
Red Hat JBoss Fuse 6.0

Web Services and Routing with Camel CXF

Easy Web services with Apache Camel's CXF component

Last Updated: 2017-10-13

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

Easy Web services with Apache Camel's CXF component

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to use Apache Camel's CXF component to create Web services or wrap
existing functionality in Web service facades.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. DEMONSTRATION CODE FOR CAMEL/CXF
1.1. DOWNLOADING AND INSTALLING THE DEMONSTRATIONS
1.2. RUNNING THE DEMONSTRATIONS

CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION
2.1. JAVA-FIRST OVERVIEW
2.2. DEFINE SEI AND RELATED CLASSES
2.3. ANNOTATE SEI FOR JAX-WS
2.4. INSTANTIATE THE WS ENDPOINT
2.5. JAVA-TO-WSDL MAVEN PLUG-IN

CHAPTER 3. WSDL-FIRST SERVICE IMPLEMENTATION
3.1. WSDL-FIRST OVERVIEW
3.2. CUSTOMERSERVICE WSDL CONTRACT
3.3. WSDL-TO-JAVA MAVEN PLUG-IN
3.4. INSTANTIATE THE WS ENDPOINT
3.5. DEPLOY TO AN OSGI CONTAINER

CHAPTER 4. IMPLEMENTING A WS CLIENT
4.1. WS CLIENT OVERVIEW
4.2. WSDL-TO-JAVA MAVEN PLUG-IN
4.3. INSTANTIATE THE WS CLIENT PROXY
4.4. INVOKE WS OPERATIONS
4.5. DEPLOY TO AN OSGI CONTAINER

CHAPTER 5. POJO-BASED ROUTE
5.1. PROCESSING MESSAGES IN POJO FORMAT
5.2. WSDL-TO-JAVA MAVEN PLUG-IN
5.3. INSTANTIATE THE WS ENDPOINT
5.4. SORT MESSAGES BY OPERATION NAME
5.5. PROCESS OPERATION PARAMETERS
5.6. DEPLOY TO OSGI

CHAPTER 6. PAYLOAD-BASED ROUTE
6.1. PROCESSING MESSAGES IN PAYLOAD FORMAT
6.2. INSTANTIATE THE WS ENDPOINT
6.3. SORT MESSAGES BY OPERATION NAME
6.4. SOAP/HTTP-TO-JMS BRIDGE USE CASE
6.5. GENERATING RESPONSES USING TEMPLATES
6.6. DEPLOY TO OSGI

CHAPTER 7. PROVIDER-BASED ROUTE
7.1. PROVIDER-BASED JAX-WS ENDPOINT
7.2. CREATE A PROVIDER<?> IMPLEMENTATION CLASS
7.3. INSTANTIATE THE WS ENDPOINT
7.4. SORT MESSAGES BY OPERATION NAME
7.5. SOAP/HTTP-TO-JMS BRIDGE USE CASE
7.6. GENERATING RESPONSES USING TEMPLATES
7.7. TYPECONVERTER FOR SAXSOURCE
7.8. DEPLOY TO OSGI

CHAPTER 8. PROXYING A WEB SERVICE
8.1. PROXYING WITH HTTP

4
4
4

8
8
9

12
15
17

20
20
21
24
25
27

30
30
31
33
35
35

38
38
39
41
44
45
47

50
50
51
53
54
57
60

63
63
64
65
66
67
70
73
73

76
76

Table of Contents

1

. .

8.2. PROXYING WITH POJO FORMAT
8.3. PROXYING WITH PAYLOAD FORMAT
8.4. HANDLING HTTP HEADERS

CHAPTER 9. FILTERING SOAP MESSAGE HEADERS
9.1. BASIC CONFIGURATION
9.2. HEADER FILTERING
9.3. IMPLEMENTING A CUSTOM FILTER
9.4. INSTALLING FILTERS

78
79
81

84
84
86
87
90

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

2

Table of Contents

3

CHAPTER 1. DEMONSTRATION CODE FOR CAMEL/CXF

Abstract

This chapter explains how to install, build, and run the demonstrations that accompany this guide.

1.1. DOWNLOADING AND INSTALLING THE DEMONSTRATIONS

Overview

Most of the examples discussed in this guide are based on working demonstrations, which you can
download and try out for yourself. The examples can easily be run by deploying them into a Red Hat
JBoss Fuse container, as described here.

IMPORTANT

The demonstrations accompanying this guide are available to subscription customers
only.

Prerequisites

For building and running the demonstration code, you must have the following prerequisites installed:

Java platform—the demonstrations must run on the Java 6 platform from Oracle.

Apache Maven build tool—to build the demonstration, you require Apache Maven 3.0.x (or
Maven 2.2.1).

Internet connection—Maven requires an Internet connection in order to download required
dependencies from remote repositories while performing a build.

Red Hat JBoss Fuse—the demonstrations are deployed into the JBoss Fuse container.

Downloading the demonstration package

The source code for the demonstrations is packaged as a Zip file, cxf-webinars-assembly-1.1.4-
src.zip, and is available from the following location:

cxf-webinars-assembly-1.1.4-src.zip

Installing the package

To install the package, simply extract the Zip archive into any convenient location on your file system.

1.2. RUNNING THE DEMONSTRATIONS

Building the demonstrations

Use Apache Maven to build the demonstrations. Open a new command prompt, change directory to
DemoDir/src/fuse-webinars/cxf-webinars, and enter the following command:

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

4

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_JBoss_Fuse/6.0/html-single/Web_Services_and_Routing_with_Camel_CXF/files/cxf-webinars-assembly-1.1.4-src.zip

This command builds all of the demonstrations under the cxf-webinars directory (where the
demonstrations are defined to be submodules of the cxf-webinars/pom.xml project). While Maven is
building the demonstration code, it downloads whatever dependencies it needs from the Internet and
installs them in the local Maven repository.

Starting and configuring the Red Hat JBoss Fuse container

Start and configure the Red Hat JBoss Fuse container as follows:

1. (Optional) If your local Maven repository is in a non-standard location, you might need to edit the
JBoss Fuse configuration to specify your custom location. Edit the
InstallDir/etc/org.ops4j.pax.url.mvn.cfg file and set the
org.ops4j.pax.url.mvn.localRepository property to the location of your local Maven
repository:

2. Launch the JBoss Fuse container. Open a new command prompt, change directory to
InstallDir/bin, and enter the following command:

3. For convenience, each of the demonstrations can be deployed into the JBoss Fuse container as
an Apache Karaf feature (which automatically installs any required dependencies along with the
demonstration bundle). But first, you must specify the location of the features repository, by
entering the following console command:

Where Version is the current version of the demonstration package (see the value of the
project/version element in the DemoDir/src/pom.xml file).

Demonstration features

The following features are now available from the JBoss Fuse console (where you can enter the
command, features:list | grep customer to check the status of these features):

mvn install

#
Path to the local maven repository which is used to avoid
downloading
artifacts when they already exist locally.
The value of this property will be extracted from the settings.xml
file
above, or defaulted to:
System.getProperty("user.home") + "/.m2/repository"
#
#org.ops4j.pax.url.mvn.localRepository=
org.ops4j.pax.url.mvn.localRepository=file:E:/Data/.m2/repository

./fuse

JBossFuse:karaf@root> features:addUrl
mvn:org.fusesource.sparks.fuse-webinars.cxf-webinars/customer-
features/Version/xml

customer-ws
customer-ws-client

CHAPTER 1. DEMONSTRATION CODE FOR CAMEL/CXF

5

Running the customer-ws-osgi-bundle demonstration

It is now a relatively straightforward task to run each of the demonstrations by installing the relevant
features.

For example, to start up the WSDL-first Web service (discussed in Chapter 3, WSDL-First Service
Implementation), enter the following console command:

To see the Web service in action, start up the sample Web service client (discussed in Chapter 4,
Implementing a WS Client), by entering the following console command:

The bundle creates a thread that invokes the Web service once a second and logs the response. View
the log by entering the following console command:

You should see log output like the following:

To stop viewing the log, type the interrupt character (usually Ctrl-C).

To stop the client, first discover the client's bundle ID using the osgi:list console command. For
example:

customer-ws-cxf-payload
customer-ws-cxf-pojo
customer-ws-cxf-provider

JBossFuse:karaf@root> features:install customer-ws

JBossFuse:karaf@root> features:install customer-ws-client

JBossFuse:karaf@root> log:tail -n 4

18:03:58,609 | INFO | qtp5581640-231 | CustomerServiceImpl
| ? ? |
 218 - org.fusesource.sparks.fuse-webinars.cxf-webinars.customer-ws-osgi-
bundle - 1.1.4 | Getting status for custome
 r 1234
18:03:58,687 | INFO | invoker thread. | ClientInvoker
| ? ? |
 219 - org.fusesource.sparks.fuse-webinars.cxf-webinars.customer-ws-client
- 1.1.4 | Got back: status = Active, stat
 usMessage = In the park, playing with my frisbee.
18:04:00,687 | INFO | qtp5581640-232 | CustomerServiceImpl
| ? ? |
 218 - org.fusesource.sparks.fuse-webinars.cxf-webinars.customer-ws-osgi-
bundle - 1.1.4 | Getting status for custome
 r 1234
18:04:00,703 | INFO | invoker thread. | ClientInvoker
| ? ? |
 219 - org.fusesource.sparks.fuse-webinars.cxf-webinars.customer-ws-client
- 1.1.4 | Got back: status = Active, stat
 usMessage = In the park, playing with my frisbee.

JBossFuse:karaf@root> list | grep customer-ws-client
[219] [Active] [] [Started] [60] customer-ws-client

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

6

You can then stop the client using the osgi:stop console command. For example:

To shut down the container completely, enter the following console command:

(1.1.4)

JBossFuse:karaf@root> stop 219

JBossFuse:karaf@root> shutdown -f

CHAPTER 1. DEMONSTRATION CODE FOR CAMEL/CXF

7

CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION

2.1. JAVA-FIRST OVERVIEW

Overview

The Java-first approach is a convenient way to get started with Web services, if you are unfamiliar with
WSDL syntax. Using this approach, you can define the Web service interface using an ordinary Java
interface and then use the provided Apache CXF utilities to generate the corresponding WSDL contract
from the Java interface.

NOTE

There is no demonstration code to accompany this example.

Service Endpoint Interface (SEI)

An SEI is an ordinary Java interface. In order to use the standard JAX-WS frontend, the SEI must be
annotated with the @WebService annotation.[1]

In the Java-first approach, the SEI is the starting point for implementing the Web service and it plays a
central role in the development of the Web service implementation. The SEI is used in the following
ways:

Base type of the Web service implementation (server side)—you define the Web service by
implementing the SEI.

Proxy type (client side)—on the client side, you use the SEI to invoke operations on the client
proxy object.

Basis for generating the WSDL contract—in the Java-first approach, you generate the WSDL
contract by converting the SEI to WSDL.

WSDL contract

The WSDL contract is a platform-neutral and language-neutral description of the Web service interface.
When you want to make the Web service available to third-party clients, you should publish the WSDL
contract to some well-known location. The WSDL contract contains all of the metadata required by WS
clients.

The CustomerService demonstration

Figure 2.1, “Building a Java-First Web Service” shows an overview of the files required to implement and
build the CustomerService Web service using the Java-first approach.

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

8

Figure 2.1. Building a Java-First Web Service

Implementing and building the service

To implement and build the Java-first example shown in Figure 2.1, “Building a Java-First Web Service”,
you would perform the following steps:

1. Implement the SEI, which constitutes the basic definition of the Web service's interface.

2. Annotate the SEI (you can use the annotations to influence the ultimate form of the generated
WSDL contract).

3. Implement any other requisite Java classes. In particular, implement the following:

Any data types referenced by the SEI—for example, the Customer class.

The implementation of the SEI, CustomerServiceImpl.

4. Instantiate the Web service endpoint, by adding the appropriate code to a Spring XML file.

5. Generate the WSDL contract using a Java-to-WSDL converter.

2.2. DEFINE SEI AND RELATED CLASSES

Overview

The Service Endpoint Interface (SEI) is the starting point for implementing a Web service in the Java-first
approach. The SEI represents the Web service in Java and it is ultimately used as the basis for
generating the WSDL contract. This section describes how to create a sample SEI, the
CustomerService interface, which enables you to access the details of a customer's account.

The CustomerService SEI

A JAX-WS service endpoint interface (SEI) is essentially an ordinary Java interface, augmented by
certain annotations (which are discussed in the next section). For example, consider the following
CustomerService interface, which defines methods for accessing the Customer data type:

// Java
package com.fusesource.demo.wsdl.customerservice;

CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION

9

After adding the requisite annotations to the CustomerService interface, this interface provides the
basis for defining the CustomerService Web service.

javax.xml.ws.Holder<?> types

The getCustomerStatus method from the CustomerService interface has parameters declared to
be of javax.xml.ws.Holder<String> type. These so-called holder types are needed in order to
declare the OUT or INOUT parameters of a WSDL operation.

The syntax of WSDL operations allows you to define any number of OUT or INOUT parameters, which
means that the parameters are used to return a value to the caller. This kind of parameter passing is not
natively supported by the Java language. Normally, the only way that Java allows you to return a value is
by declaring it as the return value of a method. You can work around this language limitation, however,
by declaring parameters to be holder types.

For example, consider the definition of the following method, getStringValues(), which takes a
holder type as its second parameter:

The caller can access the value of the returned rightWay string as rightWay.value. For example:

// NOT YET ANNOTATED!
public interface CustomerService {

 public com.fusesource.demo.customer.Customer lookupCustomer(
 java.lang.String customerId
);

 public void updateCustomer(
 com.fusesource.demo.customer.Customer cust
);

 public void getCustomerStatus(
 java.lang.String customerId,
 javax.xml.ws.Holder<java.lang.String> status,
 javax.xml.ws.Holder<java.lang.String> statusMessage
);
}

// Java
public void getStringValues(
 String wrongWay,
 javax.xml.ws.Holder<String> rightWay
) {
 wrongWay = "Caller will never see this string!";
 rightWay.value = "But the caller *can* see this string.";
}

// Java
String wrongWay = "This string never changes";
javax.xml.ws.Holder<String> rightWay.value = "This value *can* change.";

sampleObject.getStringValues(wrongWay, rightWay);

System.out.println("Unchanged string: " + wrongWay);
System.out.println("Changed string: " + rightWay.value);

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

10

It is, perhaps, slightly unnatural to use Holder<> types in a Java-first example, because this is not a
normal Java idiom. But it is interesting to include OUT parameters in the example, so that you can see
how a Web service processes this kind of parameter.

Related classes

When you run the Java-to-WSDL compiler on the SEI, it converts not only the SEI, but also the classes
referenced as parameters or return values. The parameter types must be convertible to XML, otherwise
it would not be possible for WSDL operations to send or to receive those data types. In fact, when you
run the Java-to-WSDL compiler, it is typically necessary to convert an entire tree of related classes to
XML using the standard JAX-B encoding.

Normally, as long as the related classes do not require any exotic language features, the JAX-B
encoding should be quite straightforward.

Default constructor for related classes

There is one simple rule, however, that you need to keep in mind when implementing related classes:
each related class must have a default constructor (that is, a constructor without arguments). If you do
not define any constructor for a class, the Java language automatically adds a default constructor. But if
you define a class's constructors explicitly, you must ensure that one of them is a default constructor.

The Customer class

For example, the Customer class appears as a related class in the definition of the CustomerService
SEI (the section called “The CustomerService SEI”). The Customer class consists of a collection of
String fields and the only special condition it needs to satisfy is that it includes a default constructor:

// Java
package com.fusesource.demo.customer;

public class Customer {
 protected String firstName;
 protected String lastName;
 protected String phoneNumber;
 protected String id;

 // Default constructor, required by JAX-WS
 public Customer() { }

 public Customer(String firstName, String lastName, String phoneNumber,
 String id) {
 super();
 this.firstName = firstName;
 this.lastName = lastName;
 this.phoneNumber = phoneNumber;
 this.id = id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String value) {

CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION

11

2.3. ANNOTATE SEI FOR JAX-WS

Overview

To use the JAX-WS frontend, an SEI must be annotated using standardised JAX-WS annotations. The
annotations signal to the Web services tooling that the SEI uses JAX-WS and the annotations are also
used to customize the mapping from Java to WSDL. Here we only cover the most basic annotations—for
complete details of JAX-WS annotations, see Developing Applications Using JAX-WS from the Apache
CXF library.

NOTE

It sometimes makes sense also to annotate the service implementation class (the class
that implements the SEI)—for example, if you want to associate an implementation class
with a specific WSDL serviceName and portName (there can be more than one
implementation of a given SEI).

Minimal annotation

The minimal annotation required for an SEI using the JAX-WS frontend is to prefix the interface
declaration with @WebService. For example, the CustomerService SEI could be minimally
annotated as follows:

 this.firstName = value;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String value) {
 this.lastName = value;
 }

 public String getPhoneNumber() {
 return phoneNumber;
 }

 public void setPhoneNumber(String value) {
 this.phoneNumber = value;
 }

 public String getId() {
 return id;
 }

 public void setId(String value) {
 this.id = value;
 }
}

// Java
package com.fusesource.demo.wsdl.customerservice;

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

12

If you run the Java-to-WSDL utility on this interface, it will generate a complete WSDL contract using the
standard default style of code conversion.

@WebService annotation

Although it is sufficient to specify the @WebService annotation without any attributes, it is usually better
to specify some attributes to provide a more descriptive WSDL service name and WSDL port name. You
will also usually want to specify the XML target namespace. For this, you can specify the following
optional attributes of the @WebService annotation:

name

Specifies the name of the WSDL contract (appearing in the wsdl:definitions element).

serviceName

Specifies the name of the WSDL service (a SOAP service is defined by default in the generated
contract).

portName

Specifies the name of the WSDL port (a SOAP/HTTP port is defined by default in the generated
contract).

targetNamespace

The XML schema namespace that is used, by default, to qualify the elements and types defined in
the contract.

@WebParam annotation

You can add the @WebParam annotation to method arguments in the SEI. The @WebParam annotation is
optional, but there are a couple of good reasons for adding it:

By default, JAX-WS maps Java arguments to parameters with names like arg0, ..., argN.
Messages are much easier to read, however, when the parameters have meaningful names.

It is a good idea to define parameter elements without a namespace. This makes the XML
encoding of requests and responses more compact.

To enable support for WSDL OUT and INOUT parameters.

You can add @WebParam annotations with the following attributes:

name

Specifies the mapped name of the parameter.

targetNamespace

import javax.jws.WebService;

@WebService
public interface CustomerService {
 ...
}

CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION

13

Specifies the namespace of the mapped parameter. Set this to a blank string for a more compact
XML encoding.

mode

Can have one of the following values:

WebParam.Mode.IN—(default) parameter is passed from client to service (in request).

WebParam.Mode.INOUT—parameter is passed from client to service (request) and from the
service back to the client (in reply).

WebParam.Mode.OUT—parameter is passed from service back to the client (in reply).

OUT and INOUT parameters

In WSDL, OUT and INOUT parameters represent values that can be sent from the service back to the
client (where the INOUT parameter is sent in both directions).

In Java syntax, the only value that can ordinarily be returned from a method is the method's return value.
In order to support OUT or INOUT parameters in Java (which are effectively like additional return
values), you must:

Declare the corresponding Java argument using a javax.xml.ws.Holder<ParamType>
type, where ParamType is the type of the parameter you want to send.

Annotate the Java argument with @WebParam, setting either mode = WebParam.Mode.OUT or
mode = WebParam.Mode.INOUT.

Annotated CustomerService SEI

The following example shows the CustomerService SEI after it has been annotated. Many other
annotations are possible, but this level of annotation is usually adequate for a WSDL-first project.

// Java
package com.fusesource.demo.wsdl.customerservice;

import javax.jws.WebParam;
import javax.jws.WebService;

@WebService(
 targetNamespace = "http://demo.fusesource.com/wsdl/CustomerService/",
 name = "CustomerService",
 serviceName = "CustomerService",
 portName = "SOAPOverHTTP"
)
public interface CustomerService {

 public com.fusesource.demo.customer.Customer lookupCustomer(
 @WebParam(name = "customerId", targetNamespace = "")
 java.lang.String customerId
);

 public void updateCustomer(
 @WebParam(name = "cust", targetNamespace = "")

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

14

2.4. INSTANTIATE THE WS ENDPOINT

Overview

In Apache CXF, you create a WS endpoint by defining a jaxws:endpoint element in XML. The WS
endpoint is effectively the runtime representation of the Web service: it opens an IP port to listen for
SOAP/HTTP requests, is responsible for marshalling and unmarshalling messages (making use of the
generated Java stub code), and routes incoming requests to the relevant methods on the implementor
class.

In other words, creating a Web service in Spring XML consists essentially of the following two steps:

1. Create an instance of the implementor class, using the Spring bean element.

2. Create a WS endpoint, using the jaxws:endpoint element.

The jaxws:endpoint element

You can instantiate a WS endpoint using the jaxws:endpoint element in a Spring file, where the
jaxws: prefix is associated with the http://cxf.apache.org/jaxws namespace.

NOTE

Take care not to confuse the jaxws:endpoint element with the cxf:cxfEndpoint
element, which you meet later in this guide: the jaxws:endpoint element is used to
integrate a WS endpoint with a Java implementation class; whereas the
cxf:cxfEndpoint is used to integrate a WS endpoint with a Camel route.

Define JAX-WS endpoint in XML

The following sample Spring file shows how to define a JAX-WS endpoint in XML, using the
jaxws:endpoint element.

 com.fusesource.demo.customer.Customer cust
);

 public void getCustomerStatus(
 @WebParam(name = "customerId", targetNamespace = "")
 java.lang.String customerId,
 @WebParam(mode = WebParam.Mode.OUT, name = "status", targetNamespace =
"")
 javax.xml.ws.Holder<java.lang.String> status,
 @WebParam(mode = WebParam.Mode.OUT, name = "statusMessage",
targetNamespace = "")
 javax.xml.ws.Holder<java.lang.String> statusMessage
);
}

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:soap="http://cxf.apache.org/bindings/soap"

CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION

15

Address for the Jetty container

Apache CXF deploys the WS endpoint into a Jetty servlet container instance and the address attribute
of jaxws:endpoint is therefore used to configure the addressing information for the endpoint in the
Jetty container.

Apache CXF supports the notion of a default servlet container instance. The way the default servlet
container is initialized and configured depends on the particular mode of deployment that you choose.
For example the Red Hat JBoss Fuse container and Web containers (such as Tomcat) provide a default
servlet container.

There are two different syntaxes you can use for the endpoint address, where the syntax that you use
effectively determines whether or not the endpoint is deployed into the default servlet container, as
follows:

Address syntax for default servlet container—to use the default servlet container, specify only the
servlet context for this endpoint. Do not specify the protocol, host, and IP port in the address. For
example, to deploy the endpoint to the /Customers servlet context in the default servlet
container:

Address syntax for custom servlet container—to instantiate a custom Jetty container for the
endpoint, specify a complete HTTP URL, including the host and IP port (the value of the IP port
effectively identifies the target Jetty container). Typically, for a Jetty container, you specify the
host as 0.0.0.0, which is interpreted as a wildcard that matches every IP network interface on
the local machine (that is, if deployed on a multi-homed host, Jetty opens a listening port on
every network card). For example, to deploy the endpoint to the custom Jetty container listening
on IP port, 8083:

 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:endpoint
 xmlns:customer="http://demo.fusesource.com/wsdl/CustomerService/"
 id="customerService"
 address="/Customer"
 serviceName="customer:CustomerService"
 endpointName="customer:SOAPOverHTTP"
 implementor="#customerServiceImpl">
 </jaxws:endpoint>

 <bean id="customerServiceImpl"
 class="com.fusesource.customer.ws.CustomerServiceImpl"/>

</beans>

address="/Customers"

address="http://0.0.0.0:8083/Customers"

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

16

http://jetty.codehaus.org/jetty/

NOTE

If you want to configure a secure endpoint (secured by SSL), you would specify
the https: scheme in the address.

Referencing the service implementation

The implementor attribute of the jaxws:endpoint element references the implementation of the WS
service. The value of this attribute can either be the name of the implementation class or (as in this
example) a bean reference in the format, #BeanID, where the # character indicates that the following
identifier is the name of a bean in the bean registry.

2.5. JAVA-TO-WSDL MAVEN PLUG-IN

Overview

To generate a WSDL contract from your SEI, you can use either the java2ws command-line utility or
the cxf-java2ws-plugin Maven plug-in. The plug-in approach is ideal for Maven-based projects:
after you paste the requisite plug-in configuration into your POM file, the WSDL code generation step is
integrated into your build.

Configure the Java-to-WSDL Maven plug-in

Configuring the Java-to-WSDL Maven plug-in is relatively easy, because most of the default
configuration settings can be left as they are. After copying and pasting the sample plugin element into
your project's POM file, there are just a few basic settings that need to be customized, as follows:

CXF version—make sure that the plug-in's dependencies are using the latest version of Apache
CXF.

SEI class name—specify the fully-qualified class name of the SEI in the
configuration/className element.

Location of output—specify the location of the generated WSDL file in the
configuration/outputFile element.

For example, the following POM fragment shows how to configure the cxf-java2ws-plugin plug-in to
generate WSDL from the CustomerService SEI:

<project ...>
 ...
 <properties>
 <cxf.version>2.6.0.redhat-60024</cxf.version>
 </properties>

 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>${cxf.version}</version>
 <dependencies>

CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION

17

Generated WSDL

When using the Java-first approach to defining a Web service, there are typically other parts of your
application (for example, WS clients) that depend on the generated WSDL file. For this reason, it is
generally a good idea to output the generated WSDL file to a common location, which is accessible to
other projects in your application, using the outputFile configuration element.

If you do not specify the outputFile configuration element, the generated WSDL is sent to the
following location, by default:

Reference

For full details of how to configure the Java-to-WSDL plug-in, see the Maven Java2WS plug-in reference
page.

 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxws</artifactId>
 <version>${cxf.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-simple</artifactId>
 <version>${cxf.version}</version>
 </dependency>
 </dependencies>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <configuration>

<className>org.fusesource.demo.camelcxf.ws.server.CustomerService</classNa
me>

<outputFile>${basedir}/../src/main/resources/wsdl/CustomerService.wsdl</ou
tputFile>
 <genWsdl>true</genWsdl>
 <verbose>true</verbose>
 </configuration>
 <goals>
 <goal>java2ws</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

</project>

BaseDir/target/generated/wsdl/SEIClassName.wsdl

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

18

http://cxf.apache.org/docs/maven-java2ws-plugin.html

[1] If the SEI is left without annotations, Apache CXF defaults to using the simple frontend. This is a non-standard
frontend, which is not recommended for most applications.

CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION

19

http://cxf.apache.org/docs/simple-frontend.html

CHAPTER 3. WSDL-FIRST SERVICE IMPLEMENTATION

3.1. WSDL-FIRST OVERVIEW

Overview

If you are familiar with the syntax of WSDL and you want to have ultimate control over the layout and
conventions applied to the WSDL contract, you will probably prefer to develop your Web service using
the WSDL-first approach. In this approach, you start with the WSDL contract and then use the provided
Apache CXF utilities to generate the requisite Java stub files from the WSDL contract.

Demonstration location

The code presented in this chapter is taken from the following demonstration:

For details of how to download and install the demonstration code, see Chapter 1, Demonstration Code
for Camel/CXF

WSDL contract

The WSDL contract is a platform-neutral and language-neutral description of the Web service interface.
In the WSDL-first approach, the WSDL contract is the starting point for implementing the Web service.
You can use it to generate Java stub code, which provides the basis for implementing the Web service
on the server side.

Service Endpoint Interface (SEI)

The most important piece of the generated stub code is the SEI, which is an ordinary Java interface that
represents the Web service interface in the Java language.

The SEI is used in the following ways:

Base type of the Web service implementation (server side)—you define the Web service by
implementing the SEI.

Proxy type (client side)—on the client side, you use the SEI to invoke operations on the client
proxy object.

The CustomerService demonstration

Figure 3.1, “Building a WSDL-First Web Service” shows an overview of the files required to implement
and build the CustomerService Web service using the WSDL-first approach.

DemoDir/src/fuse-webinars/cxf-webinars/customer-ws-osgi-bundle

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

20

Figure 3.1. Building a WSDL-First Web Service

Implementing and building the service

To implement and build the WSDL-first example shown in Figure 3.1, “Building a WSDL-First Web
Service”, starting from scratch, you would perform the following steps:

1. Create the WSDL contract.

2. Generate the Java stub code from the WSDL contract using a WSDL-to-Java converter,
ws2java. This gives you the SEI, CustomerService, and its related classes, such as
Customer.

3. Write the implementation of the SEI, CustomerServiceImpl.

4. Instantiate the Web service endpoint, by adding the appropriate code to a Spring XML file.

3.2. CUSTOMERSERVICE WSDL CONTRACT

Sample WSDL contract

The WSDL contract used in this demonstration is the CustomerService WSDL contract, which is
available in the following location:

Because the WSDL contract is a fairly verbose format, it is not shown in here in full. The main point you
need to be aware of is that the CustomerSerivice WSDL contract exposes the following operations:

lookupCustomer

Given a customer ID, the operation returns the corresponding Customer data object.

updateCustomer

Stores the given Customer data object against the given customer ID.

getCustomerStatus

/fuse-webinars/cxf-webinars/src/main/resources

CHAPTER 3. WSDL-FIRST SERVICE IMPLEMENTATION

21

Returns the status of the customer with the given customer ID.

Parts of the WSDL contract

A WSDL contract has the following main parts:

the section called “Port type”.

the section called “WSDL binding”.

the section called “WSDL port”.

Port type

The port type is defined in the WSDL contract by the wsdl:portType element. It is analogous to an
interface and it defines the operations that can be invoked on the Web service.

For example, the following WSDL fragment shows the wsdl:portType definition from the
CustomerService WSDL contract:

WSDL binding

A WSDL binding describes how to encode all of the operations and data types associated with a
particular port type. A binding is specific to a particular protocol—for example, SOAP or JMS.

WSDL port

<wsdl:definitions name="CustomerService"
 targetNamespace="http://demo.fusesource.com/wsdl/CustomerService/"
 ...>

 ...
 <wsdl:portType name="CustomerService">
 <wsdl:operation name="lookupCustomer">
 <wsdl:input message="tns:lookupCustomer"></wsdl:input>
 <wsdl:output message="tns:lookupCustomerResponse">
</wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="updateCustomer">
 <wsdl:input message="tns:updateCustomer"></wsdl:input>
 <wsdl:output message="tns:updateCustomerResponse">
</wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getCustomerStatus">
 <wsdl:input message="tns:getCustomerStatus"></wsdl:input>
 <wsdl:output message="tns:getCustomerStatusResponse">
</wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

22

A WSDL port specifies the transport protocol and contains addressing data that enables clients to locate
and connect to a remote server endpoint.

For example, the CustomerService WSDL contract defines the following WSDL port:

The address specified by the soap:address element's location attribute in the original WSDL
contract is typically overridden at run time, however.

The getCustomerStatus operation

Because a WSDL contract is fairly verbose, it can be a bit difficult to see what the parameters of an
operation are. Typically, for each operation, you can find data types in the XML schema section that
represent the operation request and the operation response. For example, the getCustomerStatus
operation has its request parameters (IN parameters) encoded by the getCustomerStatus element
and its response parameters (OUT parameters) encoded by the getCustomerStatusResponse
element, as follows:

<wsdl:definitions ...>
 ...
 <wsdl:service name="CustomerService">
 <wsdl:port name="SOAPOverHTTP" binding="tns:CustomerServiceSOAP">
 <soap:address location="http://0.0.0.0:8183/CustomerService"
/>
 </wsdl:port>
 </wsdl:service>

</wsdl:definitions>

<wsdl:definitions name="CustomerService"
 targetNamespace="http://demo.fusesource.com/wsdl/CustomerService/"
 ...>
 <wsdl:types>
 <xsd:schema ...>
 ...
 <xsd:element name="getCustomerStatus">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="customerId"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getCustomerStatusResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="status" type="xsd:string"/>
 <xsd:element name="statusMessage"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </wsdl:types>
 ...
</wsdl:definitions>

CHAPTER 3. WSDL-FIRST SERVICE IMPLEMENTATION

23

References

For more details about the format of WSDL contracts and how to create your own WSDL contracts, see
Writing WSDL Contracts and the Eclipse JAX-WS Tools Component.

3.3. WSDL-TO-JAVA MAVEN PLUG-IN

Overview

In contrast to the Java-first approach, which starts with a Java interface and then generates the WSDL
contract, the WSDL-first approach needs to generate Java stub code from the WSDL contract.

To generate Java stub code from the WSDL contract, you can use either the ws2java command-line
utility or the cxf-codegen-plugin Maven plug-in. The plug-in approach is ideal for Maven-based
projects: after you paste the requisite plug-in configuration into your POM file, the WSDL-to-Java code
generation step is integrated into your build.

Configure the WSDL-to-Java Maven plug-in

Configuring the WSDL-to-Java Maven plug-in is relatively easy, because most of the default
configuration settings can be left as they are. After copying and pasting the sample plugin element into
your project's POM file, there are just a few basic settings that need to be customized, as follows:

CXF version—make sure that the plug-in's dependencies are using the latest version of Apache
CXF.

WSDL file location—specify the WSDL file location in the
configuration/wsdlOptions/wsdlOption/wsdl element.

Location of output—specify the root directory of the generated Java source files in the
configuration/sourceRoot element.

For example, the following POM fragment shows how to configure the cxf-codegen-plugin plug-in to
generate Java stub code from the CustomerService.wsdl WSDL file:

<project ...>
 ...
 <properties>
 <cxf.version>2.6.0.redhat-60024</cxf.version>
 </properties>

 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

24

http://wiki.eclipse.org/JAXWS

Generated Java source code

With the sample configuration shown here, the generated Java source code is written under the
target/generated-sources/jaxws directory. Note that the Web service implementation is
dependent on this generated stub code—for example, the service implementation class must implement
the generated CustomerService SEI.

Adding the generated source to an IDE

If you are using an IDE such as Eclipse or Intellij's IDEA, you need to make sure that the IDE is aware of
the generated Java code. For example, in Eclipse it is necessary to add the target/generated-
sources/jaxws directory to the project as a source code directory.

Compiling the generated code

You must ensure that the generated Java code is compiled and added to the deployment package. By
convention, Maven automatically compiles any source files that it finds under the following directory:

Hence, if you configure the output directory as shown in the preceding POM fragment, the generated
code is automatically compiled by Maven.

Reference

For full details of how to configure the Java-to-WSDL plug-in, see the Maven cxf-codegen-plugin
reference page.

3.4. INSTANTIATE THE WS ENDPOINT

 <!-- Maven auto-compiles any source files under
target/generated-sources/ -->
 <sourceRoot>${basedir}/target/generated-
sources/jaxws</sourceRoot>
 <wsdlOptions>
 <wsdlOption>

<wsdl>${basedir}/../src/main/resources/wsdl/CustomerService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 </plugins>
 </build>

</project>

BaseDir/target/generated-sources/

CHAPTER 3. WSDL-FIRST SERVICE IMPLEMENTATION

25

http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html

Overview

In Apache CXF, you create a WS endpoint by defining a jaxws:endpoint element in XML. The WS
endpoint is effectively the runtime representation of the Web service: it opens an IP port to listen for
SOAP/HTTP requests, is responsible for marshalling and unmarshalling messages (making use of the
generated Java stub code), and routes incoming requests to the relevant methods on the implementor
class.

In other words, creating a Web service in Spring XML consists essentially of the following two steps:

1. Create an instance of the implementor class, using the Spring bean element.

2. Create a WS endpoint, using the jaxws:endpoint element.

Define JAX-WS endpoint in XML

The following sample Spring file shows how to define a JAX-WS endpoint in XML, using the
jaxws:endpoint element.

Address for the Jetty container

In the preceding example, the address attribute of the jaxws:endpoint element specifies the servlet
context for this endpoint, relative to the Jetty container in which it is deployed.

For more details about the options for specifying the endpoint address, see the section called “Address
for the Jetty container”.

Referencing the service implementation

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:soap="http://cxf.apache.org/bindings/soap"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

 <jaxws:endpoint
 xmlns:customer="http://demo.fusesource.com/wsdl/CustomerService/"
 id="customerService"
 address="/Customer"
 serviceName="customer:CustomerService"
 endpointName="customer:SOAPOverHTTP"
 implementor="#customerServiceImpl">
 </jaxws:endpoint>

 <bean id="customerServiceImpl"
 class="com.fusesource.customer.ws.CustomerServiceImpl"/>

</beans>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

26

The implementor attribute of the jaxws:endpoint element is used to reference the implementation
of the WS service. The value of this attribute can either be the name of the implementation class or (as
in this example) a bean reference in the format, #BeanID, where the # character indicates that the
following identifier is the name of a bean in the bean registry.

3.5. DEPLOY TO AN OSGI CONTAINER

Overview

One of the options for deploying the Web service is to package it as an OSGi bundle and deploy it into
an OSGi container such as Red Hat JBoss Fuse. Some of the advantages of an OSGi deployment
include:

Bundles are a relatively lightweight deployment option (because dependencies can be shared
between deployed bundles).

OSGi provides sophisticated dependency management, ensuring that only version-consistent
dependencies are added to the bundle's classpath.

Using the Maven bundle plug-in

The Maven bundle plug-in is used to package your project as an OSGi bundle, in preparation for
deployment into the OSGi container. There are two essential modifications to make to your project's
pom.xml file:

1. Change the packaging type to bundle (by editing the value of the project/packaging
element in the POM).

2. Add the Maven bundle plug-in to your POM file and configure it as appropriate.

Configuring the Maven bundle plug-in is quite a technical task (although the default settings are often
adequate). For full details of how to customize the plug-in configuration, consult Deploying into the OSGi
Container and Managing OSGi Dependencies.

Sample bundle plug-in configuration

The following POM fragment shows a sample configuration of the Maven bundle plug-in, which is
appropriate for the current example.

<?xml version="1.0"?>
<project ...>
 ...
 <groupId>org.fusesource.sparks.fuse-webinars.cxf-webinars</groupId>
 <artifactId>customer-ws-osgi-bundle</artifactId>
 <name>customer-ws-osgi-bundle</name>
 <url>http://www.fusesource.com</url>
 <packaging>bundle</packaging>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>

CHAPTER 3. WSDL-FIRST SERVICE IMPLEMENTATION

27

Dynamic imports

The Java packages from Apache CXF and the Spring API are imported using dynamic imports (specified
using the DynamicImport-Package element). This is a pragmatic way of dealing with the fact that
Spring XML files are not terribly well integrated with the Maven bundle plug-in. At build time, the Maven
bundle plug-in is not able to figure out which Java classes are required by the Spring XML code. By
listing wildcarded package names in the DynamicImport-Package element, however, you allow the
OSGi container to figure out which Java classes are needed by the Spring XML code at run time.

NOTE

In general, using DynamicImport-Package headers is not recommended in OSGi,
because it short-circuits OSGi version checking. Normally, what should happen is that the
Maven bundle plug-in lists the Java packages used at build time, along with their versions,
in the Import-Package header. At deploy time, the OSGi container then checks that the
available Java packages are compatible with the build-time versions listed in the
Import-Package header. With dynamic imports, this version checking cannot be
performed.

Build and deploy the service bundle

After you have configured the POM file, you can build the Maven project and install it in your local
repository by entering the following command:

To deploy the service bundle, enter the following command at the command console:

 <version>${maven-bundle-plugin.version}</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Export-Package>
 !com.fusesource.customer.ws,
 !com.fusesource.demo.customer,
 !com.fusesource.demo.wsdl.customerservice
 </Export-Package>
 <Import-Package>
 META-INF.cxf,
 META-INF.cxf.osgi,
 *
 </Import-Package>
 <DynamicImport-Package>
 org.apache.cxf.*,
 org.springframework.beans.*
 </DynamicImport-Package>
 </instructions>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
</project>

mvn install

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

28

NOTE

If your local Maven repository is stored in a non-standard location, you might need to
customize the value of the org.ops4j.pax.url.mvn.localRepository property in
the EsbInstallDir/etc/org.ops4j.pax.url.mvn.cfg file, before you can use
the mvn: scheme to access Maven artifacts.

Red Hat JBoss Fuse default servlet container

Red Hat JBoss Fuse has a default Jetty container which, by default, listens for HTTP requests on port
8181. Moreover, WS endpoints in this container are implicitly deployed under the servlet context cxf/.
Hence, any WS endpoint whose address attribute is configured in the jaxws:endpoint element as
/EndpointContext will have the following effective address:

You can optionally customize the default servlet container by editing settings in the following file:

Full details of the properties you can set in this file are given in the Ops4j Pax Web configuration
reference..

Check that the service is running

A simple way of checking that the service is running is to point your browser at the following URL:

This query should return a copy of the WS endpoint's WSDL contract.

karaf@root> install -s mvn:org.fusesource.sparks.fuse-webinars.cxf-
webinars/customer-ws-osgi-bundle

http://Hostname:8181/cxf/EndpointContext

EsbInstallDir/etc/org.ops4j.pax.web.cfg

http://localhost:8181/cxf/Customers?wsdl

CHAPTER 3. WSDL-FIRST SERVICE IMPLEMENTATION

29

http://team.ops4j.org/wiki/display/paxweb/Basic+Configuration

CHAPTER 4. IMPLEMENTING A WS CLIENT

4.1. WS CLIENT OVERVIEW

Overview

The key object in a WS client is the WS client proxy object, which enables you to access the remote
Web service by invoking methods on the SEI. The proxy object itself can easily be instantiated using the
jaxws:client element in Spring XML.

Demonstration location

The code presented in this chapter is taken from the following demonstration:

For details of how to download and install the demonstration code, see Chapter 1, Demonstration Code
for Camel/CXF

WSDL contract

The WSDL contract is a platform-neutral and language-neutral description of the Web service interface.
It contains all of the metadata that a client needs to find a Web service and invoke its operations. You
can generate Java stub code from the WSDL contract, which provides an API that makes it easy to
invoke the remote WSDL operations.

Service Endpoint Interface (SEI)

The most important piece of the generated stub code is the SEI, which is an ordinary Java interface that
represents the Web service interface in the Java language.

WS client proxy

The WS client proxy is an object that converts Java method invocations to remote procedure calls,
sending and receiving messages to a remote instance of the Web service across the network. The
methods of the proxy are exposed through the SEI.

NOTE

The proxy type is generated dynamically by Apache CXF at run time. That is, their is no
class in the stub code that corresponds to the implementation of the proxy (the only
relevant entity is the SEI, which defines the proxy's interface).

The CustomerService client

To take a specific example, consider the customer-ws-client demonstration, which is available from
the following location:

DemoDir/src/fuse-webinars/cxf-webinars/customer-ws-client

DemoDir/src/fuse-webinars/cxf-webinars/customer-ws-client

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

30

Figure 4.1, “Building a WS Client” shows an overview of the files required to implement and build the WS
client.

Figure 4.1. Building a WS Client

Implementing and building the WS client

To implement and build the sample WS client shown in Figure 4.1, “Building a WS Client” , starting from
scratch, you would perform the following steps:

1. Obtain a copy of the WSDL contract.

2. Generate the Java stub code from the WSDL contract using a WSDL-to-Java converter,
ws2java. This gives you the SEI, CustomerService, and its related classes, such as
Customer.

3. Implement the main client class, ClientInvoker, which invokes the Web service operations.
In this class define a bean property of type, CustomerService, so that the client class can
receive a reference to the WS client proxy by property injection.

4. In a Spring XML file, instantiate the WS client proxy and inject it into the main client class,
ClientInvoker.

4.2. WSDL-TO-JAVA MAVEN PLUG-IN

Overview

To generate Java stub code from the WSDL contract, you can use either the ws2java command-line
utility or the cxf-codegen-plugin Maven plug-in. When using Maven, the plug-in approach is ideal:
after you paste the requisite plug-in configuration into your POM file, the WSDL-to-Java code generation
step is integrated into your build.

Configure the WSDL-to-Java Maven plug-in

Configuring the WSDL-to-Java Maven plug-in is relatively easy, because most of the default
configuration settings can be left as they are. After copying and pasting the sample plugin element into
your project's POM file, there are just a few basic settings that need to be customized, as follows:

CHAPTER 4. IMPLEMENTING A WS CLIENT

31

CXF version—make sure that the plug-in's dependencies are using the latest version of Apache
CXF.

WSDL file location—specify the WSDL file location in the
configuration/wsdlOptions/wsdlOption/wsdl element.

Location of output—specify the root directory of the generated Java source files in the
configuration/sourceRoot element.

For example, the following POM fragment shows how to configure the cxf-codegen-plugin plug-in to
generate Java stub code from the CustomerService.wsdl WSDL file:

Generated Java source code

With the sample configuration shown here, the generated Java source code is written under the

<project ...>
 ...
 <properties>
 <cxf.version>2.6.0.redhat-60024</cxf.version>
 </properties>

 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>${basedir}/target/generated-
sources/jaxws</sourceRoot>
 <wsdlOptions>
 <wsdlOption>

<wsdl>${basedir}/../src/main/resources/wsdl/CustomerService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 </plugins>
 </build>

</project>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

32

target/generated-sources/jaxws directory. Note that the client implementation is dependent on
this generated stub code—for example, the client invokes the proxy using the generated
CustomerService SEI.

Add generated source to IDE

If you are using an IDE such as Eclipse or Intellij's IDEA, you need to make sure that the IDE is aware of
the generated Java code. For example, in Eclipse it is necessary to add the target/generated-
sources/jaxws directory to the project as a source code directory.

Compiling the generated code

You must ensure that the generated Java code is compiled and added to the deployment package. By
convention, Maven automatically compiles any source files that it finds under the following directory:

Hence, if you configure the output directory as shown in the preceding POM fragment, the generated
code is automatically compiled by Maven.

Reference

For full details of how to configure the Java-to-WSDL plug-in, see the Maven cxf-codegen-plugin
reference page.

4.3. INSTANTIATE THE WS CLIENT PROXY

Overview

The WS client proxy is the most important kind of object in a WS client, because it provides a simple
way of invoking operations on a remote Web service. The proxy enables you to access a Web service by
invoking methods locally on a Java interface. The methods invoked on the proxy object are then
translated into remote procedure calls on the Web service.

You can instantiate a WS client proxy straightforwardly using the jaxws:client element.

Define the WS client in XML

The following Spring XML fragment shows how to instantiate a client proxy bean using the
jaxws:client element.

BaseDir/target/generated-sources/

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:soap="http://cxf.apache.org/bindings/soap"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/bindings/soap
http://cxf.apache.org/schemas/configuration/soap.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

CHAPTER 4. IMPLEMENTING A WS CLIENT

33

http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html

The jaxws:client element

The jaxws:client element creates a client proxy dynamically (that is, there is no dedicated class that
represents a proxy implementation in the Java stub code). The following attributes are used to define the
proxy:

id

The ID that you specify here is entered in the bean registry and can be used to reference the proxy
instance from other beans.

address

The full address of the remote Web service that this proxy connects to.

serviceClass

The fully-qualified class name of the Web service's SEI (you invoke methods on the proxy through the
SEI).

Injecting with the proxy reference

To access the proxy instance, simply inject the proxy into one or more other beans defined in XML.
Given that the proxy ID has the value, customerServiceProxy, you can inject it into a bean property
using the Spring property element, as follows:

The bean class that is being injected must have a corresponding setCustomerService setter method
—for example:

 <jaxws:client
 id="customerServiceProxy"
 address="http://localhost:8181/cxf/Customers"

serviceClass="com.fusesource.demo.wsdl.customerservice.CustomerService"
 />

 <bean id="customerServiceClient"
 class="com.fusesource.customer.client.ClientInvoker"
 init-method="init" destroy-method="destroy">
 <property name="customerService" ref="customerServiceProxy"/>
 </bean>

</beans>

<bean ...>
 <property name="customerService" ref="customerServiceProxy"/>
</bean>

// Java
...
public class ClientInvoker implements Runnable {
 ...
 public void setCustomerService(CustomerService customerService) {
 this.customerService = customerService;
 }

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

34

4.4. INVOKE WS OPERATIONS

Proxy interface is SEI interface

The proxy implements the SEI. Hence, to make remote procedure calls on the Web service, simply
invoke the SEI methods on the proxy instance.

Invoking the lookupCustomer operation

For example, the CustomerService SEI exposes the lookupCustomer method, which takes a
customer ID as its argument and returns a Customer data object. Using the proxy instance,
customerService, you can invoke the lookupCustomer operation as follows:

The ClientInvoker class

In the cxf-webinars/customer-ws-client project, there is a ClientInvoker class (located in
src/main/java/com/fusesource/customer/client), which defines a continuous loop that
invokes the lookupCustomer operation.

When you are experimenting with the demonstration code in the latter chapters of this guide, you might
need to modify the ClientInvoker class, possibly adding operation invocations.

4.5. DEPLOY TO AN OSGI CONTAINER

Overview

One of the options for deploying the WS client is to package it as an OSGi bundle and deploy it into an
OSGi container such as Red Hat JBoss Fuse. Some of the advantages of an OSGi deployment include:

Bundles are a relatively lightweight deployment option (because dependencies can be shared
between deployed bundles).

OSGi provides sophisticated dependency management, ensuring that only version-consistent
dependencies are added to the bundle's classpath.

Using the Maven bundle plug-in

The Maven bundle plug-in is used to package your project as an OSGi bundle, in preparation for
deployment into the OSGi container. There are two essential modifications to make to your project's
pom.xml file:

}

// Java
com.fusesource.demo.customer.Customer response
 = customerService.lookupCustomer("1234");

log.info("Got back " + response.getFirstName() + " "
 + response.getLastName()
 + ", ph:" + response.getPhoneNumber());

CHAPTER 4. IMPLEMENTING A WS CLIENT

35

1. Change the packaging type to bundle (by editing the value of the project/packaging
element in the POM).

2. Add the Maven bundle plug-in to your POM file and configure it as appropriate.

Configuring the Maven bundle plug-in is quite a technical task (although the default settings are often
adequate). For full details of how to customize the plug-in configuration, consult Deploying into the OSGi
Container and Managing OSGi Dependencies.

Sample bundle plug-in configuration

The following POM fragment shows a sample configuration of the Maven bundle plug-in, which is
appropriate for the current example.

Dynamic imports

<?xml version="1.0"?>
<project ...>
 ...
 <groupId>org.fusesource.sparks.fuse-webinars.cxf-webinars</groupId>
 <artifactId>customer-ws-osgi-bundle</artifactId>
 <name>customer-ws-osgi-bundle</name>
 <url>http://www.fusesource.com</url>
 <packaging>bundle</packaging>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>${maven-bundle-plugin.version}</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Export-Package>
 !com.fusesource.customer.client,
 !com.fusesource.demo.customer,
 !com.fusesource.demo.wsdl.customerservice
 </Export-Package>
 <Import-Package>
 META-INF.cxf,
 *
 </Import-Package>
 <DynamicImport-Package>
 org.apache.cxf.*,
 org.springframework.beans.*
 </DynamicImport-Package>
 </instructions>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
</project>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

36

The Java packages from Apache CXF and the Spring API are imported using dynamic imports (specified
using the DynamicImport-Package element). This is a pragmatic way of dealing with the fact that
Spring XML files are not terribly well integrated with the Maven bundle plug-in. At build time, the Maven
bundle plug-in is not able to figure out which Java classes are required by the Spring XML code. By
listing wildcarded package names in the DynamicImport-Package element, however, you allow the
OSGi container to figure out which Java classes are needed by the Spring XML code at run time.

NOTE

In general, using DynamicImport-Package headers is not recommended in OSGi,
because it short-circuits OSGi version checking. Normally, what should happen is that the
Maven bundle plug-in lists the Java packages used at build time, along with their versions,
in the Import-Package header. At deploy time, the OSGi container then checks that the
available Java packages are compatible with the build time versions listed in the Import-
Package header. With dynamic imports, this version checking cannot be performed.

Build and deploy the client bundle

After you have configured the POM file, you can build the Maven project and install it in your local
repository by entering the following command:

To deploy the client bundle, enter the following command at the containers command console:

NOTE

If your local Maven repository is stored in a non-standard location, you might need to
customize the value of the org.ops4j.pax.url.mvn.localRepository property in
the EsbInstallDir/etc/org.ops4j.pax.url.mvn.cfg file, before you can use
the mvn: scheme to access Maven artifacts.

Check that the client is running

Assuming that you have already deployed the corresponding Web service into the OSGi container, you
can verify that the client is successfully invoking WSDL operations by checking the log, as follows:

The client invokes an operation on the Web service once every second.

mvn install

karaf@root> install -s mvn:org.fusesource.sparks.fuse-webinars.cxf-
webinars/customer-ws-client

karaf@root> log:display -n 10

CHAPTER 4. IMPLEMENTING A WS CLIENT

37

CHAPTER 5. POJO-BASED ROUTE

5.1. PROCESSING MESSAGES IN POJO FORMAT

Overview

By default, the Camel CXF component marshals incoming Web service requests into the POJO data
form, where the In message body is encoded as a list of Java objects (one for each operation
parameter). The POJO data format has advantages and disadvantages, as follows:

The big advantage of the POJO data format is that the operation parameters are encoded using
the JAX-B standard, which makes them easy to manipulate in Java.

The downside of the POJO data format, on the other hand, is that it requires that the WSDL
metadata is converted to Java in advance (as defined by the JAX-WS and JAX-B mappings) and
compiled into your application. This means that a POJO-based route is not very dynamic.

Demonstration location

The code presented in this chapter is taken from the following demonstration:

For details of how to download and install the demonstration code, see Chapter 1, Demonstration Code
for Camel/CXF

Camel CXF component

The Camel CXF component is an Apache CXF component that integrates Web services with routes. You
can use it either to instantiate consumer endpoints (at the start of a route), which behave like Web
service instances, or to instantiate producer endpoints (at any other points in the route), which behave
like WS clients.

NOTE

Camel CXF endpoints—which are instantiated using the cxf:cxfEndpoint XML
element and are implemented by the Apache Camel project—are not to be confused with
the Apache CXF JAX-WS endpoints—which are instantiated using the jaxws:endpoint
XML element and are implemented by the Apache CXF project.

POJO data format

POJO data format is the default data format used by the Camel CXF component and it has the following
characteristics:

JAX-WS and JAX-B stub code (as generated from the WSDL contract) must be provided.

The SOAP body is marshalled into a list of Java objects.

One Java object for each part or parameter of the corresponding WSDL operation.

The type of the message body is org.apache.cxf.message.MessageContentsList.

DemoDir/src/fuse-webinars/cxf-webinars/customer-ws-camel-cxf-pojo

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

38

The SOAP headers are converted into headers in the exchange's In message.

Implementing and building a POJO route

To implement and build the demonstration POJO-based route, starting from scratch, you would perform
the following steps:

1. Obtain a copy of the WSDL contract that is to be integrated into the route.

2. Generate the Java stub code from the WSDL contract using a WSDL-to-Java converter. This
gives you the SEI, CustomerService, and its related classes, such as Customer.

3. Instantiate the Camel CXF endpoint in Spring, using the cxf:cxfEndpoint element.

4. Implement the route in XML, where you can use the content-based router to sort requests by
operation name.

5. Implement the operation processor beans, which are responsible for processing each operation.
When implementing these beans, the message contents must be accessed in POJO data
format.

Sample POJO route

Figure 5.1, “Sample POJO Route” shows an outline of the route that is used to process the operations of
the CustomerService Web service using the POJO data format. After sorting the request messages
by operation name, an operation-specific processor bean reads the incoming request parameters and
then generates a response in the POJO data format.

Figure 5.1. Sample POJO Route

5.2. WSDL-TO-JAVA MAVEN PLUG-IN

Overview

To generate Java stub code from the WSDL contract, you can use either the ws2java command-line
utility or the cxf-codegen-plugin Maven plug-in. When using Maven, the plug-in approach is ideal:
after you paste the requisite plug-in configuration into your POM file, the WSDL-to-Java code generation
step is integrated into your build.

CHAPTER 5. POJO-BASED ROUTE

39

Configure the WSDL-to-Java Maven plug-in

Configuring the WSDL-to-Java Maven plug-in is relatively easy, because most of the default
configuration settings can be left as they are. After copying and pasting the sample plugin element into
your project's POM file, there are just a few basic settings that need to be customized, as follows:

CXF version—make sure that the plug-in's dependencies are using the latest version of Apache
CXF.

WSDL file location—specify the WSDL file location in the
configuration/wsdlOptions/wsdlOption/wsdl element.

Location of output—specify the root directory of the generated Java source files in the
configuration/sourceRoot element.

For example, the following POM fragment shows how to configure the cxf-codegen-plugin plug-in to
generate Java stub code from the CustomerService.wsdl WSDL file:

<project ...>
 ...
 <properties>
 <cxf.version>2.6.0.redhat-60024</cxf.version>
 </properties>

 <build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>${basedir}/target/generated-
sources/jaxws</sourceRoot>
 <wsdlOptions>
 <wsdlOption>

<wsdl>${basedir}/../src/main/resources/wsdl/CustomerService.wsdl</wsdl>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

 </plugins>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

40

Generated Java source code

With the sample configuration shown here, the generated Java source code is written under the
target/generated-sources/jaxws directory. Note that the route is dependent on this generated
stub code—for example, when processing the POJO parameters, the parameter processor uses the
Customer data type from the stub code.

Add generated code to IDE

If you are using an IDE such as Eclipse or Intellij's IDEA, you need to make sure that the IDE is aware of
the generated Java code. For example, in Eclipse it is necessary to add the target/generated-
sources/jaxws directory to the project as a source code directory.

Compiling the generated code

You must ensure that the generated Java code is compiled and added to the deployment package. By
convention, Maven automatically compiles any source files that it finds under the following directory:

Hence, if you configure the output directory as shown in the preceding POM fragment, the generated
code is automatically compiled by Maven.

Reference

For full details of how to configure the Java-to-WSDL plug-in, see the Maven cxf-codegen-plugin
reference page.

5.3. INSTANTIATE THE WS ENDPOINT

Overview

In Apache Camel, the Camel CXF component is the key to integrating routes with Web services. You
can use the Camel CXF component to create a CXF endpoint, which can be used in either of the
following ways:

Consumer—(at the start of a route) represents a Web service instance, which integrates with the
route. The type of payload injected into the route depends on the value of the endpoint's
dataFormat option.

Producer—(at other points in the route) represents a WS client proxy, which converts the current
exchange object into an operation invocation on a remote Web service. The format of the current
exchange must match the endpoint's dataFormat setting.

In the current demonstration, we are interested in creating a Camel CXF consumer endpoint, with the
dataFormat option set to POJO.

Maven dependency

 </build>

</project>

BaseDir/target/generated-sources/

CHAPTER 5. POJO-BASED ROUTE

41

http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html

The Camel CXF component requires you to add a dependency on the camel-cxf component in your
Maven POM. For example, the pom.xml file from the customer-ws-camel-cxf-pojo demonstration
project includes the following dependency:

The cxf:bean: URI syntax

The cxf:bean: URI is used to bind an Apache CXF endpoint to a route and has the following general
syntax:

Where CxfEndpointID is the ID of a bean created using the cxf:cxfEndpoint element, which
configures the details of the WS endpoint. You can append options to this URI (where the options are
described in detail in chapter "CXF" in "EIP Component Reference"). If you do not specify any additional
options, the endpoint uses the POJO data format by default.

For example, to start a route with a Apache CXF endpoint that is configured by the bean with ID,
customer-ws, define the route as follows:

NOTE

There is an alternative URI syntax, cxf://WsAddress[?Options], which enables you
to specify all of the WS endpoint details in the URI (so there is no need to reference a
bean instance). This typically results in a long and cumbersome URI, but is useful in some
cases.

The cxf:cxfEndpoint element

The cxf:cxfEndpoint element is used to define a WS endpoint that binds either to the start
(consumer endpoint) or the end (producer endpoint) of a route. For example, to define the customer-
ws WS endpoint referenced in the preceding route, you would define a cxf:cxfEndpoint element as
follows:

<dependency>
 <groupId>org.apache.camel</groupId>
 <artifactId>camel-cxf</artifactId>
 <version>${camel-version}</version>
</dependency>

cxf:bean:CxfEndpointID[?Options]

<route>
 <from uri="cxf:bean:customer-ws"/>
 ...
</route>

<?xml version="1.0" encoding="UTF-8"?>
<beans ...
 xmlns:cxf="http://camel.apache.org/schema/cxf" ...>
 ...
 <cxf:cxfEndpoint id="customer-ws"
 address="/Customer"
 endpointName="c:SOAPOverHTTP"
 serviceName="c:CustomerService"

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

42

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_CXF.html

IMPORTANT

Remember that the cxf:cxfEndpoint element and the jaxws:endpoint element use
different XML schemas (although the syntax looks superficially similar). These elements
bind a WS endpoint in different ways: the cxf:cxfEndpoint element instantiates and
binds a WS endpoint to an Apache Camel route, whereas the jaxws:endpoint element
instantiates and binds a WS endpoint to a Java class using the JAX-WS mapping.

Address for the Jetty container

Apache CXF deploys the WS endpoint into a Jetty servlet container instance and the address attribute
of cxf:cxfEndpoint is therefore used to configure the addressing information for the endpoint in the
Jetty container.

Apache CXF supports the notion of a default servlet container instance. The way the default servlet
container is initialized and configured depends on the particular mode of deployment that you choose.
For example the Red Hat JBoss Fuse container and Web containers (such as Tomcat) provide a default
servlet container.

There are two different syntaxes you can use for the endpoint address, where the syntax that you use
effectively determines whether or not the endpoint is deployed into the default servlet container, as
follows:

Address syntax for default servlet container—to use the default servlet container, specify only the
servlet context for this endpoint. Do not specify the protocol, host, and IP port in the address. For
example, to deploy the endpoint to the /Customers servlet context in the default servlet
container:

Address syntax for custom servlet container—to instantiate a custom Jetty container for this
endpoint, specify a complete HTTP URL, including the host and IP port (the value of the IP port
effectively identifies the target Jetty container). Typically, for a Jetty container, you specify the
host as 0.0.0.0, which is interpreted as a wildcard that matches every IP network interface on
the local machine (that is, if deployed on a multi-homed host, Jetty opens a listening port on
every network card). For example, to deploy the endpoint to the custom Jetty container listening
on IP port, 8083:

NOTE

If you want to configure a secure endpoint (secured by SSL), you would specify
the https: scheme in the address.

Referencing the SEI

serviceClass="com.fusesource.demo.wsdl.customerservice.CustomerService"
 xmlns:c="http://demo.fusesource.com/wsdl/CustomerService/"/>
 ...
</beans>

address="/Customers"

address="http://0.0.0.0:8083/Customers"

CHAPTER 5. POJO-BASED ROUTE

43

http://jetty.codehaus.org/jetty/

The serviceClass attribute of the cxf:cxfEndpoint element references the SEI of the Web service,
which in this case is the CustomerService interface.

5.4. SORT MESSAGES BY OPERATION NAME

The operationName header

When the WS endpoint parses an incoming operation invocation in POJO mode, it automatically sets the
operationName header to the name of the invoked operation. You can then use this header to sort
messages by operation name.

Sorting by operation name

For example, the customer-ws-camel-cxf-pojo demonstration defines the following route, which
uses the content-based router pattern to sort incoming messages, based on the operation name. The
when predicates check the value of the operationName header using simple language expressions,
sorting messages into invocations on the updateCustomer operation, the lookupCustomer
operation, or the getCustomerStatus operation.

<beans ...>
 ...
 <camelContext id="camel"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="cxf:bean:customer-ws"/>
 <choice>
 <when>
 <simple>${in.header.operationName} ==
'updateCustomer'</simple>
 <to uri="updateCustomer"/>
 </when>
 <when>
 <simple>${in.header.operationName} ==
'lookupCustomer'</simple>
 <to uri="lookupCustomer"/>
 </when>
 <when>
 <simple>${in.header.operationName} ==
'getCustomerStatus'</simple>
 <to uri="getCustomerStatus"/>
 </when>
 </choice>
 </route>
 </camelContext>

 <bean id="updateCustomer"

class="com.fusesource.customerwscamelcxfpojo.UpdateCustomerProcessor"/>

 <bean id="getCustomerStatus"

class="com.fusesource.customerwscamelcxfpojo.GetCustomerStatusProcessor"/>

 <bean id="lookupCustomer"

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

44

Beans as endpoints

Note how the preceding route uses a convenient shortcut to divert each branch of the choice DSL to a
different processor bean. The DSL for sending exchanges to producer endpoints (for example, <to
uri="Destination"/>) is integrated with the bean registry: if the Destination does not resolve to an
endpoint or a component, the Destination is used as a bean ID to look up the bean registry. In this
example, the exchange is routed to processor beans (which implement the
org.apache.camel.Processor interface).

5.5. PROCESS OPERATION PARAMETERS

Overview

The most important characteristic of using Camel CXF in POJO mode is that the exchange's message
body contains a list of Java objects, representing the parameters of the WSDL operation. The types of
the Java objects are defined by the standard JAX-B mapping and the implementations of these
parameter types are provided by the Java stub code.

Contents of request message body

In POJO mode, the body of the request message is an
org.apache.cxf.message.MessageContentsList object. You can also obtain the message body
as an Object[] array (where type conversion is automatic).

When the body is obtained as an Object[] array, the array contains the list of all the operation's IN,
INOUT, and OUT parameters in exactly the same order as defined in the WSDL contract (and in the
same order as the corresponding operation signature of the SEI). The parameter mode affects the
content as follows:

IN

Contains a parameter value from the client.

INOUT

Contains a Holder object containing a parameter value from the client.

OUT

Contains an empty Holder object, which is a placeholder for the response.

NOTE

Unlike OUT parameters, there is no placeholder in the request's Object[] array to
represent a return value.

Contents of response message body

class="com.fusesource.customerwscamelcxfpojo.LookupCustomerProcessor"/>

</beans>

CHAPTER 5. POJO-BASED ROUTE

45

In POJO mode, the body of the response message can be either an
org.apache.cxf.message.MessageContentsList object or an Object[] array.

When setting the response body as an Object[] array, the array should contain only the operation's
INOUT and OUT parameters in the same order as defined in the WSDL contract, omitting the IN
parameters. The parameter mode affects the content as follows:

INOUT

Contains a Holder object, which you must set to a response value. The Holder object used here
must be exactly the Holder object for the corresponding parameter that was extracted from the
request Object[] array. Creating and inserting a new Holder object into the Object[] array does
not work.

OUT

Contains a Holder object, which you must initialize with a response value. The Holder object used
here must be exactly the Holder object for the corresponding parameter that was extracted from the
request Object[] array. Creating and inserting a new Holder object into the Object[] array does
not work.

NOTE

If you defined the Web service interface using the Java-first approach, note that the return
value (if any) must be set as the first element in the response's Object[] array. The
return type is set as a plain object: it does not use a Holder object.

Example: getCustomerStatus operation

For example, the getCustomerStatus operation takes three parameters: IN, OUT, and OUT,
respectively. The corresponding method signature in the SEI is, as follows:

Example: request and response bodies

For the getCustomerStatus operation, the bodies of the request message and the response message
have the following contents:

Request message—as an Object[] array type, the contents are: { String customerId,
Holder<String> status, Holder<String> statusMessage }.

// Java
public void getCustomerStatus(
 @WebParam(name = "customerId", targetNamespace = "")
 java.lang.String customerId,

 @WebParam(mode = WebParam.Mode.OUT, name = "status", targetNamespace =
"")
 javax.xml.ws.Holder<java.lang.String> status,

 @WebParam(mode = WebParam.Mode.OUT, name = "statusMessage",
targetNamespace = "")
 javax.xml.ws.Holder<java.lang.String> statusMessage
);

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

46

Response message—as an Object[] array type, the contents are: {Holder<String>
status, Holder<String> statusMessage }

Example: processing getCustomerStatus

The GetCustomerStatusProcessor class is responsible for processing incoming
getCustomerStatus invocations. The following sample implementation for POJO mode shows how to
read the request parameters from the In message body and then set the response parameters in the Out
message body.

5.6. DEPLOY TO OSGI

Overview

One of the options for deploying the POJO-based route is to package it as an OSGi bundle and deploy it
into an OSGi container such as Red Hat JBoss Fuse. Some of the advantages of an OSGi deployment
include:

Bundles are a relatively lightweight deployment option (because dependencies can be shared
between deployed bundles).

// Java
package com.fusesource.customerwscamelcxfpojo;

import javax.xml.ws.Holder;
import org.apache.camel.Exchange;
import org.apache.camel.Processor;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class GetCustomerStatusProcessor implements Processor {
 public static final Logger log =
LoggerFactory.getLogger(GetCustomerStatusProcessor.class);

 public void process(Exchange exchng) throws Exception {
 Object[] args = exchng.getIn().getBody(Object[].class);

 String id = (String) args[0];
 Holder<String> status = (Holder<String>) args[1];
 Holder<String> statusMsg = (Holder<String>) args[2];

 log.debug("Getting status for customer '" + id + "'");

 // This is where you'd actually do the work! Setting
 // the holder values to constants for the sake of brevity.
 //
 status.value = "Offline";
 statusMsg.value = "Going to sleep now!";

 exchng.getOut().setBody(new Object[] {status , statusMsg});
 }

}

CHAPTER 5. POJO-BASED ROUTE

47

OSGi provides sophisticated dependency management, ensuring that only version-consistent
dependencies are added to the bundle's classpath.

Using the Maven bundle plug-in

The Maven bundle plug-in is used to package your project as an OSGi bundle, in preparation for
deployment into the OSGi container. There are two essential modifications to make to your project's
pom.xml file:

1. Change the packaging type to bundle (by editing the value of the project/packaging
element in the POM).

2. Add the Maven bundle plug-in to your POM file and configure it as appropriate.

Configuring the Maven bundle plug-in is quite a technical task (although the default settings are often
adequate). For full details of how to customize the plug-in configuration, consult Deploying into the OSGi
Container and Managing OSGi Dependencies.

Sample bundle plug-in configuration

The following POM fragment shows a sample configuration of the Maven bundle plug-in, which is
appropriate for the current example.

<?xml version="1.0"?>
<project ...>
 ...
 <groupId>org.fusesource.sparks.fuse-webinars.cxf-webinars</groupId>
 <artifactId>customer-ws-camel-cxf-pojo</artifactId>

 <name>customer-ws-camel-cxf-pojo</name>
 <url>http://www.fusesource.com</url>
 <packaging>bundle</packaging>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Import-Package>
 META-INF.cxf,
 META-INF.cxf.osgi,
 *
 </Import-Package>
 <DynamicImport-Package>
 org.apache.cxf.*,
 org.springframework.beans.*
 </DynamicImport-Package>
 </instructions>
 </configuration>
 </plugin>
 ...

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

48

Dynamic imports

The Java packages from Apache CXF and the Spring API are imported using dynamic imports (specified
using the DynamicImport-Package element). This is a pragmatic way of dealing with the fact that
Spring XML files are not terribly well integrated with the Maven bundle plug-in. At build time, the Maven
bundle plug-in is not able to figure out which Java classes are required by the Spring XML code. By
listing wildcarded package names in the DynamicImport-Package element, however, you allow the
OSGi container to figure out which Java classes are needed by the Spring XML code at run time.

NOTE

In general, using DynamicImport-Package headers is not recommended in OSGi,
because it short-circuits OSGi version checking. Normally, what should happen is that the
Maven bundle plug-in lists the Java packages used at build time, along with their versions,
in the Import-Package header. At deploy time, the OSGi container then checks that the
available Java packages are compatible with the build time versions listed in the Import-
Package header. With dynamic imports, this version checking cannot be performed.

Build and deploy the POJO route bundle

After you have configured the POM file, you can build the Maven project and install it in your local
repository by entering the following command:

To deploy the route bundle, enter the following command at the Apache ServiceMix console:

NOTE

If your local Maven repository is stored in a non-standard location, you might need to
customize the value of the org.ops4j.pax.url.mvn.localRepository property in
the EsbInstallDir/etc/org.ops4j.pax.url.mvn.cfg file, before you can use
the mvn: scheme to access Maven artifacts.

 </plugins>
 </build>
</project>

mvn install

karaf@root> install -s mvn:org.fusesource.sparks.fuse-webinars.cxf-
webinars/customer-ws-camel-cxf-pojo

CHAPTER 5. POJO-BASED ROUTE

49

CHAPTER 6. PAYLOAD-BASED ROUTE

6.1. PROCESSING MESSAGES IN PAYLOAD FORMAT

Overview

Select the PAYLOAD format, if you want to access the SOAP message body in XML format, encoded as
a DOM object (that is, of org.w3c.dom.Node type). One of the advantages of the PAYLOAD format is
that no JAX-WS and JAX-B stub code is required, which allows your application to be dynamic,
potentially handling many different WSDL interfaces.

Having a message body in XML format enables you to parse the request using XML languages such as
XPath and to generate responses using templating languages, such as Velocity.

NOTE

The DOM format is not the optimal type to use for large XML message bodies. For large
messages, consider using the techniques described in Chapter 7, Provider-Based Route.

Demonstration location

The code presented in this chapter is taken from the following demonstration:

For details of how to download and install the demonstration code, see Chapter 1, Demonstration Code
for Camel/CXF

Camel CXF component

The Camel CXF component is an Apache CXF component that integrates Web services with routes. You
can use it either to instantiate consumer endpoints (at the start of a route), which behave like Web
service instances, or to instantiate producer endpoints (at any other points in the route), which behave
like WS clients.

NOTE

Came CXF endpoints—which are instantiated using the cxf:cxfEndpoint XML
element and are implemented by the Apache Camel project—are not to be confused with
the Apache CXF JAX-WS endpoints—which are instantiated using the jaxws:endpoint
XML element and are implemented by the Apache CXF project.

PAYLOAD data format

The PAYLOAD data format is selected by setting the dataFormat=PAYLOAD option on a Camel CXF
endpoint URI and it has the following characteristics:

Enables you to access the message body as a DOM object (XML payload).

No JAX-WS or JAX-B stub code required.

The SOAP body is marshalled as follows:

DemoDir/src/fuse-webinars/cxf-webinars/customer-ws-camel-cxf-payload

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

50

The message body is effectively an XML payload of org.w3c.dom.Node type (wrapped in
a CxfPayload object).

The type of the message body is org.apache.camel.component.cxf.CxfPayload.

The SOAP headers are converted into headers in the exchange's In message, of
org.apache.cxf.binding.soap.SoapHeader type.

Implementing and building a PAYLOAD route

To implement and build the demonstration PAYLOAD-based route, starting from scratch, you would
perform the following steps:

1. Instantiate the Camel CXF endpoint in Spring, using the cxf:cxfEndpoint element.

2. Implement the route in XML, where you can use the content-based router to sort requests by
operation name.

3. For each operation, define a processor bean to process the request.

4. Define velocity templates for generating the reponse messages.

Sample PAYLOAD route

Figure 6.1, “Sample PAYLOAD Route” shows an outline of the route that is used to process the
operations of the CustomerService Web service using the PAYLOAD data format. After sorting the
request messages by operation name, an operation-specific processor bean reads the incoming request
parameters. Finally, the response messages are generated using Velocity templates.

Figure 6.1. Sample PAYLOAD Route

6.2. INSTANTIATE THE WS ENDPOINT

Overview

In Apache Camel, the CXF component is the key to integrating routes with Web services. You can use
the CXF component to create two different kinds of endpoint:

CHAPTER 6. PAYLOAD-BASED ROUTE

51

Consumer endpoint—(at the start of a route) represents a Web service instance, which
integrates with the route. The type of payload injected into the route depends on the value of the
endpoint's dataFormat option.

Producer endpoint—represents a special kind of WS client proxy, which converts the current
exchange object into an operation invocation on a remote Web service. The format of the current
exchange must match the endpoint's dataFormat setting.

The cxf:bean: URI syntax

The cxf:bean: URI is used to bind an Apache CXF endpoint to a route and has the following general
syntax:

Where CxfEndpointID is the ID of a bean created using the cxf:cxfEndpoint element, which
configures the details of the WS endpoint. You can append options to this URI (where the options are
described in detail in chapter "CXF" in "EIP Component Reference"). To enable payload mode, you
must set the URI option, dataFormat=PAYLOAD.

For example, to start a route with an endpoint in PAYLOAD mode, where the endpoint is configured by
the customer-ws bean, define the route as follows:

The cxf:cxfEndpoint element

The cxf:cxfEndpoint element is used to define a WS endpoint that binds either to the start
(consumer endpoint) or the end (producer endpoint) of a route. For example, to define the customer-
ws WS endpoint in PAYLOAD mode, you define a cxf:cxfEndpoint element as follows:

NOTE

In the case of PAYLOAD mode, you do not need to reference the SEI and you must
specify the WSDL location instead. In fact, in PAYLOAD mode, you do not require any
Java stub code at all.

cxf:bean:CxfEndpointID[?Options]

<route>
 <from uri="cxf:bean:customer-ws?dataFormat=PAYLOAD"/>
 ...
</route>

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <cxf:cxfEndpoint id="customer-ws"
 address="/Customer"
 endpointName="c:SOAPOverHTTP"
 serviceName="c:CustomerService"
 wsdlURL="wsdl/CustomerService.wsdl"
 xmlns:c="http://demo.fusesource.com/wsdl/CustomerService/"/>
 ...
</beans>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

52

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_CXF.html

Address for the Jetty container

Apache CXF deploys the WS endpoint into a Jetty servlet container instance and the address attribute
of cxf:cxfEndpoint is therefore used to configure the addressing information for the endpoint in the
Jetty container.

Apache CXF supports the notion of a default servlet container instance. The way the default servlet
container is initialized and configured depends on the particular mode of deployment that you choose.
For example the OSGi container and Web containers (such as Tomcat) provide a default servlet
container.

There are two different syntaxes you can use for the endpoint address, where the syntax that you use
effectively determines whether or not the endpoint is deployed into the default servlet container, as
follows:

Address syntax for default servlet container—to use the default servlet container, specify only the
servlet context for this endpoint. Do not specify the protocol, host, and IP port in the address. For
example, to deploy the endpoint to the /Customers servlet context in the default servlet
container:

Address syntax for custom servlet container—to instantiate a custom Jetty container for this
endpoint, specify a complete HTTP URL, including the host and IP port (the value of the IP port
effectively identifies the target Jetty container). Typically, for a Jetty container, you specify the
host as 0.0.0.0, which is interpreted as a wildcard that matches every IP network interface on
the local machine (that is, if deployed on a multi-homed host, Jetty opens a listening port on
every network card). For example, to deploy the endpoint to the custom Jetty container listening
on IP port, 8083:

NOTE

If you want to configure a secure endpoint (secured by SSL), you would specify
the https: scheme in the address.

Specifying the WSDL location

The wsdlURL attribute of the cxf:cxfEndpoint element is used to specify the location of the WSDL
contract for this endpoint. The WSDL contract is used exclusively as the source of metadata for this
endpoint: there is need to specify an SEI in PAYLOAD mode.

6.3. SORT MESSAGES BY OPERATION NAME

The operationName header

When the WS endpoint parses an incoming operation invocation in PAYLOAD mode, it automatically
sets the operationName header to the name of the invoked operation. You can then use this header to
sort messages by operation name.

Sorting by operation name

address="/Customers"

address="http://0.0.0.0:8083/Customers"

CHAPTER 6. PAYLOAD-BASED ROUTE

53

http://jetty.codehaus.org/jetty/

For example, the customer-ws-camel-cxf-payload demonstration defines the following route,
which uses the content-based router pattern to sort incoming messages, based on the operation name.
The when predicates check the value of the operationName header using simple language
expressions, sorting messages into invocations on the updateCustomer operation, the
lookupCustomer operation, or the getCustomerStatus operation.

6.4. SOAP/HTTP-TO-JMS BRIDGE USE CASE

Overview

In this section, we consider a SOAP/HTTP-to-JMS bridge use case: that is, you want to create a route
that transforms a synchronous operation invocation (over SOAP/HTTP) into an asynchronous message
delivery (by pushing the message onto a JMS queue). In this way, it becomes possible to process the
incoming operation invocations at a later time, by pulling messages off the JMS queue.

Of course, an alternative solution would be to modify the WSDL contract directly to declare the operation
as OneWay, thus making the operation asynchronous. Unfortunately, it is often impractical to modify
existing WSDL contracts in the real world, because this can have an impact on third-party applications.

Figure 6.2, “SOAP/HTTP-to-JMS Bridge” shows the general outline of a bridge that can transform
synchronous SOAP/HTTP invocations into asynchronous JMS message deliveries.

<beans ...>
 ...
 <camelContext id="camel"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="cxf:bean:customer-ws?dataFormat=PAYLOAD"/>
 <choice>
 <when>
 <simple>${in.header.operationName} ==
'updateCustomer'</simple>
 ...
 </when>
 <when>
 <simple>${in.header.operationName} ==
'lookupCustomer'</simple>
 ...
 </when>
 <when>
 <simple>${in.header.operationName} ==
'getCustomerStatus'</simple>
 ...
 </when>
 </choice>
 </route>
 </camelContext>

</beans>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

54

Figure 6.2. SOAP/HTTP-to-JMS Bridge

Transforming RPC operations to One Way

As shown in Figure 6.2, “SOAP/HTTP-to-JMS Bridge”, the route for transforming synchronous
SOAP/HTTP to asynchronous JMS works as follows:

1. The WS client invokes a synchronous operation on the Camel CXF endpoint at the start of the
route. The Camel CXF endpoint then creates an initial InOut exchange at the start of the route,
where the body of the exchange message contains a payload in XML format.

2. The inOnly DSL command pushes a copy of the XML payload onto a JMS queue, so that it can
be processed offline at some later time.

3. The transform DSL command constructs an immediate response to send back to the client,
where the response has the form of an XML string.

4. The Camel CXF component supports implicit type conversion of the XML string to payload
format.

5. The response is sent back to the WS client, thus completing the synchronous operation
invocation.

Evidently, this transformation can only work, if the original operation invocation has no return value.
Otherwise, it would be impossible to generate a response message before the request has been
processed.

Creating a broker instance

You can use Apache ActiveMQ as the JMS implementation. A convenient approach to use in this
demonstration is to embed the Apache ActiveMQ broker in the bridge bundle. Simply define an
amq:broker element in the Spring XML file, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 ...
 xmlns:amq="http://activemq.apache.org/schema/core"
 ...>

 <amq:broker brokerName="CxfPayloadDemo" persistent="false">
 <amq:transportConnectors>

CHAPTER 6. PAYLOAD-BASED ROUTE

55

NOTE

This broker instance is created with the persistent attribute set to false, so that the
messages are stored only in memory.

Configuring the JMS component

Because the broker is co-located with the bridge route (in the same JVM), the most efficient way to
connect to the broker is to use the VM (Virtual Machine) transport. Configure the Apache ActiveMQ
component as follows, to connect to the co-located broker using the VM protocol:

NOTE

By defining the bean with an id value of activemq, you are implicitly overriding the
component associated with the endpoint URI prefix, activemq:. In other words, your
custom ActiveMQComponent instance is used instead of the default
ActiveMQComponent instance from the camel-activemq JAR file.

Sample SOAP/HTTP-to-JMS route

For example, you could define a route that implements the SOAP/HTTP-to-JMS bridge specifically for
the updateCustomer operation from the CustomerService SEI, as follows:

 <amq:transportConnector name="openwire"
uri="tcp://localhost:51616"/>
 <amq:transportConnector name="vm" uri="vm:local"/>
 </amq:transportConnectors>
 </amq:broker>
 ...
</beans>

<beans ...>
 ...
 <bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="vm:local"/>
 </bean>
 ...
</beans>

<when>
 <simple>${in.header.operationName} == 'updateCustomer'</simple>
 <log message="Placing update customer message onto queue."/>
 <inOnly uri="activemq:queue:CustomerUpdates?jmsMessageType=Text"/>
 <transform>
 <constant>
 <![CDATA[
<ns2:updateCustomerResponse
xmlns:ns2="http://demo.fusesource.com/wsdl/CustomerService/"/>
]]>
 </constant>
 </transform>
</when>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

56

Sending to the JMS endpoint in inOnly mode

Note how the message payload is sent to the JMS queue using the inOnly DSL command instead of
the to DSL command. When you send a message using the to DSL command, the default behavior is to
use the same invocation mode as the current exchange. But the current exchange has an InOut MEP,
which means that the to DSL command would wait forever for a response message from JMS.

The invocation mode we want to use when sending the payload to the JMS queue is InOnly
(asynchronous), and we can force this mode by inserting the inOnly DSL command into the route.

NOTE

By specifying the option, jmsMessageType=Text, Camel CXF implicitly converts the
message payload to an XML string before pushing it onto the JMS queue.

Returning a literal response value

The transform DSL command uses an expression to set the body of the exchange's Out message and
this message is then used as the response to the client. Your first impulse when defining a response in
XML format might be to use a DOM API, but in this example, the response is specified as a string literal.
This approach has the advantage of being both efficient and very easy to program.

The final step of processing, which consists of converting the XML string to a DOM object, is performed
by Apache Camel's implicit type conversion mechanism.

6.5. GENERATING RESPONSES USING TEMPLATES

Overview

One of the simplest and quickest approaches to generating a response message is to use a velocity
template. Figure 6.3, “Response Generated by Velocity” shows the outline of a general template-based
route. At the start of the route is a Camel CXF endpoint in PAYLOAD mode, which is the appropriate
mode to use for processing the message as an XML document. After doing the work required to process
the message and stashing some intermediate results in message headers, the route generates the
response message using a Velocity template.

Figure 6.3. Response Generated by Velocity

Sample template-based route

For example, you could define a template-based route specifically for the getCustoemrStatus
operation, as follows:

 ...

CHAPTER 6. PAYLOAD-BASED ROUTE

57

Route processing steps

Given the preceding route definition, any message whose operation name matches
getCustomerStatus would be processed as follows:

1. To facilitate processing the payload body, the first step uses convertBodyTo to convert the
body type from org.apache.camel.component.cxf.CxfPayload (the default payload
type) to org.w3c.dom.Node.

2. The route then applies an XPath expression to the message in order to extract the customer ID
value and then stashes it in the customerId header.

3. The next step sends the message to the getCustomerStatus bean, which does whatever
processing is required to get the customer status for the specified customer ID. The results from
this step are stashed in message headers.

4. Finally, a response is generated using a velocity template.

NOTE

A common pattern when implementing Apache Camel routes is to use message headers
as a temporary stash to hold intermediate results (you could also use exchange properties
in the same way).

Converting XPath result to a string

Because the default return type of XPath is a node list, you must explicitly convert the result to a string, if
you want to obtain the string contents of an element. There are two alternative ways of obtaining the
string value of an element:

Specify the result type explicitly using the resultType attribute, as follows:

 <when>
 <simple>${in.header.operationName} ==
'getCustomerStatus'</simple>
 <convertBodyTo type="org.w3c.dom.Node"/>
 <setHeader headerName="customerId">
 <xpath
resultType="java.lang.String">/cus:getCustomerStatus/customerId</xpath>
 </setHeader>
 <to uri="getCustomerStatus"/>
 <to uri="velocity:getCustomerStatusResponse.vm"/>
 </when>
 </choice>
 </route>
 </camelContext
 ...
 <bean id="getCustomerStatus"
 class="com.fusesource.customerwscamelcxfpayload.GetCustomerStatus"/>

<xpath
resultType="java.lang.String">/cus:getCustomerStatus/customerId</xpa
th>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

58

Modify the expression so that it returns a text() node, which automatically converts to string:

getCustomerStatus processor bean

The getCustomerStatus processor bean is an instance of the GetCustomerStatus processor class,
which is defined as follows:

The implementation shown here is just a placeholder. In a realistic application you would perform some
sort of checks or database lookup to obtain the customer status. In the demonstration code, however, the
status and statusMessage are simply set to constant values and stashed in message headers.

In the preceding code, we make the modifications directly to the In message. When the exchange's Out
message is null, the next processor in the route gets a copy of the current In message instead

NOTE

An exceptional case occurs when the message exchange pattern is inOnly, in which case
the Out message value is always copied into the In message, even if it is null.

getCustomerStatusResponse.vm Velocity template

You can generate a response message very simply using a Velocity template. The Velocity template
consists of a message in plain text, where specific pieces of data can be inserted using expressions—for
example, the expression ${header.HeaderName} substitutes the value of a named header.

The Velocity template for generating the getCustomerStatus reponse is located in the customer-
ws-camel-cxf-payload/src/main/resources directory and it contains the following template
script:

<xpath>/cus:getCustomerStatus/customerId/text()</xpath>

// Java
package com.fusesource.customerwscamelcxfpayload;

import org.apache.camel.Exchange;
import org.apache.camel.Processor;

public class GetCustomerStatus implements Processor
{
 public void process(Exchange exchng) throws Exception {
 String id = exchng.getIn().getHeader("customerId", String.class);

 // Maybe do some kind of lookup here!
 //

 exchng.getIn().setHeader("status", "Away");
 exchng.getIn().setHeader("statusMessage", "Going to sleep.");
 }
}

<ns2:getCustomerStatusResponse
xmlns:ns2="http://demo.fusesource.com/wsdl/CustomerService/">
 <status>${headers.status}</status>

CHAPTER 6. PAYLOAD-BASED ROUTE

59

6.6. DEPLOY TO OSGI

Overview

One of the options for deploying the payload-based route is to package it as an OSGi bundle and deploy
it into an OSGi container such as Red Hat JBoss Fuse. Some of the advantages of an OSGi deployment
include:

Bundles are a relatively lightweight deployment option (because dependencies can be shared
between deployed bundles).

OSGi provides sophisticated dependency management, ensuring that only version-consistent
dependencies are added to the bundle's classpath.

Using the Maven bundle plug-in

The Maven bundle plug-in is used to package your project as an OSGi bundle, in preparation for
deployment into the OSGi container. There are two essential modifications to make to your project's
pom.xml file:

1. Change the packaging type to bundle (by editing the value of the project/packaging
element in the POM).

2. Add the Maven bundle plug-in to your POM file and configure it as appropriate.

Configuring the Maven bundle plug-in is quite a technical task (although the default settings are often
adequate). For full details of how to customize the plug-in configuration, consult Deploying into the OSGi
Container and Managing OSGi Dependencies.

Sample bundle plug-in configuration

The following POM fragment shows a sample configuration of the Maven bundle plug-in, which is
appropriate for the current example.

 <statusMessage>${headers.statusMessage}</statusMessage>
</ns2:getCustomerStatusResponse>

<?xml version="1.0"?>
<project ...>
 ...
 <groupId>org.fusesource.sparks.fuse-webinars.cxf-webinars</groupId>
 <artifactId>customer-ws-camel-cxf-payload</artifactId>

 <name>customer-ws-camel-cxf-payload</name>
 <url>http://www.fusesource.com</url>
 <packaging>bundle</packaging>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

60

Dynamic imports

The Java packages from Apache CXF and the Spring API are imported using dynamic imports (specified
using the DynamicImport-Package element). This is a pragmatic way of dealing with the fact that
Spring XML files are not terribly well integrated with the Maven bundle plug-in. At build time, the Maven
bundle plug-in is not able to figure out which Java classes are required by the Spring XML code. By
listing wildcarded package names in the DynamicImport-Package element, however, you allow the
OSGi container to figure out which Java classes are needed by the Spring XML code at run time.

NOTE

In general, using DynamicImport-Package headers is not recommended in OSGi,
because it short-circuits OSGi version checking. Normally, what should happen is that the
Maven bundle plug-in lists the Java packages used at build time, along with their versions,
in the Import-Package header. At deploy time, the OSGi container then checks that the
available Java packages are compatible with the build time versions listed in the Import-
Package header. With dynamic imports, this version checking cannot be performed.

Build and deploy the client bundle

After you have configured the POM file, you can build the Maven project and install it in your local
repository by entering the following command:

 <configuration>
 <instructions>
 <Import-Package>
 org.apache.camel.component.velocity,
 META-INF.cxf,
 META-INF.cxf.osgi,
 javax.jws,
 javax.wsdl,
 javax.xml.bind,
 javax.xml.bind.annotation,
 javax.xml.namespace,
 javax.xml.ws,
 org.w3c.dom,
 <!-- Workaround to access DOM XPathFactory -->
 org.apache.xpath.jaxp,
 *
 </Import-Package>
 <DynamicImport-Package>
 org.apache.cxf.*,
 org.springframework.beans.*
 </DynamicImport-Package>
 </instructions>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
</project>

mvn install

CHAPTER 6. PAYLOAD-BASED ROUTE

61

To deploy the route bundle, enter the following command at the console:

NOTE

If your local Maven repository is stored in a non-standard location, you might need to
customize the value of the org.ops4j.pax.url.mvn.localRepository property in
the EsbInstallDir/etc/org.ops4j.pax.url.mvn.cfg file, before you can use
the mvn: scheme to access Maven artifacts.

karaf@root> install -s mvn:org.fusesource.sparks.fuse-webinars.cxf-
webinars/customer-ws-camel-cxf-payload

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

62

CHAPTER 7. PROVIDER-BASED ROUTE

7.1. PROVIDER-BASED JAX-WS ENDPOINT

Overview

Use the provider-based approach, if you need to process very large Web services messages. The
provider-based approach is a variant of the PAYLOAD data format that enables you to encode the
message body as an XML streaming type, such as SAXSource. Since the XMLstreaming types are
more efficient than DOM objects, the provider-based approach is ideal for large XML messages.

Demonstration location

The code presented in this chapter is taken from the following demonstration:

For details of how to download and install the demonstration code, see Chapter 1, Demonstration Code
for Camel/CXF

Camel CXF component

The Camel CXF component is an Apache CXF component that integrates Web services with routes. You
can use it either to instantiate consumer endpoints (at the start of a route), which behave like Web
service instances, or to instantiate producer endpoints (at any other points in the route), which behave
like WS clients.

NOTE

Came CXF endpoints—which are instantiated using the cxf:cxfEndpoint XML
element and are implemented by the Apache Camel project—are not to be confused with
the Apache CXF JAX-WS endpoints—which are instantiated using the jaxws:endpoint
XML element and are implemented by the Apache CXF project.

Provider-based approach and the PAYLOAD data format

The provider-based approach is a variant of the PAYLOAD data format, which is enabled as follows:

Define a custom javax.xml.ws.Provider<StreamType> class, where the StreamType type
is an XML streaming type, such as SAXSource.

The PAYLOAD data format is selected by an annotation on the custom Provider<?> class
(see the section called “The SAXSourceService provider class”).

The custom Provider<?> class is referenced by setting the serviceClass attribute of the
cxf:cxfEndpoint element in XML configuration.

The provider-based approach has the following characteristics:

Enables you to access the message body as a streamed XML type—for example,
javax.xml.transform.sax.SAXSource.

DemoDir/src/fuse-webinars/cxf-webinars/customer-ws-camel-cxf-provider

CHAPTER 7. PROVIDER-BASED ROUTE

63

No JAX-WS or JAX-B stub code required.

The SOAP body is marshalled into a stream-based SAXSource type.

The SOAP headers are converted into headers in the exchange's In message, of
org.apache.cxf.binding.soap.SoapHeader type.

Implementing and building a provider-based route

To implement and build the demonstration provider-based route, starting from scratch, you would
perform the following steps:

1. Define a custom javax.xml.ws.Provider<StreamType> class (the current demonstration
uses SAXSource as the StreamType type).

2. Instantiate the Camel CXF endpoint in Spring, using the cxf:cxfEndpoint element and
reference the custom provider class (using the serviceClass attribute).

3. Implement the route in XML, where you can use the content-based router to sort requests by
operation name.

4. For each operation, define a processor bean to process the request.

5. Define velocity templates for generating the reponse messages.

6. Define a custom type converter, to support converting a String message body to a
SAXSource message body.

Sample provider-based route

Figure 7.1, “Sample Provider-Based Route” shows an outline of the route that is used to process the
operations of the CustomerService Web service using the provider-based approach. After sorting the
request messages by operation name, an operation-specific processor bean reads the incoming request
parameters. Finally, the response messages are generated using Velocity templates.

Figure 7.1. Sample Provider-Based Route

7.2. CREATE A PROVIDER<?> IMPLEMENTATION CLASS

Overview

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

64

The fundamental prerequisite for using provider mode is to define a custom Provider<> class that
implements the invoke() method. In fact, the sole purpose of this class is to provide runtime type
information for Apache CXF: the invoke() method never gets called!

By implementing the provider class in the way shown here, you are merely indicating to the Apache CXF
runtime that the WS endpoint should operate in in PAYLOAD mode and the type of the message
PAYLOAD should be SAXSource.

The SAXSourceService provider class

The definition of the provider class is relatively short and the complete definition of the customer provider
class, SAXSourceService, is as follows:

The customer provider class, SAXSourceService, must be annotated by the @WebServiceProvider
annotation to mark it as a provider class and can be optionally annotated by the @ServiceMode
annotation to select PAYLOAD mode.

7.3. INSTANTIATE THE WS ENDPOINT

Overview

In Apache Camel, the CXF component is the key to integrating routes with Web services. You can use
the CXF component to create two different kinds of endpoint:

Consumer endpoint—(at the start of a route) represents a Web service instance, which
integrates with the route. The type of payload injected into the route depends on the value of the
endpoint's dataFormat option.

Producer endpoint—represents a special kind of WS client proxy, which converts the current
exchange object into an operation invocation on a remote Web service. The format of the current
exchange must match the endpoint's dataFormat setting.

The cxf:bean: URI syntax

// Java
package com.fusesource.customerwscamelcxfprovider;

import javax.xml.transform.sax.SAXSource;
import javax.xml.ws.Provider;
import javax.xml.ws.Service.Mode;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@WebServiceProvider()
@ServiceMode(Mode.PAYLOAD)
public class SAXSourceService implements Provider<SAXSource>
{
 public SAXSource invoke(SAXSource t) {
 throw new UnsupportedOperationException("Not supported yet.");
 }
}

CHAPTER 7. PROVIDER-BASED ROUTE

65

The cxf:bean: URI is used to bind an Apache CXF endpoint to a route and has the following general
syntax:

Where CxfEndpointID is the ID of a bean created using the cxf:cxfEndpoint element, which
configures the details of the WS endpoint. You can append options to this URI (where the options are
described in detail in chapter "CXF" in "EIP Component Reference"). Provider mode is essentially a
variant of PAYLOAD mode: you could specify this mode on the URI (by setting dataFormat=PAYLOAD),
but this is not necessary, because PAYLOAD mode is already selected by the @ServiceMode
annotation on the custom Provider class.

For example, to start a route with an endpoint in provider mode, where the endpoint is configured by the
customer-ws bean, define the route as follows:

The cxf:cxfEndpoint element

The cxf:cxfEndpoint element is used to define a WS endpoint that binds either to the start
(consumer endpoint) or the end (producer endpoint) of a route. For example, to define the customer-
ws WS endpoint in provider mode, you define a cxf:cxfEndpoint element as follows:

Specifying the WSDL location

The wsdlURL attribute of the cxf:cxfEndpoint element is used to specify the location of the WSDL
contract for this endpoint. The WSDL contract is used as the source of metadata for this endpoint.

Specifying the service class

A key difference between provider mode and ordinary PAYLOAD mode is that the serviceClass
attribute must be set to the provider class, SAXSourceService.

7.4. SORT MESSAGES BY OPERATION NAME

cxf:bean:CxfEndpointID[?Options]

<route>
 <from uri="cxf:bean:customer-ws"/>
 ...
</route>

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <cxf:cxfEndpoint id="customer-ws"
 address="/Customer"
 endpointName="c:SOAPOverHTTP"
 serviceName="c:CustomerService"
 wsdlURL="wsdl/CustomerService.wsdl"

serviceClass="com.fusesource.customerwscamelcxfprovider.SAXSourceService"
 xmlns:c="http://demo.fusesource.com/wsdl/CustomerService/"/>
 ...
</beans>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

66

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_CXF.html

The operationName header

When the WS endpoint parses an incoming operation invocation in PROVIDER mode, it automatically
sets the operationName header to the name of the invoked operation. You can then use this header to
sort messages by operation name.

Sorting by operation name

For example, the customer-ws-camel-cxf-provider demonstration defines the following route,
which uses the content-based router pattern to sort incoming messages, based on the operation name.
The when predicates check the value of the operationName header using simple language
expressions, sorting messages into invocations on the updateCustomer operation, the
lookupCustomer operation, or the getCustomerStatus operation.

7.5. SOAP/HTTP-TO-JMS BRIDGE USE CASE

Overview

In this section, we consider a SOAP/HTTP-to-JMS bridge use case: that is, you want to create a route
that transforms a synchronous operation invocation (over SOAP/HTTP) into an asynchronous message
delivery (by pushing the message onto a JMS queue). In this way, it becomes possible to process the
incoming operation invocations at a later time, by pulling messages off the JMS queue.

Figure 7.2, “SOAP/HTTP-to-JMS Bridge” shows the general outline of a bridge that can transform
synchronous SOAP/HTTP invocations into asynchronous JMS message deliveries.

<beans ...>
 ...
 <camelContext id="camel"
xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="cxf:bean:customer-ws"/>
 <choice>
 <when>
 <simple>${in.header.operationName} ==
'updateCustomer'</simple>
 ...
 </when>
 <when>
 <simple>${in.header.operationName} ==
'lookupCustomer'</simple>
 ...
 </when>
 <when>
 <simple>${in.header.operationName} ==
'getCustomerStatus'</simple>
 ...
 </when>
 </choice>
 </route>
 </camelContext>
 ...
</beans>

CHAPTER 7. PROVIDER-BASED ROUTE

67

Figure 7.2. SOAP/HTTP-to-JMS Bridge

Transforming RPC operations to One Way

As shown in Figure 7.2, “SOAP/HTTP-to-JMS Bridge”, the route for transforming synchronous
SOAP/HTTP to asynchronous JMS works as follows:

1. The WS client invokes a synchronous operation on the Camel CXF endpoint at the start of the
route. The Camel CXF endpoint then creates an initial InOut exchange at the start of the route,
where the body of the exchange message contains a payload in XML format.

2. The inOnly DSL command pushes a copy of the XML payload onto a JMS queue, so that it can
be processed offline at some later time.

3. The transform DSL command constructs an immediate response to send back to the client,
where the response has the form of an XML string.

4. The route explicitly converts the XML string to the javax.xml.transform.sax.SAXSource
type.

5. The response is sent back to the WS client, thus completing the synchronous operation
invocation.

Evidently, this transformation can only work, if the original operation invocation has no return value.
Otherwise, it would be impossible to generate a response message before the request has been
processed.

Creating a broker instance

You can use Apache ActiveMQ as the JMS implementation. A convenient approach to use in this
demonstration is to embed the Apache ActiveMQ broker in the bridge bundle. Simply define an
amq:broker element in the Spring XML file, as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 ...
 xmlns:amq="http://activemq.apache.org/schema/core"
 ...>

 <amq:broker brokerName="CxfPayloadDemo" persistent="false">
 <amq:transportConnectors>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

68

NOTE

This broker instance is created with the persistent attribute set to false, so that the
messages are stored only in memory.

Configuring the JMS component

Because the broker is co-located with the bridge route (in the same JVM), the most efficient way to
connect to the broker is to use the VM (Virtual Machine) transport. Configure the Apache ActiveMQ
component as follows, to connect to the co-located broker using the VM protocol:

NOTE

By defining the bean with an id value of activemq, you are implicitly overriding the
component associated with the endpoint URI prefix, activemq:. In other words, your
custom ActiveMQComponent instance is used instead of the default
ActiveMQComponent instance from the camel-activemq JAR file.

Sample SOAP/HTTP-to-JMS route

For example, you could define a route that implements the SOAP/HTTP-to-JMS bridge specifically for
the updateCustomer operation from the CustomerService SEI, as follows:

 <amq:transportConnector name="openwire"
uri="tcp://localhost:51616"/>
 <amq:transportConnector name="vm" uri="vm:local"/>
 </amq:transportConnectors>
 </amq:broker>
 ...
</beans>

<beans ...>
 ...
 <bean id="activemq"
class="org.apache.activemq.camel.component.ActiveMQComponent">
 <property name="brokerURL" value="vm:local"/>
 </bean>
 ...
</beans>

<when>
 <simple>${in.header.operationName} == 'updateCustomer'</simple>
 <log message="Placing update customer message onto queue."/>
 <inOnly uri="activemq:queue:CustomerUpdates?jmsMessageType=Text"/>
 <transform>
 <constant>
 <![CDATA[
<ns2:updateCustomerResponse
xmlns:ns2="http://demo.fusesource.com/wsdl/CustomerService/"/>
]]>
 </constant>

CHAPTER 7. PROVIDER-BASED ROUTE

69

Sending to the JMS endpoint in inOnly mode

Note how the message payload is sent to the JMS queue using the inOnly DSL command instead of
the to DSL command. When you send a message using the to DSL command, the default behavior is to
use the same invocation mode as the current exchange. But the current exchange has an InOut MEP,
which means that the to DSL command would wait forever for a response message from JMS.

The invocation mode we want to use when sending the payload to the JMS queue is InOnly
(asynchronous), and we can force this mode by inserting the inOnly DSL command into the route.

NOTE

By specifying the option, jmsMessageType=Text, Camel CXF implicitly converts the
message payload to an XML string before pushing it onto the JMS queue.

Returning a literal response value

The transform DSL command uses an expression to set the body of the exchange's Out message and
this message is then used as the response to the client. Your first impulse when defining a response in
XML format might be to use a DOM API, but in this example, the response is specified as a string literal.
This approach has the advantage of being both efficient and very easy to program.

The final step of processing, which consists of converting the XML string to a DOM object, is performed
by Apache Camel's implicit type conversion mechanism.

Type conversion of the response message

In this example, the reply message (like the request message) is required to be of type,
javax.xml.transform.sax.SAXSource. In the last step of the route, therefore, you must convert
the message body from String type to javax.xml.transform.sax.SAXSource type, by invoking
the convertBodyTo DSL command.

The implementation of the String to SAXSource conversion is provided by a custom type converter, as
described in Section 7.7, “TypeConverter for SAXSource”.

7.6. GENERATING RESPONSES USING TEMPLATES

Overview

One of the simples and quickest approaches to generating a response message is to use a velocity
template. Figure 7.3, “Response Generated by Velocity” shows the outline of a general template-based
route. At the start of the route is a Camel CXF endpoint in provider mode, which is the appropriate mode
to use for processing the message as an XML document. After doing the work required to process the
message and stashing some intermediate results in message headers, the route generates the response
message using a Velocity template.

 </transform>
 <convertBodyTo type="javax.xml.transform.sax.SAXSource"/>
</when>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

70

Figure 7.3. Response Generated by Velocity

Sample template-based route

For example, you could define a template-based route specifically for the getCustoemrStatus
operation, as follows:

Route processing steps

Given the preceding route definition, any message whose operation name matches
getCustomerStatus would be processed as follows:

1. The route applies an XPath expression to the message in order to extract the customer ID value
and then stashes it in the customerId header.

2. The next step sends the message to the getCustomerStatus bean, which does whatever
processing is required to get the customer status for the specified customer ID. The results from
this step are stashed in message headers.

3. A response is generated using a Velocity template.

4. Finally, the XML string generated by the Velocity template must be explicitly converted to the
javax.xml.transform.sax.SAXSource type using convertBodyTo (which implicitly relies
on a type converter).

 ...
 <when>
 <simple>${in.header.operationName} ==
'getCustomerStatus'</simple>
 <setHeader headerName="customerId">
 <xpath
resultType="java.lang.String">/cus:getCustomerStatus/customerId</xpath>
 </setHeader>
 <to uri="getCustomerStatus"/>
 <to uri="velocity:getCustomerStatusResponse.vm"/>
 <convertBodyTo type="javax.xml.transform.sax.SAXSource"/>
 </when>
 </choice>
 </route>
 </camelContext
 ...
 <bean id="getCustomerStatus"
 class="com.fusesource.customerwscamelcxfpayload.GetCustomerStatus"/>

CHAPTER 7. PROVIDER-BASED ROUTE

71

NOTE

A common pattern when implementing Apache Camel routes is to use message headers
as a temporary stash to hold intermediate results (you could also use exchange properties
in the same way).

XPath expressions and SAXSource

XPath expressions can be applied directly to SAXSource objects. The XPath implementation has a
pluggable architecture that supports a variety of XML parsers and when XPath encounters a SAXSource
object, it automatically loads the plug-in required to support SAXSource parsing.

getCustomerStatus processor bean

The getCustomerStatus processor bean is an instance of the GetCustomerStatus processor class,
which is defined as follows:

The implementation shown here is just a placeholder. In a realistic application you would perform some
sort of checks or database lookup to obtain the customer status. In the demonstration code, however, the
status and statusMessage are simply set to constant values and stashed in message headers.

getCustomerStatusResponse.vm Velocity template

You can generate a response message very simply using a Velocity template. The Velocity template
consists of a message in plain text, where specific pieces of data can be inserted using expressions—for
example, the expression ${header.HeaderName} substitutes the value of a named header.

The Velocity template for generating the getCustomerStatus reponse is located in the customer-
ws-camel-cxf-provider/src/main/resources directory and it contains the following template
script:

// Java
package com.fusesource.customerwscamelcxfpayload;

import org.apache.camel.Exchange;
import org.apache.camel.Processor;

public class GetCustomerStatus implements Processor
{
 public void process(Exchange exchng) throws Exception {
 String id = exchng.getIn().getHeader("customerId", String.class);

 // Maybe do some kind of lookup here!
 //

 exchng.getIn().setHeader("status", "Away");
 exchng.getIn().setHeader("statusMessage", "Going to sleep.");
 }
}

<ns2:getCustomerStatusResponse
xmlns:ns2="http://demo.fusesource.com/wsdl/CustomerService/">
 <status>${headers.status}</status>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

72

7.7. TYPECONVERTER FOR SAXSOURCE

Overview

Apache Camel supports a type converter mechanism, which is used to perform implicit and explicit type
conversions of message bodies and message headers. The type converter mechanism is extensible and
it so happens that the provider demonstration requires a custom type converter that can convert String
objects to SAXSource objects.

String to SAXSource type converter

The String to SAXSource type converter is implemented in the AdditionalConverters class, as
follows:

Reference

For full details of the type converter mechanism in Apache Camel, see section "Built-In Type Converters"
in "Programming EIP Components" and chapter "Type Converters" in "Programming EIP Components".

7.8. DEPLOY TO OSGI

Overview

One of the options for deploying the provider-based route is to package it as an OSGi bundle and deploy
it into an OSGi container such as Red Hat JBoss Fuse. Some of the advantages of an OSGi deployment
include:

Bundles are a relatively lightweight deployment option (because dependencies can be shared
between deployed bundles).

 <statusMessage>${headers.statusMessage}</statusMessage>
</ns2:getCustomerStatusResponse>

// Java
package com.fusesource.customerwscamelcxfprovider;

import java.io.ByteArrayInputStream;
import javax.xml.transform.sax.SAXSource;
import org.apache.camel.Converter;
import org.xml.sax.InputSource;

@Converter
public class AdditionalConverters {

 @Converter
 public static SAXSource toSAXSource(String xml) {
 return new SAXSource(new InputSource(new
ByteArrayInputStream(xml.getBytes())));
 }
}

CHAPTER 7. PROVIDER-BASED ROUTE

73

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/MsgFormats-Converters.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/Programming_EIP_Components/TypeConv.html

OSGi provides sophisticated dependency management, ensuring that only version-consistent
dependencies are added to the bundle's classpath.

Using the Maven bundle plug-in

The Maven bundle plug-in is used to package your project as an OSGi bundle, in preparation for
deployment into the OSGi container. There are two essential modifications to make to your project's
pom.xml file:

1. Change the packaging type to bundle (by editing the value of the project/packaging
element in the POM).

2. Add the Maven bundle plug-in to your POM file and configure it as appropriate.

Configuring the Maven bundle plug-in is quite a technical task (although the default settings are often
adequate). For full details of how to customize the plug-in configuration, consult Deploying into the OSGi
Container and Managing OSGi Dependencies.

Sample bundle plug-in configuration

The following POM fragment shows a sample configuration of the Maven bundle plug-in, which is
appropriate for the current example.

<?xml version="1.0"?>
<project ...>
 ...
 <groupId>org.fusesource.sparks.fuse-webinars.cxf-webinars</groupId>
 <artifactId>customer-ws-camel-cxf-provider</artifactId>

 <name>customer-ws-camel-cxf-provider</name>
 <url>http://www.fusesource.com</url>
 <packaging>bundle</packaging>
 ...
 <build>
 <plugins>
 ...
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Import-Package>
 org.apache.camel.component.velocity,
 META-INF.cxf,
 META-INF.cxf.osgi,
 javax.jws,
 javax.wsdl,
 javax.xml.bind,
 javax.xml.bind.annotation,
 javax.xml.namespace,
 javax.xml.ws,
 org.w3c.dom,
 <!-- Workaround to access DOM XPathFactory -->
 org.apache.xpath.jaxp,

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

74

Dynamic imports

The Java packages from Apache CXF and the Spring API are imported using dynamic imports (specified
using the DynamicImport-Package element). This is a pragmatic way of dealing with the fact that
Spring XML files are not terribly well integrated with the Maven bundle plug-in. At build time, the Maven
bundle plug-in is not able to figure out which Java classes are required by the Spring XML code. By
listing wildcarded package names in the DynamicImport-Package element, however, you allow the
OSGi container to figure out which Java classes are needed by the Spring XML code at run time.

NOTE

In general, using DynamicImport-Package headers is not recommended in OSGi,
because it short-circuits OSGi version checking. Normally, what should happen is that the
Maven bundle plug-in lists the Java packages used at build time, along with their versions,
in the Import-Package header. At deploy time, the OSGi container then checks that the
available Java packages are compatible with the build time versions listed in the Import-
Package header. With dynamic imports, this version checking cannot be performed.

Build and deploy the client bundle

After you have configured the POM file, you can build the Maven project and install it in your local
repository by entering the following command:

To deploy the route bundle, enter the following command at the container console:

NOTE

If your local Maven repository is stored in a non-standard location, you might need to
customize the value of the org.ops4j.pax.url.mvn.localRepository property in
the EsbInstallDir/etc/org.ops4j.pax.url.mvn.cfg file, before you can use
the mvn: scheme to access Maven artifacts.

 *
 </Import-Package>
 <DynamicImport-Package>
 org.apache.cxf.*,
 org.springframework.beans.*
 </DynamicImport-Package>
 </instructions>
 </configuration>
 </plugin>
 ...
 </plugins>
 </build>
</project>

mvn install

karaf@root> install -s mvn:org.fusesource.sparks.fuse-webinars.cxf-
webinars/customer-ws-camel-cxf-provider

CHAPTER 7. PROVIDER-BASED ROUTE

75

CHAPTER 8. PROXYING A WEB SERVICE

Abstract

A common use case for the Camel CXF component is to use a route as a proxy for a Web service. That
is, in order to perform additional processing of WS request and response messages, you interpose a
route between the WS client and the original Web service.

8.1. PROXYING WITH HTTP

Overview

The simplest way to proxy a SOAP/HTTP Web service is to treat the request and reply messages as
HTTP packets. This type of proxying can be used where there is no requirement to read or modify the
messages passing through the route. For example, you could use this kind of proxying to apply various
patterns of flow control on the WS messges.

Figure 8.1, “Proxy Route with Message in HTTP Format” shows an overview of how to proxy a Web
service using an Apache Camel route, where the route treats the messages as HTTP packets. The key
feature of this route is that both the consumer endpoint (at the start of the route) and the producer
endpoint (at the end of the route) must be compatible with the HTTP packet format.

Figure 8.1. Proxy Route with Message in HTTP Format

Alternatives for the consumer endpoint

The following Apache Camel endpoints can be used as consumer endpoints for HTTP format messages:

Jetty endpoint—is a lightweight Web server. You can use Jetty to handle messages for any
HTTP-based protocol, including the commonly-used Web service SOAP/HTTP protocol.

Camel CXF endpoint in MESSAGE mode—when a Camel CXF endpoint is used in MESSAGE
mode, the body of the exchange message is the raw message received from the transport layer
(which is HTTP). In other words, the Camel CXF endpoint in MESSAGE mode is equivalent to a
Jetty endpoint in the case of HTTP-based protocols.

Consumer endpoint for HTTP

A Jetty endpoint has the general form, jetty:HttpAddress. To configure the Jetty endpoint to be a
proxy for a Web service, use a HttpAddress value that is almost identical to the HTTP address the
client connects to, except that Jetty's version of HttpAddress uses the special hostname, 0.0.0.0
(which matches all of the network interfaces on the current machine).

<route>
 <from uri="jetty:http://0.0.0.0:9093/Customers?
matchOnUriPrefix=true"/>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

76

matchOnUriPrefix option

Normally, a Jetty consumer endpoint accepts only an exact match on the context path. For example, a
request that is sent to the address http://localhost:9093/Customers would be accepted, but a
request sent to http://localhost:9093/Customers/Foo would be rejected. By setting
matchOnUriPrefix to true, however, you enable a kind of wildcarding on the context path, so that
any context path prefixed by /Customers is accepted.

Alternatives for the producer endpoint

The following Apache Camel endpoints can be used as producer endpoints for HTTP format messages:

Jetty HTTP client endpoint—(recommended) the Jetty library implements a HTTP client. In
particular, the Jetty HTTP client features support for HttpClient thread pools, which means
that the Jetty implementation scales particularly well.

HTTP endpoint—the HTTP endpoint implements a HTTP client based on the HttpClient 3.x
API.

HTTP4 endpoint—the HTTP endpoint implements a HTTP client based on the HttpClient 4.x
API.

Producer endpoint for HTTP

To configure a Jetty HTTP endpoint to send HTTP requests to a remote SOAP/HTTP Web service, set
the uri attribute of the to element at the end of the route to be the address of the remote Web service,
as follows:

bridgeEndpoint option

The HTTP component supports a bridgeEndpoint option, which you can enable on a HTTP producer
endpoint to configure the endpoint appropriately for operating in a HTTP-to-HTTP bridge (as is the case
in this demonstration). In particular, when bridgeEndpoint=true, the HTTP endpoint ignores the
value of the Exchange.HTTP_URI header, using the HTTP address from the endpoint URI instead.

throwExceptionOnFailure option

Setting throwExceptionOnFailure to false ensures that any HTTP exceptions are relayed back to
the original WS client, instead of being thrown within the route.

Handling message headers

When defining a HTTP bridge application, the CamelHttp* headers set by the consumer endpoint at

 ...
</route>

<route>
 ...
 <to uri="jetty:http://localhost:8083/Customers?
bridgeEndpoint=true&throwExceptionOnFailure=false"/>
</route>

CHAPTER 8. PROXYING A WEB SERVICE

77

the start of the route can affect the behavior of the producer endpoint. For this reason, in a bridge
application it is advisable to remove the CamelHttp* headers before the message reaches the
producer endpoint, as follows:

Outgoing HTTP headers

By default, any headers in the exchange that are not prefixed by Camel will be converted into HTTP
headers and sent out over the wire by the HTTP producer endpoint. This could have adverse
consequences on the behavior of your application, so it is important to be aware of any headers that are
set in the exchange object and to remove them, if necessary.

For more details about dealing with headers, see Section 8.4, “Handling HTTP Headers”.

8.2. PROXYING WITH POJO FORMAT

Overview

If you want to access the content of the Web services messages that pass throught the route, you might
prefer to process the messages in POJO format: that is, where the body of the exchange consists of a list
of Java objects representing the WS operation parameters. The key advantate of using POJO format is
that you can easily process the contents of a message, by accessing the operation parameters as Java
objects.

Figure 8.2, “Proxy Route with Message in POJO Format” shows an overview of how to proxy a Web
service using an Apache Camel route, where the route processes the messages in POJO format. The
key feature of this route is that both the consumer endpoint (at the start of the route) and the producer
endpoint (at the end of the route) must be compatible with the POJO data format.

Figure 8.2. Proxy Route with Message in POJO Format

Consumer endpoint for CXF/POJO

To parse incoming messages into POJO data format, the consumer endpoint at the start of the route
must be a Camel CXF endpoint that is configured to use POJO mode. Use the cxf:bean:BeanID URI
format to reference the Camel CXF endpoint as follows (where the dataFormat option defaults to
POJO):

<route>
 <from uri="jetty:http:..."/>
 ...
 <removeHeaders pattern="CamelHttp*"/>
 <to uri="jetty:http:..."/>
</route>

<route>
 <from uri="cxf:bean:customerServiceProxy"/>
 ...
</route>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

78

The bean with the ID, customerServiceProxy, is a Camel CXF/POJO endpoint, which is defined as
follows:

Producer endpoint for CXF/POJO

To convert the exchange body from POJO data format to a SOAP/HTTP message, the producer
endpoint at the end of the route must be a Camel CXF endpoint configured to use POJO mode. Use the
cxf:bean:BeanID URI format to reference the Camel CXF endpoint as follows (where the
dataFormat option defaults to POJO):

The bean with the ID, customerServiceReal, is a Camel CXF/POJO endpoint, which is defined as
follows:

8.3. PROXYING WITH PAYLOAD FORMAT

Overview

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <cxf:cxfEndpoint
 id="customerServiceProxy"
 xmlns:c="http://demo.fusesource.org/wsdl/camelcxf"
 address="/Customers"
 endpointName="c:SOAPOverHTTP"
 serviceName="c:CustomerService"
 wsdlURL="wsdl/CustomerService.wsdl"
 serviceClass="org.fusesource.demo.wsdl.camelcxf.CustomerService"
 />
 ...
</beans>

<route>
 ...
 <to uri="cxf:bean:customerServiceReal"/>
</route>

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <cxf:cxfEndpoint
 id="customerServiceReal"
 xmlns:c="http://demo.fusesource.org/wsdl/camelcxf"
 address="http://localhost:8083/Customers"
 endpointName="c:SOAPOverHTTP"
 serviceName="c:CustomerService"
 wsdlURL="wsdl/CustomerService.wsdl"
 serviceClass="org.fusesource.demo.wsdl.camelcxf.CustomerService"
 />
 ...
</beans>

CHAPTER 8. PROXYING A WEB SERVICE

79

If you want to access the content of the Web services messages that pass throught the route, you might
prefer to process the messages in the normal PAYLOAD format: that is, where the body of the exchange
is accessible as an XML document (essentially, an org.w3c.dom.Node object). The key advantate of
using PAYLOAD format is that you can easily process the contents of a message, by accessing the
message body as an XML document.

Figure 8.3, “Proxy Route with Message in PAYLOAD Format” shows an overview of how to proxy a Web
service using an Apache Camel route, where the route processes the messages in PAYLOAD format.
The key feature of this route is that both the consumer endpoint (at the start of the route) and the
producer endpoint (at the end of the route) must be compatible with the PAYLOAD data format.

Figure 8.3. Proxy Route with Message in PAYLOAD Format

Consumer endpoint for CXF/PAYLOAD

To parse incoming messages into PAYLOAD data format, the consumer endpoint at the start of the route
must be a Camel CXF endpoint that is configured to use PAYLOAD mode. Use the cxf:bean:BeanID
URI format to reference the Camel CXF endpoint as follows, where you must set the dataFormat
option to PAYLOAD:

The bean with the ID, customerServiceProxy, is a Camel CXF/PAYLOAD endpoint, which is defined
as follows:

Producer endpoint for CXF/PAYLOAD

To convert the exchange body from PAYLOAD data format to a SOAP/HTTP message, the producer
endpoint at the end of the route must be a Camel CXF endpoint configured to use PAYLOAD mode. Use
the cxf:bean:BeanID URI format to reference the Camel CXF endpoint as follows, where you must
set the dataFormat option to PAYLOAD:

<route>
 <from uri="cxf:bean:customerServiceProxy?dataFormat=PAYLOAD"/>
 ...
</route>

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <cxf:cxfEndpoint
 id="customerServiceProxy"
 xmlns:c="http://demo.fusesource.org/wsdl/camelcxf"
 address="/Customers"
 endpointName="c:SOAPOverHTTP"
 serviceName="c:CustomerService"
 wsdlURL="wsdl/CustomerService.wsdl"
 />
 ...
</beans>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

80

The bean with the ID, customerServiceReal, is a Camel CXF/PAYLOAD endpoint, which is defined
as follows:

Outgoing HTTP headers

By default, any headers in the exchange that are not prefixed by Camel will be converted into HTTP
headers and sent out over the wire by the Camel CXF producer endpoint. This could have adverse
consequences on the behavior of your application, so it is important to be aware of any headers that are
set in the exchange object and to remove them, if necessary.

For more details about dealing with headers, see Section 8.4, “Handling HTTP Headers”.

8.4. HANDLING HTTP HEADERS

Overview

When building bridge applications using HTTP or HTTP-based components, it is important to be aware
of how the HTTP-based endpoints process headers. In many cases, internal headers (prefixed by
Camel) or other headers can cause unwanted side-effects on your application. It is often necessary to
remove or filter out certain headings or classes of headings in your route, in order to ensure that your
application behaves as expected.

HTTP-based components

The behavior described in this section affects not just the Camel HTTP component (camel-http), but
also a number of other HTTP-based components, including:

<route>
 ...
 <to uri="cxf:bean:customerServiceReal?dataFormat=PAYLOAD"/>
</route>

<?xml version="1.0" encoding="UTF-8"?>
<beans ...>
 ...
 <cxf:cxfEndpoint
 id="customerServiceReal"
 xmlns:c="http://demo.fusesource.org/wsdl/camelcxf"
 address="http://localhost:8083/Customers"
 endpointName="c:SOAPOverHTTP"
 serviceName="c:CustomerService"
 wsdlURL="wsdl/CustomerService.wsdl"
 />
 ...
</beans>

camel-http
camel-http4
camel-jetty
camel-restlet
camel-cxf

CHAPTER 8. PROXYING A WEB SERVICE

81

HTTP consumer endpoint

When a HTTP consumer endpoint receives an incoming message, it creates an In message with the
following headers:

CamelHttp* headers

Several headers with the CamelHttp prefix are created, which record the status of the incoming
message. For details of these internal headers, see HTTP.

HTTP headers

All of the HTTP headers from the original incoming message are mapped to headers on the
exchange's In message.

URL options (Jetty only)

The URL options from the original HTTP request URL are mapped to headers on the exchange's In
message. For example, given the client request with the URL, http://myserver/myserver?
orderid=123, a Jetty consumer endpoint creates the orderid header with value 123.

HTTP producer endpoint

When a HTTP producer endoint receives an exchange and converts it to the target message format, it
handles the In message headers as follows:

CamelHttp*

Headers prefixed by CamelHttp are used to control the behavior of the HTTP producer entpoint. Any
headers of this kind are consumed by the HTTP producer endpoint and the endpoint behaves as
directed.

Camel*

All other headers prefixed by Camel are presumed to be meant for internal use and are not mapped
to HTTP headers in the target message (in other words, these headers are ignored).

*

All other headers are converted to HTTP headers in the target message, with the exception of the
following headers, which are blocked (based on a case-insensitive match):

Implications for HTTP bridge applications

content-length
content-type
cache-control
connection
date
pragma
trailer
transfer-encoding
upgrade
via
warning

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

82

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.0/html/EIP_Component_Reference/_IDU_HTTP.html

When defining a HTTP bridge application (that is, a route starting with a HTTP consumer endpoint and
ending with a HTTP producer endpoint), the CamelHttp* headers set by the consumer endpoint at the
start of the route can affect the behavior of the producer endpoint. For this reason, in a bridge application
it is advisable to remove the CamelHttp* headers, as follows:

Setting a custom header filter

If you want to customize the way that a HTTP producer endpoint processes headers, you can define your
own customer header filter by defining the headerFilterStrategy option on the endpoint URI. For
example, to configure a producer endpoint with the myHeaderFilterStrategy filter, you could use a
URI like the following:

Where myHeaderFilterStrategy is the bean ID of your custom filter instance.

from("http://0.0.0.0/context/path")
 .removeHeaders("CamelHttp*)
 ...
 .to("http://remoteHost/context/path");

http://remoteHost/context/path?
headerFilterStrategy=#myHeaderFilterStrategy

CHAPTER 8. PROXYING A WEB SERVICE

83

CHAPTER 9. FILTERING SOAP MESSAGE HEADERS

Abstract

The Camel CXF component supports a flexible header filtering mechanism, which enables you to
process SOAP headers, applying different filters according to the header's XML namespace.

9.1. BASIC CONFIGURATION

Overview

When more than one CXF endpoint appears in a route, you need to decide whether or not to allow
headers to propagate between the endpoints. By default, the headers are relayed back and forth
between the endpoints, but in many cases it might be necessary to filter the headers or to block them
altogether. You can control header propagation by applying filters to producer endpoints.

CxfHeaderFilterStrategy

Header filtering is controlled by the CxfHeaderFilterStrategy class. Basic configuration of the
CxfHeaderFilterStrategy class involves setting one or more of the following options:

the section called “relayHeaders option”.

the section called “relayAllMessageHeaders option”.

relayHeaders option

The semantics of the relayHeaders option can be summarized as follows:

 In-band headers Out-of-band headers

relayHeaders=true,
dataFormat=PAYLOAD

Filter Filter

relayHeaders=true,
dataFormat=POJO

Relay all Filter

relayHeaders=false Block Block

In-band headers

An in-band header is a header that is explicitly defined as part of the WSDL binding contract for an
endpoint.

Out-of-band headers

An out-of-band header is a header that is serialized over the wire, but is not explicitly part of the WSDL
binding contract. In particular, the SOAP binding permits out-of-band headers, because the SOAP
specification does not require headers to be defined in the WSDL contract.

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

84

Payload format

The CXF endpoint's payload format affects the filter behavior as follows:

POJO

(Default) Only out-of-band headers are available for filtering, because the in-band headers have
already been processed and removed from the list by CXF. The in-band headers are incorporated
into the MessageContentList in POJO mode. If you require access to headers in POJO mode,
you have the option of implementing a custom CXF interceptor or JAX-WS handler.

PAYLOAD

In this mode, both in-band and out-of-band headers are available for filtering.

MESSAGE

Not applicable. (In this mode, the message remains in a raw format and the headers are not
processed at all.)

Default filter

The default filter is of type, SoapMessageHeaderFilter, which removes only the SOAP headers that
the SOAP specification expects an intermediate Web service to consume. For more details, see the
section called “SoapMessageHeaderFilter”.

Overriding the default filter

You can override the default CxfHeaderFilterStrategy instance by defining a new
CxfHeaderFilterStrategy bean and associating it with a CXF endpoint.

Sample relayHeaders configuration

The following example shows how you can use the relayHeaders option to create a
CxfHeaderFilterStrategy bean that blocks all message headers. The CXF endpoints in the route
use the headerFilterStrategy option to install the filter strategy in the endpoint, where the
headerFilterStrategy setting has the syntax, headerFilterStrategy=#BeanID.

<beans ...>
 ...
 <bean id="dropAllMessageHeadersStrategy"
class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrateg
y">
 <!-- Set relayHeaders to false to drop all SOAP headers -->
 <property name="relayHeaders" value="false"/>
 </bean>

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="cxf:bean:routerNoRelayEndpoint?
headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
 <to uri="cxf:bean:serviceNoRelayEndpoint?
headerFilterStrategy=#dropAllMessageHeadersStrategy"/>
 </route>

CHAPTER 9. FILTERING SOAP MESSAGE HEADERS

85

relayAllMessageHeaders option

The relayAllMessageHeaders option is used to propagate all SOAP headers, without applying any
filtering (any installed filters would be bypassed). In order to enable this feature, you must set both
relayHeaders and relayAllMessageHeaders to true.

Sample relayAllMessageHeaders configuration

The following example shows how to configure CXF endpoints to propagate all SOAP message
headers. The propagateAllMessages filter strategy sets both relayHeaders and
relayAllMessageHeaders to true.

9.2. HEADER FILTERING

Overview

You can optionally install multiple headers in a CxfHeaderFilterStrategy instance. The filtering
mechanism then uses the header's XML namespace to lookup a particular filter, which it then applies to
the header.

Filter map

Figure 9.1, “Filter Map” shows an overview of the filter map that is contained within a
CxfHeaderFilterStrategy instance. For each filter that you install in
CxfHeaderFilterStrategy, corresponding entries are made in the filter map, where one or more
XML schema namespaces are associated with each filter.

 </camelContext>
 ...
</beans>

<beans ...>
 ...
 <bean id="propagateAllMessages"
class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrateg
y">
 <!-- Set both properties to true to propagate *all* SOAP headers --
>
 <property name="relayHeaders" value="true"/>
 <property name="relayAllMessageHeaders" value="true"/>
 </bean>

 <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
 <route>
 <from uri="cxf:bean:routerNoRelayEndpoint?
headerFilterStrategy=#propagateAllMessages"/>
 <to uri="cxf:bean:serviceNoRelayEndpoint?
headerFilterStrategy=#propagateAllMessages"/>
 </route>
 </camelContext>
 ...
</beans>

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

86

Figure 9.1. Filter Map

Filter behavior

When a header is filtered, the filter mechanism peeks at the header to discover the header's XML
namespace. The filter then looks up the XML namespace in the filter map to find the corresponding filter
implementation. This filter is then applied to the header.

PAYLOAD mode

In PAYLOAD mode, both in-band and out-of-band messages pass through the installed filters.

POJO mode

In POJO mode, only out-of-band messages pass through the installed filters. In-band messages bypass
the filters and are propagated by default.

9.3. IMPLEMENTING A CUSTOM FILTER

Overview

You can implement your own customer message header filters by implementing the
MessageHeaderFilter Java interface. You must associate a filter with one or more XML schema
namespaces (representing the header's namespace) and it is possible to differentiate between request
message headers and response message headers.

MessageHeaderFilter interface

The MessageHeaderFilter interface is defined in the
org.apache.camel.component.cxf.common.header package, as follows:

// Java

CHAPTER 9. FILTERING SOAP MESSAGE HEADERS

87

Implementing the filter() method

The MessageHeaderFilter.filter() method is reponsible for applying header filtering. Filtering is
applied both before and after an operation is invoked on an endpoint. Hence, there are two directions to
which filtering is applied, as follows:

Direction.OUT

When the direction parameter equals Direction.OUT, the filter is being applied to a request
either leaving a consumer endpoint or entering a producer endpoint (that is, it applies to a WS
request message propagating through a route).

Direction.IN

When the direction parameter equals Direction.IN, the filter is being applied to a response
either leaving a producer endpoint or entering a consumer endpoint (that is, it applies to a WS
response message being sent back).

Filtering can be applied by removing elements from the list of headers, headers. Any headers left in the
list are propagated.

Binding filters to XML namespaces

It is possible to register multiple header filters against a given CXF endpoint. The CXF endpoint selects
the appropriate filter to use based on the XML namespace of the WSDL binding protocol (for example,
the namespace for the SOAP 1.1 binding or for the SOAP 1.2 binding). If a header's namespace is
unknown, the header is propagated by default.

To bind a filter to one or more namespaces, implement the getActivationNamespaces() method,
which returns the list of bound XML namespaces.

Identifying the namespace to bind to

Example 9.1, “Sample Binding Namespaces” illustrates how to identify the namespaces to which you can
bind a filter. This example shows the WSDL file for a Bank server that exposes SOAP endpoints.

Example 9.1. Sample Binding Namespaces

package org.apache.camel.component.cxf.common.header;

import java.util.List;

import org.apache.camel.spi.HeaderFilterStrategy.Direction;
import org.apache.cxf.headers.Header;

public interface MessageHeaderFilter {
 List<String> getActivationNamespaces();

 void filter(Direction direction, List<Header> headers);
}

<wsdl:definitions
targetNamespace="http://cxf.apache.org/schemas/cxf/idl/bank"
 xmlns:tns="http://cxf.apache.org/schemas/cxf/idl/bank"

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

88

From the soap:binding tag, you can infer that namespace associated with the SOAP binding is
http://schemas.xmlsoap.org/wsdl/soap/.

Implementing a custom filter

If you want to implement your own custom filter, define a class that inherits from the
MessageHeaderFilter interface and implement its methods as described in this section. For
example, Example 9.2, “Sample Header Filter Implementation” shows an example of a custom filter,
CustomHeaderFilter, that binds to the namespace,
http://cxf.apache.org/bindings/custom, and relays all of the headers that pass through it.

Example 9.2. Sample Header Filter Implementation

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 ...
 <wsdl:binding name="BankSOAPBinding" type="tns:Bank">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="getAccount">
 ...
 </wsdl:operation>
 ...
 </wsdl:binding>
 ...
</wsdl>

// Java
package org.apache.camel.component.cxf.soap.headers;

import java.util.Arrays;
import java.util.List;

import org.apache.camel.component.cxf.common.header.MessageHeaderFilter;
import org.apache.camel.spi.HeaderFilterStrategy.Direction;
import org.apache.cxf.headers.Header;

public class CustomHeaderFilter implements MessageHeaderFilter {

 public static final String ACTIVATION_NAMESPACE =
"http://cxf.apache.org/bindings/custom";
 public static final List<String> ACTIVATION_NAMESPACES =
Arrays.asList(ACTIVATION_NAMESPACE);

 public List<String> getActivationNamespaces() {
 return ACTIVATION_NAMESPACES;
 }

 public void filter(Direction direction, List<Header> headers) {
 }
}

CHAPTER 9. FILTERING SOAP MESSAGE HEADERS

89

9.4. INSTALLING FILTERS

Overview

To install message header filters, set the messageHeaderFilters property of the
CxfHeaderFilterStrategy object. When you initialize this property with a list of message header
filters, the header filter strategy combines the specified filters to make a filter map.

The messageHeaderFilters property is of type, List<MessageHeaderFilter>.

Installing filters in XML

The following example shows how to create a CxfHeaderFilterStrategy instance, specifying a
customized list of header filters in the messageHeaderFilters property. There are two header filters
in this example: SoapMessageHeaderFilter and CustomHeaderFilter.

SoapMessageHeaderFilter

The first header filter in the preceding example is the SoapMessageHeaderFilter filter, which is the
default header filter. This filter is designed to filter standard SOAP headers and is bound to the following
XML namespaces:

This filter peeks at the header element, in order to decide whether or not to block a particular header. If
the soap:actor attribute (SOAP 1.1) or the soap:role attribute (SOAP 1.2) is present and has the
value next, the header is removed from the message. Otherwise, the header is propagated.

Namespace clashes

Normally, each namespace should be bound to just a single header filter. If a namespace is bound to
more than one header filter, this normally causes an error. It is possible, however, to override this policy

<bean id="customMessageFilterStrategy"
class="org.apache.camel.component.cxf.common.header.CxfHeaderFilterStrateg
y">
 <property name="messageHeaderFilters">
 <list>
 <!-- SoapMessageHeaderFilter is the built in filter. It can
be removed by omitting it. -->
 <bean
class="org.apache.camel.component.cxf.common.header.SoapMessageHeaderFilte
r"/>

 <!-- Add custom filter here -->
 <bean
class="org.apache.camel.component.cxf.soap.headers.CustomHeaderFilter"/>
 </list>
 </property>
 <!-- The 'relayHeaders' property is 'true' by default -->
</bean>

http://schemas.xmlsoap.org/soap/
http://schemas.xmlsoap.org/wsdl/soap/
http://schemas.xmlsoap.org/wsdl/soap12/

Red Hat JBoss Fuse 6.0 Web Services and Routing with Camel CXF

90

by setting the allowFilterNamespaceClash property to true in the CxfHeaderFilterStrategy
instance. When this policy is set to true, the nearest to last filter is selected, in the event of a
namespace clash.

CHAPTER 9. FILTERING SOAP MESSAGE HEADERS

91

	Table of Contents
	CHAPTER 1. DEMONSTRATION CODE FOR CAMEL/CXF
	1.1. DOWNLOADING AND INSTALLING THE DEMONSTRATIONS
	Overview
	Prerequisites
	Downloading the demonstration package
	Installing the package

	1.2. RUNNING THE DEMONSTRATIONS
	Building the demonstrations
	Starting and configuring the Red Hat JBoss Fuse container
	Demonstration features
	Running the customer-ws-osgi-bundle demonstration

	CHAPTER 2. JAVA-FIRST SERVICE IMPLEMENTATION
	2.1. JAVA-FIRST OVERVIEW
	Overview
	Service Endpoint Interface (SEI)
	WSDL contract
	The CustomerService demonstration
	Implementing and building the service

	2.2. DEFINE SEI AND RELATED CLASSES
	Overview
	The CustomerService SEI
	javax.xml.ws.Holder<?> types
	Related classes
	Default constructor for related classes
	The Customer class

	2.3. ANNOTATE SEI FOR JAX-WS
	Overview
	Minimal annotation
	@WebService annotation
	@WebParam annotation
	OUT and INOUT parameters
	Annotated CustomerService SEI

	2.4. INSTANTIATE THE WS ENDPOINT
	Overview
	The jaxws:endpoint element
	Define JAX-WS endpoint in XML
	Address for the Jetty container
	Referencing the service implementation

	2.5. JAVA-TO-WSDL MAVEN PLUG-IN
	Overview
	Configure the Java-to-WSDL Maven plug-in
	Generated WSDL
	Reference

	CHAPTER 3. WSDL-FIRST SERVICE IMPLEMENTATION
	3.1. WSDL-FIRST OVERVIEW
	Overview
	Demonstration location
	WSDL contract
	Service Endpoint Interface (SEI)
	The CustomerService demonstration
	Implementing and building the service

	3.2. CUSTOMERSERVICE WSDL CONTRACT
	Sample WSDL contract
	Parts of the WSDL contract
	Port type
	WSDL binding
	WSDL port
	The getCustomerStatus operation
	References

	3.3. WSDL-TO-JAVA MAVEN PLUG-IN
	Overview
	Configure the WSDL-to-Java Maven plug-in
	Generated Java source code
	Adding the generated source to an IDE
	Compiling the generated code
	Reference

	3.4. INSTANTIATE THE WS ENDPOINT
	Overview
	Define JAX-WS endpoint in XML
	Address for the Jetty container
	Referencing the service implementation

	3.5. DEPLOY TO AN OSGI CONTAINER
	Overview
	Using the Maven bundle plug-in
	Sample bundle plug-in configuration
	Dynamic imports
	Build and deploy the service bundle
	Red Hat JBoss Fuse default servlet container
	Check that the service is running

	CHAPTER 4. IMPLEMENTING A WS CLIENT
	4.1. WS CLIENT OVERVIEW
	Overview
	Demonstration location
	WSDL contract
	Service Endpoint Interface (SEI)
	WS client proxy
	The CustomerService client
	Implementing and building the WS client

	4.2. WSDL-TO-JAVA MAVEN PLUG-IN
	Overview
	Configure the WSDL-to-Java Maven plug-in
	Generated Java source code
	Add generated source to IDE
	Compiling the generated code
	Reference

	4.3. INSTANTIATE THE WS CLIENT PROXY
	Overview
	Define the WS client in XML
	The jaxws:client element
	Injecting with the proxy reference

	4.4. INVOKE WS OPERATIONS
	Proxy interface is SEI interface
	Invoking the lookupCustomer operation
	The ClientInvoker class

	4.5. DEPLOY TO AN OSGI CONTAINER
	Overview
	Using the Maven bundle plug-in
	Sample bundle plug-in configuration
	Dynamic imports
	Build and deploy the client bundle
	Check that the client is running

	CHAPTER 5. POJO-BASED ROUTE
	5.1. PROCESSING MESSAGES IN POJO FORMAT
	Overview
	Demonstration location
	Camel CXF component
	POJO data format
	Implementing and building a POJO route
	Sample POJO route

	5.2. WSDL-TO-JAVA MAVEN PLUG-IN
	Overview
	Configure the WSDL-to-Java Maven plug-in
	Generated Java source code
	Add generated code to IDE
	Compiling the generated code
	Reference

	5.3. INSTANTIATE THE WS ENDPOINT
	Overview
	Maven dependency
	The cxf:bean: URI syntax
	The cxf:cxfEndpoint element
	Address for the Jetty container
	Referencing the SEI

	5.4. SORT MESSAGES BY OPERATION NAME
	The operationName header
	Sorting by operation name
	Beans as endpoints

	5.5. PROCESS OPERATION PARAMETERS
	Overview
	Contents of request message body
	Contents of response message body
	Example: getCustomerStatus operation
	Example: request and response bodies
	Example: processing getCustomerStatus

	5.6. DEPLOY TO OSGI
	Overview
	Using the Maven bundle plug-in
	Sample bundle plug-in configuration
	Dynamic imports
	Build and deploy the POJO route bundle

	CHAPTER 6. PAYLOAD-BASED ROUTE
	6.1. PROCESSING MESSAGES IN PAYLOAD FORMAT
	Overview
	Demonstration location
	Camel CXF component
	PAYLOAD data format
	Implementing and building a PAYLOAD route
	Sample PAYLOAD route

	6.2. INSTANTIATE THE WS ENDPOINT
	Overview
	The cxf:bean: URI syntax
	The cxf:cxfEndpoint element
	Address for the Jetty container
	Specifying the WSDL location

	6.3. SORT MESSAGES BY OPERATION NAME
	The operationName header
	Sorting by operation name

	6.4. SOAP/HTTP-TO-JMS BRIDGE USE CASE
	Overview
	Transforming RPC operations to One Way
	Creating a broker instance
	Configuring the JMS component
	Sample SOAP/HTTP-to-JMS route
	Sending to the JMS endpoint in inOnly mode
	Returning a literal response value

	6.5. GENERATING RESPONSES USING TEMPLATES
	Overview
	Sample template-based route
	Route processing steps
	Converting XPath result to a string
	getCustomerStatus processor bean
	getCustomerStatusResponse.vm Velocity template

	6.6. DEPLOY TO OSGI
	Overview
	Using the Maven bundle plug-in
	Sample bundle plug-in configuration
	Dynamic imports
	Build and deploy the client bundle

	CHAPTER 7. PROVIDER-BASED ROUTE
	7.1. PROVIDER-BASED JAX-WS ENDPOINT
	Overview
	Demonstration location
	Camel CXF component
	Provider-based approach and the PAYLOAD data format
	Implementing and building a provider-based route
	Sample provider-based route

	7.2. CREATE A PROVIDER<?> IMPLEMENTATION CLASS
	Overview
	The SAXSourceService provider class

	7.3. INSTANTIATE THE WS ENDPOINT
	Overview
	The cxf:bean: URI syntax
	The cxf:cxfEndpoint element
	Specifying the WSDL location
	Specifying the service class

	7.4. SORT MESSAGES BY OPERATION NAME
	The operationName header
	Sorting by operation name

	7.5. SOAP/HTTP-TO-JMS BRIDGE USE CASE
	Overview
	Transforming RPC operations to One Way
	Creating a broker instance
	Configuring the JMS component
	Sample SOAP/HTTP-to-JMS route
	Sending to the JMS endpoint in inOnly mode
	Returning a literal response value
	Type conversion of the response message

	7.6. GENERATING RESPONSES USING TEMPLATES
	Overview
	Sample template-based route
	Route processing steps
	XPath expressions and SAXSource
	getCustomerStatus processor bean
	getCustomerStatusResponse.vm Velocity template

	7.7. TYPECONVERTER FOR SAXSOURCE
	Overview
	String to SAXSource type converter
	Reference

	7.8. DEPLOY TO OSGI
	Overview
	Using the Maven bundle plug-in
	Sample bundle plug-in configuration
	Dynamic imports
	Build and deploy the client bundle

	CHAPTER 8. PROXYING A WEB SERVICE
	8.1. PROXYING WITH HTTP
	Overview
	Alternatives for the consumer endpoint
	Consumer endpoint for HTTP
	matchOnUriPrefix option
	Alternatives for the producer endpoint
	Producer endpoint for HTTP
	bridgeEndpoint option
	throwExceptionOnFailure option
	Handling message headers
	Outgoing HTTP headers

	8.2. PROXYING WITH POJO FORMAT
	Overview
	Consumer endpoint for CXF/POJO
	Producer endpoint for CXF/POJO

	8.3. PROXYING WITH PAYLOAD FORMAT
	Overview
	Consumer endpoint for CXF/PAYLOAD
	Producer endpoint for CXF/PAYLOAD
	Outgoing HTTP headers

	8.4. HANDLING HTTP HEADERS
	Overview
	HTTP-based components
	HTTP consumer endpoint
	HTTP producer endpoint
	Implications for HTTP bridge applications
	Setting a custom header filter

	CHAPTER 9. FILTERING SOAP MESSAGE HEADERS
	9.1. BASIC CONFIGURATION
	Overview
	CxfHeaderFilterStrategy
	relayHeaders option
	In-band headers
	Out-of-band headers
	Payload format
	Default filter
	Overriding the default filter
	Sample relayHeaders configuration
	relayAllMessageHeaders option
	Sample relayAllMessageHeaders configuration

	9.2. HEADER FILTERING
	Overview
	Filter map
	Filter behavior
	PAYLOAD mode
	POJO mode

	9.3. IMPLEMENTING A CUSTOM FILTER
	Overview
	MessageHeaderFilter interface
	Implementing the filter() method
	Binding filters to XML namespaces
	Identifying the namespace to bind to
	Implementing a custom filter

	9.4. INSTALLING FILTERS
	Overview
	Installing filters in XML
	SoapMessageHeaderFilter
	Namespace clashes

