
Red Hat Integration 2020-Q4

Deploying Camel K integrations on OpenShift

TECHNOLOGY PREVIEW - Getting started with Red Hat Integration - Camel K

Last Updated: 2021-02-16

Red Hat Integration 2020-Q4 Deploying Camel K integrations on
OpenShift

TECHNOLOGY PREVIEW - Getting started with Red Hat Integration - Camel K

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide introduces Red Hat Integration - Camel K, explains how to install on OpenShift, and how
to get started deploying Camel K integrations and tutorials with OpenShift Serverless. This guide
also explains how to configure and monitor Camel K integrations, and provides reference details on
Camel K traits that you can configure for advanced features.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION TO CAMEL K
1.1. CAMEL K OVERVIEW
1.2. CAMEL K TECHNOLOGY PREVIEW FEATURES

1.2.1. Platform and component versions
1.2.2. Technology Preview features

1.3. CAMEL K CLOUD-NATIVE ARCHITECTURE
1.3.1. Kamelets

1.4. CAMEL K DEVELOPMENT TOOLING
1.5. CAMEL K DISTRIBUTIONS

CHAPTER 2. INSTALLING CAMEL K
2.1. INSTALLING CAMEL K FROM THE OPENSHIFT OPERATORHUB
2.2. INSTALLING OPENSHIFT SERVERLESS FROM THE OPERATORHUB
2.3. INSTALLING THE CAMEL K AND OPENSHIFT COMMAND LINE TOOLS

CHAPTER 3. GETTING STARTED WITH CAMEL K
3.1. SETTING UP YOUR CAMEL K DEVELOPMENT ENVIRONMENT
3.2. DEVELOPING CAMEL K INTEGRATIONS IN JAVA
3.3. DEVELOPING CAMEL K INTEGRATIONS IN XML
3.4. DEVELOPING CAMEL K INTEGRATIONS IN YAML
3.5. RUNNING CAMEL K INTEGRATIONS
3.6. RUNNING CAMEL K INTEGRATIONS IN DEVELOPMENT MODE
3.7. RUNNING CAMEL K INTEGRATIONS USING MODELINE

CHAPTER 4. CAMEL K QUICK START DEVELOPER TUTORIALS
4.1. DEPLOYING A BASIC CAMEL K JAVA INTEGRATION
4.2. DEPLOYING A CAMEL K SERVERLESS INTEGRATION WITH KNATIVE
4.3. DEPLOYING A CAMEL K TRANSFORMATIONS INTEGRATION
4.4. DEPLOYING A CAMEL K SERVERLESS EVENT STREAMING INTEGRATION
4.5. DEPLOYING A CAMEL K SERVERLESS API-BASED INTEGRATION
4.6. DEPLOYING A CAMEL K SAAS INTEGRATION

CHAPTER 5. MANAGING CAMEL K INTEGRATIONS
5.1. MANAGING CAMEL K INTEGRATIONS
5.2. MANAGING CAMEL K INTEGRATION LOGGING LEVELS

CHAPTER 6. MONITORING CAMEL K INTEGRATIONS
6.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT
6.2. CONFIGURING CAMEL K INTEGRATION METRICS
6.3. ADDING CUSTOM CAMEL K INTEGRATION METRICS

CHAPTER 7. CONFIGURING CAMEL K INTEGRATIONS
7.1. CONFIGURING CAMEL K INTEGRATIONS USING PROPERTIES
7.2. CONFIGURING CAMEL K INTEGRATIONS USING PROPERTY FILES
7.3. CONFIGURING CAMEL K PROPERTIES USING AN OPENSHIFT CONFIGMAP
7.4. CONFIGURING CAMEL K PROPERTIES USING AN OPENSHIFT SECRET
7.5. CONFIGURING CAMEL INTEGRATION COMPONENTS
7.6. CONFIGURING CAMEL K INTEGRATION DEPENDENCIES

CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE
Camel K feature traits
Camel K core platform traits
8.1. CAMEL K TRAIT AND PROFILE CONFIGURATION

5
5
6
6
6
6
7
8
8

10
10
11

12

14
14
16
16
17
18

20
22

25
25
26
27
28
29
30

32
32
34

36
36
37
37

41
41

42
43
44
45
46

48
48
48
49

Table of Contents

1

8.2. CAMEL K FEATURE TRAITS
8.2.1. 3scale Trait

8.2.1.1. Configuration
8.2.2. Affinity Trait

8.2.2.1. Configuration
8.2.2.2. Examples

8.2.3. Cron Trait
8.2.3.1. Configuration

8.2.4. Gc Trait
8.2.4.1. Configuration

8.2.5. Istio Trait
8.2.5.1. Configuration

8.2.6. Jolokia Trait
8.2.6.1. Configuration

8.2.7. Knative Trait
8.2.7.1. Configuration

8.2.8. Knative Service Trait
8.2.8.1. Configuration

8.2.9. Master Trait
8.2.9.1. Configuration

8.2.10. Prometheus Trait
8.2.10.1. Configuration

8.2.11. Quarkus Trait
8.2.11.1. Configuration
8.2.11.2. Supported Camel Components

8.2.12. Route Trait
8.2.12.1. Configuration

8.2.13. Service Trait
8.2.13.1. Configuration

8.3. CAMEL K PLATFORM TRAITS
8.3.1. Builder Trait

8.3.1.1. Configuration
8.3.2. Container Trait

8.3.2.1. Configuration
8.3.3. Camel Trait

8.3.3.1. Configuration
8.3.4. Dependencies Trait

8.3.4.1. Configuration
8.3.5. Deployer Trait

8.3.5.1. Configuration
8.3.6. Deployment Trait

8.3.6.1. Configuration
8.3.7. Environment Trait

8.3.7.1. Configuration
8.3.8. Jvm Trait

8.3.8.1. Configuration
8.3.9. Openapi Trait

8.3.9.1. Configuration
8.3.10. Owner Trait

8.3.10.1. Configuration
8.3.11. Platform Trait

8.3.11.1. Configuration

50
50
50
51
51
51
52
52
53
53
54
54
54
54
55
56
57
57
58
58
59
59
60
60
60
61
61

62
62
62
62
63
63
63
65
65
66
66
66
67
67
67
68
68
68
69
69
70
70
70
70
71

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

2

. .CHAPTER 9. CAMEL K COMMAND REFERENCE
9.1. CAMEL K COMMAND LINE
9.2. CAMEL K MODELINE OPTIONS

72
72
73

Table of Contents

3

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

4

CHAPTER 1. INTRODUCTION TO CAMEL K
This chapter introduces the concepts, features, and cloud-native architecture provided by Red Hat
Integration - Camel K:

Section 1.1, “Camel K overview”

Section 1.2, “Camel K Technology Preview features”

Section 1.3, “Camel K cloud-native architecture”

Section 1.4, “Camel K development tooling”

Section 1.5, “Camel K distributions”

IMPORTANT

Red Hat Integration - Camel K is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production.

These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process. For more
information about the support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview.

1.1. CAMEL K OVERVIEW

Red Hat Integration - Camel K is a lightweight integration framework built from Apache Camel K that
runs natively in the cloud on OpenShift. Camel K is specifically designed for serverless and microservice
architectures. You can use Camel K to instantly run your integration code written in Camel Domain
Specific Language (DSL) directly on OpenShift. Camel K is a subproject of the Apache Camel open
source community: https://github.com/apache/camel-k.

Camel K is implemented in the Go programming language and uses the Kubernetes Operator SDK to
automatically deploy integrations in the cloud. For example, this includes automatically creating services
and routes on OpenShift. This provides much faster turnaround times when deploying and redeploying
integrations in the cloud, such as a few seconds or less instead of minutes.

The Camel K runtime provides significant performance optimizations. The Quarkus cloud-native Java
framework is enabled by default to provide faster start up times, and lower memory and CPU footprints.
When running Camel K in developer mode, you can make live updates to your integration DSL and view
results instantly in the cloud on OpenShift, without waiting for your integration to redeploy.

Using Camel K with OpenShift Serverless and Knative Serving, containers are created only as needed
and are autoscaled under load up and down to zero. This reduces cost by removing the overhead of
server provisioning and maintenance and enables you to focus on application development instead.

Using Camel K with OpenShift Serverless and Knative Eventing, you can manage how components in
your system communicate in an event-driven architecture for serverless applications. This provides
flexibility and creates efficiencies through decoupled relationships between event producers and
consumers using a publish-subscribe or event-streaming model.

Additional resources

CHAPTER 1. INTRODUCTION TO CAMEL K

5

https://access.redhat.com/support/offerings/techpreview
https://github.com/apache/camel-k

Apache Camel K website

Getting started with OpenShift Serverless

1.2. CAMEL K TECHNOLOGY PREVIEW FEATURES

The Camel K Technology Preview includes the following main platforms and features:

1.2.1. Platform and component versions

OpenShift Container Platform 4.6

OpenShift Serverless 1.7

Quarkus 1.7 Java runtime

Camel 3.5

Java 11

1.2.2. Technology Preview features

Knative Serving for autoscaling and scale-to-zero

Knative Eventing for event-driven architectures

Performance optimizations using Quarkus runtime by default

Camel integrations written in Java, XML, or YAML DSL

Development tooling with Visual Studio Code

Monitoring of integrations using Prometheus in OpenShift

Quickstart tutorials, including new Transformations and SaaS examples

Kamelet catalog of connectors to external systems such as AWS, Jira, and Salesforce

NOTE

The Technology Preview includes building Camel K integration images with OpenShift
only. Installing Camel K with the Buildah or Kaniko image builder is not included in the
Technology Preview and has community-only support.

1.3. CAMEL K CLOUD-NATIVE ARCHITECTURE

The following diagram shows a simplified view of the Camel K cloud-native architecture:

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

6

https://camel.apache.org/camel-k/latest/index.html
https://docs.openshift.com/container-platform/4.3/serverless/serverless-getting-started.html

Camel K automatically wraps the Camel integration in a Kubernetes custom resource and uploads it to
the cloud. This architecture provides the following benefits:

Cloud-native integration and developer experience on OpenShift for faster development cycles

Automatic installation of Camel K and deployment of integrations using the Camel K Operator

Live code updates using Camel K developer mode, without needing to redeploy

Autoscaling up and down to zero with Knative using the OpenShift Serverless Operator

Performance optimizations and cost savings using the Quarkus Java runtime:

Pre-compilation and pre-initialization of code at build time

Fast start up, deploy, and redeploy times

Low memory and CPU footprint

Automatic dependency resolution of Camel integration code

Configuring advanced features using Camel K traits on the command line and modeline

Additional resources

Apache Camel architecture

1.3.1. Kamelets

Kamelets hide the complexity of connecting to external systems behind a simple interface, which
contains all the information needed to instantiate them, even for users who are not familiar with Camel.

Kamelets are implemented as custom resources that you can install on an OpenShift cluster and use in
Camel K integrations. They contain high-level connectors in the form of route templates. Kamelets
abstract the details of connecting to external systems. You can also combine Kamelets to create
complex Camel integrations, just like using standard Camel components.

Additional resources

Apache Camel Kamelets

CHAPTER 1. INTRODUCTION TO CAMEL K

7

https://camel.apache.org/camel-k/latest/architecture/architecture.html
https://camel.apache.org/camel-k/latest/kamelets/kamelets.html

1.4. CAMEL K DEVELOPMENT TOOLING

The Camel K Technology Preview provides development tooling extensions for Visual Studio (VS) Code,
Red Hat CodeReady WorkSpaces, and Eclipse Che. The Camel-based tooling extensions include
features such as automatic completion of Camel DSL code, Camel K modeline configuration, and Camel
K traits. While Didact tutorial tooling extensions provide automatic execution of Camel K quick start
tutorial commands.

The following VS Code development tooling extensions are available:

VS Code Extension Pack for Apache Camel by Red Hat

Tooling for Apache Camel K extension

Language Support for Apache Camel extension

Additional extensions for OpenShift, Java, XML, and more

Didact Tutorial Tools for VS Code extension

For details on how to set up these VS Code extensions for Camel K, see Section 3.1, “Setting up your
Camel K development environment”.

Red Hat CodeReady Workspaces and Eclipse Che also provide these features using the vscode-camelk
plug-in.

Additional resources

VS Code Tooling for Apache Camel K by Red Hat extension

VS Code tooling for Apache Camel K example

Eclipse Che tooling for Apache Camel K

Red Hat CodeReady WorkSpaces cloud tooling

1.5. CAMEL K DISTRIBUTIONS

Table 1.1. Red Hat Integration - Camel K distributions

Distribution Description Location

Operator image Container image for the Red Hat
Integration - Camel K Operator:
integration-tech-
preview/camel-k-rhel8-
operator

OpenShift web console
under Operators →
OperatorHub

registry.redhat.io

Maven repository Maven artifacts for Red Hat
Integration - Camel K

Software Downloads for Red Hat
Integration

Source code Source code for Red Hat
Integration - Camel K

Software Downloads for Red Hat
Integration

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

8

https://marketplace.visualstudio.com/items?itemName=redhat.apache-camel-extension-pack
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-didact
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk
https://developers.redhat.com/blog/2019/09/30/sending-a-telegram-with-apache-camel-k-and-visual-studio-code/
https://developers.redhat.com/blog/2020/01/24/apache-camel-k-development-inside-eclipse-che-iteration-1/
https://developers.redhat.com/blog/2020/04/20/red-hat-codeready-workspaces-2-1-improved-cloud-tools-bring-more-languages-better-flow/
https://catalog.redhat.com/software/containers/detail/5e9d5f795a134668769d542d?container-tabs=gti
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=red.hat.integration&downloadType=distributions

Quickstarts Quick start tutorials:

Basic Java integration

Event streaming
integration

Kamelet catalog

Knative integration

SaaS integration

Serverless API
integration

Transformations
integration

https://github.com/openshift-
integration

Distribution Description Location

NOTE

You must have a subscription for Red Hat Integration and be logged into the Red Hat
Customer Portal to access the Red Hat Integration - Camel K distributions.

CHAPTER 1. INTRODUCTION TO CAMEL K

9

https://github.com/openshift-integration

CHAPTER 2. INSTALLING CAMEL K
This chapter explains how to install Red Hat Integration - Camel K and OpenShift Serverless on
OpenShift, and how to install the required Camel K and OpenShift client tools in your development
environment.

Section 2.1, “Installing Camel K from the OpenShift OperatorHub”

Section 2.2, “Installing OpenShift Serverless from the OperatorHub”

Section 2.3, “Installing the Camel K and OpenShift command line tools”

2.1. INSTALLING CAMEL K FROM THE OPENSHIFT OPERATORHUB

You can install the Red Hat Integration - Camel K Operator on your OpenShift cluster from the
OperatorHub. The OperatorHub is available from the OpenShift Container Platform web console and
provides an interface for cluster administrators to discover and install Operators. For more details on
the OperatorHub, see the OpenShift documentation.

Prerequisites

You must have cluster administrator access to an OpenShift 4.6 cluster

NOTE

You do not need to create a pull secret when installing Camel K from the OpenShift
OperatorHub. The Camel K Operator automatically reuses the OpenShift cluster-level
authentication to pull the Camel K image from registry.redhat.io.

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. Create a new OpenShift project:

a. In the left navigation menu, click Home > Project > Create Project.

b. Enter a project name, for example, my-camel-k-project, and click Create.

3. In the left navigation menu, click Operators > OperatorHub.

4. In the Filter by keyword text box, enter Camel K to find the Red Hat Integration - Camel K
Operator.

5. Read the information about the Operator, and click Install to display the Operator subscription
page.

6. Select the following subscription settings:

Update Channel > techpreview

Installation Mode > A specific namespace on the cluster > my-camel-k-project

Approval Strategy > Automatic

NOTE

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

10

https://docs.openshift.com/container-platform/4.3/operators/olm-understanding-operatorhub.html

NOTE

The Installation mode > All namespaces on the cluster and Approval
Strategy > Manual settings are also available if required by your
environment.

7. Click Install, and wait a few moments until the Camel K Operator is ready for use.

Additional resources

Adding Operators to an OpenShift cluster

2.2. INSTALLING OPENSHIFT SERVERLESS FROM THE
OPERATORHUB

You can install the OpenShift Serverless Operator on your OpenShift cluster from the OperatorHub.
The OperatorHub is available from the OpenShift Container Platform web console and provides an
interface for cluster administrators to discover and install Operators. For more details on the
OperatorHub, see the OpenShift documentation.

The OpenShift Serverless Operator supports both Knative Serving and Knative Eventing features. For
more details, see Getting started with OpenShift Serverless.

Prerequisites

You must have cluster administrator access to an OpenShift 4.6 cluster

Procedure

1. In the OpenShift Container Platform web console, log in using an account with cluster
administrator privileges.

2. In the left navigation menu, click Operators > OperatorHub.

3. In the Filter by keyword text box, enter Serverless to find the OpenShift Serverless
Operator.

4. Read the information about the Operator, and click Install to display the Operator subscription
page.

5. Select the default subscription settings:

Update Channel > Select the channel that matches your OpenShift version, for example,
4.6

Installation Mode > All namespaces on the cluster

Approval Strategy > Automatic

NOTE

The Approval Strategy > Manual setting is also available if required by your
environment.

CHAPTER 2. INSTALLING CAMEL K

11

https://docs.openshift.com/container-platform/4.6/operators/olm-adding-operators-to-cluster.html
https://docs.openshift.com/container-platform/4.6/operators/olm-understanding-operatorhub.html
https://docs.openshift.com/container-platform/4.6/serverless/serverless-getting-started.html

6. Click Install, and wait a few moments until the Operator is ready for use.

7. Install the required Knative components using the steps in the OpenShift documentation:

Installing Knative Serving

Installing Knative Eventing

Additional resources

Installing OpenShift Serverless in the OpenShift documentation

2.3. INSTALLING THE CAMEL K AND OPENSHIFT COMMAND LINE
TOOLS

Camel K and OpenShift provide command line tools to deploy and manage your integrations in the
cloud. This section explains how to install the following Command Line Interface (CLI) tools:

kamel - Camel K CLI

oc - OpenShift Container Platform CLI

kn - OpenShift Serverless CLI

These command line tools are all available on Linux, Windows, and Mac.

Prerequisites

You must have access to an OpenShift cluster on which the Camel K Operator and OpenShift
Serverless Operator are installed:

Section 2.1, “Installing Camel K from the OpenShift OperatorHub”

Section 2.2, “Installing OpenShift Serverless from the OperatorHub”

Procedure

1. In the OpenShift Container Platform web console, log in using an account with developer or
administrator privileges.

2. Click the help icon in the toolbar, and select Command Line Tools.

3. Download and extract the oc - OpenShift CLI archive if this tool is not already installed. For
more details, see the OpenShift CLI documentation.

4. Download and extract the kn - OpenShift Serverless CLI archive if this tool is not already
installed. For more details, see the OpenShift Serverless CLI documentation.

5. Download and extract the kamel - Camel K CLI archive to install.

6. Add the kamel binary file to your system path. For example, on Linux, you can put kamel in
/usr/bin.

7. Log into your OpenShift cluster using the oc client tool, for example:

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

12

https://docs.openshift.com/container-platform/4.6/serverless/installing_serverless/installing-knative-serving.html#installing-knative-serving
https://docs.openshift.com/container-platform/4.6/serverless/installing_serverless/installing-knative-eventing.html
https://docs.openshift.com/container-platform/4.6/serverless/installing_serverless/installing-openshift-serverless.html
https://docs.openshift.com/container-platform/4.6/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html/serverless_applications/installing-openshift-serverless-1#installing-kn

8. Enter the following command to verify the installation of the kamel client tool:

Additional resources

OpenShift Container Platform CLI documentation

OpenShift Serverless CLI documentation

$ oc login --token=my-token --server=https://my-cluster.example.com:6443

$ kamel --help

CHAPTER 2. INSTALLING CAMEL K

13

https://docs.openshift.com/container-platform/4.6/cli_reference/openshift_cli/getting-started-cli.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html/serverless_applications/installing-openshift-serverless-1#installing-kn

CHAPTER 3. GETTING STARTED WITH CAMEL K
This chapter explains how to set up your development environment and how to develop and deploy
simple Camel K integrations written in Java, XML, and YAML. It also shows how to use the kamel
command line to manage Camel K integrations at runtime. For example, this includes running,
describing, logging, and deleting integrations,

Section 3.1, “Setting up your Camel K development environment”

Section 3.2, “Developing Camel K integrations in Java”

Section 3.3, “Developing Camel K integrations in XML”

Section 3.4, “Developing Camel K integrations in YAML”

Section 3.5, “Running Camel K integrations”

Section 3.6, “Running Camel K integrations in development mode”

Section 3.7, “Running Camel K integrations using modeline”

3.1. SETTING UP YOUR CAMEL K DEVELOPMENT ENVIRONMENT

You must set up your environment with the recommended development tooling before you can
automatically deploy the Camel K quick start tutorials. This section explains how to install the
recommended Visual Studio (VS) Code IDE and the extensions that it provides for Camel K.

NOTE

VS Code is recommended for ease of use and the best developer experience of Camel K.
This includes automatic completion of Camel DSL code and Camel K traits, and
automatic execution of tutorial commands. However, you can manually enter your code
and tutorial commands using your chosen IDE instead of VS Code.

Prerequisites

You must have access to an OpenShift cluster on which the Camel K Operator and OpenShift
Serverless Operator are installed:

Section 2.1, “Installing Camel K from the OpenShift OperatorHub”

Section 2.2, “Installing OpenShift Serverless from the OperatorHub”

Section 2.3, “Installing the Camel K and OpenShift command line tools”

Procedure

1. Install VS Code on your development platform. For example, on Red Hat Enterprise Linux:

a. Install the required key and repository:

$ sudo rpm --import https://packages.microsoft.com/keys/microsoft.asc
$ sudo sh -c 'echo -e "[code]\nname=Visual Studio
Code\nbaseurl=https://packages.microsoft.com/yumrepos/vscode\nenabled=1\ngpgcheck=1

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

14

b. Update the cache and install the VS Code package:

For details on installing on other platforms, see the VS Code installation documentation .

2. Enter the code command to launch the VS Code editor. For more details, see the VS Code
command line documentation.

3. Install the VS Code Camel Extension Pack, which includes the extensions required for Camel K.
For example, in VS Code:

a. In the left navigation bar, click Extensions.

b. In the search box, enter Apache Camel.

c. Select the Extension Pack for Apache Camel by Red Hat, and click Install.

For more details, see the instructions for the Extension Pack for Apache Camel by Red Hat .

4. Install the VS Code Didact extension, which you can use to automatically run quick start tutorial
commands by clicking links in the tutorial. For example, in VS Code:

a. In the left navigation bar, click Extensions.

b. In the search box, enter Didact.

c. Select the extension, and click Install.
For more details, see the instructions for the Didact extension.

Additional resources

VS Code Getting Started documentation

VS Code Tooling for Apache Camel K by Red Hat extension

VS Code Language Support for Apache Camel by Red Hat extension

\ngpgkey=https://packages.microsoft.com/keys/microsoft.asc" >
/etc/yum.repos.d/vscode.repo'

$ yum check-update
$ sudo yum install code

CHAPTER 3. GETTING STARTED WITH CAMEL K

15

https://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/docs/editor/command-line
https://marketplace.visualstudio.com/items?itemName=redhat.apache-camel-extension-pack
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-didact
https://code.visualstudio.com/docs
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk
https://marketplace.visualstudio.com/items?itemName=redhat.vscode-apache-camel

Apache Camel K and VS Code tooling example

3.2. DEVELOPING CAMEL K INTEGRATIONS IN JAVA

This section shows how to develop a simple Camel K integration in Java DSL. Writing an integration in
Java to be deployed using Camel K is the same as defining your routing rules in Camel. However, you do
not need to build and package the integration as a JAR when using Camel K.

You can use any Camel component directly in your integration routes. Camel K automatically handles
the dependency management and imports all the required libraries from the Camel catalog using code
inspection.

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

Procedure

1. Enter the kamel init command to generate a simple Java integration file. For example:

2. Open the generated integration file in your IDE and edit as appropriate. For example, the
HelloCamelK.java integration automatically includes the Camel timer and log components to
help you get started:

Next steps

Section 3.5, “Running Camel K integrations”

3.3. DEVELOPING CAMEL K INTEGRATIONS IN XML

This section explains how to develop a simple Camel K integration in classic XML DSL. Writing an
integration in XML to be deployed using Camel K is the same as defining your routing rules in Camel.

You can use any Camel component directly in your integration routes. Camel K automatically handles

$ kamel init HelloCamelK.java

// camel-k: language=java

import org.apache.camel.builder.RouteBuilder;

public class HelloCamelK extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 // Write your routes here, for example:
 from("timer:java?period=1s")
 .routeId("java")
 .setBody()
 .simple("Hello Camel K from ${routeId}")
 .to("log:info");

 }
}

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

16

https://developers.redhat.com/blog/2019/09/30/sending-a-telegram-with-apache-camel-k-and-visual-studio-code/

You can use any Camel component directly in your integration routes. Camel K automatically handles
the dependency management and imports all the required libraries from the Camel catalog using code
inspection.

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

Procedure

1. Enter the kamel init command to generate a simple XML integration file. For example:

2. Open the generated integration file in your IDE and edit as appropriate. For example, the hello-
camel-k.xml integration automatically includes the Camel timer and log components to help
you get started:

Next steps

Section 3.5, “Running Camel K integrations”

3.4. DEVELOPING CAMEL K INTEGRATIONS IN YAML

This section explains how to develop a simple Camel K integration in YAML DSL. Writing an integration in
YAML to be deployed using Camel K is the same as defining your routing rules in Camel.

You can use any Camel component directly in your integration routes. Camel K automatically handles
the dependency management and imports all the required libraries from the Camel catalog using code
inspection.

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

$ kamel init hello-camel-k.xml

<?xml version="1.0" encoding="UTF-8"?>
<!-- camel-k: language=xml -->

<routes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://camel.apache.org/schema/spring"
 xsi:schemaLocation="
 http://camel.apache.org/schema/spring
 http://camel.apache.org/schema/spring/camel-spring.xsd">

 <!-- Write your routes here, for example: -->
 <route id="xml">
 <from uri="timer:xml?period=1s"/>
 <setBody>
 <simple>Hello Camel K from ${routeId}</simple>
 </setBody>
 <to uri="log:info"/>
 </route>

</routes>

CHAPTER 3. GETTING STARTED WITH CAMEL K

17

Procedure

1. Enter the kamel init command to generate a simple XML integration file. For example:

2. Open the generated integration file in your IDE and edit as appropriate. For example, the
hello.camelk.yaml integration automatically includes the Camel timer and log components to
help you get started:

IMPORTANT

Integrations written in YAML must have a file name with the pattern
*.camelk.yaml or a first line of # camel-k: language=yaml.

Additional resources

Writing Apache Camel integrations in YAML

3.5. RUNNING CAMEL K INTEGRATIONS

You can run Camel K integrations in the cloud on your OpenShift cluster from the command line using
the kamel run command.

Prerequisites

Section 3.1, “Setting up your Camel K development environment” .

You must already have a Camel integration written in Java, XML, or YAML DSL.

Procedure

1. Log into your OpenShift cluster using the oc client tool, for example:

2. Ensure that the Camel K Operator is running, for example:

$ kamel init hello.camelk.yaml

camel-k: language=yaml

Write your routes here, for example:
- from:
 uri: "timer:yaml"
 parameters:
 period: "1s"
 steps:
 - set-body:
 constant: "Hello Camel K from yaml"
 - to: "log:info"

$ oc login --token=my-token --server=https://my-cluster.example.com:6443

$ oc get pod
NAME READY STATUS RESTARTS AGE
camel-k-operator-86b8d94b4-pk7d6 1/1 Running 0 6m28s

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

18

https://camel.apache.org/camel-k/latest/languages/yaml.html

3. Enter the kamel run command to run your integration in the cloud on OpenShift. For example:

Java example

XML example

YAML example

4. Enter the kamel get command to check the status of the integration:

When the integration runs for the first time, Camel K builds the integration kit for the container
image, which downloads all the required Camel modules and adds them to the image classpath.

5. Enter kamel get again to verify that the integration is running:

6. Enter the kamel log command to print the log to stdout:

$ kamel run HelloCamelK.java
integration "hello-camel-k" created

$ kamel run hello-camel-k.xml
integration "hello-camel-k" created

$ kamel run hello.camelk.yaml
integration "hello" created

$ kamel get
NAME PHASE KIT
hello Building Kit kit-bq666mjej725sk8sn12g

$ kamel get
NAME PHASE KIT
hello Running kit-bq666mjej725sk8sn12g

$ kamel log hello
[1] 2020-04-11 14:26:43.449 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.PropertiesFunctionsConfigurer@5223e5ee executed in phase
Starting
[1] 2020-04-11 14:26:43.457 INFO [main] RuntimeSupport - Looking up loader for language:
yaml
[1] 2020-04-11 14:26:43.655 INFO [main] RuntimeSupport - Found loader
org.apache.camel.k.loader.yaml.YamlSourceLoader@1224144a for language yaml from
service definition
[1] 2020-04-11 14:26:43.658 INFO [main] RoutesConfigurer - Loading routes from:
file:/etc/camel/sources/i-source-000/hello.camelk.yaml?language=yaml
[1] 2020-04-11 14:26:43.658 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesConfigurer@36c88a32 executed in phase
ConfigureRoutes
[1] 2020-04-11 14:26:43.661 INFO [main] BaseMainSupport - Using properties from:
file:/etc/camel/conf/application.properties
[1] 2020-04-11 14:26:43.878 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.ContextConfigurer@65466a6a executed in phase
ConfigureContext

CHAPTER 3. GETTING STARTED WITH CAMEL K

19

7. Press Ctrl-C to terminate logging in the terminal.

Additional resources

For more details on the kamel run command, enter kamel run --help

For faster deployment turnaround times, see Section 3.6, “Running Camel K integrations in
development mode”

For details of development tools to run integrations, see VS Code Tooling for Apache Camel K
by Red Hat

See also Section 5.1, “Managing Camel K integrations”

3.6. RUNNING CAMEL K INTEGRATIONS IN DEVELOPMENT MODE

You can run Camel K integrations in development mode on your OpenShift cluster from the command
line. Using development mode, you can iterate quickly on integrations in development and get fast
feedback on your code.

When you specify the kamel run command with the --dev option, this deploys the integration in the
cloud immediately and shows the integration logs in the terminal. You can then change the code and see
the changes automatically applied instantly to the remote integration Pod on OpenShift. The terminal
automatically displays all redeployments of the remote integration in the cloud.

NOTE

The artifacts generated by Camel K in development mode are identical to those that you
run in production. The purpose of development mode is faster development.

Prerequisites

Section 3.1, “Setting up your Camel K development environment” .

You must already have a Camel integration written in Java, XML, or YAML DSL.

[1] 2020-04-11 14:26:43.879 INFO [main] DefaultCamelContext - Apache Camel 3.0.1
(CamelContext: camel-k) is starting
[1] 2020-04-11 14:26:43.880 INFO [main] DefaultManagementStrategy - JMX is disabled
[1] 2020-04-11 14:26:44.147 INFO [main] DefaultCamelContext - StreamCaching is not in
use. If using streams then its recommended to enable stream caching. See more details at
http://camel.apache.org/stream-caching.html
[1] 2020-04-11 14:26:44.157 INFO [main] DefaultCamelContext - Route: route1 started and
consuming from: timer://yaml?period=1s
[1] 2020-04-11 14:26:44.161 INFO [main] DefaultCamelContext - Total 1 routes, of which 1
are started
[1] 2020-04-11 14:26:44.162 INFO [main] DefaultCamelContext - Apache Camel 3.0.1
(CamelContext: camel-k) started in 0.283 seconds
[1] 2020-04-11 14:26:44.163 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesDumper@1c93084c executed in phase Started
[1] 2020-04-11 14:26:45.183 INFO [Camel (camel-k) thread #1 - timer://yaml] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from yaml]
...

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

20

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk

Procedure

1. Log into your OpenShift cluster using the oc client tool, for example:

2. Ensure that the Camel K Operator is running, for example:

3. Enter the kamel run command with --dev to run your integration in development mode on
OpenShift in the cloud. The following shows a simple Java example:

$ oc login --token=my-token --server=https://my-cluster.example.com:6443

$ oc get pod
NAME READY STATUS RESTARTS AGE
camel-k-operator-86b8d94b4-pk7d6 1/1 Running 0 6m28s

$ kamel run HelloCamelK.java --dev
integration "hello-camel-k" created
Progress: integration "hello-camel-k" in phase Initialization
Progress: integration "hello-camel-k" in phase Building Kit
Progress: integration "hello-camel-k" in phase Deploying
Progress: integration "hello-camel-k" in phase Running
IntegrationPlatformAvailable for Integration hello-camel-k: camel-k
Integration hello-camel-k in phase Initialization
No IntegrationKitAvailable for Integration hello-camel-k: creating a new integration kit
Integration hello-camel-k in phase Building Kit
IntegrationKitAvailable for Integration hello-camel-k: kit-bq8t5cudeam3u3sj13tg
Integration hello-camel-k in phase Deploying
No CronJobAvailable for Integration hello-camel-k: different controller strategy used
(deployment)
DeploymentAvailable for Integration hello-camel-k: deployment name is hello-camel-k
No ServiceAvailable for Integration hello-camel-k: no http service required
No ExposureAvailable for Integration hello-camel-k: no target service found
Integration hello-camel-k in phase Running
[2] Monitoring pod hello-camel-k-866ccb5976-sjh8x[1] Monitoring pod hello-camel-k-
866ccb5976-l288p[2] 2020-04-11 14:44:53.691 INFO [main] ApplicationRuntime - Add
listener: org.apache.camel.k.listener.ContextConfigurer@159f197
[2] 2020-04-11 14:44:53.694 INFO [main] ApplicationRuntime - Add listener:
org.apache.camel.k.listener.RoutesConfigurer@1f0f1111
[2] 2020-04-11 14:44:53.695 INFO [main] ApplicationRuntime - Add listener:
org.apache.camel.k.listener.RoutesDumper@6e0dec4a
[2] 2020-04-11 14:44:53.695 INFO [main] ApplicationRuntime - Add listener:
org.apache.camel.k.listener.PropertiesFunctionsConfigurer@794cb805
[2] 2020-04-11 14:44:53.712 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.PropertiesFunctionsConfigurer@794cb805 executed in phase
Starting
[2] 2020-04-11 14:44:53.721 INFO [main] RuntimeSupport - Looking up loader for language:
java
[2] 2020-04-11 14:44:53.723 INFO [main] RuntimeSupport - Found loader
org.apache.camel.k.loader.java.JavaSourceLoader@3911c2a7 for language java from
service definition
[2] 2020-04-11 14:44:54.220 INFO [main] RoutesConfigurer - Loading routes from:
file:/etc/camel/sources/i-source-000/HelloCamelK.java?language=java
[2] 2020-04-11 14:44:54.220 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesConfigurer@1f0f1111 executed in phase
ConfigureRoutes

CHAPTER 3. GETTING STARTED WITH CAMEL K

21

4. Edit the content of your integration DSL file, save your changes, and see the changes displayed
instantly in the terminal. For example:

5. Press Ctrl-C to terminate logging in the terminal.

Additional resources

For more details on the kamel run command, enter kamel run --help

For details of development tools to run integrations, see VS Code Tooling for Apache Camel K
by Red Hat

Section 5.1, “Managing Camel K integrations”

Section 7.6, “Configuring Camel K integration dependencies”

3.7. RUNNING CAMEL K INTEGRATIONS USING MODELINE

[2] 2020-04-11 14:44:54.224 INFO [main] BaseMainSupport - Using properties from:
file:/etc/camel/conf/application.properties
[2] 2020-04-11 14:44:54.385 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.ContextConfigurer@159f197 executed in phase
ConfigureContext
[2] 2020-04-11 14:44:54.386 INFO [main] DefaultCamelContext - Apache Camel 3.0.1
(CamelContext: camel-k) is starting
[2] 2020-04-11 14:44:54.387 INFO [main] DefaultManagementStrategy - JMX is disabled
[2] 2020-04-11 14:44:54.630 INFO [main] DefaultCamelContext - StreamCaching is not in
use. If using streams then its recommended to enable stream caching. See more details at
http://camel.apache.org/stream-caching.html
[2] 2020-04-11 14:44:54.639 INFO [main] DefaultCamelContext - Route: java started and
consuming from: timer://java?period=1s
[2] 2020-04-11 14:44:54.643 INFO [main] DefaultCamelContext - Total 1 routes, of which 1
are started
[2] 2020-04-11 14:44:54.643 INFO [main] DefaultCamelContext - Apache Camel 3.0.1
(CamelContext: camel-k) started in 0.258 seconds
[2] 2020-04-11 14:44:54.644 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesDumper@6e0dec4a executed in phase Started
[2] 2020-04-11 14:44:55.671 INFO [Camel (camel-k) thread #1 - timer://java] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from java]
...

...
integration "hello-camel-k" updated
...
[3] 2020-04-11 14:45:06.792 INFO [main] DefaultCamelContext - Route: java started and
consuming from: timer://java?period=1s
[3] 2020-04-11 14:45:06.795 INFO [main] DefaultCamelContext - Total 1 routes, of which 1
are started
[3] 2020-04-11 14:45:06.796 INFO [main] DefaultCamelContext - Apache Camel 3.0.1
(CamelContext: camel-k) started in 0.323 seconds
[3] 2020-04-11 14:45:06.796 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesDumper@6e0dec4a executed in phase Started
[3] 2020-04-11 14:45:07.826 INFO [Camel (camel-k) thread #1 - timer://java] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Ciao Camel K from java]
...

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

22

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk

1

2

You can use the Camel K modeline to specify multiple configuration options in a Camel K integration
source file, which are executed at runtime. This creates efficiencies by saving you the time of re-
entering multiple command line options and helps to prevent input errors.

The following example shows a modeline entry from a Java integration file that configures traits for
Prometheus monitoring and 3scale API Management, and includes a dependency on an external Maven
library:

Prerequisites

Section 3.1, “Setting up your Camel K development environment” .

You must already have a Camel integration written in Java, XML, or YAML DSL.

Procedure

1. Add a Camel K modeline entry to your integration file. For example:

Hello.java

The modeline entry enables monitoring in Prometheus, API management with 3scale, and
specifies a dependency on an external Maven library.

This bean uses a business logic class from the external Maven library configured in the
modeline.

2. Enter the following command to run the integration:

The kamel run command outputs any modeline options specified in the integration.

// camel-k: language=java trait=prometheus.enabled=true trait=3scale.enabled=true
dependency=mvn:org.my/app:1.0

// camel-k: language=java trait=prometheus.enabled=true trait=3scale.enabled=true
dependency=mvn:org.my/application:1.0 1

import org.apache.camel.builder.RouteBuilder;

public class Hello extends RouteBuilder {
 @Override
 public void configure() throws Exception {

 from("timer:java?period=1000")
 .bean(org.my.BusinessLogic) 2
 .log("${body}");

 }
}

$ kamel run Hello.java
Modeline options have been loaded from source files
Full command: kamel run Hello.java --trait=prometheus.enabled=true --dependency
mvn:org.my/application:1.0

CHAPTER 3. GETTING STARTED WITH CAMEL K

23

Additional resources

Section 9.2, “Camel K modeline options”

For details of development tools to run modeline integrations, see Introducing IDE support for
Apache Camel K Modeline.

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

24

https://developers.redhat.com/blog/2020/08/31/introducing-ide-support-for-apache-camel-k-modeline

CHAPTER 4. CAMEL K QUICK START DEVELOPER TUTORIALS
Red Hat Integration - Camel K provides quick start developer tutorials based on integration use cases
available from https://github.com/openshift-integration. This chapter provides details on how to set up
and deploy the following tutorials:

Section 4.1, “Deploying a basic Camel K Java integration”

Section 4.2, “Deploying a Camel K Serverless integration with Knative”

Section 4.3, “Deploying a Camel K transformations integration”

Section 4.4, “Deploying a Camel K Serverless event streaming integration”

Section 4.5, “Deploying a Camel K Serverless API-based integration”

Section 4.6, “Deploying a Camel K SaaS integration”

4.1. DEPLOYING A BASIC CAMEL K JAVA INTEGRATION

This tutorial demonstrates how to run a simple Java integration in the cloud on OpenShift, apply
configuration and routing to an integration, and run an integration as a Kubernetes CronJob.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-basic.

You must have cluster administrator access to an OpenShift cluster to install Camel K. See
Section 2.1, “Installing Camel K from the OpenShift OperatorHub” .

You must have the kamel command installed. See Section 2.3, “Installing the Camel K and
OpenShift command line tools”.

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Section 3.1, “Setting up your Camel K development environment” .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-basic .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. For example:

$ git clone git@github.com:openshift-integration/camel-k-example-basic.git

CHAPTER 4. CAMEL K QUICK START DEVELOPER TUTORIALS

25

https://github.com/openshift-integration
https://github.com/openshift-integration/camel-k-example-basic

This opens a new Didact tab in VS Code to display the tutorial instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-basic.

Additional resources

Section 3.2, “Developing Camel K integrations in Java”

4.2. DEPLOYING A CAMEL K SERVERLESS INTEGRATION WITH
KNATIVE

This tutorial demonstrates how to deploy Camel K integrations with OpenShift Serverless in an event-
driven architecture. This tutorial uses a Knative Eventing broker to communicate using an event publish-
subscribe pattern in a Bitcoin trading demonstration.

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

26

https://github.com/openshift-integration/camel-k-example-basic

This tutorial also shows how to use Camel K integrations to connect to a Knative event mesh with
multiple external systems. The Camel K integrations also use Knative Serving to automatically scale up
and down to zero as needed.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-knative.

You must have cluster administrator access to an OpenShift cluster to install Camel K and
OpenShift Serverless:

Section 2.1, “Installing Camel K from the OpenShift OperatorHub”

Section 2.2, “Installing OpenShift Serverless from the OperatorHub”

You must have the kamel command installed. See Section 2.3, “Installing the Camel K and
OpenShift command line tools”.

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Section 3.1, “Setting up your Camel K development environment” .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-knative .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-knative.

Additional resources

How Knative Eventing works

How Knative Serving works

4.3. DEPLOYING A CAMEL K TRANSFORMATIONS INTEGRATION

This tutorial demonstrates how to run a Camel K Java integration on OpenShift that transforms data
such as XML to JSON, and stores it in a database such as PostgreSQL.

The tutorial example uses a CSV file to query an XML API and uses the data collected to build a valid
GeoJSON file, which is stored in a PostgreSQL database.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-

$ git clone git@github.com:openshift-integration/camel-k-example-knative.git

CHAPTER 4. CAMEL K QUICK START DEVELOPER TUTORIALS

27

https://github.com/openshift-integration/camel-k-example-knative
https://github.com/openshift-integration/camel-k-example-knative
https://docs.openshift.com/container-platform/4.3/serverless/knative_eventing/serverless-knative-eventing.html
https://docs.openshift.com/container-platform/4.3/serverless/knative_serving/serverless-knative-serving.html

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-transformations.

You must have cluster administrator access to an OpenShift cluster to install Camel K. See
Section 2.1, “Installing Camel K from the OpenShift OperatorHub” .

You must have the kamel command installed. See Section 2.3, “Installing the Camel K and
OpenShift command line tools”.

You must follow the instructions in the tutorial readme to install the PostgreSQL Operator by
Dev4Ddevs.com, which is required on your OpenShift cluster

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Section 3.1, “Setting up your Camel K development environment” .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-transformations.

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-
transformations.

Additional resources

https://operatorhub.io/operator/postgresql-operator-dev4devs-com

https://geojson.org/

4.4. DEPLOYING A CAMEL K SERVERLESS EVENT STREAMING
INTEGRATION

This tutorial demonstrates using Camel K and OpenShift Serverless with Knative Eventing for an event-
driven architecture.

The tutorial shows how to install Camel K and Serverless with Knative in an AMQ Streams cluster with an
AMQ Broker cluster, and how to deploy an event streaming project to run a global hazard alert
demonstration application.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-event-streaming.

You must have cluster administrator access to an OpenShift cluster to install Camel K and
OpenShift Serverless:

Section 2.1, “Installing Camel K from the OpenShift OperatorHub”

$ git clone git@github.com:openshift-integration/camel-k-example-transformations.git

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

28

https://github.com/openshift-integration/camel-k-example-transformations
https://github.com/openshift-integration/camel-k-example-transformations
https://operatorhub.io/operator/postgresql-operator-dev4devs-com
https://geojson.org/
https://github.com/openshift-integration/camel-k-example-event-streaming

Section 2.1, “Installing Camel K from the OpenShift OperatorHub”

Section 2.2, “Installing OpenShift Serverless from the OperatorHub”

You must have the kamel command installed. See Section 2.3, “Installing the Camel K and
OpenShift command line tools”.

You must follow the instructions in the tutorial readme to install the additional required
Operators on your OpenShift cluster:

AMQ Streams Operator

AMQ Broker Operator

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Section 3.1, “Setting up your Camel K development environment” .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-event-streaming .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-event-
streaming.

Additional resources

Red Hat AMQ documentation

OpenShift Serverless documentation

4.5. DEPLOYING A CAMEL K SERVERLESS API-BASED INTEGRATION

This tutorial demonstrates using Camel K and OpenShift Serverless with Knative Serving for an API-
based integration, and managing an API with 3scale API Management on OpenShift.

The tutorial shows how to configure Amazon S3-based storage, design an OpenAPI definition, and run
an integration that calls the demonstration API endpoints.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-api.

You must have cluster administrator access to an OpenShift cluster to install Camel K and
OpenShift Serverless:

$ git clone git@github.com:openshift-integration/camel-k-example-event-streaming.git

CHAPTER 4. CAMEL K QUICK START DEVELOPER TUTORIALS

29

https://github.com/openshift-integration/camel-k-example-event-streaming
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4
https://docs.openshift.com/container-platform/4.3/serverless/serverless-getting-started.html#knative-cli_serverless-getting-started
https://github.com/openshift-integration/camel-k-example-api

Section 2.1, “Installing Camel K from the OpenShift OperatorHub”

Section 2.2, “Installing OpenShift Serverless from the OperatorHub”

You must have the kamel command installed. See Section 2.3, “Installing the Camel K and
OpenShift command line tools”.

You can also install the optional Red Hat Integration - 3scale Operator on your OpenShift
system to manage the API. See Deploying 3scale using the Operator.

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Section 3.1, “Setting up your Camel K development environment” .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-api .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-api.

Additional resources

Red Hat 3scale API Management documentation

OpenShift Serverless documentation

4.6. DEPLOYING A CAMEL K SAAS INTEGRATION

This tutorial demonstrates how to run a Camel K Java integration on OpenShift that connects two
widely-used Software as a Service (SaaS) providers.

The tutorial example shows how to integrate the Salesforce and ServiceNow SaaS providers using
REST-based Camel components. In this simple example, each new Salesforce Case is copied to a
corresponding ServiceNow Incident that includes the Salesforce Case Number.

Prerequisites

See the tutorial readme in GitHub: https://github.com/openshift-integration/camel-k-
example-saas.

You must have cluster administrator access to an OpenShift cluster to install Camel K. See
Section 2.1, “Installing Camel K from the OpenShift OperatorHub” .

You must have the kamel command installed. See Section 2.3, “Installing the Camel K and
OpenShift command line tools”.

$ git clone git@github.com:openshift-integration/camel-k-example-api.git

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

30

https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.9/html/installing_3scale/install-threescale-on-openshift-guide#deploying-threescale-using-the-operator
https://github.com/openshift-integration/camel-k-example-api
https://access.redhat.com/documentation/en-us/red_hat_3scale_api_management/2.9/
https://docs.openshift.com/container-platform/4.3/serverless/serverless-getting-started.html#knative-cli_serverless-getting-started
https://github.com/openshift-integration/camel-k-example-saas

You must have Salesforce login credentials and ServiceNow login credentials.

Visual Studio (VS) Code is optional but recommended for the best developer experience. See
Section 3.1, “Setting up your Camel K development environment” .

Procedure

1. Clone the tutorial Git repository:

2. In VS Code, select File → Open Folder → camel-k-example-saas .

3. In the VS Code navigation tree, right-click the readme.didact.md file and select Didact: Start
Didact Tutorial from File. This opens a new Didact tab in VS Code to display the tutorial
instructions.

4. Follow the tutorial instructions and click the provided links to run the commands automatically.
Alternatively, if you do not have VS Code installed with the Didact extension, you can manually
enter the commands from https://github.com/openshift-integration/camel-k-example-saas.

Additional resources

https://www.salesforce.com/

https://www.servicenow.com/

$ git clone git@github.com:openshift-integration/camel-k-example-saas.git

CHAPTER 4. CAMEL K QUICK START DEVELOPER TUTORIALS

31

https://github.com/openshift-integration/camel-k-example-saas
https://www.salesforce.com/
https://www.servicenow.com/

CHAPTER 5. MANAGING CAMEL K INTEGRATIONS
You can manage Red Hat Integration - Camel K integrations using the Camel K command line or using
development tools. This chapter explains how to manage Camel K integrations on the command line and
provides links to additional resources that explain how to use the VS Code development tools.

Section 5.1, “Managing Camel K integrations”

Section 5.2, “Managing Camel K integration logging levels”

5.1. MANAGING CAMEL K INTEGRATIONS

Camel K provides different options for managing Camel K integrations on your OpenShift cluster on the
command line. This section shows simple examples of using the following commands:

kamel get

kamel describe

kamel log

kamel delete

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

You must already have a Camel integration written in Java, XML, or YAML DSL

Procedure

1. Ensure that the Camel K Operator is running on your OpenShift cluster, for example:

2. Enter the kamel run command to run your integration in the cloud on OpenShift. For example:

3. Enter the kamel get command to check the status of the integration:

4. Enter the kamel describe command print detailed information about the integration:

$ oc get pod
NAME READY STATUS RESTARTS AGE
camel-k-operator-86b8d94b4-pk7d6 1/1 Running 0 6m28s

$ kamel run hello.camelk.yaml
integration "hello" created

$ kamel get
NAME PHASE KIT
hello Building Kit kit-bqatqib5t4kse5vukt40

$ kamel describe integration hello
kamel describe integration hello
Name: hello
Namespace: camel-k-test

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

32

5. Enter the kamel log command to print the log to stdout:

6. Press Ctrl-C to terminate logging in the terminal.

7. Enter the kamel delete to delete the integration deployed on OpenShift:

Additional resources

For more details on logging, see Section 5.2, “Managing Camel K integration logging levels”

For faster deployment turnaround times, see Section 3.6, “Running Camel K integrations in
development mode”

For details of development tools to manage integrations, see VS Code Tooling for Apache
Camel K by Red Hat

Creation Timestamp: Tue, 14 Apr 2020 16:57:04 +0100
Phase: Running
Runtime Version: 1.1.0
Kit: kit-bqatqib5t4kse5vukt40
Image: image-registry.openshift-image-registry.svc:5000/camel-k-test/camel-k-kit-
bqatqib5t4kse5vukt40@sha256:3788d571e6534ab27620b6826e6a4f10c23fc871d2f8f60673
b7c20e617d6463
Version: 1.0.0-RC2
Dependencies:
 camel:log
 camel:timer
 mvn:org.apache.camel.k/camel-k-loader-yaml
 mvn:org.apache.camel.k/camel-k-runtime-main
Sources:
 Name Language Compression Ref Ref Key
 hello.camelk.yaml yaml false
Conditions:
 Type Status Reason Message
 IntegrationPlatformAvailable True IntegrationPlatformAvailable camel-k
 IntegrationKitAvailable True IntegrationKitAvailable kit-bqatqib5t4kse5vukt40
 CronJobAvailable False CronJobNotAvailableReason different controller
strategy used (deployment)
 DeploymentAvailable True DeploymentAvailable deployment name is hello
 ServiceAvailable False ServiceNotAvailable no http service required
 ExposureAvailable False RouteNotAvailable no target service found

$ kamel log hello
...
1] 2020-04-14 16:03:41.205 INFO [Camel (camel-k) thread #1 - timer://yaml] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from yaml]
[1] 2020-04-14 16:03:42.205 INFO [Camel (camel-k) thread #1 - timer://yaml] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from yaml]
[1] 2020-04-14 16:03:43.204 INFO [Camel (camel-k) thread #1 - timer://yaml] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello Camel K from yaml]
...

$ kamel delete hello
Integration hello deleted

CHAPTER 5. MANAGING CAMEL K INTEGRATIONS

33

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk

5.2. MANAGING CAMEL K INTEGRATION LOGGING LEVELS

Camel K uses Apache Log4j 2 as the logging framework for integrations. You can configure the logging
levels of various loggers on the command line at runtime by specifying the logging.level prefix as an
integration property. For example:

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

Procedure

1. Enter the kamel run command and specify the logging level using the --property option. For
example:

2. Press Ctrl-C to terminate logging in the terminal.

Additional resources

For more details on the logging framework, see the Apache Log4j 2 documentation

--property logging.level.org.apache.camel=DEBUG

$ kamel run --property logging.level.org.apache.camel=DEBUG HelloCamelK.java --dev
...
[1] 2020-04-13 17:02:17.970 DEBUG [main] PropertiesComponentFactoryResolver -
Detected and using PropertiesComponent:
org.apache.camel.component.properties.PropertiesComponent@3e92efc3
[1] 2020-04-13 17:02:17.974 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.PropertiesFunctionsConfigurer@4b5a5ed1 executed in phase
Starting
[1] 2020-04-13 17:02:17.984 INFO [main] RuntimeSupport - Looking up loader for language:
java
[1] 2020-04-13 17:02:17.987 INFO [main] RuntimeSupport - Found loader
org.apache.camel.k.loader.java.JavaSourceLoader@4facf68f for language java from service
definition
[1] 2020-04-13 17:02:18.553 INFO [main] RoutesConfigurer - Loading routes from:
file:/etc/camel/sources/i-source-000/HelloCamelK.java?language=java
[1] 2020-04-13 17:02:18.553 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesConfigurer@49c386c8 executed in phase
ConfigureRoutes
[1] 2020-04-13 17:02:18.555 DEBUG [main] PropertiesComponent - Parsed location:
/etc/camel/conf/application.properties
[1] 2020-04-13 17:02:18.557 INFO [main] BaseMainSupport - Using properties from:
file:/etc/camel/conf/application.properties
[1] 2020-04-13 17:02:18.563 DEBUG [main] BaseMainSupport - Properties from Camel
properties component:
[1] 2020-04-13 17:02:18.598 DEBUG [main] RoutesConfigurer - RoutesCollectorEnabled:
org.apache.camel.k.main.ApplicationRuntime$NoRoutesCollector@2f953efd
[1] 2020-04-13 17:02:18.598 DEBUG [main] RoutesConfigurer - Adding routes into
CamelContext from RoutesBuilder: Routes: []
[1] 2020-04-13 17:02:18.598 DEBUG [main] DefaultCamelContext - Adding routes from
builder: Routes: []
...

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

34

https://logging.apache.org/log4j/2.x/

For details of development tools to view logging, see VS Code Tooling for Apache Camel K by
Red Hat

CHAPTER 5. MANAGING CAMEL K INTEGRATIONS

35

https://marketplace.visualstudio.com/items?itemName=redhat.vscode-camelk

CHAPTER 6. MONITORING CAMEL K INTEGRATIONS
Red Hat Integration - Camel K monitoring is based on the Prometheus monitoring system:
https://prometheus.io/. This chapter explains how to use the available options for monitoring Red Hat
Integration - Camel K integrations at runtime. You can use the Prometheus Operator that is already
deployed as part of OpenShift Monitoring to monitor your own applications.

Section 6.1, “Enabling user workload monitoring in OpenShift”

Section 6.2, “Configuring Camel K integration metrics”

Section 6.3, “Adding custom Camel K integration metrics”

6.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT

OpenShift 4.3 or higher includes an embedded Prometheus Operator already deployed as part of
OpenShift Monitoring. This section explains how to enable monitoring of your own application services
in OpenShift Monitoring. This option avoids the additional overhead of installing and managing a
separate Prometheus instance.

IMPORTANT

Monitoring of Camel K integrations using a separate Prometheus Operator is not included
in the Technology Preview.

Prerequisites

You must have cluster administrator access to an OpenShift cluster on which the Camel K
Operator is installed. See Section 2.1, “Installing Camel K from the OpenShift OperatorHub” .

Procedure

1. Enter the following command to check if the cluster-monitoring-config ConfigMap object
exists in the openshift-monitoring project:

2. Create the cluster-monitoring-config ConfigMap if this does not already exist:

3. Edit the cluster-monitoring-config ConfigMap:

4. Under data:config.yaml:, set enableUserWorkload to true:

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

$ oc -n openshift-monitoring create configmap cluster-monitoring-config

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

apiVersion: v1
kind: ConfigMap
metadata:
 name: cluster-monitoring-config
 namespace: openshift-monitoring

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

36

https://prometheus.io/

Additional resources

Monitoring your own services in the OpenShift documentation

6.2. CONFIGURING CAMEL K INTEGRATION METRICS

You can configure monitoring of Camel K integrations automatically using the Camel K Prometheus trait
at runtime. This automates the configuration of dependencies and integration Pods to expose a metrics
endpoint, which is then discovered and displayed by Prometheus. The Camel Quarkus MicroProfile
Metrics extension automatically collects and exposes the default Camel K metrics in the OpenMetrics
format.

Prerequisites

You must have already enabled monitoring of your own services in OpenShift. See Section 6.1,
“Enabling user workload monitoring in OpenShift”.

Procedure

1. Enter the following command to run your Camel K integration with the Prometheus trait
enabled:

Alternatively, you can enable the Prometheus trait globally once, by updating the integration
platform as follows:

2. View monitoring of Camel K integration metrics in Prometheus. For example, for embedded
Prometheus, select Monitoring > Metrics in the OpenShift administrator or developer web
console.

3. Enter the Camel K metric that you want to view. For example, in the Administrator console,
under Insert Metric at Cursor, enter application_camel_context_uptime_seconds, and click
Run Queries.

4. Click Add Query to view additional metrics.

Additional resources

Section 8.2.10, “Prometheus Trait”

Camel Quarkus MicroProfile Metrics

6.3. ADDING CUSTOM CAMEL K INTEGRATION METRICS

You can add custom metrics to your Camel K integrations by using Camel MicroProfile Metrics

data:
 config.yaml: |
 enableUserWorkload: true

$ kamel run myIntegration.java -t prometheus.enabled=true

$ oc patch ip camel-k --type=merge -p '{"spec":{"traits":{"prometheus":{"configuration":
{"enabled":"true"}}}}}'

CHAPTER 6. MONITORING CAMEL K INTEGRATIONS

37

https://docs.openshift.com/container-platform/4.5/monitoring/monitoring-your-own-services.html
https://camel.apache.org/camel-quarkus/latest/reference/extensions/microprofile-metrics.html
https://github.com/OpenObservability/OpenMetrics
https://camel.apache.org/camel-quarkus/latest/reference/extensions/microprofile-metrics.html#_usage

You can add custom metrics to your Camel K integrations by using Camel MicroProfile Metrics
component and annotations in your Java code. These custom metrics will then be automatically
discovered and displayed by Prometheus.

This section shows examples of adding Camel MicroProfile Metrics annotations to Camel K integration
and service implementation code.

Prerequisites

You must have already enabled monitoring of your own services in OpenShift. See Section 6.1,
“Enabling user workload monitoring in OpenShift”.

Procedure

1. Register the custom metrics in your Camel integration code using Camel MicroProfile Metrics
component annotations. The following example shows a Metrics.java integration:

// camel-k: language=java trait=prometheus.enabled=true dependency=mvn:org.my/app:1.0
1

import org.apache.camel.Exchange;
import org.apache.camel.LoggingLevel;
import org.apache.camel.builder.RouteBuilder;
import org.apache.camel.component.microprofile.metrics.MicroProfileMetricsConstants;

import javax.enterprise.context.ApplicationScoped;

@ApplicationScoped
public class Metrics extends RouteBuilder {

 @Override
 public void configure() {
 onException()
 .handled(true)
 .maximumRedeliveries(2)
 .logStackTrace(false)
 .logExhausted(false)
 .log(LoggingLevel.ERROR, "Failed processing ${body}")
 // Register the 'redelivery' meter
 .to("microprofile-metrics:meter:redelivery?mark=2")
 // Register the 'error' meter
 .to("microprofile-metrics:meter:error"); 2

 from("timer:stream?period=1000")
 .routeId("unreliable-service")
 .setBody(header(Exchange.TIMER_COUNTER).prepend("event #"))
 .log("Processing ${body}...")
 // Register the 'generated' meter
 .to("microprofile-metrics:meter:generated") 3
 // Register the 'attempt' meter via @Metered in Service.java
 .bean("service") 4
 .filter(header(Exchange.REDELIVERED))
 .log(LoggingLevel.WARN, "Processed ${body} after
${header.CamelRedeliveryCounter} retries")
 .setHeader(MicroProfileMetricsConstants.HEADER_METER_MARK,

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

38

1

2

3

4

5

6

Uses the Camel K modeline to automatically configure the Prometheus trait and Maven
dependencies

error: Metric for the number of errors corresponding to the number of events that have
not been processed

generated: Metric for the number of events to be processed

attempt: Metric for the number of calls made to the service bean to process incoming
events

redelivery: Metric for the number of retries made to process the event

success: Metric for the number of events successfully processed

2. Add Camel MicroProfile Metrics annotations to any implementation files as needed. The
following example shows the service bean called by the Camel K integration, which generates
random failures:

header(Exchange.REDELIVERY_COUNTER))
 // Register the 'redelivery' meter
 .to("microprofile-metrics:meter:redelivery") 5
 .end()
 .log("Successfully processed ${body}")
 // Register the 'success' meter
 .to("microprofile-metrics:meter:success"); 6
 }
}

package com.redhat.integration;

import java.util.Random;

import org.apache.camel.Exchange;
import org.apache.camel.RuntimeExchangeException;

import org.eclipse.microprofile.metrics.Meter;
import org.eclipse.microprofile.metrics.annotation.Metered;
import org.eclipse.microprofile.metrics.annotation.Metric;

import javax.inject.Named;
import javax.enterprise.context.ApplicationScoped;

@Named("service")
@ApplicationScoped
@io.quarkus.arc.Unremovable

public class Service {

 //Register the attempt meter
 @Metered(absolute = true)
 public void attempt(Exchange exchange) { 1
 Random rand = new Random();
 if (rand.nextDouble() < 0.5) {
 throw new RuntimeExchangeException("Random failure", exchange); 2

CHAPTER 6. MONITORING CAMEL K INTEGRATIONS

39

1

2

The @Metered MicroProfile Metrics annotation declares the meter and the name is
automatically generated based on the metrics method name, in this case, attempt.

This example fails randomly to help generate errors for metrics.

3. Follow the steps in Section 6.2, “Configuring Camel K integration metrics” to run the integration
and view the custom Camel K metrics in Prometheus.
In this case, the example already uses the Camel K modeline in Metrics.java to automatically
configure Prometheus and the required Maven dependencies for Service.java.

Additional resources

Camel MicroProfile Metrics component

Camel Quarkus MicroProfile Metrics Extension

 }
 }
 }

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

40

https://camel.apache.org/components/latest/microprofile-metrics-component.html
https://camel.apache.org/camel-quarkus/latest/reference/extensions/microprofile-metrics.html

CHAPTER 7. CONFIGURING CAMEL K INTEGRATIONS
This chapter explains available options for configuring Red Hat Integration - Camel K integrations using
properties:

Section 7.1, “Configuring Camel K integrations using properties”

Section 7.2, “Configuring Camel K integrations using property files”

Section 7.3, “Configuring Camel K properties using an OpenShift ConfigMap”

Section 7.4, “Configuring Camel K properties using an OpenShift Secret”

Section 7.5, “Configuring Camel integration components”

Section 7.6, “Configuring Camel K integration dependencies”

7.1. CONFIGURING CAMEL K INTEGRATIONS USING PROPERTIES

You can configure properties for Camel K integrations on the command line at runtime. When you
define a property in an integration using a property placeholder, for example, {{my.message}}, you can
specify the property value on the command line, for example --property my.message=Hello. You can
specify multiple properties in a single command.

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

Procedure

1. Develop a Camel integration that uses a property. The following simple route includes a
{{my.message}} property placeholder:

2. Enter the kamel run command using the --property option to set the property value at runtime.
For example:

Additional resources

...
 from("timer:java?period=1s")
 .routeId("java")
 .setBody()
 .simple("{{my.message}} from ${routeId}")
 .to("log:info");
...

$ kamel run --property my.message="Hola Mundo" HelloCamelK.java --dev
...
[1] 2020-04-13 15:39:59.213 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesDumper@6e0dec4a executed in phase Started
[1] 2020-04-13 15:40:00.237 INFO [Camel (camel-k) thread #1 - timer://java] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hola Mundo from java]
...

CHAPTER 7. CONFIGURING CAMEL K INTEGRATIONS

41

Section 7.2, “Configuring Camel K integrations using property files”

Section 7.3, “Configuring Camel K properties using an OpenShift ConfigMap”

Section 7.4, “Configuring Camel K properties using an OpenShift Secret”

7.2. CONFIGURING CAMEL K INTEGRATIONS USING PROPERTY FILES

You can configure multiple properties for Camel K integrations by specifying a property file on the
command line at runtime. When you define properties in an integration using property placeholders, for
example, {{my.items}}, you can specify the property values on the command line using a properties file,
for example --property-file my-integration.properties.

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

Procedure

1. Define your integration properties file. The following shows a simple example from a
routing.properties file:

2. Develop a Camel integration that uses properties defined in the properties file. The following
example from the Routing.java integration uses the {{items}} and {{priority-marker}} property
placeholders:

3. Enter the kamel run command with the --property-file option. For example:

List of items for random generation
items=*radiator *engine *door window

Marker to identify priority items
priority-marker=*

...
from("timer:java?period=6000")
 .id("generator")
 .bean(this, "generateRandomItem({{items}})")
 .choice()
 .when().simple("${body.startsWith('{{priority-marker}}')}")
 .transform().body(String.class, item -> item.substring(priorityMarker.length()))
 .to("direct:priorityQueue")
 .otherwise()
 .to("direct:standardQueue");
...

$ kamel run Routing.java --property-file routing.properties --dev
...
[1] 2020-04-13 15:20:30.424 INFO [main] ApplicationRuntime - Listener
org.apache.camel.k.listener.RoutesDumper@6e0dec4a executed in phase Started
[1] 2020-04-13 15:20:31.461 INFO [Camel (camel-k) thread #1 - timer://java] priority -
!!Priority item: engine
[1] 2020-04-13 15:20:37.426 INFO [Camel (camel-k) thread #1 - timer://java] standard -
Standard item: window

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

42

Additional resources

Section 4.1, “Deploying a basic Camel K Java integration”

Section 7.1, “Configuring Camel K integrations using properties”

7.3. CONFIGURING CAMEL K PROPERTIES USING AN OPENSHIFT
CONFIGMAP

You can configure multiple properties for Camel K integrations using an OpenShift ConfigMap. When
you define properties in an integration using property placeholders, for example, {{my.message}}, you
can specify the property values at runtime using a ConfigMap. You can also specify additional properties
such as logging levels in the application.properties section of the ConfigMap.

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

Procedure

1. Develop a Camel integration that uses properties. The following simple route includes the
{{my.message}} property placeholder:

2. Define a ConfigMap that contains your configuration properties. For example:

This example sets the value of the my.message property and sets the logging level for the
org.apache.camel package in the application.properties.

3. Create the ConfigMap in the same OpenShift namespace as your integration:

[1] 2020-04-13 15:20:43.429 INFO [Camel (camel-k) thread #1 - timer://java] priority -
!!Priority item: door
...

...
 from("timer:java?period=1s")
 .routeId("java")
 .setBody()
 .simple("{{my.message}} from ${routeId}")
 .to("log:info");
...

apiVersion: v1
kind: ConfigMap
metadata:
 name: my-configmap
data:
 application.properties: |
 my.message=Bonjour le monde
 logging.level.org.apache.camel=DEBUG

$ oc apply -f my-configmap.yaml
configmap/my-configmap created

CHAPTER 7. CONFIGURING CAMEL K INTEGRATIONS

43

4. Run the integration with the --configmap option to specify the configuration properties in the
ConfigMap:

Additional resources

Section 7.4, “Configuring Camel K properties using an OpenShift Secret”

7.4. CONFIGURING CAMEL K PROPERTIES USING AN OPENSHIFT
SECRET

You can configure multiple properties for Camel K integrations using an OpenShift Secret. When you
define properties in an integration using property placeholders, for example, {{my.message}}, you can
specify the property values at runtime using a Secret. You can also specify additional properties such as
logging levels in the application.properties section of the Secret.

NOTE

Configuring integration properties using a Secret is similar to configuring using a
ConfigMap. The main difference is that you may need to base64-encode the content of
the application.properties in the Secret.

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

Procedure

1. Develop a Camel integration that uses properties. The following simple route includes the
{{my.message}} property placeholder:

2. Define a Secret that contains your configuration properties. For example:

$ kamel run --configmap=my-configmap HelloCamelK.java --dev
...
[1] 2020-04-14 14:18:20.654 DEBUG [Camel (camel-k) thread #1 - timer://java]
DefaultReactiveExecutor - Queuing reactive work: CamelInternalProcessor - UnitOfWork -
afterProcess - DefaultErrorHandler[sendTo(log://info)] - ID-hello-camel-k-5df4bcd7dc-zq4vw-
1586873876659-0-25
[1] 2020-04-14 14:18:20.654 DEBUG [Camel (camel-k) thread #1 - timer://java]
SendProcessor - >>>> log://info Exchange[ID-hello-camel-k-5df4bcd7dc-zq4vw-
1586873876659-0-25]
[1] 2020-04-14 14:18:20.655 INFO [Camel (camel-k) thread #1 - timer://java] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Bonjour le monde from java]
...

...
 from("timer:java?period=1s")
 .routeId("java")
 .setBody()
 .simple("{{my.message}} from ${routeId}")
 .to("log:info");
...

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

44

This example sets the value of the my.message property to Hello World and sets the logging
level for the org.apache.camel package to DEBUG. These settings are specified in base64-
encoded format in the application.properties.

3. Create the Secret in the same OpenShift namespace as your integration:

4. Run the integration with the --secret option to specify the configuration properties in the
Secret:

Additional resources

Section 7.3, “Configuring Camel K properties using an OpenShift ConfigMap”

7.5. CONFIGURING CAMEL INTEGRATION COMPONENTS

You can configure Camel components programmatically in your integration code or by using
configuration properties on the command line at runtime. You can configure Camel components using
the following syntax:

For example, to change the queue size of the Camel seda component for staged event-driven
architecture, you can configure the following property on the command line:

Prerequisites

apiVersion: v1
kind: Secret
metadata:
 name: my-secret
data:
 application.properties: |

bXkubWVzc2FnZT1IZWxsbyBXb3JsZAogICAgbG9nZ2luZy5sZXZlbC5vcmcuYXBhY2hlLmNhb
WVs
 PURFQlVHCg==

$ oc apply -f my-secret.yaml
secret/my-secret created

$ kamel run --secret=my-secret HelloCamelK.java --dev
[1] 2020-04-14 14:30:29.788 DEBUG [Camel (camel-k) thread #1 - timer://java]
DefaultReactiveExecutor - Queuing reactive work: CamelInternalProcessor - UnitOfWork -
afterProcess - DefaultErrorHandler[sendTo(log://info)] - ID-hello-camel-k-68f85d99b9-srd92-
1586874486770-0-144
[1] 2020-04-14 14:30:29.789 DEBUG [Camel (camel-k) thread #1 - timer://java]
SendProcessor - >>>> log://info Exchange[ID-hello-camel-k-68f85d99b9-srd92-
1586874486770-0-144]
[1] 2020-04-14 14:30:29.789 INFO [Camel (camel-k) thread #1 - timer://java] info -
Exchange[ExchangePattern: InOnly, BodyType: String, Body: Hello World from java]

camel.component.${scheme}.${property}=${value}

camel.component.seda.queueSize=10

CHAPTER 7. CONFIGURING CAMEL K INTEGRATIONS

45

Section 3.1, “Setting up your Camel K development environment”

Procedure

Enter the kamel run command and specify the Camel component configuration using the --
property option. For example:

Additional resources

Section 7.1, “Configuring Camel K integrations using properties”

Apache Camel SEDA component

7.6. CONFIGURING CAMEL K INTEGRATION DEPENDENCIES

Camel K automatically resolves a wide range of dependencies that are required to run your integration
code. However, you can explicitly add dependencies on the command line at runtime using the kamel
run --dependency option.

The following example integration uses Camel K automatic dependency resolution:

Because this integration has an endpoint starting with the imap: prefix, Camel K can automatically add
the camel-mail component to the list of required dependencies. The seda: endpoint belongs to camel-
core, which is automatically added to all integrations, so Camel K does not add additional dependencies
for this component.

Camel K automatic dependency resolution is transparent to the user at runtime. This is very useful in
development mode because you can quickly add all the components that you need without exiting the
development loop.

You can explicitly add a dependency using the kamel run --dependency or -d option. You might need
to use this to specify dependencies that are not included in the Camel catalog. You can specify multiple
dependencies on the command line.

Prerequisites

Section 3.1, “Setting up your Camel K development environment”

Procedure

Enter the kamel run command and specify dependencies using the -d option. For example:

NOTE

$ kamel run --property camel.component.seda.queueSize=10 examples/Integration.java

...
 from("imap://admin@myserver.com")
 .to("seda:output")
...

$ kamel run -d mvn:com.google.guava:guava:26.0-jre -d camel-mina2 Integration.java

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

46

https://camel.apache.org/components/latest/seda-component.html

NOTE

You can disable automatic dependency resolution by disabling the dependencies trait: -
trait dependencies.enabled=false. However, this is not recommended in most cases.

Additional resources

Section 3.6, “Running Camel K integrations in development mode”

Section 8.1, “Camel K trait and profile configuration”

Apache Camel Mail component

Apache Camel SEDA component

CHAPTER 7. CONFIGURING CAMEL K INTEGRATIONS

47

https://camel.apache.org/components/latest/mail-component.html
https://camel.apache.org/components/latest/seda-component.html

CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE
This chapter provides reference information about advanced features and core capabilities that you can
configure on the command line at runtime using traits. Camel K provides feature traits to configure
specific features and technologies. Camel K provides platform traits to configure internal Camel K core
capabilities.

IMPORTANT

The Red Hat Integration - Camel K Technology Preview includes the OpenShift and
Knative profiles. The Kubernetes profile has community-only support.

This Technology Preview includes Java, XML, and YAML DSL for integrations. Other
languages such as Groovy, JavaScript, and Kotlin have community-only support.

This chapter includes the following sections:

Section 8.1, “Camel K trait and profile configuration”

Camel K feature traits

Section 8.2.1, “3scale Trait”

Section 8.2.2, “Affinity Trait”

Section 8.2.3, “Cron Trait”

Section 8.2.4, “Gc Trait”

Section 8.2.5, “Istio Trait”

Section 8.2.6, “Jolokia Trait”

Section 8.2.7, “Knative Trait”

Section 8.2.8, “Knative Service Trait”

Section 8.2.9, “Master Trait”

Section 8.2.10, “Prometheus Trait”

Section 8.2.11, “Quarkus Trait”

Section 8.2.12, “Route Trait”

Section 8.2.13, “Service Trait”

Camel K core platform traits

Section 8.3.1, “Builder Trait”

Section 8.3.3, “Camel Trait”

Section 8.3.2, “Container Trait”

Section 8.3.4, “Dependencies Trait”

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

48

Section 8.3.5, “Deployer Trait”

Section 8.3.6, “Deployment Trait”

Section 8.3.7, “Environment Trait”

Section 8.3.8, “Jvm Trait”

Section 8.3.9, “Openapi Trait”

Section 8.3.10, “Owner Trait”

Section 8.3.11, “Platform Trait”

8.1. CAMEL K TRAIT AND PROFILE CONFIGURATION

This section explains the important Camel K concepts of traits and profiles, which are used to configure
advanced Camel K features at runtime.

Camel K traits

Camel K traits are advanced features and core capabilities that you can configure on the command line
to customize Camel K integrations. For example, this includes feature traits that configure interactions
with technologies such as 3scale API Management, Quarkus, Knative, and Prometheus. Camel K also
provides internal platform traits that configure important core platform capabilities such as Camel
support, containers, dependency resolution, and JVM support.

Camel K profiles

Camel K profiles define the target cloud platforms on which Camel K integrations run. The Camel K
Technology Preview supports the OpenShift and Knative profiles.

NOTE

When you run an integration on OpenShift, Camel K uses the Knative profile when
OpenShift Serverless is installed on the cluster. Camel K uses the OpenShift profile when
OpenShift Serverless is not installed.

You can also specify the profile at runtime using the kamel run --profile option.

Camel K provides useful defaults for all traits, taking into account the target profile on which the
integration runs. However, advanced users can configure Camel K traits for custom behavior. Some
traits only apply to specific profiles such as OpenShift or Knative. For more details, see the available
profiles in each trait description.

Camel K trait configuration

Each Camel trait has a unique ID that you can use to configure the trait on the command line. For
example, the following command disables creating an OpenShift Service for an integration:

You can also use the -t option to specify traits.

Camel K trait properties

You can use the enabled property to enable or disable each trait. All traits have their own internal logic

$ kamel run --trait service.enabled=false my-integration.yaml

CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

49

You can use the enabled property to enable or disable each trait. All traits have their own internal logic
to determine if they need to be enabled when the user does not activate them explicitly.

WARNING

Disabling a platform trait may compromise the platform functionality.

Some traits have an auto property, which you can use to enable or disable automatic configuration of
the trait based on the environment. For example, this includes traits such as 3scale, Cron, and Knative.
This automatic configuration can enable or disable the trait when the enabled property is not explicitly
set, and can change the trait configuration.

Most traits have additional properties that you can configure on the command line. For more details, see
the descriptions for each trait in the sections that follow.

8.2. CAMEL K FEATURE TRAITS

8.2.1. 3scale Trait

The 3scale trait can be used to automatically create annotations that allow 3scale to discover the
generated service and make it available for API management.

The 3scale trait is disabled by default.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.1.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait 3scale.[key]=[value] --trait 3scale.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

3scale.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

3scale.auto bool Enables automatic configuration of the trait.

3scale.scheme string The scheme to use to contact the service (default http)

3scale.path string The path where the API is published (default /)

3scale.port int The port where the service is exposed (default 80)



Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

50

3scale.description-path string The path where the Open-API specification is published (default
/openapi.json)

Property Type Description

8.2.2. Affinity Trait

Allows constraining which nodes the integration pod(s) are eligible to be scheduled on, based on labels
on the node, or with inter-pod affinity and anti-affinity, based on labels on pods that are already running
on the nodes.

It’s disabled by default.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.2.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait affinity.[key]=[value] --trait affinity.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

affinity.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

affinity.pod-affinity bool Always co-locates multiple replicas of the integration in the same
node (default false).

affinity.pod-anti-affinity bool Never co-locates multiple replicas of the integration in the same
node (default false).

affinity.node-affinity-
labels

[]string Defines a set of nodes the integration pod(s) are eligible to be
scheduled on, based on labels on the node.

affinity.pod-affinity-
labels

[]string Defines a set of pods (namely those matching the label selector,
relative to the given namespace) that the integration pod(s)
should be co-located with.

affinity.pod-anti-
affinity-labels

[]string Defines a set of pods (namely those matching the label selector,
relative to the given namespace) that the integration pod(s)
should not be co-located with.

8.2.2.2. Examples

To schedule the integration pod(s) on a specific node using the built-in node label

CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

51

To schedule the integration pod(s) on a specific node using the built-in node label
kubernetes.io/hostname:

To schedule a single integration pod per node (using the Exists operator):

To co-locate the integration pod(s) with other integration pod(s):

The *-labels options follow the requirements from Label selectors. They can be multi-valuated, then the
requirements list is ANDed, e.g., to schedule a single integration pod per node AND not co-located with
the Camel K operator pod(s):

More information can be found in the official Kubernetes documentation about Assigning Pods to
Nodes.

8.2.3. Cron Trait

The Cron trait can be used to customize the behaviour of periodic timer/cron based integrations.

While normally an integration requires a pod to be always up and running, some periodic tasks, such as
batch jobs, require to be activated at specific hours of the day or with a periodic delay of minutes. For
such tasks, the cron trait can materialize the integration as a Kubernetes CronJob instead of a standard
deployment, in order to save resources when the integration does not need to be executed.

Integrations that start from the following components are evaluated by the cron trait: timer, cron,
quartz.

The rules for using a Kubernetes CronJob are the following: - timer: when periods can be written as cron
expressions. E.g. timer:tick?period=60000. - cron, quartz: when the cron expression does not contain
seconds (or the "seconds" part is set to 0). E.g. cron:tab?schedule=0/2$+*+*+*+? or quartz:trigger?
cron=0+0/2+*+*+*+?.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.3.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait cron.[key]=[value] --trait cron.[key2]=[value2] Integration.java

The following configuration options are available:

$ kamel run -t affinity.node-affinity-labels="kubernetes.io/hostname in(node-66-
50.hosted.k8s.tld)" ...

$ kamel run -t affinity.pod-anti-affinity-labels="camel.apache.org/integration" ...

$ kamel run -t affinity.pod-affinity-labels="camel.apache.org/integration in(it1, it2)" ...

$ kamel run -t affinity.pod-anti-affinity-labels="camel.apache.org/integration" -t affinity.pod-anti-
affinity-labels="camel.apache.org/component=operator" ...

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

52

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

Property Type Description

cron.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

cron.schedule string The CronJob schedule for the whole integration. If multiple routes
are declared, they must have the same schedule for this
mechanism to work correctly.

cron.components string A comma separated list of the Camel components that need to be
customized in order for them to work when the schedule is
triggered externally by Kubernetes. A specific customizer is
activated for each specified component. E.g. for the timer
component, the cron-timer customizer is activated (it’s present in
the org.apache.camel.k:camel-k-runtime-cron library).

Supported components are currently: cron, timer and quartz.

cron.fallback bool Use the default Camel implementation of the cron endpoint
(quartz) instead of trying to materialize the integration as
Kubernetes CronJob.

cron.concurrency-policy string Specifies how to treat concurrent executions of a Job. Valid values
are: - "Allow": allows CronJobs to run concurrently; - "Forbid"
(default): forbids concurrent runs, skipping next run if previous run
hasn’t finished yet; - "Replace": cancels currently running job and
replaces it with a new one

cron.auto bool Automatically deploy the integration as CronJob when all routes
are either starting from a periodic consumer (only cron, timer and
quartz are supported) or a passive consumer (e.g. direct is a
passive consumer).

It’s required that all periodic consumers have the same period and
it can be expressed as cron schedule (e.g. 1m can be expressed as
0/1 * * * *, while 35m or 50s cannot).

8.2.4. Gc Trait

The GC Trait garbage-collects all resources that are no longer necessary upon integration updates.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.4.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait gc.[key]=[value] --trait gc.[key2]=[value2] Integration.java

The following configuration options are available:

CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

53

Property Type Description

gc.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

gc.discovery-cache ./pkg/trait.
discovery
CacheTyp
e

Discovery client cache to be used, either disabled, disk or
memory (default memory)

8.2.5. Istio Trait

The Istio trait allows to configure properties related to the Istio service mesh, such as sidecar injection
and outbound IP ranges.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.5.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait istio.[key]=[value] --trait istio.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

istio.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

istio.allow string Configures a (comma-separated) list of CIDR subnets that should
not be intercepted by the Istio proxy
(10.0.0.0/8,172.16.0.0/12,192.168.0.0/16 by default).

istio.inject bool Forces the value for labels sidecar.istio.io/inject. By default the
label is set to true on deployment and not set on Knative Service.

8.2.6. Jolokia Trait

The Jolokia trait activates and configures the Jolokia Java agent.

See https://jolokia.org/reference/html/agents.html

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.6.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait jolokia.[key]=[value] --trait jolokia.[key2]=[value2] Integration.java

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

54

https://jolokia.org/reference/html/agents.html

The following configuration options are available:

Property Type Description

jolokia.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

jolokia.ca-cert string The PEM encoded CA certification file path, used to verify client
certificates, applicable when protocol is https and use-ssl-
client-authentication is true (default
/var/run/secrets/kubernetes.io/serviceaccount/service-
ca.crt for OpenShift).

jolokia.client-principal []string The principal(s) which must be given in a client certificate to allow
access to the Jolokia endpoint, applicable when protocol is https
and use-ssl-client-authentication is true (default
clientPrincipal=cn=system:master-proxy, cn=hawtio-
online.hawtio.svc and cn=fuse-console.fuse.svc for
OpenShift).

jolokia.discovery-
enabled

bool Listen for multicast requests (default false)

jolokia.extended-client-
check

bool Mandate the client certificate contains a client flag in the
extended key usage section, applicable when protocol is https
and use-ssl-client-authentication is true (default true for
OpenShift).

jolokia.host string The Host address to which the Jolokia agent should bind to. If "*"
or "0.0.0.0" is given, the servers binds to every network interface
(default "*").

jolokia.password string The password used for authentication, applicable when the user
option is set.

jolokia.port int The Jolokia endpoint port (default 8778).

jolokia.protocol string The protocol to use, either http or https (default https for
OpenShift)

jolokia.user string The user to be used for authentication

jolokia.use-ssl-client-
authentication

bool Whether client certificates should be used for authentication
(default true for OpenShift).

jolokia.options []string A list of additional Jolokia options as defined in JVM agent
configuration options

8.2.7. Knative Trait

CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

55

https://jolokia.org/reference/html/agents.html#agent-jvm-config

The Knative trait automatically discovers addresses of Knative resources and inject them into the
running integration.

The full Knative configuration is injected in the CAMEL_KNATIVE_CONFIGURATION in JSON format.
The Camel Knative component will then use the full configuration to configure the routes.

The trait is enabled by default when the Knative profile is active.

This trait is available in the following profiles: Knative.

8.2.7.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait knative.[key]=[value] --trait knative.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

knative.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

knative.configuration string Can be used to inject a Knative complete configuration in JSON
format.

knative.channel-sources []string List of channels used as source of integration routes. Can contain
simple channel names or full Camel URIs.

knative.channel-sinks []string List of channels used as destination of integration routes. Can
contain simple channel names or full Camel URIs.

knative.endpoint-
sources

[]string List of channels used as source of integration routes.

knative.endpoint-sinks []string List of endpoints used as destination of integration routes. Can
contain simple endpoint names or full Camel URIs.

knative.event-sources []string List of event types that the integration will be subscribed to. Can
contain simple event types or full Camel URIs (to use a specific
broker different from "default").

knative.event-sinks []string List of event types that the integration will produce. Can contain
simple event types or full Camel URIs (to use a specific broker).

knative.filter-source-
channels

bool Enables filtering on events based on the header "ce-
knativehistory". Since this is an experimental header that can be
removed in a future version of Knative, filtering is enabled only
when the integration is listening from more than 1 channel.

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

56

knative.camel-source-
compat

bool Enables Knative CamelSource pre 0.15 compatibility fixes (will be
removed in future versions).

knative.sink-binding bool Allows binding the integration to a sink via a Knative SinkBinding
resource. This can be used when the integration targets a single
sink. It’s disabled by default.

knative.auto bool Enable automatic discovery of all trait properties.

Property Type Description

8.2.8. Knative Service Trait

The Knative Service trait allows to configure options when running the integration as Knative service
instead of a standard Kubernetes Deployment.

Running integrations as Knative Services adds auto-scaling (and scaling-to-zero) features, but those
features are only meaningful when the routes use a HTTP endpoint consumer.

This trait is available in the following profiles: Knative.

8.2.8.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait knative-service.[key]=[value] --trait knative-service.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

knative-service.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

knative-
service.autoscaling-class

string Configures the Knative autoscaling class property (e.g. to set
hpa.autoscaling.knative.dev or
kpa.autoscaling.knative.dev autoscaling).

Refer to the Knative documentation for more information.

knative-
service.autoscaling-
metric

string Configures the Knative autoscaling metric property (e.g. to set
concurrency based or cpu based autoscaling).

Refer to the Knative documentation for more information.

knative-
service.autoscaling-
target

int Sets the allowed concurrency level or CPU percentage (depending
on the autoscaling metric) for each Pod.

Refer to the Knative documentation for more information.

CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

57

knative-service.min-
scale

int The minimum number of Pods that should be running at any time
for the integration. It’s zero by default, meaning that the
integration is scaled down to zero when not used for a configured
amount of time.

Refer to the Knative documentation for more information.

knative-service.max-
scale

int An upper bound for the number of Pods that can be running in
parallel for the integration. Knative has its own cap value that
depends on the installation.

Refer to the Knative documentation for more information.

knative-service.auto bool Automatically deploy the integration as Knative service when all
conditions hold:

Integration is using the Knative profile

All routes are either starting from a HTTP based
consumer or a passive consumer (e.g. direct is a passive
consumer)

Property Type Description

8.2.9. Master Trait

The Master trait allows to configure the integration to automatically leverage Kubernetes resources for
doing leader election and starting master routes only on certain instances.

It’s activated automatically when using the master endpoint in a route, e.g.
from("master:lockname:telegram:bots")… ​.

NOTE

this trait adds special permissions to the integration service account in order to read/write
configmaps and read pods. It’s recommended to use a different service account than
"default" when running the integration.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.9.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait master.[key]=[value] --trait master.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

58

master.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

master.auto bool Enables automatic configuration of the trait.

master.include-
delegate-dependencies

bool When this flag is active, the operator analyzes the source code to
add dependencies required by delegate endpoints. E.g. when using
master:lockname:timer, then camel:timer is automatically
added to the set of dependencies. It’s enabled by default.

master.configmap string Name of the configmap that will be used to store the lock. Defaults
to "<integration-name>-lock".

master.label-key string Label that will be used to identify all pods contending the lock.
Defaults to "camel.apache.org/integration".

master.label-value string Label value that will be used to identify all pods contending the
lock. Defaults to the integration name.

Property Type Description

8.2.10. Prometheus Trait

The Prometheus trait configures a Prometheus-compatible endpoint. This trait also exposes the
integration with Service and ServiceMonitor resources, so that the endpoint can be scraped
automatically, when using the Prometheus Operator.

The metrics exposed vary depending on the configured runtime. With the default Quarkus runtime,
metrics are exposed using MicroProfile Metrics. While with the Java main runtime, metrics are exposed
using the Prometheus JMX exporter.

WARNING

The creation of the ServiceMonitor resource requires the Prometheus Operator
custom resource definition to be installed. You can set service-monitor to false for
the Prometheus trait to work without the Prometheus Operator.

The Prometheus trait is disabled by default.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.10.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait prometheus.[key]=[value] --trait prometheus.[key2]=[value2] Integration.java



CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

59

https://github.com/coreos/prometheus-operator

The following configuration options are available:

Property Type Description

prometheus.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

prometheus.port int The Prometheus endpoint port (default 9779, or 8080 with
Quarkus).

prometheus.service-
monitor

bool Whether a ServiceMonitor resource is created (default true).

prometheus.service-
monitor-labels

[]string The ServiceMonitor resource labels, applicable when service-
monitor is true.

prometheus.configmap string To use a custom ConfigMap containing the Prometheus JMX
exporter configuration (under the content ConfigMap key). When
this property is left empty (default), Camel K generates a standard
Prometheus configuration for the integration. It is not applicable
when using Quarkus.

8.2.11. Quarkus Trait

The Quarkus trait activates the Quarkus runtime.

It’s enabled by default.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

8.2.11.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait quarkus.[key]=[value] --trait quarkus.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

quarkus.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

quarkus.native bool The Quarkus runtime type (reserved for future use)

8.2.11.2. Supported Camel Components

When running with Quarkus enabled, then Camel K only supports out of the box, those Camel
components that are available as Camel Quarkus Extensions.

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

60

You can see the list of extensions from the Camel Quarkus documentation .

8.2.12. Route Trait

The Route trait can be used to configure the creation of OpenShift routes for the integration.

This trait is available in the following profiles: OpenShift.

8.2.12.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait route.[key]=[value] --trait route.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

route.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

route.host string To configure the host exposed by the route.

route.tls-termination string The TLS termination type, like edge, passthrough or
reencrypt.

Refer to the OpenShift documentation for additional information.

route.tls-certificate string The TLS certificate contents.

Refer to the OpenShift documentation for additional information.

route.tls-key string The TLS certificate key contents.

Refer to the OpenShift documentation for additional information.

route.tls-ca-certificate string The TLS cert authority certificate contents.

Refer to the OpenShift documentation for additional information.

route.tls-destination-ca-
certificate

string The destination CA certificate provides the contents of the ca
certificate of the final destination. When using reencrypt
termination this file should be provided in order to have routers
use it for health checks on the secure connection. If this field is not
specified, the router may provide its own destination CA and
perform hostname validation using the short service name
(service.namespace.svc), which allows infrastructure generated
certificates to automatically verify.

Refer to the OpenShift documentation for additional information.

CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

61

https://camel.apache.org/camel-quarkus/latest/list-of-camel-quarkus-extensions.html

route.tls-insecure-edge-
termination-policy

string To configure how to deal with insecure traffic, e.g. Allow, Disable
or Redirect traffic.

Refer to the OpenShift documentation for additional information.

Property Type Description

8.2.13. Service Trait

The Service trait exposes the integration with a Service resource so that it can be accessed by other
applications (or integrations) in the same namespace.

It’s enabled by default if the integration depends on a Camel component that can expose a HTTP
endpoint.

This trait is available in the following profiles: Kubernetes, OpenShift.

8.2.13.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait service.[key]=[value] --trait service.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

service.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

service.auto bool To automatically detect from the code if a Service needs to be
created.

service.node-port bool Enable Service to be exposed as NodePort

8.3. CAMEL K PLATFORM TRAITS

8.3.1. Builder Trait

The builder trait is internally used to determine the best strategy to build and configure IntegrationKits.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

62

WARNING

The builder trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.1.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait builder.[key]=[value] --trait builder.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

builder.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

builder.verbose bool Enable verbose logging on build components that support it (e.g.,
OpenShift build pod). Kaniko and Buildah are not supported.

8.3.2. Container Trait

The Container trait can be used to configure properties of the container where the integration will run.

It also provides configuration for Services associated to the container.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The container trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.2.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait container.[key]=[value] --trait container.[key2]=[value2] Integration.java

The following configuration options are available:





CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

63

Property Type Description

container.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

container.auto bool

container.request-cpu string The minimum amount of CPU required.

container.request-
memory

string The minimum amount of memory required.

container.limit-cpu string The maximum amount of CPU required.

container.limit-memory string The maximum amount of memory required.

container.expose bool Can be used to enable/disable exposure via kubernetes Service.

container.port int To configure a different port exposed by the container (default
8080).

container.port-name string To configure a different port name for the port exposed by the
container (default http).

container.service-port int To configure under which service port the container port is to be
exposed (default 80).

container.service-port-
name

string To configure under which service port name the container port is
to be exposed (default http).

container.name string The main container name. It’s named integration by default.

container.probes-
enabled

bool ProbesEnabled enable/disable probes on the container (default
false)

container.probe-path string Path to access on the probe (default /health). Note that this
property is not supported on quarkus runtime and setting it will
result in the integration failing to start.

container.liveness-
initial-delay

int32 Number of seconds after the container has started before liveness
probes are initiated.

container.liveness-
timeout

int32 Number of seconds after which the probe times out. Applies to the
liveness probe.

container.liveness-
period

int32 How often to perform the probe. Applies to the liveness probe.

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

64

container.liveness-
success-threshold

int32 Minimum consecutive successes for the probe to be considered
successful after having failed. Applies to the liveness probe.

container.liveness-
failure-threshold

int32 Minimum consecutive failures for the probe to be considered
failed after having succeeded. Applies to the liveness probe.

container.readiness-
initial-delay

int32 Number of seconds after the container has started before
readiness probes are initiated.

container.readiness-
timeout

int32 Number of seconds after which the probe times out. Applies to the
readiness probe.

container.readiness-
period

int32 How often to perform the probe. Applies to the readiness probe.

container.readiness-
success-threshold

int32 Minimum consecutive successes for the probe to be considered
successful after having failed. Applies to the readiness probe.

container.readiness-
failure-threshold

int32 Minimum consecutive failures for the probe to be considered
failed after having succeeded. Applies to the readiness probe.

Property Type Description

8.3.3. Camel Trait

The Camel trait can be used to configure versions of Apache Camel K runtime and related libraries, it
cannot be disabled.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The camel trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.3.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait camel.[key]=[value] --trait camel.[key2]=[value2] Integration.java

The following configuration options are available:



CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

65

Property Type Description

camel.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

camel.runtime-version string The camel-k-runtime version to use for the integration. It overrides
the default version set in the Integration Platform.

8.3.4. Dependencies Trait

The Dependencies trait is internally used to automatically add runtime dependencies based on the
integration that the user wants to run.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The dependencies trait is a platform trait: disabling it may compromise the
platform functionality.

8.3.4.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait dependencies.[key]=[value] Integration.java

The following configuration options are available:

Property Type Description

dependencies.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

8.3.5. Deployer Trait

The deployer trait can be used to explicitly select the kind of high level resource that will deploy the
integration.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.



Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

66

WARNING

The deployer trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.5.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait deployer.[key]=[value] --trait deployer.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

deployer.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

deployer.kind string Allows to explicitly select the desired deployment kind between
deployment, cron-job or knative-service when creating the
resources for running the integration.

8.3.6. Deployment Trait

The Deployment trait is responsible for generating the Kubernetes deployment that will make sure the
integration will run in the cluster.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The deployment trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.6.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait deployment.[key]=[value] Integration.java

The following configuration options are available:





CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

67

Property Type Description

deployment.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

8.3.7. Environment Trait

The environment trait is used internally to inject standard environment variables in the integration
container, such as NAMESPACE, POD_NAME and others.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The environment trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.7.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait environment.[key]=[value] --trait environment.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

environment.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

environment.container-
meta

bool

8.3.8. Jvm Trait

The JVM trait is used to configure the JVM that runs the integration.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.



Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

68

WARNING

The jvm trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.8.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait jvm.[key]=[value] --trait jvm.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

jvm.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

jvm.debug bool Activates remote debugging, so that a debugger can be attached
to the JVM, e.g., using port-forwarding

jvm.debug-suspend bool Suspends the target JVM immediately before the main class is
loaded

jvm.print-command bool Prints the command used the start the JVM in the container logs
(default true)

jvm.debug-address string Transport address at which to listen for the newly launched JVM
(default *:5005)

jvm.options []string A list of JVM options

8.3.9. Openapi Trait

The OpenAPI DSL trait is internally used to allow creating integrations from a OpenAPI specs.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The openapi trait is a platform trait: disabling it may compromise the platform
functionality.





CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

69

8.3.9.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait openapi.[key]=[value] Integration.java

The following configuration options are available:

Property Type Description

openapi.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

8.3.10. Owner Trait

The Owner trait ensures that all created resources belong to the integration being created and transfers
annotations and labels on the integration onto these owned resources.

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The owner trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.10.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait owner.[key]=[value] --trait owner.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

owner.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

owner.target-
annotations

[]string The set of annotations to be transferred

owner.target-labels []string The set of labels to be transferred

8.3.11. Platform Trait



Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

70

The platform trait is a base trait that is used to assign an integration platform to an integration.

In case the platform is missing, the trait is allowed to create a default platform. This feature is especially
useful in contexts where there’s no need to provide a custom configuration for the platform (e.g. on
OpenShift the default settings work, since there’s an embedded container image registry).

This trait is available in the following profiles: Kubernetes, Knative, OpenShift.

WARNING

The platform trait is a platform trait: disabling it may compromise the platform
functionality.

8.3.11.1. Configuration

Trait properties can be specified when running any integration with the CLI:

kamel run --trait platform.[key]=[value] --trait platform.[key2]=[value2] Integration.java

The following configuration options are available:

Property Type Description

platform.enabled bool Can be used to enable or disable a trait. All traits share this
common property.

platform.create-default bool To create a default (empty) platform when the platform is missing.

platform.auto bool To automatically detect from the environment if a default platform
can be created (it will be created on OpenShift only).



CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE

71

CHAPTER 9. CAMEL K COMMAND REFERENCE
This chapter provides reference details on the Camel K command line interface (CLI), and provides
examples of using the kamel command. This chapter also provides reference details on Camel K
modeline options that you can specify in a Camel K integration source file, which are executed at
runtime.

This chapter includes the following sections:

Section 9.1, “Camel K command line”

Section 9.2, “Camel K modeline options”

9.1. CAMEL K COMMAND LINE

The Camel K CLI provides the kamel command as the main entry point for running Camel K integrations
on OpenShift. This section provides details on the most commonly used kamel commands.

Table 9.1. kamel commands

Name Description Example

help Get the full list of available
commands. You can enter --help
as a parameter to each command
for more details.

kamel help

kamel run --help

init Initialize an empty Camel K file
implemented in Java, XML, or
YAML.

kamel init MyIntegration.java

run Run an integration on OpenShift. kamel run MyIntegration.java

debug Debug a remote integration using
a local debugger.

kamel debug my-integration

get Get integrations deployed on
OpenShift.

kamel get

describe Get detailed information on a
Camel K resource. This includes
an integration, kit, or platform.

kamel describe integration
my-integration

log Print the logs of a running
integration.

kamel log my-integration

delete Delete an integration deployed on
OpenShift.

kamel delete my-integration

Additional resources

Red Hat Integration 2020-Q4 Deploying Camel K integrations on OpenShift

72

Section 2.3, “Installing the Camel K and OpenShift command line tools”

9.2. CAMEL K MODELINE OPTIONS

You can use the Camel K modeline to enter configuration options in a Camel K integration source file,
which are executed at runtime, for example, using kamel run MyIntegration.java. For more details, see
Section 3.7, “Running Camel K integrations using modeline” .

This section provides reference details about the most commonly used modeline options.

Table 9.2. Camel K modeline options

Option Description

dependency Add an external library to be included in the integration. For example, for
Maven, use dependency=mvn:org.my/app:1.0, or for GitHub, use
dependency=github:my-account:camel-k-example-
project:master.

env Set an environment variable in the integration container. For example,
env=MY_ENV_VAR=my-value.

label Add a label for the integration. For example,
label=my.company=hello.

name Add an integration name. For example, name=my-integration.

open-api Add an OpenAPI v2 specification. For example, open-api=path/to/my-
hello-api.json.

profile Set the Camel K trait profile used for deployment. For example,
openshift.

property Add a integration property. For example,
property=my.message="Hola Mundo".

property-file Bind a property file to the integration. For example, property-file=my-
integration.properties.

resource Add an external resource. For example, resource=path/to/my-
hello.txt.

trait Configure a Camel K feature or core capability in a trait. For example,
trait=cron.enabled=true.

CHAPTER 9. CAMEL K COMMAND REFERENCE

73

	Table of Contents
	CHAPTER 1. INTRODUCTION TO CAMEL K
	1.1. CAMEL K OVERVIEW
	1.2. CAMEL K TECHNOLOGY PREVIEW FEATURES
	1.2.1. Platform and component versions
	1.2.2. Technology Preview features

	1.3. CAMEL K CLOUD-NATIVE ARCHITECTURE
	1.3.1. Kamelets

	1.4. CAMEL K DEVELOPMENT TOOLING
	1.5. CAMEL K DISTRIBUTIONS

	CHAPTER 2. INSTALLING CAMEL K
	2.1. INSTALLING CAMEL K FROM THE OPENSHIFT OPERATORHUB
	2.2. INSTALLING OPENSHIFT SERVERLESS FROM THE OPERATORHUB
	2.3. INSTALLING THE CAMEL K AND OPENSHIFT COMMAND LINE TOOLS

	CHAPTER 3. GETTING STARTED WITH CAMEL K
	3.1. SETTING UP YOUR CAMEL K DEVELOPMENT ENVIRONMENT
	3.2. DEVELOPING CAMEL K INTEGRATIONS IN JAVA
	3.3. DEVELOPING CAMEL K INTEGRATIONS IN XML
	3.4. DEVELOPING CAMEL K INTEGRATIONS IN YAML
	3.5. RUNNING CAMEL K INTEGRATIONS
	3.6. RUNNING CAMEL K INTEGRATIONS IN DEVELOPMENT MODE
	3.7. RUNNING CAMEL K INTEGRATIONS USING MODELINE

	CHAPTER 4. CAMEL K QUICK START DEVELOPER TUTORIALS
	4.1. DEPLOYING A BASIC CAMEL K JAVA INTEGRATION
	4.2. DEPLOYING A CAMEL K SERVERLESS INTEGRATION WITH KNATIVE
	4.3. DEPLOYING A CAMEL K TRANSFORMATIONS INTEGRATION
	4.4. DEPLOYING A CAMEL K SERVERLESS EVENT STREAMING INTEGRATION
	4.5. DEPLOYING A CAMEL K SERVERLESS API-BASED INTEGRATION
	4.6. DEPLOYING A CAMEL K SAAS INTEGRATION

	CHAPTER 5. MANAGING CAMEL K INTEGRATIONS
	5.1. MANAGING CAMEL K INTEGRATIONS
	5.2. MANAGING CAMEL K INTEGRATION LOGGING LEVELS

	CHAPTER 6. MONITORING CAMEL K INTEGRATIONS
	6.1. ENABLING USER WORKLOAD MONITORING IN OPENSHIFT
	6.2. CONFIGURING CAMEL K INTEGRATION METRICS
	6.3. ADDING CUSTOM CAMEL K INTEGRATION METRICS

	CHAPTER 7. CONFIGURING CAMEL K INTEGRATIONS
	7.1. CONFIGURING CAMEL K INTEGRATIONS USING PROPERTIES
	7.2. CONFIGURING CAMEL K INTEGRATIONS USING PROPERTY FILES
	7.3. CONFIGURING CAMEL K PROPERTIES USING AN OPENSHIFT CONFIGMAP
	7.4. CONFIGURING CAMEL K PROPERTIES USING AN OPENSHIFT SECRET
	7.5. CONFIGURING CAMEL INTEGRATION COMPONENTS
	7.6. CONFIGURING CAMEL K INTEGRATION DEPENDENCIES

	CHAPTER 8. CAMEL K TRAIT CONFIGURATION REFERENCE
	Camel K feature traits
	Camel K core platform traits
	8.1. CAMEL K TRAIT AND PROFILE CONFIGURATION
	8.2. CAMEL K FEATURE TRAITS
	8.2.1. 3scale Trait
	8.2.1.1. Configuration

	8.2.2. Affinity Trait
	8.2.2.1. Configuration
	8.2.2.2. Examples

	8.2.3. Cron Trait
	8.2.3.1. Configuration

	8.2.4. Gc Trait
	8.2.4.1. Configuration

	8.2.5. Istio Trait
	8.2.5.1. Configuration

	8.2.6. Jolokia Trait
	8.2.6.1. Configuration

	8.2.7. Knative Trait
	8.2.7.1. Configuration

	8.2.8. Knative Service Trait
	8.2.8.1. Configuration

	8.2.9. Master Trait
	8.2.9.1. Configuration

	8.2.10. Prometheus Trait
	8.2.10.1. Configuration

	8.2.11. Quarkus Trait
	8.2.11.1. Configuration
	8.2.11.2. Supported Camel Components

	8.2.12. Route Trait
	8.2.12.1. Configuration

	8.2.13. Service Trait
	8.2.13.1. Configuration

	8.3. CAMEL K PLATFORM TRAITS
	8.3.1. Builder Trait
	8.3.1.1. Configuration

	8.3.2. Container Trait
	8.3.2.1. Configuration

	8.3.3. Camel Trait
	8.3.3.1. Configuration

	8.3.4. Dependencies Trait
	8.3.4.1. Configuration

	8.3.5. Deployer Trait
	8.3.5.1. Configuration

	8.3.6. Deployment Trait
	8.3.6.1. Configuration

	8.3.7. Environment Trait
	8.3.7.1. Configuration

	8.3.8. Jvm Trait
	8.3.8.1. Configuration

	8.3.9. Openapi Trait
	8.3.9.1. Configuration

	8.3.10. Owner Trait
	8.3.10.1. Configuration

	8.3.11. Platform Trait
	8.3.11.1. Configuration

	CHAPTER 9. CAMEL K COMMAND REFERENCE
	9.1. CAMEL K COMMAND LINE
	9.2. CAMEL K MODELINE OPTIONS

