
Red Hat Enterprise Linux Atomic Host 7

Recommended Practices for Container
Development

Recommended Practices Guide for Container Development

Last Updated: 2020-08-06

Red Hat Enterprise Linux Atomic Host 7 Recommended Practices for
Container Development

Recommended Practices Guide for Container Development

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Fundamental container-related practices.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

1. DEPRECATION NOTICE

CHAPTER 1. OVERVIEW
1.1. Container Provenance

1.1.1. The Risks of "docker pull"

CHAPTER 2. BUILDING CONTAINERS

CHAPTER 3. LABELS
3.1. Labels Example

CHAPTER 4. IMAGE-NAMING CONVENTIONS
4.1. Red Hat’s Naming Policy
4.2. Redirection of Requests

CHAPTER 5. PROCESS MANAGEMENT
5.1. Running systemd in a Container

5.1.1. journald and systemd in a container
5.1.2. Services and containers
5.1.3. Managing Hardware that is Outside the Container
5.1.4. systemd and Zombies

CHAPTER 6. LINTER FOR DOCKERFILE

2

3
3
3

5

6
6

8
8
8

9
9
9
9
9
9

11

Table of Contents

1

1. DEPRECATION NOTICE

IMPORTANT

Red Hat Enterprise Linux Atomic Host is retired as of August 6, 2020 and active support
is no longer provided. Accordingly, this guide is deprecated and will no longer receive
updates.

Red Hat Enterprise Linux Atomic Host 7 Recommended Practices for Container Development

2

CHAPTER 1. OVERVIEW
This guide provides recommendations for container development that are supported by Red Hat.
Though containers, in their current Docker-driven implementation, are a new and rapidly-developing
technology, this guide captures the state of container support within Red Hat. Because there are many
use cases for containers, this guide provides general recommendations about fundamental container-
related practices that are useful and supported by Red Hat.

1.1. Container Provenance

Where do containers come from? How do we get them? How do we make sure that we get them in a
secure manner?

Containers are built from images, and images are stored in repositories on registries. This topic
discusses two registries that the command docker pull can access:

The docker.io registry

[The Red Hat Registry](http://registry.access.redhat.com/)

1.1.1. The Risks of "docker pull"

The docker pull command, used without the registry from which you are pulling, is a potentially
dangerous command. Docker makes no distinction between retrieval of software and installation of
software. This behavior is different from the case of an RPM: it is safe to use wget to retrieve an RPM
that contains malware as long as you do not install the RPM. If is not safe, however, to pull malware using
docker pull because retrieving an image is functionally equivalent to installing it.

For example, assume that containers are software that upon retrieval runs as privileged. Containers
relinquish privilege only after having their settings manipulated. The isolation of containers is usually
voluntary, and they are not isolated by default.

WARNING

Exercise caution when using the docker pull command.

If a container is not found in the Red Hat Registry, docker pull fails over to the docker.io registry. Red
Hat does not verify the security or authenticity of containers from third-party sources, such as
docker.io. See also the Image-Naming Conventions chapter.

When retrieving images from places other than the Red Hat Registry, avoid docker pull. If possible, use
docker load and docker save. You can use docker load and docker save with tarballs and then verify
the images.

Why would you want to use docker load and docker save instead of docker pull? docker load and
docker save provide a way to avoid the security vulnerability introduced by exposing your system to
third-party registries, which could happen when you run docker pull.

For more information on container provenance and exercising caution when using docker pull, see Red
Hat’s Security Blog post Before You Initiate a "docker pull" .



CHAPTER 1. OVERVIEW

3

http://registry.access.redhat.com/
https://securityblog.redhat.com/2014/12/18/before-you-initiate-a-docker-pull/

docker pull

The basic form of docker pull is: $ sudo docker pull repo/image:tag where repo and tag are optional. If
repo and tag are not specified, docker will attempt to locate the image in the docker.io registry. For
this reason, it is advisable always to explicitly name the registry from which you want to pull the image. If
no registry is specified, docker attempts to find an image on the docker.io registry. If no tag is supplied,
docker attempts by default to pull the latest image.

docker load

The basic form of docker load is: $ sudo docker load -i input.tar where input.tar is a tar image to be
loaded into your local container registry. The -i is optional and the input.tar file name is optional. If
neither -i nor a file name is specified, docker load expects tar data on STDIN.

docker save

The basic form of docker save is: $ sudo docker save -o output.tar where output.tar is a tar image to
be loaded into your local container registry. The -o is optional and the output.tar file name is optional. If
neither -o nor a file name is specified, docker save will output container data to STDOUT.

Red Hat Enterprise Linux Atomic Host 7 Recommended Practices for Container Development

4

CHAPTER 2. BUILDING CONTAINERS
It is necessary to maintain a mechanism that permits you to update your containers, so that they can be
patched when security vulnerabilities that apply to those containers are discovered. An understanding of
how containers are built helps maintain them properly.

To minimize the risk of having security vulnerabilities in your containers, you need to make it possible to
update your containers so that you can apply security patches to them. To make your containers reliably
updateable you need to leverage as much of the existing packaging infrastructure and tooling as
possible. This means that you will have to use Yum. In this respect, running containers is no different
than running any other distribution. All the rules that you’re familiar with apply: you should use RPM if
you can.

CHAPTER 2. BUILDING CONTAINERS

5

CHAPTER 3. LABELS
Labels make it possible to embed commands in to container images instead of adding them as options
to the command line. These are usually docker commands with multiple options that are required to run
a particular container, and they often include running the container as privileged. The options are
handled on a container-by-container basis and can make the command very long and hard to remember.
Labels are another way to provide this information to docker.

Labels build on the metadata that is already available in Docker. This metadata is stored in a .json file
that defines the container. Docker has a feature that lets you put name-value pairs into containers and
labels build on the feature that permits name-value pairs to be inserted into containers.

3.1. Labels Example

Labels simplify running long docker commands on the command-line. The example below will help you
understand labels.

Here, we create "run labels" that have a semantic meaning.

Suppose that you want to run the Chrome browser with GPU acceleration and pulse audio. To do this,
your container needs access to the GPU. That would be easy enough, but we must consider
"composition". X11 and Window Manager work together: that is composition. The most efficient way for
these two programs to work together is to create one big frame buffer to which all compositing
programs write. This is handled with a very long command, for example:

$ sudo docker run -v /dev/dri:/dev/dri \
-v /dev/snd:/dev/snd \
-v /dev/shm:/shm \
- ​ipc=container:foo_bar \
- ​privileged -e 'DISPLAY=:0' \
-u username rhel_chrome google-chrome

Let’s break this down:

-v /dev/dri:/dev/dri

video card component

-v /dev/snd:/dev/snd

sound card component

-v /dev/shm:/dev/shm

shared memory

shm

shared memory

- ​ipc

inter-process communication

container:foo_bar means that this label refers to another running container called foo_bar. This links
the running container foo_bar to the running container fedora_chrome. This argument shares the
interprocess communication namespaces of the two containers and ensures that the two containers
refer to the same objects and that each of the two containers uses the same names to refer to those
objects. This is important because they will be communicating over /dev/shm.

Shared memory is one way of providing inter-process communication.

Red Hat Enterprise Linux Atomic Host 7 Recommended Practices for Container Development

6

-e 'DISPLAY=:0'

which X11 display the output should go to

-u username

this specifies the username

rhel_chrome

the name of the container

google-chrome

the command that the container will run

CHAPTER 3. LABELS

7

CHAPTER 4. IMAGE-NAMING CONVENTIONS

4.1. Red Hat’s Naming Policy

Red Hat has provided a consistent naming policy for Docker-formatted images in order to provide
predictability for users.

Docker URLs in the V1 version of the protocol and registry format work similar to GitHub repository
names. Their structure is:

REGISTRY[:PORT]/USER/REPO[:TAG]

The implicit default registry is docker.io. This means that relative URLs, such as "redhat/rhel" resolve to
docker.io/redhat/rhel.

The special name "library/*" maps to direct, non-prefixed images. For instance: "docker.io/rhel".

4.2. Redirection of Requests

Requests for Red Hat content are redirected from docker.io to registry.access.redhat.com. The
following mappings describe this redirection:

docker.io/rhel → registry.access.redhat.com/rhel (alias for rhel7)

docker.io/rhel7 → registry.access.redhat.com/rhel7

docker.io/rhel6 → registry.access.redhat.com/rhel6

docker.io/redhat/* → registry.access.redhat.com/redhat/*

The version of Docker that ships with Red Hat Enterprise Linux 7.2 contacts the internal Red Hat registry
by default. This allows Red Hat to segment the namespace by registry.

The registry content is a mapping of tagged names and does not involve any copying of content. This
mapping is achieved by means of multiple symbolic links. Red Hat keeps these links up-to-date to
ensure the integrity of your data.

The REPO is a repository containing a number of explicitly tagged and a number of hidden layers. An
'IMAGE' is a specific layer-complete branch within a repository. Often the terms 'image' and 'repository'
are used synonymously, even thought they are not the same. For instance, different images can be
tagged into a single repository.

Red Hat Enterprise Linux Atomic Host 7 Recommended Practices for Container Development

8

CHAPTER 5. PROCESS MANAGEMENT
This section on process management covers two different situations:

1. the single-process container, which houses the files that the container needs to do its job

2. the managed-multiprocess container, which consists of several heterogeneous processes
running at the same time

Apache is an example of a single-process container. Apache does all of its own logging, which means that
it does not require an external container to do its logging. This means that using systemd in this case
does not offer any benefits.

GNOME 3 is an example of a managed-multiprocess container. Attempting to manage this kind of
container manually (for instance, trying to get upower and DBUS and logging working together) is more
onerous than simply getting systemd to work.

5.1. Running systemd in a Container

In the case of the managed-multiprocess container, implement systemd to manage the several
processes running within the container. To run systemd in a container, run a command similar to the
following command:

$ sudo docker run -it IMAGE /bin/bash

NOTE

The above command (-it) launches an interactive-tty container running systemd.

For more historical context on running systemd in a container, see Dan Walsh’s May 2014 blog post on
the matter: Running systemd within a Docker Container .

5.1.1. journald and systemd in a container

Disable journal auditing in containers. Permit only the docker host to run journald. Journal auditing is a
kernel feature, and only one instance of journald can use it at a time. (It is fine if the docker host is still
running journald.)

5.1.2. Services and containers

Services work out of the box in containers. Services "just work" in containers. No special configuration is
necessary for services to work in containers.

5.1.3. Managing Hardware that is Outside the Container

It is possible to create a container that uses systemd to manage outside hardware, but so configuring a
container makes it non-portable because the container expects the specific hardware setup against
which it is configured to be available for management.

5.1.4. systemd and Zombies

systemd solves the zombie problem. When processes die and become zombies, init 1 reaps them. This

CHAPTER 5. PROCESS MANAGEMENT

9

http://developerblog.redhat.com/2014/05/05/running-systemd-within-docker-container/

systemd solves the zombie problem. When processes die and become zombies, init 1 reaps them. This
is just as true inside a container as it is outside a container. Expect systemd inside a container to reap
zombies in exactly the way you have come to expect it to reap zombies outside a container.

If you start a container without systemd (or, for instance, sysv), processes that die in that container will
never be reaped.

Red Hat Enterprise Linux Atomic Host 7 Recommended Practices for Container Development

10

CHAPTER 6. LINTER FOR DOCKERFILE
Linter for Dockerfile is a utility that checks Dockerfiles for errors helping you build valid Dockerfiles.

You need a Red Hat login and a valid subscription to access Linter for Dockerfile.

Access the Linter for Dockerfile utility here: https://access.redhat.com/labs/linterfordockerfile/

To validate your Dockerfile:

1. Upload a Dockerfile by either providing a URL to the Dockerfile or manually paste in the content
of a Dockerfile

2. Select a specific profile (for instance, "Red Hat ISV").

3. Select Check.

CHAPTER 6. LINTER FOR DOCKERFILE

11

https://access.redhat.com/labs/linterfordockerfile/

	Table of Contents
	1. DEPRECATION NOTICE
	CHAPTER 1. OVERVIEW
	1.1. Container Provenance
	1.1.1. The Risks of "docker pull"

	CHAPTER 2. BUILDING CONTAINERS
	CHAPTER 3. LABELS
	3.1. Labels Example

	CHAPTER 4. IMAGE-NAMING CONVENTIONS
	4.1. Red Hat’s Naming Policy
	4.2. Redirection of Requests

	CHAPTER 5. PROCESS MANAGEMENT
	5.1. Running systemd in a Container
	5.1.1. journald and systemd in a container
	5.1.2. Services and containers
	5.1.3. Managing Hardware that is Outside the Container
	5.1.4. systemd and Zombies

	CHAPTER 6. LINTER FOR DOCKERFILE

