& RedHat

Red Hat Enterprise Linux 9

Installing and using dynamic programming
languages

Installing and using Python and PHP in Red Hat Enterprise Linux 9

Last Updated: 2024-04-17

Red Hat Enterprise Linux 9 Installing and using dynamic programming
languages

Installing and using Python and PHP in Red Hat Enterprise Linux 9

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Install and use Python 3, package Python 3 RPMs, and learn how to handle interpreter directives in
Python scripts. Install the PHP scripting language, use PHP with the Apache HTTP Server or the
ngninx web server, and run a PHP script from a command-line interface.

Table of Contents

MAKING OPEN SOURCEMOREINCLUSIVE e

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ...t

CHAPTER1.INTRODUCTIONTO PYTHON

11. PYTHON VERSIONS
1.2. MAJOR DIFFERENCES IN THE PYTHON ECOSYSTEM SINCE RHEL 8

CHAPTER 2. INSTALLING AND USINGPYTHONo i

2.1 INSTALLING PYTHON 3

2.2.INSTALLING ADDITIONAL PYTHON 3 PACKAGES
2.3.INSTALLING ADDITIONAL PYTHON 3 TOOLS FOR DEVELOPERS
2.4.USING PYTHON

CHAPTER 3. PACKAGING PYTHON3RPMS ...

3.1. SPEC FILE DESCRIPTION FOR A PYTHON PACKAGE
3.2. COMMON MACROS FOR PYTHON 3 RPMS

3.3. USING AUTOMATICALLY GENERATED DEPENDENCIES FOR PYTHON RPMS

CHAPTER 4. HANDLING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS

4. MODIFYING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS

CHAPTERS.INSTALLING TCL/TK o i

5.1. INTRODUCTION TO TCL/TK
5.2.INSTALLING TCL
5.3.INSTALLING TK

CHAPTER 6. USING THE PHP SCRIPTING LANGUAGE ooiiiian,

6.1. INSTALLING THE PHP SCRIPTING LANGUAGE
6.2. USING THE PHP SCRIPTING LANGUAGE WITH A WEB SERVER
6.2.1. Using PHP with the Apache HTTP Server
6.2.2. Using PHP with the nginx web server
6.3. RUNNING A PHP SCRIPT USING THE COMMAND-LINE INTERFACE
6.4. ADDITIONAL RESOURCES

Table of Contents

ul

N

O 00 N

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Login to the Jira website.
2. Click Create in the top navigation bar
3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.

https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. INTRODUCTION TO PYTHON

CHAPTER 1. INTRODUCTION TO PYTHON

Python is a high-level programming language that supports multiple programming paradigms, such as
object-oriented, imperative, functional, and procedural paradigms. Python has dynamic semantics and
can be used for general-purpose programming.

With Red Hat Enterprise Linux, many packages that are installed on the system, such as packages
providing system tools, tools for data analysis, or web applications, are written in Python. To use these
packages, you must have the python* packages installed.

1.1. PYTHON VERSIONS

Python 3.9is the default Python implementation in RHEL 9. Python 3.9is distributed in a non-modular
python3 RPM package in the BaseOS repository and is usually installed by default. Python 3.9 will be
supported for the whole life cycle of RHEL 9.

Additional versions of Python 3 are distributed as non-modular RPM packages with a shorter life cycle
through the AppStream repository in minor RHEL 9 releases. You can install these additional Python 3
versions in parallel with Python 3.9.

Python 2is not distributed with RHEL 9.

Table 1.1. Python versions in RHEL 9

Version Package to Command examples Available since Life cycle

install

Python 3.9 python3 python3, pip3 RHEL 9.0 fullRHEL 9

Python 3.1 python3.11 python3.11, pip3.11 RHEL 9.2 shorter

For details about the length of support, see Red Hat Enterprise Linux Life Cycle and Red Hat Enterprise
Linux Application Streams Life Cycle.

1.2. MAJOR DIFFERENCES IN THE PYTHON ECOSYSTEM SINCE RHEL
8

The following are the major changes in the Python ecosystem in RHEL 9 compared to RHEL 8:

The unversioned python command

The unversioned form of the python command (/usr/bin/python) is available in the python-
unversioned-command package. On some systems, this package is not installed by default. To install
the unversioned form of the python command manually, use the dnf install /usr/bin/python command.

In RHEL 9, the unversioned form of the python command points to the default Python 3.9 version and
it is an equivalent to the python3 and python3.9 commands. In RHEL 9, you cannot configure the
unversioned command to point to a different version than Python 3.9.

The python command is intended for interactive sessions. In production, it is recommended to use
python3, python3.9, or python3.11 explicitly.

https://access.redhat.com/support/policy/updates/errata
https://access.redhat.com/support/policy/updates/rhel-app-streams-life-cycle

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

You can uninstall the unversioned python command by using the dnf remove /usr/bin/python
command.

If you need a different python or python3 command, you can create custom symlinks in /usr/local/bin
or ~/.local/bin, or use a Python virtual environment.

Several other unversioned commands are available, such as /ust/bin/pip in the python3-pip package. In
RHEL 9, all unversioned commands point to the default Python 3.9 version.

Architecture-specific Python wheels

Architecture-specific Python wheels built on RHEL 9 newly adhere to the upstream architecture
naming, which allows customers to build their Python wheels on RHEL 9 and install them on non-RHEL
systems. Python wheels built on previous releases of RHEL are compatible with later versions and can
be installed on RHEL 9. Note that this affects only wheels containing Python extensions, which are built
for each architecture, not Python wheels with pure Python code, which is not architecture-specific.

CHAPTER 2. INSTALLING AND USING PYTHON

CHAPTER 2. INSTALLING AND USING PYTHON

In RHEL 9, Python 3.9is the default Python implementation. Since RHEL 9.2, Python 3.11is available as
the python3.11 package suite.

The unversioned python command points to the default Python 3.9 version.

2.1.INSTALLING PYTHON 3

The default Python implementation is usually installed by default. To install it manually, use the
following procedure.

Procedure

® Toinstall Python 3.9, use:
I # dnf install python3
® Toinstall Python 3.11, use:

I # dnf install python3.11

Verification steps

® To verify the Python version installed on your system, use the --version option with the python
command specific for your required version of Python.

® For Python 3.9
I $ python3 --version
® For Python 3.11:

I $ python3.11 --version

2.2. INSTALLING ADDITIONAL PYTHON 3 PACKAGES

Packages prefixed with python3- contain add-on modules for the default Python 3.9 version. Packages
prefixed with python3.11- contain add-on modules for Python 3.11.

Procedure

® Toinstall the Requests module for Python 3.9, use:
I # dnf install python3-requests

® Toinstall the pip package installer from Python 3.9, use:
I # dnf install python3-pip

® Toinstall the pip package installer from Python 3.11, use:

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages
I # dnf install python3.11-pip

Additional resources

® Upstream documentation about Python add-on modules

2.3.INSTALLING ADDITIONAL PYTHON 3 TOOLS FOR DEVELOPERS

Additional Python tools for developers are distributed mostly through the CodeReady Linux Builder
(CRB) repository.

The python3-pytest package and its dependencies are available in the AppStream repository.
The CRB repository contains, for example, the following packages:

e python3*-idle

e python3*-debug

e python3*-Cython

o python3.11-pytest and its dependencies.

IMPORTANT

The content in the CodeReady Linux Builder repository is unsupported by Red Hat.

NOTE

Not all upstream Python-related packages are available in RHEL.
To install packages from the CRB repository, use the following procedure.

Procedure

1. Enable the CodeReady Linux Builder repository:

I # subscription-manager repos --enable codeready-builder-for-rhel-9-x86_64-rpms

2. Install the python3*-Cython package:

® For Python 3.9
I # dnf install python3-Cython
® For Python 3.11:

I # dnf install python3.11-Cython

Additional resources

® How to enable and make use of content within CodeReady Linux Builder

https://docs.python.org/3/tutorial/modules.html
https://access.redhat.com/articles/4348511

CHAPTER 2. INSTALLING AND USING PYTHON

® Package manifest

2.4. USING PYTHON

The following procedure contains examples of running the Python interpreter or Python-related
commands.

Prerequisites

® Ensure that Python s installed.

e |f you want to download and install third-party applications for Python 3.11, install the
python3.11-pip package.

Procedure

® To run the Python 3.9interpreter or related commands, use, for example:

$ python3

$ python3 -m venv --help

$ python3 -m pip install package
$ pip3 install package

® To run the Python 3.11interpreter or related commands, use, for example:

$ python3.11

$ python3.11 -m venv --help

$ python3.11 -m pip install package
$ pip3.11 install package

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/package_manifest/index

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

CHAPTER 3. PACKAGING PYTHON 3 RPMS

You can install Python packages on your system either from the upstream PyPI repository using the pip
installer, or using the DNF package manager. DNF uses the RPM package format, which offers more
downstream control over the software.

The packaging format of native Python packages is defined by Python Packaging Authority (PyPA)
Specifications. Most Python projects use the distutils or setuptools utilities for packaging, and defined
package information in the setup.py file. However, possibilities of creating native Python packages have
evolved over time. For more information about emerging packaging standards, see pyproject-rpm-

macros.

This chapter describes how to package a Python project that uses setup.py into an RPM package. This
approach provides the following advantages compared to native Python packages:

® Dependencies on Python and non-Python packages are possible and strictly enforced by the
DNF package manager.

® You can cryptographically sign the packages. With cryptographic signing, you can verify,
integrate, and test content of RPM packages with the rest of the operating system.

® You can execute tests during the build process.

3.1. SPECFILE DESCRIPTION FORA PYTHON PACKAGE

A SPEC file contains instructions that the rpmbuild utility uses to build an RPM. The instructions are
included in a series of sections. A SPEC file has two main parts in which the sections are defined:

® Preamble (contains a series of metadata items that are used in the Body)
® Body (contains the main part of the instructions)

An RPM SPEC file for Python projects has some specifics compared to non-Python RPM SPEC files.

IMPORTANT

A name of any RPM package of a Python library must always include the python3- or
python3.11- prefix.

Other specifics are shown in the following SPEC file example for the python3*-pello package. For
description of such specifics, see the notes below the example.

An example SPEC file for the pello program written in Python

%global python3_pkgversion 3.11 ﬂ
Name: python-pello 9
Version: 1.0.2

Release: 1%{?dist}

Summary: Example Python library

License: MIT
URL: https://github.com/fedora-python/Pello
Source: %{url}/archive/vY%{version}/Pello-%{version}.tar.gz

10

https://www.pypa.io/en/latest/specifications/
https://gitlab.com/redhat/centos-stream/rpms/pyproject-rpm-macros/

CHAPTER 3. PACKAGING PYTHON 3 RPMS

BuildArch: noarch
BuildRequires: python%{python3_pkgversion}-devel 6

Build dependencies needed to be specified manually
BuildRequires: python%{python3_pkgversion}-setuptools

Test dependencies needed to be specified manually
Also runtime dependencies need to be BuildRequired manually to run tests during build
BuildRequires: python%{python3_pkgversion}-pytest >= 3

Y%global _description %{expand:
Pello is an example package with an executable that prints Hello World! on the command line.}

Yedescription %_description

Y%package -n python%{python3_pkgversion}-pello ﬂ
Summary: Ye{summary}

Y%description -n python%{python3_pkgversion}-pello %_description

Yoprep
Yoautosetup -p1 -n Pello-%{version}

Ybuild
The macro only supported projects with setup.py
Y%py3_build

Yinstall
The macro only supported projects with setup.py
Y%py3_install

%check G

Y%{pytest}

Note that there is no %%files section for the unversioned python module
Yofiles -n python%{python3_pkgversion}-pello

%doc README.md

Yolicense LICENSE.txt

%{_bindir}/pello_greeting

The library files needed to be listed manually
Y%{python3_sitelib}/pello/

The metadata files needed to be listed manually
%{python3_sitelib}/Pello-*.egg-info/

1

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

2]

6]

By defining the python3_pkgversion macro, you set which Python version this package will be
built for. To build for the default Python version 3.9, either set the macro to its default value 3 or
remove the line entirely.

When packaging a Python project into RPM, always add the python- prefix to the original name of
the project. The original name here is pello and, therefore, the name of the Source RPM (SRPM)
is python-pello.

BuildRequires specifies what packages are required to build and test this package. In
BuildRequires, always include items providing tools necessary for building Python packages:
python3-devel (or python3.11-devel) and the relevant projects needed by the specific software
that you package, for example, python3-setuptools (or python3.11-setuptools) or the runtime
and testing dependencies needed to run the tests in the %check section.

When choosing a name for the binary RPM (the package that users will be able to install), add a
versioned Python prefix. Use the python3- prefix for the default Python 3.9 or the python3.11-
prefix for Python 3.11. You can use the %{python3_pkgversion} macro, which evaluates to 3 for
the default Python version 3.9 unless you set it to an explicit version, for example, 3.11 (see
footnote 1).

The %py3_build and %py3_install macros run the setup.py build and setup.py install commands,
respectively, with additional arguments to specify installation locations, the interpreter to use, and
other details.

The %check section should run the tests of the packaged project. The exact command depends on
the project itself, but it is possible to use the %pytest macro to run the pytest command in an
RPM-friendly way.

3.2. COMMON MACROS FOR PYTHON 3 RPMS

In a SPEC file, always use the macros that are described in the following Macros for Python 3 RPMs table
rather than hardcoding their values. You can redefine which Python 3 version is used in these macros by
defining the python3_pkgversion macro on top of your SPEC file (see Section 3.1, "SPEC file
description for a Python package”). If you define the python3_pkgversion macro, the values of the
macros described in the following table will reflect the specified Python 3 version.

Table 3.1. Macros for Python 3 RPMs

Normal Definition Description

% 3 The Python version that is used by all other

{python3_pkgversion macros. Can be redefined to 3.11 to use

$ Python 3.11

%{python3} /usr/bin/python3 The Python 3 interpreter

%{python3_version} 39 The major.minor version of the Python 3
interpreter

%{python3_sitelib} /usr/lib/python3.9/site-packages The location where pure-Python modules are
installed

12

CHAPTER 3. PACKAGING PYTHON 3 RPMS

Normal Definition Description

%{python3_sitearch} /usr/lib64/python3.9/site- The location where modules containing
packages architecture-specific extension modules are
installed
%py3_build Runs the setup.py build command with

arguments suitable for an RPM package

%py3_install Runs the setup.py install command with
arguments suitable for an RPM package

% s The default set of flags for the Python
{py3_shebang_flags} interpreter directives macro,
%py3_shebang_fix

%py3_shebang_fix Changes Python interpreter directives to #! %
{python3}, preserves any existing flags (if
found), and adds flags defined in the %
{py3_shebang_flags} macro

Additional resources

® Python macros in upstream documentation

3.3. USING AUTOMATICALLY GENERATED DEPENDENCIES FOR
PYTHON RPMS

The following procedure describes how to use automatically generated dependencies when packaging a
Python project as an RPM.

Prerequisites

® A SPEC file for the RPM exists. For more information, see SPEC file description for a Python
package.

Procedure

1. Make sure that one of the following directories containing upstream-provided metadata is
included in the resulting RPM:

e _dist-info
® .egg-info

The RPM build process automatically generates virtual pythonX.Ydist provides from these
directories, for example:

I python3.9dist(pello)

13

https://docs.fedoraproject.org/en-US/packaging-guidelines/Python_201x/#_macros

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

The Python dependency generator then reads the upstream metadata and generates
runtime requirements for each RPM package using the generated pythonX.Ydist virtual
provides. For example, a generated requirements tag might look as follows:

I Requires: python3.9dist(requests)

2. Inspect the generated requires.

3. Toremove some of the generated requires, use one of the following approaches:

a. Modify the upstream-provided metadata in the %prep section of the SPEC file.
b. Use automatic filtering of dependencies described in the upstream documentation.
4. To disable the automatic dependency generator, include the %{?

python_disable_dependency_generator} macro above the main package’s %description
declaration.

Additional resources

® Automatically generated dependencies

14

https://fedoraproject.org/w/index.php?title=Packaging:AutoProvidesAndRequiresFiltering&oldid=530706
https://docs.fedoraproject.org/en-US/packaging-guidelines/Python_201x/#_automatically_generated_dependencies

CHAPTER 4. HANDLING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS

CHAPTER 4. HANDLING INTERPRETER DIRECTIVES IN
PYTHON SCRIPTS

In Red Hat Enterprise Linux 9, executable Python scripts are expected to use interpreter directives
(also known as hashbangs or shebangs) that explicitly specify at a minimum the major Python version.
For example:

#!/usr/bin/python3
#!/usr/bin/python3.9
#!/usr/bin/python3.11

The /ust/lib/rpm/redhat/brp-mangle-shebangs buildroot policy (BRP) script is run automatically when
building any RPM package, and attempts to correct interpreter directives in all executable files.

The BRP script generates errors when encountering a Python script with an ambiguous interpreter
directive, such as:

I #!/usr/bin/python

or

I #!/usr/bin/env python

4.1. MODIFYING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS

Use the following procedure to modify interpreter directives in Python scripts that cause build errors at
RPM build time.

Prerequisites

® Some of the interpreter directives in your Python scripts cause a build error.

Procedure
® To modify interpreter directives, complete one of the following tasks:

o Use the following macro in the %prep section of your SPEC file:
I # %py3_shebang_fix SCRIPTNAME ...

SCRIPTNAME can be any file, directory, or a list of files and directories.

As a result, all listed files and all .py files in listed directories will have their interpreter
directives modified to point to %{python3}. Existing flags from the original interpreter
directive will be preserved and additional flags defined in the %{py3_shebang_flags}
macro will be added. You can redefine the %{py3_shebang_flags} macro in your SPEC file
to change the flags that will be added.

o Apply the pathfix.py script from the python3-devel package:
I # pathfix.py -pn -i %{python3} PATH ...

You can specify multiple paths. If a PATH s a directory, pathfix.py recursively scans for any

15

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

Python scripts matching the pattern A[a-zA-Z0-9_]+\.py$, not only those with an ambiguous
interpreter directive. Add the command above to the %prep section or at the end of the
%install section.

o Modify the packaged Python scripts so that they conform to the expected format. For this
purpose, you can use the pathfix.py script outside the RPM build process, too. When
running pathfix.py outside an RPM build, replace %{python3} from the preceding example
with a path for the interpreter directive, such as /usr/bin/python3 or /usr/bin/python3.11.

Additional resources

® |nterpreter invocation

16

https://docs.fedoraproject.org/en-US/packaging-guidelines/Python/#_interpreter_invocation

CHAPTER 5. INSTALLING TCL/TK

CHAPTERS. INSTALLING TCL/TK

S5.1. INTRODUCTION TO TCL/TK

Tcl is a dynamic programming language, while Tk is a graphical user interface (GUI) toolkit. They
provide a powerful and easy-to-use platform for developing cross-platform applications with graphical
interfaces. As a dynamic programming language, 'Tcl' provides simple and flexible syntax for writing
scripts. The tel package provides the interpreter for this language and the C library. You can use Tk as
GUI toolkit that provides a set of tools and widgets for creating graphical interfaces. You can use

various user interface elements such as buttons, menus, dialog boxes, text boxes, and canvas for drawing
graphics. Tk is the GUI for many dynamic programming languages.

For more information about Tcl/Tk, see the Tcl/Tk manual or Tcl/Tk documentation web page.

5.2. INSTALLING TCL

The default Tel implementation is usually installed by default. To install it manually, use the following
procedure.

Procedure

® Toinstall Tel, use:

I # dnf install tcl

Verification steps

® To verify the Tcl version installed on your system, run the interpreter tclsh.
I $ tclsh

® |n the interpreter run this command:

% info patchlevel
8.6

® You can exit the interpreter interface by pressing Ctrl+C

S5.3.INSTALLING TK

The default Tk implementation is usually installed by default. To install it manually, use the following
procedure.

Procedure

® Toinstall Tk, use:

I # dnf install tk

Verification steps

17

https://www.tcl.tk/man/tcl8.6/
https://www.tcl.tk/doc/

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

® To verify the Tk version installed on your system, run the window shell wish. You need to be
running a graphical display.

I $ wish
® |n the shell run this command:

% puts $tk_version
8.6

® You can exit the interpreter interface by pressing Ctrl+C

18

CHAPTER 6. USING THE PHP SCRIPTING LANGUAGE

CHAPTER 6. USING THE PHP SCRIPTING LANGUAGE

Hypertext Preprocessor (PHP) is a general-purpose scripting language mainly used for server-side
scripting, which enables you to run the PHP code using a web server.

In RHEL 9, PHP is available in the following versions and formats:
® PHP 8.0 as the php RPM package

® PHP 8.1as the php:8.1 module stream

6.1. INSTALLING THE PHP SCRIPTING LANGUAGE

This section describes how to install PHP.
Procedure
® Toinstall PHP 8.0, use:

I # dnf install php

® Toinstall the php:8.1 module stream with the default profile, use:
I # dnf module install php:8.1

The default common profile installs also the php-fpm package, and preconfigures PHP for use
with the Apache HTTP Server or nginx.

® Toinstall a specific profile of the php:8.1 module stream, use:
I # dnf module install php:8.1/profile

Available profiles are as follows:

e common - The default profile for server-side scripting using a web server. It includes the most
widely used extensions.

® minimal - This profile installs only the command-line interface for scripting with PHP without
using a web server.

e devel - This profile includes packages from the common profile and additional packages for
development purposes.
For example, to install PHP 8.1 for use without a web server, use:

I # dnf module install php:8.1/minimal

Additional resources

® Managing software with the DNF tool

6.2. USING THE PHP SCRIPTING LANGUAGE WITH A WEB SERVER

19

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/managing_software_with_the_dnf_tool

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

6.2.1. Using PHP with the Apache HTTP Server

In Red Hat Enterprise Linux 9, the Apache HTTP Server enables you to run PHP as a FastCGl process
server. FastCGl Process Manager (FPM) is an alternative PHP FastCGIl daemon that allows a website to
manage high loads. PHP uses FastCGl Process Manager by default in RHEL 9.

You can run the PHP code using the FastCGl process server.

Prerequisites

® The PHP scripting language is installed on your system.

Procedure

1. Install the httpd package:
I # dnf install httpd

2. Start the Apache HTTP Server:
I # systemctl start httpd

Or, if the Apache HTTP Server is already running on your system, restart the httpd service
after installing PHP:

I # systemctl restart httpd

3. Start the php-fpm service:
I # systemctl start php-fpm

4. Optional: Enable both services to start at boot time:
I # systemctl enable php-fpm httpd

5. To obtain information about your PHP settings, create the index.php file with the following
content in the /var/www/html/ directory:

I # echo '<?php phpinfo(); ?>' > /var/www/html/index.php

6. Torun the index.php file, point the browser to:

I http://<hostname>/

7. Optional: Adjust configuration if you have specific requirements:

e /etc/httpd/conf/httpd.conf - generic httpd configuration
e /etc/httpd/conf.d/php.conf - PHP-specific configuration for httpd

e Jusr/lib/systemd/system/httpd.service.d/php-fpm.conf - by default, the php-fpm service
is started with httpd

20

CHAPTER 6. USING THE PHP SCRIPTING LANGUAGE

e /etc/php-fpm.conf - FPM main configuration

e /etc/php-fpm.d/www.conf - default www pool configuration

Example 6.1. Running a "Hello, World!" PHP script using the Apache HTTP Server

1. Create a hello directory for your project in the /var/www/html/ directory:

I # mkdir hello

2. Create a hello.php file in the /var/www/html/hello/ directory with the following content:

<IDOCTYPE html>
<html>
<head>
<title>Hello, World! Page</title>
</head>
<body>
<?php
echo 'Hello, World!";
7>

</body>
</html>

3. Start the Apache HTTP Server:
I # systemctl start httpd

4. To run the hello.php file, point the browser to:
I http://<hostname>/hello/hello.php

As a result, a web page with the “Hello, World!” text is displayed.

Additional resources

® Setting up the Apache HTTP web server

6.2.2. Using PHP with the nginx web server

You can run PHP code through the nginx web server.

Prerequisites

® The PHP scripting language is installed on your system.

Procedure

1. Install the nginx package:

I # dnf install nginx

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deploying_web_servers_and_reverse_proxies/setting-apache-http-server_deploying-web-servers-and-reverse-proxies

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

2. Start the nginx server:
I # systemctl start nginx

Or, if the nginx server is already running on your system, restart the nginx service after
installing PHP:

I # systemctl restart nginx

3. Start the php-fpm service:

I # systemctl start php-fpm

4. Optional: Enable both services to start at boot time:

I # systemctl enable php-fpm nginx

5. To obtain information about your PHP settings, create the index.php file with the following
content in the /usr/share/nginx/html/ directory:

I # echo '<?php phpinfo(); ?>' > /usr/share/nginx/html/index.php

6. Torun the index.php file, point the browser to:

I http://<hostname>/

7. Optional: Adjust configuration if you have specific requirements:

e /etc/nginx/nginx.conf - nginx main configuration
e /etc/nginx/conf.d/php-fpm.conf - FPM configuration for nginx
e /etc/php-fpm.conf - FPM main configuration

e /etc/php-fpm.d/www.conf - default www pool configuration

Example 6.2. Running a "Hello, World!" PHP script using the nginx server

1. Create a hello directory for your project in the /usr/share/nginx/html/ directory:

I # mkdir hello

2. Create a hello.php file in the /usr/share/nginx/html/hello/ directory with the following
content:

<IDOCTYPE html>
<html>
<title>Hello, World! Page</title>

<head>
</head>
<body>
<?php
echo 'Hello, World!";

22

CHAPTER 6. USING THE PHP SCRIPTING LANGUAGE

7>

</body>
</html>

3. Start the nginx server:

I # systemctl start nginx

4. To run the hello.php file, point the browser to:
I http://<hostname>/hello/hello.php

As a result, a web page with the “Hello, World!” text is displayed.

Additional resources

® Setting up and configuring NGINX

6.3. RUNNING A PHP SCRIPT USING THE COMMAND-LINE
INTERFACE

A PHP script is usually run using a web server, but also can be run using the command-line interface.

Prerequisites

® The PHP scripting language is installed on your system.

Procedure

1. In a text editor, create a filename.php file
Replace filename with the name of your file.

2. Execute the created filename.php file from the command line:
I # php filename.php
Example 6.3. Running a "Hello, World!" PHP script using the command-line interface
1. Create a hello.php file with the following content using a text editor:

<?php
echo 'Hello, World!";
7>

2. Execute the hello.php file from the command line:

I # php hello.php

As a result, “"Hello, World!” is printed.

23

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/deploying_web_servers_and_reverse_proxies/setting-up-and-configuring-nginx_deploying-web-servers-and-reverse-proxies

Red Hat Enterprise Linux 9 Installing and using dynamic programming languages

6.4. ADDITIONAL RESOURCES

e httpd(8) — The manual page for the httpd service containing the complete list of its command-
line options.

e httpd.conf(5) — The manual page for httpd configuration, describing the structure and location
of the httpd configuration files.

® nginx(8) — The manual page for the nginx web server containing the complete list of its
command-line options and list of signals.

® php-fpm(8) — The manual page for PHP FPM describing the complete list of its command-line
options and configuration files.

24

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCTION TO PYTHON
	1.1. PYTHON VERSIONS
	1.2. MAJOR DIFFERENCES IN THE PYTHON ECOSYSTEM SINCE RHEL 8

	CHAPTER 2. INSTALLING AND USING PYTHON
	2.1. INSTALLING PYTHON 3
	2.2. INSTALLING ADDITIONAL PYTHON 3 PACKAGES
	2.3. INSTALLING ADDITIONAL PYTHON 3 TOOLS FOR DEVELOPERS
	2.4. USING PYTHON

	CHAPTER 3. PACKAGING PYTHON 3 RPMS
	3.1. SPEC FILE DESCRIPTION FOR A PYTHON PACKAGE
	3.2. COMMON MACROS FOR PYTHON 3 RPMS
	3.3. USING AUTOMATICALLY GENERATED DEPENDENCIES FOR PYTHON RPMS

	CHAPTER 4. HANDLING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS
	4.1. MODIFYING INTERPRETER DIRECTIVES IN PYTHON SCRIPTS

	CHAPTER 5. INSTALLING TCL/TK
	5.1. INTRODUCTION TO TCL/TK
	5.2. INSTALLING TCL
	5.3. INSTALLING TK

	CHAPTER 6. USING THE PHP SCRIPTING LANGUAGE
	6.1. INSTALLING THE PHP SCRIPTING LANGUAGE
	6.2. USING THE PHP SCRIPTING LANGUAGE WITH A WEB SERVER
	6.2.1. Using PHP with the Apache HTTP Server
	6.2.2. Using PHP with the nginx web server

	6.3. RUNNING A PHP SCRIPT USING THE COMMAND-LINE INTERFACE
	6.4. ADDITIONAL RESOURCES

