
Red Hat Integration 2021.Q3

Integrating Applications with Kamelets

Configuring connectors to simplify application integration

Last Updated: 2021-10-14

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

Configuring connectors to simplify application integration

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Kamelets offer an alternative approach to application integration. Instead of using Camel
components directly, you can configure kamelets (opinionated route templates) to create
connections.

. .

. .

. .

. .

Table of Contents

PREFACE
MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. OVERVIEW OF KAMELETS
1.1. ABOUT KAMELETS

1.1.1. Why use kamelets?
1.1.2. Who uses kamelets?
1.1.3. What are the prerequisites for using kamelets?
1.1.4. How do you use kamelets?

1.2. CONNECTING SOURCES AND SINKS
1.2.1. Installing Camel K
1.2.2. Viewing the Kamelet Catalog

1.2.2.1. Adding a custom kamelet to your Kamelet Catalog
1.2.2.2. Determining a kamelet’s configuration parameters

1.2.3. Connecting source and sink components in a kamelet binding
1.2.4. Configuring kamelet instance parameters
1.2.5. Connecting to a channel of events
1.2.6. Connecting to an explicit Camel URI

1.3. APPLYING OPERATIONS TO DATA WITHIN A CONNECTION
1.3.1. Adding an operation to a kamelet binding
1.3.2. Action kamelets

1.3.2.1. Data filtering kamelets
1.3.2.2. Data conversion kamelets
1.3.2.3. Data transformation kamelets

1.4. HANDLING ERRORS WITHIN A CONNECTION
1.4.1. Adding an error handler policy to a kamelet binding
1.4.2. Error handlers

1.4.2.1. No error handler
1.4.2.2. Log error handler
1.4.2.3. Dead letter channel error handler
1.4.2.4. Bean error handler
1.4.2.5. Ref error handler

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS
2.1. OVERVIEW OF CONNECTING TO KAFKA WITH KAMELETS
2.2. SETTING UP KAFKA

2.2.1. Setting up Kafka by using AMQ streams
2.2.1.1. Preparing your OpenShift cluster for AMQ Streams
2.2.1.2. Setting up a Kafka topic with AMQ Streams

2.2.2. Setting up Kafka by using OpenShift streams
2.2.2.1. Preparing your OpenShift cluster for OpenShift Streams
2.2.2.2. Setting up a Kafka topic with RHOAS
2.2.2.3. Obtaining Kafka credentials
2.2.2.4. Creating a secret by using the SASL/Plain authentication method
2.2.2.5. Creating a secret by using the SASL/OAUTHBearer authentication method

2.3. CONNECTING A DATA SOURCE TO A KAFKA TOPIC IN A KAMELET BINDING
2.4. CONNECTING A KAFKA TOPIC TO A DATA SINK IN A KAMELET BINDING
2.5. APPLYING OPERATIONS TO DATA WITHIN A KAFKA CONNECTION

2.5.1. Routing event data to different destination topics

CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS
3.1. OVERVIEW OF CONNECTING TO KNATIVE WITH KAMELETS

4
4

5
5
5
5
6
6
7
7
9
9

10
12
15
16
16
17
17

20
20
21
21
22
22
23
23
24
24
25
25

27
27
29
29
29
30
31
32
33
34
35
36
36
41

45
45

47
47

Table of Contents

1

. .

3.2. SETTING UP KNATIVE
3.2.1. Preparing your OpenShift cluster

3.2.1.1. Installing OpenShift Serverless
3.2.2. Creating a Knative channel
3.2.3. Creating a Knative broker

3.3. CONNECTING A DATA SOURCE TO A KNATIVE DESTINATION IN A KAMELET BINDING
3.4. CONNECTING A KNATIVE DESTINATION TO A DATA SINK IN A KAMELET BINDING

CHAPTER 4. KAMELETS REFERENCE
4.1. KAMELET STRUCTURE
4.2. EXAMPLE SOURCE KAMELET
4.3. EXAMPLE SINK KAMELET

48
48
49
50
51
52
55

59
59
60
61

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

2

Table of Contents

3

PREFACE
Kamelets are reusable route components that hide the complexity of creating data pipelines that
connect to external systems.

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. OVERVIEW OF KAMELETS
Kamelets are high-level connectors that can serve as building blocks in an event driven architecture
solution. They are custom resources that you can install on an OpenShift cluster and use in Camel K
integrations. Kamelets accelerate your development efforts. They simplify how you connect data
sources (that emit events) and data sinks (that consume events). Because you configure kamelet
parameters rather than writing code, you do not need to be familiar with the Camel DSL to use kamelets.

You can use kamelets to connect applications and services directly to each other or to:

Kafka topics, as described in Connecting to Kafka with Kamelets .

Knative destinations (channels or brokers), as described in Connecting to Knative with Kamelets .

Specific Camel URIs, as described in Connecting to an explicit Camel URI .

1.1. ABOUT KAMELETS

Kamelets are route components (encapsulated code) that work as connectors in a Camel integration.
You can think of kamelets as templates that define where to consume data from (a source) and where
to send data to (a sink) - allowing you to assemble data pipelines. Kamelets can also filter, mask, and
perform simple calculation logic on data.

There are three different types of kamelets:

source - A route that produces data. You use a source kamelet to retrieve data from a
component.

sink - A route that consumes data. You use a sink kamelet to send data to a component.

action - A route that performs an action on data. You can use an action kamelet to manipulate
data when it passes from a source kamelet to a sink kamelet.

1.1.1. Why use kamelets?

In a microservices and event-driven architecture solution, kamelets can serve as building blocks for
sources that emit events and sinks which consume events.

Kamelets provide abstraction (they hide the complexity of connecting to external systems) and
reusability (they are a simple way to reuse code and apply it to different use cases).

Here are some example use cases:

You want your application to consume events from Telegram, you can use kamelets to bind the
Telegram source to a channel of events. Later, you can connect your application to that channel
so that it reacts to those events.

You want your application to connect Salesforce directly to Slack.

Kamelets allow you, and your integration development team, to be more efficient. You can reuse
kamelets and share them with your team members who can configure instances for their specific needs.
The underlying Camel K operator does the hard work: it compiles, builds, packages and deploys the
integration defined by the kamelet.

1.1.2. Who uses kamelets?

CHAPTER 1. OVERVIEW OF KAMELETS

5

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-to-kafka-kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-to-knative-kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-explicit-camel-uri
https://www.redhat.com/en/topics/microservices/what-are-microservices
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture

Because kamelets allow you to reduce the amount of coding you need to do in your Camel integration,
they are ideal for developers who are not familiar with the Camel DSL. Kamelets can help smooth the
learning curve for a non-Camel developer. There is no need for you to learn another framework or
language to get Camel running.

Kamelets are also useful for experienced Camel developers who want to encapsulate complex Camel
integration logic into a reusable kamelet, and then share it with other users.

1.1.3. What are the prerequisites for using kamelets?

To use Kamelets, you need the following environment setup:

You can access an OpenShift 4.6 (or later) cluster with the correct access level, the ability to
create projects and install operators, and the ability to install the OpenShift and Camel K CLI
tools on your local system.

You installed the Camel K operator in your namespace or cluster-wide as described in Installing
Camel K

You installed the OpenShift command line (oc) interface tool.

Optionally, you installed VS code or another development tool with the Camel K plugin. The
Camel-based tooling extensions include features such as automatic completion of Camel URIs
based on the embedded kamelet catalog. For more information, see the Camel K development
tooling section in Getting Started with Camel K .
Note: Visual Studio (VS) Code Tooling extensions are community only.

1.1.4. How do you use kamelets?

Using a kamelet typically involves two components: the kamelet itself, which defines a reusable route
snippet, and a kamelet binding, in which you reference and bind together one or more kamelets. A
kamelet binding is an OpenShift resource (KameletBinding).

Within the kamelet binding resource, you can:

Connect a sink or a source kamelet to a channel of events: a Kafka topic or a Knative destination
(channel or broker).

Connect a sink kamelet directly to a Camel Uniform Resource Identifier (URI). You can also
connect a source kamelet to a Camel URI, although connecting a URI and a sink kamelet is the
most common use case.

Connect a sink and a source kamelet directly to each other, without using a channel of events as
a middle-layer.

Reference the same kamelet multiple times in the same kamelet binding.

Add action kamelets to manipulate data when it passes from a source kamelet to a sink kamelet.

Define an error handling strategy to specify what Camel K should do if there is a failure when
sending or receiving event data.

At runtime, the Camel K operator uses the kamelet binding to generate and run a Camel K integration.

Note: While Camel DSL developers can use kamelets directly in Camel K integrations, the simpler way to
implement kamelets is by specifying a kamelet binding resource to build a high-level event flow.

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

6

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/getting_started_with_camel_k#camel-k-tooling

1.2. CONNECTING SOURCES AND SINKS

Use kamelets when you want to connect two or more components (external applications or services).
Each kamelet is basically a route template with configuration properties. You need to know which
component you want to get data from (a source) and which component you want to send data to (a
sink). You connect the source and sink components by adding kamelets in a kamelet binding as
illustrated in Figure 1.1.

Figure 1.1: Kamelet binding source to sink

Here is an overview of the steps for using kamelets in a kamelet binding:

1. Install the Camel K operator. It includes a catalog of kamelets as resources in your OpenShift
project.

2. Create a kamelet binding. Determine which services or applications you want to connect within
the kamelet binding.

3. View the Kamelet Catalog to find the kamelets for the source and sink components that you
want to use.

4. For each kamelet that you want to include in the kamelet binding, determine the configuration
properties that you need to set.

5. In the kamelet binding code, add a reference to each kamelet and configure the required
properties.

6. Apply the kamelet binding as a resource in your OpenShift project.

The Camel K operator uses the kamelet binding to generate and run an integration.

1.2.1. Installing Camel K

You can install the Red Hat Integration - Camel K Operator on your OpenShift cluster from the
OperatorHub. The OperatorHub is available from the OpenShift Container Platform web console and
provides an interface for cluster administrators to discover and install Operators.

After you install the Camel K Operator, you can install the Camel K CLI tool for command line access to
all Camel K features.

Prerequisites

You have access to an OpenShift 4.6 (or later) cluster with the correct access level, the ability
to create projects and install operators, and the ability to install CLI tools on your local system.

NOTE

CHAPTER 1. OVERVIEW OF KAMELETS

7

NOTE

You do not need to create a pull secret when installing Camel K from the
OpenShift OperatorHub. The Camel K Operator automatically reuses the
OpenShift cluster-level authentication to pull the Camel K image from
registry.redhat.io.

You installed the OpenShift CLI tool (oc) so that you can interact with the OpenShift cluster at
the command line. For details on how to install the OpenShift CLI, see Installing the OpenShift
CLI.

Procedure

1. In the OpenShift Container Platform web console, log in by using an account with cluster
administrator privileges.

2. Create a new OpenShift project:

a. In the left navigation menu, click Home > Project > Create Project.

b. Enter a project name, for example, my-camel-k-project, and then click Create.

3. In the left navigation menu, click Operators > OperatorHub.

4. In the Filter by keyword text box, type Camel K and then click the Red Hat Integration -
Camel K Operator card.

5. Read the information about the operator and then click Install. The Operator installation page
opens.

6. Select the following subscription settings:

Update Channel > 1.4.x

Installation Mode > A specific namespace on the cluster > my-camel-k-project

Approval Strategy > Automatic

NOTE

The Installation mode > All namespaces on the cluster and Approval
Strategy > Manual settings are also available if required by your
environment.

7. Click Install, and then wait a few moments until the Camel K Operator is ready for use.

8. Download and install the Camel K CLI tool:

a. From the Help menu (?) at the top of the OpenShift web console, select Command line
tools.

b. Scroll down to the kamel - Red Hat Integration - Camel K - Command Line Interface
section.

c. Click the link to download the binary for your local operating system (Linux, Mac, Windows).

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

8

https://docs.openshift.com/container-platform/4.6/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli

d. Unzip and install the CLI in your system path.

e. To verify that you can access the Kamel K CLI, open a command window and then type the
following:
kamel --help

This command shows information about Camel K CLI commands.

Next step

(optional) Specifying Camel K resource limits

1.2.2. Viewing the Kamelet Catalog

When you install the Camel K operator, it includes a catalog of kamelets that you can use in your Camel K
integrations.

Prerequisite

You installed the Camel K operator in your working namespace or cluster-wide as described in Installing
Camel K.

Procedure

To view a list of kamelets installed with the Camel K operator:

1. In a Terminal window, login to your OpenShift cluster.

2. Viewing the list of available kamelets depends on how the Camel K operator was installed (in a
specific namespace or cluster-mode):

If the Camel K operator is installed in cluster-mode, use this command to view the available
kamelets:
oc get kamelet -n openshift-operators

If the Camel K operator is installed in a specific namespace:

a. Open a project in which the Camel K operator is installed.
oc project <camelk-project>

For example, if the Camel K operator is installed in the my-camel-k-project project:

oc project my-camel-k-project

b. Run the following command:
oc get kamelets

NOTE

For a list of the kamelets that are supported by Red Hat, see the Red Hat Integration
Release Notes .

See also

Adding a custom kamelet to your Kamelet Catalog

1.2.2.1. Adding a custom kamelet to your Kamelet Catalog

CHAPTER 1. OVERVIEW OF KAMELETS

9

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/getting_started_with_camel_k#specifying-camel-k-resource-limits
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html/release_notes_for_red_hat_integration_2021.q3/camel-k-relnotes_integration#supported_kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#adding-custom-kamelet

If you don’t see a kamelet in the catalog that suits your requirements, a Camel DSL developer can create
a custom kamelet as described in the Apache Camel Kamelets Developers Guide (community
documentation). A kamelet is coded in YAML format and, by convention, has a .kamelet.yaml file
extension.

Prerequisites

A Camel DSL developer has provided you with a custom kamelet file.

The kamelet name must be unique to the OpenShift namespace in which the Camel K operator
is installed.

Procedure

To make a custom kamelet available as a resource in your OpenShift namespace:

1. Download the kamelet YAML file (for example, custom-sink.kamelet.yaml) to a local folder.

2. Login to your OpenShift cluster.

3. In a Terminal window, open the project in which the Camel K operator is installed, for example
my-camel-k-project:
oc project my-camel-k-project

4. Run the oc apply command to add the custom kamelet as a resource to the namespace:
oc apply -f <custom-kamelet-filename>

For example, use the following command to add the custom-sink.kamelet.yaml file that is
located in the current directory:

oc apply -f custom-sink.kamelet.yaml

5. To verify that the kamelet is available as a resource, use the following command to view an
alphabetical list of all kamelets in the current namespace and then look for your custom kamelet:
oc get kamelets

1.2.2.2. Determining a kamelet’s configuration parameters

In a kamelet binding, when you add a reference to a kamelet, you specify the name of the kamelet and
you configure the kamelet’s parameters.

Prerequisite

You installed the Camel K operator in your working namespace or cluster-wide.

Procedure

To determine a kamelet’s name and parameters:

1. In a terminal window, login to your OpenShift cluster.

2. Open the kamelet’s YAML file::
oc describe kamelets/<kamelet-name>

For example, to view the ftp-source kamelet’s code, if the Camel K operator is installed in the
current namespace, use this command:

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

10

https://camel.apache.org/camel-k/latest/kamelets/kamelets-dev.html

oc describe kamelets/ftp-source

If the Camel K operator is installed in cluster-mode, use this command:

oc describe -n openshift-operators kamelets/ftp-source

3. In the YAML file, scroll down to the spec.definition section (which is written in JSON-schema
format) to see the list of the kamelet’s properties. At the end of the section, the required field
lists the properties that you must configure when you reference the kamelet.
For example, the following code is an excerpt from the spec.definition section of the ftp-
source kamelet. This section provides details for all of the kamelet’s configuration properties.
The required properties for this kamelet are connectionHost, connectionPort, username,
password, and directoryName:

spec:
 definition:
 title: "FTP Source"
 description: |-
 Receive data from an FTP Server.
 required:
 - connectionHost
 - connectionPort
 - username
 - password
 - directoryName
 type: object
 properties:
 connectionHost:
 title: Connection Host
 description: Hostname of the FTP server
 type: string
 connectionPort:
 title: Connection Port
 description: Port of the FTP server
 type: string
 default: 21
 username:
 title: Username
 description: The username to access the FTP server
 type: string
 password:
 title: Password
 description: The password to access the FTP server
 type: string
 format: password
 x-descriptors:
 - urn:alm:descriptor:com.tectonic.ui:password
 directoryName:
 title: Directory Name
 description: The starting directory
 type: string
 passiveMode:
 title: Passive Mode
 description: Sets passive mode connection
 type: boolean
 default: false

CHAPTER 1. OVERVIEW OF KAMELETS

11

 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:checkbox'
 recursive:
 title: Recursive
 description: If a directory, will look for files in all the sub-directories as well.
 type: boolean
 default: false
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:checkbox'
 idempotent:
 title: Idempotency
 description: Skip already processed files.
 type: boolean
 default: true
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:checkbox'

See also

Configuring kamelet instance parameters

1.2.3. Connecting source and sink components in a kamelet binding

Within a kamelet binding, you connect source and sink components.

The example in this procedure uses the following kamelets as shown in Figure 1.2:

The example source kamelet is named coffee-source. This simple kamelet retrieves randomly-
generated data about types of coffee from a web site catalog. It has one parameter (period -
an integer value) that determines how frequently (in seconds) to retrieve the coffee data. The
parameter is not required since there is a default value (1000 seconds).

The example sink kamelet is named log-sink. It retrieves data and outputs it to a log file.

Figure 1.2: Example kamelet binding

Prerequisites

You know how to create and edit a Camel K integration.

The Red Hat Integration - Camel K operator is installed on your OpenShift namespace or
cluster and you have downloaded the Red Hat Integration Camel K CLI tool as described in
Installing Camel K .

You know which kamelets you want to add to your Camel K integration and their required

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

12

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#configuring-kamelet-instance-parameters
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-source-kamelet
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-sink-kamelet
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/getting_started_with_camel_k#installing-camel-k

You know which kamelets you want to add to your Camel K integration and their required
instance parameters.

The kamelets that you want to use are available in your Kamelet catalog.
If you want to use the kamelets in this example, copy and save the coffee-source code to a local
file named coffee-source.kamelet.yaml and the log-sink code to a file named log-
sink.kamelet.yaml. Then run the following commands to add them to your Kamelet catalog:

oc apply -f coffee-source.kamelet.yaml

oc apply -f log-sink.kamelet.yaml

Procedure

1. Login to your OpenShift cluster.

2. Open your working project where the Camel K operator is installed. If you installed the Camel K
operator in cluster-mode, it is available to any project on the cluster.
For example, to open an existing project named my-camel-k-project:

oc project my-camel-k-project

3. Create a new KameletBinding resource:

a. In an editor of your choice, create a YAML file with the following structure:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name:
spec:
 source:
 sink:

b. Add a name for the kamelet binding.
For this example, the name is coffee-to-log because the binding connects the coffee-
source kamelet to the log-sink kamelet.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffee-to-log
spec:
 source:
 sink:

4. Specify the source kamelet (for example, coffee-source) and configure any parameters for the
kamelet.
Note: For this example, the parameter is defined within the kamelet binding’s YAML file.
Alternatively, you can configure a kamelet’s parameters in a property file, ConfigMap, or Secret
as described in Configuring kamelet instance parameters.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:

CHAPTER 1. OVERVIEW OF KAMELETS

13

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-source-kamelet
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-sink-kamelet
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-source-kamelet
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-sink-kamelet
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#configuring-kamelet-instance-parameters

 name: coffee-to-log
spec:
 source:
 ref
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:

5. Specify the sink kamelet (for example, log-sink) and configure any parameters for the kamelet.
The example log-sink kamelet does not have any required parameters.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffee-to-log
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: log-sink

6. Save the YAML file (for example, coffee-to-log.yaml).

7. Add the KameletBinding as a resource to your OpenShift namespace:
oc apply -f <kamelet>.yaml

For example:

oc apply -f coffee-to-log.yaml

The Camel K operator generates and runs a Camel K integration by using the KameletBinding
resource.

8. To see the status of the KameletBinding:
oc get kameletbindings

9. To see the status of the corresponding integration: oc get integrations

10. To view the output:

To view the logs from the command line, open a Terminal window and then type the
following command:
kamel log <integration-name>

For example, if the integration name is coffee-to-log, use this command:

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

14

kamel log coffee-to-log

To view the logs from OpenShift web console:

a. Select Workloads > Pods.

b. Click the name of the Camel K integration’s pod, and then click Logs.
You should see a list of coffee events similar to the following example:

INFO [log-sink-E80C5C904418150-0000000000000001] (Camel (camel-1) thread
#0 - timer://tick) {"id":7259,"uid":"a4ecb7c2-05b8-4a49-b0d2-
d1e8db5bc5e2","blend_name":"Postmodern Symphony","origin":"Huila,
Colombia","variety":"Kona","notes":"delicate, chewy, black currant, red apple, star
fruit","intensifier":"balanced"}

11. To stop the integration, delete the kamelet binding:
oc delete kameletbindings/<kameletbinding-name>

For example:

oc delete kameletbindings/coffee-to-log

Next steps

Optionally:

Add action kamelets as intermediary steps, as described in Adding an operation to a kamelet
binding.

Add error handling to the kamelet binding, as described in Adding an error handler policy to a
kamelet binding.

1.2.4. Configuring kamelet instance parameters

When you reference a kamelet, you have the following options for defining the kamelet’s instance
parameters:

Directly in a kamelet binding where you specify the kamelet URI. In the following example, the
bot authorization token provided by the Telegram BotFather. is 123456:
from("kamelet:telegram-source?authorizationToken=123456")

Globally configure a kamelet property (so that you don’t have to provide the value in the URI) by
using the following format:
"camel.kamelet.<kamelet-name>.<property-name>=<value>”

As described in the Configuring Camel K integrations chapter in Developing and Managing
Integrations Using Camel K, you can configure kamelet parameters by:

Defining them as properties

Defining them in a property file

Defining them in an OpenShift ConfigMap or Secret

See also

Determining a kamelet’s configuration parameters

CHAPTER 1. OVERVIEW OF KAMELETS

15

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#adding-operation-to-kamelet-binding
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#adding-error-handler-policy-kameletbinding
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/developing_and_managing_integrations_using_camel_k/#configuring-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#determining-kamelet-configuration-parameters

1.2.5. Connecting to a channel of events

The most common use case for kamelets is to use a kamelet binding to connect them to a channel of
events: a Kafka topic or a Knative destination (channel or broker). The advantage of doing so is that the
data source and sink are independent and “unaware” of each other. This decoupling allows the
components in your business scenario to be developed and managed separately. If you have multiple
data sinks and sources as part of your business scenario, it becomes even more important to decouple
the various components. For example, if an event sink needs to be shut down, the event source is not
impacted. And, if other sinks use the same source, they are not impacted.

Figure 1.3 illustrates the flow of connecting source and sink kamelets to a channel of events.

Figure 1.3: Connecting source and sink kamelets to a channel of events

If you use the Apache Kafka stream-processing framework, for details on how to connect to a Kafka
topic, see Connecting to Kafka with Kamelets .

If you use the Knative serverless framework, for details on how to connect to a Knative destination
(channel or broker), see Connecting to Knative with Kamelets .

1.2.6. Connecting to an explicit Camel URI

You can create a kamelet binding in which a kamelet sends events to—or receives events from—an
explicit Camel URI. Typically, you bind a source kamelet to a URI that can receive events (that is, you
specify the URI as the sink in a kamelet binding). Examples of Camel URIs that receive events are HTTP
or HTTPS endpoints.

It is also possible, but not as common, to specify a URI as the source in a kamelet binding. Examples of
Camel URIs that send events are timer, mail, or FTP endpoints.

To connect a kamelet to a Camel URI, follow the steps in Connecting source and sink components in a
kamelet binding and for the sink.uri field, instead of a kamelet, specify an explicit Camel URI.

In the following example, the URI for the sink is a fictional URI (https://mycompany.com/event-service):

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

16

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-to-kafka-kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-to-knative-kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-source-sink-in-kamelet-binding

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffee-to-event-service
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 uri: https://mycompany.com/event-service

1.3. APPLYING OPERATIONS TO DATA WITHIN A CONNECTION

If you want to perform an operation on the data that passes between a kamelet and an event channel,
use action kamelets as intermediary steps within a kamelet binding. For example, you can use an action
kamelet to serialize or deserialize data, filter the data, or insert a field or a message header.

Manipulation operations, such as filtering or adding fields, work only with JSON data (that is, when the
Content-Type header is set to application/json). If the event data uses a format other than JSON (for
example, Avro or Protocol Buffers), you must convert the format of the data by adding a deserialize step
(for example, that references the protobuf-deserialize-action or avro-deserialize-action kamelet)
before the manipulating action and a serialize step (for example, that references the protobuf-serialize-
action or avro-serialize-action kamelet) after it. For more information about converting the format of
data in a connection, see Data conversion kamelets.

Action kamelets include:

Data filtering kamelets

Data conversion kamelets

Data transformation kamelets

1.3.1. Adding an operation to a kamelet binding

To implement an action kamelet, in the kamelet binding file’s spec section, add a steps section in
between the source and sink sections.

Prerequisites

You have created a kamelet binding as described in Connecting source and sink components in
a kamelet binding.

You know which action kamelet you want to add to the kamelet binding and the action kamelet’s
required parameters.
For the example in this procedure, the parameter for the predicate-filter-action kamelet is a
string type, expression, that provides the JSON Path Expression that filters coffee data to only
log coffees that have a “deep” taste intensity. Note that the predicate-filter-action kamelet
requires that you set a Builder trait configuration property in the kamelet binding.

The example also includes deserialize and serialize actions which are optional in this case

CHAPTER 1. OVERVIEW OF KAMELETS

17

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#data-conversion-kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#data-filtering-kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#data-conversion-kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#data-transformation-kamelets
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-source-sink-in-kamelet-binding

The example also includes deserialize and serialize actions which are optional in this case
because the event data format is JSON.

Procedure

1. Open a KameletBinding file in an editor.
For example, here are the contents of the coffee-to-log.yaml file:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffee-to-log
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: log-sink

2. Add an integration section above the source section and provide the following Builder trait
configuration property (as required by the predicate-filter-action kamelet):

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffee-to-log
spec:
 integration:
 traits:
 builder:
 configuration:
 properties:
 - "quarkus.arc.unremovable-
types=com.fasterxml.jackson.databind.ObjectMapper"
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: log-sink

3. Add a steps section, between the source and sink sections and define the action kamelet. For

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

18

3. Add a steps section, between the source and sink sections and define the action kamelet. For
example:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffee-to-log
 spec:
 integration:
 traits:
 builder:
 configuration:
 properties:
 - "quarkus.arc.unremovable-
types=com.fasterxml.jackson.databind.ObjectMapper"
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 steps:
 - ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: json-deserialize-action
 - ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: predicate-filter-action
 properties:
 expression: "@.intensifier =~ /.*deep/"
 - ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: json-serialize-action
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: log-sink

4. Save your changes.

5. Update the KameletBinding resource:
oc apply -f coffee-to-log.yaml

The Camel K operator re-generates and runs the CamelK integration that it generates based
upon the updated KameletBinding resource.

6. To see the status of the kamelet binding:
oc get kameletbindings

7. To see the status of its corresponding integration:
oc get integrations

CHAPTER 1. OVERVIEW OF KAMELETS

19

8. To view the log file output:

a. Get the pod name for the integration:
oc get pods

b. View the log for the integration’s pod:
oc logs <podname of the integration>

For example, if the pod name is example-7885bdb9-84ht8:

oc logs example-7885bdb9-84ht8

9. To stop the integration, delete the kamelet binding:
oc delete kameletbindings/<kameletbinding-name>

For example:

oc delete kameletbindings/coffee-to-log

1.3.2. Action kamelets

Section 1.3.2.1, “Data filtering kamelets”

Section 1.3.2.2, “Data conversion kamelets”

Section 1.3.2.3, “Data transformation kamelets”

1.3.2.1. Data filtering kamelets

You can filter the data that passes between source and sink components, for example, to prevent
leaking sensitive data or to avoid generating unnecessary networking charges.

You can filter data based on the following criteria:

Kafka topic name - Filter events for a Kafka topic with a name that matches the given Java
regular expression by configuring the Topic Name Matches Filter Action Kamelet (topic-name-
matches-filter-action).

Header key - Filter events that have a given message header by configuring the Header Filter
Action Kamelet (has-header-filter-action).

Null value - Filters tombstone events (events with a null payload) by configuring the
Tombstone Filter Action Kamelet (is-tombstone-filter-action).

Predicate - Filter events based on the given JSON path expression by configuring the
Predicate Filter Action Kamelet (predicate-filter-action). The predicate-filter-action kamelet
requires that you set the following Builder trait configuration property in the kamelet binding:

spec:
 integration:
 traits:
 builder:
 configuration:
 properties:
 - "quarkus.arc.unremovable-types=com.fasterxml.
 jackson.databind.ObjectMapper"

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

20

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/developing_and_managing_integrations_using_camel_k/camel-k-traits-reference#builder_trait

NOTE

Data filtering kamelets work out-of-the-box with JSON data (that is, when the Content-
Type header is set to application/json). If the event data uses a format other than JSON,
you must convert the format of the data by adding a deserialize step (for example,
protobuf-deserialize-action or avro-deserialize-action) before the manipulating action
and a serialize step (for example, protobuf-serialize-action or avro-serialize-action)
after it. For more information about converting the format of data in a connection, see
Data conversion kamelets.

1.3.2.2. Data conversion kamelets

With the following data conversion kamelets, you can serialize and deserialize the format of data that
passes between source and sink components. The data conversion applies to the payload of event data
(not the key or the header).

Avro - An open source project that provides data serialization and data exchange services for
Apache Hadoop.

Avro Deserialize Action Kamelet (avro-deserialize-action)

Avro Serialize Action Kamelet (avro-serialize-action)

Protocol Buffers - A high-performance, compact binary wire format invented by Google who
use it internally so they can communicate with their internal network services.

Protobuf Deserialize Action Kamelet (protobuf-deserialize-action)

Protobuf Serialize Action Kamelet (protobuf-serialize-action)

JSON (JavaScript Object Notation) - A data-interchange format that is based on a subset of
the JavaScript Programming Language. JSON is a text format that is completely language
independent.

JSON Deserialize Action Kamelet (json-deserialize-action)

JSON Serialize Action Kamelet (json-serialize-action)

NOTE

You must specify the schema (as a single-line, using JSON format) in the Avro and
Protobuf serialize/deserialize kamelets. You do not need to do so for JSON
serialize/deserialize kamelets.

1.3.2.3. Data transformation kamelets

With the following data transformation kamelets, you can perform simple manipulations on the data that
passes between the source and sink components:

ValueToKey - (for Kafka) Use the value-to-key-action kamelet to replace the record key with a
new key formed from a subset of fields in the payload. You can set the event key to a value that
is based on the event information before the data is written to Kafka. For example, when
reading records from a database table, you can partition the records in Kafka based on the
customer ID.

MaskField - Use the mask-field-action kamelet to replace a field value with a valid null value for

CHAPTER 1. OVERVIEW OF KAMELETS

21

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#data-conversion-kamelets

MaskField - Use the mask-field-action kamelet to replace a field value with a valid null value for
the field type (such as 0 or an empty string) or with a given replacement (the replacement must
be a non-empty string or a numeric value).
For example, if you want to capture data from a relational database to send to Kafka and the
data includes protected (PCI / PII) information, you must mask the protected information if
your Kafka cluster is not certified yet.

InsertHeader - Use the insert-header-action kamelet to add a field (header) by using either
static data or record metadata.

InsertField - Use the insert-field-action kamelet to add a field (value) by using either static
data or record metadata.

1.4. HANDLING ERRORS WITHIN A CONNECTION

To specify what the Camel K operator should do if a running integration encounters a failure when
sending or receiving event data, you can optionally add one of the following error handling policies to
the kamelet binding:

No error handler - Ignores any failure happening in your integration.

Log error handler - Sends a log message to standard output.

Dead letter channel error handler - Redirects a failing event to another component, such as a
third-party URI, a queue, or another kamelet which can perform certain logic with the failing
event. Also supports attempting to redeliver the message exchange a number of times before
sending it to a dead letter endpoint.

Bean error handler - Specifies to use a custom bean for handling errors.

Ref error handler - Specifies to use a bean for handling errors. The bean must be available in the
Camel registry at runtime.

1.4.1. Adding an error handler policy to a kamelet binding

To handle errors when sending or receiving event data between a source and a sink connection, add an
error handler policy to the kamelet binding.

Prerequisites

You know which type of error handler policy you want to use.

You have an existing KameletBinding YAML file.

Procedure

To implement error handling in a kamelet binding:

1. Open a KameletBinding YAML file in an editor.

2. Add an error handler section to the spec section, after the sink definition:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: example-kamelet-binding

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

22

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#no-error-handler
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#log-error-handler
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#dead-letter-error-handler
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#bean-error-handler
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#ref-error-handler

spec:
 source:
 ...
 sink:
 ...
 errorHandler: ...

For example, in the coffee-to-log kamelet binding, specify the maximum number of times an
error is sent to the log file by adding a log error handler:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffee-to-log
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: log-sink
 errorHandler: log: parameters: maximumRedeliveries: 3

3. Save your file.

1.4.2. Error handlers

Section 1.4.2.1, “No error handler”

Section 1.4.2.2, “Log error handler”

Section 1.4.2.3, “Dead letter channel error handler”

Section 1.4.2.4, “Bean error handler”

Section 1.4.2.5, “Ref error handler”

1.4.2.1. No error handler

If you want to ignore any failure happening in your integration, you can either not include an
errorHandler section in the kamelet binding or set it to none as shown in the following example:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: my-kamelet-binding
spec:
 source:
...

CHAPTER 1. OVERVIEW OF KAMELETS

23

 sink:
...
 errorHandler:
 none:

1.4.2.2. Log error handler

The default behavior for handling any failure is to send a log message to standard output. Optionally, you
can use the log error handler to specify other behaviors, such as a redelivery or delay policy, as shown in
the following example:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: my-kamelet-binding
spec:
 source:
...
 sink:
...
 errorHandler:
 log: parameters: maximumRedeliveries: 3 redeliveryDelay: 2000

1.4.2.3. Dead letter channel error handler

The Dead Letter Channel allows you to redirect any failing event to any other component (such as a
third party URI, a queue, or another kamelet) that can define how to handle a failing event, as shown in
the following example:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: my-kamelet-binding
spec:
 source:
 ...
 sink:
 ...
 errorHandler:
 dead-letter-channel:
 endpoint:
 ref: 1
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: error-handler
 properties: 2
 message: "ERROR!"
 ...
 parameters: 3
 maximumRedeliveries: 1

1. For the endpoint, you can use ref or uri. The Camel K operator interprets ref according to the
kind, apiVersion and name values. You can use any kamelet, Kafka Topic channel, or Knative
destination.

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

24

2. Properties that belong to the endpoint (in this example, to a kamelet named error-handler).

3. Parameters that belong to the dead-letter-channel error handler type.

1.4.2.4. Bean error handler

With the Bean error handler you can extend the functionality of the Error Handler by providing a custom
bean that handles errors. For type, specify the fully-qualified name of the ErrorHandlerBuilder. For
properties, configure the properties expected by the ErrorHandlerBuilder that you specified in type.

NOTE

Within a kamelet binding, Camel components in URIs require dependency declarations.
The Camel K operator generates an integration from a kamelet binding at runtime. For
integrations that are not generated by a kamelet binding, Camel K automatically handles
the dependency management and imports all the required libraries from the Camel
catalog. However, for this release, you must specify any Camel components that you
reference in a URI within a kamelet binding as a dependency. In the following example,
because the kamelet binding references the camel-log component in the deadLetterUri,
it includes the camel-log as a dependency in the spec.integration.dependencies
section.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: my-kamelet-binding
spec:
 integration: dependencies: - camel:log
 source:

 source:
...
 sink:
...
 errorHandler:
 bean: type: "org.apache.camel.builder.DeadLetterChannelBuilder" properties: deadLetterUri:
log:error

1.4.2.5. Ref error handler

With the Ref error handler, you can use any bean that you expect to be available in the Camel registry at
runtime. In the following example, my-custom-builder is the name of the bean to look up at runtime.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: my-kamelet-binding
spec:
 source:
 ...
 sink:
 ...
 errorHandler:
 ref: my-custom-builder

CHAPTER 1. OVERVIEW OF KAMELETS

25

See also:

Camel K error handling

Features support by various Error Handlers

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

26

https://camel.apache.org/manual/latest/error-handler.html
https://camel.apache.org/manual/latest/error-handler.html#ErrorHandler-Featuressupportbyvariouss

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS
Apache Kafka is an open-source, distributed, publish-subscribe messaging system for creating fault-
tolerant, real-time data feeds. Kafka quickly stores and replicates data for a large number of consumers
(external connections).

Kafka can help you build solutions that process streaming events. A distributed, event-driven
architecture requires a "backbone" that captures, communicates and helps process events. Kafka can
serve as the communication backbone that connects your data sources and events to applications.

You can use kamelets to configure communication between Kafka and external resources. Kamelets
allow you to configure how data moves from one endpoint to another in a Kafka stream-processing
framework without writing code. Kamelets are route templates that you configure by specifying
parameter values.

For example, Kafka stores data in a binary form. You can use kamelets to serialize and deserialize the
data for sending to, and receiving from, external connections. With kamelets, you can validate the
schema and make changes to the data, such as adding to it, filtering it, or masking it. Kamelets can also
handle and process errors.

2.1. OVERVIEW OF CONNECTING TO KAFKA WITH KAMELETS

If you use an Apache Kafka stream-processing framework, you can use kamelets to connect services and
applications to a Kafka topic. The Kamelet Catalog provides the following kamelets specifically for
making connections to a Kafka topic:

kafka-sink - Moves events from a data producer to a Kafka topic. In a kamelet binding, specify
the kafka-sink kamelet as the sink.

kafka-source - Moves events from a Kafka topic to a data consumer. In a kamelet binding,
specify the kafka-source kamelet as the source.

Figure 2.1 illustrates the flow of connecting source and sink kamelets to a Kafka topic.

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

27

https://kafka.apache.org/

Figure 2.1: Data flow with kamelets and a Kafka topic

Here is an overview of the basic steps for using kamelets and kamelet bindings to connect applications
and services to a Kafka topic:

1. Set up Kafka:

a. Install the needed OpenShift operators.

For OpenShift Streams for Apache Kafka, install the RHOAS and Camel K operators.

For AMQ streams, install the Camel K and AMQ streams operators.

b. Create a Kafka instance. A Kafka instance operates as a message broker. A broker contains
topics and orchestrates the storage and passing of messages.

c. Create a Kafka topic. A topic provides a destination for the storage of data.

d. Obtain Kafka authentication credentials.

2. Determine which services or applications you want to connect to your Kafka topic.

3. View the kamelet catalog to find the kamelets for the source and sink components that you
want to add to your integration. Also, determine the required configuration parameters for each
kamelet that you want to use.

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

28

4. Create kamelet bindings:

Create a kamelet binding that connects a data source (a component that produces data) to
the Kafka topic (by using the kafka-sink kamelet).

Create a kamelet binding that connects the kafka topic (by using kafka-source kamelet) to
a data sink (a component that consumes data).

5. Optionally, manipulate the data that passes between the Kafka topic and the data source or
sink by adding one or more action kamelets as intermediary steps within a kamelet binding.

6. Optionally, define how to handle errors within a kamelet binding.

7. Apply the kamelet bindings as resources to the project.
The Camel K operator generates a separate Camel K integration for each kamelet binding.

2.2. SETTING UP KAFKA

Setting up Kafka involves installing the required OpenShift operators, creating a Kafka instance, and
creating a Kafka topic.

Use one of these Red Hat products to set up Kafka:

Red Hat Advanced Message Queuing (AMQ) streams - A self-managed Apache Kafka
offering. AMQ Streams is based on open source Strimzi and is included as part of Red Hat
Integration. AMQ Streams is a distributed and scalable streaming platform based on Apache
Kafka that includes a publish/subscribe messaging broker. Kafka Connect provides a framework
to integrate Kafka-based systems with external systems. Using Kafka Connect, you can
configure source and sink connectors to stream data from external systems into and out of a
Kafka broker.

Red Hat OpenShift Streams for Apache Kafka (Development Preview) - A managed cloud
service that simplifies the process of running Apache Kafka. It provides a streamlined developer
experience for building, deploying, and scaling new cloud-native applications or modernizing
existing systems.

NOTE

Red Hat OpenShift Streams for Apache Kafka is currently available for
Development Preview. Development Preview releases provide early access to a
limited set of features that might not be fully tested and that might change in the
final GA version. Users should not use Development Preview software in
production or for business-critical workloads. Limited documentation is available
for Development Preview releases and is typically focused on fundamental user
goals.

2.2.1. Setting up Kafka by using AMQ streams

AMQ Streams simplifies the process of running Apache Kafka in an OpenShift cluster.

2.2.1.1. Preparing your OpenShift cluster for AMQ Streams

To use Camel K or kamelets and Red Hat AMQ Streams, you must install the following operators and
tools:

Red Hat Integration - AMQ Streams operator - Manages the communication between your

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

29

https://strimzi.io
https://www.redhat.com/en/products/integration

Red Hat Integration - AMQ Streams operator - Manages the communication between your
Openshift Cluster and AMQ Streams for Apache Kafka instances.

Red Hat Integration - Camel K operator - Installs and manages Camel K - a lightweight
integration framework that runs natively in the cloud on OpenShift.

Camel K CLI tool - Allows you to access all Camel K features.

Prerequisites

You are familiar with Apache Kafka concepts.

You can access an OpenShift 4.6 (or later) cluster with the correct access level, the ability to
create projects and install operators, and the ability to install the OpenShift and the Camel K
CLI on your local system.

You installed the OpenShift CLI tool (oc) so that you can interact with the OpenShift cluster at
the command line.

Procedure

To set up Kafka by using AMQ Streams:

1. Log in to your OpenShift cluster’s web console.

2. Create or open a project in which you plan to create your integration, for example my-camel-k-
kafka.

3. Install the Camel K operator and Camel K CLI as described in Installing Camel K .

4. Install the AMQ streams operator:

a. From any project, select Operators > OperatorHub.

b. In the Filter by Keyword field, type AMQ Streams.

c. Click the Red Hat Integration - AMQ Streams card and then click Install.
The Install Operator page opens.

d. Accept the defaults and then click Install.

5. Select Operators > Installed Operators to verify that the Camel K and AMQ Streams operators
are installed.

6. Set up Kafka authentication as described in Managing secure access to Kafka .

Next steps

Setting up a Kafka topic with AMQ Streams

2.2.1.2. Setting up a Kafka topic with AMQ Streams

A Kafka topic provides a destination for the storage of data in a Kafka instance. You must set up a Kafka
topic before you can send data to it.

Prerequisites

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

30

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/using_amq_streams_on_openshift/assembly-securing-access-str
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#setting-up-kafka-topic-with-amq-streams

You can access an OpenShift cluster.

You installed the Red Hat Integration - Camel K and Red Hat Integration - AMQ Streams
operators as described in Preparing your OpenShift cluster .

You installed the OpenShift CLI (oc) and the Camel K CLI (kamel).

Procedure

To set up a Kafka topic by using AMQ Streams:

1. Log in to your OpenShift cluster’s web console.

2. Select Projects and then click the project in which you installed the Red Hat Integration - AMQ
Streams operator. For example, click the my-camel-k-kafka project.

3. Select Operators > Installed Operators and then click Red Hat Integration - AMQ Streams.

4. Create a Kafka cluster:

a. Under Kafka, click Create instance.

b. Type a name for the cluster, for example kafka-test .

c. Accept the other defaults and then click Create.
The process to create the Kafka instance might take a few minutes to complete.

When the status is ready, continue to the next step.

5. Create a Kafka topic:

a. Select Operators > Installed Operators and then click Red Hat Integration - AMQ
Streams.

b. Under Kafka Topic, click Create Kafka Topic.

c. Type a name for the topic, for example test-topic.

d. Accept the other defaults and then click Create.

2.2.2. Setting up Kafka by using OpenShift streams

Red Hat OpenShift Streams for Apache Kafka is a managed cloud service that simplifies the process of
running Apache Kafka.

To use OpenShift Streams for Apache Kafka, you must be logged into your Red Hat account.

NOTE

Red Hat OpenShift Streams for Apache Kafka is currently available for Development
Preview. Development Preview releases provide early access to a limited set of features
that might not be fully tested and that might change in the final GA version. Users should
not use Development Preview software in production or for business-critical workloads.
Limited documentation is available for Development Preview releases and is typically
focused on fundamental user goals.

See Also

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

31

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#preparing-cluster-kafka-openshift-streams

Product documentation for Red Hat OpenShift Streams for Apache Kafka

2.2.2.1. Preparing your OpenShift cluster for OpenShift Streams

To use the Red Hat OpenShift Streams for Apache Kafka managed cloud service, you must install the
following operators and tools:

OpenShift Application Services (RHOAS) operator - Manages the communication between
your OpenShift Cluster and the Red Hat OpenShift Streams for Apache Kafka instances.
Note: This is a community operator.

RHOAS CLI - Allows you to manage your application services from a terminal.
Note: This is a Developer Preview feature.

Red Hat Integration - Camel K operator Installs and manages Camel K - a lightweight
integration framework that runs natively in the cloud on OpenShift.

Camel K CLI tool - Allows you to access all Camel K features.

Prerequisites

You are familiar with Apache Kafka concepts.

You can access an OpenShift 4.6 (or later) cluster with the correct access level, the ability to
create projects and install operators, and the ability to install the OpenShift and Apache Camel
K CLI on your local system.

You installed the OpenShift CLI tool (oc) so that you can interact with the OpenShift cluster at
the command line.

Procedure

1. Log in to your OpenShift web console with a cluster admin account.

2. Create the OpenShift project for your Camel K or kamelets application.

a. Select Home > Projects.

b. Click Create Project.

c. Type the name of the project, for example my-camel-k-kafka, then click Create.

3. Install the RHOAS operator:

a. From any project, select Operators > OperatorHub.

b. In the Filter by Keyword field, type RHOAS.

c. Click the OpenShift Application Services (RHOAS) card (it is a community operator) and
then click Install.
The Install Operator page opens.

d. Accept the default mode (All namespaces on the cluster) or select the namespace for
your project, then click Install.

4. Download and install the RHOAS CLI as described in Getting started with the rhoas CLI.

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

32

https://access.redhat.com/documentation/en-us/red_hat_openshift_streams_for_apache_kafka
https://github.com/redhat-developer/app-services-guides/tree/main/rhoas-cli

5. Install the Camel K operator and Camel K CLI as described in Installing Camel K .

6. To verify that the Red Hat Integration - Camel K and OpenShift Application Services
(RHOAS) operators are installed, click Operators > Installed Operators.

Next step

Setting up a Kafka topic with RHOAS

2.2.2.2. Setting up a Kafka topic with RHOAS

Kafka organizes messages around topics. Each topic has a name. Applications send messages to topics
and retrieve messages from topics. A Kafka topic provides a destination for the storage of data in a
Kafka instance. You must set up a Kafka topic before you can send data to it.

Prerequisites

You can access an OpenShift cluster with the correct access level, the ability to create projects
and install operators, and the ability to install the OpenShift and the Camel K CLI on your local
system.

You installed the OpenShift CLI (oc) , the Camel K CLI (kamel) , and RHOAS CLI (rhoas) tools
as described in Preparing your OpenShift cluster .

You installed the Red Hat Integration - Camel K and OpenShift Application Services
(RHOAS) operators as described in Preparing your OpenShift cluster .

You are logged in to the Red Hat Cloud (Beta) site .

Procedure

To set up a Kafka topic by using Red Hat OpenShift Streams for Apache Kafka:

1. From the command line, log in to your OpenShift cluster.

2. Open your project, for example:
oc project my-camel-k-kafka

3. Verify that the necessary operators are installed in your project:
oc get csv

The result lists the Red Hat Camel K and RHOAS operators and indicates that they are in the
Succeeded phase.

4. Prepare and connect a Kafka instance to RHOAS:

a. Login to the RHOAS CLI by using this command:
rhoas login

b. Create a kafka instance, for example kafka-test :
rhoas kafka create kafka-test

The process to create the Kafka instance might take a few minutes to complete.

5. To check the status of your Kafka instance:
rhoas status

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

33

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/getting_started_with_camel_k#installing-camel-k
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#setting-up-kafka-topic-with-rhoas
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#preparing-cluster-kafka-openshift-streams
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#preparing-cluster-kafka-openshift-streams
https://cloud.redhat.com/beta/application-services/streams/kafkas

You can also view the status in the web console:

https://cloud.redhat.com/beta/application-services/streams/kafkas/

When the status is ready, continue to the next step.

6. Create a new Kafka topic:
rhoas kafka topic create test-topic

7. Connect your Kafka instance (cluster) with the Openshift Application Services instance:
rhoas cluster connect

8. Follow the script instructions for obtaining a credential token.
You should see output similar to the following:

Token Secret "rh-cloud-services-accesstoken-cli" created successfully
Service Account Secret "rh-cloud-services-service-account" created successfully
KafkaConnection resource "kafka-test" has been created
KafkaConnection successfully installed on your cluster.

The RHOAS operator sets up the KafkaConnection custom resource named kafka-test.

Next step

Obtaining Kafka credentials

2.2.2.3. Obtaining Kafka credentials

To connect your applications or services to a Kafka instance, you must first obtain the following Kafka
credentials:

Obtain the bootstrap URL.

Create a service account with credentials (username and password).

For OpenShift Streams, the authentication method is SASL_SSL.

Prerequisite

You have created a Kafka instance, and it has a ready status.

You have created a Kafka topic.

Procedure

1. Obtain the Kafka Broker URL (Bootstrap URL):
rhoas status kafka

This command returns output similar to the following:

 Kafka

 ID: 1ptdfZRHmLKwqW6A3YKM2MawgDh

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

34

https://cloud.redhat.com/beta/application-services/streams/kafkas/
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#obtaining-kafka-credentials

 Name: my-kafka
 Status: ready
 Bootstrap URL: my-kafka--ptdfzrhmlkwqw-a-ykm-mawgdh.kafka.devshift.org:443

2. To obtain a username and password, create a service account by using the following syntax:
rhoas service-account create --name "<account-name>" --file-format json

NOTE

When creating a service account, you can choose the file format and location to
save the credentials. For more information, type rhoas service-account create -
-help

For example:

rhoas service-account create --name "my-service-acct" --file-format json

The service account is created and saved to a JSON file.

3. To verify your service account credentials, view the credentials.json file:
cat credentials.json

This command returns output similar to the following:

{"user":"srvc-acct-eb575691-b94a-41f1-ab97-50ade0cd1094", "password":"facf3df1-3c8d-
4253-aa87-8c95ca5e1225"}

2.2.2.4. Creating a secret by using the SASL/Plain authentication method

You can create a secret with the credentials that you obtained (Kafka bootstrap URL, service account
ID, and service account secret).

Procedure

1. Edit the application.properties file and add the Kafka credentials.

application.properties file

camel.component.kafka.brokers = <YOUR-KAFKA-BOOTSTRAP-URL-HERE>
camel.component.kafka.security-protocol = SASL_SSL
camel.component.kafka.sasl-mechanism = PLAIN
camel.component.kafka.sasl-jaas-
config=org.apache.kafka.common.security.plain.PlainLoginModule required
username='<YOUR-SERVICE-ACCOUNT-ID-HERE>' password='<YOUR-SERVICE-
ACCOUNT-SECRET-HERE>';
consumer.topic=<TOPIC-NAME>
producer.topic=<TOPIC-NAME>

2. Run the following command to create a secret that contains the sensitive properties in the
application.properties file:

oc create secret generic kafka-props --from-file application.properties

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

35

You use this secret when you run a Camel K integration.

2.2.2.5. Creating a secret by using the SASL/OAUTHBearer authentication method

You can create a secret with the credentials that you obtained (Kafka bootstrap URL, service account
ID, and service account secret).

Procedure

1. Edit the application-oauth.properties file and add the Kafka credentials.

application-oauth.properties file

camel.component.kafka.brokers = <YOUR-KAFKA-BOOTSTRAP-URL-HERE>
camel.component.kafka.security-protocol = SASL_SSL
camel.component.kafka.sasl-mechanism = OAUTHBEARER
camel.component.kafka.sasl-jaas-config =
org.apache.kafka.common.security.oauthbearer.OAuthBearerLoginModule required \
oauth.client.id='<YOUR-SERVICE-ACCOUNT-ID-HERE>' \
oauth.client.secret='<YOUR-SERVICE-ACCOUNT-SECRET-HERE>' \
oauth.token.endpoint.uri="https://identity.api.openshift.com/auth/realms/rhoas/protocol/openid-
connect/token" ;
consumer.topic=<TOPIC-NAME>
producer.topic=<TOPIC-NAME>

2. Run the following command to create a secret that contains the sensitive properties in the
application.properties file:

oc create secret generic kafka-props --from-file application-oauth.properties

You use this secret when you run a Camel K integration.

2.3. CONNECTING A DATA SOURCE TO A KAFKA TOPIC IN A KAMELET
BINDING

To connect a data source to a Kafka topic, you create a kamelet binding as illustrated in Figure 2.2.

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

36

Figure 2.2 Connecting a data source to a Kafka topic

Prerequisites

You know the name of the Kafka topic to which you want to send events.
The example in this procedure uses test-topic for receiving events.

You know the values of the following parameters for your Kafka instance:

bootstrapServers - A comma separated list of Kafka Broker URLs.

password - The password to authenticate to Kafka.

user - The user name to authenticate to Kafka.
For information on how to obtain these values when you use OpenShift Streams, see
Obtaining Kafka credentials .

For information about Kafka authentication on AMQ streams, see Managing secure access

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

37

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#obtaining-kafka-credentials

For information about Kafka authentication on AMQ streams, see Managing secure access
to Kafka.

You know the security protocol for communicating with the Kafka brokers. For a Kafka cluster
on OpenShift Streams, it is SASL_SSL (the default). For a Kafka cluster on AMQ streams, it is
SASL/Plain.

You know which kamelets you want to add to your Camel K integration and the required instance
parameters.
The example kamelets for this procedure are: ** The coffee-source kamelet - It has an optional
parameter, period, that specifies how often to send each event. You can copy the code from
Example source kamelet to a file named coffee-source.kamelet.yaml file and then run the
following command to add it as a resource to your namespace:

+ oc apply -f coffee-source.kamelet.yaml

The kafka-sink kamelet provided in the Kamelet Catalog. You use the kafka-sink kamelet
because the Kafka topic is receiving data (it is the data consumer) in this binding. The
example values for the required parameters are:

bootstrapServers - "broker.url:9092"

password - "testpassword"

user - "testuser"

topic - "test-topic"

securityProtocol - For a Kafka cluster on OpenShift Streams, you do not need to set
this parameter because SASL_SSL is the default value. For a Kafka cluster on AMQ
streams, this parameter value is “PLAINTEXT”.

Procedure

To connect a data source to a Kafka topic, create a kamelet binding:

1. In an editor of your choice, create a YAML file with the following basic structure:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name:
spec:
 source:
 sink:

2. Add a name for the kamelet binding. For this example, the name is coffees-to-kafka because
the binding connects the coffee-source kamelet to the kafka-sink kamelet.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffees-to-kafka
spec:
 source:
 sink:

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

38

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/using_amq_streams_on_openshift/assembly-securing-access-str
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-source-kamelet

3. For the kamelet binding’s source, specify a data source kamelet (for example, the coffee-
source kamelet produces events that contain data about coffee) and configure any parameters
for the kamelet.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffees-to-kafka
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:

4. For the kamelet binding’s sink, specify the kafka-sink kamelet and its required parameters.
For example, when the Kafka cluster is on OpenShift Streams (you do not need to set the
securityProtocol parameter):

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffees-to-kafka
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: kafka-sink
 properties:
 bootstrapServers: "broker.url:9092"
 password: "testpassword"
 topic: "test-topic"
 user: "testuser"

For example, when the Kafka cluster is on AMQ Streams you must set the securityProtocol
parameter to “PLAINTEXT”:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffees-to-kafka
spec:
 source:
 ref:

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

39

 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: kafka-sink
 properties:
 bootstrapServers: "broker.url:9092"
 password: "testpassword"
 topic: "test-topic"
 user: "testuser"
 securityProtocol: "PLAINTEXT"

5. Save the YAML file (for example, coffees-to-kafka.yaml).

6. Log into your OpenShift project.

7. Add the kamelet binding as a resource to your OpenShift namespace:
oc apply -f <kamelet binding filename>

For example:

oc apply -f coffees-to-kafka.yaml

The Camel K operator generates and runs a Camel K integration by using the KameletBinding
resource. It might take a few minutes to build.

8. To see the status of the KameletBinding resource:
oc get kameletbindings

9. To see the status of their integrations:
oc get integrations

10. To view the integration’s log:
kamel logs <integration> -n <project>

For example:

kamel logs coffees-to-kafka -n my-camel-k-kafka

The result is similar to the following output:

...
[1] INFO [io.quarkus] (main) camel-k-integration 1.4.0 on JVM (powered by Quarkus
1.13.0.Final) started in 2.790s.

See Also

Applying operations to data within a Kafka connection

Handling errors within a connection

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

40

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#assembly-applying-operations-to-data-kafka
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#assembly-handling-errors-kameletbinding

Connecting a Kafka topic to a data sink in a kamelet binding

2.4. CONNECTING A KAFKA TOPIC TO A DATA SINK IN A KAMELET
BINDING

To connect a Kafka topic to a data sink, you create a kamelet binding as illustrated in Figure 2.3 .

Figure 2.3 Connecting a Kafka topic to a data sink

Prerequisites

You know the name of the Kafka topic from which you want to send events. The example in this
procedure uses test-topic for sending events. It is the same topic that you used to receive
events from the coffee source in Connecting a data source to a Kafka topic in a kamelet
binding.

You know the values of the following parameters for your Kafka instance:

bootstrapServers - A comma separated list of Kafka Broker URLs.

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

41

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-kafka-to-sink
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-source-to-kafka

password - The password to authenticate to Kafka.

user - The user name to authenticate to Kafka.
For information on how to obtain these values when you use OpenShift Streams, see
Obtaining Kafka credentials .

For information about Kafka authentication on AMQ streams, see Managing secure access
to Kafka.

You know the security protocol for communicating with the Kafka brokers. For a Kafka cluster
on OpenShift Streams, it is SASL_SSL (the default). For a Kafka cluster on AMQ streams, it is
SASL/Plain.

You know which kamelets you want to add to your Camel K integration and the required instance
parameters. The example kamelets for this procedure are:

The kafka-source kamelet provided in the Kamelet Catalog. You use the kafka-source
kamelet because the Kafka topic is sending data (it is the data producer) in this binding.
The example values for the required parameters are:

bootstrapServers - "broker.url:9092"

password - "testpassword"

user - "testuser"

topic - "test-topic"

securityProtocol - For a Kafka cluster on OpenShift Streams, you do not need to set
this parameter because SASL_SSL is the default value. For a Kafka cluster on AMQ
streams, this parameter value is “PLAINTEXT”.

The log-sink kamelet - You can copy the code from the Example sink kamelet to a file
named log-sink.kamelet.yaml file and then run the following command to add it as a
resource to your namespace:
oc apply -f log-sink.kamelet.yaml

Procedure

To connect a Kafka topic to a data sink, create a kamelet binding:

1. In an editor of your choice, create a YAML file with the following basic structure:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name:
spec:
 source:
 sink:

2. Add a name for the kamelet binding. For this example, the name is kafka-to-log because the
binding connects the kafka-source kamelet to the log-sink kamelet.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

42

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#obtaining-kafka-credentials
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q2/html/using_amq_streams_on_openshift/assembly-securing-access-str
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-sink-kamelet

 name: kafka-to-log
spec:
 source:
 sink:

3. For the kamelet binding’s source, specify the kafka-source kamelet and configure its
parameters.
For example, when the Kafka cluster is on OpenShift Streams (you do not need to set the
securityProtocol parameter):

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: kafka-to-log
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: kafka-source
 properties:
 bootstrapServers: "broker.url:9092"
 password: "testpassword"
 topic: "test-topic"
 user: "testuser"
 sink:

For example, when the Kafka cluster is on AMQ Streams you must set the securityProtocol
parameter to “PLAINTEXT”:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: kafka-to-log
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: kafka-source
 properties:
 bootstrapServers: "broker.url:9092"
 password: "testpassword"
 topic: "test-topic"
 user: "testuser"
 securityProtocol: "PLAINTEXT"
 sink:

4. For the kamelet binding’s sink, specify the data consumer kamelet (for example, the log-sink
kamelet) and configure any parameters for the kamelet, for example:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: kafka-to-log

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

43

spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: kafka-source
 properties:
 bootstrapServers: "broker.url:9092"
 password: "testpassword"
 topic: "test-topic"
 user: "testuser"
 securityProtocol: "PLAINTEXT" // only for AMQ streams
 sink:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: log-sink

5. Save the YAML file (for example, kafka-to-log.yaml).

6. Log into your OpenShift project.

7. Add the kamelet binding as a resource to your OpenShift namespace:
oc apply -f <kamelet binding filename>

For example:

oc apply -f kafka-to-log.yaml

The Camel K operator generates and runs a Camel K integration by using the KameletBinding
resource. It might take a few minutes to build.

8. To see the status of the KameletBinding resource:
oc get kameletbindings

9. To see the status of their integrations:
oc get integrations

10. To view the integration’s log:
kamel logs <integration> -n <project>

For example:

kamel logs kafka-to-log -n my-camel-k-kafka

In the output, you should see coffee events, for example:

INFO [log-sink-E80C5C904418150-0000000000000001] (Camel (camel-1) thread #0 -
timer://tick) {"id":7259,"uid":"a4ecb7c2-05b8-4a49-b0d2-
d1e8db5bc5e2","blend_name":"Postmodern Symphony","origin":"Huila,
Colombia","variety":"Kona","notes":"delicate, chewy, black currant, red apple, star
fruit","intensifier":"balanced"}

11. To stop a running integration, delete the associated kamelet binding resource:
oc delete kameletbindings/<kameletbinding-name>

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

44

For example:

oc delete kameletbindings/kafka-to-log

See also

Applying operations to data within a Kafka connection

Adding an error handler policy to a kamelet binding

2.5. APPLYING OPERATIONS TO DATA WITHIN A KAFKA
CONNECTION

If you want to perform an operation on the data that passes between a kamelet and a Kafka topic, use
action kamelets as intermediary steps within a kamelet binding.

Applying operations to data within a connection

Routing event data to different destination topics

2.5.1. Routing event data to different destination topics

When you configure a connection to a Kafka instance, you can optionally transform the topic information
from the event data so that the event is routed to a different Kafka topic. Use one of the following
transformation action kamelets:

Regex Router - Modify the topic of a message by using a regular expression and a replacement
string. For example, if you want to remove a topic prefix, add a prefix, or remove part of a topic
name. Configure the Regex Router Action Kamelet (regex-router-action).

TimeStamp - Modify the topic of a message based on the original topic and the message’s
timestamp. For example, when using a sink that needs to write to different tables or indexes
based on timestamps. For example, when you want to write events from Kafka to Elasticsearch,
but each event needs to go to a different index based on information in the event itself.
Configure the Timestamp Router Action Kamelet (timestamp-router-action).

Message TimeStamp - Modify the topic of a message based on the original topic value and the
timestamp field coming from a message value field. Configure the Message Timestamp Router
Action Kamelet (message-timestamp-router-action).

Predicate - Filter events based on the given JSON path expression by configuring the
Predicate Filter Action Kamelet (predicate-filter-action).

Prerequisites

You have created a kamelet binding in which the sink is a kafka-sink kamelet, as described in
Connecting a data source to a Kafka topic in a kamelet binding .

You know which type of transformation you want to add to the kamelet binding.

Procedure

To transform the destination topic, use one of the transformation action kamelets as an intermediary
step within the kamelet binding.

For details on how to add an action kamelet to a kamelet binding, see Adding an operation to a kamelet

CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS

45

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#assembly-applying-operations-to-data-kafka
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#adding-error-handler-policy-kameletbinding
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#assembly-applying-operations-to-data
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#routing-data-different-topics-kafka
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-source-to-kafka

For details on how to add an action kamelet to a kamelet binding, see Adding an operation to a kamelet
binding.

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

46

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#adding-operation-to-kamelet-binding

CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS
You can connect kamelets to Knative destinations (channels or brokers). Red Hat OpenShift Serverless
is based on the open source Knative project, which provides portability and consistency across hybrid
and multi-cloud environments by enabling an enterprise-grade serverless platform. OpenShift
Serverless includes support for the Knative Eventing and Knative Serving components.

Red Hat OpenShift Serverless, Knative Eventing, and Knative Serving enable you to use an event-driven
architecture with serverless applications, decoupling the relationship between event producers and
consumers by using a publish-subscribe or event-streaming model. Knative Eventing uses standard
HTTP POST requests to send and receive events between event producers and consumers. These
events conform to the CloudEvents specifications, which enables creating, parsing, sending, and
receiving events in any programming language.

You can use kamelets to send CloudEvents to Knative and send them from Knative to event consumers.
Kamelets can translate messages to CloudEvents and you can use them to apply any pre-processing
and post-processing of the data within CloudEvents.

3.1. OVERVIEW OF CONNECTING TO KNATIVE WITH KAMELETS

If you use a Knative stream-processing framework, you can use kamelets to connect services and
applications to a Knative destination (channel or broker).

Figure 3.1 illustrates the flow of connecting source and sink kamelets to a Knative destination.

Figure 3.1: Data flow with kamelets and a Knative channel

Here is an overview of the basic steps for using kamelets and kamelet bindings to connect applications
and services to a Knative destination:

1. Set up Knative:

a. Prepare your OpenShift cluster by installing the Camel K and OpenShift Serverless

CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS

47

https://knative.dev
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture
https://cloudevents.io

a. Prepare your OpenShift cluster by installing the Camel K and OpenShift Serverless
operators.

b. Install the required Knative Serving and Eventing components.

c. Create a Knative channel or broker.

2. Determine which services or applications you want to connect to your Knative channel or broker.

3. View the Kamelet Catalog to find the kamelets for the source and sink components that you
want to add to your integration. Also, determine the required configuration parameters for each
kamelet that you want to use.

4. Create kamelet bindings:

Create a kamelet binding that connects a source kamelet to a Knative channel (or broker).

Create a kamelet binding that connects the Knative channel (or broker) to a sink kamelet.

5. Optionally, manipulate the data that is passing between the Knative channel (or broker) and the
data source or sink by adding one or more action kamelets as intermediary steps within a
kamelet binding.

6. Optionally, define how to handle errors within a kamelet binding.

7. Apply the kamelet bindings as resources to the project.

The Camel K operator generates a separate Camel integration for each kamelet binding.

When you configure a kamelet binding to use a Knative channel or a broker as the source of events, the
Camel K operator materializes the corresponding integration as a Knative Serving service, to leverage
the auto-scaling capabilities offered by Knative.

3.2. SETTING UP KNATIVE

Setting up Knative involves installing the required OpenShift operators and creating a Knative channel.

3.2.1. Preparing your OpenShift cluster

To use kamelets and OpenShift Serverless, install the following operators, components, and CLI tools:

Red Hat Integration - Camel K operator and CLI tool - The operator installs and manages
Camel K - a lightweight integration framework that runs natively in the cloud on OpenShift. The
kamel CLI tool allows you to access all Camel K features.
See the installation instructions in Installing Camel K .

OpenShift Serverless operator - Provides a collection of APIs that enables containers,
microservices, and functions to run "serverless". Serverless applications can scale up and down
(to zero) on demand and be triggered by a number of event sources. When you install the
OpenShift Serverless operator, it automatically creates the knative-serving namespace (for
installing the Knative Serving component) and the knative-eventing namespace (required for
installing the Knative Eventing component).

Knative Eventing component

Knative Serving component

Knative CLI tool (kn) - Allows you to create Knative resources from the command line or from

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

48

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.Q3/html-single/getting_started_with_camel_k#installing-camel-k

Knative CLI tool (kn) - Allows you to create Knative resources from the command line or from
within Shell scripts.

3.2.1.1. Installing OpenShift Serverless

You can install the OpenShift Serverless Operator on your OpenShift cluster from the OperatorHub.
The OperatorHub is available from the OpenShift Container Platform web console and provides an
interface for cluster administrators to discover and install Operators.

The OpenShift Serverless Operator supports both Knative Serving and Knative Eventing features. For
more details, see Getting started with OpenShift Serverless.

Prerequisites

You have cluster administrator access to an OpenShift project in which the Camel K Operator is
installed.

You installed the OpenShift CLI tool (oc) so that you can interact with the OpenShift cluster at
the command line. For details on how to install the OpenShift CLI, see Installing the OpenShift
CLI.

Procedure

1. In the OpenShift Container Platform web console, log in by using an account with cluster
administrator privileges.

2. In the left navigation menu, click Operators > OperatorHub.

3. In the Filter by keyword text box, enter Serverless to find the OpenShift Serverless
Operator.

4. Read the information about the Operator and then click Install to display the Operator
subscription page.

5. Select the default subscription settings:

Update Channel > Select the channel that matches your OpenShift version, for example,
4.7

Installation Mode > All namespaces on the cluster

Approval Strategy > Automatic

NOTE

The Approval Strategy > Manual setting is also available if required by your
environment.

6. Click Install, and wait a few moments until the Operator is ready for use.

7. Install the required Knative components using the steps in the OpenShift documentation:

Installing Knative Serving

Installing Knative Eventing

CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS

49

https://docs.openshift.com/container-platform/4.7/serverless/serverless-getting-started.html
https://docs.openshift.com/container-platform/4.6/cli_reference/openshift_cli/getting-started-cli.html#installing-openshift-cli
https://docs.openshift.com/container-platform/4.7/serverless/admin_guide/installing-knative-serving.html
https://docs.openshift.com/container-platform/4.7/serverless/admin_guide/installing-knative-eventing.html

8. (Optional) Download and install the OpenShift Serverless CLI tool:

a. From the Help menu (?) at the top of the OpenShift web console, select Command line
tools.

b. Scroll down to the kn - OpenShift Serverless - Command Line Interface section.

c. Click the link to download the binary for your local operating system (Linux, Mac, Windows)

d. Unzip and install the CLI in your system path.

e. To verify that you can access the kn CLI, open a command window and then type the
following:
kn --help

This command shows information about OpenShift Serverless CLI commands.

For more details, see the OpenShift Serverless CLI documentation.

Additional resources

Installing OpenShift Serverless in the OpenShift documentation

3.2.2. Creating a Knative channel

A Knative channel is a custom resource that forwards events. After events have been sent to a channel
from an event source or producer, these events can be sent to multiple Knative services, or other sinks,
by using a subscription.

This example uses an InMemoryChannel channel, which you use with OpenShift Serverless for
development purposes. Note that InMemoryChannel type channels have the following limitations:

No event persistence is available. If a pod goes down, events on that pod are lost.

InMemoryChannel channels do not implement event ordering, so two events that are received
in the channel at the same time can be delivered to a subscriber in any order.

If a subscriber rejects an event, there are no re-delivery attempts by default. You can configure
re-delivery attempts by modifying the delivery spec in the Subscription object.

Prerequisites

The OpenShift Serverless operator, Knative Eventing, and Knative Serving components are
installed on your OpenShift Container Platform cluster.

You have installed the OpenShift Serverless CLI (kn).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Log in to your OpenShift cluster.

2. Open the project in which you want to create your integration application. For example:
oc project camel-k-knative

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

50

https://docs.openshift.com/container-platform/4.7/serverless/cli_tools/installing-kn.html
https://docs.openshift.com/container-platform/4.7/serverless/installing_serverless/installing-openshift-serverless.html

3. Create a channel by using the Knative (kn) CLI command
kn channel create <channel_name> --type <channel_type>

For example, to create a channel named mychannel:

kn channel create mychannel --type messaging.knative.dev:v1:InMemoryChannel

4. To confirm that the channel now exists, type the following command to list all existing channels:
kn channel list

You should see your channel in the list.

Next steps

Connecting a data source to a Knative destination in a kamelet binding

Connecting a Knative destination to a data sink in a kamelet binding

3.2.3. Creating a Knative broker

A Knative broker is a custom resource that defines an event mesh for collecting a pool of CloudEvents.
OpenShift Serverless provides a default Knative broker that you can create by using the kn CLI.

You can use a broker in a kamelet binding, for example, when your application handles multiple event
types and you do not want to create a channel for each event type.

Prerequisites

The OpenShift Serverless operator, Knative Eventing, and Knative Serving components are
installed on your OpenShift Container Platform cluster.

You have installed the OpenShift Serverless CLI (kn).

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

Procedure

1. Log in to your OpenShift cluster.

2. Open the project in which you want to create your integration application. For example:
oc project camel-k-knative

3. Create the broker by using this Knative (kn) CLI command:
kn broker create default

4. To confirm that the broker now exists, type the following command to list all existing brokers:
kn broker list

You should see the default broker in the list.

Next steps

Connecting a data source to a Knative destination in a kamelet binding

CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS

51

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-source-to-knative
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-knative-to-sink
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-source-to-knative

Connecting a Knative destination to a data sink in a kamelet binding

3.3. CONNECTING A DATA SOURCE TO A KNATIVE DESTINATION IN A
KAMELET BINDING

To connect a data source to a Knative destination (channel or broker), you create a kamelet binding as
illustrated in Figure 3.2 .

Figure 3.2 Connecting a data source to a Knative destination

The Knative destination can be a Knative channel or a Knative broker.

When you send data to a channel, there is only one event type for the channel. You do not need to
specify any property values for the channel in a kamelet binding.

When you send data to a broker, because the broker can handle more than one event type, you must
specify a value for the type property when you reference the broker in a kamelet binding.

Prerequisites

You know the name and type of the Knative channel or broker to which you want to send events.
The example in this procedure uses the InMemoryChannel channel named mychannel or the
broker named default. For the broker example, the type property value is coffee for coffee
events.

You know which kamelet you want to add to your Camel integration and the required instance
parameters.
The example kamelet for this procedure is the coffee-source kamelet. It has an optional
parameter, period, that specifies how often to send each event. You can copy the code from

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

52

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-knative-to-sink

Example source kamelet to a file named coffee-source.kamelet.yaml file and then run the
following command to add it as a resource to your namespace:

oc apply -f coffee-source.kamelet.yaml

Procedure

To connect a data source to a Knative destination, create a kamelet binding:

1. In an editor of your choice, create a YAML file with the following basic structure:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name:
spec:
 source:
 sink:

2. Add a name for the kamelet binding. For this example, the name is coffees-to-knative because
the binding connects the coffee-source kamelet to a Knative destination.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffees-to-knative
spec:
 source:
 sink:

3. For the kamelet binding’s source, specify a data source kamelet (for example, the coffee-
source kamelet produces events that contain data about coffee) and configure any parameters
for the kamelet.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffees-to-knative
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:

4. For the kamelet binding’s sink specify the Knative channel or broker and the required
parameters.
This example specifies a Knative channel as the sink:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:

CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS

53

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-source-kamelet

 name: coffees-to-knative
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 ref:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel
 name: mychannel

This example specifies a Knative broker as the sink:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: coffees-to-knative
spec:
 source:
 ref:
 kind: Kamelet
 apiVersion: camel.apache.org/v1alpha1
 name: coffee-source
 properties:
 period: 5000
 sink:
 ref:
 kind: Broker
 apiVersion: eventing.knative.dev/v1
 name: default
 properties:
 type: coffee

5. Save the YAML file (for example, coffees-to-knative.yaml).

6. Log into your OpenShift project.

7. Add the kamelet binding as a resource to your OpenShift namespace:
oc apply -f <kamelet binding filename>

For example:

oc apply -f coffees-to-knative.yaml

The Camel K operator generates and runs a Camel K integration by using the KameletBinding
resource. It might take a few minutes to build.

8. To see the status of the KameletBinding:
oc get kameletbindings

9. To see the status of their integrations:
oc get integrations

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

54

10. To view the integration’s log:
kamel logs <integration> -n <project>

For example:

kamel logs coffees-to-knative -n my-camel-knative

The result is similar to the following output:

...
[1] INFO [io.quarkus] (main) camel-k-integration 1.4.0 on JVM (powered by Quarkus
1.13.0.Final) started in 2.790s.

Next steps

Connecting a Knative destination to a data sink in a kamelet binding

See also

Applying operations to data within a connection

Handling errors within a connection

3.4. CONNECTING A KNATIVE DESTINATION TO A DATA SINK IN A
KAMELET BINDING

To connect a Knative destination to a data sink, you create a kamelet binding as illustrated in Figure 3.3.

CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS

55

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-knative-to-sink
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#assembly-applying-operations-to-data
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#assembly-handling-errors-kameletbinding

Figure 3.3 Connecting a Knative destination to a data sink

The Knative destination can be a Knative channel or a Knative broker.

When you send data from a channel, there is only one event type for the channel. You do not need to
specify any property values for the channel in a kamelet binding.

When you send data from a broker, because the broker can handle more than one event type, you must
specify a value for the type property when you reference the broker in a kamelet binding.

Prerequisites

You know the name and type of the Knative channel or the name of the broker from which you
want to receive events. For a broker, you also know the type of events that you want to receive.
The example in this procedure uses the InMemoryChannel channel named mychannel or the
broker named mybroker and coffee events (for the type property). These are the same example
destinations that are used to receive events from the coffee source in Connecting a data
source to a Knative channel in a kamelet binding.

You know which kamelet you want to add to your Camel integration and the required instance
parameters.
The example kamelet for this procedure is the log-sink kamelet. You can copy the code from
the Example sink kamelet to a file named log-sink.kamelet.yaml file and then run the following
command to add it as a resource to your namespace:

oc apply -f log-sink.kamelet.yaml

Procedure

To connect a Knative channel to a data sink, create a kamelet binding:

1. In an editor of your choice, create a YAML file with the following basic structure:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name:
spec:
 source:
 sink:

2. Add a name for the kamelet binding. For this example, the name is knative-to-log because the
binding connects the Knative destination to the log-sink kamelet.

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: knative-to-log
spec:
 source:
 sink:

3. For the kamelet binding’s source, specify the Knative channel or broker and the required
parameters.
This example specifies a Knative channel as the source:

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

56

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#connecting-source-to-knative
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#example-sink-kamelet

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: knative-to-log
spec:
 source:
 ref:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel
 name: mychannel
 sink:

This example specifies a Knative broker as the source:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: knative-to-log
spec:
 source:
 ref:
 kind: Broker
 apiVersion: eventing.knative.dev/v1
 name: default
 properties:
 type: coffee
sink:

4. For the kamelet binding’s sink, specify the data consumer kamelet (for example, the log-sink
kamelet) and configure any parameters for the kamelet, for example:

apiVersion: camel.apache.org/v1alpha1
kind: KameletBinding
metadata:
 name: knative-to-log
spec:
 source:
 ref:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel
 name: mychannel
 sink:
 ref:
 apiVersion: camel.apache.org/v1alpha1
 kind: Kamelet
 name: log-sink

5. Save the YAML file (for example, knative-to-log.yaml).

6. Log into your OpenShift project.

7. Add the kamelet binding as a resource to your OpenShift namespace: oc apply -f <kamelet
binding filename>
For example:

CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS

57

oc apply -f knative-to-log.yaml

The Camel K operator generates and runs a Camel K integration by using the KameletBinding
resource. It might take a few minutes to build.

8. To see the status of the KameletBinding:
oc get kameletbindings

9. To see the status of the integration:
oc get integrations

10. To view the integration’s log:
kamel logs <integration> -n <project>

For example:

kamel logs knative-to-log -n my-camel-knative

In the output, you should see coffee events, for example:

[1] 2021-07-23 13:06:38,111 INFO [sink] (vert.x-worker-thread-1) {"id":254,"uid":"8e180ef7-
8924-4fc7-ab81-d6058618cc42","blend_name":"Good-morning Star","origin":"Santander,
Colombia","variety":"Kaffa","notes":"delicate, creamy, lemongrass, granola,
soil","intensifier":"sharp"}
[1] 2021-07-23 13:06:43,273 INFO [sink] (vert.x-worker-thread-2) {"id":8169,"uid":"3733c3a5-
4ad9-43a3-9acc-d4cd43de6f3d","blend_name":"Caf? Java","origin":"Nayarit,
Mexico","variety":"Red Bourbon","notes":"unbalanced, full, granola, bittersweet chocolate,
nougat","intensifier":"delicate"}

11. To stop a running integration, delete the associated kamelet binding resource:
oc delete kameletbindings/<kameletbinding-name>

For example:

oc delete kameletbindings/knative-to-log

See also

Applying operations to data within a connection

Handling errors within a connection

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

58

https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#assembly-applying-operations-to-data
https://access.redhat.com/documentation/en-us/red_hat_integration/2021.q3/html-single/integrating_applications_with_kamelets#assembly-handling-errors-kameletbinding

CHAPTER 4. KAMELETS REFERENCE

4.1. KAMELET STRUCTURE

A kamelet is typically coded in the YAML domain-specific language. The file name prefix is the name of
the kamelet. For example, a kamelet with the name FTP sink has the filename ftp-sink.kamelet.yaml.

Note that in OpenShift, a kamelet is a resource that shows the name of the kamelet (not the filename).

At a high level, a kamelet resource describes:

A metadata section containing the ID of the kamelet and other information, such as the type of
kamelet (source, sink, or action).

A definition (JSON-schema specification) that contains a set of parameters that you can use to
configure the kamelet.

An optional types section containing information about input and output expected by the
kamelet.

A Camel flow in YAML DSL that defines the implementation of the kamelet.

The following diagram shows an example of a kamelet and its parts.

Example kamelet structure

telegram-text-source.kamelet.yaml
apiVersion: camel.apache.org/v1alpha1
kind: Kamelet
metadata:
 name: telegram-source 1
 annotations: 2
 camel.apache.org/catalog.version: "master-SNAPSHOT"
 camel.apache.org/kamelet.icon: "data:image/..."
 camel.apache.org/provider: "Red Hat"
 camel.apache.org/kamelet.group: "Telegram"
 labels: 3
 camel.apache.org/kamelet.type: "source"
spec:
 definition: 4
 title: "Telegram Source"
 description: |-
 Receive all messages that people send to your telegram bot.
 required:
 - authorizationToken
 type: object
 properties:
 authorizationToken:
 title: Token
 description: The token to access your bot on Telegram, that you
 can obtain from the Telegram "Bot Father".
 type: string
 format: password
 x-descriptors:
 - urn:alm:descriptor:com.tectonic.ui:password

CHAPTER 4. KAMELETS REFERENCE

59

 types: 5
 out:
 mediaType: application/json
 dependencies:
 - "camel:jackson"
 - "camel:kamelet"
 - "camel:telegram"
 flow: 6
 from:
 uri: telegram:bots
 parameters:
 authorizationToken: "{{authorizationToken}}"
 steps:
 - marshal:
 json: {}
 - to: "kamelet:sink"

1. The kamelet ID - Use this ID in Camel K integrations when you want to reference the kamelet.

2. Annotations, such as icon, provide display features for the kamelet.

3. Labels allow a user to query kamelets (for example, by kind: "source", "sink", or “action”)

4. Description of the kamelet and parameters in JSON-schema specification format.

5. The media type of the output (can include a schema).

6. The route template that defines the behavior of the kamelet.

4.2. EXAMPLE SOURCE KAMELET

Here is the content of the example coffee-source kamelet:

apiVersion: camel.apache.org/v1alpha1
kind: Kamelet
metadata:
 name: coffee-source
 labels:
 camel.apache.org/kamelet.type: "source"
spec:
 definition:
 title: "Coffee Source"
 description: "Retrieve a random coffee from a catalog of coffees"
 properties:
 period:
 title: Period
 description: The interval between two events in seconds
 type: integer
 default: 1000
 types:
 out:
 mediaType: application/json
 flow:
 from:
 uri: timer:tick

Red Hat Integration 2021.Q3 Integrating Applications with Kamelets

60

 parameters:
 period: "{{period}}"
 steps:
 - to: "https://random-data-api.com/api/coffee/random_coffee"
 - to: "kamelet:sink"

4.3. EXAMPLE SINK KAMELET

Here is the content of the example log-sink kamelet:

apiVersion: camel.apache.org/v1alpha1
kind: Kamelet
metadata:
 name: log-sink
 labels:
 camel.apache.org/kamelet.type: "sink"
spec:
 definition:
 title: "Log Sink"
 description: "Consume events"
 flow:
 from:
 uri: "kamelet:source"
 steps:
 - convert-body-to: 'java.lang.String'
 - log: "${body}"

CHAPTER 4. KAMELETS REFERENCE

61

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE

	CHAPTER 1. OVERVIEW OF KAMELETS
	1.1. ABOUT KAMELETS
	1.1.1. Why use kamelets?
	1.1.2. Who uses kamelets?
	1.1.3. What are the prerequisites for using kamelets?
	1.1.4. How do you use kamelets?

	1.2. CONNECTING SOURCES AND SINKS
	1.2.1. Installing Camel K
	1.2.2. Viewing the Kamelet Catalog
	1.2.2.1. Adding a custom kamelet to your Kamelet Catalog
	1.2.2.2. Determining a kamelet’s configuration parameters

	1.2.3. Connecting source and sink components in a kamelet binding
	1.2.4. Configuring kamelet instance parameters
	1.2.5. Connecting to a channel of events
	1.2.6. Connecting to an explicit Camel URI

	1.3. APPLYING OPERATIONS TO DATA WITHIN A CONNECTION
	1.3.1. Adding an operation to a kamelet binding
	1.3.2. Action kamelets
	1.3.2.1. Data filtering kamelets
	1.3.2.2. Data conversion kamelets
	1.3.2.3. Data transformation kamelets

	1.4. HANDLING ERRORS WITHIN A CONNECTION
	1.4.1. Adding an error handler policy to a kamelet binding
	1.4.2. Error handlers
	1.4.2.1. No error handler
	1.4.2.2. Log error handler
	1.4.2.3. Dead letter channel error handler
	1.4.2.4. Bean error handler
	1.4.2.5. Ref error handler

	CHAPTER 2. CONNECTING TO KAFKA WITH KAMELETS
	2.1. OVERVIEW OF CONNECTING TO KAFKA WITH KAMELETS
	2.2. SETTING UP KAFKA
	2.2.1. Setting up Kafka by using AMQ streams
	2.2.1.1. Preparing your OpenShift cluster for AMQ Streams
	2.2.1.2. Setting up a Kafka topic with AMQ Streams

	2.2.2. Setting up Kafka by using OpenShift streams
	2.2.2.1. Preparing your OpenShift cluster for OpenShift Streams
	2.2.2.2. Setting up a Kafka topic with RHOAS
	2.2.2.3. Obtaining Kafka credentials
	2.2.2.4. Creating a secret by using the SASL/Plain authentication method
	2.2.2.5. Creating a secret by using the SASL/OAUTHBearer authentication method

	2.3. CONNECTING A DATA SOURCE TO A KAFKA TOPIC IN A KAMELET BINDING
	2.4. CONNECTING A KAFKA TOPIC TO A DATA SINK IN A KAMELET BINDING
	2.5. APPLYING OPERATIONS TO DATA WITHIN A KAFKA CONNECTION
	2.5.1. Routing event data to different destination topics

	CHAPTER 3. CONNECTING TO KNATIVE WITH KAMELETS
	3.1. OVERVIEW OF CONNECTING TO KNATIVE WITH KAMELETS
	3.2. SETTING UP KNATIVE
	3.2.1. Preparing your OpenShift cluster
	3.2.1.1. Installing OpenShift Serverless

	3.2.2. Creating a Knative channel
	3.2.3. Creating a Knative broker

	3.3. CONNECTING A DATA SOURCE TO A KNATIVE DESTINATION IN A KAMELET BINDING
	3.4. CONNECTING A KNATIVE DESTINATION TO A DATA SINK IN A KAMELET BINDING

	CHAPTER 4. KAMELETS REFERENCE
	4.1. KAMELET STRUCTURE
	4.2. EXAMPLE SOURCE KAMELET
	4.3. EXAMPLE SINK KAMELET

