
Red Hat Directory Server 11

Administration Guide

Basic and advanced administration of Directory Server

Last Updated: 2024-01-30

Red Hat Directory Server 11 Administration Guide

Basic and advanced administration of Directory Server

Marc Muehlfeld
Red Hat Customer Content Services
mmuehlfeld@redhat.com

Petr Bokoč
Red Hat Customer Content Services

Tomáš Čapek
Red Hat Customer Content Services

Petr Kovář
Red Hat Customer Content Services

Ella Deon Ballard
Red Hat Customer Content Services

Legal Notice

Copyright © 2021 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide covers both GUI and command-line procedures for managing Directory Server instances
and databases.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS
1.1. SYSTEM REQUIREMENTS
1.2. FILE LOCATIONS
1.3. SUPPORTED METHODS TO CONFIGURE DIRECTORY SERVER
1.4. LOGGING INTO DIRECTORY SERVER USING THE WEB CONSOLE
1.5. STARTING AND STOPPING A DIRECTORY SERVER INSTANCE
1.6. CREATING A NEW DIRECTORY SERVER INSTANCE
1.7. REMOVING A DIRECTORY SERVER INSTANCE
1.8. SETTING DIRECTORY SERVER CONFIGURATION PARAMETERS
1.9. CHANGING THE LDAP AND LDAPS PORT NUMBERS
1.10. USING DIRECTORY SERVER PLUG-INS
1.11. CREATING AND USING A .DSRC FILE TO SET DEFAULT OPTIONS FOR DIRECTORY SERVER COMMAND-
LINE UTILITIES

CHAPTER 2. CONFIGURING DIRECTORY DATABASES
2.1. CREATING AND MAINTAINING SUFFIXES
2.2. CREATING AND MAINTAINING DATABASES
2.3. CREATING AND MAINTAINING DATABASE LINKS
2.4. CONFIGURING CASCADING CHAINING
2.5. USING REFERRALS
2.6. VERIFYING THE INTEGRITY OF BACK-END DATABASES

CHAPTER 3. MANAGING DIRECTORY ENTRIES
3.1. MANAGING DIRECTORY ENTRIES USING THE COMMAND LINE
3.2. MANAGING DIRECTORY ENTRIES USING THE WEB CONSOLE

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES
4.1. TRACKING MODIFICATIONS TO THE DATABASE THROUGH UPDATE SEQUENCE NUMBERS
4.2. TRACKING ENTRY MODIFICATIONS THROUGH OPERATIONAL ATTRIBUTES
4.3. TRACKING THE BIND DN FOR PLUG-IN INITIATED UPDATES
4.4. TRACKING PASSWORD CHANGE TIMES

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY
5.1. HOW REFERENTIAL INTEGRITY WORKS
5.2. USING REFERENTIAL INTEGRITY WITH REPLICATION
5.3. ENABLING REFERENTIAL INTEGRITY
5.4. THE REFERENTIAL INTEGRITY UPDATE INTERVAL
5.5. DISPLAYING AND MODIFYING THE ATTRIBUTE LIST
5.6. CONFIGURING SCOPE FOR THE REFERENTIAL INTEGRITY

CHAPTER 6. POPULATING DIRECTORY DATABASES
6.1. IMPORTING DATA
6.2. EXPORTING DATA
6.3. BACKING UP DIRECTORY SERVER
6.4. RESTORING DIRECTORY SERVER

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES
7.1. ENFORCING ATTRIBUTE UNIQUENESS
7.2. ASSIGNING CLASS OF SERVICE
7.3. LINKING ATTRIBUTES TO MANAGE ATTRIBUTE VALUES
7.4. ASSIGNING AND MANAGING UNIQUE NUMERIC ATTRIBUTE VALUES

6

7
7
7
7
7
8
9
9

10
14
15

19

22
22
28
35
48
54
57

59
59
70

75
75
79
80
81

83
83
84
84
84
86
87

91
91

96
102
108

112
112
115

128
132

Table of Contents

1

. .

. .

. .

. .

. .

. .

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES
8.1. USING GROUPS
8.2. USING ROLES
8.3. AUTOMATICALLY CREATING DUAL ENTRIES
8.4. USING VIEWS
8.5. MANAGING ORGANIZATIONAL UNITS

CHAPTER 9. CONFIGURING SECURE CONNECTIONS
9.1. REQUIRING SECURE CONNECTIONS
9.2. SETTING A MINIMUM STRENGTH FACTOR
9.3. MANAGING THE NSS DATABASE USED BY DIRECTORY SERVER
9.4. ENABLING TLS
9.5. DISPLAYING THE ENCRYPTION PROTOCOLS ENABLED IN DIRECTORY SERVER
9.6. SETTING THE MINIMUM TLS ENCRYPTION PROTOCOL VERSION
9.7. SETTING THE HIGHEST TLS ENCRYPTION PROTOCOL VERSION
9.8. USING HARDWARE SECURITY MODULES
9.9. USING CERTIFICATE-BASED CLIENT AUTHENTICATION
9.10. SETTING UP SASL IDENTITY MAPPING
9.11. USING KERBEROS GSS-API WITH SASL
9.12. SETTING SASL MECHANISMS
9.13. USING SASL WITH LDAP CLIENTS

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION
10.1. ENCRYPTION KEYS
10.2. ENCRYPTION CIPHERS
10.3. CONFIGURING ATTRIBUTE ENCRYPTION
10.4. EXPORTING AND IMPORTING AN ENCRYPTED DATABASE
10.5. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE ENCRYPTION

CHAPTER 11. MANAGING FIPS MODE SUPPORT
Enabling FIPS Mode Support
Disabling FIPS Mode Support

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA
12.1. OVERVIEW OF SCHEMA
12.2. MANAGING OBJECT IDENTIFIERS
12.3. CREATING AN OBJECT CLASS
12.4. UPDATING AN OBJECT CLASS
12.5. REMOVING AN OBJECT CLASS
12.6. CREATING AN ATTRIBUTE
12.7. UPDATING AN ATTRIBUTE
12.8. REMOVING AN ATTRIBUTE
12.9. CREATING CUSTOM SCHEMA FILES
12.10. DYNAMICALLY RELOADING SCHEMA
12.11. TURNING SCHEMA CHECKING ON AND OFF
12.12. USING SYNTAX VALIDATION

CHAPTER 13. MANAGING INDEXES
13.1. ABOUT INDEXES
13.2. CREATING STANDARD INDEXES
13.3. CREATING NEW INDEXES TO EXISTING DATABASES
13.4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A CONTIGUOUS SUBSET OF A LARGE SEARCH
RESULT
13.5. CHANGING THE INDEX SORT ORDER

140
140
160
167
174
176

178
178
178
179
190
197
197
198
198
199
201

208
210
210

212
212
213
213
216
217

219
219
219

220
220
225
225
226
227
228
229
231

232
234
236
237

242
242
246
249

250
256

Administration Guide

2

. .

. .

. .

13.6. CHANGING THE WIDTH FOR INDEXED SUBSTRING SEARCHES
13.7. DELETING INDEXES

CHAPTER 14. FINDING DIRECTORY ENTRIES
14.1. FINDING DIRECTORY ENTRIES USING THE COMMAND LINE
14.2. FINDING ENTRIES USING THE WEB CONSOLE
14.3. LDAP SEARCH FILTERS
14.4. EXAMPLES OF COMMON LDAPSEARCHES
14.5. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE LIMITS
14.6. USING PERSISTENT SEARCH
14.7. SEARCHING WITH SPECIFIED CONTROLS

CHAPTER 15. MANAGING REPLICATION
15.1. REPLICATION OVERVIEW
15.2. SINGLE-SUPPLIER REPLICATION
15.3. MULTI-SUPPLIER REPLICATION
15.4. CASCADING REPLICATION
15.5. CONFIGURING BOOTSTRAP CREDENTIALS
15.6. CONFIGURING REPLICATION PARTNERS TO USE CERTIFICATE-BASED AUTHENTICATION
15.7. PROMOTING A CONSUMER OR HUB TO A SUPPLIER
15.8. ABOUT INITIALIZING A CONSUMER
15.9. DISABLING AND RE-ENABLING REPLICATION
15.10. REMOVING A DIRECTORY SERVER INSTANCE FROM THE REPLICATION TOPOLOGY
15.11. MANAGING ATTRIBUTES WITHIN FRACTIONAL REPLICATION
15.12. MANAGING DELETED ENTRIES WITH REPLICATION
15.13. CONFIGURING CHANGELOG ENCRYPTION
15.14. REMOVING THE CHANGELOG
15.15. EXPORTING THE REPLICATION CHANGELOG
15.16. IMPORTING THE REPLICATION CHANGELOG FROM AN LDIF-FORMATTED CHANGELOG DUMP
15.17. MOVING THE REPLICATION CHANGELOG DIRECTORY
15.18. TRIMMING THE REPLICATION CHANGELOG
15.19. FORCING REPLICATION UPDATES
15.20. SETTING REPLICATION TIMEOUT PERIODS
15.21. USING THE RETRO CHANGELOG PLUG-IN
15.22. DISPLAYING THE STATUS OF A SPECIFIC REPLICATION AGREEMENT
15.23. MONITORING THE REPLICATION TOPOLOGY
15.24. COMPARING TWO DIRECTORY SERVER INSTANCES
15.25. SOLVING COMMON REPLICATION CONFLICTS
15.26. TROUBLESHOOTING REPLICATION-RELATED PROBLEMS

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

16.1. ABOUT WINDOWS SYNCHRONIZATION
16.2. SUPPORTED ACTIVE DIRECTORY VERSIONS
16.3. SYNCHRONIZING PASSWORDS
16.4. SETTING UP SYNCHRONIZATION BETWEEN ACTIVE DIRECTORY AND DIRECTORY SERVER
16.5. SYNCHRONIZING USERS
16.6. SYNCHRONIZING GROUPS
16.7. CONFIGURING UNI-DIRECTIONAL SYNCHRONIZATION
16.8. CONFIGURING MULTIPLE SUBTREES AND FILTERS IN WINDOWS SYNCHRONIZATION
16.9. SYNCHRONIZING POSIX ATTRIBUTES FOR USERS AND GROUPS
16.10. DELETING AND RESURRECTING ENTRIES
16.11. SENDING SYNCHRONIZATION UPDATES
16.12. TROUBLESHOOTING

257
257

261
261

264
265
280
284
289
290

296
296
299
306
317
327
327
329
330
333
333
336
338
339
341

342
342
342
343
346
347
348
350
351
353
355
359

362
362
365
365
366
376
381

385
386
387
388
389
394

Table of Contents

3

. .

. .

. .

. .

. .

. .

CHAPTER 17. SETTING UP CONTENT SYNCHRONIZATION USING THE SYNCREPL PROTOCOL
17.1. CONFIGURING THE CONTENT SYNCHRONIZATION PLUG-IN USING THE COMMAND LINE

CHAPTER 18. MANAGING ACCESS CONTROL
18.1. ACCESS CONTROL PRINCIPLES
18.2. ACI PLACEMENT
18.3. ACI STRUCTURE
18.4. ACI EVALUATION
18.5. LIMITATIONS OF ACIS
18.6. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION TOPOLOGY
18.7. MANAGING ACIS USING THE COMMAND LINE
18.8. MANAGING ACIS USING THE WEB CONSOLE
18.9. DEFINING TARGETS
18.10. DEFINING PERMISSIONS
18.11. DEFINING BIND RULES
18.12. CHECKING ACCESS RIGHTS ON ENTRIES (GET EFFECTIVE RIGHTS)
18.13. LOGGING ACCESS CONTROL INFORMATION
18.14. ADVANCED ACCESS CONTROL: USING MACRO ACIS
18.15. SETTING ACCESS CONTROLS ON DIRECTORY MANAGER

CHAPTER 19. USING THE HEALTH CHECK FEATURE TO IDENTIFY PROBLEMS
19.1. RUNNING THE DIRECTORY SERVER HEALTH CHECK

CHAPTER 20. MANAGING USER AUTHENTICATION
20.1. SETTING USER PASSWORDS
20.2. SETTING PASSWORD ADMINISTRATORS
20.3. CHANGING PASSWORDS STORED EXTERNALLY
20.4. MANAGING THE PASSWORD POLICY
20.5. CONFIGURING TEMPORARY PASSWORD RULES
20.6. UNDERSTANDING PASSWORD EXPIRATION CONTROLS
20.7. MANAGING THE DIRECTORY MANAGER PASSWORD
20.8. CHECKING ACCOUNT AVAILABILITY FOR PASSWORDLESS ACCESS
20.9. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY
20.10. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES
20.11. REPLICATING ACCOUNT LOCKOUT ATTRIBUTES
20.12. ENABLING DIFFERENT TYPES OF BINDS
20.13. USING PASS-THROUGH AUTHENTICATION
20.14. USING ACTIVE DIRECTORY-FORMATTED USER NAMES FOR AUTHENTICATION
20.15. USING PAM FOR PASS THROUGH AUTHENTICATION
20.16. MANUALLY INACTIVATING USERS AND ROLES

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY
21.1. TYPES OF DIRECTORY SERVER LOG FILES
21.2. DISPLAYING LOG FILES
21.3. CONFIGURING LOG FILES
21.4. GETTING ACCESS LOG STATISTICS
21.5. MONITORING THE LOCAL DISK FOR GRACEFUL SHUTDOWN
21.6. MONITORING SERVER ACTIVITY
21.7. MONITORING DATABASE ACTIVITY
21.8. MONITORING DATABASE LINK ACTIVITY
21.9. ENABLING AND DISABLING COUNTERS
21.10. MONITORING DIRECTORY SERVER USING SNMP

CHAPTER 22. MAKING A HIGH-AVAILABILITY AND DISASTER RECOVERY PLAN

396
396

398
398
398
399
400
400
401
401
402
404
413
415
431
441
441

446

448
449

452
452
452
453
454
459
461

462
466
468
470
475
478
483
490
492
497

499
499
499
500
510
513
513
513
514
514
514

522

Administration Guide

4

. .

. .

. .

. .

. .

. .

22.1. IDENTIFYING POTENTIAL SCENARIOS
22.2. DEFINING THE TYPE OF ROLLOVER
22.3. IDENTIFYING USEFUL DIRECTORY SERVER FEATURES FOR DISASTER RECOVERY
22.4. DEFINING THE RECOVERY PROCESS
22.5. BASIC EXAMPLE: PERFORMING A RECOVERY

CHAPTER 23. CREATING TEST ENTRIES
23.1. CREATING AN LDIF FILE WITH EXAMPLE USER ENTRIES
23.2. CREATING AN LDIF FILE WITH EXAMPLE GROUP ENTRIES
23.3. CREATING AN LDIF FILE WITH AN EXAMPLE COS DEFINITION
23.4. CREATING AN LDIF FILE WITH EXAMPLE MODIFICATION STATEMENTS
23.5. CREATING AN LDIF FILE WITH NESTED EXAMPLE ENTRIES

APPENDIX A. USING LDAP CLIENT TOOLS
A.1. RUNNING EXTENDED OPERATIONS
A.2. COMPARING ENTRIES
A.3. CHANGING PASSWORDS
A.4. GENERATING LDAP URLS

APPENDIX B. LDAP DATA INTERCHANGE FORMAT
B.1. ABOUT THE LDIF FILE FORMAT
B.2. CONTINUING LINES IN LDIF
B.3. REPRESENTING BINARY DATA
B.4. SPECIFYING DIRECTORY ENTRIES USING LDIF
B.5. DEFINING DIRECTORIES USING LDIF
B.6. STORING INFORMATION IN MULTIPLE LANGUAGES

APPENDIX C. LDAP URLS
C.1. COMPONENTS OF AN LDAP URL
C.2. ESCAPING UNSAFE CHARACTERS
C.3. EXAMPLES OF LDAP URLS

APPENDIX D. INTERNATIONALIZATION
D.1. ABOUT LOCALES
D.2. SUPPORTED LOCALES
D.3. SUPPORTED LANGUAGE SUBTYPES
D.4. SEARCHING AN INTERNATIONALIZED DIRECTORY
D.5. TROUBLESHOOTING MATCHING RULES

APPENDIX E. REVISION HISTORY

522
523
523
525
525

527
527
528
528
529
529

530
530
531
532
533

536
536
537
537
539
543
545

547
547
548
549

551
551
551

552
554
559

560

Table of Contents

5

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see “our CTO Chris Wright's message ”.

Administration Guide

6

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT
TASKS
This chapter describes the general tasks of managing Directory Server instances.

1.1. SYSTEM REQUIREMENTS

See the corresponding section in the Red Hat Directory Server 11 Release Notes .

1.2. FILE LOCATIONS

See the corresponding section in the Red Hat Directory Server Configuration, Command, and File
Reference.

1.3. SUPPORTED METHODS TO CONFIGURE DIRECTORY SERVER

You can configure Directory Server using:

the command-line utilities provided by Directory Server

the web console

IMPORTANT

The web console does not automatically display the latest settings if a user changes the
configuration outside of the console's window. For example, if you change the
configuration using the command line while the web console is open, the new settings are
not automatically updated in the web console. This applies also if you change the
configuration using the web console on a different computer. To work around the
problem, manually refresh the web console in the browser if the configuration has been
changed outside the console's window.

1.4. LOGGING INTO DIRECTORY SERVER USING THE WEB CONSOLE

The web console is a browser-based graphical user interface (GUI) that enables users to perform
administrative tasks. The Directory Server package automatically installs the Directory Server user
interface for the web console.

To open Directory Server in the web console:

1. Use a browser and connect to the web console running on port 9090 on the Directory Server
host. For example:

https://server.example.com:9090

2. Log in as the root user or as a user with sudo privileges.

3. Select the Red Hat Directory Server entry.

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS

7

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/release_notes/index
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/file_locations_overview

1.5. STARTING AND STOPPING A DIRECTORY SERVER INSTANCE

1.5.1. Starting and Stopping a Directory Server Instance Using the Command Line

Use the dsctl utility to start, stop, or restart an instance:

To start the instance:

dsctl instance_name start

To stop the instance:

dsctl instance_name stop

To restart the instance:

dsctl instance_name restart

Optionally, you can enable Directory Server instances to automatically start when the system boots:

For a single instance:

systemctl enable dirsrv@instance_name

For all instances on a server:

systemctl enable dirsrv.target

For further details, see the Managing System Services section in the Red Hat System Administrator's
Guide.

1.5.2. Starting and Stopping a Directory Server Instance Using the Web Console

As an alternative to command line, you can use the web console to start, stop, or restart instances.

To start, stop, or restart a Directory Server instance:

Administration Guide

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_basic_system_settings/managing-systemd_configuring-basic-system-settings#managing-system-services-with-systemctl_managing-systemd

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Click the Actions button and select the action to execute:

Start Instance

Stop Instance

Restart Instance

1.6. CREATING A NEW DIRECTORY SERVER INSTANCE

For details, see the corresponding sections in the Red Hat Directory Server Installation Guide:

Setting up a new instance on the command line using a .inf file

Setting up a new instance on the command line using the interactive installer

Setting up a new instance using the web console

1.7. REMOVING A DIRECTORY SERVER INSTANCE

If you run multiple instances on a server, you can remove individual instances of them.

When you remove an instance, the content of the /var/lib/dirsrv/slapd-instance_name/ and
/etc/dirsrv/slapd-instance_name/ directories are removed.

IMPORTANT

The /var/lib/dirsrv/slapd-instance_name/ directory contains the database, as well as the
backup and export directory. The /etc/dirsrv/slapd-instance_name/ directory contains
the instance configuration and the network security services (NSS) database. Before you
remove an instance, backup this data.

1.7.1. Removing an Instance Using the Command Line

To remove an instance using the command line:

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS

9

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/assembly_setting-up-a-new-directory-server-instance_installation-guide#assembly_setting-up-a-new-instance-on-the-command-line-using-a-inf-file_assembly_setting-up-a-new-directory-server-instance
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/assembly_setting-up-a-new-directory-server-instance_installation-guide#assembly_setting-up-a-new-instance-on-the-command-line-using-the-interactive-installer_assembly_setting-up-a-new-directory-server-instance
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/assembly_setting-up-a-new-directory-server-instance_installation-guide#assembly_setting-up-a-new-instance-using-the-web-console_assembly_setting-up-a-new-directory-server-instance

dsctl instance_name remove --do-it
Removing instance ...
Completed instance removal

1.7.2. Removing an Instance Using the Web Console

To remove an instance using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Click the Actions button, and select Remove instance.

1.8. SETTING DIRECTORY SERVER CONFIGURATION PARAMETERS

Directory Server stores its configuration in the cn=config directory entry. Each configuration parameter
is an LDAP attribute and the parameter's value is the value set in this attribute.

1.8.1. Managing Configuration Parameters

You can set, update, and delete configuration parameters by:

Using the dsconf utility:

NOTE

Red Hat recommends using the dsconf utility to manage the Directory Server
configuration.

Example 1.1. Setting a Configuration Parameter Using dsconf

For example, to set the error log level to 16384, update the nsslapd-errorlog-level
parameter using the dsconf utility:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
errorlog-level=16384

For further details about using dsconf, see the dsconf(8) man page.

Using the LDAP interface:

Example 1.2. Setting a Configuration Parameter using the LDAP Interface

For example, to set the error log level to 16384, update the nsslapd-errorlog-level
parameter using the LDAP interface:

ldapmodify -D "cn=Directory Manager" -W -x -H ldap://server.example.com:389

dn: cn=config

Administration Guide

10

replace: nsslapd-errorlog-level
nsslapd-errorlog-level: 16384

Editing the /etc/dirsrv/slapd-instance_name/dse.ldif file.

WARNING

As long as an instance starts successfully, do not manually edit this file
because this can cause Directory Server to not work as expected, or the
instance can fail to start.

1.8.2. Where Directory Server Stores its Configuration

Directory Server stores the configuration from the cn=config entry in the
/etc/dirsrv/slapd-instance_name/dse.ldif file. The server stores only parameters you modified in this
file. Attributes that are not listed, use their default value. This enables you to identify all configuration
parameters you set in this instance by displaying the /etc/dirsrv/slapd-instance_name/dse.ldif file.

IMPORTANT

Do not manually edit the /etc/dirsrv/slapd-instance_name/dse.ldif file as long as the
instance starts successfully.

For details about how you can edit configuration parameters, see Section 1.8.1, “Managing Configuration
Parameters”.

1.8.3. Benefits of Using Default Values

If a parameter is not set, Directory Server uses the default value of this parameter. Using the default
value has the benefit that new versions often provide optimized settings and increased security.

For example, if you do not set the passwordStorageScheme attribute, Directory Server automatically
uses the strongest supported password storage scheme available. If a future update changes the
default value to increase security, passwords will be automatically encrypted using the new storage
scheme when a user sets a password.

1.8.3.1. Removing a Parameter to Use the Default Value

If a parameter is set and you want to use the default value instead, delete the parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com config delete parameter_name

IMPORTANT



CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS

11

IMPORTANT

You cannot delete certain parameters, such as nsslapd-secureport to reset them to
default. If you try to delete them, the server rejects the request with a Server is
unwilling to perform (53) error.

1.8.4. The dsconf config backend command limitations

The dsconf config backend command retrieves and sets backends configuration. The command has
the following arguments:

get

set

The dsconf config backend get command retrieves all server backend configuration attributes with set
values, for example:

dsconf -D "cn=Directory Manager" ldap://server.example.com:389 backend config get

nsslapd-lookthroughlimit: 5000
nsslapd-mode: 600
nsslapd-idlistscanlimit: 2147483646
…

NOTE

You can get only the full set of attribute values by using the dsconf config backend get
command, not a value for a specified attribute.

The dsconf config backend set command sets backends configuration attributes individually. To set a
value, specify an option that matches the LDAP attribute name, for example:

dsconf -D "cn=Directory Manager" ldap://server.example.com:389 backend config set --
lookthroughlimit 4000 --cache-autosize-split 24

The following is the dsconf backend config set command options and LDAP attribute names mapping:

Table 1.1. Mapping of the dsconf backend config set command options and LDAP attribute names

The dsconf backend config set command
options

LDAP attribute names

--lookthroughlimit nsslapd-lookthroughlimit

--mode nsslapd-mode

--idlistscanlimit nsslapd-idlistscanlimit

--directory nsslapd-directory

Administration Guide

12

--dbcachesize nsslapd-dbcachesize

--logdirectory nsslapd-db-logdirectory

--txn-wait nsslapd-db-transaction-wait

--checkpoint-interval nsslapd-db-checkpoint-interval

--compactdb-interval nsslapd-db-compactdb-interval

--compactdb-time nsslapd-db-compactdb-time

--txn-batch-val nsslapd-db-transaction-batch-val

--txn-batch-min nsslapd-db-transaction-batch-min-wait

--txn-batch-max nsslapd-db-transaction-batch-max-wait

--logbufsize nsslapd-db-logbuf-size

--locks nsslapd-db-locks

--locks-monitoring-enabled nsslapd-db-locks-monitoring-enabled

--locks-monitoring-threshold nsslapd-db-locks-monitoring-threshold

--locks-monitoring-pause nsslapd-db-locks-monitoring-pause

--import-cache-autosize nsslapd-import-cache-autosize

--import-cachesize nsslapd-import-cachesize

--cache-autosize nsslapd-cache-autosize

--cache-autosize-split nsslapd-cache-autosize-split

--exclude-from-export nsslapd-exclude-from-export

--pagedlookthroughlimit nsslapd-pagedlookthroughlimit

--pagedidlistscanlimit nsslapd-pagedidlistscanlimit

--rangelookthroughlimit nsslapd-rangelookthroughlimit

The dsconf backend config set command
options

LDAP attribute names

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS

13

--backend-opt-level nsslapd-backend-opt-level

--deadlock-policy nsslapd-db-deadlock-policy

--db-home-directory nsslapd-db-home-directory

--db-lib nsslapd-backend-implement

The dsconf backend config set command
options

LDAP attribute names

1.9. CHANGING THE LDAP AND LDAPS PORT NUMBERS

By default, Directory Server uses port 389 for the LDAP and, if enabled, port 636 for the LDAPS
protocol. You can change these port numbers, for example, to run multiple Directory Server instances
on one host.

IMPORTANT

The new ports you assign to the protocols for an instance must not be in use by any other
service.

1.9.1. Changing the Port Numbers Using the Command Line

To change the port numbers using the command line, update the following parameters:

nsslapd-port: Stores the port number the instance uses for the LDAP protocol.

nsslapd-secureport: Stores the port number the instance uses for the LDAPS protocol.

To change the port numbers of the LDAP and LDAPS protocol using the command line:

1. Optionally, display the currently configured port numbers for the instance:

dsconf -D "cn=Directory Manager" ldap://server.example.com config get nsslapd-port
nsslapd-secureport
nsslapd-port: 389
nsslapd-secureport: 636

2. To change the LDAP port:

a. Set the port for the LDAP protocol. For example, to set it to 1389:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
port=1389
Successfully replaced "nsslapd-port"

b. Set the ldap_port_t type for the LDAP port you assigned in the previous step:

semanage port -a -t ldap_port_t -p tcp 1389

Administration Guide

14

3. To change the LDAPS port:

a. Set the port for the LDAPS protocol. For example, to set it to 1636:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
secureport=1636
Successfully replaced "nsslapd-secureport"

b. Set the ldap_port_t type for the LDAPS port you assigned in the previous step:

semanage port -a -t ldap_port_t -p tcp 1636

4. Restart the instance:

dsctl instance_name restart

1.9.2. Changing the Port Numbers Using the Web Console

To change the port numbers of the LDAP and LDAPS protocol using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. To change the LDAP port:

a. Open the Server Settings menu.

b. On the Server Settings tab, fill the new port number into the LDAP Port field.

c. Click Save.

4. To change the LDAPS port:

a. Open the Server Settings menu.

b. On the General Settings tab, fill the new port number into the LDAPS Port field.

c. Click Save.

5. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

1.10. USING DIRECTORY SERVER PLUG-INS

Directory Server provides several core plug-ins, such as for replication, class of service, and attribute
syntax validation. Core plug-ins are enabled by default.

Additionally, the Directory Server packages contain further plug-ins to enhance the functionality, such as
for attribute uniqueness and attribute linking. However, not all of these plug-ins are enabled by default.

For further details, see the Plug-in Implemented Server Functionality Reference chapter in the Red Hat
Directory Server Configuration, Command, and File Reference.

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS

15

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/file_locations_overview

1.10.1. Listing Available Plug-ins

1.10.1.1. Listing Available Plug-ins Using the Command Line

To list all available plug-ins using the command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin list
7-bit check
Account Policy Plugin
...

You require the exact name of the plug-in, for example, to enable or disable it using the command line.

1.10.1.2. Listing Available Plug-ins Using the Web Console

To display all available plug-ins using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

Optionally, you can filter the plug-ins by entering a name into the Filter Plugins field.

1.10.2. Enabling and Disabling Plug-ins

1.10.2.1. Enabling and Disabling Plug-ins Using the Command Line

To enable or disable a plug-in using the command line, use the dsconf utility.

NOTE

The dsconf command requires that you provide the name of the plug-in. For details
about displaying the names of all plug-ins, see Section 1.10.1.1, “Listing Available Plug-ins
Using the Command Line”.

For example, to enable the Automember plug-in:

1. Enable the plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin automember enable

2. Restart the instance:

dsctl instance_name restart

1.10.2.2. Enabling and Disabling Plug-ins Using the Web Console

To enable or disable a plug-in using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into

Administration Guide

16

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

4. Select the All Plugins tab.

5. Click the Edit Plugin button to the right of the plug-in you want to enable or disable.

6. Change the status to ON to enable or to OFF to disable the plug-in.

7. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

1.10.3. Configuring Plug-ins

1.10.3.1. Configuring Plug-ins Using the Command Line

To configure plug-in settings, use the dsconf plugin command:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin \
 plug-in-specific_subcommand ...

For a list of plug-ins you can configure, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin --help

1.10.3.2. Configuring Plug-ins Using the Web Console

To configure a plug-in using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

4. Select the All Plugins tab.

5. Select the plug-in and click Show Advanced Settings.

6. Open the plug-in-specific tab.

7. Set the appropriate settings.

8. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS

17

8. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

1.10.4. Setting the Plug-in Precedence

The plug-in precedence is the priority it has in the execution order of plug-ins. For pre- and post-
operation plug-ins, this enables a plug-in to be executed and complete before the next plug-in is
initiated, to let the next plug-in take advantage of the previous plug-in's results.

The precedence can be set to a value from 1 (highest priority) to 99 (lowest priority). If no precedence is
set, the default is 50.

WARNING

Set a precedence value only in custom plug-ins. Updating the value of core plug-ins
can cause Directory Server to not work as expected and is not supported by
Red Hat.

1.10.4.1. Setting the Plug-in Precedence Using the Command Line

To update the precedence value of a plug-in using the command line:

1. Set precedence of the plug-in. For example, to set the precedence for the example plug-in to
1:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin edit example --
precedence 1

2. Restart the instance:

dsctl instance_name restart

1.10.4.2. Setting the Plug-in Precedence Using the Web Console

To update the precedence value of a plug-in using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select All Plugins.

5. Press the Edit Plugin button next to the plug-in for which you want to configure the
precedence value.

6. Update the value in the Plugin Precedence field.



Administration Guide

18

7. Click Save.

8. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

1.11. CREATING AND USING A .DSRC FILE TO SET DEFAULT OPTIONS
FOR DIRECTORY SERVER COMMAND-LINE UTILITIES

A ~/.dsrc file simplifies commands that use the Directory Server command-line utilities. By default,
these utilities require that you pass, for example, an LDAP URL or bind distinguished name (DN) to the
command. If you store these settings in a ~/dsrc file, you can use the command-line utilities without
specifying these settings each time.

1.11.1. How a .dsrc File Simplifies Commands

The following is an example of a ~/.dsrc file that specifies the LDAP URL of an instance and a bind DN:

[server1]
uri = ldap://server1.example.com
binddn = cn=Directory Manager
basedn = dc=example,dc=com

With these settings, you can use shorter Directory Server commands. For example, to create a user
account:

dsidm server1 user create

Without the ~/.dsrc file, you must specify the bind DN, LDAP URL, and base DN in the command:

dsidm -D cn=Directory Manager ldap://server1.example.com -b "dc=example,dc=com" user create

1.11.2. Using the dsctl Utility to Create a .dsrc File

Instead of manually creating a ~/.dsrc file, you can use the dsctl utility to create it:

dsctl instance_name dsrc create ...

You can pass the following options to the command:

--uri: Sets the URL to the instance in the format
protocol://host_name_or_IP_address_or_socket.

Examples:

--uri ldap://server.example.com

--uri = ldaps://server.example.com

--uri = ldapi://%%2fvar%%2frun%%2fslapd-instance_name.socket

If you set the path to an Directory Server socket, use %%02 instead of slashes (/) in the
path.

IMPORTANT

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS

19

IMPORTANT

If you use an ldapi URL, the server identifies the user ID (UID) and group ID
(GID) of the user who runs the Directory Server command-line utility. If you
run the command as the root user, both UID and GID are 0 and
Directory Server automatically authenticates you as cn=Directory Manager
without entering the corresponding password.

--starttls: Sets configures the utilities to connect to an LDAP port and then send the
STARTTLS command to switch to an encrypted connection.

--basedn: Sets the base distinguished name (DN). For example: --basedn
dc=example,dc=com

--binddn: Sets the bind DN. For example: --binddn cn=Directory Manager

--pwdfile: Sets the path to a file that contains the password of bind DN. For example: --pwdfile
/root/rhds.pwd

--tls-cacertdir: When you use an LDAPS connection, the path set in this parameter defines the
directory with the certificate authority (CA) certificate that is required to verify the server's
certificate. For example: --tls-cacertdir /etc/pki/CA/certs/

Note that you must use the c_rehash /etc/pki/CA/certs/ command after you copied the CA
certificate to the specified directory.

--tls-cert: Sets the absolute path to the server's certificate. For example: --tls-cert
/etc/dirsrv/slapd-instance_name/Server-Cert.crt

--tls-key: Sets the absolute path to the server's private key. For example: --tls-key
/etc/dirsrv/slapd-instance_name/Server-Cert.key

--tls-reqcert: Sets what checks the client utilities perform on server certificates in a TLS session.
For example: --tls-reqcert hard

The following parameters are available:

never: The utilities do not request or check the server certificate.

allow: The utilities ignore certificate errors and the connection is established anyway.

hard: The utilities terminate the connection on certificate errors.

--saslmech: Sets the SASL mechanism to use to PLAIN or EXTERNAL. For example: --
saslmech PLAIN

1.11.3. Remote and Local Connection Resolution When Using Directory Server
Utilities

When securing the Directory Server connection, it is important to distinguish between calling
Directory Server commands remotely and locally.

When you run a Directory Server command with an LDAP URL specified, the server considers it as a
remote connection and checks the /etc/openldap/ldap.conf configuration file along with system-wide
settings to proceed with the command.

When you run a Directory Server command with an instance name specified, the server checks if the

Administration Guide

20

When you run a Directory Server command with an instance name specified, the server checks if the
~/.dsrc file is present and applies the following logic to proceed:

If the ~/.dsrc file exists and contains both the instance name and the LDAP URL,
Directory Server considers it as a remote connection and checks /etc/openldap/ldap.conf
configuration file and system-wide settings.

If the ~/.dsrc file exists and contains only the specified instance name, or if the ~/.dsrc file does
not exist, Directory Server considers it as a local connection and uses the nsslapd-certdir
setting from the local dse.ldif file to secure the connection. If nsslapd-certdir is not present,
the server uses the default path /etc/dirsrv/slapd-instance_name/ to store the Network
Security Services (NSS) database of the instance.

For more information about nsslapd-certdir parameter refer to nsslapd-certdir (Certificate and Key
Database Directory) section.

CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS

21

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig-nsslapd_certdir_Certificate_and_Key_database_directory

CHAPTER 2. CONFIGURING DIRECTORY DATABASES
The directory is made up of databases, and the directory tree is distributed across the databases. This
chapter describes how to create suffixes, the branch points for the directory tree, and how to create the
databases associated with each suffix. This chapter also describes how to create database links to
reference databases on remote servers and how to use referrals to point clients to external sources of
directory data.

2.1. CREATING AND MAINTAINING SUFFIXES

Different pieces of the directory tree can be stored in different databases, and then these databases
can be distributed across multiple servers. The directory tree contains branch points called nodes. These
nodes may be associated with databases. A suffix is a node of the directory tree associated with a
particular database. The following is a simple directory tree:

Figure 2.1. A Directory Tree with One Root Suffix

The ou=people suffix and all the entries and nodes below it might be stored in one database, the
ou=groups suffix in another database, and the ou=contractors suffix in yet another database.

2.1.1. Creating Suffixes

A root suffix is the parent of a sub-suffix. It can be part of a larger tree designed for Directory Server. A
sub-suffix is a branch underneath a root suffix. Both root and sub-suffixes are used to organize the
contents of the directory tree. The data for root and sub-suffixes are stored in databases.

2.1.1.1. Creating a Root Suffix

A directory can contain more than one root suffix. For example, an internet service provider that hosts
several websites, one for example.com and one for redhat.com. In this scenario, two root suffixes are
required. One corresponding to the dc=example,dc=com naming context and one corresponding to

Administration Guide

22

the dc=redhat,dc=com naming context, as displayed in the following diagram:

Figure 2.2. A Directory with Two Root Suffixes

It is also possible to create root suffixes to exclude portions of the directory tree from search
operations. For example, if the Example Corporation wants to exclude their European office from a
search on the general Example Corporation directory. To implement this, the directory requires two root
suffixes. One root suffix corresponds to the general Example Corporation directory tree,
dc=example,dc=com, and one root suffix corresponds to the European branch of their directory tree,
ou=europe,dc=example,dc=com. From a client application's perspective, the directory tree looks as
illustrated the following diagram:

Figure 2.3. A Directory with a Root Suffix Off Limits to Search Operations

Searches performed by client applications on the dc=example,dc=com branch of the directory will not
return entries from the ou=europe,dc=example,dc=com branch of the directory, as it is a separate root
suffix.

2.1.1.1.1. Creating a Root Suffix Using the Command Line

Use the dsconf backend create command to create a new root suffix:

1. Optional: Identify the suffixes and back end databases that are already in use:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix list
dc=example,dc=com (userroot)

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

23

The name in parentheses is the back end database that stores the data of the corresponding
suffix. You cannot use existing database names when you create the root suffix in the next step.

2. Create the dc=example,dc=net root suffix in the example back end database:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend create \
 --suffix="dc=example,dc=net" --be-name="example"

2.1.1.1.2. Creating a Root Suffix Using the Web Console

To create a new root suffix using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Click Create Suffix.

5. Enter the suffix DN and back end name. For example:

6. Select Create The Top Suffix Entry.

7. Click Create Suffix.

2.1.1.2. Creating a Sub-suffix

In certain scenarios, administrators want to store a branch of the directory tree in a separate database.
For example, if the administrator creates the ou=europe,dc=example,dc=com entry as a sub-suffix,
this suffix is stored in a separate database. At the same time, the dc=example,com root suffix and all its
sub-entries - except ou=europe,dc=example,dc=com and subentries - are stored also in a separate
database.

Administration Guide

24

Figure 2.4. A Directory Tree with a Sub Suffix

2.1.1.2.1. Creating a Sub-suffix Using the Command Line

Use the dsconf backend create command to create a new sub-suffix. For example, to create the
ou=People,dc=example,dc=com sub-suffix in a new database called people under the
dc=example,dc=com root suffix:

1. Optional: Identify the suffixes and back end databases that are already in use:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix list
dc=example,dc=com (userroot)

The name in parentheses is the back end database that stores the data of the corresponding
suffix. You cannot use existing database names when you create the sub-suffix in the next step.

2. Create the sub-suffix. For example, to create the ou=People,dc=example,dc=com sub-suffix
along with the example back end database, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend create \
 --suffix="ou=People,dc=example,dc=com" --be-name="example" \
 --parent-suffix="dc=example,dc=com"

2.1.1.2.2. Creating a Sub-suffix Using the Web Console

To create a new sub-suffix using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Select the suffix, under which you want to create the sub-suffix, click Suffix Tasks, and select

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

25

4. Select the suffix, under which you want to create the sub-suffix, click Suffix Tasks, and select
Create Sub-Suffix.

5. Enter the sub-suffix DN and back end name. For example:

6. Select Create The Top Sub-Suffix Entry.

7. Click Create Sub-Suffix.

2.1.2. Maintaining Suffixes

2.1.2.1. Viewing the Default Naming Context

A naming context is analogous to the suffix; it is the root structure for naming directory entries. There
can be multiple naming contexts, depending on the directory and data structure. For example, a
standard Directory Server configuration has a user suffix such as dc=example,dc=com and a
configuration suffix in cn=config.

Many directory trees have multiple naming contexts to be used with different types of entries or with
logical data divisions. Clients which access Directory Server may not know what naming context they
need to use. The Directory Server has a server configuration attribute which signals to clients what the
default naming context is, if they have no other naming context configuration known to them.

The default naming context is set in the nsslapd-defaultnamingcontext attribute in cn=config. This
value is propagated over to the root DSE (Directory Server Agent Service Entry) and can be queried by
clients anonymously by checking the defaultnamingcontext attribute in the root DSE:

ldapsearch -p 389 -h server.example.com -x -b "" -s base | egrep namingcontext
namingContexts: dc=example,dc=com
namingContexts: dc=example,dc=net
namingContexts: dc=redhat,dc=com
defaultnamingcontext: dc=example,dc=com

IMPORTANT

Administration Guide

26

IMPORTANT

To maintain configuration consistency, do not remove the nsslapd-
defaultnamingcontext attribute from the nsslapd-allowed-to-delete-attrs list.

By default, the nsslapd-defaultnamingcontext attribute is included in the list of
attributes which can be deleted, in the nsslapd-allowed-to-delete-attrs attribute. This
allows the current default suffix to be deleted and then update the server configuration
accordingly.

If for some reason the nsslapd-defaultnamingcontext attribute is removed from the list
of configuration attributes which can be deleted, then no changes to that attribute are
preserved. If the default suffix is deleted, that change cannot be propagated to the
server configuration. This means that the nsslapd-defaultnamingcontext attribute
retains the old information instead of being blank (removed), which is the correct and
current configuration.

2.1.2.2. Disabling a Suffix

In certain situations, a suffix in the directory needs to be disabled. If a suffix is disabled, the content of
the database related to the suffix is no longer accessible by clients.

2.1.2.2.1. Disabling a Suffix Using the Command Line

To disable a suffix using the command line, pass the back end database name to the dsconf backend
suffix set --disable command. For example, to disable the o=test suffix:

1. Display the suffixes and their corresponding back end:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix list
dc=example,dc=com (userroot)
o=test (test_database)

This command displays the name of the back end database next to each suffix. You require the
suffix's database name in the next step.

2. Disable the suffix:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend \
 suffix set --disable "test_database"

2.1.2.3. Deleting a Suffix

If a suffix is no longer required, the administrator can delete it from the database.

WARNING

Deleting a suffix also deletes all database entries and replication information
associated with that suffix.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

27

2.1.2.3.1. Deleting a Suffix Using the Command Line

To delete a suffix using the command line, use the dsconf backend delete command. For example, to
delete the o=test suffix:

1. Display the suffixes and their corresponding back end:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix list
dc=example,dc=com (userroot)
o=test (test_database)

This command displays the name of the back end database next to each suffix. You require the
suffix's database name in the next step.

2. Delete the back end database and the corresponding suffix:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend delete
test_database
Deleting Backend cn=test_database,cn=ldbm database,cn=plugins,cn=config :
Type 'Yes I am sure' to continue: Yes I am sure
The database, and any sub-suffixes, were successfully deleted

2.1.2.3.2. Deleting a Suffix Using the Web Console

To delete a suffix using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Select the suffix, click Suffix Tasks, and select Delete Suffix.

5. Click Yes to confirm.

2.2. CREATING AND MAINTAINING DATABASES

After creating suffixes to organizing the directory data, create databases to contain data of that
directory.

NOTE

If you used the dsconf utility or the web console to create the suffix, Directory Server
created the database automatically.

2.2.1. Creating Databases

The directory tree can be distributed over multiple Directory Server databases. There are two ways to
distribute data across multiple databases:

One database per suffix. The data for each suffix is contained in a separate database.

Three databases are added to store the data contained in separate suffixes:

Administration Guide

28

This division of the tree units corresponds to three databases, for example:

In this example, DB1 contains the data for ou=people and the data for dc=example,dc=com, so that
clients can conduct searches based at dc=example,dc=com. However, DB2 only contains the data
for ou=groups, and DB3 only contains the data for ou=contractors:

Multiple databases for one suffix.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

29

Suppose the number of entries in the ou=people branch of the directory tree is so large that two
databases are needed to store them. In this case, the data contained by ou=people could be
distributed across two databases:

DB1 contains people with names from A-K, and DB2 contains people with names from L-Z. DB3
contains the ou=groups data, and DB4 contains the ou=contractors data.

A custom plug-in distributes data from a single suffix across multiple databases. Contact Red Hat
Consulting for information on how to create distribution logic for Directory Server.

2.2.1.1. Creating a New Database for a Single Suffix Using the Command Line

Use the ldapmodify command-line utility to add a new database to the directory configuration file. The
database configuration information is stored in the cn=ldbm database,cn=plugins,cn=config entry. To
add a new database:

1. Run ldapmodify and create the entry for the new database.

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=UserData,cn=ldbm database,cn=plugins,cn=config
changetype: add
objectclass: extensibleObject
objectclass: nsBackendInstance
nsslapd-suffix: ou=people,dc=example,dc=com

The added entry corresponds to a database named UserData that contains the data for the
root or sub-suffix ou=people,dc=example,dc=com.

2. Create a root or a sub-suffix, as described in Section 2.1.1.1.1, “Creating a Root Suffix Using the
Command Line” and Section 2.1.1.2.1, “Creating a Sub-suffix Using the Command Line” . The
database name, given in the DN attribute, must correspond with the value in the nsslapd-
backend attribute of the suffix entry.

Administration Guide

30

2.2.1.2. Adding Multiple Databases for a Single Suffix

A single suffix can be distributed across multiple databases. However, to distribute the suffix, a custom
distribution function has to be created to extend the directory. For more information on creating a
custom distribution function, contact Red Hat Consulting.

NOTE

Once entries have been distributed, they cannot be redistributed. The following
restrictions apply:

The distribution function cannot be changed once entry distribution has been
deployed.

The LDAP modrdn operation cannot be used to rename entries if that would
cause them to be distributed into a different database.

Distributed local databases cannot be replicated.

The ldapmodify operation cannot be used to change entries if that would cause
them to be distributed into a different database.

Violating these restrictions prevents Directory Server from correctly locating and
returning entries.

After creating a custom distribution logic plug-in, add it to the directory.

The distribution logic is a function declared in a suffix. This function is called for every operation reaching
this suffix, including subtree search operations that start above the suffix. A distribution function can be
inserted into a suffix using both the web console and the command line interface.

To add a custom distribution function to a suffix:

1. Run ldapmodify.

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

2. Add the following attributes to the suffix entry itself, supplying the information about the
custom distribution logic:

dn: suffix
changetype: modify
add: nsslapd-backend
nsslapd-backend: Database1
-
add: nsslapd-backend
nsslapd-backend: Database2
-
add: nsslapd-backend
nsslapd-backend: Database3
-
add: nsslapd-distribution-plugin
nsslapd-distribution-plugin: /full/name/of/a/shared/library

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

31

-
add: nsslapd-distribution-funct
nsslapd-distribution-funct: distribution-function-name

The nsslapd-backend attribute specifies all databases associated with this suffix. The
nsslapd-distribution-plugin attribute specifies the name of the library that the plug-in uses.
The nsslapd-distribution-funct attribute provides the name of the distribution function itself.

2.2.2. Maintaining Directory Databases

2.2.2.1. Setting a Database in Read-Only Mode

When a database is in read-only mode, you cannot create, modify, or delete any entries. One of the
situations when read-only mode is useful is for manually initializing a consumer or before backing up or
exporting data from Directory Server. Read-only mode ensures a faithful image of the state of these
databases at a given time.

The command-line utilities and the web console do not automatically put the directory in read-only
mode before export or backup operations because this would make your directory unavailable for
updates. However, with multi-supplier replication, this might not be a problem.

2.2.2.1.1. Setting a Database in Read-only Mode Using the Command Line

To set a database in read-only mode, use the dsconf backend suffix set command. For example, to set
the database of the o=test suffix in read-only mode:

1. Display the suffixes and their corresponding back end:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix list
dc=example,dc=com (userroot)
o=test (test_database)

This command displays the name of the back end database next to each suffix. You require the
suffix's database name in the next step.

2. Set the database in read-only mode:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix set --enable-
readonly "test_database"

2.2.2.1.2. Setting a Database in Read-only Mode Using the Web Console

To set a database in read-only mode:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Select the suffix entry.

5. Select Database Read-Only Mode.

Administration Guide

32

6. Click Save Configuration.

2.2.2.2. Placing the Entire Directory Server in Read-Only Mode

If Directory Server maintains more than one database and all databases need to be placed in read-only
mode, this can be done in a single operation.

WARNING

This operation also makes Directory Server configuration read-only; therefore, you
cannot update the server configuration, enable or disable plug-ins, or even restart
Directory Server while it is in read-only mode. Once read-only mode is enabled, it
cannot cannot be undone unless you manually modify the configuration files.

NOTE

If Directory Server contains replicas, do not use read-only mode because it will disable
replication.

2.2.2.2.1. Placing the Entire Directory Server in Read-Only Mode Using the Command Line

To enable the read-only mode for Directory Server:

1. Set the nsslapd-readonly parameter to on:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
readonly=on

2. Restart the instance:

dsctl instance_name restart

2.2.2.2.2. Placing the Entire Directory Server in Read-Only Mode Using the Web Console

To enable the read-only mode for Directory Server:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select the Server Settings entry.

4. On the Advanced Settings tab, select Server Read-Only.

5. Click Save.

2.2.2.3. Deleting a Database



CHAPTER 2. CONFIGURING DIRECTORY DATABASES

33

If a suffix is no longer required, you can delete the database that stores the suffix.

2.2.2.3.1. Deleting a Database Using the Command Line

To delete a database use the dsconf backend delete command. For example, to delete the database
of the o=test suffix:

1. Display the suffixes and their corresponding back end:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix list
dc=example,dc=com (userroot)
o=test (test_database)

You require the name of the back end database, which is displayed next to the suffix, in the next
step.

2. Delete the database:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend delete
"test_database"

2.2.2.3.2. Deleting a Database Using the Web Console

To delete a database using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Select the suffix to delete, click Suffix Tasks, and select Delete Suffix.

5. Click Yes to confirm.

2.2.2.4. Changing the Transaction Log Directory

The transaction log enables Directory Server to recover the database, after an instance shut down
unexpectedly. In certain situations, administrators want to change the path to the transaction logs. For
example, to store them on a different physical disk than Directory Server database.

NOTE

To achieve higher performance, mount a faster disk to the directory that contains the
transaction logs, instead of changing the location. For details, see the corresponding
section in the Red Hat Directory Server Performance Tuning Guide .

To change the location of the transaction log directory:

1. Stop Directory Server instance:

dsctl instance_name stop

Administration Guide

34

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/performance_tuning_guide/tuning_database_performance-tuning_transaction_logging#moving_the_database_directory_to_a_separate_disk_or_partition

2. Create a new location for the transaction logs. For example:

mkdir -p /srv/dirsrv/instance_name/db/

3. Set permissions to enable only Directory Server to access the directory:

chown dirsrv:dirsrv /srv/dirsrv/instance_name/db/
chmod 770 /srv/dirsrv/instance_name/db/

4. Remove all __db.* files from the previous transaction log directory. For example:

rm /var/lib/dirsrv/slapd-instance_name/db/__db.*

5. Move all log.* files from the previous to the new transaction log directory. For example:

mv /var/lib/dirsrv/slapd-instance_name/db/log.* \
 /srv/dirsrv/instance_name/db/

6. If SELinux is running in enforcing mode, set the dirsrv_var_lib_t context on the directory:

semanage fcontext -a -t dirsrv_var_lib_t /srv/dirsrv/instance_name/db/
restorecon -Rv /srv/dirsrv/instance_name/db/

7. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file, and update the nsslapd-db-
logdirectory parameter under the cn=config,cn=ldbm database,cn=plugins,cn=config entry.
For example:

dn: cn=config,cn=ldbm database,cn=plugins,cn=config
...
nsslapd-db-logdirectory: /srv/dirsrv/instance_name/db/

8. Start the instance:

dsctl instance_name start

2.3. CREATING AND MAINTAINING DATABASE LINKS

Chaining means that a server contacts other servers on behalf of a client application and then returns
the combined results. Chaining is implemented through a database link, which points to data stored
remotely. When a client application requests data from a database link, the database link retrieves the
data from the remote database and returns it to the client.

For more general information about chaining, see the chapter "Designing Directory Topology," in the
Red Hat Directory Server Deployment Guide. Section 21.8, “Monitoring Database Link Activity” covers
how to monitor database link activity.

2.3.1. Creating a New Database Link

The basic database link configuration requires the following information:

Suffix information. A suffix is created in the directory tree that is managed by the database link,

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

35

Suffix information. A suffix is created in the directory tree that is managed by the database link,
not a regular database. This suffix corresponds to the suffix on the remote server that contains
the data.

Bind credentials. When the database link binds to a remote server, it impersonates a user, and
this specifies the DN and the credentials for each database link to use to bind with remote
servers.

LDAP URL. This supplies the LDAP URL of the remote server to which the database link
connects. The URL consists of the protocol (ldap or ldaps), the host name or IP address (IPv4 or
IPv6) for the server, and the port.

List of failover servers. This supplies a list of alternative servers for the database link to contact
in the event of a failure. This configuration item is optional.

NOTE

If secure binds are required for simple password authentication (Section 20.12.1,
“Requiring Secure Binds”), then any chaining operations will fail unless they occur over a
secure connection. Using a secure connection (TLS and STARTTLS connections or SASL
authentication) is recommended, anyway.

2.3.1.1. Creating a New Database Link Using the Command Line

To create a new database link, use the dsconf chaining link-create command. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining link-create --
suffix="ou=Customers,dc=example,dc=com" --server-url="ldap://remote_server.example.com:389" --
bind-mech="" --bind-dn="cn=proxy_user,cn=config" --bind-pw="password" "example_chain_name"

This creates a database link named example_chain_name for the
ou=Customers,dc=example,dc=com. The link refers to the server
ldap://remote_server.example.com:389 and uses the specified bind DN and password to authenticate.
Because the --bind-mech is set empty, the link uses simple authentication.

NOTE

To grant the proxy_user the rights to access data, you must create the proxy ACI entry in
the dc=example,dc=com suffix on remote server. How to do so, refer to the section
Section 2.3.1.4, “Additional Information on Required Settings When Creating a Database
Link”

To display additional settings you can set when you create the database link, see:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining link-create --help

For further details, see Section 2.3.1.4, “Additional Information on Required Settings When Creating a
Database Link”.

2.3.1.2. Creating a New Database Link Using the Web Console

To create a new database link:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into

Administration Guide

36

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Create a new suffix as described in Section 2.1.1, “Creating Suffixes”.

5. Select the suffix, click Suffix Tasks, and select Create Database Link.

6. Fill the fields with the details about the connection to the remote server. For example:

For further details, see Section 2.3.1.4, “Additional Information on Required Settings When
Creating a Database Link”.

7. Click Create Database Link.

2.3.1.3. Managing the Default Configuration for New Database Links

With the dsconf chaining command you can manage the default configuration of database links.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

37

To display the current default values, see:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining config-get-def

To change new database links configuration, use dsconf chaining config-set-def command. For
example, to set response-delay parameter to 30, run:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining config-set-def --response-
delay 30

The example command sets the default response timeout for all chaining connections. You can
overwrite the response timeout for a specific chaining link if you use dsconf instance chaining link-set
command.

To see the list of all parameters you can set, run:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining config-set-def --help

2.3.1.4. Additional Information on Required Settings When Creating a Database Link

Suffix Information
The suffix defines the suffix that is managed by the database link.

Bind Credentials
For a request from a client application to be chained to a remote server, special bind credentials can be
supplied for the client application. This gives the remote server the proxied authorization rights needed
to chain operations. Without bind credentials, the database link binds to the remote server as
anonymous.

For example, a client application sends a request to Server A. Server A contains a database link that
chains the request to a database on Server B.

The database link on Server A binds to Server B using a special user and password:

Administration Guide

38

Server B must contain a user entry and set the proxy authentication rights for this user. To set the proxy
authorization correctly, set the proxy ACI as any other ACI.

WARNING

Carefully examine access controls when enabling chaining to avoid giving access to
restricted areas of the directory. For example, if a default proxy ACI is created on a
branch, the users that connect using the database link will be able to see all entries
below the branch. There may be cases when not all of the subtrees should be
viewed by a user. To avoid a security hole, create an additional ACI to restrict access
to the subtree.

For more information on ACIs, see Chapter 18, Managing Access Control .

NOTE

When a database link is used by a client application to create or modify entries, the
attributes creatorsName and modifiersName do not reflect the real creator or modifier
of the entries. These attributes contain the name of the administrative user granted
proxied authorization rights on the remote data server.

Providing bind credentials involves the following steps on the remote server:

1. Create an administrative user, such as cn=proxy_user,cn=config, for the database link. For
information on adding entries, see Chapter 3, Managing Directory Entries .

2. Provide proxy access rights for the administrative user created in the previous step on the
subtree chained to by the database link. For more information on configuring ACIs, see
Chapter 18, Managing Access Control

For example, the following ACI grants read-only access to the cn=proxy_admin,cn=config
user to access data contained on the remote server only within the subtree where the ACI is set.



CHAPTER 2. CONFIGURING DIRECTORY DATABASES

39

aci: (targetattr = "*")(version 3.0; acl "Proxied authorization
 for database links"; allow (proxy) userdn = "ldap:///cn=proxy_admin
 ,cn=config";)

NOTE

When a user binds to a database link, the user's identity is sent to the remote server.
Access controls are always evaluated on the remote server. For the user to modify or
write data successfully to the remote server, set up the correct access controls on the
remote server. For more information about how access controls are evaluated in the
context of chained operations, see Section 2.3.3, “Database Links and Access Control
Evaluation”.

LDAP URL
On the server containing the database link, identify the remote server that the database link connects
with using an LDAP URL . Unlike the standard LDAP URL format, the URL of the remote server does not
specify a suffix. It takes the form ldap://host_name:port.

For the database link to connect to the remote server using LDAP over TLS, the LDAP URL of the
remote server uses the protocol LDAPS instead of LDAP in the URL and points to the secure port of the
server. For example

ldaps://africa.example.com:636/

NOTE

TLS has to be enabled on the local Directory Server and the remote Directory Server to
be chained over TLS. For more information on enabling TLS, see Section 9.4, “Enabling
TLS”.

When the database link and remote server are configured to communicate using TLS, this
does not mean that the client application making the operation request must also
communicate using TLS. The client can bind using a normal port.

Bind Mechanisms
The local server can connect to the remote server using several different connection types and
authentication mechanisms.

There are three ways that the local server can connect to the remote server:

Over the standard LDAP port

Over a dedicated LDAPS port

Using STARTTLS, which is a secure connection over a standard port

NOTE

If secure binds are required for simple password authentication (Section 20.12.1,
“Requiring Secure Binds”), then any chaining operations will fail unless they occur over a
secure connection. Using a secure connection (TLS and STARTTLS connections or SASL
authentication) is recommended, anyway.

Administration Guide

40

There are four different methods which the local server can use to authenticate to the farm server.

empty: If there is no bind mechanism set, then the server performs simple authentication and
requires a bind DN and password.

EXTERNAL: This uses an TLS certificate to authenticate the farm server to the remote server.
Either the farm server URL must be set to the secure URL (ldaps) or the nsUseStartTLS
attribute must be set to on.

Additionally, the remote server must be configured to map the farm server's certificate to its
bind identity, as described in the certmap.conf section in the Red Hat Directory Server
Configuration, Command, and File Reference.

DIGEST-MD5: This uses SASL authentication with DIGEST-MD5 encryption. As with simple
authentication, this requires the nsMultiplexorBindDN and nsMultiplexorCredentials
attributes to give the bind information.

GSSAPI: This uses Kerberos-based authentication over SASL.

The farm server must be configured with a Kerberos keytab, and the remote server must have a
defined SASL mapping for the farm server's bind identity. Setting up Kerberos keytabs and
SASL mappings is described in Section 9.10, “Setting up SASL Identity Mapping” .

NOTE

SASL connections can be established over standard connections or TLS connections.

NOTE

If SASL is used, then the local server must also be configured to chain the SASL and
password policy components. Add the components for the database link configuration, as
described in Section 2.3.2, “Configuring the Chaining Policy” .

2.3.2. Configuring the Chaining Policy

These procedures describe configuring how Directory Server chains requests made by client applications
to Directory Servers that contain database links. This chaining policy applies to all database links created
on Directory Server.

2.3.2.1. Chaining Component Operations

A component is any functional unit in the server that uses internal operations. For example, plug-ins are
considered to be components, as are functions in the front-end. However, a plug-in may actually be
comprised of multiple components (for example, the ACI plug-in).

Some components send internal LDAP requests to the server, expecting to access local data only. For
such components, control the chaining policy so that the components can complete their operations
successfully. One example is the certificate verification function. Chaining the LDAP request made by
the function to check certificates implies that the remote server is trusted. If the remote server is not
trusted, then there is a security problem.

By default, all internal operations are not chained and no components are allowed to chain, although this
can be overridden.

Additionally, an ACI must be created on the remote server to allow the specified plug-in to perform its

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

41

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/configuration_file_reference#certmap_conf

Additionally, an ACI must be created on the remote server to allow the specified plug-in to perform its
operations on the remote server. The ACI must exist in the suffix assigned to the database link.

The following lists the component names, the potential side-effects of allowing them to chain internal
operations, and the permissions they need in the ACI on the remote server:

ACI plug-in

This plug-in implements access control. Operations used to retrieve and update ACI attributes are
not chained because it is not safe to mix local and remote ACI attributes. However, requests used to
retrieve user entries may be chained by setting the chaining components attribute:

nsActiveChainingComponents: cn=ACI Plugin,cn=plugins,cn=config

Permissions: Read, search, and compare

Resource limit component

This component sets server limits depending on the user bind DN. Resource limits can be applied on
remote users if the resource limitation component is allowed to chain. To chain resource limit
component operations, add the chaining component attribute:

nsActiveChainingComponents: cn=resource limits,cn=components,cn=config

Permissions: Read, search, and compare

Certificate-based authentication checking component

This component is used when the external bind method is used. It retrieves the user certificate from
the database on the remote server. Allowing this component to chain means certificate-based
authentication can work with a database link. To chain this component's operations, add the chaining
component attribute:

nsActiveChainingComponents: cn=certificate-based authentication,cn=components,cn=config

Permissions: Read, search, and compare

Password policy component

This component is used to allow SASL binds to the remote server. Some forms of SASL
authentication require authenticating with a user name and password. Enabling the password policy
allows the server to verify and implement the specific authentication method requested and to apply
the appropriate password policies. To chain this component's operations, add the chaining
component attribute:

nsActiveChainingComponents: cn=password policy,cn=components,cn=config

Permissions: Read, search, and compare

SASL component

This component is used to allow SASL binds to the remote server. To chain this component's
operations, add the chaining component attribute:

nsActiveChainingComponents: cn=password policy,cn=components,cn=config

Administration Guide

42

Permissions: Read, search, and compare

Referential Integrity plug-in

This plug-in ensures that updates made to attributes containing DNs are propagated to all entries
that contain pointers to the attribute. For example, when an entry that is a member of a group is
deleted, the entry is automatically removed from the group. Using this plug-in with chaining helps
simplify the management of static groups when the group members are remote to the static group
definition. To chain this component's operations, add the chaining component attribute:

nsActiveChainingComponents: cn=referential integrity postoperation,cn=plugins,cn=config

Permissions: Read, search, and compare

Attribute Uniqueness plug-in

This plug-in checks that all the values for a specified attribute are unique (no duplicates). If this plug-
in is chained, it confirms that attribute values are unique even on attributes changed through a
database link. To chain this component's operations, add the chaining component attribute:

nsActiveChainingComponents: cn=attribute uniqueness,cn=plugins,cn=config

Permissions: Read, search, and compare

Roles component

This component chains the roles and roles assignments for the entries in a database. Chaining this
component maintains the roles even on chained databases. To chain this component's operations,
add the chaining component attribute:

nsActiveChainingComponents: cn=roles,cn=components,cn=config

Permissions: Read, search, and compare

NOTE

The following components cannot be chained:

Roles plug-in

Password policy component

Replication plug-ins

Referential Integrity plug-in

When enabling the Referential Integrity plug-in on servers issuing chaining requests, be
sure to analyze performance, resource, and time needs as well as integrity needs.
Integrity checks can be time-consuming and draining on memory and CPU. For further
information on the limitations surrounding ACIs and chaining, see Section 18.5,
“Limitations of ACIs”.

2.3.2.1.1. Chaining Component Operations Using the Command Line

To add a component allowed to chain:

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

43

1. Specify the components to include in chaining. For example, to configure that the referential
integrity component can chain operations:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining config-set \
 --add-comp="cn=referential integrity postoperation,cn=components,cn=config"

See Section 2.3.2.1, “Chaining Component Operations” for a list of the components which can
be chained.

2. Restart the instance:

dsctl instance_name restart

3. Create an ACI in the suffix on the remote server to which the operation will be chained. For
example, to create an ACI for the Referential Integrity plug-in:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h remoteserver.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*")(target="ldap:///ou=customers,l=us,dc=example,dc=com")
 (version 3.0; acl "RefInt Access for chaining"; allow
 (read,write,search,compare) userdn = "ldap:///cn=referential
 integrity postoperation,cn=plugins,cn=config";)

2.3.2.1.2. Chaining Component Operations Using the Web Console

To add a component allowed to chain:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database tab.

4. In the navigation on the left, select the Chaining Configuration entry.

5. Click the Add button below the Components to Chain field.

6. Select the component, and click Add & Save New Components.

Administration Guide

44

7. Create an ACI in the suffix on the remote server to which the operation will be chained. For
example, to create an ACI for the Referential Integrity plug-in:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h remoteserver.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*")(target="ldap:///ou=customers,l=us,dc=example,dc=com")
 (version 3.0; acl "RefInt Access for chaining"; allow
 (read,write,search,compare) userdn = "ldap:///cn=referential
 integrity postoperation,cn=plugins,cn=config";)

2.3.2.2. Chaining LDAP Controls

It is possible to not chain operation requests made by LDAP controls. By default, requests made by the
following controls are forwarded to the remote server by the database link:

Virtual List View (VLV). This control provides lists of parts of entries rather than returning all
entry information.

Server-side sorting. This control sorts entries according to their attribute values, usually using a
specific matching rule.

Dereferencing. This control pulls specified attribute information from the referenced entry and
returns this information with the rest of the search results.

Managed DSA. This controls returns smart referrals as entries, rather than following the referral,
so the smart referral itself can be changed or deleted.

Loop detection. This control keeps track of the number of times the server chains with another
server. When the count reaches the configured number, a loop is detected, and the client
application is notified. For more information about using this control, see Section 2.4.3,

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

45

“Detecting Loops”.

NOTE

Server-side sorting and VLV controls are supported only when a client application request
is made to a single database. Database links cannot support these controls when a client
application makes a request to multiple databases.

The LDAP controls which can be chained and their OIDs are listed in the following table:

Table 2.1. LDAP Controls and Their OIDs

Control Name OID

Virtual list view (VLV) 2.16.840.1.113730.3.4.9

Server-side sorting 1.2.840.113556.1.4.473

Managed DSA 2.16.840.1.113730.3.4.2

Loop detection 1.3.6.1.4.1.1466.29539.12

Dereferencing searches 1.3.6.1.4.1.4203.666.5.16

2.3.2.2.1. Chaining LDAP Controls Using the Command Line

To chain LDAP controls, use the dsconf chaining config-set --add-control command. For example, to
forward the virtual list view control:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining \
 config-set --add-control="2.16.840.1.113730.3.4.9"

If clients of Directory Server create their own controls and their operations should be chained to remote
servers, add the object identifier (OID) of the custom control.

For a list of LDAP controls that can be chained and their OIDs, see Table 2.1, “LDAP Controls and Their
OIDs”.

2.3.2.2.2. Chaining LDAP Controls Using the Web Console

To chain LDAP controls using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Select the Chaining Configuration entry.

5. Click the Add button below the Forwarded LDAP Controls field.

Administration Guide

46

6. Select the LDAP control and click Add & Save New Controls.

If clients of Directory Server create their own controls and their operations should be chained to
remote servers, add the object identifier (OID) of the custom control.

For a list of LDAP controls that can be chained and their OIDs, see Table 2.1, “LDAP Controls
and Their OIDs”.

7. Click Save.

2.3.3. Database Links and Access Control Evaluation

When a user binds to a server containing a database link, the database link sends the user's identity to
the remote server. Access controls are always evaluated on the remote server. Every LDAP operation
evaluated on the remote server uses the original identity of the client application passed using the
proxied authorization control. Operations succeed on the remote server only if the user has the correct
access controls on the subtree contained on the remote server. This requires adding the usual access
controls to the remote server with a few restrictions:

Not all types of access control can be used.

For example, role-based or filter-based ACIs need access to the user entry. Because the data
are accessed through database links, only the data in the proxy control can be verified. Consider
designing the directory in a way that ensures the user entry is located in the same database as
the user's data.

All access controls based on the IP address or DNS domain of the client may not work since the
original domain of the client is lost during chaining. The remote server views the client
application as being at the same IP address and in the same DNS domain as the database link.

NOTE

Directory Server supports both IPv4 and IPv6 IP addresses.

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

47

The following restrictions apply to the ACIs used with database links:

ACIs must be located with any groups they use. If the groups are dynamic, all users in the group
must be located with the ACI and the group. If the group is static, it links to remote users.

ACIs must be located with any role definitions they use and with any users intended to have
those roles.

ACIs that link to values of a user's entry (for example, userattr subject rules) will work if the user
is remote.

Though access controls are always evaluated on the remote server, they can also be evaluated on both
the server containing the database link and the remote server. This poses several limitations:

During access control evaluation, contents of user entries are not necessarily available (for
example, if the access control is evaluated on the server containing the database link and the
entry is located on a remote server).

For performance reasons, clients cannot do remote inquiries and evaluate access controls.

The database link does not necessarily have access to the entries being modified by the client
application.

When performing a modify operation, the database link does not have access to the full entry
stored on the remote server. If performing a delete operation, the database link is only aware of
the entry's DN. If an access control specifies a particular attribute, then a delete operation will
fail when being conducted through a database link.

NOTE

By default, access controls set on the server containing the database link are not
evaluated. To override this default, use the nsCheckLocalACI attribute in the
cn=database_link, cn=chaining database,cn=plugins,cn=config entry. However,
evaluating access controls on the server containing the database link is not
recommended except with cascading chaining.

2.4. CONFIGURING CASCADING CHAINING

The database link can be configured to point to another database link, creating a cascading chaining
operation. A cascading chain occurs any time more than one hop is required to access all of the data in a
directory tree.

2.4.1. Overview of Cascading Chaining

Cascading chaining occurs when more than one hop is required for the directory to process a client
application's request.

Administration Guide

48

The client application sends a modify request to Server 1. Server one contains a database link that
forwards the operation to Server 2, which contains another database link. The database link on Server 2
forwards the operations to server three, which contains the data the clients wants to modify in a
database. Two hops are required to access the piece of data the client want to modify.

During a normal operation request, a client binds to the server, and then any ACIs applying to that client
are evaluated. With cascading chaining, the client bind request is evaluated on Server 1, but the ACIs
applying to the client are evaluated only after the request has been chained to the destination server, in
the above example Server 2.

For example, on Server A, a directory tree is split:

The root suffix dc=example,dc=com and ou=people and ou=groups sub-suffixes are stored on Server
A. The ou=europe,dc=example,dc=com and ou=groups suffixes are stored in on Server B, and the
ou=people branch of the ou=europe,dc=example,dc=com suffix is stored on Server C.

With cascading configured on servers A, B, and C, a client request targeted at the
ou=people,ou=europe,dc=example,dc=com entry would be routed by the directory as follows:

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

49

First, the client binds to Server A and chains to Server B using Database Link 1. Then Server B chains to
the target database on Server C using Database Link 2 to access the data in the
ou=people,ou=europe,dc=example,dc=com branch. Because at least two hops are required for the
directory to service the client request, this is considered a cascading chain.

2.4.2. Configuring Cascading Chaining Using the Command Line

This section provides an example of how to configure cascading chaining with three servers as shown in
the following diagram:

Administration Guide

50

Configuration Steps on Server 1

1. Create the suffix c=africa,ou=people,dc=example,dc=com:

dsconf -D "cn=Directory Manager" ldap://server1.example.com backend create --parent-
suffix="ou=people,dc=example,dc=com" --suffix="c=africa,ou=people,dc=example,dc=com"

2. Create the DBLink1 database link:

dsconf -D "cn=Directory Manager" ldap://server1.example.com chaining link-create --
suffix="c=africa,ou=people,dc=example,dc=com" --server-
url="ldap://africa.example.com:389/" --bind-mech="" --bind-dn="cn=server1 proxy
admin,cn=config" --bind-pw="password" --check-aci="off" "DBLink1"

3. Enable loop detection:

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

51

dsconf -D "cn=Directory Manager" ldap://server1.example.com chaining config-set --add-
control="1.3.6.1.4.1.1466.29539.12"

Configuration Steps on Server 2

1. Create a proxy administrative user on server 2 for server 1 to use for proxy authorization:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server2.example.com -x
dn: cn=server1 proxy admin,cn=config
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: server1 proxy admin
sn: server1 proxy admin
userPassword: password
description: Entry for use by database links

IMPORTANT

For security reasons, do not use the cn=Directory Manager account.

2. Create the suffix ou=Zanzibar,c=africa,ou=people,dc=example,dc=com:

dsconf -D "cn=Directory Manager" ldap://server2.example.com backend create --parent-
suffix="c=africaou=people,dc=example,dc=com" --
suffix="ou=Zanzibar,c=africa,ou=people,dc=example,dc=com"

3. Create the DBLink2 database link:

dsconf -D "cn=Directory Manager" ldap://server2.example.com chaining link-create --
suffix="ou=Zanzibar,c=africa,ou=people,dc=example,dc=com" --server-
url="ldap://zanz.africa.example.com:389/" --bind-mech="" --bind-dn="server2 proxy
admin,cn=config" --bind-pw="password" --check-aci="on "DBLink2"

Because the DBLink2 link is the intermediate database link in the cascading chaining
configuration, enable the ACL check to allow the server to check whether it should allow the
client and proxy administrative user access to the database link.

4. Enable loop detection:

dsconf -D "cn=Directory Manager" ldap://server2.example.com chaining config-set --add-
control="1.3.6.1.4.1.1466.29539.12"

5. Enable the proxy authorization control:

dsconf -D "cn=Directory Manager" ldap://server2.example.com chaining config-set --add-
control="2.16.840.1.113730.3.4.12"

6. Add the local proxy authorization ACI:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server2.example.com -x
dn: c=africa,ou=people,dc=example,dc=com

Administration Guide

52

changetype: modify
add: aci
aci:(targetattr="*")(target="lou=Zanzibar,c=africa,ou=people,dc=example,dc=com")
 (version 3.0; acl "Proxied authorization for database links"; allow (proxy)
 userdn = "ldap:///cn=server1 proxy admin,cn=config";)

7. Add an ACI that enables users in c=us,ou=people,dc=example,dc=com on server 1 who have a
uid attribute set, to perform any type of operation on the
ou=Zanzibar,c=africa,ou=people,dc=example,dc=com suffix tree on server 3:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server2.example.com -x
dn: c=africa,ou=people,dc=example,dc=com
changetype: modify
add: aci
aci:(targetattr="*")(target="ou=Zanzibar,c=africa,ou=people,dc=example,dc=com")
 (version 3.0; acl "Client authorization for database links"; allow (all)
 userdn = "ldap:///uid=*,c=us,ou=people,dc=example,dc=com";)

If there are users on server 3 under a different suffix that will require additional rights on server
3, it is necessary to add additional client ACIs on server 2.

Configuration Steps on Server 3

1. Create a proxy administrative user on server 3 for server 2 to use for proxy authorization:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server3.example.com -x
dn: cn=server2 proxy admin,cn=config
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: server2 proxy admin
sn: server2 proxy admin
userPassword: password
description: Entry for use by database links

IMPORTANT

For security reasons, do not use the cn=Directory Manager account.

2. Add the local proxy authorization ACI:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server3.example.com -x
dn: ou=Zanzibar,ou=people,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*")(version 3.0; acl "Proxied authorization
 for database links"; allow (proxy) userdn = "ldap:///cn=server2
 proxy admin,cn=config";)

3. Add an ACI that enables users in c=us,ou=people,dc=example,dc=com on server 1 who have a
uid attribute set, to perform any type of operation on the
ou=Zanzibar,c=africa,ou=people,dc=example,dc=com suffix tree on server 3:

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

53

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server3.example.com -x
dn: ou=Zanzibar,ou=people,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr ="*")(target="ou=Zanzibar,c=africa,ou=people,dc=example,dc=com")
 (version 3.0; acl "Client authentication for database link users"; allow (all)
 userdn = "ldap:///uid=*,c=us,ou=people,dc=example,dc=com";)

If there are users on server 3 under a different suffix that will require additional rights on server
3, it is necessary to add additional client ACIs on server 2.

The cascading chaining configuration is now set up. This cascading configuration enables a user to bind
to server 1 and modify information in the ou=Zanzibar,c=africa,ou=people,dc=example,dc=com
branch on server 3. Depending on your security needs, it can be necessary to provide more detailed
access control.

2.4.3. Detecting Loops

An LDAP control included with Directory Server prevents loops. When first attempting to chain, the
server sets this control to the maximum number of hops, or chaining connections, allowed. Each
subsequent server decrements the count. If a server receives a count of 0, it determines that a loop has
been detected and notifies the client application.

To use the control, add the 1.3.6.1.4.1.1466.29539.12 OID. For details about adding an LDAP control,
see Section 2.3.2.2, “Chaining LDAP Controls”. If the control is not present in the configuration file of
each database link, loop detection will not be implemented.

The number of hops allowed is defined using the nsHopLimit parameter. By default, the parameter is
set to 10. For example, to set the hop limit of the example chain to 5:

dsconf -D "cn=Directory Manager" ldap://server.example.com chaining link-set --hop-limit 5
example

2.5. USING REFERRALS

Referrals tell client applications which server to contact for a specific piece of information. This
redirection occurs when a client application requests a directory entry that does not exist on the local
server or when a database has been taken off-line for maintenance. This section contains the following
information about referrals:

Section 2.5.1, “Starting the Server in Referral Mode”

Section 2.5.2, “Setting Default Referrals”

Section 2.5.3, “Creating Smart Referrals”

Section 2.5.4, “Creating Suffix Referrals”

For conceptual information on how to use referrals in the directory, see the Red Hat Directory Server
Deployment Guide.

2.5.1. Starting the Server in Referral Mode

Referrals are used to redirect client applications to another server while the current server is unavailable

Administration Guide

54

or when the client requests information that is not held on the current server. For example, starting
Directory Server in referral mode while there are configuration changes being made to Directory Server
will refer all clients to another supplier while that server is unavailable. Starting Directory Server in
referral mode is done with the refer command.

Run nsslapd with the refer option.

ns-slapd refer -D /etc/dirsrv/slapd-instance_name [-p port] -r referral_url

/etc/dirsrv/slapd-instance_name/ is the directory where the Directory Server configuration
files are. This is the default location on Red Hat Enterprise Linux.

port is the optional port number of Directory Server to start in referral mode.

referral_url is the referral returned to clients. The format of an LDAP URL is covered in
Appendix C, LDAP URLs .

2.5.2. Setting Default Referrals

Directory Server returns default referrals to client applications that submit operations on a DN not
contained within any of the suffixes maintained by the directory. The following procedures describe
setting a default referral for the directory using the command line.

2.5.2.1. Setting a Default Referral Using the Command Line

Use the dsconf config replace command, to set the default referral in the nsslapd-referral parameter.
For example, to set ldap://directory.example.com/ as the default referral:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
referral="ldap://directory.example.com/"

2.5.3. Creating Smart Referrals

Smart referrals map a directory entry or directory tree to a specific LDAP URL. Using smart referrals,
client applications can be referred to a specific server or a specific entry on a specific server.

For example, a client application requests the directory entry
uid=jdoe,ou=people,dc=example,dc=com. A smart referral is returned to the client that points to the
entry cn=john doe,o=people,ou=europe,dc=example,dc=com on the server
directory.europe.example.com.

The way the directory uses smart referrals conforms to the standard specified in RFC 2251 section 4.1.11.
The RFC can be downloaded at http://www.ietf.org/rfc/rfc2251.txt.

2.5.3.1. Creating Smart Referrals Using the Command Line

To create a smart referral, create the relevant directory entry with the referral object class and set the
ref attribute to the referral LDAP URL.

For example, to create a smart referral named uid=user,ou=people,dc=example,dc=com that refers
to ldap://directory.europe.example.com/cn=user,ou=people,ou=europe,dc=example,dc=com:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server2.example.com -x
dn: uid=user,ou=people,dc=example,dc=com

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

55

http://www.ietf.org/rfc/rfc2251.txt

objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: referral
sn: user
uid: user
cn: user
ref: ldap://directory.europe.example.com/cn=user,ou=people,ou=europe,dc=example,dc=com

NOTE

Directory Server ignores any information after a space in an LDAP URL. For this reason,
use %20 instead of spaces in LDAP URLs used as a referral.

Use the -M option with ldapadd if there is already a referral in the DN path. For more information on
smart referrals, see the Directory Server Deployment Guide.

2.5.4. Creating Suffix Referrals

The following procedure describes creating a referral in a suffix. This means that the suffix processes
operations using a referral rather than a database or database link.

WARNING

When you configure a suffix to return referrals, the ACIs contained in the database
associated with the suffix are ignored. In addition, creating suffix referrals applies
only to non-replicated suffixes.

2.5.4.1. Creating Suffix Referrals Using the Command Line

To create a suffix referral:

1. Optionally, create a root or sub-suffix, if it does not already exist. For details, see Section 2.1.1,
“Creating Suffixes”.

2. Add the referral to the suffix. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix set --add-
referral="ldap://directory.example.com/" database_name

2.5.4.2. Creating Suffix Referrals Using the Web Console

To create a suffix referral:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.



Administration Guide

56

2. Select the instance.

3. Open the Database menu.

4. Optionally, create a root or sub-suffix, if it does not already exist. For details, see Section 2.1.1,
“Creating Suffixes”.

5. Select the suffix in the list, and open the Referrals tab.

6. Click Create Referral.

7. Fill the fields to create the referral URL.

8. Click Create Referral.

2.6. VERIFYING THE INTEGRITY OF BACK-END DATABASES

The dsctl dbverify command enables administrators to verify the integrity of back-end databases. For
example, to verify the userroot database:

1. Optionally, list the back-end databases of the instance:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend suffix list
dc=example,dc=com (userroot)

You need the name of the database in a later step.

2. Stop the Directory Server instance:

CHAPTER 2. CONFIGURING DIRECTORY DATABASES

57

dsctl instance_name stop

3. Verify the database:

dsctl instance_name dbverify userroot
[04/Feb/2020:13:11:02.453624171 +0100] - INFO -
ldbm_instance_config_cachememsize_set - force a minimal value 512000
[04/Feb/2020:13:11:02.465339507 +0100] - WARN -
ldbm_instance_add_instance_entry_callback - ldbm instance userroot already exists
[04/Feb/2020:13:11:02.468060144 +0100] - ERR - ldbm_config_read_instance_entries -
Failed to add instance entry cn=userroot,cn=ldbm database,cn=plugins,cn=config
[04/Feb/2020:13:11:02.471079045 +0100] - ERR - bdb_config_load_dse_info - failed to read
instance entries
[04/Feb/2020:13:11:02.476173304 +0100] - ERR - libdb - BDB0522 Page 0: metadata page
corrupted
[04/Feb/2020:13:11:02.481684604 +0100] - ERR - libdb - BDB0523 Page 0: could not check
metadata page
[04/Feb/2020:13:11:02.484113053 +0100] - ERR - libdb - /var/lib/dirsrv/slapd-
instance_name/db/userroot/entryrdn.db: BDB0090 DB_VERIFY_BAD: Database verification
failed
[04/Feb/2020:13:11:02.486449603 +0100] - ERR - dbverify_ext - verify failed(-30970):
/var/lib/dirsrv/slapd-instance_name/db/userroot/entryrdn.db
dbverify failed

4. If the verification process reported any problems, fix them manually or restore a backup.

5. Start the Directory Server instance:

dsctl instance_name start

Administration Guide

58

CHAPTER 3. MANAGING DIRECTORY ENTRIES
You can manage directory entries using the command line or the web console.

3.1. MANAGING DIRECTORY ENTRIES USING THE COMMAND LINE

To perform LDAP operations using the command line, install the openldap-clients package. The utilities
installed by this package enable you to:

Add new entries

Add new attributes to existing entries

Update existing entries and attributes

Delete entries and attributes from entries

Perform bulk operations

To install the openldap-clients package:

yum install openldap-clients

NOTE

To perform LDAP operations, you need the appropriate permissions. For details about
access control, see Chapter 18, Managing Access Control .

3.1.1. Providing Input to the ldapadd, ldapmodify, and ldapdelete Utilities

When you add, update, or delete entries or attributes in your directory, you can either use the interactive
mode of the utilities to enter LDAP Data Interchange Format (LDIF) statements or pass an LDIF file to
them.

For further details about LDIF, see Section B.1, “About the LDIF File Format” .

3.1.1.1. Providing Input Using the Interactive Mode

In the interactive mode, the ldapadd, ldapmodify, and ldapdelete utilities read the input from the
command line. To exit the interactive mode, press the Ctrl+D (^D) key combination to send the End Of
File (EOF) escape sequence.

In interactive mode, the utility sends the statements to the LDAP server when you press Enter twice or
when you send the EOF sequence.

Use the interactive mode:

To enter LDIF statements without creating a file:

Example 3.1. Using the ldapmodify Interactive Mode to Enter LDIF Statements

The following example starts ldapmodify in interactive mode, deletes the
telephoneNumber attribute, and adds the manager attribute with the
cn=manager_name,ou=people,dc=example,dc=com value to the

CHAPTER 3. MANAGING DIRECTORY ENTRIES

59

uid=user,ou=people,dc=example,dc=com entry. Press Ctrl+D after the last statement to
exit the interactive mode.

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=people,dc=example,dc=com
changetype: modify
delete: telephoneNumber
-
add: manager
manager: cn=manager_name,ou=people,dc=example,dc=com
^D

To redirect LDIF statements, outputted by another command, to Directory Server:

Example 3.2. Using the ldapmodify Interactive Mode with Redirected Content

The following example redirects the output of the command_that_outputs_LDIF command
to ldapmodify. The interactive mode exits automatically after the redirected command
exits.

command_that_outputs_LDIF | ldapmodify -D "cn=Directory Manager" \
 -W -p 389 -h server.example.com -x

3.1.1.2. Providing Input Using an LDIF File

In the interactive mode, the ldapadd, ldapmodify, and ldapdelete utilities read the LDIF statements
from a file. Use this mode to send a larger number of LDIF statements to Directory Server.

Example 3.3. Passing a File with LDIF Statements to ldapmodify

1. Create a file with the LDIF statements. For example, create the ~/example.ldif file with the
following statements:

dn: uid=user,ou=people,dc=example,dc=com
changetype: modify
delete: telephoneNumber
-
add: manager
manager: cn=manager_name,ou=people,dc=example,dc=com

This example deletes the telephoneNumber attribute and to adds the manager attribute
with the cn=manager_name,ou=people,dc=example,dc=com value to the
uid=user,ou=people,dc=example,dc=com entry.

2. Pass the file to the ldapmodify command using the -f file_name option:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x \
 -f ~/example.ldif

Administration Guide

60

3.1.2. The Continuous Operation Mode

If you send multiple LDIF statements to Directory Server and one operation fails, the process stops.
However, entries processed before the error occurred were successfully added, modified, or deleted.

To ignore errors and continue processing further LDIF statements in a batch, pass the -c option to
ldapadd and ldapmodify. For example:

ldpamodify -c -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

3.1.3. Adding an Entry

To add a new entry to the directory, use the ldapadd or ldapmodify utility. Note that ldapadd is a
symbolic link to /bin/ldapmodify. Therefore, ldapadd performs the same operation as ldapmodify -a.

NOTE

You can only add a new directory entry, if the parent entry already exists. For example,
you cannot add the cn=user,ou=people,dc=example,dc=com entry, if the
ou=people,dc=example,dc=com parent entry does not exist.

3.1.3.1. Adding an Entry Using ldapadd

To use the ldapadd utility to add, for example, the cn=user,ou=people,dc=example,dc=com user
entry:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
uid: user
givenName: given_name
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetorgperson
sn: surname
cn: user

NOTE

Running ldapadd automatically performs a changetype: add operation. Therefore, you
do not need to specify changetype: add in the LDIF statement.

For further details on the parameters used in the command, see the ldapadd(1) man page.

3.1.3.2. Adding an Entry Using ldapmodify

To use the ldapmodify utility to add, for example, the cn=user,ou=people,dc=example,dc=com user
entry:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

CHAPTER 3. MANAGING DIRECTORY ENTRIES

61

dn: uid=user,ou=People,dc=example,dc=com
uid: user
givenName: given_name
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetorgperson
sn: surname
cn: user

NOTE

When passing the -a option to the ldapmodify command, the utility automatically
performs a changetype: add operation. Therefore, you do not need to specify
changetype: add in the LDIF statement.

For further details on the parameters used in the command, see the ldapmodify(1) man page.

3.1.3.3. Creating a Root Entry

To create the root entry of a database suffix, such as dc=example,dc=com, bind as the cn=Directory
Manager user and add the entry.

The DN corresponds to the DN of the root or sub-suffix of the database.

For example, to add the dc=example,dc=com suffix:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: dc=example,dc=com
changetype: add
objectClass: top
objectClass: domain
dc: example

NOTE

You can add root objects only if you have one database per suffix. If you create a suffix
that is stored in several databases, you must use the ldif2db utility with the -n back_end
option to set the database that will hold the new entries. For details, see Section 6.1.2,
“Importing Using the Command Line”.

3.1.4. Updating a Directory Entry

When you modify a directory entry, use the changetype: modify statement. Depending on the change
operation, you can add, change, or delete attributes from the entry.

Use the ldapmodify utility to send the LDIF statements to Directory Server. For example, in interactive
mode:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

For further details on the parameters used in ldapmodify commands, see the ldapmodify(1) man page.

Administration Guide

62

3.1.4.1. Adding Attributes to an Entry

To add an attribute to an entry, use the add operation.

For example, to add the telephoneNumber attribute with the 555-1234567 value to the
uid=user,ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
add: telephoneNumber
telephoneNumber: 555-1234567

If an attribute is multi-valued, you can specify the attribute name multiple times to add all the values in a
single operation. For example, to add two telephoneNumber attributes at once to the
uid=user,ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
add: telephoneNumber
telephoneNumber: 555-1234567
telephoneNumber: 555-7654321

3.1.4.2. Updating an Attribute's Value

The procedure for updating an attribute's value depends on if the attribute is single-valued or multi-
valued.

Updating a Single-value Attribute
When updating a single-value attribute, use the replace operation to override the existing value. The
following command updates the manager attribute of the uid=user,ou=People,dc=example,dc=com
entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
replace: manager
manager: uid=manager_name,ou=People,dc=example,dc=com

Updating a Specific Value of a Multi-value Attribute
To update a specific value of a multi-value attribute, you must first delete the entry you want to replace,
and then add the new value. The following command updates only the telephoneNumber attribute that
is currently set to 555-1234567 in the uid=user,ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
delete: telephoneNumber
telephoneNumber: 555-1234567

CHAPTER 3. MANAGING DIRECTORY ENTRIES

63

-
add: telephoneNumber
telephoneNumber: 555-9876543

3.1.4.3. Deleting Attributes from an Entry

To delete an attribute from an entry, use the delete operation.

Deleting an Attribute
For example, to delete the manager attribute from the uid=user,ou=People,dc=example,dc=com
entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
delete: manager

NOTE

If the attribute contains multiple values, this operation deletes all of them.

Deleting a Specific Value of a Multi-value Attribute
If you want to delete a specific value from a multi-value attribute, list the attribute and its value in the
LDIF statement. For example, to delete only the telephoneNumber attribute that is set to 555-1234567
from the uid=user,ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
delete: telephoneNumber
telephoneNumber: 555-1234567

3.1.5. Deleting an Entry

Deleting an entry removes the entry from the directory.

NOTE

You can only delete entries that have no child entries. For example, you cannot delete the
ou=People,dc=example,dc=com entry, if the
uid=user,ou=People,dc=example,dc=com entry still exists.

3.1.5.1. Deleting an Entry Using ldapdelete

The ldapdelete utility enables you to delete one or multiple entries. For example, to delete the
uid=user,ou=People,dc=example,dc=com entry:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
"uid=user,ou=People,dc=example,dc=com"

Administration Guide

64

To delete multiple entries in one operation, append them to the command. For example:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x \
 "uid=user1,ou=People,dc=example,dc=com" \
 "uid=user2,ou=People,dc=example,dc=com"

For further details on the parameters used, see the ldapdelete(1) man page.

3.1.5.2. Deleting an Entry Using ldapmodify

To delete an entry using the ldapmodify utility, use the changetype: delete operation. For example, to
delete the uid=user,ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: delete

3.1.6. Renaming and Moving an Entry

This section explains how to rename or move entries.

NOTE

Use the moddn Access Control List (ACL) to grant permissions to move entries. For
details, see Section 18.9.2.1, “Targeting Source and Destination DNs” .

The following rename operations exist:

Renaming an Entry

If you rename an entry, the modrdn operation changes the Relative Distinguished Name (RDN) of
the entry:

Renaming a Subentry

For subtree entries, the modrdn operation renames the subtree and also the DN components of
child entries:

CHAPTER 3. MANAGING DIRECTORY ENTRIES

65

Note that for large subtrees, this process can take a lot of time and resources.

Moving an Entry to a New Parent

A similar action to renaming a subtree is moving an entry from one subtree to another. This is an
expanded type of the modrdn operation, which simultaneously renames the entry and sets a
newSuperior attribute which moves the entry from one parent to another:

3.1.6.1. Considerations for Renaming Entries

Keep the following in mind when performing rename operations:

You cannot rename the root suffix.

Subtree rename operations have minimal effect on replication. Replication agreements are
applied to an entire database, not a subtree within the database. Therefore, a subtree rename
operation does not require reconfiguring a replication agreement. All name changes after a
subtree rename operation are replicated as normal.

Renaming a subtree might require any synchronization agreements to be reconfigured.
Synchronization agreements are set at the suffix or subtree level. Therefore, renaming a
subtree might break synchronization.

Renaming a subtree requires that any subtree-level Access Control Instructions (ACI) set for
the subtree be reconfigured manually, as well as any entry-level ACIs set for child entries of the
subtree.

Trying to change the component of a subtree, such as moving from ou to dc, might fail with a
schema violation. For example, the organizationalUnit object class requires the ou attribute. If
that attribute is removed as part of renaming the subtree, the operation fails.

If you move a group, the MemberOf plug-in automatically updates the memberOf attributes.

Administration Guide

66

However, if you move a subtree that contain groups, you must manually create a task in the
cn=memberof task entry or use the fixup-memberof.pl to update the related memberOf
attributes.

For details about cleaning up memberOf attribute references, see Section 8.1.4.8,
“Regenerating memberOf Values”.

3.1.6.2. Renaming Users, Groups, POSIX Groups, and OUs

The dsidm utility can rename several types of objects:

Users:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com" user
rename current_user_name new_user_name

Note that the dsidm user rename command automatically places ou=People in front of the
base DN you have specified.

Groups:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
group rename current_group_name new_group_name

Note that the dsidm group rename command automatically places ou=Groups in front of the
base DN you have specified.

POSIX Groups:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
posixgroup rename current_posix_group_name new_posix_group_name

Note that the dsidm posixgroup rename command automatically places ou=Groups in front
of the base DN you have specified.

Organizational Units (OU)

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
organizationalunit rename current_ou_name new_ou_name

The dsidm organizationalunit rename command performs the rename operation directly in
the base DN you have specified.

3.1.6.3. The deleteOldRDN Parameter When Renaming Entries Using LDIF Statements

When you rename an entry, the deleteOldRDN parameter controls whether the old RDN will be deleted
or retained.

deleteOldRDN: 0

The existing RDN is retained as a value in the new entry. The resulting entry contains two cn
attributes: one with the old and one with the new common name (CN).

For example, the following attributes belong to a group that was renamed from

CHAPTER 3. MANAGING DIRECTORY ENTRIES

67

For example, the following attributes belong to a group that was renamed from
cn=old_group,dc=example,dc=com to cn=new_group,dc=example,dc=com with the
deleteOldRDN: 0 parameter set.

dn: cn=new_group,ou=Groups,dc=example,dc=com
objectClass: top
objectClass: groupOfUniqueNames
cn: old_group
cn: new_group

deleteOldRDN: 1

Directory Server deletes the old entry and creates a new entry using the new RDN. The new entry
only contains the cn attribute of the new entry.

For example, the following group was renamed to cn=new_group,dc=example,dc=com with the
deleteOldRDN: 1 parameter set:

dn: cn=new_group,ou=Groups,dc=example,dc=com
objectClass: top
objectClass: groupofuniquenames
cn: new_group

3.1.6.4. Renaming an Entry or Subtree Using LDIF Statements

To rename an entry or subtree, use the changetype: modrdn operation and, set the new RDN in the
newrdn attribute.

For example, to rename the cn=demo1,dc=example,dc=com entry to
cn=example_user,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example_user,cn=ldap_connect,dc=example,dc=com
changetype: modrdn
newrdn: cn=example_user
deleteOldRDN: 1
newSuperior: dc=example,dc=com

For details about the deleteOldRDN, see Section 3.1.6.3, “The deleteOldRDN Parameter When
Renaming Entries Using LDIF Statements”.

3.1.6.5. Moving an Entry to a New Parent Using LDIF Statements

To move an entry to a new parent, use the changetype: modrdn operation and set the following to
attributes:

newrdn

Sets the RDN of the moved entry. You must set this entry, even if the RDN remains the same.

newSuperior

Sets the DN of the new parent entry.

Administration Guide

68

For example, to move the cn=demo entry from ou=Germany,dc=example,dc=com to
ou=France,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=demo,ou=Germany,dc=example,dc=com
changetype: modrdn
newrdn: cn=demo
deleteOldRDN: 1
newSuperior: ou=France,dc=example,dc=com

For details about the deleteOldRDN, see Section 3.1.6.3, “The deleteOldRDN Parameter When
Renaming Entries Using LDIF Statements”.

3.1.7. Using Special Characters

When using the command line, enclose characters that have a special meaning to the command-line
interpreter, such as space (), asterisk (*), or backslash (\), with quotation marks. Depending on the
command-line interpreter, use single or double quotation marks.

For example, to authenticate as the cn=Directory Manager user, enclose the user's DN in quotation
marks:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

Additionally, if a DN contains a comma in a component, escape it using a backslash. For example, to
authenticate as the uid=user,ou=People,dc=example.com Chicago, IL user:

ldapmodify -a -D "cn=uid=user,ou=People,dc=example.com Chicago\, IL" \
 -W -p 389 -h server.example.com -x

3.1.8. Using Binary Attributes

Certain attributes support binary values, such as the jpegPhoto attribute. When you add or update such
an attribute, the utility reads the value for the attribute from a file. To add or update such an attribute,
you can use the ldapmodify utility.

For example, to add the jpegPhoto attribute to the uid=user,ou=People,dc=example,dc=com entry,
and read the value for the attribute from the /home/user_name/photo.jpg file, enter:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
add: jpegPhoto
jpegPhoto:< file:///home/user_name/photo.jpg

IMPORTANT

Note that there is no space between : and <.

3.1.9. Updating an Entry in an Internationalized Directory

CHAPTER 3. MANAGING DIRECTORY ENTRIES

69

To use attribute values with languages other than English, associate the attribute's value with a
language tag.

When using ldapmodify to update an attribute that has a language tag set, you must match the value
and language tag exactly or the operation will fail.

For example, to modify an attribute value that has the lang-fr language tag set, include the tag in the
modify operation:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
replace: homePostalAddress;lang-fr
homePostalAddress;lang-fr: 34 rue de Seine

3.2. MANAGING DIRECTORY ENTRIES USING THE WEB CONSOLE

You can add, edit, rename, and delete LDAP entries using the web console.

3.2.1. Adding an LDAP Entry Using the Web Console

You can use the LDAP Browser in the web console to search for entries in the Directory Server
databases.

You can create the following entries using the web console:

users

groups

roles

organizational units (OUs)

custom entries

For example, you want to create a POSIX user cn=John Smith,ou=people,dc=example,dc=com with a
password.

Prerequisites

You are logged in to the Directory Server web console.

The parent entry exists. For example, ou=people,dc=example,dc=com.

Procedure

1. In the web console, open the LDAP Browser menu to reveal the list of existing suffixes.

2. Using the Tree or Table view, expand the parent entry ou=people,dc=example,dc=com under
which you want to create a user.

3. Click the Options menu (�) and select New to open the wizard window.

Administration Guide

70

4. Select the Create a new User option and click Next.

5. For the user entry, select Posix Account type and click Next.

6. Optional: Select additional attributes, such as userPassword, and click Next. You can view all
selected attributes by expanding the drop-down list near the step name.

7. Set a value for each attribute:

a. Click on the pencil button of the attribute and add a value.

CHAPTER 3. MANAGING DIRECTORY ENTRIES

71

Note that a separate menu opens when you set the userPassword value. The value is filled
with asterisks (*) to hide the plain text.

b. Click on the check button to save changes.

c. Optional: Set an additional attribute value by clicking the Options menu (�) → Add Another
Value.

d. After you have set all values, click Next.

8. Verify that all entry details are correct and click Create User. Directory Server creates the entry
with mandatory attributes for a POSIX user and sets the password to it. You can click Back to
modify entry settings, or click Cancel to cancel the entry creation.

9. View the Result for Entry Creation and click Finish.

Verification

1. Navigate to LDAP Browser → Search.

2. Select the database suffix that contains the entry, such as dc=example,cd=com.

3. Enter your search criteria in the field, such as John, and press Enter.

4. Find the entry you recently created in the list of entries.

3.2.2. Editing an LDAP Entry Using the Web Console

You can modify a directory entry using the web console. This example modifies a user entry cn=John
Smith,ou=people,dc=example,dc=com by:

adding telephone numbers 556778987 and 556897445.

adding email jsmith@example.com.

changing the password.

Prerequisites
You are logged into the Directory Server web console.

Procedure

1. In the web console, open the LDAP Browser menu to reveal the list of existing suffixes.

Administration Guide

72

2. Using the Tree or Table view, expand the entry you want to edit, such as cn=John
Smith,ou=people,dc=example,dc=com.

3. Click the Options menu (�) and select Edit to open the wizard window.

4. Optional: In the Select ObjectClasses step, add or delete object classes for the entry. Click
Next.

5. In the Select Attributes step, add telephoneNumber and mail attributes to the entry and click
Next. If you do not see an attribute you want to add to the entry it means that you did not add
corresponding object class in the previous step.

NOTE

In this step, you can not delete mandatory attributes of the selected object
classes.

6. In the Edit Attribute Values step, set telephoneNumber to 556778987 and 556897445, mail
to jsmith@example.com and change userPassword value:

a. Click on the pencil button of the attribute and add or change a new value.

b. Click on the check button to save changes.

c. Optional: Set an additional value to an attribute by clicking the Options menu (�) → Add
Another Value. The telephoneNumber attribute has two values in this example. When you
set all values, click Next.

7. Review your changes and click Next.

8. To edit the entry, click Modify Entry. You can click Back to modify entry settings, or click
Cancel to cancel the entry editing.

9. View the Result for Entry Modification and click Finish.

Verification

Expand the entry details and view the new changes appear among the entry attributes.

3.2.3. Renaming and Relocating an LDAP Entry or Subtree Using the Web Console

You can rename or relocate a directory entry or a subtree using the web console. This example renames
and relocates the entry cn=John Smith,ou=people,dc=example,dc=com to cn=Tom
Smith,ou=clients,dc=example,dc=com.

Prerequisites
You are logged into the Directory Server web console.

Procedure

1. In the web console, open the LDAP Browser menu to reveal the list of existing suffixes.

2. Using the Tree or Table view, expand the entry you want to modify, such as cn=John
Smith,ou=people,dc=example,dc=com.

3. Click the Options menu (�) and select Rename to open the wizard window.

CHAPTER 3. MANAGING DIRECTORY ENTRIES

73

4. In the Select The Naming Attribute And Value step:

a. Set a new value Tom Smith for the naming attribute cn and click Next.

b. Optional: Select another naming attribute from the drop-down menu.

c. Optional: In case you want to delete the old entry and create a new one using the new RDN,
check Delete the old RDN.

5. In Select The Entry Location step, select the parent entry for the new location, and click Next.

6. Review changes you made to the entry and click Next.

7. If the entry details are correct, click Change Entry Name. You can click Back to make other
changes to the entry or click Cancel to cancel the entry modification.

8. View Result for Entry Modification and click Finish.

Verification

Expand the entry details and review the updated entry.

3.2.4. Deleting an LDAP Entry Using the Web Console

You can delete a directory entry or a subtree using the web console. This example deletes the entry
cn=Tom Smith,ou=clients,dc=example,dc=com.

Prerequisites
You are logged into the Directory Server web console.

Procedure

1. In the web console, open the LDAP Browser menu to reveal the list of existing suffixes.

2. Using the Tree or Table view, expand the entry you want to delete, such as cn=Tom
Smith,ou=clients,dc=example,dc=com.

3. Click the Options menu (�) and select Delete to open the wizard window.

4. Click Next after you review the data about the entry you want to delete.

5. In the Deletion step, toggle the switch to the Yes, I’m sure position and click Delete. You can
click Cancel to cancel the entry deletion.

6. View the Result for Entry Deletion and click Finish.

Verification

1. Navigate to LDAP Browser → Search.

2. Select the suffix where the entry previously existed, such as dc=example,cd=com.

3. Enter your search criteria in the field, such as Tom, and press Enter.

4. Verify that the deleted entry is no longer present.

Administration Guide

74

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY
ENTRIES
In certain situations it is useful to track when changes are made to entries. There are two aspects of
entry modifications that the Directory Server tracks:

Using change sequence numbers to track changes to the database. This is similar to change
sequence numbers used in replication and synchronization. Every normal directory operation
triggers a sequence number.

Assigning creation and modification information. These attributes record the names of the user
who created and most recently modified an entry, as well as the timestamps of when it was
created and modified.

NOTE

The entry update sequence number (USN), modify time and name, and create time and
name are all operational attributes and are not returned in a regular ldapsearch. For
details on running a search for operational attributes, see Section 14.4.7, “Searching for
Operational Attributes”.

4.1. TRACKING MODIFICATIONS TO THE DATABASE THROUGH
UPDATE SEQUENCE NUMBERS

The USN Plug-in enables LDAP clients and servers to identify if entries have been changed.

4.1.1. An Overview of the Entry Sequence Numbers

When the USN Plug-in is enabled, update sequence numbers (USNs) are sequential numbers that are
assigned to an entry whenever a write operation is performed against the entry. (Write operations
include add, modify, modrdn, and delete operations. Internal database operations, like export
operations, are not counted in the update sequence.) A USN counter keeps track of the most recently
assigned USN.

4.1.1.1. Local and Global USNs

The USN is evaluated globally, for the entire database, not for the single entry. The USN is similar to the
change sequence number for replication and synchronization, in that it simply ticks upward to track any
changes in the database or directory. However, the entry USN is maintained separately from the CSNs,
and USNs are not replicated.

The entry shows the change number for the last modification to that entry in the entryUSN operational
attribute. For further details about operational attributes, see Section 14.4.7, “Searching for Operational
Attributes”.

Example 4.1. Example Entry USN

To display the entryusn attribute of the uid=example,ou=People,dc=example,dc=com user entry:

ldapsearch -D "cn=Directory Manager" -W -H ldap://server.example.com:389 -x -b
"uid=example,ou=People,dc=example,dc=com" -s base -x entryusn

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES

75

dn: uid=example,ou=People,dc=example,dc=com
entryusn: 17653

The USN Plug-in has two modes, local mode and global mode:

In local mode, each back end database has an instance of the USN Plug-in with a USN counter
specific to that back end database. This is the default setting.

In global mode, there is a global instance of the USN Plug-in with a global USN counter that
applies to changes made to the entire directory.

When the USN Plug-in is set to local mode, results are limited to the local back end database. When the
USN Plug-in is set to global mode, the returned results are for the entire directory.

The root DSE shows the most recent USN assigned to any entry in the database in the lastusn attribute.
When the USN Plug-in is set to local mode, so each database has its own local USN counter, the
lastUSN shows both the database which assigned the USN and the USN:

lastusn;database_name:USN

For example:

lastusn;example1: 2130
lastusn;example2: 2070

In global mode, when the database uses a shared USN counter, the lastUSN attribute shows the latest
USN only:

lastusn: 4200

4.1.1.2. Importing USN Entries

When entries are imported, the USN Plug-in uses the nsslapd-entryusn-import-initval attribute to
check if the entry has an assigned USN. If the value of nsslapd-entryusn-import-initval is numerical,
the imported entry will use this numerical value as the entry's USN. If the value of nsslapd-entryusn-
import-initval is not numerical, the USN Plug-in will use the value of the lastUSN attribute and
increment it by one as the USN for the imported entry.

4.1.2. Enabling the USN Plug-in

This section describes how to enable the USN plug-in to record USNs on entries.

4.1.2.1. Enabling the USN Plug-in Using the Command Line

To enable the USN plug-in using the command line:

1. Use the dsconf utility to enable the plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin usn enable

2. Restart the instance:

Administration Guide

76

dsctl instance_name restart

4.1.2.2. Enabling the USN Plug-in Using the Web Console

To enable the USN plug-in using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

4. Select the USN plug-in.

5. Change the status to ON to enable the plug-in.

6. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

4.1.3. Global USNs

With the default settings, Directory Server uses unique update sequence numbers (USN) for each back
end database. Alternatively, you can enable unique USNs across all back end databases.

NOTE

The USN plug-in must be enabled to use this feature. See Section 4.1.2, “Enabling the
USN Plug-in”.

4.1.3.1. Identifying Whether Global USNs are Enabled

This section describes how to identify whether USNs are enabled across all back end databases.

4.1.3.1.1. Identifying Whether Global USNs are Enabled Using the Command Line

To display the current status of the global USN feature using the command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin usn global
USN global mode is disabled

4.1.3.1.2. Identifying Whether Global USNs are Enabled Using the Web Console

To display the current status of the global USN feature using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

4. Select the USN plug-in.

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES

77

5. Verify that the USN Global switch is set to On.

4.1.3.2. Enabling Global USNs

4.1.3.2.1. Enabling Global USNs Using the Command Line

To enable global USNs using the command line:

1. Enable global USNs:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin usn global on

2. Restart the instance:

dsctl instance_name restart

4.1.3.2.2. Enabling Global USNs Using the Web Console

To enable global USNs using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select the USN plug-in.

5. Change the status of the plug-in to On.

6. Change the USN Global status to On.

7. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

4.1.4. Cleaning up USN Tombstone Entries

The USN plug-in moves entries to tombstone entries when the entry is deleted. If replication is enabled,
then separate tombstone entries are kept by both the USN and Replication plug-ins. Both tombstone
entries are deleted by the replication process, but for server performance, it can be beneficial to delete
the USN tombstones:

before converting a server to a replica

to free memory for the server

4.1.4.1. Cleaning up USN Tombstone Entries Using the Command Line

To remove all USN tombstone entries from the dc=example,dc=com suffix using the command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin usn cleanup -s
"dc=example,dc=com"

Optionally, pass the -o max_USN option to the command to delete USN tombstone entries up to the

Administration Guide

78

Optionally, pass the -o max_USN option to the command to delete USN tombstone entries up to the
specified value.

4.1.4.2. Cleaning up USN Tombstone Entries Using the Web Console

To remove all USN tombstone entries from the dc=example,dc=com suffix using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select the USN plug-in.

5. Press the Run Fixup Task button.

6. Fill the fields, and press Run.

4.2. TRACKING ENTRY MODIFICATIONS THROUGH OPERATIONAL
ATTRIBUTES

Using the default settings, Directory Server tracks the following operational attributes for every entry:

creatorsName: The distinguished name (DN) of the user who initially created the entry.

createTimestamp: The times stamp in Greenwich Mean Time (GMT) format when the entry was
created.

modifiersName: The distinguished name of the user who last modified the entry.

modifyTimestamp: The time stamp in the GMT format for when the entry was last modified.

Note that operational attributes are not returned in default searches. You must explicitly request these
attributes in queries. For details, see Section 14.4.7, “Searching for Operational Attributes”.

IMPORTANT

Red Hat recommends not disabling tracking these operational attributes. If disabled,
entries do not get a unique ID assigned in the nsUniqueID attribute and replication does
not work.

4.2.1. Entries Modified or Created by a Database Link

When an entry is created or modified over a database link, the creatorsName and modifiersName
attributes contain the name of the user who is granted proxy authorization rights on the remote server.
In this case, the attributes do not display the original creator or latest modifier of the entry. However, the
access logs show both the proxy user (dn) and the original user (authzid). For example:

[23/May/2018:18:13:56.145747965 +051800] conn=1175 op=0 BIND dn="cn=proxy
admin,ou=People,dc=example,dc=com" method=128 version=3
[23/May/2018:18:13:56.575439751 +051800] conn=1175 op=0 RESULT err=0 tag=97 nentries=0
etime=0 dn="cn=proxy admin,ou=people,dc=example,dc=com"

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES

79

[23/May/2018:18:13:56.744359706 +051800] conn=1175 op=1 SRCH base="dc=example,dc=com"
scope=2 filter="(objectClass=*)" attrs=ALL
authzid="uid=user_name,ou=People,dc=example,dc=com"

4.2.2. Enabling Tracking of Modifications

By default, Directory Server tracks modifications in operational attributes.

NOTE

Red Hat recommends not disabling this feature.

This section describes how to re-enable tracking of modifications in case that you disabled the feature.

4.2.2.1. Enabling Tracking Of Modifications Using the Command Line

To re-enable tracking of entry modifications using the command line:

1. Set the nsslapd-lastmod parameter to on:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
lastmod=on

2. Optionally, to regenerate the missing nsUniqueID attributes:

a. Export the database into an LDAP Data Interchange Format (LDIF) file. See Section 6.2.1,
“Exporting Data into an LDIF File Using the Command Line”.

b. Import the database from the LDIF file. See Section 6.1.2, “Importing Using the Command
Line”.

4.3. TRACKING THE BIND DN FOR PLUG-IN INITIATED UPDATES

One change to an entry can trigger other, automatic changes across the directory tree. When a user is
deleted, for example, that user is automatically removed from any groups it belonged to by the
Referential Integrity Postoperation plug-in.

The initial action is shown in the entry as being performed by whatever user account is bound to the
server, but all related updates (by default) are shown as being performed by the plug-in, with no
information about which user initiated that update. For example, using the MemberOf Plug-in to update
user entries with group membership, the update to the group account is shown as being performed by
the bound user, while the edit to the user entry is shown as being performed by the MemberOf Plug-in:

dn: cn=example_group,ou=groups,dc=example,dc=com
modifiersname: uid=example,ou=people,dc=example,dc=com

dn: uid=example,ou=people,dc=example,dc=com
modifiersname: cn=memberOf plugin,cn=plugins,cn=config

The nsslapd-plugin-binddn-tracking parameter enables the server to track which user originated an
update operation, as well as the internal plug-in which actually performed it. The bound user is shown in
the modifiersname and creatorsname operational attributes, while the plug-in which performed it is
shown in the internalModifiersname and internalCreatorsname operational attributes. For example:

Administration Guide

80

dn: uid=example,ou=people,dc=example,dc=com
modifiersname: uid=admin,ou=people,dc=example,dc=com
internalModifiersname: cn=memberOf plugin,cn=plugins,cn=config

The nsslapd-plugin-binddn-tracking parameter tracks and maintains the relationship between the
bound user and any updates performed for that connection.

NOTE

The internalModifiersname and internalCreatorsname attributes always show a plug-in
as the identity. This plug-in could be an additional plug-in, such as the MemberOf Plug-in.
If the change is made by the core Directory Server, then the plug-in is the database plug-
in, cn=ldbm database,cn=plugins,cn=config.

4.3.1. Enabling Tracking the Bind DN for Plug-in Initiated Updates Using the
Command Line

To enable tracking the Bind DN for plug-in-initiated updates using the command line:

1. Set the nsslapd-plugin-binddn-tracking parameter to on:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
plugin-binddn-tracking=on

2. Restart the instance:

dsctl instance_name restart

4.3.2. Enabling Tracking the Bind DN for Plug-in Initiated Updates Using the Web
Console

To enable tracking the Bind DN for plug-in-initiated updates using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select the Server Settings entry.

4. On the Advanced Settings tab, select Enable Plugin Bind DN Tracking.

5. Click Save.

6. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

4.4. TRACKING PASSWORD CHANGE TIMES

Password change operations are normally treated as any other modification to an entry, so the update
time is recorded in the lastModified operational attribute. However, there can be times when the time
of the last password change needs to be recorded separately, to make it easier to update passwords in
Active Directory synchronization or to connect with other LDAP clients.

CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES

81

The passwordTrackUpdateTime attribute within the password policy tells the server to record a
timestamp for the last time that the password was updated for an entry. The password change time
itself is stored as an operational attribute on the user entry, pwdUpdateTime (which is separate from
the modifyTimestamp or lastModified operational attributes).

The passwordTrackUpdateTime attribute can be set as part of the global password policy or on a
subtree or user-level policy, depending on what clients need to access the password change time.
Setting password policies is described in Section 20.4, “Managing the Password Policy” .

Administration Guide

82

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY
Referential Integrity is a database mechanism that ensures relationships between related entries are
maintained. In the Directory Server, the Referential Integrity can be used to ensure that an update to
one entry in the directory is correctly reflected in any other entries that reference to the updated entry.

For example, if a user's entry is removed from the directory and Referential Integrity is enabled, the
server also removes the user from any groups of which the user is a member. If Referential Integrity is
not enabled, the user remains a member of the group until manually removed by the administrator. This
is an important feature if you are integrating the Directory Server with other products that rely on the
directory for user and group management.

5.1. HOW REFERENTIAL INTEGRITY WORKS

When the Referential Integrity Postoperation plug-in is enabled, it performs integrity updates on
specified attributes immediately after a delete or rename operation. By default, the Referential
Integrity Postoperation plug-in is disabled.

NOTE

You must enable Referential Integrity Postoperation plug-in on all suppliers in a multi-
supplier replication environment.

When you delete, rename, or move a user or group entry within the directory, the operation is logged to
the Referential Integrity log file. For the distinguished names (DN) in the log file, Directory Server
searches and updates in intervals the attributes set in the plug-in configuration:

For entries, marked in the log file as deleted, the corresponding attribute in the directory is
deleted.

For entries, marked in the log file as renamed or moved, the value of the corresponding
attribute in the directory is renamed.

By default, when the Referential Integrity Postoperation plug-in is enabled, it performs integrity
updates on the member, uniquemember, owner, and seeAlso attributes immediately after a delete or
rename operation. However, you can configure the behavior of the Referential Integrity Postoperation
plug-in to suit the needs of the directory in several different ways:

Record Referential Integrity updates in the replication change log.

Modify the update interval.

Select the attributes to which to apply Referential Integrity.

Disable Referential Integrity.

All attributes used in referential integrity must be indexed for presence, equality, and substring; not
indexing those attributes results poor server performance for modify and delete operations.

nsIndexType: pres
nsIndexType: eq
nsIndexType: sub

See Section 13.2, “Creating Standard Indexes” for more information about checking and creating
indexes.

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

83

5.2. USING REFERENTIAL INTEGRITY WITH REPLICATION

There are certain limitations when using the Referential Integrity Postoperation plug-in in a replication
environment:

Never enable it on a dedicated consumer server (a server that contains only read-only replicas).

Never enable it on a server that contains a combination of read-write and read-only replicas.

Enable it on a supplier server that contains only read-write replicas.

Enable the plug-in for each supplier server in multi-supplier replication topology. The plug-in
configuration must be the same on all supplier servers.

NOTE

Because the supplier server sends any changes made by the Referential Integrity
Postoperation plug-in to consumer servers, it is unnecessary to run the Referential
Integrity Postoperation plug-in on consumer and hub servers.

5.3. ENABLING REFERENTIAL INTEGRITY

This section describes how to enable the Referential Integrity Postoperation plug-in.

5.3.1. Enabling Referential Integrity Using the Command Line

To enable the Referential Integrity Postoperation plug-in using the command line:

1. Use the dsconf utility to enable the plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-integrity
enable

2. Restart the instance:

dsctl instance_name restart

5.3.2. Enabling Referential Integrity Using the Web Console

To enable the Referential Integrity plug-in using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

4. Select the Referential Integrity plug-in and click Show Advanced Settings.

5. Change the status to ON to enable the plug-in.

5.4. THE REFERENTIAL INTEGRITY UPDATE INTERVAL

Administration Guide

84

By default, the server performs Referential Integrity updates immediately after a delete or rename
operation. Depending on the amount of operations, this can cause a performance impact. To reduce the
performance impact, you can increase the amount of time between updates.

You can set the update interval in seconds. Alternatively, you can set the following values:

0: The check for referential integrity is performed immediately.

-1: No check for referential integrity is performed.

IMPORTANT

In multi-supplier replication environment, Red Hat recommends setting the update
interval to 0 on all suppliers.

NOTE

On a supplier, if you set the interval to a value greater than 0 (for example, 5) there is a
chance that the supplier receives a direct delete or rename operation, replicate the
operation, and go offline before it cleans up the references to the target entry. In such
cases, the rest of the topology still contains references to the target entry until the server
is up again (possibly longer than 5 sec).

5.4.1. Displaying the Update Interval Using the Command Line

To display the update interval using the command line to:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-integrity show
referint-update-delay: 0
...

5.4.2. Displaying the Update Interval Using the Web Console

To display the update interval using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select the Referential Integrity plug-in.

5. See the Update Delay field for the update interval.

5.4.3. Modifying the Update Interval Using the Command Line

To set the update interval using the command line to, for example, to update immediately:

1. Set the update interval to 0:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-integrity set
--update-delay=0

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

85

2. Restart the instance:

dsctl instance_name restart

5.4.4. Modifying the Update Interval Using the Web Console

To set the update interval using the web console, for example, to update immediately:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select the Referential Integrity plug-in.

5. Set the interval in the Update Delay field.

6. Press Save Config.

7. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

5.5. DISPLAYING AND MODIFYING THE ATTRIBUTE LIST

By default, the Referential Integrity plug-in is set up to check for and update the member,
uniquemember, owner, and seeAlso attributes. You can add or delete attributes to be updated using
the command line or the web console.

NOTE

Attributes set in the Referential Integrity plug-in's parameter list, must have equality
indexing on all databases. Otherwise, the plug-in scans every entry of the database for
matching the deleted or modified DN. This can have a significant performance impact.
For details about checking and creating indexes, see Section 13.2, “Creating Standard
Indexes”.

5.5.1. Displaying the Attribute List Using the Command Line

To display the attribute list using the command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-integrity show

5.5.2. Displaying the Attribute List Using the Web Console

To display the attribute list using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

Administration Guide

86

3. Open the Plugins menu.

4. Select the Referential Integrity plug-in.

5. See the Membership Attribute field for the list of attributes.

5.5.3. Configuring the Attribute List Using the Command Line

To update the attribute list using the command line:

1. Optionally, display the current list of attributes. See Section 5.5.1, “Displaying the Attribute List
Using the Command Line”.

2. Update the attribute list:

To set an attribute list that should be checked and updated by the plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-integrity
set --membership-attr attribute_name_1 attribute_name_2

To delete all attributes that should no longer be checked and updated by the plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-integrity
set --membership-attr delete

3. Restart the instance:

dsctl instance_name restart

5.5.4. Configuring the Attribute List Using the Web Console

To update the attribute list using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select the Referential Integrity plug-in.

5. Update the Membership Attribute field to set the attributes.

To add an attribute, enter the name into the Membership Attribute field.

To remove an attribute, press the X button right next to the attribute's name in the
Membership Attribute field.

6. Press Save Config.

5.6. CONFIGURING SCOPE FOR THE REFERENTIAL INTEGRITY

If an entry is deleted, the references to it are deleted or modified to reflect the change. When this

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

87

If an entry is deleted, the references to it are deleted or modified to reflect the change. When this
update is applied to all entries and all groups, it can impact performance and prevents flexibility of
restricting the referential integrity to selected subtrees. Defining a scope addresses this problem.

For example, there may be one suffix, dc=example,dc=com, containing two subtrees: ou=active
users,dc=example,dc=com and ou=deleted users,dc=example,dc=com. Entries in deleted users
should not be handled for purposes of referential integrity.

5.6.1. Parameters That Control the Referential Integrity Scope

The following three parameters can be used to define the scope in the Referential Integrity
Postoperation plug-in configuration:

nsslapd-pluginEntryScope

This multi-value parameter controls the scope of the entry that is deleted or renamed. It defines the
subtree in which the Referential Integrity Postoperation plug-in looks for the delete or rename
operations of a user entry. If a user is deleted or renamed that does not exist under the defined
subtree, the plug-in ignores the operation. The parameter allows you to specify to which branches of
the database the plug-in should apply the operation.

nsslapd-pluginExcludeEntryScope

This parameter also controls the scope of the entry that is deleted or renamed. It defines the subtree
in which the Referential Integrity Postoperation plug-in ignores any operations for deleting or
renaming a user.

nsslapd-pluginContainerScope

This parameter controls the scope of groups in which references are updated. After a user is deleted,
the Referential Integrity Postoperation plug-in looks for the groups to which the user belongs and
updates them accordingly. This parameter specifies which branch the plug-in searches for the
groups to which the user belongs. The Referential Integrity Postoperation plug-in only updates
groups that are under the specified container branch, and leaves all other groups not updated.

5.6.2. Displaying the Referential Integrity Scope Using the Command Line

The following commands show how to display the scope settings using the command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-integrity show
...
nsslapd-pluginEntryScope: DN
nsslapd-pluginExcludeEntryScope: DN
nsslapd-pluginContainerScope: DN

5.6.3. Displaying the Referential Integrity Scope Using the Web Console

The following procedure shows how to display the scope settings using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

Administration Guide

88

4. Select the Referential Integrity plug-in.

5. See the Entry Scope, Exclude Entry Scope, and Container Scope fields for the currently
configured scope.

5.6.4. Configuring the Referential Integrity Scope Using the Command Line

To configure the referential integrity scope using the command line:

1. Optionally, display the scope settings. See Section 5.6.2, “Displaying the Referential Integrity
Scope Using the Command Line”.

2. The following commands show how to configure the individual referential integrity scope
settings using the command line:

To set a distinguished name (DN):

To the nsslapd-pluginEntryScope parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-
integrity set --entry-scope="DN"

To the nsslapd-pluginExcludeEntryScope parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-
integrity set --exclude-entry-scope="DN"

To the nsslapd-pluginContainerScope parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-
integrity set --container-scope="DN"

To remove a DN:

From the nsslapd-pluginEntryScope parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-
integrity set --entry-scope=delete

From the nsslapd-pluginExcludeEntryScope parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-
integrity set --exclude-entry-scope=delete

From the nsslapd-pluginContainerScope parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin referential-
integrity set --container-scope=delete

3. Restart the instance:

dsctl instance_name restart

CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY

89

5.6.5. Configuring the Referential Integrity Scope Using the Web Console

To configure the referential integrity scope using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

4. Select the Referential Integrity plug-in.

5. Set the scope in the Entry Scope, Exclude Entry Scope, and Container Scope fields.

6. Click Save Config.

Administration Guide

90

CHAPTER 6. POPULATING DIRECTORY DATABASES
Databases contain the directory data managed by Red Hat Directory Server.

6.1. IMPORTING DATA

Directory Server can populate a database with data by:

Importing data

IMPORTANT

To import data, you must store the LDIF file that you want to import in the
/var/lib/dirsrv/slapd-instance_name/ldif/ directory. Directory Server uses
PrivateTmp systemd directive by default. As a result, if you export LDIF files into
the /tmp/ or /var/tmp/ system directories, Directory Server does not see these
LDIF files during import. For more information about PrivateTmp, see
systemd.exec(5) man page.

Initializing a database for replication

The following table describes the differences between an import and initializing databases:

Table 6.1. Import Method Comparison

Action Import Initialize Database

Overwrites database No Yes

LDAP operations Add, modify, delete Add only

Performance More time-consuming Fast

Partition specialty Works on all partitions Local partitions only

Response to server failure Best effort (all changes made up
to the point of the failure remain)

Atomic (all changes are lost after
a failure)

LDIF file location Local to the web console Local to the web console or local
to server

Imports configuration information
(cn=config)

Yes No

6.1.1. Setting EntryUSN Initial Values During Import

Entry update sequence numbers (USNs) are not preserved when entries are exported from one server
and imported into another. As Section 4.1, “Tracking Modifications to the Database through Update
Sequence Numbers” explains, entry USNs are assigned for operations that happen on a local server, so it
does not make sense to import those USNs onto another server.

CHAPTER 6. POPULATING DIRECTORY DATABASES

91

However, it is possible to configure an initial entry USN value for entries when importing a database or
initializing a database (such as when a replica is initialized for replication). This is done by setting the
nsslapd-entryusn-import-initval parameter, which sets a starting USN for all imported entries.

There are two possible values for nsslapd-entryusn-import-initval:

An integer, which is the explicit start number used for every imported entry.

next, which means that every imported entry uses whatever the highest entry USN value was on
the server before the import operation, incremented by one.

If nsslapd-entryusn-import-initval is not set, then all entry USNs begin at zero.

Example 6.1. How the nsslapd-entryusn-import-initval Parameter works

For example, if the highest value on the server is 1000 before the import or initialization operation,
and the nsslapd-entryusn-import-initval value is next, then every imported entry is assigned a USN
of 1001:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x "(cn=*)" entryusn

dn: dc=example,dc=com
entryusn: 1001
dn: ou=Accounting,dc=example,dc=com
entryusn: 1001
dn: ou=Product Development,dc=example,dc=com
entryusn: 1001
...
dn: uid=user_name,ou=people,dc=example,dc=com
entryusn: 1001
...

To set an initial value for entry USNs, add the nsslapd-entryusn-import-initval parameter to the server
into which data are being imported or to the supplier server which will perform the initialization. For
example:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-entryusn-
import-initval=next

NOTE

In multi-supplier replication, the nsslapd-entryusn-import-initval parameter is not
replicated between servers. This means that the value must be set specifically on
whichever supplier server is being used to initialize a replica.

For example, if the Supplier1 host has nsslapd-entryusn-import-initval set to next and
is used to initialize a replica, then the entry USNs for imported entries have the highest
value plus one. If the Supplier2 host does not have nsslapd-entryusn-import-initval set
and is used to initialize a replica, then all entry USNs for imported entries begin at zero —
even if Supplier1 and Supplier2 have a multi-supplier replication agreement between
them.

6.1.2. Importing Using the Command Line

Administration Guide

92

Directory Server supports importing data while the instance is running or while the instance is offline:

Use one of the following methods if the instance is running:

Use the dsconf backend import command. See Section 6.1.2.1.1, “Importing Using the
dsconf backend import Command”.

Create a cn=tasks entry. See Section 6.1.2.1.2, “Importing Data Using a cn=tasks Entry”.

If the instance is offline, use the dsctl ldif2db command. See Section 6.1.2.2, “Importing Data
While the Server is Offline”.

WARNING

When you start an import operation, Directory Server first removes all existing data
from the database and subsequently imports the data from the LDIF file. If the
import fails, for example, because the LDIF file does not exist, the server has
already removed the previous data from the database.

Note that the LDIF files used for import operations must use UTF-8 character set encoding. Import
operations do not convert data from the local character set encoding to UTF-8. Additionally, all
imported LDIF files must contain the root suffix entry.

Directory Server runs import operations as the dirsrv user. Therefore, the permissions of the LDIF file
must allow this user to read the file.

6.1.2.1. Importing Data While the Server is Running

This section describes how you can import data while Directory Server is running.

6.1.2.1.1. Importing Using the dsconf backend import Command

Use the dsconf backend import command to automatically create a task that imports data from an
LDIF file. For example, to import the
/var/lib/dirsrv/slapd-instance_name/ldif/instance_name-database_name-time_stamp.ldif file into
the userRoot database:

1. Create the suffix if it does not exist. For details, see Section 2.1.1, “Creating Suffixes”.

2. If the LDIF you want to import does not contain statements that add the suffix entry, create this
entry manually as described in Section 3.1.3.3, “Creating a Root Entry” .

3. Import the LDIF file:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend import userRoot
/var/lib/dirsrv/slapd-instance_name/ldif/instance_name-database_name-time_stamp.ldif
The import task has finished successfully

The dsconf backend import command supports additional options, for example, to exclude a
specific suffix. To display all available options, enter:



CHAPTER 6. POPULATING DIRECTORY DATABASES

93

dsconf ldap://server.example.com backend import --help

6.1.2.1.2. Importing Data Using a cn=tasks Entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries the server uses to manage tasks. To initiate an import operation, create a task in the
cn=import,cn=tasks,cn=config entry.

An import task entry requires the following attributes:

cn: Sets the unique name of the task.

nsFilename: Sets the name of the LDIF file to import.

nsInstance: Sets the name of the database into which the file should be imported.

Import tasks support additional parameters, for example, to exclude suffixes. For a complete list, see the
cn=import section in the Red Hat Directory Server Configuration, Command, and File Reference .

For example, to add a task that imports the content of the
/var/lib/dirsrv/slapd-instance_name/ldif/example.ldif file into the userRoot database:

1. Create the suffix if it does not exist. For details, see Section 2.1.1, “Creating Suffixes”.

2. If the LDIF you want to import does not contain statements that add the suffix entry, create this
entry manually as described in Section 3.1.3.3, “Creating a Root Entry” .

3. Add the import task:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=example_import,cn=import,cn=tasks,cn=config
changetype: add
objectclass: extensibleObject
cn: example_import
nsFilename: /var/lib/dirsrv/slapd-instance_name/ldif/example.ldif
nsInstance: userRoot

When the task is completed, the entry is removed from the directory configuration.

6.1.2.2. Importing Data While the Server is Offline

If the server is offline when you import data, use the dsctl ldif2db command:

1. Create the suffix if it does not exist. For details, see Section 2.1.1, “Creating Suffixes”.

2. If the LDIF you want to import does not contain statements that add the suffix entry, create this
entry manually as described in Section 3.1.3.3, “Creating a Root Entry” .

3. Stop the instance:

dsctl instance_name stop

4. Import the data from the LDIF file. For example, to import the
/var/lib/dirsrv/slapd-instance_name/ldif/example.ldif file into the userRoot database:

Administration Guide

94

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-import
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/index

dsctl instance_name ldif2db userroot /var/lib/dirsrv/slapd-instance_name/ldif/example.ldif
OK group dirsrv exists
OK user dirsrv exists
[17/Jul/2018:13:42:42.015554231 +0200] - INFO - ldbm_instance_config_cachememsize_set
- force a minimal value 512000
...
[17/Jul/2018:13:42:44.302630629 +0200] - INFO - import_main_offline - import userroot:
Import complete. Processed 160 entries in 2 seconds. (80.00 entries/sec)
ldif2db successful

WARNING

If the database specified in the command does not correspond with the
suffix contained in the LDIF file, all data contained in the database is
deleted, and the import fails.

5. Start the instance:

dsctl instance_name start

6.1.3. Importing Data Using the Web Console

To import data from an LDIF file using the web console:

1. Create the suffix if it does not exist. For details, see Section 2.1.1, “Creating Suffixes”.

2. If the LDIF you want to import does not contain statements that add the suffix entry, create this
entry manually as described in Section 3.1.3.3, “Creating a Root Entry” .

3. Store the LDIF file you want to import in the /var/lib/dirsrv/slapd-instance_name/ldif/
directory.

4. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

5. Select the instance.

6. Open the Database menu.

7. Select the suffix entry.

8. Click Suffix Tasks, and select Initialize Suffix.

9. Select the LDIF file to import or enter the full path to the file.



CHAPTER 6. POPULATING DIRECTORY DATABASES

95

10. Select Yes, I am sure., and click Initialize Database to confirm.

6.2. EXPORTING DATA

LDAP Data Interchange Format (LDIF) files are used to export database entries from the
Directory Server databases. LDIF is a standard format described in RFC 2849.

NOTE

The export operations do not export the configuration information (cn=config), schema
information (cn=schema), or monitoring information (cn=monitor).

Exporting data can be useful for the following:

Backing up the data in the database.

Copying data to another Directory Server.

Exporting data to another application.

Repopulating databases after a change to the directory topology.

For example, if a directory contains one database, and its contents should be split into two
databases, then the two new databases receive their data by exporting the contents of the old
databases and importing it into the two new databases, as illustrated in Figure 6.1, “Splitting a
Database Contents into Two Databases”.

Administration Guide

96

https://www.ietf.org/rfc/rfc2849.txt

Figure 6.1. Splitting a Database Contents into Two Databases

WARNING

Do not stop the server during an export operation.

Directory Server runs the export operations as the dirsrv user. Therefore, the permissions of the
destination directory must allow this user to write the file.

6.2.1. Exporting Data into an LDIF File Using the Command Line

Directory Server supports exporting data while the instance is running or while the instance is offline:

Use one of the following methods if the instance is running:

Use the dsconf backend export command. See Section 6.2.1.1.1, “Exporting a Databases
Using the dsconf backend export Command”.

Create a cn=tasks entry. See Section 6.2.1.1.2, “Exporting a Database Using a cn=tasks
Entry”.

If the instance is offline, use the dsctl db2ldif command. See Section 6.2.1.2, “Exporting a
Database While the Server is Offline”.

IMPORTANT



CHAPTER 6. POPULATING DIRECTORY DATABASES

97

IMPORTANT

Do not export LDIF files to the /tmp or /var/tmp/ directories because of the following
reasons:

Directory Server uses PrivateTmp feature of systemd by default. If you place
LDIF files into the /tmp or /var/tmp/ system directory, Directory Server does not
see these LDIF files during import. For more information about PrivateTmp, see
systemd.exec(5) man page.

LDIF files often contain sensitive data, such as user passwords. Therefore, you
must not use temporary system directories to store these files.

6.2.1.1. Exporting a Database While the Server is Running

6.2.1.1.1. Exporting a Databases Using the dsconf backend export Command

Use the dsconf backend export command to automatically create a task that exports data to an LDIF
file.

For example, to export the userRoot database:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend export userRoot
The export task has finished successfully

By default, dsconf stores the export in a file called instance_name_database_name-time_stamp.ldif
in the /var/lib/dirsrv/slapd-instance_name/export/ directory. Alternatively, add the -l file_name option
to the command to specify a different location.

The dsconf backend export command supports additional options, for example, to exclude a specific
suffix. To display all available options, enter:

dsconf ldap://server.example.com backend export --help

6.2.1.1.2. Exporting a Database Using a cn=tasks Entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries the server uses to manage tasks. To initiate an export operation, create a task in the
cn=export,cn=tasks,cn=config entry.

Using a task entry enables you to export data while the server is running.

An export task entry requires the following attributes:

cn: Sets the unique name of the task.

nsInstance: Sets the name of the database to export.

nsFilename: Sets the name of the file into which the export should be stored.

Export tasks support additional parameters, for example, to exclude suffixes. For a complete list, see the
cn=export section in the Red Hat Directory Server Configuration, Command, and File Reference .

For example, to add a task that exports the content of the userRoot database into the
/var/lib/dirsrv/slapd-instance_name/ldif/example.ldif file:

Administration Guide

98

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-export

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=example_export,cn=export,cn=tasks,cn=config
changetype: add
objectclass: extensibleObject
cn: example_export
nsInstance: userRoot
nsFilename: /var/lib/dirsrv/slapd-instance_name/ldif/example.ldif

When the task is completed, the entry is removed from the directory configuration.

6.2.1.2. Exporting a Database While the Server is Offline

If the server is offline when you export data, use the dsctl db2ldif command:

1. Stop the instance:

dsctl instance_name stop

2. Export the database into an LDIF file. For example to export the userRoot database into the
/var/lib/dirsrv/slapd-instance_name/ldif/example.ldif file:

dsctl instance_name db2ldif userroot /var/lib/dirsrv/slapd-instance_name/ldif/example.ldif
OK group dirsrv exists
OK user dirsrv exists
ldiffile: /var/lib/dirsrv/slapd-instance_name/ldif/example.ldif
[18/Jul/2018:10:46:03.353656777 +0200] - INFO - ldbm_instance_config_cachememsize_set
- force a minimal value 512000
[18/Jul/2018:10:46:03.383101305 +0200] - INFO - ldbm_back_ldbm2ldif - export userroot:
Processed 160 entries (100%).
[18/Jul/2018:10:46:03.391553963 +0200] - INFO - dblayer_pre_close - All database threads
now stopped
db2ldif successful

3. Start the instance:

dsctl instance_name start

6.2.2. Exporting a Suffix to an LDIF File Using the Web Console

To export a suffix using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Select the suffix entry.

5. Click Suffix Tasks, and select Export Suffix.

6. Enter the name of the LDIF file in which you want to store the export. Directory Server will store

CHAPTER 6. POPULATING DIRECTORY DATABASES

99

6. Enter the name of the LDIF file in which you want to store the export. Directory Server will store
the file in the /var/lib/dirsrv/slapd-instance_name/ldif/ directory using the specified file name.

7. Click Export Database.

6.2.3. Enabling Members of a Group to Export Data and Performing the Export as
One of the Group Members

You can configure that members of a group have permissions to export data. This increases the security
because you no longer need to set the credentials of cn=Directory Manager in your scripts.
Additionally, you can easily grant and revoke the export permissions by modifying the group.

6.2.3.1. Enabling a Group to Export Data

Use this procedure to add the cn=export_users,ou=groups,dc=example,dc=com group and enable
members of this group to create export tasks.

Procedure

1. Create the cn=export_users,ou=groups,dc=example,dc=com group:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
group create --cn export_users

2. Add access control instructions (ACI) that allows members of the
cn=export_users,ou=groups,dc=example,dc=com group to create export tasks:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com

dn: cn=config
changetype: modify
add: aci
aci: (target = "ldap:///cn=export,cn=tasks,cn=config")(targetattr="*")
 (version 3.0 ; acl "permission: Allow export_users
 group to export data" ; allow (add, read, search) groupdn
 = "ldap:///cn=export_users,ou=groups,dc=example,dc=com";)
-
add: aci
aci: (target = "ldap:///cn=config")(targetattr =
 "objectclass || cn || nsslapd-suffix || nsslapd-ldifdir")

Administration Guide

100

 (version 3.0 ; acl "permission: Allow export_users
 group to access ldifdir attribute" ; allow
 (read,search) groupdn = "ldap:///cn=export_users,ou=groups,dc=example,dc=com";)

3. Create a user:

a. Create a user account:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
user create --uid="example" --cn="example" --uidNumber="1000" --gidNumber="1000" --
homeDirectory="/home/example/" --displayName="Example User"

b. Set a password on the user account:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
account reset_password "uid=example,ou=People,dc=example,dc=com" "password"

4. Add the uid=example,ou=People,dc=example,dc=com user to the
cn=export_users,ou=groups,dc=example,dc=com group:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
group add_member export_users uid=example,ou=People,dc=example,dc=com

Verification

Display the ACIs set on the cn=config:

ldapsearch -o ldif-wrap=no -LLLx -D "cn=Directory Manager" -W -H
ldap://server.example.com -b cn=config aci=* aci -s base
dn: cn=config
aci: (target = "ldap:///cn=export,cn=tasks,cn=config")(targetattr="*")(version 3.0 ; acl
"permission: Allow export_users group to export data" ; allow (add, read, search) groupdn =
"ldap:///cn=export_users,ou=groups,dc=example,dc=com";)
aci: (target = "ldap:///cn=config")(targetattr = "objectclass || cn || nsslapd-suffix || nsslapd-
ldifdir")(version 3.0 ; acl "permission: Allow export_users group to access ldifdir attribute" ;
allow (read,search) groupdn = "ldap:///cn=export_users,ou=groups,dc=example,dc=com";)
...

6.2.3.2. Performing an Export as a Regular User

You can perform exports as a regular user instead of cn=Directory Manager.

Prerequisites

You enabled members of the cn=export_users,ou=groups,dc=example,dc=com group to
export data. See Section 6.2.3.1, “Enabling a Group to Export Data” .

The user you use to perform the export is a member of the
cn=export_users,ou=groups,dc=example,dc=com group.

Procedure

Create a export task using one of the following methods:

CHAPTER 6. POPULATING DIRECTORY DATABASES

101

Using the dsconf backend export command:

dsconf -D "uid=example,ou=People,dc=example,dc=com" ldap://server.example.com
backend export userRoot

By manually creating the task:

ldapadd -D "uid=example,ou=People,dc=example,dc=com" -W -H
ldap://server.example.com

dn: cn=userRoot-2021_07_23_12:55_00,cn=export,cn=tasks,cn=config
changetype: add
objectClass: extensibleObject
nsFilename: /var/lib/dirsrv/slapd-instance_name/ldif/None-userroot-
2021_07_23_12:55_00.ldif
nsInstance: userRoot
cn: export-2021_07_23_12:55_00

Verification

Verify that the backup was created:

ls -l /var/lib/dirsrv/slapd-instance_name/ldif/*.ldif
total 0
-rw-------. 1 dirsrv dirsrv 10306 Jul 23 12:55 None-userroot-2021_07_23_12_55_00.ldif
...

6.3. BACKING UP DIRECTORY SERVER

A backup in Directory Server contains, for example:

All database files including the data stored within these databases

NOTE

Directory Server does not support backing up individual databases.

The transaction logs

The Indices

In contrast to a backup, you can export data as described in Section 6.2, “Exporting Data” . Use the
export feature to export specific data, such as a subtree, from a server in the LDAP Data Interchange
Format (LDIF) format.

WARNING

Do not stop the server during a backup operation.

Administration Guide

102

Directory Server runs the backup task as the dirsrv user. Therefore, the permissions of the destination
directory must allow this user to create files.

6.3.1. Backing up All Databases Using the Command Line

Directory Server supports backing up the databases while the instance is running or while the instance is
offline:

Use one of the following methods if the instance is running:

Use the dsconf backup create command. See Section 6.3.1.1.1, “Backing up All Databases
Using the dsconf backup create Command”.

Create a cn=tasks entry. See Section 6.3.1.1.2, “Backing up All Databases Using a cn=tasks
entry”.

If the instance is offline, use the dsctl db2bak command. See Section 6.3.1.2, “Backing up All
Databases While the Server is Offline”.

IMPORTANT

These methods only back up the databases. For details about backing up other important
files, such as the configuration, see Section 6.3.3, “Backing up Configuration Files, the
Certificate Database, and Custom Schema Files”.

6.3.1.1. Backing up All Databases While the Server is Running

6.3.1.1.1. Backing up All Databases Using the dsconf backup create Command

Use the dsconf backup create command to automatically create a task that backs up all databases.

IMPORTANT

Directory Server cleans the changelog when the database is restored from the online
backup. Therefore, using online backup requires you to reinitialize the replica after the
database restore. To avoid reinitialization, use the offline backup.

For example, to backup all databases, run:

dsconf -D "cn=Directory Manager" ldap://server.example.com backup create
The backup create task has finished successfully

By default, dsconf stores the backup in a subdirectory called instance_name-time_stamp in the
/var/lib/dirsrv/slapd-instance_name/bak/ directory. To specify a different location, append a directory
name to the command.

6.3.1.1.2. Backing up All Databases Using a cn=tasks entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries the server uses to manage tasks. To initiate a backup operation, create a task in the
cn=backup,cn=tasks,cn=config entry.

Using a task entry enables you to backup the databases while the server is running.

CHAPTER 6. POPULATING DIRECTORY DATABASES

103

A backup task entry requires the following attributes:

cn: Sets the unique name of the task.

nsDatabaseType: Sets the type of the database to back up. Directory Server supports only the
ldbm database value in this attribute.

Backup tasks support additional parameters, for example, to specify a different destination directory as
the default, /var/lib/dirsrv/slapd-instance_name/bak/. For a complete list, see the cn=backup section in
the Red Hat Directory Server Configuration, Command, and File Reference .

For example, to backup all databases and store the archive in the default backup directory:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=example_backup,cn=export,cn=tasks,cn=config
changetype: add
objectclass: extensibleObject
cn: example_backup
nsDatabaseType: ldbm database

If you not specify the nsArchiveDir attribute, the server stores the backup in a subdirectory called
instance_name-time_stamp in the /var/lib/dirsrv/slapd-instance_name/bak/ directory.

When the task is completed, the entry is removed from the directory configuration.

6.3.1.2. Backing up All Databases While the Server is Offline

If the server is offline when you backup databases, use the dsctl db2bak command:

1. Stop the instance:

dsctl instance_name stop

2. Backup the database:

dsctl instance_name db2bak
db2bak successful

NOTE

The dsctl db2bak command runs as the backup as the dirsrv user. Therefore,
the permissions of the destination directory must allow this user to create files
and directories.

If you not append a destination directory to the command, the server stores the backup in a
subdirectory called instance_name-time_stamp in the
/var/lib/dirsrv/slapd-instance_name/bak/ directory.

3. Start the instance:

dsctl instance_name start

Administration Guide

104

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-backup

6.3.2. Backup up all Databases Using the Web Console

Using the web console, you can perform online backup.

IMPORTANT

Directory Server cleans the changelog when the database is restored from the online
backup. Therefore, using online backup requires you to reinitialize the replica after the
database restore. To avoid reinitialization, use the offline backup.

To back up all databases of an instance using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Click the Actions button, and select Manage Backup.

4. Click Create Backup.

5. Enter a name for the backup, such as a time stamp to indicate the creation date and time of the
backup.

6. Click Create Backup.

The server stores the backup in a subdirectory with the name you entered in the
/var/lib/dirsrv/slapd-instance_name/bak/ directory.

6.3.3. Backing up Configuration Files, the Certificate Database, and Custom
Schema Files

The backup mechanism integrated into Directory Server backs up only the databases. However, there
are additional files stored in the /etc/dirsrv/slapd-instance_name/ directory which are required to, for
example, restore a instance on a different server after a hardware failure.

NOTE

Backing up the configuration directory is not supported in the web console.

Example 6.2. How to Back up the /etc/dirsrv/slapd-instance_name/ Directory

To back up the content of /etc/dirsrv/slapd-instance_name/, you can copy the directory or store it
into an archive file. For example, to store the content of the /etc/dirsrv/slapd-instance_name/
directory in the /root/config_slapd-instance_name_time_stamp.tar.gz file:

cd /etc/dirsrv/
tar -zcvf /root/config_slapd-instance_name_$(date +%Y-%m-%d_%H-%M-%S).tar.gz slapd-
instance_name/

IMPORTANT

CHAPTER 6. POPULATING DIRECTORY DATABASES

105

IMPORTANT

During the backup, do not update the certificate database. Otherwise, this database
might not be consistent in the backup.

6.3.4. Enabling Members of a Group to Back up Directory Server and Performing
the Backup as One of the Group Members

You can configure that members of a group have permissions to back up an instance and perform the
backup. This increases the security because you no longer need to set the credentials of cn=Directory
Manager in your backup script or cron jobs. Additionally, you can easily grant and revoke the backup
permissions by modifying the group.

6.3.4.1. Enabling a Group to Back up Directory Server

Use this procedure to add the cn=backup_users,ou=groups,dc=example,dc=com group and enable
members of this group to create backup tasks.

Procedure

1. Create the cn=backup_users,ou=groups,dc=example,dc=com group:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
group create --cn backup_users

2. Add access control instructions (ACI) that allows members of the
cn=backup_users,ou=groups,dc=example,dc=com group to create backup tasks:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com

dn: cn=config
changetype: modify
add: aci
aci: (target = "ldap:///cn=backup,cn=tasks,cn=config")(targetattr="*")
 (version 3.0 ; acl "permission: Allow backup_users
 group to create backup tasks" ; allow (add, read, search) groupdn
 = "ldap:///cn=backup_users,ou=groups,dc=example,dc=com";)
-
add: aci
aci: (target = "ldap:///cn=config")(targetattr = "nsslapd-bakdir || objectClass")
 (version 3.0 ; acl "permission: Allow backup_users group
 to access bakdir attribute" ; allow (read,search) groupdn
 = "ldap:///cn=backup_users,ou=groups,dc=example,dc=com";)

3. Create a user:

a. Create a user account:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
user create --uid="example" --cn="example" --uidNumber="1000" --gidNumber="1000" --
homeDirectory="/home/example/" --displayName="Example User"

b. Set a password on the user account:

Administration Guide

106

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
account reset_password "uid=example,ou=People,dc=example,dc=com" "password"

4. Add the uid=example,ou=People,dc=example,dc=com user to the
cn=backup_users,ou=groups,dc=example,dc=com group:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
group add_member backup_users uid=example,ou=People,dc=example,dc=com

Verification

Display the ACIs set on the cn=config entry:

ldapsearch -o ldif-wrap=no -LLLx -D "cn=directory manager" -W -H
ldap://server.example.com -b cn=config aci=* aci -s base
dn: cn=config
aci: (target = "ldap:///cn=backup,cn=tasks,cn=config")(targetattr="*")(version 3.0 ; acl
"permission: Allow backup_users group to create backup tasks" ; allow (add, read, search)
groupdn = "ldap:///cn=backup_users,ou=groups,dc=example,dc=com";)
aci: (target = "ldap:///cn=config")(targetattr = "nsslapd-bakdir || objectClass")(version 3.0 ; acl
"permission: Allow backup_users group to access bakdir attribute" ; allow (read,search)
groupdn = "ldap:///cn=backup_users,ou=groups,dc=example,dc=com";)
...

6.3.4.2. Performing a Backup as a Regular User

You can perform backups as a regular user instead of cn=Directory Manager.

Prerequisites

You enabled members of the cn=backup_users,ou=groups,dc=example,dc=com group to
perform backups. See Section 6.3.4.1, “Enabling a Group to Back up Directory Server” .

The user you use to perform the backup is a member of the
cn=backup_users,ou=groups,dc=example,dc=com group.

Procedure

Create a backup task using one of the following methods:

Using the dsconf backup create command:

dsconf -D uid=example,ou=People,dc=example,dc=com ldap://server.example.com
backup create

By manually creating the task:

ldapadd -D uid=example,ou=People,dc=example,dc=com -W -H
ldap://server.example.com

dn: cn=backup-2021_07_23_12:55_00,cn=backup,cn=tasks,cn=config
changetype: add
objectClass: extensibleObject

CHAPTER 6. POPULATING DIRECTORY DATABASES

107

nsarchivedir: /var/lib/dirsrv/slapd-instance_name/bak/backup-2021_07_23_12:55_00
nsdatabasetype: ldbm database
cn: backup-2021_07_23_12:55_00

Verification

Verify that the backup was created:

ls -l /var/lib/dirsrv/slapd-instance_name/bak/
total 0
drwx------. 3 dirsrv dirsrv 108 Jul 23 12:55 backup-2021_07_23_12_55_00
...

6.4. RESTORING DIRECTORY SERVER

In certain situations, administrators want to restore Directory Server, for example, after a hardware
failure. This section describes the supported restore methods.

NOTE

Directory Server does not support restoring individual databases.

Directory Server runs the restore operation as the dirsrv user. Therefore, the permissions of the
directory containing the backup must allow this user to read the files.

6.4.1. Restoring All Databases Using the Command Line

Directory Server supports restoring databases while the instance is running or while the instance is
offline:

Use one of the following methods if the instance is running:

Use the dsconf backup restore command. See Section 6.4.1.1.1, “Restoring All Databases
Using the dsconf backup restore Command”.

Create a cn=tasks entry. See Section 6.4.1.1.2, “Restoring all Databases Using a cn=tasks
entry”.

If the instance is offline, use the dsctl bak2db command. See Section 6.4.1.2, “Restoring all
Databases While the Server is Offline”.

6.4.1.1. Restoring All Databases While the Server is Running

6.4.1.1.1. Restoring All Databases Using the dsconf backup restore Command

Use the dsconf backup restore command to automatically create a task that restores up all databases
from a backup directory.

For example, to restore the backup stored in the /var/lib/dirsrv/slapd-
instance_name/bak/instance_name-time_stamp/ directory:

Administration Guide

108

dsconf -D "cn=Directory Manager" ldap://server.example.com backup restore /var/lib/dirsrv/slapd-
instance_name/bak/instance_name-time_stamp/
The backup restore task has finished successfully

6.4.1.1.2. Restoring all Databases Using a cn=tasks entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries the server uses to manage tasks. To initiate a restore operation, create a task in the
cn=restore,cn=tasks,cn=config entry.

WARNING

Using a restore task overrides all data in the instance.

A restore task entry requires the following attributes:

cn: Sets the unique name of the task.

nsArchiveDir: Sets the path to the directory that contains the backup.

nsDatabaseType: Sets the type of the database to restore. Directory Server supports only the
ldbm database value in this attribute.

For example, to add a task that restores all databases from the backup stored in the
/var/lib/dirsrv/slapd-instance_name/bak/instance_name-time_stamp/ directory:

ldapadd -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: cn=example_restore,cn=import,cn=tasks,cn=config
changetype: add
objectclass: extensibleObject
cn: example_restore
nsArchiveDir: /var/lib/dirsrv/slapd-instance_name/bak/instance_name-time_stamp/
nsDatabaseType: ldbm database

When the task is completed, the entry is removed from the directory configuration.

6.4.1.2. Restoring all Databases While the Server is Offline

If the server is offline when you restore databases, use the dsctl bak2db command:

1. Stop the instance:

dsctl instance_name stop

2. Restore the databases. For example, to add a task that restores all databases from the backup
stored in the /var/lib/dirsrv/slapd-instance_name/bak/instance_name-time_stamp/ directory:



CHAPTER 6. POPULATING DIRECTORY DATABASES

109

dsctl instance_name bak2db
/var/lib/dirsrv/slapd-instance_name/bak/instance_name-time_stamp/
bak2db successful

NOTE

The dsctl bak2db command runs as the restore as the dirsrv user. Therefore,
the permissions of the source directory must allow this user to read files and
directories.

3. Start the instance:

dsctl instance_name start

6.4.2. Restoring All Databases Using the Web Console

To restore all database using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Click the Actions button, and select Manage Backups.

The displayed window lists the available backups in the
/var/lib/dirsrv/slapd-instance_name/bak/ directory.

4. Open the Actions menu next to the backup you want to restore, and select Restore Backup.

5. Click Yes to confirm.

6.4.3. Restoring Databases That Include Replicated Entries

Several situations can occur when a supplier server is restored:

The consumer servers are also restored.

Administration Guide

110

For the very unlikely situation, that all databases are restored from backups taken at exactly the
same time (so that the data are in sync), the consumers remain synchronized with the supplier,
and it is not necessary to do anything else. Replication resumes without interruption.

Only the supplier is restored.

If only the supplier is restored or if the consumers are restored from backups taken at a different
times, reinitialize the consumers for the supplier to update the data in the database. If only the
supplier is restored or if the consumers are restored from backups taken at a different times,
reinitialize the consumers for the supplier to update the data in the database.

Changelog entries have not yet expired on the supplier server.

If the supplier's changelog has not expired since the database backup was taken, then restore
the local consumer and continue with normal operations. This situation occurs only if the backup
was taken within a period of time that is shorter than the value set for the maximum changelog
age attribute, nsslapd-changelogmaxage, in the cn=changelog5,cn=config entry. For more
information about this option, see the Red Hat Directory Server
Configuration, Command, and File Reference.

Directory Server automatically detects the compatibility between the replica and its changelog.
If a mismatch is detected, the server removes the old changelog file and creates a new, empty
one.

Changelog entries have expired on the supplier server since the time of the local backup.

If changelog entries have expired, reinitialize the consumer. For more information on
reinitializing consumers, see Section 15.8.3, “Initializing a Consumer” .

Example 6.3. Restoring a Directory Server Replication Topology

For example, to restore all servers in a replication environment, consisting of two suppliers and two
consumer server:

1. Restore the first supplier. Use the dsconf backend import command to import the data.
See Section 6.1.2, “Importing Using the Command Line” .

2. Online-initialize the remaining servers by using replication:

a. Initialize the second supplier from the first one.

b. Initialize the consumers from the supplier.

For details, see Section 15.8.3, “Initializing a Consumer” .

3. On each server, display the replication status to verify that replication works correctly. For
details, see Section 15.22, “Displaying the Status of a Specific Replication Agreement” .

The changelog associated with the restored database will be erased during the restore operation. A
message will be logged to the supplier servers' log files indicating that reinitialization is required.

For information on managing replication, see Chapter 15, Managing Replication.

CHAPTER 6. POPULATING DIRECTORY DATABASES

111

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnchangelog5-nsslapd_changelogmaxage_Max_Changelog_Age

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES
Red Hat Directory Server provides several different mechanisms for dynamically and automatically
maintaining some types of attributes on directory entries. These plug-ins and configuration options
simplify managing directory data and expressing relationships between entries.

Part of the characteristic of entries are their relationships to each other. Obviously, a manager has an
employee, so those two entries are related. Groups are associated with their members. There are less
apparent relationships, too, like between entries which share a common physical location.

Red Hat Directory Server provides several different ways that these relationships between entries can
be maintained smoothly and consistently. There are several plug-ins can apply or generate attributes
automatically as part of the data within the directory, including classes of service, linking attributes, and
generating unique numeric attribute values.

7.1. ENFORCING ATTRIBUTE UNIQUENESS

To ensure that the value of an attribute is unique across the directory or subtree, use the Attribute
Uniqueness plug-in.

If you want multiple attributes to be unique or if you want to use different conditions, create multiple
configuration records of the plug-in.

7.1.1. Creating a New Configuration Record of the Attribute Uniqueness Plug-in

For each attribute whose values must be unique, create a new configuration record of the Attribute
Uniqueness plug-in.

NOTE

You can only create a new configuration record of the plug-in from the command line.

To create a new unconfigured and disabled configuration record of the plug-in named Example
Attribute Uniqueness:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin attr-uniq add "Example" --attr-
name uid

7.1.2. Configuring Attribute Uniqueness over Suffixes or Subtrees

You can configure the Attribute Uniqueness plug-in to ensure that values of an attribute are unique in
certain suffixes, subtrees, or over suffixes and subtrees.

7.1.2.1. Configuring Attribute Uniqueness over Suffixes or Subtrees Using the Command
Line

To configure, for example, that values stored in mail attributes are unique:

1. Create a new configuration record of the Attribute Uniqueness plug-in named, for example,
mail Attribute Uniqueness. For details, see Section 7.1.1, “Creating a New Configuration Record
of the Attribute Uniqueness Plug-in”.

2. Enable the plug-in configuration record:

Administration Guide

112

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin attr-uniq enable "mail
Attribute Uniqueness"

3. Configure that values stored in mail attributes must be unique inside, for example, the
ou=Engineering,dc=example,dc=com and ou=Sales,dc=example,dc=com subtrees:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin attr-uniq set "mail
Attribute Uniqueness" --attr-name mail --subtree ou=Engineering,dc=example,dc=com
ou=Sales,dc=example,dc=com

4. Optionally, to configure uniqueness across all subtrees configured in this plug-in configuration
record:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin attr-uniq set "mail
Attribute Uniqueness" --across--all-subtrees=on

5. Restart the instance:

dsctl instance_name restart

7.1.2.2. Configuring Attribute Uniqueness over Suffixes or Subtrees Using the Web Console

To configure, for example, that values stored in mail attributes are unique:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select the Attribute Uniqueness plug-in.

5. Click Add Config.

6. Fill the fields, and enable the config. For example:

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

113

Figure 7.1. Adding an Attribute Uniqueness Configuration

7. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

7.1.3. Configuring Attribute Uniqueness over Object Classes

You can configure the Attribute Uniqueness plug-in to ensure that values of an attribute are unique in
subtree entries that contain a specific object class. Directory Server searches for this object class in the
parent entry of the updated object. If Directory Server did not find the object class, the search continues
at the next higher level entry up to the root of the directory tree. If the object class was found,
Directory Server verifies that the value of the attribute set in uniqueness-attribute-name is unique in
this subtree.

To configure, for example, that values stored in mail attributes are unique under the entry that contains
the nsContainer object class:

1. Create a new configuration record of the Attribute Uniqueness plug-in named, for example,
mail Attribute Uniqueness. For details, see Section 7.1.1, “Creating a New Configuration Record
of the Attribute Uniqueness Plug-in”.

2. Enable the plug-in configuration record:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin attr-uniq enable "mail
Attribute Uniqueness"

3. Configure that values stored in mail attributes must be unique under the entry that contains the
nsContainer object class:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin attr-uniq set "mail
Attribute Uniqueness" --top-entry-oc=nsContainer

Administration Guide

114

4. Optionally, you can limit the scope of objects being checked. If you want the server to check only
a subset of entries under the entry that contains the nsContainer object class, set an additional
object class in the uniqueness-subtree-entries-oc parameter. This additional class will also
have to be present.

For example, the mail attribute must be unique in all entries under the entry that contains the
nsContainer object class set. However, you want that the plug-in only searches the mail in
entries that contain a object class that provides this attribute, such as inetOrgPerson. In this
situation enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin attr-uniq set "mail
Attribute Uniqueness" --subtree-entries-oc=inetOrgPerson

5. Restart the instance:

dsctl instance_name restart

7.1.4. Attribute Uniqueness Plug-in Configuration Parameters

To configure an Attribute Uniqueness plug-in configuration record, set the plug-in's configuration
attributes in the cn=attribute_uniqueness_configuration_record_name,cn=plugins,cn=config
entry.

Example 7.1. Attribute Uniqueness Plug-in Configuration Using Plug-in-specific Attributes

dn: cn=Example Attribute Uniqueness,cn=plugins,cn=config
nsslapd-pluginEnabled: on
uniqueness-attribute-name: attribute_name
uniqueness-top-entry-oc: objectclass1
uniqueness-subtree-entries-oc: objectclass2

For a list of parameters you can set to configure the Attribute Uniqueness plug-in, see the
corresponding section in the Red Hat Directory Server Configuration, Command, and File Reference .

7.2. ASSIGNING CLASS OF SERVICE

A class of service definition (CoS) shares attributes between entries in a way that is transparent to
applications. CoS simplifies entry management and reduces storage requirements.

Clients of the Directory Server read the attributes in a user's entry. With CoS, some attribute values may
not be stored within the entry itself. Instead, these attribute values are generated by class of service
logic as the entry is sent to the client application.

Each CoS is comprised of two types of entry in the directory:

CoS definition entry. The CoS definition entry identifies the type of CoS used. Like the role
definition entry, it inherits from the LDAPsubentry object class. The CoS definition entry is
below the branch at which it is effective.

Template entry. The CoS template entry contains a list of the shared attribute values. Changes
to the template entry attribute values are automatically applied to all the entries within the
scope of the CoS. A single CoS might have more than one template entry associated with it.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

115

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#uniqueness-attributes

The CoS definition entry and template entry interact to provide attribute information to their target
entries, any entry within the scope of the CoS.

7.2.1. About the CoS Definition Entry

The CoS definition entry is an instance of the cosSuperDefinition object class. The CoS definition
entry also contains one of three object class that specifies the type of template entry it uses to
generate the entry. The target entries which interact with the CoS share the same parent as the CoS
definition entry.

There are three types of CoS, defined using three types of CoS definition entries:

Pointer CoS. A pointer CoS identifies the template entry using the template DN only.

Indirect CoS. An indirect CoS identifies the template entry using the value of one of the target
entry's attributes. For example, an indirect CoS might specify the manager attribute of a target
entry. The value of the manager attribute is then used to identify the template entry.

The target entry's attribute must be single-valued and contain a DN.

Classic CoS. A classic CoS identifies the template entry using a combination of the template
entry's base DN and the value of one of the target entry's attributes.

For more information about the object classes and attributes associated with each type of CoS, see
Section 7.2.10, “Managing CoS from the Command Line” .

If the CoS logic detects that an entry contains an attribute for which the CoS is generating values, the
CoS, by default, supplies the client application with the attribute value in the entry itself. However, the
CoS definition entry can control this behavior.

7.2.2. About the CoS Template Entry

The CoS template entry contains the value or values of the attributes generated by the CoS logic. The
CoS template entry contains a general object class of cosTemplate. The CoS template entries for a
given CoS are stored in the directory tree along with the CoS definition.

The relative distinguished name (RDN) of the template entry is determined by one of the following:

The DN of the template entry alone. This type of template is associated with a pointer CoS
definition.

The value of one of the target entry's attributes. The attribute used to provide the relative DN
to the template entry is specified in the CoS definition entry using the cosIndirectSpecifier
attribute. This type of template is associated with an indirect CoS definition.

By a combination of the DN of the subtree where the CoS performs a one level search for
templates and the value of one of the target entry's attributes. This type of template is
associated with a classic CoS definition.

7.2.3. How a Pointer CoS Works

An administrator creates a pointer CoS that shares a common postal code with all of the entries stored
under dc=example,dc=com. The three entries for this CoS appear as illustrated in Figure 7.2, “Sample
Pointer CoS”.

Administration Guide

116

Figure 7.2. Sample Pointer CoS

In this example, the template entry is identified by its DN, cn=exampleUS,cn=data, in the CoS definition
entry. Each time the postalCode attribute is queried on the entry
cn=wholiday,ou=people,dc=example,dc=com, the Directory Server returns the value available in the
template entry cn=exampleUS,cn=data.

7.2.4. How an Indirect CoS Works

An administrator creates an indirect CoS that uses the manager attribute of the target entry to identify
the template entry. The three CoS entries appear as illustrated in Figure 7.3, “Sample Indirect CoS”.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

117

Figure 7.3. Sample Indirect CoS

In this example, the target entry for William Holiday contains the indirect specifier, the manager
attribute. William's manager is Carla Fuentes, so the manager attribute contains a pointer to the DN of
the template entry, cn=Carla Fuentes,ou=people,dc=example,dc=com. The template entry in turn
provides the departmentNumber attribute value of 318842.

7.2.5. How a Classic CoS Works

An administrator creates a classic CoS that uses a combination of the template DN and a CoS specifier
to identify the template entry containing the postal code. The three CoS entries appear as illustrated in
Figure 7.4, “Sample Classic CoS”:

Administration Guide

118

Figure 7.4. Sample Classic CoS

In this example, the CoS definition entry's cosSpecifier attribute specifies the employeeType attribute.
This attribute, in combination with the template DN, identify the template entry as
cn=sales,cn=exampleUS,cn=data. The template entry then provides the value of the postalCode
attribute to the target entry.

7.2.6. Handling Physical Attribute Values

The cosAttribute attribute contains the name of another attribute which is governed by the class of
service. This attribute allows an override qualifier after the attribute value which sets how the CoS
handles existing attribute values on entries when it generates attribute values.

cosAttribute: attribute_name override

There are four override qualifiers:

default: Only returns a generated value if there is no corresponding attribute value stored with
the entry.

override: Always returns the value generated by the CoS, even when there is a value stored with
the entry.

operational: Returns a generated attribute only if it is explicitly requested in the search.
Operational attributes do not need to pass a schema check in order to be returned. When
operational is used, it also overrides any existing attribute values.

NOTE

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

119

NOTE

An attribute can only be made operational if it is defined as operational in the
schema. For example, if the CoS generates a value for the description attribute,
it is not possible to use the operational qualifier because this attribute is not
marked operational in the schema.

operational-default: Only returns a generated value if there is no corresponding attribute value
stored with the entry and if it is explicitly requested in the search.

If no qualifier is set, default is assumed.

For example, this pointer CoS definition entry indicates that it is associated with a template entry,
cn=exampleUS,ou=data,dc=example,dc=com, that generates the value of the postalCode attribute.
The override qualifier indicates that this value will take precedence over the value stored by the entries
for the postalCode attribute:

dn: cn=pointerCoS,dc=example,dc=com
objectclass: top
objectclass: cosSuperDefinition
objectclass: cosPointerDefinition
cosTemplateDn: cn=exampleUS,ou=data,dc=example,dc=com
cosAttribute: postalCode override

NOTE

If an entry contains an attribute value generated by a CoS, the value of the attribute
cannot be manually updated if it is defined with the operational or override qualifiers.

For more information about the CoS attributes, see the Red Hat Directory Server
Configuration, Command, and File Reference.

7.2.7. Handling Multi-valued Attributes with CoS

Any attribute can be generated using a class of service — including multi-valued attributes. That
introduces the potential for confusion. Which CoS supplies a value? Any of them or all of them? How is
the value selected from competing CoS templates? Does the generated attribute use a single value or
multiple values?

There are two ways to resolve this:

Creating a rule to merge multiple CoS-generated attributes into the target entry. This results in
multiple values in the target entry.

Setting a priority to select one CoS value out of competing CoS definitions. This generates one
single value for the target entry.

NOTE

Indirect CoS do not support the cosPriority attribute.

The way that the CoS handles multiple values for a CoS attribute is defined in whether it uses a merge-
schemes qualifier.

Administration Guide

120

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/directory-schema#cosAttribute

cosAttribute: attribute override merge-schemes

NOTE

The merge-schemes qualifier does not affect how the CoS handles physical attribute
values or the override qualifier. If there are multiple competing CoS templates or
definitions, then the same merge-schemes and override qualifiers have to be set on every
cosAttribute for every competing CoS definition. Otherwise, one combination is chosen
arbitrarily from all possible CoS definitions.

Using the merge-schemes qualifier tells the CoS that it will, or can, generate multiple values for the
managed attribute. There are two possible scenarios for having a multi-valued CoS attribute:

One CoS template entry contains multiple instances of the managed CoS attribute, resulting in
multiple values on the target entry. For example:

dn: cn=server access template,dc=example,dc=com
objectclass: top
objectclass: extensibleObject
objectclass: cosTemplate
accessTo: mail.example.com
accessTo: irc.example.com

NOTE

This method only works with classic CoS.

Multiple CoS definitions may define a class of service for the same target attribute, so there are
multiple template entries. For example:

dn: cn=mail template,dc=example,dc=com
objectclass: top
objectclass: extensibleObject
objectclass: cosTemplate
accessTo: mail.example.com

dn: cn=chat template,dc=example,dc=com
objectclass: top
objectclass: extensibleObject
objectclass: cosTemplate
accessTo: irc.example.com

However, it may be that even if there are multiple CoS definitions, only one value should be generated
for the attribute. If there are multiple CoS definitions, then the value is chosen arbitrarily. This is an
unpredictable and unwieldy option. The way to control which CoS template to use is to set a ranking on
the template — a priority — and the highest prioritized CoS always "wins" and provides the value.

It is fairly common for there to be multiple templates completing to provide a value. For example, there
can be a multi-valued cosSpecifier attribute in the CoS definition entry. The template priority is set
using the cosPriority attribute. This attribute represents the global priority of a particular template. A
priority of zero is the highest priority.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

121

For example, a CoS template entry for generating a department number appears as follows:

dn: cn=data,dc=example,dc=com
objectclass: top
objectclass: extensibleObject
objectclass: cosTemplate
departmentNumber: 71776
cosPriority: 0

This template entry contains the value for the departmentNumber attribute. It has a priority of zero,
meaning this template takes precedence over any other conflicting templates that define a different
departmentNumber value.

Templates that contain no cosPriority attribute are considered the lowest priority. Where two or more
templates are considered to supply an attribute value and they have the same (or no) priority, a value is
chosen arbitrarily.

NOTE

The behavior for negative cosPriority values is not defined in Directory Server; do not
enter negative values.

7.2.8. Searches for CoS-Specified Attributes

CoS definitions provide values for attributes in entries. For example, a CoS can set the postalCode
attribute for every entry in a subtree. Searches against those CoS-defined attributes, however, do not
behave like searches against regular entries.

If the CoS-defined attribute is indexed with any kind of index (including presence), then any attribute
with a value set by the CoS is not returned with a search. For example:

The postalCode attribute for Ted Morris is defined by a CoS.

The postalCode attribute for Barbara Jensen is set in her entry.

The postalCode attribute is indexed.

If an ldapsearch command uses the filter (postalCode=*), then Barbara Jensen's entry is returned,
while Ted Morris's is not.

If the CoS-defined attribute is not indexed, then every matching entry is returned in a search, regardless
of whether the attribute value is set locally or with CoS. For example:

The postalCode attribute for Ted Morris is defined by a CoS.

The postalCode attribute for Barbara Jensen is set in her entry.

The postalCode attribute is not indexed.

If an ldapsearch command uses the filter (postalCode=*), then both Barbara Jensen's and Ted Morris's
entries are returned.

CoS allows for an override, an identifier given to the cosAttribute attribute in the CoS entry, which
means that local values for an attribute can override the CoS value. If an override is set on the CoS, then
an ldapsearch operation will return a value for an entry even if the attribute is indexed, as long as there

Administration Guide

122

is a local value for the entry. Other entries which possess the CoS but do not have a local value will still
not be returned in the ldapsearch operation.

Because of the potential issues with running LDAP search requests on CoS-defined attributes, take
care when deciding which attributes to generate using a CoS.

7.2.9. Access Control and CoS

The server controls access to attributes generated by a CoS in exactly the same way as regular stored
attributes. However, access control rules depending upon the value of attributes generated by CoS will
not work. This is the same restriction that applies to using CoS-generated attributes in search filters.

7.2.10. Managing CoS from the Command Line

Because all configuration information and template data is stored as entries in the directory, standard
LDAP tools can be used for CoS configuration and management.

Section 7.2.10.1, “Creating the CoS Definition Entry from the Command Line”

Section 7.2.10.2, “Creating the CoS Template Entry from the Command Line”

Section 7.2.10.3, “Example of a Pointer CoS”

Section 7.2.10.4, “Example of an Indirect CoS”

Section 7.2.10.5, “Example of a Classic CoS”

Section 7.2.10.6, “Searching for CoS Entries”

7.2.10.1. Creating the CoS Definition Entry from the Command Line

Each type of CoS requires a particular object class to be specified in the definition entry. All CoS
definition object classes inherit from the LDAPsubentry object class and the cosSuperDefinition
object class.

A pointer CoS uses the cosPointerDefinition object class. This object class identifies the template
entry using an entry DN value specified in the cosTemplateDn attribute, as shown in Example 7.2, “An
Example Pointer CoS Entry”.

Example 7.2. An Example Pointer CoS Entry

 dn: cn=pointerCoS,dc=example,dc=com
 objectclass: top
 objectclass: cosSuperDefinition
 objectclass: cosPointerDefinition
 cosTemplateDn:DN_string
 cosAttribute:list_of_attributes qualifier
 cn: pointerCoS

An indirect CoS uses the cosIndirectDefinition object class. This type of CoS identifies the template
entry based on the value of one of the target entry's attributes, as specified in the cosIndirectSpecifier
attribute. This is illustrated in Example 7.3, “An Example Indirect CoS Entry” .

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

123

Example 7.3. An Example Indirect CoS Entry

 dn: cn=indirectCoS,dc=example,dc=com
 objectclass: top
 objectclass: cosSuperDefinition
 objectclass: cosIndirectDefinition
 cosIndirectSpecifier:attribute_name
 cosAttribute:list_of_attributes qualifier
 cn: indirectCoS

A classic CoS uses the cosClassicDefinition object class. This identifies the template entry using both
the template entry's DN (set in the cosTemplateDn attribute) and the value of one of the target entry's
attributes (set in the cosSpecifier attribute). This is illustrated in Example 7.4, “An Example Classic CoS
Entry”.

Example 7.4. An Example Classic CoS Entry

 dn: cn=classicCoS,dc=example,dc=com
 objectclass: top
 objectclass: cosSuperDefinition
 objectclass: cosClassicDefinition
 cosTemplateDn:DN_string
 cosSpecifier:attribute_name
 cosAttribute:list_of_attributes qualifier
 cn: classicCoS

For a class of service, the object class defines the type of CoS, and the supporting attributes identify
which directory entries are affected by defining the CoS template. Every CoS has one additional
attribute which can be defined for it: cosAttribute. The purpose of a CoS is to supply attribute values
across multiple entries; the cosAttribute attribute defines which attribute the CoS generates values for.

7.2.10.2. Creating the CoS Template Entry from the Command Line

Each template entry is an instance of the cosTemplate object class.

NOTE

Consider adding the LDAPsubentry object class to a new template entry. Making the
CoS template entry an instance of the LDAPsubentry object classes allows ordinary
searches to be performed unhindered by the configuration entries. However, if the
template entry already exists and is used for something else, such as a user entry, the
LDAPsubentry object class does not need to be added to the template entry.

The CoS template entry also contains the attribute generated by the CoS (as specified in the
cosAttribute attribute of the CoS definition entry) and the value for that attribute.

For example, a CoS template entry that provides a value for the postalCode attribute follows:

dn:cn=exampleUS,ou=data,dc=example,dc=com
objectclass: top
objectclass: extensibleObject

Administration Guide

124

objectclass: cosTemplate
postalCode: 44438

The following sections provide examples of template entries along with examples of each type of CoS
definition entry.

Section 7.2.10.3, “Example of a Pointer CoS”

Section 7.2.10.4, “Example of an Indirect CoS”

Section 7.2.10.5, “Example of a Classic CoS”

7.2.10.3. Example of a Pointer CoS

Example Corporation's administrator is creating a pointer CoS that shares a common postal code with
all entries in the dc=example,dc=com tree.

1. Add a new pointer CoS definition entry to the dc=example,dc=com suffix using ldapmodify:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=pointerCoS,dc=example,dc=com
changetype: add
objectclass: top
objectclass: cosSuperDefinition
objectclass: cosPointerDefinition
cosTemplateDn: cn=exampleUS,ou=data,dc=example,dc=com
cosAttribute: postalCode

2. Create the template entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=exampleUS,ou=data,dc=example,dc=com
changetype: add
objectclass: top
objectclass: extensibleObject
objectclass: cosTemplate
postalCode: 44438

The CoS template entry (cn=exampleUS,ou=data,dc=example,dc=com) supplies the value stored in
its postalCode attribute to any entries located under the dc=example,dc=com suffix. These entries are
the target entries.

7.2.10.4. Example of an Indirect CoS

This indirect CoS uses the manager attribute of the target entry to identify the CoS template entry,
which varies depending on the different values of the attribute.

1. Add a new indirect CoS definition entry to the dc=example,dc=com suffix using ldapmodify:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=indirectCoS,dc=example,dc=com
changetype: add
objectclass: top
objectclass: cosSuperDefinition

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

125

objectclass: cosIndirectDefinition
cosIndirectSpecifier: manager
cosAttribute: departmentNumber

If the directory or modify the manager entries already contain the departmentNumber attribute, then
no other attribute needs to be added to the manager entries. The definition entry looks in the target
suffix (the entries under dc=example,dc=com) for entries containing the manager attribute because
this attribute is specified in the cosIndirectSpecifier attribute of the definition entry). It then checks
the departmentNumber value in the manager entry that is listed. The value of the departmentNumber
attribute will automatically be relayed to all of the manager's subordinates that have the manager
attribute. The value of departmentNumber will vary depending on the department number listed in the
different manager's entries.

7.2.10.5. Example of a Classic CoS

The Example Corporation administrator is creating a classic CoS that automatically generates postal
codes using a combination of the template DN and the attribute specified in the cosSpecifier attribute.

1. Add a new classic CoS definition entry to the dc=example,dc=com suffix using ldapmodify:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=classicCoS,dc=example,dc=com
changetype: add
objectclass: top
objectclass: cosSuperDefinition
objectclass: cosClassicDefinition
cosTemplateDn: cn=classicCoS,dc=example,dc=com
cosSpecifier: businessCategory
cosAttribute: postalCode override

2. Create the template entries for the sales and marketing departments. Add the CoS attributes
to the template entry. The cn of the template sets the value of the businessCategory
attribute in the target entry, and then the attributes are added or overwritten according to the
value in the template:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=sales,cn=classicCoS,dc=example,dc=com
changetype: add
objectclass: top
objectclass: extensibleObject
objectclass: cosTemplate
postalCode: 44438
-
dn: cn=marketing,cn=classicCoS,dc=example,dc=com
changetype: add
objectclass: top
objectclass: extensibleObject
objectclass: cosTemplate
postalCode: 99111

The classic CoS definition entry applies to all entries under the dc=example,dc=com suffix. Depending
upon the combination of the businessCategory attribute found in the entry and the cosTemplateDn,
it can arrive at one of two templates. One, the sales template, provides a postal code specific to
employees in the sales department. The marketing template provides a postal code specific to
employees in the marketing department.

Administration Guide

126

7.2.10.6. Searching for CoS Entries

CoS definition entries are operational entries and, by default, not returned in regular searches. To return
CoS definition entries in searches, add the ldapSubEntry object class to the CoS definition entries. For
example:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=pointerCoS,ou=People,dc=example,dc=com
changetype: add
objectclass: ldapSubEntry

Then use the (objectclass=ldapSubEntry) filter with the ldapsearch utility to search for entries
containing the ldapSubEntry object class. For example:

ldapsearch -x -s sub -b ou=People,dc=example,dc=com "(|
(objectclass=*)(objectclass=ldapSubEntry))"

This search returns all regular entries in addition to CoS definition entries in the
ou=People,dc=example,dc=com subtree.

7.2.10.7. The costargettree attribute

The costargettree attribute defines the subtrees to which the CoS schema applies. The values for
costargettree for the schema and for multiple CoS schema may overlap their target trees arbitrarily.

Table 7.1. The costargettree attribute

OID 2.16.840.1.113730.3.1.552

Syntax DirectoryString

Multi or Single-Valued Single-valued

Defined in Directory Server

7.2.11. Creating Role-Based Attributes

Classic CoS schemes generate attribute values for an entry based on the role possessed by the entry.
For example, role-based attributes can be used to set the server look-through limit on an entry-by-entry
basis.

To create a role-based attribute, use the nsRole attribute as the cosSpecifier in the CoS definition
entry of a classic CoS. Because the nsRole attribute can be multi-valued, CoS schemes can be defined
that have more than one possible template entry. To resolve the ambiguity of which template entry to
use, include the cosPriority attribute in the CoS template entry.

For example, this CoS allows members of the manager role to exceed the standard mailbox quota. The
manager role entry is:

dn: cn=ManagerRole,ou=people,dc=example,dc=com
objectclass: top
objectclass: nsRoleDefinition
objectclass: nsComplexRoleDefinition

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

127

objectclass: nsFilteredRoleDefinition
cn: ManagerRole
nsRoleFilter: ou=managers
Description: filtered role for managers

WARNING

The nsRoleFilter attribute cannot accept virtual attribute values.

Do not index the virtual attribute values. Running a search on a virtual attribute can
result in unexpected system behaviors or incorrect search results. An unindexed
search breaks the search action that uses virtual attributes in the search filter.
Virtual attributes are generated dynamically and are not stored on the Directory
Server backend. Therefore virual attributes do not support indexing.

The classic CoS definition entry looks like:

dn: cn=managerCOS,dc=example,dc=com
objectclass: top
objectclass: cosSuperDefinition
objectclass: cosClassicDefinition
cosTemplateDn: cn=managerCOS,dc=example,dc=com
cosSpecifier: nsRole
cosAttribute: mailboxquota override

The cosTemplateDn attribute provides a value that, in combination with the attribute specified in the
cosSpecifier attribute (in the example, the nsRole attribute of the target entry), identifies the CoS
template entry. The CoS template entry provides the value for the mailboxquota attribute. An
additional qualifier of override tells the CoS to override any existing mailboxquota attributes values in
the target entry.

The corresponding CoS template entry looks as follows:

dn:cn="cn=ManagerRole,ou=people,dc=example,dc=com",cn=managerCOS,dc=example,dc=com
objectclass: top
objectclass: extensibleObject
objectclass: cosTemplate
mailboxquota: 1000000

The template provides the value for the mailboxquota attribute, 1000000.

NOTE

The role entry and the CoS definition and template entries should be located at the same
level in the directory tree.

7.3. LINKING ATTRIBUTES TO MANAGE ATTRIBUTE VALUES

A class of service dynamically supplies attribute values for entries which all have attributes with the same



Administration Guide

128

A class of service dynamically supplies attribute values for entries which all have attributes with the same
value, like building addresses, postal codes, or main office numbers. These are shared attribute values,
which are updated in a single template entry.

Frequently, though, there are relationships between entries where there needs to be a way to express
linkage between them, but the values (and possibly even the attributes) that express that relationship
are different. Red Hat Directory Server provides a way to link specified attributes together, so that when
one attribute in one entry is altered, a corresponding attribute on a related entry is automatically
updated. (The link and managed attributes both have DN values. The value of the link attribute contains
the DN of the entry for the plug-in to update; the managed attribute in the second entry has a DN value
which points back to the original link entry.)

7.3.1. About Linking Attributes

The Linked Attributes Plug-in, allows multiple instances of the plug-in. Each instance configures one
attribute which is manually maintained by the administrator (linkType) and one attribute which is
automatically maintained by the plug-in (managedType).

Figure 7.5. Basic Linked Attribute Configuration

NOTE

To preserve data consistency, only the plug-in process should maintain the managed
attribute. Consider creating an ACI that will restrict all write access to any managed
attribute. See Section 18.7.2, “Adding an ACI” for information on setting ACIs.

A Linked Attribute Plug-in instance can be restricted to a single subtree within the directory. This can
allow more flexible customization of attribute combinations and affected entries. If no scope is set, then
the plug-in operates in the entire directory.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

129

Figure 7.6. Restricting the Linked Attribute Plug-in to a Specific Subtree

When configuring the Linked Attribute Plug-in instance, certain configurations are required:

Both the managed attribute and linked attribute must require the Distinguished Name syntax in
their attribute definitions. The linked attributes are essentially managed cross-references, and
the way that the plug-in handles these cross-references is by pulling the DN of the entry from
the attribute value.

For information on planning custom schema elements, see Chapter 12, Managing the Directory
Schema.

Each Linked Attribute Plug-in instance must be local and any managed attributes must be
blocked from replication using fractional replication.

Any changes that are made on one supplier will automatically trigger the plug-in to manage the
values on the corresponding directory entries, so the data stay consistent across servers.
However, the managed attributes must be maintained by the plug-in instance for the data to be
consistent between the linked entries. This means that managed attribute values should be
maintained solely by the plug-in processes, not the replication process, even in a multi-supplier
replication environment.

For information on using fractional replication, see Section 15.1.7, “Replicating a Subset of
Attributes with Fractional Replication”.

7.3.2. Looking at the Linking Attributes Plug-in Syntax

The default Linked Attributes Plug-in entry is a container entry for each plug-in instance, similar to the
password syntax plug-ins or the DNA Plug-in in the next section. Each entry beneath this container entry
defines a different link-managed attribute pair.

To create a new linking attribute pair, then, create a new plug-in instance beneath the container entry. A
basic linking attribute plug-in instance required defining two things:

The attribute that is managed manually by administrators, in the linkType attribute

The attribute that is created dynamically by the plug-in, in the managedType attribute

Optionally, a scope that restricts the plug-in to a specific part of the directory tree, in the
linkScope attribute

Administration Guide

130

Example 7.5. Example Linked Attributes Plug-in Instance Entry

dn: cn=Manager Link,cn=Linked Attributes,cn=plugins,cn=config
objectClass: top
objectClass: extensibleObject
cn: Manager Link
linkType: directReport
managedType: manager
linkScope: ou=people,dc=example,dc=com

For a list of attributes available for an instance of the Linked Attributes plug-in, see the corresponding
section in the Red Hat Directory Server Configuration, Command, and File Reference .

7.3.3. Configuring Attribute Links

1. If it is not already enabled, enable the Linked Attributes plug-in. For details, see Section 1.10.2,
“Enabling and Disabling Plug-ins”.f

2. Create the plug-in instance. Both the --managed-type and --link-type parameters are
required. The following example shows the plug-in instance created by using dsconf:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin linked-attr config
"Manager Link" add --link-type=directReport --managed-type=manager

3. Restart the instance:

dsctl instance_name restart

7.3.4. Cleaning up Attribute Links

The managed-linked attributes can get out of sync. For instance, a linked attribute could be imported or
replicated over to a server, but the corresponding managed attribute was not because the link attribute
was not properly configured. The managed-linked attribute pairs can be fixed by running the dsconf
plugin linked-attr fixup command or by launching a fix-up task.

The fixup task removes any managed attributes (attributes managed by the plug-in) that do not have a
corresponding link attribute (attributes managed by the administrator) on the referenced entry.
Conversely, the task adds any missing managed attributes if the link attribute exists in an entry.

7.3.4.1. Regenerating Linked Attributes

The dsconf plugin linked-attr fixup command launches a special task to regenerate all of the
managed-link attribute pairs on directory entries. One or the other may be lost in certain situations. If
the link attribute exists in an entry, the task traces the cross-referenced DN in the available attribute
and creates the corresponding configured managed attribute on the referenced entry. If a managed
attribute exists with no corresponding link attribute, then the managed attribute value is removed.

To repair all configured link attribute pairs for the entire scope of the plug-in, then run the command as
the Directory Manager:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin linked-attr fixup

It is also possible to limit the fixup task to a single link-managed attribute pair by passing a base DN to

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

131

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#linked-attribute-attributes

It is also possible to limit the fixup task to a single link-managed attribute pair by passing a base DN to
the command. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin linked-attr fixup "cn=Manager
Link,cn=Linked Attributes,cn=plugins,cn=config"

7.3.4.2. Regenerating Linked Attributes Using ldapmodify

Repairing linked attributes is one of the tasks which can be managed through a special task
configuration entry. Task entries occur under the cn=tasks configuration entry in the dse.ldif file, so it is
also possible to initiate a task by adding the entry using ldapmodify. When the task is complete, the
entry is removed from the directory.

This task is the same one created automatically by the dsconf plugin linked-attr fixup command when
it is run.

To initiate a linked attributes fixup task, add an entry under the cn=fixup linked
attributes,cn=tasks,cn=config entry. The only required attribute is the cn for the specific task, though
it also allows the ttl attribute to set a timeout period. Using ldapmodify:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=example,cn=fixup linked attributes,cn=tasks,cn=config
changetype: add
cn:example
ttl: 5

Once the task is completed, the entry is deleted from the dse.ldif configuration, so it is possible to
reuse the same task entry continually.

The cn=fixup linked attributes task configuration is described in more detail in the
Configuration, Command, and File Reference.

7.4. ASSIGNING AND MANAGING UNIQUE NUMERIC ATTRIBUTE
VALUES

Some entry attributes require having a unique number, such as uidNumber and gidNumber. The
Directory Server can automatically generate and supply unique numbers for specified attributes using
the Distributed Numeric Assignment (DNA) Plug-in.

NOTE

Attribute uniqueness is not necessarily preserved with the DNA Plug-in. The plug-in only
assigns non-overlapping ranges, but it does allow manually-assigned numbers for its
managed attributes, and it does not verify or require that the manually-assigned numbers
are unique.

The issue with assigning unique numbers is not with generating the numbers but in effectively avoiding
replication conflicts. The DNA Plug-in assigns unique numbers across a single back end. For multi-
supplier replication, when each supplier is running a local DNA Plug-in instance, there has to be a way to
ensure that each instance is using a truly unique set of numbers. This is done by assigning different
ranges of numbers to each server to assign.

7.4.1. About Dynamic Number Assignments

Administration Guide

132

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-fixup-linked-attributes

The DNA Plug-in for a server assigns a range of available numbers that that instance can issue. The
range definition is very simple and is set by two attributes: the server's next available number (the low
end of the range) and its maximum value (the top end of the range). The initial bottom range is set when
the plug-in instance is configured. After that, the bottom value is updated by the plug-in. By breaking
the available numbers into separate ranges on each replica, the servers can all continually assign
numbers without overlapping with each other.

7.4.1.1. Filters, Searches, and Target Entries

The server performs a sorted search, internally, to see if the next specified range is already taken,
requiring the managed attribute to have an equality index with the proper ordering matching rule (as
described in Section 13.2, “Creating Standard Indexes”).

The DNA Plug-in is applied, always, to a specific area of the directory tree (the scope) and to specific
entry types within that subtree (the filter).

IMPORTANT

The DNA Plug-in only works on a single back end; it cannot manage number assignments
for multiple databases. The DNA plug-in uses the sort control when checking whether a
value has already been manually allocated outside of the DNA Plug-in. This validation,
using the sort control, only works on a single back end.

7.4.1.2. Ranges and Assigning Numbers

There are several different ways that the Directory Server can handle generating attribute values:

In the simplest case, a user entry is added to the directory with an object class which requires the
unique-number attribute, but without the attribute present. Adding an entry with no value for
the managed attribute triggers the DNA Plug-in to assign a value. This option only works if the
DNA Plug-in has been configured to assign unique values to a single attribute.

A similar and more manageable option is to use a magic number. This magic number is a
template value for the managed attribute, something outside the server's range, a number or
even a word, that the plug-in recognizes it needs to replace with a new assigned value. When an
entry is added with the magic value and the entry is within the scope and filter of the configured
DNA Plug-in, then using the magic number automatically triggers the plug-in to generate a new
value. The following example, based on using ldapmodify, adds 0 as a magic number:

dn: uid=jsmith,ou=people,dc=example,dc=com
 changetype: add
 objectClass: top
 objectClass: person
 objectClass: posixAccount
 uid: jsmith
 cn: John Smith
 uidNumber: 0
 gidNumber: 0

The DNA Plug-in only generates new, unique values. If an entry is added or modified to use a
specific value for an attribute controlled by the DNA Plug-in, the specified number is used; the
DNA Plug-in will not overwrite it.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

133

7.4.1.3. Multiple Attributes in the Same Range

The DNA Plug-in can assign unique numbers to a single attribute type or across multiple attribute types
from a single range of unique numbers.

This provides several options for assigning unique numbers to attributes:

A single number assigned to a single attribute type from a single range of unique numbers.

The same unique number assigned to two attributes for a single entry.

Two different attributes assigned two different numbers from the same range of unique
numbers.

In many cases, it is sufficient to have a unique number assigned per attribute type. When assigning an
employeeID to a new employee entry, it is important each employee entry is assigned a unique
employeeID.

However, there are cases where it may be useful to assign unique numbers from the same range of
numbers to multiple attributes. For example, when assigning a uidNumber and a gidNumber to a
posixAccount entry, the DNA Plug-in will assign the same number to both attributes. To do this, then
pass both managed attributes to the modify operation, specifying the magic value. Using ldapmodify:

ldapmodify -D "cn=Directory Manager" -W -x

dn: uid=jsmith,ou=people,dc=example,dc=com
changetype: modify
add: uidNumber
uidNumber: 0
-
add:gidNumber
gidNumber: 0

When multiple attributes are handled by the DNA Plug-in, the plug-in can assign a unique value to only
one of those attributes if the object class only allows one of them. For example, the posixGroup object
class does not allow a uidNumber attribute but it does allow gidNumber. If the DNA Plug-in manages
both uidNumber and gidNumber, then when a posixGroup entry is created, a unique number for
gidNumber is assigned from the same range as the uidNumber and gidNumber attributes. Using the
same pool for all attributes manged by the plug-in keeps the assignment of unique numbers aligned and
prevents situations where a uidNumber and a gidNumber on different entries are assigned from
different ranges and result in the same unique number.

If multiple attributes are handled by the DNA Plug-in, then the same value will be assigned to all of the
given managed attributes in an entry in a single modify operation. To assign different numbers from the
same range, then you must perform separate modify operations. The following example uses
ldapmodify to do so:

ldapmodify -D "cn=Directory Manager" -W -x
dn: uid=jsmith,ou=people,dc=example,dc=com
changetype: modify
add: uidNumber
uidNumber: 0
^D

ldapmodify -D "cn=Directory Manager" -W -x
dn: uid=jsmith,ou=people,dc=example,dc=com

Administration Guide

134

changetype: modify
add: employeeId
employeeId: magic

IMPORTANT

When the DNA Plug-in is configured to assign unique numbers to multiple attributes, it is
necessary to specify the magic value for each attribute that requires the unique number.
While this is not necessary when the DNA plug-in has been configured to provide unique
numbers for a single attribute, it is necessary for multiple attributes. There may be
instances where an entry does not allow each type of attribute defined for the range, or,
more important, an entry allow all of the attributes types defined, but only a subset of the
attributes require the unique value.

Example 7.6. DNA and Unique Bank Account Numbers

Example Bank wants to use the same unique number for a customer's primaryAccount and
customerID attributes. The Example Bank administrator configured the DNA Plug-in to assign
unique values for both attributes from the same range.

The bank also wants to assign numbers for secondary accounts from the same range as the customer
ID and primary account numbers, but these numbers cannot be the same as the primary account
numbers. The Example Bank administrator configures the DNA Plug-in to also manage the
secondaryAccount attribute, but will only add the secondaryAccount attribute to an entry after
the entry is created and the primaryAccount and customerID attributes are assigned. This ensures
that primaryAccount and customerID share the same unique number, and any secondaryAccount
numbers are entirely unique but still from the same range of numbers.

7.4.2. Looking at the DNA Plug-in Syntax

The DNA Plug-in itself is a container entry, similar to the Password Storage Schemes Plug-in. Each DNA
entry underneath the DNA Plug-in entry defines a new managed range for the DNA Plug-in.

To set new managed ranges for the DNA Plug-in, create entries beneath the container entry.

The most basic configuration is to set up distributed numeric assignments on a single server, meaning
the ranges will not be shared or transferred between servers. A basic DNA configuration entry defines
four things:

The attribute that value is being managed, set in the dnaType attribute

The entry DN to use as the base to search for entries, set in the dnaScope attribute

The search filter to use to identify entries to manage, set in the dnaFilter attribute

The next available value to assign, set in the dnaNextValue attribute (after the entry is created,
this is handled by the plug-in)

For a list of attributes supported in the cn=DNA_config_entry,cn=Distributed Numeric Assignment
Plugin,cn=plugins,cn=config entry, see the Red Hat Directory Server Configuration, Command, and
File Reference.

To configure distributed numeric assignment on a single server for a single attribute type:

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

135

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#dna-attributes

dn: cn=Account UIDs,cn=Distributed Numeric Assignment Plugin,cn=plugins,cn=config
objectClass: top
objectClass: dnaPluginConfig
cn: Account UIDs
dnatype: uidNumber
dnafilter: (objectclass=posixAccount)
dnascope: ou=people,dc=example,dc=com
dnaNextValue: 1

If multiple suppliers are configured for distributed numeric assignments, then the entry must contain the
required information to transfer ranges:

The maximum number that the server can assign; this sets the upward bound for the range,
which is logically required when multiple servers are assigning numbers. This is set in the
dnaMaxValue attribute.

The threshold where the range is low enough to trigger a range transfer, set in the
dnaThreshold attribute. If this is not set, the default value is 1.

A timeout period so that the server does not hang waiting for a transfer, set in the
dnaRangeRequestTimeout attribute. If this is not set, the default value is 10, meaning 10
seconds.

A configuration entry DN which is shared among all supplier servers, which stores the range
information for each supplier, set in the dnaSharedCfgDN attribute.

The specific number range which could be assigned by the server is defined in the dnaNextRange
attribute. This shows the next available range for transfer and is managed automatically by the plug-in,
as ranges are assigned or used by the server. This range is just "on deck." It has not yet been assigned to
another server and is still available for its local Directory Server to use.

dn: cn=Account UIDs,cn=Distributed Numeric Assignment Plugin,cn=plugins,cn=config
objectClass: top
objectClass: dnaPluginConfig
cn: Account UIDs
dnatype: uidNumber
dnafilter: (objectclass=posixAccount)
dnascope: ou=People,dc=example,dc=com
dnanextvalue: 1
dnaMaxValue: 1300
dnasharedcfgdn: cn=Account UIDs,ou=Ranges,dc=example,dc=com
dnathreshold: 100
dnaRangeRequestTimeout: 60
dnaNextRange: 1301-2301

The dnaNextRange attribute should be set explicitly only if a separate, specific range has to be
assigned to other servers. Any range set in the dnaNextRange attribute must be unique from the
available range for the other servers to avoid duplication. If there is no request from the other servers
and the server where dnaNextRange is set explicitly has reached its set dnaMaxValue, the next set of
values (part of the dnaNextRange) is allocated from this deck.

The dnaNextRange allocation is also limited by the dnaThreshold attribute that is set in the DNA
configuration. Any range allocated to another server for dnaNextRange cannot violate the threshold for
the server, even if the range is available on the deck of dnaNextRange.

NOTE

Administration Guide

136

NOTE

If the dnaNextRange attribute is handled internally if it is not set explicitly. When it is
handled automatically, the dnaMaxValue attribute serves as upper limit for the next
range.

Each supplier keeps a track of its current range in a separate configuration entry which contains
information about its range and its connection settings. This entry is a child of the location in
dnasharedcfgdn. The configuration entry is replicated to all of the other suppliers, so each supplier can
check that configuration to find a server to contact for a new range. For example:

dn: dnaHostname=ldap1.example.com+dnaPortNum=389,cn=Account
UIDs,ou=Ranges,dc=example,dc=com
objectClass: dnaSharedConfig
objectClass: top
dnahostname: ldap1.example.com
dnaPortNum: 389
dnaSecurePortNum: 636
dnaRemainingValues: 1000

7.4.3. Configuring Unique Number Assignments

The unique number distribution is configured by creating different instances of the DNA Plug-in.

7.4.3.1. Creating a New Instance of the DNA Plug-in

To use the DNA with multiple configurations, create a new instance of the plug-in for each
configuration.

NOTE

You can create new instances of the plug-in only by using the command line. However,
you can edit the settings using both the command line and the web console.

To create and enabling a new instance of the plug-in:

1. For example, to create a new instance of the plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin dna config "Account
UIDs" add --type uidNumber --filter "(objectclass=posixAccount)" --scope
ou=People,dc=example,dc=com --next-value 1 --max-value 1300 --shared-config-entry
"cn=Account UIDs,ou=Ranges,dc=example,dc=com" --threshold 100 --range-request-timeout
60 --magic-regen magic

For details about the value you can set in the --magic-regen parameter, see the
dnaMagicRegen attribute description in the Configuration, Command and File Reference .

2. Enable the DNA plug-in. For details, see Section 1.10.2, “Enabling and Disabling Plug-ins” .

7.4.3.2. Configuring Unique Number Assignments Using the Command Line

NOTE

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

137

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#dnaMagicRegen

NOTE

Any attribute which has a unique number assigned to it must have an equality index set
for it. The server must perform a sorted search, internally, to see if the dnaNextvalue is
already taken, which requires an equality index on an integer attribute, with the proper
ordering matching rule.

Creating indexes is described in Section 13.2, “Creating Standard Indexes” .

NOTE

Set up the DNA Plug-in on every supplier server, and be careful not to overlap the
number range values.

1. Create a new instance of the plug-in. See Section 7.4.3.1, “Creating a New Instance of the DNA
Plug-in”.

2. Create the shared container entry in the replicated subtree:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=Ranges,dc=example,dc=com
changetype: add
objectclass: top
objectclass: extensibleObject
objectclass: organizationalUnit
ou: Ranges
-
dn: cn=Account UIDs,ou=Ranges,dc=example,dc=com
changetype: add
objectclass: top
objectclass: extensibleObject
cn: Account UIDs

3. Restart the instance:

dsctl instance_name restart

7.4.3.3. Configuring Unique Number Assignments Using the Web Console

To enable and configure the DNA plug-in using the web console:

1. Create a new instance of the plug-in. See Section 7.4.3.1, “Creating a New Instance of the DNA
Plug-in”.

2. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

3. Select the instance.

4. Open the Plugins menu.

5. Select the DNA plug-in.

6. Change the status to ON to enable the plug-in.

Administration Guide

138

7. Click Add Config.

8. Fill the fields, and enable the config.

9. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

7.4.4. Distributed Number Assignment Plug-in Performance Notes

There can be thread locking issues as DNA configuration is changed dynamically, so that new operations
which access the DNA configuration (such as a DNA task or additional changes to the DNA
configuration) will access the old configuration because the thread with the new configuration has not
yet been released. This can cause operations to use old configuration or simply cause operations to
hang.

To avoid this, preserve an interval between dynamic DNA configuration changes of 35 seconds. This
means have a sleep or delay between both DNA configuration changes and any directory entry changes
which would trigger a DNA plug-in operation.

CHAPTER 7. MANAGING ATTRIBUTES AND VALUES

139

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES
Entries contained within the directory can be grouped in different ways to simplify the management of
user accounts. Red Hat Directory Server supports a variety of methods for grouping entries and sharing
attributes between entries. To take full advantage of the features offered by roles and class of service,
determine the directory topology when planning the directory deployment.

8.1. USING GROUPS

Similar to the operating system, you can add users to groups in Directory Server. Groups work the other
way around as roles. If you are using roles, the DN of the assigned role is stored in the nsRoleDN
attribute in the user object. If you use groups, then the DN of the users who are members of this group
are stored in member attributes in the group object. If you enabled the memberOf plug-in, then the
groups the user is a member of, are additionally stored in memberOf attribute in the user object. With
this plug-in enabled, groups additionally have the benefit of roles, that you can list the group
memberships of a user, similar as when using roles. Additionally, groups are faster than roles.

For further details about using the memberOf plug-in, see Section 8.1.4, “Listing Group Membership in
User Entries”.

8.1.1. The Different Types of Groups

Creating both static and dynamic groups from the command line is a similar process. A group entry
contains the group name, the type of group, and a members attribute.

There are several different options for the type of group; these are described in more detail in the
Red Hat Directory Server 10 Configuration, Command, and File Reference . The type of group in this case
refers to the type of defining member attribute it has:

groupOfNames (recommended) is a simple group, that allows any entry to be added. The
attribute used to determine members for this is member.

groupOfUniqueNames, like groupOfNames, simply lists user DNs as members, but the
members must be unique. This prevents users being added more than once as a group member,
which is one way of preventing self-referential group memberships. The attribute used to
determine members for this is uniqueMember.

groupOfURLs uses a list of LDAP URLs to filter and generate its membership list. This object
class is required for any dynamic group and can be used in conjunction with groupOfNames
and groupOfUniqueNames.

groupOfCertificates is similar to groupOfURLs in that it uses an LDAP filter to search for and
identify certificates (or, really, certificate names) to identify group members. This is useful for
group-based access control, since the group can be given special access permissions. The
attribute used to determine members for this is memberCertificate.

The following table shows the default attributes for groups:

Table 8.1. Dynamic and Static Group Schema

Type of Group Group Object Classes Member Attributes

Static groupOfNames [a] member

Administration Guide

140

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/index

groupOfUniqueNames [a] uniqueMember

Dynamic groupOfURLs memberURL

groupOfCertificates memberCertificate

[a] If this object class is used together with one of the dynamic object classes, the group becomes dynamic.

Type of Group Group Object Classes Member Attributes

The following two examples show a static and a dynamic group entry:

Example 8.1. A Static Group Entry

A static group entry lists the specific members of the group. For example:

objectClass: top
objectClass: groupOfUniqueNames
cn: static group
description: Example static group.
uniqueMember: uid=mwhite,ou=People,dc=example,dc=com
uniqueMember: uid=awhite,ou=People,dc=example,dc=com

Example 8.2. A Dynamic Group Entry

A dynamic group uses at least one LDAP URL to identify entries belonging to the group and can
specify multiple LDAP URLs or, if used with another group object class like groupOfUniqueNames,
can explicitly list some group members along with the dynamic LDAP URL. For example:

objectClass: top
objectClass: groupOfUniqueNames
objectClass: groupOfURLs
cn: dynamic group
description: Example dynamic group.
memberURL: ldap:///dc=example,dc=com??sub?(&(objectclass=person)(cn=*sen*))

NOTE

The memberOf plug-in does not support dynamically generated group memberships. If
you set the memberURL attribute instead of listing the group members in an attribute,
the memberOf plug-in does not add the memberOf attribute to the user objects that
match the filter.

8.1.2. Creating a Static Group

Directory Server only supports creating static groups using the command line.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

141

8.1.2.1. Creating a Static Group Using the Command Line

This section describes how to create the different types of static groups using the command line.

For details about the different static groups, see Section 8.1.1, “The Different Types of Groups” .

Creating a Static Group with the groupOfNames Object Class
The dsidm utility creates static groups in the cn=Groups entry in the specified base DN.

For example, to create the static example_group group with the groupOfNames object class in the
cn=Groups,dc=example,dc=com entry

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com" group
create --cn "example_group"

Creating a Static Group with the groupOfUniqueNames Object Class
To create a static group with the groupOfUniqueNames object class, use the ldapmodify utility to add
the entry.

For example, to create the static example_group group with the groupOfUniqueNames object class in
the cn=Groups,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=example_group,cn=Groups,dc=example,dc=com
changetype: add
objectClass: top
objectClass: groupOfUniqueNames
cn: example_group
description: Example static group with unique members

8.1.3. Creating a Dynamic Group

Directory Server only supports creating dynamic groups using the command line.

8.1.3.1. Creating a Dynamic Group Using the Command Line

This section describes how to create the different types of dynamic groups using the command line.

For details about the different dynamic groups, see Section 8.1.1, “The Different Types of Groups” .

Creating a Dynamic Group with the groupOfURLs Object Class
For example, to create the dynamic example_group group with the groupOfURLs object class in the
cn=Groups,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=example_group,cn=Groups,dc=example,dc=com
changetype: add
objectClass: top
objectClass: groupOfURLs
cn: example_group
description: Example dynamic group for user entries
memberURL: ldap:///dc=example,dc=com??sub?(&(objectclass=person)(cn=*sen*))

Creating a Dynamic Group with the groupOfCertificates Object Class

For example, to create the dynamic example_group group with the groupOfCertificates object class in

Administration Guide

142

For example, to create the dynamic example_group group with the groupOfCertificates object class in
the cn=Groups,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=example_group,cn=Groups,dc=example,dc=com
changetype: add
objectClass: top
objectClass: groupOfURLs
cn: example_group
description: Example dynamic group for certificate entries
memberCertificate: ...

8.1.4. Listing Group Membership in User Entries

The entries which belong to a group are defined, in some way, in the group entry itself. This makes it very
easy to look at a group and see its members and to manage group membership centrally. However,
there is no good way to find out what groups a single user belongs to. There is nothing in a user entry
which indicates its memberships, as there are with roles.

The MemberOf Plug-in correlates group membership lists to the corresponding user entries.

The MemberOf Plug-in analyzes the member attribute in a group entry and automatically writes a
corresponding memberOf attribute in the member's entry. (By default, this checks the member
attribute, but multiple attribute instances can be used to support multiple different group types.)

As membership changes, the plug-in updates the memberOf attributes on the user entries. The
MemberOf Plug-in provides a way to view the groups to which a user belongs simply by looking at the
entry, including nested group membership. It can be very difficult to backtrack memberships through
nested groups, but the MemberOf Plug-in shows memberships for all groups, direct and indirect.

The MemberOf Plug-in manages member attributes for static groups, not dynamic groups or circular
groups.

8.1.4.1. Considerations When Using the memberOf Plug-in

This section describes important considerations when you want to use the memberOf plug-in.

Using the memberOf Plug-in in a Replication Topology

There are two approaches to manage the memberOf attribute in a replication topology:

Enable the memberOf plug-in on all supplier and read-only replica servers in the topology. In
this case, you must exclude the memberOf attribute from replication in all replication
agreements. For details about about excluding attributes, see Section 15.1.7, “Replicating a
Subset of Attributes with Fractional Replication”.

Enable the memberOf plug-in only on all supplier servers in the topology. For this:

You must disable replication of the memberOf attribute to all write-enabled suppliers in
the replication agreement. For details about about excluding attributes, see
Section 15.1.7, “Replicating a Subset of Attributes with Fractional Replication” .

You must Enable replication of the memberOf attribute to all read-only replicas in their
replication agreement.

You must not enable the memberOf plug-in on read-only replicas.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

143

Using the memberOf plug-in With Distributed Databases

As described in Section 2.2.1, “Creating Databases”, you can store sub-trees of your directory in
individual databases. By default, the memberOf plug-in only updates user entries which are stored
within the same database as the group. To enable the plug-in to also update users in different
databases as the group, you must set the memberOfAllBackends parameter to on. See
Section 8.1.4.5.2, “Configuring the MemberOf Plug-in on Each Server Using the Web Console” .

8.1.4.2. Required Object Classes by the memberOf Plug-In

The memberOf plug-in By default, the memberOf plug-in will add the MemberOf object class to
objects to provide the memberOf attribute. This object class is safe to add to any object for this
purpose, and no further action is required to enable this plug-in to operate correctly. Alternatively, you
can create user objects that contain the inetUser or inetAdmin, object class. Both object classes
support the memberOf attribute as well.

To configure nested groups, the group must use the extensibleObject object class.

NOTE

If directory entries do not contain an object class that supports the required attributes,
operations fail with the following error:

LDAP: error code 65 - Object Class Violation

8.1.4.3. The MemberOf Plug-in Syntax

The MemberOf Plug-in instance defines two attributes, one for the group member attribute to poll
(memberOfGroupAttr) and the other for the attribute to create and manage in the member's user entry
(memberOfAttr).

The memberOfGroupAttr attribute is multi-valued. Because different types of groups use different
member attributes, using multiple memberOfGroupAttr attributes allows the plug-in to manage
multiple types of groups.

The plug-in instance also gives the plug-in path and function to identify the MemberOf Plug-in and
contains a state setting to enable the plug-in, both of which are required for all plug-ins. The default
MemberOf Plug-in is shown in Example 8.3, “Default MemberOf Plug-in Entry” .

Example 8.3. Default MemberOf Plug-in Entry

 dn: cn=MemberOf Plugin,cn=plugins,cn=config
 objectClass: top
 objectClass: nsSlapdPlugin
 objectClass: extensibleObject
 cn: MemberOf Plugin
 nsslapd-pluginPath: libmemberof-plugin
 nsslapd-pluginInitfunc: memberof_postop_init
 nsslapd-pluginType: postoperation
 nsslapd-pluginEnabled: on
 nsslapd-plugin-depends-on-type: database
 memberOfGroupAttr: member
 memberOfGroupAttr: uniqueMember
 memberOfAttr: memberOf

Administration Guide

144

 memberOfAllBackends: on
 nsslapd-pluginId: memberOf
 nsslapd-pluginVersion: X.Y.Z
 nsslapd-pluginVendor: Red Hat, Inc.
 nsslapd-pluginDescription: memberOf plugin

For details about the parameters used in the example and other parameters you can set, see the
MemberOf Plug-in Attributes section in the Red Hat Directory Server Command, Configuration, and File
Reference.

NOTE

To maintain backwards compatibility with older versions of Directory Server, which only
allowed a single member attribute (by default, member), it may be necessary to include
the member group attribute or whatever previous member attribute was used, in
addition any new member attributes used in the plug-in configuration.

 memberOfGroupAttr: member
 memberOfGroupAttr: uniqueMember

8.1.4.4. Enabling the MemberOf Plug-in

This section describes how to enable the MemberOf plug-in.

8.1.4.4.1. Enabling the MemberOf Plug-in Using the Command Line

Enable the MemberOf plug-in using the command line:

1. Use the dsconf utility to enable the plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof enable

2. Restart the instance:

dsctl instance_name restart

8.1.4.4.2. Enabling the MemberOf Plug-in Using the Web Console

Enable the MemberOf plug-in using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

4. Select the MemberOf plug-in.

5. Change the status to ON to enable the plug-in.

6. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

145

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html-single/configuration_command_and_file_reference/index#memberof-attributes

6. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

8.1.4.5. Configuring the MemberOf Plug-in on Each Server

If you do not want to replicate the configuration of the MemberOf plug-in, configure the plug-in
manually on each server.

8.1.4.5.1. Configuring the MemberOf Plug-in on Each Server Using the Command Line

To configure the MemberOf plug-in using the command line:

1. Enable the plug-in. See Section 8.1.4.4.1, “Enabling the MemberOf Plug-in Using the Command
Line”.

2. To retrieve members of a group from a different attribute than member, which is the default,
set the memberOfGroupAttr parameter to the respective attribute name.

For example, to read group members from uniqueMember attributes, replace the current value
of memberOfGroupAttr:

a. Optionally, display the attribute that is currently configured:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof show
...
memberofgroupattr: member
...

The command displays that currently only the member attribute is configured to retrieve
members of a group.

b. Remove all attributes from the configuration that currently set:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof set --
groupattr delete
Successfully changed the cn=MemberOf Plugin,cn=plugins,cn=config

NOTE

It is not possible to remove a specific group attribute.

c. Add the uniqueMember attribute to the configuration:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof set --
groupattr uniqueMember
successfully added memberOfGroupAttr value "uniqueMember"

To set multiple attributes, pass them all to the --groupattr parameter. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof set --
groupattr member uniqueMember ...

3. By default, the MemberOf plug-in adds the memberOf attribute to user entries. To use a

Administration Guide

146

3. By default, the MemberOf plug-in adds the memberOf attribute to user entries. To use a
different attribute, set the name of the attribute in the memberOfAttr parameter.

For example, to add the customMemberOf attribute to user records, replace the current value
of memberOfAttr:

a. Optionally, display the attribute that is currently configured:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof show
...
memberofattr: memberOf
...

b. Configure the MemberOf plug-in to add the customMemberOf attribute to user entries:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof set --
attr customMemberOf
memberOfAttr set to "customMemberOf"

NOTE

You can only set this parameter to an attribute that supports DN syntax.

4. In an environment that uses distributed databases, you can configure the plug-in to search user
entries in all databases instead of only the local database:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof set --
allbackends on
memberOfAllBackends enabled successfully

5. Restart the instance:

dsctl instance_name restart

8.1.4.5.2. Configuring the MemberOf Plug-in on Each Server Using the Web Console

To configure the MemberOf plug-in using the command line:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select the memberOf plug-in.

5. Change the status to ON to enable the plug-in.

6. Fill the fields to configure the plug-in. For example, to configure that the plug-in adds the
customMemberOf attribute to user entries if the uniqueMember attribute is added to a group:

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

147

7. Click Save.

8. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

8.1.4.6. Using the MemberOf Plug-in Shared Configuration

By default, the configuration of the MemberOf plug-in is stored on each server. Using the shared
configuration feature of the plug-in, the configuration can be stored outside of the cn=config suffix
and replicated. Administrators can use the same settings without configuring the plug-in manually on
each server.

1. Enable the plug-in. See Section 8.1.4.4, “Enabling the MemberOf Plug-in”.

2. Add the shared configuration entry for the MemberOf plug-in. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof config-entry
add "cn=shared_MemberOf_config,dc=example,dc=com" --groupattr "member" --attr
"memberOf"

This automatically enables the shared configuration entry on the server on which you ran the
command.

3. Restart the instance:

dsctl instance_name restart

4. On all other servers in the replication topology that should use the shared configuration, enable
the shared configuration:

a. Enable the plug-in. See Section 8.1.4.4, “Enabling the MemberOf Plug-in”.

b. Set the DN that stores the shared configuration. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof set --
config-entry cn=shared_MemberOf_config,dc=example,dc=com

c. Restart the instance:

dsctl instance_name restart

Administration Guide

148

IMPORTANT

After enabling the shared configuration, the plug-in ignores all parameters set in the
cn=MemberOf Plugin,cn=plugins,cn=config plug-in entry and only uses settings from
the shared configuration entry.

8.1.4.7. Setting the Scope of the MemberOf Plug-in

If you configured several back ends or multiple-nested suffixes, you can use the memberOfEntryScope
and memberOfEntryScopeExcludeSubtree parameters to set what suffixes the MemberOf plug-in
works on.

If you add a user to a group, the MemberOf plug-in only adds the memberOf attribute to the group if
both the user and the group are in the plug-in's scope. For example, to configure the MemberOf plug-in
to work on all entries in dc=example,dc=com, but to exclude entries in
ou=private,dc=example,dc=com:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof set --scope
"dc=example,com"
dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof set --exclude
"dc=group,dc=example,com"

If you moved a user entry out of the scope by using the --scope DN parameter:

The membership attribute, such as member, is updated in the group entry to remove the user
DN value.

The memberOf attribute is updated in the user entry to remove the group DN value.

NOTE

The value set in the --exclude parameter has a higher priority than values set in --scope.
If the scopes set in both parameters overlap, the MemberOf plug-in only works on the
non-overlapping directory entries.

8.1.4.8. Regenerating memberOf Values

The MemberOf plug-in automatically manages memberOf attributes on group member entries, based
on the configuration in the group entry itself. However, the memberOf attribute can be manually edited
in a user entry or new entries can be imported or replicated to the server that have a memberOf
attribute already set. These situations create inconsistencies between the memberOf configuration
managed by the server plug-in and the actual memberships defined in an entry.

For example, to regenerate the memberOf values in dc=example,dc=com entry and subentries:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin memberof fixup -f "(|
(objectclass=inetuser)(objectclass=inetadmin)(objectclass=nsmemberof))" "dc=example,dc=com"
Attempting to add task entry...
Successfully added task entry

The -f filter option is optional. Use the filter to regenerate the memberOf attributes in user entries
matching the filter. If you do not specify a filter, the tasks regenerates the attributes in all entries
containing the inetUser, inetAdmin, or nsMemberOf object class.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

149

NOTE

Regeneration tasks run locally, even if the entries themselves are replicated. This means
that memberOf attributes for entries on other servers are not updated until the updated
entry is replicated.

8.1.5. Automatically Adding Entries to Specified Groups

Section 8.1.5.1, “Looking at the Structure of an Automembership Rule”

Section 8.1.5.4, “Examples of Automembership Rules”

Section 8.1.5.2, “Configuring Auto Membership Definitions”

Group management can be a critical factor for managing directory data, especially for clients which use
Directory Server data and organization or which use groups to apply functionality to entries. Groups
make it easier to apply policies consistently and reliably across the directory. Password policies, access
control lists, and other rules can all be based on group membership.

Being able to assign new entries to groups, automatically, at the time that an account is created ensures
that the appropriate policies and functionality are immediately applied to those entries — without
requiring administrator intervention.

Dynamic groups are one method of creating groups and assigning members automatically because any
matching entry is automatically included in the group. For applying Directory Server policies and
settings, this is sufficient. However, LDAP applications and clients commonly need a static and explicit
list of group members in order to perform whatever operation is required. And all of the members in
static groups have to be manually added to those groups.

The static group itself cannot search for members like a dynamic group, but there is a way to allow a
static group to have members added to it automatically — the Auto Membership Plug-in .

Automembership essentially allows a static group to act like a dynamic group. Different
automembership definitions create searches that are automatically run on all new directory entries. The
automembership rules search for and identify matching entries — much like the dynamic search filters —
and then explicitly add those entries as members to the static group.

NOTE

By default, the autoMemberProcessModifyOps parameter in the cn=Auto
Membership Plugin,cn=plugins,cn=config entry is set to on. With this setting, the
Automembership plug-in also updates group memberships when an administrator moves
a user to a different group by editing a user entry.

If you set autoMemberProcessModifyOps to off, Directory Server invokes the plug-in
only when you add a group entry to the user, and you must manually run a fix-up task to
update the group membership.

The Auto Membership Plug-in can target any type of object stored in the directory: users, machines and
network devices, customer data, or other assets.

NOTE

Administration Guide

150

NOTE

The Auto Membership Plug-in adds a new member to an existing group based on defined
criteria. It does not create a group for the new entry.

To create a corresponding group entry when a new entry of a certain type is created, use
the Managed Entries Plug-in. This is covered in Section 8.3, “Automatically Creating Dual
Entries”.

8.1.5.1. Looking at the Structure of an Automembership Rule

The Auto Membership Plug-in itself is a container entry in cn=plugins,cn=config. Group assignments
are defined through child entries.

8.1.5.1.1. The Automembership Configuration Entry

Automembership assignments are created through a main definition entry, a child of the Auto
Membership Plug-in entry. Each definition entry defines three elements:

An LDAP search to identify entries, including both a search scope and a search filter
(autoMemberScope and autoMemberFilter)

A default group to which to add the member entries (autoMemberDefaultGroup)

The member entry format, which is the attribute in the group entry, such as member, and the
attribute value, such as dn (autoMemberGroupingAttr)

The definition is the basic configuration for an automember rule. It identifies all of the required
information: what a matching member entry looks like and a group for that member to belong to.

For example, this definition assigns all users with the object class set to ntUser to the cn=windows-
users group:

dn: cn=Windows Users,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberDefinition
autoMemberScope: ou=People,dc=example,dc=com
autoMemberFilter: objectclass=ntUser
autoMemberDefaultGroup: cn=windows-group,cn=groups,dc=example,dc=com
autoMemberGroupingAttr: member:dn

For details about the attributes used in the example and other attributes you can set in this entry, see
the cn=Auto Membership Plugin,cn=plugins,cn=config entry description in the
Red Hat Directory Server Configuration, Command, and File Reference .

8.1.5.1.2. Additional Regular Expression Entries

For something like a users group, where more than likely all matching entries should be added as
members, a simple definition is sufficient. However, there can be instances where entries that match the
LDAP search filter should be added to different groups, depending on the value of some other attribute.
For example, machines may need to be added to different groups depending on their IP address or
physical location; users may need to be in different groups depending on their employee ID number.

The automember definition can use regular expressions to provide additional conditions on what entries
to include or exclude from a group, and then a new, specific group to add those selected entries to.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

151

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#automember-attributes

For example, an automember definition sets all machines to be added to a generic host group.

Example 8.4. Automember Definition for a Host Group

dn: cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberDefinition
cn: Hostgroups
autoMemberScope: dc=example,dc=com
autoMemberFilter: objectclass=ipHost
autoMemberDefaultGroup: cn=systems,cn=hostgroups,dc=example,dc=com
autoMemberGroupingAttr: member:dn

A regular expression rule is added so that any machine with a fully-qualified domain name within a given
range is added to a web server group.

Example 8.5. Regular Expression Condition for a Web Server Group

dn: cn=webservers,cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberRegexRule
description: Group for webservers
cn: webservers
autoMemberTargetGroup: cn=webservers,cn=hostgroups,dc=example,dc=com
autoMemberInclusiveRegex: fqdn=^www\.web[0-9]+\.example\.com

So, any host machine added with a fully-qualified domain name that matches the expression
^www\.web[0-9]+\.example\.com, such as www.web1.example.com, is added to the cn=webservers
group, defined for that exact regular expression. Any other machine entry, which matches the LDAP
filter objectclass=ipHost but with a different type of fully-qualified domain name, is added to the
general host group, cn=systems, defined in the main definition entry.

The group in the definition, then, is a fallback for entries which match the general definition, but do not
meet the conditions in the regular expression rule.

Regular expression rules are child entries of the automember definition.

Administration Guide

152

Figure 8.1. Regular Expression Conditions

Each rule can include multiple inclusion and exclusion expressions. (Exclusions are evaluated first.) If an
entry matches any inclusion rule, it is added to the group.

There can be only one target group given for the regular expression rule.

Table 8.2. Regular Expression Condition Attributes

Attribute Description

autoMemberRegexRule (required
object class)

Identifies the entry as a regular expression rule. This entry must be a
child of an automember definition (objectclass:
autoMemberDefinition).

autoMemberInclusiveRegex Sets a regular expression to use to identify entries to include. Only
matching entries are added to the group. Multiple regular expressions
could be used, and if an entry matches any one of those expressions, it
is included in the group.
The format of the expression is a Perl-compatible regular expression
(PCRE). For more information on PCRE patterns, see the
pcresyntax(3) man page.

This is a multi-valued attribute.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

153

autoMemberExclusiveRegex Sets a regular expression to use to identify entries to exclude. If an
entry matches the exclusion condition, then it is not included in the
group. Multiple regular expressions could be used, and if an entry
matches any one of those expressions, it is excluded in the group.
The format of the expression is a Perl-compatible regular expression
(PCRE). For more information on PCRE patterns, see the
pcresyntax(3) man page.

This is a multi-valued attribute.

NOTE

Exclude conditions are evaluated first and take
precedence over include conditions.

autoMemberTargetGroup Sets which group to add the entry to as a member, if it meets the
regular expression conditions.

Attribute Description

8.1.5.2. Configuring Auto Membership Definitions

To use the Auto Membership plug-in, create definitions for the plug-in.

8.1.5.2.1. Configuring Auto Membership Definitions Using the Command Line

To create Auto Membership definitions using the command line:

1. Enable the Auto Membership plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin automember enable
Enabled Auto Membership Plugin

2. Create a Auto Membership definition. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin automember
definition definition_name add --default-group "cn=windows-
group,cn=groups,dc=example,dc=com" --scope "ou=People,dc=example,dc=com" --filter
"objectclass=ntUser" --grouping-attr "member:dn"
Automember definition created successfully!

3. Optionally, you can set further parameters in an Auto Membership definition, for example, to
use regular expressions to identify entries to include.Use the ldapmodify utility to add or
update these parameters in the cn=definition_name,cn=Auto Membership
Plugin,cn=plugins,cn=config entry. For parameters you can set, see cn=Auto Membership
Plugin,cn=plugins,cn=config entry description in the Red Hat Directory Server Configuration,
Command, and File Reference.

4. Restart the instance:

Administration Guide

154

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#automember-attributes

dsctl instance_name restart

8.1.5.2.2. Configuring Auto Membership Definitions Using the Web Console

To create Auto Membership definitions using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Plugins menu.

4. Select the Auto Membership plug-in.

5. Change the status to ON to enable the plug-in.

6. Click Add Definition.

7. Fill the fields. For example:

8. Optionally, add a regular expression filter.

9. Click Save.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

155

10. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

8.1.5.3. Updating Existing Entries to apply Auto Membership Definitions

By default, the autoMemberProcessModifyOps parameter in the cn=Auto Membership
Plugin,cn=plugins,cn=config entry is enabled. With this setting, the Automembership plug-in also
updates group memberships when an administrator moves a user to a different group by editing a user
entry. However, if you set autoMemberProcessModifyOps to off, you must manually run a fix-up task
when you added new entries to the directory or changed existing entries.

To create the task entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin automember fixup -f "filter" -s
scope

When the task is completed, the entry is removed from the directory configuration.

8.1.5.4. Examples of Automembership Rules

Automembership rules are usually going to applied to users and to machines (although they can be
applied to any type of entry). There are a handful of examples that may be useful in planning
automembership rules:

Different host groups based on IP address

Windows user groups

Different user groups based on employee ID

Example 8.6. Host Groups by IP Address

The automember rule first defines the scope and target of the rule. The example in Section 8.1.5.1.2,
“Additional Regular Expression Entries” uses the configuration group to define the fallback group
and a regular expression entry to sort out matching entries.

The scope is used to find all host entries. The plug-in then iterates through the regular expression
entries. If an entry matches an inclusive regular expression, then it is added to that host group. If it
does not match any group, it is added to the default group.

Administration Guide

156

The actual plug-in configuration entries are configured like this, for the definition entry and two
regular expression entries to filter hosts into a web servers group or a mail servers group.

configuration entry
dn: cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberDefinition
cn: Hostgroups
autoMemberScope: dc=example,dc=com
autoMemberFilter: objectclass=bootableDevice
autoMemberDefaultGroup: cn=orphans,cn=hostgroups,dc=example,dc=com
autoMemberGroupingAttr: member:dn

regex entry #1
dn: cn=webservers,cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberRegexRule
description: Group placement for webservers
cn: webservers
autoMemberTargetGroup: cn=webservers,cn=hostgroups,dc=example,dc=com
autoMemberInclusiveRegex: fqdn=^www[0-9]+\.example\.com
autoMemberInclusiveRegex: fqdn=^web[0-9]+\.example\.com
autoMemberExclusiveRegex: fqdn=^www13\.example\.com
autoMemberExclusiveRegex: fqdn=^web13\.example\.com

regex entry #2
dn: cn=mailservers,cn=Hostgroups,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberRegexRule
description: Group placement for mailservers
cn: mailservers
autoMemberTargetGroup: cn=mailservers,cn=hostgroups,dc=example,dc=com
autoMemberInclusiveRegex: fqdn=^mail[0-9]+\.example\.com

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

157

autoMemberInclusiveRegex: fqdn=^smtp[0-9]+\.example\.com
autoMemberExclusiveRegex: fqdn=^mail13\.example\.com
autoMemberExclusiveRegex: fqdn=^smtp13\.example\.com

Example 8.7. Windows User Group

The basic users group shown in Section 8.1.5.1.1, “The Automembership Configuration Entry” uses the
posixAccount attribute to identify all new users. All new users created within Directory Server are
created with the posixAccount attribute, so that is a safe catch-all for new Directory Server users.
However, when user accounts are synchronized over from the Windows domain to the
Directory Server, the Windows user accounts are created without the posixAccount attribute.

Windows users are identified by the ntUser attribute. The basic, all-users group rule can be modified
to target Windows users specifically, which can then be added to the default all-users group or to a
Windows-specific group.

dn: cn=Windows Users,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberDefinition
autoMemberScope: dc=example,dc=com
autoMemberFilter: objectclass=ntUser
autoMemberDefaultGroup: cn=Windows Users,cn=groups,dc=example,dc=com
autoMemberGroupingAttr: member:dn

Example 8.8. User Groups by Employee Type

The Auto Membership Plug-in can work on custom attributes, which can be useful for entries which
are managed by other applications. For example, a human resources application may create and then
reference users based on the employee type, in a custom employeeType attribute.

Much like Example 8.6, “Host Groups by IP Address” , the user type rule uses two regular expression
filters to sort full time and temporary employees, only this example uses an explicit value rather than
a true regular expression. For other attributes, it may be more appropriate to use a regular
expression, like basing the filter on an employee ID number range.

configuration entry
dn: cn=Employee groups,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberDefinition
cn: Hostgroups
autoMemberScope: ou=employees,ou=people,dc=example,dc=com
autoMemberFilter: objectclass=inetorgperson
autoMemberDefaultGroup: cn=general,cn=employee groups,ou=groups,dc=example,dc=com
autoMemberGroupingAttr: member:dn

regex entry #1
dn: cn=full time,cn=Employee groups,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberRegexRule
description: Group for full time employees
cn: full time
autoMemberTargetGroup: cn=full time,cn=employee groups,ou=groups,dc=example,dc=com
autoMemberInclusiveRegex: employeeType=full

regex entry #2

Administration Guide

158

dn: cn=temporary,cn=Employee groups,cn=Auto Membership Plugin,cn=plugins,cn=config
objectclass: autoMemberRegexRule
description: Group placement for interns, contractors, and seasonal employees
cn: temporary
autoMemberTargetGroup: cn=temporary,cn=employee groups,ou=groups,dc=example,dc=com
autoMemberInclusiveRegex: employeeType=intern
autoMemberInclusiveRegex: employeeType=contractor
autoMemberInclusiveRegex: employeeType=seasonal

8.1.5.5. Testing Automembership Definitions

Because each instance of the Auto Member Plug-in is a set of related-but-separate entries for the
definition and regular expression, it can be difficult to see exactly how users are going to be mapped to
groups. This becomes even more difficult when there are multiple rules which target different subsets of
users.

There are two dry-run tasks which can be useful to determine whether all of the different Auto Member
Plug-in definitions are assigning groups properly as designed.

Testing with Existing Entries

cn=automember export updates runs against existing entries in the directory and exports the results
of what users would have been added to what groups, based on the rules. This is useful for testing
existing rules against existing users to see how your real deployment are performing.

This task requires the same information as the cn=automember rebuild membership task — the base
DN to search, search filter, and search scope — and has an additional parameter to specify an export
LDIF file to record the proposed entry updates.

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=test_export,cn=automember export updates,cn=tasks,cn=config
objectClass: top
objectClass: extensibleObject
cn: test_export
basedn: dc=example,dc=com
filter: (uid=*)
scope: sub
ldif: /tmp/automember-updates.ldif

Testing with an Import LDIF

cn=automember map updates takes an import LDIF of new users and then runs the new users against
the current automembership rules. This can be very useful for testing a new rule, before applying it to
(real) new or existing user entries.

This is called a map task because it maps or relates changes for proposed new entries to the existing
rules.

This task only requires two attributes: the location of the input LDIF (which must contain at least some
user entries) and an output LDIF file to which to write the proposed entry updates. Both the input and
output LDIF files are absolute paths on the local machine.

For example, using ldapmodify:

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

159

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=test_mapping, cn=automember map updates,cn=tasks,cn=config
objectClass: top
objectClass: extensibleObject
cn: test_mapping
ldif_in: /tmp/entries.ldif
ldif_out: /tmp/automember-updates.ldif

8.1.5.6. Canceling the Auto Membership Plug-in Task

The Auto Membership plug-in task can generate high CPU usage on the server if the Directory Server
has complex configuration (large groups, complex rules and interaction with other plugins). To prevent
the performance issues, you can cancel the Auto Membership plug-in task.

Procedure

To cancel the Auto Membership plug-in task enter:

dsconf server.example.com plugin automember abort-fixup

Verification

To see the list of all Auto Membership plug-in tasks, including canceled tasks, enter:

dsconf server.example.com plugin automember fixup-status

8.2. USING ROLES

Roles are an entry grouping mechanism that unify the static and dynamic groups described in the
previous sections. Roles are designed to be more efficient and easier to use for applications. For
example, an application can get the list of roles of which an entry is a member by querying the entry
itself, rather than selecting a group and browsing the members list of several groups.

8.2.1. About Roles

Red Hat has two kinds of groups. Static groups have a finite and defined list of members. Dynamic
groups used filters to recognize which entries are members of the group, so the group membership is
constantly changed as the entries which match the group filter change. (Both kinds of groups are
described in Section 8.1, “Using Groups” .)

Roles are a sort of hybrid group, behaving as both a static and a dynamic group. With a group, entries are
added to a group entry as members. With a role, the role attribute is added to an entry and then that
attribute is used to identify members in the role entry automatically.

Role members are entries that possess the role. Members can be specified either explicitly or
dynamically. How role membership is specified depends upon the type of role. Directory Server supports
three types of roles:

Managed roles have an explicit enumerated list of members.

Filtered roles are assigned entries to the role depending upon the attribute contained by each
entry, specified in an LDAP filter. Entries that match the filter possess the role.

Administration Guide

160

Nested roles are roles that contain other roles.

Managed roles can do everything that can normally be done with static groups. The role members can
be filtered using filtered roles, similarly to the filtering with dynamic groups. Roles are easier to use than
groups, more flexible in their implementation, and reduce client complexity.

When a role is created, determine whether a user can add themselves or remove themselves from the
role. See Section 8.2.4, “Using Roles Securely” for more information about roles and access control.

NOTE

Evaluating roles is more resource-intensive for the Directory Server than evaluating
groups because the server does the work for the client application. With roles, the client
application can check role membership by searching for the nsRole attribute. The
nsRole attribute is a computed attribute, which identifies to which roles an entry belongs;
the nsRole attribute is not stored with the entry itself. From the client application point
of view, the method for checking membership is uniform and is performed on the server
side.

Considerations for using roles are covered in the Red Hat Directory Server
Deployment Guide.

8.2.2. Managing Roles Using the Command Line

You can view, create, and delete roles using the command line.

8.2.2.1. Creating a Managed Role

Managed roles have an explicit enumerated list of members. Managed roles are added to entries by
adding the nsRoleDN attribute to the entry.

8.2.2.1.1. Creating Managed Roles through the Command Line

Roles inherit from the ldapsubentry object class, which is defined in the ITU X.509 standard. In addition,
each managed role requires two object classes that inherit from the nsRoleDefinition object class:

nsSimpleRoleDefinition

nsManagedRoleDefinition

A managed role also allows an optional description attribute.

Members of a managed role have the nsRoleDN attribute in their entry.

This example creates a role which can be assigned to the marketing department.

1. Use ldapmodify with the -a option to add the managed role entry. The new entry must contain
the nsManagedRoleDefinition object class, which in turn inherits from the LdapSubEntry,
nsRoleDefinition, and nsSimpleRoleDefinition object classes.

dn: cn=Marketing,ou=people,dc=example,dc=com
objectclass: top
objectclass: LdapSubEntry
objectclass: nsRoleDefinition
objectclass: nsSimpleRoleDefinition

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

161

objectclass: nsManagedRoleDefinition
cn: Marketing
description: managed role for marketing staff

2. Assign the role to the marketing staff members, one by one, using ldapmodify:

dn: cn=Bob,ou=people,dc=example,dc=com
changetype: modify
add: nsRoleDN
nsRoleDN: cn=Marketing,ou=people,dc=example,dc=com

The nsRoleDN attribute in the entry indicates that the entry is a member of a managed role,
cn=Marketing,ou=people,dc=example,dc=com.

8.2.2.2. Creating a Filtered Role

Entries are assigned to a filtered role depending whether the entry possesses a specific attribute defined
in the role. The role definition specifies an LDAP filter for the target attributes. Entries that match the
filter possess (are members of) the role.

8.2.2.2.1. Creating a Filtered Role through the Command Line

Roles inherit from the ldapsubentry object class, which is defined in the ITU X.509 standard. In addition,
each filtered role requires two object classes that inherit from the nsRoleDefinition object class:

nsComplexRoleDefinition

nsFilteredRoleDefinition

A filtered role entry also requires the nsRoleFilter attribute to define the LDAP filter to determine role
members. Optionally, the role can take a description attribute.

Members of a filtered role are entries that match the filter specified in the nsRoleFilter attribute.

This example creates a filtered role which is applied to all sales managers.

1. Run ldapmodify with the -a option to add a new entry.

2. Create the filtered role entry.

The role entry has the nsFilteredRoleDefinition object class, which inherits from the
LdapSubEntry, nsRoleDefinition, and nsComplexRoleDefinition object classes.

The nsRoleFilter attribute sets a filter for o (organization) attributes that contain a value of
sales managers.

dn: cn=SalesManagerFilter,ou=people,dc=example,dc=com
changetype: add
objectclass: top
objectclass: LDAPsubentry
objectclass: nsRoleDefinition
objectclass: nsComplexRoleDefinition
objectclass: nsFilteredRoleDefinition

Administration Guide

162

cn: SalesManagerFilter
nsRoleFilter: o=sales managers
Description: filtered role for sales managers

The following entry matches the filter (possesses the o attribute with the value sales managers), and,
therefore, it is a member of this filtered role automatically:

dn: cn=Pat Smith,ou=people,dc=example,dc=com
objectclass: person
cn: Pat
sn: Smith
userPassword: secret
o: sales managers

8.2.2.3. Creating a Nested Role

Nested roles are roles that contain other roles. Before it is possible to create a nested role, another role
must exist. The roles nested within the nested role are specified using the nsRoleDN attribute.

8.2.2.3.1. Creating Nested Role through the Command Line

Roles inherit from the ldapsubentry object class, which is defined in the ITU X.509 standard. In addition,
each nested role requires two object classes that inherit from the nsRoleDefinition object class:

nsComplexRoleDefinition

nsNestedRoleDefinition

A nested role entry also requires the nsRoleDN attribute to identify the roles to nest within the
container role. Optionally, the role can take a description attribute.

Members of a nested role are members of the roles specified in the nsRoleDN attributes of the nested
role definition entry.

This example creates a single role out of the managed marketing role and filtered sales manager role.

1. Run ldapmodify with the -a option to add a new entry.

2. Create the nested role entry. The nested role has four object classes:

nsNestedRoleDefinition

LDAPsubentry (inherited)

nsRoleDefinition (inherited)

nsComplexRoleDefinition (inherited)

The nsRoleDN attributes contain the DNs for both the marketing managed role and the sales
managers filtered role.

dn: cn=MarketingSales,ou=people,dc=example,dc=com
objectclass: top
objectclass: LDAPsubentry
objectclass: nsRoleDefinition

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

163

objectclass: nsComplexRoleDefinition
objectclass: nsNestedRoleDefinition
cn: MarketingSales
nsRoleDN: cn=SalesManagerFilter,ou=people,dc=example,dc=com
nsRoleDN: cn=Marketing,ou=people,dc=example,dc=com

Both of the users in the previous examples, Bob and Pat, are members of this new nested role.

8.2.2.4. Viewing Roles for an Entry through the Command Line

Role assignments are not returned automatically through the command line.

The nsRole attribute is an operational attribute. In LDAP, operational attributes must be requested
explicitly. They are not returned by default with the regular attributes in the schema of the entry. You
can either explicitly request single operational attributes by listing them or use + to output all operational
attributes for result objects. For example, this ldapsearch command returns the list of roles of which
uid=user_name is a member, in addition to the regular attributes for the entry:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"
-s sub -x "(uid=user_name)"” * nsRole

dn: uid=user_name,ou=people,dc=example,dc=com
...
nsRole: cn=Role for Managers,dc=example,dc=com
nsRole: cn=Role for Accounting,dc=example,dc=com

8.2.2.5. About Deleting Roles

Deleting a role deletes the role entry but does not delete the nsRoleDN attribute for each role member.
To delete the nsRoleDN attribute for each role member, enable the Referential Integrity plug-in, and
configure it to manage the nsRoleDN attribute. For more information on the Referential Integrity plug-
in, see Chapter 5, Maintaining Referential Integrity .

8.2.3. Managing Roles in Directory Server Using the LDAP Browser

A role is a grouping mechanism that unifies static and dynamic groups.

8.2.3.1. Creating a role in the LDAP browser

You can create a role for a Red Hat Directory Server entry by using the LDAP Browser wizard in the web
console.

Prerequisites

Access to the web console.

A parent entry exists in the Red Hat Directory Server.

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP Browser.

3. Select an LDAP entry and click the Options menu.

Administration Guide

164

4. From the drop-down menu, select New and click Create a new role.

5. Follow the steps in the wizard and click the Next button after you complete each step.

6. To create the role, review the role settings in the Create Role step and click the Create button.
You can click the Back button to modify the role settings or click the Cancel button to cancel
the role creation.

7. To close the wizard window, click the Finish button.

Verification

Expand the LDAP entry and verify the new role appears among the entry parameters.

8.2.3.2. Modifying a Role in the LDAP browser

You can modify the role parameters for a Red Hat Directory Server entry using the LDAP Browser in
the web console.

Prerequisites

Access to the web console.

A parent entry exists in the Red Hat Directory Server.

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP Browser.

3. Expand the LDAP entry and select the role you are modifying.

4. Click the Options menu and select Edit to modify the parameters of the role or Rename to
rename the role.

5. In the wizard window modify the necessary parameters and click Next after each step until you
observe the LDIF Statements step.

6. Check the updated parameters and click Modify Entry or Change Entry Name.

7. To close the wizard window, click the Finish button.

Verification

Expand the LDAP entry and verify the updated parameters are listed for the role.

8.2.3.3. Deleting a Role in the LDAP browser

You can delete a role from the Red Hat Directory Server entry by using the LDAP Browser in the web
console.

Prerequisites

Access to the web console.

A parent entry exists in the Red Hat Directory Server.

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

165

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP Browser.

3. Expand the LDAP entry and select the role which you want to delete.

4. Open the Options menu and select Delete.

5. Verify the data about the role you want to delete and click the Next button until you reach the
Deletion step.

6. Toggle the switch to the Yes, I’m sure position and click the Delete button.

7. To close the wizard window, click the Finish button.

Verification

Expand the LDAP entry and verify the role is no longer a part of the entry details.

8.2.4. Using Roles Securely

Not every role is suitable for use in a security context. When creating a new role, consider how easily the
role can be assigned to and removed from an entry. Sometimes it is appropriate for users to be able to
add or remove themselves easily from a role. For example, if there is an interest group role called
Mountain Biking, interested users should be able to add themselves or remove themselves easily.

However, it is inappropriate to have such open roles for some security situations. One potential security
risk is inactivating user accounts by inactivating roles. Inactive roles have special ACIs defined for their
suffix. If an administrator allows users to add and remove themselves from roles freely, then in some
circumstance, they may be able to remove themselves from an inactive role to prevent their accounts
from being locked.

For example, user A possesses the managed role, MR. The MR role has been locked using account
inactivation. This means that user A cannot bind to the server because the nsAccountLock attribute is
computed as true for that user. However, if user A was already bound to Directory Server and noticed
that he is now locked through the MR role, the user can remove the nsRoleDN attribute from his entry
and unlock himself if there are no ACIs preventing him.

To prevent users from removing the nsRoleDN attribute, use the following ACIs depending upon the
type of role being used.

Managed roles. For entries that are members of a managed role, use the following ACI to
prevent users from unlocking themselves by removing the appropriate nsRoleDN:

aci: (targetattr="nsRoleDN") (targattrfilters= add=nsRoleDN:(!
(nsRoleDN=cn=AdministratorRole,dc=example,dc=com)), del=nsRoleDN:(!
(nsRoleDN=cn=nsManagedDisabledRole,dc=example,dc=com))) (version3.0;acl "allow mod
of nsRoleDN by self but not to critical values"; allow(write) userdn=ldap:///self;)

Filtered roles. The attributes that are part of the filter should be protected so that the user
cannot relinquish the filtered role by modifying an attribute. The user should not be allowed to
add, delete, or modify the attribute used by the filtered role. If the value of the filter attribute is
computed, then all attributes that can modify the value of the filter attribute should be
protected in the same way.

Administration Guide

166

Nested roles. A nested role is comprised of filtered and managed roles, so both ACIs should be
considered for modifying the attributes (nsRoleDN or something else) of the roles that
comprise the nested role.

For more information about account inactivation, see Section 20.16, “Manually Inactivating Users and
Roles”.

8.3. AUTOMATICALLY CREATING DUAL ENTRIES

Some clients and integration with Red Hat Directory Server require dual entries. For example, both Posix
systems typically have a group for each user. The Directory Server's Managed Entries Plug-in creates a
new managed entry, with accurate and specific values for attributes, automatically whenever an
appropriate origin entry is created.

8.3.1. About Managed Entries

The basic idea behind the Managed Entries Plug-in is that there are situations when Entry A is created
and there should automatically be an Entry B with related attribute values. For example, when a Posix
user (posixAccount entry) is created, a corresponding group entry (posixGroup entry) should also be
created. An instance of the Managed Entries Plug-in identifies what entry (the origin entry) triggers the
plug-in to automatically generate a new entry (the managed entry).

The plug-in works within a defined scope of the directory tree, so only entries within that subtree and
that match the given search filter trigger a Managed Entries operation.

Much like configuring a class of service, a managed entry is configured through two entries:

A definition entry, that identifies the scope of the plug-in instance and the template to use

A template entry, that models what the final managed entry will look like

8.3.1.1. About the Instance Definition Entry

As with the Linked Attributes and DNA Plug-ins, the Managed Entries Plug-in has a container entry in
cn=plugins,cn=config, and each unique configuration instance of the plug-in has a definition entry
beneath that container.

An instance of the Managed Entries Plug-in defines three things:

The search criteria to identify the origin entries (using a search scope and a search filter)

The subtree under which to create the managed entries (the new entry location)

The template entry to use for the managed entries

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

167

Figure 8.2. Defining Managed Entries

For example:

dn: cn=Posix User-Group,cn=Managed Entries,cn=plugins,cn=config
objectclass: extensibleObject
cn: Posix User-Group
originScope: ou=people,dc=example,dc=com
originFilter: objectclass=posixAccount
managedBase: ou=groups,dc=example,dc=com
managedTemplate: cn=Posix User-Group Template,ou=Templates,dc=example,dc=com

The origin entry does not have to have any special configuration or settings to create a managed entry; it
simply has to be created within the scope of the plug-in and match the given search filter.

8.3.1.2. About the Template Entry

Each instance of the plug-in uses a template entry which defines the managed entry configuration. The
template effectively lays out the entry, from the object classes to the entry values.

NOTE

Administration Guide

168

NOTE

Since the template is referenced in the definition entry, it can be located anywhere in the
directory. However, it is recommended that the template entry be under the replicated
suffix so that any other suppliers in multi-supplier replication all use the same template
for their local instances of the Managed Entries Plug-in.

The concept of a template entry is similar to the templates used in CoS, but there are some important
differences. The managed entry template is slightly different than the type of template used for a class
of service. For a class of service, the template contains a single attribute with a specific value that is fed
into all of the entries which belong to that CoS. Any changes to the class of service are immediately
reflected in the associated entries, because the CoS attributes in those entries are virtual attributes, not
truly attributes set on the entry.

The template entry for the Managed Entries Plug-in, on the other hand, is not a central entry that
supplies values to associated entries. It is a true template — it lays out what is in the entry. The template
entry can contain both static attributes (ones with pre-defined values, similar to a CoS) and mapped
attributes (attributes that pull their values or parts of values from the origin entry). The template is
referenced when the managed entry is created and then any changes are applied to the managed entry
only when the origin entry is changed and the template is evaluated again by the plug-in to apply those
updates.

Figure 8.3. Templates, Managed Entries, and Origin Entries

The template can provide a specific value for an attribute in the managed entry by using a static
attribute in the template. The template can also use a value that is derived from some attribute in the
origin entry, so the value may be different from entry to entry; that is a mapped attribute, because it
references the attribute type in the origin entry, not a value.

A mapped value use a combination of token (dynamic values) and static values, but it can only use one
token in a mapped attribute.

dn: cn=Posix User-Group Template,ou=Templates,dc=example,dc=com
objectclass: mepTemplateEntry

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

169

cn: Posix User-Group Template
mepRDNAttr: cn
mepStaticAttr: objectclass: posixGroup
mepMappedAttr: cn: $cn Group Entry
mepMappedAttr: gidNumber: $gidNumber
mepMappedAttr: memberUid: $uid

The mapped attributes in the template use tokens, prepended by a dollar sign ($), to pull in values from
the origin entry and use it in the managed entry. (If a dollar sign is actually in the managed attribute
value, then the dollar sign can be escaped by using two dollar signs in a row.)

A mapped attribute definition can be quoted with curly braces, such as Attr: ${cn}test. Quoting a token
value is not required if the token name is not immediately followed by a character that is valid in an
attribute name, such as a space or comma. For example, $cn test is acceptable in an attribute definition
because a space character immediately follow the attribute name, but $cntest is not valid because the
Managed Entries Plug-in attempts to look for an attribute named cntest in the origin entry. Using curly
braces identifies the attribute token name.

NOTE

Make sure that the values given for static and mapped attributes comply with the
required attribute syntax.

8.3.1.3. Entry Attributes Written by the Managed Entries Plug-in

Both the origin entry and the managed entry have special managed entries attributes which indicate that
they are being managed by an instance of the Managed Entries Plug-in. For the origin entry, the plug-in
adds links to associated managed entries.

dn: uid=jsmith,ou=people,dc=example,dc=com
objectclass: mepOriginEntry
objectclass: posixAccount
...
sn: Smith
mail: jsmith@example.com
mepManagedEntry: cn=jsmith Posix Group,ou=groups,dc=example,dc=com

On the managed entry, the plug-in adds attributes that point back to the origin entry, in addition to the
attributes defined in the template.

dn: cn=jsmith Posix Group,ou=groups,dc=example,dc=com
objectclass: mepManagedEntry
objectclass: posixGroup
...
mepManagedBy: uid=jsmith,ou=people,dc=example,dc=com

Using special attributes to indicate managed and origin entries makes it easy to identify the related
entries and to assess changes made by the Managed Entries Plug-in.

8.3.1.4. Managed Entries Plug-in and Directory Server Operations

The Managed Entries Plug-in has some impact on how the Directory Server carries out common
operations, like add and delete operations.

Administration Guide

170

Table 8.3. Managed Entries Plug-in and Directory Server Operations

Operation Effect by the Managed Entries Plug-in

Add With every add operation, the server checks to see if the new entry is within the scope
of any Managed Entries Plug-in instance. If it meets the criteria for an origin entry, then
a managed entry is created and managed entry-related attributes are added to both
the origin and managed entry.

Modify If an origin entry is modified, it triggers the plug-in to update the managed entry.
Changing a template entry, however, does not update the managed entry automatically.
Any changes to the template entry are not reflected in the managed entry until after
the next time the origin entry is modified.

The mapped managed attributes within a managed entry cannot be modified manually,
only by the Managed Entry Plug-in. Other attributes in the managed entry (including
static attributes added by the Managed Entry Plug-in) can be modified manually.

Delete If an origin entry is deleted, then the Managed Entries Plug-in will also delete any
managed entry associated with that entry. There are some limits on what entries can
be deleted.

A template entry cannot be deleted if it is currently referenced by a plug-in
instance definition.

A managed entry cannot be deleted except by the Managed Entries Plug-in.

Rename If an origin entry is renamed, then plug-in updates the corresponding managed entry. If
the entry is moved out of the plug-in scope, then the managed entry is deleted, while if
an entry is moved into the plug-in scope, it is treated like an add operation and a new
managed entry is created. As with delete operations, there are limits on what entries
can be renamed or moved.

A configuration definition entry cannot be moved out of the Managed Entries
Plug-in container entry. If the entry is removed, that plug-in instance is
inactivated.

If an entry is moved into the Managed Entries Plug-in container entry, then it is
validated and treated as an active configuration definition.

A template entry cannot be renamed or moved if it is currently referenced by
a plug-in instance definition.

A managed entry cannot be renamed or moved except by the Managed
Entries Plug-in.

Replication The Managed Entries Plug-in operations are not initiated by replication updates. If an
add or modify operation for an entry in the plug-in scope is replicated to another
replica, that operation does not trigger the Managed Entries Plug-in instance on the
replica to create or update an entry. The only way for updates for managed entries to
be replicated is to replicate the final managed entry over to the replica.

8.3.2. Creating the Managed Entries Template Entry

The first entry to create is the template entry. The template entry must contain all of the configuration

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

171

The first entry to create is the template entry. The template entry must contain all of the configuration
required for the generated, managed entry. This is done by setting the attribute-value assertions in
static and mapped attributes in the template:

mepStaticAttr: attribute: specific_value
mepMappedAttr: attribute: $token_value

The static attributes set an explicit value; mapped attributes pull some value from the originating entry
is used to supply the given attribute. The values of these attributes will be tokens in the form attribute:
$attr. As long as the syntax of the expanded token of the attribute does not violate the required
attribute syntax, then other terms and strings can be used in the attribute. For example:

mepMappedAttr: cn: Managed Group for $cn

There are some syntax rules that must be followed for the managed entries:

A mapped value use a combination of token (dynamic values) and static values, but it can only
use one token per mapped attribute .

The mapped attributes in the template use tokens, prepended by a dollar sign ($), to pull in
values from the origin entry and use it in the managed entry. (If a dollar sign is actually in the
managed attribute value, then the dollar sign can be escaped by using two dollar signs in a row.)

A mapped attribute definition can be quoted with curly braces, such as Attr: ${cn}test. Quoting
a token value is not required if the token name is not immediately followed by a character that is
valid in an attribute name, such as a space or comma. For example, $cn test is acceptable in an
attribute definition because a space character immediately follow the attribute name, but
$cntest is not valid because the Managed Entries Plug-in attempts to look for an attribute
named cntest in the origin entry. Using curly braces identifies the attribute token name.

Make sure that the values given for static and mapped attributes comply with the required
attribute syntax.

NOTE

Make sure that the values given for static and mapped attributes comply with the
required attribute syntax. For example, if one of the mapped attributes is gidNumber,
then the mapped value should be an integer.

Table 8.4. Attributes for the Managed Entry Template

Attribute Description

mepTemplateEntry (object
class)

Identifies the entry as a template.

cn Gives the common name of the entry.

mepMappedAttr Contains an attribute-token pair that the plug-in uses to create an attribute
in the managed entry with a value taken from the originating entry.

Administration Guide

172

mepRDNAttr Specifies which attribute to use as the naming attribute in the managed
entry. The attribute used as the RDN must be a mapped attribute for the
configuration to be valid.

mepStaticAttr Contains an attribute-value pair that will be used, with that specified value,
in the managed entry.

Attribute Description

To create a template entry:

Use the dsconf plugin managed-entries template add command to add the template entry. For
example:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin managed-entries template
"cn=Posix User Template,ou=templates,dc=example,dc=com" add --rdn-attr "cn" --static-attr
"objectclass: posixGroup" --mapped-attr "cn: $cn Group Entry" "gidNumber: $gidNumber"
"memberUid: $uid"

8.3.3. Creating the Managed Entries Instance Definition

Once the template entry is created, then it is possible to create a definition entry that points to that
template. The definition entry is an instance of the Managed Entries Plug-in.

NOTE

When the definition is created, the server checks to see if the specified template entry
exists. If the template does not exist, then the server returns a warning that the definition
configuration is invalid.

The definition entry must define the parameters to recognize the potential origin entry and the
information to create the managed entry. The attributes available for the plug-in instance are listed in
Table 8.5, “Attributes for the Managed Entries Definition Entry” .

Table 8.5. Attributes for the Managed Entries Definition Entry

Attribute Name Description

originFilter The search filter to use to search for and identify the entries within the
subtree which require a managed entry. The syntax is the same as a regular
search filter.

originScope The base subtree which contains the potential origin entries for the plug-in
to monitor.

managedTemplate Identifies the template entry to use to create the managed entry. This entry
can be located anywhere in the directory tree.

managedBase The subtree under which to create the managed entries.

NOTE

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

173

NOTE

The Managed Entries Plug-in is enabled by default. If this plug-in is disabled, then re-
enable it as described in Section 1.10.2, “Enabling and Disabling Plug-ins” .

To create an instance:

1. Create the new plug-in instance below the cn=Managed Entries,cn=plugins,cn=config
container entry. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin managed-entries
config "cn=instance,cn=Managed Entries,cn=plugins,cn=config" add --
scope="ou=people,dc=example,dc=com" --filter="objectclass=posixAccount" --managed-
base="ou=groups,dc=example,dc=com" --managed-template="cn=Posix User-Group
Template,ou=Templates,dc=example,dc=com"

This command sets the scope and filter for the origin entry search, the location of the new
managed entries, and the template entry to use.

2. If the Directory Server is not configured to enable dynamic plug-ins, restart the server to load
the modified new plug-in instance:

dsctl instance_name restart

8.3.4. Putting Managed Entries Plug-in Configuration in a Replicated Database

As Section 8.3.1, “About Managed Entries” highlights, different instances of the Managed Entries Plug-
in are created as children beneath the container plug-in entry in cn=plugins,cn=com. (This is common
for plug-ins which allow multiple instances.) The drawback to this is that the configuration entries in
cn=plugins,cn=com are not replicated, so the configuration has to be re-created on each
Directory Server instance.

The Managed Entries Plug-in entry allows the nsslapd-pluginConfigArea attribute. This attribute to
another container entry, in the main database area, which contains the plug-in instance entries. This
container entry can be in a replicated database, which allows the plug-in configuration to be replicated.

1. Create a container entry. For example, to create an entry that points back to the container
entry, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin managed-entries set -
-config-area="cn=managed entries container,ou=containers,dc=example,dc=com"

2. Move or create the definition (Section 8.3.3, “Creating the Managed Entries Instance
Definition”) and template (Section 8.3.2, “Creating the Managed Entries Template Entry”)
entries under the new container entry.

8.4. USING VIEWS

Virtual directory tree views, or views, create a virtual directory hierarchy, so it is easy to navigate entries,
without having to make sure those entries physically exist in any particular place. The view uses
information about the entries to place them in the view hierarchy, similarly to members of a filtered role
or a dynamic group. Views superimpose a DIT hierarchy over a set of entries, and to client applications,
views appear as ordinary container hierarchies.

Administration Guide

174

8.4.1. About Views

Views create a directory tree similar to the regular hierarchy, such as using organizational unit entries for
subtrees, but views entries have an additional object class (nsview) and a filter attribute (nsviewfilter)
that set up a filter for the entries which belong in that view. Once the view container entry is added, all of
the entries that match the view filter instantly populate the view. The target entries only appear to exist
in the view; their true location never changes. For example, a view may be created as ou=Location
Views, and a filter is set for l=Mountain View. Every entry, such as cn=Jane Smith,l=Mountain
View,ou=People,dc=example,dc=com, is immediately listed under the ou=Location Views entry, but
the real cn=Jane Smith entry remains in the ou=People,dc=example,dc=com subtree.

Figure 8.4. A Directory Tree with a Virtual DIT View hierarchy

Virtual DIT views behave like normal DITs in that a subtree or a one-level search can be performed with
the expected results being returned.

NOTE

There is a sample LDIF file with example views entries, Example-views.ldif, installed with
Directory Server. This file is in the /usr/share/dirsrv/data/ directory. The sections in this
chapter assume Example-views.ldif is imported to the server.

The Red Hat Directory Server Deployment Guide has more information on how to integrate views with
the directory tree hierarchy.

8.4.2. Creating Views from the Command Line

1. Use the ldapmodify utility to bind to the server and prepare it to add the new view entry to the
configuration file.

2. Assuming the view container ou=Location Views,dc=example,dc=com from the Example-
views.ldif file is in the Directory Server, add the new views container entry, in this example,
under the dc=example,dc=com root suffix. This entry must have the nsview object class and

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

175

the nsViewFilter attribute. The nsViewFilter attribute sets the attribute-value which identifies
entries that belong in the view.

dn: ou=Mountain View,ou=Location Views,dc=example,dc=com
changetype: add
objectClass: top
objectClass: organizationalUnit
objectClass: nsview
ou: Mountain View
nsViewFilter: l=Mountain View
description: views categorized by location

8.4.3. Improving Views Performance

As Section 8.4.1, “About Views” describes, views are derived from search results based on a given filter.
Part of the filter is the attribute defined in the nsViewFilter attribute; the rest of the filter is based on
the entry hierarchy, looking for the entryid and parentid of the real entries included in the view.

(|(parentid=search_base_id)(entryid=search_base_id)

If any of the searched-for attributes — entryid, parentid, or the attribute set in nsViewFilter — are not
indexed, then the views search becomes an unindexed search because the views operation searches the
entire tree for matching entries.

To improve views performance, create equality indexes for entryid, parentid, and the attribute set
in nsViewFilter.

Creating equality indexes is covered in Section 13.2, “Creating Standard Indexes” , and updating existing
indexes to include new attributes is covered in Section 13.3, “Creating New Indexes to Existing
Databases”.

8.5. MANAGING ORGANIZATIONAL UNITS

Administrators can use organizational units (OU) as a container for directory entries. For example, you
can use OUs to separate user and group entries. To manage OUs in Directory Server, use the dsidm
organizationalunit command.

To create an OU, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
organizationalunit create --ou OU_name

To list the OUs in an entry, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
organizationalunit list
People
...

To rename an OU, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
organizationalunit rename old_name new_name

Administration Guide

176

To delete an OU, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
organizationalunit delete OU_name

CHAPTER 8. ORGANIZING AND GROUPING ENTRIES

177

CHAPTER 9. CONFIGURING SECURE CONNECTIONS
By default, clients and users connect to the Red Hat Directory Server over a standard connection.
Standard connections do not use any encryption, so information is sent back and forth between the
server and client in the clear.

Directory Server supports TLS connections, STARTTLS connection, and SASL authentication, which
provide layers of encryption and security that protect directory data from being read even if it is
intercepted.

9.1. REQUIRING SECURE CONNECTIONS

Directory Server provides the following ways of using encrypted connections:

LDAPS

When you use the LDAPS protocol, the connection starts using encryption and either succeeds or
fails. However, no unencrypted data is ever send over the network. For this reason, prefer LDAPS
instead of using STARTTLS over unencrypted LDAP.

STARTTLS over LDAP

Clients establish an unencrypted connection over the LDAP protocol and then send the STARTTLS
command. If the command succeeds, all further communication is encrypted.

WARNING

If the STARTTLS command fails and the client does not cancel the connection,
all further data, including authentication information, is sent unencrypted over
the network.

SASL

Simple Authentication and Security Layer (SASL) enables you to authenticate a user using external
authentication methods, such as Kerberos. For details, see Section 9.10, “Setting up SASL Identity
Mapping”.

9.2. SETTING A MINIMUM STRENGTH FACTOR

For additional security, the Directory Server can be configured to require a certain level of encryption
before it allows a connection. The Directory Server can define and require a specific Security Strength
Factor (SFF) for any connection. The SSF sets a minimum encryption level, defined by its key strength,
for any connection or operation.

To require a minimum SSF for any and all directory operations, set the nsslapd-minssf configuration
attribute. When enforcing a minimum SSF, Directory Server looks at each available encryption type for
an operation — TLS or SASL — and determines which has the higher SSF value and then compares the
higher value to the minimum SSF. It is possible for both SASL authentication and TLS to be configured
for some server-to-server connections, such as replication.

NOTE



Administration Guide

178

NOTE

Alternatively, use the nsslapd-minssf-exclude-rootdse configuration attribute. This sets
a minimum SSF setting for all connections to the Directory Server except for queries
against the root DSE. A client may need to obtain information about the server
configuration, like its default naming context, before initiating an operation. The
nsslapd-minssf-exclude-rootdse attribute allows the client to get that information
without having to establish a secure connection first.

The SSF for a connection is evaluated when the first operation is initiated on a connection. This allows
STARTTLS and SASL binds to succeed, even though those two connections initially open a regular
connection. After the TLS or SASL session is opened, then the SSF is evaluated. Any connection which
does not meet the SSF requirements is closed with an LDAP unwilling to perform error.

Set a minimum SSF to disable insecure connections to a directory.

WARNING

If you connect to the directory using the unencrypted LDAP protocol without SASL,
the first LDAP message can contain the bind request. In this case, the credentials
are sent unencrypted over the network before the server cancels the connection,
because the SSF did not met the minimum value set.

Use the LDAPS protocol or SASL binds to ensure that the credentials are never
sent unencrypted.

The default nsslapd-minssf attribute value is 0, which means there is no minimum SSF for server
connections. The value can be set to any reasonable positive integer. The value represents the required
key strength for any secure connection.

The following example sets the nsslapd-minssf parameter to 128:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-minssf=128
Successfully replaced "nsslapd-minssf"

NOTE

An ACI can be set to require an SSF for a specific type of operation, as in Section 18.11.2.4,
“Requiring a Certain Level of Security in Connections”.

Secure connections can be required for bind operations by turning on the nsslapd-
require-secure-binds attribute, as in Section 20.12.1, “Requiring Secure Binds”.

9.3. MANAGING THE NSS DATABASE USED BY DIRECTORY SERVER

To use TLS encryption or certificate-based authentication, you must manage the certificates in a
Network Security Services (NSS) database. When you created the instance, the dscreate utility
automatically created this database in the /etc/dirsrv/slapd-instance_name/ directory and protected it
with a strong password. The utility stored the password in the



CHAPTER 9. CONFIGURING SECURE CONNECTIONS

179

/etc/dirsrv/slapd-instance_name/pwdfile.txt file. Note that Directory Server does not use this file. The
dscreate utility only created this file to provide the password to the administrator. For details about
changing the password, see Section 9.3.10, “Changing the Password of the NSS Database” .

This section describes the most frequent actions about managing the Directory Server's NSS database.

9.3.1. Creating a Certificate Signing Request

The Certificate Signing Request (CSR) is a request to the Certificate Authority (CA) to sign the key of
the server. This section describes how to create the CSR including the private key.

NOTE

Directory Server supports only creating a private key and CSR directly in the NSS
database using the certutil utility.

9.3.1.1. Creating a Certificate Signing Request Using the Command Line

To create the key and a CSR, use the dsctl tls generate-server-cert-csr command:

dsctl instance_name tls generate-server-cert-csr -s "certificate_subject"

The dsctl tls generate-server-cert-csr command stores the CSR in the
/etc/dirsrv/slapd-instance_name/Server-Cert.csr file and the private key in the Directory Server's
network security services (NSS) database.

Example 9.1. Creating a Private Key and CSR for a Single Host Name

The following command generates a bit private key for the server.example.com host:

dsctl instance_name tls generate-server-cert-csr -s
"CN=server.example.com,O=example_organization,OU=IT,ST=North Carolina,C=US"

The string specified in the -s parameter must be a valid subject name according to RFC 1485. The
CN field is required, and you must set it to the Fully-qualified Domain Name (FQDN) of the server.
The other fields are optional.

Example 9.2. Creating a Private Key and CSR for a Multi-homed Host

If a Directory Server host has multiple names, create a CSR with all host names in the SAN extension
of the CSR. The following command generates a bit private key and a CSR for the
server.example.com and server.example.net host names:

dsctl instance_name tls generate-server-cert-csr -s
"CN=server.example.com,O=example_organization,OU=IT,ST=North Carolina,C=US"
server.example.com server.example.net

If you specify the host names as the last parameters, the command adds the SAN extension with the
DNS:server.example.com, DNS:server.example.net entries to the CSR. The string specified in the
-s parameter must be a valid subject name according to RFC 1485. The CN field is required, and you
must set it to one of the FQDNs of the server. The other fields are optional.

Administration Guide

180

https://tools.ietf.org/html/rfc1485
https://tools.ietf.org/html/rfc1485

After you have generated the CSR, submit it to the CA to get a certificate issued. For further details, see
your CA's documentation.

9.3.2. Installing a CA Certificate

To enable Directory Server to trust the Certificate Authority (CA) you must install the certificate of the
CA into the Network Security Services (NSS) database. During this process, you must set which
certificates issued by the CA should be trusted:

Table 9.1. CA Trust Options

Web Console Option dsconf and certutil Option Description

(C) Trusted CA C,, The server verifies that certificates, used
to establish an encrypted connection to a
replication partner, have been issued by a
trusted CA.

(T) Trusted CA Client
Auth

T,, The server trusts this CA certificate for
issuing client certificates suitable for TLS
EXTERNAL binds.

You can set both options for a CA. When you use certutil, pass the -T "CT,," parameter to the utility.

9.3.2.1. Installing a CA Certificate Using the Command Line

To install a CA certificate:

1. Import the CA certificate. For example, to import the CA certificate stored in the /root/ca.crt
file and store it in the database with the Example CA nick name:

dsconf -D "cn=Directory Manager" ldap://server.example.com security ca-certificate add --
file /root/ca.crt --name "Example CA"

2. Set the trust options. For example, to set the CT,, trust flags:

dsconf -D "cn=Directory Manager" ldap://server.example.com security ca-certificate set-
trust-flags "Example CA" --flags "CT,,"

9.3.2.2. Installing a CA Certificate Using the Web Console

To install a CA certificate using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select the Security entry.

4. Open the Certificate Management tab, and select the Trusted Certificate Authorities sub-
tab.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

181

5. Click Add CA Certificate.

6. Enter the path to the CA certificate file and a nickname for the certificate.

Figure 9.1. Adding a CA Certificate

NOTE

The CA certificate must be stored locally on the Directory Server host and must
be readable by the dirsrv user.

7. Click Add Certificate.

8. Click Actions next to the imported CA certificate, and select Edit Trust Flags.

9. Select (C) - Trusted CA and (T) - Trusted CA Client Auth in the SSL column.

Administration Guide

182

Figure 9.2. Adding Trust Flags of a CA Certificate

9.3.3. Importing a Private Key and Server Certificate

This section describes how to import both a private key and Certificate Signing Request (CSR), if you
did not create them in the NSS database using an external tool.

If you created the private key and CSR in the NSS database, follow the procedure described in
Section 9.3.4, “Installing a Server Certificate” .

To import the certificate from the /root/server.crt and the private key from the /root/server.key file,
enter:

dsctl instance_name tls import-server-key-cert /root/server.crt /root/server.key

Note that the dsctl tls import-server-key-cert command requires the paths in the following order:

1. Path to the server certificate.

2. Path to the private key file.

9.3.4. Installing a Server Certificate

After the Certificate Authority (CA) issued the requested certificate, you must install it in the Network
Security Services (NSS) database.

If you created the private key and certificate signing request not in the NSS database, follow the
procedure described in Section 9.3.3, “Importing a Private Key and Server Certificate”

9.3.4.1. Installing a Server Certificate Using the Command Line

To install a server certificate in the Directory Server's NSS database, use the certutil utility. For

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

183

To install a server certificate in the Directory Server's NSS database, use the certutil utility. For
example:

1. Install the CA certificate. See Section 9.3.2, “Installing a CA Certificate” .

2. Import the server certificate. For example to import the certificate stored in the
/root/instance_name.crt file, and set it as the primary certificate the instance uses:

dsconf -D "cn=Directory Manager" ldap://server.example.com security certificate add --file
/root/instance_name.crt --name "Server-Cert" --primary-cert

9.3.4.2. Installing a Server Certificate Using the Web Console

To install a server certificate using the web console:

1. Install the CA certificate. See Section 9.3.2, “Installing a CA Certificate” .

2. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

3. Select the instance.

4. Open the Server Settings menu, and select the Security entry.

5. Open the Certificate Management tab, and select the TLS Certificates sub-tab.

6. Click Add Server Certificate.

7. Enter the path to the server certificate file and a nickname for the certificate.

Figure 9.3. Adding a Server Certificate

NOTE

The server certificate must be stored locally on the Directory Server host and
must be readable by the dirsrv user.

8. Click Add Certificate.

Administration Guide

184

9.3.5. Generating and Installing a Self-signed Certificate

When you created the instance with TLS enabled using the dscreate utility, dscreate automatically
created and installed a self-signed certificate. However, if you did not enable TLS during instance
creation, you can manually create and install a self-signed certificate.

NOTE

You can only perform this operation using the command line.

To create and install a self-signed certificate:

1. Generate a noise file with random data. For example, to generate a file with a size of 4096 bits:

openssl rand -out /tmp/noise.bin 4096

2. Create the self-signed certificate and add it to the NSS database:

certutil -S -x -d /etc/dirsrv/slapd-instance_name/ -z /tmp/noise.bin \
 -n "Server-Cert" -s "CN=$HOSTNAME" -t "CT,C,C" -m $RANDOM \
 --keyUsage digitalSignature,nonRepudiation,keyEncipherment,dataEncipherment

Red Hat Enterprise Linux automatically replaces the $HOSTNAME variable with the Fully
Qualified Domain Name (FQDN) and $RANDOM with a randomly-generated number. For
further details about the parameters used in the previous commands, see the certutil(1) man
page.

3. Optionally, verify that the generated certificate is self-signed:

certutil -L -d /etc/dirsrv/slapd-instance_name/ -n "Server-Cert" | egrep "Issuer|Subject"
 Issuer: "CN=server.example.com"
 Subject: "CN=server.example.com"

The output of this command must display the FQDN of the Directory Server host for both the
issuer and subject of the certificate.

9.3.6. Renewing a Certificate

If a certificate will expire in the near future, you must renew it in time to continue establishing secure
connections.

9.3.6.1. Renewing a Certificate Using the Command Line

To renew the server certificate:

If you do not use attribute encryption:

1. Create a new Certificate Signing Request (CSR) with the same options, such as key size,
host name, and subject. For details about creating a CSR, see Section 9.3.1.1, “Creating a
Certificate Signing Request Using the Command Line”

2. After you received the issued certificate from your CA, install it in the database using the
same nickname. See Section 9.3.2.1, “Installing a CA Certificate Using the Command Line” .

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

185

3. Stop the instance:

dsctl instance_name stop

4. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file and remove the following entries
including their attributes:

cn=AES,cn=encrypted attribute keys,cn=database_name,cn=ldbm
database,cn=plugins,cn=config

cn=3DES,cn=encrypted attribute keys,cn=database_name,cn=ldbm
database,cn=plugins,cn=config

IMPORTANT

Remove the entries for all databases. If any entry that contains the
nsSymmetricKey attribute is left in the /etc/dirsrv/slapd-
instance_name/dse.ldif file, Directory Server will fail to start.

5. Start the instance:

dsctl instance_name start

Directory Server will automatically use the newer issued certificate.

If you use attribute encryption, see Section 10.5, “Updating the TLS Certificates Used for
Attribute Encryption”.

9.3.7. Removing a Certificate

If a certificate is no longer needed, for example, because it has been exposed, remove it from the
database.

9.3.7.1. Removing a Certificate Using the Command Line

To remove a certificate using the command line:

1. Optionally, display the certificates in the database:

dsconf -D "cn=Directory Manager" ldap://server.example.com security certificate list

Certificate Name: Server-Cert
Subject DN: CN=server.example.com
Issuer DN: CN=Example CA
Expires: 2022-07-29 11:10:14
Trust Flags: ,,

2. Remove the certificate. For example, to remove the certificate with the Server-Cert nickname:

dsconf -D "cn=Directory Manager" ldap://server.example.com security certificate del
Server-Cert

Administration Guide

186

9.3.7.2. Removing a Certificate Using the Web Console

To remove a certificate using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select the Security entry.

4. Open the Certificate Management tab, and select the TLS Certificates sub-tab.

5. Click Actions next to the certificate, and select Delete Certificate.

6. Click Yes.

9.3.8. Removing a Private Key

If a private key is no longer needed, for example, because you created a stronger key, remove it from the
database.

WARNING

If you remove a private key, certificates based on this key are no longer working.

9.3.8.1. Removing a Private Key Using the Command Line

To remove a private key:

1. Remove all certificates based on the key you want to delete. See Section 9.3.7, “Removing a
Certificate”.

2. Optionally, display the keys in the database:

certutil -d /etc/dirsrv/slapd-instance_name/ -K
certutil: Checking token "NSS Certificate DB" in slot "NSS User Private Key and Certificate
Services"
Enter Password or Pin for "NSS Certificate DB":
< 0> rsa 7a2fb6c269d83c4036eac7e4edb6aaf2ed08bc4a Server-Cert
< 1> rsa 662b826aa3dd4ca7fd7e6883558cf3866c42f4e2 example-cert

3. Remove the private key. For example, to remove the private key with the example-cert
nickname:

certutil -d /etc/dirsrv/slapd-instance_name/ -F -n "example-cert"

9.3.9. Changing the CA Trust Options

In certain situations you need to update the trust option of a Certificate Authority (CA). This section



CHAPTER 9. CONFIGURING SECURE CONNECTIONS

187

In certain situations you need to update the trust option of a Certificate Authority (CA). This section
describes this procedure.

9.3.9.1. Changing the CA Trust Options Using the Command Line

To change the trust options of a CA, pass the new options in the --flags parameter to the dsconf
security ca-certificate set-trust-flags command.

For example, to set that Directory Server trusts only client authentication certificates issued by the CA
named example-CA:

dsconf -D "cn=Directory Manager" ldap://server.example.com security ca-certificate set-trust-flags
"example-CA" --flags "T,,"

The --flags trust_options parameter sets which certificates issued by the CA should be trusted. See
Table 9.1, “CA Trust Options” .

9.3.9.2. Changing the CA Trust Options Using the Web Console

To change the trust options of a CA using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select the Security entry.

4. Open the Certificate Management tab.

5. On the Trusted Certificate Authorities sub-tab, click Actions next to the imported CA
certificate, and select Edit Trust Flags.

6. Select the trust flags. For example:

Administration Guide

188

Figure 9.4. Setting the Trust Flags of a CA Certificate

7. Click Save.

9.3.10. Changing the Password of the NSS Database

In certain situations, administrators want to change the password of the Network Security Services
(NSS) database. This section describes this process.

IMPORTANT

If you use a password file to enable Directory Server to automatically open the Network
Security Services (NSS) database, you must update the file after you set the new
password. See Section 9.4.1.5, “Creating a Password File for Directory Server” .

9.3.10.1. Changing the Password of the NSS Database Using the Command Line

To change the password of the NSS database:

certutil -d /etc/dirsrv/slapd-instance_name -W
Enter Password or Pin for "NSS Certificate DB":
Enter a password which will be used to encrypt your keys.
The password should be at least 8 characters long,
and should contain at least one non-alphabetic character.

Enter new password:
Re-enter password:
Password changed successfully.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

189

9.4. ENABLING TLS

Directory Server supports encrypted connections between clients and the server, as well as between
servers in a replication environment. For this, Directory Server supports:

The LDAPS protocol: TLS encryption is used directly after the connection has been established.

The STARTTLS command over the LDAP protocol: The connection is unencrypted until the
client sends the STARTTLS command.

IMPORTANT

For security reasons, Red Hat recommends enabling TLS encryption.

You can use TLS with simple authentication using a bind Distinguished Name (DN) and password, or
using certificate-based authentication.

Directory Server's cryptographic services are provided by Mozilla Network Security Services (NSS), a
library of TLS and base cryptographic functions. NSS includes a software-based cryptographic token
which is Federal Information Processing Standard (FIPS) 140-2 certified.

9.4.1. Enabling TLS in Directory Server

This section describes how to enable TLS in Directory Server.

9.4.1.1. Enabling TLS in Directory Server Using the Command Line

To enable TLS using the command line:

1. Request and install the certificate:

For a certificate issued by a Certificate Authority (CA):

1. Create a Certificate Signing Request (CSR). See Section 9.3.1.1, “Creating a Certificate
Signing Request Using the Command Line”

2. Import the CA certificate. See Section 9.3.2.1, “Installing a CA Certificate Using the
Command Line”.

3. Import the server certificate issued by the CA. See Section 9.3.4.1, “Installing a Server
Certificate Using the Command Line”.

For a self-signed certificate, see Section 9.3.5, “Generating and Installing a Self-signed
Certificate”.

2. Enable TLS and set the LDAPS port:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
securePort=636 nsslapd-security=on
Successfully replaced "nsslapd-securePort"
Successfully replaced "nsslapd-security"

3. Display the name of the server certificate in the NSS database:

Administration Guide

190

dsconf -D "cn=Directory Manager" ldap://server.example.com security certificate list

Certificate Name: Server-Cert
Subject DN: CN=server.example.com
Issuer DN: CN=Example CA
Expires: 2022-07-29 11:10:14
Trust Flags: ,,

You need the nickname in the next step.

4. To enable the RSA cipher family, setting the NSS database security device, and the server
certificate name:

dsconf -D "cn=Directory Manager" ldap://server.example.com security rsa set --tls-allow-
rsa-certificates on --nss-token "internal (software)" --nss-cert-name Server-Cert

NOTE

By default, the name of the security device in the NSS database is internal
(software).

5. Optionally, update the list of ciphers Directory Server supports. For details, see
Section 9.4.1.3.2, “Displaying and Setting the Ciphers Used by Directory Server Using the
Command Line”.

6. Optionally, enable certificate-based authentication. For details, see Section 9.9, “Using
Certificate-based Client Authentication”.

7. Optionally, create a password file to enable Directory Server to start without prompting for the
password of the NSS database. For details, see Section 9.4.1.5, “Creating a Password File for
Directory Server”.

8. Restart the Directory Server instance:

dsctl instance_name restart

If you set a password on the NSS database and did not create a password file, Directory Server
prompts for the password of the NSS database. For details, see Section 9.4.1.4, “Starting
Directory Server Without a Password File”.

9.4.1.2. Enabling TLS in Directory Server Using the Web Console

To enable TLS in Directory Server using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Create a CSR. See Section 9.3.1, “Creating a Certificate Signing Request” .

4. Import the Certificate Authority (CA) certificate. See Section 9.3.2.2, “Installing a CA Certificate
Using the Web Console”.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

191

5. Import the server certificate issued by the CA. See Section 9.3.4.2, “Installing a Server
Certificate Using the Web Console”.

6. Open the Server Settings menu, and select the Security entry.

7. On the Security Configuration tab:

a. Click Security Enabled.

b. Select the certificate's nickname in the Server Certificate Name field.

c. Optionally, change the settings for the minimum and maximum TLS version that the server
should support.

d. Optionally, configure client authentication to enable users to authenticate using
certificates. For details, see Section 9.9, “Using Certificate-based Client Authentication” .

8. Click Save Configuration.

9. Optionally, create a password file to enable Directory Server to start without prompting for the
password of the NSS database. For details, see Section 9.4.1.5, “Creating a Password File for
Directory Server”.

10. Restart the Directory Server instance. See Section 1.5.2, “Starting and Stopping a
Directory Server Instance Using the Web Console”

If you set a password on the NSS database and did not create a password file, Directory Server
prompts for the password of the NSS database. For details, see Section 9.4.1.4, “Starting
Directory Server Without a Password File”.

9.4.1.3. Setting Encryption Ciphers

Directory Server supports different ciphers, and you can enable or disable them. A cipher is the
algorithm used in encryption. When a client initiates a TLS connection with a server, the client tells the
server what ciphers it prefers to encrypt information. If the server supports at least one of these ciphers,
the encrypted connection can be established using this algorithm.

If you enabled encryption according to Section 9.4, “Enabling TLS” , you can display and update the
ciphers Directory Server uses.

9.4.1.3.1. Displaying the Default Ciphers

If the nsSSL3Ciphers parameter is not set in the cn=encryption,cn=config entry, Directory Server
uses the default ciphers of the Network Security Service (NSS). To display the default ciphers:

/usr/lib64/nss/unsupported-tools/listsuites | grep -B1 --no-group-separator "Enabled"
TLS_AES_128_GCM_SHA256:
 0x1301 TLS 1.3 TLS 1.3 AES-GCM 128 AEAD Enabled FIPS Domestic
TLS_CHACHA20_POLY1305_SHA256:
 0x1303 TLS 1.3 TLS 1.3 CHACHA20POLY1305 256 AEAD Enabled Domestic
...

9.4.1.3.2. Displaying and Setting the Ciphers Used by Directory Server Using the Command Line

Displaying all Available Ciphers

Administration Guide

192

To display the list of all available ciphers supported in Directory Server:

dsconf -D "cn=Directory Manager" ldap://server.example.com security ciphers list --supported
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
...

This is only a list of available ciphers you can enable or disable. The list does not display the ciphers
Directory Server currently uses.

Displaying the Ciphers Directory Server Uses
To display the ciphers Directory Server currently uses, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com security ciphers list --enabled
TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
...

Additionally, you can display the ciphers which are configured to be enabled and disabled:

dsconf -D "cn=Directory Manager" ldap://server.example.com security ciphers list
default
+tls_rsa_aes_128_sha
+tls_rsa_aes_256_sha
...

The default keyword refers to the preferred default ciphers provided by the NSS. See Section 9.4.1.3.1,
“Displaying the Default Ciphers”.

IMPORTANT

Directory Server uses the settings from the nsSSL3Ciphers attribute to generate the
list of ciphers which are actually used. However, if you enabled weak ciphers in
nsSSL3Ciphers, but set the allowWeakCiphers parameter to off, which is the default,
Directory Server only uses the strong ciphers and displays them in the
nsSSLSupportedCiphers read-only attribute.

Updating the List of Enabled Ciphers
To update the list of enabled ciphers:

1. Display the list of currently enabled ciphers. See the section called “Displaying the Ciphers
Directory Server Uses”.

2. To enable only specific ciphers, update the nsSSL3Ciphers attribute. For example, to enable
only the TLS_RSA_WITH_AES_128_GCM_SHA256 cipher:

dsconf -D "cn=Directory Manager" ldap://server.example.com security ciphers set "-
all,+TLS_RSA_WITH_AES_128_GCM_SHA256"

3. Restart the Directory Server instance:

dsctl instance_name restart

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

193

4. Optionally, display the list of enabled ciphers to verify the result. See the section called
“Displaying the Ciphers Directory Server Uses”.

9.4.1.3.3. Displaying and Setting the Ciphers Used by Directory Server Using the Web Console

To select and optionally update the ciphers using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select the Security entry.

4. On the Cipher Preferences tab, Directory Server displays the currently enabled ciphers.

5. If you use different ciphers than the default, select Default Ciphers in the Ciphers Suite field
to automatically enable the default ciphers. For details, see Section 9.4.1.3.1, “Displaying the
Default Ciphers”.

Alternatively, you can set Ciphers Suite to:

All Ciphers to enable all ciphers. Optionally, disable specific ciphers in the Deny Specific
Ciphers field.

No Ciphers to disable all ciphers. Optionally, enable specific ciphers in the Allow Specific
Ciphers field.

6. Click Save Cipher Preferences.

7. If you updated the list of ciphers, restart the Directory Server instance. See Section 1.5.2,
“Starting and Stopping a Directory Server Instance Using the Web Console”

9.4.1.4. Starting Directory Server Without a Password File

If you start Directory Server with encryption enabled and a password set on the NSS database:

If the ns-slapd Directory Server process is started by the systemctl command, systemd
prompts for the password and automatically passes the input to the systemd-tty-ask-
password-agent utility. For example:

systemctl start dirsrv@instance_name
Enter PIN for Internal (Software) Token:

Administration Guide

194

In rare cases, when the ns-slapd Directory Server process is not started by the systemctl utility
and is detached from the terminal, a message is send to all terminals using the wall command.
For example:

Broadcast message from root@server (Fri 2017-01-01 06:00:00 CET):

Password entry required for 'Enter PIN for Internal (Software) Token:' (PID 1234).
Please enter password with the systemd-tty-ask-password-agent tool!

To enter the password, run:

systemd-tty-ask-password-agent
Enter PIN for Internal (Software) Token:

9.4.1.5. Creating a Password File for Directory Server

If encryption is enabled and a password set on the NSS database, Directory Server prompts for this
password when the service starts. See Section 9.4.1.4, “Starting Directory Server Without a Password
File”.

To bypass this prompt, you can store the NSS database password in the
/etc/dirsrv/slapd-instance_name/pin.txt file. This enables Directory Server to start automatically
without prompting for this password.

WARNING

The password is stored in clear text. Do not use a password file if the server is
running in an unsecured environment.

To create the password file:

1. Create the /etc/dirsrv/slapd-instance_name/pin.txt file with the following content:

If you use the NSS software cryptography module, which is the default:

Internal (Software) Token:password

If you use a Hardware Security Module (HSM):

name_of_the_token:password

2. Set the permissions:

chown dirsrv:dirsrv /etc/dirsrv/slapd-instance_name/pin.txt
chmod 400 /etc/dirsrv/slapd-instance_name/pin.txt

9.4.1.6. Managing How Directory Server Behaves If the Certificate Has Been Expired



CHAPTER 9. CONFIGURING SECURE CONNECTIONS

195

By default, if encryption is enabled and the certificate has expired, Directory Server logs a warning and
the service starts. To change this behavior, set the nsslapd-validate-cert parameter. You can set it to
the following values:

warn: The Directory Server instance starts and log a warning about the expired certificate into
the /var/log/dirsrv/slapd-instance_name/error log file. This is the default setting.

on: Directory Server validates the certificate and the instance fails to start if the certificate has
expired.

off: Directory Server does not validate the certificate expiration date. The instance starts and no
warning will be logged.

Example 9.3. Preventing Directory Server to Start If the Certificate Has Been Expired

To prevent Directory Server from starting if the certificate has expired:

1. Set the nsslapd-validate-cert parameter to on:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
validate-cert=on
Successfully replaced "nsslapd-validate-cert"

2. Restart the Directory Server instance:

dsctl instance_name restart

9.4.2. Adding the CA Certificate Used By Directory Server to the Trust Store of
Red Hat Enterprise Linux

When you enabled TLS encryption in Directory Server, you configured the instance to use a certificate
issued by a CA. If a client now establishes a connection to the server using the LDAPS protocol or the
STARTTLS command over LDAP, Directory Server uses this certificate to encrypt the connection.
Client utilities use the CA certificate to verify if the server's certificate is valid. By default, these utilities
cancel the connection if they do not trust the certificate of the server.

Example 9.4. Possible Connection Errors If Client Utilities Do Not Use the CA Certificate

If client utilities do not use the CA certificate, the utilities cannot validate the server's certificate
when using TLS encryption. As a consequence, the connection to the server fails. For example:

dsconf

dsconf -D "cn=Directory Manager" ldaps://server.example.com:636 config get
Error: {'desc': "Can't contact LDAP server", 'info': 'error:1416F086:SSL
routines:tls_process_server_certificate:certificate verify failed (self signed certificate in
certificate chain)'}

ldapsearch

ldapsearch -H ldaps://server.example.com:636 -D "cn=Directory Manager" -W -b
"dc=example,dc=com" -x

Administration Guide

196

Enter LDAP Password:
ldap_sasl_bind(SIMPLE): Can't contact LDAP server (-1)

To enable client utilities on Red Hat Enterprise Linux to verify the certificate that Directory Server uses,
add the CA certificate to the trust store of the operating system:

1. If you do not have a local copy of the CA certificate used by Directory Server:

a. List the certificates in the server's NSS database:

certutil -d /etc/dirsrv/slapd-instance_name/ -L

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

Example CA C,,
Server-Cert u,u,u

b. Use the nickname of the CA certificate in the NSS database to export the CA certificate:

certutil -d /etc/dirsrv/slapd-instance_name/ -L -n "Example CA" -a > /tmp/ds-ca.crt

2. Copy the CA certificate to the /etc/pki/ca-trust/source/anchors/ directory. For example:

cp /tmp/ds-ca.crt /etc/pki/ca-trust/source/anchors/

3. Rebuild the CA trust database:

update-ca-trust

9.5. DISPLAYING THE ENCRYPTION PROTOCOLS ENABLED IN
DIRECTORY SERVER

To display the enabled encryption protocols in Directory Server:

dsconf -D "cn=Directory Manager" ldap://server.example.com security get
...
sslversionmin: TLS1.2
sslversionmax: TLS1.3

The sslVersionMin and sslVersionMax parameter control which encryption protocol versions
Directory Server uses. The default of sslVersionMin depends on the system-wide crypto policy you
use.

9.6. SETTING THE MINIMUM TLS ENCRYPTION PROTOCOL VERSION

By default, Directory Server sets sslVersionMin parameter automatically based on the system-wide
crypto policy. The following table provides an overview of the TLS version in sslVersionMin
Directory Server uses based on the system-wide crypto policy profile:

Table 9.2. Overview of System-wide Crypto Policy Profiles and the Minimum TLS Version They

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

197

Table 9.2. Overview of System-wide Crypto Policy Profiles and the Minimum TLS Version They
Define

Profile Minimum TLS Version

DEFAULT TLS 1.2

FUTURE TLS 1.2

FIPS TLS 1.2

LEGACY TLS 1.0

For further details about system-wide crypto policy, how to change the profile, and opting-out services
of system-wide crypto policies, see the Using system-wide cryptographic policies section in the RHEL 8
Security Hardening guide.

Alternatively, you can manually set sslVersionMin to higher value than the one defined in the crypto
policy profile:

dsconf -D "cn=Directory Manager" ldap://server.example.com security set --tls-protocol-
min="TLS1.3"

9.7. SETTING THE HIGHEST TLS ENCRYPTION PROTOCOL VERSION

To set the highest TLS protocol version Directory Server supports, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com security set --tls-protocol-
max="protocol_version"

If you set the parameter to a value lower than in sslVersionMin, then Directory Server sets
sslVersionMax to the same value as sslVersionMin.

IMPORTANT

To always use the strongest supported encryption protocol version in the sslVersionMax
parameter, do not set this parameter.

9.8. USING HARDWARE SECURITY MODULES

A security module serves as a medium between the Directory Server and the TLS layer. The module
stores the keys and certificates used for encryption and decryption. The standard which defines these
modules is Public Key Cryptography Standard (PKCS) #11, so these modules are PKCS#11 modules.

By default, Directory Server uses built-in security databases, key4.db and cert9.db, to store the keys
and certificates used by the servers.

It is also possible to use external security devices to store Directory Server certificates and keys. For
Directory Server to use an external PKCS#11 module, the module's drivers must be installed in
Directory Server.

Administration Guide

198

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening

For more information, consult the documentation for your hardware security module.

9.9. USING CERTIFICATE-BASED CLIENT AUTHENTICATION

Directory Server supports certificate-based authentication of LDAP clients and for server-to-server
connection, such as replication.

Depending on the configuration, the client can or must authenticate using a certificate, if you enabled
certificate-based authentication. After verifying the certificate, the server searches for the user in the
directory, based on the attributes in the subject field of the certificate. If the search return exactly one
user entry, Directory Server uses this user for all further operations. Optionally, you can configure that
the certificate used for authentication must match the Distinguished Encoding Rules (DER)-formatted
certificate stored in the userCertificate attribute of the user.

Benefits of using certificate-based authentication:

Improved efficiency. When using applications that prompt once for the certificate database
password and then use that certificate for all subsequent bind or authentication operations, it is
more efficient than continuously providing a bind DN and password.

Improved security. The use of certificate-based authentication is more secure than non-
certificate bind operations because certificate-based authentication uses public-key
cryptography. Bind credentials cannot be intercepted across the network. If the certificate or
device is lost, it is useless without the PIN, so it is immune from third-party interference like
phishing attacks.

9.9.1. Setting up Certificate-based Authentication

To enable certificate-based authentication:

1. Enable encrypted connections. For details, see Section 9.4, “Enabling TLS” .

2. Install the CA certificate and set the trust options for client and server connections. See
Section 9.3.2, “Installing a CA Certificate” .

3. Optionally, verify that the CT,, trust options for client and server are set for the CA certificate:

dsconf -D "cn=Directory Manager" ldap://server.example.com security ca-certificate get
"Example-CA"
Certificate Name: Example-CA
Subject DN: CN=server.example.com,ST=Queensland,C=AU
Issuer DN: CN=server.example.com,,ST=Queensland,C=AU
Expires: 2021-05-09 10:57:54
Trust Flags: CT,,

4. Create the /etc/dirsrv/slapd-instance_name/certmap.conf file to map information from the
certificate to Directory Server users. For example:

certmap default default
default:DNComps dc
default:FilterComps mail,cn
default:VerifyCert on

certmap example o=Example Inc.,c=US
example:DNComps

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

199

This configures that for authenticating users who use a certificate that has the o=Example
Inc.,c=US issuer Distinguished Name (DN) set, Directory Server does not generate a base DN
from the subject of the certificate, because the DNComps parameter is set empty for this
issuer. Additionally, the settings for the FilterComps and VerifyCert are inherited from the
default entry.

Certificates that have a different issuer DN than the specified one will use the settings from the
default entry and generate the base DN based on the cn attributes in the subject of the
certificate. This enables Directory Server to start the search under a specific DN, without
searching the whole directory.

For all certificates, Directory Server generates the search filter using the mail and the cn
attribute from the certificate's subject. However, if the mail does not exist in the subject,
Directory Server will automatically use the value of the certificate's e attribute in the subject.

For further details and descriptions of the available parameters, see the description of the
certmap.conf file in the Red Hat Directory Server Configuration, Command, and File Reference .

5. Enable client authentication. For example, to configure that client authentication is optional:

dsconf -D "cn=Directory Manager" ldap://server.example.com security set --tls-client-
auth="allowed"

Alternatively, set the --tls-client-auth parameter to required to configure that clients must use
a certificate to authenticate.

6. If you enabled that the authenticating certificate must match the one stored in the
userCertificate attribute of the user by setting alias_name:VerifyCert on in the
/etc/dirsrv/slapd-instance_name/certmap.conf file, add the certificates to the user entries.
See Section 9.9.2, “Adding a Certificate to a User” .

9.9.2. Adding a Certificate to a User

When you set up certificate-based authentication, you can set that the certificate used to authenticate
must match the one stored in the userCertificate binary attribute of the user. If you enabled this feature
by setting alias_name:VerifyCert on in the /etc/dirsrv/slapd-instance_name/certmap.conf file, you
must add the certificate of the affected users to their directory entry.

IMPORTANT

You must store the certificate in the Distinguished Encoding Rules (DER) format in the
userCertificate attribute.

To store a certificate in the userCertificate attribute of a user:

1. If the certificate is not DER-formatted, convert it. For example:

openssl x509 -in /root/certificate.pem -out /root/certificate.der -outform DER

2. Add the certificate to the user's userCertificate attribute. For example:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user_name,ou=People,dc=example,dc=com

Administration Guide

200

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/configuration_file_reference#certmap_conf

changetype: modify
add: userCertificate
userCertificate:< file:///root/example.der

For further details about using binary attributes, see Section 3.1.8, “Using Binary Attributes” .

9.9.3. Forcing the EXTERNAL SASL Mechanism for Bind Requests

At the beginning of a TLS session, the client sends its certificate to the server. Then, it sends its bind
request. Most clients issue the bind request using the EXTERNAL SASL mechanism, which signals
Directory Server that it needs to use the identity in the certificate for the bind, instead of the credentials
in the bind request.

However, if a client uses simple authentication or anonymous credentials, this information is missing. In
this case, the TLS session fails with invalid credentials, even if the certificate and the client identity in the
certificate was valid.

To configure that Directory Server forces clients to use the EXTERNAL SASL mechanism and to ignore
any other bind method in the request:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-force-sasl-
external=on
Successfully replaced "nsslapd-force-sasl-external"

9.9.4. Authenticating Using a Certificate

To use the OpenLDAP client tools, to authenticate to a Directory Server instance that supports
authentication using a certificate:

1. Set the following environment variables to the corresponding paths for the CA certificate, the
user key, and the user certificate. For example:

LDAPTLS_CACERT=/home/user_name/CA.crt
LDAPTLS_KEY=/home/user_name/user.key
LDAPTLS_CERT=/home/user_name/user.crt

Alternatively, set the TLS_CACERT, TLS_KEY, and TLS_CERT parameters in the ~/.ldaprc
file. For details, see the TLS OPTIONS section in the ldap.conf(5) man page.

2. Connect to the server. For example:

ldapwhoami -H ldaps://server.example.com:636

If you use a different client, see the client application's documentation for how to connect using
certificate-based authentication.

9.10. SETTING UP SASL IDENTITY MAPPING

Simple Authentication and Security Layer (SASL) is an abstraction layer between protocols like LDAP
and authentication methods like GSS-API which allows any protocol which can interact with SASL to
utilize any authentication mechanism which can work with SASL. Simply put, SASL is an intermediary
that makes authenticating to applications using different mechanisms easier. SASL can also be used to
establish an encrypted session between a client and server.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

201

The SASL framework allows different mechanisms to be used to authenticate a user to the server,
depending on what mechanism is enabled in both client and server applications. SASL also creates a
layer for encrypted (secure) sessions. Using GSS-API, Directory Server utilizes Kerberos tickets to
authenticate sessions and encrypt data.

9.10.1. About SASL Identity Mapping

When processing a SASL bind request, the server matches, or maps, the SASL authentication ID used to
authenticate to the Directory Server with an LDAP entry stored within the server. When using Kerberos,
the SASL user ID usually has the format userid@REALM, such as scarter@EXAMPLE.COM. This ID must
be converted into the DN of the user's Directory Server entry, such as
uid=scarter,ou=people,dc=example,dc=com.

If the authentication ID clearly corresponds to the LDAP entry for a person, it is possible to configure
the Directory Server to map the authentication ID automatically to the entry DN. Directory Server has
some pre-configured default mappings which handle most common configurations, and customized
maps can be created. By default, during a bind attempt, only the first matching mapping rule is applied if
SASL mapping fallback is not enabled. For further details about SASL mapping fallback, see
Section 9.10.4, “Enabling SASL Mapping Fallback” .

Be sure to configure SASL maps so that only one mapping rule matches the authentication string.

SASL mappings are configured by entries under a container entry:

dn: cn=sasl,cn=config
objectClass: top
objectClass: nsContainer
cn: sasl

SASL identity mapping entries are children of this entry:

dn: cn=mapping,cn=sasl,cn=config
objectClass: top
objectClass: nsContainer
cn: mapping

Mapping entries are defined by the following attributes:

nsSaslMapRegexString: The regular expression which is used to map the elements of the
supplied authid.

nsSaslMapFilterTemplate: A template which applies the elements of the
nsSaslMapRegexString to create the DN.

nsSaslMapBaseDNTemplate: Provides the search base or a specific entry DN to match against
the constructed DN.

Optional: nsSaslMapPriority: Sets the priority of this SASL mapping. The priority value is used,
if nsslapd-sasl-mapping-fallback is enabled in cn=config. For details, see Section 9.10.4.1,
“Setting SASL Mapping Priorities”.

For further details, see the corresponding section in the Red Hat Directory Server Configuration,
Command, and File Reference.

For example:

Administration Guide

202

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-sasl

dn: cn=mymap,cn=mapping,cn=sasl,cn=config
objectclass:top
objectclass:nsSaslMapping
cn: mymap
nsSaslMapRegexString: \(.*\)@\(.*\)\.\(.*\)
nsSaslMapFilterTemplate: (objectclass=inetOrgPerson)
nsSaslMapBaseDNTemplate: uid=\1,ou=people,dc=\2,dc=\3

The nsSaslMapRegexString attribute sets variables of the form \1, \2, \3 for bind IDs which are filled
into the template attributes during a search. This example sets up a SASL identity mapping for any user
in the ou=People,dc=example,dc=com subtree who belongs to the inetOrgPerson object class.

When a Directory Server receives a SASL bind request with mconnors@EXAMPLE.COM as the user ID
(authid), the regular expression fills in the base DN template with
uid=mconnors,ou=people,dc=EXAMPLE,dc=COM as the user ID, and authentication proceeds from
there.

NOTE

The dc values are not case sensitive, so dc=EXAMPLE and dc=example are equivalent.

The Directory Server can also use a more inclusive mapping scheme, such as the following:

dn: cn=example map,cn=mapping,cn=sasl,cn=config
objectclass: top
objectclass: nsSaslMapping
cn: example map
nsSaslMapRegexString: \(.*\)
nsSaslMapBaseDNTemplate: ou=People,dc=example,dc=com
nsSaslMapFilterTemplate: (cn=\1)

This matches any user ID and map it an entry under the ou=People,dc=example,dc=com subtree which
meets the filter cn=userId.

Mappings can be confined to a single realm by specifying the realm in the nsSaslMapRegexString
attribute. For example:

dn: cn=example map,cn=mapping,cn=sasl,cn=config
objectclass: top
objectclass: nsSaslMapping
cn: example map
nsSaslMapRegexString: \(.*\)@US.EXAMPLE.COM
nsSaslMapBaseDNTemplate: ou=People,dc=example,dc=com
nsSaslMapFilterTemplate: (cn=\1)

This mapping is identical to the previous mapping, except that it only applies to users authenticating
from the US.EXAMPLE.COM realm. (Realms are described in Section 9.11.2.1, “About Principals and
Realms”.)

When a server connects to another server, such as during replication or with chaining, the default
mappings for the will not properly map the identities. This is because the principal (SASL identity) for
one server does not match the principal on the server where authentication is taking place, so it does not
match the mapping entries.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

203

To allow server to server authentication using SASL, create a mapping for the specific server principal to
a specific user entry. For example, this mapping matches the ldap1.example.com server to the
cn=replication manager,cn=config entry. The mapping entry itself is created on the second server,
such as ldap2.example.com.

dn: cn=z,cn=mapping,cn=sasl,cn=config
objectclass: top
objectclass: nsSaslMapping
cn: z
nsSaslMapRegexString: ldap/ldap1.example.com@EXAMPLE.COM
nsSaslMapBaseDNTemplate: cn=replication manager,cn=config
nsSaslMapFilterTemplate: (objectclass=*)

Sometimes, the realm name is not included in the principal name in SASL GSS-API configuration. A
second mapping can be created which is identical to the first, only without specifying the realm in the
principal name. For example:

dn: cn=y,cn=mapping,cn=sasl,cn=config
objectclass: top
objectclass: nsSaslMapping
cn: y
nsSaslMapRegexString: ldap/ldap1.example.com
nsSaslMapBaseDNTemplate: cn=replication manager,cn=config
nsSaslMapFilterTemplate: (objectclass=*)

Because the realm is not specified, the second mapping is more general (meaning, it has the potential to
match more entries than the first. The best practice is to have more specific mappings processed first
and gradually progress through more general mappings.

If a priority is not set for a SASL mapping using the nsSaslMapPriority parameter, there is no way to
specify the order that mappings are processed. However, there is a way to control how SASL mappings
are processed: the name. The Directory Server processes SASL mappings in reverse ASCII order. In the
past two example, then the cn=z mapping (the first example) is processed first. If there is no match, the
server processes the cn=y mapping (the second example).

NOTE

SASL mappings can be added when an instance is created during a silent installation by
specifying the mappings in an LDIF file and adding the LDIF file with the ConfigFile
directive. Using silent installation is described in the Installation Guide.

9.10.2. Default SASL Mappings for Directory Server

The Directory Server has pre-defined SASL mapping rules to handle some of the most common usage.

Kerberos UID Mapping

This matches a Kerberos principal using a two part realm, such as user@example.com. The realm is then
used to define the search base, and the user ID (authid) defines the filter. The search base is
dc=example,dc=com and the filter of (uid=user).

dn: cn=Kerberos uid mapping,cn=mapping,cn=sasl,cn=config
objectClass: top
objectClass: nsSaslMapping
cn: Kerberos uid mapping

Administration Guide

204

nsSaslMapRegexString: \(.*\)@\(.*\)\.\(.*\)
nsSaslMapBaseDNTemplate: dc=\2,dc=\3
nsSaslMapFilterTemplate: (uid=\1)

RFC 2829 DN Syntax

This mapping matches an authid that is a valid DN (defined in RFC 2829) prefixed by dn:. The authid
maps directly to the specified DN.

dn: cn=rfc 2829 dn syntax,cn=mapping,cn=sasl,cn=config
objectClass: top
objectClass: nsSaslMapping
cn: rfc 2829 dn syntax
nsSaslMapRegexString: ^dn:\(.*\)
nsSaslMapBaseDNTemplate: \1
nsSaslMapFilterTemplate: (objectclass=*)

RFC 2829 U Syntax

This mapping matches an authid that is a UID prefixed by u:. The value specified after the prefix defines
a filter of (uid=value). The search base is hard-coded to be the suffix of the default userRoot
database.

dn: cn=rfc 2829 u syntax,cn=mapping,cn=sasl,cn=config
objectClass: top
objectClass: nsSaslMapping
cn: rfc 2829 u syntax
nsSaslMapRegexString: ^u:\(.*\)
nsSaslMapBaseDNTemplate: dc=example,dc=com
nsSaslMapFilterTemplate: (uid=\1)

UID Mapping

This mapping matches an authid that is any plain string that does not match the other default mapping
rules. It use this value to define a filter of (uid=value). The search base is hard-coded to be the suffix of
the default userRoot database.

dn: cn=uid mapping,cn=mapping,cn=sasl,cn=config
objectClass: top
objectClass: nsSaslMapping
cn: uid mapping
nsSaslMapRegexString: ^[^:@]+$
nsSaslMapBaseDNTemplate: dc=example,dc=com
nsSaslMapFilterTemplate: (uid=&)

9.10.3. Configuring SASL Identity Mapping

(Simple Authentication and Security Layer) SASL identity mapping can be configured from either the
Directory Server or the command line. For SASL identity mapping to work for SASL authentication, the
mapping must return one, and only one, entry that matches and Kerberos must be configured on the
host machine.

9.10.3.1. Configuring SASL Identity Mapping Using the Command Line

To configure SASL identity mapping from the command line, use the dsconf utility to add the identity

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

205

To configure SASL identity mapping from the command line, use the dsconf utility to add the identity
mapping scheme.

1. Add the identity mapping scheme. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com sasl create --cn
"example_map" --nsSaslMapRegexString "\(.*\)" --nsSaslMapBaseDNTemplate
"ou=People,dc=example,dc=com" --nsSaslMapFilterTemplate "(cn=\1)" --nsSaslMapPriority
50
Successfully created example_map

This matches any user's common name and maps it to the result of the subtree search with base
ou=People,dc=example,dc=com, based on the filter cn=userId.

2. Restart the instance:

dsctl instance_name restart

NOTE

Adding the SASL map with dsconf adds the mapping to the end of the list, regardless of
its ASCII order.

9.10.3.2. Configuring SASL Identity Mapping Using the Web Console

To add a SASL identity mapping scheme:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select SASL Settings & Mappings.

4. Click Create New Mapping.

5. Fill the form. For example:

Administration Guide

206

6. Click Save.

9.10.4. Enabling SASL Mapping Fallback

Using the default settings, Directory Server verifies only the first matching SASL mapping. If this first
matching mapping fails, the bind operation fails and no further matching mappings are verified.

However, you can configure Directory Server to verify all matching mappings by enabling the nsslapd-
sasl-mapping-fallback parameter:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-sasl-mapping-
fallback=on
Successfully replaced "nsslapd-sasl-mapping-fallback"

If fallback is enabled and only one user identity is returned, the bind succeeds. If no user, or more than
one user is returned, the bind fails.

9.10.4.1. Setting SASL Mapping Priorities

If you enabled SASL mapping fallback using the nsslapd-sasl-mapping-fallback attribute, you can
optionally set the nsSaslMapPriority attribute in mapping configurations to prioritize them. The
nsSaslMapPriority attribute supports values from 1 (highest priority) to 100 (lowest priority). The
default is 100.

For example, to set the highest priority for the cn=Kerberos uid
mapping,cn=mapping,cn=sasl,cn=config mapping:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=Kerberos uid mapping,cn=mapping,cn=sasl,cn=config
changetype: modify
replace: nsSaslMapPriority
nsSaslMapPriority: 1

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

207

9.11. USING KERBEROS GSS-API WITH SASL

Kerberos v5 must be deployed on the host for Directory Server to utilize the GSS-API mechanism for
SASL authentication. GSS-API and Kerberos client libraries must be installed on the Directory Server
host to take advantage of Kerberos services.

9.11.1. Authentication Mechanisms for SASL in Directory Server

Directory Server support the following SASL encryption mechanisms:

PLAIN. PLAIN sends cleartext passwords for simple password-based authentication.

EXTERNAL. EXTERNAL, as with TLS, performs certificate-based authentication. This method
uses public keys for strong authentication.

CRAM-MD5. CRAM-MD5 is a weak, simple challenge-response authentication method. It does
not establish any security layer.

WARNING

Red Hat recommends not using the insecure CRAM-MD5 mechanism.

DIGEST-MD5. DIGEST-MD5 is a weak authentication method for LDAPv3 servers.

WARNING

Red Hat recommends not using the insecure DIGGEST-MD5 mechanism.

Generic Security Services (GSS-API). Generic Security Services (GSS) is a security API that is
the native way for UNIX-based operating systems to access and authenticate Kerberos
services. GSS-API also supports session encryption, similar to TLS. This allows LDAP clients to
authenticate with the server using Kerberos version 5 credentials (tickets) and to use network
session encryption.

For Directory Server to use GSS-API, Kerberos must be configured on the host machine. See
Section 9.11, “Using Kerberos GSS-API with SASL” .

NOTE

GSS-API and, thus, Kerberos are only supported on platforms that have GSS-API
support. To use GSS-API, it may be necessary to install the Kerberos client
libraries; any required Kerberos libraries will be available through the operating
system vendor.





Administration Guide

208

9.11.2. About Kerberos in Directory Server

On Red Hat Enterprise Linux, the supported Kerberos libraries are MIT Kerberos version 5.

The concepts of Kerberos, as well as using and configuring Kerberos, are covered at the MIT Kerberos
website, http://web.mit.edu/Kerberos/.

9.11.2.1. About Principals and Realms

A principal is a user or service in the Kerberos environment. A realm defines what Kerberos manages in
terms of who can access what. The client, the KDC, and the host or service you want to access must use
the same realm.

NOTE

Kerberos realms are only supported for GSS-API authentication and encryption, not for
DIGEST-MD5.

Realms are used by the server to associate the DN of the client in the following form, which looks like an
LDAP DN:

uid=user_name/[server_instance],cn=realm,cn=mechanism,cn=auth

For example, Mike Connors in the engineering realm of the European division of example.com uses the
following association to access a server in the US realm:

uid=mconnors/cn=Europe.example.com,cn=engineering,cn=gssapi,cn=auth

Babara Jensen, from the accounting realm of US.example.com, does not have to specify a realm when
to access a local server:

uid=bjensen,cn=accounting,cn=gssapi,cn=auth

If realms are supported by the mechanism and the default realm is not used to authenticate to the
server, then the realm must be specified in the Kerberos principal. Otherwise, the realm can be omitted.

NOTE

Kerberos systems treat the Kerberos realm as the default realm; other systems default to
the server.

9.11.2.2. About the KDC Server and Keytabs

The Key Distribution Center (KDC) authenticates users and issues Ticket Granting Tickets (TGT) for
them. This enables users to authenticate to Directory Server using GSS-API. To respond to Kerberos
operations, Directory Server requires access to its keytab file. The keytab contains the cryptographic
key that Directory Server uses to authenticate to other servers.

Directory Server uses the ldap service name in a Kerberos principal. For example:

ldap/server.example.com@EXAMPLE.COM

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

209

http://web.mit.edu/Kerberos/

For details about creating the keytab, see your Kerberos documentation.

NOTE

You must create a Simple Authentication and Security Layer (SASL) mapping for the
Directory Server Kerberos principal that maps to an existing entry Distinguished Name
(DN).

9.11.3. Configuring SASL Authentication at Directory Server Startup

SASL GSS-API authentication has to be activated in Directory Server so that Kerberos tickets can be
used for authentication. This is done by supplying a system configuration file for the init scripts to use
which identifies the variable to set the keytab file location. When the init script runs at Directory Server
startup, SASL authentication is then immediately active.

The default SASL configuration is stored in the /etc/sysconfig/dirsrv file.

If there are multiple Directory Server instances and not all of them will use SASL authentication, then
there can be instance-specific configuration files created in the /etc/sysconfig/ directory named
dirsrv-instance. For example, dirsrv-example. The default dirsrv file can be used if there is a single
instance on a host.

To enable SASL authentication, uncomment the KRB5_KTNAME line in the /etc/sysconfig/dirsrv (or
instance-specific) file, and set the keytab location for the KRB5_KTNAME variable. For example:

In order to use SASL/GSSAPI the directory
server needs to know where to find its keytab
file - uncomment the following line and set
the path and filename appropriately
KRB5_KTNAME=/etc/dirsrv/krb5.keytab

9.12. SETTING SASL MECHANISMS

Per default, Directory Server enables all mechanisms the simple authentication and security layer
(SASL) library supports. These are listed in the root dse supportedSASLMechanisms parameter. To
enable specific SASL mechanisms, set the nsslapd-allowed-sasl-mechanisms attribute in the
cn=config entry. For example, to enable only the GSSAPI and DIGEST-MD5 mechanism, run:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-allowed-sasl-
mechanisms="GSSAPI, DIGEST-MD5"
Successfully replaced "nsslapd-allowed-sasl-mechanisms"

NOTE

Even if EXTERNAL is not listed in the nsslapd-allowed-sasl-mechanisms parameter,
this mechanism is always enabled.

For further details, see the corresponding section in the Red Hat Directory Server Configuration,
Command, and File Reference.

9.13. USING SASL WITH LDAP CLIENTS

To use SASL with the LDAP clients, such as ldapsearch, pass the -Y SASL_mechanism to the

Administration Guide

210

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#nsslapd-allowed-sasl-mechanisms

To use SASL with the LDAP clients, such as ldapsearch, pass the -Y SASL_mechanism to the
command. For example:

To use the GSSAPI SASL mechanism over the LDAP protocol:

ldapsearch -Y GSSAPI -U "dn:uid=user_name,ou=people,dc=example,dc=com" -R
EXAMPLE.COM -H ldap://server.example.com -b "dc=example,dc=com"

To use the PLAIN SASL mechanism over the LDAPS protocol:

ldapsearch -Y PLAIN -D "uid=user_name,ou=people,dc=example,dc=com" -W -H
ldaps://server.example.com -b "dc=example,dc=com"

NOTE

SASL proxy authorization is not supported in Directory Server. Therefore,
Directory Server ignores any SASL authzid value supplied by the client.

CHAPTER 9. CONFIGURING SECURE CONNECTIONS

211

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION
The Directory Server offers a number of mechanisms to secure access to sensitive data, such as access
control rules to prevent unauthorized users from reading certain entries or attributes within entries and
TLS to protect data from eavesdropping and tampering on untrusted networks. However, if a copy of
the server's database files should fall into the hands of an unauthorized person, they could potentially
extract sensitive information from those files. Because information in a database is stored in plain text,
some sensitive information, such as government identification numbers or passwords, may not be
protected enough by standard access control measures.

For highly sensitive information, this potential for information loss could present a significant security
risk. In order to remove that security risk, Directory Server allows portions of its database to be
encrypted. Once encrypted, the data are safe even in the event that an attacker has a copy of the
server's database files.

Database encryption allows attributes to be encrypted in the database. Both encryption and the
encryption cipher are configurable per attribute per back end. When configured, every instance of a
particular attribute, even index data, is encrypted for every entry stored in that database.

An additional benefit of attribute encryption is, that encrypted values can only be sent to a clients with a
Security Strength Factor (SSF) greater than 1.

NOTE

There is one exception to encrypted data: any value which is used as the RDN for an entry
is not encrypted within the entry DN. For example, if the uid attribute is encrypted, the
value is encrypted in the entry but is displayed in the DN:

dn: uid=jsmith1234,ou=People,dc=example,dc=com
...
uid:: Sf04P9nJWGU1qiW9JJCGRg==

That would allow someone to discover the encrypted value.

Any attribute used within the entry DN cannot be effectively encrypted, since it will
always be displayed in the DN. Be aware of what attributes are used to build the DN and
design the attribute encryption model accordingly.

Indexed attributes may be encrypted, and attribute encryption is fully compatible with eq and pres
indexing. The contents of the index files that are normally derived from attribute values are also
encrypted to prevent an attacker from recovering part or all of the encrypted data from an analysis of
the indexes.

Since the server pre-encrypts all index keys before looking up an index for an encrypted attribute, there
is some effect on server performance for searches that make use of an encrypted index, but the effect
is not serious enough that it is no longer worthwhile to use an index.

10.1. ENCRYPTION KEYS

In order to use attribute encryption, the server must be configured for TLS and have TLS enabled
because attribute encryption uses the server's TLS encryption key and the same PIN input methods as
TLS. The PIN must either be entered manually upon server startup or a PIN file must be used.

Randomly generated symmetric cipher keys are used to encrypt and decrypt attribute data. A separate

Administration Guide

212

key is used for each configured cipher. These keys are wrapped using the public key from the server's
TLS certificate, and the resulting wrapped key is stored within the server's configuration files. The
effective strength of the attribute encryption is never higher than the strength of the server's TLS key
used for wrapping. Without access to the server's private key, it is not possible to recover the symmetric
keys from the wrapped copies.

WARNING

There is no mechanism for recovering a lost key. Therefore, it is especially important
to back up the server's certificate database safely. If the server's certificate were
lost, it would not be possible to decrypt any encrypted data stored in its database.

WARNING

If the TLS certificate is expiring and needs to be renewed, export the encrypted
back end instance before the renewal. Update the certificate, then reimport the
exported LDIF file.

10.2. ENCRYPTION CIPHERS

The encryption cipher is configurable on a per-attribute basis and must be selected by the administrator
at the time encryption is enabled for an attribute.

The following ciphers are supported:

Advanced Encryption Standard (AES)

Triple Data Encryption Standard (3DES)

NOTE

For strong encryption, Red Hat recommends using only AES ciphers.

All ciphers are used in Cipher Block Chaining mode.

Once the encryption cipher is set, it should not be changed without exporting and reimporting the data.

10.3. CONFIGURING ATTRIBUTE ENCRYPTION

Use the command line or the web console to enable and disable attribute encryption for certain
attributes.

10.3.1. Enabling Encryption of an Attribute Using the Command Line

To configure that Directory Server stores, for example, telephoneNumber attributes in the userRoot





CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION

213

To configure that Directory Server stores, for example, telephoneNumber attributes in the userRoot
database AES-encrypted:

1. Optionally, to encrypt existing telephoneNumber attributes, export the database. See
Section 10.4.1, “Exporting an Encrypted Database” .

2. Enable AES encryption for the telephoneNumber attribute in the userRoot database:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend attr-encrypt --add-
attr telephoneNumber userRoot

3. If you exported the database to encrypt also existing attributes, reimport the database. See
Section 10.4.2, “Importing an LDIF File into an Encrypted Database” .

10.3.2. Enabling Encryption of an Attribute Using the Web Console

To configure that Directory Server stores, for example, telephoneNumber attributes in the database
AES-encrypted:

1. Optionally, to encrypt existing telephoneNumber attributes, export the database. See
Section 10.4.1, “Exporting an Encrypted Database” .

2. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

3. Select the instance.

4. Open the Database menu.

5. Select the suffix entry.

6. Open the Encrypted Attributes tab.

7. Enter the name of the attribute to be encrypted.

8. Click Add Attribute.

9. If you exported the database to encrypt also existing attributes, reimport the database. See
Section 10.4.2, “Importing an LDIF File into an Encrypted Database” .

10.3.3. Disabling Encryption for an Attribute Using the Command Line

To configure that Directory Server no longer stores, for example, telephoneNumber attributes
encrypted in the userRoot database:

1. Optionally, to decrypt existing telephoneNumber attributes, export the database. See

Administration Guide

214

1. Optionally, to decrypt existing telephoneNumber attributes, export the database. See
Section 10.4.1, “Exporting an Encrypted Database” .

2. Disable encryption for the telephoneNumber attribute in the userRoot database:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend attr-encrypt --del-
attr telephoneNumber userRoot

3. If you exported the database to decrypt existing attributes, reimport the database. See
Section 10.4.2, “Importing an LDIF File into an Encrypted Database” .

10.3.4. Disabling Encryption of an Attribute Using the Web Console

To configure that Directory Server stores, for example, telephoneNumber attributes in the database
AES-encrypted:

1. Optionally, to encrypt existing telephoneNumber attributes, export the database. See
Section 10.4.1, “Exporting an Encrypted Database” .

2. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

3. Select the instance.

4. Open the Database menu.

5. Select the suffix entry.

6. Open the Encrypted Attributes tab.

7. Click the Delete Attribute button to the right of the telephoneNumber attribute.

8. Click Yes to confirm.

9. If you exported the database to decrypt existing attributes, reimport the database. See
Section 10.4.2, “Importing an LDIF File into an Encrypted Database” .

10.3.5. General Considerations after Enabling Attribute Encryption

When you enabled encryption for data that is already in the database:

Unencrypted data can persist in the server's database page pool backing file. To remove this
data:

1. Stop the instance:

dsctl instance_name stop

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION

215

2. Delete the /var/lib/dirsrv/slapd-instance_name/db/guardian file:

rm /var/lib/dirsrv/slapd-instance_name/db/guardian

3. Start the instance:

dsctl instance_name start

After you enabled encryption and successfully imported the data, delete the LDIF file with the
unencrypted data.

After enabling encryption, Directory Server deletes and creates a new database when
reimporting the data.

The replication log file is not encrypted. To protect this data, store it on an encrypted disk.

Data in the server's memory (RAM) is unencrypted and can be temporarily stored in swap
partitions. To protect this data, set up encrypted swap space.

IMPORTANT

Even if you delete files that contain unencrypted data, this data can be restored under
certain circumstances.

10.4. EXPORTING AND IMPORTING AN ENCRYPTED DATABASE

Exporting and importing encrypted databases is similar to exporting and importing regular databases.
However, the encrypted information must be decrypted when you export the data and re-encrypted
when you reimport it to the database.

10.4.1. Exporting an Encrypted Database

To export data from an encrypted database, pass the -E parameter to the dsconf command.

For example, to export the complete userRoot database with decrypted attributes:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend export -E userRoot

Alternatively, you can export only a specific subtree. For example, to export all data from the
ou=People,dc=example,dc=com entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend export -E -s
"ou=People,dc=example,dc=com" userRoot

For further details about using dsconf to export data, see Section 6.2.1.1.1, “Exporting a Databases Using
the dsconf backend export Command”.

10.4.2. Importing an LDIF File into an Encrypted Database

To import data to a database when attribute encryption is enabled:

1. Stop the Directory Server instance:

Administration Guide

216

dsctl instance_name stop

2. If you replaced the certificate database between the last export and this import, edit the
/etc/dirsrv/slapd-instance_name/dse.ldif file, and remove the following entries including their
attributes:

cn=AES,cn=encrypted attribute keys,cn=database_name,cn=ldbm
database,cn=plugins,cn=config

cn=3DES,cn=encrypted attribute keys,cn=database_name,cn=ldbm
database,cn=plugins,cn=config

IMPORTANT

Remove the entries for all databases. If any entry that contains the
nsSymmetricKey attribute is left in the
/etc/dirsrv/slapd-instance_name/dse.ldif file, Directory Server will fail to start.

3. Import the LDIF file. For example, to import the /tmp/example.ldif into the userRoot database:

dsctl instance_name ldif2db --encrypted userRoot /tmp/example.ldif

The --encrypted parameter enables the script to encrypt attributes configured for encryption
during the import.

4. Start the instance:

dsctl instance_name start

10.5. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE
ENCRYPTION

Attribute encryption is based on the TLS certificate. To prevent that attribute encryption fails after
renewing or replacing the TLS certificate:

1. Export the database with decrypted attributes. See Section 10.4.1, “Exporting an Encrypted
Database”.

2. Create a new Certificate Signing Request (CSR). See Section 9.3.1, “Creating a Certificate
Signing Request”.

3. Install the new certificate. See Section 9.3.4, “Installing a Server Certificate” .

4. Stop the Directory Server instance:

dsctl instance_name stop

5. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file and remove the following entries
including their attributes:

cn=AES,cn=encrypted attribute keys,cn=database_name,cn=ldbm
database,cn=plugins,cn=config

CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION

217

cn=3DES,cn=encrypted attribute keys,cn=database_name,cn=ldbm
database,cn=plugins,cn=config

IMPORTANT

Remove the entries for all databases. If any entry that contains the
nsSymmetricKey attribute is left in the
/etc/dirsrv/slapd-instance_name/dse.ldif file, Directory Server will fail to start.

6. Import the database. See Section 10.4.2, “Importing an LDIF File into an Encrypted Database” .

7. Start the instance:

dsctl instance_name start

Administration Guide

218

CHAPTER 11. MANAGING FIPS MODE SUPPORT
Red Hat Directory Server fully supports the Federal Information Processing Standard (FIPS) 140-2.
When Directory Server runs in FIPS mode, security-related settings change. For example, SSL is
automatically disabled and only TLS 1.2 and 1.3 encryption is used.

For general details about FIPS, see Federal Information Processing Standard (FIPS) in the
Red Hat Enterprise Linux 8 Security hardening documentation.

Enabling FIPS Mode Support
To enable FIPS mode support for Directory Server:

1. Optionally, enable FIPS mode in Red Hat Enterprise Linux. For details, see the corresponding
section in the Red Hat Enterprise Linux 8 Security hardening documentation.

2. Enable FIPS mode for the network security services (NSS) database:

modutil -dbdir /etc/dirsrv/slapd-instance_name/ -fips true

3. Restart the Directory Server instance:

dsctl instance_name restart

Disabling FIPS Mode Support
To disable FIPS mode support for Directory Server:

1. Disable FIPS mode for the network security services (NSS) database:

modutil -dbdir /etc/dirsrv/slapd-instance_name/ -fips false

2. Restart the Directory Server instance:

dsctl instance_name restart

CHAPTER 11. MANAGING FIPS MODE SUPPORT

219

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/assembly_installing-a-rhel-8-system-with-fips-mode-enabled_security-hardening#con_federal-information-processing-standard-fips_assembly_installing-a-rhel-8-system-with-fips-mode-enabled
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA
Red Hat Directory Server comes with a standard schema that includes hundreds of object classes and
attributes. While the standard object classes and attributes should meet most deployments'
requirements, it can be necessary to extend the schema for specific directory data. Extending the
schema is done by creating new object classes and attributes.

The Red Hat Directory Server 11 Configuration, Command, and File Reference is a reference for most the
standard Directory Server attributes and object classes, with information on allowed and required
attributes, which object classes take which attribute, and OID and value information. This is a good
resource for identifying useful schema elements for a directory and determining what custom schema
needs to be created.

12.1. OVERVIEW OF SCHEMA

The directory schema is a set of rules that defines how data can be stored in the directory. Directory
information is stored discrete entries, and each entry is comprised of a set of attributes and their values.
The kind of identity being described in the entry is defined in the entry's object classes. An object class
specifies the kind of object the entry describes through the defined set of attributes for the object
class.

In LDAP, an object class defines the set of attributes that can be used to define an entry. The LDAP
standard provides object classes for many common types of entries, including people, groups, locations,
organizations and divisions, and equipment. The identity is described in a directory entries with
attributes and their values, pairs are called attribute-value assertions or AVAs. Any piece of information in
the directory is associated with a descriptive attribute. Other aspects of the Directory Server
configuration, including matching rules and LDAP controls, are also defined in the schema. All of these
together are schema elements.

Every schema element is identified by a unique, dot-separated number. This is called the object
identifier or OID.

12.1.1. Default Schema Files

The schema for Directory Server is defined in several different schema files (LDIF files which define
schema elements). The Directory Server schema files are located in the /usr/share/dirsrv/schema/
directory. The files in this directory are used as templates for new Directory Server instances. Adding a
new schema into this directory will make it available to any new instances.

The attributes used by the Directory Server to perform operations and manage entries is described with
other configuration settings in the Red Hat Directory Server 11 Configuration, Command, and File
Reference.

12.1.2. Object Classes

In LDAP, an object class defines the set of attributes that can be used to define an entry. The LDAP
standard provides object classes for many common types of entries, such as people (person and
inetOrgPerson), groups (groupOfNames), locations (locality), organizations and divisions
(organization and organizationalUnit), and equipment (device).

In a schema file, an object class is identified by the objectclasses line, then followed by its OID, name, a
description, its direct superior object class (an object class which is required to be used in conjunction
with the object class and which shares its attributes with this object class), and the list of required
(MUST) and allowed (MAY) attributes.

Administration Guide

220

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

This is shown in Example 12.1, “person Object Class Schema Entry” .

Example 12.1. person Object Class Schema Entry

objectClasses: (2.5.6.6 NAME 'person' DESC 'Standard LDAP objectclass' SUP top MUST (sn $
cn) MAY (description $ seeAlso $ telephoneNumber $ userPassword) X-ORIGIN 'RFC 4519')

Every object class defines a number of required attributes (MUST keyword in the schema) and of
allowed attributes (MAY keyword in the schema). Required attributes must be present in entries using
the specified object class, while allowed attributes are permissible and available for the entry to use, but
are not required for the entry to be valid.

As in Example 12.1, “person Object Class Schema Entry” , the person object class requires the cn, sn, and
objectClass attributes and allows the description, seeAlso, telephoneNumber, and userPassword
attributes.

An object class can inherit attributes from another class, in addition to its own required and allowed
attributes. The second object class is the superior or parent object class of the first.

For example, a user's entry has to have the inetOrgPerson object class. In that case, the entry must also
include the superior object class for inetOrgPerson, organizationalPerson, and the superior object
class for organizationalPerson, which is person:

objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson

An object class definition is an objectclasses attribute for the cn=schema entry. The objectclasses
attribute has the format:

objectclasses: (definition)

The object class definition contains several components:

An OID, usually a dot-separated number

A unique name, in the form NAME name

A description, in the form DESC description

The superior, or parent, object class for this object class, in the form SUP object_class; if there is
no related parent, use SUP top

The word AUXILIARY, which gives the type of entry to which the object class applies;
AUXILIARY means it can apply to any entry

A list of required attributes, preceded by the word MUST; to include multiple attributes, enclose
the group in parentheses and separate with attributes with dollar signs ($)

A list of allowed attributes, preceded by the word MAY; to include multiple attributes, enclose
the group in parentheses and separate with attributes with dollar signs ($)

Customer object class definitions are stored in the

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

221

Customer object class definitions are stored in the
/etc/dirsrv/slapd-instance_name/schema/99user.ldif when using the command line or the web
console to modify cn=schema entries.

12.1.3. Attributes

Directory entries are composed of attributes and their values. These pairs are called attribute-value
assertions or AVAs. Any piece of information in the directory is associated with a descriptive attribute.
For instance, the cn attribute is used to store a person's full name, such as cn: John Smith.

Additional attributes can supply additional information about John Smith:

givenname: John
surname: Smith
mail: jsmith@example.com

In a schema file, an attribute is described by:

OID

name

syntax matching rule (optional)

substring matching rules (optional)

ordering rule (optional)

description (optional)

syntax

single-valued or multi-valued attribute

details about where the attribute is defined

This is shown in Example 12.2, “uid Attribute Schema Entry” .

Example 12.2. uid Attribute Schema Entry

(0.9.2342.19200300.100.1.1 NAME ('uid' 'userid') EQUALITY caseIgnoreMatch SUBSTR
caseIgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'RFC 4519')

12.1.3.1. Directory Server Attribute Syntaxes

The attribute's syntax defines the format of the values which the attribute allows; as with other schema
elements, the syntax is defined for an attribute using the syntax's OID in the schema file entry.

The Directory Server uses the attribute's syntax to perform sorting and pattern matching on entries.

For more information about LDAP attribute syntaxes, see RFC 4517.

Supported LDAP attribute syntaxes are covered in section Directory Server Attribute Syntaxes of the
Red Hat Directory Server 10 Configuration, Command, and File Reference .

Administration Guide

222

http://tools.ietf.org/html/rfc4517
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/index

12.1.4. Extending the Schema

New, custom attributes and object classes can be added to a Directory Server instance to extend the
schema, and there are several ways to add schema elements. Using LDAP tools adds schema elements
to the default custom schema file for an instance, 99user.ldif. It is also possible to create a new,
separate schema file and include it with the default schema files.

Adding new schema elements requires three things:

1. Planning and defining OIDs for the new schema. Schema elements are recognized by the server
by their OID, so it is important for the OIDs to be unique and organized. Directory Server itself
does not manage OIDs, but there are some best practices described in Section 12.2, “Managing
Object Identifiers”.

2. Create the new attributes. Attribute definitions require a name, a syntax (the allowed format of
the values), an OID, and a description of whether the attribute can only be used once per entry
or multiple times.

3. Create an object class to contain the new attributes. An object class lists the required attributes
for that entry type and the allowed (permissible) attributes. Because the default schema should
never be altered, if any new attributes are created, then they should be added to a custom
object class.

The schema elements should be planned in advance; do not use multiple attributes for the same
information. Whenever possible, use the standard Directory Server schema. Directory Server has
hundreds of attributes and dozens of object classes defined in the default schema files. The Red Hat
Directory Server 11 Configuration, Command, and File Reference lists and describes the standard
attributes and object classes; all of the schema can be viewed in the schema files in
/usr/share/dirsrv/schema/. Become familiar with the available schema; then plan what information
attributes are missing and how best to fill those gaps with custom attributes. Planning the schema is
covered in the Deployment Guide.

WARNING

The default object classes and attributes in Directory Server are based on LDAP
and X.500 standards and RFCs. Using standard schema makes the Directory Server
more easily integrated with other applications and servers and allows
interoperability with LDAP clients, legacy Directory Server instances, and future
release. It is inadvisable for you to edit the standard attributes or change the object
classes.

Keep the following rules in mind when customizing the Directory Server schema:

Keep the schema as simple as possible.

Reuse existing schema elements whenever possible.

Minimize the number of mandatory attributes defined for each object class.

Do not define more than one object class or attribute for the same purpose.



CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

223

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

Do not modify any existing definitions of attributes or object classes.

NOTE

Never delete or replace the standard schema. Doing so can lead to compatibility
problems with other directories or other LDAP client applications.

The schema is loaded into the Directory Server instance when the instance is started; any new schema
files are not loaded until the Directory Server is restarted or unless a reload task is initiated. The default
custom schema file for an instance, 99user.ldif, is loaded as the last schema file. If it contains definitions
already present in standard schema files, the custom definition will override the standard ones.

12.1.5. Schema Replication

When the directory schema is updated in the cn=schema sub-tree, Directory Server stores the changes
in the local /etc/dirsrv/slapd-instance_name/schema/99user.ldif file, including a change state number
(CSN). The updated schema is not automatically replicated to other replicas. The schema replication
starts when directory content is updated in the replicated tree. For example, if you update a user or
group entry after modifying the schema, the supplier compares the CSN stored in the nsSchemaCSN
attribute with the one on the consumer. If the remote CSN is lower than the one on the supplier, the
schema is replicated to the consumer. For a successful replication, all object classes and attribute types
on the supplier must be a superset of the consumer's definition.

Example 12.3. Schema subsets and supersets

On server1, the demo object class allows the a1, a2, and a3 attributes.

On server2, the demo object class allows the a1 and a3 attributes.

In Example 12.3, “Schema subsets and supersets” , the schema definition of the demo object class on
server1 is a superset of the object class on server2. During the validation phase, when the schema is
being replicated or accepted, Directory Server retrieves the superset definitions. For example, if a
consumer detects that an object class in the local schema allows less attributes than the object class in
the supplier schema, the local schema is updated.

If the schema definitions are successfully replicated, the nsSchemaCSN attributes are identical on both
servers and no longer compared at the beginning of a replication session.

In the following scenarios, the schema is not replicated:

The schema on one host is a subset of the schema of another host.

For example, in Example 12.3, “Schema subsets and supersets” , the schema definition of the
demo object class on server2 is a subset of the object class on server1. Subsets can also occur
for attributes (a single-value attribute is a subset of a multi-value attribute) and attribute
syntaxes (IA5 is a subset of Octet_string).

When definitions in supplier schema and consumer schema need to be merged.

Directory Server does not support merging schemas. For example, if an object class on one
server allows the a1, a2, and a3 attributes and a1, a3, and a4 on the other, the schemas are not
subsets and cannot be merged.

Schema files other than /etc/dirsrv/slapd-instance_name/schema/99user.ldif are used.

Administration Guide

224

Directory Server enables you to add additional schema files in the
/etc/dirsrv/slapd-instance_name/schema/ directory. However, only the CSN in the 99user.ldif
file is updated. For this reasons, other schema file are only used locally and are not automatically
transferred to replication partners. Copy the updated schema file manually to the consumers
and reload the schema. For details, see Section 12.10, “Dynamically Reloading Schema” .

To avoid duplicate schema definitions and to enable automatic replication, store all custom
schema in the /etc/dirsrv/slapd-instance_name/schema/99user.ldif file. For further
information about creating custom schema files, see Section 12.9, “Creating Custom Schema
Files”.

12.2. MANAGING OBJECT IDENTIFIERS

Each LDAP object class or attribute must be assigned a unique name and object identifier (OID). An OID
is a dot-separated number which identifies the schema element to the server. OIDs can be hierarchical,
with a base OID that can be expanded to accommodate different branches. For example, the base OID
could be 1, and there can be a branch for attributes at 1.1 and for object classes at 1.2.

NOTE

It is not required to have a numeric OID for creating custom schema, but Red Hat strongly
recommends it for better forward compatibility and performance.

OIDs are assigned to an organization through the Internet Assigned Numbers Authority (IANA), and
Directory Server does not provide a mechanism to obtain OIDs. To get information about obtaining
OIDs, visit the IANA website at http://www.iana.org/cgi-bin/enterprise.pl.

After obtaining a base OID from IANA, plan how the OIDs are going to be assigned to custom schema
elements. Define a branch for both attributes and object classes; there can also be branches for
matching rules and LDAP controls.

Once the OID branches are defined, create an OID registry to track OID assignments. An OID registry is
a list that gives the OIDs and descriptions of the OIDs used in the directory schema. This ensures that
no OID is ever used for more than one purpose. Publish the OID registry with the custom schema.

12.3. CREATING AN OBJECT CLASS

This section describes how to create a object class using the command line and the web console.

12.3.1. Creating an Object Class Using the Command Line

Use the ldapmodify utility to create a new object class entry. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com schema objectclasses add
examplePerson --oid="2.16.840.1133730.2.123" --desc="Example Person Object Class" --
sup="inetOrgPerson" --kind="AUXILIARY" --must="cn" --may exampleDateOfBirth
examplePreferredOS

For further details about object class definitions, see Section 12.1.2, “Object Classes”.

12.3.2. Creating an Object Class Using the Web Console

To create an object class using the web console:

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

225

http://www.iana.org/cgi-bin/enterprise.pl

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select Schema → Objectclasses.

4. Click Add ObjectClass.

5. Select the parent object class.

6. Enter an object class name and, optionally, set a object identifier (OID).

7. Select the object class kind.

8. Enter the required and allowed attributes in the corresponding fields:

9. Click Add.

12.4. UPDATING AN OBJECT CLASS

This section describes how to update an object class using the command line and the web console.

12.4.1. Updating an Object Class Using the Command Line

Use the dsconf utility to update an object class entry. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com schema objectclasses replace
examplePerson --oid="2.16.840.1133730.2.123" --desc="Example Person Object Class" --
sup="inetOrgPerson" --kind="AUXILIARY" --must="cn" --may exampleDisplayName exampleAlias

Administration Guide

226

For further details about object class definitions, see Section 12.1.2, “Object Classes”.

12.4.2. Updating an Object Class Using the Web Console

To update an object class using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select Schema → Objectclasses.

4. Click the Choose Action button to the right of the object class entry you want to edit.

5. Select Edit Object Class.

6. Update the parameters.

7. Click Save.

12.5. REMOVING AN OBJECT CLASS

This section describes how to delete an object class using the command line and the web console.

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

227

WARNING

Do not delete default schema elements. They are required by Directory Server.

12.5.1. Removing an Object Class Using the Command Line

Use the ldapmodify utility to delete an object class entry. For example, to delete the examplePerson
object class:

1. Remove the unwanted attributes from any entries that use them. For details, see Section 12.8,
“Removing an Attribute”.

2. Delete the object class entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com schema objectclasses delete
examplePerson

For further details about object class definitions, see Section 12.1.2, “Object Classes”.

12.5.2. Removing an Object Class Using the Web Console

To remove an object class using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select Schema → Objectclasses.

4. Click the Choose Action button next to the object class entry you want to remove.

5. Select Delete Objectclass.

6. Click Yes to confirm.

12.6. CREATING AN ATTRIBUTE

This section describes how to create a attribute using the command line and the web console.

12.6.1. Creating an Attribute Using the Command Line

Use the ldapmodify utility to create a new attribute. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com schema attributetypes add
dateofbirth --desc="For employee birthdays" --syntax="1.3.6.1.4.1.1466.115.121.1.15" --single-value
--x-origin="Example defined"

For further details about attribute definitions, see Section 12.1.3, “Attributes”.



Administration Guide

228

12.6.2. Creating an Attribute Using the Web Console

To create an attribute using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select Schema → Attributes.

4. Click Add Attribute.

5. Fill the parameters.

6. Click Add.

12.7. UPDATING AN ATTRIBUTE

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

229

This section describes how to update an attribute using the command line and the web console.

12.7.1. Updating an Attribute Using the Command Line

Use the dsconf utility to update an attribute entry. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com schema attributetypes replace
dateofbirth --desc="Employee birthday" --syntax="1.3.6.1.4.1.1466.115.121.1.15" --single-value --x-
origin="Example defined"

For further details about object class definitions, see Section 12.1.2, “Object Classes”.

12.7.2. Updating an Attribute Using the Web Console

To update an attribute using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select Schema → Attributes.

4. Click the Choose Action button next to the attribute you want to edit.

5. Select Edit Attribute.

6. Update the parameters.

Administration Guide

230

7. Click Save.

12.8. REMOVING AN ATTRIBUTE

This section describes how to delete an attribute using the command line and the web console.

12.8.1. Removing an Attribute Using the Command Line

Use the ldapmodify utility to delete an attribute. For example:

1. Remove the unwanted attributes from any entries which use them.

2. Delete the attribute:

dsconf -D "cn=Directory Manager" ldap://server.example.com schema attributetypes
remove dateofbirth

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

231

For further details about object class definitions, see Section 12.1.2, “Object Classes”.

12.8.2. Removing an Attribute Using the Web Console

To remove an attribute using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select Schema → Objectclasses.

4. Click the Choose Action button next to the attribute you want to remove.

5. Select Delete Attribute.

6. Click Yes to confirm.

12.9. CREATING CUSTOM SCHEMA FILES

Schema files are simple LDIF files which define the cn=schema entry. Each attribute and object class is
added as an attribute to that entry. Here are the requirements for creating a schema file:

The first line must be dn: cn=schema.

The schema file can include both attributes and object classes, but it can also include only one
or the other.

If both attributes and object classes are defined in the style, all of the attributes must be listed
in the file first, then the object classes.

The object classes can use attributes defined in other schema files.

The file must be named in the format [1-9][0-9]text.ldif.

The file must always begin with two numbers. Numerically, the schema file cannot be loaded
before the core configuration schema (which begin with 00 and 01).

Also, the Directory Server always writes its custom schema to the numerically and alphabetically
highest named schema file in the schema directory. It expects this file to be 99user.ldif. If this
file is not 99user.ldif, the server can experience problems. So, always make sure custom schema
files are at least alphabetically lower than 99user.ldif. The name 99alpha.ldif is okay; the name
99zzz.ldif is not.

Practices for creating schema files are described in more detail in the Deployment Guide.

Attributes are defined in the schema file as attributetypes attributes to the schema, with five
components:

An OID, usually a dot-separated number

A unique name, in the form NAME name

A description, in the form DESC description

The OID for the syntax of the attribute values, discussed in Section 12.1.3.1, “Directory Server

Administration Guide

232

The OID for the syntax of the attribute values, discussed in Section 12.1.3.1, “Directory Server
Attribute Syntaxes”, in the form SYNTAX OID

Optionally, the source where the attribute is defined

For example:

attributetypes: (1.2.3.4.5.6.1 NAME 'dateofbirth' DESC 'For employee birthdays' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUED X-ORIGIN 'Example defined')

Likewise, object classes are defined as values of objectclasses attributes, although there is slightly
more flexibility in how the object class is defined. The only required configurations are the name and
OID for the object class; all other configuration depends on the needs for the object class:

An OID, usually a dot-separated number

A unique name, in the form NAME name

A description, in the form DESC description

The superior, or parent, object class for this object class, in the form SUP object_class; if there is
no related parent, use SUP top

The word AUXILIARY, which gives the type of entry to which the object class applies;
AUXILIARY means it can apply to any entry

A list of required attributes, preceded by the word MUST; to include multiple attributes, enclose
the group in parentheses and separate with attributes with dollar signs ($)

A list of allowed attributes, preceded by the word MAY; to include multiple attributes, enclose
the group in parentheses and separate with attributes with dollar signs ($)

For example:

objectclasses: (2.16.840.1133730.2.123 NAME 'examplePerson' DESC 'Example Person Object
Class' SUP inetOrgPerson AUXILIARY MUST cn MAY (exampleDateOfBirth $
examplePreferredOS))

Example 12.4, “Example Schema File” shows a simplified schema file.

Example 12.4. Example Schema File

dn: cn=schema
attributetypes: (2.16.840.1133730.1.123 NAME 'dateofbirth' DESC 'For employee birthdays'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'Example defined')
objectclasses: (2.16.840.1133730.2.123 NAME 'examplePerson' DESC 'Example Person Object
Class' SUP inetOrgPerson AUXILIARY MAY (dateofbirth))

Custom schema files should be added to the Directory Server instance's schema directory,
/etc/dirsrv/slapd-instance/schema. The schema in these files are not loaded and available to the server
unless the server is restarted or a dynamic reload task is run.

IMPORTANT

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

233

IMPORTANT

If you want to use a standard schema from the /usr/share/data/ directory, copy the
schema file to the /usr/share/dirsrv/schema/ directory. If you require that a standard
schema is only available to a specific instance, copy the schema file to the
/etc/dirsrv/slapd-instance_name/schema/ directory, but use a different file name in the
destination directory. Otherwise, Directory Server renames the file during an upgrade and
appends the .bak suffix.

12.10. DYNAMICALLY RELOADING SCHEMA

By default, the schema files used by the Directory Server instance are loaded into the directory when it
is started. This means that any new schema files added to the schema directory are not available for use
unless the server is restarted. The Directory Server has a task which manually reloads the full schema for
the Directory Server instance, including custom files, without requiring a server restart.

You can reload the schema using one of the following methods:

The dsconf schema reload command. See Section 12.10.1, “Dynamically Reloading the Schema
Using the dsconf schema reload Command”

A cn=tasks entry. See Section 12.10.2, “Dynamically Reloading the Schema Using a cn=tasks
Entry”

NOTE

Directory Server always additionally reloads the all schema files stored in the
/usr/share/dirsrv/schema/ directory.

12.10.1. Dynamically Reloading the Schema Using the dsconf schema reload Command

Use the dsconf schema reload command to reload the schema:

dsconf -D "cn=Directory Manager" ldap://server.example.com schema reload
Attempting to add task entry... This will fail if Schema Reload plug-in is not enabled.
Successfully added task entry cn=schema_reload_2018-08-28T09:45:48.027962,cn=schema reload
task,cn=tasks,cn=config
To verify that the schema reload operation was successful, please check the error logs

By default, Directory Server reloads the schema files stored in the directory set in the nsslapd-
schemadir parameter. Optionally, pass the -d directory option to the command to reload the schema
stored in a different directory.

12.10.2. Dynamically Reloading the Schema Using a cn=tasks Entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries the server uses to manage tasks. To initiate a schema reload operation, create a task in the
cn=schema reload task,cn=tasks,cn=config entry.

By default, Directory Server reloads the schema files stored in the directory set in the nsslapd-
schemadir parameter. For example, to reload the schema files stored in the directory set in this
parameter:

Administration Guide

234

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example_schema_reload,cn=schema reload task,cn=tasks,cn=config
objectclass: extensibleObject
cn: cn=example_schema_reload

Optionally, specify the schemadir parameter, to reload the schema stored in a different directory. For
example:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example_schema_reload,cn=schema reload task,cn=tasks,cn=config
objectclass: extensibleObject
cn: cn=example_schema_reload
schemadir: /example/schema/

When the task is completed, the entry is removed from the directory configuration.

For further details about the cn=schema reload task,cn=tasks,cn=config entry, see the cn=schema
reload task section in the Red Hat Directory Server Configuration, Command, and File Reference .

12.10.3. Reloading The Schema in a Replication Topology

The schema reload task is a local operation, so schema changes are not replicated in a multi-supplier
environment if the schema is added to one supplier but not to the others. To load the new schema files
on all of the supplier servers:

1. Stop replication. See Section 15.9, “Disabling and Re-enabling Replication”.

2. Copy the new schema file over and run the schema reload task for every supplier and replica
server. See:

Section 12.10.1, “Dynamically Reloading the Schema Using the dsconf schema reload
Command”

Section 12.10.2, “Dynamically Reloading the Schema Using a cn=tasks Entry”

3. Restart replication. See Section 15.9, “Disabling and Re-enabling Replication”.

12.10.4. Schema Reload Errors

When the schema reload task runs, the server does not return whether it completed successfully. To
verify the schema reload operation was successful, check the error logs. The schema reload has two
tasks, first validating the schema file and then loading it.

A success message shows that the validation passed and the task finished.

[06/Jan/2009:17:52:04.001214874 -0500] schemareload - Schema reload task starts (schema dir:
default) ...
[06/Jan/2009:17:52:04.754335904 -0500] schemareload - Schema validation passed.
[06/Jan/2009:17:52:04.894255328 -0500] schemareload - Schema reload task finished.

If there is a failure, then the logs show which step failed and why.

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

235

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-schema-reload-task

[..] schemareload - Schema reload task starts (schema dir: /bogus) ...
[..] schema - No schema files were found in the directory /bogus
[..] schema_reload - schema file validation failed
[..] schemareload - Schema validation failed.

12.11. TURNING SCHEMA CHECKING ON AND OFF

When schema checking is on, the Directory Server ensures three things:

The object classes and attributes using are defined in the directory schema.

The attributes required for an object class are contained in the entry.

Only attributes allowed by the object class are contained in the entry.

IMPORTANT

Red Hat recommends not to disable the schema checking.

Schema checking is turned on by default in the Directory Server, and the Directory Server should always
run with schema checking turned on. The only situation where is may be beneficial to turn schema
checking off is to accelerate LDAP import operations. However, there is a risk of importing entries that
do not conform to the schema. Consequently, it is impossible to update these entries.

12.11.1. Turning Schema Checking On and Off Using the Command Line

To turn schema checking on and off, set the value of the nsslapd-schemacheck parameter. For
example to disable schema checking:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
schemacheck=off
Successfully replaced "nsslapd-schemacheck"

For details about the nsslapd-schemacheck parameter, see the description of the parameter in the
Red Hat Directory Server Configuration, Command, and File Reference .

12.11.2. Turning Schema Checking On and Off Using the Web Console

To enable or disable schema checking using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings, and select the Server Settings entry.

4. Open the Advanced Settings tab.

5. To enable schema checking, select the Enable Schema Checking check box. To disable the
feature, clear the check box.

6. Click Save.

Administration Guide

236

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig-nsslapd_schemacheck_Schema_Checking

12.12. USING SYNTAX VALIDATION

With syntax validation, the Directory Server checks that the value of an attribute follows the rules of the
syntax given in the definition for that attribute. For example, syntax validation will confirm that a new
telephoneNumber attribute actually has a valid telephone number for its value.

IMPORTANT

Red Hat recommends not to disable the syntax validation.

12.12.1. About Syntax Validation

As with schema checking, validation reviews any directory modification and rejects changes that violate
the syntax. Additional settings can be optionally configured so that syntax validation can log warning
messages about syntax violations and then either reject the modification or allow the modification
process to succeed.

This feature validates all attribute syntaxes, with the exception of binary syntaxes (which cannot be
verified) and non-standard syntaxes, which do not have a defined required format. The syntaxes are
validated against RFC 4514.

12.12.2. Syntax Validation and Other Directory Server Operations

Syntax validation is mainly relevant for standard LDAP operations like creating entries (add) or editing
attributes (modify). Validating attribute syntax can impact other Directory Server operations, however.

Database Encryption

For normal LDAP operations, an attribute is encrypted just before the value is written to the database.
This means That encryption occurs after the attribute syntax is validated.

Encrypted databases (as described in Chapter 10, Configuring Attribute Encryption) can be exported
and imported. Normally, it is strongly recommended that these export and import operations are done
with the -E flag with db2ldif and ldif2db, which allows syntax validation to occur just fine for the import
operation. However, if the encrypted database is exported without using the -E flag (which is not
supported), then an LDIF with encrypted values is created. When this LDIF is then imported, the
encrypted attributes cannot be validated, a warning is logged, and attribute validation is skipped in the
imported entry.

Synchronization

There may be differences in the allowed or enforced syntaxes for attributes in Windows Active Directory
entries and Red Hat Directory Server entries. In that case, the Active Directory values could not be
properly synchronized over because syntax validation enforces the RFC standards in the
Directory Server entries.

Replication

If the Directory Server 11 instance is a supplier which replicates its changes to a consumer, then there is
no issue with using syntax validation. However, if the supplier in replication is an older version of
Directory Server or has syntax validation disabled, then syntax validation should not be used on the
consumer because the Directory Server 11 consumer may reject attribute values that the supplier allows.

12.12.2.1. Turning Syntax Validation On and Off Using the Command Line

To turn syntax validation on and off, set the value of the nsslapd-syntaxcheck parameter. For example

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

237

http://www.ietf.org/rfc/rfc4514.txt

To turn syntax validation on and off, set the value of the nsslapd-syntaxcheck parameter. For example
to disable syntax validation:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
syntaxcheck=off
Successfully replaced "nsslapd-syntaxcheck"

For details about the nsslapd-syntaxcheck parameter, see the description of the parameter in the
Red Hat Directory Server Configuration, Command, and File Reference .

12.12.2.2. Turning Syntax Validation On and Off Using the Web Console

To enable or disable syntax validation using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings, and select the Server Settings entry.

4. Open the Advanced Settings tab.

5. To enable attribute syntax checking, select the Enable Attribute Syntax Checking check box.
To disable the feature, clear the check box.

6. Click Save.

12.12.3. Enabling or Disabling Strict Syntax Validation for DNs

When syntax validation is enabled, distinguished names (DN) are validated as described in section 3 of
RFC 4514. DN syntax validation is enabled separately because the strictness of later standards can
invalidate older DNs that have a different syntax, and therefore directory trees.

NOTE

If strict DN validation is enabled and a DN value does not conform to the required syntax,
then the operation fails with the LDAP result code 34, INVALID_DN_SYNTAX.

12.12.3.1. Enabling or Disabling Strict Syntax Validation for DNs Using the Command Line

To turn strict syntax validation for DNs on and off, set the value of the nsslapd-dn-validate-strict
parameter. For example to disable strict syntax validation for DNs::

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-dn-validate-
strict=off
Successfully replaced "nsslapd-dn-validate-strict"

For details about the nsslapd-syntaxcheck parameter, see the description of the parameter in the
Red Hat Directory Server Configuration, Command, and File Reference .

12.12.3.2. Enabling or Disabling Strict Syntax Validation for DNs Using the Web Console

To enable or disable strict syntax validation for DNs using the web console:

Administration Guide

238

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#nsslapd-syntaxcheck
http://www.ietf.org/rfc/rfc4514.txt
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#nsslapd-dn-validate-strict

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings, and select the Server Settings entry.

4. Open the Advanced Settings tab.

5. Select or unselect the Strict DN Syntax Validation option depending on whether you want to
enable or disable the feature.

6. Click Save.

12.12.4. Enabling Syntax Validation Logging

By default, syntax validation rejects any add or modify operations where an attribute value violates the
required syntax. However, the violation itself is not recorded to the errors log by default. The nsslapd-
syntaxlogging attribute enables error logging for any syntax violations.

NOTE

Syntax violations discovered by the syntax validation script and task are logged in the
Directory Server error log.

If both the nsslapd-syntaxlogging and nsslapd-syntaxcheck parameter are enabled, any invalid
attribute modification is rejected and the message written to the log. If nsslapd-syntaxlogging is
enabled but nsslapd-syntaxcheck is disabled, then the operation is allowed to succeed, but the
warning message is still written to the error log.

12.12.4.1. Enabling Syntax Validation Logging Using the Command Line

To enable syntax validation logging, set the value of the nsslapd-syntaxlogging parameter to on.

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
syntaxlogging=on
Successfully replaced "nsslapd-syntaxlogging"

For details about the nsslapd-syntaxlogging parameter, see the description of the parameter in the
Red Hat Directory Server Configuration, Command, and File Reference .

12.12.4.2. Enabling Syntax Validation Logging Using the Web Console

To enable validation logging using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings, and select the Server Settings entry.

4. Open the Advanced Settings tab.

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

239

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#nsslapd-syntaxlogging

5. Select the Enable Attribute Syntax Logging option.

6. Click Save.

12.12.5. Validating the Syntax of Existing Attribute Values

In certain situations, you might want to manually validate the syntax of existing values. For example:

If syntax validation is disabled in the nsslapd-syntaxcheck parameter. For details, see
Section 12.12.2, “Syntax Validation and Other Directory Server Operations” .

IMPORTANT

Red Hat recommends not disabling syntax validation.

If you migrate data from a server without or disabled syntax validation.

Directory Server logs results of syntax validation tasks to the
/var/log/dirsrv/slapd-instance_name/errors file. For example:

If all verified values are valid:

[28/Jun/2017:12:52:43.669867966 +0200] - ERR - syntax-plugin -
syntax_validate_task_thread - Starting (base: "dc=example,dc=com", filter: "(objectclass=*)")
...
[28/Jun/2017:12:52:43.696850129 +0200] - ERR - syntax-plugin -
syntax_validate_task_thread - Complete. Found 0 invalid entries.

If invalid entries were found:

[28/Jun/2017:12:54:05.736087520 +0200] - ERR - syntax-plugin -
syntax_validate_task_thread - Starting (base: "dc=example,dc=com", filter: "(objectclass=*)")
...
[28/Jun/2017:12:54:05.754195607 +0200] - ERR - syntax-plugin -
syntax_validate_task_callback - Entry "cn=user,ou=People,dc=example,dc=com" violates
syntax.
description: value #0 invalid per syntax
[28/Jun/2017:12:54:05.759905671 +0200] - ERR - syntax-plugin -
syntax_validate_task_thread - Complete. Found 1 invalid entries.

NOTE

The syntax validation task identifies only syntax violations. You must fix incorrect
values manually.

12.12.5.1. Creating a Syntax Validation Task Using the dsconf schema validate-syntax
Command

Use the dsconf schema validate-syntax command to create a syntax validation task. For example, to
create a task that validates the syntax of all values in the ou=People,dc=example,dc=com sub-tree
which match the (objectclass=inetorgperson) filter, enter:

Administration Guide

240

dsconf -D "cn=Directory Manager" ldap://server.example.com schema validate-syntax -f
'(objectclass=inetorgperson)' ou=People,dc=example,dc=com

12.12.5.2. Creating a Syntax Validation Task Using a cn=tasks Entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries the server uses to manage tasks. To initiate a syntax validation operation, create a task in the
cn=syntax validate,cn=tasks,cn=config entry.

For example, to create a task that validates the syntax of all values in the
ou=People,dc=example,dc=com sub-tree which match the (objectclass=inetorgperson) filter:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example_syntax_validate,cn=syntax validate,cn=tasks,cn=config
objectclass: extensibleObject
cn: cn=example_syntax_validate
basedn: ou=People,dc=example,dc=com
filter: (objectclass=inetorgperson)

When the task is completed, the entry is removed from the directory configuration.

For further details, about the cn=syntax validate,cn=tasks,cn=config entry, see the cn=schema reload
task section in the Red Hat Directory Server Configuration, Command, and File Reference .

CHAPTER 12. MANAGING THE DIRECTORY SCHEMA

241

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-syntax-validation

CHAPTER 13. MANAGING INDEXES
Indexing makes searching for and retrieving information easier by classifying and organizing attributes
or values. This chapter describes the searching algorithm itself, placing indexing mechanisms in context,
and then describes how to create, delete, and manage indexes.

13.1. ABOUT INDEXES

This section provides an overview of indexing in Directory Server. It contains the following topics:

Section 13.1.1, “About Index Types”

Section 13.1.2, “About Default and Database Indexes”

Section 13.1.3, “Overview of the Searching Algorithm”

Section 13.1.5, “Balancing the Benefits of Indexing”

13.1.1. About Index Types

Indexes are stored in files in the directory's databases. The names of the files are based on the indexed
attribute, not the type of index contained in the file. Each index file may contain multiple types of
indexes if multiple indexes are maintained for the specific attribute. For example, all indexes maintained
for the common name attribute are contained in the cn.db file.

Directory Server supports the following types of index:

Presence index (pres) contains a list of the entries that contain a particular attribute, which is
very useful for searches. For example, it makes it easy to examine any entries that contain
access control information. Generating an aci.db file that includes a presence index efficiently
performs the search for ACI=* to generate the access control list for the server.

Equality index (eq) improves searches for entries containing a specific attribute value. For
example, an equality index on the cn attribute allows a user to perform the search for cn=Babs
Jensen far more efficiently.

Approximate index (approx) is used for efficient approximate or sounds-like searches. For
example, an entry may include the attribute value cn=Firstname M Lastname. An approximate
search would return this value for searches against cn~=Firstname Lastname, cn~=Firstname,
or cn~=Lastname. Similarly, a search against l~=San Fransisco (note the misspelling) would
return entries including l=San Francisco.

Substring index (sub) is a costly index to maintain, but it allows efficient searching against
substrings within entries. Substring indexes are limited to a minimum of three characters for
each entry.

For example, searches of the form cn=*derson , match the common names containing strings
such as Bill Anderson, Jill Henderson, or Steve Sanderson. Similarly, the search for
telephoneNumber= *555* returns all the entries in the directory with telephone numbers that
contain 555.

International index speeds up searches for information in international directories. The process
for creating an international index is similar to the process for creating regular indexes, except
that it applies a matching rule by associating an object identifier (OID) with the attributes to be
indexed.

The supported locales and their associated OIDs are listed in Appendix D, Internationalization. If

Administration Guide

242

The supported locales and their associated OIDs are listed in Appendix D, Internationalization. If
there is a need to configure the Directory Server to accept additional matching rules, contact
Red Hat Consulting.

13.1.2. About Default and Database Indexes

Directory Server contains a set of default indexes. When you create a new database, Directory Server
copies these default indexes from cn=default indexes,cn=config,cn=ldbm
database,cn=plugins,cn=config to the new database. Then the database only uses the copy of these
indexes, which are stored in cn=index,cn=database_name,cn=ldbm database,cn=plugins,cn=config.

NOTE

Directory Server does not replicate settings in the cn=config entry. Therefore, you can
configure indexes differently on servers that are part of a replication topology. For
example, in an environment with cascading replication, you do not need to create custom
indexes on a hub, if clients do not read data from the hub.

To display the Directory Server default indexes:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com \
 -b "cn=default indexes,cn=config,cn=ldbm database,cn=plugins,cn=config" \
 '(objectClass=nsindex)'

NOTE

If you update the default index settings stored in cn=default
indexes,cn=config,cn=ldbm database,cn=plugins,cn=config, the changes are not
applied to the individual databases in cn=index,cn=database_name,cn=ldbm
database,cn=plugins,cn=config.

To display the indexes of an individual database:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend index list database_name

13.1.3. Overview of the Searching Algorithm

Indexes are used to speed up searches. To understand how the directory uses indexes, it helps to
understand the searching algorithm. Each index contains a list of attributes (such as the cn, common
name, attribute) and a list of IDs of the entries which contain the indexed attribute value:

1. An LDAP client application sends a search request to the directory.

2. The directory examines the incoming request to make sure that the specified base DN matches
a suffix contained by one or more of its databases or database links.

If they do match, the directory processes the request.

If they do not match, the directory returns an error to the client indicating that the suffix
does not match. If a referral has been specified in the nsslapd-referral attribute under
cn=config, the directory also returns the LDAP URL where the client can attempt to pursue
the request.

CHAPTER 13. MANAGING INDEXES

243

The Directory Server examines the search filter to see what indexes apply, and it attempts
to load the list of entry IDs from each index that satisfies the filter. The ID lists are combined
based on whether the filter used AND or OR joins.

Each filter component is handled independently and returns an ID list.

If the list of entry IDs is larger than the configured ID list scan limit or if there is no index
defined for the attribute, then Directory Server sets the results for this filtercomponent to
allids. If, after applying the logical operations to the results of the individual search
components the list is still ALLIDs it searches every entry in the database. This is an
unindexed search.

3. The Directory Server reads every entry from the id2entry.db database or the entry cache for
every entry ID in the ID list (or from the entire database for an unindexed search). The server
then checks the entries to see if they match the search filter. Each match is returned as it is
found.

The server continues through the list of IDs until it has searched all candidate entries or until it
hits one of the configured resource limits. (Resource limits are listed in Section 14.5.3, “Setting
User and Global Resource Limits Using the Command Line”.)

NOTE

It's possible to set separate resource limits for searches using the simple paged
results control. For example, administrators can set high or unlimited size and
look-through limits with paged searches, but use the lower default limits for non-
paged searches.

13.1.4. Approximate Searches

In addition, the directory uses a variation of the metaphone phonetic algorithm to perform searches on
an approximate index. Each value is treated as a sequence of words, and a phonetic code is generated
for each word.

NOTE

The metaphone phonetic algorithm in Directory Server supports only US-ASCII letters.
Therefore, use approximate indexing only with English values.

Values entered on an approximate search are similarly translated into a sequence of phonetic codes. An
entry is considered to match a query if both of the following are true:

All of the query string codes match the codes generated in the entry string.

All of the query string codes are in the same order as the entry string codes.

Name in the Directory (Phonetic
Code)

Query String (Phonetic code) Match Comments

Alice B Sarette (ALS B SRT) Alice Sarette (ALS SRT) Matches. Codes are specified in
the correct order.

Administration Guide

244

Alice Sarrette (ALS SRT) Matches. Codes are specified in
the correct order, despite the
misspelling of Sarette.

Surette (SRT) Matches. The generated code
exists in the original name, despite
the misspelling of Sarette.

Bertha Sarette (BR0 SRT) No match. The code BR0 does
not exist in the original name.

Sarette, Alice (SRT ALS) No match. The codes are not
specified in the correct order.

Name in the Directory (Phonetic
Code)

Query String (Phonetic code) Match Comments

13.1.5. Balancing the Benefits of Indexing

Before creating new indexes, balance the benefits of maintaining indexes against the costs.

Approximate indexes are not efficient for attributes commonly containing numbers, such as
telephone numbers.

Substring indexes do not work for binary attributes.

Equality indexes should be avoided if the value is big (such as attributes intended to contain
photographs or passwords containing encrypted data).

Maintaining indexes for attributes not commonly used in a search increases overhead without
improving global searching performance.

Attributes that are not indexed can still be specified in search requests, although the search
performance may be degraded significantly, depending on the type of search.

The more indexes you maintain, the more disk space you require.

Indexes can become very time-consuming. For example:

1. The Directory Server receives an add or modify operation.

2. The Directory Server examines the indexing attributes to determine whether an index is
maintained for the attribute values.

3. If the created attribute values are indexed, then Directory Server adds or deletes the new
attribute values from the index.

4. The actual attribute values are created in the entry.

For example, the Directory Server adds the entry:

dn: cn=John Doe,ou=People,dc=example,dc=com
objectclass: top
objectClass: person

CHAPTER 13. MANAGING INDEXES

245

objectClass: orgperson
objectClass: inetorgperson
cn: John Doe
cn: John
sn: Doe
ou: Manufacturing
ou: people
telephoneNumber: 408 555 8834
description: Manufacturing lead for the Z238 line of widgets.

The Directory Server maintains the following indexes:

Equality, approximate, and substring indexes for cn (common name) and sn (surname)
attributes.

Equality and substring indexes for the telephone number attribute.

Substring indexes for the description attribute.

When adding that entry to the directory, the Directory Server must perform these steps:

1. Create the cn equality index entry for John and John Doe.

2. Create the appropriate cn approximate index entries for John and John Doe.

3. Create the appropriate cn substring index entries for John and John Doe.

4. Create the sn equality index entry for Doe.

5. Create the appropriate sn approximate index entry for Doe.

6. Create the appropriate sn substring index entries for Doe.

7. Create the telephone number equality index entry for 408 555 8834.

8. Create the appropriate telephone number substring index entries for 408 555 8834.

9. Create the appropriate description substring index entries for Manufacturing lead for the
Z238 line of widgets. A large number of substring entries are generated for this string.

As this example shows, the number of actions required to create and maintain databases for a large
directory can be resource-intensive.

13.1.6. Indexing Limitations

You cannot index virtual attributes, such as nsrole and cos_attribute. Virtual attributes contain
computed values. If you index these attributes, Directory Server can return an invalid set of entries to
direct and internal searches.

13.2. CREATING STANDARD INDEXES

This section describes how to create presence, equality, approximate, substring, and international
indexes for specific attributes using the command line and the web console.

NOTE

Administration Guide

246

NOTE

When you create a new index type, Directory Server uses this default index as a template
for each new database that will be created in future. If you update the default index, the
updated settings are not applied to existing databases. To apply a new index to an
existing database, use the dsctl db2index command or a cn=index,cn=tasks task, as
described in Section 13.3, “Creating New Indexes to Existing Databases” .

Section 13.2.2, “Creating Indexes Using the Web Console”

Section 13.2.1, “Creating Indexes Using the Command Line”

13.2.1. Creating Indexes Using the Command Line

NOTE

You cannot create new system indexes because system indexes are hard-coded in
Directory Server.

Use ldapmodify to add the new index attributes to your directory.

To create a new index that will become one of the default indexes, add the new index attributes
to the cn=default indexes,cn=config,cn=ldbm database,cn=plugins,cn=config entry.

To create a new index for a particular database, add it to the
cn=index,cn=database_name,cn=ldbm database,cn=plugins,cn=config entry, where
cn=database_name corresponds to the name of the database.

NOTE

Avoid creating entries under cn=config in the dse.ldif file. The cn=config entry in the
dse.ldif configuration file is not stored in the same highly scalable database as regular
entries. As a result, if many entries, particularly entries that are likely to be updated
frequently, are stored under cn=config, performance will probably suffer. Although we
recommend you do not store simple user entries under cn=config for performance
reasons, it can be useful to store special user entries such as the Directory Manager entry
or replication manager (supplier bind DN) entry under cn=config since this centralizes
configuration information.

For information on the LDIF update statements required to add entries, see Section 3.1.4, “Updating a
Directory Entry”.

For example, to create presence, equality, and substring indexes for the sn (surname) attribute in the
Example1 database:

1. Run ldapmodify and add the LDIF entry for the new indexes:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=sn,cn=index,cn=Example1,cn=ldbm database,cn=plugins,cn=config
changetype: add
objectClass:top
objectClass:nsIndex

CHAPTER 13. MANAGING INDEXES

247

cn:sn
nsSystemIndex:false
nsIndexType:pres
nsIndexType:eq
nsIndexType:sub
nsMatchingRule:2.16.840.1.113730.3.3.2.3.1

The cn attribute contains the name of the attribute to index, in this example the sn attribute.
The entry is a member of the nsIndex object class. The nsSystemIndex attribute is false,
indicating that the index is not essential to Directory Server operations. The multi-valued
nsIndexType attribute specifies the presence (pres), equality (eq) and substring (sub)
indexes. Each keyword has to be entered on a separate line. The nsMatchingRule attribute in
the example specifies the OID of the Bulgarian collation order; the matching rule can indicate
any possible value match, such as languages or other formats like date or integer.

You can use the keyword none in the nsIndexType attribute to specify that no indexes are to
be maintained for the attribute. This example temporarily disables the sn indexes on the
Example1 database by changing the nsIndexType to none:

dn: cn=sn,cn=index,cn=Example1,cn=ldbm database,cn=plugins,cn=config
objectClass:top
objectClass:nsIndex
cn:sn
nsSystemIndex:false
nsIndexType:none

For a complete list of matching rules and their OIDs, see Section 14.3.4, “Using Matching Rules” , and for
the index configuration attributes, see the Red Hat Directory Server
Configuration, Command, and File Reference.

NOTE

Always use the attribute's primary name (not the attribute's alias) when creating indexes.
The primary name of the attribute is the first name listed for the attribute in the schema;
for example, uid for the user ID attribute.

13.2.2. Creating Indexes Using the Web Console

To create presence, equality, approximate, substring, or international indexes:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Select the suffix entry.

5. Open the Indexes tab.

6. Click the Add Index button.

7. Select the attribute to index, the type of index, and optionally a matching rule.

Administration Guide

248

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/index

8. Click Create Index.

13.3. CREATING NEW INDEXES TO EXISTING DATABASES

Learn how to initiate indexing operations on Directory Server. You must create indexes manually
because Directory Server does not automatically index databases.

IMPORTANT

Before you regenerate the index, searches proceed but can return incorrect or
inconsistent results.

13.3.1. Creating an Index While the Instance is Running

13.3.1.1. Creating an Index Using the dsconf backend index reindex Command

To recreate the index of a database while the instance is running:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend index reindex
database_name

13.3.1.2. Creating an Index Using a cn=tasks Entry

The cn=tasks,cn=config entry in the Directory Server configuration is a container entry for temporary
entries the server uses to manage tasks. To initiate an index operation, create a task in the
cn=index,cn=tasks,cn=config entry.

Use the ldapadd utility to add a new index task. For example, to add a task that creates the presence

CHAPTER 13. MANAGING INDEXES

249

Use the ldapadd utility to add a new index task. For example, to add a task that creates the presence
index for the cn attribute in the userRoot database:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=example_presence_index,cn=index,cn=tasks,cn=config
objectclass: top
objectclass: extensibleObject
cn: example presence index
nsInstance: userRoot
nsIndexAttribute: "cn:pres"

When the task is completed, the entry is removed from the directory configuration.

For further details, about the cn=index,cn=tasks,cn=config entry, see the cn=index section in the
Red Hat Directory Server Configuration, Command, and File Reference .

13.3.2. Creating an Index While the Instance Offline

After creating an indexing entry or adding additional index types to an existing indexing entry, use the
dsconf db2index command:

1. Shut down the instance:

dsctl instance_name stop

2. Recreate the index:

dsctl instance_name db2index userRoot
[13/Aug/2019:15:25:37.277426483 +0200] - INFO -
ldbm_instance_config_cachememsize_set - force a minimal value 512000
[13/Aug/2019:15:25:37.289257996 +0200] - INFO - check_and_set_import_cache -
pagesize: 4096, available bytes 1704378368, process usage 22212608
[13/Aug/2019:15:25:37.291738104 +0200] - INFO - check_and_set_import_cache - Import
allocates 665772KB import cache.
...
db2index successful

3. Start the instance:

dsctl instance_name start

13.4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A
CONTIGUOUS SUBSET OF A LARGE SEARCH RESULT

Directory Server supports the LDAP virtual list view control. This control enables an LDAP client to
request a contiguous subset of a large search result.

For example, you have stored an address book with 100.000 entries in Directory Server. By default, a
query for all entries returns all entries at once. This is a resource and time-consuming operation, and
clients often do not require the whole data set because, if the user scrolls through the results, only a
partial set is visible.

However, if the client uses the VLV control, the server only returns a subset and, for example, if the user

Administration Guide

250

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cn-index

However, if the client uses the VLV control, the server only returns a subset and, for example, if the user
scrolls in the client application, the server returns more entries. This reduces the load on the server, and
the client does not need to store and process all data at once.

VLV also improves the performance of server-sorted searches when all search parameters are fixed.
Directory Server pre-computes the search results within the VLV index. Therefore, the VLV index is
much more efficient than retrieving the results and sorting them afterwards.

In Directory Server, the VLV control is always available. However, if you use it in a large directory, a VLV
index, also called browsing index, can significantly improve the speed.

Directory Server does not maintain VLV indexes for attributes, such as for standard indexes. The server
generates VLV indexes dynamically based on attributes set in entries and the location of those entries in
the directory tree. Unlike standard entries, VLV entries are special entries in the database.

13.4.1. How the VLV control works in ldapsearch commands

Typically, you use the virtual list view (VLV) feature in LDAP client applications. However, for example
for testing purposes, you can use the ldapsearch utility to request only partial results.

To use the VLV feature in ldapsearchcommands, specify the -E option for both the sss (server-side
sorting) and vlv search extensions:

ldapsearch ... -E 'sss=attribute_list' -E 'vlv=query_options'

The sss search extension has the following syntax:

[!]sss=[-]<attr[:OID]>[/[-]<attr[:OID]>...]

The vlv search extension has the following syntax:

[!]vlv=<before>/<after>(/<offset>/<count>|:<value>)

before sets the number of entries returned before the targeted one.

after sets the number of entries returned after the targeted one.

index, count, and value help to determine the target entry. If you set value, the target entry is
the first one having its first sorting attribute starting with the value. Otherwise, you set count to
0, and the target entry is determined by the index value (starting from 1). If the count value is
higher than 0, the target entry is determined by the ratio index * number of entries / count.

Example 13.1. Output of an ldapsearch command with VLV search extension

The following command searches in ou=People,dc=example,dc=com. The server then sorts the
results by the cn attribute and returns the uid attributes of the 70th entry together with one entry
before and two entries after the offset.

ldapsearch -D "cn=Directory Manager" -W -H ldap://server.example.com -b
"ou=People,dc=example,dc=com" -s one -x -E 'sss=cn' -E 'vlv=1/2/70/0' uid
user069, People, example.com
dn: uid=user069,ou=People,dc=example,dc=com
uid: user069

user070, People, example.com

CHAPTER 13. MANAGING INDEXES

251

dn: uid=user070,ou=People,dc=example,dc=com
uid: user070

user071, People, example.com
dn: uid=user071,ou=People,dc=example,dc=com
uid: user071

user072, People, example.com
dn: uid=user072,ou=People,dc=example,dc=com
uid: user072

search result
search: 2
result: 0 Success
control: 1.2.840.113556.1.4.474 false MIQAAAADCgEA
sortResult: (0) Success
control: 2.16.840.1.113730.3.4.10 false MIQAAAALAgFGAgMAnaQKAQA=
vlvResult: pos=70 count=40356 context= (0) Success

numResponses: 5
numEntries: 4
Press [before/after(/offset/count|:value)] Enter for the next window.

For additional details, see the -E parameter description in the ldapsearch(1) man page.

13.4.2. Enabling unauthenticated users to use the VLV control

By default, the access control instruction (ACI) in the
oid=2.16.840.1.113730.3.4.9,cn=features,cn=config entry enables only authenticated users to use the
VLV control. To enable also non-authenticated users to use the VLV control, update the ACI by
changing userdn = "ldap:///all" to userdn = "ldap:///anyone".

Procedure

Update the ACI in oid=2.16.840.1.113730.3.4.9,cn=features,cn=config:

ldapmodify -D "cn=Directory Manager" -W -H ldap://server.example.com -x

dn: oid=2.16.840.1.113730.3.4.9,cn=features,cn=config
changetype: modify
replace: aci
aci: (targetattr != "aci")(version 3.0; acl "VLV Request Control"; allow(read, search, compare,
proxy) userdn = "ldap:///anyone";)

Verification

Perform a query with VLV control not specify a bind user:

ldapsearch -H ldap://server.example.com -b "ou=People,dc=example,dc=com" -s one -x -E
'sss=cn' -E 'vlv=1/2/70/0' uid

This command requires that the server allows anonymous binds.

If the command succeeds but returns no entries, run the query again with a bind user to ensure

Administration Guide

252

If the command succeeds but returns no entries, run the query again with a bind user to ensure
that the query works when using authentication.

13.4.3. Creating a VLV index using the command line to improve the speed of VLV
queries

Follow this procedure to create a virtual list view (VLV) index, also called browsing index, for entries in
ou=People,dc=example,dc=com that contain a mail attribute and have the objectClass attribute set
to person.

Prerequisites

Your client applications use the VLV control.

Client applications require to query a contiguous subset of a large search result.

The directory contains a large number of entries.

Procedure

1. Create the VLV search entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend vlv-index add-
search --name "VLV People" --search-base "ou=People,dc=example,dc=com" --search-filter
"(&(objectClass=person)(mail=*))" --search-scope 2 userRoot

This command uses the following options:

--name sets the name of the search entry. This can be any name.

--search-base sets the base DN for the VLV index. Directory Server creates the VLV index
on this entry.

--search-scope sets the scope of the search to run for entries in the VLV index. You can
set this option to 0 (base search), 1 (one-level search), or 2 (subtree search).

--search-filter sets the filter Directory Server applies when it creates the VLV index. Only
entries that match this filter become part of the index.

userRoot is the name of the database in which to create the entry.

2. Create the index entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend vlv-index add-index
--index-name "VLV People - cn sn" --parent-name "VLV People" --sort "cn sn" --index-it
dc=example,dc=com

This command uses the following options:

--index-name sets the name of the index entry. This can be any name.

--parent-name sets the name of the VLV search entry and must match the name you set in
the previous step.

--sort sets the attribute names and their sort order. Separate the attributes by space.

--index-it causes that Directory Server automatically starts an index task after the entry was

CHAPTER 13. MANAGING INDEXES

253

--index-it causes that Directory Server automatically starts an index task after the entry was
created.

dc=example,dc=com is the suffix of the database in which to create the entry.

Verification

1. Verify the successful creation of the VLV index in the /var/log/dirsrv/slapd-
instance_name/errors file:

[26/Nov/2021:11:32:59.001988040 +0100] - INFO - bdb_db2index - userroot: Indexing VLV:
VLV People - cn sn
[26/Nov/2021:11:32:59.507092414 +0100] - INFO - bdb_db2index - userroot: Indexed 1000
entries (2%).
...
[26/Nov/2021:11:33:21.450916820 +0100] - INFO - bdb_db2index - userroot: Indexed 40000
entries (98%).
[26/Nov/2021:11:33:21.671564324 +0100] - INFO - bdb_db2index - userroot: Finished
indexing.

2. Use the VLV control in an ldapsearch command to query only specific records from the
directory:

ldapsearch -D "cn=Directory Manager" -W -H ldap://server.example.com -b
"ou=People,dc=example,dc=com" -s one -x -E 'sss=cn' -E 'vlv=1/2/70/0' uid
user069, People, example.com
dn: uid=user069,ou=People,dc=example,dc=com
cn: user069

user070, People, example.com
dn: uid=user070,ou=People,dc=example,dc=com
cn: user070

user071, People, example.com
dn: uid=user071,ou=People,dc=example,dc=com
cn: user071

user072, People, example.com
dn: uid=user072,ou=People,dc=example,dc=com
cn: user072

This example assumes you have entries continuously named uid=user001 to at least
uid=user072 in ou=People,dc=example,dc=com.

For additional details, see the -E parameter description in the ldapsearch(1) man page.

13.4.4. Creating a VLV index using the web console to improve the speed of VLV
queries

Follow this procedure to create a virtual list view (VLV) index, also called browsing index, for entries in
ou=People,dc=example,dc=com that contain a mail attribute and have the objectClass attribute set
to person.

Prerequisites

Administration Guide

254

Your client applications use the VLV control.

Client applications require to query a contiguous subset of a large search result.

The directory contains a large number of entries.

Procedure

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Navigate to Database → Suffixes → dc=example,dc=com → VLV Indexes

3. Click Create VLV Index and fill the fields:

Figure 13.1. Creating a VLV Index Using the Web Console

4. Enter the attribute names, and click Add Sort Index.

5. Select Index VLV on Save.

6. Click Save VLV Index.

Verification

1. Navigate to Monitoring → Logging → Errors Log

CHAPTER 13. MANAGING INDEXES

255

[26/Nov/2021:11:32:59.001988040 +0100] - INFO - bdb_db2index - userroot: Indexing VLV:
VLV People - cn sn
[26/Nov/2021:11:32:59.507092414 +0100] - INFO - bdb_db2index - userroot: Indexed 1000
entries (2%).
...
[26/Nov/2021:11:33:21.450916820 +0100] - INFO - bdb_db2index - userroot: Indexed 40000
entries (98%).
[26/Nov/2021:11:33:21.671564324 +0100] - INFO - bdb_db2index - userroot: Finished
indexing.

2. Use the VLV control in an ldapsearch command to query only specific records from the
directory:

ldapsearch -D "cn=Directory Manager" -W -H ldap://server.example.com -b
"ou=People,dc=example,dc=com" -s one -x -E 'sss=cn' -E 'vlv=1/2/70/0' uid
user069, People, example.com
dn: uid=user069,ou=People,dc=example,dc=com
cn: user069

user070, People, example.com
dn: uid=user070,ou=People,dc=example,dc=com
cn: user070

user071, People, example.com
dn: uid=user071,ou=People,dc=example,dc=com
cn: user071

user072, People, example.com
dn: uid=user072,ou=People,dc=example,dc=com
cn: user072

This example assumes you have entries continuously named uid=user001 to at least
uid=user072 in ou=People,dc=example,dc=com.

For additional details, see the -E parameter description in the ldapsearch(1) man page.

13.5. CHANGING THE INDEX SORT ORDER

By default, indexes are sorted alphabetically, in descending ASCII order. This is true for every attribute,
even attributes which may have numeric attribute values like Integer or TelephoneNumber. It is possible
to change the sort method by changing the matching rule set for the attribute.

13.5.1. Changing the Sort Order Using the Command Line

To change the sort order using the command line, change the nsMatchingRule for the attribute index.
For example:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=sn,cn=index,cn=Example1,cn=ldbm database,cn=plugins,cn=config
changetype:modify
replace:nsMatchingRule
nsMatchingRule: integerOrderingMatch

Administration Guide

256

13.6. CHANGING THE WIDTH FOR INDEXED SUBSTRING SEARCHES

By default, for a search to be indexed, the search string must be at least three characters long, without
counting any wildcard characters. For example, the string abc would be an indexed search while ab*
would not be. Indexed searches are significantly faster than unindexed searches, so changing the
minimum length of the search key is helpful to increase the number of indexed searches.

To improve search performance, particularly for sites with many wildcard searches, the search string
length for indexed searches can be changed. Directory Server has three attributes which allow you to
change the minimum number of characters required for an indexed search:

The nsSubStrBegin attribute sets the required number of characters for an indexed search for
the beginning of a search string, before the wildcard.

abc*

The nsSubStrMiddle attribute sets the required number of characters for an indexed search
where a wildcard is used in the middle of a search string. For example:

abc

The nsSubStrEnd attribute sets the required number of characters for an indexed search for
the end of a search string, after the wildcard. For example:

*xyz

The default substring search length for the string triplet (before, middle, and end) is 3, 3, and 3, meaning
every search requires a minimum of three characters, in every wildcard position.

For any attribute index to have alternate string lengths, add the extensibleObject object class to the
entry and then set the substring search lengths.

Set the new key length for the specific attribute index. This requires adding the
extensibleObject object class and then adding the nsSubStrBegin, nsSubStrEnd, or
nsSubStrMiddle attributes as appropriate. For example:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: attribute_name,cn=index,cn=database_name,cn=ldbm database,cn=plugins,cn=config
changetype: modify
add: objectclass
objectclass: extensibleObject
-
add: nsSubStrBegin
nsSubStrBegin: 2
-
add: nsSubStrMiddle
nsSubStrMiddle: 2
-
add: nsSubStrEnd
nsSubStrEnd: 2

13.7. DELETING INDEXES

CHAPTER 13. MANAGING INDEXES

257

This section describes how to remove attributes and index types from the index.

13.7.1. Deleting an Attribute from the Default Index Entry

When using the default settings of Directory Server, several attributes listed in the default index entry,
such as sn, are indexed. The following attributes are part of the default index:

Table 13.1. Default Index Attributes

aci cn entryusn

givenName mail mailAlternateAddress

mailHost member memberOf

nsUniqueId ntUniqueId ntUserDomainId

numsubordinates objectclass owner

parentid seeAlso sn

telephoneNumber uid uniquemember

WARNING

Removing system indexes can significantly affect the Directory Server
performance.

For example, to remove the sn attribute from the default index:

1. Remove the attribute from the cn=default indexes,cn=config,cn=ldbm
database,cn=plugins,cn=config entry:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
cn=sn,cn=default indexes,cn=config,cn=ldbm database,cn=plugins,cn=config

If you do not remove the attribute from this entry, the index for the sn attribute is automatically
recreated and corrupted after the server is restarted.

2. Remove the cn=attribute_name,cn=index,cn=userRoot,cn=ldbm
database,cn=plugins,cn=config entry. For details, see Section 13.7.2, “Removing an Attribute
from the Index”

13.7.2. Removing an Attribute from the Index

In certain situations you want to remove an attribute from the index. This section describe the procedure
using the command line and using the web console.



Administration Guide

258

13.7.2.1. Removing an Attribute from the Index Using the Command Line

To remove an attribute from the index:

1. If the attribute to remove is listed in the cn=default indexes,cn=config,cn=ldbm
database,cn=plugins,cn=config default index entry, remove it from this entry first. For details,
see Section 13.7.1, “Deleting an Attribute from the Default Index Entry” .

2. Remove the attribute from the index. For example:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
cn=sn,cn=index,cn=database_name,cn=ldbm database,cn=plugins,cn=config

After deleting the entry, Directory Server no longer maintains the index for the attribute.

3. Recreate the attribute index. See Section 13.3, “Creating New Indexes to Existing Databases” .

13.7.2.2. Removing an Attribute from the Index Using the Web Console

To remove an attribute from the index:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. Select the suffix entry.

5. Open the Indexes tab.

6. Click the Actions button next to the attribute for which you want to remove the index, and
select Delete Index.

7. Click Yes to confirm.

13.7.3. Deleting Index Types Using the Command Line

For example, to remove the sub index type of the sn attribute from the index:

1. Remove the index type:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=sn,cn=index,cn=database_name,cn=ldbm database,cn=plugins,cn=config
changetype: modify
delete: nsIndexType
nsIndexType: sub

After deleting the index entry, Directory Server no longer maintains the substring index for the
attribute.

2. Recreate the attribute index. See Section 13.3, “Creating New Indexes to Existing Databases” .

CHAPTER 13. MANAGING INDEXES

259

13.7.4. Removing Browsing Indexes

This section describes how to remove browsing entries from a database.

13.7.4.1. Removing Browsing Indexes Using the Command Line

The entries for an alphabetical browsing index and virtual list view (VLV) are the same. This section
describes the steps involved in removing browsing indexes.

To remove a browsing index or virtual list view index using the command line:

1. Remove the browsing index entries from the cn=index,cn=database_name,cn=ldbm
database,cn=plugins,cn=config entry. For example:

ldapdelete -D "cn=Directory Manager" -W -p 389 -h server.example.com -x "cn=MCC
ou=People dc=example dc=com,cn=userRoot,cn=ldbm database,cn=plugins,cn=config"
"cn=by MCC ou=People dc=example dc=com,cn=MCC ou=People dc=example
dc=com,cn=userRoot,cn=ldbm database,cn=plugins,cn=config"

After deleting the two browsing index entries, Directory Server no longer maintains these
indexed.

2. Recreate the attribute index. See Section 13.3, “Creating New Indexes to Existing Databases” .

Administration Guide

260

CHAPTER 14. FINDING DIRECTORY ENTRIES
Entries in the directory can be searched for and found using the command line or the web console.

14.1. FINDING DIRECTORY ENTRIES USING THE COMMAND LINE

You can use the ldapsearch command-line utility to search for directory entries. This utility opens a
connection to a specified server using the specified identity and credentials and locates entries based
on a specified search filter. The search scope can include:

a single entry (-s base)

an entry immediate subentries (-s one)

an entire tree or subtree (-s sub)

NOTE

A common mistake is to assume that the directory is searched based on the attributes
used in the distinguished name. The distinguished name is only a unique identifier for the
directory entry and cannot be used as a search key. Instead, search for entries based on
the attribute-data pairs stored on the entry itself. Thus, if the distinguished name of an
entry is uid=bjensen,ou=People,dc=example,dc=com, then a search for dc=example
does not match that entry unless dc:example has explicitly been added as an attribute in
that entry.

Search results are returned in LDIF format. LDIF is defined in RFC 2849 and is described in detail in
Appendix B, LDAP Data Interchange Format .

This section contains information about the following topics:

Section 14.1.1, “ldapsearch Command-Line Format”

Section 14.1.2, “Commonly Used ldapsearch Options”

Section 14.1.3, “Using Special Characters”

14.1.1. ldapsearch Command-Line Format

The ldapsearch command must use the following format:

ldapsearch [-x | -Y mechanism] [options] [search_filter] [list_of_attributes]

Either -x (to use simple binds) or -Y (to set the SASL mechanism) must be used to configure
the type of connection.

options is a series of command-line options. These must be specified before the search filter, if
any are used.

search_filter is an LDAP search filter as described in Section 14.3, “LDAP Search Filters” . Do not
specify a separate search filter if search filters are specified in a file using the -f option.

list_of_attributes is a list of attributes separated by a space. Specifying a list of attributes
reduces the number of attributes returned in the search results. This list of attributes must

CHAPTER 14. FINDING DIRECTORY ENTRIES

261

http://www.ietf.org/rfc/rfc2849.txt

appear after the search filter. For an example, see Section 14.4.6, “Displaying Subsets of
Attributes”. If a list of attributes is not specified, the search returns values for all attributes
permitted by the access control set in the directory, with the exception of operational attributes.

For operational attributes to be returned as a result of a search operation, they must be
explicitly specified in the search command. To return all operational attributes of an object
specify +. To retrieve regular attributes in addition to explicitly specified operational attributes,
use an asterisk (*) in the list of attributes in the ldapsearch command.

To retrieve only a list of matching DNs, use the special attribute 1.1. For example:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com \
 -b "dc=example,dc=com" -x "(objectclass=inetorgperson)" 1.1

14.1.2. Commonly Used ldapsearch Options

The following table lists the most commonly used ldapsearch command-line options. If a specified value
contains a space (), the value should be surrounded by single or double quotation marks, such as -b
"cn=My Special Group,ou=groups,dc=example,dc=com".

IMPORTANT

The ldapsearch utility from OpenLDAP uses SASL connections by default. To perform a
simple bind or to use TLS, use the -x argument to disable SASL and allow other
connection methods.

Option Description

-b Specifies the starting point for the search. The value specified here must be a
distinguished name that currently exists in the database. This is optional if the
LDAP_BASEDN environment variable has been set to a base DN. The value specified
in this option should be provided in single or double quotation marks. For example:

-b "cn=user,ou=Product Development,dc=example,dc=com"

To search the root DSE entry, specify an empty string here, such as -b "" .

-D Specifies the distinguished name with which to authenticate to the server. This is
optional if anonymous access is supported by the server. If specified, this value must be
a DN recognized by the Directory Server, and it must also have the authority to search
for the entries. For example, -D "uid=user_name,dc=example,dc=com".

Administration Guide

262

-H Specifies an LDAP URL to use to connect to the server. For a traditional LDAP URL,
this has the following format:

ldap[s]://hostname[:port]

The port is optional; it will use the default LDAP port of 389 or LDAPS port of 636 if
the port is not given.

This can also use an LDAPI URL, with each element separated by the HTML hex code
%2F, rather than a forward slash (/):

ldapi://%2Ffull%2Fpath%2Fto%2Fslapd-example.socket

For LDAPI, specify the full path and filename of the LDAPI socket the server is listening
to. Since this value is interpreted as an LDAP URL, the forward slash characters (/) in
the path and filename must be escaped encoded as the URL escape value %2F.

The -H option is used instead of -h and -p.

-h Specifies the host name or IP address of the machine on which the Directory Server is
installed. For example, -h server.example.com. If a host is not specified,
ldapsearch uses the localhost.

NOTE

Directory Server supports both IPv4 and IPv6 addresses.

-l Specifies the maximum number of seconds to wait for a search request to complete.
For example, -l 300. The default value for the nsslapd-timelimit attribute is 3600
seconds. Regardless of the value specified, ldapsearch will never wait longer than is
allowed by the server's nsslapd-timelimit attribute.

-p Specifies the TCP port number that the Directory Server uses. For example, -p 1049.
The default is 389.
If -h is specified, -p must also be specified, even if it gives the default value.

-s scope Specifies the scope of the search. The scope can be one of the following:

base searches only the entry specified in the -b option or defined by the

LDAP_BASEDN environment variable.

one searches only the immediate children of the entry specified in the -b option. Only the

children are searched; the actual entry specified in the -b option is not searched.

sub searches the entry specified in the -b option and all of its descendants; that is, perform

a subtree search starting at the point identified in the -b option. This is the default.

Option Description

CHAPTER 14. FINDING DIRECTORY ENTRIES

263

-W Prompt for the password. If this option is not set, anonymous access is used.

Alternatively, use the -w option to pass the password to the utility. Note that the
password can be visible in the process list for other users and is saved in the shell's
history.

-x Disables the default SASL connection to allow simple binds.

-Y
SASL_mechanism

Sets the SASL mechanism to use for authentication. If no mechanism is set,
ldapsearch selects the best mechanism supported by the server.

If If -x is not used, then the -Y option must be used.

-z number Sets the maximum number of entries to return in a response to a search request. This
value overwrites the server-side nsslapd-sizelimit parameter when binding using the
root DN.

Option Description

14.1.3. Using Special Characters

When using the ldapsearch command-line utility, it may be necessary to specify values that contain
characters that have special meaning to the command-line interpreter, such as space (), asterisk (*), or
backslash (\). Enclose the value which has the special character in quotation marks (""). For example:

-D "cn=user_name,ou=Product Development,dc=example,dc=com"

Depending on the command-line interpreter, use either single or double quotation marks. In general, use
single quotation marks (') to enclose values. Use double quotation marks (") to allow variable
interpolation if there are shell variables. Refer to the operating system documentation for more
information.

14.2. FINDING ENTRIES USING THE WEB CONSOLE

You can use the LDAP Browser in the web console to search for entries in the Directory Server
databases.

Directory Server searches for entries based on the attribute-value pairs stored in the entries, not based
on the attributes used in the distinguished names (DN) of these entries. For example, if an entry has a
DN of uid=user_name,ou=People,dc=example,dc=com, then a search for dc=example matches the
entry only when dc:example attribute exists in this entry.

Prerequisites

You are logged in to the Directory Server web console.

You have root permissions.

Procedure

1. In the web console, navigate to LDAP Browser → Search.

2. Expand and select the search criteria to filter entries:

Administration Guide

264

Table 14.1. Default Index Attributes

Search Parameter Description

Search base Specifies the starting point of the search. It is a
distinguished name (DN) that currently exists in
the database.

NOTE

The Search tabs opens with pre-
defined search base, when you
open an entry details in the Tree
View or Table View, click on the
Options menu (�) and select
Search.

Search Scope Select Subtreeto search entries in the whole
subtree starting from the search base and
including all child entries.

Select One Level to search entries starting
from the search base and including only the first
level of child entries.

Select Base to search for attribute values only
in the entry specified as the search base.

Size Limit Set the maximum number of entries to return
from a search operation.

Time Limit Set the time in seconds the search engine can
look for entries.

Show Locking Toggle the switch to on to see the lock status of
the found entries.

Search Attributes Select attributes that take part in the search.
You can choose from the predefined attributes
and add custom ones.

3. Type the attribute value in the search text field and press Enter.

NOTE

Directory Server records all search requests to the access log file, which you can
view at Monitoring → Logging → Access Log.

4. Optional: To further refine your search, use search filters in the Filter tab to search for entries.

14.3. LDAP SEARCH FILTERS

Search filters select the entries to be returned for a search operation. They are most commonly used
with the ldapsearch command-line utility. When using ldapsearch, there can be multiple search filters

CHAPTER 14. FINDING DIRECTORY ENTRIES

265

in a file, with each filter on a separate line in the file, or a search filter can be specified directly on the
command line.

The basic syntax of a search filter is:

attribute operator value

For example:

buildingname>=alpha

In this example, buildingname is the attribute, >= is the operator, and alpha is the value. Filters can also
be defined that use different attributes combined together with Boolean operators.

NOTE

When performing a substring search using a matching rule filter, use the asterisk (*)
character as a wildcard to represent zero or more characters.

For example, to search for an attribute value that starts with the letter l and ends with the
letter n, enter a l*n in the value portion of the search filter. Similarly, to search for all
attribute values beginning with the letter u, enter a value of u* in the value portion of the
search filter.

To search for a value that contains the asterisk (*) character, the asterisk must be
escaped with the designated escape sequence, \5c2a. For example, to search for all
employees with businessCategory attribute values of Example*Net product line, enter
the following value in the search filter:

Example\5c2a*Net product line

NOTE

A common mistake is to assume that the directory is searched based on the attributes
used in the distinguished name. The distinguished name is only a unique identifier for the
directory entry and cannot be used as a search key. Instead, search for entries based on
the attribute-data pairs stored on the entry itself. Thus, if the distinguished name of an
entry is uid=user_name,ou=People,dc=example,dc=com, then a search for
dc=example does not match that entry unless the dc attribute exists in this entry and is
set to example.

14.3.1. Using Attributes in Search Filters

The most basic sort of search looks for the presence of attributes or specific values in entries. There are
many variations on how to look for attributes in entries. It is possible to check that the attribute merely
exists, to match an exact value, or to list matches against a partial value.

A presence search uses a wild card (an asterisk) to return every entry which has that attribute set,
regardless of value. For example, this returns every entry which has a manager attribute:

"(manager=*)"

It is also possible to search for an attribute with a specific value; this is called an equality search. For

Administration Guide

266

It is also possible to search for an attribute with a specific value; this is called an equality search. For
example:

"(cn=example)"

This search filter returns all entries that contain the common name set to example. Most of the time,
equality searches are not case sensitive.

When an attribute has values associated with a language tag, all of the values are returned. Thus, the
following two attribute values both match the "(cn=example)" filter:

cn: example
cn;lang-fr: example

It is also possible to search for a partial match on an attribute value, a substring index. For example:

"(description=*X.500*)"
"(sn=*nderson)"
"(givenname=car*)"

The length of the substring searches is configured in the substring index itself, as described in
Section 13.6, “Changing the Width for Indexed Substring Searches” .

14.3.2. Using Operators in Search Filters

Operators in search filters set the relationship between the attribute and the given search value. For
people searches, operators can be used to set a range, to return a last names within a subset of letters in
the alphabet or employee numbers that come after a certain number.

"(employeeNumber>=500)"
"(sn~=suret)"
"(salary<=150000)"

Operators also enable phonetic and approximate searches, which allow more effective searches with
imperfect information and are particularly useful in internationalized directories.

The operators that can be used in search filters are listed in Table 14.2, “Search Filter Operators” . In
addition to these search filters, special filters can be specified to work with a preferred language
collation order. For information on how to search a directory with international charactersets, see
Section D.4, “Searching an Internationalized Directory” .

Table 14.2. Search Filter Operators

Search Type Operator Description

Equality = Returns entries containing attribute values that
exactly match the specified value. For example,
cn=example

Substring =string* string Returns entries containing attributes containing the
specified substring. For example, cn=exa*l. The
asterisk (*) indicates zero (0) or more characters.

CHAPTER 14. FINDING DIRECTORY ENTRIES

267

Greater than or equal to >= Returns entries containing attributes that are greater
than or equal to the specified value. For example,
uidNumber >= 5000.

Less than or equal to <= Returns entries containing attributes that are less
than or equal to the specified value. For example,
uidNumber <= 5000.

Presence =* Returns entries containing one or more values for the
specified attribute. For example, cn=*.

Approximate ~= Returns entries containing the specified attribute
with a value that is approximately equal to the value
specified in the search filter. For example, l~=san
fransico can return l=san francisco.

Search Type Operator Description

14.3.3. Using Compound Search Filters

Multiple search filter components can be combined using Boolean operators expressed in prefix
notation as follows:

(Boolean-operator(filter)(filter)(filter)...)

Boolean-operator is any one of the Boolean operators listed in Table 14.3, “Search Filter Boolean
Operators”.

For example, this filter returns all entries that do not contain the specified value:

(!(objectClass=person))

Obviously, compound search filters are most useful when they are nested together into completed
expressions:

(Boolean-operator(filter)((Boolean-operator(filter)(filter)))

These compound filters can be combined with other types of searches (approximate, substring, other
operators) to get very detailed results. For example, this filter returns all entries whose organizational
unit is Marketing and whose description attribute does not contain the substring X.500:

(&(ou=Marketing)(!(description=*X.500*)))

That filter can be expanded to return entries whose organizational unit is Marketing, that do not have
the substring X.500, and that have example or demo set as a manager:

(&(ou=Marketing)(!(description=*X.500*))(|
(manager=cn=example,ou=Marketing,dc=example,dc=com)
(manager=cn=demo,ou=Marketing,dc=example,dc=com)))

This filter returns all entries that do not represent a person and whose common name is similar to

Administration Guide

268

This filter returns all entries that do not represent a person and whose common name is similar to
printer3b:

(&(!(objectClass=person))(cn~=printer3b))

Table 14.3. Search Filter Boolean Operators

Operator Symbo
l

Description

AND & All specified filters must be true for the statement to be true. For example, (&
(filter)(filter)(filter)...).

OR | At least one specified filter must be true for the statement to be true. For
example, (|(filter)(filter)(filter)...).

NOT ! The specified statement must not be true for the statement to be true. Only one
filter is affected by the NOT operator. For example, (!(filter)).

Boolean expressions are evaluated in the following order:

Innermost to outermost parenthetical expressions first.

All expressions from left to right.

14.3.4. Using Matching Rules

A matching rule tells the Directory Server how to compare two values (the value stored in the attribute
and the value in the search filter). A matching rule also defines how to generate index keys. Matching
rules are somewhat related to attribute syntaxes. Syntaxes define the format of an attribute value;
matching rules define how that format is compared and indexed.

There are three different types of matching rules:

EQUALITY specifies how to compare two values for an equal match. For example, how to
handle strings like "Fred" and "FRED". Search filters that test for equality (for example,
attribute=value) use the EQUALITY rule. Equality (eq) indexes use the EQUALITY rule to
generate the index keys. Update operations use the EQUALITY rule to compare values to be
updated with values already in an entry.

ORDERING specifies how to compare two values to see if one value is greater or less than
another value. Search filters that set a range (for example, attribute<=value or attribute>=value)
use the ORDERING rule. An index for an attribute with an ORDERING rule orders the equality
values.

SUBSTR specifies how to do substring matching. Substring search filters (for example,
attribute=*partial_string* or attribute=*end_string) use the SUBSTR rule. Substring (sub) indexes
use the SUBSTR rule to generate the index keys.

IMPORTANT

CHAPTER 14. FINDING DIRECTORY ENTRIES

269

IMPORTANT

A matching rule is required in order to support searching or indexing for the
corresponding search filter or index type. For example, an attribute must have an
EQUALITY matching rule in order to support equality search filters and eq indexes for
that attribute. An attribute must have both an ORDERING matching rule and an
EQUALITY matching rule in order to support range search filters and indexed range
searches.

A search operation will be rejected with PROTOCOL_ERROR or
UNWILLING_TO_PERFORM if an attempt is made to use a search filter for an attribute
that has no corresponding matching rule.

Example 14.1. Matching Rules and Custom Attributes

Example Corp. administrators create a custom attribute type called MyFirstName with IA5 String (7-
bit ASCII) syntax and an EQUALITY matching rule of caseExactIA5Match. An entry with a
MyFirstName value of Fred is returned in a search with a filter of (MyFirstName=Fred), but it is not
returned for filters like (MyFirstName=FRED) and (MyFirstName=fred) Fred, FRED, and fred are all
valid IA5 String values, but they do not match using the caseExactIA5Match rule.

For all three variants of Fred to be returned in a search, then the MyFirstName should be defined to
use the caseIgnoreIA5Match matching rule.

An extensible matching rule search filter can be used to search for an attribute value with a different
matching rule than the one defined for the attribute. The matching rule must be compatible with the
syntax of the attribute being searched. For example, to run a case insensitive search for an attribute
that has a case-sensitive matching rule defined for it, specify a case insensitive matching rule in the
search filter.

(MyFirstName:caseIgnoreIA5Match:=fred)

NOTE

Matching rules are used for searches in internationalized directories, to specify the
language types to use for the results. This is covered in Section D.4, “Searching an
Internationalized Directory”.

NOTE

An index for an attributes uses whatever matching rules are defined for that attribute in
its schema definition. Additional matching rules to use for an index can be configured
using the nsMatchingRule attribute, as in Section 13.2.1, “Creating Indexes Using the
Command Line”.

The syntax of the matching rule filter inserts a matching rule name or OID into the search filter:

attr:matchingRule:=value

attr is an attribute belonging to entries being searched, such as cn or mail.

matchingRule is a string that contains the name or OID of the rule to use to match attribute

Administration Guide

270

matchingRule is a string that contains the name or OID of the rule to use to match attribute
values according to the required syntax.

value is either the attribute value to search for or a relational operator plus the attribute value to
search for. The syntax of the value of the filter depends on the matching rule format used.

A matching rule is actually a schema element, and, as with other schema elements is uniquely identified
by an object identifier (OID).

Many of the matching rules defined for Red Hat Directory Server relate to language codes and set
internationalized collation orders supported by the Directory Server. For example, the OID
2.16.840.1.113730.3.3.2.17.1 identifies the Finnish collation order.

NOTE

Unlike other schema elements, additional matching rules cannot be added to the
Directory Server configuration.

Most of the matching rules list in following list are used for equality indexes. Matching rules with ordering
in their name are used for ordering indexes, and those with substring in their name are used for substring
(SUBSTR) indexes. (The matching rules used for international matching and collation orders use a
different naming scheme.)

Bitwise AND match

Performs bitwise AND matches.

OID: 1.2.840.113556.1.4.803

Compatible syntaxes: Typically used with Integer and numeric strings. Directory Server converts
numeric strings automatically to integer.

Bitwise OR match

Performs bitwise OR matches.

OID: 1.2.840.113556.1.4.804

Compatible syntaxes: Typically used with Integer and numeric strings. Directory Server converts
numeric strings automatically to integer.

booleanMatch

Evaluates whether the values to match are TRUE or FALSE

OID: 2.5.13.13

Compatible syntaxes: Boolean

caseExactIA5Match

Makes a case-sensitive comparison of values.

OID: 1.3.6.1.4.1.1466.109.114.1

Compatible syntaxes: IA5 Syntax, URI

caseExactMatch

CHAPTER 14. FINDING DIRECTORY ENTRIES

271

Makes a case-sensitive comparison of values.

OID: 2.5.13.5

Compatible syntaxes: Directory String, Printable String, OID

caseExactOrderingMatch

Allows case-sensitive ranged searches (less than and greater than).

OID: 2.5.13.6

Compatible syntaxes: Directory String, Printable String, OID

caseExactSubstringsMatch

Performs case-sensitive substring and index searches.

OID: 2.5.13.7

Compatible syntaxes: Directory String, Printable String, OID

caseIgnoreIA5Match

Performs case-insensitive comparisons of values.

OID: 1.3.6.1.4.1.1466.109.114.2

Compatible syntaxes: IA5 Syntax, URI

caseIgnoreIA5SubstringsMatch

Performs case-insensitive searches on substrings and indexes.

OID: 1.3.6.1.4.1.1466.109.114.3

Compatible syntaxes: IA5 Syntax, URI

caseIgnoreListMatch

Performs case-insensitive comparisons of values.

OID: 2.5.13.11

Compatible syntaxes: Postal address

caseIgnoreListSubstringsMatch

Performs case-insensitive searches on substrings and indexes.

OID: 2.5.13.12

Compatible syntaxes: Postal address

caseIgnoreMatch

Performs case-insensitive comparisons of values.

OID: 2.5.13.2

Administration Guide

272

Compatible syntaxes: Directory String, Printable String, OID

caseIgnoreOrderingMatch

Allows case-insensitive ranged searches (less than and greater than).

OID: 2.5.13.3

Compatible syntaxes: Directory String, Printable String, OID

caseIgnoreSubstringsMatch

Performs case-insensitive searches on substrings and indexes.

OID: 2.5.13.4

Compatible syntaxes: Directory String, Printable String, OID

distinguishedNameMatch

Compares distinguished name values.

OID: 2.5.13.1

Compatible syntaxes: Distinguished name (DN)

generalizedTimeMatch

Compares values that are in a Generalized Time format.

OID: 2.5.13.27

Compatible syntaxes: Generalized Time

generalizedTimeOrderingMatch

Allows ranged searches (less than and greater than) on values that are in a Generalized Time format.

OID: 2.5.13.28

Compatible syntaxes: Generalized Time

integerMatch

Evaluates integer values.

OID: 2.5.13.14

Compatible syntaxes: Integer

integerOrderingMatch

Allows ranged searches (less than and greater than) on integer values.

OID: 2.5.13.15

Compatible syntaxes: Integer

keywordMatch

CHAPTER 14. FINDING DIRECTORY ENTRIES

273

Compares the given search value to a string in an attribute value.

OID: 2.5.13.33

Compatible syntaxes: Directory String

numericStringMatch

Compares more general numeric values.

OID: 2.5.13.8

Compatible syntaxes: Numeric String

numericStringOrderingMatch

Allows ranged searches (less than and greater than) on more general numeric values.

OID: 2.5.13.9

Compatible syntaxes: Numeric String

numericStringSubstringMatch

Compares more general numeric values.

OID: 2.5.13.10

Compatible syntaxes: Numeric String

objectIdentifierMatch

Compares object identifier (OID) values.

OID: 2.5.13.0

Compatible syntaxes: OID

octetStringMatch

Evaluates octet string values.

OID: 2.5.13.17

Compatible syntaxes: Octet String

octetStringOrderingMatch

Supports ranged searches (less than and greater than) on a series of octet string values.

OID: 2.5.13.18

Compatible syntaxes: Octet String

telephoneNumberMatch

Evaluates telephone number values.

OID: 2.5.13.20

Administration Guide

274

Compatible syntaxes: Telephone Number

telephoneNumberSubstringsMatch

Performs substring and index searches on telephone number values.

OID: 2.5.13.21

Compatible syntaxes: Telephone Number

uniqueMemberMatch

Compares both name and UID values.

OID: 2.5.13.23

Compatible syntaxes: Name and Optional UID

wordMatch

Compares the given search value to a string in an attribute value. This matching rule is case-
insensitive.

OID: 2.5.13.32

Compatible syntaxes: Directory String

Table 14.4. Language Ordering Matching Rules

Matching Rule Object Identifiers (OIDs)

English (Case Exact Ordering Match) 2.16.840.1.113730.3.3.2.11.3

Albanian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.44.1

Arabic (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.1.1

Belorussian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.2.1

Bulgarian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.3.1

Catalan (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.4.1

Chinese - Simplified (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.49.1

Chinese - Traditional (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.50.1

Croatian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.22.1

Czech (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.5.1

CHAPTER 14. FINDING DIRECTORY ENTRIES

275

Danish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.6.1

Dutch (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.33.1

Dutch - Belgian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.34.1

English - US (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.11.1

English - Canadian (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.12.1

English - Irish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.14.1

Estonian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.16.1

Finnish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.17.1

French (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.18.1

French - Belgian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.19.1

French - Canadian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.20.1

French - Swiss (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.21.1

German (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.7.1

German - Austrian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.8.1

German - Swiss (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.9.1

Greek (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.10.1

Hebrew (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.27.1

Hungarian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.23.1

Icelandic (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.24.1

Italian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.25.1

Italian - Swiss (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.26.1

Japanese (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.28.1

Matching Rule Object Identifiers (OIDs)

Administration Guide

276

Korean (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.29.1

Latvian, Lettish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.31.1

Lithuanian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.30.1

Macedonian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.32.1

Norwegian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.35.1

Norwegian - Bokmul (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.36.1

Norwegian - Nynorsk (Case Insensitive Ordering
Match)

2.16.840.1.113730.3.3.2.37.1

Polish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.38.1

Romanian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.39.1

Russian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.40.1

Serbian - Cyrillic (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.45.1

Serbian - Latin (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.41.1

Slovak (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.42.1

Slovenian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.43.1

Spanish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.15.1

Swedish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.46.1

Turkish (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.47.1

Ukrainian (Case Insensitive Ordering Match) 2.16.840.1.113730.3.3.2.48.1

Matching Rule Object Identifiers (OIDs)

Table 14.5. Language Substring Matching Rules

Matching Rule Object Identifiers (OIDs)

English (Case Exact Substring Match) 2.16.840.1.113730.3.3.2.11.3.6

Albanian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.44.1.6

CHAPTER 14. FINDING DIRECTORY ENTRIES

277

Arabic (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.1.1.6

Belorussian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.2.1.6

Bulgarian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.3.1.6

Catalan (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.4.1.6

Chinese - Simplified (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.49.1.6

Chinese - Traditional (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.50.1.6

Croatian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.22.1.6

Czech (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.5.1.6

Danish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.6.1.6

Dutch (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.33.1.6

Dutch - Belgian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.34.1.6

English - US (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.11.1.6

English - Canadian (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.12.1.6

English - Irish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.14.1.6

Estonian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.16.1.6

Finnish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.17.1.6

French (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.18.1.6

French - Belgian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.19.1.6

French - Canadian (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.20.1.6

French - Swiss (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.21.1.6

German (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.7.1.6

Matching Rule Object Identifiers (OIDs)

Administration Guide

278

German - Austrian (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.8.1.6

German - Swiss (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.9.1.6

Greek (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.10.1.6

Hebrew (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.27.1.6

Hungarian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.23.1.6

Icelandic (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.24.1.6

Italian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.25.1.6

Italian - Swiss (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.26.1.6

Japanese (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.28.1.6

Korean (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.29.1.6

Latvian, Lettish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.31.1.6

Lithuanian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.30.1.6

Macedonian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.32.1.6

Norwegian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.35.1.6

Norwegian - Bokmul (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.36.1.6

Norwegian - Nynorsk (Case Insensitive Substring
Match)

2.16.840.1.113730.3.3.2.37.1.6

Polish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.38.1.6

Romanian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.39.1.6

Russian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.40.1.6

Serbian - Cyrillic (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.45.1.6

Serbian - Latin (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.41.1.6

Matching Rule Object Identifiers (OIDs)

CHAPTER 14. FINDING DIRECTORY ENTRIES

279

Slovak (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.42.1.6

Slovenian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.43.1.6

Spanish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.15.1.6

Swedish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.46.1.6

Turkish (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.47.1.6

Ukrainian (Case Insensitive Substring Match) 2.16.840.1.113730.3.3.2.48.1.6

Matching Rule Object Identifiers (OIDs)

14.4. EXAMPLES OF COMMON LDAPSEARCHES

The next set of examples assumes the following:

The search is for all entries in the directory.

The directory is configured to support anonymous access for search and read. This means that
no bind information has to be supplied in order to perform the search. For more information on
anonymous access, see Section 18.11.1.1.3, “Granting Anonymous Access” .

The server is located on a host named server.example.com.

The server uses port number 389. Since this is the default port, the port number does not have
to be sent in the search request.

TLS is enabled for the server on port 636 (the default LDAPS port number).

The suffix under which all data are stored is dc=example,dc=com.

14.4.1. Returning All Entries

Given the previous information, the following call will return all entries in the directory (subject to the
configured size and time resource limits):

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"
-s sub -x "(objectclass=*)"

"objectclass=*" is a search filter that matches any entry in the directory. Since every entry must have
an object class, and the objectclass attribute is always indexed, this is a useful search filter to return
every entry.

14.4.2. Specifying Search Filters on the Command Line

A search filter can be specified directly on the command line as long as the filter is enclosed in quotation
marks ("filter"). If the filter is supplied with the command, do not specify the -f option. For example:

Administration Guide

280

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"
-s sub -x "cn=babs jensen"

14.4.3. Searching the Root DSE Entry

The root DSE is a special entry that contains information about the directory server instance, including all
of the suffixes supported by the local Directory Server. This entry can be searched by supplying a search
base of "", a search scope of base, and a filter of "objectclass=*". For example:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x -b "" -s base
"objectclass=*"

14.4.4. Searching the Schema Entry

The cn=schema entry is a special entry that contains information about the directory schema, such as
object classes and attribute types.

The following command lists the content of the cn=schema entry:

ldapsearch -o ldif-wrap=no -D "cn=Directory Manager" -W -b "cn=schema" \
 '(objectClass=subSchema)' -s sub objectClasses attributeTypes matchingRules \
 matchingRuleUse dITStructureRules nameForms ITContentRules ldapSyntaxes

14.4.5. Using LDAP_BASEDN

To make searching easier, it is possible to set the search base using the LDAP_BASEDN environment
variable. Doing this means that the search base does not have to be set with the -b option. For
information on how to set environment variables, see the documentation for the operating system.

Typically, set LDAP_BASEDN to the directory's suffix value. Since the directory suffix is equal to the
root, or topmost, entry in the directory, this causes all searches to begin from the directory's root entry.

For example, set LDAP_BASEDN to dc=example,dc=com and search for cn=babs jensen in the
directory, use the following command-line call:

export LDAP_BASEDN="dc=example,dc=com"

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x "cn=babs jensen"

In this example, the default scope of sub is used because the -s option was not used to specify the
scope.

14.4.6. Displaying Subsets of Attributes

The ldapsearch command returns all search results in LDIF format. By default, ldapsearch returns the
entry's distinguished name and all of the attributes that a user is allowed to read. The directory access
control can be set such that users are allowed to read only a subset of the attributes on any given
directory entry. Only operational attributes are not returned. For operational attributes to be returned as
a result of a search operation, explicitly specify them in the search command or use + to return all
operational attributes.

It may not be necessary to have all of the attributes for an entry returned in the search results. The
returned attributes can be limited to just a few specific attributes by specifying the required ones on the

CHAPTER 14. FINDING DIRECTORY ENTRIES

281

command line immediately after the search filter. For example, to show the cn and sn attributes for
every entry in the directory, use the following command-line call:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"
-s sub -x "(objectclass=*)" sn cn

14.4.7. Searching for Operational Attributes

Operational attributes are special attributes set by the Directory Server itself that are used by the server
to perform maintenance tasks, like processing access control instructions. They also show specific
information about the entry, like the time it was initially created and the name of the user who created
it. Operational attributes are available for use on every entry in the directory, regardless of whether the
attribute is specifically defined for the object class of the entry.

Operational attributes are not returned in regular ldapsearches. According to RFC3673, use + to return
all operational attributes in a search request:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"
-s sub -x "(objectclass=*)" '+'

To return only some defined operational attributes, explicitly specify them in the ldapsearch request:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"
-s sub -x "(objectclass=*)" creatorsName createTimestamp modifiersName modifyTimestamp

The complete list of operational attributes is in the "Operational Attributes and Object Classes" chapter
in the Red Hat Directory Server 11 Configuration, Command, and File Reference .

NOTE

To return all of the regular entry attributes along with the specified operational attributes,
use the special search attribute, "*", in addition to the operational attributes that are
listed.

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b
"dc=example,dc=com" -s sub -x "(objectclass=*)" "*" aci

The asterisk must be enclosed in quotation marks to prevent it from being interpreted by
the shell.

14.4.8. Specifying Search Filters Using a File

Search filters can be entered into a file instead of entering them on the command line. In this case,
specify each search filter on a separate line in the file. The ldapsearch command runs each search in
the order in which it appears in the file.

For example:

sn=example
givenname=user

ldapsearch first finds all the entries with the surname set to example, then all the entries with the

Administration Guide

282

https://tools.ietf.org/html/rfc3673
https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

ldapsearch first finds all the entries with the surname set to example, then all the entries with the
givenname set to user. If an entry is found that matches both search criteria, then the entry is returned
twice.

For example, in this search, the filters are specified in a file named searchdb:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x -f searchdb

The set of attributes returned here can be limited by specifying the attribute names at the end of the
search line. For example, the following ldapsearch command performs both searches but returns only
the DN and the givenname and sn attributes of each entry:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x -f searchdb sn
givenname

14.4.9. Specifying DNs That Contain Commas in Search Filters

When a DN within a search filter contains a comma as part of its value, the comma must be escaped with
a backslash (\). For example, to find everyone in the example.com Bolivia, S.A. subtree, use the
following command:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x -s base -b
"l=Bolivia\,S.A.,dc=example,dc=com" "objectclass=*"

14.4.10. Using a Client Certificate to Bind to Directory Server

See Section 9.9.4, “Authenticating Using a Certificate” .

14.4.11. Searching with Language Matching Rules

To explicitly submit a matching rule in a search filter, insert the matching rule after the attribute:

attr:matchingRule:=value

Matching rules are frequently used for searching internationalized directories. For example, this searches
for the department numbers after N4709 in the Swedish (2.16.840.1.113730.3.3.2.46.1) matching rule.

departmentNumber:2.16.840.1.113730.3.3.2.46.1:=>= N4709

More examples of performing internationalized searches are given in Section D.4, “Searching an
Internationalized Directory”.

14.4.12. Searching for Attributes with Bit Field Values

Bitwise searches use the bitwise AND or bitwise OR matching rules to perform bitwise search operations
on attributes with values that are bit fields.

NOTE

CHAPTER 14. FINDING DIRECTORY ENTRIES

283

NOTE

Attributes with values for bit fields are not common in LDAP. (No default
Directory Server schema use bit fields as attribute syntax.) However, several LDAP
syntaxes support integer-style values. Custom attributes can be defined which use bit
field values, and applications can use those custom attributes to perform bitwise
operations against bit field values.

The bitwise AND matching rule (1.2.840.113556.1.4.803) checks that the bit given in the assertion value
is set in the bit field attribute value. (This is somewhat analogous to an equality search.) In this example,
the userAccountControl value must be set to the bit representing 2.

"(UserAccountControl:1.2.840.113556.1.4.803:=2)"

In this example, the userAccountControl value must have all of the bits set that are set in the value 6
(bits 2 and 4).

"(UserAccountControl:1.2.840.113556.1.4.803:=6)”

The bitwise OR matching rule (1.2.840.113556.1.4.804) checks to see if any of the bits in the assertion
string are represented in the attribute value. (This is somewhat analogous to a substring search.) In this
example, the userAccountControl value must have any of the bits which are set in the bit field of 6,
meaning that the attribute value can be 2, 4, or 6.

"(UserAccountControl:1.2.840.113556.1.4.804:=6)"

Bitwise searches can be used with Windows-Red Hat Enterprise Linux integration, such as using Samba
file servers.

14.5. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE
LIMITS

With large directories, searching through every entry in the database can have a negative impact on the
server performance. Effective indexing can improve the performance in certain scenarios. However, in
large databases, this may still not reduce the search scope enough to improve the performance.

Reasonable limits can be set on user and client accounts to reduce the total number of entries or the
total amount of time spent in an individual search, which both makes searches more responsive and
improves overall server performance.

Server limits for search operations are controlled using special operational attribute values on the client
application binding to the directory. You can set the following search operation limits:

Look through limit. Specifies how many entries can be examined for a search operation.

Size limit. Specifies the maximum number of entries the server returns to a client application in
response to a search operation.

Time limit. Specifies the maximum time the server spends processing a search operation.

Idle timeout. Specifies the time a connection to the server can be idle before the connection is
dropped.

Range timeout. Specifies a separate look-through limit specifically for searches using a range.

Administration Guide

284

The resource limits set for the client application take precedence over the default resource limits set for
in the global server configuration.

NOTE

The Directory Manager receives unlimited resources by default, with the exception of
range searches.

14.5.1. Search Performance and Resource Limits

For details, see the corresponding section in the Red Hat Directory Server Performance Tuning Guide .

14.5.2. Fine Grained ID List Size

For details, see the corresponding section in the Red Hat Directory Server Performance Tuning Guide .

14.5.3. Setting User and Global Resource Limits Using the Command Line

Through the command line, administrators can set user-level resource limits, global resource limits, and
limits for specific kinds of searches, such as simple paged and range searches. Section 13.1.3, “Overview
of the Searching Algorithm” has more information on how these resource limits affect Directory Server
search performance.

Section 14.5.3, “Setting User and Global Resource Limits Using the Command Line” lists operational
attributes which can be set for each entry using the command line. Use ldapmodify to add the attributes
to the entry.

User-level attributes are set on the individual entries, while global configuration attributes are set in the
appropriate server configuration area.

Look-through limit

Specifies how many entries are examined for a search operation. Giving this attribute a value of -1
indicates that there is no limit.

User-level attribute: nsLookThroughLimit

Global configuration:

Attribute: nsslapd-lookthroughlimit

Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

Page look-through limit

As with the look-through limit, specifies how many entries are examined, but specifically for simple
paged search operations. Giving this attribute a value of -1 indicates that there is no limit.

User-level attribute: nsPagedLookThroughLimit

Global configuration:

Attribute: nsslapd-pagedlookthroughlimit

Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

CHAPTER 14. FINDING DIRECTORY ENTRIES

285

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/performance_tuning_guide/setting-scan-limits
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/performance_tuning_guide/fine-grained-id-list-size

Size limit

Specifies the maximum number of entries the server returns to a client application in response to a
search operation. Giving this attribute a value of -1 indicates that there is no limit.

User-level attribute: nsSizeLimit

Global configuration:

Attribute: nsslapd-sizelimit

Entry: cn=config

Paged size limit

As with the size limit, specifies the maximum number of entries the server returns to a client
application but only for simple paged search operations. Giving this attribute a value of -1 indicates
that there is no limit.

User-level attribute: nsPagedSizeLimit

Global configuration:

Attribute: nsslapd-pagedsizelimit

Entry: cn=config

Time Limit

Specifies the maximum time the server spends processing a search operation. Giving this attribute a
value of -1 indicates that there is no time limit.

User-level attribute: nsTimeLimit

Global configuration:

Attribute: nsslapd-timelimit

Entry: cn=config

Idle timeout

Specifies the time a connection to the server can be idle before the connection is dropped. The value
is given in seconds. Giving this attribute a value of -1 indicates that there is no limit.

User-level attribute: nsidletimeout

Global configuration:

Attribute: nsslapd-idletimeout

Entry: cn=config

ID list scan limit

Specifies the maximum number of entry IDs loaded from an index file for search results. If the ID list
size is greater than this value, the search will not use the index list but will treat the search as an
unindexed search and look through the entire database.

Administration Guide

286

User-level attribute: nsIDListScanLimit

Global configuration:

Attribute: nsslapd-idlistscanlimit

Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

Paged ID list scan limit

As with the ID list scan limit, specifies the maximum number of entry IDs loaded from an index file for
search results, but specifically for paged search operations.

User-level attribute: nsPagedIDListScanLimit

Global configuration:

Attribute: nsslapd-pagedidlistscanlimit

Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

Range look-through limit

Specifies how many entries are examined for a range search operation (a search using greater-than,
equal-to-or-greater-than, less-than, or equal-to-less-than operators). Giving this attribute a value of
-1 indicates that there is no limit.

User-level attribute: not available

Global configuration:

Attribute: nsslapd-rangelookthroughlimit

Entry: cn=config,cn=ldbm database,cn=plugins,cn=config

For information about the parameters listed above, see their descriptions in the
Red Hat Directory Server Configuration, Command, and File Reference .

For example, this sets the size limit for a user:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=user_name,ou=People,dc=example,dc=com
changetype: modify
add: nsSizeLimit
nsSizeLimit: 500

The ldapmodify statement adds the nsSizeLimit attribute to the user's entry and gives it a search
return size limit of 500 entries.

NOTE

Set an access control list (ACL) to prevent users changing the setting. For details about
ACLs, see Chapter 18, Managing Access Control .

CHAPTER 14. FINDING DIRECTORY ENTRIES

287

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/

14.5.4. Setting Resource Limits on Anonymous Binds

Resource limits are set on a user entry. An anonymous bind, obviously, does not have a user entry
associated with it. This means that the global resource limits usually apply to anonymous operations.
However, it is possible to configure resource limits specifically for anonymous binds by creating a
template user entry that has resource limits, and then applying that template to anonymous binds.

1. Create a template entry and set whatever resource limits you want to apply to anonymous binds.

NOTE

For performance reasons, the template should be in the normal back end, not in
the cn=config suffix, which does not use an entry cache.

For example:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=anonymous_template,ou=people,dc=example,dc=com
objectclass: nsContainer
objectclass: top
cn: anonymous_template
nsSizeLimit: 250
nsLookThroughLimit: 1000
nsTimeLimit: 60

2. On all suppliers in a replication topology, add the nsslapd-anonlimitsdn parameter to the
server configuration, pointing to the DN of the template entry. Any of the resource limits in
Section 14.5.3, “Setting User and Global Resource Limits Using the Command Line” can be set.
For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
anonlimitsdn="cn=anonymous_template,ou=people,dc=example,dc=com"

14.5.5. Improving Performance for Range Searches

Range searches use operators (Section 14.3.2, “Using Operators in Search Filters”) to set a bracket to
search for and return an entire subset of entries within the directory. For example, this searches for
every entry modified at or after midnight on January 1:

(modifyTimestamp>=20210101010101Z)

The nature of a range search is that it must evaluate every single entry within the directory to see if it is
within the range given. Essentially, a range search is always an all IDs search.

For most users, the look-through limit kicks in and prevents range searches from turning into an all IDs
search. This improves overall performance and speeds up range search results. However, some clients
or administrative users like Directory Manager may not have a look-through limit set. In that case, a
range search can take several minutes to complete or even continue indefinitely.

It is possible to set a separate range look-through limit. This allows clients and administrative users to
have high look-through limits while still allowing a reasonable limit to be set on potentially performance-
impaired range searches.

Administration Guide

288

This is configured in the nsslapd-rangelookthroughlimit attribute. The default value is 5000, the same
as the default nsslapd-lookthroughlimit attribute value.

For example:

ldapmodify -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=config,cn=ldbm database,cn=plugins,cn=config
changetype: add
add: nsslapd-rangelookthroughlimit
nsslapd-rangelookthroughlimit: 7500

14.6. USING PERSISTENT SEARCH

A persistent search is an ldapsearch which remains open even after the initial search results are
returned.

IMPORTANT

The OpenLDAP client tools with Red Hat Enterprise Linux do not support persistent
searches. The server itself, however, does. Other LDAP clients must be used to perform
persistent searches.

The purpose of a persistent search is to provide a continuous list of changes to the directory entries as
well as the complete entries themselves, something like a hybrid search and changelog. Therefore, the
search command must specify what entries to return (the search parameters) and what changes cause
an entry to be returned (entry change parameters).

Persistent searches are especially useful for applications or clients which access the Directory Server
and provide two important benefits:

Keep a consistent and current local cache.

Any client will query local cache before trying to connect to and query the directory. Persistent
searches provide the local cache necessary to improve performance for these clients.

Automatically initiate directory actions.

The persistent cache can be automatically updated as entries are modified, and the persistent
search results can display what kind of modification was performed on the entry. Another
application can use that output to update entries automatically, such as automatically creating
an email account on a mail server for new users or generating a unique user ID number.

There are some performance considerations when running persistent searches, as well:

The ldapsearch does not send a notification when the client disconnects, and the change
notifications are not sent for any changes made while the search is disconnected. This means
that the client's cache will not be updated if it is ever disconnected and there is no good way to
update the cache with any new, modified, or deleted entries that were changed while it was
disconnected.

An attacker could open a large number of persistent searches to launch a denial of service
attack.

A persistent search requires leaving open a TCP connection between the Directory Server and

CHAPTER 14. FINDING DIRECTORY ENTRIES

289

A persistent search requires leaving open a TCP connection between the Directory Server and
client. This should only be done if the server is configured to allow a lot of client connections and
has a way to close idle connections.

In the access logs, a persistent search is identified with the tag options=persistent.

[12/Jan/2009:12:51:54.899423510 -0500] conn=19636710736396323 op=0 SRCH
base="dc=example,dc=com" scope=2 filter="(objectClass=person)" attrs=ALL options=persistent

14.7. SEARCHING WITH SPECIFIED CONTROLS

The Directory Server has defined controls in its supportedControls attribute in its DSE. Some of these
define server operations like replication; other are allowed extended operations like get effective rights
or dereferencing controls which clients can pass through LDAP operations to the server.

These controls can be specified using the -E option by giving the control OID, its criticality for the
ldapsearch, and any information required for the control operation.

-E '[!]control_OID:control_information'

Some controls, like server-side sorting and simple paged results, have an alias that can be used to pass
the control to the search operation. When the control alias is used, then the results are formatted, since
the control is recognized by the client.

14.7.1. Retrieving Effective User Rights

A get effective-rights search control is passed using the control OID. For example:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"
-s sub -x -E '!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=jsmith,ou=people,dc=example,dc=com' "
(objectclass=*)"

IMPORTANT

When a control is passed with its OID, the results from the search are unformatted.

Get effective rights searches are covered in much more detail in the access control chapter,
Section 18.12, “Checking Access Rights on Entries (Get Effective Rights)” .

14.7.2. Using Server-Side Sorting

Server-side sorting is performed as other control operations, using the -E flag and the sss control alias.
The structure of the operation sets the attribute by which to sort the results and, optionally, the sort
order and ordering rule.

-E sss=[-]attribute_name:[ordering_rule_OID]

The dash (-) is an optional flag that reverses the sort order, which naturally runs descending. The
matching rule tables in Section 14.3.4, “Using Matching Rules” contain the ordering rules supported by
the Directory Server.

For example:

Administration Guide

290

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"
-s sub -x -E sss=-uidNumber:2.5.13.15 "(objectclass=*)"

14.7.3. Performing Dereferencing Searches

A dereferencing search is a quick way to track back over cross-references in an entry and return
information about the referenced entry. For example, a group entry contains references to its member's
user entries. A regular search first searches for the group, then lists its members, and then requires a
separate search for each member. A dereferencing search for the group entry returns information about
the members — such as their locations, email addresses, or managers — along with the information for
the group, all in a single search request.

Dereferencing simplifies many client operations and reduces the number of search operations that are
performed. Cross-links show relationships between entries. Some operations may require getting a list
of cross-links from one entry and then performing a series of subsequent searches to get information
from each entry on the list. Dereferencing allows those sequences of searches to be consolidated into a
single search.

IMPORTANT

Dereferencing operations must be done using OpenLDAP command-line tools version
2.4.18 or later or other clients which support dereferencing searches.

The format of the dereference arguments is:

-E 'deref=deref_attribute:list_of_attributes'

The deref_attribute is the attribute in the search target that contains the reference. This can be any
attribute which has a DN for its value, such as member or manager.

NOTE

Not only must the value of the deref_attribute be a DN, but the actual defined syntax for
the attribute must be DN syntax (1.3.6.1.4.1.1466.115.121.1.12).

The list_of_attributes is one or more attributes in the referenced entry which will be returned along with
the primary search results. Multiple attributes can be separated by commas, like l,mail,cn.

CHAPTER 14. FINDING DIRECTORY ENTRIES

291

Figure 14.1. Simple Dereferencing Search Command

The requested dereferenced information requested in the search argument is returned with the rest of
the search results. For example, this dereferencing search tells the server to use the member attribute
in the search target entry (the Engineers group) as the deref_attribute. It then returns the locality
attribute for each member.

ldapsearch -x -D "cn=Directory Manager" -W -b "cn=Example,ou=Groups,dc=example,dc=com" -E
'deref=member:mail,cn' "(objectclass=*)"

Engineers, Groups, example.com
dn: cn=Engineers,ou=Groups,dc=example,dc=com
control: 1.3.6.1.4.1.4203.666.5.16 false MIQAAADNMIQAAAA1BAZtZW1iZXIEK2NuPURld

mVsb3BlcnMsIG91PUdyb3VwcywgZGM9ZXhhbXBsZSxkYz1jb20whAAAADIEBm1lbWJlcgQoY249VG

VzdGVycywgb3U9R3JvdXBzLCBkYz1leGFtcGxlLGRjPWNvbTCEAAAAVAQGbWVtYmVyBCp1aWQ9Z
W5

nLCBvdT1lbmdpbmVlcmluZywgZGM9ZXhhbXBsZSxkYz1jb22ghAAAABowhAAAABQEAWwxhAAAAAs
E
 CUNhbWJyaWRnZQ==
member: <mail=jsmith@example.com><cn=John
Smith>;uid=jsmith,ou=people,dc=example,dc=com
 objectClass: top
objectClass: inetuser
objectClass: groupofnames
cn: Engineers
member: uid=jsmith,ou=people,dc=example,dc=com

14.7.4. Using Simple Paged Results

Administration Guide

292

Search results can be very large, and a part of processing the results is organizing the results. One
method of doing this is using simple paged results, a control that breaks the results into pages of a
certain length.

The simple paged results control sets the number of entries to display at a time. The results can be
scrolled through one page at a time which makes the results easier to digest. The full behavior of the
control is described in RFC 2696.

Simple paged results are implemented as an LDAP control extension for the Directory Server. Its OID is
1.2.840.113556.1.4.319.

How Simple Paged Results Work

When you start a simple paged results search:

1. The client sends the search to the server, together with the paged results control and with how
many records to return in the first page.

2. Before Directory Server starts returning data, the server generates an estimate how many
records can be returned in total.

The estimate of records is not an exact number. The total number of records returned can be
lower than the estimate. The reasons for such a scenario include

attributes used in the search filter do not exist in the index. For an optimal result, all queried
attributes must be indexed.

before an entry is send to the client, access control lists (ACL) are validated. Insufficient
permissions can prevent the entry from being returned.

After generating the estimate, the server sends the first set of results, a cookie, and the
estimated number of records.

3. The returned records are displayed in the client. The user can now enter how many records
should be returned in the next request. The requested number is now sent, together with the
cookie, to the server.

4. The server retrieves the requested number of records from the database and sends them
together with a cookie to the client.

5. The previous two steps are repeated until all records are sent or the search is cancelled.

Simple Paged Results and OpenLDAP Tools

The format of the simple paged result search option with ldapsearch is:

-E pg=size

The size value is the page size, or the number of entries to include per page. For example:

ldapsearch -x -D "cn=Directory Manager" -W -b "ou=Engineers,ou=People,dc=example,dc=com" -E
pg=3 "(objectclass=*)" cn

dn: uid=jsmith,ou=Engineers,ou=People,dc=example,dc=com
 cn: John Smith

dn: uid=bjensen,ou=Engineers,ou=People,dc=example,dc=com

CHAPTER 14. FINDING DIRECTORY ENTRIES

293

http://www.ietf.org/rfc/rfc2696.txt

 cn: Barbara Jensen

dn: uid=hmartin,ou=Engineers,ou=People,dc=example,dc=com
 cn: Henry Martin

Results are sorted.
next page size (3): 5

The tag at the end shows the configured page size (the number in parentheses) from the search. After
the colon, one enters the page size for the next page, so entering 5 as shown would open the next page
of results with five entries.

IMPORTANT

Simple paged results operations must be done using OpenLDAP command-line tools
version 2.4.18 or later or other clients which support simple paged results, such as Perl
Net::LDAP.

Simple Paged Results and Server-Side Sorting

Simple paged results can be used together with server-side sorting. Server-side sorting is a control
which performs the sort process on the server rather than in a client; this is usually done for a search
which uses a particular matching rule. (This behavior is defined in RFC 2891.) The OpenLDAP client tools
do not support server-side sort with the simple paged results control, but other LDAP utilities such as
Perl Net::LDAP do support both.

Multiple Simple Paged Results Requests on a Single Connection

Some clients may open a single connection to the Directory Server, but send multiple operation
requests, including multiple search requests using the simple paged results extension.

Directory Server can manage and interpret multiple simple paged searches. Each search is added as an
entry in an array. When the paged search request is first sent, there is a cookie created and associated
with the search results. Each page of results is returned with that cookie, and that cookie is used to
request the next page of results. On the last page, the cookie is empty, signalling the end of the results.
This keeps each set of search results separate.

When there are multiple simple paged results on a single connection, the timeout limits are still
observed, but all open search requests much reach their configured time limit before any paged search
is disconnected.

Simple Paged Results, Contrasted with VLV Indexes

VLV indexes are similar to simple paged results in that they also return a usable browsing list of results.
The main difference is in how that list is generated. Simple paged results are calculated per search, while
VLV indexes are a permanent list. Overall, VLV indexes are faster for searches, but do require some
server-side configuration and overhead for the server to maintain.

NOTE

Simple paged results and VLV indexes cannot be used on the same search. Simple paged
results would attempt to manipulate the VLV index, which is already a browsing index. If
the control is passed for a search using a VLV index, then the server returns an
UNWILLING_TO_PERFORM error.

For more information on VLV indexes, see Section 13.4, “Using virtual list view control to request a

Administration Guide

294

http://www.ietf.org/rfc/rfc2891.txt

For more information on VLV indexes, see Section 13.4, “Using virtual list view control to request a
contiguous subset of a large search result”.

14.7.5. Pre- and Post-read Entry Response Controls

Red Hat Directory Server supports pre- and post-read entry response controls according to RFC 4527.
If a client requests one or both response controls, an LDAP search entry is returned, that contains the
attribute's value before and after the update.

When the pre-read control is used, an LDAP search query is returned containing the specified attribute's
value before modification. When the post-read control is used, the query contains the attribute's value
after modification. Both controls can be used at the same time. For example, to update the description
attribute and display the value before and after the modification:

ldapmodify -D "cn=Directory Manager" -W -x \
 -e \!preread=description -e \!postread=description
dn: uid=user,ou=People,dc=example,dc=com
changetype: modify
replace: description
description: new description

modifying entry "uid=user,ou=People,dc=example,dc=com"
control: 1.3.6.1.1.13.1 false ZCkEJXVpZD1qdXNlcixvdT1QZW9wbGUsZGM9ZXhhbXBsZSxk
 Yz1jb20wAA==
==> preread
dn: uid=user,ou=People,dc=example,dc=com
description: old description
<== preread
control: 1.3.6.1.1.13.2 false ZEsEJXVpZD1qdXNlcixvdT1QZW9wbGUsZGM9ZXhhbXBsZSxk
Yz1jb20wIjAgBAtkZXNjcmlwdGlvbjERBA9uZXcgZGVzY3JpcHRpb24=
==> postread
dn: uid=user,ou=People,dc=example,dc=com
description: new description
<== postread

CHAPTER 14. FINDING DIRECTORY ENTRIES

295

http://www.ietf.org/rfc/rfc4527.txt

CHAPTER 15. MANAGING REPLICATION
Replication is the mechanism by which directory data is automatically synchronized from one Red Hat
Directory Server instance to another; it is an important mechanism for extending the directory service
beyond a single server configuration. This chapter describes the tasks to be performed on the supplier
and consumer servers to set up single-supplier replication, multi-supplier replication, and cascading
replication.

15.1. REPLICATION OVERVIEW

Replication is the mechanism by which directory data is automatically synchronized from one
Directory Server to another. Updates of any kind — entry additions, modifications, deletion or renaming
of an entry — are automatically mirrored to other Directory Servers using replication.

Section 15.1.1, “What Directory Units Are Replicated”

Section 15.1.2, “Read-Write and Read-Only Replicas”

Section 15.1.3, “Suppliers and Consumers”

Section 15.1.4, “Changelog”

Section 15.1.5, “Replication Identity”

Section 15.1.6, “Replication Agreement”

15.1.1. What Directory Units Are Replicated

The smallest unit of the directory which can be replicated is a database. This means that one can
replicate an entire database but not a subtree within a database. Therefore, when creating the directory
tree, consider any replication plans as part of determining how to distribute information.

Replication also requires that one database correspond to one suffix. This means that a suffix (or
namespace) that is distributed over two or more databases using custom distribution logic cannot be
replicated. For more information on this topic, see Section 2.2, “Creating and Maintaining Databases” .

15.1.2. Read-Write and Read-Only Replicas

A database that participates in replication is called a replica. There are two kinds of replicas: read-write
or read-only. A read-write replica contains supplier copies of directory information and can be updated.
A read-only replica services read, search, and compare requests, but refers all update operations to
read-write replicas. A server can hold any number of read-only or read-write replicas.

15.1.3. Suppliers and Consumers

A server that holds a replica that is send to a replica on a different server is called a supplier for that
replica. A server that holds a replica that is received from a different server is called a consumer for that
replica. Generally, the replica on the supplier server is a read-write replica, and the one on the consumer
server is a read-only replica, with two exceptions:

In the case of cascading replication, the hub server holds a read-only replica that it supplies to
consumers. Section 15.4, “Cascading Replication” has more information.

In the case of multi-supplier replication, the suppliers are both suppliers and consumers for the
same information. For more information, see Section 15.3, “Multi-Supplier Replication” .

Administration Guide

296

Replication is always initiated by the supplier server, never by the consumer (supplier-initiated
replication). Supplier-initiated replication allows a supplier server to be configured to send data to
multiple consumer servers.

15.1.4. Changelog

Every supplier server maintains a changelog, a record of all changes that a supplier or hub needs to send
to its consumers. A changelog is a special kind of database that keeps the modifications that have
occurred on a replica. The supplier server then replays these modifications to the replicas stored on
consumer servers or to other suppliers, in the case of multi-supplier replication.

When an entry is modified, a change record describing the LDAP operation that was performed is
recorded in the changelog.

The changelog uses the same database environment as the main database. Implementing the
changelog as part of the main database ensures the database and changelog are always synchronized,
reduces the required database cache size, and simplifies backup and restore operations.

IMPORTANT

The changelog only write changelog RUV entries to the database when the server is shut
down, and otherwise the RUVs are managed in memory. When you back up the database
of a supplier, use the dsctl db2bak command or the web console. Both ways, the RUVs
are written to the database before the backup starts.

In Directory Server, the changelog is only intended for internal use by the server.

15.1.5. Replication Identity

When replication occurs between two servers, the replication process uses a special entry, called the
replication manager entry, to identify replication protocol exchanges and to control access to the
directory data. The replication manager entry, or any entry used during replication, must meet the
following criteria:

It is created on the consumer server in the cn=config entry.

Create this entry on every server that receives updates from another server, meaning on every
hub or dedicated consumer.

When a replica is configured as a consumer or hub, this entry must be specified as the one
authorized to perform replication updates.

The replication agreement is created on the supplier server, the DN of this entry must be
specified in the replication agreement.

In a replication context, this entry, with its special user profile, bypasses access control rules
defined on the consumer server for the database involved in that replication agreement. Note
that, outside of the replication context, the replication manager is subject to ACIs when
performing regular operations.

15.1.6. Replication Agreement

Directory Servers use replication agreements to define their replication configuration. A replication
agreement describes replication between one supplier and one consumer only. The agreement is
configured on the supplier server and must specify all required replication information:

CHAPTER 15. MANAGING REPLICATION

297

The database to be replicated.

The consumer server to which the data is pushed.

The days and times during which replication can occur.

The DN and credentials that the supplier server must use to bind (the replication manager entry
or supplier bind DN).

How the connection is secured (TLS, client authentication).

Any attributes that will not be replicated (fractional replication).

15.1.7. Replicating a Subset of Attributes with Fractional Replication

Fractional replication sets a specific subset of attributes that will not be transmitted from a supplier to
the consumer (or another supplier). Administrators can therefore replicate a database without
replicating all the information that it contains or all of the information in every entry.

Fractional replication is enabled and configured per replication agreement, not per entry. Excluding
attributes from replication is applied equally to all entries within the replication agreement's scope.

For attributes that are defined as optional (MAY keyword) in the schema, it is possible to set different
attributes to be replicated for an incremental update and a total update. The incremental update list
(nsDS5ReplicatedAttributeList) must always be set to enable fractional replication; if that is the only
attribute set, then it applies to both incremental and total updates. The optional
nsDS5ReplicatedAttributeListTotal attribute sets an additional fractional replication list for total
updates. This is described in Section 15.11.1, “Setting Different Fractional Replication Attributes for Total
and Incremental Updates”.

NOTE

An update to an excluded attribute still triggers a modify event and generates an empty
replication update. The nsds5ReplicaStripAttrs attribute adds a list of attributes which
cannot be sent in an empty replication event and are stripped from the update sequence.
This logically includes operational attribtes like modifiersName.

If a replication event is not empty, the stripped attributes are replicated. These attributes
are removed from updates only if the event would otherwise be emtpy.

15.1.8. Replication over TLS

For security reasons, configure Directory Server instances involved in replication to only replicate data
over a TLS connection. Note that if attribute encryption is enabled, a secure connection is always
required for replication.

Prerequisites
Before you can configure replication over TLS, the following prerequisites are required:

Configure both the supplier and consumer servers to use TLS. See Section 9.4.1, “Enabling TLS
in Directory Server”.

Configure the consumer server to recognize the supplier server's certificate as the supplier DN.
Do this only to use TLS client authentication rather than simple authentication. See Section 9.9,
“Using Certificate-based Client Authentication”.

Administration Guide

298

IMPORTANT

Replication configured over TLS with certificate-based authentication fails if the
supplier's certificate is only capable of behaving as a server certificate and not
also as a client during an TLS handshake. Replication with certificate-based
authentication uses the Directory Server's server certificate for authentication to
the remote server.

If you use certutil to generate the Certificate Signing Request (CSR), pass the --
nsCertType=sslClient,sslServer option to the command to set the certificate
required type.

Configuring Replication over TLS
For details about configuring replication:

When using user name and password authentication:

Section 15.2, “Single-supplier Replication”

Section 15.3, “Multi-Supplier Replication”

Section 15.4, “Cascading Replication”

When using certificate-based authentication, see Section 15.6, “Configuring Replication
Partners to use Certificate-based Authentication”.

15.2. SINGLE-SUPPLIER REPLICATION

In a single-supplier replication scenario, the supplier copy of the directory data is held in a single read-
write replica on one server called the supplier server . The supplier also maintains the changelog for this
replica. On another server, called the consumer server, a read-only copy of the directory is stored. In a
single-supplier replication environment, you can run multiple consumers.

Use a single-supplier replication topology, for example, if a suffix receives a large number of search
requests, but a small number of write requests. To distribute the load, clients can run searches for the
suffix on all servers in the topology and send write requests to the supplier.

The following diagram shows a single-supplier replication environment with two consumers:

CHAPTER 15. MANAGING REPLICATION

299

Figure 15.1. Single-supplier Replication

Use the command line or web console to set up a single-supplier replication topology. See:

Section 15.2.1, “Setting up Single-supplier Replication Using the Command Line”

Section 15.2.2, “Setting up Single-supplier Replication Using the Web Console”

15.2.1. Setting up Single-supplier Replication Using the Command Line

The following example assumes that you have an existing Directory Server instance running on a host
named supplier.example.com that will act as a supplier in the replication topology to be set up. The
following procedures describe how to add a read-only consumer named consumer.example.com to the
topology, and how to configure single-supplier replication for the dc=example,dc=com suffix.

Steps to be Performed on the Consumer
On the consumer.example.com host:

1. Install Directory Server, and create an instance. For details, see the Red Hat Directory Server
Installation Guide.

2. In case you created the instance without a database, create the database for the suffix. For
example, to create a database named userRoot for the dc=example,dc=com suffix:

dsconf -D "cn=Directory Manager" ldap://consumer.example.com backend \
 create --suffix="dc=example,dc=com" --be-name="userRoot"

For details on creating a database for a suffix, see Section 2.1.1, “Creating Suffixes”.

Administration Guide

300

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/

3. Enable replication for the suffix, and create the replication manager account:

dsconf -D "cn=Directory Manager" ldap://consumer.example.com replication \
 enable --suffix="dc=example,dc=com" --role="consumer" \
 --bind-dn="cn=replication manager,cn=config" --bind-passwd="password"

This command configures the consumer.example.com host as a consumer for the
dc=example,dc=com suffix. Additionally, the server creates the cn=replication
manager,cn=config user with the specified password, and allows this account to replicate
changes for the suffix to this host.

To add multiple consumers for the suffix to the topology, repeat the steps on each consumer.

Steps to be Performed on the Supplier
On the supplier.example.com host:

1. Enable replication for the dc=example,dc=com suffix:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com replication \
 enable --suffix="dc=example,dc=com" --role="supplier" --replica-id=1

This command configures the supplier.example.com host as a supplier for the
dc=example,dc=com suffix, and sets the replica ID for this entry to 1.

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix across
all suppliers in the topology.

2. Add the replication agreement, and initialize the consumer. For example:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt \
 create --suffix="dc=example,dc=com" --host="consumer.example.com" --port=636 \
 --conn-protocol=LDAPS --bind-dn="cn=replication manager,cn=config" \
 --bind-passwd="password" --bind-method=SIMPLE --init \
 example-agreement

This command creates a replication agreement named example-agreement. The replication
agreement defines settings, such as the consumer's host name, protocol, and authentication
information that the supplier uses when connecting and replicating data to the consumer.

After the agreement was created, Directory Server initializes the consumer. To initialize the
consumer later, omit the --init option. Note that replication does not start before you initialize
the consumer. For details about initializing a consumer, see Section 15.8.3, “Initializing a
Consumer”.

For further details about the options used in the command, enter:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt --help

3. Verify whether the initialization was successful:

CHAPTER 15. MANAGING REPLICATION

301

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt \
 init-status --suffix="dc=example,dc=com" example-agreement
Agreement successfully initialized.

Depending on the amount of data to replicate, the initialization can be time-consuming.

If you add multiple consumers for the suffix to the topology, repeat the steps on the supplier for each
consumer. However, you must enable replication for the suffix only once on the supplier.

15.2.2. Setting up Single-supplier Replication Using the Web Console

The following example assumes that you have an existing Directory Server instance running on a host
named supplier.example.com that will act as a supplier in the replication topology to be set up. The
following procedures describe how to add a read-only consumer named consumer.example.com to the
topology, and how to configure single-supplier replication for the dc=example,dc=com suffix.

Steps to be Performed on the Consumer
On the consumer.example.com host:

1. Install Directory Server, and create an instance. For details, see the Red Hat Directory Server
Installation Guide.

2. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

3. Select the instance.

4. In case you created the instance without a database, create the database for the suffix. For
details about creating a database for a suffix, see Section 2.1.1, “Creating Suffixes”.

5. Enable replication for the suffix:

a. Open the Replication menu.

b. Select the dc=example,dc=com suffix, and click Enable Replication.

c. Select Consumer in the Replication Role field, and enter the DN and password of the
replication manager account to create. For example:

Administration Guide

302

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/

These settings configure the host as a consumer for the dc=example,dc=com suffix.
Additionally, the server creates the cn=replication manager,cn=config user with the
specified password, and allows this account to replicate changes for the suffix to this host.

d. Click Enable Replication.

To add multiple consumers for the suffix to the topology, repeat the steps on each consumer.

Steps to be Performed on the Supplier
On the supplier.example.com host:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Enable replication for the dc=example,dc=com suffix:

a. Open the Replication menu.

b. Select the dc=example,dc=com suffix, and click Enable Replication.

c. Select Supplier in the Replication Role field, enter a replica ID, and leave the fields in the
Replication Authentication area empty. For example:

CHAPTER 15. MANAGING REPLICATION

303

This configures the host as a supplier for the dc=example,dc=com suffix, and sets the
replica ID for this entry to 1.

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix
across all suppliers in the topology.

d. Click Enable Replication.

4. Add the replication agreement, and initialize the consumer:

a. Open the Replication menu, and select the dc=example,dc=com suffix.

b. On Replication Agreements tab, click Create Agreement, and fill the fields. For example:

Administration Guide

304

These settings create a replication agreement named example-agreement. The replication
agreement defines settings, such as the consumer's host name, protocol, and
authentication information that the supplier uses when connecting and replicating data to
the consumer.

c. Select Do Online Initialization in the Consumer Initialization field to automatically
initialize the consumer after saving the agreement.

To initialize the consumer later, select Do Not Initialize. Note that replication does not start
before you initialize the consumer. For details about initializing a consumer, see
Section 15.8.3, “Initializing a Consumer” .

d. Click Save Agreement.

5. Verify whether the initialization was successful:

a. Open the Replication menu.

b. Select the Agreements entry.

For a successfully-completed initialization, the web console displays the Error (0) Replica
acquired successfully: Incremental update succeeded message in the Last Update
Status column.

CHAPTER 15. MANAGING REPLICATION

305

Depending on the amount of data to replicate, the initialization can be time-consuming.

If you add multiple consumers for the suffix to the topology, repeat the steps on the supplier for each
consumer. However, you must enable replication for the suffix only once on the supplier.

15.3. MULTI-SUPPLIER REPLICATION

In a multi-supplier replication scenario, the supplier copies of the directory data are stored on multiple
read-write replicas. Each of these servers maintains a changelog for the read-write replica.
Directory Server supports up to 20 suppliers in a replication topology.

NOTE

Each supplier in a multi-supplier replication environment is also a consumer automatically.

The following diagram shows a multi-supplier replication environment with two suppliers:

Figure 15.2. Multi-supplier Replication with Two Suppliers

In complex environments, replication topologies often contain multiple read-write suppliers as well as
read-only consumers. The following diagram shows a topology where each supplier is configured with
ten replication agreements to replicate data to two other suppliers and eight consumers:

Administration Guide

306

Figure 15.3. Complex Replication Scenario with Four Suppliers and Eight Consumers

NOTE

The replication speed depends on:

The speed of the network.

The number of outgoing and incoming replication agreements.

Use the command line or web console to set up a multi-supplier replication topology. See:

Section 15.3.1, “Setting up Multi-supplier Replication Using the Command Line”

Section 15.3.2, “Setting up Multi-supplier Replication Using the Web Console”

15.3.1. Setting up Multi-supplier Replication Using the Command Line

The following example assumes that you have an existing Directory Server instance running on a host
named supplier1.example.com. The following procedures describe how to add another read-write
replica named supplier2.example.com to the topology, and how to configure multi-supplier replication
for the dc=example,dc=com suffix.

Preparing the New Server to Join

CHAPTER 15. MANAGING REPLICATION

307

On the supplier2.example.com host:

1. Install Directory Server, and create an instance. For details, see the Red Hat Directory Server
Installation Guide.

2. In case you created the instance without a database, create the database for the suffix. For
example, to create a database named userRoot for the dc=example,dc=com suffix:

dsconf -D "cn=Directory Manager" ldap://supplier2.example.com backend \
 create --suffix="dc=example,dc=com" --be-name="userRoot"

For details on creating a database for a suffix, see Section 2.1.1, “Creating Suffixes”.

3. Enable replication for the suffix, and create the replication manager account:

dsconf -D "cn=Directory Manager" ldap://supplier2.example.com replication \
 enable --suffix="dc=example,dc=com" --role="supplier" --replica-id=1 \
 --bind-dn="cn=replication manager,cn=config" --bind-passwd="password"

This command configures the supplier2.example.com host as a supplier for the
dc=example,dc=com suffix, and sets the replica ID for this entry to 1. Additionally, the server
creates the cn=replication manager,cn=config user with the specified password, and allows
this account to replicate changes for the suffix to this host.

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix across
all suppliers in the topology.

Configuring the Existing Server as a Supplier
On the supplier1.example.com host:

1. Similarly to the command you ran on the new server to join, enable replication for the
dc=example,dc=com suffix, and create the replication manager account:

dsconf -D "cn=Directory Manager" ldap://supplier1.example.com replication \
 enable --suffix="dc=example,dc=com" --role="supplier" --replica-id=2 \
 --bind-dn="cn=replication manager,cn=config" --bind-passwd="password"

The replica ID must be different than the one created in the section called “Preparing the New
Server to Join”, but the replication manager account can use the same DN.

2. Add the replication agreement, and initialize a new server. For example:

dsconf -D "cn=Directory Manager" ldap://supplier1.example.com repl-agmt \
 create --suffix="dc=example,dc=com" --host="supplier2.example.com" --port=636 \
 --conn-protocol=LDAPS --bind-dn="cn=replication manager,cn=config" \
 --bind-passwd="password" --bind-method=SIMPLE --init \
 example-agreement-supplier1-to-supplier2

This command creates a replication agreement named example-agreement-supplier1-to-
supplier2. The replication agreement defines settings, such as the consumer's host name,
protocol, and authentication information that the supplier uses when connecting and replicating
data to the consumer.

Administration Guide

308

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/

After the agreement was created, Directory Server initializes the consumer. To initialize the
consumer later, omit the --init option. Note that replication does not start before you initialize
the consumer. For details on initializing a consumer, see Section 15.8.3, “Initializing a Consumer” .

For further details about the options used in the command, enter:

dsconf -D "cn=Directory Manager" ldap://supplier1.example.com repl-agmt --help

3. Verify whether the initialization was successful:

dsconf -D "cn=Directory Manager" ldap://supplier1.example.com repl-agmt \
 init-status --suffix="dc=example,dc=com" example-agreement-supplier1-to-supplier2
Agreement successfully initialized.

Depending on the amount of data to replicate, the initialization can take be time-consuming.

Configuring the New Server as a Supplier
On the supplier2.example.com host:

WARNING

Do not continue if you have not initialized the suffix 'dc=example,dc=com' on the
existing server as described in the section called “Configuring the Existing Server as
a Supplier”. Otherwise, the empty database from the new server overrides the
database on the existing supplier.

Add the replication agreement to replicate information from supplier 2 to supplier 1. For
example:

dsconf -D "cn=Directory Manager" ldap://supplier2.example.com repl-agmt \
 create --suffix="dc=example,dc=com" --host="supplier1.example.com" --port=636 \
 --conn-protocol=LDAPS --bind-dn="cn=replication manager,cn=config" \
 --bind-passwd="password" --bind-method=SIMPLE \
 example-agreement-supplier2-to-supplier1

This command creates a replication agreement named example-agreement-supplier2-to-
supplier1. The replication agreement defines settings, such as the consumer's host name,
protocol, and authentication information that the supplier uses when connecting and replicating
data to the consumer.

15.3.2. Setting up Multi-supplier Replication Using the Web Console

The following example assumes that you have an existing Directory Server instance running on a host
named supplier1.example.com. The following procedures describe how to add another read-write
replica named supplier2.example.com to the topology, and how to configure multi-supplier replication
for the dc=example,dc=com suffix.

Preparing the New Server to Join
On the supplier2.example.com host:



CHAPTER 15. MANAGING REPLICATION

309

1. Install Directory Server, and create an instance. For details, see the Red Hat Directory Server
Installation Guide.

2. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

3. Select the instance.

4. In case you created the instance without a database, create the database from the suffix. For
details about creating a database for a suffix, see Section 2.1.1, “Creating Suffixes”.

5. Enable replication for the suffix:

a. Open the Replication menu.

b. Select the dc=example,dc=com suffix, and click Enable Replication.

c. Select Supplier in the Replication Role field, enter a replica ID, as well as the DN and
password of the replication manager account to create. For example:

These settings configure the supplier2.example.com host as a supplier for the
dc=example,dc=com suffix, and set the replica ID for this entry to 1. Additionally, the

Administration Guide

310

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/

server creates the cn=replication manager,cn=config user with the specified password,
and allows this account to replicate changes for the suffix to this host.

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix
across all suppliers in the topology.

d. Click Enable Replication.

Configuring the Existing Server as a Supplier
On the supplier1.example.com host:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Similarly to the settings on the new server to join, enable replication for the
dc=example,dc=com suffix, and create a replication manager account:

a. Open the Replication menu.

b. Select the dc=example,dc=com suffix, and click Enable Replication.

c. Select Supplier in the Replication Role field, enter a replica ID, as well as the DN and
password of the replication manager account to create. For example:

CHAPTER 15. MANAGING REPLICATION

311

The replica ID must be different than the one created in the section called “Preparing the
New Server to Join”, but the replication manager account can use the same DN.

d. Click Enable Replication.

4. Add the replication agreement and initialize the consumer:

a. Open the Replication menu, and select the Agreements entry.

b. Click Create Replication Agreement, and fill the fields. For example:

Administration Guide

312

These settings create a replication agreement named example-agreement-supplier1-to-
supplier2. The replication agreement defines settings, such as the consumer's host name,
protocol, and authentication information that the supplier uses when connecting and
replicating data to the consumer.

c. Select Do Online Initialization in the Consumer Initialization field to automatically
initialize the consumer after saving the agreement.

To initialize the consumer later, select Do Not Initialize. Note that replication does not start
before you initialize the consumer. For details on initializing a consumer, see Section 15.8.3,
“Initializing a Consumer”.

d. Click Save Agreement.

5. Verify whether the initialization was successful:

a. Open the Replication menu.

b. Select the Agreements entry.

For a successfully-completed initialization, the web console displays the Error (0) Replica
acquired successfully: Incremental update succeeded message in the Last Update
Status column.

CHAPTER 15. MANAGING REPLICATION

313

Depending on the amount of data to replicate, the initialization can be time-consuming.

Configuring the New Server as a Supplier
On the supplier2.example.com host:

WARNING

Do not continue if you have not initialized the replication agreement on the existing
server as described in the section called “Configuring the Existing Server as a
Supplier”. Otherwise, the empty database from the new server overrides the
database on the existing supplier.

1. Add the replication agreement, and initialize the consumer:

a. Open the Replication menu, and select the Agreements entry.

b. Click Create Replication Agreement, and fill the fields. For example:



Administration Guide

314

These settings create a replication agreement named example-agreement-supplier2-to-
supplier1.

c. Select Do Online Initialization in the Consumer Initialization field to automatically
initialize the consumer after saving the agreement.

To initialize the consumer later, select Do Not Initialize. Note that replication does not start
before you initialize the consumer. For details on initializing a consumer, see Section 15.8.3,
“Initializing a Consumer”.

d. Click Save Agreement.

2. Verify whether the initialization was successful:

a. Open the Replication menu.

b. Select the Agreements entry.

If the initialization completed successfully, the web console displays the Error (0) Replica
acquired successfully: Incremental update succeeded message in the Last Update
Status column.

CHAPTER 15. MANAGING REPLICATION

315

Depending on the amount of data to replicate, the initialization be time-consuming.

15.3.3. Preventing Monopolization of a Consumer in Multi-Supplier Replication

One of the features of multi-supplier replication is that a supplier acquires exclusive access to the
consumer for the replicated area. During this time, other suppliers are locked out of direct contact with
the consumer. If a supplier attempts to acquire access while locked out, the consumer sends back a busy
response, and the supplier sleeps for several seconds before making another attempt. During a low
update load, the supplier sends its update to another consumer while the first consumer is locked, and
then sends updates when the first consumer is free again.

A problem can arise if the locking supplier is under a heavy update load or has a lot of pending updates in
the changelog. If the locking supplier finishes sending updates and has multiple pending changes to
send, it immediately attempts to reacquire the consumer. Such attempt in most cases succeeds,
because other suppliers are usually sleeping. This can cause a single supplier to monopolize a consumer
for several hours or longer.

The following attributes address this issue:

nsds5ReplicaBusyWaitTime

Sets the time in seconds for a supplier to wait after a consumer sends back a busy response before
making another attempt to acquire access.

For example, to configure that a supplier waits 5 seconds before making another acquire attempt:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt \
 set --suffix="suffix" --busy-wait-time=5 agreement_name

nsds5ReplicaSessionPauseTime

Sets the time in seconds for a supplier to wait between two update sessions. If you set a value lower
or equal than the value specified in nsds5ReplicaBusyWaitTime, Directory Server automatically
uses the value for the nsds5ReplicaSessionPauseTime parameter that is one second higher than
the value set in nsds5ReplicaBusyWaitTime.

For example, to configure that the supplier waits 10 seconds between two update sessions:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt \
 set --suffix="suffix" --session-pause-time=10 agreement_name

nsds5ReplicaReleaseTimeout

Sets the timeout after which a supplier releases the replica, whether or not it has finished sending its
updates. This prevents a single supplier from monopolizing a replica.

For example, to configure a supplier to release a replica after 90 seconds in a heavy replication
environment:

Administration Guide

316

dsconf -D "cn=Directory Manager" ldap://supplier.example.com replication \
 set --suffix="suffix" --repl-release-timeout=90

For further details, see the parameter descriptions in the Red Hat Directory Server Configuration,
Command, and File Reference.

To log replica busy errors, enable Replication error logging (log level 8192). See Section 21.3.7,
“Configuring the Log Levels”.

15.4. CASCADING REPLICATION

In a cascading replication scenario, one server, a hub, acts both as a consumer and a supplier. It holds a
read-only replica and maintains a changelog, so it receives updates from the supplier server that holds
the supplier copy of the data and, in turn, supplies those updates to the consumer. Use cascading
replication for balancing heavy traffic loads or to keep supplier servers based locally in geographically-
distributed environments.

The following diagram shows a simple cascading replication scenario:

Figure 15.4. Cascading Replication

CHAPTER 15. MANAGING REPLICATION

317

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#Replication_Attributes_under_cnReplicationAgreementName_cnreplica_cnsuffixName_cnmapping_tree_cnconfig

NOTE

Multi-supplier and cascading replication can be combined.

Use the command line or the web console to set up a cascading replication topology. See:

Section 15.4.1, “Setting up Cascading Replication Using the Command Line”

Section 15.4.2, “Setting up Cascading Replication Using the Web Console”

15.4.1. Setting up Cascading Replication Using the Command Line

The following example assumes that you have an existing Directory Server instance running on a host
named supplier.example.com. The following procedures describe how to add a hub named
hub.example.com to the topology that receives updates from the supplier for the
dc=example,dc=com suffix. Subsequently, the procedure describes adding a consumer named
consumer.example.com that receives updates from the hub server for the suffix.

Preparing the New Hub Server to Join
On the hub.example.com host:

1. Install Directory Server and create an instance. For details, see the Red Hat Directory Server
Installation Guide.

2. In case you created the instance without a database, create the database for the suffix. For
example, to create a database named userRoot for the dc=example,dc=com suffix:

dsconf -D "cn=Directory Manager" ldap://hub.example.com backend \
 create --suffix="dc=example,dc=com" --be-name="userRoot"

For details about creating a database for a suffix, see Section 2.1.1, “Creating Suffixes”.

3. Enable replication for the suffix and create the replication manager account:

dsconf -D "cn=Directory Manager" ldap://hub.example.com replication \
 enable --suffix="dc=example,dc=com" --role="hub" \
 --bind-dn="cn=replication manager,cn=config" --bind-passwd="password"

This command configures the hub.example.com host as a hub for the dc=example,dc=com
suffix. Additionally, the server creates the cn=replication manager,cn=config user with the
specified password and allows this account to replicate changes for the suffix to this host.

Configuring the Existing Server as a Supplier
On the supplier.example.com host:

1. Similarly to the command you ran on the new hub server to join in the section called “Preparing
the New Hub Server to Join”, enable replication for the dc=example,dc=com suffix and create
a replication manager account:

dsconf -D "cn=Directory Manager" ldap://supplier1.example.com replication \
 enable --suffix="dc=example,dc=com" --role="supplier" --replica-id=1 \
 --bind-dn="cn=replication manager,cn=config" --bind-passwd="password"

IMPORTANT

Administration Guide

318

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix across
all suppliers in the topology.

The replication manager account can use the same DN as the one created on the hub.

2. Add the replication agreement and initialize the hub. For example:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt \
 create --suffix="dc=example,dc=com" --host="hub.example.com" --port=636 \
 --conn-protocol=LDAPS --bind-dn="cn=replication manager,cn=config" \
 --bind-passwd="password" --bind-method=SIMPLE --init \
 example-agreement-supplier-to-hub

This command creates a replication agreement named example-agreement-supplier-to-hub.
The replication agreement defines settings, such as the hubs' host name, protocol, and
authentication information, which supplier uses when connecting and replicating data to the
hub.

After the agreement was created, Directory Server initializes the hub. To initialize the hub later,
omit the --init option. Note that replication does not start before you initialized the consumer.
For details about initializing a consumer, see Section 15.8.3, “Initializing a Consumer” .

For further details about the options used in the command, enter:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt --help

3. Verify whether the initialization was successful:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt \
 init-status --suffix="dc=example,dc=com" example-agreement-supplier-to-hub
Agreement successfully initialized.

Depending on the amount of data to replicate, the initialization can be time-consuming.

Preparing the new Consumer to Join
On the consumer.example.com host:

1. Install Directory Server and create an instance. For details, see the Red Hat Directory Server
Installation Guide.

2. In case you created the instance without a database, create the database for the suffix. For
example, to create a database named userRoot for the dc=example,dc=com suffix:

dsconf -D "cn=Directory Manager" ldap://hub.example.com backend \
 create --suffix="dc=example,dc=com" --be-name="userRoot"

For details about creating a database for a suffix, see Section 2.1.1, “Creating Suffixes”.

3. Enable replication for the suffix and create the replication manager account:

CHAPTER 15. MANAGING REPLICATION

319

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/

dsconf -D "cn=Directory Manager" ldap://consumer.example.com replication \
 enable --suffix="dc=example,dc=com" --role="consumer" \
 --bind-dn="cn=replication manager,cn=config" --bind-passwd="password"

This command configures the consumer.example.com host as a consumer for the
dc=example,dc=com suffix. Additionally, the server creates the cn=replication
manager,cn=config user with the specified password and allows this account to replicate
changes for the suffix to this host.

Configuring the Hub as a Supplier for the Consumer
On the hub.example.com host:

1. Add the replication agreement and initialize the server. For example:

dsconf -D "cn=Directory Manager" ldap://hub.example.com repl-agmt \
 create --suffix="dc=example,dc=com" --host="consumer.example.com" --port=636 \
 --conn-protocol=LDAPS --bind-dn="cn=replication manager,cn=config" \
 --bind-passwd="password" --bind-method=SIMPLE --init \
 example-agreement-hub-to-consumer

After the agreement was created, Directory Server initializes the consumer. To initialize the
consumer later, omit the --init option.

2. Verify whether the initialization was successful:

dsconf -D "cn=Directory Manager" ldap://hub.example.com repl-agmt \
 init-status --suffix="dc=example,dc=com" example-agreement-hub-to-consumer
Agreement successfully initialized.

Depending on the amount of data to replicate, the initialization can be time-consuming.

15.4.2. Setting up Cascading Replication Using the Web Console

The following example assumes that you have an existing Directory Server instance running on a host
named supplier.example.com. The following procedures describe how to add a hub named
hub.example.com to the topology that receives updates from the supplier for the
dc=example,dc=com suffix. Subsequently, the procedure describes adding a consumer named
consumer.example.com that receives updates from the hub server for the suffix.

Preparing the New Hub Server to Join
On the hub.example.com host:

1. Install Directory Server and create an instance. For details, see the Red Hat Directory Server
Installation Guide.

2. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

3. Select the instance.

4. In case you created the instance without a database, create the database for the suffix. For
details about creating a database for a suffix, see Section 2.1.1, “Creating Suffixes”.

5. Enable replication for the suffix:

Administration Guide

320

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/

a. Open the Replication menu.

b. Select the dc=example,dc=com suffix and click Enable Replication.

c. Select Hub in the Replication Role field, and enter the DN and password of the replication
manager account to create. For example:

These settings configure the hub.example.com host as a hub for the
dc=example,dc=com suffix. Additionally, the server creates the cn=replication
manager,cn=config user with the specified password and allows this account to replicate
changes for the suffix to this host.

d. Click Enable Replication.

Configuring the Existing Server as a Supplier
On the supplier.example.com host:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Similarly to the settings on the new hub server to join in the section called “Preparing the New
Hub Server to Join”, enable replication for the dc=example,dc=com suffix and create a
replication manager account:

CHAPTER 15. MANAGING REPLICATION

321

a. Open the Replication menu.

b. Select the dc=example,dc=com suffix and click Enable Replication.

c. Select Supplier in the Replication Role field, enter a replica ID, as well as the DN and
password of the replication manager account to create. For example:

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix
across all suppliers in the topology.

The replication manager account can use the same DN as the one created on the hub.

d. Click Enable Replication.

4. Add the replication agreement and initialize the hub:

a. Open the Replication menu, and select the suffix.

b. On the Replication Agreements tab, click Create Agreement, and fill the fields. For

Administration Guide

322

b. On the Replication Agreements tab, click Create Agreement, and fill the fields. For
example:

These settings create a replication agreement named example-agreement-supplier-to-
hub. The replication agreement defines settings, such as the hubs' host name, protocol, and
authentication information, the supplier uses when connecting and replicating data to the
hub.

c. Select Do Online Initialization in the Consumer Initialization field to automatically
initialize the consumer after saving the agreement.

To initialize the hub later, select Do Not Initialize. Note that replication does not start
before you initialized the consumer. For details about initializing a consumer, see
Section 15.8.3, “Initializing a Consumer” .

d. Click Save Agreement.

5. Verify whether the initialization was successful:

a. Open the Replication menu.

b. Select the Agreements entry.

If the initialization completed successfully, the web console displays the Error (0) Replica

CHAPTER 15. MANAGING REPLICATION

323

If the initialization completed successfully, the web console displays the Error (0) Replica
acquired successfully: Incremental update succeeded message in the Last Update
Status column.

Depending on the amount of data to replicate, the initialization can be time-consuming.

Configuring the New Consumer to Join
On the consumer.example.com host:

1. Install Directory Server and create an instance. For details, see the Red Hat Directory Server
Installation Guide.

2. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

3. Select the instance.

4. In case you created the instance without a database, create the database for the suffix. For
details about creating a database for a suffix, see Section 2.1.1, “Creating Suffixes”.

5. Enable replication for the suffix:

a. Open the Replication menu.

b. Select the dc=example,dc=com suffix and click Enable Replication.

c. Select Consumer in the Replication Role field, and enter the DN and password of the
replication manager account to create. For example:

Administration Guide

324

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/installation_guide/

These settings configure the consumer.example.com host as a consumer for the
dc=example,dc=com suffix. Additionally, the server creates the cn=replication
manager,cn=config user with the specified password and allows this account to replicate
changes for the suffix to this host.

d. Click Enable Replication.

Configuring the Hub as a Supplier for the Consumer
On the consumer.example.com host:

1. Add the replication agreement and initialize the consumer:

a. Open the Replication menu, and select the suffix.

b. On the Replication Agreements tab, click Create Agreement, and fill the fields. For
example:

CHAPTER 15. MANAGING REPLICATION

325

These settings create a replication agreement named example-agreement-hub-to-
consumer.

c. Select Do Online Initialization in the Consumer Initialization field to automatically
initialize the consumer after saving the agreement.

To initialize the consumer later, select Do Not Initialize. Note that replication does not start
before you initialized the consumer. For details about initializing a consumer, see
Section 15.8.3, “Initializing a Consumer” .

d. Click Save Agreement.

2. Verify whether the initialization was successful:

a. Open the Replication menu.

b. Select the Agreements entry.

If the initialization completed successfully, the web console displays the Error (0) Replica
acquired successfully: Incremental update succeeded message in the Last Update
Status column.

Administration Guide

326

Depending on the amount of data to replicate, the initialization can be time-consuming.

15.5. CONFIGURING BOOTSTRAP CREDENTIALS

When you use bind distinguished name (DN) groups in a replication agreement, there can be situations
where the group is not present or outdated:

During online initialization where you must authenticate to the replica before the database is
initialized

When you use GSSAPI as authentication method and the Kerberos credentials are changed

If you configured bootstrap credentials in a replication agreement, Directory Server uses these
credentials in case that the connection failed because one of the following errors:

LDAP_INVALID_CREDENTIALS (err=49)

LDAP_INAPPROPRIATE_AUTH (err=48)

LDAP_NO_SUCH_OBJECT (err=32)

If the bind succeeds with the bootstrap credentials, the server establishes the replication connection
and a new replication session begins. This allows any updates to the bind DN group members to be
updated. By default on the next replication session, Directory Server uses the default credentials in the
agreement, that now succeeds.

The bootstrap credentials also fail, Directory Server stops trying to connect.

Procedure
To set the bootstrap credentials when you create a replication agreement:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt create ... --bootstrap-
bind-dn "bind_DN" --bootstrap-bind-passwd "password" --bootstrap-bind-method bind_method --
bootstrap-conn-protocol connection protocol ...

To set the bootstrap credentials in an existing replication agreement:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt set --suffix="suffix" --
bootstrap-bind-dn "bind_DN" --bootstrap-bind-passwd "password" --bootstrap-bind-method
bind_method --bootstrap-conn-protocol connection protocol agreement_name

15.6. CONFIGURING REPLICATION PARTNERS TO USE CERTIFICATE-
BASED AUTHENTICATION

Instead of using a bind DN and password to authenticate to a replication partner, you can use

CHAPTER 15. MANAGING REPLICATION

327

Instead of using a bind DN and password to authenticate to a replication partner, you can use
certificate-based authentication.

The following procedure describes how to add a new server named server2.example.com to the
replication topology, and how to set up replication agreements between the new host and the existing
server1.example.com using certificate-based authentication:

1. On both hosts, set up certificate-based authentication. For details, see Section 9.9.1, “Setting
up Certificate-based Authentication”.

2. On the server1.example.com host:

a. Create accounts for both servers, such as cn=server1,example,dc=com and
cn=server2,dc=example,dc=com and add the client certificates to the corresponding
accounts. For details, see:

Section 3.1.3.1, “Adding an Entry Using ldapadd”.

Section 9.9.2, “Adding a Certificate to a User”

Both servers will later use these accounts and certificates to authenticate when they
establish a replication connection to each other.

b. Create a group, such as cn=repl_server,ou=Groups,dc=example,dc=com, and add both
server accounts. See Section 8.1, “Using Groups” .

c. Create the replica entry and set the nsds5ReplicaBindDNGroup attribute to the DN of
the group created in the previous step:

dsconf -D "cn=Directory Manager" ldap://server1.example.com replication \
 enable --suffix="dc=example,dc=com" --role="supplier" --replica-id="7" \
 --bind-group-dn="cn=repl_server,ou=Groups,dc=example,dc=com"

d. Set the replica entry's interval in which Directory Server checks if the group has been
changed to 0:

dsconf -D "cn=Directory Manager" ldap://server1.example.com replication \
 set --suffix="dc=example,dc=com" --repl-bind-group-interval=0

3. Initialize the new server:

a. Create a temporary replication manager account, such as cn=Replication
Manager,cn=config, on server2.example.com.

b. On server1.example.com, create a temporary replication agreement which uses the
account from the previous step for authentication:

dsconf -D "cn=Directory Manager" ldap://server2.example.com repl-agmt \
 create --suffix="dc=example,dc=com" --host="server1.example.com" --port=636 \
 --conn-protocol=LDAPS --bind-dn="cn=Replication Manager,cn=config" \
 --bind-passwd="password" --bind-method=SIMPLE --init \
 temporary_agreement

This agreement uses the previously-created replication manager account to initialize the
database. Before this initialization, the database on server2.example.com is empty and the

Administration Guide

328

accounts with the associated certificates do not exist. Therefore, replication using
certificates is not possible before the database is initialized.

4. After the new server has been initialized:

a. Remove the temporary replication agreement from server1.example.com:

dsconf -D "cn=Directory Manager" ldap://server1.example.com repl-agmt \
 delete --suffix="dc=example,dc=com" temporary_agreement

b. Remove the temporary replication manager account from server2.example.com:

dsconf -D "cn=Directory Manager" ldap://server2.example.com replication \
 delete-manager --suffix="dc=example,dc=com" --name="Replication Manager"

5. Create a replication agreement on both servers that use certificate-based authentication:

a. On server1.example.com:

dsconf -D "cn=Directory Manager" ldap://server1.example.com repl-agmt \
 create --suffix="dc=example,dc=com" --host="server2.example.com" --port=636 \
 --conn-protocol=LDAPS --bind-method="SSLCLIENTAUTH" \
 --init example_agreement

b. On server2.example.com:

dsconf -D "cn=Directory Manager" ldap://server2.example.com repl-agmt \
 create --suffix="dc=example,dc=com" --host="server1.example.com" --port=636 \
 --conn-protocol=LDAPS --bind-method="SSLCLIENTAUTH" \
 --init example_agreement

6. To verify the replication works correctly, display the nsds5replicaLastUpdateStatus attribute
in the replication agreement:

dsconf -D "cn=Directory Manager" ldap://server1.example.com repl-agmt status --
suffix="dc=example,dc=com" example_agreement

For details about possible statuses, see the Replication Agreement Status appendix in the
Red Hat Directory Server Configuration, Command, and File Reference .

15.7. PROMOTING A CONSUMER OR HUB TO A SUPPLIER

In certain situations, such as when a supplier in a replication topology is unavailable due to a hardware
outage, administrators want to promote a read-only consumer or hub to a writable supplier.

15.7.1. Promoting a Consumer or Hub to a Supplier Using the Command Line

For example, to promote the server.example.com host to a supplier for the dc=example,dc=com
suffix:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication \
 promote --suffix="dc=example,dc=com" --newrole="supplier" --replica-id=2

IMPORTANT

CHAPTER 15. MANAGING REPLICATION

329

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/replication_agreement_status

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix across all
suppliers in the topology.

Optionally, you can now configure the new supplier to replicate changes for the suffix to other servers in
the topology. For details about configuring replication, see:

Section 15.2.1, “Setting up Single-supplier Replication Using the Command Line”

Section 15.3.1, “Setting up Multi-supplier Replication Using the Command Line”

Section 15.4.1, “Setting up Cascading Replication Using the Command Line”

15.7.2. Promoting a Consumer or Hub to a Supplier Using the Web Console

For example, to promote a consumer or hub to a supplier for the dc=example,dc=com suffix:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Replication menu and select the Configuration entry.

4. Select the dc=example,dc=com suffix.

5. Click Promote.

6. Select Supplier in the Replication Role field and enter a replica ID.

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix across
all suppliers in the topology.

7. Select Yes, I am sure.

8. Click Change Role to confirm the new role.

Optionally, you can now configure the new supplier to replicate changes for the suffix to other servers in
the topology. For details about configuring replication, see:

Section 15.2.2, “Setting up Single-supplier Replication Using the Web Console”

Section 15.3.2, “Setting up Multi-supplier Replication Using the Web Console”

Section 15.4.2, “Setting up Cascading Replication Using the Web Console”

15.8. ABOUT INITIALIZING A CONSUMER

After creating the replication agreement, initialize the consumer. During this operation, the supplier
copies the existing data to the consumer.

IMPORTANT

Administration Guide

330

IMPORTANT

Replication will not begin until you initialized the consumer.

15.8.1. When to Initialize a Consumer

Consumer initialization involves copying data from the supplier server to the consumer server. Once the
subtree has been physically placed on the consumer, the supplier server can begin replaying update
operations to the consumer server.

Under normal operations, the consumer should not ever have to be reinitialized. However, any time
there is a chance that there is a big discrepancy between the supplier's data and the consumer's,
reinitialize the consumer. For example, if the data on the supplier server is restored from backup, then all
consumers supplied by that server should be reinitialized. As another example, if the supplier has not
been able to contact the consumer for a long time, like a week, the supplier may determine that the
consumer is too far out of date to be updated, and must be reinitialized.

The consumer can either be initialized online using the web console or manually using the command line.
Online consumer initialization using the web console is an effective method of initializing a small number
of consumers. However, since each replica is initialized in sequence, this method is not suited to
initializing a large number of replicas. Online consumer initialization is the method to use when the
consumer is initialized as part of configuring the replication agreement on the supplier server.

Manual consumer initialization using the command line is a more effective method of initializing a large
number of consumers from a single LDIF file.

15.8.2. Setting Initialization Timeouts

If initialization of large databases fails due to timeouts, set one of the following to a large enough time
period or to an unlimited period to enable Directory Server to initialize the entire database before the
operation times out:

The nsslapd-idletimeout configuration parameter in the cn=config entry sets the timeout for
all replication agreements on the server. For example, to disable the timeout globally:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
idletimeout=0

The nsIdleTimeout parameter in the replication manager's DN set's the timeout for all
agreements that use this replication manager entry. For example, to disable the timeout for the
cn=replication manager,cn=config entry:

ldapmodify -D "cn=Directory Manager" -w -h server.example.com -p 389 -x
dn: cn=replication manager,cn=config
changetype: modify
add: nsIdleTimeout
nsIdleTimeout: 0

15.8.3. Initializing a Consumer

This section describes initializing a consumer using the command line and in the web console.

15.8.3.1. Initializing a Consumer Using the Command Line

You can initialize a consumer online and offline using the command line. This section explains both

CHAPTER 15. MANAGING REPLICATION

331

You can initialize a consumer online and offline using the command line. This section explains both
procedures.

15.8.3.1.1. Initializing a Consumer Online

After creating the replication agreement, use the dsconf repl-agmt init command to initialize a
consumer online:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt \
 init --suffix="suffix" agreement_name

15.8.3.1.2. Initializing a Consumer Offline

To initialize a consumer offline:

1. On the supplier:

a. Shutdown the instance on the supplier:

dsctl instance_name stop

b. Export the userRoot database that contains the suffix to replicate into the
/tmp/example.ldif file with replication information:

dsctl instance_name db2ldif --replication userRoot /tmp/example.ldif

c. Start the instance on the supplier:

dsctl instance_name start

2. Copy the exported file to the consumer.

3. Import the data on the consumer. For details, see Section 6.1.2.2, “Importing Data While the
Server is Offline”.

15.8.4. Initializing a Consumer Using the Web Console

To initialize a consumer online using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Replication menu, and select the suffix.

4. On the Replication Agreements tab, open the Choose Action menu next to the replication
agreement for the suffix and select Initialize Agreement.

If the initialization completed successfully, web console displays the Error (0) Replica acquired
successfully: Incremental update succeeded message in the Last Update Status column.

Administration Guide

332

Depending on the amount of data to replicate, the initialization can be time-consuming.

15.9. DISABLING AND RE-ENABLING REPLICATION

By default, replication is enabled when you create a replication agreement. In certain situations, for
example, when taking down a server for maintenance, administrators want to temporarily disable
replication.

IMPORTANT

If you disable the replication entry using the dsconf replication disable command,
Directory Server automatically deletes the replication agreement as well. In this case, to
re-enable replication, you must recreate the replication agreement.

To temporarily disable a replication agreement:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt disable --
suffix="dc=example,dc=com" agreement_name

To re-enable an replication agreement:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt enable --
suffix="dc=example,dc=com" agreement_name

15.10. REMOVING A DIRECTORY SERVER INSTANCE FROM THE
REPLICATION TOPOLOGY

In certain situations, such as hardware outages or structural changes, administrators want to remove
Directory Server instances from a replication topology. This section explains the details about removing
an instance.

15.10.1. Removing a Consumer or Hub from the Replication Topology

To remove a consumer or hub from the replication topology:

1. If the host to remove is a hub and also a supplier for other servers in the topology, configure
other suppliers or hubs to replicate data to these servers. If these servers have no other supplier
configured and you remove the hub, these servers become isolated from the replication
topology. For details about configuring replication, see:

Section 15.2, “Single-supplier Replication”

Section 15.3, “Multi-Supplier Replication”

CHAPTER 15. MANAGING REPLICATION

333

Section 15.4, “Cascading Replication”

2. On the host to remove, set the database into read-only mode to prevent any updates:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h host-to-remove.example.com -x

dn: cn=userRoot,cn=ldbm database,cn=plugins,cn=config
changetype: modify
replace: nsslapd-readonly
nsslapd-readonly: on

3. On all suppliers that have a replication agreement with the host to remove, delete the replication
agreements. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt \
 delete --suffix="dc=example,dc=com" agreement_name

4. On the consumer or hub to remove disable replication for all suffixes. For example:

dsconf -D "cn=Directory Manager" ldap://host-to-remove.example.com replication \
 disable --suffix="dc=example,dc=com"

Disabling replication automatically deletes all replication agreements for this suffix on this
server.

15.10.2. Removing a Supplier from the Replication Topology

Removing a supplier cleanly from the replication topology is more complex than removing a consumer or
hub. This is because every supplier in the topology stores information about other suppliers, and they
retain that information even if a supplier suddenly becomes unavailable.

Directory Server maintains information about the replication topology in a set of meta data called the
replica update vector (RUV). The RUV contains information about the supplier, such as its ID, URL, latest
change state number (CSN) on the local server, and the CSN of the first change. Both suppliers and
consumers store RUV information, and they use it to control replication updates.

To remove a supplier cleanly, you must remove its meta data along with the configuration entries.

1. If the replica to be removed is also a supplier for other servers in the topology, configure other
suppliers or hubs to replicate data to these servers. If these servers have no other supplier
configured and you remove the supplier, these servers become isolated from the replication
topology. For details about configuring replication, see:

Section 15.2, “Single-supplier Replication”

Section 15.3, “Multi-Supplier Replication”

Section 15.4, “Cascading Replication”

2. On the supplier to remove:

a. Set the database into read-only mode to prevent any updates. For details, see
Section 2.2.2.1, “Setting a Database in Read-Only Mode” .

b. Wait until all other servers in the topology received all data from this supplier. To verify,

Administration Guide

334

b. Wait until all other servers in the topology received all data from this supplier. To verify,
ensure that the CSN on other servers is equal or greater than the CSN on the supplier to
remove. For example:

ds-replcheck online -D "cn=Directory Manager" -w password -m ldap://replica-to-
remove.example.com:389 -r ldap://server.example.com:389 -b dc=example,dc=com
==
========
 Replication Synchronization Report (Tue Mar 5 09:46:20 2019)
==
========

Database RUV's
===

Supplier RUV:
 {replica 1 ldap://replica-to-remove.example.com:389} 5c7e8927000100010000
5c7e89a0000100010000
 {replicageneration} 5c7e8927000000010000

Replica RUV:
 {replica 1 ldap://replica-to-remove.example.com:389} 5c7e8927000100010000
5c7e8927000400010000
 {replica 2 ldap://server.example.com:389}
 {replicageneration} 5c7e8927000000010000

c. Display the replica ID:

dsconf -D "cn=Directory Manager" ldap://replica-to-remove.example.com replication get
--suffix="dc=example,dc=com" | grep -i "nsds5replicaid"
nsDS5ReplicaId: 1

In this example, the replica ID is 1. Remember your replica ID for the last step of this
procedure.

3. On all suppliers that have a replication agreement with the replica to remove, delete the
replication agreements. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt \
 delete --suffix="dc=example,dc=com" agreement_name

4. On the replica to remove, disable replication for all suffixes. For example:

dsconf -D "cn=Directory Manager" ldap://replica-to-remove.example.com replication \
 disable --suffix="dc=example,dc=com"

Disabling replication automatically deletes all replication agreements for this suffix on this
server.

5. On one of the remaining suppliers in the topology, clean the RUVs for the replica ID. For
example:

CHAPTER 15. MANAGING REPLICATION

335

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-tasks \
 cleanallruv --suffix="dc=example,dc=com" --replica-id=1

The command requires to specify the replica ID displayed in an earlier step of this procedure.

15.11. MANAGING ATTRIBUTES WITHIN FRACTIONAL REPLICATION

As Section 15.1.7, “Replicating a Subset of Attributes with Fractional Replication” describes, fractional
replication allows administrators to set attributes that are excluded from replication updates.
Administrators can do this for a variety of performance reasons — to limit the number of large attributes
that are sent over a network or to reduce the number of times that fixup tasks (like memberOf
calculations) are run.

The list of attributes to exclude from replication are defined in the nsDS5ReplicatedAttributeList
attribute. This attribute is part of the replication agreement and it can be configured in the replication
agreement wizard in the web console or through the command line when the replication agreement is
created.

nsDS5ReplicatedAttributeList: (objectclass=*) $ EXCLUDE memberof authorityRevocationList
accountUnlockTime

IMPORTANT

Directory Server requires the (objectclass=*) $ EXCLUDE part in the value of the
nsDS5ReplicatedAttributeList attribute. If you edit the attribute directly, for example
using the ldapmodify utility, you must specify this part together with the list of attributes
as displayed in the example above. However, both the dsconf and web console
automatically add the (objectclass=*) $ EXCLUDE part, and you must only specify the
attributes.

15.11.1. Setting Different Fractional Replication Attributes for Total and Incremental
Updates

When fractional replication is first configured, the list of excluded attributes applies to every update
operation. Meaning, this list of attributes is excluded for a total update as well as regular incremental
updates. However, there can be times when attributes should be excluded from incremental updates for
performance but should be included in a total update to ensure the directory data sets are complete. In
this case, it is possible to add a second attribute that defines a separate list of attributes to exclude
from total updates, nsDS5ReplicatedAttributeListTotal.

NOTE

nsDS5ReplicatedAttributeList is the primary fractional replication attribute. If only
nsDS5ReplicatedAttributeList is set, then it applies to both incremental updates and
total updates. If both nsDS5ReplicatedAttributeList and
nsDS5ReplicatedAttributeListTotal are set, then nsDS5ReplicatedAttributeList only
applies to incremental updates.

For example, every time a memberOf attribute is added to an entry, a memberOf fixup task is run to
resolve the group membership. This can cause overhead on the server if that task is run every time
replication occurs. Since a total update only occurs for a database which is newly-added to replication or
that has been offline for a long time, running a memberOf fixup task after a total update is an acceptable

Administration Guide

336

option. In this case, the nsDS5ReplicatedAttributeList attribute lists memberOf so it is excluded from
incremental updates, but nsDS5ReplicatedAttributeListTotal does not list memberOf so that it is
included in total updates.

The exclusion list for incremental updates is set in the nsDS5ReplicatedAttributeList attribute for the
replication agreement. For example:

nsds5replicatedattributelist: (objectclass=*) $ EXCLUDE authorityRevocationList accountUnlockTime
memberof

To set the nsDS5ReplicatedAttributeList attribute, use the dsconf repl-agmt set command. For
example:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt set \
 --suffix="suffix" --frac-list="authorityRevocationList accountUnlockTime memberof" \
 agreement_name

If nsDS5ReplicatedAttributeList is the only attribute set, then that list applies to both incremental and
total updates. To set a separate list for total updates, add the nsDS5ReplicatedAttributeListTotal
attribute to the replication agreement:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt set \
 --suffix="suffix" --frac-list-total="accountUnlockTime" \
 agreement_name

NOTE

The nsDS5ReplicatedAttributeList attribute must be set for incremental updates
before nsDS5ReplicatedAttributeListTotal can be set for total updates.

15.11.2. The Replication Keep-alive Entry

When you update an attribute on a supplier, the changelog change sequence number (CSN) is increased
on the supplier. In a replication topology, this server now connects to the first consumer and compares
the local CSN with the CSN on the consumer. If it is lower, the update is retrieved from the local
changelog and replicated to the consumer. In a replication topology with fractional replication enabled,
this can cause problems: For example, if only attributes are updated on the supplier that are excluded
from replication, no update to replicate is found, and therefore the CSN is not updated on the
consumer. In certain scenarios, such as when only attributes are updated on a supplier that are excluded
from replication, unnecessary searching for updates on the supplier can cause other servers to receive
the data later than needed . To work around this problem, Directory Server uses keep-alive entries.

If all updated attributes on the supplier are excluded from replication and the number of skipped
updates exceeds 100, the keepalivetimestamp attribute is updated on the supplier and replicated to
the consumer. Because the keepalivetimestamp attribute is not excluded from replication, the update
of the keep-alive entry is replicated, the CSN on the consumer is updated, and then equal to the one on
the supplier. The next time the supplier connects to the consumer, only updates that are newer than the
CSN on the consumer are searched. This reduces the amount of time spent by a supplier to search for
new updates to send.

Directory Server automatically creates the replication keep-alive entry on demand on a supplier. It
contains the replica ID of the supplier in the distinguished name (DN). Each keep-alive entry is specific
to a given supplier. For example, to display the hidden keep-alive entry:

CHAPTER 15. MANAGING REPLICATION

337

ldapsearch -D "cn=Directory Manager" -b "dc=example,dc=com" -W -p 389 -h server.example.com
-x 'objectClass=ldapsubentry'

dn: cn=repl keep alive 1,dc=example,dc=com
objectclass: top
objectclass: ldapsubentry
objectclass: extensibleObject
cn: repl keep alive 1
keepalivetimestamp: 20181112150654Z

The keep-alive entry is updated in the following situations (if it does not exist before the update, it is
created first):

When a fractional replication agreement skips more than 100 updates and does not send any
updates before ending the replication session.

When a supplier initializes a consumer, initially it creates its own keep-alive entry. A consumer
that is also a supplier does not create its own keep-alive entry unless it also initializes another
consumer.

15.11.3. Preventing "Empty" Updates from Fractional Replication

Fractional replication allows a list of attributes which are removed from replication updates
(nsDS5ReplicatedAttributeList). However, a changed to an excluded attribute still triggers a modify
event and generates an empty replication update.

The nsds5ReplicaStripAttrs attribute adds a list of attributes which cannot be sent in an empty
replication event and are stripped from the update sequence. This logically includes operational
attribtes like modifiersName.

For example, let's say that the accountUnlockTime attribute is excluded. John Smith's user account is
locked and then the time period expires and it is automatically unlocked. Only the accountUnlockTime
attribute has changed, and that attribute is excluded from replication. However, the operational
attribute internalmodifytimestamp also changed. A replication event is triggered because John
Smith's user account was modified — but the only data to send is the new modify time stamp and the
update is otherwise emtpy. If there are a large number of attributes related to login times or password
expiration times (for example), this could create a flood of empty replication updates that negatively
affect server performance or that interfere with associated applications.

To prevent this, add the nsds5ReplicaStripAttrs attribute to the replication agreement to help tune
the fractional replication behavior:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com repl-agmt set \
 --suffix="suffix" \
 --strip-list="modifiersname modifytimestamp internalmodifiersname" \
 agreement_name

If a replication event is not empty, the stripped attributes are still replicated with the other changes.
These attributes are removed from updates only if the event would otherwise be emtpy.

15.12. MANAGING DELETED ENTRIES WITH REPLICATION

When an entry is deleted, it is not immediately removed from the database. Rather, it is converted into a
tombstone entry, a kind of backup entry that is used by servers in replication to resolve specific conflicts
(orphaned entries). The tombstone entry is the original entry with a modified DN, an added

Administration Guide

338

nsTombstone object class, but the attributes are removed from the index.

Tombstones are not preserved indefinitely. A purge job is run periodically, at a specified interval (set in
the nsDS5ReplicaTombstonePurgeInterval attribute); the purge removes old tombstone entries.
Tombstone entries are saved for a given amount of time (set in the nsDS5ReplicaPurgeDelay
attribute); once a tombstone entry is older than the delay period, it is reaped at the next purge job.

Both the purge delay and the purge interval are set on the replica entry in the cn=replica,cn=replicated
suffix,cn=mapping tree,cn=config configuration entry. There are two considerations when defining the
purge settings for replication:

The purge operation is time-consuming, especially if the server handles a lot of delete
operations. Do not set the purge interval too low or it could consume too many server resources
and affect performance.

Suppliers use change information, including tombstone entries, to prime replication after
initialization. There should be enough of a backlog of changes to effectively re-initialize
consumers and to resolve replication conflicts. Do not set the purge delay (the age of
tombstone entries) too low or you could lose information required to resolve replication
conflicts.

Set the purge delay so that it is slightly longer than the longest replication schedule in the
replication topology. For example, if the longest replication interval is 24 hours, keep tombstone
entries around for 25 hours. This ensures that there is enough change history to initialize
consumers and prevent the data stored in different suppliers from diverging.

When you use the dsconf replication set command, the --repl-tombstone-purge-interval=seconds
option sets the nsDS5ReplicaTombstonePurgeInterval attribute and the --repl-purge-
delay=seconds option the nsDS5ReplicaPurgeDelay attribute.

For example, to set the tombstone purge interval to 43200 (12 hours) and the replica purge delay to
90000 (25 hours):

dsconf -D "cn=Directory Manager" ldap://supplier.example.com replication set \
 --repl-tombstone-purge-interval=43200 --repl-purge-delay=90000

NOTE

To clean up the tombstone entries and the state information immediately, set a very
small value to the nsDS5ReplicaTombstonePurgeInterval and
nsDS5ReplicaPurgeDelay attributes. Both attributes have values set in seconds, so the
purge operations can be initiated almost immediately.

WARNING

Always use the purge intervals to clean out tombstone entries from the database.
Never delete tombstone entries manually.

15.13. CONFIGURING CHANGELOG ENCRYPTION



CHAPTER 15. MANAGING REPLICATION

339

To increase security, Directory Server supports encrypting the changelog. This section explains how to
enable this feature.

Prerequisites
The server must have a certificate and key stored in the network security services (NSS) database.
Therefor, enable TLS encryption on the server as described in Section 9.4.1, “Enabling TLS in
Directory Server”.

Procedure
To enable changelog encryption:

1. Except for the server on which you want to enable changelog encryption, stop all instances in
the replication topology by entering the following command:

dsctl instance_name stop

2. On the server where you want to enable changelog encryption:

a. Export the changelog, for example, to the /tmp/changelog.ldif file:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication dump-
changelog -o /tmp/changelog.ldif

b. Stop the instance:

dsctl instance_name stop

c. Add the following setting to the dn: cn=changelog5,cn=config entry in the
/etc/dirsrv/slapd-instance_name/dse.ldif file:

nsslapd-encryptionalgorithm: AES

d. Start the instance:

dsctl instance_name start

e. Import the changelog from the /tmp/changelog.ldif file:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication restore-
changelog from-ldif /tmp/changelog.ldif

3. Start all instances on the other servers in the replication topology using the following command:

dsctl instance_name start

Verification
To verify that the changelog is encrypted, run the following steps on the server with the encrypted
changelog:

1. Make a change in the LDAP directory, such as updating an entry.

2. Stop the instance:

Administration Guide

340

dsctl stop instance_name

3. Enter the following command to display parts of the changelog:

dbscan -f /var/lib/dirsrv/slapd-instance_name/changelogdb/replica_name_replGen.db | tail -
50

If the changelog is encrypted, you see only encrypted data.

4. Start the instance:

dsctl start instance_name

Additional Resources

Section 15.15, “Exporting the Replication Changelog”

Section 15.16, “Importing the Replication Changelog from an LDIF-formatted Changelog Dump”

15.14. REMOVING THE CHANGELOG

The changelog is a record of all modifications on a given replica that the supplier uses to replay these
modifications to replicas on consumer servers (or suppliers in the case of multi-supplier replication).

If a supplier server goes offline, it is important to be able to delete the changelog because it no longer
holds a true record of all modifications and, as a result, should not be used as a basis for replication. A
changelog can be effectively deleted by deleting the log file.

15.14.1. Removing the Changelog using the Command Line

To remove the changelog from the supplier server:

1. Verify whether replication is disabled for all suffixes:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com replication list
There are no replicated suffixes

2. Remove the changelog:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com replication delete-
changelog

15.14.2. Removing the Changelog using the Web Console

To remove the changelog from the supplier server:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Replication menu, and select the Replication Changelog entry.

CHAPTER 15. MANAGING REPLICATION

341

4. Click Delete Changelog.

15.15. EXPORTING THE REPLICATION CHANGELOG

In certain situations, such as when you want to encrypt the replication changelog, you must export the
changelog as part of the process. Complete this procedure to export the changelog.

Prerequisites

Replication is enabled on the Directory Server instance.

Procedure
To export the changelog to the /tmp/changelog.ldif file, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication dump-changelog -o
/tmp/changelog.ldif

Note that the dirsrv user requires appropriate file system permissions to create the specified file.

15.16. IMPORTING THE REPLICATION CHANGELOG FROM AN LDIF-
FORMATTED CHANGELOG DUMP

Complete this procedure to import an LDIF-formatted replication changelog dump into
Directory Server.

Prerequisites

Replication is enabled on the Directory Server instance.

The changelog dump has been created as described in Section 15.15, “Exporting the Replication
Changelog”.

Procedure
To import the changelog dump from the /tmp/changelog.ldif file, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication restore-changelog from-
ldif /tmp/changelog.ldif

Note that the dirsrv user requires permissions to read the specified file.

15.17. MOVING THE REPLICATION CHANGELOG DIRECTORY

In certain situations, you might want to change the Directory Server replication changelog directory. For
example, to change the directory to /var/lib/dirsrv/slapd-instance_name/new_changelogdb/:

1. Display the current path to the changelog and set the new path:

Using the command line:

1. Display the current directory:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x \
 -b "cn=changelog5,cn=config" nsslapd-changelogdir
...

Administration Guide

342

nsslapd-changelogdir: /var/lib/dirsrv/slapd-instance_name/changelogdb/

You need the displayed path in a later step to move the directory.

2. Set the new path:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=changelog5,cn=config
changetype: modify
replace: nsslapd-changelogdir
nsslapd-changelogdir: /var/lib/dirsrv/slapd-instance_name/new_changelogdb/

Using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging
Into Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Replication menu, and select the Replication Changelog entry.

4. Click Show Advanced Settings.

5. Identify the current path in the Changelog Location field. You need the displayed path
in a later step to move the directory.

6. Set the new path in the Changelog Location field.

7. Click Save.

2. Stop the Directory Server instance:

dsctl instance_name stop

3. Move the content of the previous directory to
/var/lib/dirsrv/slapd-instance_name/new_changelogdb/:

mv /var/lib/dirsrv/slapd-instance_name/changelogdb/ \
 /var/lib/dirsrv/slapd-instance_name/new_changelogdb/

4. Delete the previous directory:

rm /var/lib/dirsrv/slapd-instance_name/changelogdb/

5. Start the Directory Server instance:

dsctl instance_name start

15.18. TRIMMING THE REPLICATION CHANGELOG

The Directory Server changelog maintains a list of received and processed changes. It includes client
changes and changes received from replication partners.

CHAPTER 15. MANAGING REPLICATION

343

By default, Directory Server trims the changelog entries that are more than seven days old. However,
you can modify this and configure:

A maximum age of entries in the changelog in the nsslapd-changelogmaxage parameter.

The total number of records in the changelog in the nsslapd-changelogmaxentries parameter.

If you enabled at least one of these settings, Directory Server trims the changelog every 5 minutes by
default (nsslapd-changelogtrim-interval).

All records and records created subsequently remain in the changelog until it is successfully replicated
on all servers in the topology. If you must remove the supplier from the topology as described in
Section 15.10.2, “Removing a Supplier from the Replication Topology” , then Directory Server trims all the
updates of this supplier from changelogs on other servers.

15.18.1. Configuring Replication Changelog Trimming

By default, Directory Server trims the changelog entries that are more than seven days old. However,
you can configure the time after which Directory Server can remove entries. You can also configure
Directory Server to remove entries automatically when the number of entries exceeds a configured
value.

NOTE

Red Hat recommends setting a maximum age instead of a maximum number of entries.
The maximum age should match the replication purge delay set in the
nsDS5ReplicaPurgeDelay parameter in the cn=replica,cn=suffixDN,cn=mapping
tree,cn=config entry.

Perform this procedure on the supplier:

1. Configure change log trimming:

To set a maximum age of changelog entries, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication set-changelog
--max-age "4w"

This command sets the maximum age to four weeks. The parameter supports the following
units:

s (S) for seconds

m (S) for minutes

h (H) for hours

d (D) for days

w (W) for weeks

To set a maximum number of entries, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication set-changelog
--max-entries "100000"

Administration Guide

344

This command sets the maximum number of entries in the changelog to 100,000.

2. By default, Directory Server trims the changelog every 5 minutes (300 seconds). To set a
different interval, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication set-changelog --
trim-interval 600

This command sets the interval to 10 minutes (600 seconds).

15.18.2. Manually Reducing the Size of a Large Changelog

In certain situations, such as if replication changelog trimming was not enabled, the changelog can grow
to an excessively large size. To fix this, you can reduce the changelog size manually.

Perform this procedure on the supplier.

Prerequisites
You enabled replication.

Procedure

1. Optional: Display the size of the changelog:

ls -lh /var/lib/dirsrv/slapd-instance_name/changelogdb/
total 159M
rw------. 1 dirsrv dirsrv 159M Nov 21 04:01 a1cf5703-697a11ed-896ed7a0-
04f329b5_637b3daf000000010000.db
rw------. 1 dirsrv dirsrv 30 Nov 21 03:58 DBVERSION

This example shows that the /var/lib/dirsrv/slapd-instance_name/changelogdb/ directory
contains only one changelog file with the size of 159M.

2. To be able to reset the parameters after reducing the changelog size, display and note the
current values of the corresponding parameters:

dsconf instance_name replication get-changelog
dn: cn=changelog5,cn=config
cn: changelog5
nsslapd-changelogdir: /var/lib/dirsrv/slapd-instance_name/changelogdb/
nsslapd-changelogmaxage: 7d
nsslapd-changelogtrim-interval: 300
objectClass: top
objectClass: nsChangelogConfig

If you do not see any specific attributes in the output, Directory Server uses their default values.

3. Temporarily, reduce trimming-related parameters:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication set-changelog --
max-age "300s" --max-entries 500 --trim-interval 60

IMPORTANT

CHAPTER 15. MANAGING REPLICATION

345

IMPORTANT

For performance reasons, do not permanently use too short interval settings.

4. Wait until the time set in the --trim-interval parameter expires.

5. Compact the changelog to regain the disk space:

dsconf -D "cn=Directory Manager" ldap://server.example.com backend compact-db --only-
changelog

6. Reset the changelog parameters to the values they had before you temporarily reduced them:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication set-changelog --
max-age "7d" --max-entries 0 --trim-interval 300

Verification

Display the size of the changelog:

ls -lh /var/lib/dirsrv/slapd-instance_name/changelogdb/

total 14M
rw------. 1 dirsrv dirsrv 14M Nov 21 05:08 a1cf5703-697a11ed-896ed7a0-
04f329b5_637b3daf000000010000.db
rw------. 1 dirsrv dirsrv 30 Nov 21 05:01 DBVERSION

15.19. FORCING REPLICATION UPDATES

If you stop a Directory Server instance that is involved in replication for regular maintenance, you must
update the replication immediately when it comes back online. In the case of a supplier in a multi-supplier
environment, the directory information needs to be updated by an other supplier in the setup. In other
cases, for example if you take down a hub or a dedicated consumer for maintenance and then come
back online later, the supplier server needs to update the status.

Prerequisites

The replication is set up.

The consumer has been initialized.

Procedure

1. Check if the replication agreement has an update schedule configured:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt get --
suffix="dc=example,dc=com" agreement_name

If the output of the command contains nsDS5ReplicaUpdateSchedule: * or the
nsDS5ReplicaUpdateSchedule parameter is not present, no update schedule is configured.

If nsDS5ReplicaUpdateSchedule contains a schedule, such as shown below, note the value:

Administration Guide

346

nsDS5ReplicaUpdateSchedule: 0800-2200 0246

2. If an update schedule is configured, enter the following command to temporary disable it:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt set --schedule * --
suffix="dc=example,dc=com" agreement_name

3. Temporarily disable the replication agreement:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt disable --
suffix="dc=example,dc=com" agreement_name

4. Re-enable the replication agreement to force the replication update:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt enable --
suffix="dc=example,dc=com" agreement_name

5. If a replication schedule was configured at the beginning of this procedure, set the schedule to
the previous value:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt set --schedule
"0800-2200 0246" --suffix="dc=example,dc=com" agreement_name

15.20. SETTING REPLICATION TIMEOUT PERIODS

Suppliers must have an exclusive connection to a consumer to send updates to the directory. As
mentioned in Section 15.3.3, “Preventing Monopolization of a Consumer in Multi-Supplier Replication” , it
is possible to configure a wait time for suppliers attempting to connect to a consumer, so that the
supplier does not hang while the consumer is tied up with another supplier.

It is also possible to set a timeout period for a supplier, so that it does not stay connected to a consumer
interminably attempting to send updates over a slow or broken connection.

There are two attributes which set the timeout period:

nsDS5ReplicaTimeout sets the number of seconds that the replication operation waits for a
response from the consumer before timing out and failing. To set the optimum number, check
the access logs to see the average amount of time that the replication process takes, and set
the timeout period accordingly.

nsDS5DebugReplicaTimeout sets the timeout period for the replication operation when debug
logging is enabled. This setting may be appreciably higher than the nsDS5ReplicaTimeout
setting because debug logging can slow down directory operations. This attribute can optionally
set an error log level where this parameter is applied; the default is replication debugging (8192).

Both of these attributes are set in the replication agreement of the replicated suffix:

ldapmodify -D "cn=Directory Manager" -W -x

dn: cn=example-agreement,cn=replica,cn=dc\3Dexample\2Cdc\3Dcom,cn=mapping tree,cn=config
changetype: modify
add: nsDS5ReplicaTimeout
nsDS5ReplicaTimeout: 600

CHAPTER 15. MANAGING REPLICATION

347

-
add: nsDS5DebugReplicaTimeout
nsDS5DebugReplicaTimeout: 6000

15.21. USING THE RETRO CHANGELOG PLUG-IN

The Retro Changelog plug-in configures Directory Server to maintain a changelog that is compatible
with the changelog implemented in Directory Server 4.x.

NOTE

Only enable the Retro Changelog plug-in if you need to maintain a changelog for
directory clients that depend on a Directory Server 4.x-style changelog.

To use the Retro Changelog plug-in, the Directory Server instance must be configured as a single-
supplier replica.

When the Directory Server is configured to maintain a retro changelog, this changelog is stored in a
separate database under a special suffix, cn=changelog.

The retro changelog consists of a single level of entries. Each entry in the changelog has the object class
changeLogEntry. For a list of possible attributes in a changelog entry, see the Changelog Attributes
section in the Red Hat Directory Server Configuration, Command, and File Reference .

15.21.1. Enabling the Retro Changelog Plug-in

This section describes how to enable the Retro Changelog plug-in.

WARNING

Do not enable replication on the retro changelog backend. Enabling replication on
the retro changelog may result in:

Generating an excessive amount of replication traffic, half of which is
duplicated updates.

Creating errors with the delete operations related to retro changelog
trimming.

Very poor replication performance and no convergence of updates on
suppliers.

15.21.1.1. Enabling the Retro Changelog Plug-in Using the Command Line

To enable the Retro Changelog plug-in using the command line:

1. Use the dsconf utility to enable the plug-in:



Administration Guide

348

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#changelog_attributes

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin retro-changelog
enable

2. Restart the instance:

dsctl instance_name restart

15.21.1.2. Enabling the Retro Changelog Plug-in Using the Web Console

To enable the Retro Changelog plug-in using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Select the Plugins menu.

4. Select the Retro Changelog plug-in in the list on the left.

5. Change the status to On.

6. Click Save Config.

7. Restart the instance. See Section 1.5.2, “Starting and Stopping a Directory Server Instance Using
the Web Console”.

15.21.2. Trimming the Retro Changelog

The size of the retro changelog is automatically reduced if you lower the maximum age of records set in
the nsslapd-changelogmaxage parameter and the next trim interval, set in nsslapd-changelog-trim-
interval, is executed.

For example, to set maximum age of records in the retro changelog to two days:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin retro-changelog set --max-
age="2d"

15.21.3. Searching and Modifying the Retro Changelog

The changelog supports search operations and is optimized for searches that include filters of the form
(&(changeNumber>=X)(changeNumber<=Y)).

As a general rule, do not perform add or modify operations on the retro changelog entries, although
entries can be deleted to trim the size of the changelog. Only modify the retro changelog entry to
modify the default access control policy.

15.21.4. Retro Changelog and the Access Control Policy

When Directory Server creates the retro changelog, no Access Control Instructions (ACIs) are created,
and only the Directory Manager has access control rules applied (read, search, compare, write, and
delete).

To change the default access control policy which applies to the retro changelog, modify the aci

CHAPTER 15. MANAGING REPLICATION

349

To change the default access control policy which applies to the retro changelog, modify the aci
attribute of the cn=changelog entry. For example, if you want to grant read, search, and compare
permissions to all authorized users, add the following ACI to the cn=changelog:

dn: cn=changelog
aci: (targetattr="changeNumber || objectClass")(targetfilter="(objectClass=changelogentry)")
 (version 3.0; acl "Enable authenticated users to read the retro changelog"; allow (read, search,
compare)
 (userdn="ldap:///all");)

WARNING

When modifying aci attribute, do not grant read permissions to anonymous users
(userdn=anyone) because the changelog entries can contain sensitive information,
such as passwords. You must allow only authenticated applications and users
(userdn=all) to access this information.

15.22. DISPLAYING THE STATUS OF A SPECIFIC REPLICATION
AGREEMENT

You can display the status of a specific replication agreement using the command line and in the web
console.

15.22.1. Displaying the Status of a Specific Replication Agreement Using the
Command-Line

To display the status of a replication agreement using the command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-agmt status --
suffix="dc=example,dc=com" agreement_name
agreement_name Status for agreement_name agmt consumer.example.com:636
Replica Enabled: on
Update In Progress: FALSE
Last Update Start: 19700101000000Z
Last Update End: 19700101000000Z
Number Of Changes Sent: 0
Number Of Changes Skipped: None
Last Update Status: Error (-1) Problem connecting to replica - LDAP error: Can't contact LDAP server
(connection error)
Init In Progress:
Last Init Start: 19700101000000Z
Last Init End: 19700101000000Z
Last Init Status: unavailable
Reap Active: 0
Replication Status: Not in Synchronization: supplier (5bed8467000100010000) consumer
(Unavailable) Reason(Unknown)
Replication Lag Time: Unavailable

This example shows replication currently fails because the consumer.example.com host is unavailable.



Administration Guide

350

15.22.2. Displaying the Status of a Specific Replication Agreement Using the Web
Console

To display the status of a replication agreement in the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Monitoring menu, and select Replication

4. Select Replication entry from the list in the left pane.

5. Depending on whether you want to display the status of a replication agreement between
Directory Server instances or a Winsync Agreement, select the appropriate tab.

The Update Status column displays the status of replication agreement.

15.23. MONITORING THE REPLICATION TOPOLOGY

Use the dsconf replication monitor command to display the replication status, as well as additional
information, such as replica IDs and Change State Numbers (CSN) on suppliers, consumers, and hubs:

dsconf -D "cn=Directory Manager" ldap://supplier.example.com replication monitor
Enter password for cn=Directory Manager on ldap://supplier.example.com: password

Enter a bind DN for consumer.example.com:389: cn=Directory Manager
Enter a password for cn=Directory Manager on consumer.example.com:389: password
Supplier: server.example.com:389

Replica Root: dc=example,dc=com
Replica ID: 1
Replica Status: Available
Max CSN: 5e3acb77001d00010000

Status For Agreement: "example-agreement" (consumer.example.com:389)
Replica Enabled: on
Update In Progress: FALSE
Last Update Start: 20200205140439Z
Last Update End: 20200205140440Z
Number Of Changes Sent: 1:166/0
Number Of Changes Skipped: None
Last Update Status: Error (0) Replica acquired successfully: Incremental update succeeded
Last Init Start: 20200205133709Z
Last Init End: 20200205133711Z
Last Init Status: Error (0) Total update succeeded

CHAPTER 15. MANAGING REPLICATION

351

Reap Active: 0
Replication Status: In Synchronization
Replication Lag Time: 00:00:00

Supplier: consumer.example.com:389

Replica Root: dc=example,dc=com
Replica ID: 65535
Replica Status: Available
Max CSN: 00000000000000000000

15.23.1. Setting Credentials for Replication Monitoring in the .dsrc File

By default, the dsconf replication monitor command prompts for bind DNs and passwords when
authenticating to remote instances. Alternatively, you can set the bind DNs, and optionally passwords,
for each server in the topology in the user's ~/.dsrc file.

Example 15.1. An Example .dsrc File with Explanations of the Different Fields

The following is an example ~/.dsrc file:

[repl-monitor-connections]
connection1 = server1.example.com:389:cn=Directory Manager:*
connection2 = server2.example.com:389:cn=Directory Manager:[~/pwd.txt]
connection3 = hub1.example.com:389:cn=Directory Manager:S3cret

This example uses connection1 to connection3 as keys for each entry. However, you can use any
key as long as it is unique.

If you run the dsconf replication monitor command, the dsconf utility connects to all servers
configured in replication agreements of the instance. If the utility finds the host name in ~/.dsrc, it
uses the defined credentials to authenticate to the remote server. In the example above, dsconf
uses the following credentials when connecting to a server:

Host name Bind DN Password

server1.example.com cn=Directory Manager Prompts for the password

server2.example.com cn=Directory Manager Reads password from ~/pwd.txt

hub1.example.com cn=Directory Manager S3cret

15.23.2. Using Aliases in the Replication Topology Monitoring Output

By default, the dsconf replication monitor command displays the host names of servers in the
monitoring report. Alternatively, you can display aliases using one of the following methods:

Define the aliases in the ~/.dsrc file:

Administration Guide

352

[repl-monitor-aliases]
M1 = server1.example.com:389
M2 = server2.example.com:389

Define the aliases by passing the -a alias=host_name:port parameter to the dsconf
replication monitor command:

dsconf -D "cn=Directory Manager" ldap://server.example.com replication monitor -a
M1=server1.example.com:389 M2=server2.example.com:389

In both cases, the command displays the alias in the command's output:

...
Supplier: M1 (server1.example.com:389)
...
Supplier: M2 (server2.example.com:389)
...

15.24. COMPARING TWO DIRECTORY SERVER INSTANCES

In certain situations, an administrator wants to compare if two Directory Servers are synchronized. The
ds-replcheck utility enables you to compare two online servers. Alternatively, ds-replcheck can
compare two LDIF-formatted files in offline mode and two servers in online mode.

NOTE

To compare two databases offline, export them using the db2ldif -r command to include
replication state information.

If you compare two online servers, the contents of the databases usually differ, if they are under heavy
load. To work around this problem, the script uses a lag time value in by passing the -l time_in_seconds
parameter to ds-replcheck. By default, this value is set to 300 seconds (5 minutes). If the utility detects
an inconsistency that is within the lag time, it is not reported. This helps to reduce false positives.

By default, if you excluded certain attributes in the replication agreement from being replicated, ds-
replcheck reports these attributes as different. To ignore these attributes, pass the -i attribute_list
parameter to the utility.

For example, to compare the dc=example,dc=com suffix of two Directory Servers:

ds-replcheck -D "cn=Directory Manager" -W \
 -m ldap://server1.example.com:389 \
 -r ldap://server2.example.com:389 \
 -b "dc=example,dc=com"

The output of the utility contains the following sections:

Database RUV's

Lists the Replication Update Vectors (RUV) of the databases including the minimum and maximum
Change Sequence Numbers (CSN). For example:

Supplier RUV:

CHAPTER 15. MANAGING REPLICATION

353

 {replica 1 ldap://server1.example.com:389} 58e53b92000200010000 58e6ab46000000010000
 {replica 2 ldap://server2.example.com:389} 58e53baa000000020000 58e69d7e000000020000
 {replicageneration} 58e53b7a000000010000

Replica RUV:
 {replica 1 ldap://server1.example.com:389} 58e53ba1000000010000 58e6ab46000000010000
 {replica 2 ldap://server2.example.com:389} 58e53baa000000020000 58e7e8a3000000020000
 {replicageneration} 58e53b7a000000010000

Entry Count

Displays the total number of entries on the both servers, including tombstone entries. For example:

Supplier: 12
Replica: 10

Tombstones

Displays the number of tombstone entries on each replica. These entries are added to the total entry
count. For example:

Supplier: 4
Replica: 2

Conflict Entries

Lists the Distinguished Names (DN) of each conflict entry, the conflict type, and the date it was
created. For example:

Supplier Conflict Entries: 1

 - nsuniqueid=48177227-2ab611e7-afcb801a-ecef6d49+uid=user1,dc=example,dc=com
 - Conflict: namingConflict (add) uid=user1,dc=example,dc=com
 - Glue entry: no
 - Created: Wed Apr 26 20:27:40 2017

Replica Conflict Entries: 1

 - nsuniqueid=48177227-2ab611e7-afcb801a-ecef6d49+uid=user1,dc=example,dc=com
 - Conflict: namingConflict (add) uid=user1,dc=example,dc=com
 - Glue entry: no
 - Created: Wed Apr 26 20:27:40 2017

Missing Entries

Lists the DNs of each missing entry and the creation date from the other server where the entry
resides. For example:

 Entries missing on Supplier:
 - uid=user2,dc=example,dc=com (Created on Replica at: Wed Apr 12 14:43:24 2017)
 - uid=user3,dc=example,dc=com (Created on Replica at: Wed Apr 12 14:43:24 2017)

 Entries missing on Replica:
 - uid=user4,dc=example,dc=com (Created on Supplier at: Wed Apr 12 14:43:24 2017)

Administration Guide

354

Entry Inconsistencies

Lists the DNs of the entry that contain attributes that are different to those on the other server. If a
state information is available, it is also displayed. If no state information for an attribute is available, it
is listed as an origin value. This means that the value was not updated since the replication was
initialized for the first time. For example:

cn=group1,dc=example,dc=com

Replica missing attribute "objectclass":

 - Supplier's State Info: objectClass;vucsn-58e53baa000000020000: top
 - Date: Wed Apr 5 14:47:06 2017

 - Supplier's State Info: objectClass;vucsn-58e53baa000000020000: groupofuniquenames
 - Date: Wed Apr 5 14:47:06 2017

15.25. SOLVING COMMON REPLICATION CONFLICTS

Multi-supplier replication uses an eventually-consistency replication model. This means that the same
entries can be changed on different servers. When replication occurs between these two servers, the
conflicting changes need to be resolved. Mostly, resolution occurs automatically, based on the time
stamp associated with the change on each server. The most recent change takes precedence.

However, there are some cases where conflicts require manual intervention in order to reach a
resolution. Entries with a change conflict that cannot be resolved automatically by the replication
process.

To list conflict entries, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-conflict list dc=example,dc=com

15.25.1. Solving Naming Conflicts

When two entries are created with the same DN on different servers, the automatic conflict resolution
procedure during replication renames the last entry created, including the entry's unique identifier in the
DN. Every directory entry includes a unique identifier stored in the nsuniqueid operational attribute.
When a naming conflict occurs, this unique ID is appended to the non-unique DN.

For example, if the uid=user_name,ou=People,dc=example,dc=com entry was created on two
different servers, replication adds the unique ID to the DN of the last entry created. This means, the
following entries exist:

uid=user_name,ou=People,dc=example,dc=com

nsuniqueid=66446001-1dd211b2+uid=user_name,ou=People,dc=example,dc=com

To resolve the replication conflict, you must manually decide how to proceed:

To keep only the valid entry (uid=user_name,ou=People,dc=example,dc=com) and delete
the conflict entry, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-conflict delete
nsuniqueid=66446001-1dd211b2+uid=user_name,ou=People,dc=example,dc=com

CHAPTER 15. MANAGING REPLICATION

355

To keep only the conflict entry (nsuniqueid=66446001-
1dd211b2+uid=user_name,ou=People,dc=example,dc=com), enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-conflict swap
nsuniqueid=66446001-1dd211b2+uid=user_name,ou=People,dc=example,dc=com

To keep both entries, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-conflict convert --new-
rdn=uid=user_name_NEW nsuniqueid=66446001-
1dd211b2+uid=user_name,ou=People,dc=example,dc=com

To keep the conflict entry, you must specify a new Relative Distinguished Name (RDN) in the --
new-rdn option to rename the conflict entry. The previous command renames the conflict entry
to uid=user_name_NEW,ou=People,dc=example,dc=com.

15.25.2. Solving Orphan Entry Conflicts

When a delete operation is replicated and the consumer server finds that the entry to be deleted has
child entries, the conflict resolution procedure creates a glue entry to avoid having orphaned entries in
the directory.

In the same way, when an add operation is replicated and the consumer server cannot find the parent
entry, the conflict resolution procedure creates a glue entry representing the parent so that the new
entry is not an orphan entry.

Glue entries are temporary entries that include the object classes glue and extensibleObject. Glue
entries can be created in several ways:

If the conflict resolution procedure finds a deleted entry with a matching unique identifier, the
glue entry is a resurrection of that entry, with the addition of the glue object class and the
nsds5ReplConflict attribute.

In such cases, either modify the glue entry to remove the glue object class and the
nsds5ReplConflict attribute to keep the entry as a normal entry or delete the glue entry and its
child entries.

The server creates a minimalistic entry with the glue and extensibleObject object classes.

In such cases, modify the entry to turn it into a meaningful entry or delete it and all of its child entries.

To list all glue entries:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-conflict list-glue suffix

To delete a glue entry and its child entries:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-conflict delete-glue
DN_of_glue_entry

To convert a glue entry into a regular entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-conflict convert-glue
DN_of_glue_entry

Administration Guide

356

15.25.3. Resolving Errors for Obsolete or Missing Suppliers

Information about the replication topology, that is all suppliers which supply updates to each other and
other replicas within the same replication group, is contained in a set of metadata called the replica
update vector (RUV). The RUV contains information about the supplier such as its ID and URL, its latest
change state number (CSN) on the local server, and the CSN of the first change. Both suppliers and
consumers store RUV information, and they use it to control replication updates.

When one supplier is removed from the replication topology, it may remain in another replica's RUV.
When the other replica is restarted, it can record errors in its log, warning that the replication plug-in
does not recognize the removed supplier. The errors will look similar to the following example:

[22/Jan/2021:17:16:01 -0500] NSMMReplicationPlugin - ruv_compare_ruv: RUV [changelog max
RUV] does not contain element [{replica 8 ldap://m2.example.com:389} 4aac3e59000000080000
4c6f2a02000000080000] which is present in RUV [database RUV]

<...several more samples...>

[22/Jan/2021:17:16:01 -0500] NSMMReplicationPlugin - replica_check_for_data_reload: Warning: for
replica dc=example,dc=com there were some differences between the changelog max RUV and the
database RUV. If there are obsolete elements in the database RUV, you should remove them using
the CLEANALLRUV task. If they are not obsolete, you should check their status to see why there are
no changes from those servers in the changelog.

Note which replica and its ID; in this case, replica 8.

When the supplier is permanently removed from the topology, then any lingering metadata about that
supplier should be purged from every other supplier's RUV entry. Use the cleanallruv directory task to
remove a RUV entry from all suppliers in the topology.

NOTE

The cleanallruv task is replicated. Therefore, you only need to run it on one supplier.

Procedure 15.1. Removing an Obsolete or Missing Supplier Using the cleanallruv Task Operation

1. List all RUV records and replica IDs, both valid and invalid, as deleted suppliers may have left
metadata on other suppliers:

ldapsearch -o ldif-wrap=no -xLLL -H m1.example.com -D "cn=Directory Manager" -W -b
dc=example,dc=com '(&(nsuniqueid=ffffffff-ffffffff-ffffffff-ffffffff)(objectclass=nstombstone))'
nsDS5ReplicaId nsDS5ReplicaType nsds50ruv
dn: cn=replica,cn=dc\3Dexample\2Cdc\3Dcom,cn=mapping tree,cn=config
nsDS5ReplicaId: 1
nsDS5ReplicaType: 3
nsds50ruv: {replicageneration} 55d5093a000000010000
nsds50ruv: {replica 1 ldap://m1.example.com:389} 55d57026000000010000
55d57275000000010000
nsds50ruv: {replica 20 ldap://m2.example.com:389} 55e74b8c000000140000
55e74bf7000000140000
nsds50ruv: {replica 9 ldap://m2.example.com:389}
nsds50ruv: {replica 8 ldap://m2.example.com:389} 506f921f000000080000
50774211000500080000

Note the returned replica IDs: 1, 20, 9, and 8.

CHAPTER 15. MANAGING REPLICATION

357

2. List the currently defined and valid replica IDs of all suppliers which are replicating databases by
searching the replica configuration entries DN cn=replica under the cn=config suffix.

NOTE

Consumers and read-only nodes always have the replica ID set to 65535, and
nsDS5ReplicaType: 3 signifies a supplier.

ldapsearch -o ldif-wrap=no -xLLL -H m1.example.com m2.example.com -D "cn=Directory
Manager" -W -b cn=config cn=replica nsDS5ReplicaId nsDS5ReplicaType
dn: cn=replica,cn=dc\3Dexample\2Cdc\3Dcom,cn=mapping tree,cn=config
nsDS5ReplicaId: 1
nsDS5ReplicaType: 3

dn: cn=replica,cn=dc\3Dexample\2Cdc\3Dcom,cn=mapping tree,cn=config
nsDS5ReplicaId: 20
nsDS5ReplicaType: 3

After you search all URIs returned in the first step (in this procedure, m1.example.com and
m2.example.com), compare the list of returned suppliers (entries which have
nsDS5ReplicaType: 3) to the list of RUVs from the previous step. In the above example, this
search only returned IDs 1 and 20, but the previous search also returned 9 and 8 on URI
m2.example.com. This means that the latter two are removed, and their RUVs need to be
cleaned.

3. After determining which RUVs require cleaning, create a new
cn=cleanallruv,cn=tasks,cn=config entry and provide the following information about your
replication configuration:

The base DN of the replicated database (replica-base-dn)

The replica ID (replica-id)

Whether to catch up to the maximum change state number (CSN) from the missing
supplier, or whether to just remove all RUV entries and miss any updates (replica-force-
cleaning); setting this attribute to no means that the task will wait for all the configured
replicas to catch up with all the changes from the removed replica first, and then remove
the RUV.

dsconf -D "cn=Directory Manager" ldap://m2.example.com repl-tasks \
 cleanallruv --suffix="dc=example,dc=com" --replica-id=8

NOTE

The cleanallruv task is replicated. Therefore, you only need to run it on one
supplier.

Repeat the same for every RUV you want to clean (ID 9 in this procedure).

4. After cleaning the RUVs of all replicas discovered earlier, you can again use the search from the
first step to verify that all extra RUVs are removed:

ldapsearch -o ldif-wrap=no -xLLL -H m1.example.com -D "cn=Directory Manager" -W -b

Administration Guide

358

dc=example,dc=com '(&(nsuniqueid=ffffffff-ffffffff-ffffffff-ffffffff)(objectclass=nstombstone))'
nsDS5ReplicaId nsDS5ReplicaType nsds50ruv
dn: cn=replica,cn=dc\3Dexample\2Cdc\3Dcom,cn=mapping tree,cn=config
nsDS5ReplicaId: 1
nsDS5ReplicaType: 3
nsds50ruv: {replicageneration} 55d5093a000000010000
nsds50ruv: {replica 1 ldap://m1.example.com:389} 55d57026000000010000
55d57275000000010000
nsds50ruv: {replica 20 ldap://m2.example.com:389} 55e74b8c000000140000
55e74bf7000000140000

As you can see in the above output, replica IDs 8 and 9 are no longer present, which indicates
that their RUVs have been cleaned successfully.

15.26. TROUBLESHOOTING REPLICATION-RELATED PROBLEMS

This section lists some error messages, explains possible causes, and offers remedies.

It is possible to get more debugging information for replication by setting the error log level to 8192,
which is replication debugging. See Section 21.3.7, “Configuring the Log Levels”.

To change the error log level to 8192:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-errorlog-
level=8192

Because log level is additive, running the above command will result in excessive messages in the error
log. So, use it judiciously.

15.26.1. Possible Replication-related Error Messages

The following sections describe many common replication problems.

agmt=%s (%s:%d) Replica has a different generation ID than the local data

Reason: The consumer specified at the beginning of this message has not been (successfully)
initialized yet, or it was initialized from a different root supplier.

Impact: The local supplier will not replicate any data to the consumer.

Remedy: Ignore this message if it occurs before the consumer is initialized. Otherwise,
reinitialize the consumer if the message is persistent. In a multi-supplier environment, all the
servers should be initialized only once from a root supplier, directly or indirectly. For example, M1
initializes M2 and M4, M2 then initializes M3, and so on. The important thing to note is that M2
must not start initializing M3 until M2's own initialization is done (check the total update status
from the M1's web console or M1 or M2's error log). Also, M2 should not initialize M1 back.

Warning: data for replica's was reloaded, and it no longer matches the data in the changelog.
Recreating the changelog file. This could affect replication with replica's consumers, in which
case the consumers should be reinitialized.

Reason: This message may appear only when a supplier is restarted. It indicates that the supplier
was unable to write the changelog or did not flush out its RUV at its last shutdown. The former is
usually because of a disk-space problem, and the latter because a server crashed or was
ungracefully shut down.

Impact: The server will not be able to send the changes to a consumer if the consumer's

CHAPTER 15. MANAGING REPLICATION

359

Impact: The server will not be able to send the changes to a consumer if the consumer's
maxcsn no longer exists in the server's changelog.

Remedy: Check the disk space and the possible core file (under the server's logs directory). If
this is a single-supplier replication, reinitialize the consumers. Otherwise, if the server later
complains that it cannot locate some CSN for a consumer, see if the consumer can get the CSN
from other suppliers. If not, reinitialize the consumer.

agmt=%s(%s:%d): Can't locate CSN %s in the changelog (DB rc=%d). The consumer may need to
be reinitialized.

Reason: Most likely the changelog was recreated because of the disk is full or the server
ungracefully shutdown.

Impact: The local server will not be able to send any more change to that consumer until the
consumer is reinitialized or gets the CSN from other suppliers.

Remedy: If this is a single-supplier replication, reinitialize the consumers. Otherwise, see if the
consumer can get the CSN from other suppliers. If not, reinitialize the consumer.

Too much time skew

Reason: The system clocks on the host machines are extremely out of sync.

Impact: The system clock is used to generate a part of the CSN. In order to reflect the change
sequence among multiple suppliers, suppliers would forward-adjust their local clocks based on
the remote clocks of the other suppliers. Because the adjustment is limited to a certain amount,
any difference that exceeds the permitted limit will cause the replication session to be aborted.

Remedy: Synchronize the system clocks on the Directory Server host machines. If applicable,
run the network time protocol (ntp) daemon on those hosts.

agmt=%s(%s:%d): Warning: Unable to send endReplication extended operation (%s)

Reason: The consumer is not responding.

Impact: If the consumer recovers without being restarted, there is a chance that the replica on
the consumer will be locked forever if it did not receive the release lock message from the
supplier.

Remedy: Watch if the consumer can receive any new change from any of its suppliers, or start
the replication monitor, and see if all the suppliers of this consumer warn that the replica is busy.
If the replica appears to be locked forever and no supplier can get in, restart the consumer.

Changelog is getting too big.

Reason: Either changelog purge is turned off, which is the default setting, or changelog purge is
turned on, but some consumers are way behind the supplier.

Remedy: By default, changelog purge is turned off. To turn it on from the command line, run
ldapmodify as follows:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=changelog5,cn=config

Administration Guide

360

changetype: modify
add: nsslapd-changelogmaxage
nsslapd-changelogmaxage: 1d

1d means 1 day. Other valid time units are s for seconds, m for minutes, h for hours, and w for
weeks. A value of 0 turns off the purge.

With changelog purge turned on, a purge thread that wakes up every five minutes will remove a
change if its age is greater than the value of nsslapd-changelogmaxage and if it has been
replayed to all the direct consumers of this supplier (supplier or hub).

If it appears that the changelog is not purged when the purge threshold is reached, check the
maximum time lag from the replication monitor among all the consumers. Irrespective of what
the purge threshold is, no change will be purged before it is replayed by all the consumers.

The Replication Monitor is not responding.

Reason: The LDAPS port is specified in some replication agreement, but the certificate
database is not specified or not accessible by the Replication Monitor. If there is no LDAPS port
problem, one of the servers in the replication topology might hang.

Remedy: Map the TLS port to a non-TLS port in the configuration file of the Replication
Monitor. For example, if 636 is the TLS port and 389 is the non-TLS port, add the following line
in the [connection] section:

:636=389::password

In the Replication Monitor, some consumers show just the header of the table.

Reason: No change has originated from the corresponding suppliers. In this case, the MaxCSN:
in the header part should be "None".

Remedy: There is nothing wrong if there is no change originated from a supplier.

CHAPTER 15. MANAGING REPLICATION

361

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER
WITH MICROSOFT ACTIVE DIRECTORY
Windows Synchronization carries over changes in a directory — adds, deletes, and changes in groups,
users, and passwords — between Red Hat Directory Server and Microsoft Active Directory. This makes it
much more efficient and effective to maintain consistent information across directories.

16.1. ABOUT WINDOWS SYNCHRONIZATION

Synchronization allows the user and group entries in Active Directory to be matched with the entries in
the Red Hat Directory Server. As entries are created, modified, or deleted, the corresponding change is
made to the sync peer server, allowing two-way synchronization of users, passwords, and groups.

The synchronization process is analogous to the replication process: the synchronization is enabled by a
plug-in, configured and initiated through a sync agreement, and record of directory changes is
maintained and updates are sent according to that changelog. This synchronizes users and groups
between Directory Server and a Windows server.

Windows Synchronization has two parts, one for user and group entries and the other for passwords:

Directory Server Windows Synchronization. Synchronization for user and group entries is
configured in a synchronization agreement, much like replication is configured in a replication
agreement. A sync agreement defines what kinds of entries are synchronized (users, groups, or
both) and which direction changes are synchronized (from the Directory Server to
Active Directory, from Active Directory to Directory Server, or both).

The Directory Server relies on the Multi-Supplier Replication Plug-in to synchronize user and
group entries. The same changelog that is used for multi-supplier replication is also used to
send updates from the Directory Server to Active Directory as LDAP operations. The server also
performs LDAP search operations against its Windows server to synchronize changes made to
Windows entries to the corresponding Directory Server entry.

Password Synchronization Service. If you set the nsslapd-unhashed-pw-switch parameter in
the cn=config entry to on, password changes made on Directory Server are automatically
synchronized over to Active Directory. However, there must be a special hook to recognize and
transmit password changes on Active Directory over to Directory Server. This is done by the
Password Synchronization Service. This application captures password changes on the
Active Directory domain controller and sends them to the Directory Server over LDAPS.

The Password Synchronization Service must be installed on every Active Directory domain
controller.

Administration Guide

362

Figure 16.1. Active Directory — Directory Server Synchronization Process

Synchronization is configured and controlled by one or more synchronization agreements, which
establishes synchronization between sync peers , the directory servers being synchronized. These are
similar in purpose to replication agreements and contain a similar set of information, including the host
name (or IPv4 or IPv6 address) and port number for Active Directory. The Directory Server connects to
its peer Windows server using LDAP/LDAPS to both send and receive updates.

LDAP, a standard connection, can be used for syncing user and group entries alone, but to synchronize
passwords, some sort of secure connection is required. If a secure connection is not used, the Windows
domain will not accept password changes from the Directory Server and the Password Synchronization
Service will not send passwords from the Active Directory domain to the Directory Server. Windows
Synchronization allows both LDAPS using TLS and STARTTLS.

Multiple subtree pairs can be configured to sync each other. Unlike replication, which connects
databases, synchronization is between suffixes, parts of the directory tree structure. The synchronized
Active Directory and Directory Server suffixes are both specified in the sync agreement. All entries
within the respective subtrees are candidates for synchronization, including entries that are not
immediate children of the specified suffix DN.

NOTE

Any descendant container entries need to be created separately in Active Directory by an
administrator; Windows Synchronization does not create container entries.

The Directory Server maintains a changelog, a database that records modifications that have occurred.
The changelog is used by Windows Synchronization to coordinate and send changes made to the Active
Directory peer. Changes to entries in Active Directory are found by using Active Directory's Dirsync
search feature. Directory Server runs the Dirsync search periodically by default every five minutes to
check for changes on the Active Directory server. You can change this default by setting the
winSyncInterval parameter in the
cn=syncAgreement_Name,cn=WindowsReplica,cn=suffix_Name,cn=mapping tree,cn=config
entry. Using Dirsync ensures that only those entries that have changed since the previous search are
retrieved.

In some situations, such as when synchronization is configured or there have been major changes to
directory data, a total update, or resynchronization, can be run. This examines every entry in both sync
peers and sends any modifications or missing entries. A full Dirsync search is initiated whenever a total
update is run. See Section 16.11, “Sending Synchronization Updates” for more information.

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

363

Windows Synchronization provides some control over which entries are synchronized to grant
administrators fine-grained control of the entries that are synchronized and to give sufficient flexibility
to support different deployment scenarios. This control is set through different configuration attributes
set in the Directory Server:

When creating the sync agreement, there is an option to synchronizing new Windows entries
(nsDS7NewWinUserSyncEnabled and nsDS7NewWinGroupSyncEnabled) as they are
created. If these attributes are set to on, then existing Windows users/groups are synchronized
to the Directory Server, and users/groups as they are created are synchronized to the
Directory Server.

Within the Windows subtree, only entries with user or group object classes can be synchronized
to Directory Server.

On the Directory Server, only entries with the ntUser or ntGroup object classes and attributes
can be synchronized.

The placement of the sync agreement depends on what suffixes are synchronized; for a single suffix, the
sync agreement is made for that suffix alone; for multiple suffixes, the sync agreement is made at a
higher branch of the directory tree. To propagate Windows entries and updates throughout the
Directory Server deployment, make the agreement between a supplier in a multi-supplier replication
environment, and use that supplier to replicate the changes across the Directory Server deployment, as
shown in Figure 16.2, “Multi-Supplier Directory Server — Windows Domain Synchronization” .

IMPORTANT

While it is possible to configure a sync agreement on a hub server, this only allows uni-
directional synchronization, from Red Hat Directory Server to Active Directory. The
Active Directory server cannot sync any changes back to the hub.

It is strongly recommended that only suppliers in multi-supplier replication be used to
configure synchronization agreements.

WARNING

There can only be a single sync agreement between the Directory Server
environment and the Active Directory environment. Multiple sync agreements to
the same Active Directory domain can create entry conflicts.



Administration Guide

364

Figure 16.2. Multi-Supplier Directory Server — Windows Domain Synchronization

Directory Server passwords are synchronized along with other entry attributes because plain-text
passwords are retained in the Directory Server changelog. The Password Synchronization service is
needed to catch password changes made on Active Directory. Without the Password Synchronization
service, it would be impossible to have Windows passwords synchronized because passwords are hashed
in Active Directory, and the Windows hashing function is incompatible with the one used by
Directory Server.

16.2. SUPPORTED ACTIVE DIRECTORY VERSIONS

See the corresponding section for the latest Directory Server version in the Red Hat Directory Server
Release Notes.

16.3. SYNCHRONIZING PASSWORDS

Password changes in a Directory Server entry can be synchronized to password attributes in Active
Directory entries by using the Password Sync utility.

When passwords are synchronized, password policies are enforced on each sync peer locally. The syntax
or minimum length requirements on the Directory Server apply when the password is changed in the
Directory Server. When the changed password is synchronized over to the Windows server, the Windows
password policy is enforced.

IMPORTANT

The password policies themselves are not synchronized.

Configuration information is kept locally and cannot be synchronized, including the password change
history and the account lockout counters.

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

365

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/release_notes/index

When configuring a password policy for synchronization, consider the following points:

The Password Sync utility must be installed locally on the Windows machine that will be
synchronized with a Directory Server.

Password Sync can only link the Windows machine to a single Directory Server; to sync changes
with multiple Directory Server instances, configure the Directory Server for multi-supplier
replication.

Password expiration warnings and times, failed bind attempts, and other password-related
information is enforced locally per server and is not synchronized between sync peer servers.

On the Directory Server instance that has the replication agreement with the Windows server
configured, set the nsslapd-unhashed-pw-switch parameter in the cn=config entry to on.

The same bind behavior should occur on all servers. Make sure to create the same or similar
password policies on both Directory Server and Active Directory servers.

Entries that are created for synchronization (for example, the server identities) need to have
passwords that never expire. To make sure that these special users have passwords that do not
expire, add the passwordExpirationTime attribute to the Directory Server entry, and give it a
value of 20380119031407Z (the top of the valid range).

16.4. SETTING UP SYNCHRONIZATION BETWEEN ACTIVE DIRECTORY
AND DIRECTORY SERVER

Configuring synchronization is very similar to configuring replication. It requires configuring the database
as a supplier with a changelog and creating an agreement to define synchronization. A common user
identity, a synchronization user, connects to the Active Directory (AD) domain controller (DC) to send
updates from Directory Server to AD and to check AD for updates to synchronize them to
Directory Server.

NOTE

To enable users to use their accounts on Directory Server and AD, synchronize
passwords. Password synchronization requires to use an encrypted connection.

Synchronization for user and group entries is passive from the AD side. Directory Server send updates
to AD and polls for updates on the AD domain. For passwords, the AD server requires a separate
password service. This service actively sends password changes from the AD domain to
Directory Server.

16.4.1. Step 1: Enabling TLS on the Directory Server Host

The Password Sync service requires to synchronize passwords over an encrypted connection. If TLS is
not yet enabled in your Directory Server instance, enable it. For details, see Section 9.4.1, “Enabling TLS
in Directory Server”.

16.4.2. Step 2: Enabling Password Complexity in the AD Domain

Enable password complexity in the AD domain using a group policy. For example:

1. Open the Group Policy Management console and create a new Group Policy Object (GPO) in
the domain.

Administration Guide

366

For details about using the Group Policy Management console, see the Windows
documentation.

2. Right-click the GPO, and select Edit to open the Group Policy Management Editor.

3. Navigate to Computer Configuration → Windows Settings → Security Settings → Account
Policies → Password Policy, and double-click the policy named Password must meet
complexity requirements.

4. Enable the policy and click OK.

5. Close the Group Policy Management Editor and the Group Policy Management console.

16.4.3. Step 3: Extracting the CA Certificate from AD

Extract the root certificate authority (CA) certificate and copy it to the Directory Server host:

If your AD CA certificate is self-signed:

1. On an AD DC with the Certification Authority application installed, press the Super key+R
combination to open the Run dialog.

2. Enter the certsrv.msc command and click OK to open the Certification Authority
application.

3. Right-click on the name of the local Certificate Authority and choose Properties.

4. On the General tab, select the certificate to export in the CA certificates field and click
View Certificate.

5. On the Details tab, click Copy to File to start the Certificate Export Wizard.

6. Click Next, and then select Base-64 encoded X.509 (.CER).

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

367

7. Specify a suitable directory and file name for the exported file. Click Next to export the
certificate, and then click Finish.

8. Copy the root CA certificate to the Directory Server host.

If your AD CA certificate is signed by an external CA:

1. Determine the root CA. For example:

openssl s_client -connect adserver.example.com:636
CONNECTED(00000003)
depth=1 C = US, O = Demo Company, OU = IT, CN = Demo CA-28
verify error:num=20:unable to get local issuer certificate
verify return:0

Certificate chain
 0 s:/C=US/O=Demo Company/OU=IT/CN=adserver.example.com
 i:/C=US/O=Demo Company/OU=IT/CN=Demo CA-1
 1 s:/C=US/O=Demo Company/OU=IT/CN=Demo CA-1
 i:/C=US/O=Demo Company/OU=IT/CN=Demo Root CA 2

The previous example shows that the AD server's CA certificate is signed by CN=Demo CA-
1, which is signed by CN=Demo Root CA 2. This means that CN=Demo Root CA 2 is the
root CA.

2. Contact the operator of the root CA about how to retrieve the CA certificate.

3. Copy the root CA certificate to the Directory Server host.

Administration Guide

368

16.4.4. Step 4: Extracting the CA Certificate from the Directory Server's NSS
Database

To extract the CA certificate from the Directory Server's NSS database:

1. List the certificates in the database:

certutil -d /etc/dirsrv/slapd-instance_name/ -L

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

Server-Cert u,u,u
Example CA C,,

2. Extract the CA certificate from the database. For example, to extract the CA certificate with
the Example CA nickname and store it in the /root/ds-ca.crt file:

certutil -d /etc/dirsrv/slapd-instance_name/ -L -n "Example CA" -a > /root/ds-ca.crt

3. Copy the CA certificate to the AD DC.

16.4.5. Step 5: Creating the Synchronization Accounts

For synchronization between AD and Directory Server, you require one account in AD and one in
Directory Server. This section explains further details about creating these accounts.

Creating an Account in Directory Server
The AD DCs use a Directory Server account in the Password Sync service to synchronize passwords to
Directory Server. For example, to create the cn=pw_sync_user,dc=config user in Directory Server:

1. Create the user account:

ldapadd -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=pw_sync_user,cn=config
objectClass: inetorgperson
objectClass: person
objectClass: top
cn: pw_sync_user
sn: pw_sync_user
userPassword: password
passwordExpirationTime: 20380101000000Z

This creates the cn=pw_sync_user,dc=config account and sets its expiration time to January
01 2038.

IMPORTANT

For security reasons, do not create the account in the synchronized subtree.

2. Set an ACI at the top of the subtree that will be synchronized and grants write and compare

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

369

2. Set an ACI at the top of the subtree that will be synchronized and grants write and compare
permissions to the cn=pw_sync_user,dc=config user. For example, to add such an ACI to the
ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="userPassword")(version 3.0;acl "Password synchronization";
 allow (write,compare) userdn="ldap:///cn=pw_sync_user,dc=config";)

3. Configure that Directory Server can store passwords in clear text in the changelog:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
unhashed-pw-switch=on

Because Directory Server uses a different password encryption than Active Directory,
Directory Server must send the password in clear text to the Windows server. However, the clear
text password is sent over a TLS encrypted connection that is required for password
synchronization and is, therefore, not exposed to the network.

Creating an Account in AD
To send and receive updates, Directory Server uses an AD account when connecting to AD. This account
must be a member of the Domain Admins group or have equivalent permissions in AD. For details
about creating AD accounts, see your AD documentation.

16.4.6. Step 6: Installing the Password Sync Service

Install the Password Sync on every writable DC in your AD. For details about installing the Password
Sync service, see the Installing the password synchronization service section in the Red Hat
Directory Server Installation Guide.

For a list of operating systems running the Password Sync service that Red Hat supports, see the
Red Hat Directory Server Release Notes.

16.4.7. Step 7: Adding the CA Certificate Directory Server uses to the Password
Sync Service's Certificate Database

On every DC that has the Password Sync service installed, add the CA certificate Directory Server uses
to the Password Sync service's certificate database:

1. Change into the C:\Program Files\Red Hat Directory Password Synchronization\ directory:

> cd "C:\Program Files\Red Hat Directory Password Synchronization\"

2. Create the certificate databases in the current directory:

> certutil.exe -d . -N

The certutil.exe utility prompts to set a password to the new database it creates.

3. Import the CA certificate used by the Directory Server instance. You copied this certificate in
Section 16.4.4, “Step 4: Extracting the CA Certificate from the Directory Server's NSS

Administration Guide

370

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html-single/installation_guide/#proc_installing-the-password-synchronization-service_assembly_installing-updating-and-uninstalling-the-password-synchronization-service
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/release_notes/

Database” to the Windows DC. For example, to import the certificate from the C:\ds-ca.crt file
and store it in the database with the Example CA nickname:

> certutil.exe -d . -A -n "Example CA" -t CT,, -a -i "C:\ds-ca.crt"

4. Optionally, verify that the CA certificate was stored correctly in the database:

> certutil.exe -d . -L

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI

Example CA CT,,

5. Reboot the Windows DC. The Password Sync service is not available until you reboot the
system.

NOTE

If any AD user accounts exist when you install Password Sync, the service cannot
synchronize the passwords for those accounts until the passwords are changed. This
happens because Password Sync cannot decrypt a password once it has been stored in
Active Directory. For details about enforcing a password reset for AD users, see the
Active Directory documentation.

16.4.8. Step 8: Adding the CA Certificate AD uses to Directory Server's Certificate
Database

On the Directory Server host, add the CA certificate AD uses to the certificate database:

1. Import the CA certificate AD uses. You copied this certificate in Section 16.4.3, “Step 3:
Extracting the CA Certificate from AD” to the Directory Server host. For example, to import the
certificate from the /root/ad-ca.crt file and store it in the database with the Example CA
nickname:

> certutil -d /etc/dirsrv/slapd-instance_name/ -A -n "Example CA" -t CT,, -a -i /root/ad-ca.crt

2. Optionally, verify that the CA certificate was stored correctly in the database:

> certutil -d /etc/dirsrv/slapd-instance_name/ -L

Certificate Nickname Trust Attributes
 SSL,S/MIME,JAR/XPI
...
Example CA CT,,

16.4.9. Step 9: Configuring the Database for Synchronization and Creating the
Synchronization Agreement

This section describes how to configure the database for synchronization and create the synchronization
agreement.

16.4.9.1. Configuring the Database for Synchronization and Creating the Synchronization

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

371

16.4.9.1. Configuring the Database for Synchronization and Creating the Synchronization
Agreement Using the Command Line

The following example assumes that you have Directory Server running on a host named
ds.example.com and an AD DC running on a host named win-server.ad.example.com. The following
procedure describes how to configure synchronization between these hosts:

1. Enable replication for the suffix:

dsconf -D "cn=Directory Manager" ldap://ds.example.com replication \
 enable --suffix="dc=example,dc=com" --role="supplier" --replica-id=1

This command configures the ds.example.com host as a supplier for the dc=example,dc=com
suffix and sets the replica ID for this entry to 1.

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix across
all suppliers in the topology.

2. Add the synchronization agreement and initialize the agreement. For example:

dsconf -D "cn=Directory Manager" ldap://ds.example.com repl-winsync-agmt \
 create --suffix="dc=example,dc=com" --host="win-server.ad.example.com" --port=636 \
 --conn-protocol="LDAPS" --bind-
dn="cn=user_name,cn=Users,dc=ad,dc=example,dc=com" \
 --bind-passwd="password" --win-subtree="cn=Users,dc=example,dc=com" \
 --ds-subtree="ou=People,dc=example,dc=com" --win-domain="AD" \
 --init example-agreement

This command creates a replication agreement named example-agreement . The replication
agreement defines settings, such as AD DC's host name, protocol, and authentication
information, Directory Server uses when connecting and synchronizing data to the DC.

After the agreement is created, Directory Server initializes the agreement. To initialize the
agreement later, omit the --init option. Note that synchronization does not start before you
initialized the agreement. For details about initializing a synchronization agreement, see
Section 16.11.2.1, “Performing a Full Synchronization Using the Command Line” .

Optionally, pass the --sync-users="on" and --sync-groups="on" option to the command to
automatically synchronize new Windows users and groups to Directory Server.

For further details about the options used in the command, enter:

dsconf -D "cn=Directory Manager" ldap://ds.example.com repl-agmt --help

3. Verify that the initialization was successful:

dsconf -D "cn=Directory Manager" ldap://ds.example.com repl-winsync-agmt \
 init-status --suffix="dc=example,dc=com" example-agreement
Agreement successfully initialized.

16.4.9.2. Configuring the Database for Synchronization and Creating the Synchronization

Administration Guide

372

16.4.9.2. Configuring the Database for Synchronization and Creating the Synchronization
Agreement Using the Web Console

The following example assumes that you have Directory Server running on a host named
ds.example.com and an AD DC running on a host named win-server.ad.example.com. The following
procedure describes how to configure synchronization between these hosts:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Enable replication for the suffix:

a. Open the Replication menu.

b. Select the dc=example,dc=com suffix, and click Enable Replication.

c. Select Supplier in the Replication Role field and enter a replica ID. For example:

These settings configure the ds.example.com host as a supplier for the
dc=example,dc=com suffix and sets the replica ID for this entry to 1.

IMPORTANT

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

373

IMPORTANT

The replica ID must be a unique integer between 1 and 65534 for a suffix
across all suppliers in the topology.

d. Click Enable Replication.

4. Add the synchronization agreement and initialize agreement:

a. Open the Replication menu and select the Winsync Agreements entry.

b. Click Create Agreement and fill the fields. For example:

Administration Guide

374

These settings will create a synchronization agreement named example-agreement. The
synchronization agreement defines settings, such as the DC's host name, protocol, and
authentication information, Directory Server uses when connecting and synchronizing data.

Optionally, select Sync New Windows Users and Sync New Windows Groups to
automatically synchronize new Windows users and groups to Directory Server.

After the agreement is created, Directory Server initializes the agreement. To initialize the

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

375

After the agreement is created, Directory Server initializes the agreement. To initialize the
agreement later, do not select Do Online Initialization. Note that synchronization does not
start before you initialized the agreement. For details about initializing a synchronization
agreement, see Section 16.11.2.2, “Performing a Full Synchronization Using the Web
Console”.

c. Click Save Agreement.

5. Verify that the initialization was successful:

a. Open the Replication menu.

b. Select the Agreements entry.

If the initialization completed successfully, the web console displays the Error (0) Replica
acquired successfully: Incremental update succeeded message in the Last Update
Status column.

Depending of the amount of data to synchronize, the initialization can take up to several
hours.

16.5. SYNCHRONIZING USERS

Users are not automatically synchronized between Directory Server and Active Directory.
Synchronization both directions has to be configured:

Users in the Active Directory domain are synchronized if it is configured in the sync agreement
by selecting the Sync New Windows Users option. All of the Windows users are copied to the
Directory Server when synchronization is initiated and then new users are synchronized over
when they are created.

A Directory Server user account is synchronized to Active Directory through specific attributes
that are present on the Directory Server entry. Any Directory Server entry must have the ntUser
object class and the ntUserCreateNewAccount attribute; the ntUserCreateNewAccount
attribute (even on an existing entry) signals the Directory Server Windows Synchronization
plug-in to write the entry over to the Active Directory server.

New or modified user entries with the ntUser object class added are created and synchronized
over to the Windows machine at the next regular update, which is a standard poll of entry.

NOTE

Administration Guide

376

NOTE

A user is not active on the Active Directory domain until it has a password. When an
existing user is modified to have the required Windows attributes, that user entry will be
synchronized over to the Active Directory domain, but will not be able to log in until the
password is changed on the Directory Server side or an administrator sets the password
on Active Directory. This is because passwords stored in the Directory Server are
encrypted, and Password Sync cannot sync already encrypted passwords.

To make the user active on the Active Directory domain, reset the user's password.

All synchronized entries in the Directory Server, whether they originated in the Directory Server or in
Active Directory, have special synchronization attributes:

ntUserDomainId. This corresponds to the sAMAccountName attribute for Active Directory
entries.

ntUniqueId. This contains the value of the objectGUID attribute for the corresponding Windows
entry. This attribute is set by the synchronization process and should not be set or modified
manually.

ntUserDeleteAccount. This attribute is set automatically when a Windows entry is synchronized
over but must be set manually for Directory Server entries. If ntUserDeleteAccount has the
value true, the corresponding Windows entry be deleted when the Directory Server entry is
deleted. Otherwise, the entry remains in Active Directory, but is removed from the
Directory Server database if it is deleted in the Directory Server.

Setting ntUserCreateNewAccount and ntUserDeleteAccount on Directory Server entries allows the
Directory Manager precise control over which users within the synchronized subtree are synchronized on
Active Directory.

16.5.1. User Attributes Synchronized between Directory Server and Active Directory

Only a subset of Directory Server and Active Directory attributes are synchronized. These attributes are
hard-coded and are defined regardless of which way the entry is being synchronized. Any other
attributes present in the entry, either in Directory Server or in Active Directory, remain unaffected by
synchronization.

Some attributes used in Directory Server and Active Directory are identical. These are usually attributes
defined in an LDAP standard, which are common among all LDAP services. These attributes are
synchronized to one another exactly. Table 16.2, “User Schema That Are the Same in Directory Server
and Windows Servers” shows attributes that are the same between the Directory Server and Windows
servers.

Some attributes define the same information, but the names of the attributes or their schema
definitions are different. These attributes are mapped between Active Directory and Directory Server,
so that attribute A in one server is treated as attribute B in the other. For synchronization, many of these
attributes relate to Windows-specific information. Table 16.1, “User Schema Mapped between
Directory Server and Active Directory” shows the attributes that are mapped between the
Directory Server and Windows servers.

For more information on the differences in ways that Directory Server and Active Directory handle some
schema elements, see Section 16.5.2, “User Schema Differences between Red Hat Directory Server and
Active Directory”.

Table 16.1. User Schema Mapped between Directory Server and Active Directory

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

377

Directory Server Active Directory

cn[a] name

ntUserDomainId sAMAccountName

ntUserHomeDir homeDirectory

ntUserScriptPath scriptPath

ntUserLastLogon lastLogon

ntUserLastLogoff lastLogoff

ntUserAcctExpires accountExpires

ntUserCodePage codePage

ntUserLogonHours logonHours

ntUserMaxStorage maxStorage

ntUserProfile profilePath

ntUserParms userParameters

ntUserWorkstations userWorkstations

[a] The cn is treated differently than other synchronized attributes. It is mapped directly (cn to cn) when syncing from
Directory Server to Active Directory. When syncing from Active Directory to Directory Server, however, cn is mapped from
the name attribute on Windows to the cn attribute in Directory Server.

Table 16.2. User Schema That Are the Same in Directory Server and Windows Servers

cn[a] physicalDeliveryOfficeName

description postOfficeBox

destinationIndicator postalAddress

facsimileTelephoneNumber postalCode

givenname registeredAddress

homePhone sn

Administration Guide

378

homePostalAddress st

initials street

l telephoneNumber

mail teletexTerminalIdentifier

mobile telexNumber

o title

ou usercertificate

pager x121Address

[a] The cn is treated differently than other synchronized attributes. It is mapped directly (cn to cn) when syncing from
Directory Server to Active Directory. When syncing from Active Directory to Directory Server, however, cn is mapped from
the name attribute on Windows to the cn attribute in Directory Server.

16.5.2. User Schema Differences between Red Hat Directory Server and Active
Directory

Although Active Directory supports the same basic X.500 object classes as Directory Server, there are a
few incompatibilities of which administrators should be aware.

16.5.2.1. Values for cn Attributes

In Directory Server, the cn attribute can be multi-valued, while in Active Directory this attribute must
have only a single value. When the Directory Server cn attribute is synchronized, then, only one value is
sent to the Active Directory peer.

What this means for synchronization is that,potentially, if a cn value is added to an Active Directory entry
and that value is not one of the values for cn in Directory Server, then all of the Directory Server cn
values are overwritten with the single Active Directory value.

One other important difference is that Active Directory uses the cn attribute attribute as its naming
attribute, where Directory Server uses uid. This means that there is the potential to rename the entry
entirely (and accidentally) if the cn attribute is edited in the Directory Server. If that cn change is
written over to the Active Directory entry, then the entry is renamed, and the new named entry is written
back over to Directory Server.

16.5.2.2. Password Policies

Both Active Directory and Directory Server can enforce password policies such as password minimum
length or maximum age. Windows Synchronization makes no attempt to ensure that the policies are
consistent, enforced, or synchronized. If password policy is not consistent in both Directory Server and
Active Directory, then password changes made on one system may fail when synchronized to the other
system. The default password syntax setting on Directory Server mimics the default password
complexity rules that Active Directory enforces.

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

379

16.5.2.3. Values for street and streetAddress

Active Directory uses the attribute streetAddress for a user or group's postal address; this is the way
that Directory Server uses the street attribute. There are two important differences in the way that
Active Directory and Directory Server use the streetAddress and street attributes, respectively:

In Directory Server, streetAddress is an alias for street. Active Directory also has the street
attribute, but it is a separate attribute that can hold an independent value, not an alias for
streetAddress.

Active Directory defines both streetAddress and street as single-valued attributes, while
Directory Server defines street as a multi-valued attribute, as specified in RFC 4519.

Because of the different ways that Directory Server and Active Directory handle streetAddress and
street attributes, there are two rules to follow when setting address attributes in Active Directory and
Directory Server:

Windows Synchronization maps streetAddress in the Windows entry to street in
Directory Server. To avoid conflicts, the street attribute should not be used in Active Directory.

Only one Directory Server street attribute value is synchronized to Active Directory. If the
streetAddress attribute is changed in Active Directory and the new value does not already exist
in Directory Server, then all street attribute values in Directory Server are replaced with the new,
single Active Directory value.

16.5.2.4. Constraints on the initials Attribute

For the initials attribute, Active Directory imposes a maximum length constraint of six characters, but
Directory Server does not have a length limit. If an initials attribute longer than six characters is added
to Directory Server, the value is trimmed when it is synchronized with the Active Directory entry.

16.5.3. Configuring User Synchronization for Directory Server Users

For Directory Server users to be synchronized over to Active Directory, the user entries must have the
appropriate sync attributes set.

To enable synchronization through the command line, add the required sync attributes to an entry or
create an entry with those attributes.

Three schema elements are required for synchronization:

The ntUser object class

The ntUserDomainId attribute, to give the Windows ID

The ntUserCreateNewAccount attribute, to signal to the synchronization plug-in to sync the
Directory Server entry over to Active Directory

For example, using the ldapmodify utility:

dn: uid=scarter,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass:ntUser
-
add: ntUserDomainId

Administration Guide

380

ntUserDomainId: Sam Carter
-
add: ntUserCreateNewAccount
ntUserCreateNewAccount: true
-
add: ntUserDeleteAccount
ntUserDeleteAccount: true

Many additional Windows and user attributes can be added to the entry. All of the schema which is
synchronized is listed in Section 16.5.1, “User Attributes Synchronized between Directory Server and
Active Directory”. Windows-specific attributes, belonging to the ntUser object class, are described in
more detail in the Red Hat Directory Server 11 Configuration, Command, and File Reference .

NOTE

Reset the user's password.

A user is not active on the Active Directory domain until it has a password. When an
existing user is modified to have the required Windows attributes, that user entry will be
synchronized over to the Active Directory domain, but will not be able to log in until the
password is changed on the Directory Server side or an administrator sets the password
on Active Directory. Password Sync cannot sync encrypted passwords.

So, to make the user active on the Active Directory domain, reset the user's password.

16.5.4. Configuring User Synchronization for Active Directory Users

Synchronization for Windows users (users which originate in the Active Directory domain) is configured
in the sync agreement.

To enable user synchronization:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt set --sync-
users="on" --suffix="dc=example,dc=com" example-agreement

To disable user synchronization, set the --sync-users option to off.

16.6. SYNCHRONIZING GROUPS

Like user entries, groups are not automatically synchronized between Directory Server and
Active Directory. Synchronization both directions has to be configured:

Groups in the Active Directory domain are synchronized if it is configured in the sync agreement
by selecting the Sync New Windows Groups option. All of the Windows groups are copied to
the Directory Server when synchronization is initiated and then new groups are synchronized
over as they are created.

A Directory Server group account is synchronized to Active Directory through specific attributes
that are present on the Directory Server entry. Any Directory Server entry must have the
ntGroup object class and the ntGroupCreateNewGroup attribute; the
ntGroupCreateNewGroup attribute (even on an existing entry) signals Directory Server
Windows Synchronization to write the entry over to the Active Directory server.

New or modified groups that have the ntGroup object class are created and synchronized over
to the Windows machine at the next regular update.

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

381

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

IMPORTANT

When a group is synchronized, the list of all of its members is also synchronized. However,
the member entries themselves are not synchronized unless user sync is enabled and
applies to those entries.

This could create a problem when an application or service tries to do a modify operation
on all members in a group on the Active Directory server, if some of those users do not
exist.

Additionally, groups have a few other common attributes:

Two attributes control whether Directory Server groups are created and deleted on
Active Directory, ntGroupCreateNewGroup and ntGroupDeleteGroup.

ntGroupCreateNewGroup is required to sync Directory Server groups over to Active Directory.

ntUserDomainId contains the unique ID for the entry on the Active Directory domain. This is the
only required attribute for the ntGroup object class.

ntGroupType is the type of Windows group. Windows group types are global/security, domain
local/security, builtin, universal/security, global/distribution, domain local/distribution, or
universal/distribution. This is set automatically for Windows groups that are synchronized over,
but this attribute must be set manually on Directory Server entries before they can be
synchronized.

16.6.1. About Windows Group Types

In Active Directory, there are two major types of groups: security and distribution. Security groups are
most similar to groups in Directory Server, since security groups can have policies configured for access
controls, resource restrictions, and other permissions. Distribution groups are for mailing distribution.
These are further broken down into global and local groups. The Directory Server ntGroupType supports
all four group types:

-2147483646 for global/security (the default)

-2147483644 for domain local/security

-2147483643 for builtin

-2147483640 for universal/security

2 for global/distribution

4 for domain local/distribution

8 for universal/distribution

16.6.2. Group Attributes Synchronized between Directory Server and
Active Directory

Only a subset of Directory Server and Active Directory attributes are synchronized. These attributes are
hard-coded and are defined regardless of which way the entry is being synchronized. Any other
attributes present in the entry, either in Directory Server or in Active Directory, remain unaffected by
synchronization.

Administration Guide

382

Some attributes used in Directory Server and Active Directory group entries are identical. These are
usually attributes defined in an LDAP standard, which are common among all LDAP services. These
attributes are synchronized to one another exactly. Table 16.4, “Group Entry Attributes That Are the
Same between Directory Server and Active Directory” shows attributes that are the same between the
Directory Server and Windows servers.

Some attributes define the same information, but the names of the attributes or their schema
definitions are different. These attributes are mapped between Active Directory and Directory Server,
so that attribute A in one server is treated as attribute B in the other. For synchronization, many of these
attributes relate to Windows-specific information. Table 16.3, “Group Entry Attribute Mapping between
Directory Server and Active Directory” shows the attributes that are mapped between the
Directory Server and Windows servers.

For more information on the differences in ways that Directory Server and Active Directory handle some
schema elements, see Section 16.6.3, “Group Schema Differences between Red Hat Directory Server
and Active Directory”.

Table 16.3. Group Entry Attribute Mapping between Directory Server and Active Directory

Directory Server Active Directory

cn name

ntUserDomainID name

ntGroupType groupType

uniqueMember

member

Member[a]

[a] The Member attribute in Active Directory is synchronized to the uniqueMember attribute in Directory Server.

Table 16.4. Group Entry Attributes That Are the Same between Directory Server and Active
Directory

cn o

description ou

l seeAlso

mail

16.6.3. Group Schema Differences between Red Hat Directory Server and Active
Directory

Although Active Directory supports the same basic X.500 object classes as Directory Server, there are a
few incompatibilities of which administrators should be aware.

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

383

Nested groups (where a group contains another group as a member) are supported and for Windows
Synchronization are synchronized. However, Active Directory imposes certain constraints as to the
composition of nested groups. For example, a global group is not allowed to contain a domain local
group as a member. Directory Server has no concept of local and global groups, and, therefore, it is
possible to create entries on the Directory Server side that violate Active Directory's constraints when
synchronized.

16.6.4. Configuring Group Synchronization for Directory Server Groups

For Directory Server groups to be synchronized over to Active Directory, the group entries must have
the appropriate sync attributes set.

To enable synchronization through the command line, add the required sync attributes to an entry or
create an entry with those attributes.

Three schema elements are required for synchronization:

The ntGroup object class.

The ntUserDomainId attribute, to give the Windows ID for the entry.

The ntGroupCreateNewGroup attribute, to signal to the synchronization plug-in to sync the
Directory Server entry over to Active Directory.

The ntGroupDeleteGroup attribute is optional, but this sets whether to delete the entry
automatically from the Active Directory domain if it is deleted in the Directory Server.

It is also recommended to add the ntGroupType attribute. If this attribute is not specified, then the
group is automatically added as a global security group (ntGroupType:-2147483646).

For example, using ldapmodify:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=Example Group,ou=Groups,dc=example,dc=com
changetype: modify
add: objectClass
objectClass:ntGroup
-
add: ntUserDomainId
ntUserDomainId: example-group
-
add: ntGroupCreateNewGroup
ntGroupCreateNewGroup: true
-
add: ntGroupDeleteGroup
ntGroupDeleteGroup: true
-
add: ntGroupType
ntGroupType: 2

Many additional Windows and group attributes can be added to the entry. All of the schema which is
synchronized is listed in Section 16.6.2, “Group Attributes Synchronized between Directory Server and
Active Directory”. Windows-specific attributes, belonging to the ntGroup object class, are described in
more detail in the Red Hat Directory Server 11 Configuration, Command, and File Reference .

Administration Guide

384

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

16.6.5. Configuring Group Synchronization for Active Directory Groups

Synchronization for Windows users (users which originate in the Active Directory domain) is configured
in the sync agreement.

To enable group synchronization:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt set --sync-
groups="on" --suffix="dc=example,dc=com" example-agreement

To disable group synchronization, set the --sync-groups option to off.

16.7. CONFIGURING UNI-DIRECTIONAL SYNCHRONIZATION

As Figure 16.1, “Active Directory — Directory Server Synchronization Process” illustrates, synchronization
is bi-directional by default. That means that changes in Active Directory are sent to Directory Server and
changes on Directory Server are sent to Active Directory.

It is possible to create uni-directional synchronization, where changes are only sent one-way. This is
similar to a supplier-consumer relationship[1] as opposed to multi-supplier.

An additional attribute for the sync agreement, oneWaySync, enables uni-directional synchronization
and specifies the direction to send changes. The possible values are fromWindows (for Active Directory
to Directory Server sync) and toWindows (for Directory Server to Active Directory sync). If this
attribute is absent, then synchronization is bi-directional.

Figure 16.3. Uni-Directional Synchronization

The synchronization process itself is the mostly same for bi-directional and uni-directional
synchronization. It uses the same sync interval and configuration. The only difference is in how sync
information is requested.

For Windows Active Directory to Directory Server synchronization, during the regular synchronization
update interval, the Directory Server contacts the Active Directory server and sends the DirSync control
to request updates. However, the Directory Server does not send any changes or entries from its side.
So, the sync update consists of the Active Directory changes being sent to and updating the
Directory Server entries.

For Directory Server to Active Directory synchronization, the Directory Server sends entry modifications

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

385

For Directory Server to Active Directory synchronization, the Directory Server sends entry modifications
to the Active Directory server in a normal update, but it does not include the DirSync control so that it
does not request any updates from the Active Directory side.

Use the --one-way-sync="direction" option to enable uni-directional synchronization in one of the
following situations:

1. If you create a new synchronization agreement in Section 16.4.9, “Step 9: Configuring the
Database for Synchronization and Creating the Synchronization Agreement”, pass the option to
the dsconf repl-winsync-agmt create command.

2. If the synchronization agreement already exists, update the agreement. For example, to set
synchronization from AD to Directory Server:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt set --one-
way-sync="fromWindows" --suffix="dc=example,dc=com" example-agreement

NOTE

Enabling uni-directional sync does not automatically prevent changes on the un-
synchronized server, and this can lead to inconsistencies between the sync peers between
sync updates. For example, uni-directional sync is configured to go from Active Directory
to Directory Server, so Active Directory is (in essence) the data supplier. If an entry is
modified or even deleted on the Directory Server, then the Directory Server information
is different than the information and those changes are never carried over to
Active Directory. During the next sync update, the edits are overwritten on the
Directory Server and the deleted entry is re-added.

To prevent data inconsistency, use access control rules to prevent editing or deleting
entries within the synchronized subtree on the unsynchronized server. Access controls for
Directory Server are covered in Chapter 18, Managing Access Control . For
Active Directory, see the appropriate Windows documentation.

Uni-directional sync does not affect password synchronization. Even when the synchronization direction
is set to toWindows, after updating a password on the Active Directory server, the password is sent to
the Directory Server.

16.8. CONFIGURING MULTIPLE SUBTREES AND FILTERS IN WINDOWS
SYNCHRONIZATION

Windows Synchronization is designed to synchronize between multiple pairs of subtrees on the Directory
Server (DS) and Active Directory (AD). By using filters, only specified entries under a subtree are
synchronized.

Multiple Subtrees in Windows Synchronization
To synchronize among multiple subtree pairs, configure the Directory Server and the Active Directory
subtrees in the winSyncSubtreePair parameter in the Windows sync agreement. For example to set
multiple the ou=OU1,dc=DSexample,dc=com and ou=OU1,DC=ADexample,DC=com subtree:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt set --subtree-
pair="ou=OU1,dc=DSexample,dc=com:ou=OU1,DC=ADexample,DC=com" --
suffix="dc=example,dc=com" example-agreement

If winSyncSubtreePair is not set, the nsds7WindowsReplicaSubtree AD subtree parameter and the

Administration Guide

386

If winSyncSubtreePair is not set, the nsds7WindowsReplicaSubtree AD subtree parameter and the
nsds7DirectoryReplicaSubtree DS subtree parameter are used for the synchronization target checks
instead. Otherwise, these two parameters are ignored.

Filters in Windows Synchronization
You can set a filter that selects data to be synchronized in the following parameters:

--win-filter sets an additional filter on the Active Directory server,

--ds-filter parameter sets an additional filter on Directory Server.

The following example configures that the example_agreement synchronizes entries that contain user
and group attributes:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt \
 set --win-filter="(|(cn=*user*)(cn=*group*))" --ds-filter="(|(uid=*user*)(cn=*group*))" \
 example_agreement

16.9. SYNCHRONIZING POSIX ATTRIBUTES FOR USERS AND GROUPS

A subset of all possible user and attributes are synchronized between Active Directory and Red Hat
Directory Server. Some attributes are mapped, where there are differences between Active Directory
and Directory Server schemas, and some attributes are matched directly. The attributes (matched and
mapped) which are synchronized are listed in Section 16.5.1, “User Attributes Synchronized between
Directory Server and Active Directory” and Section 16.6.2, “Group Attributes Synchronized between
Directory Server and Active Directory”.

By default, only those attributes are synchronized.

One type of attribute that is missing from that sync list is any POSIX-related attribute. On Linux
systems, system users and groups are identified as POSIX entries, and LDAP POSIX attributes contain
that required information. However, when Windows users are synchronized over, they have ntUser and
ntGroup attributes automatically added which identify them as Windows accounts, but no POSIX
attributes are synchronized over (even if they exist on the Active Directory entry) and no POSIX
attributes are added on the Directory Server side.

The Posix Winsync API Plug-in synchronizes POSIX attributes between Active Directory and
Directory Server entries.

NOTE

All POSIX attributes (such as uidNumber, gidNumber, and homeDirectory) are
synchronized between Active Directory and Directory Server entries. However, if a new
POSIX entry or POSIX attributes are added to an existing entry in the Directory Server,
only the POSIX attributes are synchronized over to the Active Directory corresponding
entry. The POSIX object class (posixAccount for users and posixGroup for groups) is
not added to the Active Directory entry.

16.9.1. Enabling POSIX Attribute Synchronization

The Posix Winsync API Plug-in is disabled by default and must be enabled for POSIX attributes to be
synchronized from Active Directory user and group entries to the corresponding Directory Server
entries.

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

387

To enable the Posix Winsync API plug-in:

1. Enable the plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin "cn=Posix Winsync
API,cn=plugins,cn=config" enable

2. Restart the instance:

dsctl instance_name restart

16.9.2. Changing Posix Group Attribute Synchronization Settings

There are multiple plug-in attributes that can be set to control how the POSIX group attributes and
group members are synchronized from the Active Directory entry to the corresponding Directory Server
group and user entries. For details, see the corresponding section in the Red Hat Directory Server
Configuration, Command, and File Reference.

The defaults can be used for most deployments, but the settings can be changed depending on the
Active Directory environment. For example, to enable nested group mappings:

1. Use the following command to enable the nested group mapping:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin posix-winsync set --
map-nested-grouping="true"

2. Restart the Directory Server to load the new configuration.

dsctl instance_name restart

16.9.3. Fixing Mismatched member and uniqueMember Attribute Values in
posixGroup Entries

If the member and uniqueMember attribute values in posixGroup entries on Directory Server and
Active Directory (AD) do not match, use the dsconf plugin posix-winsync fixup command to fix the
problem:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin posix-winsync fixup DN

This command recreates memberUid values on Directory Server and automatically modifies the
member and uniqueMember attribute values to match the values defined in AD.

Optionally, pass the -f filter parameter to the command to specify in which entries the command should
fix memberUid attributes. Without a filter, the command operates on all entries that contain the
inetuser, inetadmin, and nsmemberof object class.

16.10. DELETING AND RESURRECTING ENTRIES

This section describes how enabling synchronization affects deleted entries on the sync peers and how
resurrected entries are handled.

16.10.1. Deleting Entries

Administration Guide

388

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#posix-winsync-attributes

All changes on an Active Directory peers are always synchronized back to the Directory Server. This
means that when an Active Directory group or user account is deleted on the Active Directory domain,
the deletion is automatically synchronized back to the Directory Server sync peer server.

On Directory Server, on the other hand, when a Directory Server account is deleted, the corresponding
entry on Active Directory is only deleted if the Directory Server entry has the ntUserDeleteAccount or
ntGroupDeleteGroup attribute set to true.

NOTE

When a Directory Server entry is synchronized over to Active Directory for the first time,
Active Directory automatically assigns it a unique ID. At the next synchronization interval,
the unique ID is synchronized back to the Directory Server entry and stored as the
ntUniqueId attribute. If the Directory Server entry is deleted on Active Directory before
the unique ID is synchronized back to Directory Server, the entry will not be deleted on
Directory Server. Directory Server uses the ntUniqueId attribute to identify and
synchronize changes made on Active Directory to the corresponding Directory Server
entry; without that attribute, Directory Server will not recognize the deletion.

To delete the entry on Active Directory and then synchronize the deletion over to
Directory Server, wait the length of the winSyncInterval (by default, five minutes) after
the entry is created before deleting it so that the ntUniqueId attribute is synchronized.

16.10.2. Resurrecting Entries

It is possible to add deleted entries back in Directory Server; the deleted entries are called tombstone
entries. When a deleted entry which was synchronized between Directory Server and Active Directory is
re-added to Directory Server, the resurrected Directory Server entry has all of its original attributes and
values. This is called tombstone reanimation. The resurrected entry includes the original ntUniqueId
attribute which was used to synchronize the entries, which signals to the Active Directory server that this
new entry is a tombstone entry.

Active Directory resurrects the old entry and preserves the original unique ID for the entry.

For Active Directory entries, when the tombstone entry is resurrected on Directory Server, all of the
attributes of the original Directory Server are retained and are still included in the resurrected Active
Directory entry.

16.11. SENDING SYNCHRONIZATION UPDATES

Synchronization occurs as frequently as is set in the winSyncInterval setting (for retrieving changes
from the Active Directory domain) or nsds5replicaupdateschedule setting (for pushing changes from
the Directory Server). By default, changes are retrieved from Active Directory every five minutes, and
changes from the Directory Server are sent immediately.

A sync update can be triggered manually. It is also possible to do a full resynchronization, which sends
and pulls every entry in the Directory Server and Active Directory as if it were new. A full
resynchronization includes existing Directory Server entries which may not have previously been
synchronized.

16.11.1. Performing a Manual Incremental Synchronization

During normal operations, all the updates made to entries in the Directory Server that need to be sent to
Active Directory are collected to the changelog and then replayed during an incremental update.

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

389

To manually synchronize the changes:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt poke --
suffix="dc=example,dc=com" example-agreement

16.11.2. Performing a Full Synchronization

If there have been major changes to data, or synchronization attributes are added to pre-existing
Directory Server entries, it is necessary to initiate a resynchronization. Resynchronization is a total
update; the entire contents of synchronized subtrees are examined and, if necessary, updated.
Resynchronization is done without using the changelog. This is similar to initializing or reinitializing a
consumer in replication.

16.11.2.1. Performing a Full Synchronization Using the Command Line

To start a full synchronization using the command line:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt init --suffix="suffix"
agreement_name

To display the synchronization status:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt init-status --
suffix="suffix" agreement_name

16.11.2.2. Performing a Full Synchronization Using the Web Console

To start a full synchronization:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Replication menu and select the Winsync Agreements entry.

4. Open the Choose Action menu next to the synchronization agreement you want to synchronize
and select Full Re-Synchronization.

Resynchronizing does not delete data on the sync peer. The process sends and receives all
updates and adds any new or modified Directory Server entries. For example, the process adds
a pre-existing Directory Server user that had the ntUser object class added.

To display the synchronization status in the web console:

1. Open the Replication menu.

2. Select the Winsync Agreements entry.

If the synchronization completed successfully, the web console displays the Error (0) Replica
acquired successfully: Incremental update succeeded message in the Last Update Status
column.

Administration Guide

390

16.11.3. Setting Synchronization Schedules

Synchronization works two ways. The Directory Server sends its updates to Active Directory on a
configurable schedule, similar to replication, using the nsds5replicaupdateschedule attribute. The
Directory Server polls the Active Directory to check for changes; the frequency that it checks the
Active Directory server is set in the winSyncInterval attribute.

By default, the Directory Server update schedule is to always be in sync. The Active Directory interval is
to poll the Active Directory every five minutes.

To change the schedule the Directory Server uses to send its updates to the Active Directory, edit the
nsds5replicaupdateschedule attribute. The schedule is set with start (SSSS) and end (EEEE) times in
the form HHMM, using a 24-hour clock. The days to schedule sync updates are use ranging from 0
(Sunday) to 6 (Saturday).

nsds5replicaupdateschedule: SSSS EEEE DDDDDDD

For example, this schedules synchronization to run from noon to 2:00pm on Sunday, Tuesday, Thursday,
and Saturday:

nsds5replicaupdateschedule: 1200 1400 0246

NOTE

The synchronization times cannot wrap around midnight, so the setting 2300 0100 is not
valid.

To change how frequently the Directory Server checks the Active Directory for changes to
Active Directory entries, reset the winSyncInterval attribute. This attribute is set in seconds, so the
default of 300 means that the Directory Server polls the Active Directory server every 300 seconds, or
five minutes. Setting this to a higher value can be useful if the directory searches are taking too long and
affecting performance.

winSyncInterval: 1000

16.11.4. Changing Synchronization Connections

Two aspects of the connection for the sync agreement can be altered:

The bind user name and password (nsDS5ReplicaBindDN and nsDS5ReplicaCredentials).

The connection method (nsDS5ReplicaTransportInfo).

It is only possible to change the nsDS5ReplicaTransportInfo from LDAP to StartTLS and vice

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

391

It is only possible to change the nsDS5ReplicaTransportInfo from LDAP to StartTLS and vice
versa. It is not possible to change to or from LDAPS because it is not possible to change the
port number, and switching between LDAP and LDAPS requires changing the port number.

For example:

nsDS5ReplicaBindDN: cn=sync user,cn=Users,dc=ad1
nsDS5ReplicaCredentials: {DES}ffGad646dT0nnsT8nJOaMA==
nsDS5ReplicaTransportInfo: StartTLS

WARNING

It is not possible to change the port number of the Active Directory sync peer.
Therefore, it is also not possible to switch between standard/STARTTLS
connections and TLS connections, since that requires changing between standard
and insecure ports.

To change to or from TLS, delete the sync agreement and add it again with the
updated port number and new transport information.

16.11.5. Handling Entries That Move Out of the Synchronized Subtree

The sync agreement defines what subtrees in both Active Directory and Directory Server are
synchronized between each other. Entries within the scope (the subtree) are synchronized; other entries
are ignored.

However, the synchronization process actually starts at the root DN to begin evaluating entries for
synchronization. Entries are correlated based on the samAccount in the Active Directory and the uid
attribute in Directory Server. The synchronization plug-in notes if an entry (based on the
samAccount/uid relationship) is removed from the synchronized subtree either because it is deleted or
moved. That is the signal to the synchronization plug-in that the entry is no longer to be synchronized.

The issue is that the sync process needs some configuration to determine how to handle that moved
entry. There are three options: delete the corresponding entry, ignore the entry (the default), or unsync
the entry.

NOTE

These sync actions only relate to how to handle on the Directory Server side when an
entry is moved out of scope on the Active Directory side. This does not affect any
Active Directory entry if an entry is moved out of the synchronized subtree on the
Directory Server side.

The default behavior in Directory Server 9.0 was to delete the corresponding Directory Server
entry. This was true even if the entry on the Active Directory side was never synchronized over to the
Directory Server side. Starting in Directory Server 9.1, the default behavior is to ignore the entry and
take no action.

For example, a user with the samAccount ID of jsmith was created in the ou=Employees subtree on



Administration Guide

392

For example, a user with the samAccount ID of jsmith was created in the ou=Employees subtree on
Active Directory. The synchronized subtree is ou=Users, so the jsmith user was never synchronized
over to Directory Server.

Figure 16.4. Active Directory Tree

For 7.x and 8.x versions of Directory Server, synchronization simply ignored that user, since it was
outside the synchronized subtree.

Starting in Directory Server 9.0, Directory Server began supporting subtree renames — which means
that existing entries could be moved between branches of the directory tree. The synchronization plug-
in, then, assumes that entries in the Active Directory tree which correspond to a Directory Server user
(samAccount/uid relationship) but are outside the synchronized subtree are intentionally moved
outside the synchronized subtree — essentially, a rename operation. The assumption then was that the
"corresponding" Directory Server entry should be deleted.

Figure 16.5. Active Directory and Directory Server Trees Compared

This assumption is not necessarily an accurate one, particularly for user entries which always existed
outside the synchronized subtree.

The winSyncMoveAction attribute for the synchronization agreement sets instructions on how to
handle these moved entries:

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

393

none takes no action, so if a synchronized Directory Server entry exists, it may be synchronized
over to or create an Active Directory entry within scope. If no synchronized Directory Server
entry exists, nothing happens at all (this is the default behavior in the Directory Server version
9.1 and later).

unsync removes any sync-related attributes (ntUser or ntGroup) from the Directory Server
entry but otherwise leaves the Directory Server entry intact.

IMPORTANT

There is a risk when unsyncing entries that the Active Directory entry may be
deleted at a later time, and the Directory Server entry will be left intact. This can
create data inconsistency issues, especially if the Directory Server entry is ever
used to recreate the entry on the Active Directory side later.

delete deletes the corresponding entry on the Directory Server side, regardless of whether it
was ever synchronized with Active Directory (this was the default behavior in 9.0).

IMPORTANT

You almost never want to delete a Directory Server entry without deleting the
corresponding Active Directory entry. This option is available only for
compatibility with Directory Server 9.0 systems.

If it is necessary to change the default:

dsconf -D "cn=Directory Manager" ldap://server.example.com repl-winsync-agmt --move-
action="action" --suffix="suffix" agreement_name

16.12. TROUBLESHOOTING

If synchronization does not seem to function properly, see the Windows event log or Directory Server
error log for information on any potential problems.

Enable replication logging to record synchronization errors
Enable replication logging for more detailed information on synchronization to be recorded in the error
logs. The replication log level produces more verbose logs from the sync code. Messages related to
synchronization traffic (which is the same as replication traffic) can help in diagnosing problems.

For details about configuring log levels, see Section 21.3.7, “Configuring the Log Levels”.

Error #1: After synchronization, the status returns error 81.
One of the sync peer servers has not been properly configured for TLS communication. Examine the
Directory Server access log file to see if the connection attempt was received by the Directory Server.
There are also helpful messages in the Directory Server's error log file.

To narrow down the source of the misconfiguration, try to establish an LDAPS connection to the
Directory Server. If this connection attempt fails, check all values (including the port number, host name
or IPv4/IPv6 address, search base, and user credentials) to see if any of these are the problem. If all else
fails, reconfigure the Directory Server with a new certificate.

If the LDAPS connection to the Directory Server is successful, it is likely that the misconfiguration is on
Active Directory. Examine the Windows event log file for error messages.

Administration Guide

394

NOTE

A common problem is that the certificate authority was not configured as trusted when
the Windows sync services certificate database was configured.

Error #2: An entry is moved from one subtree on Active Directory to another subtree, but
the user is not moved to the corresponding subtree on Directory Server.
This is a known issue with synchronizing modrdn operations on Active Directory with entries on
Directory Server. To work around it, delete the entry on Active Directory and then add it anew to the
new subtree. The deletion and the addition will be properly synchronized to the Directory Server peer.

[1] Unlike a consumer, changes can still be made on the un-synchronized server. Use ACLs to prevent editing or
deleting entries on the un-synchronized server to maintain data integrity.

CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY

395

CHAPTER 17. SETTING UP CONTENT SYNCHRONIZATION
USING THE SYNCREPL PROTOCOL

Using the Content Synchronization plug-in, Directory Server supports the SyncRepl protocol
according to RFC 4533. This protocol enables LDAP servers and clients to use Red Hat Directory Server
as a source to synchronize their local database with the changing content of Directory Server.

To use the SyncRepl protocol:

Enable the Content Synchronization plug-in in Directory Server and optionally create a new
user which the client will use to bind to Directory Server. The account must have permissions to
read the content in the directory.

Configure the client. For example, set the search base for a subtree to synchronize. For further
details, see your client's documentation.

17.1. CONFIGURING THE CONTENT SYNCHRONIZATION PLUG-IN USING THE
COMMAND LINE

To configure the Content Synchronization plug-in using the command line:

1. The Content Synchronization plug-in requires the Retro Changelog plug-in to log the
nsuniqueid attribute:

a. To verify if the retro changelog is already enabled, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin retro-changelog
show
...
nsslapd-pluginEnabled: off

If the nsslapd-pluginEnabled parameter is set to off, the retro changelog is disabled. To
enable, see Section 15.21.1, “Enabling the Retro Changelog Plug-in” .

b. Add the nsuniqueid attribute to retro changelog plug-in configuration:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin retro-changelog
set --attribute nsuniqueid:targetUniqueId

c. Optionally, apply the following recommendations for improved performance:

i. Set maximum validity for entries in the retro change log. For example, to set 2 days
(2d):

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=changelog5,cn=config
changetype: modify
replace: nsslapd-changelogmaxage
nsslapd-changelogmaxage: 2d

ii. If you know which back end or subtree clients access to synchronize data, limit the

Administration Guide

396

https://tools.ietf.org/html/rfc4533

ii. If you know which back end or subtree clients access to synchronize data, limit the
scope of the Retro Changelog plug-in. For example, to exclude the
cn=demo,dc=example,dc=com subtree, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin retro-
changelog set --exclude-suffix "cn=demo,dc=example,dc=com"

2. Enable the Content Synchronization plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin set --enabled on
"Content Synchronization"

3. Using the defaults, Directory Server creates an access control instruction (ACI) in the
oid=1.3.6.1.4.1.4203.1.9.1.1,cn=features,cn=config entry that enables all users to use the
SyncRepl protocol:

aci: (targetattr != "aci")(version 3.0; acl "Sync Request Control";
 allow(read, search) userdn = "ldap:///all";)

Optionally, update the ACI to limit using the SyncRepl control. For further details about ACIs,
see Section 18.11, “Defining Bind Rules” .

4. Restart Directory Server:

dsctl instance_name restart

Clients are now able to synchronize data with Directory Server using the SyncRepl protocol.

CHAPTER 17. SETTING UP CONTENT SYNCHRONIZATION USING THE SYNCREPL PROTOCOL

397

CHAPTER 18. MANAGING ACCESS CONTROL
This chapter describes how you use Access Control Instructions (ACI) in Red Hat Directory Server to
manage access to entries.

18.1. ACCESS CONTROL PRINCIPLES

When Directory Server receives a request, it uses the authentication information provided by the user in
the bind operation and the ACIs defined in the directory to allow or deny access to the requested entry
or attribute. The server can allow or deny permissions for actions, such as read, write, search, and
compare. The permission level granted to a user depends on the authentication information provided.

Access control in Directory Server enables you to set precise rules on when the ACIs are applicable:

For the entire directory, a subtree, or specific entries

For a specific user, all users belonging to a specific group or role, or all users in the directory

For a specific location, such as an IP address, an IP range, or a DNS name.

Note that load balancers can affect location-specific rules.

IMPORTANT

Complex ACIs are difficult to read and understand. Instead of one complex ACI, you can
write multiple simple rules to achieve the same effect. However, a higher number of ACIs
also increases the costs of ACI processing.

18.2. ACI PLACEMENT

Directory Server stores ACIs in the multi-valued aci operational attribute in directory entries. To set an
ACI, add the aci attribute to the corresponding directory entry. Directory Server applies the ACIs:

Only to the entry that contains the ACI, if it does not have any child entries. For example, if a
client requires access to the uid=user_name,ou=People,dc=example,dc=com object, and an
ACI is only set on dc=example,dc=com and not on any child entries, only this ACI is applied.

NOTE

ACIs with add permissions also apply to child entries created in future.

To the entry that contains the ACI and to all entries below it, if it has child entries. As a direct
consequence, when the server evaluates access permissions to any given entry, it verifies the
ACIs for every entry between the one requested and the directory suffix, as well as the ACIs on
the entry itself.

For example, ACIs are set on the dc=example,dc=com and the
ou=People,dc=example,dc=com entry: If a client wants to access the
uid=user_name,ou=People,dc=example,dc=com object, which has no ACI set,
Directory Server first creates a set with the ACIs from dc=example,dc=com and
ou=People,dc=example,dc=com. Directory Server builds the list of applicable ACIs bottom-up
from the target entry up to the top suffix. However, consider this list as a set, and the client
application should not anticipate any order into ACI evaluation.

Administration Guide

398

The server selects the ACIs that match the resource entry that creates the final set of
applicable ACIs from this initial set. Then it first evaluates the ACIs that deny permission. If a
DENY ACI has been successfully evaluated, the operation fails. If no DENY ACI is found,
Directory Server checks if an ACI exists that grants ALLOW permissions. If at least one of the
ACIs allows access, Directory Server grants access. If no ACI grants ALLOW permissions,
Directory Server refuses access, and the operation fails.

NOTE

ACIs set in the rootDSE entry apply only to this entry.

An ACI created on an entry can be set not to apply directly to that entry but rather to some or all of the
entries in the subtree below. The advantage of this approach is that general ACIs can be placed higher
in the directory tree to have effect on entries located lower in the tree. For example, an ACI that targets
entries that include the inetOrgPerson object class can be created at the level of an
organizationalUnit entry or a locality entry.

NOTE

Minimize the number of ACIs in the directory tree by placing general rules at high level
branch points. To limit the scope of more specific rules, place them to leaf entries as
closely as possible.

18.3. ACI STRUCTURE

The aci attribute uses the following syntax:

(target_rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

target_rule specifies the entry, attributes, or set of entries and attributes for which to control
access. For details, see Section 18.9, “Defining Targets”.

version 3.0 is a required string which identifies the ACI version.

aci "ACL_name" sets a name or string that describes the ACI.

permission_rule sets what rights, such as read or write, are allowed or denied. For details, see
Section 18.10, “Defining Permissions” .

bind_rules specifies which rules must match during the bind to allow or deny access. For
details, see Section 18.11, “Defining Bind Rules” .

NOTE

The permission and the bind rule pair are called an access control rule.

To efficiently set multiple access controls for a given target, you can set multiple access control rules for
each target:

(target_rule)(version 3.0; acl "ACL_name"; permission_rule bind_rules; permission_rule bind_rules;
... ;)

CHAPTER 18. MANAGING ACCESS CONTROL

399

18.4. ACI EVALUATION

To evaluate the access rights to a particular entry, the server creates a list of the ACIs present on the
entry itself and on the parent entries back up to the top level entry stored in Directory Server. ACIs are
evaluated across all databases for a particular instance but not across different instances.

Directory Server evaluates this list of ACIs based on the semantics of the ACIs, not on their placement
in the directory tree. This means that ACIs that are close to the root of the directory tree do not take
precedence over ACIs that are closer to the leaves of the directory tree.

In Directory Server, the deny permission in ACIs take precedence over the allow permission. For
example, if you deny write permission at the directory's root level, none of the users can write to the
directory, regardless if an other ACI grants this permission. To grant a specific user write permissions to
the directory, you have to add an exception to the original denying rule to allow the user to write in that
directory.

NOTE

For improved ACIs, use fine-grained allow rules instead of deny rules.

18.5. LIMITATIONS OF ACIS

When you set ACIs, the following restrictions apply:

If your directory database is distributed over multiple servers, the following restrictions apply to
the keywords you can use in ACIs:

ACIs depending on group entries using the groupdn keyword must be located on the same
server as the group entry.

If the group is dynamic, all members of the group must have an entry on the server. Member
entries of static groups can be located on the remote server.

ACIs depending on role definitions using the roledn keyword, must be located on the same
server as the role definition entry. Every entry that is intended to have the role must also be
located on the same server.

However, you can match values stored in the target entry with values stored in the entry of the
bind user by, for example, using the userattr keyword. In this case, access is evaluated normally
even if the bind user does not have an entry on the server that stores the ACI.

For further details, see Section 2.3.3, “Database Links and Access Control Evaluation” .

You cannot use virtual attributes, such as Class of Service (CoS) attributes, in the following ACI
keywords:

targetfilter

targattrfilters

userattr

For details, see Chapter 8, Organizing and Grouping Entries .

Access control rules are evaluated only on the local server. For example, if you specify the host
name of a server in LDAP URLs in ACI keywords, the URL will be ignored.

Administration Guide

400

18.6. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION
TOPOLOGY

ACIs are stored in aci attributes of entries. Therefore, if an entry containing ACIs is part of a replicated
database, the ACIs are replicated.

ACIs are always evaluated on the server that resolves the incoming LDAP requests. When a consumer
server receives an update request, it returns a referral to the supplier server before evaluating whether
the request can be serviced on the supplier.

18.7. MANAGING ACIS USING THE COMMAND LINE

This section describes how to manage ACIs using the command line.

NOTE

Managing Directory Server ACIs is not supported in the web console.

18.7.1. Displaying ACIs

Use the ldapsearch utility to display ACI using the command line. For example, to display the ACIs set
on dc=example,dc=com and sub-entries:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -x \
 -b "dc=example,dc=com" -s sub '(aci=*)' aci

18.7.2. Adding an ACI

Use the ldapmodify utility to add an ACI. For example:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="userPassword") (version 3.0; acl "Allow users updating their password";
 allow (write) userdn= "ldap:///self";)

18.7.3. Deleting an ACI

To delete an ACI using the command line:

1. Display the ACIs set on the entry. See Section 18.7.1, “Displaying ACIs” .

2. Delete the ACI:

If only one aci attribute is set on the entry or you want to remove all ACIs from the entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: delete
delete: aci

If multiple ACIs exist on the entry and you want to delete a specific ACI, specify the exact

CHAPTER 18. MANAGING ACCESS CONTROL

401

If multiple ACIs exist on the entry and you want to delete a specific ACI, specify the exact
ACI:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
delete: aci
aci: (targetattr="userPassword") (version 3.0; acl "Allow users
 updating their password"; allow (write) userdn= "ldap:///self";)

For further details about deleting attributes, see Section 3.1.4.3, “Deleting Attributes from an Entry” .

18.7.4. Updating an ACI

To update an ACI using the command line:

1. Delete the existing ACI. See Section 18.7.3, “Deleting an ACI” .

2. Add a new ACI with the updated settings. See Section 18.7.2, “Adding an ACI” .

18.8. MANAGING ACIS USING THE WEB CONSOLE

This set of instructions provides you with the basics of managing the access control instructions (ACIs)
by using the LDAP browser wizard in the web console.

18.8.1. Creating an Access Control Instruction in the LDAP browser

You can create and add an access control instruction (ACI) for a Red Hat Directory Server (RHDS) entry
by using the LDAP Browser in the web console.

Prerequisites

Access to the web console.

A parent entry exists in the Red Hat Directory Server.

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP Browser.

3. Select an LDAP entry and click the Options menu.

4. From the drop-down menu, select ACIs.

5. To create an ACI by using the LDAP browser wizard, you have two options:

a. Click Add ACI Wizard to create the ACI using the wizard. Continue with the next step.

b. Click Add ACI Manually, specify the instruction in the text field, and click Save ACI.

6. Follow the steps in the wizard and click the Next button after you complete each step.

7. To create the ACI, review the data that the wizard generated, and click Add ACI.

Administration Guide

402

8. To close the wizard window, click the Finish button.

Verification

Verify the new ACI appears in the Manage ACIs window.

18.8.2. Editing Access Control Instructions in the LDAP browser

You can edit an access control instruction (ACI) for a Red Hat Directory Server entry by using the
LDAP Browser Manage ACIs window in the web console.

Prerequisites

Access to the web console.

A parent entry exists in the Red Hat Directory Server.

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP Browser.

3. Select an LDAP entry and click the Options menu.

4. From the drop-down menu, select ACIs.

5. Click the Options menu and select Edit ACI.

6. Modify the instruction in the text field and click Save ACI.

Verification

On the Manage ACIs window, expand the ACI you modified and observe your changes.

18.8.3. Removing an Access Control Instruction in the LDAP browser

You can remove an access control instruction (ACI) for a Red Hat Directory Server entry by using the
LDAP Browser in the web console.

Prerequisites

Access to the web console.

A parent entry exists in the Red Hat Directory Server.

Procedure

1. Log in to the web console and click Red Hat Directory Server.

2. After the web console loads the Red Hat Directory Server interface, click LDAP Browser.

3. Select an LDAP entry and click the Options menu.

4. From the drop-down menu, select ACIs to open the Manage ACIs window.

5. Click the Node options icon for the ACI you are removing and select Remove ACI.

CHAPTER 18. MANAGING ACCESS CONTROL

403

6. Select the Yes, I’m sure checkbox and click the Delete ACI button.

Verification

On the Manage ACIs window, verify the ACI you removed no longer appears on the list of ACIs.

18.9. DEFINING TARGETS

Target rules in an ACI define to which entries Directory Server applies the ACI. If you do not set a target,
the ACI applies to the entry containing the aci attribute and to entries below.

In an ACI, the following highlighted part is the target rule:

(target_rule)(version 3.0; acl "ACL_name"; permission_rule bind_rules;)

For complex ACIs, Directory Server supports multiple target rules with different keywords in an ACI:

(target_rule_1)(target_rule_2)(...)(version 3.0; acl "ACL_name"; permission_rule bind_rules;)

If you specify multiple target rules, the order is not relevant. Note that you can use each of the following
keywords only once in an ACI:

target

targetattr

targetattrfilters

targetfilter

target_from

target_to

Syntax
The general syntax of a target rule is:

(keyword comparison_operator "expression")

keyword: Sets the type of the target. See Section 18.9.1, “Frequently Used Target Keywords” .

comparison_operator: Valid values are = and != and indicate whether or not the target is the
object specified in the expression.

Administration Guide

404

WARNING

For security reasons, Red Hat recommends not using the != operator,
because it allows the specified operation on all other entries or attributes.
For example:

(targetattr != "userPassword");(version 3.0; acl "example"); allow (write)
...);

The previous example allows users to set, update, or delete any attribute
except the userPassword attribute under the Distinguished Name (DN)
you set the ACI. However, this also enables users, for example, to add an
additional aci attribute that allows write access to this attribute as well.

expression: Sets the target and must be surrounded by quotation marks. The expression itself
depends on the keyword you use.

18.9.1. Frequently Used Target Keywords

Administrators frequently use the following target keywords:

target: See Section 18.9.1.1, “Targeting a Directory Entry” .

targetattr: See Section 18.9.1.2, “Targeting Attributes”.

targetfilter: See Section 18.9.1.3, “Targeting Entries and Attributes Using LDAP Filters” .

targattrfilters: See Section 18.9.1.4, “Targeting Attribute Values Using LDAP Filters” .

18.9.1.1. Targeting a Directory Entry

To control access based on a DN and the entries below it, use the target keyword in the ACI. A target
rule which uses the target keyword takes a DN as expression:

(target comparison_operator "ldap:///distinguished_name")

NOTE

You must set the ACI with the target keyword on the DN you are targeting or a higher-
level DN of it. For example, if you target ou=People,dc=example,dc=com, you must
either set the ACI on ou=People,dc=example,dc=com or dc=example,dc=com.

Example 18.1. Using the target Keyword

To enable users that are stored in the ou=People,dc=example,dc=com entry to search and display
all attributes in their own entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x



CHAPTER 18. MANAGING ACCESS CONTROL

405

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (target = "ldap:///ou=People,dc=example,dc=com") (version 3.0;
 acl "Allow users to read and search attributes of own entry"; allow (search, read)
 (userdn = "ldap:///self");)

Using Wildcards with the target Keyword
You can use the * wildcard character target multiple entries.

The following target rule example matches all entries in ou=People,dc=example,dc=com whose uid
attribute is set to a value that starts with the letter a:

(target = "ldap:///uid=a*,ou=People,dc=example,dc=com")

Depending on the position of the wildcard, the rule not only applies to attribute values, but also to the
full DN. Therefore, you can use the wildcard as a substitute for portions of the DN.

Example 18.2. Targeting a Directory Entries Using Wildcards

The following rule targets all entries in the dc=example,dc=com tree with a matching uid attribute
and not only entries which are stored in the dc=example,dc=com entry itself:

(target = "ldap:///uid=user_name*,dc=example,dc=com")

The previous target rule matches multiple entries, such as:

uid=user_name,dc=example,dc=com

uid=user_name,ou=People,dc=example,dc=com

uid=user_name2,dc=example,dc=com

IMPORTANT

Directory Server does not support wildcards in the suffix part of a DN. For example, if
your directory's suffix is dc=example,dc=com, you cannot use a target with a wildcard in
this suffix, such as (target = "ldap:///dc=*.com").

18.9.1.2. Targeting Attributes

To limit access in an ACI to certain attributes, use the targetattr keyword. For example, this keyword
defines:

In a read operation, what attributes will be returned to a client

In a search operation, what attributes will be searched

In a write operation, what attributes can be written to an object

In an add operation, what attributes can be added when creating a new object

NOTE

Administration Guide

406

NOTE

In certain situations, you can use the targetattr keyword to secure ACIs by combining
other target keywords with targetattr. See Section 18.9.3, “Advanced Usage of Target
Rules” for examples.

IMPORTANT

In read and search operations, the default targets no attribute. An ACI without a
targetattr keyword is only useful for ACIs with rights affecting a complete entry, such as
add or delete.

To separate multiple attributes in a target rule that uses the targetattr keyword, use ||:

(targetattr comparison_operator "attribute_1 || attribute_2 || ...")

The attributes set in the expression must be defined in the schema.

NOTE

The attributes specified in the expression apply to the entry on which you create the ACI
and to all entries below it if not restricted by further target rules.

Example 18.3. Using the targetattr Keyword

To enable users stored in dc=example,dc=com and all subentries to update the userPassword
attribute in their own entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "userPassword") (version 3.0;
 acl "Allow users updating own userPassword";
 allow (write) (userdn = "ldap:///self");)

Using Wildcards with the targetattr Keyword
Using the * wildcard character, you can, for example, target all attributes:

(targetattr = "*")

CHAPTER 18. MANAGING ACCESS CONTROL

407

WARNING

For security reasons, do not use wildcards with the targetattr, because it allows
access to all attributes, including operational attributes. For example, if users can
add or modify all attributes, users might create additional ACI and increase their
own permissions.

18.9.1.3. Targeting Entries and Attributes Using LDAP Filters

To target a group of entries that match a certain criteria, use the targetfilter keyword with an LDAP
filter:

(targetfilter comparison_operator "LDAP_filter")

The filter expression is a standard LDAP search filter, as described in Chapter 14, Finding Directory
Entries.

Example 18.4. Using the targetfilter Keyword

To grant permissions to members of the cn=Human Resources,dc=example,dc.com group to
modify all entries having the department attribute set to Engineering or Sales:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetfilter = "(|(department=Engineering)(department=Sales)")
 (version 3.0; acl "Allow HR updating engineering and sales entries";
 allow (write) (groupdn = "ldap:///cn=Human Resources,dc=example,dc.com");)

The targetfilter keyword targets whole entries. If you combine it with the targetattr keyword, the ACI
applies only to a subset of attributes of the targeted entries. See Section 18.9.3.3, “Targeting Certain
Attributes of Entries Matching a Filter”.

NOTE

Using LDAP filters is useful when targeting entries and attributes that are spread across
the directory. However, the results are sometimes unpredictable because filters do not
directly name the object for which you are managing access. The set of entries targeted
by a filtered ACI is likely to change as attributes are added or deleted. Therefore, if you
use LDAP filters in ACIs, verify that they target the correct entries and attributes by using
the same filter, for example, in an ldapsearch operation.

Using Wildcards with the targetfilter Keyword
The targetfilter keyword supports wildcards similarly to standard LDAP filters. For example, to target all
uid attributes whose value starts with adm:



Administration Guide

408

(targetfilter = "(uid=adm*) ...)

18.9.1.4. Targeting Attribute Values Using LDAP Filters

You can use access control to target specific values of attributes. This means that you can grant or deny
permissions on an attribute if that attribute's value meets the criteria that is defined in the ACI. An ACI
that grants or denies access based on an attribute's value is called a value-based ACI.

NOTE

This applies only to ADD and DEL operations. You cannot limit search rights by specific
values.

To create a value-based ACI, use the targattrfilters keyword with the following syntax:

For one operation with one attribute and filter combination:

(targattrfilters="operation=attribute:filter")

For one operation with multiple attribute and filter combinations:

(targattrfilters="operation=attribute_1:filter_1 && attribute_2:filter_2 ... &&
attribute_m:filter_m")

For two operations, each with multiple attribute and filter combinations:

(targattrfilters="operation_1=attribute_1_1:filter_1_1 && attribute_1_2:filter_1_2 ... &&
attribute_1_m:filter_1_m , operation_2=attribute_2_1:filter_2_1 && attribute_2_2:filter_2_2 ...
& attribute_2_n:filter_2_n ")

In the previous syntax examples, you can set the operations either to add or del. The attribute:filter
combination sets the filter and the attribute the filter is applied to.

The following describes how filter must match:

When creating an entry and a filter applies to an attribute in the new entry, then each instance of
that attribute must match the filter.

When deleting an entry and a filter applies to an attribute in the entry, then each instance of
that attribute must also match the filter.

When modifying an entry and the operation adds an attribute, then the add filter that applies to
that attribute must match.

If the operation deletes an attribute, then the del filter that applies to that attribute must
match. If the individual values of an attribute already present in the entry are replaced, then both
the add and del filters must match.

Example 18.5. Using the targattrfilters Keyword

To create an ACI that enables users to add any role to their own entry, except the Admin role, and to
add the telephone attribute, as long as the value begins with the 123 prefix:

CHAPTER 18. MANAGING ACCESS CONTROL

409

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targattrfilters="add=nsroledn:(!(nsroledn=cn=Admin)) &&
 telephoneNumber:(telephoneNumber=123*)") (version 3.0;
 acl "Allow adding roles and telephone";
 allow (add) (userdn = "ldap:///self");)

18.9.2. Further Target Keywords

This section describes target keywords that are less-frequently used.

18.9.2.1. Targeting Source and Destination DNs

In certain situations, administrators want to allow users to move directory entries. Using the target_from
and target_to keywords in an ACI, you can specify the source and destination of the operation, however,
without enabling the user:

To move entries from a different source as set in the ACI.

To move entries to a different destination as set in the ACI.

To delete existing entries from the source DN.

To add new entries to the destination DN.

Example 18.6. Using the target_from and target_to Keywords

For example, to enable the uid=user,dc=example,dc=com account to move user accounts from the
cn=staging,dc=example,dc=com entry to cn=people,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target_from="ldap:///uid=*,cn=staging,dc=example,dc=com")
 (target_to="ldap:///cn=People,dc=example,dc=com")
 (version 3.0; acl "MODDN from"; allow (moddn))
 userdn="ldap:///uid=user,dc=example,dc=com";)

NOTE

ACIs apply only to the subtree where they are defined. In the previous example, the ACI is
applied only to the dc=example,dc=com subtree.

If the target_from or target_to keyword is not set, the ACI matches any source or destination.

18.9.3. Advanced Usage of Target Rules

By combining multiple keywords, you can create complex target rules. This section provides examples of

Administration Guide

410

By combining multiple keywords, you can create complex target rules. This section provides examples of
the advanced usage of target rules.

18.9.3.1. Delegating Permissions to Create and Maintain Groups

In certain situations, administrators want to delegate permissions to other accounts or groups. By
combining target keywords, you can create secure ACIs that solve this request.

Example 18.7. Delegating Permissions to Create and Maintain Groups

To enable the uid=user,ou=People,dc=example,dc=com" account to create and update groups in
the ou=groups,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target = "ldap:///cn=*,ou=Groups,dc=example,dc=com")
 (targattrfilters="add=objectclass:(|(objectclas=top)(objectclass=groupOfUniqueNames)))
 (targetattr="cn || uniqueMember || objectClass")
 (version 3.0; acl "example"; allow (read, search, write, add)
 (userdn = "ldap:///uid=test,ou=People,dc=example,dc=com");)

For security reasons, the previous example adds certain limitations. The
uid=test,ou=People,dc=example,dc=com user:

Can create objects that must contain the top and groupOfUniqueNames object classes.

Cannot add additional object classes, such as account. For example, this prevents if you use
Directory Server accounts for local authentication, to create new users with an invalid user
ID, such as 0 for the root user.

The targetfilter rule ensures that the ACI entry applies only to entries with the
groupofuniquenames object class and the targetattrfilter rule ensures that no other object class
can be added.

18.9.3.2. Targeting Both an Entry and Attributes

The target controls access based on a DN. However, if you use it in combination with a wildcard and the
targetattr keyword, you can target both entries and attributes.

Example 18.8. Targeting Both an Entry and Attributes

To enable the uid=user,ou=People,dc=example,dc.com user to read and search members of
groups in all organizational units in the dc=example,dc=com subtree:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target="ldap:///cn=*,dc=example,dc=com")(targetattr="member" || "cn") (version 3.0;
 acl "Allow uid=user to search and read members of groups";
 allow (read, search) (userdn = "ldap:///uid=user,ou=People,dc=example,dc.com");)

CHAPTER 18. MANAGING ACCESS CONTROL

411

18.9.3.3. Targeting Certain Attributes of Entries Matching a Filter

If you combine the targetattr and targetfilter keywords in two target rules, you can target certain
attributes in entries that match a filter.

Example 18.9. Targeting Certain Attributes of Entries Matching a Filter

To allow members of the cn=Engineering Admins,dc=example,dc=com group to modify the
jpegPhoto and manager attributes of all entries having the department attribute set to
Engineering:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "jpegPhoto || manager")
 (targetfilter = "(department=Engineering)") (version 3.0;
 acl "Allow engineering admins updating jpegPhoto and manager of department members";
 allow (write) (groupdn = "ldap:///cn=Engineering Admins,dc=example,dc.com");)

18.9.3.4. Targeting a Single Directory Entry

To target a single directory entry, combine the targetattr and targetfilter keywords.

Example 18.10. Targeting a Single Directory Entry

To enable the uid=user,ou=People,dc=example,dc=com user to read and search the ou and cn
attributes in the ou=Engineering,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=Engineering,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "ou || cn")
 (targetfilter = "(ou=Engineering)") (version 3.0;
 acl "Allow uid=user to search and read engineering attributes";
 allow (read, search) (userdn = "ldap:///uid=user,ou=People,dc=example,dc.com");)

To enable the previous example to target only the ou=Engineering,dc=example,dc=com entry,
sub-entries in ou=Engineering,dc=example,dc=com must not have the ou attribute set to
Engineering.

IMPORTANT

These kinds of ACIs can fail if the structure of your directory changes.

Alternatively, you can create a bind rule that matches the user input in the bind request with an attribute
value that is stored in the targeted entry. See Section 18.11.2.1, “Defining Access Based on Value
Matching”.

Administration Guide

412

18.10. DEFINING PERMISSIONS

Permission rules define the rights that are associated with the ACI and whether access is allowed or
denied.

In an ACI, the following highlighted part is the permission rule:

(target_rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

Syntax
The general syntax of a permission rule is:

permission (rights)

permission: Sets if the ACI allows or denies permission.

rights: Sets the rights which the ACI allows or denies. See Section 18.10.1, “User rights” .

Example 18.11. Defining Permissions

To enable users stored in the ou=People,dc=example,dc=com entry to search and display all
attributes in their own entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (target = "ldap:///ou=People,dc=example,dc=com") (version 3.0;
 acl "Allow users to read and search attributes of own entry"; allow (search, read)
 (userdn = "ldap:///self");)

18.10.1. User rights

The rights in a permission rule define what operations are granted or denied. In an ACI, you can set one
or multiple of the following rights:

Table 18.1. User Rights

Right Description

read Sets whether users can read directory data. This permission applies only to search
operations in LDAP.

write Sets whether users can modify an entry by adding, modifying, or deleting
attributes. This permission applies to the modify and modrdn operations in
LDAP.

add Sets whether users can create an entry. This permission applies only to the add
operation in LDAP.

CHAPTER 18. MANAGING ACCESS CONTROL

413

delete Sets whether users can delete an entry. This permission applies only to the delete
operation in LDAP.

search Sets whether users can search for directory data. To view data returned as part of
a search result, assign search and read rights. This permission applies only to
search operations in LDAP.

compare Sets whether the users can compare data they supply with data stored in the
directory. With compare rights, the directory returns a success or failure
message in response to an inquiry, but the user cannot see the value of the entry
or attribute. This permission applies only to the compare operation in LDAP.

selfwrite Sets whether users can add or delete their own DN from a group. This right is
used only for group management.

proxy Sets whether the specified DN can access the target with the rights of another
entry. The proxy right is granted within the scope of the ACL, and the user or
group who as the right granted can run commands as any Directory Server user.
You cannot restrict the proxy rights to certain users.

For security reasons, set ACIs that use the proxy right at the most targeted level
of the directory.

all Sets all of the rights, except proxy.

Right Description

18.10.2. Rights Required for LDAP Operations

This section describes the rights you must grant to users depending on the type of LDAP operation you
want to authorize them to perform.

Adding an entry:

Grant add permission on the entry that you want to add.

Grant write permission on the value of each attribute in the entry. This right is granted by
default but can be restricted using the targattrfilters keyword.

Deleting an entry:

Grant delete permission on the entry that you want to delete.

Grant write permission on the value of each attribute in the entry. This right is granted by
default but can be restricted using the targattrfilters keyword.

Modifying an attribute in an entry:

Grant write permission on the attribute type.

Grant write permission on the value of each attribute type. This right is granted by default
but can be restricted using the targattrfilters keyword.

Modifying the RDN of an entry:

Administration Guide

414

Grant write permission on the entry.

Grant write permission on the attribute type that is used in the new RDN.

Grant write permission on the attribute type that is used in the old RDN, if you want to
grant the right to delete the old RDN.

Grant write permission on the value of attribute type that is used in the new RDN. This right
is granted by default but can be restricted using the targattrfilters keyword.

Comparing the value of an attribute:

Grant compare permission on the attribute type.

Searching for entries:

Grant search permission on each attribute type used in the search filter.

Grant read permission on attribute types used in the entry.

18.10.3. Access Control and the modrdn Operation

To explicitly deny modrdn operations using ACIs, target the relevant entries but omit the targetattr
keyword. For example, to add an ACI that defines the cn=example,ou=Groups,dc=example,dc=com
group, cannot rename entries in ou=people,dc=example,dc=com which contain the cn attribute:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target="ldap:///cn=*,ou=people,dc=example,dc=com")
 (version 3.0; acl "Deny modrdn rights to the example group";
 deny(write) groupdn="ldap:///cn=example,ou=groups,dc=example,dc=com";)

18.11. DEFINING BIND RULES

The bind rules in an ACI define the required bind parameters that must meet so that Directory Server
applies the ACI. For example, you can set bind rules based on:

DNs

Group memberships or assigned roles

Locations from which an entry must bind

Types of authentication that must be in use during the bind

Times or days on which the bind occurs

In an ACI, the following highlighted part is the bind rule:

(target_rule) (version 3.0; acl "ACL_name"; permission_rule bind_rules;)

Syntax
The general syntax of a bind rule is:

CHAPTER 18. MANAGING ACCESS CONTROL

415

keyword comparison_operator "expression"

keyword: Sets the type of the bind operation. See Section 18.11.1, “Frequently Used Bind Rules” .

comparison_operator: Valid values are = and != and indicate whether or not the target is the
object specified in the expression. If a keyword supports additional comparison operators, it is
mentioned in the corresponding section.

expression: Sets the expression and must be surrounded by quotation marks. The expression
itself depends on the keyword you use.

18.11.1. Frequently Used Bind Rules

Administrators frequently use the following bind keywords:

userdn: See Section 18.11.1.1, “Defining User-based Access” .

groupdn: See Section 18.11.1.2, “Defining Group-based Access” .

Additionally, bind rules are frequently combined using Boolean operators. For details, see Section 18.11.3,
“Combining Bind Rules Using Boolean Operators”.

18.11.1.1. Defining User-based Access

The userdn keyword enables you to grant or deny access based on one or multiple DNs and uses the
following syntax:

userdn comparison_operator "ldap:///distinguished_name || ldap:///distinguished_name || ..."

Set the DN in the expression to:

A DN: See Section 18.11.1.1.1, “Using a DN with the userdn Keyword”.

An LDAP filter: See Section 18.11.1.1.2, “Using the userdn Keyword with an LDAP Filter” .

The anyone alias: See Section 18.11.1.1.3, “Granting Anonymous Access” .

The all alias: See Section 18.11.1.1.4, “Granting Access to Authenticated Users” .

The self alias: See Section 18.11.1.1.5, “Enabling Users to Access Their Own Entries” .

The parent alias: See Section 18.11.1.1.6, “Setting Access for Child Entries of a User” .

NOTE

Do not specify a host name or port number within the LDAP URL. The URL always applies
to the local server.

18.11.1.1.1. Using a DN with the userdn Keyword

Set the userdn keyword to a DN to apply the ACI only to the matching entry. To match multiple entries,
use the * wildcard in the DN.

Using the userdn keyword with a DN must match the following syntax:

Administration Guide

416

userdn comparison_operator ldap:///distinguished_name

Example 18.12. Using a DN with the userdn Keyword

To enable the uid=admin,ou=People,dc=example,dc=com user to read the manager attribute of
all other users in the ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="manager") (version 3.0; acl "Allow uid=admin reading manager attribute";
 allow (search, read) userdn = "ldap:///uid=admin,ou=People,dc=example,dc=com";)

18.11.1.1.2. Using the userdn Keyword with an LDAP Filter

If you want to dynamically allow or deny permissions to users, use the userdn keyword with an LDAP
filter:

userdn comparison_operator "ldap:///distinguished_name??scope?(filter)"

NOTE

The LDAP filter supports the * wildcard.

Example 18.13. Using the userdn Keyword with an LDAP Filter

To enable users who have the department attribute set to Human Resources to update the
homePostalAddress attribute of users in the ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="homePostalAddress") (version 3.0;
 acl "Allow HR setting homePostalAddress"; allow (write)
 userdn = "ldap:///ou=People,dc=example,dc=com??sub?(department=Human Resources)";)

18.11.1.1.3. Granting Anonymous Access

In certain situations, administrators want to configure anonymous access to data in the directory.
Anonymous access means that it is possible to bind to the directory by providing:

No bind DN and password

A valid bind DN and password

To configure anonymous access, use the ldap:///anyone expression with the userdn keyword in a bind
rule:

CHAPTER 18. MANAGING ACCESS CONTROL

417

userdn comparison_operator "ldap:///anyone"

Example 18.14. Granting Anonymous Access

To enable anyone without authentication to read and search the sn, givenName, and
telephoneNumber attributes in the ou=People,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="sn" || targetattr="givenName" || targetattr = "telephoneNumber")
 (version 3.0; acl "Anonymous read, search for names and phone numbers";
 allow (read, search) userdn = "ldap:///anyone";)

18.11.1.1.4. Granting Access to Authenticated Users

In certain situations, administrators want to grant permission to any user who is able to successfully bind
to Directory Server, except anonymous binds. To configure this feature, use the ldap:///all expression
with the userdn keyword in a bind rule:

userdn comparison_operator "ldap:///all"

Example 18.15. Granting Access to Authenticated Users

To enable authenticated users to add and remove themselves as a member to or from the
ou=example,ou=groups,dc=example,dc=com group:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=example,ou=Groups,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="member") (version 3.0;
 acl "Allow users to add/remove themselves from example group";
 allow (selfwrite) userdn = "ldap:///all";)

18.11.1.1.5. Enabling Users to Access Their Own Entries

To set ACIs which allow or deny access to users to their own entry, use the ldap:///self expression with
the userdn keyword in a bind rule:

userdn comparison_operator "ldap:///self"

Example 18.16. Enabling Users to Access Their Own Entries

To enable users in the ou=People,dc=example,dc=com entry to update their own userPassword
attribute:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com

Administration Guide

418

changetype: modify
add: aci
aci: (targetattr="userPassword") (version 3.0;
 acl "Allow users updating their password";
 allow (write) userdn = "ldap:///self";)

18.11.1.1.6. Setting Access for Child Entries of a User

To specify that users are granted or denied access to an entry only if their bind DN is the parent of the
targeted entry, use the self:///parent expression with the userdn keyword in a bind rule:

userdn comparison_operator "ldap:///parent"

Example 18.17. Setting Access for Child Entries of a User

To enable the cn=user,ou=People,dc=example,dc=com user to update the manager attribute of
its own sub-entries, such as cn=example,cn=user,ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=user,ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="manager") (version 3.0;
 acl "Allow cn=user to update manager attributes";
 allow (write) userdn = "ldap:///parent";)

18.11.1.2. Defining Group-based Access

Group-based ACIs enable you to manage access by adding or removing users to or from a group. To
configure an ACI that is based on a group membership, use the groupdn keyword. If the user is a
member of one or multiple of the specified groups, the ACI matches.

When using the groupdn keyword, Directory Server verifies the group membership based on the
following attributes:

member

uniqueMember

memberURL

memberCertificateDescription

Bind rules with the groupdn keyword use the following syntax:

groupdn comparison_operator "ldap:///distinguished_name || ldap:///distinguished_name || ..."

Set the DN in the expression to:

A DN. See Section 18.11.1.2.1, “Using a DN with the groupdn Keyword”.

An LDAP filter. See Section 18.11.1.2.2, “Using the groupdn Keyword with an LDAP Filter” .

CHAPTER 18. MANAGING ACCESS CONTROL

419

If you set multiple DNs in one bind rule, Directory Server applies the ACI if the authenticated user is a
member of one of these groups. To set the user as a member of multiple groups, use multiple groupdn
keywords and combine them using the Boolean and operator. For details, see Section 18.11.3,
“Combining Bind Rules Using Boolean Operators”.

NOTE

Do not specify a host name or port number within the LDAP URL. The URL always applies
to the local server.

18.11.1.2.1. Using a DN with the groupdn Keyword

To apply an ACI to members of a group, set the groupdn keyword to the group's DN.

The groupdn keyword set to a DN uses the following syntax:

groupdn comparison_operator ldap:///distinguished_name

Example 18.18. Using a DN with the groupdn Keyword

To enable members of the cn=example,ou=Groups,dc=example,dc=com group to search and
read the manager attribute of entries in ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="manager") (version 3.0;
 acl "Allow example group to read manager attribute";
 allow (search, read) groupdn = "ldap:///cn=example,ou=Groups,dc=example,dc=com";)

18.11.1.2.2. Using the groupdn Keyword with an LDAP Filter

Using an LDAP filter with the groupdn keyword, you can define that the authenticated user must be a
member of at least one of the groups that the filter search returns, to match the ACI.

The groupdn keyword with an LDAP filter uses the following syntax:

groupdn comparison_operator "ldap:///distinguished_name??scope?(filter)"

NOTE

The LDAP filter supports the * wildcard.

Example 18.19. Using the groupdn Keyword with an LDAP Filter

To enable members of groups in dc=example,dc=com and subtrees, which have the manager
attribute set to example, update the homePostalAddress of entries in
ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

Administration Guide

420

dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="homePostalAddress") (version 3.0;
 acl "Allow manager=example setting homePostalAddress"; allow (write)
 userdn = "ldap:///dc=example,dc=com??sub?(manager=example)";)

18.11.2. Further Bind Rules

This section describes bind rules that are less-frequently used.

18.11.2.1. Defining Access Based on Value Matching

Use the userattr keyword in a bind rule to specify which attribute must match between the entry used to
bind to the directory and the targeted entry.

The userattr keyword uses the following syntax:

userattr comparison_operator "attribute_name#bind_type_or_attribute_value

For further details, see:

Section 18.11.2.1.1, “Using the USERDN Bind Type”

Section 18.11.2.1.2, “Using the GROUPDN Bind Type”

Section 18.11.2.1.3, “Using the ROLEDN Bind Type”

Section 18.11.2.1.4, “Using the SELFDN Bind Type”

Section 18.11.2.1.5, “Using the LDAPURL Bind Type”

IMPORTANT

By default, Directory Server evaluates access rights on the entry they are created.
However, to prevent user objects on the same level, Directory Server does not grant add
permissions to the entry where you set the ACI, when using the userattr keyword. To
configure this behavior, use the userattr keyword in conjunction with the parent keyword
and grant the permission additionally on level 0.

For details about inheritance, see Section 18.11.2.1.6, “Using the userattr Keyword with
Inheritance”.

18.11.2.1.1. Using the USERDN Bind Type

To apply an ACI when the binding user DN matches the DN stored in an attribute, use the USERDN bind
type.

The userattr keyword with the USERDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#USERDN"

CHAPTER 18. MANAGING ACCESS CONTROL

421

Example 18.20. Using the USERDN Bind Type

To grant a manager all permissions to the telephoneNumber attribute of its own associates:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "telephoneNumber")
 (version 3.0; acl "Manager: telephoneNumber";
 allow (all) userattr = "manager#USERDN";)

The previous ACI is evaluated to be true if the DN of the user who performs the operation on an
entry in ou=People,dc=example,dc=com, matches the DN stored in the manager attribute of this
entry.

18.11.2.1.2. Using the GROUPDN Bind Type

To apply an ACI when the binding user DN is a member of a group set in an attribute, use the
GROUPDN bind type.

The userattr keyword with the GROUPDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#GROUPDN"

Example 18.21. Using the GROUPDN Bind Type

To grant users the permission to delete a group entry which they own under the ou=Social
Committee,ou=Groups,dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=Social Committee,ou=Groups,dc=example,dc=com
changetype: modify
add: aci
aci: (target="ou=Social Committee,ou=Groups,dc=example,dc=com)
 (targattrfilters="del=objectClass:(objectClass=groupOfNames)")
 (version 3.0; acl "Delete Group";
 allow (delete) userattr = "owner#GROUPDN";)

The previous ACI is evaluated to be true if the DN of the user who performs the operation is a
member of the group specified in the owner attribute.

The specified group can be a dynamic group, and the DN of the group can be under any suffix in the
database. However, the evaluation of this type of ACI by the server is very resource-intensive.

If you are using static groups that are under the same suffix as the targeted entry, use the following
expression for better performance:

userattr comparison_operator "ldap:///distinguished_name?attribute_name#GROUPDN"

18.11.2.1.3. Using the ROLEDN Bind Type

To apply an ACI when the binding user belongs to a role specified in an attribute, use the ROLEDN bind

Administration Guide

422

To apply an ACI when the binding user belongs to a role specified in an attribute, use the ROLEDN bind
type.

The userattr keyword with the ROLEDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#ROLEDN"

Example 18.22. Using the ROLEDN Bind Type

To enable users with the cn=Administrators,dc=example,dc=com role to search and read the
manager attribute of entries in ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (version 3.0; acl "Allow example role owners to read manager attribute";
 allow (search, read) userattr = manager#ROLEDN;)

The specified role can be under any suffix in the database. If you are also using filtered roles, the
evaluation of this type of ACI uses a lot of resources on the server.

If you are using a static role definition and the role entry is under the same suffix as the targeted entry,
use the following expression for better performance:

18.11.2.1.4. Using the SELFDN Bind Type

The SELFDN bind type enables you to grant permissions, when the bound user's DN is set in a single-
value attribute of the entry.

The userattr keyword with the SELFDN bind type requires the following syntax:

userattr comparison_operator "attribute_name#SELFDN"

Example 18.23. Using the SELFDN Bind Type

To enable a user to add ipatokenuniqueid=*,cn=otp,dc=example,dc=com entries that have the
bind user's DN set in the ipatokenOwner attribute:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=otp,dc=example,dc=com
changetype: modify
add: aci
aci: (target = "ldap:///ipatokenuniqueid=*,cn=otp,dc=example,dc=com")
 (targetfilter = "(objectClass=ipaToken)")(version 3.0;
 acl "token-add-delete"; allow (add) userattr = "ipatokenOwner#SELFDN";)

18.11.2.1.5. Using the LDAPURL Bind Type

To apply an ACL when the bind DN matches the filter specified in an attribute of the targeted entry, use
the LDAPURL bind type.

CHAPTER 18. MANAGING ACCESS CONTROL

423

The userattr keyword with the LDAPURL bind type requires the following syntax:

userattr comparison_operator "attribute_name#LDAPURL"

Example 18.24. Using the LDAPURL Bind Type

To grant read and search permissions to user objects which contain the aciurl attribute set to
ldap:///ou=People,dc=example,dc=com??one?(uid=user*):

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*")
 (version 3.0; acl "Allow read,search "; allow (read,search)
 (userattr = "aciurl#LDAPURL);)

18.11.2.1.6. Using the userattr Keyword with Inheritance

When you use the userattr keyword to associate the entry used to bind with the target entry, the ACI
applies only to the target specified and not to the entries below it. In certain situations, administrators
want to extend the application of the ACI several levels below the targeted entry. This is possible by
using the parent keyword and specifying the number of levels below the target that should inherit the
ACI.

When using the userattr keyword with the parent keyword, the syntax is as follows:

userattr comparison_operator
"parent[inheritance_level].attribute_name#bind_type_or_attribute_value

inheritance_level: Comma-separated list that indicates how many levels below the target inherit
the ACI. You can include five levels (0, 1, 2, 3, 4) below the targeted entry. Zero (0) indicates the
targeted entry.

attribute_name: The attribute targeted by the userattr or groupattr keyword.

bind_type_or_attribute_value: Sets the attribute value or a bind type, such as USERDN.

For example:

userattr = "parent[0,1].manager#USERDN"

This bind rule is evaluated to be true if the bind DN matches the manager attribute of the targeted
entry. The permissions granted when the bind rule is evaluated to be true apply to the target entry and
to all entries immediately below it.

Example 18.25. Using the userattr Keyword with Inheritance

To enable a user to read and search the cn=Profiles,dc=example,dc=com entry where the user's
DN is set in the owner attribute, as well as the first level of child entries which includes
cn=mail,cn=Profiles,dc=example,dc=com and cn=news,cn=Profiles,dc=example,dc=com:

Administration Guide

424

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=Profiles,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="*") (version 3.0; acl "Profile access",
 allow (read,search) userattr="parent[0,1].owner#USERDN" ;)

18.11.2.2. Defining Access from Specific IP Addresses or Ranges

The ip keyword in a bind rule enables you to grant or deny access from a specific IP address or a range
of IP addresses.

Bind rules with the ip keyword use the following syntax:

ip comparison_operator "IP_address_or_range"

Example 18.26. Using IPv4 Address Ranges in Bind Rules

To deny access from the 192.0.2.0/24 network to the dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*") (version 3.0;acl "Deny 192.0.2.0/24"; deny (all)
 (userdn = "ldap:///anyone") and (ip != "192.0.2.");)

Example 18.27. Using IPv6 Address Ranges in Bind Rules

To deny access from the 2001:db8::/64 network to the dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*") (version 3.0;acl "Deny 2001:db8::/64"; deny (all)
 (userdn = "ldap:///anyone") and (ip != "2001:db8::");)

18.11.2.3. Defining Access from a Specific Host or Domain

The dns keyword in a bind rule enables you to grant or deny access from a specific host or domain.

CHAPTER 18. MANAGING ACCESS CONTROL

425

WARNING

If Directory Server cannot resolve a connecting IP address to its Fully Qualified
Domain Name (FQDN) using DNS, the server does not apply ACIs with the dns bind
rule for this client.

If client IP addresses are not resolvable using DNS, use the ip keyword and IP
addresses instead. See Section 18.11.2.2, “Defining Access from Specific IP
Addresses or Ranges”.

Bind rules with the dns keyword use the following syntax:

dns comparison_operator "host_name_or_domain_name"

Example 18.28. Defining Access from a Specific Host

To deny access from the client.example.com host to the dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*") (version 3.0;acl "Deny client.example.com"; deny (all)
 (userdn = "ldap:///anyone") and (dns != "client.example.com");)

Example 18.29. Defining Access from a Specific Domain

To deny access from all hosts within the example.com domain to the dc=example,dc=com entry:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "*") (version 3.0;acl "Deny example.com"; deny (all)
 (userdn = "ldap:///anyone") and (dns != "*.example.com");)

18.11.2.4. Requiring a Certain Level of Security in Connections

The security of a connection is determined by its Security Strength Factor (SSF), which sets the
minimum key strength required to process operations. Using the ssf keyword in a bind rule, you can set
that a connection must use a certain level of security. This enables you to force operations, for example
password changes, to be performed over an encrypted connection.

The value for the SSF for any operation is the higher of the values between a TLS connection and a
SASL bind. This means that if a server is configured to run over TLS and a replication agreement is
configured for SASL/GSSAPI, the SSF for the operation is whichever available encryption type is more



Administration Guide

426

secure.

Bind rules with the ssf keyword use the following syntax:

ssf comparison_operator key_strength

You can use the following comparison operators:

= (equal to)

! (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

If the key_strength parameter is set to 0, no secure operation is required for the LDAP operation.

Example 18.30. Requiring a Certain Level of Security in Connections

To configure that users in the dc=example,dc=com entry can only update their userPassword
attribute when the SSF is 128 or higher:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr = "userPassword") (version 3.0;
 acl "Allow users updating own userPassword";
 allow (write) (userdn = "ldap:///self") and (ssf >= "128");)

18.11.2.5. Defining Access at a Specific Day of the Week

The dayofweek keyword in a bind rule enables you to grant or deny access based on the day of the
week.

NOTE

Directory Server uses the time on the server to evaluate the ACI; not the time on the
client.

Bind rules with the dayofweek keyword use the following syntax:

dayofweek comparison_operator "comma-separated_list_of_days"

Example 18.31. Granting Access on Specific Days of the Week

To deny access for the uid=user,ou=People,dc=example,dc=com user entry to bind to the server

CHAPTER 18. MANAGING ACCESS CONTROL

427

To deny access for the uid=user,ou=People,dc=example,dc=com user entry to bind to the server
on Saturdays and Sundays:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (version 3.0; acl "Deny access on Saturdays and Sundays";
 deny (all)
 (userdn = "ldap:///uid=user,ou=People,dc=example,dc=com") and
 (dayofweek = "Sun,Sat");)

18.11.2.6. Defining Access at a Specific Time of Day

The timeofday keyword in a bind rule enables you to grant or deny access based on the time of day.

NOTE

Directory Server uses the time on the server to evaluate the ACI; not the time on the
client.

Bind rules with the timeofday keyword use the following syntax:

timeofday comparison_operator "time"

You can use the following comparison operators:

= (equal to)

! (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)

>= (greater than or equal to)

IMPORTANT

The timeofday keyword requires that you specify the time in 24-hour format.

Example 18.32. Defining Access at a Specific Time of a Day

To deny access for the uid=user,ou=People,dc=example,dc=com user entry to bind to the server
between 6pm and 0am:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci

Administration Guide

428

 aci: (version 3.0; acl "Deny access between 6pm and 0am";
 deny (all)
 (userdn = "ldap:///uid=user,ou=People,dc=example,dc=com") and
 (timeofday >= "1800" and timeofday < "2400");)

18.11.2.7. Defining Access Based on the Authentication Method

The authmethod keyword in a bind rule sets what authentication method a client must use when
connecting to the server, to apply the ACI.

Bind rules with the authmethod keyword use the following syntax:

authmethod comparison_operator "authentication_method"

You can set the following authentication methods:

none: Authentication is not required and represents anonymous access. This is the default.

simple: The client must provide a user name and password to bind to the directory.

SSL: The client must bind to the directory using a TLS certificate either in a database, smart
card, or other device. For details about certificate-based authentication, see Section 9.9, “Using
Certificate-based Client Authentication”.

SASL: The client must bind to the directory over a Simple Authentication and Security Layer
(SASL) connection. When you use this authentication method in a bind rule, additionally specify
the SASL mechanism, such as EXTERNAL.

Example 18.33. Enabling Access Only for Connections Using the EXTERNAL SASL
Authentication Method

To deny access to the server if the connection does not use a certificate-based authentication
method or SASL:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (version 3.0; acl "Deny all access without certificate"; deny (all)
 (authmethod = "none" or authmethod = "simple");)

18.11.2.8. Defining Access Based on Roles

The roledn keyword in a bind rule enables you to grant or deny access to users having one or multiple
role sets.

NOTE

Red Hat recommends using groups instead of roles. For further details about roles and
limitations, see Section 8.2.1, “About Roles”.

CHAPTER 18. MANAGING ACCESS CONTROL

429

Bind rules with the roledn keyword use the following syntax:

roledn comparison_operator "ldap:///distinguished_name || ldap:///distinguished_name || ..."

NOTE

If a DN contains a comma, escape the comma with a backslash.

Example 18.34. Defining Access Based on Roles

To enable users that have the cn=Human Resources,ou=People,dc=example,dc=com role set in
the nsRole attribute to search and read the manager attribute of entries in
ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="manager") (version 3.0;
 acl "Allow manager role to update manager attribute";
 allow (search, read) roledn = "ldap:///cn=Human Resources,ou=People,dc=example,dc=com";)

18.11.3. Combining Bind Rules Using Boolean Operators

When creating complex bind rules, the AND, OR, and NOT Boolean operators enable you to combine
multiple keywords.

Bind rules combined with Boolean operators have the following syntax:

bind_rule_1 boolean_operator bind_rule_2...

Example 18.35. Combining Bind Rules Using Boolean Operators

To configure that users which are member of both the
cn=Administrators,ou=Groups,dc=example,com and
cn=Operators,ou=Groups,dc=example,com group can read, search, add, update, and delete
entries in ou=People,dc=example,dc=com:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: ou=People,dc=example,dc=com
changetype: modify
add: aci
aci: (target="ldap:///ou=People,dc=example,dc=com") (version 3.0;
 acl "Allow members of administrators and operators group to manage users";
 allow (read, search, add, write, delete)
 groupdn = "ldap:///cn=Administrators,ou=Groups,dc=example,com" AND
 groupdn = "ldap:///cn=Operators,ou=Groups,dc=example,com";)

How Directory Server Evaluates Boolean Operators
Directory Server evaluates Boolean operators by using the following rules:

Administration Guide

430

All expressions from left to right.

In the following example, bind_rule_1 is evaluated first:

(bind_rule_1) OR (bind_rule_2)

From innermost to outermost parenthetical expressions first.

In the following example, bind_rule_2 is evaluated first and bind_rule_3 second:

(bind_rule_1) OR ((bind_rule_2) AND (bind_rule_3))

NOT before AND or OR operators.

In the following example, bind_rule_2 is evaluated first:

(bind_rule_1) AND NOT (bind_rule_2)

The AND and OR operators have no order of precedence.

18.12. CHECKING ACCESS RIGHTS ON ENTRIES (GET EFFECTIVE
RIGHTS)

Finding the access rights that a user has on attributes within a specific entry offers a convenient way for
administrators to find and control the access rights.

Get effective rights is a way to extend directory searches to display what access rights — such as read,
search, write and self-write, add, and delete — a user has to a specified entry.

In Directory Server, regular users can check their rights over entries which they can view and can check
other people's access to their personal entries. The Directory Manager can check rights that one user
has over another user.

There are two common situations where checking the effective rights on an entry are useful:

An administrator can use the get effective rights command in order to better organize access
control instructions for the directory. It is frequently necessary to restrict what one group of
users can view or edit versus another group. For instance, members of the QA Managers group
may have the right to search and read attributes like manager and salary but only HR Group
members have the rights to modify or delete them. Checking the effective rights for a user or
group is one way to verify that the appropriate access controls are in place.

A user can run the get effective rights command to see what attributes he can view or modify
on his personal entry. For instance, a user should have access to attributes such as
homePostalAddress and cn but may only have read access to manager and salary attributes.

There are three entities involved in a getEffectiveRights search. The first is the requester, which is the
authenticated entry when the getEffectiveRights search operation is issued. The second is the subject
whose rights will be evaluated, it is defined as authorization DN in the GER control. The third is the target,
which is defined by the search base, search filter, and attribute list of the request.

18.12.1. Rights Shown with a Get Effective Rights Search

Any get effective rights search, when searching for it in the command line, shows the rights that the

CHAPTER 18. MANAGING ACCESS CONTROL

431

Any get effective rights search, when searching for it in the command line, shows the rights that the
requestor has to a target entry.

There are two kinds of access rights that can be allowed to any entry. The first are upper-level rights,
rights on the entry itself , which means that kinds of operations that the User A can perform on User B's
entry as a whole. The second level of access rights are more granular, show what rights for a given
attribute User A has. In this case, User A may have different kinds of access permissions for different
attributes in the same entry. Whatever access controls are allowed for a user are the effective rights
over that entry.

For example:

entryLevelRights: vadn
attributeLevelRights: givenName:rscWO, sn:rscW, objectClass:rsc, uid:rsc, cn:rscW

Table 18.2, “Entry Rights” and Table 18.3, “Attribute Rights” show the access rights to entries and
attributes, respectively, that are returned by a get effective rights search.

Table 18.2. Entry Rights

Permission Description

a Add an entry.

d Delete this entry.

n Rename the DN.

v View the entry.

Table 18.3. Attribute Rights

Permission Description

r Read.

s Search.

w Write (mod-add).

o Obliterate(mod-del). Analogous to delete.

c Compare.

W Self-write.

O Self-delete.

18.12.2. The Format of a Get Effective Rights Search

Administration Guide

432

Get effective rights (sometimes called GER) is an extended directory search; the GER parameters are
defined with the -E option to pass an LDAP control with the ldapsearch command. (If an ldapsearch is
run without the -E option, then, naturally, the entry is returned as normal, without any get effective
rights information.)

ldapsearch -x -D bind_dn -W -p server_port -h server_hostname -E
[!]1.3.6.1.4.1.42.2.27.9.5.2=:GER_subject (searchFilter) attributeList

-b is the base DN of the subtree or entry used to search for the GER subject.

If the search base is a specific entry DN or if only one entry is returned, then the results show
the rights the requester has over that specific entry. If multiple entries beneath the search base
match the filter, then the search returns every matching entry, with the rights for the requester
over each entry.

1.3.6.1.4.1.42.2.27.9.5.2 is the OID for the get effective rights control.

The exclamation point (!) specifies whether the search operation should return an error if the
server does not support this control (!) or if it should be ignored and let the search return as
normal (nothing).

The GER_subject is the person whose rights are being checked. If the GER_subject is left blank
(dn:), then the rights of an anonymous user are returned.

An optional attributeList limits the get effective rights results to the specified attribute or object
class. As with a regular ldapsearch, this can give specific attributes, like mail. If no attributes are
listed, then every present attribute for the entry is returned. Using an asterisk (*) returns the
rights for every possible attribute for the entry, both existing attribute and non-existent
attributes. Using an plus sign (+) returns operational attributes for the entry. Examples for
checking rights for specific attributes are given in Section 18.12.3.2, “Examples of Get Effective
Rights Searches for Non-Existent Attributes” and Section 18.12.3.3, “Examples of Get Effective
Rights Searches for Specific Attributes or Object Classes”.

The crux of a get effective rights search is the ability to check what rights the GER subject (-E) has to
the targets of the search (-b). The get effective rights search is a regular ldapsearch, in that it simply
looks for entries that match the search parameters and returns their information. The get effective
rights option adds extra information to those search results, showing what rights a specific user has over
those results. That GER subject user can be the requester himself (-D is the same as -E) or someone
else.

If the requester is a regular user (not the Directory Manager), then the requester can only see the
effective that a GER subject has on the requester's own entry. That is, if John Smith runs a request to
see what effective rights Babs Jensen has, then he can only get the effective rights that Babs Jensen
has on his own entry. All of the other entries return an insufficient access error for the effective rights.

There are three general scenarios for a regular user when running a get effective rights search:

User A checks the rights that he has over other directory entries.

User A checks the rights that he has to his personal entry.

User A checks the rights that User B has to User A's entry.

The get effective rights search has a number of flexible different ways that it can check rights on
attributes.

CHAPTER 18. MANAGING ACCESS CONTROL

433

18.12.3. Examples of GER Searches

There are a number of different ways to run GER searches, depending on the exact type of information
that needs to be returned and the types of entries and attributes being searched.

18.12.3.1. General Examples on Checking Access Rights

One common scenario for effective rights searches is for a regular user to determine what changes he
can make to his personal entry.

For example, Ted Morris wants to check the rights he has to his entry. Both the -D and -E options give
his entry as the requester. Since he is checking his personal entry, the -b option also contains his DN.

Example 18.36. Checking Personal Rights (User A to User A)

ldapsearch -x -p 389 -h server.example.com -D "uid=tmorris,ou=people,dc=example,dc=com" -
W -b "uid=tmorris,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=tmorris,ou=people,dc=example,dc=com' "(objectClass=*)"

 dn: uid=tmorris,ou=People,dc=example,dc=com
 givenName: Ted
 sn: Morris
 ou: IT
 ou: People
 l: Santa Clara
 manager: uid=jsmith,ou=People,dc=example,dc=com
 roomNumber: 4117
 mail: tmorris@example.com
 facsimileTelephoneNumber: +1 408 555 5409
 objectClass: top
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 uid: tmorris
 cn: Ted Morris
 userPassword: {SSHA}bz0uCmHZM5b357zwrCUCJs1IOHtMD6yqPyhxBA==
 entryLevelRights: v
 attributeLevelRights: givenName:rsc, sn:rsc, ou:rsc, l:rsc, manager:rsc, roomNumber:rscwo,
mail:rscwo, facsimileTelephoneNumber:rscwo, objectClass:rsc, uid:rsc, cn:rsc, userPassword:wo

Ted Morris may, for example, be a manager or work in a department where he has to edit other user's
entries, such as IT or human resources. In this case, he may want to check what rights he has to another
user's entry, as in Example 18.37, “Personally Checking the Rights of One User over Another (User A to
User B)”, where Ted (-D) checks his rights (-E) to Dave Miller's entry (-b):

Example 18.37. Personally Checking the Rights of One User over Another (User A to User B)

ldapsearch -p 389 -h server.example.com -D "uid=tmorris,ou=people,dc=example,dc=com" -W -
b "uid=dmiller,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=tmorris,ou=people,dc=example,dc=com' "(objectClass=*)"

dn: uid=dmiller,ou=People,dc=example,dc=com
...
entryLevelRights: vad

Administration Guide

434

attributeLevelRights: givenName:rscwo, sn:rscwo, ou:rscwo, l:rscwo, manager:rsc,
roomNumber:rscwo, mail:rscwo, facsimileTelephoneNumber:rscwo, objectClass:rscwo, uid:rscwo,
cn:rscwo, userPassword:rswo

For all attributes, Ted Morris has read, search, compare, modify, and delete permissions to Dave Miller's
entry. These results are different than the ones returned in checking Ted Morris's access to his own
entry, since he personally had only read, search, and compare rights to most of these attributes.

The Directory Manager has the ability to check the rights that one user has over another user's entry. In
Example 18.38, “The Directory Manager's Checking the Rights of One User over Another (User A to User
B)”, the Directory Manager is checking the rights that a manager, Jane Smith (-E), has over her
subordinate, Ted Morris (-b):

Example 18.38. The Directory Manager's Checking the Rights of One User over Another (User A
to User B)

ldapsearch -p 389 -h server.example.com -D "cn=Directory Manager" -W -b
"uid=tmorris,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=jsmith,ou=people,dc=example,dc=com' "(objectClass=*)"

dn: uid=tmorris,ou=People,dc=example,dc=com
...
entryLevelRights: vadn
attributeLevelRights: givenName:rscwo, sn:rscwo, ou:rscwo, l:rscwo, manager:rscwo,
roomNumber:rscwo, mail:rscwo, facsimileTelephoneNumber:rscwo, objectClass:rscwo, uid:rscwo,
cn:rscwo, userPassword:rscwo

Only an administrator can retrieve the effective rights that a different user has on an entry. If Ted Morris
tried to determine Dave Miller's rights to Dave Miller's entry, then he would receive an insufficient
access error:

ldapsearch -p 389 -h server.example.com -D "uid=dmiller,ou=people,dc=example,dc=com" -W -b
"uid=tmorris,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=tmorris,ou=people,dc=example,dc=com' "(objectClass=*)"

ldap_search: Insufficient access
ldap_search: additional info: get-effective-rights: requester has no g permission on the entry

However, a regular user can run a get effective rights search to see what rights another user has to his
personal entry. In Example 18.39, “Checking the Rights Someone Else Has to a Personal Entry” , Ted
Morris checks what rights Dave Miller has on Ted Morris's entry.

Example 18.39. Checking the Rights Someone Else Has to a Personal Entry

ldapsearch -p 389 -h server.example.com -D "uid=tmorris,ou=people,dc=example,dc=com" -W -
b "uid=tmorris,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=dmiller,ou=people,dc=example,dc=com' "(objectClass=*)"

dn: uid=tmorris,ou=people,dc=example,dc=com
...

CHAPTER 18. MANAGING ACCESS CONTROL

435

entryLevelRights: v
attributeLevelRights: givenName:rsc, sn:rsc, ou:rsc, l:rsc,manager:rsc, roomNumber:rsc, mail:rsc,
facsimileTelephoneNumber:rsc, objectClass:rsc, uid:rsc, cn:rsc, userPassword:none

In this case, Dave Miller has the right to view the DN of the entry and to read, search, and compare the
ou, givenName, l, and other attributes, and no rights to the userPassword attribute.

18.12.3.2. Examples of Get Effective Rights Searches for Non-Existent Attributes

By default, information is not given for attributes in an entry that do not have a value; for example, if the
userPassword value is removed, then a future effective rights search on the entry above would not
return any effective rights for userPassword, even though self-write and self-delete rights could be
allowed.

Using an asterisk (*) with the get effective rights search returns every attribute available for the entry,
including attributes not set on the entry.

Example 18.40. Returning Effective Rights for Non-Existent Attributes

ldapsearch -D "cn=Directory Manager" -W -b "uid=scarter,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)" "*"

dn: uid=scarter,ou=People,dc=example,dc=com
givenName: Sam
telephoneNumber: +1 408 555 4798
sn: Carter
ou: Accounting
ou: People
l: Sunnyvale
manager: uid=dmiller,ou=People,dc=example,dc=com
roomNumber: 4612
mail: scarter@example.com
facsimileTelephoneNumber: +1 408 555 9700
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
uid: scarter
cn: Sam Carter
userPassword: {SSHA}Xd9Jt8g1UsHC8enNDrEmxj3iJPKQLItlDYdD9A==
entryLevelRights: vadn
attributeLevelRights: objectClass:rscwo, aci:rscwo, sn:rscwo, cn:rscwo, description:rscwo,
seeAlso:rscwo, telephoneNumber:rscwo, userPassword:rscwo, destinationIndicator:rscwo,
facsimileTelephoneNumber:rscwo, internationaliSDNNumber:rscwo, l:rscwo, ou:rscwo,
physicalDeliveryOfficeName:rscwo, postOfficeBox:rscwo, postalAddress:rscwo,
postalCode:rscwo, preferredDeliveryMethod:rscwo, registeredAddress:rscwo, st:rscwo,
street:rscwo, teletexTerminalIdentifier:rscwo, telexNumber:rscwo, title:rscwo, x121Address:rscwo,
audio:rscwo, businessCategory:rscwo, carLicense:rscwo, departmentNumber:rscwo,
displayName:rscwo, employeeType:rscwo, employeeNumber:rscwo, givenName:rscwo,
homePhone:rscwo, homePostalAddress:rscwo, initials:rscwo, jpegPhoto:rscwo, labeledUri:rscwo,
manager:rscwo, mobile:rscwo, pager:rscwo, photo:rscwo, preferredLanguage:rscwo, mail:rscwo,
o:rscwo, roomNumber:rscwo, secretary:rscwo, uid:rscwo,x500UniqueIdentifier:rscwo,
userCertificate:rscwo, userSMIMECertificate:rscwo, userPKCS12:rscwo

Administration Guide

436

All of the attributes available for the entry, such as secretary, are listed, even though that attribute is
non-existent.

18.12.3.3. Examples of Get Effective Rights Searches for Specific Attributes or Object
Classes

Taking the attribute-related GER searches further, it is possible to search for the rights to a specific
attribute and set of attributes and to list all of the attributes available for one of the object classes set
on the entry.

One of the options listed in the formatting example in Section 18.12.2, “The Format of a Get Effective
Rights Search” is attributeList. To return the effective rights for only specific attributes, list the
attributes, separated by spaces, at the end of the search command.

Example 18.41. Get Effective Rights Results for Specific Attributes

ldapsearch -D "cn=Directory Manager" -W -b "uid=scarter,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)" cn
mail initials

dn: uid=scarter,ou=People,dc=example,dc=com
cn: Sam Carter
mail: scarter@example.com
entryLevelRights: vadn
attributeLevelRights: cn:rscwo, mail:rscwo, initials:rscwo

It is possible to specify a non-existent attribute in the attributeList, as with the initials attribute in
Example 18.41, “Get Effective Rights Results for Specific Attributes” , to see the rights which are
available, similar to using an asterisk to list all attributes.

The Directory Manager can also list the rights for all of the attributes available to a specific object class.
This option has the format attribute@objectClass. This returns two entries; the first for the specified
GER subject and the second for a template entry for the object class.

Example 18.42. Get Effective Rights Results for an Attribute within an Object Class

ldapsearch -D "cn=Directory Manager" -W -b "uid=scarter,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)"
uidNumber@posixAccount
...
dn: cn=template_posixaccount_objectclass,uid=scarter,ou=people,dc=example,dc=com
uidnumber: (template_attribute)
entryLevelRights: v
attributeLevelRights: uidNumber:rsc

NOTE

Using the search format attribute@objectClass is only available if the requester (-D) is the
Directory Manager.

CHAPTER 18. MANAGING ACCESS CONTROL

437

Using an asterisk (*) instead of a specific attribute returns all of the attributes (present and non-
existent) for the specified GER subject and the full list of attributes for the object class template.

Example 18.43. Get Effective Rights Results for All Attributes for an Object Class

ldapsearch -D "cn=Directory Manager" -W -b "uid=scarter,ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)"
*@posixaccount
...
dn: cn=template_posixaccount_objectclass,uid=scarter,ou=people,dc=example,dc=com
objectClass: posixaccount
objectClass: top
homeDirectory: (template_attribute)
gidNumber: (template_attribute)
uidNumber: (template_attribute)
uid: (template_attribute)
cn: (template_attribute)
entryLevelRights: v
attributeLevelRights: cn:rsc, uid:rsc, uidNumber:rsc, gidNumber:rsc, homeDirectory:rsc,
objectClass:rsc, userPassword:none, loginShell:rsc, gecos:rsc, description:rsc, aci:rsc

18.12.3.4. Examples of Get Effective Rights Searches for Non-Existent Entries

An administrator may want to check what rights a specific user (jsmith) would have to a non-existent
user, based on the existing access control rules. For checking non-existent entries, the server generates
a template entry within that subtree. For example, to check for the template entry cn=joe new
user,cn=accounts,ou=people,dc=example,dc=com, the server creates
cn=template,cn=accounts,ou=people,dc=example,dc=com.

For checking a non-existent entry, the get effective rights search can use a specified object class to
generate a template entry with all of the potential attributes of the (non-existent) entry. For cn=joe
new user,cn=accounts,ou=people,dc=example,dc=com with a person object class (@person), the
server generates cn=template_person_objectclass,cn=accounts,ou=people,dc=example,dc=com.

When the server creates the template entry, it uses the first MUST attribute in the object class definition
to create the RDN attribute (or it uses MAY if there is no MUST attribute). However, this may result in an
erroneous RDN value which, in turn, violates or circumvents established ACIs for the given subtree. In
that case, it is possible to specify the RDN value to use by passing it with the object class. This has the
form @objectclass:rdn_attribute.

For example, to check the rights of scarter for a non-existent Posix entry with uidNumber as its RDN:

ldapsearch -D "cn=Directory Manager" -W -b "ou=people,dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)"
@posixaccount:uidnumber

dn: uidNumber=template_posixaccount_objectclass,ou=people,dc=example,dc=com
entryLevelRights: v
attributeLevelRights: description:rsc, gecos:rsc, loginShell:rsc, userPassword
 :rsc, objectClass:rsc, homeDirectory:rsc, gidNumber:rsc, uidNumber:rsc, uid:
 rsc, cn:rsc

18.12.3.5. Examples of Get Effective Rights Searches for Operational Attributes

Administration Guide

438

Operational attributes are not returned in regular ldapsearches, including get effective rights searches.
To return the information for the operational attributes, use the plus sign (+). This returns only the
operational attributes that can be used in the entry.

Example 18.44. Get Effective Rights Results for Operational Attributes

ldapsearch -D "cn=Directory Manager" -W -x -b "uid=scarter,ou=people,dc=example,dc=com" -
E '!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)" "+"

dn: uid=scarter,ou=People,dc=example,dc=com
entryLevelRights: vadn
attributeLevelRights: nsICQStatusText:rscwo, passwordGraceUserTime:rscwo,
pwdGraceUserTime:rscwo, nsYIMStatusText:rscwo, modifyTimestamp:rscwo,
passwordExpWarned:rscwo, pwdExpirationWarned:rscwo, entrydn:rscwo, aci:rscwo,
nsSizeLimit:rscwo, nsAccountLock:rscwo, passwordExpirationTime:rscwo, entryid:rscwo,
nsSchemaCSN:rscwo, nsRole:rscwo, retryCountResetTime:rscwo, ldapSchemas:rscwo,
nsAIMStatusText:rscwo, copiedFrom:rscwo, nsICQStatusGraphic:rscwo, nsUniqueId:rscwo,
creatorsName:rscwo, passwordRetryCount:rscwo, dncomp:rscwo, nsTimeLimit:rscwo,
passwordHistory:rscwo, pwdHistory:rscwo, nscpEntryDN:rscwo, subschemaSubentry:rscwo,
nsYIMStatusGraphic:rscwo, hasSubordinates:rscwo, pwdpolicysubentry:rscwo,
nsAIMStatusGraphic:rscwo, nsRoleDN:rscwo, createTimestamp:rscwo,
accountUnlockTime:rscwo, copyingFrom:rscwo, nsLookThroughLimit:rscwo,
nsds5ReplConflict:rscwo, modifiersName:rscwo, parentid:rscwo,
passwordAllowChangeTime:rscwo, nsBackendSuffix:rscwo, nsIdleTimeout:rscwo,
ldapSyntaxes:rscwo, numSubordinates:rscwo

18.12.3.6. Examples of Get Effective Rights Results and Access Control Rules

Get effective rights are returned according to whatever ACLs are in effect for the get effective rights
subject entry.

For example, this ACL is set and, for the purposes of this example, it is the only ACL set:

dn: dc=example,dc=com
objectClass: top
objectClass: domain
dc: example
aci: (target=ldap:///ou=Accounting,dc=example,dc=com)(targetattr="*")(version
 3.0; acl "test acl"; allow (read,search,compare) (userdn = "ldap:///anyone") ;)

dn: ou=Accounting,dc=example,dc=com
objectClass: top
objectClass: organizationalUnit
ou: Accounting

Because the ACL does not include the dc=example,dc=com subtree, the get effective rights search
shows that the user does not have any rights to the dc=example,dc=com entry:

Example 18.45. Get Effective Rights Results with No ACL Set (Directory Manager)

ldapsearch -D "cn=Directory Manager" -W -b "dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)"

CHAPTER 18. MANAGING ACCESS CONTROL

439

"*@person"

dn: cn=template_person_objectclass,uid=scarter,ou=people,dc=example,dc=com
objectClass: person
objectClass: top
cn: (template_attribute)
sn: (template_attribute)
description: (template_attribute)
seeAlso: (template_attribute)
telephoneNumber: (template_attribute)
userPassword: (template_attribute)
entryLevelRights: none
attributeLevelRights: sn:none, cn:none, objectClass:none, description:none, seeAlso:none,
telephoneNumber:none, userPassword:none, aci:none

If a regular user, rather than Directory Manager, tried to run the same command, the result would simply
be blank.

Example 18.46. Get Effective Rights Results with No ACL Set (Regular User)

ldapsearch -D "uid=scarter,ou=people,dc=example,dc=com" -W -b "dc=example,dc=com" -E
'!1.3.6.1.4.1.42.2.27.9.5.2=:dn:uid=scarter,ou=people,dc=example,dc=com' "(objectclass=*)"
"*@person"

18.12.4. Get Effective Rights Return Codes

If the criticality is not set for a get effective rights search and an error occurs, the regular entry
information is returned, but, in place of rights for entryLevelRights and attributeLevelRights, an error
code is returned. This code can give information on the configuration of the entry that was queried.
Table 18.4, “Returned Result Codes” summarizes the error codes and the potential configuration
information they can relay.

Table 18.4. Returned Result Codes

Code Description

0 Successfully completed.

1 Operation error.

12 The critical extension is unavailable. If the criticality expression is set to true and
effective rights do not exist on the entry being queried, then this error is returned.

16 No such attribute. If an attribute is specifically queried for access rights but that
attribute does not exist in the schema, this error is returned.

17 Undefined attribute type.

21 Invalid attribute syntax.

Administration Guide

440

50 Insufficient rights.

52 Unavailable.

53 Unwilling to perform.

80 Other.

Code Description

18.13. LOGGING ACCESS CONTROL INFORMATION

To log access control information, set the nsslapd-errorlog-level parameter to a value that includes
128 (access control list processing). For further details about setting the error log level, see
Section 21.3.7, “Configuring the Log Levels”.

18.14. ADVANCED ACCESS CONTROL: USING MACRO ACIS

Macro ACIs improve the flexibility. For example, you can add a subtree and automatically get the same
tailored access controls as for other subtrees without the need to add any ACI. As a side effect, the
number of ACIs is smaller, however, Macro ACI processing is more expensive than a regular ACI.

Macros are placeholders that are used to represent a DN, or a portion of a DN, in an ACI. You can use a
macro to represent a DN in the target portion of the ACI or in the bind rule portion, or both. In practice,
when Directory Server gets an incoming LDAP operation, the ACI macros are matched against the
resource targeted by the LDAP operation. If there is a match, the macro is replaced by the value of the
DN of the targeted resource. Directory Server then evaluates the ACI normally.

18.14.1. Macro ACI Example

Figure 18.1, “Example Directory Tree for Macro ACIs” shows a directory tree which uses macro ACIs to
effectively reduce the overall number of ACIs. This illustration uses repeating pattern of subdomains
with the same tree structure (ou=groups, ou=people). This pattern is also repeated across the tree
because the Example Corp. directory tree stores the suffixes
dc=hostedCompany2,dc=example,dc=com and dc=hostedCompany3,dc=example,dc=com.

The ACIs that apply in the directory tree also have a repeating pattern. For example, the following ACI is
located on the dc=hostedCompany1,dc=example,dc=com node:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=hostedCompany1,dc=example,dc=com";)

This ACI grants read and search rights to the DomainAdmins group to any entry in the
dc=hostedCompany1,dc=example,dc=com tree.

CHAPTER 18. MANAGING ACCESS CONTROL

441

Figure 18.1. Example Directory Tree for Macro ACIs

The following ACI is located on the dc=hostedCompany1,dc=example,dc=com node:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=hostedCompany1,dc=example,dc=com";)

The following ACI is located on the dc=subdomain1,dc=hostedCompany1,dc=example,dc=com
node:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)

groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=subdomain1,dc=hostedCompany1,dc=example,dc=
com";)

The following ACI is located on the dc=hostedCompany2,dc=example,dc=com node:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=hostedCompany2,dc=example,dc=com";)

The following ACI is located on the dc=subdomain1,dc=hostedCompany2,dc=example,dc=com
node:

aci: (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)

groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=subdomain1,dc=hostedCompany2,dc=example,dc=
com";)

Administration Guide

442

In the four ACIs shown above, the only differentiator is the DN specified in the groupdn keyword. By
using a macro for the DN, it is possible to replace these ACIs by a single ACI at the root of the tree, on
the dc=example,dc=com node. This ACI reads as follows:

aci: (target="ldap:///ou=Groups,($dn),dc=example,dc=com")
 (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,[$dn],dc=example,dc=com";)

The target keyword, which was not previously used, is utilized in the new ACI.

In this example, the number of ACIs is reduced from four to one. The real benefit is a factor of how many
repeating patterns you have down and across your directory tree.

18.14.2. Macro ACI Syntax

Macro ACIs include the following types of expressions to replace a DN or part of a DN:

($dn)

[$dn]

($attr.attrName), where attrName represents an attribute contained in the target entry

In this section, the ACI keywords used to provide bind credentials, such as userdn, roledn, groupdn,
and userattr, are collectively called the subject, as opposed to the target, of the ACI. Macro ACIs can be
used in the target part or the subject part of an ACI.

Table 18.5, “Macros in ACI Keywords” shows in what parts of the ACI you can use DN macros:

Table 18.5. Macros in ACI Keywords

Macro ACI Keyword

($dn) target, targetfilter, userdn, roledn, groupdn, userattr

[$dn] targetfilter, userdn, roledn, groupdn, userattr

($attr.attrName) userdn, roledn, groupdn, userattr

The following restrictions apply:

If you use ($dn) in targetfilter, userdn, roledn, groupdn, userattr, you must define a target that
contains ($dn).

If you use [$dn] in targetfilter, userdn, roledn, groupdn, userattr, you must define a target that
contains ($dn).

NOTE

When using any macro, you always need a target definition that contains the ($dn) macro.

You can combine the ($dn) macro and the ($attr.attrName) macro.

CHAPTER 18. MANAGING ACCESS CONTROL

443

18.14.2.1. Macro Matching for ($dn)

The ($dn) macro is replaced by the matching part of the resource targeted in an LDAP request. For
example, you have an LDAP request targeted at the
cn=all,ou=groups,dc=subdomain1,dc=hostedCompany1,dc=example,dc=com entry and an ACI
that defines the target as follows:

(target="ldap:///ou=Groups,($dn),dc=example,dc=com")

The ($dn) macro matches with dc=subdomain1,dc=hostedCompany1.

When the subject of the ACI also uses ($dn), the substring that matches the target is used to expand
the subject. For example:

aci: (target="ldap:///ou=*,($dn),dc=example,dc=com")
 (targetattr = "*") (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,($dn),dc=example,dc=com";)

In this case, if the string matching ($dn) in the target is dc=subdomain1,dc=hostedCompany1, then
the same string is used in the subject. The ACI is then expanded as follows:

aci: (target="ldap:///ou=Groups,dc=subdomain1,dc=hostedCompany1,
 dc=example,dc=com") (targetattr = "*") (version 3.0; acl "Domain
 access"; allow (read,search) groupdn="ldap:///cn=DomainAdmins,ou=Groups,
 dc=subdomain1,dc=hostedCompany1,dc=example,dc=com";)

Once the macro has been expanded, Directory Server evaluates the ACI following the normal process to
determine whether access is granted.

18.14.2.2. Macro Matching for [$dn]

The matching mechanism for [$dn] is slightly different than for ($dn). The DN of the targeted resource
is examined several times, each time dropping the left-most RDN component, until a match is found.

For example, you have an LDAP request targeted at the
cn=all,ou=groups,dc=subdomain1,dc=hostedCompany1,dc=example,dc=com subtree and the
following ACI:

aci: (target="ldap:///ou=Groups,($dn),dc=example,dc=com")
 (targetattr = "*") (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,[$dn],dc=example,dc=com";)

The steps for expanding this ACI are as follows:

1. ($dn) in the target matches dc=subdomain1,dc=hostedCompany1.

2. [$dn] in the subject is replaces with dc=subdomain1,dc=hostedCompany1.

The result is
groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=subdomain1,dc=hostedCompany1,d
c=example,dc=com". If the bind DN is a member of that group, the matching process stops,
and the ACI is evaluated. If it does not match, the process continues.

3. [$dn] in the subject is replaced with dc=hostedCompany1.

Administration Guide

444

The result is
groupdn="ldap:///cn=DomainAdmins,ou=Groups,dc=hostedCompany1,dc=example,dc=co
m". In this case, if the bind DN is not a member of that group, the ACI is not evaluated. If it is a
member, the ACI is evaluated.

The advantage of the [$dn] macro is that it provides a flexible way of granting access to domain-level
administrators to all the subdomains in the directory tree. Therefore, it is useful for expressing a
hierarchical relationship between domains.

For example, consider the following ACI:

aci: (target="ldap:///ou=*, ($dn),dc=example,dc=com")
 (targetattr="*")(targetfilter=(objectClass=nsManagedDomain))
 (version 3.0; acl "Domain access"; allow (read,search)
 groupdn="ldap:///cn=DomainAdmins,ou=Groups,[$dn],dc=example,dc=com";)

It grants access to the members of
cn=DomainAdmins,ou=Groups,dc=hostedCompany1,dc=example,dc=com to all of the subdomains
under dc=hostedCompany1, so an administrator belonging to that group could access a subtree like
ou=people,dc=subdomain1.1,dc=subdomain1.

However, at the same time, members of cn=DomainAdmins,ou=Groups,dc=subdomain1.1 would be
denied access to the ou=people,dc=hostedCompany1 and
ou=people,dc=subdomain1,dc=hostedCompany1 nodes.

18.14.2.3. Macro Matching for ($attr.attrName)

The ($attr.attrName) macro is always used in the subject part of a DN. For example, define the following
roledn:

roledn = "ldap:///cn=DomainAdmins,($attr.ou)"

Now, assume the server receives an LDAP operation targeted at the following entry:

dn: cn=Jane Doe,ou=People,dc=HostedCompany1,dc=example,dc=com
cn: Jane Doe
sn: Doe
ou: Engineering,dc=HostedCompany1,dc=example,dc=com
...

In order to evaluate the roledn part of the ACI, the server looks at the ou attribute stored in the
targeted entry and uses the value of this attribute to expand the macro. Therefore, in the example, the
roledn is expanded as follows:

roledn = "ldap:///cn=DomainAdmins,ou=Engineering,dc=HostedCompany1,dc=example,dc=com"

The Directory Server then evaluates the ACI according to the normal ACI evaluation algorithm.

When an attribute is multi-valued, each value is used to expand the macro, and the first one that
provides a successful match is used. For example:

dn: cn=Jane Doe,ou=People,dc=HostedCompany1,dc=example,dc=com
cn: Jane Doe
sn: Doe

CHAPTER 18. MANAGING ACCESS CONTROL

445

ou: Engineering,dc=HostedCompany1,dc=example,dc=com
ou: People,dc=HostedCompany1,dc=example,dc=com...

In this case, when the Directory Server evaluates the ACI, it performs a logical OR on the following
expanded expressions:

roledn = "ldap:///cn=DomainAdmins,ou=Engineering,dc=HostedCompany1,dc=example,dc=com"

roledn = "ldap:///cn=DomainAdmins,ou=People,dc=HostedCompany1,dc=example,dc=com"

18.15. SETTING ACCESS CONTROLS ON DIRECTORY MANAGER

Having an unconstrained administrative user makes sense from a maintenance perspective. The
Directory Manager requires a high level of access in order to perform maintenance tasks and to
response to incidents.

However, because of the power of the Directory Manager user, a certain level of access control may be
advisable to prevent unauthorized access or attacks from being performed as the root user.

Regular access control rules are applied to the directory tree, the Directory Manager is not a regular user
entry, so no (regular) ACIs can be applied to the Directory Manager user. ACIs are applied through a
special plug-in configuration entry.

18.15.1. About Access Controls on the Directory Manager Account

Normal access control rules do not apply to the Directory Manager user. The privileges of the Directory
Manager user are hard-coded in Directory Server and cannot be used in a bind rule.

Access controls for Directory Manager are implemented through the RootDN Access Control Plug-in .
This plug-in applies to the Directory Server configuration, and therefore can apply some access control
rules to the Directory Manager entry.

The plug-in does not define a standard ACL. Some information is already implied, including the target
(the Directory Manager entry) and the allowed rights (all of them). The purpose of the RootDN Access
Control Plug-in is not to restrict what the Directory Manager can do; the purpose is to provide a level of
security by limiting who can log in as Directory Manager (even with valid credentials) based on their
location or time.

For this reason, the ACI for the Directory Manager only sets bind rules:

Time-based access controls for time ranges, such as 8a.m. to 5p.m. (0800 to 1700), and day-of-
week access controls, so access is only allowed on explicitly defined days. This is analogous to
Section 18.11.2.5, “Defining Access at a Specific Day of the Week” and Section 18.11.2.6, “Defining
Access at a Specific Time of Day”.

IP address rules, where only specified IP addresses, domains, or subnets are explicitly allowed or
denied. This is analogous to Section 18.11.2.2, “Defining Access from Specific IP Addresses or
Ranges”.

Host access rules, where only specified host names, domain names, or subdomains are explicitly
allowed or denied. This is analogous to Section 18.11.2.3, “Defining Access from a Specific Host
or Domain”.

As with other access control rules, deny rules supercede allow rules.

IMPORTANT

Administration Guide

446

IMPORTANT

Make sure that the Directory Manager always has the approproate level of access
allowed. The Directory Manager may need to perform maintenance operations in off-
hours (when user load is light) or to respond to failures. In that case, setting stringent
time or day-based access control rules could prevent the Directory Manager from being
able to adequately manage the directory.

18.15.2. Configuring the RootDN Access Control Plug-in

Root DN access control rules are disabled by default. Enable the RootDN Access Control plug-in, and
then set the appropriate access control rules.

NOTE

There is only one access control rule set for the Directory Manager, in the plug-in entry,
and it applies to all access to the entire directory.

1. Enable the RootDN Access Control plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin root-dn enable
Plugin 'RootDN Access Control' enabled
...

2. Set the bind rules for the access control instruction. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin root-dn set --open-
time=0600 --close-time=2100 --allow-host="*.example.com" --deny-
host="*.remote.example.com"

You can set the following parameters:

--open-time and --close-time for time-based access controls.

--days-allowed for day-based access controls.

--allow-host, --deny-host, --allow-ip, and --deny-ip for host-based access controls. These
are all multi-valued attributes and you can use wild cards to allow or deny IP ranges or
domains.

IMPORTANT

Deny rules have a higher priority then allow rules. For example, if the --allow-
host parameter is set to *.example.com, and --deny-host is set to *.front-
office.example.com, access from all hosts in the front-office.example.com
subdomain as Directory Manager is prevented.

3. Restart Directory Server:

dsctl instance_name restart

CHAPTER 18. MANAGING ACCESS CONTROL

447

CHAPTER 19. USING THE HEALTH CHECK FEATURE TO
IDENTIFY PROBLEMS
The dsctl healthcheck command analyzes the Directory Server instance for potential issues and
recommends solutions to solve them.

The following table displays the checks the health check feature performs:

Table 19.1. Overview of Checks

Component Severity Result Code Description

Backend Low DSBLE0003 The database was not initialized. A database
was created but the database is empty.

Backend Medium DSBLE0001 The mapping tree entry for a back end is
missing in the configuration.

Config Low DSCLE0001 High-resolution time stamps are disabled.

Config High DSVIRTLE0001 A virtual attribute is incorrectly indexed.
Indexed attributes used by roles or Class of
Service (CoS) definitions can corrupt search
results.

Operating System Medium DSPERMLE0001 The permissions set on the /etc/resolve.conf
file are different to 0644.

Operating System High DSDSLE0001 Low disk space

Operating System High DSPERMLE0002 The permissions set on the
/etc/dirsrv/slapd-instance_name/pin.txt
and /etc/dirsrv/slapd-
instance_name/pwdfile.txt files are
different to 0400.

Plug-ins Low DSRILE0001 An update delay is set for the Referential
Integrity plug-in. This can cause replication
issues.

Plug-ins High DSRILE0002 The Referential Integrity plug-in misses
indexes. The plug-in queries certain attributes
for every delete operation if they are not
indexed. This can cause hard-to-detect
unindexed searches and high CPU usage.

Replication Low DSREPLLE0002 Conflict entries exist in the database.

Replication Low DSSKEWLE0001 The replication time skew is larger than 6 hours
and lower than 12 hours.

Administration Guide

448

Replication Medium DSCLLE0001 Changelog trimming is disabled. In this case,
the changelog grows without limits.

Replication Medium DSREPLLE0004 The health check failed to retrieve the
replication status.

Replication Medium DSREPLLE0003 The topology is not in sync, but the replication
is working.

Replication Medium DSREPLLE0005 A remote replica is not reachable.

Replication Medium DSSKEWLE0002 The replication time skew is larger than 12 hours
and lower than 24 hours.

Replication High DSREPLLE0001 The topology is not in sync, and the replication
is not working.

Replication High DSSKEWLE0003 The replication time skew is larger than 24
hours. Replication sessions could break.

Security Medium DSELE0001 The minimum TLS version is set to a value
lower than TLS 1.2.

Security High DSCLE0002 A weak password storage scheme is
configured.

Server High DSBLE0002 The health check failed to query the back end.

TLS certificates Medium DSCERTLE0001 The server certificate expires within the next
30 days.

TLS certificates High DSCERTLE0002 The server certificate has expired.

Component Severity Result Code Description

19.1. RUNNING THE DIRECTORY SERVER HEALTH CHECK

To run the health check, enter:

dsctl instance_name healthcheck
Beginning lint report, this could take a while ...
Checking Backends ...
Checking Config ...
Checking Encryption ...
Checking FSChecks ...
Checking ReferentialIntegrityPlugin ...
Checking MonitorDiskSpace ...
Checking Replica ...
Checking Changelog5 ...

CHAPTER 19. USING THE HEALTH CHECK FEATURE TO IDENTIFY PROBLEMS

449

Checking NssSsl ...
Healthcheck complete.
1 Issue found! Generating report ...

Example 19.1. Possible Report of the Health Check

The following shows an example health check report:

[1] DS Lint Error: DSELE0001
--
Severity: MEDIUM
Affects:
 -- cn=encryption,cn=config

Details:

This Directory Server may not be using strong TLS protocol versions. TLS1.0 is known to
have a number of issues with the protocol. Please see:

https://tools.ietf.org/html/rfc7457

It is advised you set this value to the maximum possible.

Resolution:

There are two options for setting the TLS minimum version allowed. You,
can set "sslVersionMin" in "cn=encryption,cn=config" to a version greater than "TLS1.0"
You can also use 'dsconf' to set this value. Here is an example:

 # dsconf slapd-instance_name security set --tls-protocol-min=TLS1.2

You must restart the Directory Server for this change to take effect.

Or, you can set the system wide crypto policy to FUTURE which will use a higher TLS
minimum version, but doing this affects the entire system:

 # update-crypto-policies --set FUTURE

===== End Of Report (1 Issue found) =====

To display the output in JSON format, pass the --json parameter to the command:

dsctl --json instance_name healthcheck

Example 19.2. Possible Report of the Health Check in JSON Format

The following shows an example health check report in JSON format:

[
 {
 "dsle": "DSELE0001",
 "severity": "MEDIUM",

Administration Guide

450

 "items": [
 "cn=encryption,cn=config"
],
 "detail": "This Directory Server may not be using strong TLS protocol versions. TLS1.0 is
known to\nhave a number of issues with the protocol. Please
see:\n\nhttps://tools.ietf.org/html/rfc7457\n\nIt is advised you set this value to the maximum
possible.",
 "fix": "There are two options for setting the TLS minimum version allowed. You,\ncan set
\"sslVersionMin\" in \"cn=encryption,cn=config\" to a version greater than \"TLS1.0\"\nYou can also
use 'dsconf' to set this value. Here is an example:\n\n # dsconf slapd-instance_name security
set --tls-protocol-min=TLS1.2\n\nYou must restart the Directory Server for this change to take
effect.\n\nOr, you can set the system wide crypto policy to FUTURE which will use a higher
TLS\nminimum version, but doing this affects the entire system:\n\n # update-crypto-policies --
set FUTURE"
 }
]

CHAPTER 19. USING THE HEALTH CHECK FEATURE TO IDENTIFY PROBLEMS

451

CHAPTER 20. MANAGING USER AUTHENTICATION
When a user connects to the Red Hat Directory Server, first the user is authenticated. Then, the
directory grants access rights and resource limits to the user depending upon the identity established
during authentication.

This chapter describes tasks for managing users, including configuring the password and account
lockout policy for the directory, denying groups of users access to the directory, and limiting system
resources available to users depending upon their bind DNs.

20.1. SETTING USER PASSWORDS

You can use an entry to bind to the directory only if it has a userPassword attribute and if it has not
been inactivated. Because user passwords are stored in the directory, the user passwords can be set or
reset with any LDAP operation, such as using the ldapmodify utility.

When an administrator changes the password of a user, Directory Server sets the pwdReset operational
attribute in the user's entry to true. Applications can use this attribute to identify if a password of a user
has been reset by an administrator.

For information on creating and modifying directory entries, see Chapter 3, Managing Directory Entries .
For information on inactivating user accounts, see Section 20.16, “Manually Inactivating Users and
Roles”.

Only password administrators, described in Section 20.2, “Setting Password Administrators”, and the
root DN can add pre-hashed passwords. These users can also violate password policies.

WARNING

When using a password administrator account or the Directory Manager (root DN)
to set a password, password policies are bypassed and not verified. Do not use
these accounts for regular user password management. Use them only to perform
password administration tasks that require bypassing the password policies.

20.2. SETTING PASSWORD ADMINISTRATORS

The Directory Manager can add the password administrator role to a user or a group of users. Since
access control instructions (ACI) need to be set, it is recommended that a group is used to allow just a
single ACI set to manage all password administrators. A password administrator can perform any user
password operations, including the following:

forcing the user to change their password,

changing a user's password to a different storage scheme defined in the password policy,

bypassing the password syntax checks,

and adding already hashed passwords.

As explained in Section 20.1, “Setting User Passwords” , it is recommended that ordinary password



Administration Guide

452

As explained in Section 20.1, “Setting User Passwords” , it is recommended that ordinary password
updates are done by an existing role in the database with permissions to update only the userPassword
attribute. Red Hat recommends not to use the password administrator account for these ordinary tasks.

You can specify a user or a group as password administrator:

In a local policy. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp set
ou=people,dc=example,dc=com --pwdadmin
"cn=password_admins,ou=groups,dc=example,dc=com"

In a global policy. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --pwdadmin
"cn=password_admins,ou=groups,dc=example,dc=com"

NOTE

You can add a new passwordAdminSkipInfoUpdate: on/off setting under the
cn=config entry to provide a fine grained control over password updates performed by
password administrators. When you enable this setting, passwords updates do not update
certain attributes, for example, passwordHistory, passwordExpirationTime,
passwordRetryCount, pwdReset, and passwordExpWarned.

20.3. CHANGING PASSWORDS STORED EXTERNALLY

While most passwords can be changed through ldapmodify operations, there are some passwords that
cannot be changed through regular LDAP operations. These passwords may be stored outside the
Directory Server, such as passwords stored in a SASL application. These passwords can be modified
through the password change extended operation .

Directory Server supports the password change extended operation as defined in RFC 3062, so users
can change their passwords, using a suitable client, in a standards-compliant way. The dsidm utility
passes the changes for the password for the specified user:

dsidm ldap://server.example.com -D bind_dn -W -b dc=example,dc=com account
change_password user newPassword oldPassword

IMPORTANT

Password operations must be performed over a secure connection, meaning SASL, TLS,
or STARTTLS. For information on using secure connections with LDAP client tools, see
Section 9.9.4, “Authenticating Using a Certificate” .

For further details about the parameters, see the output of the dsidm instance_name account
change_password --help command.

To use STARTTLS, which runs the command on a non-secure port, run dsidm with the -Z option and the
standard LDAP port number. The password extended change operation has the following format:

CHAPTER 20. MANAGING USER AUTHENTICATION

453

dsidm ldap://server.example.com -Z bind_dn -W -b dc=example,dc=com account
change_password user newPassword oldPassword

NOTE

For STARTTLS connections to work, the TLS environment variables must be configured
as described in Section 9.9.4, “Authenticating Using a Certificate” .

Use the -Z option to force the connection to be successful.

To modify an entry's password, run dsidm like any other operation. It is necessary to specify a bind DN,
even if the account is the same as that given in the bind DN. For example:

dsidm ldap://server.example.com -Z bind_dn -W -b dc=example,dc=com account
change_password user newPassword oldPassword

Access control is enforced for the password change operation. If the bind DN does not have rights to
change the specified password, the operation will fail with an Insufficient rights error.

20.4. MANAGING THE PASSWORD POLICY

A password policy minimizes the risks of using passwords by enforcing a certain level of security. For
example, a password policy can define that:

Users must change their passwords according to a schedule.

Users must provide non-trivial passwords.

The password syntax must meet certain complexity requirements.

WARNING

When using a password administrator account or the Directory Manager (root DN)
to set a password, password policies are bypassed and not verified. Do not use
these accounts for regular user password management. Use them only to perform
password administration tasks that require bypassing the password policies.

Directory Server supports fine-grained password policy, so password policies can be applied to the
entire directory (global password policy), a particular subtree (subtree-level or local password policy), or
a particular user (user-level or local password policy).

The complete password policy applied to a user account is comprised of the following elements:

The type or level of password policy checks. This information indicates whether the server
should check for and enforce a global password policy or local (subtree/user-level) password
policies.

Password policies work in an inverted pyramid, from general to specific. A global password policy



Administration Guide

454

is superseded by a subtree-level password policy, which is superseded by a user-level password
policy. Only one password policy is enforced for the entry; password policies are not additive.
This means that if a particular attribute is configured in the global or subtree-level policy, but
not in the user-level password policy, the attribute is not used for the user when a login is
attempted because the active, applied policy is the user-level policy.

Password add and modify information. The password information includes password syntax and
password history details.

Bind information. The bind information includes the number of grace logins permitted, password
aging attributes, and tracking bind failures.

NOTE

After establishing a password policy, user passwords can be protected from potential
threats by configuring an account lockout policy. Account lockout protects against
hackers who try to break into the directory by repeatedly guessing a user's password.

20.4.1. Configuring the Global Password Policy

By default, global password policy settings are disabled. This section provides some examples how to
configure a global password policy.

NOTE

After configuring the password policy, configure an account lockout policy. For details,
see Section 20.9, “Configuring a Password-Based Account Lockout Policy” .

20.4.1.1. Configuring a Global Password Policy Using the Command Line

Use the dsconf utility to display and edit the global password policy settings:

1. Display the current settings:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy get
Global Password Policy: cn=config

passwordstoragescheme: PBKDF2_SHA256
passwordChange: on
passwordMustChange: off
passwordHistory: off
passwordInHistory: 6
...

2. Adjust the password policy settings. For example, to enable the password syntax check and set
the minimum length of passwords to 12 characters, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --
pwdchecksyntax=on --pwdmintokenlen=12

For a full list of available settings, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --help

CHAPTER 20. MANAGING USER AUTHENTICATION

455

3. Enable the password policy:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --pwdlockout on

20.4.1.2. Configuring a Global Password Policy Using the Web Console

To configure a global password policy using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database menu.

4. In the Password Policies menu, select Global Policy.

5. Set the global password policy settings. You can set parameters in the following categories:

General settings, such as the password storage scheme

Password expiration settings, such as the time when a password expires.

Account lockout settings, such as after how many failed login attempts an account should
be locked.

Password syntax settings, such as the minimum password length.

To display a tool tip and the corresponding attribute name in the cn=config entry for a
parameter, hover the mouse cursor over the setting. For further details, see the parameter's
description in the Red Hat Directory Server Configuration, Command, and File Reference .

6. Click Save.

20.4.2. Using Local Password Policies

In contrast to a global password policy, which defines settings for the entire directory, a local password
policy is a policy for a specific user or subtree.

When the fine-grained password policy does not set the password syntax, you can inherit the syntax
from the global policy if the nsslapd-pwpolicy-inherit-global parameter is on.

If the --pwpinheritglobal option is defined, the passwordchecksyntax option is set to OFF in the local
policy and to ON in the global policy, you can inherit the following attributes from the global policy to
the local policy:

passwordchecksyntax

passwordminlength

Administration Guide

456

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig

passwordmindigits

passwordminalphas

passwordminuppers

passwordminlowers

passwordminspecials

passwordmin8bit

passwordmaxrepeats

passwordmincategories

passwordmintokenlength

20.4.2.1. Where Directory Server Stores Local Password Policy Entries

When you use the dsconf localpwp adduser or dsconf localpwp addsubtree commands,
Directory Server creates automatically an entry to store the policy attributes:

For a subtree (for example, ou=people,dc=example,dc=com), the following entries are added:

A container entry (nsPwPolicyContainer) at the subtree level for holding various password
policy-related entries for the subtree and all its children. For example:

dn: cn=nsPwPolicyContainer,ou=people,dc=example,dc=com
objectClass: top
objectClass: nsContainer
cn: nsPwPolicyContainer

The actual password policy specification entry (nsPwPolicyEntry) for holding all the
password policy attributes that are specific to the subtree. For example:

dn: cn="cn=nsPwPolicyEntry,ou=people,dc=example,dc=com",
 cn=nsPwPolicyContainer,ou=people,dc=example,dc=com
objectclass: top
objectclass: extensibleObject
objectclass: ldapsubentry
objectclass: passwordpolicy

The CoS template entry (nsPwTemplateEntry) that has the pwdpolicysubentry value
pointing to the above (nsPwPolicyEntry) entry. For example:

dn: cn="cn=nsPwTemplateEntry,ou=people,dc=example,dc=com",
 cn=nsPwPolicyContainer,ou=people,dc=example,dc=com
objectclass: top
objectclass: extensibleObject
objectclass: costemplate
objectclass: ldapsubentry
cosPriority: 1
pwdpolicysubentry: cn="cn=nsPwPolicyEntry,ou=people,dc=example,dc=com",
 cn=nsPwPolicyContainer,ou=people,dc=example,dc=com

CHAPTER 20. MANAGING USER AUTHENTICATION

457

The CoS specification entry at the subtree level. For example:

dn: cn=newpwdpolicy_cos,ou=people,dc=example,dc=com
objectclass: top
objectclass: LDAPsubentry
objectclass: cosSuperDefinition
objectclass: cosPointerDefinition
cosTemplateDn: cn=cn=nsPwTemplateEntry\,ou=people\,dc=example,dc=com,
 cn=nsPwPolicyContainer,ou=people,dc=example,dc=com
cosAttribute: pwdpolicysubentry default operational

For a user (for example, uid=user_name,ou=people,dc=example,dc=com), the following
entries are added:

A container entry (nsPwPolicyContainer) at the parent level for holding various password
policy related entries for the user and all its children. For example:

dn: cn=nsPwPolicyContainer,ou=people,dc=example,dc=com
objectClass: top
objectClass: nsContainer
cn: nsPwPolicyContainer

The actual password policy specification entry (nsPwPolicyEntry) for holding the password
policy attributes that are specific to the user. For example:

dn: cn="cn=nsPwPolicyEntry,uid=user_name,ou=people,dc=example,dc=com",
 cn=nsPwPolicyContainer,ou=people,dc=example,dc=com
objectclass: top
objectclass: extensibleObject
objectclass: ldapsubentry
objectclass: passwordpolicy

20.4.2.2. Configuring a Local Password Policy

To configure a local password policy:

NOTE

Currently, you can only set up a local password policy using the command line.

1. Verify if a local password policy already exists for the subtree or user entry. For example:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp get
"ou=People,dc=example,dc=com"
Error: The policy wasn't set up for the target dn entry or it is invalid

If no local policy exists, create one:

To create a subtree password policy:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp addsubtree
"ou=People,dc=example,dc=com"

Administration Guide

458

To create a user password policy:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp adduser
"uid=user_name,ou=People,dc=example,dc=com"

IMPORTANT

When you create a new local policy, the previous commands automatically sets
the nsslapd-pwpolicy-local parameter in the cn=config entry to on.

If the local password policy should not be enabled, manually set the parameter to
off:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --
pwdlocal off

2. Set local policy attributes. For example, to enable password expiration and set the maximum
password age to 14 days (1209600 seconds):

On a subtree password policy:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp set --
pwdexpire=on --pwdmaxage=1209600 "ou=People,dc=example,dc=com"

On a user password policy:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp set --
pwdexpire=on --pwdmaxage=1209600
"uid=user_name,ou=People,dc=example,dc=com"

For a full list of available settings, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp set --help

20.5. CONFIGURING TEMPORARY PASSWORD RULES

Directory Server password policies support setting temporary passwords on user accounts. If you assign
a temporary password to a user, Directory Server rejects any other operation than a password change
until the user changes its password.

The following are the features of temporary passwords:

Only the cn=Directory Manager account can assign temporary passwords.

Directory Server allows authentication attempts only for a fixed number of times to avoid that
an attacker probes the password.

Directory Server allows authentication attempts after a specified delay to configure that the
temporary passwords are not usable directly after you set them.

Directory Server allows authentication attempts only for a specified time so that the temporary
password expires if a user does not use or reset it.

CHAPTER 20. MANAGING USER AUTHENTICATION

459

If the authentication was successful, Directory Server requires that the user resets the password
before the server performs any other operation.

By default, temporary password rules are disabled. You can configure them in global or local password
policies.

20.5.1. Enabling temporary password rules in the global password policy

To enable the temporary password feature for the whole Directory Server instance:

1. Enable that users must change their password if an administrator resets it.

2. Configure the feature in the global password policy.

If an administrator updates the userPassword attribute of a user and sets the passwordMustChange
attribute to on, Directory Server applies the temporary password rules.

Procedure

1. Configure that a user must change its password after an administrator resets it:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --
pwdmustchange on

2. Configure the temporary password rules settings in a global password policy:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --pwptprmaxuse
5 --pwptprdelayexpireat 3600 --pwptprdelayvalidfrom 60

In this example:

The --pwptprmaxuse option sets the maximum number of attempts a user can use the
temporary password to 5.

The --pwptprdelayexpireat option sets the time before the temporary password expires to
3600 seconds (1 hour)

The --pwptprdelayvalidfrom option configures that the time set in --pwptprdelayexpireat
starts 60 seconds after an administrator reset the password of a user.

Verification

Display the attributes that store the temporary password rules:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy get | grep -i TPR
passwordTPRMaxUse: 5
passwordTPRDelayExpireAt: 3600
passwordTPRDelayValidFrom: 60

20.5.2. Enabling temporary password rules in a local password policy

To enable the temporary password feature for a specific user or sub-tree, enable that users must
change their password if an administrator resets it, and configure the feature in a local password policy.

If an administrator updates the userPassword attribute of a user and sets the passwordMustChange

Administration Guide

460

If an administrator updates the userPassword attribute of a user and sets the passwordMustChange
attribute to on, Directory Server applies the temporary password rules if the user:

Has the local password policy enabled

Is stored in a sub-tree that has the local password policy enabled

Procedure

1. Configure that a user must change its password after an administrator resets it:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --
pwdmustchange on

2. Configure the temporary password rules settings:

For a sub-tree:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp addsubtree --
pwptprmaxuse 5 --pwptprdelayexpireat 3600 --pwptprdelayvalidfrom 60
ou=People,dc=example,dc=com

For a user:

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp adduser --
pwptprmaxuse 5 --pwptprdelayexpireat 3600 --pwptprdelayvalidfrom 60
uid=example,ou=People,dc=example,dc=com

Note that you can only set a local password policy on entries that exist.

In these examples:

The --pwptprmaxuse option sets the maximum number of attempts a user can use the
temporary password to 5.

The --pwptprdelayexpireat option sets the time before the temporary password expires to
3600 seconds (1 hour).

The -pwptprdelayvalidfrom option configures that the time set in --pwptprdelayexpireat
starts 60 seconds after an administrator reset the password of a user.

Verification

Display the local password policy of the distinguished name (DN):

dsconf -D "cn=Directory Manager" ldap://server.example.com localpwp get
distinguished_name | grep -i TPR
passwordTPRMaxUse: 5
passwordTPRDelayExpireAt: 3600
passwordTPRDelayValidFrom: 60

20.6. UNDERSTANDING PASSWORD EXPIRATION CONTROLS

When a user authenticates to Directory Server using a valid password, and if the password is expired, will

CHAPTER 20. MANAGING USER AUTHENTICATION

461

When a user authenticates to Directory Server using a valid password, and if the password is expired, will
expire soon, or needs to be reset, the server sends the following LDAP controls back to the client:

Expired control (2.16.840.1.113730.3.4.4): Indicates that the password is expired.
Directory Server sends this control in the following situations:

The password is expired, and grace logins have been exhausted. The server rejects the bind
with an Error 49 message.

The password is expired, but grace logins are still available. The bind will be allowed.

If passwordMustChange is enabled in the cn=config entry, and a user needs to reset the
password after an administrator changed it. The bind is allowed, but any subsequent
operation, other than changing the password, results in an Error 53 message.

Expiring control (2.16.840.1.113730.3.4.5): Indicates that the password will expire soon.
Directory Server sends this control in the following situations:

The password will expire within the password warning period set in the passwordWarning
attribute in the cn=config entry.

If the password policy configuration option is enabled in the passwordSendExpiringTime
attribute in the cn=config entry, the expiring control is always returned, regardless of
whether the password is within the warning period.

Bind response control (1.3.6.1.4.1.42.2.27.8.5.1): The control contains detailed information
about the state of the password that is about to expire or will expire soon.

NOTE

Directory Server only sends the bind response control if the client requested it.
For example, if you use ldapsearch, you must pass the -e ppolicy parameter to
the command to request the bind response control.

Example 20.1. Requesting the Bind Response Control in a Query

If you request the bind response control, for example by passing the -e ppolicy parameter to
the ldapsearch command, the server returns detailed information about account expiration.
For example:

ldapsearch -D "uid=user_name,dc=example,dc=com" -xLLL -W \
 -b "dc=example,dc=com" -e ppolicy
ldap_bind: Success (0); Password expired (Password expired, 1 grace logins remain)

20.7. MANAGING THE DIRECTORY MANAGER PASSWORD

The Directory Manager is the privileged database administrator, comparable to the root user in Linux.
The Directory Manager entry and the corresponding password are set during the instance installation.

The default distinguished name (DN) of the Directory Manager is cn=Directory Manager.

20.7.1. Resetting the Directory Manager Password

Administration Guide

462

If you lose the Directory Manager password, reset it:

1. Stop the Directory Server instance:

dsctl instance_name stop

2. Generate a new password hash. For example:

pwdhash -D /etc/dirsrv/slapd-instance_name password
{PBKDF2_SHA256}AAAgABU0bKhyjY53NcxY33ueoPjOUWtl4iyYN5uW...

Specifying the path to the Directory Server configuration automatically uses the password
storage scheme set in the nsslapd-rootpwstoragescheme attribute to encrypt the new
password.

3. Edit the /etc/dirsrv/slapd-instance_name/dse.ldif file and set the nsslapd-rootpw attribute
to the value displayed in the previous step:

nsslapd-rootpw: {PBKDF2_SHA256}AAAgABU0bKhyjY53NcxY33ueoPjOUWtl4iyYN5uW...

4. Start the Directory Server instance:

dsctl instance_name start

20.7.2. Changing the Directory Manager Password

This section describes how to can change the password of the Directory Manager account.

20.7.2.1. Changing the Directory Manager Password Using the Command Line

Use one of the following options to set the new password:

IMPORTANT

Only set the password using an encrypted connection. Using an unencrypted connection
can expose the password to the network. If your server does not support encrypted
connections, use the web console to update the Directory Manager password. See
Section 20.7.2.2, “Changing the Directory Manager Password Using the Web Console” .

To set the nsslapd-rootpw parameter to a plain text value which Directory Server automatically
encrypts:

dsconf -D "cn=Directory Manager" ldaps://server.example.com config replace nsslapd-
rootpw=password

CHAPTER 20. MANAGING USER AUTHENTICATION

463

WARNING

Do not use curly braces ({}) in the password. Directory Server stores the
password in the {password-storage-scheme}hashed_password format.
The server interprets characters in curly braces as the password storage
scheme. If the string is an invalid storage scheme or if the password is not
correctly hashed, the Directory Manager cannot connect to the server.

To manually encrypt the password and setting it in the nsslapd-rootpw parameter:

1. Generate a new password hash. For example:

pwdhash -D /etc/dirsrv/slapd-instance_name password
{PBKDF2_SHA256}AAAgAMwPYIhEkQozTagoX6RGG5E7d6/6oOJ8TVty...

Specifying the path to the Directory Server configuration automatically uses the password
storage scheme set in the nsslapd-rootpwstoragescheme attribute to encrypt the new
password.

2. Set the nsslapd-rootpw attribute to the value displayed in the previous step using a secure
connection (STARTTLS):

dsconf -D "cn=Directory Manager" ldaps://server.example.com config replace nsslapd-
rootpw="{PBKDF2_SHA256}AAAgAMwPYIhEkQozTagoX6RGG5E7d6/6oOJ8TVty..."

20.7.2.2. Changing the Directory Manager Password Using the Web Console

As the administrator, perform these steps to change the password:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select Server Settings.

4. Open the Directory Manager tab.

5. Enter the new password into the Directory Manager Password and Confirm Password fields

6. Optionally, set a different password storage scheme.

7. Click Save.

20.7.3. Changing the Directory Manager Password Storage Scheme

The password storage scheme specifies which algorithm Directory Server uses to hash a password. To
change the storage scheme using the command line, your server must support encrypted connections. If
your server does not support encrypted connections, use the web console to set the storage scheme.



Administration Guide

464

See Section 20.7.3.2, “Changing the Directory Manager Password Storage Scheme Using the Web
Console”.

Note that the storage scheme of the Directory Manager (nsslapd-rootpwstoragescheme) can be
different than the scheme used to encrypt user passwords (nsslapd-pwstoragescheme).

For a list of supported password storage schemes, see the corresponding section in the
Red Hat Directory Server Configuration, Command, and File Reference .

NOTE

If you change the Directory Manager's password storage scheme you must also reset its
password. Existing passwords cannot be re-encrypted.

20.7.3.1. Changing the Directory Manager Password Storage Scheme Using the Command
Line

If your server supports encrypted connections, perform these steps to change the password storage
scheme:

1. Generate a new password hash that uses the new storage scheme. For example:

pwdhash -s PBKDF2_SHA256 password
{PBKDF2_SHA256}AAAgAMwPYIhEkQozTagoX6RGG5E7d6/6oOJ8TVty...

2. Set the nsslapd-rootpwstoragescheme attribute to the storage scheme and the nsslapd-
rootpw attribute to the value displayed in the previous step using a secure connection
(STARTTLS):

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
rootpwstoragescheme=PBKDF2_SHA256 nsslapd-
rootpw="{PBKDF2_SHA256}AAAgAMwPYIhEkQozTagoX6RGG5E7d6/6oOJ8TVty..."

20.7.3.2. Changing the Directory Manager Password Storage Scheme Using the Web
Console

Perform these steps to change the password using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select Server Settings.

4. Open the Directory Manager tab.

5. Set the password storage scheme.

6. Directory Server cannot re-encrypt the current password using the new storage scheme.
Therefore, enter a new password into the Directory Manager Password and Confirm
Password field.

7. Click Save Configuration.

CHAPTER 20. MANAGING USER AUTHENTICATION

465

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#password-storage-schemes

20.7.4. Changing the Directory Manager DN

As the administrator, perform the following step to change the Directory Manager DN to cn=New
Directory Manager:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
rootdn="cn=New Directory Manager"

Note that Directory Server supports only changing the Directory Manager DNs using the command line.

20.8. CHECKING ACCOUNT AVAILABILITY FOR PASSWORDLESS
ACCESS

Most of the time, for the Directory Server to return authentication information about a user account, a
client actually binds (or attempts to bind) as that user. And a bind attempt requires some sort of user
credentials, usually a password or a certificate. While the Directory Server allows unauthenticated binds
and anonymous binds, neither of those binds returns any user account information.

There are some situations where a client requires information about a user account — specifically
whether an account should be allowed to authenticate — in order to perform some other operation, but
the client either does not have or does use any credentials for the user account in Directory Server.
Essentially, the client needs to perform a credential-less yet authenticated bind operation to retrieve
the user account information (including password expiration information, if the account has a password).

This can be done through an ldapsearch by passing the Account Usability Extension Control . This
control acts as if it performs an authenticated bind operation for a given user and returns the account
status for that user — but without actually binding to the server. This allows a client to determine
whether that account can be used to log in and then to pass that account information to another
application, like PAM.

For example, using the Account Usability Extension Control can allow a system to use the
Directory Server as its identity back end to store user data but to employ password-less authentication
methods, like smart cards or SSH keys, where the authentication operation is performed outside
Directory Server.

20.8.1. Searching for Entries Using the Account Usability Extension Control

The Account Usability Extension Control is an extension for an ldapsearch. It returns an extra line for
each returned entry that gives the account status and some information about the password policy for
that account. A client or application can then use that status to evaluate authentication attempts made
outside Directory Server for that user account. Basically, this control signals whether a user should be
allowed to authenticate without having to perform an authentication operation.

NOTE

The OpenLDAP tools used by Directory Server do not support the Account Usability
Extension Control. Other LDAP utilities, like OpenDS, can be used or other clients which
do support the control.

For example, using the OpenDS tools, the control can be specified using the -J with the control OID
(1.3.6.1.4.1.42.2.27.9.5.8) or with the accountusability:true flag:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b "dc=example,dc=com"

Administration Guide

466

-s sub -J "accountusability:true" "(objectclass=*)"
Account Usability Response Control
The account is usable
dn: dc=example,dc=com
objectClass: domain
objectClass: top
dc: example
...

This can also be run for a specific entry:

ldapsearch -D "cn=Directory Manager" -W -p 389 -h server.example.com -b
"uid=bjensen,ou=people,dc=example,dc=com" -s base -J "accountusability:true" "(objectclass=*)"
Account Usability Response Control
The account is usable
dn: uid=bjensen,ou=people,dc=example,dc=com
...

NOTE

By default, only the Directory Manager can use the Account Usability Extension Control.
To allow other users to use the Account Usability Extension Control, set on ACI on the
supported control entry under cn=features. See Section 20.8.2, “Changing What Users
Can Perform an Account Usability Search”.

The control returns different messages, depending on the actual status of the account and (if the user
has a password) the password policy settings for the user account.

Table 20.1. Possible Account Usability Control Result Messages

Account Status Control Result Message

Active account with a valid password The account is usable

Active account with no password set The account is usable

Expired password Password expired

The password policy for the account is modified Password expired

The account is locked and there is no lockout
duration

Password reset

The account is locked and there is a lockout duration Time (in seconds) for automatic unlock of the
account

The password for the account should be reset at the
first login

Password reset

The password has expired and grace logins are
allowed

Password expired and X grace login is allowed

CHAPTER 20. MANAGING USER AUTHENTICATION

467

The password has expired and the number of grace
logins is exhausted

Password expired

The password will expire (expiration warning) Password will expire in X number of seconds

Account Status Control Result Message

20.8.2. Changing What Users Can Perform an Account Usability Search

By default, only the Directory Manager can use the Account Usability Extension Control. Other users
can use the Account Usability Extension Control by setting the appropriate ACI on the supported
control entry. The control entry is named for the Account Usability Extension Control OID,
1.3.6.1.4.1.42.2.27.9.5.8.

For example, to enable members of the cn=Administrators,ou=groups,dc=example,dc=com group
to read the Account Usability Extension Control of all users:

ldapmodify -D "cn=Directory Manager" -W -x

dn: oid=1.3.6.1.4.1.42.2.27.9.5.8,cn=features,cn=config
changetype: modify
add: aci
aci: (targetattr = "*")(version 3.0; acl "Account Usable"; allow (read)(groupdn =
"ldap:///cn=Administrators,ou=groups,dc=example,dc=com");)

20.9. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT
POLICY

A password-based account lockout policy protects against hackers who try to break into the directory by
repeatedly trying to guess a user's password. The password policy can be set so that a specific user is
locked out of the directory after a given number of failed attempts to bind.

20.9.1. Configuring the Account Lockout Policy Using the Command Line

Use a dsconf pwpolicy set command to configure the account lockout policy settings. For example, to
enable the lockout policy and configure that accounts are locked after four failed login attempts:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --pwdlockout on --
pwdmaxfailures=4

The following parameters control the account password policy:

--pwdlockout: Set this parameter to on or off to enable or disable the account lockout feature.

--pwdunlock: Set this parameter to on to unlock an account after the lockout duration.

--pwdlockoutduration: Sets the number of seconds for which an account will be locked out.

--pwdmaxfailures: Sets the maximum number of allowed failed password attempts before the
account gets locked.

--pwdresetfailcount: Sets the number of seconds before Directory Server resets the failed

Administration Guide

468

--pwdresetfailcount: Sets the number of seconds before Directory Server resets the failed
login count of an account.

20.9.2. Configuring the Account Lockout Policy Using the Web Console

To configure the account lockout policy using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Database tab, and select Global Password Policy.

4. On the Account Lockout tab, enable Enable Account Lockout setting and set the
parameters. For example:

To display a tool tip and the corresponding attribute name in the cn=config entry for a
parameter, hover the mouse cursor over the setting. For further details, see the parameter's
description in the Red Hat Directory Server Configuration, Command, and File Reference .

5. Click Save.

20.9.3. Disabling Legacy Password Lockout Behavior

There are different ways of interpreting when the maximum password failure (passwordMaxFailure)
has been reached. It depends on how the server counts the last failed attempt in the overall failure
count.

The traditional behavior for LDAP clients is to assume that the failure occurs after the limit has been
reached. So, if the failure limit is set to three, then the lockout happens at the fourth failed attempt. This
also means that if the fourth attempt is successful, then the user can authenticate successfully, even

CHAPTER 20. MANAGING USER AUTHENTICATION

469

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig

though the user technically hit the failure limit. This is n+1 on the count.

LDAP clients increasingly expect the maximum failure limit to look at the last failed attempt in the count
as the final attempt. So, if the failure limit is set to three, then at the third failure, the account is locked. A
fourth attempt, even with the correct credentials, fails. This is n on the count.

The first scenario — where an account is locked only if the attempt count is exceeded — is the historical
behavior, so this is considered a legacy password policy behavior. In Directory Server, this policy is
enabled by default, so an account is only locked when the failure count is n+1. This legacy behavior can be
disabled so that newer LDAP clients receive the error (LDAP_CONSTRAINT_VIOLATION) when they
expect it. This is set in the passwordLegacyPolicy parameter.

To disable the legacy password lockout behavior:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace
passwordLegacyPolicy=off

20.10. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES

Aside from locking accounts for failed authentication attempts, another method of defining an account
lockout policy is to base it on account inactivity or an account age. The Account Policy Plug-in uses a
relative time setting to determine whether an account should be locked.

NOTE

Roles or classes of service can be used to inactivate accounts based on absolute account
times. For example, a CoS can be created that inactivates every account created before
a certain date.

The Account Policy Plug-in requires three configuration entries:

A configuration entry for the plug-in itself. This sets global values that are used for all account
policies configured on that server.

An account policy configuration entry. This entry is within the user directory and is essentially a
template which is referenced and applied to user account entries.

An entry which applies the account policy entry. A user account can reference an account policy
directly or a CoS or role can be used to apply account policies to sets of user accounts
automatically.

NOTE

An account policy is applied through the acctPolicySubentry attribute. While
this attribute can be added directly to user accounts, this attribute is single-
valued — which means that only one account policy can be applied to that
account.

That may be fine in most cases. However, an organization could realistically create
two account policies, one for account inactivity and then another for account
expiration based on age.

Using a CoS to apply account policies allows multiple account policies to be used
for an account.

Administration Guide

470

20.10.1. Account Policy Plug-in Syntax

The Account Policy Plug-in itself only has two configuration attributes:

nsslapd-pluginEnabled, which sets whether the plug-in is enabled or disabled. This attribute is
off by default.

nsslapd-pluginarg0, which points to he DN of the plug-in configuration directory. The
configuration entry is usually a child entry of the plug-in itself, such as cn=config,cn=Account
Policy Plugin,cn=plugins,cn=config.

Past that, account policies are defined in two parts:

The plug-in configuration entry identified in the nsslapd-pluginarg0 attribute. This sets global
configuration for the plug-in to use to identify account policy configuration entries and to
manage user account entries. These settings apply across the server.

The configuration entry attributes are described in the Account Policy Plug-in Attributes section
in the Red Hat Directory Server Configuration, Command, and File Reference .

The account policy configuration entry. This is much like a template entry, which sets specific
values for the account policies. User accounts — either directly or through CoS entries —
reference this account policy entry.

The account policy and user entry attributes are described in the following table:

Table 20.2. Account Policy Entry and User Entry Attributes

Attribute Definition Configuration or
User Entry

accountpolicy (object class) Defines a template entry for account
inactivation or expiration policies.

Configuration

accountInactivityLimit
(attribute)

Sets the time period, in seconds, from the
last login time of an account before that
account is locked for inactivity.

Configuration

acctPolicySubentry (attribute) Identifies any entry which belongs to an
account policy (specifically, an account
lockout policy). The value of this attribute
points to the DN of the account policy
which is applied to the entry.

User

createTimestamp (operational
attribute)

Contains the date and time that the entry
was initially created.

User

lastLoginTime (operational
attribute)

Contains a timestamp of the last time that
the given account authenticated to the
directory.

User

For further details, see the attribute's description in the Red Hat Directory Server Configuration,
Command, and File Reference

CHAPTER 20. MANAGING USER AUTHENTICATION

471

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html-single/configuration_command_and_file_reference/#account-policy-attributes
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/administration_guide

20.10.2. Account Inactivity and Account Expiration

The Account Policy plug-in enables you to set up:

account expiration: Accounts are disabled a certain amount of time after you created an
account.

account inactivity: Accounts are disabled a certain amount of time after the last successful
login. This enables you to automatically disable unused accounts.

Disabled accounts are no longer able to log in.

To set up the Account Policy plug-in:

1. Enable the Account Policy Plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy enable

2. Set the plug-in configuration entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy set --
config-entry="cn=config,cn=Account Policy Plugin,cn=plugins,cn=config"

3. Create the plug-in configuration entry:

To use CoS or roles with account policies, set the alwaysRecordLogin value to yes. This
means every entry has a login time recorded, even if it does not have the
acctPolicySubentry attribute.

Set the primary attribute to use for the account policy evaluation as value for
stateAttrName. For account inactivity, use the lastLoginTime attribute. For a simple
account expiration time, use createTimestamp attribute.

You can set a secondary attribute in altStateAttrName, that is checked if the primary one
defined in stateAttrName does not exist. If no attribute is specified as alternative the
default value createTimestamp is used.

WARNING

If the value for the primary attribute is set to lastLoginTime and
altStateAttrName to createTimestamp, users in existing environments
are automatically locked out when their accounts do not have the
lastLoginTime attribute and the createTimestamp is older than the
configured inactivity period.

To avert this situation, set the alternative attribute to 1.1. This explicitly
states to use no attribute as alternative. The lastLoginTime attribute
will be created automatically after the user logs in the next time.

Set the attribute to use to show which entries have an account policy applied to them



Administration Guide

472

Set the attribute to use to show which entries have an account policy applied to them
(acctPolicySubentry).

Set the attribute in the account policy which is used to set the actual timeout period, in
seconds (accountInactivityLimit).

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy config-
entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-record-login
yes --state-attr lastLoginTime --alt-state-attr 1.1 --spec-attr acctPolicySubentry --limit-attr
accountInactivityLimit

4. Restart the server to load the new plug-in configuration:

dsctl instance_name restart

5. Define an account policy:

ldapadd -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=Account Inactivation Policy,dc=example,dc=com

objectClass: top
objectClass: ldapsubentry
objectClass: extensibleObject
objectClass: accountpolicy
accountInactivityLimit: 2592000
cn: Account Inactivation Policy

6. Create the class of service template entry:

ldapadd -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=TempltCoS,dc=example,dc=com

objectClass: top
objectClass: ldapsubentry
objectClass: extensibleObject
objectClass: cosTemplate
acctPolicySubentry: cn=Account Inactivation Policy,dc=example,dc=com

Account policies can be defined directly on user entries, instead of using a CoS. However, using
a CoS allows an account policy to be applied and updated reliably for multiple entries and it
allows multiple policies to be applied to an entry.

7. Create the class of service definition entry. The managed entry for the CoS is the account policy
attribute, acctPolicySubentry. This example applies the CoS to the entire directory tree:

ldapadd -a -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=DefnCoS,dc=example,dc=com

objectClass: top
objectClass: ldapsubentry
objectclass: cosSuperDefinition

CHAPTER 20. MANAGING USER AUTHENTICATION

473

objectclass: cosPointerDefinition
cosTemplateDn: cn=TempltCoS,dc=example,dc=com
cosAttribute: acctPolicySubentry default operational-default

20.10.3. Disabling Accounts a Certain Amount of Time After Password Expiry

Directory Server enables you to configure an account policy that disables an account a certain amount
of time after the password expired. Disables accounts are no longer able to log in.

To set up this configuration, follow the procedure in Section 20.10.2, “Account Inactivity and Account
Expiration”. However, when configuring the plug-in configuration entry, use the following settings
instead:

dn: cn=config,cn=Account Policy Plugin,cn=plugins,cn=config

objectClass: top
objectClass: extensibleObject
cn: config
alwaysrecordlogin: yes
stateAttrName: non_existent_attribute
altStateAttrName: passwordExpirationTime
specattrname: acctPolicySubentry
limitattrname: accountInactivityLimit

This configuration uses a dummy value in the stateAttrName parameter. Therefore, only the
passwordExpirationTime attribute set in the altStateAttrName parameter is used to calculate when an
account is expired.

To additionally record the time of the last successful login in the lastLoginTime attribute of the user
entry, set:

dn: cn=config,cn=Account Policy Plugin,cn=plugins,cn=config

alwaysRecordLoginAttr: lastLoginTime

Using this configuration, an account is automatically disabled if the sum of the time set in the user's
passwordExpirationTime attribute and in the accountInactivityLimit parameter's value is in the past.
Using this configuration, an account is automatically disabled if the sum of the value in the user's
passwordExpirationTime attribute and in the accountInactivityLimit parameter exceeds the time
since the alwaysRecordLoginAttr attribute was last updated.

20.10.4. Tracking Login Times without Setting Lockout Policies

It is also possible to use the Account Policy Plug-in to track user login times without setting an
expiration time or inactivity period. In this case, the Account Policy Plug-in is used to add the
lastLoginTime attribute to user entries, but no other policy rules need to be set.

In that case, set up the Account Policy Plug-in as normal, to track login times. However, do not create a
CoS to act on the login information that is being tracked.

1. Enable the Account Policy Plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy enable

Administration Guide

474

2. Create the plug-in configuration entry to record login times:

Set the alwaysRecordLogin value to yes so that every entry has a login time recorded.

Set the lastLoginTime attribute as the attribute to use for the account policy
(stateattrname).

Set the attribute to use to show which entries have an account policy applied to them
(acctPolicySubentry).

Set the attribute in the account policy which is used to set the actual timeout period, in
seconds (accountInactivityLimit).

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin account-policy config-
entry set "cn=config,cn=Account Policy Plugin,cn=plugins,cn=config" --always-record-login
yes --state-attr lastLoginTime --alt-state-attr createTimestamp --spec-attr acctPolicySubentry
--limit-attr accountInactivityLimit

3. Restart the server to load the new plug-in configuration:

dsctl instance_name restart

20.10.5. Unlocking Inactive Accounts

If an account is locked because it reached the inactivity limit, you can reactivate it using one of the
following methods:

Using the dsidm utility:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
account unlock "uid=example"

Manually by resetting the lastLoginTime attribute to a current time stamp:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: uid=example,ou=people,dc=example,dc=com
changetype: modify
replace: lastLoginTime
lastLoginTime: 20210901000000Z

The lastLoginTime attribute stores its value in GMT/UTC time (Zulu time zone), indicated by
the appended Z to the time stamp.

20.11. REPLICATING ACCOUNT LOCKOUT ATTRIBUTES

Account lockout policies will block a user ID from being able to access the Directory Server if the login
attempt fails a set number of times. This prevents hackers or other malicious people from illegitimately
accessing the Directory Server by guessing a password. Password policies are set locally, and generally
account lockout attributes are local to each replica. This means that a person can attempt to log in to
one replica until the account lockout count is reached, then try again immediately on another replica.

CHAPTER 20. MANAGING USER AUTHENTICATION

475

The way to prevent that is to replicate the attributes related to the account lockout counts for an entry,
so that the malicious user is locked out of every supplier and consumer replica in the configuration if a
login attempt fails on a single supplier.

By default, three password policy attributes are not replicated, even if other password attributes are.
These attributes are related to of login failures and lockout periods:

passwordRetryCount

retryCountResetTime

accountUnlockTime

20.11.1. Managing the Account Lockouts and Replication

Password and account lockout policies are enforced in a replicated environment slightly differently:

Password policies are enforced on the data supplier.

Account lockout is enforced on all servers participating in replication.

Some of the password policy information in the directory is replicated automatically:

passwordMinAge and passwordMaxAge

passwordExp

passwordWarning

However, the configuration information is kept locally and is not replicated. This information includes the
password syntax and the history of password modifications. Account lockout counters and tiers are not
replicated, either, unless specifically configured for replication.

When configuring a password policy in a replicated environment, make sure that these elements are in
place, so password policies and account lockout settings are enforced consistently:

Warnings from the server of an impending password expiration are issued by all replicas. This
information is kept locally on each server, so if a user binds to several replicas in turn, they will be
issued the same warning several times. In addition, if the user changes the password, it may take
time for this information to filter to the replicas. If a user changes a password and then
immediately rebinds, he may find that the bind fails until the replica registers the changes.

The same bind behavior should occur on all servers, including suppliers and replicas. Make sure
to create the same password policy configuration information on each server.

Account lockout counters may not work as expected in a multi-suppliered environment. Account
lockout counters are not replicated by default (although this can be configured). If account
lockout attributes are not replicated at all, then a user could be locked out from one server but
could successfully bind to another server (or, conversely, a user may be unlocked on one server
and still blocked on another). If account lockout attributes are replicated, then there could be
lags between an account lockout change on one server and when that change is propagated to
the other servers. It depends on the replication schedule.

Entries that are created for replication (for example, the server identities) need to have
passwords that never expire. To make sure that these special users have passwords that do not
expire, add the passwordExpirationTime attribute to the entry, and give it a value of
20380119031407Z (the top of the valid range).

NOTE

Administration Guide

476

NOTE

If the password policy is enabled and the alwaysRecordLogin parameter set to yes, the
value of the lastLoginTime attribute can be different on suppliers and read-only replicas.
For example, if a user logs in to a read-only replica, the lastLoginTime attribute is
updated locally but the value is not replicated to the supplier servers.

20.11.2. Configuring Directory Server to Replicate Password Policy Attributes

A special core configuration attribute controls whether password policy operational attributes are
replicated. This is the passwordIsGlobalPolicy attribute, which is enabled in the consumer
Directory Server configuration to allow the consumer to accept password policy operational attributes.

By default, this attribute is set to off.

To enable these attributes to be replicated, change the passwordIsGlobalPolicy configuration
parameter on the consumer:

dsconf -D "cn=Directory Manager" ldap://server.example.com pwpolicy set --pwdisglobal="on"

Changing that value to on allows the passwordRetryCount, retryCountResetTime, and
accountUnlockTime to be replicated.

20.11.3. Configuring Fractional Replication for Password Policy Attributes

Setting the passwordIsGlobalPolicy attribute affects the consumer in replication, in that it allows the
consumer to receive updates to those attributes. To control whether the password policy attributes are
actually replicated by the supplier, use fractional replication, which controls what specific entry
attributes are replicated.

If the password policy attributes should be replicated, then make sure these attributes are included in
the fractional replication agreement (as they are by default).

If the passwordIsGlobalPolicy attribute is set to off on the consumer, so no password policy attributes
should be replicated, use fractional replication (described in Section 15.1.7, “Replicating a Subset of
Attributes with Fractional Replication”) to enforce that on the supplier and specifically exclude those
attributes from the replication agreement.

For details about configuring replication, see:

Section 15.2, “Single-supplier Replication”

Section 15.3, “Multi-Supplier Replication”

Section 15.4, “Cascading Replication”

When you create the replication agreement in the procedures linked above, configure fractional
replication:

1. When configuring the replication agreement on the supplier, click Show Advanced Settings.

2. Enter the passwordRetryCount, retryCountResetTime, and accountUnlockTime attributes
names in to the Exclude Attributes field.

CHAPTER 20. MANAGING USER AUTHENTICATION

477

3. Finish configuring the replication agreement.

20.12. ENABLING DIFFERENT TYPES OF BINDS

Whenever an entity logs into or accesses the Directory Server, it binds to the directory. There are many
different types of bind operation, sometimes depending on the method of binding (such as simple binds
or autobind) and some depending on the identity of user binding to the directory (anonymous and
unauthenticated binds).

The following sections contain configuration parameters that can increase the security of binds (as in
Section 20.12.1, “Requiring Secure Binds”) or streamline bind operations (such as Section 20.12.4,
“Configuring Autobind”).

20.12.1. Requiring Secure Binds

A simple bind is when an entity uses a simple bind DN-password combination to authenticate to the
Directory Server. Although it is possible to use a password file rather than sending a password directly
through the command line, both methods still require sending or accessing a plaintext password over the
wire. That makes the password vulnerable to anyone sniffing the connection.

It is possible to require simple binds to occur over a secure connection (TLS or STARTTLS), which
effectively encrypts the plaintext password as it is sent with the bind operation. (It is also possible to use
alternatives to simple binds, such as SASL authentication and certificate-based authentication.)

IMPORTANT

Along with regular users logging into the server and LDAP operations, server-to-server
connections are affected by requiring secure connections for simple binds. Replication,
synchronization, and database chaining can all use simple binds between servers, for
instance.

Make sure that replication agreements, sync agreements, and chaining configuration
specify secure connections if the nsslapd-require-secure-binds attribute is turned on.
Otherwise, these operations will fail.

NOTE

Requiring a secure connection for bind operations only applies to authenticated binds .
Bind operations without a password (anonymous and unauthenticated binds) can
proceed over standard connections.

Administration Guide

478

1. Set the nsslapd-require-secure-binds configuration parameter to on:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
require-secure-binds=on

2. Restart the instance:

dsctl instance_name restart

20.12.2. Disabling Anonymous Binds

If a user attempts to connect to the Directory Server without supplying any user name or password, this
is an anonymous bind. Anonymous binds simplify common search and read operations, like checking the
directory for a phone number or email address, by not requiring users to authenticate to the directory
first.

NOTE

By default, anonymous binds are allowed (on) for search and read operations. This allows
access to regular directory entries, which includes user and group entries as well as
configuration entries like the root DSE. A different option, rootdse, allows anonymous
search and read access to search the root DSE itself, but restricts access to all other
directory entries.

However, there are risks with anonymous binds. Adequate ACIs must be in place to restrict access to
sensitive information and to disallow actions like modifies and deletes. Additionally, anonymous binds
can be used for denial of service attacks or for malicious people to gain access to the server.

Section 18.11.1.1.3, “Granting Anonymous Access” has an example on setting ACIs to control what
anonymous users can access, and Section 14.5.4, “Setting Resource Limits on Anonymous Binds” has
information on placing resource limits for anonymous users.

If those options do not offer a sufficient level of security, then anonymous binds can be disabled
entirely:

1. Set the nsslapd-allow-anonymous-access configuration parameter to off:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-allow-
anonymous-access=off

2. Restart the instance:

dsctl instance_name restart

NOTE

With anonymous binds disabled, the users cannot log in using their RDN. They are
required to provide the full DN to log in.

In addition, when you disable anonymous binds, unauthenticated binds are also disabled
automatically.

CHAPTER 20. MANAGING USER AUTHENTICATION

479

20.12.3. Allowing Unauthenticated Binds

Unauthenticated binds are connections to Directory Server where a user supplies an empty password.
Using the default settings, Directory Server denies access in this scenario for security reasons:

ldapsearch -w "" -p 389 -h server.example.com -b "dc=example,dc=com" \
 -s sub -x "(objectclass=*)"

ldap_bind: Server is unwilling to perform (53)
 additional info: Unauthenticated binds are not allowed

WARNING

Red Hat recommends not enabling unauthenticated binds. This authentication
method enables users to bind without supplying a password as any account,
including the Directory Manager. After the bind, the user can access all data with
the permissions of the account used to bind.

To enable insecure unauthenticated binds, set the nsslapd-allow-unauthenticated-binds
configuration option to on:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-allow-
unauthenticated-binds=on

20.12.4. Configuring Autobind

Autobind is a way to connect to the Directory Server based on local UNIX credentials, which are mapped
to an identity stored in the directory itself. Autobind is configured in two parts:

Before configuring autobind, first make sure that LDAPI is enabled. Then, configure the autobind
mappings (in Section 20.12.4.2, “Configuring the Autobind Feature”).

20.12.4.1. Overview of Autobind and LDAPI

Inter-process communication (IPC) is a way for separate processes on a Unix machine or a network to
communicate directly with each other. LDAPI is a way to run LDAP connections over these IPC
connections, meaning that LDAP operations can run over Unix sockets. These connections are much
faster and more secure than regular LDAP connections.

The Directory Server uses these LDAPI connections to allow users to bind immediately to the
Directory Server or to access the Directory Server using tools which support connections over Unix
sockets. Autobind uses the uid:gid of the Unix user and maps that user to an entry in the
Directory Server, then allows access for that user.

Autobind allows mappings to three directory entries:

User entries, if the Unix user matches one user entry

Directory Manager if the Unix user is root or the super user defined in nsslapd-



Administration Guide

480

Directory Manager if the Unix user is root or the super user defined in nsslapd-
ldapimaprootdn

Figure 20.1. Autobind Connection Path

The special autobind users are entries beneath a special autobind suffix (outside the regular user
subtree). The entries underneath are identified by their user and group ID numbers:

gidNumber=gid+uidNumberuid, autobindsuffix

If autobind is not enabled but LDAPI is, then Unix users are anonymously bound to the Directory Server,
unless they provide other bind credentials.

NOTE

CHAPTER 20. MANAGING USER AUTHENTICATION

481

NOTE

Autobind allows a client to send a request to the Directory Server without supplying a bind
user name and password or using other SASL authentication mechanism. According to
the LDAP standard, if bind information is not given with the request, the server processes
the request as an anonymous bind. To be compliant with the standard, which requires
some kind of bind information, any client that uses autobind should send the request with
SASL/EXTERNAL.

For more information on configuring SASL, see Section 9.10, “Setting up SASL Identity
Mapping”.

20.12.4.2. Configuring the Autobind Feature

Enabling the Autobind feature allows only anonymous access to Directory Server. However, you can
configure to map Linux users to Directory Server entries and also to map the root user to the Directory
Manager:

1. Verify that the nsslapd-ldapiautobind parameter is enabled, which is the default:

dsconf -D "cn=Directory Manager" ldap://server.example.com config get nsslapd-
ldapiautobind
nsslapd-ldapiautobind: on

2. If nsslapd-ldapiautobind parameter is set to off, enable it:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
ldapiautobind=on

3. To map user entries, set, for example:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
ldapimaptoentries=on nsslapd-ldapiuidnumbertype=uidNumber nsslapd-
ldapigidnumbertype=gidNumber nsslapd-
ldapientrysearchbase=ou=People,dc=example,dc=com

nsslapd-ldapimaptoentries=on enables entry mapping.

nsslapd-ldapiuidnumbertype=uidNumber sets the attribute in Directory Server that
contains the Unix UID number.

nsslapd-ldapigidnumbertype=gidNumber sets the attribute in Directory Server that
contains the Unix GID number.

nsslapd-ldapientrysearchbase=ou=People,dc=example,dc=com sets the DN where to
search user entries.

4. Optionally, to map the root user in Red Hat Enterprise Linux to the cn=Directory Manager
account in Directory Server:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
ldapimaprootdn="cn=Directory Manager"

5. Restart the instance:

Administration Guide

482

dsctl instance_name restart

20.13. USING PASS-THROUGH AUTHENTICATION

Pass-through authentication (PTA) is a mechanism which allows one Red Hat Directory Server instance
to consult another to authenticate bind requests. Pass-through authentication is implement through the
PTA Plug-in; when enabled, the plug-in lets a Directory Server instance accept simple bind operations
(password-based) for entries not stored in its local database.

Directory Server uses PTA to administer the user and configuration directories on separate instances of
Directory Server.

The first instance acts as the PTA Directory Server which is the server that passes through bind requests
to another Directory Server. The second instance acts as the authenticating directory, which is the
server that contains the entry and verifies the bind credentials of the requesting client.

The pass-through subtree is the subtree not present on the PTA directory. When a user's bind DN
contains this subtree, the user's credentials are passed on to the authenticating directory.

Figure 20.2. Simple Pass-Through Authentication Process

Here's how pass-through authentication works:

1. The configuration Directory Server (authenticating directory) is installed on machine A. The
configuration directory always contains the suffix with the authenticating user entry, for
example, o=RedHat. In this example, the server name is authdir.example.com.

2. The user Directory Server (PTA directory) is then installed on machine B. The user directory
stores the root suffix, such as dc=example,dc=com. In this example, the server name is
userdir.example.com.

3. Set up the plug-in on userdir.example.com by using the following commands:

dsconf -D "cn=Directory Manager" ldap://userdir.example.com plugin pass-through-auth
enable
dsconf -D "cn=Directory Manager" ldap://userdir.example.com plugin pass-through-auth url
add "ldap://authdir.example.com/o=RedHat"

4. Restart Directory Server on userdir.example.com.

5. The user directory is now configured to send all bind requests for entries with a DN containing
o=RedHat to the configuration directory authdir.example.com.

CHAPTER 20. MANAGING USER AUTHENTICATION

483

6. The user directory allows any user from o=RedHat to bind.

20.13.1. PTA Plug-in Syntax

PTA Plug-in configuration information is specified in the cn=Pass Through Authentication,
cn=plugins,cn=config entry on the PTA directory (the user directory configured to pass through bind
requests to the authenticating directory) using the required PTA syntax.

Use the following commands to manage pass-through authentication URLs:

To add a pass-through authentication URL:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin pass-through-auth url
add URL

To modify a pass-through authentication URL:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin pass-through-auth url
modify old_URL new_URL

To remove pass-through authentication URL:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin pass-through-auth url
delete URL

The variable components of the PTA plug-in syntax are described in Table 20.3, “PTA Plug-in
Parameters”.

NOTE

The LDAP URL (ldap|ldaps://authDS/subtree) must be separated from the optional
parameters (maxconns, maxops, timeout, ldver, connlifetime, startTLS) by a single space.
If any of the optional parameters are defined, all of them must be defined, even if only
the default values are used.

Several authenticating directories or subtrees can be specified by incrementing the
nsslapd-pluginarg attribute suffix by one each time, as in Section 20.13.3.2, “Specifying
Multiple Authenticating Directory Servers”. For example:

nsslapd-pluginarg0: LDAP URL for the first server
nsslapd-pluginarg1: LDAP URL for the second server
nsslapd-pluginarg2: LDAP URL for the third server
...

The optional parameters are described in the following table in the order in which they appear in the
syntax.

Table 20.3. PTA Plug-in Parameters

Variable Definition

state Defines whether the plug-in is enabled or disabled. Acceptable values are on or off.

Administration Guide

484

ldap|ldaps Defines whether TLS is used for communication between the two Directory Servers.
See Section 20.13.2.1, “Configuring the Servers to Use a Secure Connection” for more
information.

authDS The authenticating directory host name. The port number of the Directory Server can
be given by adding a colon and then the port number. For example,
ldap://dirserver.example.com:389/. If the port number is not specified, the PTA
server attempts to connect using either of the standard ports:

Port 389 if ldap:// is specified in the URL.

Port 636 if ldaps:// is specified in the URL.

See Section 20.13.2.2, “Specifying the Authenticating Directory Server” for more
information.

subtree The pass-through subtree. The PTA Directory Server passes through bind requests to
the authenticating Directory Server from all clients whose DN is in this subtree. See
Section 20.13.2.3, “Specifying the Pass-Through Subtree” for more information. This
subtree must not exist on this server.

maxconns Optional. The maximum number of connections the PTA directory can simultaneously
open to the authenticating directory. The default is 3. See Section 20.13.2.4,
“Configuring the Optional Parameters” for more information.

maxops Optional. The maximum number of simultaneous operations (usually bind requests) the
PTA directory can send to the authenticating directory within a single connection. The
default is 5. See Section 20.13.2.4, “Configuring the Optional Parameters” for more
information.

timeout Optional. The time limit, in seconds, that the PTA directory waits for a response from
the authenticating Directory Server. If this timeout is exceeded, the server returns an
error to the client. The default is 300 seconds (five minutes). Specify zero (0) to
indicate no time limit should be enforced. See Section 20.13.2.4, “Configuring the
Optional Parameters” for more information.

ldver Optional. The version of the LDAP protocol used to connect to the authenticating
directory. Directory Server supports LDAP version 2 and 3. The default is version 3, and
Red Hat strongly recommends against using LDAPv2, which is old and will be
deprecated. See Section 20.13.2.4, “Configuring the Optional Parameters” for more
information.

Variable Definition

CHAPTER 20. MANAGING USER AUTHENTICATION

485

connlifetime Optional. The time limit, in seconds, within which a connection may be used. If a bind
request is initiated by a client after this time has expired, the server closes the
connection and opens a new connection to the authenticating directory. The server will
not close the connection unless a bind request is initiated and the directory determines
the connection lifetime has been exceeded. If this option is not specified, or if only one
host is listed, no connection lifetime will be enforced. If two or more hosts are listed,
the default is 300 seconds (five minutes). See Section 20.13.2.4, “Configuring the
Optional Parameters” for more information.

startTLS Optional. A flag of whether to use STARTTLS for the connection to the authenticating
directory. STARTTLS establishes a secure connection over the standard port, so it is
useful for connecting using LDAP instead of LDAPS. The TLS server and CA
certificates need to be available on both of the servers.

The default is 0, which is off. To enable STARTTLS, set it to 1. To use STARTTLS, the
LDAP URL must use ldap:, not ldaps:.

See Section 20.13.2.4, “Configuring the Optional Parameters” for more information.

Variable Definition

20.13.2. Configuring the PTA Plug-in

To modify the PTA configuration:

1. Use the dsconf plugin pass-through-auth command to modify the cn=Pass Through
Authentication,cn=plugins,cn=config entry.

2. Restart Directory Server.

Before configuring any of the PTA Plug-in parameters, the PTA Plug-in entry must be present in the
Directory Server. If this entry does not exist, create it with the appropriate syntax, as described in
Section 20.13.1, “PTA Plug-in Syntax” .

NOTE

If the user and configuration directories are installed on different instances of the
directory, the PTA Plug-in entry is automatically added to the user directory's
configuration and enabled.

This section provides information about configuring the plug-in in the following sections:

Section 20.13.2.1, “Configuring the Servers to Use a Secure Connection”

Section 20.13.2.2, “Specifying the Authenticating Directory Server”

Section 20.13.2.3, “Specifying the Pass-Through Subtree”

Section 20.13.2.4, “Configuring the Optional Parameters”

20.13.2.1. Configuring the Servers to Use a Secure Connection

The PTA directory can be configured to communicate with the authenticating directory over TLS by

Administration Guide

486

The PTA directory can be configured to communicate with the authenticating directory over TLS by
specifying LDAPS in the LDAP URL of the PTA directory. For example:

nsslapd-pluginarg0: ldaps://ldap.example.com:636/o=example

20.13.2.2. Specifying the Authenticating Directory Server

The authenticating directory contains the bind credentials for the entry with which the client is
attempting to bind. The PTA directory passes the bind request to the host defines as the authenticating
directory. To specify the authenticating Directory Server, replace authDS in the LDAP URL of the PTA
directory with the authenticating directory's host name, as described in Table 20.3, “PTA Plug-in
Parameters”.

1. Use the dsconf plugin pass-through-auth command to edit the PTA Plug-in entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin pass-through-auth add
ldap://server.example.com/o=example

Optionally, include the port number. If the port number is not given, the PTA Directory Server
attempts to connect using either the standard port (389) for ldap:// or the secure port (636) for
ldaps://.

If the connection between the PTA Directory Server and the authenticating Directory Server is
broken or the connection cannot be opened, the PTA Directory Server sends the request to the
next server specified, if any. There can be multiple authenticating Directory Servers specified,
as required, to provide failover if the first Directory Server is unavailable. All of the
authentication Directory Server are set in the nsslapd-pluginarg0 attribute.

Multiple authenticating Directory Servers are listed in a space-separate list of host:port pairs,
with this format:

ldap|ldaps://host1:port1 host2:port2/subtree

2. Restart the server.

dsctl instance_name restart

20.13.2.3. Specifying the Pass-Through Subtree

The PTA directory passes through bind requests to the authenticating directory from all clients with a
DN defined in the pass-through subtree. The subtree is specified by replacing the subtree parameter in
the LDAP URL of the PTA directory.

The pass-through subtree must not exist in the PTA directory. If it does, the PTA directory attempts to
resolve bind requests using its own directory contents and the binds fail.

1. Use the dsconf plugin pass-through-auth command to import the LDIF file into the directory:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin pass-through-auth add
ldap://server.example.com/o=example

For information on the variable components in this syntax, see Table 20.3, “PTA Plug-in
Parameters”.

CHAPTER 20. MANAGING USER AUTHENTICATION

487

2. Restart the server:

dsctl instance_name restart

20.13.2.4. Configuring the Optional Parameters

Additional parameters the control the PTA connection can be set with the LDAP URL.

ldap|ldaps://authDS/subtree maxconns, maxops, timeout, ldver, connlifetime, startTLS

The maximum number of connections the PTA Directory Server can open simultaneously to the
authenticating directory, represented by maxconns in the PTA syntax. The default value is 3.

The maximum number of bind requests the PTA Directory Server can send simultaneously to
the authenticating Directory Server within a single connection. In the PTA syntax, this parameter
is maxops. The default is value is 5.

The time limit for the PTA Directory Server to wait for a response from the authenticating
Directory Server. In the PTA syntax, this parameter is timeout. The default value is 300 seconds
(five minutes).

The version of the LDAP protocol for the PTA Directory Server to use to connect to the
authenticating Directory Server. In the PTA syntax, this parameter is ldver. The default is
LDAPv3.

The time limit in seconds within which a connection may be used. If a bind request is initiated by
a client after this time has expired, the server closes the connection and opens a new
connection to the authenticating Directory Server. The server will not close the connection
unless a bind request is initiated and the server determines the timeout has been exceeded. If
this option is not specified or if only one authenticating Directory Server is listed in the authDS
parameter, no time limit will be enforced. If two or more hosts are listed, the default is 300
seconds (five minutes). In the PTA syntax, this parameter is connlifetime.

Whether to use STARTTLS for the connection. STARTTLS creates a secure connection over a
standard LDAP port. For STARTTLS, the servers must have their server and CA certificates
installed, but they do not need to be running in TLS.

The default is 0, which means STARTTLS is off. To enable STARTTLS, set it to 1. To use
STARTTLS, the LDAP URL must use ldap:, not ldaps:.

1. Use the dsconf plugin pass-through-auth command to edit the plug-in entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin pass-through-auth add
ldap://server.example.com/o=example 3,5,300,3,300,0

(In this example, each of the optional parameters is set to its default value.) Make sure there is a
space between the subtree parameter, and the optional parameters.

NOTE

Although these parameters are optional, if any one of them is defined, they all
must be defined, even if they use the default values.

2. Restart the server:

Administration Guide

488

dsctl instance_name restart

20.13.3. PTA Plug-in Syntax Examples

This section contains the following examples of PTA Plug-in syntax in the dse.ldif file:

Section 20.13.3.1, “Specifying One Authenticating Directory Server and One Subtree”

Section 20.13.3.2, “Specifying Multiple Authenticating Directory Servers”

Section 20.13.3.3, “Specifying One Authenticating Directory Server and Multiple Subtrees”

Section 20.13.3.4, “Using Non-Default Parameter Values”

Section 20.13.3.5, “Specifying Different Optional Parameters and Subtrees for Different
Authenticating Directory Servers”

20.13.3.1. Specifying One Authenticating Directory Server and One Subtree

This example configures the PTA Plug-in to accept all defaults for the optional variables. This
configuration causes the PTA Directory Server to connect to the authenticating Directory Server for all
bind requests to the o=example subtree. The host name of the authenticating Directory Server is
configdir.example.com.

dn: cn=Pass Through Authentication,cn=plugins,cn=config
...
nsslapd-pluginEnabled: on
nsslapd-pluginarg0: ldap://configdir.example.com/o=example
...

20.13.3.2. Specifying Multiple Authenticating Directory Servers

If the connection between the PTA Directory Server and the authenticating Directory Server is broken
or the connection cannot be opened, the PTA Directory Server sends the request to the next server
specified, if any. There can be multiple authenticating Directory Servers specified, as required, to
provide failover if the first Directory Server is unavailable. All of the authentication Directory Server are
set in the nsslapd-pluginarg0 attribute. Multiple authenticating Directory Servers are listed in a space-
separate list of host:port pairs. For example:

dn: cn=Pass Through Authentication,cn=plugins,cn=config
...
nsslapd-pluginEnabled: on
nsslapd-pluginarg0: ldap://configdir.example.com:389 config2dir.example.com:1389/o=example
...

NOTE

The nsslapd-pluginarg0 attribute sets the authentication Directory Server; additional
nsslapd-pluginargN attributes can set additional suffixes for the PTA Plug-in to use, but
not additional hosts.

20.13.3.3. Specifying One Authenticating Directory Server and Multiple Subtrees

CHAPTER 20. MANAGING USER AUTHENTICATION

489

The following example configures the PTA Directory Server to pass through bind requests for more
than one subtree (using parameter defaults):

dn: cn=Pass Through Authentication,cn=plugins,cn=config
...
nsslapd-pluginEnabled: on
nsslapd-pluginarg0: ldap://configdir.example.com/o=example
nsslapd-pluginarg1: ldap://configdir.example.com/dc=example,dc=com
...

20.13.3.4. Using Non-Default Parameter Values

This example uses a non-default value (10) only for the maximum number of connections parameter
maxconns. Each of the other parameters is set to its default value. However, because one parameter is
specified, all parameters must be defined explicitly in the syntax.

dn: cn=Pass Through Authentication,cn=plugins,cn=config
...
nsslapd-pluginEnabled: on
nsslapd-pluginarg0: ldap://configdir.example.com/o=example 10,5,300,3,300,1
...

20.13.3.5. Specifying Different Optional Parameters and Subtrees for Different
Authenticating Directory Servers

To specify a different pass-through subtree and optional parameter values for each authenticating
Directory Server, set more than one LDAP URL/optional parameters pair. Separate the LDAP
URL/optional parameter pairs with a single space as follows.

dn: cn=Pass Through Authentication,cn=plugins,cn=config
...
nsslapd-pluginEnabled: on
nsslapd-pluginarg0:ldap://configdir.example.com/o=example 10,15,30,3,600,0
nsslapd-pluginarg1:ldap://config2dir.example.com/dc=example,dc=com 7,7,300,3,300,1
...

20.14. USING ACTIVE DIRECTORY-FORMATTED USER NAMES FOR
AUTHENTICATION

When you connect to Directory Server, you must specify the distinguished name (DN) of the user, such
as uid=user_name,ou=People,dc=example,dc=com, to authenticate. However, the DN can be difficult
to remember. If you enable and configure the AD DN plug-in, you can use Active Directory-formatted
user names, such as user_name or user_name@domain instead of the DN.

After you enable the plug-in and a user connects to the directory using a user name that is not DN-
formatted, Directory Server searches the DN based on the plug-in's configuration. If the search returns
one DN, Directory Server uses this DN for the authentication. If none or multiple DNs are returned,
authentication fails.

NOTE

You can only enable and configure the AD DN plug-in using the command line.

Administration Guide

490

To enable and configure the plug-in it to use example.com as the default domain:

1. Add the cn=addn,cn=plugins,cn=config plug-in entry and set the default domain:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=addn,cn=plugins,cn=config
changetype: add
objectClass: top
objectClass: nsSlapdPlugin
objectClass: extensibleObject
cn: addn
nsslapd-pluginPath: libaddn-plugin
nsslapd-pluginInitfunc: addn_init
nsslapd-pluginType: preoperation
nsslapd-pluginEnabled: on
nsslapd-pluginId: addn
nsslapd-pluginVendor: 389 Project
nsslapd-pluginVersion: 1.3.6.0
nsslapd-pluginDescription: Allow AD DN style bind names to LDAP
addn_default_domain: example.com

The required addn_default_domain parameter in the plug-in entry sets the default domain.
The plug-in appends this domain if the specified user name during an authentication does not
contain a domain name.

2. Add a configuration entry for the default domain:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
dn: cn=example.com,cn=addn,cn=plugins,cn=config
changetype: add
objectClass: top
objectClass: extensibleObject
cn: example.com
addn_base: ou=People,dc=example,dc=com
addn_filter: (&(objectClass=account)(uid=%s))

For details about the parameters used in the example, see their descriptions in the
Red Hat Directory Server Configuration, Command, and File Reference .

WARNING

You must add at least a configuration entry for the default domain. If the
entry is missing, Directory Server fails to start.

3. Optionally, you can create additional domain configurations as described in the previous step to
support multiple domain names. Each domain configuration can use a different search base and
filter.

4. Restart the Directory Server instance:



CHAPTER 20. MANAGING USER AUTHENTICATION

491

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#addn-attributes

dsctl instance_name restart

20.15. USING PAM FOR PASS THROUGH AUTHENTICATION

Many systems already have authentication mechanisms in place for Unix and Linux users. One of the
most common authentication frameworks is Pluggable Authentication Modules (PAM). Since many
networks already have existing authentication services available, administrators may want to continue
using those services. A PAM module can be configured to tell Directory Server to use an existing
authentication store for LDAP clients.

The PAM pass through authentication in Red Hat Directory Server uses the PAM Pass Through Auth
plug-in, which enables the Directory Server to enable the PAM service to authenticate LDAP clients.

Figure 20.3. PAM Pass Through Authentication Process

NOTE

The PAM pass through authentication works together with account inactivation when
authenticating users, assuming that the appropriate mapping method (ENTRY) is used.
However, the PAM pass through authentication does not validate passwords against
password policies set either globally or locally, because the passwords are set and stored
in the PAM module, not in the Directory Server.

20.15.1. PAM Pass Through Authentication Configuration Options

The PAM pass through authentication is configured in child entries beneath the PAM Pass Through Auth
plug-in container entry. There can be multiple PAM pass through authentication policies, applied to
different suffixes or to different entries within suffixes.

There are several different areas that can be configured for the PAM pass through:

The suffixes that are controlled by the PAM Pass Through Auth plug-in. This covers suffixes to
exclude, suffixes to include, and how to handle a missing suffix.

Individual entries within the configured suffixes which are the target of the authentication
configuration. By default, all entries within a suffix are included in the authentication scope, but it
is possible to configure multiple, different PAM Pass Through Auth plug-in instances and then
apply different plug-in configuration to different users.

The PAM attribute mapping. The credentials that are offered to the Directory Server have to be

Administration Guide

492

The PAM attribute mapping. The credentials that are offered to the Directory Server have to be
mapped in some way to an LDAP entry and then, back to the credentials in the PAM service.
This is done by defining a mapping method and then, optionally, which LDAP attribute to use to
match the credentials.

General configuration such as using TLS connections, the PAM service to use, and whether to
fallback to LDAP authentication if PAM authentication fails.

NOTE

There can be multiple configuration instances of the PAM Pass Through Auth plug-in. An
instance of the PAM Pass Through Auth plug-in can be applied to a subset of user entries
by using the pamFilter attribute to set an LDAP filter to search for the specific entries to
use with the plug-in.

For a list of attributes you can set, see the PAM Pass Through Auth Plug-in Attributes section in Red Hat
Directory Server Configuration, Command, and File Reference.

20.15.1.1. Specifying the Suffixes to Target for PAM PTA

The PAM PTA plug-in is applied globally, to all suffixes, by default unless they are explicitly excluded.
Excluding and including suffixes can help target what areas in the directory use PAM authentication
instead of LDAP authentication.

NOTE

The target of a PAM Pass Through authentication entry must be a suffix, not an arbitrary
subtree. As described in Section 2.1, “Creating and Maintaining Suffixes” , a suffix is a
subtree which is associated with a specific back end database, such as cn=config which is
associated with the root suffix dc=example,dc=com which is associated with userRoot.

The pamExcludeSuffix attribute excludes a suffix. By default, only the configuration subtree
(cn=config) is excluded. Alternatively, the PAM PTA plug-in can be applied to a suffix with the
pamIncludeSuffix attribute. Both of these attributes are multi-valued.

If the include attribute is set, for example, all other suffixes are automatically excluded. Likewise, if an
exclude attribute is set, all other suffixes are automatically included.

pamExcludeSuffix: cn=config

With pamIncludeSuffix, only the given suffix is included and all others are automatically excluded. Since
this attribute is multi-valued, more than one suffix can be included in the PAM evaluation by explicitly
listing the suffixes.

pamIncludeSuffix: ou=Engineering,dc=example,dc=com
pamIncludeSuffix: ou=QE,dc=example,dc=com

The pamMissingSuffix attribute tells the server how to handle a failure if the specified suffix (include or
exclude) does not exist. If it is set to IGNORE, then if the suffix does not exist, the plug-in simply skips
that suffix and tries the next.

CHAPTER 20. MANAGING USER AUTHENTICATION

493

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html-single/configuration_command_and_file_reference/#pam-pta-attributes

pamMissingSuffix: IGNORE
pamIncludeSuffix: ou=Engineering,dc=example,dc=com
pamIncludeSuffix: ou=Not Real,dc=example,dc=com

20.15.1.2. Applying Different PAM Pass Through Authentication Configurations to Different
Entries

By default, a PAM pass through authentication policy applies to all entries within the designated suffixes.
However, it is possible to specify an LDAP filter in the pamFilter attribute which identifies specific
entries within the suffix to which to apply the PAM pass through authentication policy.

This is useful for applying different PAM configurations or mapping methods to different user types,
using multiple PAM pass through authentication policies.

20.15.1.3. Setting PAM PTA Mappings

There has to be a way to connect the LDAP identity to the PAM identity. The first thing to define is the
method to use to map the entries. There are three options: DN, RDN, and ENTRY. ENTRY uses a user-
defined attribute in the entry.

Multiple mapping methods can be supplied in an ordered, space-separated list. The plug-in attempts to
use each mapping method in the order listed until authentication succeeds or until it reaches the end of
the list.

For example, this mapping method first maps the RDN method, then ENTRY, then DN, in the order the
methods are listed:

pamIDMapMethod: RDN ENTRY DN

The different mapping methods are listed in Table 20.4, “Mapping Methods for PAM Authentication” .

NOTE

Directory Server user account inactivation is only validated using the ENTRY mapping
method. With RDN or DN, a Directory Server user whose account is inactivated can still
bind to the server successfully.

Table 20.4. Mapping Methods for PAM Authentication

Mapping Description

RDN This method uses the value from the leftmost RDN in the bind DN. The mapping for this
method is defined by Directory Server. This is the default mapping method, if none is
given.

ENTRY This method pulls the value of the PAM identity from a user-defined attribute in the
bind DN entry. The identity attribute is defined in the pamIDAttr attribute. For
example: pamIDAttr: customPamUid

DN This method uses the full distinguished name from the bind DN. The mapping for this
method is defined by Directory Server.

Administration Guide

494

20.15.1.4. Configuring General PAM PTA Settings

Three general configuration settings can be set for PAM authentication:

The service name to send to PAM (pamService); this is the name of the configuration file to
use in /etc/pam.d

Whether to require a secure connection (pamSecure)

Whether to fall back to LDAP authentication if PAM authentication fails (pamFallback)

pamFallback: false
pamSecure: false
pamService: ldapserver

20.15.2. Configuring PAM Pass Through Authentication

NOTE

Multiple instances of configuration may exist for a pluggable authentication module
(PAM) Pass Through Authentication. An instance of the PAM Pass Through
Authentication can be applied to a subset of user entries by using the pamFilter attribute
to set an LDAP filter to search for the specific entries to use with the plug-in.

PAM Pass Through Authentication is configured through the command line.

1. Make sure the PAM service is fully configured.

2. Remove the pam_fprintd.so module from the PAM configuration file.

IMPORTANT

The pam_fprintd.so module cannot be in the configuration file referenced by
the pamService attribute of the PAM Pass Through Auth plug-in configuration.
Using the PAM fprintd module causes the Directory Server to hit the max file
descriptor limit and can cause the Directory Server process to abort.

3. Enable the PAM Pass Through Auth plug-in:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin set "PAM Pass
Through Auth" --enabled on

4. Create the PAM Pass Through Auth configuration entry:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin pass-through-auth
pam-config "Admin PAM PTA Config" add --exclude-suffix="cn=config" --
id_map_method="RDN ENTRY" --id-attr="customPamUid" --
filter="(manager=uid=example_user,ou=people,dc=example,dc=com pamFallback: FALSE" -
-secure="TRUE" --service="ldapserver"

5. Restart the instance:

CHAPTER 20. MANAGING USER AUTHENTICATION

495

dsctl instance_name restart

20.15.3. Using PAM Pass Through Authentication with Active Directory as the Back
End

PAM Pass Through Authentication forwards the credentials from the Directory Server to the PAM
service. One option is to set up and configure PAM modules specifically for Directory Server. Another
option — and one which may be more repeatable and more convenient in some infrastructures — is to
use the System Security Services Daemon (SSSD) to configure PAM. Because SSSD can use a variety
of different identity stores, a lot of different servers or services can be used to provide credentials,
including Active Directory.

Using the pass through authentication through SSSD is a daisy chain of services. The PAM PTA plug-in
is configured as normal. It points to the given PAM service file to use. This service file is managed by
SSSD, and SSSD is configured to connect with whatever identity provider is required, even multiple
providers.

Figure 20.4. PAM Pass Through Authentication with SSSD

To configure PAM Pass Through Authentication with Active Directory:

1. Configure SSSD to use the Active Directory server as one of its identity providers.

This configuration is covered in the Connecting RHEL systems directly to AD using SSSD section
in Integrating RHEL systems directly with Windows Active Directory .

2. Enable the PAM Pass Through Auth plug-in as follows:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin set "PAM Pass
Through Auth" --enabled on

3. Create the PAM Pass Through Auth configuration entry as follows:

dsconf -D "cn=Directory Manager" ldap://server.example.com plugin pass-through-auth
pam-config "AD PAM PTA Config" add --id_map_method="ENTRY" --id-attr="uid" --
service="login" --include-suffix="ou=people,dc=example,dc=com" --missing-suffix="ERROR"

The example uses the uid LDAP attribute as the username to pass to Active Directory and
enables this configuration only for the people OU.

4. Restart the directory server instance to load the configuration.

Administration Guide

496

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/integrating_rhel_systems_directly_with_windows_active_directory/connecting-rhel-systems-directly-to-ad-using-sssd_integrating-rhel-systems-directly-with-active-directory

dsctl instance_name restart

20.16. MANUALLY INACTIVATING USERS AND ROLES

A single user account or set of accounts can be temporarily inactivated. Once an account is inactivated,
a user cannot bind to the directory. The authentication operation will fail.

Users and roles are inactivated using the operational attribute nsAccountLock. When an entry contains
the nsAccountLock attribute with a value of true, the server rejects the bind.

The same procedures are used to inactivate users and roles. However, when a role is inactivated, the
members of the role are inactivated, not the role entry itself. For more information about roles in general
and how roles interact with access control in particular, see Chapter 8, Organizing and Grouping Entries .

WARNING

The root entry (the entry corresponding to the root or sub suffix) on a database
cannot be inactivated. Chapter 3, Managing Directory Entries has information on
creating the entry for a root or sub suffix, and Chapter 2, Configuring Directory
Databases has information on creating root and sub suffixes.

20.16.1. Displaying the Status of an Account or Role

To display the status of:

An account, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
account entry-status "uid=user_name,ou=People,dc=example,dc=com"
Entry DN: uid=user_name,ou=People,dc=example,dc=com
Entry Creation Date: 20200813085535Z (2020-08-13 08:55:35)
Entry Modification Date: 20200813085535Z (2020-08-13 08:55:35)
Entry State: activated

Optional: Pass the -V option to the command to display additional details:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
account entry-status "uid=user_name,ou=People,dc=example,dc=com" -V
Entry DN: uid=user_name,ou=People,dc=example,dc=com
Entry Creation Date: 20200824160645Z (2020-08-24 16:06:45)
Entry Modification Date: 20200824160645Z (2020-08-24 16:06:45)
Entry Last Login Date: 20200824160645Z (2020-08-24 16:06:45)
Entry Time Until Inactive: 2 seconds (2020-08-24 16:07:45)
Entry State: activated

The previous output is an example of an active account, as indicated by the last two lines of the
output. An inactive account would instead provide output similar to the following:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"



CHAPTER 20. MANAGING USER AUTHENTICATION

497

account entry-status "uid=user_name,ou=People,dc=example,dc=com" -V
Entry DN: uid=user_name,ou=People,dc=example,dc=com
Entry Creation Date: 20200824160645Z (2020-08-24 16:06:45)
Entry Modification Date: 20200824160645Z (2020-08-24 16:06:45)
Entry Last Login Date: 20200824160645Z (2020-08-24 16:06:45)
Entry Time Since Inactive: 3 seconds (2020-08-24 16:07:45)
Entry State: inactivity limit exceeded

A role, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com" role
entry-status "cn=Marketing,ou=People,dc=example,dc=com"
Entry DN: cn=Marketing,ou=people,dc=example,dc=com
Entry State: activated

To display the status of a sub-tree instead of an entry, use the subtree-status instead of the entry-
status option. When you use the subtree-status option, you can specify a filter (-f) and a search scope
(-s) to narrow down the results. Additionally, you can refine the search using the -i option to return only
inactive accounts or the -o date option to return only accounts which will be inactive before the
specified date:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com" account
account "ou=People,dc=example,dc=com" -f "(uid=*)" -V -o "2020-08-25T14:30:30"

Specify the date in the following format: YYYY-MM-DDTHH:MM:SS

20.16.2. Inactivating and Activating Users and Roles Using the Command Line

To inactivate:

A user account, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
account lock "uid=user_name,ou=People,dc=example,dc=com

A role, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com" role
lock "cn=Marketing,ou=People,dc=example,dc=com

To activate:

A user account, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com"
account unlock "uid=user_name,ou=People,dc=example,dc=com

A role, enter:

dsidm -D "cn=Directory Manager" ldap://server.example.com -b "dc=example,dc=com" role
unlock "cn=Marketing,ou=People,dc=example,dc=com

Administration Guide

498

CHAPTER 21. MONITORING SERVER AND DATABASE
ACTIVITY
This chapter describes monitoring database and Red Hat Directory Server logs. For information on using
SNMP to monitor the Directory Server, see Section 21.10, “Monitoring Directory Server Using SNMP” .

21.1. TYPES OF DIRECTORY SERVER LOG FILES

Directory Server provides the following log types:

Access log: Contains information on client connections and connection attempts to the
Directory Server instance. This log type is enabled by default.

Error log: Contains detailed messages of errors and events the directory experiences during
normal operations. This log type is enabled by default.

WARNING

If the Directory Server fails to write to the errors log, the server sends an
error message to the Syslog service and exits. This log type is enabled by
default.

Audit log: Records changes made to each database as well as to server configuration. This log is
not enabled by default.

Audit fail log: Records failed audit events. This log is not enabled by default.

21.2. DISPLAYING LOG FILES

You can display the Directory Server log files using the command line and web console:

21.2.1. Displaying Log Files Using the Command Line

To display the log files using the command line, use the utilities included in Red Hat Enterprise Linux,
such as less, more, and cat. For example:

less /var/log/dirsrv/slapd-instance_name/access

To display the locations of log files:

dsconf -D "cn=Directory Manager" ldap://server.example.com config get nsslapd-accesslog
nsslapd-errorlog nsslapd-auditlog nsslapd-auditfaillog

nsslapd-accesslog: /var/log/dirsrv/slapd-instance_name/access
nsslapd-errorlog: /var/log/dirsrv/slapd-instance_name/errors
nsslapd-auditlog: /var/log/dirsrv/slapd-instance_name/audit
nsslapd-auditfaillog: /var/log/dirsrv/slapd-instance_name/audit-failure

NOTE



CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

499

NOTE

If logging for a log type is not enabled, the corresponding log file does not exist.

21.2.2. Displaying Log Files Using the Web Console

To display the Directory Server log files:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Monitoring menu.

4. Open the Logging menu, and select the log file you want to display.

5. Optionally, you can apply the following settings to the log file viewer:

Set the number of lines to display in the Log Lines To Show field.

Enable automatically displaying new log entries by selecting Continuously Refresh.

6. Click the Refresh button to apply the changes.

21.3. CONFIGURING LOG FILES

For all types of log files, the log creation and log deletion policies have to be configured. The log
creation policy sets when a new log file is started, and the log deletion policy sets when an old log file is
deleted.

21.3.1. Enabling or Disabling Logs

The access and error logging is enabled by default. However, audit and audit fail logging is disabled by
default.

NOTE

Disabling the access logging can be useful in certain scenarios, because every 2000
accesses to the directory increases the log file by approximately 1 megabyte. However,
before turning off access logging, consider that this information can help troubleshooting
problems.

21.3.1.1. Enabling or Disabling Logging Using the Command Line

Use the dsconf config replace command to modify the parameters in the cn=config subtree that

Administration Guide

500

Use the dsconf config replace command to modify the parameters in the cn=config subtree that
control the Directory Server logging feature:

Access log: nsslapd-accesslog-logging-enabled

Error log: nsslapd-errorlog-logging-enabled

Audit log: nsslapd-auditlog-logging-enabled

Audit fail log: nsslapd-auditfaillog-logging-enabled

For further details, see the corresponding section in the Red Hat Directory Server Configuration,
Command, and File Reference.

For example, to enable audit logging, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-auditlog-
logging-enabled=on

21.3.1.2. Enabling or Disabling Logging Using the Web Console

To enable or disable logging in web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open the Server Settings menu, and select the log type you want to configure under the
Logging entry.

4. Enable or disable the logging feature for the selected log type.

5. Optionally, set additional parameters to define, for example, a log rotation or log deletion policy.

6. Click Save.

21.3.2. Configuring Plug-in-specific Logging

For debugging, you can enable access and audit logging for operations a plug-ins executes. For details,
see the nsslapd-logAccess and nsslapd-logAudit parameter in the corresponding section in the
Red Hat Directory Server Configuration, Command, and File Reference .

21.3.3. Disabling High-resolution Log Time Stamps

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

501

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/plug_in_implemented_server_functionality_reference#List_of_Attributes_Common_to_All_Plug_ins

Using the default settings, Directory Server logs entries with nanosecond precision:

[27/May/2016:17:52:04.754335904 -0500] schemareload - Schema validation passed.
[27/May/2016:17:52:04.894255328 -0500] schemareload - Schema reload task finished.

To disable high-resolution log time stamps:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-logging-hr-
timestamps-enabled=off

NOTE

The option to disable high-resolution log time stamps is deprecated and will be removed
in a future release.

After disabling high-resolution log time stamps, Directory Server logs with second precision only:

[27/May/2016:17:52:04 -0500] schemareload - Schema validation passed.
[27/May/2016:17:52:04 -0500] schemareload - Schema reload task finished.

21.3.4. Defining a Log File Rotation Policy

To periodically archive the current log file and create a new one, set a log file rotation policy. You can
update the settings in the cn=config subtree using the command line or the web console.

You can set the following configuration parameters to control the log file rotation policy:

Access mode

The access mode sets the file permissions on newly created log files.

Access log: nsslapd-accesslog-mode

Error log: nsslapd-errorlog-mode

Audit log: nsslapd-auditlog-mode

Audit fail log: nsslapd-auditfaillog-mode

Maximum number of logs

Sets the maximum number of log files to keep. When the number of files is reached, Directory Server
deletes the oldest log file before creating the new one.

Access log: nsslapd-accesslog-maxlogsperdir

Error log: nsslapd-errorlog-maxlogsperdir

Audit log: nsslapd-auditlog-maxlogsperdir

Audit fail log: nsslapd-auditfaillog-maxlogsperdir

File size for each log

Sets the maximum size of a log file in megabytes before it is rotated.

Administration Guide

502

Access log: nsslapd-accesslog-maxlogsize

Error log: nsslapd-errorlog-maxlogsize

Audit log: nsslapd-auditlog-maxlogsize

Audit fail log: nsslapd-auditfaillog-maxlogsize

Create a log every

Sets the maximum age of a log file.

nsslapd-accesslog-logrotationtime and nsslapd-accesslog-logrotationtimeunit

nsslapd-errorlog-logrotationtime and nsslapd-errorlog-logrotationtimeunit

nsslapd-auditlog-logrotationtime and nsslapd-auditlog-logrotationtimeunit

nsslapd-auditfaillog-logrotationtime and nsslapd-auditfaillog-logrotationtimeunit

Additionally, you can set the time when the log file is rotated using the following parameters:

nsslapd-accesslog-logrotationsynchour and nsslapd-accesslog-logrotationsyncmin

nsslapd-errorlog-logrotationsynchour and nsslapd-errorlog-logrotationsyncmin

nsslapd-auditlog-logrotationsynchour and nsslapd-auditlog-logrotationsyncmin

nsslapd-auditfaillog-logrotationsynchour and nsslapd-auditfaillog-logrotationsyncmin

For details, see the parameter descriptions in the corresponding section in the Red Hat Directory Server
Configuration, Command, and File Reference.

Each log file starts with a title, which identifies the server version, host name, and port, for ease of
archiving or exchanging log files. For example:

389-Directory/1.4.0.11 B2018.197.1151
server.example.com:389 (/etc/dirsrv/slapd-instance)

21.3.4.1. Defining a Log File Rotation Policy Using the Command Line

Use the dsconf config replace command to modify parameters controlling the Directory Server
logging features. For example for the error log, to set access mode 600, to keep maximum 2, and to
rotate log files at a size of 100 MB or every 5 days, enter:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-errorlog-
mode=600 nsslapd-errorlog-maxlogsperdir=2 nsslapd-errorlog-maxlogsize=100 nsslapd-errorlog-
logrotationtime=5 nsslapd-errorlog-logrotationtimeunit=day

21.3.4.2. Defining a Log File Rotation Policy Using the Web Console

See Section 21.3.1.2, “Enabling or Disabling Logging Using the Web Console” .

21.3.5. Defining a Log File Deletion Policy

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

503

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig

Directory Server automatically deletes old archived log files, if you set a Deletion Policy.

NOTE

You can only set a log file deletion policy if you have a log file rotation policy set.
Directory Server applies the deletion policy at the time of log rotation.

You can set the following configuration parameters to control the log file deletion policy:

Total log size

If the size of all access, error, audit or audit fail log files increases the configured value, the oldest log
file is automatically deleted.

Access log: nsslapd-accesslog-logmaxdiskspace

Error log: nsslapd-errorlog-logmaxdiskspace

Audit log: nsslapd-auditlog-logmaxdiskspace

Audit log: nsslapd-auditfaillog-logmaxdiskspace

Free disk space is less than

When the free disk space reaches this value, the oldest archived log file is automatically deleted.

Access log: nsslapd-accesslog-logminfreediskspace

Error log: nsslapd-errorlog-logminfreediskspace

Audit log: nsslapd-auditlog-logminfreediskspace

Audit log: nsslapd-auditfaillog-logminfreediskspace

When a file is older than a specified time

When a log file is older than the configured time, it is automatically deleted.

Access log: nsslapd-accesslog-logexpirationtime and nsslapd-accesslog-
logexpirationtimeunit

Error log: nsslapd-errorlog-logminfreediskspace and nsslapd-errorlog-
logexpirationtimeunit

Audit log: nsslapd-auditlog-logminfreediskspace and nsslapd-auditlog-
logexpirationtimeunit

Audit log: nsslapd-auditfaillog-logminfreediskspace and nsslapd-auditfaillog-
logexpirationtimeunit

For further details, see the corresponding section in the Red Hat Directory Server Configuration,
Command, and File Reference.

21.3.5.1. Configuring a Log Deletion Policy Using the Command Line

Use the dsconf config replace command to modify parameters controlling the Directory Server

Administration Guide

504

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig

Use the dsconf config replace command to modify parameters controlling the Directory Server
logging features. For example, to auto-delete the oldest access log file if the total size of all access log
files increases 500 MB, run:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-accesslog-
logmaxdiskspace=500

21.3.5.2. Configuring a Log Deletion Policy Using the Web Console

See Section 21.3.1.2, “Enabling or Disabling Logging Using the Web Console” .

21.3.6. Manual Log File Rotation

The Directory Server supports automatic log file rotation for all three logs. However, it is possible to
rotate log files manually if there are no automatic log file creation or deletion policies configured. By
default, access, error, audit and audit fail log files can be found in the following location:

/var/log/dirsrv/slapd-instance

To rotate log files manually:

1. Stop the instance.

dsctl instance_name stop

2. Move or rename the log file being rotated so that the old log file is available for future
reference.

3. Start the instance:

dsctl instance_name restart

21.3.7. Configuring the Log Levels

Both the access and the error log can record different amounts of information, depending on the log
level that is set.

You can set the following configuration parameters to control the log levels for the:

Access log: nsslapd-accesslog-level

Error log: nsslapd-errorlog-level

For further details and a list of the supported log levels, see the corresponding section in the
Red Hat Directory Server Configuration, Command, and File Reference .

NOTE

Changing the log level from the default can cause the log file to grow very rapidly.
Red Hat recommends not to change the default values without being asked to do so by
the Red Hat technical support.

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

505

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnconfig

21.3.7.1. Configuring the Log Levels Using the Command Line

Use the dsconf config replace command to set the log level.

For example, to enable search filter logging (32) and config file processing (64), set the nsslapd-
errorlog-level parameter to 96 (32 + 64):

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-errorlog-
level=96

For example, to enable internal access operations logging (4) and logging of connections, operations,
and results (256), set the nsslapd-accesslog-level parameter to 260 (4 + 256):

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-accesslog-
level=260

21.3.7.2. Configuring the Log Levels Using the Web Console

To configure the access and error log level using the web console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. To configure:

The access log level:

1. Open the Server Settings → Logging → Access Log menu.

2. Select the log levels in the Access Logging Levels section. For example:

The error log level:

1. Open the Server Settings → Logging → Error Log menu.

2. Select the log levels in the Error Logging Levels section. For example:

Administration Guide

506

4. Click Save.

21.3.7.3. Logging Internal Operations

Several operations cause additional internal operations in Directory Server. For example, if a user
deletes an entry, the server runs several internal operations, such as locating the entry and updating
groups in which the user was a member. This section explains the format of internal operations log
entries. For details about setting the log level, see Section 21.3.7, “Configuring the Log Levels”.

Directory Server provides the following formats of internal operations logging:

Server-initiated Internal Operations

Example of an internal operation log entry that was initiated by the server:

[14/Jan/2021:09:45:25.814158882 -0400] conn=Internal(0) op=0(0)(0) MOD dn="cn=uniqueid
generator,cn=config"
[14/Jan/2021:09:45:25.822103183 -0400] conn=Internal(0) op=0(0)(0) RESULT err=0 tag=48

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

507

nentries=0 etime=0.0007968796

For log entries of this type:

The conn field is set to Internal followed by (0) .

The op field is set to 0(0)(nesting_level). For server-initiated internal operations, both the
operation ID and internal operation ID are always 0. For log entries that are not nested, the
nesting level is 0.

Client-initiated Internal Operations

Example of an internal operation log entry that was initiated by a client:

[14/Jan/2021:09:45:14.382918693 -0400] conn=5 (Internal) op=15(1)(0) SRCH
base="cn=config,cn=userroot,cn=ldbm database,cn=plugins,cn=config" scope=1
filter="objectclass=vlvsearch" attrs=ALL
[14/Jan/2021:09:45:14.383191380 -0400] conn=5 (Internal) op=15(1)(0) RESULT err=0 tag=48
nentries=0 etime=0.0000295419
[14/Jan/2021:09:45:14.383216269 -0400] conn=5 (Internal) op=15(2)(0) SRCH
base="cn=config,cn=example,cn=ldbm database,cn=plugins,cn=config" scope=1
filter="objectclass=vlvsearch" attrs=ALL
[14/Jan/2021:09:45:14.383449419 -0400] conn=5 (Internal) op=15(2)(0) RESULT err=0

For log entries of this type:

The conn field is set to the client connection ID, followed by the string (Internal).

The op field contains the operation ID, followed by (internal_operation_ID)(nesting_level).
The internal operation ID can vary, and log entries that are not nested, the nesting level is 0.

If the nsslapd-plugin-logging parameter is set to on and internal operations logging is enabled,
Directory Server additionally logs internal operations of plug-ins.

Example 21.1. Internal Operations Log Entries with Plug-in Logging Enabled

If you delete the uid=user,dc=example,dc=com entry, and the Referential Integrity plug-in
automatically deletes this entry from the example group, the server logs:

[time_stamp] conn=2 op=37 DEL dn="uid=user,dc=example,dc=com"
[time_stamp] conn=2 (Internal) op=37(1) SRCH base="uid=user,dc=example,dc=com" scope=0
filter="(|(objectclass=*)(objectclass=ldapsubentry))" attrs=ALL
[time_stamp] conn=2 (Internal) op=37(1) RESULT err=0 tag=48 nentries=1 etime=0.0000129148
[time_stamp] conn=2 (Internal) op=37(2) SRCH base="dc=example,dc=com" scope=2 filter="
(member=uid=user,dc=example,dc=com)" attrs="member"
[time_stamp] conn=2 (Internal) op=37(2) RESULT err=0 tag=48 nentries=0 etime=0.0000123162
[time_stamp] conn=2 (Internal) op=37(3) SRCH base="dc=example,dc=com" scope=2 filter="
(uniquemember=uid=user,dc=example,dc=com)" attrs="uniquemember"
[time_stamp] conn=2 (Internal) op=37(3) RESULT err=0 tag=48 nentries=1 etime=0.0000128104
[time_stamp] conn=2 (Internal) op=37(4) MOD dn="cn=example,dc=example,dc=com"
[time_stamp] conn=2 (Internal) op=37(5) SRCH base="cn=example,dc=example,dc=com"
scope=0 filter="(|(objectclass=*)(objectclass=ldapsubentry))" attrs=ALL
[time_stamp] conn=2 (Internal) op=37(5) RESULT err=0 tag=48 nentries=1 etime=0.0000130685
[time_stamp] conn=2 (Internal) op=37(4) RESULT err=0 tag=48 nentries=0 etime=0.0005217545
[time_stamp] conn=2 (Internal) op=37(6) SRCH base="dc=example,dc=com" scope=2 filter="

Administration Guide

508

(owner=uid=user,dc=example,dc=com)" attrs="owner"
[time_stamp] conn=2 (Internal) op=37(6) RESULT err=0 tag=48 nentries=0 etime=0.0000137656
[time_stamp] conn=2 (Internal) op=37(7) SRCH base="dc=example,dc=com" scope=2 filter="
(seeAlso=uid=user,dc=example,dc=com)" attrs="seeAlso"
[time_stamp] conn=2 (Internal) op=37(7) RESULT err=0 tag=48 nentries=0 etime=0.0000066978
[time_stamp] conn=2 (Internal) op=37(8) SRCH base="o=example" scope=2 filter="
(member=uid=user,dc=example,dc=com)" attrs="member"
[time_stamp] conn=2 (Internal) op=37(8) RESULT err=0 tag=48 nentries=0 etime=0.0000063316
[time_stamp] conn=2 (Internal) op=37(9) SRCH base="o=example" scope=2 filter="
(uniquemember=uid=user,dc=example,dc=com)" attrs="uniquemember"
[time_stamp] conn=2 (Internal) op=37(9) RESULT err=0 tag=48 nentries=0 etime=0.0000048634
[time_stamp] conn=2 (Internal) op=37(10) SRCH base="o=example" scope=2 filter="
(owner=uid=user,dc=example,dc=com)" attrs="owner"
[time_stamp] conn=2 (Internal) op=37(10) RESULT err=0 tag=48 nentries=0 etime=0.0000048854
[time_stamp] conn=2 (Internal) op=37(11) SRCH base="o=example" scope=2 filter="
(seeAlso=uid=user,dc=example,dc=com)" attrs="seeAlso"
[time_stamp] conn=2 (Internal) op=37(11) RESULT err=0 tag=48 nentries=0 etime=0.0000046522
[time_stamp] conn=2 op=37 RESULT err=0 tag=107 nentries=0 etime=0.0010297858

21.3.8. Disabling Access Log Buffering for Debugging

For debugging purposes, you can disable access log buffering, which is enabled by default. With access
log buffering disabled, Directory Server writes log entries directly to the disk.

IMPORTANT

Do not disable access logging in a normal operating environment. When you disable the
buffering, Directory Server performance decreases, especially under heavy load.

21.3.8.1. Disabling Access Log Buffering Using the Command Line

To disable access log buffering using the command line:

Set the nsslapd-accesslog-logbuffering parameter to off:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-
accesslog-logbuffering=off

21.3.8.2. Disabling Access Log Buffering Using the Web Console

To disable access log buffering using the Web Console:

1. Open the Directory Server user interface in the web console. See Section 1.4, “Logging Into
Directory Server Using the Web Console”.

2. Select the instance.

3. Open Server Settings → Logging → Access Log.

4. Select Disable Access Log Buffering.

5. Click Save Configuration.

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

509

21.4. GETTING ACCESS LOG STATISTICS

The logconv.pl script parses the access log and returns summary information on different users and
operations that have been run on the server.

At its simplest, the script simply parses the access log (or logs):

logconv.pl /relative/path/to/accessLog

The script can accept wildcards to parse multiple access logs, which is useful if log rotation is used.

logconv.pl /var/log/dirsrv/slapd-instance/access*

The different options for logconv.pl are covered in the manpage and in the
Configuration, Command, and File Reference.

There are several different ways that logconv.pl can be used to pull general usage information from the
access logs.

At its simplest, logconv.pl prints a list of total operations, total number of connections, counts per each
operation type, counts for some extended operations like persistent searches, and bind information.

logconv.pl /var/log/dirsrv/slapd-instance/access
Access Log Analyzer 8.2
Command: logconv.pl /var/log/dirsrv/slapd-instance/access
Processing 1 Access Log(s)...

[001] /var/log/dirsrv/slapd-instance/access size (bytes): 77532

Total Log Lines Analysed: 527

Start of Logs: 14/Oct/2017:16:15:22.452909568
End of Logs: 14/Oct/2017:16:39:50.157790196

Processed Log Time: 0 Hours, 24 Minutes, 27.704877056 Seconds

Restarts: 10
Secure Protocol Versions:
 - TLS1.2 client bound as uid=user_name,ou=people,o=example.com (11 connections)
 - TLS1.2 128-bit AES; client CN=CA Subsystem,O=example.com; issuer CN=Certificate
Authority,O=example.com (11 connections)
 - TLS1.2 128-bit AES-GCM (2 connections)
 - TLS1.2 128-bit AES (3 connections)

Peak Concurrent Connections: 38
Total Operations: 4771
Total Results: 4653
Overall Performance: 97.5%

Total Connections: 249 (0.17/sec) (10.18/min)
 - LDAP Connections: 107 (0.07/sec) (4.37/min)
 - LDAPI Connections: 128 (0.09/sec) (5.23/min)
 - LDAPS Connections: 14 (0.01/sec) (0.57/min)
 - StartTLS Extended Ops: 2 (0.00/sec) (0.08/min)

Administration Guide

510

Searches: 2963 (2.02/sec) (121.13/min)
Modifications: 649 (0.44/sec) (26.53/min)
Adds: 785 (0.53/sec) (32.09/min)
Deletes: 10 (0.01/sec) (0.41/min)
Mod RDNs: 6 (0.00/sec) (0.25/min)
Compares: 0 (0.00/sec) (0.00/min)
Binds: 324 (0.22/sec) (13.25/min)

Proxied Auth Operations: 0
Persistent Searches: 17
Internal Operations: 0
Entry Operations: 0
Extended Operations: 4
Abandoned Requests: 0
Smart Referrals Received: 0

VLV Operations: 30
VLV Unindexed Searches: 0
VLV Unindexed Components: 20
SORT Operations: 22

Entire Search Base Queries: 12
Paged Searches: 2
Unindexed Searches: 0
Unindexed Components: 149

FDs Taken: 249
FDs Returned: 212
Highest FD Taken: 107

Broken Pipes: 0
Connections Reset By Peer: 0
Resource Unavailable: 0
Max BER Size Exceeded: 0

Binds: 324
Unbinds: 155

 - LDAP v2 Binds: 41
 - LDAP v3 Binds: 180
 - AUTOBINDs(LDAPI): 103
 - SSL Client Binds: 0
 - Failed SSL Client Binds: 0
 - SASL Binds: 134
 - EXTERNAL: 114
 - GSSAPI: 20
 - Directory Manager Binds: 10
 - Anonymous Binds: 1

Cleaning up temp files...
Done.

In addition to the summary information for operations and connections, more detailed summary
information for all of the connections to the server. This information includes things like most common
IP addresses used to connect to the server, DNs with the most failed login attempts, total bind DNs used
to access the server, and the most common error or return codes.

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

511

Additional connection summaries are passed as a single option. For example, listing the number of DNs
used to connect to the server (b) and the total connection codes returned by the server (c) are passed
as -bc.

logconv.pl -bc /var/log/dirsrv/slapd-instance/access
...
----- Total Connection Codes -----

U1 3 Cleanly Closed Connections
B1 1 Bad Ber Tag Encountered

----- Top 20 Bind DN's -----

Number of Unique Bind DN's: 212

1801 cn=Directory Manager
1297 Anonymous Binds
311 uid=jsmith,ou=people...
87 uid=bjensen,ou=peopl...
85 uid=mreynolds,ou=peo...
69 uid=jrockford,ou=peo...
55 uid=sspencer,ou=peop...
...

The data can be limited to entries after a certain start time (-S), before a certain end time (-E), or within
a range. When start and end times are set, the logconv.pl first prints the time range given, then the
summary for that period.

logconv.pl -S "[01/Jul/2016:16:11:47.000000000 -0400]" -E "[01/Jul/2016:17:23:08.999999999 -
0400]" /var/log/dirsrv/slapd-instance/access
...
----------- Access Log Output ------------

Start of Logs: 01/Jul/2016:16:11:47
End of Logs: 01/Jul/2016:17:23:08
...

The start and end period only sets time limits for the data used to generate the total summary counts. It
still shows aggregated, or total, counts. To get a view of the patterns in connections and operations to
the Directory Server, it is possible to output data with counts per minute (-M) or per second (-m). In this
case, the data are printed, in time unit increments, to a specified CSV output file.

logconv.pl -m|-M outputFile accessLogFile

For example:

logconv.pl -M /home/output/statsPerMin.txt /var/log/dirsrv/slapd-instance/access*

The -M|-m options can also be used with the -S and -E arguments, to get per-minute or per-second
counts within a specific time period.

Each row in the file represents one unit of time, either minute or second, with total counts for that time
period. The CSV file (for both per-minute and per-second statistics) contains the following columns, in
order:

Administration Guide

512

Time,time_t,Results,Search,Add,Mod,Modrdn,Delete,Abandon,Connections,SSL Conns,Bind,Anon
Bind,Unbind,Unindexed

The CSV file can be manipulated in any spreadsheet program, like LibreOffice Calc, and in many other
business applications. The procedures for importing the CSV data and generating charts or other
metrics depends on the application itself.

For example, to create a chart in LibreOffice Calc:

1. Open the CSV file.

2. Click the Insert menu, and select Chart.

3. In the Chart Type area, set the chart type to XY (Scatter).

1. Set the subtype to lines only.

2. Select the option to sort by X values.

4. Accept the defaults in the other screens (particularly, to use the data series in columns and to
set the first row and first column as labels), and create the chart.

21.5. MONITORING THE LOCAL DISK FOR GRACEFUL SHUTDOWN

See the Monitoring the Local Disk for Graceful Shutdown section in the Red Hat Directory Server
Performance Tuning Guide.

21.6. MONITORING SERVER ACTIVITY

See the Monitoring Server Activity section in the Red Hat Directory Server Performance Tuning Guide .

21.7. MONITORING DATABASE ACTIVITY

See the Monitoring Database Activity section in the Red Hat Directory Server Performance Tuning
Guide.

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

513

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/performance_tuning_guide/diskmonitoring
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/performance_tuning_guide/tracking-performance#Monitoring_Server_and_Database_Activity-Monitoring_Server_Activity
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/performance_tuning_guide/tracking-performance#monitoring_server_and_database_activity-monitoring_database_activity

21.8. MONITORING DATABASE LINK ACTIVITY

See the Monitoring Database Link Activity section in the Red Hat Directory Server Performance Tuning
Guide.

21.9. ENABLING AND DISABLING COUNTERS

The nsslapd-counters parameter enabled counters to run. However, running counters can affect
performance, so it also possible to turn off counters. If counters are off, they all have a value of zero (0).

By default, counters are already enabled. To enable or disable performance counters, use ldapmodify.
For example, to disable:

dsconf -D "cn=Directory Manager" ldap://server.example.com config replace nsslapd-counters=off

21.10. MONITORING DIRECTORY SERVER USING SNMP

The server and database activity monitoring log setup described in Chapter 21, Monitoring Server and
Database Activity is specific to Directory Server. You can also monitor your Directory Server using
Simple Network Management Protocol (SNMP), which is a management protocol used for monitoring
network activity which can be used to monitor a wide range of devices in real time.

Directory Server can be monitored with SNMP through an AgentX subagent. SNMP monitoring collects
useful information about the Directory Server, such as bind information, operations performed on the
server, and cache information. The Directory Server SNMP subagent supports SNMP traps to send
notifications about changes in the running state of your server instances.

21.10.1. About SNMP

SNMP has become interoperable on account of its widespread popularity. It is this interoperability,
combined with the fact that SNMP can take on numerous jobs specific to a whole range of different
device classes, that make SNMP the ideal standard mechanism for global network control and
monitoring. SNMP allows network administrators to unify all network monitoring activities, with
Directory Server monitoring part of the broader picture.

SNMP is used to exchange data about network activity. With SNMP, data travels between a managed
device and a network management application (NMS) where users remotely manage the network. A
managed device is anything that runs SNMP, such as hosts, routers, and your Directory Server. An NMS
is usually a powerful workstation with one or more network management applications installed. A
network management application graphically shows information about managed devices, which device is
up or down, which and how many error messages were received, and so on.

Information is transferred between the NMS and the managed device through the use of two types of
agents: the subagent and the master agent. The subagent gathers information about the managed
device and passes the information to the master agent. Directory Server has a subagent. The master
agent exchanges information between the various subagents and the NMS. The master agent usually
runs on the same host machine as the subagents it talks to, although it can run on a remote machine.

Values for SNMP attributes, otherwise known as variables, that can be queried are kept on the managed
device and reported to the NMS as necessary. Each variable is known as a managed object, which is
anything the agent can access and send to the NMS. All managed objects are defined in a management
information base (MIB), which is a database with a tree-like hierarchy. The top level of the hierarchy
contains the most general information about the network. Each branch underneath is more specific and
deals with separate network areas.

Administration Guide

514

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/performance_tuning_guide/monitoring_server_and_database_activity-monitoring_database_link_activity

SNMP exchanges network information in the form of protocol data units (PDUs). PDUs contain
information about variables stored on the managed device. These variables, also known as managed
objects, have values and titles that are reported to the NMS as necessary. Communication between an
NMS and a managed device takes place either by the NMS sending updates or requesting information or
by the managed object sending a notice or warning, called a trap, when a server shuts down or starts up.

21.10.2. Enabling and Disabling SNMP Support

By default, the SNMP protocol is enabled in Directory Server and, after configuring the subagent, you
can use it.

To enable or disable SNMP in an instance, set the nsSNMPEnabled parameter to on or off. For
example, to disable SNMP in a Directory Server instance:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=SNMP,cn=config
changetype: modify
replace: nsSNMPEnabled
nsSNMPEnabled: on

21.10.3. Setting Parameters to Identify an Instance Using SNMP

Directory Server provides the following attributes which help identifying instances using SNMP:

nsSNMPOrganization

nsSNMPLocation

nsSNMPContact

nsSNMPDescription

For details about the parameters, see their descriptions in the cn=SNMP section in the Red Hat
Directory Server Configuration, Command, and File Reference.

For example, to the set the nsSNMPLocation parameter to Munich, Germany:

ldapmodify -D "cn=Directory Manager" -W -p 389 -h server.example.com -x

dn: cn=SNMP,cn=config
changetype: modify
replace: nsSNMPLocation
nsSNMPLocation: Munich, Germany

21.10.4. Setting up an SNMP Agent for Directory Server

To query information from Directory Server using the SNMP protocol, set up an SNMP agent:

1. Install the 389-ds-base-snmp and net-snmp packages:

yum install 389-ds-base-snmp net-snmp

2. To configure the SNMP master agent, edit the /etc/snmp/snmpd.conf file, adding the following

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

515

https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/core_server_configuration_reference#cnSNMP

2. To configure the SNMP master agent, edit the /etc/snmp/snmpd.conf file, adding the following
entry to enable the agent extensibility (AgentX) protocol:

master agentx

For further details about the AgentX protocol, see RFC 2741.

3. To configure the SNMP subagent, edit the /etc/dirsrv/config/ldap-agent.conf file, adding a
server parameter for each Directory Server instance you want to monitor. For example:

server slapd-instance_name

4. Optionally, create an SNMP user account:

a. Stop the snmpd service:

systemctl stop snmpd

b. Create the SNMP user account. For example:

net-snmp-create-v3-user -A authentication_password -a SHA \
 -X private_password -x AES user_name

For details about the parameters used in the command, see the net-snmp-create-v3-
user(1) man page.

c. Start the snmpd service:

systemctl start snmpd

5. Optionally, set the Directory Server descriptive properties. For details, see Section 21.10.3,
“Setting Parameters to Identify an Instance Using SNMP”.

6. Start the dirsrv-snmp service:

systemctl start dirsrv-snmp

7. Optionally, to verify the configuration:

a. Install the net-snmp-utils package:

yum install net-snmp-utils

b. Query the Directory Server Object Identifiers (OID). For example:

snmpwalk -v3 -u user_name -M /usr/share/snmp/mibs:/usr/share/dirsrv/mibs/ \
 -l AuthPriv -m +RHDS-MIB -A authentication_password -a SHA
 -X private_password -x AES server.example.com .1.3.6.1.4.1.2312.6.1.1

21.10.5. Configuring SNMP Traps

An SNMP trap is essentially a threshold which triggers a notification if it is encountered by the

Administration Guide

516

https://www.ietf.org/rfc/rfc2741.txt

monitored server. To use traps, the master agent must be configured to accept traps and do something
with them. For example, a trap can trigger an email notification for an administrator of the
Directory Server instance stops.

The subagent is only responsible for sending the traps to the master agent. The master agent and a trap
handler must be configured according to the documentation for the SNMP master agent you are using.

Traps are accompanied by information from the Entity Table, which contains information specific to the
Directory Server instance, such as its name and version number. The Entity Table is described in
Section 21.10.6.3, “Entity Table”. This means that the action the master agent takes when it receives a
trap is flexible, such as sending an email to an email address defined in the dsEntityContact variable for
one instance while sending a notification to a pager number in the dsEntityContact variable for another
instance.

There are two traps supported by the subagent:

DirectoryServerDown. This trap is generated whenever the subagent detects the
Directory Server is potentially not running. This trap will be sent with the Directory Server
instance description, version, physical location, and contact information, which are detailed in
the dsEntityDescr, dsEntityVers, dsEntityLocation, and dsEntityContact variables.

DirectoryServerStart. This trap is generated whenever the subagent detects that the
Directory Server has started or restarted. This trap will be sent with the Directory Server
instance description, version, physical location, and contact information, which are detailed in
the dsEntityDescr, dsEntityVers, dsEntityLocation, and dsEntityContact variables.

21.10.6. Using the Management Information Base

The Directory Server's MIB is a file called redhat-directory.mib stored in the /usr/share/dirsrv/mibs
directory. This MIB contains definitions for variables pertaining to network management for the
directory. These variables are known as managed objects. Using the directory MIB and Net-SNMP, you
can monitor your directory like all other managed devices on your network. For more information on
using the MIB, see Section 21.10.4, “Setting up an SNMP Agent for Directory Server” .

The client tools need to load the Directory Server MIB to use the variable names listed in the following
sections.

Using the directory MIB enables administrators to use SNMP to see administrative information about
the directory and monitor the server in real-time. The directory MIB is broken into four distinct tables of
managed objects:

Section 21.10.6.1, “Operations Table”

Section 21.10.6.2, “Entries Table”

Section 21.10.6.3, “Entity Table”

Section 21.10.6.4, “Interaction Table”

NOTE

All of the Directory Server attributes monitored by SNMP use 64-bit integers for the
counters, even on 32-bit systems.

21.10.6.1. Operations Table

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

517

The Operations Table provides statistical information about Directory Server access, operations, and
errors. Table 21.1, “Operations Table: Managed Objects and Descriptions” describes the managed
objects stored in the Operations Table of the redhat-directory.mib file.

Table 21.1. Operations Table: Managed Objects and Descriptions

Managed Object Description

dsAnonymousBinds The number of anonymous binds to the directory since server startup.

dsUnauthBinds The number of unauthenticated binds to the directory since server startup.

dsSimpleAuthBinds The number of binds to the directory that were established using a simple
authentication method (such as password protection) since server startup.

dsStrongAuthBinds The number of binds to the directory that were established using a strong
authentication method (such as TLS or a SASL mechanism like Kerberos)
since server startup.

dsBindSecurityErrors The number of bind requests that have been rejected by the directory due
to authentication failures or invalid credentials since server startup.

dsInOps The number of operations forwarded to this directory from another
directory since server startup.

dsReadOps The number of read operations serviced by this directory since application
start. The value of this object will always be 0 because LDAP implements
read operations indirectly using the search operation.

dsCompareOps The number of compare operations serviced by this directory since server
startup.

dsAddEntryOps The number of add operations serviced by this directory since server
startup.

dsRemoveEntryOps The number of delete operations serviced by this directory since server
startup.

dsModifyEntryOps The number of modify operations serviced by this directory since server
startup.

dsModifyRDNOps The number of modify RDN operations serviced by this directory since
server startup.

dsListOps The number of list operations serviced by this directory since server startup.
The value of this object will always be 0 because LDAP implements list
operations indirectly using the search operation.

dsSearchOps The total number of search operations serviced by this directory since
server startup.

Administration Guide

518

dsOneLevelSearchOps The number of one-level search operations serviced by this directory since
server startup.

dsWholeSubtreeSearchOps The number of whole subtree search operations serviced by this directory
since server startup.

dsReferrals The number of referrals returned by this directory in response to client
requests since server startup.

dsSecurityErrors The number of operations forwarded to this directory that did not meet
security requirements.

dsErrors The number of requests that could not be serviced due to errors (other than
security or referral errors). Errors include name errors, update errors,
attribute errors, and service errors. Partially serviced requests will not be
counted as an error.

Managed Object Description

21.10.6.2. Entries Table

The Entries Table provides information about the contents of the directory entries. Table 21.2, “Entries
Table: Managed Objects and Descriptions” describes the managed objects stored in the Entries Table
in the redhat-directory.mib file.

Table 21.2. Entries Table: Managed Objects and Descriptions

Managed Object Description

dsCopyEntries The number of directory entries for which this directory contains a copy.The
value of this object will always be 0 (as no updates are currently
performed).

dsCacheEntries The number of entries cached in the directory.

dsCacheHits The number of operations serviced from the locally held cache since
application startup.

21.10.6.3. Entity Table

The Entity Table contains identifying information about the Directory Server instance. The values for
the Entity Table are set in cn=SNMP,cn=config entry as described in Section 21.10.3, “Setting
Parameters to Identify an Instance Using SNMP”.

Table 21.3, “Entity Table: Managed Objects and Descriptions” describes the managed objects stored in
the Entity Table of the redhat-directory.mib file.

Table 21.3. Entity Table: Managed Objects and Descriptions

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

519

Managed Object Description

dsEntityDescr The description set for the Directory Server instance.

dsEntityVers The Directory Server version number of the Directory Server instance.

dsEntityOrg The organization responsible for the Directory Server instance.

dsEntityLocation The physical location of the Directory Server instance.

dsEntityContact The name and contact information for the person responsible for the
Directory Server instance.

dsEntityName The name of the Directory Server instance.

21.10.6.4. Interaction Table

NOTE

The Interaction Table is not supported by the subagent. The subagent can query the
table, but it will not ever be updated with valid data.

Table 21.4, “Interaction Table: Managed Objects and Descriptions” describes the managed objects
stored in the Interaction Table of the redhat-directory.mib file.

Table 21.4. Interaction Table: Managed Objects and Descriptions

Managed Object Description

dsIntTable Details, in each row of the table, related to the history of the interaction of
the monitored Directory Servers with their respective peer
Directory Servers.

dsIntEntry The entry containing interaction details of a Directory Server with a peer
Directory Server.

dsIntIndex Part of the unique key, together with applIndex, to identify the conceptual
row which contains useful information on the (attempted) interaction
between the Directory Server (referred to by applIndex) and a peer
Directory Server.

dsName The distinguished name (DN) of the peer Directory Server to which this
entry belongs.

dsTimeOfCreation The value of sysUpTime when this row was created. If the entry was
created before the network management subsystem was initialized, this
object will contain a value of zero.

Administration Guide

520

dsTimeOfLastAttempt The value of sysUpTime when the last attempt was made to contact this
Directory Server. If the last attempt was made before the network
management subsystem was initialized, this object will contain a value of
zero.

dsTimeOfLastSuccess The value of sysUpTime when the last attempt made to contact this
Directory Server was successful. This entry will have a value of zero if there
have been no successful attempts or if the last successful attempt was
made before the network management subsystem was initialized.

dsFailuresSinceLastSuccess The number of failures since the last time an attempt to contact this
Directory Server was successful. If there has been no successful attempts,
this counter will contain the number of failures since this entry was created.

dsFailures Cumulative failures since the creation of this entry.

dsSuccesses Cumulative successes since the creation of this entry.

dsURL The URL of the Directory Server application.

Managed Object Description

CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY

521

CHAPTER 22. MAKING A HIGH-AVAILABILITY AND DISASTER
RECOVERY PLAN
Part of running a Directory Server deployment efficiently is planning for that worst case scenario. This
chapter covers general principles for drafting a disaster recovery plan and highlights features in
Directory Server that can be used to aide in disaster recovery.

Disaster recovery is a way of planning and implementing a smooth transition from one operating
environment to another environment whenever there is some sort of catastrophic failure. A disaster
recovery plan for Directory Server may be part of a larger business continuity plan or it could be a
standalone plan specifically for an interruption in directory services.

NOTE

This chapter covers very general concepts for disaster recovery.

Disaster recovery can be a very complex and detail-specific thing. Consider using a
professional service to design, maintain, and test any disaster recovery plan for sensitive
or mission-critical services, like Red Hat Directory Server.

22.1. IDENTIFYING POTENTIAL SCENARIOS

The first step is identifying what potential issues you may encounter, what services will be affected, and
what responses you should take. In the Red Hat Directory Server Deployment Guide, administrators
made a site survey of their existing and proposed infrastructure to determine what kind of directory to
design. Do something similar for disaster planning; as in Table 22.1, “Disaster Scenarios and Responses”,
identify where your data infrastructure is, determine what the affect of losing that component is, and
look at potential ideal responses.

Table 22.1. Disaster Scenarios and Responses

Scenario Effects on Infrastructure Ideal Response

Data corruption Through software or hardware
failure (or through a malicious
attack), the data at one site or on
one server could be corrupted. If
that corrupted server is a supplier
in multi-supplier replication, then
the corruption can quickly be
propagated throughout the
deployment.

An isolated server should be
available with access to the most
recent backup of uncorrupted
data. When a problem is detected,
replication can be suspended on
the regular infrastructure, and this
server can be brought online to
reinitialize the suppliers with good
data.

Natural disasters and other mass
events

Natural disasters can take an
entire office or data center offline,
even through something as simple
as a long-term power outage.

Directory operations can be
transferred to a mirrored site at
another physical location, with the
same data.

Server or machine loss A single machine could fail. Another machine, with the same
data, can assume the lost
machine's place.

Administration Guide

522

22.2. DEFINING THE TYPE OF ROLLOVER

Disaster recovery, as the introduction says, is the process for transitioning from one system to another
system with as little interruption of service as possible. That's called a rollover, and there are three
different ways of doing a rollover:

A hot rollover means that the infrastructure is completely mirrored at another site and that the
backup site is always up and current with the primary site. This requires only a few adjustments
to switch operations from the primary to the backup.

A warm rollover means that all of the elements for the backup site are in place (adequate
network connections, all required applications and hardware) but the system is not actively
running or necessarily configured. This can require some extra time to configure the machines
and get the system running.

A cold rollover means that a site is available but there are few resources immediately available to
set it up.

The obvious difference in the types of rollover is the time and expense necessary to set up the backup
site. Hot and warm sites have higher initial expenditures to set up and run.

A mix of rollover types can be used, depending on the specific disaster scenario being planned. For
example, a rollover plan for the loss of a single server could use a hot rollover easily and relatively
cheaply by creating and keeping a virtual machine copy of the Directory Server instance which can be
brought online within minutes. It would not even require keeping the virtual machine in a separate facility
or network. On the other hand, a cold rollover could be planned for the loss of an entire data center or
office.

Match the rollover process to the severity of the disaster scenario, your budget and available resources,
and the likelihood of encountering problems.

22.3. IDENTIFYING USEFUL DIRECTORY SERVER FEATURES FOR
DISASTER RECOVERY

The hardest part of a recovery is not the hardware; it is getting a reliable copy of the data in the server.
There are three Directory Server features that are excellent tools for preparing data copies for disaster
recovery:

Backing up databases and verifying the backups regularly

Multi-supplier replication, chaining, backing up databases, and monitoring the server with a
named pipe script

Chaining

Additionally, monitoring the server with a named pipe script and with other Directory Server
performance counters can be effective at catching and quickly responding to specific, critical events.

22.3.1. Backing up Directory Data for Disaster Recovery

The most useful tool for disaster recovery is to do frequent backups of a directory instance. Archives can
be stored on physical media, at different locations than the primary data center or on-site at a cold
backup location.

Backups can be automated to run regularly through cron jobs. For example, to create a backup of the

CHAPTER 22. MAKING A HIGH-AVAILABILITY AND DISASTER RECOVERY PLAN

523

Backups can be automated to run regularly through cron jobs. For example, to create a backup of the
ldap://server.example.com instance daily at 22:00 (10pm):

0 22 * * 1 /usr/sbin/dsconf -D "cn=Directory Manager" ldap://server.example.com backup create

The dsconf backup create command backs up the directory data without having to stop the server
first.

NOTE

Red Hat recommends to back up the data on all servers in a multi-supplier replication
environment.

Backing up both directory databases and the directory configuration (dse.ldif file) are covered in
Section 6.3, “Backing up Directory Server”.

22.3.2. Multi-Supplier Replication for High-availability

Multi-supplier replication is the best defense against losing a single server and, possibly, even an entire
office or department. While a small number of servers are data suppliers, multiple servers all hold the
same data — potentially dozens of suppliers and hubs in a single replication environment. This keeps
information accessible to clients even if multiple servers go offline.

Replication can be used to copy over data to servers and bring replacements online more quickly.

NOTE

To protect against data corruption being propagated through replication, frequently back
up the database.

Replication configuration also allows write operations to be referred to failover servers if the primary
supplier is inaccessible. This means that write operations can proceed as normal from the client
perspective, even when servers go offline.

Example 22.1. Scenarios for Multi-Supplier Replication

Replication is a versatile tool for disaster recovery in several scenarios:

For a single server failure, all of the data stored on that instance is both accessible and
retrievable from other servers.

For the loss of an entire office or colocation facility, servers can be mirrored at an entirely
different physical location (which is aided by Directory Server's wide area replication
performance). With minimal effort, traffic can be redirected to the replicated site without
having to bring new servers online.

Configuring replication is covered in Chapter 15, Managing Replication.

22.3.3. Chaining Databases for High-availability

Chaining is a configuration where a client sends a request to one server and it automatically forwards

Administration Guide

524

Chaining is a configuration where a client sends a request to one server and it automatically forwards
that request to another server to process. There can be multiple servers configured in the database link
(or chain) to allow for automatic failover if one server is not available.

Example 22.2. Scenarios for Chaining

When chaining is combined with a list of failover servers, client traffic can be automatically redirected
from a single server (or even group of servers) when they are offline. This does not help in recovery,
but it helps manage the transition from primary to backup servers.

Chaining databases is covered in Section 2.3, “Creating and Maintaining Database Links” .

22.4. DEFINING THE RECOVERY PROCESS

There are a lot of tools that can help with disaster recovery, but an effective recovery process circles
back to having a well-defined plan of what to do in every scenario. Two things, at least, need to be clearly
identified:

What signals a disaster? Some things are obvious (a massive power outage, network loss, or
fire), but other situations need to be defined. For example, what signals that a backup server
needs to be brought online?

Who responds to a disaster and how? Once a disaster situation occurs, who has the responsibility
to act? How are they notified of the event? What are they expected to do?

IMPORTANT

Store a printed copy off the disaster recovery plan off-site.

Test the disaster recovery plan on a regular basis and after configuration and
infrastructure changes.

22.5. BASIC EXAMPLE: PERFORMING A RECOVERY

An administrator, John Smith, has to create a disaster recovery plan for his directory deployment.
Example Corp. has three physical offices, in San Francisco, Dallas, and Arlington. Each site has 10 servers
which replicate to each other locally, and then one server at each site replicates to another server at the
other two sites.

Each site has business-critical customer data stored in its directory, as well as human resources data.
Several external applications require access to the data to perform operations like billing.

John Smith's first step is to perform a site survey. He is looking for three things: what his directory usage
is (clients that access it and traffic loads across the sites), what his current assets are, and what assets
he may need to acquire. This is much like the initial site survey he performed when deploying Red Hat
Directory Server.

His next step is identifying potential disaster scenarios. Two of the three sites are highly vulnerable to
natural disasters (San Francisco and Dallas). All three sites could face normal interruptions, like outages
for power or Internet access. Additionally, since each site suppliers its own local data, each site is
vulnerable to losing a server instance or machine.

John Smith then breaks his disaster recovery plan into three parts:

CHAPTER 22. MAKING A HIGH-AVAILABILITY AND DISASTER RECOVERY PLAN

525

Plan A covers losing a single instance of Directory Server

Plan B covers some kind of data corruption or attack

Plan C covers losing an entire office

For plans A and B, John Smith decides to use a hot recovery to immediately switch functionality from a
single instance to the backup. Each server is backed up daily, using a cron job, and then the archive is
copied over and restored on a virtual machine. The virtual machine is kept on a different subnet, but can
be switched over immediately if its peer ever does offline. John Smith uses simple SNMP traps to track
each Directory Server instance's availability.

Plan C is more extensive. Along with replication between sites and the local backups, he decides to mail
a physical copy of each site's backup, for every local instance, once a week to the other two colocation
facilities. He also keep a spare server with adequate Internet access and software licenses to restore an
entire site, using virtual machines, one of the other different colocation facilities. He designates the
Arlington site as the primary recovery location because that is where most of the IT staff is located, then
San Francisco and last Dallas, based on the distribution of personnel. For every event, the IT
administrator at all three sites will be notified, and the manager assumes the responsibilities of setting
up the virtual machines, restoring the Directory Server instances from the physical backups, and
rerouting client traffic.

John Smith schedules to review and update the plan quarterly to account for any new hardware or
application changes. Once a year, all three sites have to run through the procedure of recovering and
deploying the other two sites, according to the procedures in Disaster Plan C.

Administration Guide

526

CHAPTER 23. CREATING TEST ENTRIES
The dsctl ldifgen command creates LDIF files with different types of test entries. For example, you can
use this LDIF file to populate a test instance or a sub-tree to test the performance of Directory Server
with the example entries.

You can pass one of the following entry type arguments to dsctl ldifgen:

users: Creates an LDIF file that contains user entries.

groups: Creates an LDIF file that contains static group and member entries.

cos-def: Creates an LDIF file that either contains a classic pointer or an indirect Class of Service
(CoS) definition.

cos-template: Creates an LDIF file that contains a CoS template.

roles: Creates an LDIF file that contains managed, filtered, or indirect role entries.

mod-load: Creates an LDIF file that contains modify operations. Import this file using the
ldapmodify utility.

nested: Creates an LDIF file that contains heavily nested entries in a cascading or fractal tree
design.

NOTE

The dsctl ldifgen command creates only the LDIF file. To load the file into your
Directory Server instance, use the:

ldapmodify utility after you created an LDIF file using the mod-load option

ldapadd utility for all other options

Except for the nested entry type, if you do not provide any command line options, the dsctl ldifgen
command uses an interactive mode:

dsctl instance_name ldifgen entry_type

23.1. CREATING AN LDIF FILE WITH EXAMPLE USER ENTRIES

Use the dsctl ldifgen users command to create an LDIF file with example user entries. For example, to
create an LDIF file named /tmp/users.ldif that adds 100,000 generic users to the
dc=example,dc=com suffix, enter:

dsctl instance_name ldifgen users --suffix "dc=example,dc=com" --number 100000 --generic --ldif-
file=/tmp/users.ldif

Note that the command creates the following organizational units (OU) and randomly assigns the users
to these OUs:

ou=accounting

ou=product development

CHAPTER 23. CREATING TEST ENTRIES

527

ou=product testing

ou=human resources

ou=payroll

ou=people

ou=groups

For further details and other options you can use to create the LDIF file, enter:

dsctl instance_name ldifgen users --help

23.2. CREATING AN LDIF FILE WITH EXAMPLE GROUP ENTRIES

Use the dsctl ldifgen groups command to create an LDIF file with example group entries. For example,
to create an LDIF file named /tmp/groups.ldif that adds 500 groups to the
ou=groups,dc=example,dc=com entry, and each group has has 100 members, enter:

dsctl instance_name ldifgen groups --number 500 --suffix "dc=example,dc=com" --parent
"ou=groups,dc=example,dc=com" --num-members 100 --create-members --member-parent
"ou=People,dc=example,dc=com" --ldif-file /tmp/group.ldif example

Note that the command also creates LDIF statements to add the user entries in
ou=People,dc=example,dc=com.

IMPORTANT

If you create large groups and try to add the group using the ldapmodif utility, you can
exceed the maximum Basic Encoding Rules (BER) size limit, and the import fails. In this
case, increase the value of the nsslapd-maxbersize parameter in the cn=config entry.

For further details and other options you can use after you create the LDIF file, enter:

dsctl instance_name ldifgen groups --help

23.3. CREATING AN LDIF FILE WITH AN EXAMPLE COS DEFINITION

Use the dsctl ldifgen cos-def command to create an LDIF file with a Class of Service (CoS) definition.
For example, to create an LDIF file named /tmp/cos-definition.ldif that adds a classic CoS definition to
the ou=cos definitions,dc=example,dc=com entry:

dsctl instance_name ldifgen cos-def Postal_Def --type classic --parent "ou=cos
definitions,dc=example,dc=com" --cos-specifier businessCatagory --cos-template
"cn=sales,cn=classicCoS,dc=example,dc=com" --cos-attr postalcode telephonenumber --ldif-file
/tmp/cos-definition.ldif

For further details about the options used in the example and other options you can set to create the
LDIF file, enter:

dsctl instance_name ldifgen cos-def --help

Administration Guide

528

23.4. CREATING AN LDIF FILE WITH EXAMPLE MODIFICATION
STATEMENTS

Use the dsctl ldifgen mod-load command to create an LDIF file that contains update operations.

dsctl instance_name ldifgen mod-load --parent dc=example,dc=com --num-users 1000 --create-
users --mod-users 1000 --add-users 10 --del-users 100 --mod-users 1000 --modrdn-users 100 --
mod-attrs cn uid sn --delete-users

This command creates the /tmp/modifications.ldif file with the statements that do the following:

1. Create an LDIF file with 1000 ADD operations to create user entries.

2. Modify all entries by changing their cn, uid, sn attributes.

3. Add additional 10 user entries.

4. Perform 100 MODRDN operations.

5. Delete 100 entries

6. Delete all remaining entries at the end.

For further details and other options you can use to create the LDIF file, enter:

dsctl instance_name ldifgen mod-load --help

23.5. CREATING AN LDIF FILE WITH NESTED EXAMPLE ENTRIES

Use the dsctl ldifgen nested command to create an LDIF file that contains a heavily nested cascading
fractal structure. For example, to create an LDIF file named /tmp/nested.nldif, that adds 600 users in
total in different organization units (OU) under the dc=example,dc=com entry, with each OU
containing a maximum number of 100 users:

dsctl instance_name ldifgen nested --num-users 600 --node-limit 100 --suffix "dc=example,dc=com"

For further details about the options, enter:

dsctl instance_name ldifgen nested --help

CHAPTER 23. CREATING TEST ENTRIES

529

APPENDIX A. USING LDAP CLIENT TOOLS
Red Hat Directory Server uses the LDAP tools (such as ldapsearch and ldapmodify) supplied with
OpenLDAP. The OpenLDAP tool options are described in the OpenLDAP man pages at
http://www.openldap.org/software/man.cgi.

This appendix gives some common usage scenarios and examples for using these LDAP tools.

More extensive examples for using ldapsearch are given in Chapter 14, Finding Directory Entries . More
examples for using ldapmodify and ldapdelete are given in Chapter 3, Managing Directory Entries .

A.1. RUNNING EXTENDED OPERATIONS

Red Hat Directory Server supports a variety of extended operations, especially extended search
operations. An extended operation passes an additional operation (such as a get effective rights search
or server-side sort) along with the LDAP operation. Likewise, LDAP clients have the potential to
support a number of extended operations.

The OpenLDAP LDAP tools support extended operations in two ways. All client tools (ldapmodify,
ldapsearch, and the others) use either the -e or -E options to send an extended operation. The -e
argument can be used with any OpenLDAP client tool and sends general instructions about the
operation, like how to handle password policies. The -E is used only with ldapsearches and passes more
useful controls like GER searches, sort and page information, and information for other, not-explicitly-
support extended operations.

Additionally, OpenLDAP has another tool, ldapexop, which is used exclusively to perform extended
search operations, the same as running ldapsearch -E.

The format of an extended operation with ldapsearch is generally:

-E extended_operation_type=operation_parameters

When an extended operation is explicitly handled by the OpenLDAP tools, then the
extended_operation_type can be an alias, like deref for a dereference search or sss for server-side
sorting. A supported extended operation has formatted output. Other extended operations, like GER
searches, are passed using their OID rather than an alias, and then the extended_operation_type is the
OID. For those unsupported operations the tool does not recognize the response from the server, so the
output is unformatted.

For example, the pg extended operation type formats the results in simple pages:

ldapsearch -x -D "cn=Directory Manager" -W -b "ou=Engineers,ou=People,dc=example,dc=com" -E
pg=3 "(objectclass=*)" cn

dn: uid=jsmith,ou=Engineers,ou=People,dc=example,dc=com
 cn: John Smith

dn: uid=bjensen,ou=Engineers,ou=People,dc=example,dc=com
 cn: Barbara Jensen

dn: uid=hmartin,ou=Engineers,ou=People,dc=example,dc=com
 cn: Henry Martin

Results are sorted.
next page size (3): 5

Administration Guide

530

http://www.openldap.org/software/man.cgi

The same operation with ldapexop can be run using only the OID of the simple paged results operation
and the operation's settings (3 results per page):

ldapexop 1.2.840.113556.1.4.319=3

However, ldapexop does not accept the same range of search parameters that ldapsearch does,
making it less flexible.

A.2. COMPARING ENTRIES

ldapcompare checks entries to see if the specified entry or entries contain an attribute of a specific
value. For example, this checks to see if an entry has an sn value of Smith:

ldapcompare -D "cn=Directory Manager" -W -p 389 -h server.example.com -x sn:smith
uid=bjensen,ou=people,dc=example,dc=com
comparing type: "sn" value: "smith" in entry "uid=bjensen,ou=people,dc=example,dc=com"
compare FALSE

ldapcompare -D "cn=Directory Manager" -W -p 389 -h server.example.com -x sn:smith
uid=jsmith,ou=people,dc=example,dc=com
comparing type: "sn" value: "smith" in entry "uid=jsmith,ou=people,dc=example,dc=com"
compare TRUE

The compare attribute can be specified in one of three ways:

A single attribute:value statement passed in the command line directly

sn:Smith

A single attribute::base64value statement passed in the command line directly, for attributes like
jpegPhoto or to verify certificates or CRLs

jpegPhoto:dkdkPDKCDdko0eiofk==

An attribute:file statement that points to a file containing a list of comparison values for the
attribute, and the script iterates through the list

postalCode:/tmp/codes.txt

The compare operation itself has to be run against a specific entry or group of entries. A single entry DN
can be passed through the command line, or a list of DNs to be compared can be given using the -f
option.

Example A.1. Comparing One Attribute Value to One Entry

Both the attribute-value comparison and the DN are passed with the script.

ldapcompare -D "cn=Directory Manager" -W -p 389 -h server.example.com -x sn:smith
uid=jsmith,ou=people,dc=example,dc=com
comparing type: "sn" value: "smith" in entry "uid=jsmith,ou=people,dc=example,dc=com"
compare TRUE

APPENDIX A. USING LDAP CLIENT TOOLS

531

Example A.2. Comparing a List Attribute Values from a File

First, create a file of possible sn values.

jensen
johnson
johannson
jackson
jorgenson

Then, create a list of entries to compare the values to.

uid=jen200,ou=people,dc=example,dc=com
uid=dsj,ou=people,dc=example,dc=com
uid=matthewjms,ou=people,dc=example,dc=com
uid=john1234,ou=people,dc=example,dc=com
uid=jack.son.1990,ou=people,dc=example,dc=com

Then run the script.

ldapcompare -D "cn=Directory Manager" -W -p 389 -h server.example.com -x
sn:/tmp/surnames.txt -f /tmp/names.txt
comparing type: "sn" value: "jensen" in entry "uid=jen200,ou=people,dc=example,dc=com"
compare TRUE

A.3. CHANGING PASSWORDS

The ldappasswd command can either set a new user-defined password or generate a new password for
an account. Other settings (for bind information, connection information, or other command settings)
may be required and are listed in the OpenLDAP manpages.

ldappasswd -x -D bind_dn -W -p server_port -h server_hostname [-A | -a oldPassword] [-S | -s
newPassword] [user]

IMPORTANT

Password change operations must be run over a secure connection, such as TLS,
STARTTLS, or SASL. For information on how to configure TLS for LDAP clients, see
Section 9.9.4, “Authenticating Using a Certificate” .

Example A.3. Directory Manager Changing a User's Password Over TLS

The Directory Manager changes the password of the user
uid=tuser1,ou=People,dc=example,dc=com to new_password over TLS.

ldappasswd -D "cn=Directory Manager" -W -ZZ -p 389 -h server.example.com -x -s
new_password "uid=tuser1,ou=People,dc=example,dc=com"

Example A.4. Directory Manager Generating a User's Password

Administration Guide

532

The Directory Manager generates the password of the user
uid=tuser2,ou=People,dc=example,dc=com over TLS.

ldappasswd -D "cn=Directory Manager" -W -ZZ -p 389 -h server.example.com -x
"uid=tuser2,ou=People,dc=example,dc=com"

Example A.5. User Changing His Own Password

A user, tuser3, changes the password from old_newpassword to new_password over TLS.

ldappasswd -p 389 -h server.example.com -ZZ -x -D
"uid=tuser3,ou=People,dc=example,dc=com" -W -a old_password -s new_password

Example A.6. User Authenticating with DIGEST_MD5 and Changing His Password

A user, jsmith, authenticates with GSS-API and changes the password to new_password.

ldappasswd -p 389 -h server.example.com -O noplain,minssf=1,maxbufsize=512 -Y GSSAPI -U
"dn:uid=jsmith,ou=people,dc=example,dc=com" -R EXAMPLE.COM -W -s new_password

Example A.7. User Already Authenticated by Kerberos Prompts for a New Password

A user, who has already authenticated by Kerberos, prompts for the new password. This is not
performed over TLS.

ldappasswd -p 389 -h server.example.com -O noplain,minssf=1,maxbufsize=512 -I

A.4. GENERATING LDAP URLS

LDAP URLs are used in a variety of different configuration areas and operations: referrals and chaining,
replication, synchronization, ACIs, and indexing, as a starting list. Constructing accurate LDAP URLs is
critical, because incorrect URLs may connect to the wrong server or simply cause operations to fail.
Additionally, all OpenLDAP tools allow the -H option to pass an LDAP URL instead of other connection
information (like the host name, port, subtree, and search base).

NOTE

LDAP URLs are described in Appendix C, LDAP URLs .

The ldapurl command manages URL in two ways:

Deconstruct a given LDAP URL into its constituent element

Construct a new, valid LDAP URL from given elements

The parameters for working with URLs are listed in Table A.1, “ldapurl Parameters” ; the full list of
parameters are in the OpenLDAP manpages.

APPENDIX A. USING LDAP CLIENT TOOLS

533

Table A.1. ldapurl Parameters

Option Description

For Deconstructing a URL

-H "URL" Passes the LDAP URL to break down into elements.

For Constructing a URL

-a attributes Gives a comma-separated attributes that are
specifically returned in search results.

-b base Sets the search base or subtree for the URL.

-f filter Sets the search filter to use.

-h hostname Gives the Directory Server's host name.

-p port Gives the Directory Server's port.

-S ldap|ldaps|ldapi Gives the protocol to use to connect, such as ldap,
ldaps, or ldapi.

-s scope Gives the search scope.

Example A.8. Deconstructing an LDAP URL

ldapurl uses the -H option to feed in an existing LDAP URL, and the tool returns the elements of the
URL in a neat list:

ldapurl -H "ldap://:389/dc=example,dc=com?cn,sn?sub?(objectclass=inetorgperson)"
scheme: ldap
port: 389
dn: dc=example,dc=com
selector: cn
selector: sn
scope: sub
filter: (objectclass=inetorgperson)

Example A.9. Constructing an LDAP URL

The most useful application of ldapurl is to construct a valid LDAP URL manually. Using ldapurl
ensures that the URL is valid.

ldapurl accepts the normal connection parameters of all LDAP client tools and additional
ldapsearch arguments for search base, scope, and attributes, but this tool never connects to a
Directory Server instance, so it does not require any bind information. It accepts the connection and
search settings and feeds them in as elements to the URL.

Administration Guide

534

ldapurl -a cn,sn -b dc=example,dc=com -s sub -f "(objectclass=inetorgperson)"

ldap://:389/dc=example,dc=com?cn,sn?sub?(objectclass=inetorgperson)

APPENDIX A. USING LDAP CLIENT TOOLS

535

APPENDIX B. LDAP DATA INTERCHANGE FORMAT
Red Hat Directory Server (Directory Server) uses the LDAP Data Interchange Format (LDIF) to
describe a directory and directory entries in text format. LDIF is commonly used to build the initial
directory database or to add large numbers of entries to the directory all at once. In addition, LDIF is also
used to describe changes to directory entries. For this reason, most of Directory Server's command-line
utilities rely on LDIF for either input or output.

Because LDIF is a text file format, LDIF files can be created using virtually any language. All directory
data is stored using the UTF-8 encoding of Unicode. Therefore, the LDIF files created must also be
UTF-8 encoded.

For information on using LDIF to modify directory entries, see Chapter 3, Managing Directory Entries .

B.1. ABOUT THE LDIF FILE FORMAT

LDIF consists of one or more directory entries separated by a blank line. Each LDIF entry consists of an
optional entry ID, a required distinguished name, one or more object classes, and multiple attribute
definitions.

The LDIF format is defined in RFC 2849, The LDAP Data Interchange Format (LDIF) . Directory Server is
compliant with this standard.

The basic form of a directory entry represented in LDIF is as follows:

dn: distinguished_name
objectClass: object_class
objectClass: object_class
...
 attribute_type[;subtype]:attribute_value
...

Every LDIF entry must have a DN and at least one object class definition.

Include any attributes required by the object classes defined for the entry.

All other attributes and object classes are optional.

Object classes and attributes can be specified in any order.

The space after the colon is optional.

Table B.1, “LDIF Fields” describes the LDIF fields shown in the previous definition.

Table B.1. LDIF Fields

Field Definition

[id] Optional. A positive decimal number representing the
entry ID. The database creation tools generate this ID
automatically. Never add or edit this value yourself.

dn: distinguished_name Specifies the distinguished name for the entry.

Administration Guide

536

objectClass: object_class Specifies an object class to use with this entry. The
object class identifies the types of attributes, or
schema, allowed and required for the entry. See the
Red Hat Directory Server 11 Configuration, Command,
and File Reference for a list of standard object
classes and Chapter 12, Managing the Directory
Schema for information on customizing the schema.

attribute_type Specifies a descriptive attribute to use with the
entry. The attribute should be defined either in the
schema. See the Red Hat Directory Server 11
Configuration, Command, and File Reference for a list
of standard attributes and Chapter 12, Managing the
Directory Schema for information on customizing the
schema.

[subtype] Optional. Specifies subtype, language, binary, or
pronunciation. Use this tag to identify the language in
which the corresponding attribute value is expressed
or whether the attribute value is binary or a
pronunciation of an attribute value. For a complete
list of the supported subtypes tags, see Table D.1,
“Supported Language Subtypes”.

attribute_value Specifies the attribute value to be used with the
attribute type.

Field Definition

NOTE

The LDIF syntax for representing a change to an entry in the directory is different from
the syntax described in Table B.1, “LDIF Fields”. For information on using LDIF to modify
directory entries, see Chapter 3, Managing Directory Entries .

B.2. CONTINUING LINES IN LDIF

In LDIF files, a line can be broken and continued (called folded) by indenting the continued portion of
the line by exactly one space. For example, the following two statements are identical:

dn: cn=some_example_user,dc=example,dc=com

dn: cn=some_e
 xample_user,
 dc=example,d
 c=com

It is not required to break and continue LDIF lines. However, doing so may improve the readability of the
LDIF file. The usual convention is that an LDIF file does not contain more than 78 columns of text.

B.3. REPRESENTING BINARY DATA

APPENDIX B. LDAP DATA INTERCHANGE FORMAT

537

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

Binary data, such as a JPEG image, is represented in LDIF using one of two methods, standard LDIF
notation or base-64 encoding.

B.3.1. Standard LDIF Notation

Standard LDIF notation uses the lesser than (<) symbol to indicate that the data are binary. For
example:

jpegphoto: < file:/path/to/photo

With this standard notation, it is not necessary to specify the ldapmodify -b parameter. However,
standard notation requires that the following line be added to the beginning of the LDIF file or the LDIF
update statements:

version: 1

For example:

ldapmodify -x -D userDN -W

version: 1
dn: cn=Barney Fife,ou=People,dc=example,dc=com
changetype: modify
add: usercertificate
usercertificate;binary: < file: BarneysCert

B.3.2. Base-64 Encoding

Binary data can be converted to base-64, which can be used in LDIF files, for a variety of data, from
images to TLS certificates. Base 64-encoded data are identified by using the :: symbol. For example:

jpegPhoto::encoded_data

In addition to binary data, other values that must be base-64 encoded include the following:

Any value that begins with a colon (:) or a space.

Any value that contains non-ASCII data, including new lines.

Use the ldif command-line utility with the -b parameter to convert binary data to LDIF format:

ldif -b attribute_name

attribute_name is the name of the attribute to which the binary data is supplied. The binary data is read
from standard input and the results are written to standard output. Thus, use redirection operators to
select input and output files.

The ldif command-line utility will take any input and format it with the correct line continuation and
appropriate attribute information. The ldif utility also assesses whether the input requires base-64
encoding. For example:

ldif -b jpegPhoto < mark.jpg > out.ldif

Administration Guide

538

This example takes a binary file containing a JPEG-formatted image and converts it into LDIF format
for the attribute jpegPhoto. The output is saved to out.ldif.

The -b option specifies that the ldif utility should interpret the entire input as a single binary value. If -b
is not present, each line is considered to be a separate input value.

B.4. SPECIFYING DIRECTORY ENTRIES USING LDIF

Many types of entries can be stored in the directory. This section concentrates on three of the most
common types of entries used in a directory: domain, organizational unit, and organizational person
entries.

The object classes defined for an entry are what indicate whether the entry represents a domain or
domain component, an organizational unit, an organizational person, or some other type of entry. For a
complete list of the object classes that can be used by default in the directory and a list of the most
commonly used attributes, see the Red Hat Directory Server 11 Configuration, Command, and File
Reference.

B.4.1. Specifying Domain Entries

Directories often have at least one domain entry. Typically this is the first, or topmost, entry in the
directory. The domain entry often corresponds to the DNS host and domain name for your directory.
For example, if the Directory Server host is called ldap.example.com, then the domain entry for the
directory is probably named dc=ldap,dc=example,dc=com or simply dc=example,dc=com.

The LDIF entry used to define a domain appears as follows:

dn: distinguished_name
objectClass: top
objectClass: domain
dc: domain_component_name
 list_of_optional_attributes
...

The following is a sample domain entry in LDIF format:

dn: dc=example,dc=com
objectclass: top
objectclass: domain
dc: example
description: Fictional example company

Each element of the LDIF-formatted domain entry is defined in Table B.2, “LDIF Elements in Domain
Entries”.

Table B.2. LDIF Elements in Domain Entries

LDIF Element Description

dn: distinguished_name Required. Specifies the distinguished name for the
entry.

objectClass: top Required. Specifies the top object class.

APPENDIX B. LDAP DATA INTERCHANGE FORMAT

539

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

objectClass: domain Specifies the domain object class. This line defines
the entry as a domain or domain component. See the
Red Hat Directory Server 11 Configuration, Command,
and File Reference for a list of the attributes that can
be used with this object class. -->

dc: domain_component Attribute that specifies the domain's name. The
server is typically configured during the initial setup
to have a suffix or naming context in the form
dc=hostname,dc=domain,dc=toplevel. For example,
dc=ldap,dc=example,dc=com. The domain entry
should use the leftmost dc value, such as dc: ldap. If
the suffix were dc=example,dc=com, the dc value
is dc: example. Do not create the entry for dn:
dc=com unless the server has been configured to
use that suffix.

list_of_attributes Specifies the list of optional attributes to maintain
for the entry. See the Red Hat Directory Server 11
Configuration, Command, and File Reference for a list
of the attributes that can be used with this object
class.

LDIF Element Description

B.4.2. Specifying Organizational Unit Entries

Organizational unit entries are often used to represent major branch points, or subdirectories, in the
directory tree. They correspond to major, reasonably static entities within the enterprise, such as a
subtree that contains people or a subtree that contains groups.

The organizational unit attribute that is contained in the entry may also represent a major organization
within the company, such as marketing or engineering. However, this style is discouraged. Red Hat
strongly encourages using a flat directory tree.

There is usually more than one organizational unit, or branch point, within a directory tree.

The LDIF that defines an organizational unit entry must appear as follows:

dn: distinguished_name
objectClass: top
objectClass: organizationalUnit
ou: organizational_unit_name
 list_of_optional_attributes
...

The following is a sample organizational unit entry in LDIF format:

dn: ou=people,dc=example,dc=com
objectclass: top
objectclass: organizationalUnit
ou: people
description: Fictional example organizational unit

Administration Guide

540

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

Table B.3, “LDIF Elements in Organizational Unit Entries” defines each element of the LDIF-formatted
organizational unit entry.

Table B.3. LDIF Elements in Organizational Unit Entries

LDIF Element Description

dn: distinguished_name Specifies the distinguished name for the entry. A DN
is required. If there is a comma in the DN, the comma
must be escaped with a backslash (\), such as dn:
ou=people,dc=example,dc=com.

objectClass: top Required. Specifies the top object class.

objectClass: organizationalUnit Specifies the organizationalUnit object class. This
line defines the entry as an organizational unit.
See the Red Hat Directory Server 11 Configuration,
Command, and File Reference for a list of the
attributes available for this object class.

ou: organizational_unit_name Attribute that specifies the organizational unit's
name.

list_of_attributes Specifies the list of optional attributes to maintain
for the entry. See the Red Hat Directory Server 11
Configuration, Command, and File Reference for a list
of the attributes available for this object class.

B.4.3. Specifying Organizational Person Entries

The majority of the entries in the directory represent organizational people.

In LDIF, the definition of an organizational person is as follows:

dn: distinguished_name
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: common_name
sn: surname
 list_of_optional_attributes

The following is an example organizational person entry in LDIF format:

dn: uid=bjensen,ou=people,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
cn: Babs Jensen
sn: Jensen

APPENDIX B. LDAP DATA INTERCHANGE FORMAT

541

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

givenname: Babs
uid: bjensen
ou: people
description: Fictional example person
telephoneNumber: 555-5557
userPassword: {SSHA}dkfljlk34r2kljdsfk9

Table B.4, “LDIF Elements in Person Entries” defines each aspect of the LDIF person entry.

Table B.4. LDIF Elements in Person Entries

LDIF Element Description

dn: distinguished_name Required. Specifies the distinguished name for the
entry. For example, dn:
uid=bjensen,ou=people,dc=example,dc=com.
If there is a comma in the DN, the comma must be
escaped with a backslash (\).

objectClass: top Required. Specifies the top object class.

objectClass: person Specifies the person object class. This object class
specification should be included because many
LDAP clients require it during search operations for a
person or an organizational person.

objectClass: organizationalPerson Specifies the organizationalPerson object class.
This object class specification should be included
because some LDAP clients require it during search
operations for an organizational person.

objectClass: inetOrgPerson Specifies the inetOrgPerson object class. The
inetOrgPerson object class is recommended for
the creation of an organizational person entry
because this object class includes the widest range of
attributes. The uid attribute is required by this object
class, and entries that contain this object class are
named based on the value of the uid attribute. See
the Red Hat Directory Server 11 Configuration,
Command, and File Reference for a list of the
attributes available for this object class.

cn: common_name Specifies the person's common name, which is the
full name commonly used by the person. For
example, cn: Bill Anderson. At least one common
name is required.

sn: surname Specifies the person's surname, or last name. For
example, sn: Anderson. A surname is required.

Administration Guide

542

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html

list_of_attributes Specifies the list of optional attributes to maintain
for the entry. See the Red Hat Directory Server 11
Configuration, Command, and File Reference for a list
of the attributes available for this object class.

LDIF Element Description

B.5. DEFINING DIRECTORIES USING LDIF

The contents of an entire directory can be defined using LDIF. Using LDIF is an efficient method of
directory creation when there are many entries to add to the directory.

To create a directory using LDIF:

1. Create an ASCII file containing the entries to add in LDIF format.

Make sure each entry is separated from the next by an empty line. Use just one line between
entries, and make sure the first line of the file is not be blank, or else the ldapmodify utility will
exit. For more information, see Section B.4, “Specifying Directory Entries Using LDIF” .

2. Begin each file with the topmost, or root, entry in the database.

The root entry must represent the suffix or sub-suffix contained by the database. For example,
if the database has the suffix dc=example,dc=com, the first entry in the directory must be dn:
dc=example,dc=com.

For information on suffixes, see the "Suffix" parameter described in the Red Hat
Directory Server Configuration, Command, and File Reference.

3. Make sure that an entry representing a branch point in the LDIF file is placed before the entries
to create under that branch.

For example, to place an entry in a people and a group subtree, create the branch point for
those subtrees before creating entries within those subtrees.

NOTE

The LDIF file is read in order, so parent entries must be listed before the child
entries.

4. Create the directory from the LDIF file using one of the following methods:

Initializing the database through the web console. Use this method if there is a small
database to import (less than 10,000 entries). See Section 6.1.3, “Importing Data Using the
Web Console”.

APPENDIX B. LDAP DATA INTERCHANGE FORMAT

543

https://access.redhat.com/documentation/en-US/Red_Hat_Directory_Server/11/html/Configuration_Command_and_File_Reference/index.html
https://access.redhat.com/documentation/en-us/red_hat_directory_server/11/html/configuration_command_and_file_reference/index

WARNING

This method is destructive and will erase any existing data in the suffix.

ldif2db or ldif2db.pl command-line utility. Use this method if there is a large database to
import (more than 10,000 entries). See Section 6.1.2.2, “Importing Data While the Server is
Offline”.

ldif2db cannot be used if the server is running.

ldif2db.pl can only be used if the server is running.

WARNING

This method is destructive and will erase any existing data in the suffix.

ldapmodify command-line utility with the -a parameter. Use this method if a new subtree is
being added to an existing database or there is existing data in the suffix which should not
be deleted. Unlike the other methods for creating the directory from an LDIF file,
Directory Server must be running before a subtree can be added using ldapmodify. See
Section 3.1.3, “Adding an Entry” .

Example B.1. LDIF File Example

This LDIF file contains one domain, two organizational units, and three organizational person entries:

dn: dc=example,dc=com
objectclass: top
objectclass: domain
dc: example
description: Fictional example domain

dn: ou=People,dc=example,dc=com
objectclass: top
objectclass: organizationalUnit
ou: People
description: Fictional example organizational unit
tel: 555-5559

dn: cn=June Rossi,ou=People,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: June Rossi





Administration Guide

544

sn: Rossi
givenName: June
mail: rossi@example.com
userPassword: {sha}KDIE3AL9DK
ou: Accounting
ou: people
telephoneNumber: 2616
roomNumber: 220

dn: cn=Marc Chambers,ou=People,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Marc Chambers
sn: Chambers
givenname: Marc
mail: chambers@example.com
userPassword: {sha}jdl2alem87dlacz1
telephoneNumber: 2652
ou: Manufacturing
ou: People
roomNumber: 167

dn: cn=Robert Wong,ou=People,example.com Corp,dc=example,dc=com
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: Robert Wong
cn: Bob Wong
sn: Wong
givenname: Robert
givenname: Bob
mail: bwong@example.com
userPassword: {sha}nn2msx761
telephoneNumber: 2881
roomNumber: 211
ou: Manufacturing
ou: people

dn: ou=Groups,dc=example,dc=com
objectclass: top
objectclass: organizationalUnit
ou: groups
description: Fictional example organizational unit

B.6. STORING INFORMATION IN MULTIPLE LANGUAGES

If the directory contains a single language, it is not necessary to do anything special to add a new entry
to the directory. However, if an organization is multinational, it may be necessary to store information in
multiple languages so that users in different locales can view directory information in their own
language.

When information in the directory is represented in multiple languages, the server associates language

APPENDIX B. LDAP DATA INTERCHANGE FORMAT

545

When information in the directory is represented in multiple languages, the server associates language
tags with attribute values. When a new entry is added, the attribute values used in the RDN (relative
distinguished name, the naming attribute) must be provided without any language codes.

Multiple languages can be stored for a single attribute. In this case, the attribute types are the same, but
each value has a different language code.

For a list of the languages supported by Directory Server and their associated language tags, see
Section D.2, “Supported Locales”.

NOTE

The language tag has no effect on how the string is stored within the directory. All object
class and attribute strings are stored using UTF-8. The user is responsible for converting
the data used in the LDIF to UTF-8. The iconv or uconv command provided by most
operating systems can be used to convert data from the native characterset into UTF-8.

For example, Example Corporation has offices in the United States and France and wants employees to
be able to view directory information in their native language. When adding directory entries, the
directory administrator chooses to provide attribute values in both English and French. When adding a
directory entry for a new employee, Babs Jensen, the administrator does the following:

1. The administrator creates a file, street.txt, with the French street address value:

1 rue de l'Université

2. The file contents are then converted to UTF-8:

iconv -t UTF-8 -o output.txt street.txt

3. The following LDIF entry is created using the UTF-8 value of the street address value for
streetAddress;lang-fr.

dn: uid=bjensen,ou=people,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
name: Babs Jensen
cn: Babs Jensen
sn: Jensen
uid: bjensen
streetAddress: 1 University Street
streetAddress;lang-en: 1 University Street
streetAddress;lang-fr:: AasljdoaAJASI023909jaASJaonasd0ADS
preferredLanguage: fr

The double colons after the attribute name and subtype indicate that the value is binary base-
64 encoded.

Users accessing this directory entry with an LDAP client with the preferred language set to English will
see the address 1 University Street. Users accessing the directory with an LDAP client with the
preferred language set to French will see the address 1 rue de l'Université.

Administration Guide

546

APPENDIX C. LDAP URLS
LDAP URLs identify the Red Hat Directory Server instance, similarly to the way site URLs identify a
specific website or web page. There are three common times when the LDAP URL of the
Directory Server instance is used:

The LDAP URL is used to identify the specific Directory Server instance when the
Directory Server is accessed using a web-based client.

LDAP URLs are used to configure Directory Server referrals.

LDAP URLs are used to configure access control instructions.

NOTE

The LDAP URL format is described in RFC 4516, which is available at
http://www.ietf.org/rfc/rfc4516.txt.

C.1. COMPONENTS OF AN LDAP URL

ldap[s]://hostname:port/base_dn?attributes?scope?filter

It is also possible to use IPv4 or IPv6 addresses instead of the host name.

The ldap:// protocol is used to connect to LDAP servers over unsecured connections, and the ldaps://
protocol is used to connect to LDAP servers over TLS connections. Table C.1, “LDAP URL Components”
lists the components of an LDAP URL.

NOTE

The LDAP URL format is described in RFC 4516, which is available at
http://www.ietf.org/rfc/rfc4516.txt.

Table C.1. LDAP URL Components

Component Description

host name Name, IPv4, o r IPv6 address of the LDAP server. For example,
ldap.example.com, 192.0.2.90, or [2001:db8::1].

port Port number of the LDAP server (for example, 696). If no port is specified, the
standard LDAP port (389) or LDAPS port (636) is used.

base_dn Distinguished name (DN) of an entry in the directory. This DN identifies the entry
that is the starting point of the search. If no base DN is specified, the search starts
at the root of the directory tree.

attributes The attributes to be returned. To specify more than one attribute, use commas to
separate the attributes; for example, cn,mail,telephoneNumber. If no
attributes are specified in the URL, all attributes are returned.

APPENDIX C. LDAP URLS

547

http://www.ietf.org/rfc/rfc4516.txt
http://www.ietf.org/rfc/rfc4516.txt

scope The scope of the search, which can be one of these values:

base retrieves information only about the distinguished name (base_dn) specified in

the URL.

one retrieves information about entries one level below the distinguished name

(base_dn) specified in the URL. The base entry is not included in this scope.

sub retrieves information about entries at all levels below the distinguished name

(base_dn) specified in the URL. The base entry is included in this scope.

If no scope is specified, the server performs a base search.

filter Search filter to apply to entries within the specified scope of the search. If no filter
is specified, the server uses the filter (objectClass=*).

Component Description

The attributes, scope, and filter components are identified by their positions in the URL. Even if no
attributes are specified, the question marks still must be included to delimit that field.

For example, to specify a subtree search starting from dc=example,dc=com that returns all attributes
for entries matching (sn=Jensen), use the following LDAP URL:

ldap://ldap.example.com/dc=example,dc=com??sub?(sn=Jensen)

The two consecutive question marks, ??, indicate that no attributes have been specified. Since no
specific attributes are identified in the URL, all attributes are returned in the search.

C.2. ESCAPING UNSAFE CHARACTERS

Any unsafe characters in the URL need to be escaped, or substituted with a special sequence of
characters.

For example, a space is an unsafe character that must be represented as %20 within the URL. Thus, the
distinguished name o=example.com corporation must be encoded as
o=example.com%20corporation.

The following table lists the characters that are considered unsafe within URLs and provides the
associated escape characters to use in place of the unsafe character:

Unsafe Character Escape Characters

space %20

< %3c

> %3e

Administration Guide

548

" %22

%23

% %25

{ %7b

} %7d

| %7c

\ %5c

^ %5e

~ %7e

[%5b

] %5d

` %60

Unsafe Character Escape Characters

C.3. EXAMPLES OF LDAP URLS

NOTE

The LDAP URL format is described in RFC 4516, which is available at
http://www.ietf.org/rfc/rfc4516.txt.

Example 1

The following LDAP URL specifies a base search for the entry with the distinguished name
dc=example,dc=com.

ldap://ldap.example.com/dc=example,dc=com

Because no port number is specified, the standard LDAP port number (389) is used.

Because no attributes are specified, the search returns all attributes.

Because no search scope is specified, the search is restricted to the base entry
dc=example,dc=com.

Because no filter is specified, the directory uses the default filter (objectclass=*).

APPENDIX C. LDAP URLS

549

http://www.ietf.org/rfc/rfc4516.txt

Example 2

The following LDAP URL retrieves the postalAddress attribute of the entry with the DN
dc=example,dc=com:

ldap://ldap.example.com/dc=example,dc=com?postalAddress

Because no search scope is specified, the search is restricted to the base entry
dc=example,dc=com.

Because no filter is specified, the directory uses the default filter (objectclass=*).

Example 3

The following LDAP URL retrieves the cn, mail, and telephoneNumber attributes of the entry for
Barbara Jensen:

ldap://ldap.example.com/cn=Barbara%20Jensen,dc=example,dc=com?cn,mail,telephoneNumber

Because no search scope is specified, the search is restricted to the base entry cn=Barbara
Jensen,dc=example,dc=com.

Because no filter is specified, the directory uses the default filter (objectclass=*).

Example 4

The following LDAP URL specifies a search for entries that have the surname Jensen and are at any
level under dc=example,dc=com:

ldap://ldap.example.com/dc=example,dc=com??sub?(sn=Jensen)

Because no attributes are specified, the search returns all attributes.

Because the search scope is sub, the search encompasses the base entry
dc=example,dc=com and entries at all levels under the base entry.

Example 5

The following LDAP URL specifies a search for the object class for all entries one level under
dc=example,dc=com:

ldap://ldap.example.com/dc=example,dc=com?objectClass?one

Because the search scope is one, the search encompasses all entries one level under the base
entry dc=example,dc=com. The search scope does not include the base entry.

Because no filter is specified, the directory uses the default filter (objectclass=*).

NOTE

The syntax for LDAP URLs does not include any means for specifying credentials or
passwords. Search requests initiated through LDAP URLs are unauthenticated, unless
the LDAP client that supports LDAP URLs provides an authentication mechanism.

Administration Guide

550

APPENDIX D. INTERNATIONALIZATION
Red Hat Directory Server allows users to store, manage, and search for entries and their associated
attributes in a number of different languages. An internationalized directory can be an invaluable
corporate resource, providing employees and business partners with immediate access to the
information they need in languages they understand.

Directory Server supports all international character sets by default because directory data is stored in
UTF-8. Further, Directory Server can use specified matching rules and collation orders based on
language preferences in search operations.

NOTE

ASCII characters are required for attribute and object class names.

D.1. ABOUT LOCALES

Directory Server provides support for multiple languages through the use of locales. A locale identifies
language-specific information about how users of a specific region, culture, or custom expect data to be
presented, including how data of a given language is interpreted and how data is to be sorted, or
collated.

In addition, the locale information indicates what code page should be used to represent a given
language. A code page is an internal table that the operating system uses to relate keyboard keys to
character font screen displays.

More specifically, a locale defines four things:

Collation order. The collation order provides language and cultural-specific information about
how the characters of a given language are to be sorted. It identifies things like the sequence of
the letters in the alphabet, how to compare letters with accents to letters without accents, and if
there are any characters that can be ignored when comparing strings. The collation order also
takes into account culture-specific information about a language, such as the direction in which
the language is read (left to right, right to left, or up and down).

Character type. The character type distinguishes alphabetic characters from numeric or other
characters. For example, in some languages, the pipe (|) character is considered punctuation
while in others it is considered alphabetic. In addition, it defines the mapping of upper-case to
lower-case letters.

Monetary format. The monetary format specifies the monetary symbol used by a specific region,
whether the symbol goes before or after its value, and how monetary units are represented.

Time/date format. The time and date format indicates the customary formatting for times and
dates in the region. The time and date format indicates whether dates are customarily
represented in the mm/dd/yy (month, day, year) or dd/mm/yy (day, month, year) format and
specifies what the days of the week and month are in a given language. For example, the date
January 10, 1996, is represented as 10. leden 1996 in Czech and 10 janvier 1996 in French.

Because a locale describes cultural, customary, and regional differences in addition to mechanical
language differences, the directory data can both be translated into the specific languages understood
by users as well as be presented in a way that users in a given region expect.

D.2. SUPPORTED LOCALES

APPENDIX D. INTERNATIONALIZATION

551

When performing directory operations that require that a locale be specified, such as a search operation,
use a language tag or a collation order object identifier (OID).

A language tag is a string that begins with the two-character lowercase language code that identifies
the language, as defined in ISO Standard 639. If necessary to distinguish regional differences in
language, the language tag may also contain a two-character string for the country code, as defined in
ISO Standard 3166. The language code and country code are separated by a hyphen. For example, the
language tag used to identify the British English locale is en-GB.

An object identifier (OID) is a decimal number used to uniquely identify an object, such as an attribute or
object class. The OIDs for searching or indexing an internationalized directory identify specific collation
orders supported by the Directory Server. For example, the OID 2.16.840.1.113730.3.3.2.17.1 identifies
the Finnish collation order.

When performing an international search in the directory, use either the language tag or the OID to
identify the collation order to use. However, when setting up an international index, the OIDs must be
used. For more information on indexing, see Chapter 13, Managing Indexes.

For a list of language tags and OIDs supported by the Directory Server, see the
/etc/dirsrv/config/slapd-collations.conf file.

D.3. SUPPORTED LANGUAGE SUBTYPES

Language subtypes can be used by clients to determine specific values for which to search. For more
information on using language subtypes, see Section 3.1.9, “Updating an Entry in an Internationalized
Directory”. Table D.1, “Supported Language Subtypes” lists the supported language subtypes for
Directory Server.

Table D.1. Supported Language Subtypes

Language Tag Language

af Afrikaans

be Belarusian

bg Bulgarian

ca Catalan

cs Czech

da Danish

de German

el Greek

en English

es Spanish

Administration Guide

552

eu Basque

fi Finnish

fo Faroese

fr French

ga Irish

gl Galician

hr Croatian

hu Hungarian

id Indonesian

is Icelandic

it Italian

ja Japanese

ko Korean

nl Dutch

no Norwegian

pl Polish

pt Portuguese

ro Romanian

ru Russian

sk Slovak

sl Slovenian

sq Albanian

sr Serbian

Language Tag Language

APPENDIX D. INTERNATIONALIZATION

553

sv Swedish

tr Turkish

uk Ukrainian

zh Chinese

Language Tag Language

D.4. SEARCHING AN INTERNATIONALIZED DIRECTORY

When performing search operations, the Directory Server can sort the results based on any language for
which the server has a supporting collation order. For a listing of the collation orders supported by the
directory, see Section D.2, “Supported Locales”.

NOTE

An LDAPv3 search is required to perform internationalized searches. Therefore, do not
set the LDAPv2 option on the call for ldapsearch.

This section focuses using matching rule filters to return international attribute values. For more
information on general ldapsearch syntax, see Section 14.3, “LDAP Search Filters” .

Section D.4.1, “Matching Rule Formats”

Section D.4.2, “Supported Search Types”

Section D.4.3, “International Search Examples”

D.4.1. Matching Rule Formats

The matching rule filters for internationalized searches can be represented in any several ways, and
which one should be used is a matter of preference:

As the OID of the collation order for the locale on which to base the search.

As the language tag associated with the collation order on which to base the search.

As the OID of the collation order and a suffix that represents a relational operator.

As the language tag associated with the collation order and a suffix that represents a relational
operator.

The syntax for each of these options is discussed in the following sections:

Section D.4.1.1, “Using an OID for the Matching Rule”

Section D.4.1.2, “Using a Language Tag for the Matching Rule”

Section D.4.1.3, “Using an OID and Suffix for the Matching Rule”

Administration Guide

554

Section D.4.1.4, “Using a Language Tag and Suffix for the Matching Rule”

D.4.1.1. Using an OID for the Matching Rule

Each locale supported by the Directory Server has an associated collation order OID. For a list of OIDs
supported by the Directory Server, see the /etc/dirsrv/config/slapd-collations.conf file.

The collation order OID can be used in the matching rule portion of the matching rule filter as follows:

 attr:OID:=(relational_operator value)

The relational operator is included in the value portion of the string, separated from the value by a single
space. For example, to search for all departmentNumber attributes that are at or after N4709 in the
Swedish collation order, use the following filter:

departmentNumber:2.16.840.1.113730.3.3.2.46.1:=>= N4709

D.4.1.2. Using a Language Tag for the Matching Rule

Each locale supported by the Directory Server has an associated language tag. For a list of language
tags supported by the Directory Server, see the /etc/dirsrv/config/slapd-collations.conf file.

The language tag can be used in the matching rule portion of the matching rule filter as follows:

 attr:language-tag:=(relational_operator value)

The relational operator is included in the value portion of the string, separated from the value by a single
space. For example, to search the directory for all description attributes with a value of estudiante using
the Spanish collation order, use the following filter:

cn:es:== estudiante

D.4.1.3. Using an OID and Suffix for the Matching Rule

As an alternative to using a relational operator-value pair, append a suffix that represents a specific
operator to the OID in the matching rule portion of the filter. Combine the OID and suffix as follows:

 attr: OID+suffix:=value

NOTE

This syntax is only supported by the mozldap utility and not by OpenLDAP utilities, such
as ldapsearch.

For example, to search for businessCategory attributes with the value softwareprodukte in the
German collation order, use the following filter:

businessCategory:2.16.840.1.113730.3.3.2.7.1.3:=softwareprodukte

The .3 in the previous example is the equality suffix.

APPENDIX D. INTERNATIONALIZATION

555

For a list of OIDs supported by the Directory Server, see the /etc/dirsrv/config/slapd-collations.conf
file. For a list of relational operators and their equivalent suffixes, see Table D.2, “Search Types,
Operators, and Suffixes”.

D.4.1.4. Using a Language Tag and Suffix for the Matching Rule

As an alternative to using a relational operator-value pair, append a suffix that represents a specific
operator to the language tag in the matching rule portion of the filter. Combine the language tag and
suffix as follows:

 attr: language-tag+suffix:=value

NOTE

This syntax is only supported by the mozldap utility and not by OpenLDAP utilities, such
as ldapsearch.

For example, to search for all surnames that come at or after La Salle in the French collation order, use
the following filter:

sn:fr.4:=La Salle

For a list of language tags supported by the Directory Server, see the /etc/dirsrv/config/slapd-
collations.conf file. For a list of relational operators and their equivalent suffixes, see Table D.2,
“Search Types, Operators, and Suffixes”.

D.4.2. Supported Search Types

The Directory Server supports the following types of international searches:

equality (=)

substring (*)

greater-than (>)

greater-than or equal-to (>=)

less-than (<)

less-than or equal-to (<=)

Approximate, or phonetic, and presence searches are supported only in English.

As with a regular ldapsearch search operation, an international search uses operators to define the type
of search. However, when invoking an international search, either use the standard operators (=, >=, >, <,
<=) in the value portion of the search string, or use a special type of operator, called a suffix (not to be
confused with the directory suffix), in the matching rule portion of the filter. Table D.2, “Search Types,
Operators, and Suffixes” summarizes each type of search, the operator, and the equivalent suffix.

Table D.2. Search Types, Operators, and Suffixes

Administration Guide

556

Search Type Operator Suffix

Less-than < .1

Less-than or equal-to <= .2

Equality = .3

Greater-than or equal-to >= .4

Greater-than > .5

Substring * .6

D.4.3. International Search Examples

The following sections show examples of how to perform international searches on directory data. Each
example gives all the possible matching rule filter formats so that you can become familiar with the
formats and select the one that works best.

D.4.3.1. Less-Than Example

Performing a locale-specific search using the less-than operator (<), or suffix (.1) searches for all
attribute values that come before the given attribute in a specific collation order.

For example, to search for all surnames that come before the surname Marquez in the Spanish collation
order, any of the following matching rule filters would work:

sn:2.16.840.1.113730.3.3.2.15.1:=< Marquez
...
sn:es:=< Marquez
...
sn:2.16.840.1.113730.3.3.2.15.1.1:=Marquez
...
sn:es.1:=Marquez

D.4.3.2. Less-Than or Equal-to Example

Performing a locale-specific search using the less-than or equal-to operator (<=), or suffix (.2) searches
for all attribute values that come at or before the given attribute in a specific collation order.

For example, to search for all room numbers that come at or before room number CZ422 in the
Hungarian collation order, any of the following matching rule filters would work:

roomNumber:2.16.840.1.113730.3.3.2.23.1:=<= CZ422
...
roomNumber:hu:=<= CZ422
...
roomNumber:2.16.840.1.113730.3.3.2.23.1.2:=CZ422
...
roomNumber:hu.2:=CZ422

APPENDIX D. INTERNATIONALIZATION

557

D.4.3.3. Equality Example

Performing a locale-specific search using the equal to operator (=), or suffix (.3) searches for all
attribute values that match the given attribute in a specific collation order.

For example, to search for all businessCategory attributes with the value softwareprodukte in the
German collation order, any of the following matching rule filters would work:

businessCategory:2.16.840.1.113730.3.3.2.7.1:==softwareprodukte
...
businessCategory:de:== softwareprodukte
...
businessCategory:2.16.840.1.113730.3.3.2.7.1.3:=softwareprodukte
...
businessCategory:de.3:=softwareprodukte

D.4.3.4. Greater-Than or Equal-to Example

Performing a locale-specific search using the greater-than or equal-to operator (>=), or suffix (.4)
searches for all attribute values that come at or after the given attribute in a specific collation order.

For example, to search for all localities that come at or after Québec in the French collation order, any
of the following matching rule filters would work:

locality:2.16.840.1.113730.3.3.2.18.1:=>= Québec
...
locality:fr:=>= Québec
...
locality:2.16.840.1.113730.3.3.2.18.1.4:=Québec
...
locality:fr.4:=Québec

D.4.3.5. Greater-Than Example

Performing a locale-specific search using the greater-than operator (>), or suffix (.5) searches for all
attribute values that come at or before the given attribute in a specific collation order.

For example, to search for all mail hosts that come after host schranka4 in the Czech collation order,
any of the following matching rule filters would work:

mailHost:2.16.840.1.113730.3.3.2.5.1:=> schranka4
...
mailHost:cs:=> schranka4
...
mailHost:2.16.840.1.113730.3.3.2.5.1.5:=schranka4
...
mailHost:cs.5:=schranka4

D.4.3.6. Substring Example

Performing an international substring search searches for all values that match the given pattern in the
specified collation order.

For example, to search for all user IDs that end in ming in the Chinese collation order, any of the

Administration Guide

558

For example, to search for all user IDs that end in ming in the Chinese collation order, any of the
following matching rule filters would work:

uid:2.16.840.1.113730.3.3.2.49.1:=* *ming
...
uid:zh:=* *ming
...
uid:2.16.840.1.113730.3.3.2.49.1.6:=* *ming
..
uid:zh.6:=* *ming

Substring search filters that use DN-valued attributes, such as modifiersName or memberOf, do not
always match entries correctly if the filter contains one or more space characters.

To work around this problem, use the entire DN in the filter instead of a substring, or ensure that the DN
substring in the filter begins at an RDN boundary; that is, make sure it starts with the type= part of the
DN. For example, this filter should not be used:

(memberOf=*Domain Administrators*)

But either one of these will work correctly:

(memberOf=cn=Domain Administrators*)
...
(memberOf=cn=Domain Administrators,ou=Groups,dc=example,dc=com)

D.5. TROUBLESHOOTING MATCHING RULES

International collation order matching rules may not behave consistently. Some forms of matching-rule
invocation do not work correctly, producing incorrect search results. For example, the following rules do
not work:

ldapsearch -x -p 389 -D "uid=userID,ou=people,dc=example,dc=com" -W -b "dc=example,dc=com"
"sn:2.16.840.1.113730.3.3.2.7.1:=passin"

ldapsearch -x -p 389 -D "uid=userID,ou=people,dc=example,dc=com" -W -b "dc=example,dc=com"
"sn:de:=passin"

However, the rules listed below will work (note the .3 before the passin value):

ldapsearch -x -p 389 -D "uid=userID,ou=people,dc=example,dc=com" -W -b "dc=example,dc=com"
"sn:2.16.840.1.113730.3.3.2.7.1.3:=passin"

ldapsearch -x -p 389 -D "uid=userID,ou=people,dc=example,dc=com" -W -b "dc=example,dc=com"
"sn:de.3:=passin"

APPENDIX D. INTERNATIONALIZATION

559

APPENDIX E. REVISION HISTORY
Note that revision numbers relate to the edition of this manual, not to version numbers of Red Hat
Directory Server.

Revision 11.5-1 Tue May 10 2022 Marc Muehlfeld
Red Hat Directory Server 11.5 release of this guide.

Revision 11.4-1 Tue Nov 09 2021 Marc Muehlfeld
Red Hat Directory Server 11.4 release of this guide.

Revision 11.3-1 Tue May 11 2021 Marc Muehlfeld
Red Hat Directory Server 11.3 release of this guide.

Revision 11.2-1 Tue Nov 03 2020 Marc Muehlfeld
Red Hat Directory Server 11.2 release of this guide.

Revision 11.1-1 Tue Apr 28 2020 Marc Muehlfeld
Red Hat Directory Server 11.1 release of this guide.

Revision 11.0-1 Tue Nov 05 2019 Marc Muehlfeld
Red Hat Directory Server 11.0 release of this guide.

Administration Guide

560

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. GENERAL DIRECTORY SERVER MANAGEMENT TASKS
	1.1. SYSTEM REQUIREMENTS
	1.2. FILE LOCATIONS
	1.3. SUPPORTED METHODS TO CONFIGURE DIRECTORY SERVER
	1.4. LOGGING INTO DIRECTORY SERVER USING THE WEB CONSOLE
	1.5. STARTING AND STOPPING A DIRECTORY SERVER INSTANCE
	1.5.1. Starting and Stopping a Directory Server Instance Using the Command Line
	1.5.2. Starting and Stopping a Directory Server Instance Using the Web Console

	1.6. CREATING A NEW DIRECTORY SERVER INSTANCE
	1.7. REMOVING A DIRECTORY SERVER INSTANCE
	1.7.1. Removing an Instance Using the Command Line
	1.7.2. Removing an Instance Using the Web Console

	1.8. SETTING DIRECTORY SERVER CONFIGURATION PARAMETERS
	1.8.1. Managing Configuration Parameters
	1.8.2. Where Directory Server Stores its Configuration
	1.8.3. Benefits of Using Default Values
	1.8.3.1. Removing a Parameter to Use the Default Value

	1.8.4. The dsconf config backend command limitations

	1.9. CHANGING THE LDAP AND LDAPS PORT NUMBERS
	1.9.1. Changing the Port Numbers Using the Command Line
	1.9.2. Changing the Port Numbers Using the Web Console

	1.10. USING DIRECTORY SERVER PLUG-INS
	1.10.1. Listing Available Plug-ins
	1.10.1.1. Listing Available Plug-ins Using the Command Line
	1.10.1.2. Listing Available Plug-ins Using the Web Console

	1.10.2. Enabling and Disabling Plug-ins
	1.10.2.1. Enabling and Disabling Plug-ins Using the Command Line
	1.10.2.2. Enabling and Disabling Plug-ins Using the Web Console

	1.10.3. Configuring Plug-ins
	1.10.3.1. Configuring Plug-ins Using the Command Line
	1.10.3.2. Configuring Plug-ins Using the Web Console

	1.10.4. Setting the Plug-in Precedence
	1.10.4.1. Setting the Plug-in Precedence Using the Command Line
	1.10.4.2. Setting the Plug-in Precedence Using the Web Console

	1.11. CREATING AND USING A .DSRC FILE TO SET DEFAULT OPTIONS FOR DIRECTORY SERVER COMMAND-LINE UTILITIES
	1.11.1. How a .dsrc File Simplifies Commands
	1.11.2. Using the dsctl Utility to Create a .dsrc File
	1.11.3. Remote and Local Connection Resolution When Using Directory Server Utilities

	CHAPTER 2. CONFIGURING DIRECTORY DATABASES
	2.1. CREATING AND MAINTAINING SUFFIXES
	2.1.1. Creating Suffixes
	2.1.1.1. Creating a Root Suffix
	2.1.1.2. Creating a Sub-suffix

	2.1.2. Maintaining Suffixes
	2.1.2.1. Viewing the Default Naming Context
	2.1.2.2. Disabling a Suffix
	2.1.2.3. Deleting a Suffix

	2.2. CREATING AND MAINTAINING DATABASES
	2.2.1. Creating Databases
	2.2.1.1. Creating a New Database for a Single Suffix Using the Command Line
	2.2.1.2. Adding Multiple Databases for a Single Suffix

	2.2.2. Maintaining Directory Databases
	2.2.2.1. Setting a Database in Read-Only Mode
	2.2.2.2. Placing the Entire Directory Server in Read-Only Mode
	2.2.2.3. Deleting a Database
	2.2.2.4. Changing the Transaction Log Directory

	2.3. CREATING AND MAINTAINING DATABASE LINKS
	2.3.1. Creating a New Database Link
	2.3.1.1. Creating a New Database Link Using the Command Line
	2.3.1.2. Creating a New Database Link Using the Web Console
	2.3.1.3. Managing the Default Configuration for New Database Links
	2.3.1.4. Additional Information on Required Settings When Creating a Database Link
	Suffix Information
	Bind Credentials
	LDAP URL
	Bind Mechanisms

	2.3.2. Configuring the Chaining Policy
	2.3.2.1. Chaining Component Operations
	2.3.2.2. Chaining LDAP Controls

	2.3.3. Database Links and Access Control Evaluation

	2.4. CONFIGURING CASCADING CHAINING
	2.4.1. Overview of Cascading Chaining
	2.4.2. Configuring Cascading Chaining Using the Command Line
	Configuration Steps on Server 1
	Configuration Steps on Server 2
	Configuration Steps on Server 3

	2.4.3. Detecting Loops

	2.5. USING REFERRALS
	2.5.1. Starting the Server in Referral Mode
	2.5.2. Setting Default Referrals
	2.5.2.1. Setting a Default Referral Using the Command Line

	2.5.3. Creating Smart Referrals
	2.5.3.1. Creating Smart Referrals Using the Command Line

	2.5.4. Creating Suffix Referrals
	2.5.4.1. Creating Suffix Referrals Using the Command Line
	2.5.4.2. Creating Suffix Referrals Using the Web Console

	2.6. VERIFYING THE INTEGRITY OF BACK-END DATABASES

	CHAPTER 3. MANAGING DIRECTORY ENTRIES
	3.1. MANAGING DIRECTORY ENTRIES USING THE COMMAND LINE
	3.1.1. Providing Input to the ldapadd, ldapmodify, and ldapdelete Utilities
	3.1.1.1. Providing Input Using the Interactive Mode
	3.1.1.2. Providing Input Using an LDIF File

	3.1.2. The Continuous Operation Mode
	3.1.3. Adding an Entry
	3.1.3.1. Adding an Entry Using ldapadd
	3.1.3.2. Adding an Entry Using ldapmodify
	3.1.3.3. Creating a Root Entry

	3.1.4. Updating a Directory Entry
	3.1.4.1. Adding Attributes to an Entry
	3.1.4.2. Updating an Attribute's Value
	Updating a Single-value Attribute
	Updating a Specific Value of a Multi-value Attribute
	3.1.4.3. Deleting Attributes from an Entry
	Deleting an Attribute
	Deleting a Specific Value of a Multi-value Attribute

	3.1.5. Deleting an Entry
	3.1.5.1. Deleting an Entry Using ldapdelete
	3.1.5.2. Deleting an Entry Using ldapmodify

	3.1.6. Renaming and Moving an Entry
	3.1.6.1. Considerations for Renaming Entries
	3.1.6.2. Renaming Users, Groups, POSIX Groups, and OUs
	3.1.6.3. The deleteOldRDN Parameter When Renaming Entries Using LDIF Statements
	3.1.6.4. Renaming an Entry or Subtree Using LDIF Statements
	3.1.6.5. Moving an Entry to a New Parent Using LDIF Statements

	3.1.7. Using Special Characters
	3.1.8. Using Binary Attributes
	3.1.9. Updating an Entry in an Internationalized Directory

	3.2. MANAGING DIRECTORY ENTRIES USING THE WEB CONSOLE
	3.2.1. Adding an LDAP Entry Using the Web Console
	Prerequisites
	Procedure
	Verification

	3.2.2. Editing an LDAP Entry Using the Web Console
	Prerequisites
	Procedure
	Verification

	3.2.3. Renaming and Relocating an LDAP Entry or Subtree Using the Web Console
	Prerequisites
	Procedure
	Verification

	3.2.4. Deleting an LDAP Entry Using the Web Console
	Prerequisites
	Procedure
	Verification

	CHAPTER 4. TRACKING MODIFICATIONS TO DIRECTORY ENTRIES
	4.1. TRACKING MODIFICATIONS TO THE DATABASE THROUGH UPDATE SEQUENCE NUMBERS
	4.1.1. An Overview of the Entry Sequence Numbers
	4.1.1.1. Local and Global USNs
	4.1.1.2. Importing USN Entries

	4.1.2. Enabling the USN Plug-in
	4.1.2.1. Enabling the USN Plug-in Using the Command Line
	4.1.2.2. Enabling the USN Plug-in Using the Web Console

	4.1.3. Global USNs
	4.1.3.1. Identifying Whether Global USNs are Enabled
	4.1.3.2. Enabling Global USNs

	4.1.4. Cleaning up USN Tombstone Entries
	4.1.4.1. Cleaning up USN Tombstone Entries Using the Command Line
	4.1.4.2. Cleaning up USN Tombstone Entries Using the Web Console

	4.2. TRACKING ENTRY MODIFICATIONS THROUGH OPERATIONAL ATTRIBUTES
	4.2.1. Entries Modified or Created by a Database Link
	4.2.2. Enabling Tracking of Modifications
	4.2.2.1. Enabling Tracking Of Modifications Using the Command Line

	4.3. TRACKING THE BIND DN FOR PLUG-IN INITIATED UPDATES
	4.3.1. Enabling Tracking the Bind DN for Plug-in Initiated Updates Using the Command Line
	4.3.2. Enabling Tracking the Bind DN for Plug-in Initiated Updates Using the Web Console

	4.4. TRACKING PASSWORD CHANGE TIMES

	CHAPTER 5. MAINTAINING REFERENTIAL INTEGRITY
	5.1. HOW REFERENTIAL INTEGRITY WORKS
	5.2. USING REFERENTIAL INTEGRITY WITH REPLICATION
	5.3. ENABLING REFERENTIAL INTEGRITY
	5.3.1. Enabling Referential Integrity Using the Command Line
	5.3.2. Enabling Referential Integrity Using the Web Console

	5.4. THE REFERENTIAL INTEGRITY UPDATE INTERVAL
	5.4.1. Displaying the Update Interval Using the Command Line
	5.4.2. Displaying the Update Interval Using the Web Console
	5.4.3. Modifying the Update Interval Using the Command Line
	5.4.4. Modifying the Update Interval Using the Web Console

	5.5. DISPLAYING AND MODIFYING THE ATTRIBUTE LIST
	5.5.1. Displaying the Attribute List Using the Command Line
	5.5.2. Displaying the Attribute List Using the Web Console
	5.5.3. Configuring the Attribute List Using the Command Line
	5.5.4. Configuring the Attribute List Using the Web Console

	5.6. CONFIGURING SCOPE FOR THE REFERENTIAL INTEGRITY
	5.6.1. Parameters That Control the Referential Integrity Scope
	5.6.2. Displaying the Referential Integrity Scope Using the Command Line
	5.6.3. Displaying the Referential Integrity Scope Using the Web Console
	5.6.4. Configuring the Referential Integrity Scope Using the Command Line
	5.6.5. Configuring the Referential Integrity Scope Using the Web Console

	CHAPTER 6. POPULATING DIRECTORY DATABASES
	6.1. IMPORTING DATA
	6.1.1. Setting EntryUSN Initial Values During Import
	6.1.2. Importing Using the Command Line
	6.1.2.1. Importing Data While the Server is Running
	6.1.2.2. Importing Data While the Server is Offline

	6.1.3. Importing Data Using the Web Console

	6.2. EXPORTING DATA
	6.2.1. Exporting Data into an LDIF File Using the Command Line
	6.2.1.1. Exporting a Database While the Server is Running
	6.2.1.2. Exporting a Database While the Server is Offline

	6.2.2. Exporting a Suffix to an LDIF File Using the Web Console
	6.2.3. Enabling Members of a Group to Export Data and Performing the Export as One of the Group Members
	6.2.3.1. Enabling a Group to Export Data
	Procedure
	Verification
	6.2.3.2. Performing an Export as a Regular User
	Prerequisites
	Procedure
	Verification

	6.3. BACKING UP DIRECTORY SERVER
	6.3.1. Backing up All Databases Using the Command Line
	6.3.1.1. Backing up All Databases While the Server is Running
	6.3.1.2. Backing up All Databases While the Server is Offline

	6.3.2. Backup up all Databases Using the Web Console
	6.3.3. Backing up Configuration Files, the Certificate Database, and Custom Schema Files
	6.3.4. Enabling Members of a Group to Back up Directory Server and Performing the Backup as One of the Group Members
	6.3.4.1. Enabling a Group to Back up Directory Server
	Procedure
	Verification
	6.3.4.2. Performing a Backup as a Regular User
	Prerequisites
	Procedure
	Verification

	6.4. RESTORING DIRECTORY SERVER
	6.4.1. Restoring All Databases Using the Command Line
	6.4.1.1. Restoring All Databases While the Server is Running
	6.4.1.2. Restoring all Databases While the Server is Offline

	6.4.2. Restoring All Databases Using the Web Console
	6.4.3. Restoring Databases That Include Replicated Entries

	CHAPTER 7. MANAGING ATTRIBUTES AND VALUES
	7.1. ENFORCING ATTRIBUTE UNIQUENESS
	7.1.1. Creating a New Configuration Record of the Attribute Uniqueness Plug-in
	7.1.2. Configuring Attribute Uniqueness over Suffixes or Subtrees
	7.1.2.1. Configuring Attribute Uniqueness over Suffixes or Subtrees Using the Command Line
	7.1.2.2. Configuring Attribute Uniqueness over Suffixes or Subtrees Using the Web Console

	7.1.3. Configuring Attribute Uniqueness over Object Classes
	7.1.4. Attribute Uniqueness Plug-in Configuration Parameters

	7.2. ASSIGNING CLASS OF SERVICE
	7.2.1. About the CoS Definition Entry
	7.2.2. About the CoS Template Entry
	7.2.3. How a Pointer CoS Works
	7.2.4. How an Indirect CoS Works
	7.2.5. How a Classic CoS Works
	7.2.6. Handling Physical Attribute Values
	7.2.7. Handling Multi-valued Attributes with CoS
	7.2.8. Searches for CoS-Specified Attributes
	7.2.9. Access Control and CoS
	7.2.10. Managing CoS from the Command Line
	7.2.10.1. Creating the CoS Definition Entry from the Command Line
	7.2.10.2. Creating the CoS Template Entry from the Command Line
	7.2.10.3. Example of a Pointer CoS
	7.2.10.4. Example of an Indirect CoS
	7.2.10.5. Example of a Classic CoS
	7.2.10.6. Searching for CoS Entries
	7.2.10.7. The costargettree attribute

	7.2.11. Creating Role-Based Attributes

	7.3. LINKING ATTRIBUTES TO MANAGE ATTRIBUTE VALUES
	7.3.1. About Linking Attributes
	7.3.2. Looking at the Linking Attributes Plug-in Syntax
	7.3.3. Configuring Attribute Links
	7.3.4. Cleaning up Attribute Links
	7.3.4.1. Regenerating Linked Attributes
	7.3.4.2. Regenerating Linked Attributes Using ldapmodify

	7.4. ASSIGNING AND MANAGING UNIQUE NUMERIC ATTRIBUTE VALUES
	7.4.1. About Dynamic Number Assignments
	7.4.1.1. Filters, Searches, and Target Entries
	7.4.1.2. Ranges and Assigning Numbers
	7.4.1.3. Multiple Attributes in the Same Range

	7.4.2. Looking at the DNA Plug-in Syntax
	7.4.3. Configuring Unique Number Assignments
	7.4.3.1. Creating a New Instance of the DNA Plug-in
	7.4.3.2. Configuring Unique Number Assignments Using the Command Line
	7.4.3.3. Configuring Unique Number Assignments Using the Web Console

	7.4.4. Distributed Number Assignment Plug-in Performance Notes

	CHAPTER 8. ORGANIZING AND GROUPING ENTRIES
	8.1. USING GROUPS
	8.1.1. The Different Types of Groups
	8.1.2. Creating a Static Group
	8.1.2.1. Creating a Static Group Using the Command Line
	Creating a Static Group with the groupOfNames Object Class
	Creating a Static Group with the groupOfUniqueNames Object Class

	8.1.3. Creating a Dynamic Group
	8.1.3.1. Creating a Dynamic Group Using the Command Line
	Creating a Dynamic Group with the groupOfURLs Object Class
	Creating a Dynamic Group with the groupOfCertificates Object Class

	8.1.4. Listing Group Membership in User Entries
	8.1.4.1. Considerations When Using the memberOf Plug-in
	8.1.4.2. Required Object Classes by the memberOf Plug-In
	8.1.4.3. The MemberOf Plug-in Syntax
	8.1.4.4. Enabling the MemberOf Plug-in
	8.1.4.5. Configuring the MemberOf Plug-in on Each Server
	8.1.4.6. Using the MemberOf Plug-in Shared Configuration
	8.1.4.7. Setting the Scope of the MemberOf Plug-in
	8.1.4.8. Regenerating memberOf Values

	8.1.5. Automatically Adding Entries to Specified Groups
	8.1.5.1. Looking at the Structure of an Automembership Rule
	8.1.5.2. Configuring Auto Membership Definitions
	8.1.5.3. Updating Existing Entries to apply Auto Membership Definitions
	8.1.5.4. Examples of Automembership Rules
	8.1.5.5. Testing Automembership Definitions
	8.1.5.6. Canceling the Auto Membership Plug-in Task
	Procedure
	Verification

	8.2. USING ROLES
	8.2.1. About Roles
	8.2.2. Managing Roles Using the Command Line
	8.2.2.1. Creating a Managed Role
	8.2.2.2. Creating a Filtered Role
	8.2.2.3. Creating a Nested Role
	8.2.2.4. Viewing Roles for an Entry through the Command Line
	8.2.2.5. About Deleting Roles

	8.2.3. Managing Roles in Directory Server Using the LDAP Browser
	8.2.3.1. Creating a role in the LDAP browser
	Prerequisites
	Procedure
	Verification
	8.2.3.2. Modifying a Role in the LDAP browser
	Prerequisites
	Procedure
	Verification
	8.2.3.3. Deleting a Role in the LDAP browser
	Prerequisites
	Procedure
	Verification

	8.2.4. Using Roles Securely

	8.3. AUTOMATICALLY CREATING DUAL ENTRIES
	8.3.1. About Managed Entries
	8.3.1.1. About the Instance Definition Entry
	8.3.1.2. About the Template Entry
	8.3.1.3. Entry Attributes Written by the Managed Entries Plug-in
	8.3.1.4. Managed Entries Plug-in and Directory Server Operations

	8.3.2. Creating the Managed Entries Template Entry
	8.3.3. Creating the Managed Entries Instance Definition
	8.3.4. Putting Managed Entries Plug-in Configuration in a Replicated Database

	8.4. USING VIEWS
	8.4.1. About Views
	8.4.2. Creating Views from the Command Line
	8.4.3. Improving Views Performance

	8.5. MANAGING ORGANIZATIONAL UNITS

	CHAPTER 9. CONFIGURING SECURE CONNECTIONS
	9.1. REQUIRING SECURE CONNECTIONS
	9.2. SETTING A MINIMUM STRENGTH FACTOR
	9.3. MANAGING THE NSS DATABASE USED BY DIRECTORY SERVER
	9.3.1. Creating a Certificate Signing Request
	9.3.1.1. Creating a Certificate Signing Request Using the Command Line

	9.3.2. Installing a CA Certificate
	9.3.2.1. Installing a CA Certificate Using the Command Line
	9.3.2.2. Installing a CA Certificate Using the Web Console

	9.3.3. Importing a Private Key and Server Certificate
	9.3.4. Installing a Server Certificate
	9.3.4.1. Installing a Server Certificate Using the Command Line
	9.3.4.2. Installing a Server Certificate Using the Web Console

	9.3.5. Generating and Installing a Self-signed Certificate
	9.3.6. Renewing a Certificate
	9.3.6.1. Renewing a Certificate Using the Command Line

	9.3.7. Removing a Certificate
	9.3.7.1. Removing a Certificate Using the Command Line
	9.3.7.2. Removing a Certificate Using the Web Console

	9.3.8. Removing a Private Key
	9.3.8.1. Removing a Private Key Using the Command Line

	9.3.9. Changing the CA Trust Options
	9.3.9.1. Changing the CA Trust Options Using the Command Line
	9.3.9.2. Changing the CA Trust Options Using the Web Console

	9.3.10. Changing the Password of the NSS Database
	9.3.10.1. Changing the Password of the NSS Database Using the Command Line

	9.4. ENABLING TLS
	9.4.1. Enabling TLS in Directory Server
	9.4.1.1. Enabling TLS in Directory Server Using the Command Line
	9.4.1.2. Enabling TLS in Directory Server Using the Web Console
	9.4.1.3. Setting Encryption Ciphers
	Displaying all Available Ciphers
	Displaying the Ciphers Directory Server Uses
	Updating the List of Enabled Ciphers
	9.4.1.4. Starting Directory Server Without a Password File
	9.4.1.5. Creating a Password File for Directory Server
	9.4.1.6. Managing How Directory Server Behaves If the Certificate Has Been Expired

	9.4.2. Adding the CA Certificate Used By Directory Server to the Trust Store of Red Hat Enterprise Linux

	9.5. DISPLAYING THE ENCRYPTION PROTOCOLS ENABLED IN DIRECTORY SERVER
	9.6. SETTING THE MINIMUM TLS ENCRYPTION PROTOCOL VERSION
	9.7. SETTING THE HIGHEST TLS ENCRYPTION PROTOCOL VERSION
	9.8. USING HARDWARE SECURITY MODULES
	9.9. USING CERTIFICATE-BASED CLIENT AUTHENTICATION
	9.9.1. Setting up Certificate-based Authentication
	9.9.2. Adding a Certificate to a User
	9.9.3. Forcing the EXTERNAL SASL Mechanism for Bind Requests
	9.9.4. Authenticating Using a Certificate

	9.10. SETTING UP SASL IDENTITY MAPPING
	9.10.1. About SASL Identity Mapping
	9.10.2. Default SASL Mappings for Directory Server
	9.10.3. Configuring SASL Identity Mapping
	9.10.3.1. Configuring SASL Identity Mapping Using the Command Line
	9.10.3.2. Configuring SASL Identity Mapping Using the Web Console

	9.10.4. Enabling SASL Mapping Fallback
	9.10.4.1. Setting SASL Mapping Priorities

	9.11. USING KERBEROS GSS-API WITH SASL
	9.11.1. Authentication Mechanisms for SASL in Directory Server
	9.11.2. About Kerberos in Directory Server
	9.11.2.1. About Principals and Realms
	9.11.2.2. About the KDC Server and Keytabs

	9.11.3. Configuring SASL Authentication at Directory Server Startup

	9.12. SETTING SASL MECHANISMS
	9.13. USING SASL WITH LDAP CLIENTS

	CHAPTER 10. CONFIGURING ATTRIBUTE ENCRYPTION
	10.1. ENCRYPTION KEYS
	10.2. ENCRYPTION CIPHERS
	10.3. CONFIGURING ATTRIBUTE ENCRYPTION
	10.3.1. Enabling Encryption of an Attribute Using the Command Line
	10.3.2. Enabling Encryption of an Attribute Using the Web Console
	10.3.3. Disabling Encryption for an Attribute Using the Command Line
	10.3.4. Disabling Encryption of an Attribute Using the Web Console
	10.3.5. General Considerations after Enabling Attribute Encryption

	10.4. EXPORTING AND IMPORTING AN ENCRYPTED DATABASE
	10.4.1. Exporting an Encrypted Database
	10.4.2. Importing an LDIF File into an Encrypted Database

	10.5. UPDATING THE TLS CERTIFICATES USED FOR ATTRIBUTE ENCRYPTION

	CHAPTER 11. MANAGING FIPS MODE SUPPORT
	Enabling FIPS Mode Support
	Disabling FIPS Mode Support

	CHAPTER 12. MANAGING THE DIRECTORY SCHEMA
	12.1. OVERVIEW OF SCHEMA
	12.1.1. Default Schema Files
	12.1.2. Object Classes
	12.1.3. Attributes
	12.1.3.1. Directory Server Attribute Syntaxes

	12.1.4. Extending the Schema
	12.1.5. Schema Replication

	12.2. MANAGING OBJECT IDENTIFIERS
	12.3. CREATING AN OBJECT CLASS
	12.3.1. Creating an Object Class Using the Command Line
	12.3.2. Creating an Object Class Using the Web Console

	12.4. UPDATING AN OBJECT CLASS
	12.4.1. Updating an Object Class Using the Command Line
	12.4.2. Updating an Object Class Using the Web Console

	12.5. REMOVING AN OBJECT CLASS
	12.5.1. Removing an Object Class Using the Command Line
	12.5.2. Removing an Object Class Using the Web Console

	12.6. CREATING AN ATTRIBUTE
	12.6.1. Creating an Attribute Using the Command Line
	12.6.2. Creating an Attribute Using the Web Console

	12.7. UPDATING AN ATTRIBUTE
	12.7.1. Updating an Attribute Using the Command Line
	12.7.2. Updating an Attribute Using the Web Console

	12.8. REMOVING AN ATTRIBUTE
	12.8.1. Removing an Attribute Using the Command Line
	12.8.2. Removing an Attribute Using the Web Console

	12.9. CREATING CUSTOM SCHEMA FILES
	12.10. DYNAMICALLY RELOADING SCHEMA
	12.10.1. Dynamically Reloading the Schema Using the dsconf schema reload Command
	12.10.2. Dynamically Reloading the Schema Using a cn=tasks Entry
	12.10.3. Reloading The Schema in a Replication Topology
	12.10.4. Schema Reload Errors

	12.11. TURNING SCHEMA CHECKING ON AND OFF
	12.11.1. Turning Schema Checking On and Off Using the Command Line
	12.11.2. Turning Schema Checking On and Off Using the Web Console

	12.12. USING SYNTAX VALIDATION
	12.12.1. About Syntax Validation
	12.12.2. Syntax Validation and Other Directory Server Operations
	12.12.2.1. Turning Syntax Validation On and Off Using the Command Line
	12.12.2.2. Turning Syntax Validation On and Off Using the Web Console

	12.12.3. Enabling or Disabling Strict Syntax Validation for DNs
	12.12.3.1. Enabling or Disabling Strict Syntax Validation for DNs Using the Command Line
	12.12.3.2. Enabling or Disabling Strict Syntax Validation for DNs Using the Web Console

	12.12.4. Enabling Syntax Validation Logging
	12.12.4.1. Enabling Syntax Validation Logging Using the Command Line
	12.12.4.2. Enabling Syntax Validation Logging Using the Web Console

	12.12.5. Validating the Syntax of Existing Attribute Values
	12.12.5.1. Creating a Syntax Validation Task Using the dsconf schema validate-syntax Command
	12.12.5.2. Creating a Syntax Validation Task Using a cn=tasks Entry

	CHAPTER 13. MANAGING INDEXES
	13.1. ABOUT INDEXES
	13.1.1. About Index Types
	13.1.2. About Default and Database Indexes
	13.1.3. Overview of the Searching Algorithm
	13.1.4. Approximate Searches
	13.1.5. Balancing the Benefits of Indexing
	13.1.6. Indexing Limitations

	13.2. CREATING STANDARD INDEXES
	13.2.1. Creating Indexes Using the Command Line
	13.2.2. Creating Indexes Using the Web Console

	13.3. CREATING NEW INDEXES TO EXISTING DATABASES
	13.3.1. Creating an Index While the Instance is Running
	13.3.1.1. Creating an Index Using the dsconf backend index reindex Command
	13.3.1.2. Creating an Index Using a cn=tasks Entry

	13.3.2. Creating an Index While the Instance Offline

	13.4. USING VIRTUAL LIST VIEW CONTROL TO REQUEST A CONTIGUOUS SUBSET OF A LARGE SEARCH RESULT
	13.4.1. How the VLV control works in ldapsearch commands
	13.4.2. Enabling unauthenticated users to use the VLV control
	Procedure
	Verification

	13.4.3. Creating a VLV index using the command line to improve the speed of VLV queries
	Prerequisites
	Procedure
	Verification

	13.4.4. Creating a VLV index using the web console to improve the speed of VLV queries
	Prerequisites
	Procedure
	Verification

	13.5. CHANGING THE INDEX SORT ORDER
	13.5.1. Changing the Sort Order Using the Command Line

	13.6. CHANGING THE WIDTH FOR INDEXED SUBSTRING SEARCHES
	13.7. DELETING INDEXES
	13.7.1. Deleting an Attribute from the Default Index Entry
	13.7.2. Removing an Attribute from the Index
	13.7.2.1. Removing an Attribute from the Index Using the Command Line
	13.7.2.2. Removing an Attribute from the Index Using the Web Console

	13.7.3. Deleting Index Types Using the Command Line
	13.7.4. Removing Browsing Indexes
	13.7.4.1. Removing Browsing Indexes Using the Command Line

	CHAPTER 14. FINDING DIRECTORY ENTRIES
	14.1. FINDING DIRECTORY ENTRIES USING THE COMMAND LINE
	14.1.1. ldapsearch Command-Line Format
	14.1.2. Commonly Used ldapsearch Options
	14.1.3. Using Special Characters

	14.2. FINDING ENTRIES USING THE WEB CONSOLE
	Prerequisites
	Procedure

	14.3. LDAP SEARCH FILTERS
	14.3.1. Using Attributes in Search Filters
	14.3.2. Using Operators in Search Filters
	14.3.3. Using Compound Search Filters
	14.3.4. Using Matching Rules

	14.4. EXAMPLES OF COMMON LDAPSEARCHES
	14.4.1. Returning All Entries
	14.4.2. Specifying Search Filters on the Command Line
	14.4.3. Searching the Root DSE Entry
	14.4.4. Searching the Schema Entry
	14.4.5. Using LDAP_BASEDN
	14.4.6. Displaying Subsets of Attributes
	14.4.7. Searching for Operational Attributes
	14.4.8. Specifying Search Filters Using a File
	14.4.9. Specifying DNs That Contain Commas in Search Filters
	14.4.10. Using a Client Certificate to Bind to Directory Server
	14.4.11. Searching with Language Matching Rules
	14.4.12. Searching for Attributes with Bit Field Values

	14.5. IMPROVING SEARCH PERFORMANCE THROUGH RESOURCE LIMITS
	14.5.1. Search Performance and Resource Limits
	14.5.2. Fine Grained ID List Size
	14.5.3. Setting User and Global Resource Limits Using the Command Line
	14.5.4. Setting Resource Limits on Anonymous Binds
	14.5.5. Improving Performance for Range Searches

	14.6. USING PERSISTENT SEARCH
	14.7. SEARCHING WITH SPECIFIED CONTROLS
	14.7.1. Retrieving Effective User Rights
	14.7.2. Using Server-Side Sorting
	14.7.3. Performing Dereferencing Searches
	14.7.4. Using Simple Paged Results
	14.7.5. Pre- and Post-read Entry Response Controls

	CHAPTER 15. MANAGING REPLICATION
	15.1. REPLICATION OVERVIEW
	15.1.1. What Directory Units Are Replicated
	15.1.2. Read-Write and Read-Only Replicas
	15.1.3. Suppliers and Consumers
	15.1.4. Changelog
	15.1.5. Replication Identity
	15.1.6. Replication Agreement
	15.1.7. Replicating a Subset of Attributes with Fractional Replication
	15.1.8. Replication over TLS
	Prerequisites
	Configuring Replication over TLS

	15.2. SINGLE-SUPPLIER REPLICATION
	15.2.1. Setting up Single-supplier Replication Using the Command Line
	Steps to be Performed on the Consumer
	Steps to be Performed on the Supplier

	15.2.2. Setting up Single-supplier Replication Using the Web Console
	Steps to be Performed on the Consumer
	Steps to be Performed on the Supplier

	15.3. MULTI-SUPPLIER REPLICATION
	15.3.1. Setting up Multi-supplier Replication Using the Command Line
	Preparing the New Server to Join
	Configuring the Existing Server as a Supplier
	Configuring the New Server as a Supplier

	15.3.2. Setting up Multi-supplier Replication Using the Web Console
	Preparing the New Server to Join
	Configuring the Existing Server as a Supplier
	Configuring the New Server as a Supplier

	15.3.3. Preventing Monopolization of a Consumer in Multi-Supplier Replication

	15.4. CASCADING REPLICATION
	15.4.1. Setting up Cascading Replication Using the Command Line
	Preparing the New Hub Server to Join
	Configuring the Existing Server as a Supplier
	Preparing the new Consumer to Join
	Configuring the Hub as a Supplier for the Consumer

	15.4.2. Setting up Cascading Replication Using the Web Console
	Preparing the New Hub Server to Join
	Configuring the Existing Server as a Supplier
	Configuring the New Consumer to Join
	Configuring the Hub as a Supplier for the Consumer

	15.5. CONFIGURING BOOTSTRAP CREDENTIALS
	Procedure

	15.6. CONFIGURING REPLICATION PARTNERS TO USE CERTIFICATE-BASED AUTHENTICATION
	15.7. PROMOTING A CONSUMER OR HUB TO A SUPPLIER
	15.7.1. Promoting a Consumer or Hub to a Supplier Using the Command Line
	15.7.2. Promoting a Consumer or Hub to a Supplier Using the Web Console

	15.8. ABOUT INITIALIZING A CONSUMER
	15.8.1. When to Initialize a Consumer
	15.8.2. Setting Initialization Timeouts
	15.8.3. Initializing a Consumer
	15.8.3.1. Initializing a Consumer Using the Command Line

	15.8.4. Initializing a Consumer Using the Web Console

	15.9. DISABLING AND RE-ENABLING REPLICATION
	15.10. REMOVING A DIRECTORY SERVER INSTANCE FROM THE REPLICATION TOPOLOGY
	15.10.1. Removing a Consumer or Hub from the Replication Topology
	15.10.2. Removing a Supplier from the Replication Topology

	15.11. MANAGING ATTRIBUTES WITHIN FRACTIONAL REPLICATION
	15.11.1. Setting Different Fractional Replication Attributes for Total and Incremental Updates
	15.11.2. The Replication Keep-alive Entry
	15.11.3. Preventing "Empty" Updates from Fractional Replication

	15.12. MANAGING DELETED ENTRIES WITH REPLICATION
	15.13. CONFIGURING CHANGELOG ENCRYPTION
	Prerequisites
	Procedure
	Verification
	Additional Resources

	15.14. REMOVING THE CHANGELOG
	15.14.1. Removing the Changelog using the Command Line
	15.14.2. Removing the Changelog using the Web Console

	15.15. EXPORTING THE REPLICATION CHANGELOG
	Prerequisites
	Procedure

	15.16. IMPORTING THE REPLICATION CHANGELOG FROM AN LDIF-FORMATTED CHANGELOG DUMP
	Prerequisites
	Procedure

	15.17. MOVING THE REPLICATION CHANGELOG DIRECTORY
	15.18. TRIMMING THE REPLICATION CHANGELOG
	15.18.1. Configuring Replication Changelog Trimming
	15.18.2. Manually Reducing the Size of a Large Changelog
	Prerequisites
	Procedure
	Verification

	15.19. FORCING REPLICATION UPDATES
	Prerequisites
	Procedure

	15.20. SETTING REPLICATION TIMEOUT PERIODS
	15.21. USING THE RETRO CHANGELOG PLUG-IN
	15.21.1. Enabling the Retro Changelog Plug-in
	15.21.1.1. Enabling the Retro Changelog Plug-in Using the Command Line
	15.21.1.2. Enabling the Retro Changelog Plug-in Using the Web Console

	15.21.2. Trimming the Retro Changelog
	15.21.3. Searching and Modifying the Retro Changelog
	15.21.4. Retro Changelog and the Access Control Policy

	15.22. DISPLAYING THE STATUS OF A SPECIFIC REPLICATION AGREEMENT
	15.22.1. Displaying the Status of a Specific Replication Agreement Using the Command-Line
	15.22.2. Displaying the Status of a Specific Replication Agreement Using the Web Console

	15.23. MONITORING THE REPLICATION TOPOLOGY
	15.23.1. Setting Credentials for Replication Monitoring in the .dsrc File
	15.23.2. Using Aliases in the Replication Topology Monitoring Output

	15.24. COMPARING TWO DIRECTORY SERVER INSTANCES
	15.25. SOLVING COMMON REPLICATION CONFLICTS
	15.25.1. Solving Naming Conflicts
	15.25.2. Solving Orphan Entry Conflicts
	15.25.3. Resolving Errors for Obsolete or Missing Suppliers

	15.26. TROUBLESHOOTING REPLICATION-RELATED PROBLEMS
	15.26.1. Possible Replication-related Error Messages
	agmt=%s (%s:%d) Replica has a different generation ID than the local data
	Warning: data for replica's was reloaded, and it no longer matches the data in the changelog. Recreating the changelog file. This could affect replication with replica's consumers, in which case the consumers should be reinitialized.
	agmt=%s(%s:%d): Can't locate CSN %s in the changelog (DB rc=%d). The consumer may need to be reinitialized.
	Too much time skew
	agmt=%s(%s:%d): Warning: Unable to send endReplication extended operation (%s)
	Changelog is getting too big.
	The Replication Monitor is not responding.
	In the Replication Monitor, some consumers show just the header of the table.

	CHAPTER 16. SYNCHRONIZING RED HAT DIRECTORY SERVER WITH MICROSOFT ACTIVE DIRECTORY
	16.1. ABOUT WINDOWS SYNCHRONIZATION
	16.2. SUPPORTED ACTIVE DIRECTORY VERSIONS
	16.3. SYNCHRONIZING PASSWORDS
	16.4. SETTING UP SYNCHRONIZATION BETWEEN ACTIVE DIRECTORY AND DIRECTORY SERVER
	16.4.1. Step 1: Enabling TLS on the Directory Server Host
	16.4.2. Step 2: Enabling Password Complexity in the AD Domain
	16.4.3. Step 3: Extracting the CA Certificate from AD
	16.4.4. Step 4: Extracting the CA Certificate from the Directory Server's NSS Database
	16.4.5. Step 5: Creating the Synchronization Accounts
	Creating an Account in Directory Server
	Creating an Account in AD

	16.4.6. Step 6: Installing the Password Sync Service
	16.4.7. Step 7: Adding the CA Certificate Directory Server uses to the Password Sync Service's Certificate Database
	16.4.8. Step 8: Adding the CA Certificate AD uses to Directory Server's Certificate Database
	16.4.9. Step 9: Configuring the Database for Synchronization and Creating the Synchronization Agreement
	16.4.9.1. Configuring the Database for Synchronization and Creating the Synchronization Agreement Using the Command Line
	16.4.9.2. Configuring the Database for Synchronization and Creating the Synchronization Agreement Using the Web Console

	16.5. SYNCHRONIZING USERS
	16.5.1. User Attributes Synchronized between Directory Server and Active Directory
	16.5.2. User Schema Differences between Red Hat Directory Server and Active Directory
	16.5.2.1. Values for cn Attributes
	16.5.2.2. Password Policies
	16.5.2.3. Values for street and streetAddress
	16.5.2.4. Constraints on the initials Attribute

	16.5.3. Configuring User Synchronization for Directory Server Users
	16.5.4. Configuring User Synchronization for Active Directory Users

	16.6. SYNCHRONIZING GROUPS
	16.6.1. About Windows Group Types
	16.6.2. Group Attributes Synchronized between Directory Server and Active Directory
	16.6.3. Group Schema Differences between Red Hat Directory Server and Active Directory
	16.6.4. Configuring Group Synchronization for Directory Server Groups
	16.6.5. Configuring Group Synchronization for Active Directory Groups

	16.7. CONFIGURING UNI-DIRECTIONAL SYNCHRONIZATION
	16.8. CONFIGURING MULTIPLE SUBTREES AND FILTERS IN WINDOWS SYNCHRONIZATION
	Multiple Subtrees in Windows Synchronization
	Filters in Windows Synchronization

	16.9. SYNCHRONIZING POSIX ATTRIBUTES FOR USERS AND GROUPS
	16.9.1. Enabling POSIX Attribute Synchronization
	16.9.2. Changing Posix Group Attribute Synchronization Settings
	16.9.3. Fixing Mismatched member and uniqueMember Attribute Values in posixGroup Entries

	16.10. DELETING AND RESURRECTING ENTRIES
	16.10.1. Deleting Entries
	16.10.2. Resurrecting Entries

	16.11. SENDING SYNCHRONIZATION UPDATES
	16.11.1. Performing a Manual Incremental Synchronization
	16.11.2. Performing a Full Synchronization
	16.11.2.1. Performing a Full Synchronization Using the Command Line
	16.11.2.2. Performing a Full Synchronization Using the Web Console

	16.11.3. Setting Synchronization Schedules
	16.11.4. Changing Synchronization Connections
	16.11.5. Handling Entries That Move Out of the Synchronized Subtree

	16.12. TROUBLESHOOTING
	Enable replication logging to record synchronization errors
	Error #1: After synchronization, the status returns error 81.
	Error #2: An entry is moved from one subtree on Active Directory to another subtree, but the user is not moved to the corresponding subtree on Directory Server.

	CHAPTER 17. SETTING UP CONTENT SYNCHRONIZATION USING THE SYNCREPL PROTOCOL
	17.1. CONFIGURING THE CONTENT SYNCHRONIZATION PLUG-IN USING THE COMMAND LINE

	CHAPTER 18. MANAGING ACCESS CONTROL
	18.1. ACCESS CONTROL PRINCIPLES
	18.2. ACI PLACEMENT
	18.3. ACI STRUCTURE
	18.4. ACI EVALUATION
	18.5. LIMITATIONS OF ACIS
	18.6. HOW DIRECTORY SERVER HANDLES ACIS IN A REPLICATION TOPOLOGY
	18.7. MANAGING ACIS USING THE COMMAND LINE
	18.7.1. Displaying ACIs
	18.7.2. Adding an ACI
	18.7.3. Deleting an ACI
	18.7.4. Updating an ACI

	18.8. MANAGING ACIS USING THE WEB CONSOLE
	18.8.1. Creating an Access Control Instruction in the LDAP browser
	Prerequisites
	Procedure
	Verification

	18.8.2. Editing Access Control Instructions in the LDAP browser
	Prerequisites
	Procedure
	Verification

	18.8.3. Removing an Access Control Instruction in the LDAP browser
	Prerequisites
	Procedure
	Verification

	18.9. DEFINING TARGETS
	Syntax
	18.9.1. Frequently Used Target Keywords
	18.9.1.1. Targeting a Directory Entry
	Using Wildcards with the target Keyword
	18.9.1.2. Targeting Attributes
	Using Wildcards with the targetattr Keyword
	18.9.1.3. Targeting Entries and Attributes Using LDAP Filters
	Using Wildcards with the targetfilter Keyword
	18.9.1.4. Targeting Attribute Values Using LDAP Filters

	18.9.2. Further Target Keywords
	18.9.2.1. Targeting Source and Destination DNs

	18.9.3. Advanced Usage of Target Rules
	18.9.3.1. Delegating Permissions to Create and Maintain Groups
	18.9.3.2. Targeting Both an Entry and Attributes
	18.9.3.3. Targeting Certain Attributes of Entries Matching a Filter
	18.9.3.4. Targeting a Single Directory Entry

	18.10. DEFINING PERMISSIONS
	Syntax
	18.10.1. User rights
	18.10.2. Rights Required for LDAP Operations
	18.10.3. Access Control and the modrdn Operation

	18.11. DEFINING BIND RULES
	Syntax
	18.11.1. Frequently Used Bind Rules
	18.11.1.1. Defining User-based Access
	18.11.1.2. Defining Group-based Access

	18.11.2. Further Bind Rules
	18.11.2.1. Defining Access Based on Value Matching
	18.11.2.2. Defining Access from Specific IP Addresses or Ranges
	18.11.2.3. Defining Access from a Specific Host or Domain
	18.11.2.4. Requiring a Certain Level of Security in Connections
	18.11.2.5. Defining Access at a Specific Day of the Week
	18.11.2.6. Defining Access at a Specific Time of Day
	18.11.2.7. Defining Access Based on the Authentication Method
	18.11.2.8. Defining Access Based on Roles

	18.11.3. Combining Bind Rules Using Boolean Operators
	How Directory Server Evaluates Boolean Operators

	18.12. CHECKING ACCESS RIGHTS ON ENTRIES (GET EFFECTIVE RIGHTS)
	18.12.1. Rights Shown with a Get Effective Rights Search
	18.12.2. The Format of a Get Effective Rights Search
	18.12.3. Examples of GER Searches
	18.12.3.1. General Examples on Checking Access Rights
	18.12.3.2. Examples of Get Effective Rights Searches for Non-Existent Attributes
	18.12.3.3. Examples of Get Effective Rights Searches for Specific Attributes or Object Classes
	18.12.3.4. Examples of Get Effective Rights Searches for Non-Existent Entries
	18.12.3.5. Examples of Get Effective Rights Searches for Operational Attributes
	18.12.3.6. Examples of Get Effective Rights Results and Access Control Rules

	18.12.4. Get Effective Rights Return Codes

	18.13. LOGGING ACCESS CONTROL INFORMATION
	18.14. ADVANCED ACCESS CONTROL: USING MACRO ACIS
	18.14.1. Macro ACI Example
	18.14.2. Macro ACI Syntax
	18.14.2.1. Macro Matching for ($dn)
	18.14.2.2. Macro Matching for [$dn]
	18.14.2.3. Macro Matching for ($attr.attrName)

	18.15. SETTING ACCESS CONTROLS ON DIRECTORY MANAGER
	18.15.1. About Access Controls on the Directory Manager Account
	18.15.2. Configuring the RootDN Access Control Plug-in

	CHAPTER 19. USING THE HEALTH CHECK FEATURE TO IDENTIFY PROBLEMS
	19.1. RUNNING THE DIRECTORY SERVER HEALTH CHECK

	CHAPTER 20. MANAGING USER AUTHENTICATION
	20.1. SETTING USER PASSWORDS
	20.2. SETTING PASSWORD ADMINISTRATORS
	20.3. CHANGING PASSWORDS STORED EXTERNALLY
	20.4. MANAGING THE PASSWORD POLICY
	20.4.1. Configuring the Global Password Policy
	20.4.1.1. Configuring a Global Password Policy Using the Command Line
	20.4.1.2. Configuring a Global Password Policy Using the Web Console

	20.4.2. Using Local Password Policies
	20.4.2.1. Where Directory Server Stores Local Password Policy Entries
	20.4.2.2. Configuring a Local Password Policy

	20.5. CONFIGURING TEMPORARY PASSWORD RULES
	20.5.1. Enabling temporary password rules in the global password policy
	Procedure
	Verification

	20.5.2. Enabling temporary password rules in a local password policy
	Procedure
	Verification

	20.6. UNDERSTANDING PASSWORD EXPIRATION CONTROLS
	20.7. MANAGING THE DIRECTORY MANAGER PASSWORD
	20.7.1. Resetting the Directory Manager Password
	20.7.2. Changing the Directory Manager Password
	20.7.2.1. Changing the Directory Manager Password Using the Command Line
	20.7.2.2. Changing the Directory Manager Password Using the Web Console

	20.7.3. Changing the Directory Manager Password Storage Scheme
	20.7.3.1. Changing the Directory Manager Password Storage Scheme Using the Command Line
	20.7.3.2. Changing the Directory Manager Password Storage Scheme Using the Web Console

	20.7.4. Changing the Directory Manager DN

	20.8. CHECKING ACCOUNT AVAILABILITY FOR PASSWORDLESS ACCESS
	20.8.1. Searching for Entries Using the Account Usability Extension Control
	20.8.2. Changing What Users Can Perform an Account Usability Search

	20.9. CONFIGURING A PASSWORD-BASED ACCOUNT LOCKOUT POLICY
	20.9.1. Configuring the Account Lockout Policy Using the Command Line
	20.9.2. Configuring the Account Lockout Policy Using the Web Console
	20.9.3. Disabling Legacy Password Lockout Behavior

	20.10. CONFIGURING TIME-BASED ACCOUNT LOCKOUT POLICIES
	20.10.1. Account Policy Plug-in Syntax
	20.10.2. Account Inactivity and Account Expiration
	20.10.3. Disabling Accounts a Certain Amount of Time After Password Expiry
	20.10.4. Tracking Login Times without Setting Lockout Policies
	20.10.5. Unlocking Inactive Accounts

	20.11. REPLICATING ACCOUNT LOCKOUT ATTRIBUTES
	20.11.1. Managing the Account Lockouts and Replication
	20.11.2. Configuring Directory Server to Replicate Password Policy Attributes
	20.11.3. Configuring Fractional Replication for Password Policy Attributes

	20.12. ENABLING DIFFERENT TYPES OF BINDS
	20.12.1. Requiring Secure Binds
	20.12.2. Disabling Anonymous Binds
	20.12.3. Allowing Unauthenticated Binds
	20.12.4. Configuring Autobind
	20.12.4.1. Overview of Autobind and LDAPI
	20.12.4.2. Configuring the Autobind Feature

	20.13. USING PASS-THROUGH AUTHENTICATION
	20.13.1. PTA Plug-in Syntax
	20.13.2. Configuring the PTA Plug-in
	20.13.2.1. Configuring the Servers to Use a Secure Connection
	20.13.2.2. Specifying the Authenticating Directory Server
	20.13.2.3. Specifying the Pass-Through Subtree
	20.13.2.4. Configuring the Optional Parameters

	20.13.3. PTA Plug-in Syntax Examples
	20.13.3.1. Specifying One Authenticating Directory Server and One Subtree
	20.13.3.2. Specifying Multiple Authenticating Directory Servers
	20.13.3.3. Specifying One Authenticating Directory Server and Multiple Subtrees
	20.13.3.4. Using Non-Default Parameter Values
	20.13.3.5. Specifying Different Optional Parameters and Subtrees for Different Authenticating Directory Servers

	20.14. USING ACTIVE DIRECTORY-FORMATTED USER NAMES FOR AUTHENTICATION
	20.15. USING PAM FOR PASS THROUGH AUTHENTICATION
	20.15.1. PAM Pass Through Authentication Configuration Options
	20.15.1.1. Specifying the Suffixes to Target for PAM PTA
	20.15.1.2. Applying Different PAM Pass Through Authentication Configurations to Different Entries
	20.15.1.3. Setting PAM PTA Mappings
	20.15.1.4. Configuring General PAM PTA Settings

	20.15.2. Configuring PAM Pass Through Authentication
	20.15.3. Using PAM Pass Through Authentication with Active Directory as the Back End

	20.16. MANUALLY INACTIVATING USERS AND ROLES
	20.16.1. Displaying the Status of an Account or Role
	20.16.2. Inactivating and Activating Users and Roles Using the Command Line

	CHAPTER 21. MONITORING SERVER AND DATABASE ACTIVITY
	21.1. TYPES OF DIRECTORY SERVER LOG FILES
	21.2. DISPLAYING LOG FILES
	21.2.1. Displaying Log Files Using the Command Line
	21.2.2. Displaying Log Files Using the Web Console

	21.3. CONFIGURING LOG FILES
	21.3.1. Enabling or Disabling Logs
	21.3.1.1. Enabling or Disabling Logging Using the Command Line
	21.3.1.2. Enabling or Disabling Logging Using the Web Console

	21.3.2. Configuring Plug-in-specific Logging
	21.3.3. Disabling High-resolution Log Time Stamps
	21.3.4. Defining a Log File Rotation Policy
	21.3.4.1. Defining a Log File Rotation Policy Using the Command Line
	21.3.4.2. Defining a Log File Rotation Policy Using the Web Console

	21.3.5. Defining a Log File Deletion Policy
	21.3.5.1. Configuring a Log Deletion Policy Using the Command Line
	21.3.5.2. Configuring a Log Deletion Policy Using the Web Console

	21.3.6. Manual Log File Rotation
	21.3.7. Configuring the Log Levels
	21.3.7.1. Configuring the Log Levels Using the Command Line
	21.3.7.2. Configuring the Log Levels Using the Web Console
	21.3.7.3. Logging Internal Operations

	21.3.8. Disabling Access Log Buffering for Debugging
	21.3.8.1. Disabling Access Log Buffering Using the Command Line
	21.3.8.2. Disabling Access Log Buffering Using the Web Console

	21.4. GETTING ACCESS LOG STATISTICS
	21.5. MONITORING THE LOCAL DISK FOR GRACEFUL SHUTDOWN
	21.6. MONITORING SERVER ACTIVITY
	21.7. MONITORING DATABASE ACTIVITY
	21.8. MONITORING DATABASE LINK ACTIVITY
	21.9. ENABLING AND DISABLING COUNTERS
	21.10. MONITORING DIRECTORY SERVER USING SNMP
	21.10.1. About SNMP
	21.10.2. Enabling and Disabling SNMP Support
	21.10.3. Setting Parameters to Identify an Instance Using SNMP
	21.10.4. Setting up an SNMP Agent for Directory Server
	21.10.5. Configuring SNMP Traps
	21.10.6. Using the Management Information Base
	21.10.6.1. Operations Table
	21.10.6.2. Entries Table
	21.10.6.3. Entity Table
	21.10.6.4. Interaction Table

	CHAPTER 22. MAKING A HIGH-AVAILABILITY AND DISASTER RECOVERY PLAN
	22.1. IDENTIFYING POTENTIAL SCENARIOS
	22.2. DEFINING THE TYPE OF ROLLOVER
	22.3. IDENTIFYING USEFUL DIRECTORY SERVER FEATURES FOR DISASTER RECOVERY
	22.3.1. Backing up Directory Data for Disaster Recovery
	22.3.2. Multi-Supplier Replication for High-availability
	22.3.3. Chaining Databases for High-availability

	22.4. DEFINING THE RECOVERY PROCESS
	22.5. BASIC EXAMPLE: PERFORMING A RECOVERY

	CHAPTER 23. CREATING TEST ENTRIES
	23.1. CREATING AN LDIF FILE WITH EXAMPLE USER ENTRIES
	23.2. CREATING AN LDIF FILE WITH EXAMPLE GROUP ENTRIES
	23.3. CREATING AN LDIF FILE WITH AN EXAMPLE COS DEFINITION
	23.4. CREATING AN LDIF FILE WITH EXAMPLE MODIFICATION STATEMENTS
	23.5. CREATING AN LDIF FILE WITH NESTED EXAMPLE ENTRIES

	APPENDIX A. USING LDAP CLIENT TOOLS
	A.1. RUNNING EXTENDED OPERATIONS
	A.2. COMPARING ENTRIES
	A.3. CHANGING PASSWORDS
	A.4. GENERATING LDAP URLS

	APPENDIX B. LDAP DATA INTERCHANGE FORMAT
	B.1. ABOUT THE LDIF FILE FORMAT
	B.2. CONTINUING LINES IN LDIF
	B.3. REPRESENTING BINARY DATA
	B.3.1. Standard LDIF Notation
	B.3.2. Base-64 Encoding

	B.4. SPECIFYING DIRECTORY ENTRIES USING LDIF
	B.4.1. Specifying Domain Entries
	B.4.2. Specifying Organizational Unit Entries
	B.4.3. Specifying Organizational Person Entries

	B.5. DEFINING DIRECTORIES USING LDIF
	B.6. STORING INFORMATION IN MULTIPLE LANGUAGES

	APPENDIX C. LDAP URLS
	C.1. COMPONENTS OF AN LDAP URL
	C.2. ESCAPING UNSAFE CHARACTERS
	C.3. EXAMPLES OF LDAP URLS

	APPENDIX D. INTERNATIONALIZATION
	D.1. ABOUT LOCALES
	D.2. SUPPORTED LOCALES
	D.3. SUPPORTED LANGUAGE SUBTYPES
	D.4. SEARCHING AN INTERNATIONALIZED DIRECTORY
	D.4.1. Matching Rule Formats
	D.4.1.1. Using an OID for the Matching Rule
	D.4.1.2. Using a Language Tag for the Matching Rule
	D.4.1.3. Using an OID and Suffix for the Matching Rule
	D.4.1.4. Using a Language Tag and Suffix for the Matching Rule

	D.4.2. Supported Search Types
	D.4.3. International Search Examples
	D.4.3.1. Less-Than Example
	D.4.3.2. Less-Than or Equal-to Example
	D.4.3.3. Equality Example
	D.4.3.4. Greater-Than or Equal-to Example
	D.4.3.5. Greater-Than Example
	D.4.3.6. Substring Example

	D.5. TROUBLESHOOTING MATCHING RULES

	APPENDIX E. REVISION HISTORY

