-Package, the bundle class loader
delegates loading to the corresponding exporter bundle.

3. If the class belongs to one of the packages imported by Require-Bundle, the bundle class
loader delegates loading to the corresponding exporter bundle.

NOTE

It is strongly recommended that you avoid using the Require-Bundle header.
OSGi dependencies are meant to be defined at package granularity, not bundle
granularity.

4. Next, the bundle class loader looks for the class amongst its internal classes (inside its own
JAR file).

5. Next, the bundle class loader searches the internal classes of any fragments attached to the
bundle.

6. Finally, if the class belongs to one of the packages imported using DynamicImport-Package,
the bundle class loader delegates loading to the corresponding exporter bundle (if there is
one).

[1] Terminology coined by Andreas Schaefer, an O'Reilly Java author.

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

6

http://www.osgi.org/Release4/Download

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

Abstract

The key to understanding the rules for importing and exporting packages is to know what type of
bundle you are dealing with. This chapter aims to show that, once you have figured out the role played
by a particular bundle, you will quickly be able to figure out the requisite Maven bundle configuration.

2.1. OVERVIEW OF BUNDLE TYPES

Overview

The Maven bundle plug-in is a powerful tool for generating OSGi bundle header information. When set
up correctly, it can generate most of the bundle header information for you automatically. The bundle
plug-in has, however, a bewildering array of options available. In order to make sense of the bundle
plug-in configuration, the first question question you need to answer is: what type of bundle do I have?

Figure 2.1, “Relationship between API, Provider, and Consumer Bundles” shows the most important
bundle types and bundle relationships that you will come across in a typical OSGi application.

Figure 2.1. Relationship between API, Provider, and Consumer Bundles

A well-designed application normally exposes a block of functionality through a collection of abstract
Java interfaces, which constitute a pure API package. To provide a clean separation of implementation
and interface description, the API package is normally deployed in one bundle, the API bundle, and the
API implementation is deployed in a separate bundle, the provider bundle. The code that actually uses
the API is referred to as a consumer and is packaged in a consumer bundle. Each of these bundle types
have differing requirements when it comes to configuring their Maven bundle plug-in instructions.

Bundle Types

We can identify the following typical bundle types:

Library bundle

A library bundle contains Java classes and interfaces, which are public and intended to be used by
other bundles. Often, in a library, there is no formal separation between API interfaces and
implementation classes. Instead, developers simply instantiate and use the classes provided by the

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

7

library.

A library bundle does not publish or access any OSGi services.

API bundle

A pure API bundle contains only Java interfaces (or abstract classes), which are public. The
implementation of the API is meant to be provided in a separate bundle or JAR.

An API bundle does not publish or access any OSGi services.

Provider bundle

A provider bundle contains the classes that implement an API. Usually, the classes in a provider
bundle are all private and are not exported from the bundle.

The natural mechanism for a provider bundle to expose its functionality is to create and publish one
or more OSGi services (where the OSGi services are then accessed through the public API).

Consumer bundle

A consumer bundle contains code that uses an API.

A consumer bundle typically accesses one or more OSGi services; it does not usually publish an
OSGi service itself (unless it is acting as a hybrid of a consumer and a provider).

API/provider combination bundle

In some cases, it can make sense to package API packages and implementation packages together,
resulting in an API/provider combination bundle. For example, if you intend to provide only one
implementation of an API, it can be simpler to package the API and its implementation in a single
bundle.

For the API/provider combination bundle, it is assumed that the API code and the implementation
code belong to the same Maven project.

API/provider build-time combination bundle

Even if you opt for a formal separation of API code and implementation code—that is, where the API
code and the implementation code are developed in separate Maven projects—you might
nevertheless want to add the API interfaces to the provider bundle. Peter Kriens (creator of the
Bnd tool, on which the Maven bundle plug-in is based) recommends that a provider bundle should
always include its API interfaces. One reason for this is that, when you deploy a provider bundle
without embedding the API, there always a risk that the required version of the API will not be
available in the OSGi container at deploy time. By embedding the API interfaces in the provider,
you eliminate that risk and improve the reliability of your deployment.

When you develop your API interfaces and your implementation classes in separate Maven
projects, the bundle plug-in supports a special configuration that enables you to embed the API in
the provider bundle at build-time. Hence, this bundle is called an API/provider build-time
combination.

Summary of import/export rules

Table 2.1, “Import/Export Rules for Bundles” summarizes the import/export rules for the various
bundle types.

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

8

http://www.aqute.biz/Bnd/Versioning

Table 2.1. Import/Export Rules for Bundles

Bundle Type Export Own
Packages

Import Own
Packages

Publish OSGi
Service

Access OSGi
Service

Library Yes

API Yes

Provider Yes

Consumer Maybe Maybe Yes

API/provider
combination

Yes (API only) Yes (API only) Yes

Importing and exporting own packages

The basic rule for exporting a bundle's own packages is as follows: a bundle should export any of its own
packages that are public and intended to be used by other bundles; private packages should not be
exported.

The basic rule for importing a bundle's own packages is as follows: a bundle does not import any of its
own packages, because those packages are already available from the bundle's own classpath
(external dependencies, on the other hand, must of course be imported).

But there is a special case where it makes sense for a bundle both to export and to import its own
packages. The OSGi container interprets this in a special way: the bundle either imports the package
(thus using the classes from another bundle, and ignoring its own copy of those classes) or exports the
package (thus using its own copy of the classes and making these classes available to other bundles).

For example, an API/provider combination bundle exports and imports its own API packages. This
ensures the bundle is able to use the API interfaces from another bundle, if a suitable version is
available. Re-using existing packages and classes is an important strategy to avoid duplicate class
instances in the same class space (see Section 1.2, “Conflicting Classes”).

When to publish an OSGi service

An OSGi service is essentially a plain Java object, made accessible to other bundles by being published
in the OSGi service registry (see section "Exporting a Service" in "Deploying into the Container").

Provider bundles demonstrate a typical use case of an OSGi service. The classes in a provider bundle
are only meant to be accessed indirectly—that is, through the relevant API interfaces. But there must be
some mechanism that enables you to instantiate one or more of the implementation classes, in order
to bootstrap the implementation. Typically, the mechanism for bootstrapping an implementation
depends on the framework or container you are currently using. For example, in Spring you would
typically use a bean element to create an instance of an implementation class.

In the context of OSGi, however, the natural mechanism for bootstrapping an implementation is to
create and publish one or more OSGi services.

Default bundle plug-in settings

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

9

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Deploying_into_the_Container/DeploySimple.html#DeploySimple-Blueprint-Exporting

Example 2.1, “Maven Bundle Plug-In Settings” shows a minimal configuration of the Maven bundle plug-
in, which you can use for basic Maven projects.

Example 2.1. Maven Bundle Plug-In Settings

Although the preceding minimal configuration is not ideal for all bundle projects, it does have a useful
default behavior that is often good enough to get your project started:

Import rules—when you build your Maven project, the bundle plug-in tries to discover all of the
bundle's package dependencies automatically. By default, the bundle plug-in then adds all of
the discovered package dependencies to the Import-Package header in the Manifest file
(equivalent to the wildcard instruction, *).

However, the effectiveness of the initial scan depends on where the dependencies actually
arise, as follows:

Java source code—Bnd scans the Java source code in your project to discover package
dependencies. There is one blind spot in this process, however: the scan cannot detect
dependencies that arise from using Java reflection and explicit calls on a class loader.

Spring configuration file—Bnd is not capable of scanning Spring configuration files to
discover package dependencies. Any dependencies arising from Spring configuration must
be added manually to the Import-Package instruction.

Blueprint configuration file—the Apache Karaf implementation of blueprint is capable of
mapping XML namespaces to Java packages and dynamically resolving the resulting
dependencies at run time. Hence, there is no need for blueprint's dependencies to be
added to the Import-Package instruction.

This is one of the major benefits of using blueprint configuration.

<project ... >
 ...
 <build>
 ...
 <plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}
</Bundle-SymbolicName>
 <Import-Package>*</Import-Package>
 </instructions>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
</project>

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

10

Provided that the dependent bundles define a version for their exported packages, the bundle
plug-in also automatically assigns a version range to the imported packages (see Section 3.3,
“Automatic Import Versioning”).

Export rules—by default, the Maven bundle plug-in exports all of the packages in your project,
except for packages that match the patterns *.impl or *.internal. It is therefore
recommended that you follow the convention of naming all of your private packages with the
suffix *.impl or *.internal.

By default, the bundle plug-in does not assign a version to the exported packages. This is a
major disadvantage of the default export instruction (see Section 3.2, “Export Versioning”).

2.2. SAMPLE OSGI APPLICATION

Example of bundle dependencies

Figure 2.2, “Sample OSGi Application” shows an overview of a sample OSGi application consisting of
five bundles, which illustrates the basic bundle types discussed in the previous section. The application
is driven by the hello-consumer bundle, which imports a HelloParis service from the hello-
paris bundle and imports a HelloBoston service from the hello-boston bundle.

Figure 2.2. Sample OSGi Application

The sample bundles

The sample OSGi application consists of the following bundles:

time-util

Fits the pattern of a library bundle. The time-util bundle is a utility library that can create Clock
instances that tell the time in a particular time zone.

The time-util bundle is implemented using classes from the JDK and thus has no external
package dependencies.

hello-paris

Fits the pattern of an API bundle. The hello-paris bundle consists of a single Java interface,
which returns a greeting, getGreeting(), and gives the local time in Paris, getLocalTime().

The hello-paris bundle has the following external package dependency:

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

11

hello-paris-impl

Fits the pattern of a provider bundle. The hello-paris-impl bundle implements the hello-
paris API bundle.

The hello-paris-impl bundle has the following external package dependencies:

hello-boston

Fits the pattern of an API/provider combination bundle. The hello-boston bundle combines a Java
interface and its implementation, where the Java interface returns a greeting, getGreeting(),
and gives the local time in Boston, getLocalTime().

The hello-boston bundle has the following external package dependency:

hello-consumer

Fits the pattern of a consumer bundle. The hello-consumer bundle imports the HelloParis OSGi
service and the HelloBoston OSGi service and then invokes on these services to report the local
times in Paris and in Boston.

The hello-consumer bundle has the following external package dependencies:

2.3. LIBRARY BUNDLE

Overview

This section explains how to set up a Maven project for a typical library bundle.

The time-util bundle exemplifies a library bundle, where the main purpose of a library is to make
interfaces and classes available to other bundles. Hence, the library should export all of its own
packages and associate a version number with the exported packages.

Directory structure

Assuming it is built as a Maven project, the time-util bundle has the following directory structure:

org.fusesource.example.time

org.fusesource.example.hello.paris
org.fusesource.example.time

org.fusesource.example.time

org.fusesource.example.hello.paris
org.fusesource.example.hello.boston
org.fusesource.example.time

time-util/
 |
 \--src/
 |

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

12

The Java source code is located under the src/main/java sub-directory. The
org.fusesource.example.time package is public and all of its classes and interfaces can be
exported from the bundle.

There are no blueprint resources associated with this bundle.

Sample implementation

The time-util bundle is essentially a wrapper around some of the standard time utilities in Java. It
provides a Clock class, which returns the local time in a particular time zone when you invoke the
Clock.getLocalTime() method. The Clock class is defined as follows:

The TimeUtil class is a factory that is used to create Clock instances for particular time zones. Two
time zones are supported: TimeZone.BOSTON and TimeZone.PARIS. The TimeUtil class is defined
as follows:

 \--main/
 | |
 | \--java/
 | |
 | \--org/fusesource/example/time/
 | |
 | \-TimeUtil.java
 | |
 | \-Clock.java
 |
 \--test/

// Java
package org.fusesource.example.time;

import java.util.Calendar;
import java.util.Locale;
import java.util.TimeZone;

public class Clock {
 ...
 public Clock(TimeUtil.TimeZone tz) {
 ...
 }

 public String getLocalTime() {
 return jcal.getTime().toString();
 }
}

// Java
package org.fusesource.example.time;

public class TimeUtil {
 public enum TimeZone {
 BOSTON,
 PARIS
 }

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

13

Import and export rules

The following import and export rules apply to the time-util bundle:

Exporting own packages—the org.fusesource.example.time package is public, and must
be exported.

Importing own packages—none of the bundle's own packages should be imported, which is the
usual case for a library bundle.

Importing dependent packages—any external package dependencies must be imported. In this
particular example, however, there are none (the time-util bundle depends only on classes
from the JVM).

Maven bundle plug-in settings

The Maven bundle plug-in is configured to export the library package,
org.fusesource.example.time (coded as ${project.groupId}.time). The Export-Package
instruction also contains entries to block the export of any packages containing .impl or .internal.
In this case, the bundle plug-in instructions are as follows:

Generated MANIFEST.MF file

When you build the bundle using Maven, the Maven bundle plug-in automatically generates the
following MANIFEST.MF file:

 public static Clock createClock(TimeZone tz) {
 return new Clock(tz);
 }
}

<instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>*</Import-Package>
 <Export-Package>
 !${project.groupId}*.impl*,
 !${project.groupId}*.internal*,
 ${project.groupId}.time*;version=${project.version}
 </Export-Package>
</instructions>

Manifest-Version: 1.0
Bundle-Name: time-util
Built-By: JBLOGGS
Build-Jdk: 1.5.0_08
Created-By: Apache Maven Bundle Plugin
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.fusesource.example.time-util
Tool: Bnd-1.15.0
Bnd-LastModified: 1297357076457
Export-Package: org.fusesource.example.time;version="1.0"
Bundle-Version: 1.0.0

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

14

2.4. API BUNDLE

Overview

This section explains how to set up a Maven project for a typical API bundle.

The hello-paris bundle exemplifies an API bundle, which contains only public Java interfaces.
Hence, the API bundle should export all of its own packages and associate a version number with the
exported packages.

Directory structure

The hello-paris bundle has the following directory structure:

The Java source code is located under the src/main/java sub-directory. The
org.fusesource.example.hello.paris package is public and all of its classes and interfaces can
be exported from the bundle.

There are no blueprint resources associated with this bundle.

Sample API

The hello-paris bundle is a pure API, which means it contains only Java interfaces. In this example,
there is a single interface, HelloParis, which returns a localized greeting and a Clock object that
tells the local time. The HelloParis interface is defined as follows:

Maven dependencies

hello-paris/
 |
 \--src/
 |
 \--main/
 | |
 | \--java/
 | |
 | \--org/fusesource/example/hello/paris/
 | |
 | \-HelloParis.java
 |
 \--test/

// Java
package org.fusesource.example.hello.paris;

import org.fusesource.example.time.Clock;

public interface HelloParis {
 public String getGreeting();

 public Clock getLocalTime();
}

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

15

In the Maven POM file, the hello-paris bundle defines dependencies on the following Maven
artifact:

time-util

Import and export rules

The following import and export rules apply to the hello-paris bundle:

Exporting own packages—the org.fusesource.example.hello.paris package is public,
and must be exported.

Importing own packages—none of the bundle's own packages should be imported.

Importing dependent packages—any external package dependencies must be imported.

Maven bundle plug-in settings

The Maven bundle plug-in is configured to export the API package,
org.fusesource.example.hello.paris (coded as ${project.groupId}.hello.paris*). The
Export-Package instruction also contains entries to block the export of any packages containing
.impl or .internal. In this case, the bundle plug-in instructions are as follows:

Generated MANIFEST.MF file

When you build the bundle using Maven, the Maven bundle plug-in automatically generates the
following MANIFEST.MF file:

<instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>*</Import-Package>
 <Export-Package>
 !${project.groupId}*.impl*,
 !${project.groupId}*.internal*,
 ${project.groupId}.hello.paris*;version=${project.version}
 </Export-Package>
</instructions>

Manifest-Version: 1.0
Bundle-Name: hello-paris
Built-By: JBLOGGS
Build-Jdk: 1.5.0_08
Created-By: Apache Maven Bundle Plugin
Import-Package: org.fusesource.example.time;version="[1.0,2)"
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.fusesource.example.hello-paris
Tool: Bnd-1.15.0
Bnd-LastModified: 1296826928285
Export-Package: org.fusesource.example.hello.paris;uses:="org.fusesour
 ce.example.time";version="1.0"
Bundle-Version: 1.0.0

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

16

The Import-Package header lists one external package dependency,
org.fusesource.example.time. None of the bundle's own packages are imported.

The Export-Package header is used to export the API package,
org.fusesource.example.hello.paris, while the uses clause declares a transitive dependency
on the org.fusesource.example.time package.

2.5. PROVIDER BUNDLE

Overview

This section explains how to set up a Maven project for a typical provider bundle.

The hello-paris-impl bundle exemplifies a provider bundle, which provides the implementation of
an API. The provider does not export any of its own packages, because the implementation classes are
private. But the provider does instantiate and export an OSGi service, which is accessed through the
HelloParis interface.

Directory structure

The hello-paris-impl bundle has the following directory structure:

The org.fusesource.example.hello.paris.impl package is private. By default, the Maven
bundle plug-in treats any packages containing the segments .impl or .internal, as private
packages.

The src/main/resources/OSGI-INF/blueprint directory contains a single blueprint file,
paris-svc.xml. Any file matching the pattern, *.xml, in this directory is assumed to be a blueprint
configuration file.

Sample implementation

hello-paris-impl/
 |
 \--src/
 |
 \--main/
 | |
 | \--java/
 | | |
 | | \--org/fusesource/example/hello/paris/impl/
 | | |
 | | \--HelloParisImpl.java
 | |
 | \--resources/
 | |
 | \--OSGI-INF/blueprint/
 | |
 | \--paris-svc.xml
 |
 \--test/

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

17

The hello-paris-impl bundle is intended to implement all of the interfaces appearing in the
hello-paris API bundle. In this example, a single HelloParisImpl class implements the
HelloParis interface, as follows:

Publish OSGi service

The natural way to bootstrap the HelloParis implementation in OSGi is to publish the class,
HelloParisImpl, as an OSGi service. Use the bean element to create a HelloParisImpl instance
and use the service element to publish the bean, advertising it as a service of HelloParis type.

For example, the blueprint file, OSGI-INF/blueprint/paris-svc.xml, has the following contents:

Maven dependencies

In the Maven POM file, the hello-paris-impl bundle defines dependencies on the following Maven
artifacts:

time-util

// Java
package org.fusesource.example.hello.paris.impl;

import org.fusesource.example.hello.paris.HelloParis;

import org.fusesource.example.time.Clock;
import org.fusesource.example.time.TimeUtil;

public class HelloParisImpl implements HelloParis {
 protected Clock localTime = null;

 public String getGreeting() {
 return new String("Bonjour!");
 }

 public Clock getLocalTime() {
 if (localTime==null) {
 localTime = TimeUtil.createClock(TimeUtil.TimeZone.PARIS);
 }
 return localTime;
 }

}

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <bean id="hello-paris-impl"
 class="org.fusesource.example.hello.paris.impl.HelloParisImpl"/>

 <service ref="hello-paris-impl"
 interface="org.fusesource.example.hello.paris.HelloParis"/>

</blueprint>

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

18

hello-paris

Import and export rules

The following import and export rules apply to the hello-paris-impl bundle:

Exporting own packages—none of the bundle's own packages should be exported; they are all
private.

Importing own packages—none of the bundle's own packages should be imported.

Importing dependent packages—any external package dependencies must be imported.

Maven bundle plug-in settings

You can use the default export rules (that is, omitting the Export-Package instruction), as long as
you take care to put all of your code into packages containing .impl or .internal (which are not
exported by default). You should explicitly list the implemented API,
org.fusesource.example.hello.paris, in the Import-Package instruction and add the
provide:=true clause to it. This signals that this bundle is acting as the provider of the
hello.paris package (and ensures that the API is imported with the correct version range—see
Section 3.3, “Automatic Import Versioning”). In this case, the bundle plug-in instructions are as follows:

Generated MANIFEST.MF file

When you build the bundle using Maven, the Maven bundle plug-in automatically generates the
following MANIFEST.MF file:

The Import-Package header imports external package dependencies only—for example,
org.fusesource.example.hello.paris and org.fusesource.example.time.

<instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>
 ${project.groupId}.hello.paris*;provide:=true,
 *
 </Import-Package>
</instructions>

Manifest-Version: 1.0
Bundle-Name: hello-paris-impl
Built-By: JBLOGGS
Build-Jdk: 1.5.0_08
Created-By: Apache Maven Bundle Plugin
Import-Package: org.fusesource.example.hello.paris;version="[1.0,1.1)"
 ,org.fusesource.example.time;version="[1.0,2)",org.osgi.service.blu
 eprint;version="[1.0.0,2.0.0)"
Export-Service: org.fusesource.example.hello.paris.HelloParis
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.fusesource.example.hello-paris-impl
Tool: Bnd-1.15.0
Bnd-LastModified: 1297357383645
Bundle-Version: 1.0.0

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

19

The Export-Service header advertises the OSGi service as a HelloParis instance. This enables
clients to find the HelloParisImpl instance by searching for a service of HelloParis type.

2.6. API/PROVIDER COMBINATION

Overview

This section explains how to set up a Maven project for an API/provider bundle.

The hello-boston bundle exemplifies an API/provider combination bundle. The API/provider bundle
exports only its API packages, while the implementation packages are kept private. The API/provider
bundle also instantiates and exports an OSGi service, which is accessed through the HelloBoston
interface.

Directory structure

The hello-boston bundle has the following directory structure:

The org.fusesource.example.hello.boston package is public and all of its classes and
interfaces are exported from the bundle.

The org.fusesource.example.hello.boston.impl package is private. By default, the Maven
bundle plug-in treats any packages containing the segments .impl or .internal, as private
packages.

The src/main/resources/OSGI-INF/blueprint directory contains a single blueprint file,
boston-svc.xml. Any file matching the pattern, *.xml, in this directory is assumed to be a blueprint
configuration file.

hello-boston/
 |
 \--src/
 |
 \--main/
 | |
 | \--java/
 | | |
 | | \--org/fusesource/example/hello/boston/
 | | | |
 | | | \--HelloBoston.java
 | | |
 | | \--org/fusesource/example/hello/boston/impl/
 | | |
 | | \--HelloBostonImpl.java
 | |
 | \--resources/
 | |
 | \--OSGI-INF/blueprint/
 | |
 | \--boston-svc.xml
 |
 \--test/

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

20

Sample API

The hello-boston bundle contains an API, which consists of the interface, HelloBoston. The
HelloBoston interface returns a localized greeting and a Clock object that tells the local time. It is
defined as follows:

Sample implementation

The hello-boston bundle also implements the API. In this example, a single HelloBostonImpl
class implements the HelloBoston interface, as follows:

Publish OSGi service

The natural way to bootstrap the HelloBoston implementation in OSGi is to publish the class,
HelloBostonImpl, as an OSGi service. Use the bean element to create a HelloBostonImpl
instance and use the service element to publish the bean, advertising it as a service of HelloBoston
type.

For example, the blueprint file, OSGI-INF/blueprint/boston-svc.xml, has the following contents:

// Java
package org.fusesource.example.hello.boston;

import org.fusesource.example.time.Clock;

public interface HelloBoston {
 public String getGreeting();

 public Clock getLocalTime();
}

// Java
package org.fusesource.example.hello.boston.impl;

import org.fusesource.example.hello.boston.HelloBoston;

import org.fusesource.example.time.Clock;
import org.fusesource.example.time.TimeUtil;

public class HelloBostonImpl implements HelloBoston {
 protected Clock localTime = null;

 public String getGreeting() {
 return new String("Hello!");
 }

 public Clock getLocalTime() {
 if (localTime==null) {
 localTime = TimeUtil.createClock(TimeUtil.TimeZone.BOSTON);
 }
 return localTime;
 }

}

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

21

Maven dependencies

In the Maven POM file, the hello-boston bundle defines dependencies on the following Maven
artifact:

time-util

Import and export rules

The following import and export rules apply to the hello-boston bundle:

Exporting own packages—export the public API package,
org.fusesource.example.hello.boston. Do not export the private package,
org.fusesource.example.hello.boston.impl.

Importing own packages—import the public API package,
org.fusesource.example.hello.boston.

Importing dependent packages—any external package dependencies must be imported.

Maven bundle plug-in settings

You must export the API package, org.fusesource.example.hello.boston, by including it in the
Export-Package instruction, and add the provide:=true clause to it. This signals that this bundle
is acting as the provider of the hello.boston package (and ensures that the API is imported with the
correct version range—see Section 3.3, “Automatic Import Versioning”). In this case, the bundle plug-in
instructions are as follows:

Example 2.2. Plug-In Settings for API/Provider Combination

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <bean id="hello-boston-impl"
 class="org.fusesource.example.hello.boston.impl.HelloBostonImpl"/>

 <service ref="hello-boston-impl"
 interface="org.fusesource.example.hello.boston.HelloBoston"/>

</blueprint>

<instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>*</Import-Package>
 <Export-Package>
 !${project.groupId}*.impl*,
 !${project.groupId}*.internal*,

${project.groupId}.hello.boston*;provide:=true;version=${project.version
}
 </Export-Package>
</instructions>

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

22

Generated MANIFEST.MF file

When you build the bundle using Maven, the Maven bundle plug-in automatically generates the
following MANIFEST.MF file:

The Import-Package header imports both the public API package,
org.fusesource.example.hello.boston, and the external package dependencies—for example,
org.fusesource.example.time.

The Export-Package header exports the public API package,
org.fusesource.example.hello.boston, while the uses clause declares a transitive dependency
on the org.fusesource.example.time package.

The Export-Service header advertises the OSGi service as a HelloBoston instance. This enables
clients to find the HelloBostonImpl instance by searching for a service of HelloBoston type.

2.7. API/PROVIDER BUILD-TIME COMBINATION

Overview

This section explains how to set up a Maven project for an API/provider bundle, where the API
packages and implementation packages are kept in separate Maven projects, but then combined into a
single bundle at build-time.

You can demonstrate an API/provider build-time combination bundle by modifying the Maven
configuration of the hello-paris-impl bundle. By exploiting the Bnd utility's provide:=true
clause, you can modify the instructions for the Maven bundle plug-in, so that the
org.fusesource.example.hello.paris API package gets included in the hello-paris-impl
bundle at build time.

provide:=true clause

Whenever a bundle plays the role of provider with respect to a particular API package, you must
indicate this explicitly by attaching the provide:=true clause to the API package, either in an
import instruction or in an export instruction (otherwise, by default, the bundle plug-in would assume

Manifest-Version: 1.0
Built-By: JBLOGGS
Created-By: Apache Maven Bundle Plugin
Import-Package: org.fusesource.example.hello.boston;version="[1.0,1.1)
 ",org.fusesource.example.time;version="[1.0,2)",org.osgi.service.blue
 print;version="[1.0.0,2.0.0)"
Bnd-LastModified: 1297357441566
Export-Package: org.fusesource.example.hello.boston;uses:="org.fusesou
 rce.example.time";version="1.0"
Bundle-Version: 1.0.0
Bundle-Name: hello-boston
Build-Jdk: 1.5.0_08
Bundle-ManifestVersion: 2
Export-Service: org.fusesource.example.hello.boston.HelloBoston
Bundle-SymbolicName: org.fusesource.example.hello-boston
Tool: Bnd-1.15.0

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

23

that the bundle is a consumer of the API package). In particular, for an API/provider build-time
combination bundle, you must export the org.fusesource.example.hello.paris API package
and attach the provide:=true clause, as follows:

Exporting a package with the provide:=true clause has a very important side effect: if the code for
the exported package is not in the current Maven project, the Maven bundle plug-in adds the package code
to the bundle at build time.

Included Maven projects

Code from the following Maven projects is included in the hello-paris-impl bundle:

hello-paris-impl

Contains the private package, org.fusesource.example.hello.paris.impl. Build this
bundle to create the API/provider build-time combination bundle, hello-paris-impl.

hello-paris

Contains the public API package, org.fusesource.example.hello.paris. This project is a
prerequisite for hello-paris-impl and must be built (using mvn install) before the hello-
paris-impl project. You do not deploy the hello-paris bundle directly into the OSGi container,
however.

Import and export rules

The following import and export rules apply to the hello-paris-impl bundle, when it is configured
as an API/provider build-time combination:

Exporting own packages—no own packages to export, because the hello-paris-impl Maven
project contains only private implementation packages.

Exporting dependent packages—export the public API package,
org.fusesource.example.hello.paris, with the provide:=true clause, which causes
the API code to be included in the hello-paris-impl bundle at build time.

Importing own packages—import the public API package,
org.fusesource.example.hello.paris.

Importing dependent packages—any external package dependencies must be imported.

Maven bundle plug-in settings

To include the API from the hello-paris bundle in the hello-paris-impl bundle, add the
org.fusesource.example.hello.paris package to the Export-Package instruction with the

<instructions>
 ...
 <Export-Package>
 ...
 ${project.groupId}.hello.paris*;provide:=true;version=${project.version},
 </Export-Package>
 ...
</instructions>

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

24

provide:=true clause attached, as shown in Example 2.3, “Plug-In Settings for Build-Time
Combination”. Compare this with the regular API/provider case, Example 2.2, “Plug-In Settings for
API/Provider Combination”, which takes the same approach of exporting the API package with the
provide:=true clause. The semantics, however, are a bit different, because the current example
pulls in the API package from a separate Maven project.

Example 2.3. Plug-In Settings for Build-Time Combination

Assigning versions at package granularity

In the preceding example, the included org.fusesource.example.hello.paris API package is
given the same version as the hello-paris-impl Maven project, by adding the
version=${project.version} clause to the export instruction. In practice, however, you might not
always want to assign versions in this way. You might prefer to assign distinct versions to the API
package (from the hello-paris Maven project) and the implementation package (from the hello-
paris-impl Maven project).

The alternative approach you can take is to store version information at package granularity in a
packageinfo file (see the section called “Export versions at package granularity” for details). The
Maven bundle plug-in automatically scans your source code, looking for packageinfo files and
extracting the version information from them. In this case, you must omit the version clause from the
export instruction, as follows:

Generated MANIFEST.MF file

When you build the bundle using Maven, the Maven bundle plug-in automatically generates the
following MANIFEST.MF file:

<instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>*</Import-Package>
 <Export-Package>
 !${project.groupId}*.impl*,
 !${project.groupId}*.internal*,

${project.groupId}.hello.paris*;provide:=true;version=${project.version}
,
 </Export-Package>
</instructions>

 <Export-Package>
 !${project.groupId}*.impl*,
 !${project.groupId}*.internal*,
 <!-- hello.paris version stored in packageinfo -->
 ${project.groupId}.hello.paris*;provide:=true,
 </Export-Package>

Manifest-Version: 1.0
Import-Package: org.fusesource.example.hello.paris;version="[1.0,1.1)"
 ,org.fusesource.example.time;version="[1.0,2)",org.osgi.service.bluep
 rint;version="[1.0.0,2.0.0)"

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

25

The Import-Package header imports both the public API package,
org.fusesource.example.hello.paris, and the external package dependencies—for example,
org.fusesource.example.time.

The Export-Package header exports the public API package,
org.fusesource.example.hello.paris, while the uses clause declares a transitive dependency
on the org.fusesource.example.time package.

The Export-Service header advertises the OSGi service as a HelloParis instance.

Bundle deployment

Because the hello-paris-impl bundle includes all of the code from the hello-paris Maven
project, it is unnecessary to deploy the hello-paris bundle in this case.

2.8. CONSUMER BUNDLE

Overview

This section explains how to set up a Maven project for a consumer bundle.

The hello-consumer bundle exemplifies a consumer bundle, which imports OSGi services and
accesses the services through the relevant API packages. This is the bundle that drives the sample
application and, therefore, it relies on a blueprint lifecycle callback (through the blueprint bean
element's init-method attribute) to initiate processing.

NOTE

Being a consumer is just a role, not an absolute category, so you will commonly come
across bundles that behave both as a consumer and a provider. In the current example,
however, hello-consumer behaves as a pure consumer.

Directory structure

The hello-consumer bundle has the following directory structure:

Export-Package: org.fusesource.example.hello.paris;uses:="org.fusesour
 ce.example.time";version="1.0"
Built-By: FBOLTON
Tool: Bnd-1.15.0
Bundle-Name: hello-paris-impl
Created-By: Apache Maven Bundle Plugin
Export-Service: org.fusesource.example.hello.paris.HelloParis
Build-Jdk: 1.6.0_24
Bundle-Version: 1.0.0
Bnd-LastModified: 1302098214984
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.fusesource.example.hello-paris-impl

hello-consumer/
 |
 \--src/
 |

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

26

The org.fusesource.example.hello.consumer package is public and all of its classes and
interfaces are exported from the bundle. It would not matter, however, if you made this package
private instead, because it is not needed by any other bundles.

The src/main/resources/OSGI-INF/blueprint directory contains a single blueprint file,
client.xml. Any file matching the pattern, *.xml, in this directory is assumed to be a blueprint
configuration file.

Sample consumer code

The hello-consumer bundle effectively drives the sample application, obtaining references to the
HelloBoston and HelloParis OSGi services, and then invoking methods on these services to
obtain localised greetings and times.

The hello-consumer bundle contains the class, ConsumeHello, which is a client of the OSGi
services, HelloBoston and HelloParis. To gain access to the OSGi services, ConsumeHello
defines the setter methods, getHelloBoston() and getHelloParis(), and relies on the blueprint
framework to inject the references. The entry point is the init() method, which gets invoked after
the ConsumeHello bean is created and injected with the service references. The ConsumeHello
class is defined as follows:

 \--main/
 | |
 | \--java/
 | | |
 | | \--org/fusesource/example/hello/consumer/
 | | |
 | | \--ConsumeHello.java
 | |
 | \--resources/
 | |
 | \--OSGI-INF/blueprint/
 | |
 | \--client.xml
 |
 \--test/

// Java
package org.fusesource.example.hello.consumer;

import org.fusesource.example.hello.boston.HelloBoston;
import org.fusesource.example.hello.paris.HelloParis;

public class ConsumeHello {
 protected HelloBoston helloBoston = null;
 protected HelloParis helloParis = null;

 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

27

Access OSGi service

The ConsumeHello class needs to obtain a reference to the HelloBoston service and a reference to
the HelloParis service. Use the reference element to create proxies for the HelloBoston service
and for the HelloParis service. Use the bean element to create a ConsumeHello instance and
inject the helloBoston and helloParis proxies.

The ConsumeHello bean also requires an entry point to initiate processing. By setting the bean
element's init-method attribute to init, you ensure that the blueprint framework calls the
ConsumeHello.init() method after all of the bean's properties have been injected.

For example, the blueprint file, OSGI-INF/blueprint/client.xml, has the following contents:

 public void init() {
 if (helloBoston==null || helloParis==null) {
 System.out.println("Initialization failed. Injected objects
are null.");
 return;
 }

 String enGreeting = helloBoston.getGreeting();
 String bostonTime = helloBoston.getLocalTime().getLocalTime();
 System.out.println("Boston says:" + enGreeting + " at " +
bostonTime);

 String frGreeting = helloParis.getGreeting();
 String parisTime = helloParis.getLocalTime().getLocalTime();
 System.out.println("Paris says:" + frGreeting + " at " +
parisTime);
 }

 public HelloBoston getHelloBoston() {
 return helloBoston;
 }

 public void setHelloBoston(HelloBoston helloBoston) {
 this.helloBoston = helloBoston;
 }

 public HelloParis getHelloParis() {
 return helloParis;
 }

 public void setHelloParis(HelloParis helloParis) {
 this.helloParis = helloParis;
 }

}

<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

 <reference id="helloBoston"
 interface="org.fusesource.example.hello.boston.HelloBoston"/>

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

28

Maven dependencies

In the Maven POM file, the hello-consumer bundle defines dependencies on the following Maven
artifacts:

time-util

hello-paris

hello-boston

Import and export rules

The following import and export rules apply to the hello-consumer bundle:

Exporting own packages—a client typically does not need to export its own packages, because a
client does not usually expose an API.

Importing own packages—a client does not import its own packages.

Importing dependent packages—any external package dependencies must be imported.

Maven bundle plug-in settings

The Maven bundle plug-in is configured to export the package,
org.fusesource.example.hello.consumer, although the export is unnecessary in this particular
example. The Export-Package instruction also contains entries to block the export of any packages
containing .impl or .internal. In this case, the bundle plug-in instructions are as follows:

Generated MANIFEST.MF file

 <reference id="helloParis"
 interface="org.fusesource.example.hello.paris.HelloParis"/>

 <bean id="client"
 class="org.fusesource.example.hello.consumer.ConsumeHello"
 init-method="init">
 <property name="helloBoston" ref="helloBoston"/>
 <property name="helloParis" ref="helloParis"/>
 </bean>

</blueprint>

<instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>*</Import-Package>
 <Export-Package>
 !${project.groupId}*.impl*,
 !${project.groupId}*.internal*,
 ${project.groupId}.hello.consumer*;version=${project.version}
 </Export-Package>
</instructions>

CHAPTER 2. IMPORTING AND EXPORTING PACKAGES

29

When you build the bundle using Maven, the Maven bundle plug-in automatically generates the
following MANIFEST.MF file:

The Import-Package header imports the external package dependencies—for example,
org.fusesource.example.hello.boston.

The Export-Package header exports the package, org.fusesource.example.hello.consumer.
In this case, however, the export is not really needed and the package could have been declared
private instead (for example, using the Private-Package instruction).

The Import-Service header declares the OSGi services accessed by this bundle. The services are
accessed respectively through the HelloBoston interface and through the HelloParis interface.

Manifest-Version: 1.0
Built-By: JBLOGGS
Created-By: Apache Maven Bundle Plugin
Import-Package: org.fusesource.example.hello.boston;version="[1.0,2)",
 org.fusesource.example.hello.paris;version="[1.0,2)",org.fusesource.e
 xample.time;version="[1.0,2)",org.osgi.service.blueprint;version="[1.
 0.0,2.0.0)"Bnd-LastModified: 1296826333723
Export-Package: org.fusesource.example.hello.consumer;uses:="org.fuses
 ource.example.time,org.fusesource.example.hello.paris,org.fusesource.
 example.hello.boston";version="1.0"
Bundle-Version: 1.0.0
Bundle-Name: hello-consumer
Build-Jdk: 1.5.0_08
Bundle-ManifestVersion: 2
Bundle-SymbolicName: org.fusesource.example.hello-consumer
Tool: Bnd-1.15.0
Import-Service: org.fusesource.example.hello.boston.HelloBoston,org.fu
 sesource.example.hello.paris.HelloParis

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

30

CHAPTER 3. VERSIONING

Abstract

For the stability of an OSGi application, it is essential that a bundle restricts the range of acceptable
versions of its dependencies; otherwise, the bundle could be wired to an incompatible version of an
imported package, with disastrous results. On the other hand, an application cannot afford to be too
restrictive: a complex application might re-use a package in many different places. If a strict version
restriction is placed on such a package every time it occurs, it might prove impossible to deploy the
application, due to conflicting version requirements. Also, a certain amount of version flexibility is
required in order to deploy patched bundles as hot fixes. This chapter describes the OSGi version
policies that help you to achieve these goals and explains how to implement version polices using the
Maven bundle plug-in.

3.1. SEMANTIC VERSIONING

Overview

The basic principle of semantic versioning is that an increment to a major, minor, or micro part of a
version signals a particular degree of compatibility or incompatibility with previous versions of a
package. The Semantic Versioning technical white paper from the OSGi Alliance makes specific
recommendations about how to interpret each of the major, minor, and micro parts of a version. Based
on these definitions, the paper explains how to assign a version number to an exported package and
how to assign a version range to an imported package.

This section summarizes the recommendations of the OSGi technical white paper.

Version fidelity

Consider a bundle (the importer) that has package dependencies on another bundle (the exporter). At
build time, the importer is compiled and tested against a specific version of the exporter. It follows that
the build-time version of the exporter bundle is the version least likely to cause any problems or bugs,
because it has already been tested against the importer.

If you deploy the importer together with the original build-time version of the exporter, you have
perfect version fidelity between the two bundles. Unfortunately, fidelity cannot usually be achieved in
real deployments, because the exporter bundle is often used by many other bundles, compiled against
slightly different versions of the exporter. Particularly in a modern open-source programming
environment, where an application might pull in hundreds of bundles from many third-party projects
and companies, it becomes essential to allow for version flexibility when matching bundles to their
dependencies.

Backward compatibility in Java

To figure out how much version flexibility we can allow, we first need to consider the rules for
backward compatibility in Java. Java is one of the few languages that explicitly considers issues of
binary compatibility in its specification and the detailed rules can be found in the Binary Compatibility
chapter of The Java Language Specification . The following is an incomplete list of changes that are
binary compatibility with consumers of particular classes or interfaces:

Adding new fields, methods, or constructors to an existing class or interface.

Deleting private fields, methods, or constructors of a class.

CHAPTER 3. VERSIONING

31

http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf
http://docs.oracle.com/javase/specs/

Deleting package-only access fields, methods, or constructors of a class or interface.

Re-ordering the fields, methods, or constructors in an existing type declaration.

Moving a method upward in the class hierarchy.

Reordering the list of direct super-interfaces of a class or interface.

Inserting new class or interface types in the type hierarchy.

Consumers and providers

In a well-structured Java application, bundles often fall into one of the following categories: API,
consumer, and provider. The consumer and provider roles can be defined as follows:

Consumer—a bundle that uses the functionality exposed by an API, invoking methods on the
API's Java interfaces.

Provider—a bundle that provides the functionality of an API, containing classes that implement
the API's Java interfaces.

Both the consumer and the provider import packages from an API bundle, as illustrated in Figure 3.1,
“Consumers and Provider of API Interfaces”. Hence, the consumer and the provider are both sensitive
to changes in the API bundle.

Figure 3.1. Consumers and Provider of API Interfaces

It turns out that the rules of binary compatibility are quite different for consumers and providers. The
coupling between consumer, provider and API can be described as follows:

Compatibility between consumer and API—this coupling obeys the rules from the Binary
Compatibility chapter of the Java Language Specification. There is quite a lot of scope for
altering the API without breaking backward compatibility; in particular, it is possible to add
methods to Java interfaces without breaking compatibility.

Compatibility between provider and API—this coupling is not explicitly considered in the Java
Language Specification. It turns out that this coupling is much more restrictive than the
consumer case. For example, adding methods to Java interfaces breaks backward
compatibility with the provider.

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

32

Callback interfaces

The role of a consumer is not always as clear cut as initially suggested here. Although consumers
mostly interact with an API by invoking methods on the API's interfaces, there are some cases where a
consumer actually implements one of the API interfaces (thus muddying the distinction between a
consumer and a provider). A classic example of where this might happen is when an API defines a
callback interface, which a consumer can implement in order to receive event notifications.

For example, consider the javax.jms.MessageListener interface from the JMS API, which is
defined as follows:

A consumer is expected to implement the onMessage() method in order to receive messages from
the underlying JMS service. So, in this case, the more restrictive binary compatibility rules (the same
ones that apply to a provider) must be applied to the MessageListener interface.

NOTE

It is recommended that you try to be as conservative as possible with callback
interfaces, changing them as infrequently as possible, in order to avoid breaking binary
compatibility with consumers.

OSGi version syntax

The OSGi version syntax defines a version to have up to four parts, as follows:

Where <major>, <minor>, and <micro> are positive integers and <qualifier> is an arbitrary
string. For example, the following are valid OSGi versions:

OSGi version ranges

When declaring dependencies on imported packages in OSGi, you can declare a range of acceptable
versions. An OSGi version range is defined using a notation borrowed from mathematics: square
brackets—that is, [and]— denote an inclusive range; and parentheses—that is, (and)—denote an
exclusive range. You can also mix a parenthesis with a bracket to define a half-inclusive range. Here
are some examples:

// Java
package javax.jms;

public interface MessageListener {
 void onMessage(javax.jms.Message message);
}

<major> ['.' <minor> ['.' <micro> ['.' <qualifier>]]]

4
2.1
3.99.12.0
2.0.0.07-Feb-2011

CHAPTER 3. VERSIONING

33

OSGi Version Range Restriction on Version, v

[1.0, 2.0) 1.0 <= v < 2.0

[1.0, 2.0] 1.0 <= v <= 2.0

(1.4.1, 1.5.5) 1.4.1 < v < 1.5.5

(1.5, 1.9] 1.5 < v <= 1.9

1.0 1.0 <= v < ∞

Of the preceding examples, the most useful style is the half-inclusive range, [1.0, 2.0). A simple
version number on its own, 1.0, is interpreted as an inclusive range up to positive infinity.

Semantic versioning rules

The fundamental idea of semantic versioning is that a bundle's version should indicate when the bundle
breaks binary compatibility with its preceding version, bearing in mind that there are different kinds of
binary compatibility: compatibility of consumers and compatibility of providers. The OSGi Semantic
Versioning technical white paper proposes the following versioning conventions:

<major>

When a change breaks binary compabitility with both consumers and providers, increment the
bundle's major version number. For example, a version change from 1.3 to 2.0 signals that the new
bundle version is incompatible with older consumers and providers.

<minor>

When a change breaks binary compatibility with providers, but not consumers, increment the
bundle's minor version number. For example, a version change from 1.3 to 1.4 signals that the
new bundle version is incompatible with older providers, but compatible with older consumers.

<micro>

A change in micro version does not signal any backward compatibility issues. The micro version can
be incremented for bug fixes that affect neither consumers nor providers of the API.

<qualifier>

The qualifier is typically used as a build identifier—for example, a time stamp.

Consumer import range

Assuming that an exporter bundle obeys the preceding OSGi semantic versioning rules, it is possible to
work out the range of versions that are compatible with a consumer. For example, if a consumer is built
against an exporter with version 1.3, the next version that would break binary compatibility with the
consumer is 2.0. It follows that all exporter versions up to, but excluding, 2.0 ought to be compatible
with the consumer.

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

34

http://www.osgi.org/wiki/uploads/Links/SemanticVersioning.pdf

In general, the consumer import range is calculated from the build-time version of the exporter
according to the following rule: given the build-time version, <major>.<minor>.<micro>.<qual>,
define the corresponding consumer import range to be [<major>.<minor>, <major>+1).

Table 3.1, “Example Consumer Import Ranges” shows some examples of how to choose the correct
consumer import range for a given exporter version.

Table 3.1. Example Consumer Import Ranges

Build-Time Version of Exporter Consumer Import Range

3.0 [3.0, 4)

2.0.1 [2.0, 3)

2.1.4 [2.1, 3)

2.1.5.2011-02-07-LATEST [2.1, 3)

Provider import range

According to the OSGi semantic versioning rules, providers are compatible with a narrower range of
versions than consumers. For example, if a provider is built against an exporter with version 1.3, the
next version that would break binary compatibility with the provider is 1.4. It follows that all exporter
versions up to, but excluding, 1.4 ought to be compatible with the provider.

In general, the provider import range is calculated from the build-time version of the exporter
according to the following rule: given the build-time version, <major>.<minor>.<micro>.<qual>,
define the corresponding provider import range to be [<major>.<minor>, <major>.<minor>+1).

Table 3.2, “Example Provider Import Ranges” shows some examples of how to choose the correct
provider import range for a given exporter version.

Table 3.2. Example Provider Import Ranges

Build-Time Version of Exporter Provider Import Range

3.0 [3.0, 3.1)

2.0.1 [2.0, 2.1)

2.1.4 [2.1, 2.2)

2.1.5.2011-02-07-LATEST [2.1, 2.2)

3.2. EXPORT VERSIONING

Overview

CHAPTER 3. VERSIONING

35

OSGi allows you to associate a single version with an exported package. The version that you choose
for your package (or packages) should conform to the conventions of semantic versioning, as defined
in the section called “Semantic versioning rules” .

Export version at bundle granularity

The simplest approach to export versioning is where you use the bundle version as the export version
and you assign the same export version to all exported packages in the bundle.

Using the Maven bundle plug-in, you can implement this versioning policy using instructions like the
following:

Where the ${project.version} macro returns the the contents of the project/version element
in the POM file (the version of the current Maven artifact).

Export versions at package granularity

Strictly speaking, importing and exporting works at the granularity level of packages, not of bundles. In
principle, therefore, it is possible to assign versions at the level of individual packages, so that one
bundle contains multiple packages with different versions. There are some scenarios where it can be
useful to assign versions at package granularity.

For example, consider a bundle that contains both an API package and a package that implements the
API (see Section 2.7, “API/Provider Build-Time Combination”). In this case, it makes more sense to use
separate versions for the API package and the implementation package.

Using the Maven bundle plug-in, you can specify the version of an individual Java package by creating
or modifying the standard Java packageinfo file in the corresponding package directory. For
example, if you want to assign version 1.2.1 to the org.fusesource.example.time package,
create a file called packageinfo (no suffix) in the
src/main/java/org/fusesource/example/time directory and add the following line:

Alternatively, since Java 5 it is also possible to specify version information using annotations in a
package-info.java file, for example:

3.3. AUTOMATIC IMPORT VERSIONING

<instructions>
 <Bundle-SymbolicName>${project.groupId}.${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>*</Import-Package>
 <Export-Package>
 !${project.groupId}*.impl.*,
 !${project.groupId}*.internal.*,
 ${project.groupId}.my.export.pkg*;version=${project.version}
 </Export-Package>
</instructions>

version 1.2.1

@Version("1.2.1")
package org.fusesource.example.time;

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

36

Overview

By default, the Maven bundle plug-in automatically assigns a version range to imported packages,
following the semantic versioning rules outlined in Section 3.1, “Semantic Versioning”. You need to
provide an additional hint to the bundle plug-in, to indicate whether the bundle imports a package in
the role of a consumer or a provider (the bundle plug-in presumes the consumer role).

For automatic import versioning to work, the package dependency must be versioned at build time,
otherwise the importing bundle cannot calculate the import range.

Automatic consumer import range

The Maven bundle plug-in automatically generates consumer import ranges that conform to the rules
of semantic versioning, as defined in the section called “Consumer import range” . The only
prerequisite is that the corresponding exporter actually defines a package version.

For example, given that the hello-paris bundle consumes version 1.2.1 of the
org.fusesource.example.time package, the Maven bundle plug-in automatically generates a
manifest with the following import:

Automatic provider import range

Because the Maven bundle plug-in assumes by default that an importer is acting in the role of
consumer, it is necessary to specify explicitly when an importer is acting in the role of provider, using
the provide:=true clause. There are two different approaches you can take to specifying the
provider import range, depending on how you package the API and provider bundles, as follows:

the section called “Separate API and provider bundles” .

the section called “Combined API and provider bundle” .

Separate API and provider bundles

When the API and the provider are to be packaged in separate bundles, append the provide:=true
clause to the relevant API packages listed in the Import-Package instruction.

For example, given that the hello-paris-impl bundle provides the implementation of the
org.fusesource.example.hello.paris package from the hello-paris API bundle, you would
define the Import-Package instructions for the hello-paris-impl bundle as follows:

Given that the org.fusesource.example.hello.paris package has version 1.0, the Maven
bundle plug-in generates a manifest with the following imports:

Import-Package: org.fusesource.example.time;version="[1.0,2)"

<instructions>
 ...
 <Import-Package>
 ${project.groupId}.hello.paris*;provide:=true,
 *
 </Import-Package>
 ...
</instructions>

CHAPTER 3. VERSIONING

37

Combined API and provider bundle

When the API and the provider are to be combined in the same bundle, append the provide:=true
clause to the relevant API packages listed in the Export-Package instruction (this is the correct
setting to use both for an API/provider combination bundle and for an API/provider build-time
combination bundle).

For example, given that the hello-boston bundle includes both the
org.fusesource.example.hello.boston API and its implementation classes, you would define
the Export-Package instructions for the hello-boston bundle as follows:

Given that the org.fusesource.example.hello.boston package has version 1.0, the Maven
bundle plug-in generates a manifest with the following highlighted import and export:

NOTE

In the case where the API and the provider code are located in separate Maven projects,
setting provide:=true on an exported API package in the provider's POM has the
important side-effect that the API interfaces are included in the provider bundle. For a
detailed explanation, see Section 2.7, “API/Provider Build-Time Combination” .

Customize import range

Occasionally, it will be necessary to customize the import version range—for example, if the
corresponding exporter does not follow the OSGi semantic versioning conventions. The simplest case
is where you specify the import range explicitly, as in the following example:

Import-Package: org.fusesource.example.hello.paris;version="[1.0,1.1)"
 ,org.fusesource.example.time;version="[1.0,2)",org.osgi.service.bluep
 rint;version="[1.0.0,2.0.0)"

<instructions>
 ...
 <Export-Package>
 !${project.groupId}*.impl.*,
 !${project.groupId}*.internal.*,
 ${project.groupId}.hello.boston*;provide:=true;version=${project.version}
 </Export-Package>
 ...
</instructions>

Import-Package: org.fusesource.example.hello.boston;version="[1.0,1.1)
 ",org.fusesource.example.time;version="[1.0,2)",org.osgi.service.blue
 print;version="[1.0.0,2.0.0)"
Export-Package: org.fusesource.example.hello.boston;uses:="org.fusesou
 rce.example.time";version="1.0"

<Import-Package>
 com.package.with.wrong.semantics*;version="[1.3,1.3.4]",
 *
</Import-Package>

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

38

Custom import rule

Sometimes, a third-party exporter might follow a consistent versioning convention, but this convention
is different from the OSGi convention. In this case, it make sense to define a custom import rule that
codifies the alternative convention. For example, if a third-party exporter increments the minor
version number whenever binary compatibility with consumers is broken, you could use Bnd's range
macro to codify this rule on consumer imports, as follows:

Where the Bnd macro is written in the format, $<Macro> and must be enclosed in a CDATA section to
avoid clashing with the XML interpretations of < and > (actually, Bnd supports a variety of different
macro delimiters, most of which cannot be used here: braces, ${...}, clash with Maven properties;
while square brackets, $[...], and parentheses, $(...), clash with the syntax of version ranges).

Entries like == and =+ are masks that return a version based on the version of the corresponding
exporter. The equals sign, =, returns the corresponding version part unchanged; the plus sign, +,
returns the corresponding version part plus one; and the minus sign, -, returns the corresponding
version part minus one. For example, if the corresponding exporter has the version, 1.3.0.4, the
range mask, [==,=+), resolves to [1.3,1.4). For more details, consult the Bnd documentation for
the range macro .

The range macro is a relatively new addition to Bnd. In POMs that were written before the range
macro became available, you might come across ranges written using the Bnd version macro. For
example, the range, $<range;[==,=+)>, could also be written using the version macro as follows:

NOTE

At the time of writing, the Bnd tool has a bug that causes two NullPointerException
exceptions, accompanied by lengthy stack traces, to be generated whenever you build a
Maven project featuring the range or version macros as shown above. Although
alarming, these exceptions are harmless non-fatal errors. If you check the generated
bundle after building, you will see that the Manifest.mf file is generated exactly as
specified by the bundle instructions.

Customize version policies

Bnd and the Maven bundle plug-in support directives that enable you to override the default versioning
policies. Occasionally, you might come across an entire subsystem that consistently follows a different
versioning convention from OSGi and, in this case, it makes sense to override the default versioning
policies.

<Import-Package><![CDATA[
 com.package.with.wrong.semantics*;version="$<range;[==,=+)>",
 *
]]>
</Import-Package>

<Import-Package><![CDATA[
 com.package.with.wrong.semantics*;version="
[$<version;==>,$<version;=+>)",
 *
]]>
</Import-Package>

CHAPTER 3. VERSIONING

39

http://bnd.bndtools.org/macros/range.html

Since Bnd version 1.15 (version 2.2.0 of the Maven bundle plug-in), the following directives can be used
to specify versioning policies:

-consumer-policy

Specifies a macro to calculate the consumer import range.

-provider-policy

Specifies a macro to calculate the provider import range.

In the Maven bundle plug-in, these directives are set using the elements, _consumer-policy and
_provider-policy—for example:

Where the macro, $<Macro>, is escaped as, $<Macro>, in XML (or you could use a CDATA
section).

NOTE

Any Bnd directives that start with the hyphen character, -, can also be set in the Maven
bundle plug-in using an element whose name is obtained by changing the initial hyphen,
-, to an underscore, _.

<instructions>
 ...
 <_consumer-policy>$<range;[==,=+)></_consumer-policy>
 <_provider-policy>$<range;[===,==+)></_provider-policy>
 ...
</instructions>

Red Hat JBoss Fuse 6.2 Managing OSGi Dependencies

40

	Table of Contents
	CHAPTER 1. BUNDLE CLASS LOADER
	1.1. CLASS LOADER BASICS
	Overview
	Bundle class loader
	Identity of a loaded class
	Bundle class space
	Multiple copies of a loaded class
	Class loader delegation

	1.2. CONFLICTING CLASSES
	Overview
	Symbolic references
	Class cast exceptions

	1.3. CLASS LOADING ALGORITHM
	Overview
	Requirements on a bundle class loader
	Bundle class loading algorithm

	CHAPTER 2. IMPORTING AND EXPORTING PACKAGES
	2.1. OVERVIEW OF BUNDLE TYPES
	Overview
	Bundle Types
	Summary of import/export rules
	Importing and exporting own packages
	When to publish an OSGi service
	Default bundle plug-in settings

	2.2. SAMPLE OSGI APPLICATION
	Example of bundle dependencies
	The sample bundles

	2.3. LIBRARY BUNDLE
	Overview
	Directory structure
	Sample implementation
	Import and export rules
	Maven bundle plug-in settings
	Generated MANIFEST.MF file

	2.4. API BUNDLE
	Overview
	Directory structure
	Sample API
	Maven dependencies
	Import and export rules
	Maven bundle plug-in settings
	Generated MANIFEST.MF file

	2.5. PROVIDER BUNDLE
	Overview
	Directory structure
	Sample implementation
	Publish OSGi service
	Maven dependencies
	Import and export rules
	Maven bundle plug-in settings
	Generated MANIFEST.MF file

	2.6. API/PROVIDER COMBINATION
	Overview
	Directory structure
	Sample API
	Sample implementation
	Publish OSGi service
	Maven dependencies
	Import and export rules
	Maven bundle plug-in settings
	Generated MANIFEST.MF file

	2.7. API/PROVIDER BUILD-TIME COMBINATION
	Overview
	provide:=true clause
	Included Maven projects
	Import and export rules
	Maven bundle plug-in settings
	Assigning versions at package granularity
	Generated MANIFEST.MF file
	Bundle deployment

	2.8. CONSUMER BUNDLE
	Overview
	Directory structure
	Sample consumer code
	Access OSGi service
	Maven dependencies
	Import and export rules
	Maven bundle plug-in settings
	Generated MANIFEST.MF file

	CHAPTER 3. VERSIONING
	3.1. SEMANTIC VERSIONING
	Overview
	Version fidelity
	Backward compatibility in Java
	Consumers and providers
	Callback interfaces
	OSGi version syntax
	OSGi version ranges
	Semantic versioning rules
	Consumer import range
	Provider import range

	3.2. EXPORT VERSIONING
	Overview
	Export version at bundle granularity
	Export versions at package granularity

	3.3. AUTOMATIC IMPORT VERSIONING
	Overview
	Automatic consumer import range
	Automatic provider import range
	Separate API and provider bundles
	Combined API and provider bundle
	Customize import range
	Custom import rule
	Customize version policies

