
Red Hat JBoss Enterprise Application
Platform 7.4

Performance Tuning Guide

Instructions for evaluating Red Hat JBoss Enterprise Application Platform
performance, and for configuring updates to improve performance.

Last Updated: 2024-01-17

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning
Guide

Instructions for evaluating Red Hat JBoss Enterprise Application Platform performance, and for
configuring updates to improve performance.

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is a guide of performance tuning for Red Hat JBoss Enterprise Application Platform.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING
1.1. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

CHAPTER 2. MONITORING PERFORMANCE
2.1. CONFIGURING JBOSS EAP FOR REMOTE MONITORING CONNECTIONS
2.2. JCONSOLE

2.2.1. Connecting to a Local JBoss EAP JVM Using JConsole
2.2.2. Connecting to a Remote JBoss EAP JVM Using JConsole

2.3. JAVA VISUALVM
2.3.1. Connecting to a Local JBoss EAP JVM Using VisualVM
2.3.2. Connecting to a Remote JBoss EAP JVM Using VisualVM

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES
3.1. ENABLING GARBAGE COLLECTION LOGGING
3.2. JAVA HEAP DUMPS

3.2.1. Creating a Heap Dump
3.2.1.1. OpenJDK and Oracle JDK
3.2.1.2. IBM JDK

3.2.2. Analyzing a Heap Dump
3.3. IDENTIFYING HIGH CPU UTILIZATION BY JAVA THREADS
3.4. RUNTIME STATISTICS FOR MANAGED EXECUTOR SERVICES AND MANAGED SCHEDULED EXECUTOR
SERVICES

CHAPTER 4. JVM TUNING
4.1. SETTING UP A FIXED HEAP SIZE
4.2. CONFIGURING THE GARBAGE COLLECTOR

Garbage Collection Logging Options
4.3. ACTIVATING LARGE PAGES
4.4. ACTIVATING AGGRESSIVE OPTIMIZATIONS
4.5. SETTING SOFT AND HARD ULIMITS
4.6. HOST AND PROCESS CONTROLLER JVM TUNING

CHAPTER 5. JAKARTA ENTERPRISE BEANS SUBSYSTEM TUNING
5.1. BEAN INSTANCE POOLS

5.1.1. Creating a Bean Instance Pool
5.1.2. Specifying the Instance Pool a Bean Should Use
5.1.3. Disabling the Default Bean Instance Pool

5.2. BEAN THREAD POOLS
5.2.1. Creating a Bean Thread Pool
5.2.2. Configuring Enterprise Bean Services to Use a Specific Bean Thread Pool

5.3. RUNTIME BEAN DEPLOYMENT INFORMATION
5.3.1. Command line options for retrieving runtime data from Jakarta Enterprise Beans

5.4. EXCEPTIONS THAT INDICATE AN ENTERPRISE BEAN SUBSYSTEM TUNING MIGHT BE REQUIRED
5.5. DEFAULT GLOBAL TIMEOUT VALUES FOR SFSBS

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING
6.1. MONITORING POOL STATISTICS

6.1.1. Datasource Statistics
6.1.1.1. Enabling Datasource Statistics

4

5

6
6

7
7
8
9

10
11

12
13

15
15
15
16
16
16
16
17

17

20
20
20
20
21
22
22
23

24
24
24
25
25
25
26
26
26
27
29
30

32
32
32
32

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

Enable Datasource Statistics Using the Management CLI
Enable Datasource Statistics Using the Management Console

6.1.1.2. Viewing Datasource Statistics
View Datasource Statistics Using the Management CLI
View Datasource Statistics Using the Management Console

6.1.2. Resource Adapter Statistics
Enable Resource Adapter Statistics
View Resource Adapter Statistics

6.2. POOL ATTRIBUTES
6.3. CONFIGURING POOL ATTRIBUTES

6.3.1. Configuring Datasource Pool Attributes
6.3.2. Configuring Resource Adapter Pool Attributes

CHAPTER 7. MESSAGING SUBSYSTEM TUNING

CHAPTER 8. LOGGING SUBSYSTEM TUNING
8.1. DISABLING LOGGING TO THE CONSOLE
8.2. CONFIGURING LOGGING LEVELS
8.3. CONFIGURING THE LOCATION OF THE LOG FILES

CHAPTER 9. UNDERTOW SUBSYSTEM TUNING
9.1. BUFFER CACHE CONFIGURATION
9.2. BYTE BUFFER POOLS CONFIGURATION
9.3. JAKARTA SERVER PAGES CONFIGURATION

9.3.1. Enabling Jakarta Server Pages options using the management console
9.3.2. Enabling Jakarta Server Pages options using the management CLI

9.4. LISTENER CONFIGURATION OPTIONS
9.4.1. Configuring listener options using the management console
9.4.2. Configuring listener options using the management CLI

CHAPTER 10. IO SUBSYSTEM TUNING
10.1. CONFIGURING WORKERS

10.1.1. Monitoring Worker Statistics
10.2. CONFIGURING BUFFER POOLS

CHAPTER 11. JGROUPS SUBSYSTEM TUNING
11.1. MONITORING JGROUPS STATISTICS
11.2. NETWORKING AND JUMBO FRAMES
11.3. MESSAGE BUNDLING
11.4. JGROUPS THREAD POOLS
11.5. JGROUPS SEND AND RECEIVE BUFFERS

CHAPTER 12. TRANSACTIONS SUBSYSTEM TUNING

APPENDIX A. REFERENCE MATERIAL
A.1. DATASOURCE STATISTICS
A.2. RESOURCE ADAPTER STATISTICS
A.3. IO SUBSYSTEM ATTRIBUTES

32
32
33
33
34
34
34
34
35
36
36
37

38

39
39
39
39

40
40
40
41
41
41

42
42
43

44
44
44
44

46
46
47
47
48
48

49

50
50
53
54

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

2

Table of Contents

3

PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Please include the Document URL, the section number and describe the issue.

3. Enter a brief description of the issue in the Summary.

4. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

5. Clicking Submit creates and routes the issue to the appropriate documentation team.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

4

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12316621&summary=(userfeedback)&issuetype=13&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12391723&customfield_10010

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING
A JBoss EAP installation is optimized by default. However, configurations to your environment,
applications, and use of JBoss EAP subsystems can impact performance, meaning additional
configuration might be needed.

This guide provides optimization recommendations for common JBoss EAP use cases, as well as
instructions for monitoring performance and diagnosing performance issues.

You should stress test and verify all performance configuration changes under anticipated conditions
in a development or testing environment prior to deploying them to production.

1.1. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

In this document, the variable EAP_HOME is used to denote the path to the JBoss EAP installation.
Replace this variable with the actual path to your JBoss EAP installation.

If you installed the JBoss EAP compressed file, the install directory is the jboss-eap-7.4
directory where you extracted the compressed archive.

If you installed JBoss EAP using the RPM install method, the install directory is
/opt/rh/eap7/root/usr/share/wildfly/.

If you used the installer to install JBoss EAP, the default path for EAP_HOME is
${user.home}/EAP-7.4.0:

For Red Hat Enterprise Linux and Solaris: /home/USER_NAME/EAP-7.4.0/

For Microsoft Windows: C:\Users\USER_NAME\EAP-7.4.0\

If you used the Red Hat CodeReady Studio installer to install and configure the JBoss EAP
server, the default path for EAP_HOME is ${user.home}/devstudio/runtimes/jboss-eap:

For Red Hat Enterprise Linux: /home/USER_NAME/devstudio/runtimes/jboss-eap/

For Microsoft Windows: C:\Users\USER_NAME\devstudio\runtimes\jboss-eap or
C:\Documents and Settings\USER_NAME\devstudio\runtimes\jboss-eap\

NOTE

If you set the Target runtime to 7.4 or a later runtime version in Red Hat CodeReady
Studio, your project is compatible with the Jakarta EE 8 specification.

NOTE

EAP_HOME is not an environment variable. JBOSS_HOME is the environment variable
used in scripts.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

6

CHAPTER 2. MONITORING PERFORMANCE
You can monitor JBoss EAP performance using any tool that can examine JVMs running on your
machine. Red Hat recommends that you use either JConsole, for which JBoss EAP includes a
preconfigured wrapper script, or Java VisualVM. Both these tools provide basic monitoring of JVM
processes, including memory usage, thread utilization, loaded classes, and other JVM metrics.

If you will be running one of these tools locally on the same machine that JBoss EAP is running on, then
no configuration is necessary. However, if you will be running one of these tools to monitor JBoss EAP
running on a remote machine, then some configuration is required for JBoss EAP to accept remote
JMX connections.

2.1. CONFIGURING JBOSS EAP FOR REMOTE MONITORING
CONNECTIONS

For a Standalone Server

1. Ensure that you have created a management user. You might want to create a separate
management user to monitor your JBoss EAP server. See the JBoss EAP Configuration Guide
for details.

2. When starting JBoss EAP, bind the management interface to the IP address that you will use to
remotely monitor the server:

$ EAP_HOME/bin/standalone.sh -bmanagement=IP_ADDRESS

WARNING

This exposes all the JBoss EAP management interfaces, including the
management console and management CLI, to the specified network.
Ensure that you only bind the management interface to a private network.

3. Use the following URI with your management user name and password in your JVM monitoring
tool to connect to the JBoss EAP server. The URI below uses the default management port
(9990).

service:jmx:remote+http://IP_ADDRESS:9990

For a Managed Domain Host

Using the above procedure of binding the management interface on a managed domain host will only
expose the host controller JVM for remote monitoring, and not the individual JBoss EAP servers
running on that host.

To configure JBoss EAP to remotely monitor individual servers on a managed domain host, follow the
procedure below.

1. Create a new user in the ApplicationRealm that you will use to connect to the JBoss EAP
servers for remote monitoring. See the JBoss EAP Configuration Guide for details.



CHAPTER 2. MONITORING PERFORMANCE

7

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#management_users
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#management_users

2. To configure the remoting subsystem to use Elytron, execute the following commands:

/profile=full/subsystem=jmx/remoting-connector=jmx:add(use-management-endpoint=false)
/socket-binding-group=full-sockets/socket-binding=remoting:add(port=4447)
/profile=full/subsystem=remoting/connector=remoting-connector:add(socket-
binding=remoting,sasl-authentication-factory=application-sasl-authentication)

3. When starting your JBoss EAP managed domain host, bind one or both of the following
interfaces to an IP address that you will use for monitoring.

If you want to connect to individual JBoss EAP server JVMs running on your managed
domain host, bind the public interface:

$ EAP_HOME/bin/domain.sh -b=IP_ADDRESS

If you want to connect to the JBoss EAP host controller JVM, also bind the management
interface:

$ EAP_HOME/bin/domain.sh -bmanagement=IP_ADDRESS

WARNING

This exposes all the JBoss EAP management interfaces, including the
management console and management CLI, to the specified network.
Ensure that you only bind the management interface to a private
network.

4. Use the following details in your JVM monitoring tool:

To connect to individual JBoss EAP server JVMs running on your managed domain host,
use the following URI with your ApplicationRealm user name and password that was
created earlier.

service:jmx:remote://IP_ADDRESS:4447

To connect to different JBoss EAP servers on a single host, add the respective server’s port
offset value to the above port number.

To connect to the JBoss EAP host controller JVM, use the following URI with a
management user name and password.

service:jmx:remote://IP_ADDRESS:9990

2.2. JCONSOLE

A preconfigured JConsole wrapper script is bundled with JBoss EAP. Using this wrapper script ensures
that all the required libraries are added to the class path, and also provides access to the JBoss EAP
management CLI from within JConsole.



Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

8

2.2.1. Connecting to a Local JBoss EAP JVM Using JConsole

To connect to a JBoss EAP JVM running on the same machine as JConsole:

1. Run the jconsole script in EAP_HOME/bin.

2. Under Local Process, select the JBoss EAP JVM process that to want to monitor.

For a standalone JBoss EAP server, there is one JBoss EAP JVM process.

Figure 2.1. JConsole Local Standalone JBoss EAP Server JVM

A JBoss EAP managed domain host has multiple JVM processes you can connect to: a host
controller JVM process, a process controller JVM process, and a JVM process for each
JBoss EAP server on the host. You can determine which JVM you have connected to by
looking at the JVM arguments.

Figure 2.2. JConsole Local Managed Domain JBoss EAP JVMs

CHAPTER 2. MONITORING PERFORMANCE

9

Figure 2.2. JConsole Local Managed Domain JBoss EAP JVMs

3. Click Connect.

2.2.2. Connecting to a Remote JBoss EAP JVM Using JConsole

Prerequisites

Configure JBoss EAP for remote monitoring connections .

Download and extract a ZIP installation of JBoss EAP to your local machine. See the JBoss EAP
Installation Guide for details.

1. Run the jconsole script in EAP_HOME/bin.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

10

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/installation_guide/#downloading_zip_installation

2. Under Remote Process, insert the URI for the remote JBoss EAP JVM process that to want to
monitor.
See the instructions on configuring JBoss EAP for remote monitoring connections for the URI
to use.

Figure 2.3. JConsole Remote JBoss EAP JVM

3. Ensure that you provide the user name and password for the monitoring connection.

4. Click Connect.

2.3. JAVA VISUALVM

Java VisualVM is included with the Oracle JDK, and is located at JAVA_HOME/bin/jvisualvm. If you are
not using the Oracle JDK, VisualVM is also available for download from the VisualVM website. Note that
VisualVM does not work with the IBM JDK.

The following sections provide instructions for using VisualVM to connect to a local or remote JBoss

CHAPTER 2. MONITORING PERFORMANCE

11

https://visualvm.github.io/

The following sections provide instructions for using VisualVM to connect to a local or remote JBoss
EAP JVM. See the VisualVM documentation for other information on using VisualVM.

2.3.1. Connecting to a Local JBoss EAP JVM Using VisualVM

To connect to a JBoss EAP JVM running on the same machine as VisualVM:

1. Open VisualVM, and find the Applications pane on the left side of the VisualVM window.

2. Under Local, double-click the JBoss EAP JVM process that you want to monitor.

For a standalone JBoss EAP server, there is one JBoss EAP JVM process.

Figure 2.4. VisualVM Local Standalone JBoss EAP Server JVM

A JBoss EAP managed domain host has multiple JVM processes you can connect to: a host
controller JVM process, a process controller JVM process, and a JVM process for each
JBoss EAP server on the host. You can determine which JVM you have connected to by
looking at the JVM arguments.

Figure 2.5. VisualVM Local Managed Domain JBoss EAP JVMs

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

12

https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/

Figure 2.5. VisualVM Local Managed Domain JBoss EAP JVMs

2.3.2. Connecting to a Remote JBoss EAP JVM Using VisualVM

Prerequisites

Configure JBoss EAP for remote monitoring connections .

Download and extract a ZIP installation of JBoss EAP to your local machine. See the JBoss EAP
Installation Guide for details.

1. You must add the required JBoss EAP libraries to your class path to remotely monitor a JBoss
EAP JVM. Start VisualVM with the arguments for required libraries on your local machine. For
example:

$ visualvm -cp:a EAP_HOME/bin/client/jboss-cli-client.jar -J-
Dmodule.path=EAP_HOME/modules

2. In the File menu, select Add JMX Connection.

3. Complete the details for your remote JBoss EAP JVM:

In the Connection field, insert the URI for the remote JBoss EAP JVM process that to want
to monitor. See the instructions on configuring JBoss EAP for remote monitoring
connections for the URI to use.

Select the Use security credentials check box, and enter the user name and password for
the monitoring connection.

If you are not using an SSL connection, select the Do not require SSL connection check

CHAPTER 2. MONITORING PERFORMANCE

13

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/installation_guide/#downloading_zip_installation

If you are not using an SSL connection, select the Do not require SSL connection check
box.

Figure 2.6. VisualVM Remote JBoss EAP JVM

4. Click OK.

5. In the Applications pane on the left side of the VisualVM window, double-click on the JMX item
under the remote host to open the monitoring connection.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

14

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES

3.1. ENABLING GARBAGE COLLECTION LOGGING

Examining garbage collection logs can be useful when attempting to troubleshoot Java performance
issues, especially those related to memory usage.

Other than some additional disk I/O activity for writing the log files, enabling garbage collection logging
does not significantly affect server performance.

Garbage collection logging is already enabled by default for a standalone JBoss EAP server running on
OpenJDK or Oracle JDK. For a JBoss EAP managed domain, garbage collection logging can be enabled
for the host controller, process controller, or individual JBoss EAP servers.

1. Get the correct JVM options for enabling garbage collection logging for your JDK. Replace the
path in the options below to where you want the log to be created.

NOTE

The Red Hat Customer Portal has a JVM Options Configuration Tool that can
help you generate optimal JVM settings.

For OpenJDK 8 or Oracle JDK 8:

-verbose:gc -Xloggc:<path_to_directory>/gc.log -XX:+PrintGCDetails -
XX:+PrintGCDateStamps -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=5 -
XX:GCLogFileSize=3M -XX:-TraceClassUnloading

For versions 9 or later of OpenJDK, Oracle JDK, or any JDK that supports JEP 271:

-Xlog:gc*:file=<path_to_directory>/gc.log:time,uptimemillis:filecount=5,filesize=3M

For IBM JDK:

-Xverbosegclog:<path_to_directory>/gc.log

2. Apply the garbage collection JVM options to your JBoss EAP server.
See the JBoss EAP Configuration Guide for instructions on how to apply JVM options to a
standalone server or servers in a managed domain .

Additional resources

For more information about JEP 271, see JEP 271: Unified GC Logging on the OpenJDK web
page.

3.2. JAVA HEAP DUMPS

A Java heap dump is a snapshot of a JVM heap created at a certain point in time. Creating and analyzing
heap dumps can be useful for diagnosing and troubleshooting issues with Java applications.

Depending on which JDK you are using, there are different ways of creating and analyzing a Java heap

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES

15

https://access.redhat.com/labs/jvmconfig/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#jvm_settings_standalone_server
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#jvm_settings_managed_domain
https://openjdk.java.net/jeps/271

Depending on which JDK you are using, there are different ways of creating and analyzing a Java heap
dump for a JBoss EAP process. This section covers common methods for Oracle JDK, OpenJDK, and
IBM JDK.

3.2.1. Creating a Heap Dump

3.2.1.1. OpenJDK and Oracle JDK

Create an On-Demand Heap Dump

You can use the jcmd command to create an on-demand heap dump for JBoss EAP running on
OpenJDK or Oracle JDK.

1. Determine the process ID of the JVM that you want to create a heap dump from.

2. Create the heap dump with the following command:

$ jcmd JAVA_PID GC.heap_dump -all=true FILENAME.hprof

This creates a heap dump file in the HPROF format, usually located in EAP_HOME or
EAP_HOME/bin. Alternatively, you can specify a file path to another directory.

Create a Heap Dump Automatically on OutOfMemoryError

You can use the -XX:+HeapDumpOnOutOfMemoryError JVM option to automatically create a heap
dump when an OutOfMemoryError exception is thrown.

This creates a heap dump file in the HPROF format, usually located in EAP_HOME or EAP_HOME/bin.
Alternatively, you can set a custom path for the heap dump using -XX:HeapDumpPath=/path/. If you
specify a file name using -XX:HeapDumpPath, for example, -
XX:HeapDumpPath=/path/filename.hprof, the heap dumps will overwrite each other.

See the JBoss EAP Configuration Guide for instructions on how to apply JVM options to a standalone
server or servers in a managed domain .

3.2.1.2. IBM JDK

When using the IBM JDK, heap dumps are automatically generated when an OutOfMemoryError is
thrown.

Heap dumps from the IBM JDK are saved in the /tmp/ directory as a portable heap dump (PHD)
formatted file.

3.2.2. Analyzing a Heap Dump

Heap Dump Analysis Tools

There are many tools that can analyze heap dump files and help identify issues. Red Hat Support
recommends using the Eclipse Memory Analyzer tool (MAT) , which can analyze heap dumps formatted
in either HPROF or PHD formats.

For information on using Eclipse MAT, see the Eclipse MAT documentation .

Heap Dump Analysis Tips

Sometimes the cause of the heap performance issues are obvious, but other times you may need an

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

16

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#jvm_settings_standalone_server
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#jvm_settings_managed_domain
https://www.eclipse.org/mat/
https://www.eclipse.org/mat/documentation/

understanding of your application’s code and the specific circumstances that cause issues like an
OutOfMemoryError. This can help to identify whether an issue is a memory leak, or if the heap is just not
large enough.

Some suggestions for identifying memory usage issues include:

If a single object is not found to be consuming too much memory, try grouping by class to see if
many small objects are consuming a lot of memory.

Check if the biggest usage of memory is a thread. A good indicator of this is if the
OutOfMemoryError-triggered heap dump is much smaller than the specified Xmx maximum
heap size.

A technique to make memory leaks more detectable is to temporarily double the normal
maximum heap size. When an OutOfMemoryError occurs, the size of the objects related to the
memory leak will be about half the size of the heap.

When the source of a memory issue is identified, you can view the paths from garbage collection roots to
see what is keeping the objects alive.

3.3. IDENTIFYING HIGH CPU UTILIZATION BY JAVA THREADS

NOTE

For customers using JBoss EAP on Red Hat Enterprise Linux or Solaris, the JVMPeg lab
tool on the Red Hat Customer Portal helps collect and analyze Java thread information to
identify high CPU utilization. Follow the instructions for using the JVMPeg lab tool
instead of using the following procedure.

For OpenJDK and Oracle JDK environments, Java thread diagnostic information is available using the
jstack utility.

1. Identify the process ID of the Java process that is utilizing a high percentage of the CPU.
It can also be useful to obtain per-thread CPU data on high-usage processes. This can be done
using the top -H command on Red Hat Enterprise Linux systems.

2. Using the jstack utility, create a stack dump of the Java process. For example, on Linux and
Solaris:

jstack -l JAVA_PROCESS_ID > high-cpu-tdump.out

You might need to create multiple dumps at intervals to see any changes or trends over a
period of time.

3. Analyze the stack dumps. You can use a tool such as the Thread Dump Analyzer (TDA) .

3.4. RUNTIME STATISTICS FOR MANAGED EXECUTOR SERVICES AND
MANAGED SCHEDULED EXECUTOR SERVICES

You can monitor the performance of managed executor services and managed scheduled executor
services by viewing the runtime statistics generated with the management CLI attributes. You can view
the runtime statistics for a standalone server or for an individual server mapped to a host.

IMPORTANT

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES

17

https://access.redhat.com/labs/jvmpeg/
https://access.redhat.com/labsinfo/jvmpeg
https://github.com/irockel/tda

IMPORTANT

The domain.xml configuration does not include a resource for the runtime statistic
management CLI attributes, so you cannot use the management CLI attributes to view
the runtime statistics for a managed domain.

Table 3.1. Displays management CLI attributes for monitoring the performance of managed
executor services and of managed scheduled executor services.

Attribute Description

active-thread-count The approximate number of threads that are actively executing
tasks.

completed-task-count The approximate total number of tasks that have completed
execution.

hung-thread-count The number of executor threads that are hung.

max-thread-count The largest number of executor threads.

current-queue-size The current size of the executor’s task queue.

task-count The approximate total number of tasks that have been
submitted for execution.

thread-count The current number of executor threads.

Example of viewing the runtime statistics for a managed executor service running on a
standalone server.

[standalone@localhost:9990 /] /subsystem=ee/managed-executor-service=default:read-
resource(include-runtime=true,recursive=true)

Example of the runtime statistics for a managed scheduled executor service running on a
standalone server.

[standalone@localhost:9990 /] /subsystem=ee/managed-scheduled-executor-service=default:read-
resource(include-runtime=true,recursive=true)

Example of viewing the runtime statistics for a managed executor service running on a
server mapped to a host.

[domain@localhost:9990 /] /host=<host_name>/server=<server_name>/subsystem=ee/managed-
executor-service=default:read-resource(include-runtime=true,recursive=true)

Example of the runtime statistics for a managed scheduled executor service running on a
server mapped to a host.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

18

[domain@localhost:9990 /] /host=<host_name>/server=<server_name>/subsystem=ee/managed-
scheduled-executor-service=default:read-resource(include-runtime=true,recursive=true)

Additional resources

For information about creating a managed executor service, see Managed Executor Service in
the JBoss EAP Development Guide.

For information about creating a managed scheduled executor service, see Managed Scheduled
Executor Service in the JBoss EAP Development Guide.

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES

19

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#managed_executor_service
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#managed_scheduled_executor_service

CHAPTER 4. JVM TUNING
Configuring optimal Java virtual machine (JVM) options for your applications and JBoss EAP
environment is one of the most fundamental ways to tune performance. This chapter covers configuring
some general JVM options.

NOTE

Many of the JVM options listed in this chapter can be easily generated using the JVM
Options Configuration Tool on the Red Hat Customer Portal.

Additional resources

Refer to the JBoss EAP Configuration Guide for instructions on how to apply JVM options to a
standalone server or servers in a managed domain .

4.1. SETTING UP A FIXED HEAP SIZE

To pre-allocate and fix the heap size on the production environments, you must set the initial and
maximum heap size options to the same size.

Procedure

1. Set an appropriate heap size to prevent out of memory errors.

a. Use the -Xms option to set the initial heap size and the -Xmx to set the maximum heap size.
For example, the following options set a 2048 MB heap size:

-Xms2048M -Xmx2048M

2. Test your applications under load in a development environment to determine the maximum
memory usage.

Your production heap size should be at least 25% higher than the tested maximum to allow room for
overhead.

4.2. CONFIGURING THE GARBAGE COLLECTOR

Although the parallel garbage collector, also known as the throughput garbage collector, is the default
garbage collector in Java 8 for server-class machines, Red Hat recommends using the G1 garbage
collector, which is expected to be the default from Java 9 onward. The G1 garbage collector generally
performs better than the CMS and parallel garbage collectors in most scenarios.

Procedure

1. To enable the G1 collector, use the following JVM option:

-XX:+UseG1GC

Garbage Collection Logging Options
Garbage collection logging is enabled by default for standalone JBoss EAP servers. To enable garbage
collection logging for a JBoss EAP managed domain, see enabling garbage collection .

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

20

https://access.redhat.com/labs/jvmconfig/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#jvm_settings_standalone_server
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#jvm_settings_managed_domain
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/ergonomics.html#ergonomics
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/performance_tuning_guide/#enabling_garbage_collection

4.3. ACTIVATING LARGE PAGES

Activating large pages for JBoss EAP JVMs results in pages that are locked in memory and cannot be
swapped to disk like regular memory.

Especially for memory-intensive applications, the advantage of using large pages is that the heap
cannot be paged or swapped to disk, and is thus always readily available.

One disadvantage of using large pages is that other processes running on the system might not have
quick access to memory, which might result in excessive paging for these processes.

As with any other performance configuration change, it is recommended that you test the impact of the
change in a testing environment.

Prerequisites

Your operating system configuration is set to use large pages.

Procedure

1. If your operating system is not configured to use large pages for JBoss EAP processes, select
one of the following options:

For Red Hat Enterprise Linux systems, you must explicitly configure HugeTLB pages to
guarantee that JBoss EAP processes will have access to large pages.
For information on configuring Red Hat Enterprise Linux memory options, see the Memory
chapter in the Red Hat Enterprise Linux Performance Tuning Guide.

For Windows Server systems running JBoss EAP, you must assign the large pages privilege:

1. Select Control Panel → Administrative Tools → Local Security Policy.

2. Select Local Policies → User Rights Assignment.

3. Double-click Lock pages in memory.

4. Add the Windows Server users and user groups that you want to use large pages.

5. Restart the machine.

2. Enable or disable large page support:

To explicitly enable large page support for JBoss EAP JVMs, use the following JVM option:

-XX:+UseLargePages

To explicitly disable large page support for JBoss EAP JVMs, use the following JVM option:

-XX:-UseLargePages

3. When starting JBoss EAP, ensure that there are no warnings related to reserving memory.

On Red Hat Enterprise Linux, an error might look like:

OpenJDK 64-Bit Server VM warning: Failed to reserve shared memory. (error = 1)

CHAPTER 4. JVM TUNING

21

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html#sect-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Considerations-Page_size

On Windows Server, an error might look like:

Java HotSpot(TM) 64-Bit Server VM warning: JVM cannot use large page memory
because it does not have enough privilege to lock pages in memory.

If you do see warnings, verify that your operating system configuration and JVM options are
configured correctly.

Additional resources

For more information, see the Oracle documentation on Java support for large pages .

4.4. ACTIVATING AGGRESSIVE OPTIMIZATIONS

Using the aggressive optimizations (AggressiveOpts) JVM option can provide performance
improvements for your environment. This option provides Java performance optimization features that
are expected to become default in future Java releases.

Procedure

1. To enable AggressiveOpts, use the following JVM option:

-XX:+AggressiveOpts

4.5. SETTING SOFT AND HARD ULIMITS

For Red Hat Enterprise Linux and Solaris platforms, you must configure appropriate ulimit values for
JBoss EAP JVM processes. The "soft" ulimit can be temporarily exceeded, while the "hard" ulimit is the
strict ceiling for the usage of a resource. Appropriate ulimit values vary depending on your environment
and applications.

IMPORTANT

If you are using IBM JDK, it is important to note that IBM JDK uses the soft limit for the
maximum number of open files used by a JVM process. On Red Hat Enterprise Linux, the
default soft limit (1024) is considered too low for JBoss EAP processes using IBM JDK.

If the limits applied to JBoss EAP processes are too low, you will see a warning like the following when
starting JBoss EAP:

WARN [org.jboss.as.warn.fd-limit] (main) WFLYSRV0071: The operating system has limited the
number of open files to 1024 for this process; a value of at least 4096 is recommended.

Procedure

1. To see your current ulimit values, use the following commands:

For soft ulimit values:

ulimit -Sa

For hard ulimit values:

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

22

http://www.oracle.com/technetwork/java/javase/tech/largememory-jsp-137182.html

ulimit -Ha

2. To set the ulimit for the maximum number of open files, use the following commands with the
number you want to apply:

To set the soft ulimit for the maximum number of open files:

ulimit -Sn 4096

To set the hard ulimit for the maximum number of open files:

ulimit -Hn 4096

NOTE

To guarantee that a ulimit setting is effective, it is recommended on
production systems to set the soft and hard limits to the same value.

Additional resources

For more information on setting ulimit values using a configuration file, see How to set ulimit
values on the Customer Portal.

4.6. HOST AND PROCESS CONTROLLER JVM TUNING

JBoss EAP managed domain hosts have separate JVMs for the host controller and process controller.
See the JBoss EAP Configuration Guide for more information on the roles of host controllers and
process controllers.

You can tune the host controller and process controller JVM settings, but even for large managed
domain environments, the default JVM configuration for the host controller and process controller
should suffice.

The default configurations for host controller and process controller JVMs have been tested with a
managed domain size of up to 20 JBoss EAP hosts each running 10 JBoss EAP servers, for a total
domain size of 200 JBoss EAP servers.

If you experience issues with larger managed domains, you might need to monitor the host controller or
process controller JVMs in your environment to determine appropriate values for JVM options such as
heap size.

CHAPTER 4. JVM TUNING

23

https://access.redhat.com/solutions/61334
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#about_host_controllers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#process_controllers

CHAPTER 5. JAKARTA ENTERPRISE BEANS SUBSYSTEM
TUNING

JBoss EAP can cache Jakarta Enterprise Beans to save initialization time. This is accomplished using
bean pools.

There are two different bean pools that can be tuned in JBoss EAP: bean instance pools and bean
thread pools.

Appropriate bean pool sizes depend on your environment and applications. It is recommended that you
experiment with different bean pool sizes and perform stress testing in a development environment
that emulates your expected real-world conditions.

5.1. BEAN INSTANCE POOLS

Bean instance pools are used for Stateless Session Beans (SLSBs) and Message Driven Beans (MDBs).
By default, SLSBs use the instance pool default-slsb-instance-pool, and MDBs use the instance pool
default-mdb-instance-pool.

The size of a bean instance pool limits the number of instances of a particular enterprise bean that can
be created at one time. If the pool for a particular enterprise bean is full, the client will block and wait for
an instance to become available. If a client does not get an instance within the time set in the pool’s
timeout attributes, an exception is thrown.

The size of a bean instance pool is configured using either derive-size or max-pool-size. The derive-
size attribute allows you to configure the pool size using one of the following values:

from-worker-pools, which indicates that the maximum pool size is derived from the size of the
total threads for all worker pools configured on the system.

from-cpu-count, which indicates that the maximum pool size is derived from the total number of
processors available on the system. Note that this is not necessarily a 1:1 mapping, and might be
augmented by other factors.

If derive-size is undefined, then the value of max-pool-size is used for the size of the bean instance
pool.

NOTE

The derive-size attribute overrides any value specified in max-pool-size. derive-size
must be undefined for the max-pool-size value to take effect.

You can configure an enterprise bean to use a specific instance pool. This allows for finer control of the
instances available to each enterprise bean type.

5.1.1. Creating a Bean Instance Pool

This section shows you how to create a new bean instance pool using the management CLI. You can also
configure bean instance pools using the management console by navigating to the Jakarta Enterprise
Beans subsystem from the Configuration tab, and then selecting the Bean Pool tab.

To create a new instance pool, use one of the following commands:

To create a bean instance pool with a derived maximum pool size:

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

24

/subsystem=ejb3/strict-max-bean-instance-pool=POOL_NAME:add(derive-
size=DERIVE_OPTION,timeout-unit=TIMEOUT_UNIT,timeout=TIMEOUT_VALUE)

The following example creates a bean instance pool named my_derived_pool with a maximum
size derived from the CPU count, and a timeout of 2 minutes:

/subsystem=ejb3/strict-max-bean-instance-pool=my_derived_pool:add(derive-size=from-cpu-
count,timeout-unit=MINUTES,timeout=2)

To create a bean instance pool with an explicit maximum pool size:

/subsystem=ejb3/strict-max-bean-instance-pool=POOL_NAME:add(max-pool-
size=POOL_SIZE,timeout-unit=TIMEOUT_UNIT,timeout=TIMEOUT_VALUE)

The following example creates a bean instance pool named my_pool with a maximum of 30
instances and a timeout of 30 seconds:

/subsystem=ejb3/strict-max-bean-instance-pool=my_pool:add(max-pool-size=30,timeout-
unit=SECONDS,timeout=30)

5.1.2. Specifying the Instance Pool a Bean Should Use

You can set a specific instance pool that a particular bean will use either by using the
@org.jboss.ejb3.annotation.Pool annotation, or by modifying the jboss-ejb3.xml deployment
descriptor of the bean. See the jboss-ejb3.xml Deployment Descriptor Reference in Developing
Jakarta Enterprise Beans Applications for more information.

5.1.3. Disabling the Default Bean Instance Pool

The default bean instance pool can be disabled, which results in an enterprise bean not using any
instance pool by default. Instead, a new enterprise bean instance is created when a thread needs to
invoke a method on an enterprise bean. This might be useful if you do not want any limit on the number
of enterprise bean instances that are created.

To disable the default bean instance pool, use the following management CLI command:

/subsystem=ejb3:undefine-attribute(name=default-slsb-instance-pool)

NOTE

If a bean is configured to use a particular bean instance pool , disabling the default
instance pool does not affect the pool that the bean uses.

5.2. BEAN THREAD POOLS

By default, a bean thread pool named default is used for asynchronous enterprise bean calls and
enterprise bean timers.

NOTE

From JBoss EAP 7 onward, remote enterprise bean requests are handled in the worker
defined in the io subsystem by default.

CHAPTER 5. JAKARTA ENTERPRISE BEANS SUBSYSTEM TUNING

25

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/developing_jakarta_enterprise_beans_applications/#jboss_ejb3_xml_deployment_descriptor_reference

If required, you can configure each of these enterprise bean services to use a different bean thread
pool. This can be useful if you want finer control of each service’s access to a bean thread pool.

When determining an appropriate thread pool size, consider how many concurrent requests you expect
will be processed at once.

5.2.1. Creating a Bean Thread Pool

This section shows you how to create a new bean thread pool using the management CLI. You can also
configure bean thread pools using the management console by navigating to the Jakarta Enterprise
Beans subsystem from the Configuration tab and selecting Container → Thread Pool in the left menu.

To create a new thread pool, use the following command:

/subsystem=ejb3/thread-pool=POOL_NAME:add(max-threads=MAX_THREADS)

The following example creates a bean thread pool named my_thread_pool with a maximum of 30
threads:

/subsystem=ejb3/thread-pool=my_thread_pool:add(max-threads=30)

5.2.2. Configuring Enterprise Bean Services to Use a Specific Bean Thread Pool

The enterprise bean asynchronous invocation service and timer service can each be configured to use a
specific bean thread pool. By default, both these services use the default bean thread pool.

This section shows you how to configure the above enterprise bean services to use a specific bean
thread pool using the management CLI. You can also configure these services using the management
console by navigating to the Enterprise Bean subsystem from the Configuration tab, selecting the
Services tab, and choosing the appropriate service.

To configure an enterprise bean service to use a specific bean thread pool, use the following command:

/subsystem=ejb3/service=SERVICE_NAME:write-attribute(name=thread-pool-
name,value=THREAD_POOL_NAME)

Replace SERVICE_NAME with the an enterprise bean service you want to configure:

async for the enterprise bean asynchronous invocation service

timer-service for the enterprise bean timer service

The following example sets the enterprise bean async service to use the bean thread pool named
my_thread_pool:

/subsystem=ejb3/service=async:write-attribute(name=thread-pool-name,value=my_thread_pool)

5.3. RUNTIME BEAN DEPLOYMENT INFORMATION

Runtime metadata is available from bean deployments so you can monitor the performance of your
beans.

Runtime metadata is available for the following types of beans:

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

26

stateful session beans

stateless session beans

singleton beans

message-driven beans

The bean application includes the metadata as annotations in the code or in the deployment descriptor.
An application can use both options. For details about the available runtime data, see the ejb3
subsystem in the JBoss EAP management model.

Additional resources

For more information about available runtime data, see the ejb3 subsystem in the JBoss EAP
management model.

5.3.1. Command line options for retrieving runtime data from Jakarta Enterprise
Beans

Runtime data from Jakarta Enterprise Beans is available from the management CLI so you can evaluate
the performance of your Jakarta Enterprise Beans.

The command to retrieve runtime data for all types of beans uses the following pattern:

/deployment=<deployment_name>/subsystem=ejb3/<bean_type>=<bean_name>:read-
resource(include-runtime)

Replace <deployment_name> with the name of the deployment .jar file for which to retrieve runtime
data. Replace <bean_type> with the type of the bean for which to retrieve runtime data. The following
options are valid for this placeholder:

stateless-session-bean

stateful-session-bean

singleton-bean

message-driven-bean

Replace <bean_name> with the name of the bean for which you to retrieve runtime data.

The system delivers the result to stdout formatted as JavaScript Object Notation (JSON) data.

Example command to retrieve runtime data for a singleton bean named
ManagedSingletonBean deployed in a file named ejb-management.jar

/deployment=ejb-management.jar/subsystem=ejb3/singleton-bean=ManagedSingletonBean:read-
resource(include-runtime)

Example output runtime data for the singleton bean

{
 "outcome" => "success",
 "result" => {

CHAPTER 5. JAKARTA ENTERPRISE BEANS SUBSYSTEM TUNING

27

https://access.redhat.com/webassets/avalon/d/red_hat_jboss_enterprise_application_platform/7.4/mgmt_model/subsystem/ejb3/index.html

 "async-methods" => ["void async(int, int)"],
 "business-local" => ["sample.ManagedSingletonBean"],
 "business-remote" => ["sample.BusinessInterface"],
 "component-class-name" => "sample.ManagedSingletonBean",
 "concurrency-management-type" => undefined,
 "declared-roles" => [
 "Role3",
 "Role2",
 "Role1"
],
 "depends-on" => undefined,
 "execution-time" => 156L,
 "init-on-startup" => false,
 "invocations" => 3L,
 "jndi-names" => [
 "java:module/ManagedSingletonBean!sample.ManagedSingletonBean",
 "java:global/ejb-management/ManagedSingletonBean!sample.ManagedSingletonBean",
 "java:app/ejb-management/ManagedSingletonBean!sample.ManagedSingletonBean",
 "java:app/ejb-management/ManagedSingletonBean!sample.BusinessInterface",
 "java:global/ejb-management/ManagedSingletonBean!sample.BusinessInterface",
 "java:module/ManagedSingletonBean!sample.BusinessInterface"
],
 "methods" => {"doIt" => {
 "execution-time" => 156L,
 "invocations" => 3L,
 "wait-time" => 0L
 }},
 "peak-concurrent-invocations" => 1L,
 "run-as-role" => "Role3",
 "security-domain" => "other",
 "timeout-method" => "public void sample.ManagedSingletonBean.timeout(javax.ejb.Timer)",
 "timers" => [{
 "time-remaining" => 4304279L,
 "next-timeout" => 1577768415000L,
 "calendar-timer" => true,
 "persistent" => false,
 "info" => "timer1",
 "schedule" => {
 "year" => "*",
 "month" => "*",
 "day-of-month" => "*",
 "day-of-week" => "*",
 "hour" => "0",
 "minute" => "0",
 "second" => "15",
 "timezone" => undefined,
 "start" => undefined,
 "end" => undefined
 }
 }],
 "transaction-type" => "CONTAINER",
 "wait-time" => 0L,
 "service" => {"timer-service" => undefined}
 }
}

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

28

Example command to retrieve runtime data for a message-driven bean named NoTimerMDB
deployed in a file named ejb-management.jar

/deployment=ejb-management.jar/subsystem=ejb3/message-driven-bean=NoTimerMDB:read-
resource(include-runtime)

Example output for the message-driven bean

{
 "outcome" => "success",
 "result" => {
 "activation-config" => [
 ("destination" => "java:/queue/NoTimerMDB-queue"),
 ("destinationType" => "javax.jms.Queue"),
 ("acknowledgeMode" => "Auto-acknowledge")
],
 "component-class-name" => "sample.NoTimerMDB",
 "declared-roles" => [
 "Role3",
 "Role2",
 "Role1"
],
 "delivery-active" => true,
 "execution-time" => 0L,
 "invocations" => 0L,
 "message-destination-link" => "queue/NoTimerMDB-queue",
 "message-destination-type" => "javax.jms.Queue",
 "messaging-type" => "javax.jms.MessageListener",
 "methods" => {},
 "peak-concurrent-invocations" => 0L,
 "pool-available-count" => 16,
 "pool-create-count" => 0,
 "pool-current-size" => 0,
 "pool-max-size" => 16,
 "pool-name" => "mdb-strict-max-pool",
 "pool-remove-count" => 0,
 "run-as-role" => "Role3",
 "security-domain" => "other",
 "timeout-method" => undefined,
 "timers" => [],
 "transaction-type" => "CONTAINER",
 "wait-time" => 0L,
 "service" => undefined
 }
}

5.4. EXCEPTIONS THAT INDICATE AN ENTERPRISE BEAN SUBSYSTEM
TUNING MIGHT BE REQUIRED

The Stateless Jakarta Enterprise Beans instance pool is not large enough or the timeout is
too low

CHAPTER 5. JAKARTA ENTERPRISE BEANS SUBSYSTEM TUNING

29

javax.ejb.EJBException: JBAS014516: Failed to acquire a permit within 20 SECONDS
 at org.jboss.as.ejb3.pool.strictmax.StrictMaxPool.get(StrictMaxPool.java:109)

See Bean Instance Pools.

The enterprise bean thread pool is not large enough, or an enterprise bean is taking longer
to process than the invocation timeout

java.util.concurrent.TimeoutException: No invocation response received in 300000
milliseconds

See Bean Thread Pools.

5.5. DEFAULT GLOBAL TIMEOUT VALUES FOR SFSBS

In the ejb3 subsystem, you can configure a default global timeout value for all stateful session beans
(SFSBs) that are deployed on your server instance by using the default-stateful-bean-session-timeout
attribute.

With the default-stateful-bean-session-timeout attribute, you can use the following management CLI
operations on the ejb3 subsystem:

The read-attribute operation in the management CLI to view the current global timeout value
for the attribute.

The write-attribute operation to configure the attribute by using the management CLI.

Attribute behavior varies according to the server mode. For example:

When running in the standalone server, the configured value gets applied to all SFSBs deployed
on the application server.

When running a server in a managed domain, all SFSBs that are deployed on server instances
within server groups receive concurrent timeout values.

NOTE

When you change the global timeout value for the attribute, the updated settings only
apply to new deployments. You must reload the server to apply the new settings to
current deployments.

By default, the attribute value is set at -1, which means that deployed SFSBs are configured to never
time out. However, you can configure two of the following types of valid values for the attribute:

When you set the attribute value to 0, the attribute immediately marks eligible SFSBs for
removal by the ejb container.

When you set the attribute value greater than 0, the SFSBs remain idle for the specified time in
milliseconds before the ejb container removes the eligible SFSBs.

NOTE

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

30

NOTE

You can still use the pre-existing @StatefulTimeout annotation or the stateful-timeout
element, which is located in the ejb-jar.xml deployment descriptor, to configure the
timeout value for an SFSB. However, setting such a configuration overrides the default
global timeout value to the SFSB.

Two methods exist for verifying a new value you set for the attribute:

Use the read-attribute operation in the management CLI.

Examine the ejb3 subsystem section of the server’s configuration file.

Additional resources

For more information about viewing the current global timeout value for an attribute, see
Display an Attribute Value in the Management CLI Guide .

For more information about updating the current global timeout value for an attribute, see
Update an Attribute in the Management CLI Guide .

CHAPTER 5. JAKARTA ENTERPRISE BEANS SUBSYSTEM TUNING

31

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/management_cli_guide/#display_attribute_value
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/management_cli_guide/#update_attribute

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER
TUNING

Connection pools are the principal tool that JBoss EAP uses to optimize performance for environments
that use datasources, such as relational databases, or resource adapters.

Allocating and deallocating resources for datasource and resource adapter connections is very
expensive in terms of time and system resources. Connection pooling reduces the cost of connections
by creating a 'pool' of connections that are available to applications.

Before configuring your connection pool for optimal performance, you must monitor the datasource
pool statistics or resource adapter statistics under load to determine the appropriate settings for your
environment.

6.1. MONITORING POOL STATISTICS

6.1.1. Datasource Statistics

When statistics collection is enabled for a datasource, you can view runtime statistics for the datasource.

6.1.1.1. Enabling Datasource Statistics

By default, datasource statistics are not enabled. You can enable datasource statistics collection using
the management CLI or the management console.

Enable Datasource Statistics Using the Management CLI
The following management CLI command enables the collection of statistics for the ExampleDS
datasource.

NOTE

In a managed domain, precede this command with /profile=PROFILE_NAME.

/subsystem=datasources/data-source=ExampleDS:write-attribute(name=statistics-
enabled,value=true)

Reload the server for the changes to take effect.

Enable Datasource Statistics Using the Management Console
Use the following steps to enable statistics collection for a datasource using the management console.

1. Navigate to datasources in standalone or domain mode.

Use the following navigation in the standalone mode:
Configuration → Subsystems → Datasources & Drivers → Datasources

Use the following navigation in the domain mode:
Configuration → Profiles → full → Datasources & Drivers → Datasources

2. Select the datasource and click View.

3. Click Edit under the Attributes tab.

4. Set the Statistics Enabled field to ON and click Save. A popup appears indicating that the

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

32

4. Set the Statistics Enabled field to ON and click Save. A popup appears indicating that the
changes require a reload in order to take effect.

5. Reload the server.

For a standalone server, click the Reload link from the popup to reload the server.

For a managed domain, click the Topology link from the popup. From the Topology tab,
select the appropriate server and select the Reload drop down option to reload the server.

6.1.1.2. Viewing Datasource Statistics

You can view runtime statistics for a datasource using the management CLI or management console.

View Datasource Statistics Using the Management CLI
The following management CLI command retrieves the core pool statistics for the ExampleDS
datasource.

NOTE

In a managed domain, precede these commands with
/host=HOST_NAME/server=SERVER_NAME.

/subsystem=datasources/data-source=ExampleDS/statistics=pool:read-resource(include-
runtime=true)
{
 "outcome" => "success",
 "result" => {
 "ActiveCount" => 1,
 "AvailableCount" => 20,
 "AverageBlockingTime" => 0L,
 "AverageCreationTime" => 122L,
 "AverageGetTime" => 128L,
 "AveragePoolTime" => 0L,
 "AverageUsageTime" => 0L,
 "BlockingFailureCount" => 0,
 "CreatedCount" => 1,
 "DestroyedCount" => 0,
 "IdleCount" => 1,
 ...
}

The following management CLI command retrieves the JDBC statistics for the ExampleDS datasource.

/subsystem=datasources/data-source=ExampleDS/statistics=jdbc:read-resource(include-
runtime=true)
{
 "outcome" => "success",
 "result" => {
 "PreparedStatementCacheAccessCount" => 0L,
 "PreparedStatementCacheAddCount" => 0L,
 "PreparedStatementCacheCurrentSize" => 0,
 "PreparedStatementCacheDeleteCount" => 0L,
 "PreparedStatementCacheHitCount" => 0L,
 "PreparedStatementCacheMissCount" => 0L,

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING

33

 "statistics-enabled" => true
 }
}

NOTE

Since statistics are runtime information, be sure to specify the include-runtime=true
argument.

See Datasource Statistics for a detailed list of all available statistics.

View Datasource Statistics Using the Management Console
To view datasource statistics from the management console, navigate to the Datasources subsystem
from the Runtime tab, select a datasource, and click View.

See Datasource Statistics for a detailed list of all available statistics.

6.1.2. Resource Adapter Statistics

You can view core runtime statistics for deployed resource adapters. See the Resource Adapter
Statistics appendix for a detailed list of all available statistics.

Enable Resource Adapter Statistics
By default, resource adapter statistics are not enabled. The following management CLI command
enables the collection of statistics for a simple resource adapter myRA.rar with a connection factory
bound in JNDI as java:/eis/AcmeConnectionFactory:

NOTE

In a managed domain, precede the command with
/host=HOST_NAME/server=SERVER_NAME/.

/deployment=myRA.rar/subsystem=resource-adapters/statistics=statistics/connection-
definitions=java\:\/eis\/AcmeConnectionFactory:write-attribute(name=statistics-enabled,value=true)

View Resource Adapter Statistics
Resource adapter statistics can be retrieved from the management CLI. The following management CLI
command returns statistics for the resource adapter myRA.rar with a connection factory bound in JNDI
as java:/eis/AcmeConnectionFactory.

NOTE

In a managed domain, precede the command with
/host=HOST_NAME/server=SERVER_NAME/.

deployment=myRA.rar/subsystem=resource-adapters/statistics=statistics/connection-
definitions=java\:\/eis\/AcmeConnectionFactory:read-resource(include-runtime=true)
{
 "outcome" => "success",
 "result" => {
 "ActiveCount" => "1",
 "AvailableCount" => "20",

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

34

 "AverageBlockingTime" => "0",
 "AverageCreationTime" => "0",
 "CreatedCount" => "1",
 "DestroyedCount" => "0",
 "InUseCount" => "0",
 "MaxCreationTime" => "0",
 "MaxUsedCount" => "1",
 "MaxWaitCount" => "0",
 "MaxWaitTime" => "0",
 "TimedOut" => "0",
 "TotalBlockingTime" => "0",
 "TotalCreationTime" => "0"
 }
}

NOTE

Since statistics are runtime information, be sure to specify the include-runtime=true
argument.

6.2. POOL ATTRIBUTES

This section details advice for selected pool attributes that can be configured for optimal datasource or
resource adapter performance. For instructions on how to configure each of these attributes, see:

Configuring Datasource Pool Attributes

Configuring Resource Adapter Pool Attributes

Minimum Pool Size

The min-pool-size attribute defines the minimum size of the connection pool. The default
minimum is zero connections. With a zero min-pool-size, connections are created and
placed in the pool when the first transactions occur.
If min-pool-size is too small, it results in increased latency while executing initial database
commands because new connections might need to be established. If min-pool-size is too
large, it results in wasted connections to the datasource or resource adapter.

During periods of inactivity the connection pool will shrink, possibly to the min-pool-size
value.

Red Hat recommends that you set min-pool-size to the number of connections that allow
for ideal on-demand throughput for your applications.

Maximum Pool Size

The max-pool-size attribute defines the maximum size of the connection pool. It is an
important performance parameter because it limits the number of active connections, and
thus also limits the amount of concurrent activity.
If max-pool-size is too small, it can result in requests being unnecessarily blocked. If max-
pool-size is too large, it can result in your JBoss EAP environment, datasource, or resource
adapter using more resources than it can handle.

Red Hat recommends that you set the max-pool-size to at least 15% higher than an
acceptable MaxUsedCount observed after monitoring performance under load. This allows
some buffer for higher than expected conditions.

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING

35

Prefill

The pool-prefill attribute specifies whether JBoss EAP will prefill the connection pool with
the minimum number of connections when JBoss EAP starts. The default value is false.
When pool-prefill is set to true, JBoss EAP uses more resources at startup, but there will be
less latency for initial transactions.

Red Hat recommends to set pool-prefill to true if you have optimized the min-pool-size.

Strict Minimum

The pool-use-strict-min attribute specifies whether JBoss EAP allows the number of
connections in the pool to fall below the specified minimum.
If pool-use-strict-min is set to true, JBoss EAP will not allow the number of connections to
temporarily fall below the specified minimum. The default value is false.

Although a minimum number of pool connections is specified, when JBoss EAP closes
connections, for instance, if the connection is idle and has reached the timeout, the closure
may cause the total number of connections to temporarily fall below the minimum before a
new connection is created and added to the pool.

Timeouts

There are a number of timeout options that are configurable for a connection pool, but a
significant one for performance tuning is idle-timeout-minutes.
The idle-timeout-minutes attribute specifies the maximum time, in minutes, a connection
may be idle before being closed. As idle connections are closed, the number of connections
in the pool will shrink down to the specified minimum.

The longer the timeout, the more resources are used but requests might be served faster.
The lower the timeout, the less resources are used but requests might need to wait for a new
connection to be created.

6.3. CONFIGURING POOL ATTRIBUTES

6.3.1. Configuring Datasource Pool Attributes

Prerequisites

Install a JDBC driver. See JDBC Drivers in the JBoss EAP Configuration Guide.

Create a datasource. See Creating Datasources in the JBoss EAP Configuration Guide.

You can configure datasource pool attributes using either the management CLI or the management
console:

To use the management console, navigate to Configuration → Subsystems → Datasources &
Drivers → Datasources, select your datasource, and click View. The pool options are
configurable under the datasource Pool tab. Timeout options are configurable under the
datasource Timeouts tab.

To use the management CLI, execute the following command:

/subsystem=datasources/data-source=DATASOURCE_NAME/:write-
attribute(name=ATTRIBUTE_NAME,value=ATTRIBUTE_VALUE)

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

36

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#jdbc_drivers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#adding_datasources

For example, to set the ExampleDS datasource min-pool-size attribute to a value of 5
connections, use the following command:

/subsystem=datasources/data-source=ExampleDS/:write-attribute(name=min-pool-
size,value=5)

6.3.2. Configuring Resource Adapter Pool Attributes

Prerequisites

Deploy your resource adapter and add a connection definition. See Configuring Resource
Adapters in the JBoss EAP Configuration Guide.

You can configure resource adapter pool attributes using either the management CLI or the
management console:

To use the management console, navigate to Configuration → Subsystems → Resource
Adapters, select your resource adapter, click View, and select Connection Definitions in the
left menu. The pool options are configurable under the Pool tab. Timeout options are
configurable under the Attributes tab.

To use the management CLI, execute the following command:

/subsystem=resource-adapters/resource-
adapter=RESOURCE_ADAPTER_NAME/connection-
definitions=CONNECTION_DEFINITION_NAME:write-
attribute(name=ATTRIBUTE_NAME,value=ATTRIBUTE_VALUE)

For example, to set the my_RA resource adapter my_CD connection definition min-pool-size
attribute to a value of 5 connections, use the following command:

/subsystem=resource-adapters/resource-adapter=my_RA/connection-
definitions=my_CD:write-attribute(name=min-pool-size,value=5)

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING

37

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuring_resource_adapters

CHAPTER 7. MESSAGING SUBSYSTEM TUNING
Performance tuning advice for the messaging-activemq subsystem is covered in the Performance
Tuning part of the JBoss EAP Configuring Messaging guide.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

38

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuring_messaging/#performance_tuning
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuring_messaging/

CHAPTER 8. LOGGING SUBSYSTEM TUNING
You can further improve upon JBoss EAP logging subsystem performance in production environments
by disabling logging to the console , configuring appropriate logging levels , and specifying the best
location to store log files.

Additional resources

For more information on configuring the logging subsystem, see the logging chapter in the
JBoss EAP Configuration Guide.

8.1. DISABLING LOGGING TO THE CONSOLE

Disabling console logging can improve JBoss EAP performance. Although outputting logs to the
console can be useful in development and testing environments, for production environments, in most
cases, it is not necessary.

The JBoss EAP root logger includes a console log handler for all default standalone server profiles
except standalone-full-ha. The default managed domain profiles do not include a console handler.

Procedure

To remove the default console handler from the root logger, use the following management CLI
command:

/subsystem=logging/root-logger=ROOT:remove-handler(name=CONSOLE)

8.2. CONFIGURING LOGGING LEVELS

For ideal performance, ensure that you configure the logging levels for your production environment
appropriately. For example, although INFO or DEBUG levels might be appropriate for development or
testing environments, in most cases you should set your production environment logging level to
something higher, such as WARN or ERROR.

Additional resources

For details on setting log levels for different logging handlers, see Configuring log handlers in
the JBoss EAP Configuration Guide.

8.3. CONFIGURING THE LOCATION OF THE LOG FILES

You should consider the storage location of log files as a potential performance issue. If you save logs to
a file system or disk configuration that has poor I/O throughput, it has the potential to affect the whole
platform’s performance.

To prevent logging from impacting JBoss EAP performance, set your log locations to high-performance
dedicated disks that have a lot of space.

Additional resources

For details on configuring log file locations for different logging handlers, see Configuring log
handlers in the JBoss EAP Configuration Guide.

CHAPTER 8. LOGGING SUBSYSTEM TUNING

39

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/performance_tuning_guide/#proc_disabling-logging-to-the-console_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/performance_tuning_guide/#con_about-configuring-logging-levels_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/performance_tuning_guide/#con_about-configuring-the-location-of-the-log-files_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#logging_with_jboss_eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuring_log_handlers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configuring_log_handlers

CHAPTER 9. UNDERTOW SUBSYSTEM TUNING
The non-blocking I/O (NIO) undertow subsystem introduced in JBoss EAP 7 has greatly improved
performance compared to the previous web subsystem in JBoss EAP 6. Opportunities for tuning the
undertow subsystem for your environment include:

Buffer cache configuration

Byte buffer pools configuration

Jakarta Server Pages configuration options

Listener configuration options

Session attribute marshalling

9.1. BUFFER CACHE CONFIGURATION

A buffer cache stores static files handled by the undertow subsystem. This includes images, static
HTML, CSS, and JavaScript files. You can specify a default buffer cache for each Undertow servlet
container. Having an optimized buffer cache for your servlet container can improve Undertow
performance for serving static files.

Buffers in a buffer cache are allocated in regions and are of a fixed size. There are three configurable
attributes for each buffer cache:

buffer-size

The size of an individual buffer, in bytes. The default is 1024 bytes. Set the buffer size to entirely
store your largest static file.

buffers-per-region

The number of buffers per region. The default is 1024.

max-regions

The maximum number of regions, which sets a maximum amount of memory allocated to the buffer
cache. The default is 10 regions.

You can calculate the maximum amount memory used by a buffer cache by multiplying the buffer size,
the number of buffers per region, and the maximum number of regions. For example, the default buffer
cache is 1024 bytes * 1024 buffers per region * 10 regions = 10 MB.

Configure your buffer caches based on the size of your static files, and the results from testing expected
loads in a development environment. When determining the effect on performance, consider the
balance of the buffer cache performance benefit versus the memory used.

Additional resources

For instructions on using the management CLI to configure buffer caches, see Configuring
buffer caches in the JBoss EAP Configuration Guide.

9.2. BYTE BUFFER POOLS CONFIGURATION

Undertow byte buffer pools are used to allocate pooled NIO ByteBuffer instances. All listeners have a
byte buffer pool and you can use different buffer pools and workers for each listener. Byte buffer pools
can be shared between different server instances.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

40

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/performance_tuning_guide/#con_information-on-configuring-buffer-caches_assembly_logging-subsystem-tuning
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/performance_tuning_guide/#con_information-on-configuring-byte-buffer-pools_assembly_logging-subsystem-tuning
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/performance_tuning_guide/#ref_jakarta-server-pages-configuration_assembly_logging-subsystem-tuning
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/performance_tuning_guide/#ref_listener-options-configuration_assembly_logging-subsystem-tuning
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/development_guide/#con_session-attribute-marshalling_default
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#undertow-configure-buffer-caches

The main byte buffer pool attribute that significantly affects performance is buffer-size. The default is
calculated based on the RAM resources of your system and is sufficient in most cases. If you are
configuring this attribute manually, an ideal size for most servers is 16 KB.

Additional resources

For a full list of the attributes available for configuring byte buffer pools, see Byte Buffer Pool
Attributes in the JBoss EAP Configuration Guide.

See the JBoss EAP Configuration Guide for instructions on how to create and configure byte
buffer pools.

9.3. JAKARTA SERVER PAGES CONFIGURATION

The following Jakarta Server Pages configuration options for Undertow servlet containers provide
optimizations for how Jakarta Server Pages are compiled into Java bytecode:

generate-strings-as-char-arrays

If your Jakarta Server Pages contain a lot of String constants, enabling this option optimizes
scriptlets by converting the String constants to char arrays.

optimize-scriptlets

If your Jakarta Server Pages contain many String concatenations, enabling this option optimizes
scriptlets by removing String concatenation for every Jakarta Server Pages request.

trim-spaces

If your Jakarta Server Pages contain a lot of white space, enabling this option trims the white space
from HTTP requests and reduces HTTP request payload.

9.3.1. Enabling Jakarta Server Pages options using the management console

To enable the Undertow Jakarta Server Pages configuration options using the management console,
complete the following steps:

Procedure

1. Navigate to Configuration → Subsystems → Web (Undertow) → Servlet Container.

2. Select the servlet container you want to configure and click View.

3. Select Jakarta Server Pages and click Edit.

4. For each option you want to enable, set the field to ON, and then click Save.

9.3.2. Enabling Jakarta Server Pages options using the management CLI

To enable the Undertow Jakarta Server Pages configuration options using the management CLI,
complete the following steps:

Procedure

Use the following command:

/subsystem=undertow/servlet-container=SERVLET_CONTAINER/setting=jsp/:write-
attribute(name=OPTION_NAME,value=true)

CHAPTER 9. UNDERTOW SUBSYSTEM TUNING

41

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#byte_buffer_pool_attributes
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configure_undertow_buffer_pools

For example, to enable generate-strings-as-char-arrays for the default servlet container, use
the following command:

/subsystem=undertow/servlet-container=default/setting=jsp/:write-attribute(name=generate-
strings-as-char-arrays,value=true)

9.4. LISTENER CONFIGURATION OPTIONS

Depending on your applications and environment, you can configure multiple listeners specific to certain
types of traffic, for example, traffic on specific ports, and then configure options for each listener.

The following are selected performance-related options that you can configure on HTTP, HTTPS, and
AJP listeners:

max-connections

The maximum number of concurrent connections that the listener can handle. By default this
attribute is undefined, which results in unlimited connections. You can use this option to set a ceiling
on the number of connections a listener can handle, which might be useful to cap resource usage. In
configuring this value, you should consider your workload and traffic type. Also see no-request-
timeout below.

no-request-timeout

The length of time in milliseconds that a connection is idle before it is closed. The default value is
60,000 milliseconds (1 minute). Tuning this option in your environment for optimal connection
efficiency can help improve network performance. If idle connections are prematurely closed, there
are overheads in re-establishing connections. If idle connections are open for too long, they
unnecessarily use resources.

max-header-size

The maximum size of an HTTP request header, in bytes. The default is 1,048,576 (1024 KB). Limiting
the header size can be useful to prevent certain types of denial of service attacks.

buffer-pool

Specifies the buffer pool in the io subsystem to use for the listener. By default, all listeners use the
default buffer pool. You can use this option to configure each listener to use a unique buffer pool, or
have multiple listeners use the same buffer pool.

worker

The undertow subsystem relies on the io subsystem to provide XNIO workers. This option specifies
the XNIO worker that the listener uses. By default, a listener uses the default worker in the io
subsystem. It might be useful to configure each listener to use a specific worker so you can assign
different worker resources to certain types of network traffic.

9.4.1. Configuring listener options using the management console

To configure the listener options using the management console, complete the following steps:

Procedure

1. Navigate to Configuration → Subsystems → Web (Undertow) → Server.

2. Select the server you want to configure and click View.

3. In the left menu, select Listener then select the type of listener to configure, for example

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

42

3. In the left menu, select Listener then select the type of listener to configure, for example
HTTP Listener, and select the listener in the table.

4. Click Edit, modify the options you want to configure, and click Save.

9.4.2. Configuring listener options using the management CLI

To configure the listener options using the management CLI, complete the following steps:

Procedure

Use the following command:

/subsystem=undertow/server=SERVER_NAME/LISTENER_TYPE=LISTENER_NAME:write-
attribute(name=OPTION_NAME,value=OPTION_VALUE)

For example, to set max-connections to 100000 for the default HTTP listener in the default-
server Undertow server, use the following command:

/subsystem=undertow/server=default-server/http-listener=default:write-attribute(name=max-
connections,value=100000)

CHAPTER 9. UNDERTOW SUBSYSTEM TUNING

43

CHAPTER 10. IO SUBSYSTEM TUNING
The io subsystem defines XNIO workers and buffer pools that are used by other JBoss EAP subsystems,
such as Undertow and Remoting.

10.1. CONFIGURING WORKERS

You can create multiple separate workers that each have their own performance configuration and
which handle different I/O tasks. For example, you could create one worker to handle HTTP I/O, and
another worker to handle Jakarta Enterprise Beans I/O, and then separately configure the attributes of
each worker for specific load requirements.

See the IO Subsystem Attributes appendix for the list of configurable worker attributes.

Worker attributes that significantly affect performance include io-threads which sets the total number
of I/O threads that a worker can use, and task-max-threads which sets the maximum number of threads
that can be used for a particular task. The defaults for these two attributes are calculated based on the
server’s CPU count.

See the JBoss EAP Configuration Guide for instructions on how to create and configure workers .

10.1.1. Monitoring Worker Statistics

You can view a worker’s runtime statistics using the management CLI. This exposes worker statistics
such as connection count, thread count, and queue size.

The following command displays runtime statistics for the default worker:

/subsystem=io/worker=default:read-resource(include-runtime=true,recursive=true)

NOTE

The number of core threads, which is tracked by the core-pool-size statistic, is currently
always set to the same value as the maximum number of threads, which is tracked by the
max-pool-size statistic.

10.2. CONFIGURING BUFFER POOLS

NOTE

IO buffer pools are deprecated, but they are still set as the default in the current release.
For more information about configuring Undertow byte buffer pools, see the Configuring
Byte Buffer Pools section of the Configuration Guide for JBoss EAP.

A buffer pool in the io subsystem is a pooled NIO buffer instance that is used specifically for I/O
operations. Like workers, you can create separate buffer pools which can be dedicated to handle specific
I/O tasks.

See the IO Subsystem Attributes appendix for the list of configurable buffer pool attributes.

The main buffer pool attribute that significantly affects performance is buffer-size. The default is
calculated based on the RAM resources of your system, and is sufficient in most cases. If you are
configuring this attribute manually, an ideal size for most servers is 16KB.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

44

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#io_configure_worker
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configure_undertow_buffer_pools

See the JBoss EAP Configuration Guide for instructions on how to create and configure buffer pools .

CHAPTER 10. IO SUBSYSTEM TUNING

45

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#io_configure_buffer_pool

CHAPTER 11. JGROUPS SUBSYSTEM TUNING
For optimal network performance it is recommended that you use UDP multicast for JGroups in
environments that support it.

NOTE

TCP has more overhead and is often considered slower than UDP since it handles error
checking, packet ordering, and congestion control itself. JGroups handles these features
for UDP, whereas TCP guarantees them itself. TCP is a good choice when using JGroups
on unreliable or high congestion networks, or when multicast is not available.

This chapter assumes that you have chosen your JGroups stack transport protocol (UDP or TCP) and
communications protocols that JGroups cluster communications will use. See the JBoss EAP
Configuration Guide for more information about cluster communication with JGroups .

11.1. MONITORING JGROUPS STATISTICS

You can enable statistics for the jgroups subsystem to monitor JBoss EAP clustering using the
management CLI or through JMX.

NOTE

Enabling statistics adversely affects performance. Only enable statistics when necessary.

1. Use the following command to enable statistics for a JGroups channel.

NOTE

In a managed domain, precede these commands with /profile=PROFILE_NAME.

/subsystem=jgroups/channel=CHANNEL_NAME:write-attribute(name=statistics-
enabled,value=true)

For example, use the following command to enable statistics for the default ee channel.

/subsystem=jgroups/channel=ee:write-attribute(name=statistics-enabled,value=true)

2. Reload the JBoss EAP server.

reload

3. You can now see JGroups statistics using either the management CLI, or through JMX with a
JVM monitoring tool:

To use the management CLI, use the :read-resource(include-runtime=true) command on
the JGroups channel or protocol that you want to see the statistics for.

NOTE

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

46

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#cluster_communication_jgroups

NOTE

In a managed domain, precede these commands with
/host=HOST_NAME/server=SERVER_NAME.

For example:

To see the statistics for the ee channel, use the following command:

/subsystem=jgroups/channel=ee:read-resource(include-runtime=true)

To see the statistics for the FD_ALL protocol in the ee channel, use the following
command:

/subsystem=jgroups/channel=ee/protocol=FD_ALL:read-resource(include-
runtime=true)

To connect to JBoss EAP using a JVM monitoring tool, see the Monitoring Performance
chapter. You can see the statistics on JGroups MBeans through the JMX connection.

11.2. NETWORKING AND JUMBO FRAMES

Where possible, it is recommended that the network interface for JGroups traffic should be part of a
dedicated Virtual Local Area Network (VLAN). This allows you to separate cluster communications from
other JBoss EAP network traffic to more easily control cluster network performance, throughput, and
security.

Another network configuration to consider to improve cluster performance is to enable jumbo frames. If
your network environment supports it, enabling jumbo frames by increasing the Maximum Transmission
Unit (MTU) can help boost network performance, especially in high throughput environments.

To use jumbo frames, all NICs and switches in your network must support it. See the Red Hat Customer
Portal for instructions on enabling jumbo frames for Red Hat Enterprise Linux .

11.3. MESSAGE BUNDLING

Message bundling in JGroups improves network performance by assembling multiple small messages
into larger bundles. Rather than sending out many small messages over the network to cluster nodes,
instead messages are queued until the maximum bundle size is reached or there are no more messages
to send. The queued messages are assembled into a larger message bundle and then sent.

This bundling reduces communications overhead, especially in TCP environments where there is a
higher overhead for network communications.

Configuring Message Bundling

JGroups message bundling is configured using the max_bundle_size property. The default
max_bundle_size is 64KB.

The performance improvements of tuning the bundle size depend on your environment, and whether
more efficient network traffic is balanced against a possible delay of communications while the bundle is
assembled.

Use the following management CLI command to configure max_bundle_size.

CHAPTER 11. JGROUPS SUBSYSTEM TUNING

47

https://access.redhat.com/solutions/3643

/subsystem=jgroups/stack=STACK_NAME/transport=TRANSPORT_TYPE/property=max_bundle_siz
e:add(value=BUNDLE_SIZE)

For example, to set max_bundle_size to 60K for the default udp stack:

/subsystem=jgroups/stack=udp/transport=UDP/property=max_bundle_size:add(value=60K)

11.4. JGROUPS THREAD POOLS

The jgroups subsystem uses its own thread pools for processing cluster communication. JGroups
contains thread pools for default, internal, oob, and timer functions which you can configure
individually. Each JGroups thread pool includes configurable attributes for keepalive-time, max-
threads, min-threads, and queue-length.

Appropriate values for each thread pool attribute depend on your environment, but for most situations
the default values should suffice.

See the JBoss EAP Configuration Guide for instructions on how to configure JGroups thread pools .

11.5. JGROUPS SEND AND RECEIVE BUFFERS

The jgroups subsystem has configurable send and receive buffers for both UDP and TCP stacks.

Appropriate values for JGroups buffers depend on your environment, but for most situations the default
values should suffice. It is recommended that you test your cluster under load in a development
environment to tune appropriate values for the buffer sizes.

NOTE

Your operating system may limit the available buffer sizes and JBoss EAP may not be
able to use its configured buffer values. See Resolving Buffer Size Warnings in the JBoss
EAP Configuration Guide.

See the JBoss EAP Configuration Guide for instructions on how to configure JGroups send and receive
buffers.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

48

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configure_jgroups_thread_pools
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configure_jgroups_send_receive_buffers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configure_jgroups_send_receive_buffers

CHAPTER 12. TRANSACTIONS SUBSYSTEM TUNING
If your environment uses XA distributed transactions, you can tune the transaction manager’s log store
for better performance.

The default transaction log store uses a simple file store. For XA transactions this type of log store can
be inefficient, as it creates one system file for each transaction log. Especially for XA transactions, a
journal store is much more efficient as it uses a journal that consists of one file for all transactions.

For better XA transaction performance, it is recommended that you use a journal log store. For
Red Hat Enterprise Linux systems, you can additionally enable asynchronous I/O (AIO) on the journal
store to further improve performance.

NOTE

For Red Hat Enterprise Linux systems, if you are enabling asynchronous I/O (AIO) on the
journal store, ensure that the libaio package is installed.

Enable the Journal Log Store Using the Management Console

1. Navigate to Configuration → Subsystems → Transaction → and click View.

2. In the Configuration tab, click Edit.

3. Set the Use Journal Store field to ON.

4. Optional: For Red Hat Enterprise Linux systems, set the Journal Store Enable Async IO field to
ON.

5. Click Save.

Enable the Journal Log Store Using the Management CLI

1. To enable the journal log store using the management CLI, use the following command:

/subsystem=transactions:write-attribute(name=use-journal-store,value=true)

2. Optional: For Red Hat Enterprise Linux systems, use the following command to enable journal
log store asynchronous I/O:

/subsystem=transactions:write-attribute(name=journal-store-enable-async-io, value=true)

CHAPTER 12. TRANSACTIONS SUBSYSTEM TUNING

49

APPENDIX A. REFERENCE MATERIAL

A.1. DATASOURCE STATISTICS

Table A.1. Core Pool Statistics

Name Description

ActiveCount The number of active connections. Each of the connections is
either in use by an application or available in the pool.

AvailableCount The number of available connections in the pool.

AverageBlockingTime The average time spent blocking on obtaining an exclusive lock
on the pool. This value is in milliseconds.

AverageCreationTime The average time spent creating a connection. This value is in
milliseconds.

AverageGetTime The average time spent obtaining a connection. This value is in
milliseconds.

AveragePoolTime The average time that a connection spent in the pool.This value
is in milliseconds.

AverageUsageTime The average time spent using a connection. This value is in
milliseconds.

BlockingFailureCount The number of failures trying to obtain a connection.

CreatedCount The number of connections created.

DestroyedCount The number of connections destroyed.

IdleCount The number of connections that are currently idle.

InUseCount The number of connections currently in use.

MaxCreationTime The maximum time it took to create a connection. This value is in
milliseconds.

MaxGetTime The maximum time for obtaining a connection. This value is in
milliseconds.

MaxPoolTime The maximum time for a connection in the pool. This value is in
milliseconds.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

50

MaxUsageTime The maximum time using a connection. This value is in
milliseconds.

MaxUsedCount The maximum number of connections used.

MaxWaitCount The maximum number of requests waiting for a connection at
the same time.

MaxWaitTime The maximum time spent waiting for an exclusive lock on the
pool. This value is in milliseconds.

TimedOut The number of timed out connections.

TotalBlockingTime The total time spent waiting for an exclusive lock on the pool.
This value is in milliseconds.

TotalCreationTime The total time spent creating connections. This value is in
milliseconds.

TotalGetTime The total time spent obtaining connections. This value is in
milliseconds.

TotalPoolTime The total time spent by connections in the pool. This value is in
milliseconds.

TotalUsageTime The total time spent using connections. This value is in
milliseconds.

WaitCount The number of requests that had to wait to obtain a connection.

XACommitAverageTime The average time for an XAResource commit invocation. This
value is in milliseconds.

XACommitCount The number of XAResource commit invocations.

XACommitMaxTime The maximum time for an XAResource commit invocation. This
value is in milliseconds.

XACommitTotalTime The total time for all XAResource commit invocations. This value
is in milliseconds.

XAEndAverageTime The average time for an XAResource end invocation. This value
is in milliseconds.

XAEndCount The number of XAResource end invocations.

Name Description

APPENDIX A. REFERENCE MATERIAL

51

XAEndMaxTime The maximum time for an XAResource end invocation. This value
is in milliseconds.

XAEndTotalTime The total time for all XAResource end invocations. This value is in
milliseconds.

XAForgetAverageTime The average time for an XAResource forget invocation. This
value is in milliseconds.

XAForgetCount The number of XAResource forget invocations.

XAForgetMaxTime The maximum time for an XAResource forget invocation. This
value is in milliseconds.

XAForgetTotalTime The total time for all XAResource forget invocations. This value is
in milliseconds.

XAPrepareAverageTime The average time for an XAResource prepare invocation. This
value is in milliseconds.

XAPrepareCount The number of XAResource prepare invocations.

XAPrepareMaxTime The maximum time for an XAResource prepare invocation. This
value is in milliseconds.

XAPrepareTotalTime The total time for all XAResource prepare invocations. This value
is in milliseconds.

XARecoverAverageTime The average time for an XAResource recover invocation. This
value is in milliseconds.

XARecoverCount The number of XAResource recover invocations.

XARecoverMaxTime The maximum time for an XAResource recover invocation. This
value is in milliseconds.

XARecoverTotalTime The total time for all XAResource recover invocations. This value
is in milliseconds.

XARollbackAverageTime The average time for an XAResource rollback invocation. This
value is in milliseconds.

XARollbackCount The number of XAResource rollback invocations.

XARollbackMaxTime The maximum time for an XAResource rollback invocation. This
value is in milliseconds.

Name Description

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

52

XARollbackTotalTime The total time for all XAResource rollback invocations. This value
is in milliseconds.

XAStartAverageTime The average time for an XAResource start invocation. This value
is in milliseconds.

XAStartCount The number of XAResource start invocations.

XAStartMaxTime The maximum time for an XAResource start invocation. This
value is in milliseconds.

XAStartTotalTime The total time for all XAResource start invocations. This value is
in milliseconds.

Name Description

Table A.2. JDBC Statistics

Name Description

PreparedStatementCacheAccessCount The number of times that the statement cache was accessed.

PreparedStatementCacheAddCount The number of statements added to the statement cache.

PreparedStatementCacheCurrentSize The number of prepared and callable statements currently
cached in the statement cache.

PreparedStatementCacheDeleteCount The number of statements discarded from the cache.

PreparedStatementCacheHitCount The number of times that statements from the cache were used.

PreparedStatementCacheMissCount The number of times that a statement request could not be
satisfied with a statement from the cache.

A.2. RESOURCE ADAPTER STATISTICS

Table A.3. Resource Adapter Statistics

Name Description

ActiveCount The number of active connections. Each of the connections is either in use by an
application or available in the pool

AvailableCount The number of available connections in the pool.

AverageBlockingTime The average time spent blocking on obtaining an exclusive lock on the pool. The
value is in milliseconds.

APPENDIX A. REFERENCE MATERIAL

53

AverageCreationTime The average time spent creating a connection. The value is in milliseconds.

CreatedCount The number of connections created.

DestroyedCount The number of connections destroyed.

InUseCount The number of connections currently in use.

MaxCreationTime The maximum time it took to create a connection. The value is in milliseconds.

MaxUsedCount The maximum number of connections used.

MaxWaitCount The maximum number of requests waiting for a connection at the same time.

MaxWaitTime The maximum time spent waiting for an exclusive lock on the pool.

TimedOut The number of timed out connections.

TotalBlockingTime The total time spent waiting for an exclusive lock on the pool. The value is in
milliseconds.

TotalCreationTime The total time spent creating connections. The value is in milliseconds.

WaitCount The number of requests that had to wait for a connection.

Name Description

A.3. IO SUBSYSTEM ATTRIBUTES

NOTE

Attribute names in these tables are listed as they appear in the management model, for
example, when using the management CLI. See the schema definition file located at
EAP_HOME/docs/schema/wildfly-io_3_0.xsd to view the elements as they appear in
the XML, as there may be differences from the management model.

Table A.4. worker Attributes

Attribute Default Description

io-threads The number of I/O threads to create for the worker.
If not specified, the number of threads is set to the
number of CPUs × 2.

stack-size 0 The stack size, in bytes, to attempt to use for worker
threads.

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

54

task-keepalive 60000 The number of milliseconds to keep non-core task
threads alive.

task-core-threads 2 The number of threads for the core task thread pool.

task-max-threads The maximum number of threads for the worker task
thread pool. If not specified, the maximum number of
threads is set to the number of CPUs × 16, taking the
MaxFileDescriptorCount Jakarta Management
property, if set, into account.

Attribute Default Description

Table A.5. buffer-pool Attributes

Attribute Default Description

NOTE

IO buffer pools are deprecated, but they are still set as the default in the current release. For
more information about configuring Undertow byte buffer pools, see the Configuring Byte
Buffer Pools section of the Configuration Guide for JBoss EAP. Additionally, see Byte Buffer
Pool Attributes in the JBoss EAP Configuration Guide for the byte buffer pool attribute list.

buffer-size The size, in bytes, of each buffer slice. If not
specified, the size is set based on the available RAM
of your system:

512 bytes for less than 64 MB RAM

1024 bytes (1 KB) for 64 MB - 128 MB RAM

16384 bytes (16 KB) for more than 128 MB
RAM

For performance tuning advice on this attribute, see
Configuring Buffer Pools.

buffers-per-slice How many slices, or sections, to divide the larger
buffer into. This can be more memory efficient than
allocating many separate buffers. If not specified, the
number of slices is set based on the available RAM of
your system:

10 for less than 128 MB RAM

20 for more than 128 MB RAM

APPENDIX A. REFERENCE MATERIAL

55

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#configure_undertow_buffer_pools
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4/html-single/configuration_guide/#byte_buffer_pool_attributes

direct-buffers Whether the buffer pool uses direct buffers, which
are faster in many cases with NIO. Note that some
platforms do not support direct buffers.

Attribute Default Description

Revised on 2024-01-17 05:25:53 UTC

Red Hat JBoss Enterprise Application Platform 7.4 Performance Tuning Guide

56

	Table of Contents
	PROVIDING FEEDBACK ON JBOSS EAP DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO PERFORMANCE TUNING
	1.1. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

	CHAPTER 2. MONITORING PERFORMANCE
	2.1. CONFIGURING JBOSS EAP FOR REMOTE MONITORING CONNECTIONS
	2.2. JCONSOLE
	2.2.1. Connecting to a Local JBoss EAP JVM Using JConsole
	2.2.2. Connecting to a Remote JBoss EAP JVM Using JConsole

	2.3. JAVA VISUALVM
	2.3.1. Connecting to a Local JBoss EAP JVM Using VisualVM
	2.3.2. Connecting to a Remote JBoss EAP JVM Using VisualVM

	CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES
	3.1. ENABLING GARBAGE COLLECTION LOGGING
	3.2. JAVA HEAP DUMPS
	3.2.1. Creating a Heap Dump
	3.2.1.1. OpenJDK and Oracle JDK
	3.2.1.2. IBM JDK

	3.2.2. Analyzing a Heap Dump

	3.3. IDENTIFYING HIGH CPU UTILIZATION BY JAVA THREADS
	3.4. RUNTIME STATISTICS FOR MANAGED EXECUTOR SERVICES AND MANAGED SCHEDULED EXECUTOR SERVICES

	CHAPTER 4. JVM TUNING
	4.1. SETTING UP A FIXED HEAP SIZE
	4.2. CONFIGURING THE GARBAGE COLLECTOR
	Garbage Collection Logging Options

	4.3. ACTIVATING LARGE PAGES
	4.4. ACTIVATING AGGRESSIVE OPTIMIZATIONS
	4.5. SETTING SOFT AND HARD ULIMITS
	4.6. HOST AND PROCESS CONTROLLER JVM TUNING

	CHAPTER 5. JAKARTA ENTERPRISE BEANS SUBSYSTEM TUNING
	5.1. BEAN INSTANCE POOLS
	5.1.1. Creating a Bean Instance Pool
	5.1.2. Specifying the Instance Pool a Bean Should Use
	5.1.3. Disabling the Default Bean Instance Pool

	5.2. BEAN THREAD POOLS
	5.2.1. Creating a Bean Thread Pool
	5.2.2. Configuring Enterprise Bean Services to Use a Specific Bean Thread Pool

	5.3. RUNTIME BEAN DEPLOYMENT INFORMATION
	5.3.1. Command line options for retrieving runtime data from Jakarta Enterprise Beans

	5.4. EXCEPTIONS THAT INDICATE AN ENTERPRISE BEAN SUBSYSTEM TUNING MIGHT BE REQUIRED
	5.5. DEFAULT GLOBAL TIMEOUT VALUES FOR SFSBS

	CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING
	6.1. MONITORING POOL STATISTICS
	6.1.1. Datasource Statistics
	6.1.1.1. Enabling Datasource Statistics
	6.1.1.2. Viewing Datasource Statistics

	6.1.2. Resource Adapter Statistics
	Enable Resource Adapter Statistics
	View Resource Adapter Statistics

	6.2. POOL ATTRIBUTES
	6.3. CONFIGURING POOL ATTRIBUTES
	6.3.1. Configuring Datasource Pool Attributes
	6.3.2. Configuring Resource Adapter Pool Attributes

	CHAPTER 7. MESSAGING SUBSYSTEM TUNING
	CHAPTER 8. LOGGING SUBSYSTEM TUNING
	8.1. DISABLING LOGGING TO THE CONSOLE
	8.2. CONFIGURING LOGGING LEVELS
	8.3. CONFIGURING THE LOCATION OF THE LOG FILES

	CHAPTER 9. UNDERTOW SUBSYSTEM TUNING
	9.1. BUFFER CACHE CONFIGURATION
	9.2. BYTE BUFFER POOLS CONFIGURATION
	9.3. JAKARTA SERVER PAGES CONFIGURATION
	9.3.1. Enabling Jakarta Server Pages options using the management console
	9.3.2. Enabling Jakarta Server Pages options using the management CLI

	9.4. LISTENER CONFIGURATION OPTIONS
	9.4.1. Configuring listener options using the management console
	9.4.2. Configuring listener options using the management CLI

	CHAPTER 10. IO SUBSYSTEM TUNING
	10.1. CONFIGURING WORKERS
	10.1.1. Monitoring Worker Statistics

	10.2. CONFIGURING BUFFER POOLS

	CHAPTER 11. JGROUPS SUBSYSTEM TUNING
	11.1. MONITORING JGROUPS STATISTICS
	11.2. NETWORKING AND JUMBO FRAMES
	11.3. MESSAGE BUNDLING
	11.4. JGROUPS THREAD POOLS
	11.5. JGROUPS SEND AND RECEIVE BUFFERS

	CHAPTER 12. TRANSACTIONS SUBSYSTEM TUNING
	APPENDIX A. REFERENCE MATERIAL
	A.1. DATASOURCE STATISTICS
	A.2. RESOURCE ADAPTER STATISTICS
	A.3. IO SUBSYSTEM ATTRIBUTES

