
Red Hat Decision Manager 7.11

Developing solvers with Red Hat build of
OptaPlanner in Red Hat Decision Manager

Last Updated: 2021-07-29

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of
OptaPlanner in Red Hat Decision Manager

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to develop solvers with Red Hat build of OptaPlanner in Red Hat
Decision Manager to find the optimal solution to planning problems.

. .

. .

. .

. .

Table of Contents

PREFACE

MAKING OPEN SOURCE MORE INCLUSIVE

PART I. UPGRADING YOUR RED HAT BUILD OF OPTAPLANNER PROJECTS TO OPTAPLANNER 8

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER
Java 11 or higher required
SolverFactory and PlannerBenchmarkFactory no longer support KIE containers
OSGi metadata removed
Refrain from using Java serialization
SolverFactory.getScoreDirectorFactory() replaced with ScoreManager
SolverFactory: getSolverConfig() removed
SolverConfig: buildSolver() removed
PlannerBenchmarkConfig: buildPlannerBenchmark() removed
SolverFactory: cloneSolverFactory() removed
SolverFactory: createEmpty() removed
XML <solver/> root element now belongs to the https://www.optaplanner.org/xsd/solver namespace
Property subPillarEnabled in move selector configuration has been removed
Solver: getScoreDirectorFactory() removed
Solver.explainBestScore() has been removed
The Solver interface methods getBestSolution(), getBestScore(), and getTimeMillisSpent() have been removed

Annotation scanning has been removed
New package for @PlanningFactProperty and @PlanningFactCollectionProperty
filterClassList replaced with a single filter class
AcceptorConfig renamed to LocalSearchAcceptorConfig
Custom properties XML configuration format changes
<variableNameInclude/> elements are now wrapped by the <variableNameIncludes/> element
Solution interface removed
BestSolutionChangedEvent: isNewBestSolutionInitialized() removed
<valueSelector>: variableName is now an attribute
Partitioned Search: threadFactoryClass removed
SimpleDoubleScore and HardSoftDoubleScore removed
Score.toInitializedScore() removed
Various justification Comparators removed
FeasibilityScore removed
@PlanningEntity.movableEntitySelectionFilter removed
@PlanningVariable.reinitializeVariableEntityFilter removed
*ScoreHolder classes turned into interfaces
ValueRangeFactory class now final
ConstraintMatchTotal and Indictment are now interfaces
ScoreManager: generic type Score added
ConstraintMatchTotal, ConstraintMatch, and Indictment: generic type Score added
ConstraintMatchAwareIncrementalScoreCalculator: generic type Score added
AbstractCustomPhaseCommand was removed
Score calculators moved to the public API
PlannerBenchmarkFactory: createFromSolverFactory() removed
PlannerBenchmarkFactory: getPlannerBenchmarkConfig() removed
XML <plannerBenchmark/> root element now belongs to the https://www.optaplanner.org/xsd/benchmark
namespace
ProblemBenchmarksConfig: xStreamAnnotatedClass removed

7

8

9

10
10
10
10
10
10
11
11
11

12
12
13
13
14
14

15
15
16
16
17
18
18
19

20
21
21
22
22
23
23
23
24
24
24
24
25
25
26
27
27
29
29

30
30

Table of Contents

1

. .

. .

. .

. .

. .

. .

BenchmarkAggregatorFrame: createAndDisplay(PlannerBenchmarkFactory) removed
Removed JavaScript expression support in configuration
Removed the deprecated variable listeners

CHAPTER 2. CHANGES BETWEEN OPTAPLANNER 8.2.0 AND OPTAPLANNER 8.3.0
ConstraintMatch.compareTo() inconsistent with equals()

PART II. GETTING STARTED WITH RED HAT BUILD OF OPTAPLANNER

CHAPTER 3. INTRODUCTION TO RED HAT BUILD OF OPTAPLANNER
3.1. PLANNING PROBLEMS
3.2. NP-COMPLETENESS IN PLANNING PROBLEMS
3.3. SOLUTIONS TO PLANNING PROBLEMS
3.4. CONSTRAINTS ON PLANNING PROBLEMS

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER
4.1. N QUEENS

4.1.1. Domain model for N queens
4.2. CLOUD BALANCING
4.3. TRAVELING SALESMAN (TSP - TRAVELING SALESMAN PROBLEM)
4.4. TENNIS CLUB SCHEDULING
4.5. MEETING SCHEDULING
4.6. COURSE TIMETABLING (ITC 2007 TRACK 3 - CURRICULUM COURSE SCHEDULING)
4.7. MACHINE REASSIGNMENT (GOOGLE ROADEF 2012)
4.8. VEHICLE ROUTING

4.8.1. Domain model for Vehicle routing
4.9. PROJECT JOB SCHEDULING
4.10. TASK ASSIGNING
4.11. EXAM TIMETABLING (ITC 2007 TRACK 1 - EXAMINATION)

4.11.1. Domain model for Exam timetabling
4.12. NURSE ROSTERING (INRC 2010)
4.13. TRAVELING TOURNAMENT PROBLEM (TTP)
4.14. CHEAP TIME SCHEDULING
4.15. INVESTMENT ASSET CLASS ALLOCATION (PORTFOLIO OPTIMIZATION)
4.16. CONFERENCE SCHEDULING
4.17. ROCK TOUR
4.18. FLIGHT CREW SCHEDULING

CHAPTER 5. DOWNLOADING RED HAT BUILD OF OPTAPLANNER EXAMPLES
5.1. RUNNING OPTAPLANNER EXAMPLES
5.2. RUNNING THE RED HAT BUILD OF OPTAPLANNER EXAMPLES IN AN IDE (INTELLIJ, ECLIPSE, OR
NETBEANS)

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE
ROSTERING EXAMPLE

6.1. DEPLOYING THE EMPLOYEE ROSTERING SAMPLE PROJECT IN BUSINESS CENTRAL
6.2. RE-CREATING THE EMPLOYEE ROSTERING SAMPLE PROJECT

6.2.1. Setting up the employee rostering project
6.2.2. Problem facts and planning entities
6.2.3. Creating the data model for the employee rostering project

6.2.3.1. Creating the employee roster planning entity
6.2.3.2. Creating the employee roster planning solution

6.2.4. Employee rostering constraints
6.2.4.1. DRL (Drools Rule Language) rules
6.2.4.2. Defining constraints for employee rostering using the DRL designer

31
32
32

35
35

36

37
37
38
38
39

40
43
45
46
46
47
48
49
51

54
59
65
67
69
71
72
77
79
82
82
85
86

87
87

88

89
89
89
90
90
91

92
93
94
95
96

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

2

. .

. .

. .

. .

. .

6.2.5. Creating rules for employee rostering using guided rules
6.2.5.1. Guided rules
6.2.5.2. Creating a guided rule to balance employee shift numbers
6.2.5.3. Creating a guided rule for no more than one shift per day
6.2.5.4. Creating a guided rule to match skills to shift requirements
6.2.5.5. Creating a guided rule to manage day off requests

6.2.6. Creating a solver configuration for employee rostering
6.2.7. Configuring Solver termination for the employee rostering project

6.3. ACCESSING THE SOLVER USING THE REST API
6.3.1. Registering the Solver using the REST API
6.3.2. Calling the Solver using the REST API

CHAPTER 7. GETTING STARTED WITH OPTAPLANNER AND QUARKUS
7.1. APACHE MAVEN AND RED HAT BUILD OF QUARKUS
7.2. CONFIGURING THE MAVEN SETTINGS.XML FILE FOR THE ONLINE REPOSITORY
7.3. DOWNLOADING AND CONFIGURING THE QUARKUS MAVEN REPOSITORY
7.4. CREATING A RED HAT BUILD OF QUARKUS MAVEN PROJECT USING CODE.QUARKUS.REDHAT.COM

PART III. RED HAT BUILD OF OPTAPLANNER QUICK START GUIDES

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL
TIMETABLE QUICK START GUIDE

8.1. CREATING THE SCHOOL TIMETABLE PROJECT
8.2. MODEL THE DOMAIN OBJECTS
8.3. DEFINE THE CONSTRAINTS AND CALCULATE THE SCORE
8.4. GATHER THE DOMAIN OBJECTS IN A PLANNING SOLUTION
8.5. CREATE THE SOLVER SERVICE
8.6. SET THE SOLVER TERMINATION TIME
8.7. RUNNING THE SCHOOL TIMETABLE APPLICATION

8.7.1. Test the application
8.7.2. Logging

CHAPTER 9. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A VACCINATION
APPOINTMENT SCHEDULER QUICK START GUIDE

9.1. HOW THE OPTAPLANNER VACCINATION APPOINTMENT SCHEDULER WORKS
9.1.1. OptaPlanner vaccination appointment scheduler constraints
9.1.2. The OptaPlanner solver
9.1.3. Continuous planning
9.1.4. Pinned planning entities

9.2. DOWNLOADING AND RUNNING THE OPTAPLANNER VACCINATION APPOINTMENT SCHEDULER
9.3. PACKAGE AND RUN THE OPTAPLANNER VACCINATION APPOINTMENT SCHEDULER
9.4. RUN THE OPTAPLANNER VACCINATION APPOINTMENT SCHEDULER AS A NATIVE EXECUTABLE
9.5. ADDITIONAL RESOURCES

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START
GUIDE

10.1. DOWNLOADING AND BUILDING THE SPRING BOOT SCHOOL TIMETABLE QUICK START
10.2. MODEL THE DOMAIN OBJECTS
10.3. DEFINE THE CONSTRAINTS AND CALCULATE THE SCORE
10.4. GATHER THE DOMAIN OBJECTS IN A PLANNING SOLUTION
10.5. CREATE THE TIMETABLE SERVICE
10.6. SET THE SOLVER TERMINATION TIME
10.7. MAKE THE APPLICATION EXECUTABLE

10.7.1. Try the timetable application

97
97
97
98
99
101
102
102
103
103
104

108
108
108
109

111

114

115
116
118
123
125
128
128
129
130
132

134
134
134
136
137
138
139
140
140
141

142
143
143
148
150
153
153
154
154

Table of Contents

3

. .

. .

. .

. .

10.7.2. Test the application
10.7.3. Logging

10.8. ADD DATABASE AND UI INTEGRATION

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK
START GUIDE

11.1. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE
11.1.1. Domain Model Design

11.1.1.1. Designing a domain model
11.1.1.2. The Computer Class
11.1.1.3. The Process Class
11.1.1.4. The CloudBalance Class

11.1.2. Running the cloud balancing Hello World application
11.1.3. Solver Configuration
11.1.4. Score Configuration

11.1.4.1. Configuring score calculation using Java
11.1.4.2. Configuring score calculation using Drools

11.1.5. Further development of the solver

PART IV. RED HAT BUILD OF OPTAPLANNER STARTER APPLICATIONS

CHAPTER 12. USING RED HAT BUILD OF OPTAPLANNER IN AN IDE: AN EMPLOYEE ROSTERING EXAMPLE

12.1. OVERVIEW OF THE EMPLOYEE ROSTERING STARTER APPLICATION
12.2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION

12.2.1. Preparing deployment files
12.2.2. Running the Employee Rostering starter application JAR file
12.2.3. Building and running the Employee Rostering starter application using Maven
12.2.4. Building and running the employee rostering starter application with persistent data storage from the
command line
12.2.5. Building and running the employee rostering starter application using IntelliJ IDEA

12.3. OVERVIEW OF THE SOURCE CODE OF THE EMPLOYEE ROSTERING STARTER APPLICATION
12.4. MODIFYING THE EMPLOYEE ROSTERING STARTER APPLICATION

CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF OPTAPLANNER IN RED HAT OPENSHIFT
CONTAINER PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE

13.1. OVERVIEW OF THE EMPLOYEE ROSTERING STARTER APPLICATION
13.2. INSTALLING AND STARTING THE EMPLOYEE ROSTERING STARTER APPLICATION ON OPENSHIFT

13.2.1. Deploying the application using the provided script
13.3. USING THE EMPLOYEE ROSTERING STARTER APPLICATION

13.3.1. The draft and published periods
13.3.2. The rotation pattern
13.3.3. Employee Rostering tenants

13.3.3.1. Changing an Employee Rostering tenant
13.3.3.2. Creating a tenant

13.3.4. Entering skills
13.3.5. Entering spots
13.3.6. Entering the list of contracts
13.3.7. Entering the list of employees
13.3.8. Setting employee availability
13.3.9. Viewing and editing shifts in the shift roster
13.3.10. Creating and viewing the employee shift roster
13.3.11. Viewing employee shifts
13.3.12. Publishing the shift roster

155
157
158

161
161

163
164
165
165
166
167
169
170
171

173
174

175

176
176
176
176
177
178

179
179
180
182

184
184

184
184
186
186
186
187
187
187
188
188
189
190
191

192
192
193
193

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

4

. .

. .

. .

13.3.13. Viewing and editing the rotation pattern

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE
PLANNING STARTER APPLICATION

14.1. WHAT IS OPTAWEB VEHICLE ROUTING?
14.2. DOWNLOAD AND BUILD THE OPTAWEB VEHICLE ROUTING DEPLOYMENT FILES
14.3. RUN OPTAWEB VEHICLE ROUTING LOCALLY USING THE RUNLOCALLY.SH SCRIPT

14.3.1. Run the OptaWeb Vehicle Routing runLocally.sh script in quick start mode
14.3.2. Run the OptaWeb Vehicle Routing runLocally.sh script in interactive mode
14.3.3. Run the OptaWeb Vehicle Routing runLocally.sh script in non-interactive mode
14.3.4. Update the data directory

14.4. CONFIGURE AND RUN OPTAWEB VEHICLE ROUTING MANUALLY
14.5. RUN OPTAWEB VEHICLE ROUTING ON RED HAT OPENSHIFT CONTAINER PLATFORM

14.5.1. Updating the deployed OptaWeb Vehicle Routing application with local changes
14.6. USING OPTAWEB VEHICLE ROUTING

14.6.1. Creating a route
14.6.2. Viewing and setting other details
14.6.3. Creating custom data sets with OptaWeb Vehicle Routing
14.6.4. Troubleshooting OptaWeb Vehicle Routing

14.7. OPTAWEB VEHICLE ROUTING DEVELOPMENT GUIDE
14.7.1. OptaWeb Vehicle Routing project structure
14.7.2. The OptaWeb Vehicle Routing back-end module

14.7.2.1. Running the OptaWeb Vehicle Routing back-end module
14.7.2.2. Running the OptaWeb Vehicle Routing back-end module from IntelliJ IDEA Ultimate
14.7.2.3. Quarkus development mode
14.7.2.4. Changing OptaWeb Vehicle Routing back-end module system property values
14.7.2.5. OptaWeb Vehicle Routing backend logging

14.7.3. Working with the OptaWeb Vehicle Routing front-end module
14.8. OPTAWEB VEHICLE ROUTING BACK-END ARCHITECTURE

14.8.1. Code organization
14.8.2. Dependency rules
14.8.3. The domain package
14.8.4. The service package
14.8.5. The plugin package

14.9. OPTAWEB VEHICLE ROUTING BACK-END CONFIGURATION PROPERTIES

APPENDIX A. VERSIONING INFORMATION

APPENDIX B. CONTACT INFORMATION

194

196
196
197
197
198
198

200
200
201

203
204
204
205
205
206
206
207
207
207
208
208
208
208
209
209

211
211
212
212
212
212
213

215

216

Table of Contents

5

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

6

PREFACE
As a developer of business decisions , you can use Red Hat build of OptaPlanner to develop solvers that
determine the optimal solution to planning problems. OptaPlanner is a built-in component of Red Hat
Decision Manager. You can use solvers as part of your services in Red Hat Decision Manager to optimize
limited resources with specific constraints.

PREFACE

7

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

8

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. UPGRADING YOUR RED HAT BUILD OF
OPTAPLANNER PROJECTS TO OPTAPLANNER 8

If you have OptaPlanner projects that you created with the OptaPlanner 7 or earlier pubic API and you
want to upgrade your project code to OptaPlanner 8, review the information in this guide. This guide
also includes changes to implementation classes which are outside of the pubic API.

The OptaPlanner public API is a subset of the OptaPlanner source code that enables you to interact with
OptaPlanner through Java code. So that you can upgrade to higher OptaPlanner versions within the
same major release, OptaPlanner follows semantic versioning. This means that you can upgrade from
OptaPlanner 7.44 to OptaPlanner 7.48 for example without breaking your code that uses the
OptaPlanner public API. The OptaPlanner public API classes are compatible within the versions of a
major OptaPlanner release. However, when Red Hat releases a new major release, disrupting changes
are sometimes introduced to the public API.

OptaPlanner 8 is a new major release and some of the changes to the public API are not are not
compatible with earlier versions of OptaPlanner. OptaPlanner 8 will be the foundation for the 8.x series
for the next few years. The changes to the public API that are not compatible with earlier versions that
were required for this release were made for the long term benefit of this project.

Table 1. Red Hat Decision Manager and Red Hat build of OptaPlanner versions

Decision Manager OptaPlanner

7.7 7.33

7.8 7.39

7.9 7.44

7.10 7.48

7.11 8.5

Every upgrade note has a label that indicates how likely it is that your code will be affected by that
change. The following table describes each label:

Table 2. Upgrade impact labels

Label Impact

Major Likely to affect your code.

Minor Unlikely to affect your code, especially if you followed the examples,
unless you have customized the code extensively.

Any changes that are not compatible with earlier versions of OptaPlanner are annotated with the Public
API tag.

PART I. UPGRADING YOUR RED HAT BUILD OF OPTAPLANNER PROJECTS TO OPTAPLANNER 8

9

https://semver.org/

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH
OPTAPLANNER 7.X OR EARLIER

The changes listed in the section are not compatible with OptaPlanner 7.x or earlier versions of
OptaPlanner.

Java 11 or higher required
Major, Public API

If you are using JRE or JDK 8, upgrade to JDK 11 or higher.

On Linux, get OpenJDK from your Linux software repository. On Fedora and Red Hat
Enterprise Linux, enter the following command:

On Windows and macOS, download OpenJDK from the AdoptOpenJDK website.

SolverFactory and PlannerBenchmarkFactory no longer support KIE containers
Major, Public API

Because OptaPlanner now aligns with Kogito, the KIE container concept no longer applies. Therefore,
SolverFactory no longer allows you to create Solver instances from KIE containers. This also applies to
PlannerBenchmarkFactory and benchmarks.

OSGi metadata removed
Major, Public API

Because of the limited usage of OSGi and the maintenance burden it brings, the OptaPlanner JAR files
in the OptaPlanner 8.x series no longer include OSGi metadata in their META-INF/MANIFEST.MF file.

Refrain from using Java serialization
Minor, Public API

In OptaPlanner 8, most uses of the Serializable marker interface were removed from the public API.
Consider serializing with JSON or another format.

SolverFactory.getScoreDirectorFactory() replaced with ScoreManager
Major, Public API

In version 7 of OptaPlanner, using ScoreDirectorFactory was necessary in order to explain the score. In
version 8 of OptaPlanner, new functionality was added to the ScoreManager and as a result there is no
longer any reason to create new instances of ScoreDirector.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

sudo dnf install java-11-openjdk-devel

ScoreDirectorFactory<CloudBalance> scoreDirectorFactory =
solverFactory.getScoreDirectorFactory();
try (ScoreDirector<CloudBalance> scoreDirector = scoreDirectorFactory.buildScoreDirector()) {
 scoreDirector.setWorkingSolution(solution);
 Score score = scoreDirector.calculateScore();
}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

10

https://adoptopenjdk.net

Methods that allowed you to retrieve an instance of ScoreDirector and ScoreDirectorFactory have
been removed from the public API without replacement. A reduced version of the ScoreDirector
interface was promoted to the public API to promote the ProblemFactChange interface to the public
API.

SolverFactory: getSolverConfig() removed
Minor, Public API

The SolverFactory.getSolverConfig() method has been deprecated and replaced with the
SolverFactory.create(SolverConfig) method. A SolverConfig instance is now instantiated before a
SolverFactory instance is instantiated, which is more natural. The previous order has been removed.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

If you were also passing a ClassLoader, pass it to both SolverConfig.createFromXmlResource() and
SolverFactory.create().

SolverConfig: buildSolver() removed
Minor, Public API

The SolverConfig.buildSolver() method is an inner method that does not belong in the public API. Use
the SolverFactory.buildSolver() method instead.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

PlannerBenchmarkConfig: buildPlannerBenchmark() removed
Minor, Public API

ScoreManager<CloudBalance> scoreManager = ScoreManager.create(solverFactory);
Score score = scoreManager.updateScore(solution);

SolverFactory<MySolution> solverFactory =
SolverFactory.createFromXmlResource(".../mySolverConfig.xml");
SolverConfig solverConfig = solverFactory.getSolverConfig();
...
Solver<MySolution> solver = solverFactory.buildSolver();

SolverConfig solverConfig = SolverConfig.createFromXmlResource(".../mySolverConfig.xml");
...
SolverFactory<MySolution> solverFactory = SolverFactory.create(solverConfig);
Solver<MySolution> solver = solverFactory.buildSolver();

SolverConfig solverConfig = SolverConfig.createFromXmlResource(".../mySolverConfig.xml");
...
Solver<MySolution> solver = solverConfig.buildSolver();

SolverConfig solverConfig = SolverConfig.createFromXmlResource(".../mySolverConfig.xml");
...
SolverFactory<MySolution> solverFactory = SolverFactory.create(solverConfig);
Solver<MySolution> solver = solverFactory.buildSolver();

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

11

The PlannerBenchmarkConfig.buildPlannerBenchmark() method is an inner method that does not
belong in the public API. Use the PlannerBenchmarkFactory.buildPlannerBenchmark() method
instead.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

SolverFactory: cloneSolverFactory() removed
Minor, Public API

The SolverFactory.cloneSolverFactory() method has been deprecated and replaced with the new
SolverConfig(SolverConfig) copy constructors and the SolverFactory.cloneSolverFactory() method
has been removed.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

SolverFactory: createEmpty() removed

PlannerBenchmarkConfig benchmarkConfig = PlannerBenchmarkConfig.createFromXmlResource(
 ".../cloudBalancingBenchmarkConfig.xml");
...
PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();

PlannerBenchmarkConfig benchmarkConfig = PlannerBenchmarkConfig.createFromXmlResource(
 ".../cloudBalancingBenchmarkConfig.xml");
...
PlannerBenchmarkFactory benchmarkFactory =
PlannerBenchmarkFactory.create(benchmarkConfig);
PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();

private SolverFactory<MySolution> base;

public void userRequest(..., long userInput) {
 SolverFactory<MySolution> solverFactory = base.cloneSolverFactory();
 solverFactory.getSolverConfig()
 .getTerminationConfig()
 .setMinutesSpentLimit(userInput);
 Solver<MySolution> solver = solverFactory.buildSolver();
 ...
}

private SolverConfig base;

public void userRequest(..., long userInput) {
 SolverConfig solverConfig = new SolverConfig(base); // Copy it
 solverConfig.getTerminationConfig()
 .setMinutesSpentLimit(userInput);
 SolverFactory<MySolution> solverFactory = SolverFactory.create(solverConfig);
 Solver<MySolution> solver = solverFactory.buildSolver();
 ...
}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

12

Minor, Public API

The SolverFactory.createEmpty() method has been deprecated and replaced with the new
SolverConfig() method. The SolverFactory.createEmpty() method has been removed.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

XML <solver/> root element now belongs to the
https://www.optaplanner.org/xsd/solver namespace
Major, Public API

OptaPlanner now provides an XML schema definition for the solver configuration. Although
OptaPlanner retains compatibility with previous versions of the existing XML configuration, migrating to
the XSD is strongly recommended because OptaPlanner might support only valid configuration XML in
the future.

An example from the *SolverConfig.xml file in OptaPlanner 7:

An example from the *SolverConfig.xml file in OptaPlanner 8:

Using the XSD might require reordering some of the XML elements of the configuration. Use code
completion in the IDE to migrate to a valid XML.

Property subPillarEnabled in move selector configuration has been removed
Minor, Public API

The subPillarEnabled property on PillarSwapMoveSelector and PillarChangeMoveSelector has
been deprecated and replaced with a new property, subPillarType. The subPillarEnabled property has
been removed.

SolverFactory<MySolution> solverFactory = SolverFactory.createEmpty();
SolverConfig solverConfig = solverFactory.getSolverConfig()
...
Solver<MySolution> solver = solverFactory.buildSolver();

SolverConfig solverConfig = new SolverConfig();
...
SolverFactory<MySolution> solverFactory = SolverFactory.create(solverConfig);
Solver<MySolution> solver = solverFactory.buildSolver();

<?xml version="1.0" encoding="UTF-8"?>
<solver>
 ...
</solver>

<?xml version="1.0" encoding="UTF-8"?>
<solver xmlns="https://www.optaplanner.org/xsd/solver"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="https://www.optaplanner.org/xsd/solver
https://www.optaplanner.org/xsd/solver/solver.xsd">
 ...
</solver>

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

13

https://www.optaplanner.org/xsd/solver

An example from the *SolverConfig.xml and *BenchmarkConfig.xml files in OptaPlanner 7:

An example from the *SolverConfig.xml and *BenchmarkConfig.xml files in OptaPlanner 8:

Solver: getScoreDirectorFactory() removed
Major, Public API

The getScoreDirectorFactory() method has been deprecated and has now been removed from both
Solver and SolverFactory classes.

You no longer need to create a Solver instance just to calculate or explain a score in the UI. Use the
ScoreManager API instead.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

ScoreDirectorFactory should not be used anymore because it has always been outside the public API
and all of its functionality is exposed in various parts of the public API.

Solver.explainBestScore() has been removed
Major, Public API

The explainBestScore() method on the Solver interface was deprecated in 7.x and has now been
removed. You can obtain the same information through the new ScoreManager API.

Red Hat recommends that you do not parse the results of this method call in any way.

 <pillar...MoveSelector>
 ...
 <pillarSelector>
 <subPillarEnabled>false</subPillarEnabled>
 ...
 </pillarSelector>
 ...
 </pillar...MoveSelector>

 <pillar...MoveSelector>
 <subPillarType>NONE</subPillarType>
 <pillarSelector>
 ...
 </pillarSelector>
 ...
 </pillar...MoveSelector>

SolverFactory<VehicleRoutingSolution> solverFactory = SolverFactory.createFromXmlResource(...);
Solver<VehicleRoutingSolution> solver = solverFactory.buildSolver();
uiScoreDirectorFactory = solver.getScoreDirectorFactory();
...

SolverFactory<VehicleRoutingSolution> solverFactory = SolverFactory.createFromXmlResource(...);
ScoreManager<VehicleRoutingSolution> scoreManager = ScoreManager.create(solverFactory);
...

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

14

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

The Solver interface methods getBestSolution(), getBestScore(), and getTimeMillisSpent()

have been removed
Minor, Public API

Several methods on the Solver interface were deprecated in 7.x and have been removed. You can
obtain the same information by registering an EventListener through the Solver.addEventListener(…
).

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

Annotation scanning has been removed
Major, Public API

The <scanAnnotatedClasses/> directive in the solver configuration was deprecated in 7.x and is now
removed.

An example from the *.xml file in OptaPlanner 7:

An example from the *.xml file in OptaPlanner 8:

solver = ...;
scoreExplanation = solver.explainBestScore();

MySolution solution = ...;
ScoreManager<MySolution> scoreManager = ...;
scoreExplanation = scoreManager.explainScore(solution);

solver = ...;
solution = solver.getBestSolution();
score = solver.getBestScore();
timeMillisSpent = solver.getTimeMillisSpent();

solver = ...;
solver.addEventListener(event -> {
 solution = event.getNewBestSolution();
 score = event.getNewBestScore();
 timeMillisSpent = event.getTimeMillisSpent();
});

<solver>
 ...
 <scanAnnotatedClasses/>
 ...
</solver>

<solver>
 ...

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

15

New package for @PlanningFactProperty and @PlanningFactCollectionProperty
Major, Public API

The @PlanningFactProperty and @PlanningFactCollectionProperty annotations now share the
same package with other similar annotations, such as @PlanningSolution. The old annotations were
deprecated in 7.x and removed.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

filterClassList replaced with a single filter class
Minor, Public API

The configuration of EntitySelector, ValueSelector, and MoveSelector now has a single filter class in
both the configuration API and the solver configuration XML.

In practice, you do not need multiple selection filter classes often, and you can replace them with a single
selection filter class that implements the logic of all of them. Passing a single selection class now
requires less boilerplate code.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

Replacing multiple selection filter classes with a single selection filter class

An example from the *.xml file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 7:

 <solutionClass>...</solutionClass>
 <entityClass>...</entityClass>
 ...
</solver>

import org.optaplanner.core.api.domain.solution.drools.ProblemFactCollectionProperty;
import org.optaplanner.core.api.domain.solution.drools.ProblemFactProperty;

import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty;
import org.optaplanner.core.api.domain.solution.ProblemFactProperty;

ValueSelectorConfig valueSelectorConfig = new ValueSelectorConfig();
valueSelectorConfig.setFilterClassList(Collections.singletonList(MySelectionFilterClass.class));

ValueSelectorConfig valueSelectorConfig = new ValueSelectorConfig();
valueSelectorConfig.setFilterClass(MySelectionFilterClass.class);

<swapMoveSelector>
 <entitySelector>
 <filterClass>com.example.FilterA</filterClass>
 <filterClass>com.example.FilterB</filterClass>
 </entitySelector>
</swapMoveSelector>

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

16

An example from the *.xml file in OptaPlanner 8:

An example from a *.java file in OptaPlanner 8:

AcceptorConfig renamed to LocalSearchAcceptorConfig
Minor

This only impacts the configuration API. The solver configuration XML file remains intact.

Naming consistency with other local-search-specific configuration classes has been implemented.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

package com.example;
...
public class FilterA implements SelectionFilter<MySolution, MyPlanningEntity> {

 @Override
 public boolean accept(ScoreDirector<MySolution> scoreDirector, MyPlanningEntity selection) {
 return selection.getValue() < 500;
 }
}

package com.example;
...
public class FilterB implements SelectionFilter<MySolution, MyPlanningEntity> {

 @Override
 public boolean accept(ScoreDirector<MySolution> scoreDirector, MyPlanningEntity selection) {
 return selection.getOrder() == Order.ASC;
 }
}

<swapMoveSelector>
 <entitySelector>
 <filterClass>com.example.SingleEntityFilter</filterClass>
 </entitySelector>
</swapMoveSelector>

package com.example;
...
public class SingleEntityFilter implements SelectionFilter<MySolution, MyPlanningEntity> {

 @Override
 public boolean accept(ScoreDirector<MySolution> scoreDirector, MyPlanningEntity selection) {
 return selection.getValue() < 500 && selection.getOrder() == Order.ASC;
 }
}

LocalSearchPhaseConfig localSearchPhaseConfig = new LocalSearchPhaseConfig()
 .withAcceptorConfig(new AcceptorConfig().withEntityTabuSize(5));

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

17

Custom properties XML configuration format changes
Minor, Public API

This issue only impacts the solver configuration XML, specifically <scoreDirectorFactory/>,
<moveIteratorFactory/>, <moveListFactory/>, <partitionedSearch/> and <customPhase/>.

This change was made to enforce the structure of the configuration XML in build time.

An example from the *.xml file in OptaPlanner 7:

An example from the *.xml file in OptaPlanner 8:

<variableNameInclude/> elements are now wrapped by the <variableNameIncludes/>

element
Minor, Public API

This update only impacts the solver configuration XML, specifically the <swapMoveSelector/> and
<pillarSwapMoveSelector/>.

This change was made to enforce the structure of the configuration XML in build time.

An example from the *.xml file in OptaPlanner 7:

An example from the *.xml file in OptaPlanner 8:

LocalSearchPhaseConfig localSearchPhaseConfig = new LocalSearchPhaseConfig()
 .withAcceptorConfig(new LocalSearchAcceptorConfig().withEntityTabuSize(5));

<partitionedSearch>
 <solutionPartitionerClass>com.example.MySolutionPartitioner</solutionPartitionerClass>
 <solutionPartitionerCustomProperties>
 <partCount>4</partCount> <!-- a custom property -->
 <minimumProcessListSize>300</minimumProcessListSize> <!-- a custom property -->
 </solutionPartitionerCustomProperties>
</partitionedSearch>

<partitionedSearch>
 <solutionPartitionerClass>com.example.MySolutionPartitioner</solutionPartitionerClass>
 <solutionPartitionerCustomProperties>
 <property name="partCount" value="4"/> <!-- a custom property -->
 <property name="minimumProcessListSize" value="300"/> <!-- a custom property -->
 </solutionPartitionerCustomProperties>
</partitionedSearch>

<swapMoveSelector>
 <variableNameInclude>variableA</variableNameInclude>
 <variableNameInclude>variableB</variableNameInclude>
</swapMoveSelector>

<swapMoveSelector>
 <variableNameIncludes>
 <variableNameInclude>variableA</variableNameInclude>

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

18

Solution interface removed
Minor, Public API

The Solution interface was deprecated and removed. The AbstractSolution interface which is only
used by Business Central has also been removed.

Remove the Solution interface, annotate the getScore() method with @PlanningScore, and replace
the getProblemFacts() method with a @ProblemFactCollectionProperty annotation directly on every
problem fact getter (or field).

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

 <variableNameInclude>variableB</variableNameInclude>
 </variableNameIncludes>
</swapMoveSelector>

@PlanningSolution
public class CloudBalance implements Solution<HardSoftScore> {

 private List<CloudComputer> computerList;
 ...

 private HardSoftScore score;

 @ValueRangeProvider(id = "computerRange")
 public List<CloudComputer> getComputerList() {...}

 public HardSoftScore getScore() {...}
 public void setScore(HardSoftScore score) {...}

 public Collection<? extends Object> getProblemFacts() {
 List<Object> facts = new ArrayList<Object>();
 facts.addAll(computerList);
 ...
 return facts;
 }

}

@PlanningSolution
public class CloudBalance {

 private List<CloudComputer> computerList;
 ...

 private HardSoftScore score;

 @ValueRangeProvider(id = "computerRange")
 @ProblemFactCollectionProperty
 public List<CloudComputer> getComputerList() {...}

 @PlanningScore
 public HardSoftScore getScore() {...}

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

19

For a single problem fact that is not wrapped in a Collection, use the @ProblemFactProperty
annotation, as shown in the following example, with field annotations this time:

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

Do not add the @ProblemFactCollectionProperty annotation on getters (or fields) that have a
@PlanningEntityCollectionProperty annotation.

BestSolutionChangedEvent: isNewBestSolutionInitialized() removed
Minor, Public API

The BestSolutionChangedEvent.isNewBestSolutionInitialized() method has been deprecated and
replaced with the
BestSolutionChangedEvent.getNewBestSolution().getScore().isSolutionInitialized() method. The
BestSolutionChangedEvent.isNewBestSolutionInitialized() method has been removed.

 public void setScore(HardSoftScore score) {...}

}

@PlanningSolution
public class CloudBalance implements Solution<HardSoftScore> {

 private CloudParametrization parametrization;
 private List<CloudBuilding> buildingList;
 @ValueRangeProvider(id = "computerRange")
 private List<CloudComputer> computerList;
 ...

 public Collection<? extends Object> getProblemFacts() {
 List<Object> facts = new ArrayList<Object>();
 facts.add(parametrization); // not a Collection
 facts.addAll(buildingList);
 facts.addAll(computerList);
 ...
 return facts;
 }

}

@PlanningSolution
public class CloudBalance {

 @ProblemFactProperty
 private CloudParametrization parametrization;
 @ProblemFactCollectionProperty
 private List<CloudBuilding> buildingList;
 @ValueRangeProvider(id = "computerRange")
 @ProblemFactCollectionProperty
 private List<CloudComputer> computerList;
 ...

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

20

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

If you check isFeasible(), it checks if the solution is initialized.

An example from a *.java file in OptaPlanner 8:

<valueSelector>: variableName is now an attribute
Minor, Public API

When power-tweaking move selectors, such as <changeMoveSelector>, in a use case with multiple
planning variables, the <variableName> XML element has been replaced with a variableName="… "
XML attribute. This change reduces the solver configuration verbosity. After being deprecated for the
entire 7.x series, the old way has now been removed.

An example from the *SolverConfig.xml and *BenchmarkConfig.xml files in OptaPlanner 7:

An example from the *SolverConfig.xml and *BenchmarkConfig.xml files in OptaPlanner 8:

Partitioned Search: threadFactoryClass removed
Minor, Public API

Because <solver> has supported a <threadFactoryClass> element for some time, the
<threadFactoryClass> element under <partitionedSearch> has been removed.

 public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event) {
 if (event.isEveryProblemFactChangeProcessed()
 && event.isNewBestSolutionInitialized()) {
 ...
 }
 }

 public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event) {
 if (event.isEveryProblemFactChangeProcessed()
 && event.getNewBestSolution().getScore().isSolutionInitialized()) {
 ...
 }
 }

 public void bestSolutionChanged(BestSolutionChangedEvent<CloudBalance> event) {
 if (event.isEveryProblemFactChangeProcessed()
 // isFeasible() checks isSolutionInitialized() too
 && event.getNewBestSolution().getScore().isFeasible()) {
 ...
 }
 }

 <valueSelector>
 <variableName>room</variableName>
 </valueSelector>

 <valueSelector variableName="room"/>

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

21

An example from the *SolverConfig.xml and *BenchmarkConfig.xml files in OptaPlanner 7:

An example from the *SolverConfig.xml and *BenchmarkConfig.xml files in OptaPlanner 8:

SimpleDoubleScore and HardSoftDoubleScore removed
Minor, Public API

The use of double-based score types is not recommended because they can cause score corruption.
They have been removed.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

Score.toInitializedScore() removed
Minor, Public API

The Score.toInitializedScore() method was deprecated and replaced with the
Score.withInitScore(int) method in 7.x and is now removed.

 <solver>
 ...
 <partitionedSearch>
 <threadFactoryClass>...MyAppServerThreadFactory</threadFactoryClass>
 ...
 </partitionedSearch>
 </solver>

 <solver>
 <threadFactoryClass>...MyAppServerThreadFactory</threadFactoryClass>
 ...
 <partitionedSearch>
 ...
 </partitionedSearch>
 </solver>

@PlanningSolution
public class MyPlanningSolution {

 private SimpleDoubleScore score;

 ...

}

@PlanningSolution
public class MyPlanningSolution {

 private SimpleLongScore score;

 ...

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

22

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

Various justification Comparators removed
Minor, Public API

The following Comparator implementations were deprecated in 7.x and now removed:

org.optaplanner.core.api.score.comparator.NaturalScoreComparator

org.optaplanner.core.api.score.constraint.ConstraintMatchScoreComparator

org.optaplanner.core.api.score.constraint.ConstraintMatchTotalScoreComparator

org.optaplanner.core.api.score.constraint.IndictmentScoreComparator

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

FeasibilityScore removed
Minor, Public API

The FeasibilityScore interface was deprecated in 7.x and its only method isFeasible() moved to the
Score supertype. The interface has now been removed.

You should refer to Scores by their ultimate type, for example HardSoftScore instead of to Score.

@PlanningEntity.movableEntitySelectionFilter removed
Minor, Public API

The movableEntitySelectionFilter field on the @PlanningEntity annotation was deprecated in 7.x and
a new field pinningFilter has been introduced with a name that shows the relation to the @PlanningPin
annotation. This filter implements a new PinningFilter interface, returning true if the entity is pinned,
and false if movable. The logic of this new filter is therefore inverted as compared to the old filter.

You should update your @PlanningEntity annotations by supplying the new filter instead of the old
filter. The old filter has now been removed.

An example from a *.java file in OptaPlanner 7:

score = score.toInitializedScore();

score = score.withInitScore(0);

NaturalScoreComparator comparator = new NaturalScoreComparator();
ConstraintMatchScoreComparator comparator2 = new ConstraintMatchScoreComparator();

Comparator<Score> comparator = Comparable::compareTo;
Comparator<ConstraintMatch> comparator2 = Comparator.comparing(ConstraintMatch::getScore);

@PlanningEntity(movableEntitySelectionFilter = MyMovableEntitySelectionFilter.class)

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

23

An example from a *.java file in OptaPlanner 8:

@PlanningVariable.reinitializeVariableEntityFilter removed
Minor, Public API

The reinitializeVariableEntityFilter field on the @PlanningVariable annotation was deprecated in 7.x
and now removed.

*ScoreHolder classes turned into interfaces
Minor, Public API

In OptaPlanner 7, ScoreHolder classes, used exclusively for Drools score calculation, exposed a number
of public methods which, if used, allowed the user to unintentionally corrupt or otherwise negatively
affect their scores.

In OptaPlanner 8, these methods have been removed and the classes have been turned into interfaces.
Most users do not use the removed and potentially harmful methods.

However, if you do use these methods, you will find suitable replacements in the public API in areas of
score explanation and constraint configuration.

ValueRangeFactory class now final
Minor

ValueRangeFactory class is a factory class that has only static methods. There is no need for you to
extend this class, and it has therefore been made final.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

ConstraintMatchTotal and Indictment are now interfaces
Minor, Public API

ConstraintMatchTotal and Indictment classes have been converted into interfaces. As a result, their
implementations were moved out of the public API, together with methods that allowed them to mutate
their state. These methods were never intended for the public API, and therefore there is no
replacement for them.

You might still need the instances themselves if you choose to implement
ConstraintMatchAwareIncrementalScoreCalculator:

@PlanningEntity(pinningFilter = MyPinningFilter.class)

class MyValueRangeFactory extends ValueRangeFactory {
 ...
}

class MyValueRangeFactory {
 ...
}

ConstraintMatchTotal maximumCapacityMatchTotal = new ConstraintMatchTotal(...);

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

24

An example from a *.java file in OptaPlanner 8:

ScoreManager: generic type Score added
Major, Public API

The ScoreManager and ScoreExplanation APIs now have the generic type Score to avoid downcasts
in your code, for example from Score to HardSoftScore.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

ConstraintMatchTotal, ConstraintMatch, and Indictment: generic type Score added
Major

Similar to ScoreManager and ScoreExplanation, the ConstraintMatchTotal, ConstraintMatch, and
Indictment APIs now have a generic type Score to avoid downcasts in your code, for example from
Score to HardSoftScore.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

ConstraintMatchTotal maximumCapacityMatchTotal = new DefaultConstraintMatchTotal(...);

 @Inject // or @Autowired
 ScoreManager<TimeTable> scoreManager;

 @Inject // or @Autowired
 ScoreManager<TimeTable, HardSoftScore> scoreManager;

 ScoreExplanation<TimeTable> explanation = scoreManager.explainScore(timeTable);
 HardSoftScore score = (HardSoftScore) explanation.getScore();

 ScoreExplanation<TimeTable, HardSoftScore> explanation =
scoreManager.explainScore(timeTable);
 HardSoftScore score = explanation.getScore();

 ScoreExplanation<TimeTable> explanation = scoreManager.explainScore(timeTable);
 Map<String, ConstraintMatchTotal> constraintMatchTotalMap =
scoreExplanation.getConstraintMatchTotalMap();
 ConstraintMatchTotal constraintMatchTotal = constraintMatchTotalMap.get(contraintId);
 HardSoftScore totalScore = (HardSoftScore) constraintMatchTotal.getScore();

 ScoreExplanation<TimeTable, HardSoftScore> explanation =
scoreManager.explainScore(timeTable);
 Map<String, ConstraintMatchTotal<HardSoftScore>> constraintMatchTotalMap =
scoreExplanation.getConstraintMatchTotalMap();

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

25

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

ConstraintMatchAwareIncrementalScoreCalculator: generic type Score added
Minor

The interface ConstraintMatchAwareIncrementalScoreCalculator now also has a generic type
parameter for Score to avoid raw type usages of ConstraintMatchTotal and Indictment.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

 ConstraintMatchTotal<HardSoftScore> constraintMatchTotal =
constraintMatchTotalMap.get(contraintId);
 HardSoftScore totalScore = constraintMatchTotal.getScore();

 ScoreExplanation<TimeTable> explanation = scoreManager.explainScore(timeTable);
 Map<Object, Indictment> indictmentMap = scoreExplanation.getIndictmentMap();
 Indictment indictment = indictmentMap.get(lesson);
 HardSoftScore totalScore = (HardSoftScore) indictment.getScore();

 ScoreExplanation<TimeTable, HardSoftScore> explanation =
scoreManager.explainScore(timeTable);
 Map<Object, Indictment<HardSoftScore>> indictmentMap = scoreExplanation.getIndictmentMap();
 Indictment<HardSoftScore> indictment = indictmentMap.get(lesson);
 HardSoftScore totalScore = indictment.getScore();

public class MachineReassignmentIncrementalScoreCalculator
 implements ConstraintMatchAwareIncrementalScoreCalculator<MachineReassignment> {

 @Override
 public Collection<ConstraintMatchTotal> getConstraintMatchTotals() {
 ...
 }

 @Override
 public Map<Object, Indictment> getIndictmentMap() {
 ...
 }

}

public class MachineReassignmentIncrementalScoreCalculator
 implements ConstraintMatchAwareIncrementalScoreCalculator<MachineReassignment,
HardSoftLongScore> {

 @Override
 public Collection<ConstraintMatchTotal<HardSoftLongScore>> getConstraintMatchTotals() {
 ...
 }

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

26

AbstractCustomPhaseCommand was removed
Minor, Public API

The abstract class AbstractCustomPhaseCommand was removed. Any class that extends it should
directly implement the CustomPhaseCommand interface.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

Score calculators moved to the public API
Major

The interfaces EasyScoreCalculator, IncrementalScoreCalculator, and
ConstraintMatchAwareIncrementalScoreCalculator have moved to a new package in the public API.
Their deprecated counterparts have been removed. The deprecated class
org.optaplanner.core.impl.score.director.incremental.AbstractIncrementalScoreCalculator has
also been removed. Replace the use of the removed interfaces and classes with their counterparts in the
public API.

An example from the EasyScoreCalculator.java file in OptaPlanner 7:

 @Override
 public Map<Object, Indictment<HardSoftLongScore>> getIndictmentMap() {
 ...
 }

}

public class DinnerPartySolutionInitializer extends AbstractCustomPhaseCommand<DinnerParty> {

 @Override
 public void changeWorkingSolution(ScoreDirector<DinnerParty> scoreDirector) {
 ...
 }

}

public class DinnerPartySolutionInitializer implements CustomPhaseCommand<DinnerParty> {

 @Override
 public void changeWorkingSolution(ScoreDirector<DinnerParty> scoreDirector) {
 ...
 }

}

 ...
 import org.optaplanner.core.impl.score.director.easy.EasyScoreCalculator;
 ...

 public class CloudBalancingEasyScoreCalculator implements EasyScoreCalculator<CloudBalance>

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

27

An example from the EasyScoreCalculator.java file in OptaPlanner 8:

An example from the IncrementalScoreCalculator.java file in OptaPlanner 7:

An example from the IncrementalScoreCalculator.java file in OptaPlanner 8:

An example from the ConstraintMatchAwareIncrementalScoreCalculator.java file in OptaPlanner 7:

An example from the ConstraintMatchAwareIncrementalScoreCalculator.java file in OptaPlanner 8:

{
 ...
 }

 ...
 import org.optaplanner.core.api.score.calculator.EasyScoreCalculator;
 ...

 public class CloudBalancingEasyScoreCalculator implements EasyScoreCalculator<CloudBalance,
HardSoftScore> {
 ...
 }

 ...
 import org.optaplanner.core.impl.score.director.incremental.AbstractIncrementalScoreCalculator;
 ...

 public class CloudBalancingIncrementalScoreCalculator extends
AbstractIncrementalScoreCalculator<CloudBalance> {
 ...
 }

 ...
 import org.optaplanner.core.api.score.calculator.IncrementalScoreCalculator;
 ...

 public class CloudBalancingIncrementalScoreCalculator implements
IncrementalScoreCalculator<CloudBalance, HardSoftScore> {
 ...
 }

 ...
 import org.optaplanner.core.impl.score.director.incremental.AbstractIncrementalScoreCalculator;
 import
org.optaplanner.core.impl.score.director.incremental.ConstraintMatchAwareIncrementalScoreCalculator
;
 ...

 public class CheapTimeConstraintMatchAwareIncrementalScoreCalculator
 extends AbstractIncrementalScoreCalculator<CheapTimeSolution>
 implements ConstraintMatchAwareIncrementalScoreCalculator<CheapTimeSolution> {
 ...
 }

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

28

PlannerBenchmarkFactory: createFromSolverFactory() removed
Major, Public API

The PlannerBenchmarkFactory.createFromSolverFactory() method has been deprecated and
replaced with the PlannerBenchmarkFactory.createFromSolverConfigXmlResource(String)
method. The PlannerBenchmarkFactory.createFromSolverFactory() method has been removed.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

If you programmatically adjust the solver configuration, you can use
PlannerBenchmarkConfig.createFromSolverConfig(SolverConfig) and then
PlannerBenchmarkFactory.create(PlannerBenchmarkConfig) instead.

PlannerBenchmarkFactory: getPlannerBenchmarkConfig() removed
Minor, Public API

The PlannerBenchmarkFactory.getPlannerBenchmarkConfig() method has been deprecated and
replaced with the PlannerBenchmarkFactory.create(PlannerBenchmarkConfig) method. A
PlannerBenchmarkConfig instance is now instantiated before a PlannerBenchmarkFactory instance
is instantiated. This order is more logical. PlannerBenchmarkFactory.getPlannerBenchmarkConfig()
has been removed.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

 ...
 import org.optaplanner.core.api.score.calculator.ConstraintMatchAwareIncrementalScoreCalculator;
 ...

 public class CheapTimeConstraintMatchAwareIncrementalScoreCalculator
 implements ConstraintMatchAwareIncrementalScoreCalculator<CheapTimeSolution,
HardMediumSoftLongScore> {
 ...
 }

SolverFactory<CloudBalance> solverFactory = SolverFactory.createFromXmlResource(
 ".../cloudBalancingSolverConfig.xml");
PlannerBenchmarkFactory benchmarkFactory =
PlannerBenchmarkFactory.createFromSolverFactory(solverFactory);

PlannerBenchmarkFactory benchmarkFactory =
PlannerBenchmarkFactory.createFromSolverConfigXmlResource(
 ".../cloudBalancingSolverConfig.xml");

PlannerBenchmarkFactory benchmarkFactory =
PlannerBenchmarkFactory.createFromXmlResource(
 ".../cloudBalancingBenchmarkConfig.xml");
PlannerBenchmarkConfig benchmarkConfig = benchmarkFactory.getPlannerBenchmarkConfig();
...
PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

29

XML <plannerBenchmark/> root element now belongs to the
https://www.optaplanner.org/xsd/benchmark namespace
Minor, Public API

OptaPlanner now provides an XML Schema Definition (XSD) for the benchmark configuration. Although
OptaPlanner keeps compatibility with earlier versions of the existing XML configuration, migrating to
the XSD is strongly recommended because OptaPlanner might support only valid configuration XML in
the future.

An example from the *BenchmarkConfig.xml file in OptaPlanner 7:

An example from the *BenchmarkConfig.xml file in OptaPlanner 8:

Using the XSD might require reordering some of the XML elements of the configuration. Use code
completion in the IDE to migrate to a valid XML.

ProblemBenchmarksConfig: xStreamAnnotatedClass removed
Major, Public API

The <xStreamAnnotatedClass/> has been removed from the <problemBenchmarks/> configuration
together with the corresponding getXStreamAnnotatedClassList() and
setXStreamAnnotatedClassList() methods in the ProblemBenchmarksConfig class.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

PlannerBenchmarkConfig benchmarkConfig = PlannerBenchmarkConfig.createFromXmlResource(
 ".../cloudBalancingBenchmarkConfig.xml");
...
PlannerBenchmarkFactory benchmarkFactory =
PlannerBenchmarkFactory.create(benchmarkConfig);
PlannerBenchmark benchmark = benchmarkFactory.buildPlannerBenchmark();

<?xml version="1.0" encoding="UTF-8"?>
<plannerBenchmark>
 ...
</plannerBenchmark>

<?xml version="1.0" encoding="UTF-8"?>
<plannerBenchmark xmlns="https://www.optaplanner.org/xsd/benchmark"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="https://www.optaplanner.org/xsd/benchmark
https://www.optaplanner.org/xsd/benchmark/benchmark.xsd">
 ...
</plannerBenchmark>

ProblemBenchmarksConfig problemBenchmarksConfig = new ProblemBenchmarksConfig();
problemBenchmarksConfig.setXStreamAnnotatedClassList(MySolution.class);

package com.example;
...
public class MySolutionFileIO extends XStreamSolutionFileIO<MySolution> {
 public MySolutionFileIO() {

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

30

https://www.optaplanner.org/xsd/benchmark

An example from the *BenchmarkConfig.xml file in OptaPlanner 7:

An example from the *BenchmarkConfig.xml file in OptaPlanner 8:

BenchmarkAggregatorFrame: createAndDisplay(PlannerBenchmarkFactory) removed
Minor

The BenchmarkAggregatorFrame.createAndDisplay(PlannerBenchmarkFactory) method has been
deprecated and replaced with the
BenchmarkAggregatorFrame.createAndDisplayFromXmlResource(String) method. The
BenchmarkAggregatorFrame.createAndDisplay(PlannerBenchmarkFactory) method has been
removed.

An example from a *.java file in OptaPlanner 7:

An example from a *.java file in OptaPlanner 8:

 super(MySolution.class);
 }
}

...

ProblemBenchmarksConfig problemBenchmarksConfig = new ProblemBenchmarksConfig();
problemBenchmarksConfig.setSolutionFileIOClass(MySolutionFileIO.class);

<plannerBenchmark>
...
 <solverBenchmark>
 <problemBenchmarks>
 <xStreamAnnotatedClass>com.example.MySolution</xStreamAnnotatedClass>
 ...
 </problemBenchmarks>
 ...
 </solverBenchmark>
...
</plannerBenchmark>

<plannerBenchmark>
...
 <solverBenchmark>
 <problemBenchmarks>
 <!-- See the "After in *.java" section to create the MySolutionFileIO. -->
 <solutionFileIOClass>com.example.MySolutionFileIO</solutionFileIOClass>
 ...
 </problemBenchmarks>
 ...
 </solverBenchmark>
...
</plannerBenchmark>

PlannerBenchmarkFactory benchmarkFactory =
PlannerBenchmarkFactory.createFromXmlResource(
 ".../cloudBalancingBenchmarkConfig.xml");
BenchmarkAggregatorFrame.createAndDisplay(benchmarkFactory);

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

31

If you programmatically adjust the benchmark configuration, you can use
BenchmarkAggregatorFrame.createAndDisplay(PlannerBenchmarkConfig) instead.

Removed JavaScript expression support in configuration
Minor

Various elements of both the solver configuration and benchmark configuration no longer support
nested JavaScript expressions. You must replace these with either auto-configuration or with integer
constants.

An example from the solverConfig.xml file in OptaPlanner 7:

An example from the`solverConfig.xml`file in OptaPlanner 8:

An example from the benchmarkConfig.xml file in OptaPlanner 7:

An example from the benchmarkConfig.xml file in OptaPlanner 8:

Removed the deprecated variable listeners
Major, Public API

The deprecated interface VariableListener from package
org.optaplanner.core.impl.domain.variable.listener has ben removed, along with the deprecated
interface StatefulVariableListener and the deprecated class VariableListenerAdapter in that same
package. Use an interface VariableListener from package org.optaplanner.core.api.domain.variable
instead.

BenchmarkAggregatorFrame.createAndDisplayFromXmlResource(
 ".../cloudBalancingBenchmarkConfig.xml");

 <solver>
 ...
 <moveThreadCount>availableProcessorCount - 1</moveThreadCount>
 ...
 </solver>

 <solver>
 ...
 <moveThreadCount>1</moveThreadCount> <!-- Alternatively, use "AUTO" or omit entirely. -->
 ...
 </solver>

 <plannerBenchmark>
 ...
 <parallelBenchmarkCount>availableProcessorCount - 1</parallelBenchmarkCount>
 ...
 </plannerBenchmark>

 <plannerBenchmark>
 ...
 <parallelBenchmarkCount>1</parallelBenchmarkCount> <!-- Alternatively, use "AUTO" or omit
entirely. -->
 ...
 </plannerBenchmark>

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

32

An example of a VariableListener.java file in OptaPlanner 7:

An example from a VariableListener.java file in OptaPlanner 8:

An example of a StatefulVariableListener.java file in OptaPlanner 7:

An example from the StatefulVariableListener.java file in OptaPlanner 8:

 ...
 import org.optaplanner.core.impl.domain.variable.listener.VariableListenerAdapter;
 ...

 public class MyVariableListener extends VariableListenerAdapter<Object> {

 ...

 @Override
 void afterEntityRemoved(ScoreDirector scoreDirector, Object entity);
 ...
 }

 ...
 }

 ...
 import org.optaplanner.core.api.domain.variable.VariableListener;
 ...

 public class MyVariableListener extends VariableListener<MySolution, Object> {

 ...

 @Override
 void afterEntityRemoved(ScoreDirector<MySolution> scoreDirector, Object entity);
 ...
 }

 ...
 }

 ...
 import org.optaplanner.core.impl.domain.variable.listener.StatefulVariableListener;
 ...

 public class MyStatefulVariableListener implements StatefulVariableListener<Object> {

 ...

 @Override
 public void clearWorkingSolution(ScoreDirector scoreDirector) {
 ...
 }

 ...
 }

CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER

33

 ...
 import org.optaplanner.core.api.domain.variable.VariableListener;
 ...

 public class MyStatefulVariableListener implements VariableListener<MySolution, Object> {

 ...

 @Override
 public void close() {
 ...
 }

 ...
 }

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

34

CHAPTER 2. CHANGES BETWEEN OPTAPLANNER 8.2.0 AND
OPTAPLANNER 8.3.0

The changes listed in this section were made between OptaPlanner 8.2.0 and OptaPlanner 8.3.0.

ConstraintMatch.compareTo() inconsistent with equals()
Minor

The equals() override in ConstraintMatch has been removed. As a result, two different
ConstraintMatch instances are never considered equal. This contrasts with the compareTo() method,
which continues to consider two instances equal if all their field values are equal.

CHAPTER 2. CHANGES BETWEEN OPTAPLANNER 8.2.0 AND OPTAPLANNER 8.3.0

35

PART II. GETTING STARTED WITH RED HAT BUILD OF
OPTAPLANNER

As a business rules developer, you can use Red Hat build of OptaPlanner to find the optimal solution to
planning problems based on a set of limited resources and under specific constraints.

Use this document to start developing solvers with OptaPlanner.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

36

CHAPTER 3. INTRODUCTION TO RED HAT BUILD OF
OPTAPLANNER

OptaPlanner is a lightweight, embeddable planning engine that optimizes planning problems. It helps
normal Java programmers solve planning problems efficiently, and it combines optimization heuristics
and metaheuristics with very efficient score calculations.

For example, OptaPlanner helps solve various use cases:

Employee/Patient Rosters: It helps create time tables for nurses and keeps track of patient bed
management.

Educational Timetables: It helps schedule lessons, courses, exams, and conference
presentations.

Shop Schedules: It tracks car assembly lines, machine queue planning, and workforce task
planning.

Cutting Stock: It minimizes waste by reducing the consumption of resources such as paper and
steel.

Every organization faces planning problems; that is, they provide products and services with a limited set
of constrained resources (employees, assets, time, and money).

OptaPlanner is open source software under the Apache Software License 2.0. It is 100% pure Java and
runs on most Java virtual machines.

3.1. PLANNING PROBLEMS

A planning problem has an optimal goal, based on limited resources and under specific constraints.
Optimal goals can be any number of things, such as:

Maximized profits - the optimal goal results in the highest possible profit.

Minimized ecological footprint - the optimal goal has the least amount of environmental impact.

Maximized satisfaction for employees or customers - the optimal goal prioritizes the needs of
employees or customers.

The ability to achieve these goals relies on the number of resources available. For example, the
following resources might be limited:

The number of people

Amount of time

Budget

Physical assets, for example, machinery, vehicles, computers, buildings, and so on

You must also take into account the specific constraints related to these resources, such as the number
of hours a person works, their ability to use certain machines, or compatibility between pieces of
equipment.

Red Hat build of OptaPlanner helps Java programmers solve constraint satisfaction problems
efficiently. It combines optimization heuristics and metaheuristics with efficient score calculation.

CHAPTER 3. INTRODUCTION TO RED HAT BUILD OF OPTAPLANNER

37

3.2. NP-COMPLETENESS IN PLANNING PROBLEMS

The provided use cases are probably NP-complete or NP-hard, which means the following statements
apply:

It is easy to verify a given solution to a problem in reasonable time.

There is no simple way to find the optimal solution of a problem in reasonable time.

The implication is that solving your problem is probably harder than you anticipated, because the two
common techniques do not suffice:

A brute force algorithm (even a more advanced variant) takes too long.

A quick algorithm, for example in the bin packing problem, putting in the largest items first
returns a solution that is far from optimal.

By using advanced optimization algorithms, OptaPlanner finds a good solution in reasonable time for
such planning problems.

3.3. SOLUTIONS TO PLANNING PROBLEMS

A planning problem has a number of solutions.

Several categories of solutions are:

Possible solution

A possible solution is any solution, whether or not it breaks any number of constraints. Planning
problems often have an incredibly large number of possible solutions. Many of those solutions are not
useful.

Feasible solution

A feasible solution is a solution that does not break any (negative) hard constraints. The number of
feasible solutions are relative to the number of possible solutions. Sometimes there are no feasible
solutions. Every feasible solution is a possible solution.

Optimal solution

An optimal solution is a solution with the highest score. Planning problems usually have a few optimal
solutions. They always have at least one optimal solution, even in the case that there are no feasible
solutions and the optimal solution is not feasible.

Best solution found

The best solution is the solution with the highest score found by an implementation in a given amount
of time. The best solution found is likely to be feasible and, given enough time, it’s an optimal
solution.

Counterintuitively, the number of possible solutions is huge (if calculated correctly), even with a small
data set.

In the examples provided in the planner-engine distribution folder, most instances have a large number
of possible solutions. As there is no guaranteed way to find the optimal solution, any implementation is
forced to evaluate at least a subset of all those possible solutions.

OptaPlanner supports several optimization algorithms to efficiently wade through that incredibly large
number of possible solutions.

Depending on the use case, some optimization algorithms perform better than others, but it is

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

38

http://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Bin_packing_problem

Depending on the use case, some optimization algorithms perform better than others, but it is
impossible to know in advance. Using OptaPlanner, you can switch the optimization algorithm by
changing the solver configuration in a few lines of XML or code.

3.4. CONSTRAINTS ON PLANNING PROBLEMS

Usually, a planning problem has minimum two levels of constraints:

A (negative) hard constraint must not be broken.
For example, one teacher can not teach two different lessons at the same time.

A (negative) soft constraint should not be broken if it can be avoided.
For example, Teacher A does not like to teach on Friday afternoons.

Some problems also have positive constraints:

A positive soft constraint (or reward) should be fulfilled if possible.
For example, Teacher B likes to teach on Monday mornings.

Some basic problems only have hard constraints. Some problems have three or more levels of
constraints, for example, hard, medium, and soft constraints.

These constraints define the score calculation (otherwise known as the fitness function) of a planning
problem. Each solution of a planning problem is graded with a score. With OptaPlanner, score
constraints are written in an object oriented language such as Java, or in Drools rules.

This type of code is flexible and scalable.

CHAPTER 3. INTRODUCTION TO RED HAT BUILD OF OPTAPLANNER

39

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF
OPTAPLANNER

Several Red Hat build of OptaPlanner examples are shipped with Red Hat Decision Manager. You can
review the code for examples and modify it as necessary to suit your needs.

NOTE

Red Hat does not provide support for the example code included in the Red Hat Decision
Manager distribution.

Some of the OptaPlanner examples solve problems that are presented in academic contests. The
Contest column in the following table lists the contests. It also identifies an example as being either
realistic or unrealistic for the purpose of a contest. A realistic contest is an official, independent contest
that meets the following standards:

Clearly defined real-world use cases

Real-world constraints

Multiple real-world datasets

Reproducible results within a specific time limit on specific hardware

Serious participation from the academic and/or enterprise Operations Research community.

Realistic contests provide an objective comparison of OptaPlanner with competitive software and
academic research.

Table 4.1. Examples overview

Example Domain Size Contest Directory name

N queens 1 entity class

(1 variable)

Entity ⇐ 256

Value ⇐ 256

Search space ⇐
10^616

Pointless
(cheatable
)

nqueens

Cloud
balancing

1 entity class

(1 variable)

Entity ⇐ 2400

Value ⇐ 800

Search space ⇐
10^6967

No
(Defined
by us)

cloudbalancing

Traveling
salesman

1 entity class

(1 chained variable)

Entity ⇐ 980

Value ⇐ 980

Search space ⇐
10^2504

Unrealistic
TSP web

tsp

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

40

http://www.math.uwaterloo.ca/tsp/

Tennis
club
scheduling

1 entity class

(1 variable)

Entity ⇐ 72

Value ⇐ 7

Search space ⇐ 10^60

No
(Defined
by us)

tennis

Meeting
scheduling

1 entity class

(2 variables)

Entity ⇐ 10

Value ⇐ 320 and ⇐ 5

Search space ⇐
10^320

No
(Defined
by us)

meetingscheduling

Course
timetablin
g

1 entity class

(2 variables)

Entity ⇐ 434

Value ⇐ 25 and ⇐ 20

Search space ⇐
10^1171

Realistic
ITC 2007
track 3

curriculumCourse

Machine
reassignm
ent

1 entity class

(1 variable)

Entity ⇐ 50000

Value ⇐ 5000

Search space ⇐
10^184948

Nearly
realistic
ROADEF
2012

machineReassignm
ent

Vehicle
routing

1 entity class

(1 chained variable)

1 shadow entity class

(1 automatic shadow
variable)

Entity ⇐ 2740

Value ⇐ 2795

Search space ⇐
10^8380

Unrealistic
VRP web

vehiclerouting

Vehicle
routing
with time
windows

All of Vehicle routing

(1 shadow variable)

Entity ⇐ 2740

Value ⇐ 2795

Search space ⇐
10^8380

Unrealistic
VRP web

vehiclerouting

Project job
scheduling

1 entity class

(2 variables)

(1 shadow variable)

Entity ⇐ 640

Value ⇐ ? and ⇐ ?

Search space ⇐ ?

Nearly
realistic
MISTA
2013

projectjobschedulin
g

Example Domain Size Contest Directory name

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

41

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://challenge.roadef.org/2012/en/
http://gent.cs.kuleuven.be/mista2013challenge/

Task
assigning

1 entity class

(1 chained variable)

(1 shadow variable)

1 shadow entity class

(1 automatic shadow
variable)

Entity ⇐ 500

Value ⇐ 520

Search space ⇐
10^1168

No
Defined
by us

taskassigning

Exam
timetablin
g

2 entity classes (same
hierarchy)

(2 variables)

Entity ⇐ 1096

Value ⇐ 80 and ⇐ 49

Search space ⇐
10^3374

Realistic
ITC 2007
track 1

examination

Nurse
rostering

1 entity class

(1 variable)

Entity ⇐ 752

Value ⇐ 50

Search space ⇐
10^1277

Realistic
INRC 2010

nurserostering

Traveling
tournamen
t

1 entity class

(1 variable)

Entity ⇐ 1560

Value ⇐ 78

Search space ⇐
10^2301

Unrealistic
TTP

travelingtournament

Cheap
time
scheduling

1 entity class

(2 variables)

Entity ⇐ 500

Value ⇐ 100 and ⇐ 288

Search space ⇐
10^20078

Nearly
realistic
ICON
Energy

cheaptimeschedulin
g

Investmen
t

1 entity class

(1 variable)

Entity ⇐ 11

Value = 1000

Search space ⇐ 10^4

No
Defined
by us

investment

Conferenc
e
scheduling

1 entity class

(2 variables)

Entity ⇐ 216

Value ⇐ 18 and ⇐ 20

Search space ⇐
10^552

No
Defined
by us

conferencescheduli
ng

Example Domain Size Contest Directory name

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

42

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.kuleuven-kortrijk.be/nrpcompetition
http://mat.tepper.cmu.edu/TOURN/
https://web.archive.org/web/20170223060433/http://iconchallenge.insight-centre.org/challenge-energy

Rock tour 1 entity class

(1 chained variable)

(4 shadow variables)

1 shadow entity class

(1 automatic shadow
variable)

Entity ⇐ 47

Value ⇐ 48

Search space ⇐ 10^59

No
Defined
by us

rocktour

Flight crew
scheduling

1 entity class

(1 variable)

1 shadow entity class

(1 automatic shadow
variable)

Entity ⇐ 4375

Value ⇐ 750

Search space ⇐
10^12578

No
Defined
by us

flightcrewschedulin
g

Example Domain Size Contest Directory name

4.1. N QUEENS

Place n queens on a n sized chessboard so that no two queens can attack each other. The most
common n queens puzzle is the eight queens puzzle, with n = 8 :

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

43

Constraints:

Use a chessboard of n columns and n rows.

Place n queens on the chessboard.

No two queens can attack each other. A queen can attack any other queen on the same
horizontal, vertical, or diagonal line.

This documentation heavily uses the four queens puzzle as the primary example.

A proposed solution could be:

Figure 4.1. A wrong solution for the Four queens puzzle

The above solution is wrong because queens A1 and B0 can attack each other (so can queens B0 and
D0). Removing queen B0 would respect the "no two queens can attack each other" constraint, but would
break the "place n queens" constraint.

Below is a correct solution:

Figure 4.2. A correct solution for the Four queens puzzle

All the constraints have been met, so the solution is correct.

Note that most n queens puzzles have multiple correct solutions. We will focus on finding a single
correct solution for a given n, not on finding the number of possible correct solutions for a given n.

Problem size

4queens has 4 queens with a search space of 256.
8queens has 8 queens with a search space of 10^7.
16queens has 16 queens with a search space of 10^19.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

44

32queens has 32 queens with a search space of 10^48.
64queens has 64 queens with a search space of 10^115.
256queens has 256 queens with a search space of 10^616.

The implementation of the n queens example has not been optimized because it functions as a beginner
example. Nevertheless, it can easily handle 64 queens. With a few changes it has been shown to easily
handle 5000 queens and more.

4.1.1. Domain model for N queens

This example uses the domain model to solve the four queens problem.

Creating a Domain Model
A good domain model will make it easier to understand and solve your planning problem.

This is the domain model for the n queens example:

Calculating the Search Space.
A Queen instance has a Column (for example: 0 is column A, 1 is column B, …) and a Row (its
row, for example: 0 is row 0, 1 is row 1, …).

The ascending diagonal line and the descending diagonal line can be calculated based on the
column and the row.

The column and row indexes start from the upper left corner of the chessboard.

public class Column {

 private int index;

 // ... getters and setters
}

public class Row {

 private int index;

 // ... getters and setters
}

public class Queen {

 private Column column;
 private Row row;

 public int getAscendingDiagonalIndex() {...}
 public int getDescendingDiagonalIndex() {...}

 // ... getters and setters
}

public class NQueens {

 private int n;

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

45

Finding the Solution
A single NQueens instance contains a list of all Queen instances. It is the Solution
implementation which will be supplied to, solved by, and retrieved from the Solver.

Notice that in the four queens example, NQueens’s getN() method will always return four.

Figure 4.3. A solution for Four Queens

Table 4.2. Details of the solution in the domain model

 columnIndex rowIndex ascendingDiagonalIndex
(columnIndex + rowIndex)

descendingDiagonalIndex
(columnIndex - rowIndex)

A1 0 1 1 (**) -1

B0 1 0 (*) 1 (**) 1

C2 2 2 4 0

D0 3 0 (*) 3 3

When two queens share the same column, row or diagonal line, such as (*) and (**), they can attack each
other.

4.2. CLOUD BALANCING

For information about this example, see Red Hat build of OptaPlanner quick start guides .

4.3. TRAVELING SALESMAN (TSP - TRAVELING SALESMAN
PROBLEM)

 private List<Column> columnList;
 private List<Row> rowList;

 private List<Queen> queenList;

 private SimpleScore score;

 // ... getters and setters
}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

46

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_solvers_with_red_hat_business_optimizer_in_red_hat_decision_manager#assembly-optaplanner-quickstarts_{optaplanner-quickstarts}

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once.

The problem is defined by Wikipedia. It is one of the most intensively studied problems in computational
mathematics. Yet, in the real world, it is often only part of a planning problem, along with other
constraints, such as employee shift rostering constraints.

Problem size

dj38 has 38 cities with a search space of 10^43.
europe40 has 40 cities with a search space of 10^46.
st70 has 70 cities with a search space of 10^98.
pcb442 has 442 cities with a search space of 10^976.
lu980 has 980 cities with a search space of 10^2504.

Problem difficulty

Despite TSP’s simple definition, the problem is surprisingly hard to solve. Because it is an NP-hard
problem (like most planning problems), the optimal solution for a specific problem dataset can change a
lot when that problem dataset is slightly altered:

4.4. TENNIS CLUB SCHEDULING

Every week the tennis club has four teams playing round robin against each other. Assign those four
spots to the teams fairly.

Hard constraints:

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

47

https://en.wikipedia.org/wiki/Travelling_salesman_problem
http://www.math.uwaterloo.ca/tsp/

Conflict: A team can only play once per day.

Unavailability: Some teams are unavailable on some dates.

Medium constraints:

Fair assignment: All teams should play an (almost) equal number of times.

Soft constraints:

Evenly confrontation: Each team should play against every other team an equal number of
times.

Problem size

munich-7teams has 7 teams, 18 days, 12 unavailabilityPenalties and 72 teamAssignments with a
search space of 10^60.

Figure 4.4. Domain model

4.5. MEETING SCHEDULING

Assign each meeting to a starting time and a room. Meetings have different durations.

Hard constraints:

Room conflict: two meetings must not use the same room at the same time.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

48

Required attendance: A person cannot have two required meetings at the same time.

Required room capacity: A meeting must not be in a room that doesn’t fit all of the meeting’s
attendees.

Start and end on same day: A meeting shouldn’t be scheduled over multiple days.

Medium constraints:

Preferred attendance: A person cannot have two preferred meetings at the same time, nor a
preferred and a required meeting at the same time.

Soft constraints:

Sooner rather than later: Schedule all meetings as soon as possible.

A break between meetings: Any two meetings should have at least one time grain break
between them.

Overlapping meetings: To minimize the number of meetings in parallel so people don’t have to
choose one meeting over the other.

Assign larger rooms first: If a larger room is available any meeting should be assigned to that
room in order to accommodate as many people as possible even if they haven’t signed up to
that meeting.

Room stability: If a person has two consecutive meetings with two or less time grains break
between them they better be in the same room.

Problem size

50meetings-160timegrains-5rooms has 50 meetings, 160 timeGrains and 5 rooms with a search
space of 10^145.
100meetings-320timegrains-5rooms has 100 meetings, 320 timeGrains and 5 rooms with a search
space of 10^320.
200meetings-640timegrains-5rooms has 200 meetings, 640 timeGrains and 5 rooms with a search
space of 10^701.
400meetings-1280timegrains-5rooms has 400 meetings, 1280 timeGrains and 5 rooms with a search
space of 10^1522.
800meetings-2560timegrains-5rooms has 800 meetings, 2560 timeGrains and 5 rooms with a search
space of 10^3285.

4.6. COURSE TIMETABLING (ITC 2007 TRACK 3 - CURRICULUM
COURSE SCHEDULING)

Schedule each lecture into a timeslot and into a room.

Hard constraints:

Teacher conflict: A teacher must not have two lectures in the same period.

Curriculum conflict: A curriculum must not have two lectures in the same period.

Room occupancy: Two lectures must not be in the same room in the same period.

Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

49

Unavailable period (specified per dataset): A specific lecture must not be assigned to a specific
period.

Soft constraints:

Room capacity: A room’s capacity should not be less than the number of students in its lecture.

Minimum working days: Lectures of the same course should be spread out into a minimum
number of days.

Curriculum compactness: Lectures belonging to the same curriculum should be adjacent to
each other (so in consecutive periods).

Room stability: Lectures of the same course should be assigned to the same room.

The problem is defined by the International Timetabling Competition 2007 track 3 .

Problem size

comp01 has 24 teachers, 14 curricula, 30 courses, 160 lectures, 30 periods, 6 rooms and 53
unavailable period constraints with a search space of 10^360.
comp02 has 71 teachers, 70 curricula, 82 courses, 283 lectures, 25 periods, 16 rooms and 513
unavailable period constraints with a search space of 10^736.
comp03 has 61 teachers, 68 curricula, 72 courses, 251 lectures, 25 periods, 16 rooms and 382
unavailable period constraints with a search space of 10^653.
comp04 has 70 teachers, 57 curricula, 79 courses, 286 lectures, 25 periods, 18 rooms and 396
unavailable period constraints with a search space of 10^758.
comp05 has 47 teachers, 139 curricula, 54 courses, 152 lectures, 36 periods, 9 rooms and 771
unavailable period constraints with a search space of 10^381.
comp06 has 87 teachers, 70 curricula, 108 courses, 361 lectures, 25 periods, 18 rooms and 632
unavailable period constraints with a search space of 10^957.
comp07 has 99 teachers, 77 curricula, 131 courses, 434 lectures, 25 periods, 20 rooms and 667
unavailable period constraints with a search space of 10^1171.
comp08 has 76 teachers, 61 curricula, 86 courses, 324 lectures, 25 periods, 18 rooms and 478
unavailable period constraints with a search space of 10^859.
comp09 has 68 teachers, 75 curricula, 76 courses, 279 lectures, 25 periods, 18 rooms and 405
unavailable period constraints with a search space of 10^740.
comp10 has 88 teachers, 67 curricula, 115 courses, 370 lectures, 25 periods, 18 rooms and 694
unavailable period constraints with a search space of 10^981.
comp11 has 24 teachers, 13 curricula, 30 courses, 162 lectures, 45 periods, 5 rooms and 94
unavailable period constraints with a search space of 10^381.
comp12 has 74 teachers, 150 curricula, 88 courses, 218 lectures, 36 periods, 11 rooms and 1368
unavailable period constraints with a search space of 10^566.
comp13 has 77 teachers, 66 curricula, 82 courses, 308 lectures, 25 periods, 19 rooms and 468
unavailable period constraints with a search space of 10^824.
comp14 has 68 teachers, 60 curricula, 85 courses, 275 lectures, 25 periods, 17 rooms and 486
unavailable period constraints with a search space of 10^722.

Figure 4.5. Domain model

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

50

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Figure 4.5. Domain model

4.7. MACHINE REASSIGNMENT (GOOGLE ROADEF 2012)

Assign each process to a machine. All processes already have an original (unoptimized) assignment. Each
process requires an amount of each resource (such as CPU or RAM). This is a more complex version of
the Cloud Balancing example.

Hard constraints:

Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

Conflict: Processes of the same service must run on distinct machines.

Spread: Processes of the same service must be spread out across locations.

Dependency: The processes of a service depending on another service must run in the
neighborhood of a process of the other service.

Transient usage: Some resources are transient and count towards the maximum capacity of
both the original machine as the newly assigned machine.

Soft constraints:

Load: The safety capacity for each resource for each machine should not be exceeded.

Balance: Leave room for future assignments by balancing the available resources on each

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

51

Balance: Leave room for future assignments by balancing the available resources on each
machine.

Process move cost: A process has a move cost.

Service move cost: A service has a move cost.

Machine move cost: Moving a process from machine A to machine B has another A-B specific
move cost.

The problem is defined by the Google ROADEF/EURO Challenge 2012 .

Figure 4.6. Value proposition

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

52

http://challenge.roadef.org/2012/en/

Figure 4.6. Value proposition

Problem size

model_a1_1 has 2 resources, 1 neighborhoods, 4 locations, 4 machines, 79 services, 100
processes and 1 balancePenalties with a search space of 10^60.
model_a1_2 has 4 resources, 2 neighborhoods, 4 locations, 100 machines, 980 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a1_3 has 3 resources, 5 neighborhoods, 25 locations, 100 machines, 216 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a1_4 has 3 resources, 50 neighborhoods, 50 locations, 50 machines, 142 services, 1000
processes and 1 balancePenalties with a search space of 10^1698.
model_a1_5 has 4 resources, 2 neighborhoods, 4 locations, 12 machines, 981 services, 1000
processes and 1 balancePenalties with a search space of 10^1079.
model_a2_1 has 3 resources, 1 neighborhoods, 1 locations, 100 machines, 1000 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a2_2 has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 170 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a2_3 has 12 resources, 5 neighborhoods, 25 locations, 100 machines, 129 services, 1000
processes and 0 balancePenalties with a search space of 10^2000.
model_a2_4 has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 180 services, 1000
processes and 1 balancePenalties with a search space of 10^1698.
model_a2_5 has 12 resources, 5 neighborhoods, 25 locations, 50 machines, 153 services, 1000
processes and 0 balancePenalties with a search space of 10^1698.
model_b_1 has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2512 services, 5000
processes and 0 balancePenalties with a search space of 10^10000.
model_b_2 has 12 resources, 5 neighborhoods, 10 locations, 100 machines, 2462 services, 5000
processes and 1 balancePenalties with a search space of 10^10000.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

53

model_b_3 has 6 resources, 5 neighborhoods, 10 locations, 100 machines, 15025 services, 20000
processes and 0 balancePenalties with a search space of 10^40000.
model_b_4 has 6 resources, 5 neighborhoods, 50 locations, 500 machines, 1732 services, 20000
processes and 1 balancePenalties with a search space of 10^53979.
model_b_5 has 6 resources, 5 neighborhoods, 10 locations, 100 machines, 35082 services, 40000
processes and 0 balancePenalties with a search space of 10^80000.
model_b_6 has 6 resources, 5 neighborhoods, 50 locations, 200 machines, 14680 services, 40000
processes and 1 balancePenalties with a search space of 10^92041.
model_b_7 has 6 resources, 5 neighborhoods, 50 locations, 4000 machines, 15050 services,
40000 processes and 1 balancePenalties with a search space of 10^144082.
model_b_8 has 3 resources, 5 neighborhoods, 10 locations, 100 machines, 45030 services, 50000
processes and 0 balancePenalties with a search space of 10^100000.
model_b_9 has 3 resources, 5 neighborhoods, 100 locations, 1000 machines, 4609 services,
50000 processes and 1 balancePenalties with a search space of 10^150000.
model_b_10 has 3 resources, 5 neighborhoods, 100 locations, 5000 machines, 4896 services,
50000 processes and 1 balancePenalties with a search space of 10^184948.

Figure 4.7. Domain model

4.8. VEHICLE ROUTING

Using a fleet of vehicles, pick up the objects of each customer and bring them to the depot. Each vehicle
can service multiple customers, but it has a limited capacity.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

54

Besides the basic case (CVRP), there is also a variant with time windows (CVRPTW).

Hard constraints:

Vehicle capacity: a vehicle cannot carry more items then its capacity.

Time windows (only in CVRPTW):

Travel time: Traveling from one location to another takes time.

Customer service duration: a vehicle must stay at the customer for the length of the service
duration.

Customer ready time: a vehicle may arrive before the customer’s ready time, but it must
wait until the ready time before servicing.

Customer due time: a vehicle must arrive on time, before the customer’s due time.

Soft constraints:

Total distance: minimize the total distance driven (fuel consumption) of all vehicles.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

55

The capacitated vehicle routing problem (CVRP) and its time-windowed variant (CVRPTW) are defined
by the VRP web.

Figure 4.8. Value proposition

Problem size

CVRP instances (without time windows):

belgium-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of
10^74.
belgium-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of
10^170.
belgium-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of
10^1168.
belgium-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of
10^2607.
belgium-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of
10^8380.
belgium-road-km-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of
10^74.
belgium-road-km-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of
10^170.
belgium-road-km-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of
10^1168.
belgium-road-km-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of
10^2607.
belgium-road-km-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

56

10^8380.
belgium-road-time-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of
10^74.
belgium-road-time-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of
10^170.
belgium-road-time-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of
10^1168.
belgium-road-time-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of
10^2607.
belgium-road-time-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of
10^8380.
belgium-d2-n50-k10 has 2 depots, 10 vehicles and 48 customers with a search space of
10^74.
belgium-d3-n100-k10 has 3 depots, 10 vehicles and 97 customers with a search space of
10^170.
belgium-d5-n500-k20 has 5 depots, 20 vehicles and 495 customers with a search space of
10^1168.
belgium-d8-n1000-k20 has 8 depots, 20 vehicles and 992 customers with a search space of
10^2607.
belgium-d10-n2750-k55 has 10 depots, 55 vehicles and 2740 customers with a search space of
10^8380.

A-n32-k5 has 1 depots, 5 vehicles and 31 customers with a search space of 10^40.
A-n33-k5 has 1 depots, 5 vehicles and 32 customers with a search space of 10^41.
A-n33-k6 has 1 depots, 6 vehicles and 32 customers with a search space of 10^42.
A-n34-k5 has 1 depots, 5 vehicles and 33 customers with a search space of 10^43.
A-n36-k5 has 1 depots, 5 vehicles and 35 customers with a search space of 10^46.
A-n37-k5 has 1 depots, 5 vehicles and 36 customers with a search space of 10^48.
A-n37-k6 has 1 depots, 6 vehicles and 36 customers with a search space of 10^49.
A-n38-k5 has 1 depots, 5 vehicles and 37 customers with a search space of 10^49.
A-n39-k5 has 1 depots, 5 vehicles and 38 customers with a search space of 10^51.
A-n39-k6 has 1 depots, 6 vehicles and 38 customers with a search space of 10^52.
A-n44-k7 has 1 depots, 7 vehicles and 43 customers with a search space of 10^61.
A-n45-k6 has 1 depots, 6 vehicles and 44 customers with a search space of 10^62.
A-n45-k7 has 1 depots, 7 vehicles and 44 customers with a search space of 10^63.
A-n46-k7 has 1 depots, 7 vehicles and 45 customers with a search space of 10^65.
A-n48-k7 has 1 depots, 7 vehicles and 47 customers with a search space of 10^68.
A-n53-k7 has 1 depots, 7 vehicles and 52 customers with a search space of 10^77.
A-n54-k7 has 1 depots, 7 vehicles and 53 customers with a search space of 10^79.
A-n55-k9 has 1 depots, 9 vehicles and 54 customers with a search space of 10^82.
A-n60-k9 has 1 depots, 9 vehicles and 59 customers with a search space of 10^91.
A-n61-k9 has 1 depots, 9 vehicles and 60 customers with a search space of 10^93.
A-n62-k8 has 1 depots, 8 vehicles and 61 customers with a search space of 10^94.
A-n63-k9 has 1 depots, 9 vehicles and 62 customers with a search space of 10^97.
A-n63-k10 has 1 depots, 10 vehicles and 62 customers with a search space of 10^98.
A-n64-k9 has 1 depots, 9 vehicles and 63 customers with a search space of 10^99.
A-n65-k9 has 1 depots, 9 vehicles and 64 customers with a search space of 10^101.
A-n69-k9 has 1 depots, 9 vehicles and 68 customers with a search space of 10^108.
A-n80-k10 has 1 depots, 10 vehicles and 79 customers with a search space of 10^130.
F-n45-k4 has 1 depots, 4 vehicles and 44 customers with a search space of 10^60.
F-n72-k4 has 1 depots, 4 vehicles and 71 customers with a search space of 10^108.
F-n135-k7 has 1 depots, 7 vehicles and 134 customers with a search space of 10^240.

CVRPTW instances (with time windows):

belgium-tw-d2-n50-k10 has 2 depots, 10 vehicles and 48 customers with a search space of

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

57

10^74.
belgium-tw-d3-n100-k10 has 3 depots, 10 vehicles and 97 customers with a search space of
10^170.
belgium-tw-d5-n500-k20 has 5 depots, 20 vehicles and 495 customers with a search space of
10^1168.
belgium-tw-d8-n1000-k20 has 8 depots, 20 vehicles and 992 customers with a search space of
10^2607.
belgium-tw-d10-n2750-k55 has 10 depots, 55 vehicles and 2740 customers with a search space of
10^8380.
belgium-tw-n50-k10 has 1 depots, 10 vehicles and 49 customers with a search space of
10^74.
belgium-tw-n100-k10 has 1 depots, 10 vehicles and 99 customers with a search space of
10^170.
belgium-tw-n500-k20 has 1 depots, 20 vehicles and 499 customers with a search space of
10^1168.
belgium-tw-n1000-k20 has 1 depots, 20 vehicles and 999 customers with a search space of
10^2607.
belgium-tw-n2750-k55 has 1 depots, 55 vehicles and 2749 customers with a search space of
10^8380.

Solomon_025_C101 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_C201 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_R101 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_R201 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_RC101 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_025_RC201 has 1 depots, 25 vehicles and 25 customers with a search space of
10^40.
Solomon_100_C101 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_C201 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_R101 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_R201 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_RC101 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Solomon_100_RC201 has 1 depots, 25 vehicles and 100 customers with a search space of
10^185.
Homberger_0200_C1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_C2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_R1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_R2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_RC1_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.
Homberger_0200_RC2_2_1 has 1 depots, 50 vehicles and 200 customers with a search space of
10^429.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

58

Homberger_0400_C1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_C2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_R1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_R2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_RC1_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0400_RC2_4_1 has 1 depots, 100 vehicles and 400 customers with a search space of
10^978.
Homberger_0600_C1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_C2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_R1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_R2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_RC1_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0600_RC2_6_1 has 1 depots, 150 vehicles and 600 customers with a search space of
10^1571.
Homberger_0800_C1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_C2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_R1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_R2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_RC1_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_0800_RC2_8_1 has 1 depots, 200 vehicles and 800 customers with a search space of
10^2195.
Homberger_1000_C110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_C210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_R110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_R210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_RC110_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.
Homberger_1000_RC210_1 has 1 depots, 250 vehicles and 1000 customers with a search space of
10^2840.

4.8.1. Domain model for Vehicle routing

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

59

The vehicle routing with timewindows domain model makes heavily use of the shadow variable feature.
This allows it to express its constraints more naturally, because properties such as arrivalTime and
departureTime, are directly available on the domain model.

Road Distances Instead of Air Distances

In the real world, vehicles cannot follow a straight line from location to location: they have to use roads
and highways. From a business point of view, this matters a lot:

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

60

For the optimization algorithm, this does not matter much, as long as the distance between two points
can be looked up (and are preferably precalculated). The road cost does not even need to be a distance,
it can also be travel time, fuel cost, or a weighted function of those. There are several technologies
available to precalculate road costs, such as GraphHopper (embeddable, offline Java engine), Open
MapQuest (web service) and Google Maps Client API (web service).

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

61

https://graphhopper.com/
http://open.mapquestapi.com/directions/#matrix
https://developers.google.com/maps/documentation/webservices/client-library

There are also several technologies to render it, such as Leaflet and Google Maps for developers .

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

62

http://leafletjs.com
https://developers.google.com/maps/

It is even possible to render the actual road routes with GraphHopper or Google Map Directions, but
because of route overlaps on highways, it can become harder to see the standstill order:

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

63

Take special care that the road costs between two points use the same optimization criteria as the one
used in Planner. For example, GraphHopper etc will by default return the fastest route, not the shortest
route. Don’t use the km (or miles) distances of the fastest GPS routes to optimize the shortest trip in
Planner: this leads to a suboptimal solution as shown below:

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

64

Contrary to popular belief, most users do not want the shortest route: they want the fastest route
instead. They prefer highways over normal roads. They prefer normal roads over dirt roads. In the real
world, the fastest and shortest route are rarely the same.

4.9. PROJECT JOB SCHEDULING

Schedule all jobs in time and execution mode to minimize project delays. Each job is part of a project. A
job can be executed in different ways: each way is an execution mode that implies a different duration
but also different resource usages. This is a form of flexible job shop scheduling.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

65

Hard constraints:

Job precedence: a job can only start when all its predecessor jobs are finished.

Resource capacity: do not use more resources than available.

Resources are local (shared between jobs of the same project) or global (shared between all
jobs)

Resources are renewable (capacity available per day) or nonrenewable (capacity available
for all days)

Medium constraints:

Total project delay: minimize the duration (makespan) of each project.

Soft constraints:

Total makespan: minimize the duration of the whole multi-project schedule.

The problem is defined by the MISTA 2013 challenge.

Problem size

Schedule A-1 has 2 projects, 24 jobs, 64 execution modes, 7 resources and 150 resource
requirements.
Schedule A-2 has 2 projects, 44 jobs, 124 execution modes, 7 resources and 420 resource
requirements.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

66

http://gent.cs.kuleuven.be/mista2013challenge/

Schedule A-3 has 2 projects, 64 jobs, 184 execution modes, 7 resources and 630 resource
requirements.
Schedule A-4 has 5 projects, 60 jobs, 160 execution modes, 16 resources and 390 resource
requirements.
Schedule A-5 has 5 projects, 110 jobs, 310 execution modes, 16 resources and 900 resource
requirements.
Schedule A-6 has 5 projects, 160 jobs, 460 execution modes, 16 resources and 1440 resource
requirements.
Schedule A-7 has 10 projects, 120 jobs, 320 execution modes, 22 resources and 900 resource
requirements.
Schedule A-8 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1860 resource
requirements.
Schedule A-9 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2880 resource
requirements.
Schedule A-10 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 2970 resource
requirements.
Schedule B-1 has 10 projects, 120 jobs, 320 execution modes, 31 resources and 900 resource
requirements.
Schedule B-2 has 10 projects, 220 jobs, 620 execution modes, 22 resources and 1740 resource
requirements.
Schedule B-3 has 10 projects, 320 jobs, 920 execution modes, 31 resources and 3060 resource
requirements.
Schedule B-4 has 15 projects, 180 jobs, 480 execution modes, 46 resources and 1530 resource
requirements.
Schedule B-5 has 15 projects, 330 jobs, 930 execution modes, 46 resources and 2760 resource
requirements.
Schedule B-6 has 15 projects, 480 jobs, 1380 execution modes, 46 resources and 4500 resource
requirements.
Schedule B-7 has 20 projects, 240 jobs, 640 execution modes, 61 resources and 1710 resource
requirements.
Schedule B-8 has 20 projects, 440 jobs, 1240 execution modes, 42 resources and 3180 resource
requirements.
Schedule B-9 has 20 projects, 640 jobs, 1840 execution modes, 61 resources and 5940 resource
requirements.
Schedule B-10 has 20 projects, 460 jobs, 1300 execution modes, 42 resources and 4260 resource
requirements.

4.10. TASK ASSIGNING

Assign each task to a spot in an employee’s queue. Each task has a duration which is affected by the
employee’s affinity level with the task’s customer.

Hard constraints:

Skill: Each task requires one or more skills. The employee must possess all these skills.

Soft level 0 constraints:

Critical tasks: Complete critical tasks first, sooner than major and minor tasks.

Soft level 1 constraints:

Minimize makespan: Reduce the time to complete all tasks.

Start with the longest working employee first, then the second longest working employee
and so forth, to create fairness and load balancing.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

67

Soft level 2 constraints:

Major tasks: Complete major tasks as soon as possible, sooner than minor tasks.

Soft level 3 constraints:

Minor tasks: Complete minor tasks as soon as possible.

Figure 4.9. Value proposition

Problem size

24tasks-8employees has 24 tasks, 6 skills, 8 employees, 4 task types and 4 customers with a
search space of 10^30.
50tasks-5employees has 50 tasks, 5 skills, 5 employees, 10 task types and 10 customers with a
search space of 10^69.
100tasks-5employees has 100 tasks, 5 skills, 5 employees, 20 task types and 15 customers with a
search space of 10^164.
500tasks-20employees has 500 tasks, 6 skills, 20 employees, 100 task types and 60 customers with
a search space of 10^1168.

Figure 4.10. Domain model

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

68

Figure 4.10. Domain model

4.11. EXAM TIMETABLING (ITC 2007 TRACK 1 - EXAMINATION)

Schedule each exam into a period and into a room. Multiple exams can share the same room during the
same period.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

69

Hard constraints:

Exam conflict: Two exams that share students must not occur in the same period.

Room capacity: A room’s seating capacity must suffice at all times.

Period duration: A period’s duration must suffice for all of its exams.

Period related hard constraints (specified per dataset):

Coincidence: Two specified exams must use the same period (but possibly another room).

Exclusion: Two specified exams must not use the same period.

After: A specified exam must occur in a period after another specified exam’s period.

Room related hard constraints (specified per dataset):

Exclusive: One specified exam should not have to share its room with any other exam.

Soft constraints (each of which has a parametrized penalty):

The same student should not have two exams in a row.

The same student should not have two exams on the same day.

Period spread: Two exams that share students should be a number of periods apart.

Mixed durations: Two exams that share a room should not have different durations.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

70

Front load: Large exams should be scheduled earlier in the schedule.

Period penalty (specified per dataset): Some periods have a penalty when used.

Room penalty (specified per dataset): Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

The problem is defined by the International Timetabling Competition 2007 track 1 . Geoffrey De Smet
finished 4th in that competition with a very early version of Planner. Many improvements have been
made since then.

Problem Size

exam_comp_set1 has 7883 students, 607 exams, 54 periods, 7 rooms, 12 period constraints and
0 room constraints with a search space of 10^1564.
exam_comp_set2 has 12484 students, 870 exams, 40 periods, 49 rooms, 12 period constraints and
2 room constraints with a search space of 10^2864.
exam_comp_set3 has 16365 students, 934 exams, 36 periods, 48 rooms, 168 period constraints and
15 room constraints with a search space of 10^3023.
exam_comp_set4 has 4421 students, 273 exams, 21 periods, 1 rooms, 40 period constraints and
0 room constraints with a search space of 10^360.
exam_comp_set5 has 8719 students, 1018 exams, 42 periods, 3 rooms, 27 period constraints and
0 room constraints with a search space of 10^2138.
exam_comp_set6 has 7909 students, 242 exams, 16 periods, 8 rooms, 22 period constraints and
0 room constraints with a search space of 10^509.
exam_comp_set7 has 13795 students, 1096 exams, 80 periods, 15 rooms, 28 period constraints and
0 room constraints with a search space of 10^3374.
exam_comp_set8 has 7718 students, 598 exams, 80 periods, 8 rooms, 20 period constraints and
1 room constraints with a search space of 10^1678.

4.11.1. Domain model for Exam timetabling

The following diagram shows the main examination domain classes:

Figure 4.11. Examination domain class diagram

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

71

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Figure 4.11. Examination domain class diagram

Notice that we’ve split up the exam concept into an Exam class and a Topic class. The Exam instances
change during solving (this is the planning entity class), when their period or room property changes.
The Topic, Period and Room instances never change during solving (these are problem facts, just like
some other classes).

4.12. NURSE ROSTERING (INRC 2010)

For each shift, assign a nurse to work that shift.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

72

Hard constraints:

No unassigned shifts (built-in): Every shift need to be assigned to an employee.

Shift conflict: An employee can have only one shift per day.

Soft constraints:

Contract obligations. The business frequently violates these, so they decided to define these as
soft constraints instead of hard constraints.

Minimum and maximum assignments: Each employee needs to work more than x shifts
and less than y shifts (depending on their contract).

Minimum and maximum consecutive working days: Each employee needs to work
between x and y days in a row (depending on their contract).

Minimum and maximum consecutive free days: Each employee needs to be free between
x and y days in a row (depending on their contract).

Minimum and maximum consecutive working weekends: Each employee needs to work
between x and y weekends in a row (depending on their contract).

Complete weekends: Each employee needs to work every day in a weekend or not at all.

Identical shift types during weekend: Each weekend shift for the same weekend of the
same employee must be the same shift type.

Unwanted patterns: A combination of unwanted shift types in a row. For example: a late

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

73

Unwanted patterns: A combination of unwanted shift types in a row. For example: a late
shift followed by an early shift followed by a late shift.

Employee wishes:

Day on request: An employee wants to work on a specific day.

Day off request: An employee does not want to work on a specific day.

Shift on request: An employee wants to be assigned to a specific shift.

Shift off request: An employee does not want to be assigned to a specific shift.

Alternative skill: An employee assigned to a skill should have a proficiency in every skill required
by that shift.

The problem is defined by the International Nurse Rostering Competition 2010 .

Figure 4.12. Value proposition

Problem size

There are three dataset types:

sprint: must be solved in seconds.

medium: must be solved in minutes.

long: must be solved in hours.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

74

http://www.kuleuven-kortrijk.be/nrpcompetition

toy1 has 1 skills, 3 shiftTypes, 2 patterns, 1 contracts, 6 employees, 7 shiftDates, 35
shiftAssignments and 0 requests with a search space of 10^27.
toy2 has 1 skills, 3 shiftTypes, 3 patterns, 2 contracts, 20 employees, 28 shiftDates, 180
shiftAssignments and 140 requests with a search space of 10^234.

sprint01 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint02 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint03 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint04 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint05 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint06 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint07 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint08 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint09 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint10 has 1 skills, 4 shiftTypes, 3 patterns, 4 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint02 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_hint03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late01 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late02 has 1 skills, 3 shiftTypes, 4 patterns, 3 contracts, 10 employees, 28 shiftDates, 144
shiftAssignments and 139 requests with a search space of 10^144.
sprint_late03 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 160
shiftAssignments and 150 requests with a search space of 10^160.
sprint_late04 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 160
shiftAssignments and 150 requests with a search space of 10^160.
sprint_late05 has 1 skills, 4 shiftTypes, 8 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late06 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late07 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.
sprint_late08 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 0 requests with a search space of 10^152.
sprint_late09 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 0 requests with a search space of 10^152.
sprint_late10 has 1 skills, 4 shiftTypes, 0 patterns, 3 contracts, 10 employees, 28 shiftDates, 152
shiftAssignments and 150 requests with a search space of 10^152.

medium01 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.
medium02 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

75

medium03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.
medium04 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.
medium05 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 31 employees, 28 shiftDates, 608
shiftAssignments and 403 requests with a search space of 10^906.
medium_hint01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_hint02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_hint03 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_late01 has 1 skills, 4 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 424
shiftAssignments and 390 requests with a search space of 10^626.
medium_late02 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_late03 has 1 skills, 4 shiftTypes, 0 patterns, 4 contracts, 30 employees, 28 shiftDates, 428
shiftAssignments and 390 requests with a search space of 10^632.
medium_late04 has 1 skills, 4 shiftTypes, 7 patterns, 3 contracts, 30 employees, 28 shiftDates, 416
shiftAssignments and 390 requests with a search space of 10^614.
medium_late05 has 2 skills, 5 shiftTypes, 7 patterns, 4 contracts, 30 employees, 28 shiftDates, 452
shiftAssignments and 390 requests with a search space of 10^667.

long01 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long02 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long03 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long04 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long05 has 2 skills, 5 shiftTypes, 3 patterns, 3 contracts, 49 employees, 28 shiftDates, 740
shiftAssignments and 735 requests with a search space of 10^1250.
long_hint01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 740
shiftAssignments and 0 requests with a search space of 10^1257.
long_hint02 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28 shiftDates, 740
shiftAssignments and 0 requests with a search space of 10^1257.
long_hint03 has 2 skills, 5 shiftTypes, 7 patterns, 3 contracts, 50 employees, 28 shiftDates, 740
shiftAssignments and 0 requests with a search space of 10^1257.
long_late01 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 752
shiftAssignments and 0 requests with a search space of 10^1277.
long_late02 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28 shiftDates, 752
shiftAssignments and 0 requests with a search space of 10^1277.
long_late03 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 752
shiftAssignments and 0 requests with a search space of 10^1277.
long_late04 has 2 skills, 5 shiftTypes, 9 patterns, 4 contracts, 50 employees, 28 shiftDates, 752
shiftAssignments and 0 requests with a search space of 10^1277.
long_late05 has 2 skills, 5 shiftTypes, 9 patterns, 3 contracts, 50 employees, 28 shiftDates, 740
shiftAssignments and 0 requests with a search space of 10^1257.

Figure 4.13. Domain model

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

76

Figure 4.13. Domain model

4.13. TRAVELING TOURNAMENT PROBLEM (TTP)

Schedule matches between n teams.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

77

Hard constraints:

Each team plays twice against every other team: once home and once away.

Each team has exactly one match on each timeslot.

No team must have more than three consecutive home or three consecutive away matches.

No repeaters: no two consecutive matches of the same two opposing teams.

Soft constraints:

Minimize the total distance traveled by all teams.

The problem is defined on Michael Trick’s website (which contains the world records too) .

Problem size

1-nl04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
1-nl06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
1-nl08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
1-nl10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
1-nl12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
1-nl14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
1-nl16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
2-bra24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
3-nfl16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
3-nfl18 has 34 days, 18 teams and 306 matches with a search space of 10^346.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

78

http://mat.tepper.cmu.edu/TOURN/

3-nfl20 has 38 days, 20 teams and 380 matches with a search space of 10^447.
3-nfl22 has 42 days, 22 teams and 462 matches with a search space of 10^562.
3-nfl24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
3-nfl26 has 50 days, 26 teams and 650 matches with a search space of 10^838.
3-nfl28 has 54 days, 28 teams and 756 matches with a search space of 10^999.
3-nfl30 has 58 days, 30 teams and 870 matches with a search space of 10^1175.
3-nfl32 has 62 days, 32 teams and 992 matches with a search space of 10^1367.
4-super04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
4-super06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
4-super08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
4-super10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
4-super12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
4-super14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
5-galaxy04 has 6 days, 4 teams and 12 matches with a search space of 10^5.
5-galaxy06 has 10 days, 6 teams and 30 matches with a search space of 10^19.
5-galaxy08 has 14 days, 8 teams and 56 matches with a search space of 10^43.
5-galaxy10 has 18 days, 10 teams and 90 matches with a search space of 10^79.
5-galaxy12 has 22 days, 12 teams and 132 matches with a search space of 10^126.
5-galaxy14 has 26 days, 14 teams and 182 matches with a search space of 10^186.
5-galaxy16 has 30 days, 16 teams and 240 matches with a search space of 10^259.
5-galaxy18 has 34 days, 18 teams and 306 matches with a search space of 10^346.
5-galaxy20 has 38 days, 20 teams and 380 matches with a search space of 10^447.
5-galaxy22 has 42 days, 22 teams and 462 matches with a search space of 10^562.
5-galaxy24 has 46 days, 24 teams and 552 matches with a search space of 10^692.
5-galaxy26 has 50 days, 26 teams and 650 matches with a search space of 10^838.
5-galaxy28 has 54 days, 28 teams and 756 matches with a search space of 10^999.
5-galaxy30 has 58 days, 30 teams and 870 matches with a search space of 10^1175.
5-galaxy32 has 62 days, 32 teams and 992 matches with a search space of 10^1367.
5-galaxy34 has 66 days, 34 teams and 1122 matches with a search space of 10^1576.
5-galaxy36 has 70 days, 36 teams and 1260 matches with a search space of 10^1801.
5-galaxy38 has 74 days, 38 teams and 1406 matches with a search space of 10^2042.
5-galaxy40 has 78 days, 40 teams and 1560 matches with a search space of 10^2301.

4.14. CHEAP TIME SCHEDULING

Schedule all tasks in time and on a machine to minimize power cost. Power prices differs in time. This is a
form of job shop scheduling.

Hard constraints:

Start time limits: Each task must start between its earliest start and latest start limit.

Maximum capacity: The maximum capacity for each resource for each machine must not be
exceeded.

Startup and shutdown: Each machine must be active in the periods during which it has assigned
tasks. Between tasks it is allowed to be idle to avoid startup and shutdown costs.

Medium constraints:

Power cost: Minimize the total power cost of the whole schedule.

Machine power cost: Each active or idle machine consumes power, which infers a power cost
(depending on the power price during that time).

Task power cost: Each task consumes power too, which infers a power cost (depending on

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

79

Task power cost: Each task consumes power too, which infers a power cost (depending on
the power price during its time).

Machine startup and shutdown cost: Every time a machine starts up or shuts down, an extra
cost is inflicted.

Soft constraints (addendum to the original problem definition):

Start early: Prefer starting a task sooner rather than later.

The problem is defined by the ICON challenge.

Problem size

sample01 has 3 resources, 2 machines, 288 periods and 25 tasks with a search space of
10^53.
sample02 has 3 resources, 2 machines, 288 periods and 50 tasks with a search space of
10^114.
sample03 has 3 resources, 2 machines, 288 periods and 100 tasks with a search space of
10^226.
sample04 has 3 resources, 5 machines, 288 periods and 100 tasks with a search space of
10^266.
sample05 has 3 resources, 2 machines, 288 periods and 250 tasks with a search space of
10^584.
sample06 has 3 resources, 5 machines, 288 periods and 250 tasks with a search space of
10^673.
sample07 has 3 resources, 2 machines, 288 periods and 1000 tasks with a search space of
10^2388.
sample08 has 3 resources, 5 machines, 288 periods and 1000 tasks with a search space of
10^2748.
sample09 has 4 resources, 20 machines, 288 periods and 2000 tasks with a search space of
10^6668.
instance00 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^595.
instance01 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^599.
instance02 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^599.
instance03 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^591.
instance04 has 1 resources, 10 machines, 288 periods and 200 tasks with a search space of
10^590.
instance05 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^667.
instance06 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^660.
instance07 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^662.
instance08 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^651.
instance09 has 2 resources, 25 machines, 288 periods and 200 tasks with a search space of
10^659.
instance10 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1657.
instance11 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1644.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

80

https://web.archive.org/web/20180318013828/http://iconchallenge.insight-centre.org/

instance12 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1637.
instance13 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1659.
instance14 has 2 resources, 20 machines, 288 periods and 500 tasks with a search space of
10^1643.
instance15 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1782.
instance16 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1778.
instance17 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1764.
instance18 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1769.
instance19 has 3 resources, 40 machines, 288 periods and 500 tasks with a search space of
10^1778.
instance20 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3689.
instance21 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3678.
instance22 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3706.
instance23 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3676.
instance24 has 3 resources, 50 machines, 288 periods and 1000 tasks with a search space of
10^3681.
instance25 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3774.
instance26 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3737.
instance27 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3744.
instance28 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3731.
instance29 has 3 resources, 60 machines, 288 periods and 1000 tasks with a search space of
10^3746.
instance30 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7718.
instance31 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7740.
instance32 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7686.
instance33 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7672.
instance34 has 4 resources, 70 machines, 288 periods and 2000 tasks with a search space of
10^7695.
instance35 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7807.
instance36 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7814.
instance37 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7764.
instance38 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7736.
instance39 has 4 resources, 80 machines, 288 periods and 2000 tasks with a search space of
10^7783.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

81

instance40 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15976.
instance41 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15935.
instance42 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15887.
instance43 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15896.
instance44 has 4 resources, 90 machines, 288 periods and 4000 tasks with a search space of
10^15885.
instance45 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20173.
instance46 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20132.
instance47 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20126.
instance48 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20110.
instance49 has 4 resources, 100 machines, 288 periods and 5000 tasks with a search space of
10^20078.

4.15. INVESTMENT ASSET CLASS ALLOCATION (PORTFOLIO
OPTIMIZATION)

Decide the relative quantity to invest in each asset class.

Hard constraints:

Risk maximum: the total standard deviation must not be higher than the standard deviation
maximum.

Total standard deviation calculation takes asset class correlations into account by applying
Markowitz Portfolio Theory.

Region maximum: Each region has a quantity maximum.

Sector maximum: Each sector has a quantity maximum.

Soft constraints:

Maximize expected return.

Problem size

de_smet_1 has 1 regions, 3 sectors and 11 asset classes with a search space of 10^4.
irrinki_1 has 2 regions, 3 sectors and 6 asset classes with a search space of 10^3.

Larger datasets have not been created or tested yet, but should not pose a problem. A good source of
data is this Asset Correlation website.

4.16. CONFERENCE SCHEDULING

Assign each conference talk to a timeslot and a room. Timeslots can overlap. Read/write to/from an
*.xlsx file that can be edited with LibreOffice or Excel too.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

82

https://en.wikipedia.org/wiki/Modern_portfolio_theory
https://www.portfoliovisualizer.com/asset-correlations

Hard constraints:

Talk type of timeslot: The type of a talk must match the timeslot’s talk type.

Room unavailable timeslots: A talk’s room must be available during the talk’s timeslot.

Room conflict: Two talks can’t use the same room during overlapping timeslots.

Speaker unavailable timeslots: Every talk’s speaker must be available during the talk’s timeslot.

Speaker conflict: Two talks can’t share a speaker during overlapping timeslots.

Generic purpose timeslot and room tags

Speaker required timeslot tag: If a speaker has a required timeslot tag, then all his/her talks
must be assigned to a timeslot with that tag.

Speaker prohibited timeslot tag: If a speaker has a prohibited timeslot tag, then all his/her
talks cannot be assigned to a timeslot with that tag.

Talk required timeslot tag: If a talk has a required timeslot tag, then it must be assigned to a
timeslot with that tag.

Talk prohibited timeslot tag: If a talk has a prohibited timeslot tag, then it cannot be
assigned to a timeslot with that tag.

Speaker required room tag: If a speaker has a required room tag, then all his/her talks must
be assigned to a room with that tag.

Speaker prohibited room tag: If a speaker has a prohibited room tag, then all his/her talks
cannot be assigned to a room with that tag.

Talk required room tag: If a talk has a required room tag, then it must be assigned to a room
with that tag.

Talk prohibited room tag: If a talk has a prohibited room tag, then it cannot be assigned to a
room with that tag.

Talk mutually-exclusive-talks tag: Talks that share such a tag must not be scheduled in
overlapping timeslots.

Talk prerequisite talks: A talk must be scheduled after all its prerequisite talks.

Soft constraints:

Theme track conflict: Minimize the number of talks that share a same theme tag during
overlapping timeslots.

Sector conflict: Minimize the number of talks that share a same sector tag during overlapping
timeslots.

Content audience level flow violation: For every content tag, schedule the introductory talks
before the advanced talks.

Audience level diversity: For every timeslot, maximize the number of talks with a different
audience level.

Language diversity: For every timeslot, maximize the number of talks with a different language.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

83

Generic purpose timeslot and room tags

Speaker preferred timeslot tag: If a speaker has a preferred timeslot tag, then all his/her
talks should be assigned to a timeslot with that tag.

Speaker undesired timeslot tag: If a speaker has an undesired timeslot tag, then all his/her
talks should not be assigned to a timeslot with that tag.

Talk preferred timeslot tag: If a talk has a preferred timeslot tag, then it should be assigned
to a timeslot with that tag.

Talk undesired timeslot tag: If a talk has an undesired timeslot tag, then it should not be
assigned to a timeslot with that tag.

Speaker preferred room tag: If a speaker has a preferred room tag, then all his/her talks
should be assigned to a room with that tag.

Speaker undesired room tag: If a speaker has an undesired room tag, then all his/her talks
should not be assigned to a room with that tag.

Talk preferred room tag: If a talk has a preferred room tag, then it should be assigned to a
room with that tag.

Talk undesired room tag: If a talk has an undesired room tag, then it should not be assigned
to a room with that tag.

Same day talks: All talks that share a same theme tag or content tag should be scheduled in the
minimum number of days (ideally in the same day).

Figure 4.14. Value proposition

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

84

Figure 4.14. Value proposition

Problem size

18talks-6timeslots-5rooms has 18 talks, 6 timeslots and 5 rooms with a search space of 10^26.
36talks-12timeslots-5rooms has 36 talks, 12 timeslots and 5 rooms with a search space of 10^64.
72talks-12timeslots-10rooms has 72 talks, 12 timeslots and 10 rooms with a search space of
10^149.
108talks-18timeslots-10rooms has 108 talks, 18 timeslots and 10 rooms with a search space of
10^243.
216talks-18timeslots-20rooms has 216 talks, 18 timeslots and 20 rooms with a search space of
10^552.

4.17. ROCK TOUR

Drive the rock bus from show to show, but schedule shows only on available days.

Hard constraints:

Schedule every required show.

Schedule as many shows as possible.

Medium constraints:

Maximize revenue opportunity.

CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER

85

Minimize driving time.

Visit sooner than later.

Soft constraints:

Avoid long driving times.

Problem size

47shows has 47 shows with a search space of 10^59.

4.18. FLIGHT CREW SCHEDULING

Assign flights to pilots and flight attendants.

Hard constraints:

Required skill: each flight assignment has a required skill. For example, flight AB0001 requires 2
pilots and 3 flight attendants.

Flight conflict: each employee can only attend one flight at the same time

Transfer between two flights: between two flights, an employee must be able to transfer from
the arrival airport to the departure airport. For example, Ann arrives in Brussels at 10:00 and
departs in Amsterdam at 15:00.

Employee unavailability: the employee must be available on the day of the flight. For example,
Ann is on PTO on 1-Feb.

Soft constraints:

First assignment departing from home

Last assignment arriving at home

Load balance flight duration total per employee

Problem size

175flights-7days-Europe has 2 skills, 50 airports, 150 employees, 175 flights and 875 flight
assignments with a search space of 10^1904.
700flights-28days-Europe has 2 skills, 50 airports, 150 employees, 700 flights and 3500 flight
assignments with a search space of 10^7616.
875flights-7days-Europe has 2 skills, 50 airports, 750 employees, 875 flights and 4375 flight
assignments with a search space of 10^12578.
175flights-7days-US has 2 skills, 48 airports, 150 employees, 175 flights and 875 flight
assignments with a search space of 10^1904.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

86

CHAPTER 5. DOWNLOADING RED HAT BUILD OF
OPTAPLANNER EXAMPLES

You can download the Red Hat build of OptaPlanner examples as a part of the Red Hat Decision
Manager add-ons package available on the Red Hat Customer Portal.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Decision Manager

Version: 7.11

2. Download Red Hat Decision Manager 7.11 Add Ons.

3. Extract the rhdm-7.11.0-add-ons.zip file. The extracted add-ons folder contains the rhdm-
7.11.0-planner-engine.zip file.

4. Extract the rhdm-7.11.0-planner-engine.zip file.

Result

The extracted rhdm-7.11.0-planner-engine directory contains example source code under the
following subdirectories:

examples/sources/src/main/java/org/optaplanner/examples

examples/sources/src/main/resources/org/optaplanner/examples

5.1. RUNNING OPTAPLANNER EXAMPLES

Red Hat build of OptaPlanner includes several examples that demonstrate a variety of planning use
cases. Download and use the examples to explore different types of planning solutions.

Prerequisites

You have downloaded and extracted the examples as described in Chapter 5, Downloading Red
Hat build of OptaPlanner examples.

Procedure

1. To run the examples, in the rhdm-7.11.0-planner-engine/examples directory enter one of the
following commands:
Linux or Mac:

$./runExamples.sh

Windows:

$ runExamples.bat

The OptaPlanner Examples window opens.

CHAPTER 5. DOWNLOADING RED HAT BUILD OF OPTAPLANNER EXAMPLES

87

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

2. Select an example to run that example.

NOTE

Red Hat build of OptaPlanner has no GUI dependencies. It runs just as well on a server or
a mobile JVM as it does on the desktop.

5.2. RUNNING THE RED HAT BUILD OF OPTAPLANNER EXAMPLES IN
AN IDE (INTELLIJ, ECLIPSE, OR NETBEANS)

If you use an integrated development environment (IDE), such as IntelliJ, Eclipse, or Netbeans, you can
run your downloaded OptaPlanner examples within your development environment.

Prerequisites

You have downloaded and extracted the OptaPlanner examples as described in Chapter 5,
Downloading Red Hat build of OptaPlanner examples .

Procedure

1. Open the OptaPlanner examples as a new project:

a. For IntelliJ or Netbeans, open examples/sources/pom.xml as the new project. The Maven
integration guides you through the rest of the installation. Skip the rest of the steps in this
procedure.

b. For Eclipse, open a new project for the /examples/binaries directory, located under the
rhdm-7.11.0-planner-engine directory.

2. Add all the JAR files that are in the binaries directory to the classpath, except for the
examples/binaries/optaplanner-examples-7.52.0.Final-redhat-00007.jar file.

3. Add the Java source directory src/main/java and the Java resources directory
src/main/resources, located under the rhdm-7.11.0-planner-engine/examples/sources/
directory.

4. Create a run configuration:

Main class: org.optaplanner.examples.app.OptaPlannerExamplesApp

VM parameters (optional): -Xmx512M -server -
Dorg.optaplanner.examples.dataDir=examples/sources/data

Working directory: examples/sources

5. Run the run configuration.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

88

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN
BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

You can build and deploy the employee-rostering sample project in Business Central. The project
demonstrates how to create each of the Business Central assets required to solve the shift rostering
planning problem and use Red Hat build of OptaPlanner to find the best possible solution.

You can deploy the preconfigured employee-rostering project in Business Central. Alternatively, you
can create the project yourself using Business Central.

NOTE

The employee-rostering sample project in Business Central does not include a data set.
You must supply a data set in XML format using a REST API call.

6.1. DEPLOYING THE EMPLOYEE ROSTERING SAMPLE PROJECT IN
BUSINESS CENTRAL

Business Central includes a number of sample projects that you can use to get familiar with the product
and its features. The employee rostering sample project is designed and created to demonstrate the
shift rostering use case for Red Hat build of OptaPlanner. Use the following procedure to deploy and
run the employee rostering sample in Business Central.

Prerequisites

Red Hat Decision Manager has been downloaded and installed. For installation options, see
Planning a Red Hat Decision Manager installation .

You have started Red Hat Decision Manager, as described in the installation documentation,
and you are logged in to Business Central as a user with admin permissions.

Procedure

1. In Business Central, click Menu → Design → Projects.

2. In the preconfigured MySpace space, click Try Samples.

3. Select employee-rostering from the list of sample projects and click Ok in the upper-right
corner to import the project.

4. After the asset list has complied, click Build & Deploy to deploy the employee rostering
example.

The rest of this document explains each of the project assets and their configuration.

6.2. RE-CREATING THE EMPLOYEE ROSTERING SAMPLE PROJECT

The employee rostering sample project is a preconfigured project available in Business Central. You can
learn about how to deploy this project in Section 6.1, “Deploying the employee rostering sample project
in Business Central”.

You can create the employee rostering example "from scratch". You can use the workflow in this
example to create a similar project of your own in Business Central.

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

89

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning

6.2.1. Setting up the employee rostering project

To start developing a solver in Business Central, you must set up the project.

Prerequisites

Red Hat Decision Manager has been downloaded and installed.

You have deployed Business Central and logged in with a user that has the admin role.

Procedure

1. Create a new project in Business Central by clicking Menu → Design → Projects → Add
Project.

2. In the Add Project window, fill out the following fields:

Name: employee-rostering

Description(optional): Employee rostering problem optimization using OptaPlanner.
Assigns employees to shifts based on their skill.

Optionally, click Configure Advanced Options to populate the Group ID, Artifact ID, and
Version information.

Group ID: employeerostering

Artifact ID: employeerostering

Version: 1.0.0-SNAPSHOT

3. Click Add to add the project to the Business Central project repository.

6.2.2. Problem facts and planning entities

Each of the domain classes in the employee rostering planning problem is categorized as one of the
following:

An unrelated class: not used by any of the score constraints. From a planning standpoint, this
data is obsolete.

A problem fact class: used by the score constraints, but does not change during planning (as
long as the problem stays the same), for example, Shift and Employee. All the properties of a
problem fact class are problem properties.

A planning entity class: used by the score constraints and changes during planning, for example,
ShiftAssignment. The properties that change during planning are planning variables. The other
properties are problem properties.
Ask yourself the following questions:

What class changes during planning?

Which class has variables that I want the Solver to change?
That class is a planning entity.

A planning entity class needs to be annotated with the @PlanningEntity annotation, or defined

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

90

A planning entity class needs to be annotated with the @PlanningEntity annotation, or defined
in Business Central using the Red Hat build of OptaPlanner dock in the domain designer.

Each planning entity class has one or more planning variables, and must also have one or more
defining properties.

Most use cases have only one planning entity class, and only one planning variable per planning
entity class.

6.2.3. Creating the data model for the employee rostering project

Use this section to create the data objects required to run the employee rostering sample project in
Business Central.

Prerequisites

You have completed the project setup described in Section 6.2.1, “Setting up the employee
rostering project”.

Procedure

1. With your new project, either click Data Object in the project perspective, or click Add Asset →
Data Object to create a new data object.

2. Name the first data object Timeslot, and select employeerostering.employeerostering as the
Package.
Click Ok.

3. In the Data Objects perspective, click +add field to add fields to the Timeslot data object.

4. In the id field, type endTime.

5. Click the drop-down menu next to Type and select LocalDateTime.

6. Click Create and continue to add another field.

7. Add another field with the id startTime and Type LocalDateTime.

8. Click Create.

9. Click Save in the upper-right corner to save the Timeslot data object.

10. Click the x in the upper-right corner to close the Data Objects perspective and return to the
Assets menu.

11. Using the previous steps, create the following data objects and their attributes:

Table 6.1. Skill

id Type

name String

Table 6.2. Employee

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

91

id Type

name String

skills employeerostering.employeerostering.Sk
ill[List]

Table 6.3. Shift

id Type

requiredSkill employeerostering.employeerostering.Sk
ill

timeslot employeerostering.employeerostering.Ti
meslot

Table 6.4. DayOffRequest

id Type

date LocalDate

employee employeerostering.employeerostering.E
mployee

Table 6.5. ShiftAssignment

id Type

employee employeerostering.employeerostering.E
mployee

shift employeerostering.employeerostering.Sh
ift

For more examples of creating data objects, see Getting started with decision services .

6.2.3.1. Creating the employee roster planning entity

In order to solve the employee rostering planning problem, you must create a planning entity and a
solver. The planning entity is defined in the domain designer using the attributes available in the Red Hat
build of OptaPlanner dock.

Use the following procedure to define the ShiftAssignment data object as the planning entity for the
employee rostering example.

Prerequisites

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

92

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

You have created the relevant data objects and planning entity required to run the employee
rostering example by completing the procedures in Section 6.2.3, “Creating the data model for
the employee rostering project”.

Procedure

1. From the project Assets menu, open the ShiftAssignment data object.

2. In the Data Objects perspective, open the OptaPlanner dock by clicking the on the
right.

3. Select Planning Entity.

4. Select employee from the list of fields under the ShiftAssignment data object.

5. In the OptaPlanner dock, select Planning Variable.
In the Value Range Id input field, type employeeRange. This adds the @ValueRangeProvider
annotation to the planning entity, which you can view by clicking the Source tab in the designer.

The value range of a planning variable is defined with the @ValueRangeProvider annotation. A
@ValueRangeProvider annotation always has a property id, which is referenced by the
@PlanningVariable property valueRangeProviderRefs.

6. Close the dock and click Save to save the data object.

6.2.3.2. Creating the employee roster planning solution

The employee roster problem relies on a defined planning solution. The planning solution is defined in
the domain designer using the attributes available in the Red Hat build of OptaPlanner dock.

Prerequisites

You have created the relevant data objects and planning entity required to run the employee
rostering example by completing the procedures in Section 6.2.3, “Creating the data model for
the employee rostering project” and Section 6.2.3.1, “Creating the employee roster planning
entity”.

Procedure

1. Create a new data object with the identifier EmployeeRoster.

2. Create the following fields:

Table 6.6. EmployeeRoster

id Type

dayOffRequestList employeerostering.employeerostering.Da
yOffRequest[List]

shiftAssignmentList employeerostering.employeerostering.Sh
iftAssignment[List]

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

93

shiftList employeerostering.employeerostering.Sh
ift[List]

skillList employeerostering.employeerostering.Sk
ill[List]

timeslotList employeerostering.employeerostering.Ti
meslot[List]

id Type

3. In the Data Objects perspective, open the OptaPlanner dock by clicking the on the
right.

4. Select Planning Solution.

5. Leave the default Hard soft score as the Solution Score Type. This automatically generates a
score field in the EmployeeRoster data object with the solution score as the type.

6. Add a new field with the following attributes:

id Type

employeeList employeerostering.employeerostering.E
mployee[List]

7. With the employeeList field selected, open the OptaPlanner dock and select the Planning
Value Range Provider box.
In the id field, type employeeRange. Close the dock.

8. Click Save in the upper-right corner to save the asset.

6.2.4. Employee rostering constraints

Employee rostering is a planning problem. All planning problems include constraints that must be
satisfied in order to find an optimal solution.

The employee rostering sample project in Business Central includes the following hard and soft
constraints:

Hard constraint

Employees are only assigned one shift per day.

All shifts that require a particular employee skill are assigned an employee with that particular
skill.

Soft constraints

All employees are assigned a shift.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

94

If an employee requests a day off, their shift is reassigned to another employee.

Hard and soft constraints are defined in Business Central using either the free-form DRL designer, or
using guided rules.

6.2.4.1. DRL (Drools Rule Language) rules

DRL (Drools Rule Language) rules are business rules that you define directly in .drl text files. These DRL
files are the source in which all other rule assets in Business Central are ultimately rendered. You can
create and manage DRL files within the Business Central interface, or create them externally as part of a
Maven or Java project using Red Hat CodeReady Studio or another integrated development
environment (IDE). A DRL file can contain one or more rules that define at a minimum the rule
conditions (when) and actions (then). The DRL designer in Business Central provides syntax
highlighting for Java, DRL, and XML.

DRL files consist of the following components:

Components in a DRL file

package

import

function // Optional

query // Optional

declare // Optional

global // Optional

rule "rule name"
 // Attributes
 when
 // Conditions
 then
 // Actions
end

rule "rule2 name"

...

The following example DRL rule determines the age limit in a loan application decision service:

Example rule for loan application age limit

rule "Underage"
 salience 15
 agenda-group "applicationGroup"
 when
 $application : LoanApplication()
 Applicant(age < 21)
 then

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

95

 $application.setApproved(false);
 $application.setExplanation("Underage");
end

A DRL file can contain single or multiple rules, queries, and functions, and can define resource
declarations such as imports, globals, and attributes that are assigned and used by your rules and
queries. The DRL package must be listed at the top of a DRL file and the rules are typically listed last. All
other DRL components can follow any order.

Each rule must have a unique name within the rule package. If you use the same rule name more than
once in any DRL file in the package, the rules fail to compile. Always enclose rule names with double
quotation marks (rule "rule name") to prevent possible compilation errors, especially if you use spaces
in rule names.

All data objects related to a DRL rule must be in the same project package as the DRL file in Business
Central. Assets in the same package are imported by default. Existing assets in other packages can be
imported with the DRL rule.

6.2.4.2. Defining constraints for employee rostering using the DRL designer

You can create constraint definitions for the employee rostering example using the free-form DRL
designer in Business Central.

Use this procedure to create a hard constraint where no employee is assigned a shift that begins less
than 10 hours after their previous shift ended.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → DRL file.

3. In the DRL file name field, type ComplexScoreRules.

4. Select the employeerostering.employeerostering package.

5. Click +Ok to create the DRL file.

6. In the Model tab of the DRL designer, define the Employee10HourShiftSpace rule as a DRL
file:

package employeerostering.employeerostering;

rule "Employee10HourShiftSpace"
 when
 $shiftAssignment : ShiftAssignment($employee : employee != null, $shiftEndDateTime :
shift.timeslot.endTime)
 ShiftAssignment(this != $shiftAssignment, $employee == employee, $shiftEndDateTime
<= shift.timeslot.endTime,
 $shiftEndDateTime.until(shift.timeslot.startTime,
java.time.temporal.ChronoUnit.HOURS) <10)
 then
 scoreHolder.addHardConstraintMatch(kcontext, -1);
end

7. Click Save to save the DRL file.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

96

For more information about creating DRL files, see Designing a decision service using DRL rules .

6.2.5. Creating rules for employee rostering using guided rules

You can create rules that define hard and soft constraints for employee rostering using the guided rules
designer in Business Central.

6.2.5.1. Guided rules

Guided rules are business rules that you create in a UI-based guided rules designer in Business Central
that leads you through the rule-creation process. The guided rules designer provides fields and options
for acceptable input based on the data objects for the rule being defined. The guided rules that you
define are compiled into Drools Rule Language (DRL) rules as with all other rule assets.

All data objects related to a guided rule must be in the same project package as the guided rule. Assets
in the same package are imported by default. After you create the necessary data objects and the
guided rule, you can use the Data Objects tab of the guided rules designer to verify that all required
data objects are listed or to import other existing data objects by adding a New item.

6.2.5.2. Creating a guided rule to balance employee shift numbers

The BalanceEmployeesShiftNumber guided rule creates a soft constraint that ensures shifts are
assigned to employees in a way that is balanced as evenly as possible. It does this by creating a score
penalty that increases when shift distribution is less even. The score formula, implemented by the rule,
incentivizes the Solver to distribute shifts in a more balanced way.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter BalanceEmployeesShiftNumber as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Employee in the Add a condition to the rule window. Click +Ok.

7. Click the Employee condition to modify the constraints and add the variable name $employee.

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

97

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

8. Add the WHEN condition From Accumulate.

a. Above the From Accumulate condition, click click to add pattern and select Number as
the fact type from the drop-down list.

b. Add the variable name $shiftCount to the Number condition.

c. Below the From Accumulate condition, click click to add pattern and select the
ShiftAssignment fact type from the drop-down list.

d. Add the variable name $shiftAssignment to the ShiftAssignment fact type.

e. Click the ShiftAssignment condition again and from the Add a restriction on a field drop-
down list, select employee.

f. Select equal to from the drop-down list next to the employee constraint.

g. Click the icon next to the drop-down button to add a variable, and click Bound variable
in the Field value window.

h. Select $employee from the drop-down list.

i. In the Function box type count($shiftAssignment).

9. Add the THEN condition by clicking the in the THEN field.

10. Select Modify Soft Score in the Add a new action window. Click +Ok.

a. Type the following expression into the box: -
($shiftCount.intValue()*$shiftCount.intValue())

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules .

6.2.5.3. Creating a guided rule for no more than one shift per day

The OneEmployeeShiftPerDay guided rule creates a hard constraint that employees are not assigned
more than one shift per day. In the employee rostering example, this constraint is created using the
guided rule designer.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

98

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter OneEmployeeShiftPerDay as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Free form DRL from the Add a condition to the rule window.

7. In the free form DRL box, type the following condition:

This condition states that a shift cannot be assigned to an employee that already has another
shift assignment on the same day.

8. Add the THEN condition by clicking the in the THEN field.

9. Select Add free form DRL from the Add a new action window.

10. In the free form DRL box, type the following condition:

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules .

6.2.5.4. Creating a guided rule to match skills to shift requirements

$shiftAssignment : ShiftAssignment(employee != null)
 ShiftAssignment(this != $shiftAssignment , employee == $shiftAssignment.employee ,
shift.timeslot.startTime.toLocalDate() ==
$shiftAssignment.shift.timeslot.startTime.toLocalDate())

scoreHolder.addHardConstraintMatch(kcontext, -1);

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

99

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

The ShiftReqiredSkillsAreMet guided rule creates a hard constraint that ensures all shifts are assigned
an employee with the correct set of skills. In the employee rostering example, this constraint is created
using the guided rule designer.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter ShiftReqiredSkillsAreMet as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select ShiftAssignment in the Add a condition to the rule window. Click +Ok.

7. Click the ShiftAssignment condition, and select employee from the Add a restriction on a
field drop-down list.

8. In the designer, click the drop-down list next to employee and select is not null.

9. Click the ShiftAssignment condition, and click Expression editor.

a. In the designer, click [not bound] to open the Expression editor, and bind the expression
to the variable $requiredSkill. Click Set.

b. In the designer, next to $requiredSkill, select shift from the first drop-down list, then
requiredSkill from the next drop-down list.

10. Click the ShiftAssignment condition, and click Expression editor.

a. In the designer, next to [not bound], select employee from the first drop-down list, then
skills from the next drop-down list.

b. Leave the next drop-down list as Choose.

c. In the next drop-down box, change please choose to excludes.

d. Click the icon next to excludes, and in the Field value window, click the New formula
button.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

100

e. Type $requiredSkill into the formula box.

11. Add the THEN condition by clicking the in the THEN field.

12. Select Modify Hard Score in the Add a new action window. Click +Ok.

13. Type -1 into the score actions box.

14. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

15. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules .

6.2.5.5. Creating a guided rule to manage day off requests

The DayOffRequest guided rule creates a soft constraint. This constraint allows a shift to be reassigned
to another employee in the event the employee who was originally assigned the shift is no longer able to
work that day. In the employee rostering example, this constraint is created using the guided rule
designer.

Procedure

1. In Business Central, go to Menu → Design → Projects and click the project name.

2. Click Add Asset → Guided Rule.

3. Enter DayOffRequest as the Guided Rule name and select the
employeerostering.employeerostering Package.

4. Click Ok to create the rule asset.

5. Add a WHEN condition by clicking the in the WHEN field.

6. Select Free form DRL from the Add a condition to the rule window.

7. In the free form DRL box, type the following condition:

$dayOffRequest : DayOffRequest()
 ShiftAssignment(employee == $dayOffRequest.employee ,
shift.timeslot.startTime.toLocalDate() == $dayOffRequest.date)

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

101

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

This condition states if a shift is assigned to an employee who has made a day off request, the
employee can be unassigned the shift on that day.

8. Add the THEN condition by clicking the in the THEN field.

9. Select Add free form DRL from the Add a new action window.

10. In the free form DRL box, type the following condition:

11. Click Validate in the upper-right corner to check all rule conditions are valid. If the rule validation
fails, address any problems described in the error message, review all components in the rule,
and try again to validate the rule until the rule passes.

12. Click Save to save the rule.

For more information about creating guided rules, see Designing a decision service using guided rules .

6.2.6. Creating a solver configuration for employee rostering

You can create and edit Solver configurations in Business Central. The Solver configuration designer
creates a solver configuration that can be run after the project is deployed.

Prerequisites

Red Hat Decision Manager has been downloaded and installed.

You have created and configured all of the relevant assets for the employee rostering example.

Procedure

1. In Business Central, click Menu → Projects, and click your project to open it.

2. In the Assets perspective, click Add Asset → Solver configuration

3. In the Create new Solver configuration window, type the name
EmployeeRosteringSolverConfig for your Solver and click Ok.
This opens the Solver configuration designer.

4. In the Score Director Factory configuration section, define a KIE base that contains scoring
rule definitions. The employee rostering sample project uses defaultKieBase.

a. Select one of the KIE sessions defined within the KIE base. The employee rostering sample
project uses defaultKieSession.

5. Click Validate in the upper-right corner to check the Score Director Factory configuration is
correct. If validation fails, address any problems described in the error message, and try again to
validate until the configuration passes.

6. Click Save to save the Solver configuration.

6.2.7. Configuring Solver termination for the employee rostering project

You can configure the Solver to terminate after a specified amount of time. By default, the planning

scoreHolder.addSoftConstraintMatch(kcontext, -100);

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

102

https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.11/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

You can configure the Solver to terminate after a specified amount of time. By default, the planning
engine is given an unlimited time period to solve a problem instance.

The employee rostering sample project is set up to run for 30 seconds.

Prerequisites

You have created all relevant assets for the employee rostering project and created the
EmployeeRosteringSolverConfig solver configuration in Business Central as described in
Section 6.2.6, “Creating a solver configuration for employee rostering” .

Procedure

1. Open the EmployeeRosteringSolverConfig from the Assets perspective. This will open the
Solver configuration designer.

2. In the Termination section, click Add to create new termination element within the selected
logical group.

3. Select the Time spent termination type from the drop-down list. This is added as an input field
in the termination configuration.

4. Use the arrows next to the time elements to adjust the amount of time spent to 30 seconds.

5. Click Validate in the upper-right corner to check the Score Director Factory configuration is
correct. If validation fails, address any problems described in the error message, and try again to
validate until the configuration passes.

6. Click Save to save the Solver configuration.

6.3. ACCESSING THE SOLVER USING THE REST API

After deploying or re-creating the sample solver, you can access it using the REST API.

You must register a solver instance using the REST API. Then you can supply data sets and retrieve
optimized solutions.

Prerequisites

The employee rostering project is set up and deployed according to the previous sections in this
document. You can either deploy the sample project, as described in Section 6.1, “Deploying the
employee rostering sample project in Business Central”, or re-create the project, as described
in Section 6.2, “Re-creating the employee rostering sample project”.

6.3.1. Registering the Solver using the REST API

You must register the solver instance using the REST API before you can use the solver.

Each solver instance is capable of optimizing one planning problem at a time.

Procedure

1. Create a HTTP request using the following header:

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

103

authorization: admin:admin
X-KIE-ContentType: xstream
content-type: application/xml

2. Register the Solver using the following request:

PUT

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver

Request body

6.3.2. Calling the Solver using the REST API

After registering the solver instance, you can use the REST API to submit a data set to the solver and to
retrieve an optimized solution.

Procedure

1. Create a HTTP request using the following header:

authorization: admin:admin
X-KIE-ContentType: xstream
content-type: application/xml

2. Submit a request to the Solver with a data set, as in the following example:

POST

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver/state/solving

Request body

<solver-instance>
 <solver-config-
file>employeerostering/employeerostering/EmployeeRosteringSolverConfig.solver.xml</s
olver-config-file>
</solver-instance>

<employeerostering.employeerostering.EmployeeRoster>
 <employeeList>
 <employeerostering.employeerostering.Employee>
 <name>John</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>reading</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Mary</name>
 <skills>

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

104

 <employeerostering.employeerostering.Skill>
 <name>writing</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Petr</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>speaking</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 </employeeList>
 <shiftList>
 <employeerostering.employeerostering.Shift>
 <timeslot>
 <startTime>2017-01-01T00:00:00</startTime>
 <endTime>2017-01-01T01:00:00</endTime>
 </timeslot>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee/skills/emplo
yeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee[3]/skills/emp
loyeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee[2]/skills/emp
loyeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 </shiftList>
 <skillList>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee/skills/employe
erostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee[3]/skills/emplo
yeerostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee[2]/skills/emplo
yeerostering.employeerostering.Skill"/>
 </skillList>
 <timeslotList>
 <employeerostering.employeerostering.Timeslot
reference="../../shiftList/employeerostering.employeerostering.Shift/timeslot"/>
 </timeslotList>
 <dayOffRequestList/>
 <shiftAssignmentList>
 <employeerostering.employeerostering.ShiftAssignment>
 <shift reference="../../../shiftList/employeerostering.employeerostering.Shift"/>

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

105

3. Request the best solution to the planning problem:

GET

http://localhost:8080/kie-
server/services/rest/server/containers/employeerostering_1.0.0-
SNAPSHOT/solvers/EmployeeRosteringSolver/bestsolution

Example response

 </employeerostering.employeerostering.ShiftAssignment>
 <employeerostering.employeerostering.ShiftAssignment>
 <shift reference="../../../shiftList/employeerostering.employeerostering.Shift[3]"/>
 </employeerostering.employeerostering.ShiftAssignment>
 <employeerostering.employeerostering.ShiftAssignment>
 <shift reference="../../../shiftList/employeerostering.employeerostering.Shift[2]"/>
 </employeerostering.employeerostering.ShiftAssignment>
 </shiftAssignmentList>
</employeerostering.employeerostering.EmployeeRoster>

<solver-instance>
 <container-id>employee-rostering</container-id>
 <solver-id>solver1</solver-id>
 <solver-config-
file>employeerostering/employeerostering/EmployeeRosteringSolverConfig.solver.xml</s
olver-config-file>
 <status>NOT_SOLVING</status>
 <score
scoreClass="org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore">0hard/0soft<
/score>
 <best-solution class="employeerostering.employeerostering.EmployeeRoster">
 <employeeList>
 <employeerostering.employeerostering.Employee>
 <name>John</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>reading</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Mary</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>writing</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>
 <employeerostering.employeerostering.Employee>
 <name>Petr</name>
 <skills>
 <employeerostering.employeerostering.Skill>
 <name>speaking</name>
 </employeerostering.employeerostering.Skill>
 </skills>
 </employeerostering.employeerostering.Employee>

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

106

 </employeeList>
 <shiftList>
 <employeerostering.employeerostering.Shift>
 <timeslot>
 <startTime>2017-01-01T00:00:00</startTime>
 <endTime>2017-01-01T01:00:00</endTime>
 </timeslot>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee/skills/emplo
yeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee[3]/skills/emp
loyeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 <employeerostering.employeerostering.Shift>
 <timeslot reference="../../employeerostering.employeerostering.Shift/timeslot"/>
 <requiredSkill
reference="../../../employeeList/employeerostering.employeerostering.Employee[2]/skills/emp
loyeerostering.employeerostering.Skill"/>
 </employeerostering.employeerostering.Shift>
 </shiftList>
 <skillList>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee/skills/employe
erostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee[3]/skills/emplo
yeerostering.employeerostering.Skill"/>
 <employeerostering.employeerostering.Skill
reference="../../employeeList/employeerostering.employeerostering.Employee[2]/skills/emplo
yeerostering.employeerostering.Skill"/>
 </skillList>
 <timeslotList>
 <employeerostering.employeerostering.Timeslot
reference="../../shiftList/employeerostering.employeerostering.Shift/timeslot"/>
 </timeslotList>
 <dayOffRequestList/>
 <shiftAssignmentList/>
 <score>0hard/0soft</score>
 </best-solution>
</solver-instance>

CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE

107

CHAPTER 7. GETTING STARTED WITH OPTAPLANNER AND
QUARKUS

You can use the https://code.quarkus.redhat.com website to generate a Red Hat build of OptaPlanner
Quarkus Maven project and automatically add and configure the extensions that you want to use in your
application. You can then download the Quarkus Maven repository or use the online Maven repository
with your project.

7.1. APACHE MAVEN AND RED HAT BUILD OF QUARKUS

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model (POM) files to define projects and manage the build process. POM files describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven repositories

A Maven repository stores Java libraries, plug-ins, and other build artifacts. The default public
repository is the Maven 2 Central Repository, but repositories can be private and internal within a
company to share common artifacts among development teams. Repositories are also available from
third parties.

You can use the online Maven repository with your Quarkus projects or you can download the Red Hat
build of Quarkus Maven repository.

Maven plug-ins

Maven plug-ins are defined parts of a POM file that achieve one or more goals. Quarkus applications use
the following Maven plug-ins:

Quarkus Maven plug-in (quarkus-maven-plugin): Enables Maven to create Quarkus projects,
supports the generation of uber-JAR files, and provides a development mode.

Maven Surefire plug-in (maven-surefire-plugin): Used during the test phase of the build
lifecycle to execute unit tests on your application. The plug-in generates text and XML files that
contain the test reports.

7.2. CONFIGURING THE MAVEN SETTINGS.XML FILE FOR THE ONLINE
REPOSITORY

You can use the online Maven repository with your Maven project by configuring your user settings.xml
file. This is the recommended approach. Maven settings used with a repository manager or repository on
a shared server provide better control and manageability of projects.

NOTE

When you configure the repository by modifying the Maven settings.xml file, the
changes apply to all of your Maven projects.

Procedure

1. Open the Maven ~/.m2/settings.xml file in a text editor or integrated development
environment (IDE).

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

108

https://code.quarkus.redhat.com

NOTE

If there is not a settings.xml file in the ~/.m2/ directory, copy the settings.xml
file from the $MAVEN_HOME/.m2/conf/ directory into the ~/.m2/ directory.

2. Add the following lines to the <profiles> element of the settings.xml file:

3. Add the following lines to the <activeProfiles> element of the settings.xml file and save the
file.

7.3. DOWNLOADING AND CONFIGURING THE QUARKUS MAVEN
REPOSITORY

If you do not want to use the online Maven repository, you can download and configure the Quarkus
Maven repository to create a Quarkus application with Maven. The Quarkus Maven repository contains
many of the requirements that Java developers typically use to build their applications. This procedure
describes how to edit the settings.xml file to configure the Quarkus Maven repository.

NOTE

When you configure the repository by modifying the Maven settings.xml file, the
changes apply to all of your Maven projects.

<!-- Configure the Maven repository -->
<profile>
 <id>red-hat-enterprise-maven-repository</id>
 <repositories>
 <repository>
 <id>red-hat-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>red-hat-enterprise-maven-repository</id>
 <url>https://maven.repository.redhat.com/ga/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<activeProfile>red-hat-enterprise-maven-repository</activeProfile>

CHAPTER 7. GETTING STARTED WITH OPTAPLANNER AND QUARKUS

109

Procedure

1. Download the Red Hat build of Quarkus Maven repository ZIP file from the Software
Downloads page of the Red Hat Customer Portal (login required).

2. Expand the downloaded archive.

3. Change directory to the ~/.m2/ directory and open the Maven settings.xml file in a text editor
or integrated development environment (IDE).

4. Add the following lines to the <profiles> element of the settings.xml file, where
QUARKUS_MAVEN_REPOSITORY is the path of the Quarkus Maven repository that you
downloaded. The format of QUARKUS_MAVEN_REPOSITORY must be file://$PATH, for
example file:///home/userX/rh-quarkus-1.11.6.GA-maven-repository/maven-repository.

5. Add the following lines to the <activeProfiles> element of the settings.xml file and save the
file.

IMPORTANT

<!-- Configure the Quarkus Maven repository -->
<profile>
 <id>red-hat-enterprise-maven-repository</id>
 <repositories>
 <repository>
 <id>red-hat-enterprise-maven-repository</id>
 <url>QUARKUS_MAVEN_REPOSITORY</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>red-hat-enterprise-maven-repository</id>
 <url>QUARKUS_MAVEN_REPOSITORY</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </pluginRepository>
 </pluginRepositories>
</profile>

<activeProfile>red-hat-enterprise-maven-repository</activeProfile>

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

110

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=redhat.quarkus

IMPORTANT

If your Maven repository contains outdated artifacts, you might encounter one of the
following Maven error messages when you build or deploy your project, where
ARTIFACT_NAME is the name of a missing artifact and PROJECT_NAME is the name of
the project you are trying to build:

Missing artifact PROJECT_NAME

[ERROR] Failed to execute goal on project ARTIFACT_NAME; Could not
resolve dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository located in the
~/.m2/repository directory to force a download of the latest Maven artifacts.

7.4. CREATING A RED HAT BUILD OF QUARKUS MAVEN PROJECT
USING CODE.QUARKUS.REDHAT.COM

You can use the code.quarkus.redhat.com website to generate a Red Hat build of OptaPlanner
Quarkus Maven project and automatically add and configure the extensions that you want to use in your
application. In addition, code.quarkus.redhat.com automatically manages the configuration
parameters required to compile your project into a native executable.

This section walks you through the process of generating an OptaPlanner Maven project and includes
the following topics:

Specifying basic details about your application.

Choosing the extensions that you want to include in your project.

Generating a downloadable archive with your project files.

Using the custom commands for compiling and starting your application.

Prerequisites

You have a web browser.

Procedure

1. Open https://code.quarkus.redhat.com in your web browser:

2. Specify details about your project:

3. Enter a group name for your project. The format of the name follows the Java package naming
convention, for example, com.example.

4. Enter a name that you want to use for Maven artifacts generated from your project, for example
code-with-quarkus.

5. Select Build Tool > Maven to specify that you want to create a Maven project. The build tool
that you choose determines the items:

The directory structure of your generated project

The format of configuration files used in your generated project

CHAPTER 7. GETTING STARTED WITH OPTAPLANNER AND QUARKUS

111

https://code.quarkus.redhat.com

The custom build script and command for compiling and starting your application that
code.quarkus.redhat.com displays for you after you generate your project

NOTE

Red Hat provides support for using code.quarkus.redhat.com to create
OptaPlanner Maven projects only. Generating Gradle projects is not
supported by Red Hat.

6. Enter a version to be used in artifacts generated from your project. The default value of this
field is 1.0.0-SNAPSHOT. Using semantic versioning is recommended, but you can use a
different type of versioning if you prefer.

7. Enter the package name of artifacts that the build tool generates when you package your
project.
According to the Java package naming conventions the package name should match the group
name that you use for your project, but you can specify a different name.

NOTE

The code.quarkus.redhat.com website automatically uses the latest release of
OptaPlanner. You can manually change the BOM version in the pom.xml file
after you generate your project.

8. Select the following extensions to include as dependencies:

RESTEasy JAX-RS (quarkus-resteasy)

RESTEasy Jackson (quarkus-resteasy-jackson)

OptaPlanner AI constraint solver(optaplanner-quarkus)

OptaPlanner Jackson (optaplanner-quarkus-jackson)
Red Hat provides different levels of support for individual extensions on the list, which are
indicated by labels next to the name of each extension:

SUPPORTED extensions are fully supported by Red Hat for use in enterprise
applications in production environments.

TECH-PREVIEW extensions are subject to limited support by Red Hat in production
environments under the Technology Preview Features Support Scope .

DEV-SUPPORT extensions are not supported by Red Hat for use in production
environments, but the core functionalities that they provide are supported by Red Hat
developers for use in developing new applications.

DEPRECATED extension are planned to be replaced with a newer technology or
implementation that provides the same functionality.
Unlabeled extensions are not supported by Red Hat for use in production environments.

9. Select Generate your application to confirm your choices and display the overlay screen with the
download link for the archive that contains your generated project. The overlay screen also
shows the custom command that you can use to compile and start your application.

10. Select Download the ZIP to save the archive with the generated project files to your system.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

112

https://semver.org/
https://access.redhat.com/support/offerings/techpreview

11. Extract the contents of the archive.

12. Navigate to the directory that contains your extracted project files:

13. Compile and start your application in development mode:

cd <directory_name>

./mvnw compile quarkus:dev

CHAPTER 7. GETTING STARTED WITH OPTAPLANNER AND QUARKUS

113

PART III. RED HAT BUILD OF OPTAPLANNER QUICK START
GUIDES

Red Hat build of OptaPlanner provides the following quick start guides to demonstrate how
OptaPlanner can integrate with different techologies:

Red Hat build of OptaPlanner on Red Hat build of Quarkus: a school timetable quick start guide

Red Hat build of OptaPlanner on Red Hat build of Quarkus: a vaccination appointment
scheduler quick start guide

Red Hat build of OptaPlanner on Spring Boot: a school timetable quick start guide

Red Hat build of OptaPlanner with Java solvers: a cloud balancing quick start guide

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

114

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT
BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START

GUIDE
This guide walks you through the process of creating a Red Hat build of Quarkus application with Red
Hat build of OptaPlanner’s constraint solving artificial intelligence (AI). You will build a REST application
that optimizes a school timetable for students and teachers

Your service will assign Lesson instances to Timeslot and Room instances automatically by using AI to
adhere to the following hard and soft scheduling constraints:

A room can have at most one lesson at the same time.

A teacher can teach at most one lesson at the same time.

A student can attend at most one lesson at the same time.

A teacher prefers to teach in a single room.

A teacher prefers to teach sequential lessons and dislikes gaps between lessons.

Mathematically speaking, school timetabling is an NP-hard problem. That means it is difficult to scale.
Simply iterating through all possible combinations with brute force would take millions of years for a
non-trivial dataset, even on a supercomputer. Fortunately, AI constraint solvers such as Red Hat build of
OptaPlanner have advanced algorithms that deliver a near-optimal solution in a reasonable amount of
time. What is considered to be a reasonable amount of time is subjective and depends on the goals of
your problem.

Prerequisites

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

115

Prerequisites

OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software
Downloads page in the Red Hat Customer Portal (login required).

Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project
website.

An IDE, such as IntelliJ IDEA, VSCode, Eclipse, or NetBeans is available.

8.1. CREATING THE SCHOOL TIMETABLE PROJECT

The school timetable project lets you get up and running with a Red Hat build of OptaPlanner and
Quarkus application using Apache Maven and the Quarkus Maven plug-in.

NOTE

If you prefer, you can create a Quakus OptaPlanner project as described in Chapter 7,
Getting Started with OptaPlanner and Quarkus .

Procedure

1. In a command terminal, enter the following command to verify that Maven is using JDK 11 and
that the Maven version is 3.6 or higher:

mvn --version

2. If the preceding command does not return JDK 11, add the path to JDK 11 to the PATH
environment variable and enter the preceding command again.

3. To generate the project, enter one of the following commands:

NOTE

Apple macOS and Microsoft Windows are not supported production
environments.

If you are using Linux or Apple macOS, enter the following command:

This command create the following elements in the ./optaplanner-quickstart directory:

The Maven structure

Example Dockerfile file in src/main/docker

The application configuration file

mvn io.quarkus:quarkus-maven-plugin:1.11.6.Final-redhat-00001:create \
 -DprojectGroupId=com.example \
 -DprojectArtifactId=optaplanner-quickstart \
 -Dextensions="resteasy,resteasy-jackson,optaplanner-quarkus,optaplanner-quarkus-
jackson" \
 -DplatformGroupId=com.redhat.quarkus \
 -DplatformVersion=1.11.6.Final-redhat-00001 \
 -DnoExamples

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

116

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://maven.apache.org/

Table 8.1. Properties used in the mvn io.quarkus:quarkus-maven-
plugin:1.11.6.Final-redhat-00001:create command

Property Description

projectGroupId The group ID of the project.

projectArtifactId The artifact ID of the project.

extensions A comma-separated list of Quarkus extensions to use with this
project. For a full list of Quarkus extensions, enter mvn
quarkus:list-extensions on the command line.

platformGroupId The Group ID of the target platform.

platformVersion The version of the platform that you want the project to use.

noExamples Creates a project with the project structure but without tests or
classes.

The values of the projectGroupID and the projectArtifactID properties are used to
generate the project version. The default project version is 1.0.0-SNAPSHOT. The
values of the platformGroupId and platformVersion properties are used by quarkus-
universe-bom to manage project dependencies.

4. After the directory structure is created, open the optaplanner-quickstart/pom.xml file in a text
editor and examine the contents of the file to ensure it contains the following elements:

<properties>
 ...
 <quarkus-plugin.version>1.11.6.Final-redhat-00001</quarkus-plugin.version>
 <quarkus.platform.artifact-id>quarkus-universe-bom</quarkus.platform.artifact-id>
 <quarkus.platform.group-id>com.redhat.quarkus</quarkus.platform.group-id>
 <quarkus.platform.version>1.11.6.Final-redhat-00001.Final-redhat-
00001</quarkus.platform.version>
 </properties>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>${quarkus.platform.artifact-id}</artifactId>
 <version>${quarkus.platform.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.optaplanner</groupId>
 <artifactId>optaplanner-quarkus</artifactId>
 </dependency>
 <dependency>

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

117

The Quarkus BOM is imported into the pom.xml file. Therefore, you do not need to list the
versions of individual Quarkus dependencies in the pom.xml file.

5. Review the quarkus-resteasy dependency in the pom.xml file. This dependency enables you to
develop REST applications:

8.2. MODEL THE DOMAIN OBJECTS

The goal of the Red Hat build of OptaPlanner timetable project is to assign each lesson to a time slot
and a room. To do this, add three classes, Timeslot, Lesson, and Room, as shown in the following
diagram:

 <groupId>org.optaplanner</groupId>
 <artifactId>optaplanner-quarkus-jackson</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy-jackson</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-arc</artifactId>
 </dependency>
 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-junit5</artifactId>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>io.quarkus</groupId>
 <artifactId>quarkus-resteasy</artifactId>
 </dependency>

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

118

Timeslot

The Timeslot class represents a time interval when lessons are taught, for example, Monday 10:30 -
11:30 or Tuesday 13:30 - 14:30. In this example, all time slots have the same duration and there are no
time slots during lunch or other breaks.

A time slot has no date because a high school schedule just repeats every week. There is no need for
continuous planning. A timeslot is called a problem fact because no Timeslot instances change during
solving. Such classes do not require any OptaPlanner-specific annotations.

Room

The Room class represents a location where lessons are taught, for example, Room A or Room B. In this
example, all rooms are without capacity limits and they can accommodate all lessons.

Room instances do not change during solving so Room is also a problem fact.

Lesson

During a lesson, represented by the Lesson class, a teacher teaches a subject to a group of students, for
example, Math by A.Turing for 9th grade or Chemistry by M.Curie for 10th grade. If a subject is
taught multiple times each week by the same teacher to the same student group, there are multiple
Lesson instances that are only distinguishable by id. For example, the 9th grade has six math lessons a
week.

During solving, OptaPlanner changes the timeslot and room fields of the Lesson class to assign each
lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson is a planning entity :

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

119

https://docs.optaplanner.org/latestFinal/optaplanner-docs/html_single/index.html#continuousPlanning

Most of the fields in the previous diagram contain input data, except for the orange fields. A lesson’s
timeslot and room fields are unassigned (null) in the input data and assigned (not null) in the output
data. OptaPlanner changes these fields during solving. Such fields are called planning variables. In order
for OptaPlanner to recognize them, both the timeslot and room fields require an @PlanningVariable
annotation. Their containing class, Lesson, requires an @PlanningEntity annotation.

Procedure

1. Create the src/main/java/com/example/domain/Timeslot.java class:

package com.example.domain;

import java.time.DayOfWeek;
import java.time.LocalTime;

public class Timeslot {

 private DayOfWeek dayOfWeek;
 private LocalTime startTime;
 private LocalTime endTime;

 private Timeslot() {
 }

 public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) {
 this.dayOfWeek = dayOfWeek;
 this.startTime = startTime;
 this.endTime = endTime;
 }

 @Override
 public String toString() {
 return dayOfWeek + " " + startTime.toString();
 }

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

120

Notice the toString() method keeps the output short so it is easier to read OptaPlanner’s
DEBUG or TRACE log, as shown later.

2. Create the src/main/java/com/example/domain/Room.java class:

3. Create the src/main/java/com/example/domain/Lesson.java class:

 // ********************************
 // Getters and setters
 // ********************************

 public DayOfWeek getDayOfWeek() {
 return dayOfWeek;
 }

 public LocalTime getStartTime() {
 return startTime;
 }

 public LocalTime getEndTime() {
 return endTime;
 }

}

package com.example.domain;

public class Room {

 private String name;

 private Room() {
 }

 public Room(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return name;
 }

 // ********************************
 // Getters and setters
 // ********************************

 public String getName() {
 return name;
 }

}

package com.example.domain;

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

121

import org.optaplanner.core.api.domain.entity.PlanningEntity;
import org.optaplanner.core.api.domain.variable.PlanningVariable;

@PlanningEntity
public class Lesson {

 private Long id;

 private String subject;
 private String teacher;
 private String studentGroup;

 @PlanningVariable(valueRangeProviderRefs = "timeslotRange")
 private Timeslot timeslot;

 @PlanningVariable(valueRangeProviderRefs = "roomRange")
 private Room room;

 private Lesson() {
 }

 public Lesson(Long id, String subject, String teacher, String studentGroup) {
 this.id = id;
 this.subject = subject;
 this.teacher = teacher;
 this.studentGroup = studentGroup;
 }

 @Override
 public String toString() {
 return subject + "(" + id + ")";
 }

 // ********************************
 // Getters and setters
 // ********************************

 public Long getId() {
 return id;
 }

 public String getSubject() {
 return subject;
 }

 public String getTeacher() {
 return teacher;
 }

 public String getStudentGroup() {
 return studentGroup;
 }

 public Timeslot getTimeslot() {
 return timeslot;
 }

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

122

The Lesson class has an @PlanningEntity annotation, so OptaPlanner knows that this class
changes during solving because it contains one or more planning variables.

The timeslot field has an @PlanningVariable annotation, so OptaPlanner knows that it can
change its value. In order to find potential Timeslot instances to assign to this field,
OptaPlanner uses the valueRangeProviderRefs property to connect to a value range provider
that provides a List<Timeslot> to pick from. See Section 8.4, “Gather the domain objects in a
planning solution” for information about value range providers.

The room field also has an @PlanningVariable annotation for the same reasons.

8.3. DEFINE THE CONSTRAINTS AND CALCULATE THE SCORE

When solving a problem, a score represents the quality of a specific solution. The higher the score the
better. Red Hat build of OptaPlanner looks for the best solution, which is the solution with the highest
score found in the available time. It might be the optimal solution.

Because the timetable example use case has hard and soft constraints, use the HardSoftScore class to
represent the score:

Hard constraints must not be broken. For example: A room can have at most one lesson at the
same time.

Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.

Hard constraints are weighted against other hard constraints. Soft constraints are weighted against
other soft constraints. Hard constraints always outweigh soft constraints, regardless of their respective
weights.

To calculate the score, you could implement an EasyScoreCalculator class:

 public void setTimeslot(Timeslot timeslot) {
 this.timeslot = timeslot;
 }

 public Room getRoom() {
 return room;
 }

 public void setRoom(Room room) {
 this.room = room;
 }

}

public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<TimeTable> {

 @Override
 public HardSoftScore calculateScore(TimeTable timeTable) {
 List<Lesson> lessonList = timeTable.getLessonList();
 int hardScore = 0;
 for (Lesson a : lessonList) {
 for (Lesson b : lessonList) {
 if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot())
 && a.getId() < b.getId()) {

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

123

Unfortunately, this solution does not scale well because it is non-incremental: every time a lesson is
assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.

A better solution is to create a src/main/java/com/example/solver/TimeTableConstraintProvider.java
class to perform incremental score calculation. This class uses OptaPlanner’s ConstraintStream API
which is inspired by Java 8 Streams and SQL. The ConstraintProvider scales an order of magnitude
better than the EasyScoreCalculator: O(n) instead of O(n²).

Procedure

Create the following src/main/java/com/example/solver/TimeTableConstraintProvider.java class:

 // A room can accommodate at most one lesson at the same time.
 if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) {
 hardScore--;
 }
 // A teacher can teach at most one lesson at the same time.
 if (a.getTeacher().equals(b.getTeacher())) {
 hardScore--;
 }
 // A student can attend at most one lesson at the same time.
 if (a.getStudentGroup().equals(b.getStudentGroup())) {
 hardScore--;
 }
 }
 }
 }
 int softScore = 0;
 // Soft constraints are only implemented in the "complete" implementation
 return HardSoftScore.of(hardScore, softScore);
 }

}

package com.example.solver;

import com.example.domain.Lesson;
import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;
import org.optaplanner.core.api.score.stream.Constraint;
import org.optaplanner.core.api.score.stream.ConstraintFactory;
import org.optaplanner.core.api.score.stream.ConstraintProvider;
import org.optaplanner.core.api.score.stream.Joiners;

public class TimeTableConstraintProvider implements ConstraintProvider {

 @Override
 public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {
 return new Constraint[] {
 // Hard constraints
 roomConflict(constraintFactory),
 teacherConflict(constraintFactory),
 studentGroupConflict(constraintFactory),
 // Soft constraints are only implemented in the "complete" implementation
 };
 }

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

124

8.4. GATHER THE DOMAIN OBJECTS IN A PLANNING SOLUTION

A TimeTable instance wraps all Timeslot, Room, and Lesson instances of a single dataset.
Furthermore, because it contains all lessons, each with a specific planning variable state, it is a planning
solution and it has a score:

If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with the
score -4init/0hard/0soft.

If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the
score -2hard/-3soft.

If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the
score 0hard/-7soft.

The TimeTable class has an @PlanningSolution annotation, so Red Hat build of OptaPlanner knows
that this class contains all of the input and output data.

 private Constraint roomConflict(ConstraintFactory constraintFactory) {
 // A room can accommodate at most one lesson at the same time.

 // Select a lesson ...
 return constraintFactory.from(Lesson.class)
 // ... and pair it with another lesson ...
 .join(Lesson.class,
 // ... in the same timeslot ...
 Joiners.equal(Lesson::getTimeslot),
 // ... in the same room ...
 Joiners.equal(Lesson::getRoom),
 // ... and the pair is unique (different id, no reverse pairs)
 Joiners.lessThan(Lesson::getId))
 // then penalize each pair with a hard weight.
 .penalize("Room conflict", HardSoftScore.ONE_HARD);
 }

 private Constraint teacherConflict(ConstraintFactory constraintFactory) {
 // A teacher can teach at most one lesson at the same time.
 return constraintFactory.from(Lesson.class)
 .join(Lesson.class,
 Joiners.equal(Lesson::getTimeslot),
 Joiners.equal(Lesson::getTeacher),
 Joiners.lessThan(Lesson::getId))
 .penalize("Teacher conflict", HardSoftScore.ONE_HARD);
 }

 private Constraint studentGroupConflict(ConstraintFactory constraintFactory) {
 // A student can attend at most one lesson at the same time.
 return constraintFactory.from(Lesson.class)
 .join(Lesson.class,
 Joiners.equal(Lesson::getTimeslot),
 Joiners.equal(Lesson::getStudentGroup),
 Joiners.lessThan(Lesson::getId))
 .penalize("Student group conflict", HardSoftScore.ONE_HARD);
 }

}

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

125

Specifically, this class is the input of the problem:

A timeslotList field with all time slots

This is a list of problem facts, because they do not change during solving.

A roomList field with all rooms

This is a list of problem facts, because they do not change during solving.

A lessonList field with all lessons

This is a list of planning entities because they change during solving.

Of each Lesson:

The values of the timeslot and room fields are typically still null, so unassigned. They
are planning variables.

The other fields, such as subject, teacher and studentGroup, are filled in. These fields
are problem properties.

However, this class is also the output of the solution:

A lessonList field for which each Lesson instance has non-null timeslot and room fields after
solving

A score field that represents the quality of the output solution, for example, 0hard/-5soft

Procedure

Create the src/main/java/com/example/domain/TimeTable.java class:

package com.example.domain;

import java.util.List;

import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty;
import org.optaplanner.core.api.domain.solution.PlanningScore;
import org.optaplanner.core.api.domain.solution.PlanningSolution;
import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty;
import org.optaplanner.core.api.domain.valuerange.ValueRangeProvider;
import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;

@PlanningSolution
public class TimeTable {

 @ValueRangeProvider(id = "timeslotRange")
 @ProblemFactCollectionProperty
 private List<Timeslot> timeslotList;

 @ValueRangeProvider(id = "roomRange")
 @ProblemFactCollectionProperty
 private List<Room> roomList;

 @PlanningEntityCollectionProperty
 private List<Lesson> lessonList;

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

126

The value range providers

The timeslotList field is a value range provider. It holds the Timeslot instances which OptaPlanner can
pick from to assign to the timeslot field of Lesson instances. The timeslotList field has an
@ValueRangeProvider annotation to connect those two, by matching the id with the
valueRangeProviderRefs of the @PlanningVariable in the Lesson.

Following the same logic, the roomList field also has an @ValueRangeProvider annotation.

The problem fact and planning entity properties

Furthermore, OptaPlanner needs to know which Lesson instances it can change as well as how to
retrieve the Timeslot and Room instances used for score calculation by your
TimeTableConstraintProvider.

The timeslotList and roomList fields have an @ProblemFactCollectionProperty annotation, so your
TimeTableConstraintProvider can select from those instances.

The lessonList has an @PlanningEntityCollectionProperty annotation, so OptaPlanner can change
them during solving and your TimeTableConstraintProvider can select from those too.

 @PlanningScore
 private HardSoftScore score;

 private TimeTable() {
 }

 public TimeTable(List<Timeslot> timeslotList, List<Room> roomList,
 List<Lesson> lessonList) {
 this.timeslotList = timeslotList;
 this.roomList = roomList;
 this.lessonList = lessonList;
 }

 // ********************************
 // Getters and setters
 // ********************************

 public List<Timeslot> getTimeslotList() {
 return timeslotList;
 }

 public List<Room> getRoomList() {
 return roomList;
 }

 public List<Lesson> getLessonList() {
 return lessonList;
 }

 public HardSoftScore getScore() {
 return score;
 }

}

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

127

8.5. CREATE THE SOLVER SERVICE

Solving planning problems on REST threads causes HTTP timeout issues. Therefore, the Quarkus
extension injects a SolverManager, which runs solvers in a separate thread pool and can solve multiple
data sets in parallel.

Procedure

Create the src/main/java/org/acme/optaplanner/rest/TimeTableResource.java class:

This initial implementation waits for the solver to finish, which can still cause an HTTP timeout. The
complete implementation avoids HTTP timeouts much more elegantly.

8.6. SET THE SOLVER TERMINATION TIME

If your planning application does not have a termination setting or a termination event, it theoretically
runs forever and in reality eventually causes an HTTP timeout error. To prevent this from occurring, use
the optaplanner.solver.termination.spent-limit parameter to specify the length of time after which

package org.acme.optaplanner.rest;

import java.util.UUID;
import java.util.concurrent.ExecutionException;
import javax.inject.Inject;
import javax.ws.rs.POST;
import javax.ws.rs.Path;

import org.acme.optaplanner.domain.TimeTable;
import org.optaplanner.core.api.solver.SolverJob;
import org.optaplanner.core.api.solver.SolverManager;

@Path("/timeTable")
public class TimeTableResource {

 @Inject
 SolverManager<TimeTable, UUID> solverManager;

 @POST
 @Path("/solve")
 public TimeTable solve(TimeTable problem) {
 UUID problemId = UUID.randomUUID();
 // Submit the problem to start solving
 SolverJob<TimeTable, UUID> solverJob = solverManager.solve(problemId, problem);
 TimeTable solution;
 try {
 // Wait until the solving ends
 solution = solverJob.getFinalBestSolution();
 } catch (InterruptedException | ExecutionException e) {
 throw new IllegalStateException("Solving failed.", e);
 }
 return solution;
 }

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

128

the application terminates. In most applications, set the time to at least five minutes (5m). However, in
the Timetable example, limit the solving time to five second, which is short enough to avoid the HTTP
timeout.

Procedure

Create the src/main/resources/application.properties file with the following content:

8.7. RUNNING THE SCHOOL TIMETABLE APPLICATION

After you have created the school timetable project, run it in development mode. In development mode,
you can update the application sources and configurations while your application is running. Your
changes will appear in the running application.

Prerequisites

You have created the school timetable project.

Procedure

1. To compile the application in development mode, enter the following command from the
project directory:

./mvnw compile quarkus:dev

2. Test the REST service. You can use any REST client. The following example uses the Linux
command curl to send a POST request:

$ curl -i -X POST http://localhost:8080/timeTable/solve -H "Content-Type:application/json" -d
'{"timeslotList":[{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},
{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"}],"roomList":
[{"name":"Room A"},{"name":"Room B"}],"lessonList":[{"id":1,"subject":"Math","teacher":"A.
Turing","studentGroup":"9th grade"},{"id":2,"subject":"Chemistry","teacher":"M.
Curie","studentGroup":"9th grade"},{"id":3,"subject":"French","teacher":"M.
Curie","studentGroup":"10th grade"},{"id":4,"subject":"History","teacher":"I.
Jones","studentGroup":"10th grade"}]}'

After the time period specified in termination spent time defined in your
application.properties file, the service returns output similar to the following example:

HTTP/1.1 200
Content-Type: application/json
...

{"timeslotList":...,"roomList":...,"lessonList":[{"id":1,"subject":"Math","teacher":"A.
Turing","studentGroup":"9th grade","timeslot":
{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"room":
{"name":"Room A"}},{"id":2,"subject":"Chemistry","teacher":"M. Curie","studentGroup":"9th
grade","timeslot":
{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"room":
{"name":"Room A"}},{"id":3,"subject":"French","teacher":"M. Curie","studentGroup":"10th
grade","timeslot":

quarkus.optaplanner.solver.termination.spent-limit=5s

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

129

{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"room":
{"name":"Room B"}},{"id":4,"subject":"History","teacher":"I. Jones","studentGroup":"10th
grade","timeslot":
{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"room":
{"name":"Room B"}}],"score":"0hard/0soft"}

Notice that your application assigned all four lessons to one of the two time slots and one of the
two rooms. Also notice that it conforms to all hard constraints. For example, M. Curie’s two
lessons are in different time slots.

3. To review what OptaPlanner did during the solving time, review the info log on the server side.
The following is sample info log output:

... Solving started: time spent (33), best score (-8init/0hard/0soft), environment mode
(REPRODUCIBLE), random (JDK with seed 0).
... Construction Heuristic phase (0) ended: time spent (73), best score (0hard/0soft), score
calculation speed (459/sec), step total (4).
... Local Search phase (1) ended: time spent (5000), best score (0hard/0soft), score
calculation speed (28949/sec), step total (28398).
... Solving ended: time spent (5000), best score (0hard/0soft), score calculation speed
(28524/sec), phase total (2), environment mode (REPRODUCIBLE).

8.7.1. Test the application

A good application includes test coverage. This example tests the Red Hat build of OptaPlanner school
timetable project on Red Hat build of Quarkus. It uses a JUnit test to generate a test dataset and send it
to the TimeTableController to solve.

Procedure

1. Create the src/test/java/com/example/rest/TimeTableResourceTest.java class with the
following content:

package com.exmaple.optaplanner.rest;

import java.time.DayOfWeek;
import java.time.LocalTime;
import java.util.ArrayList;
import java.util.List;

import javax.inject.Inject;

import io.quarkus.test.junit.QuarkusTest;
import com.exmaple.optaplanner.domain.Room;
import com.exmaple.optaplanner.domain.Timeslot;
import com.exmaple.optaplanner.domain.Lesson;
import com.exmaple.optaplanner.domain.TimeTable;
import com.exmaple.optaplanner.rest.TimeTableResource;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

130

This test verifies that after solving, all lessons are assigned to a time slot and a room. It also
verifies that it found a feasible solution (no hard constraints broken).

@QuarkusTest
public class TimeTableResourceTest {

 @Inject
 TimeTableResource timeTableResource;

 @Test
 @Timeout(600_000)
 public void solve() {
 TimeTable problem = generateProblem();
 TimeTable solution = timeTableResource.solve(problem);
 assertFalse(solution.getLessonList().isEmpty());
 for (Lesson lesson : solution.getLessonList()) {
 assertNotNull(lesson.getTimeslot());
 assertNotNull(lesson.getRoom());
 }
 assertTrue(solution.getScore().isFeasible());
 }

 private TimeTable generateProblem() {
 List<Timeslot> timeslotList = new ArrayList<>();
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30),
LocalTime.of(9, 30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30),
LocalTime.of(10, 30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30),
LocalTime.of(11, 30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30),
LocalTime.of(14, 30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30),
LocalTime.of(15, 30)));

 List<Room> roomList = new ArrayList<>();
 roomList.add(new Room("Room A"));
 roomList.add(new Room("Room B"));
 roomList.add(new Room("Room C"));

 List<Lesson> lessonList = new ArrayList<>();
 lessonList.add(new Lesson(101L, "Math", "B. May", "9th grade"));
 lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th grade"));
 lessonList.add(new Lesson(103L, "Geography", "M. Polo", "9th grade"));
 lessonList.add(new Lesson(104L, "English", "I. Jones", "9th grade"));
 lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th grade"));

 lessonList.add(new Lesson(201L, "Math", "B. May", "10th grade"));
 lessonList.add(new Lesson(202L, "Chemistry", "M. Curie", "10th grade"));
 lessonList.add(new Lesson(203L, "History", "I. Jones", "10th grade"));
 lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th grade"));
 lessonList.add(new Lesson(205L, "French", "M. Curie", "10th grade"));
 return new TimeTable(timeslotList, roomList, lessonList);
 }

}

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

131

2. Add test properties to the src/main/resources/application.properties file:

The solver runs only for 5 seconds to avoid a HTTP timeout in this simple implementation.
It's recommended to run for at least 5 minutes ("5m") otherwise.
quarkus.optaplanner.solver.termination.spent-limit=5s

Effectively disable this termination in favor of the best-score-limit
%test.quarkus.optaplanner.solver.termination.spent-limit=1h
%test.quarkus.optaplanner.solver.termination.best-score-limit=0hard/*soft

Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the
application.properties file overwrites the solver termination during tests to terminate as soon as a
feasible solution (0hard/*soft) is found. This avoids hard coding a solver time, because the unit test
might run on arbitrary hardware. This approach ensures that the test runs long enough to find a feasible
solution, even on slow systems. But it does not run a millisecond longer than it strictly must, even on fast
systems.

8.7.2. Logging

After you complete the Red Hat build of OptaPlanner school timetable project, you can use logging
information to help you fine-tune the constraints in the ConstraintProvider. Review the score
calculation speed in the info log file to assess the impact of changes to your constraints. Run the
application in debug mode to show every step that your application takes or use trace logging to log
every step and every move.

Procedure

1. Run the school timetable application for a fixed amount of time, for example, five minutes.

2. Review the score calculation speed in the log file as shown in the following example:

... Solving ended: ..., score calculation speed (29455/sec), ...

3. Change a constraint, run the planning application again for the same amount of time, and review
the score calculation speed recorded in the log file.

4. Run the application in debug mode to log every step that the application makes:

To run debug mode from the command line, use the -D system property.

To permanently enable debug mode, add the following line to the application.properties
file:

The following example shows output in the log file in debug mode:

... Solving started: time spent (67), best score (-20init/0hard/0soft), environment mode
(REPRODUCIBLE), random (JDK with seed 0).
... CH step (0), time spent (128), score (-18init/0hard/0soft), selected move count (15),
picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY 08:30}]).
... CH step (1), time spent (145), score (-16init/0hard/0soft), selected move count (15),
picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY 09:30}]).
...

quarkus.log.category."org.optaplanner".level=debug

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

132

5. Use trace logging to show every step and every move for each step.

CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE

133

CHAPTER 9. RED HAT BUILD OF OPTAPLANNER ON RED HAT
BUILD OF QUARKUS: A VACCINATION APPOINTMENT

SCHEDULER QUICK START GUIDE
You can use the OptaPlanner vaccination appointment scheduler quick start to develop a vaccination
schedule that is both efficient and fair. The vaccination appointment scheduler uses artificial
intelligence (AI) to prioritize people and allocate time slots based on multiple constraints and priorities.

Prerequisites

OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software
Downloads page in the Red Hat Customer Portal (login required).

Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project
website.

An IDE, such as IntelliJ IDEA, VSCode, Eclipse, or NetBeans is available.

You have created a Quakus OptaPlanner project as described in Chapter 7, Getting Started with
OptaPlanner and Quarkus.

9.1. HOW THE OPTAPLANNER VACCINATION APPOINTMENT
SCHEDULER WORKS

There are two main approaches to scheduling appointments. The system can either let a person choose
an appointment slot (user-selects) or the system assigns a slot and tells the person when and where to
attend (system-automatically-assigns). The OptaPlanner vaccination appointment scheduler uses the
system-automatically-assigns approach. With the OptaPlanner vaccination appointment scheduler, you
can create an application where people provide their information to the system and the system assigns
an appointment.

Characteristics of this approach:

Appointment slots are allocated based on priority.

The system allocates the best appointment time and location based on preconfigured planning
constraints.

The system is not overwhelmed by a large number of users competing for a limited number of
appointments.

This approach solves the problem of vaccinating as many people as possible by using planning
constraints to create a score for each person. The person’s score determines when they get an
appointment. The higher the person’s score, the better chance they have of receiving an earlier
appointment.

9.1.1. OptaPlanner vaccination appointment scheduler constraints

OptaPlanner vaccination appointment scheduler constraints are either hard, medium, or soft:

Hard constraints cannot be broken. If any hard constraint is broken, the plan is unfeasible and
cannot be executed:

Capacity: Do not over-book vaccine capacity at any time at any location.

Vaccine max age: If a vaccine has a maximum age, do not administer it to people who at the

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

134

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://maven.apache.org/

Vaccine max age: If a vaccine has a maximum age, do not administer it to people who at the
time of the first dose vaccination are older than the vaccine maximum age. Ensure people
are given a vaccine type appropriate for their age. For example, do not assign a 75 year old
person an appointment for a vaccine that has a maximum age restriction of 65 years.

Required vaccine type: Use the required vaccine type. For example, the second dose of a
vaccine must be the same vaccine type as the first dose.

Ready date: Administer the vaccine on or after the specified date. For example, if a person
receives a second dose, do not administer it before the recommended earliest possible
vaccination date for the specific vaccine type, for example 26 days after the first dose.

Due date: Administer the vaccine on or before the specified date. For example, if a person
receives a second dose, administer it before the recommended vaccination final due date
for the specific vaccine, for example three months after the first dose.

Restrict maximum travel distance: Assign each person to one of a group of vaccination
centers nearest to them. This is typically one of three centers. This restriction is calculated
by travel time, not distance, so a person that lives in an urban area usually has a lower
maximum distance to travel than a person living in a rural area.

Medium constraints decide who does not get an appointment when there is not enough
capacity to assign appointments to everyone. This is called overconstrained planning:

Schedule second dose vaccinations: Do not leave any second dose vaccination
appointments unassigned unless the ideal date falls outside of the planning window.

Schedule people based on their priority rating: Each person has a priority rating. This is
typically their age but it can be much higher if they are, for example, a health care worker.
Leave only people with the lowest priority ratings unassigned. They will be considered in the
next run. This constraint is softer than the previous constraint because the second dose is
always prioritized over priority rating.

Soft constraints should not be broken:

Preferred vaccination center: If a person has a preferred vaccination center, give them an
appointment at that center.

Distance: Minimize the distance that a person must travel to their assigned vaccination
center.

Ideal date: Administer the vaccine on or as close to the specified date as possible. For
example, if a person receives a second dose, administer it on the ideal date for the specific
vaccine, for example 28 days after the first dose. This constraint is softer than the distance
constraint to avoid sending people halfway across the country just to be one day closer to
their ideal date.

Priority rating: Schedule people with a higher priority rating earlier in the planning window.
This constraint is softer than the distance constraint to avoid sending people halfway across
the country. This constraint is also softer than the ideal date constraint because the second
dose is prioritized over priority rating.

Hard constraints are weighted against other hard constraints. Soft constraints are weighted against
other soft constraints. However, hard constraints always take precedence over medium and soft
constraints. If a hard constraint is broken, then the plan is not feasible. But if no hard constraints are
broken then soft and medium constraints are considered in order to determine priority. Because there
are often more people than available appointment slots, you must prioritize. Second dose appointments

CHAPTER 9. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A VACCINATION APPOINTMENT SCHEDULER QUICK START GUIDE

135

are always assigned first to avoid creating a backlog that would overwhelm your system later. After that,
people are assigned based on their priority rating. Everyone starts with a priority rating that is their age.
Doing this prioritizes older people over younger people. After that, people that are in specific priority
groups receive, for example, a few hundred extra points. This varies based on the priority of their group.
For example, nurses might receive an extra 1000 points. This way, older nurses are prioritized over
younger nurses and young nurses are prioritized over people who are not nurses. The following table
illustrates this concept:

Table 9.1. Priority rating table

Age Job Priority rating

60 nurse 1060

33 nurse 1033

71 retired 71

52 office worker 52

9.1.2. The OptaPlanner solver

At the core of OptaPlanner is the solver, the engine that takes the problem data set and overlays the
planning constraints and configurations. The problem data set includes all of the information about the
people, the vaccines, and the vaccination centers. The solver works through the various combinations of
data and eventually determines an optimized appointment schedule with people assigned to vaccination
appointments at a specific center. The following illustration shows a schedule that the solver created:

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

136

9.1.3. Continuous planning

Continuous planning is the technique of managing one or more upcoming planning periods at the same
time and repeating that process monthly, weekly, daily, hourly, or even more frequently. The planning
window advances incrementally by a specified interval. The following illustration shows a two week
planning window that is updated daily:

CHAPTER 9. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A VACCINATION APPOINTMENT SCHEDULER QUICK START GUIDE

137

The two week planning window is divided in half. The first week is in the published state and the second
week is in the draft state. People are assigned to appointments in both the published and draft parts of
the planning window. However, only people in the published part of the planning window are notified of
their appointments. The other appointments can still change easily in the next run. Doing this gives
OptaPlanner the flexibility to change the appointments in the draft part when you run the solver again, if
necessary. For example, if a person who needs a second dose has a ready date of Monday and an ideal
date of Wednesday, OptaPlanner does not have to give them an appointment for Monday if you can
prove OptaPlanner can demonstrate that it can give them a draft appointment later in the week.

You can determine the size of the planning window but just be aware of the size of the problem space.
The problem space is all of the various elements that go into creating the schedule. The more days you
plan ahead, the larger the problem space.

9.1.4. Pinned planning entities

If you are continuously planning on a daily basis, there will be appointments within the two week period
that are already allocated to people. To ensure that appointments are not double-booked, OptaPlanner
marks existing appointments as allocated by pinning them. Pinning is used to anchor one or more
specific assignments and force OptaPlanner to schedule around those fixed assignments. A pinned
planning entity, such as an appointment, does not change during solving.

Whether an entity is pinned or not is determined by the appointment state. An appointment can have
five states : Open, Invited, Accepted, Rejected, or Rescheduled.

NOTE

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

138

NOTE

You do not actually see these states directly in the quick start demo code because the
OptaPlanner engine is only interested in whether the appointment is pinned or not.

You need to be able to plan around appointments that have already been scheduled. An appointment
with the Invited or Accepted state is pinned. Appointments with the Open, Reschedule, and Rejected
state are not pinned and are available for scheduling.

In this example, when the solver runs it searches across the entire two week planning window in both the
published and draft ranges. The solver considers any unpinned entities, appointments with the Open,
Reschedule, or Rejected states, in addition to the unscheduled input data, to find the optimal solution.
If the solver is run daily, you will see a new day added to the schedule before you run the solver.

Notice that the appointments on the new day have been assigned and Amy and Edna who were
previously scheduled in the draft part of the planning window are now scheduled in the published part of
the window. This was possible because Gus and Hugo requested a reschedule. This will not cause any
confusion because Amy and Edna were never notified about their draft dates. Now, because they have
appointments in the published section of the planning window, they will be notified and asked to accept
or reject their appointments, and their appointments are now pinned.

9.2. DOWNLOADING AND RUNNING THE OPTAPLANNER
VACCINATION APPOINTMENT SCHEDULER

Download the OptaPlanner vaccination appointment scheduler quick start archive, start it in Quarkus
development mode, and view the application in a browser. Quarkus development mode enables you to
make changes and update your application while it is running.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Decision Manager

Version: 7.11

2. Download Red Hat Decision Manager 7.11.0 Kogito and OptaPlanner 8 Decision Services
Quickstarts (rhdm-7.11.0-decision-services-quickstarts.zip).

3. Extract the rhdm-7.11.0-decision-services-quickstarts.zip file.

4. Navigate to the optaplanner-quickstarts-8.5.0.Final-redhat-00004 directory.

5. Navigate to the optaplanner-quickstarts-8.5.0.Final-redhat-00004/quarkus-vaccination-
scheduling directory.

6. Enter the following command to start the OptaPlanner vaccination appointment scheduler in
development mode:

7. To view the OptaPlanner vaccination appointment scheduler, enter the following URL in a web
browser.

$ mvn quarkus:dev

CHAPTER 9. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A VACCINATION APPOINTMENT SCHEDULER QUICK START GUIDE

139

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

http://localhost:8080/

8. To run the OptaPlanner vaccination appointment scheduler, click Solve.

9. Make changes to the source code then press the F5 key to refresh your browser. Notice that
the changes that you made are now available.

9.3. PACKAGE AND RUN THE OPTAPLANNER VACCINATION
APPOINTMENT SCHEDULER

When you have completed development work on the OptaPlanner vaccination appointment scheduler in
quarkus:dev mode, run the application as a conventional jar file.

Prerequisites

You have downloaded the OptaPlanner vaccination appointment scheduler quick start. For
more information, see Section 9.2, “Downloading and running the OptaPlanner vaccination
appointment scheduler”.

Procedure

1. Navigate to the quarkus-vaccination-scheduling directory.

2. To compile the OptaPlanner vaccination appointment scheduler, enter the following command:

3. To run the compiled OptaPlanner vaccination appointment scheduler, enter the following
command:

NOTE

To run the application on port 8081, add -Dquarkus.http.port=8081 to the
preceding command.

4. To start the OptaPlanner vaccination appointment scheduler, enter the following URL in a web
browser.

http://localhost:8080/

9.4. RUN THE OPTAPLANNER VACCINATION APPOINTMENT
SCHEDULER AS A NATIVE EXECUTABLE

To take advantage of the small memory footprint and access speeds that Quarkus offers, compile the
OptaPlanner vaccination appointment scheduler in Quarkus native mode.

Procedure

1. Install GraalVM and the native-image tool. For information, see Configuring GraalVMl on the

$ mvn package

$ java -jar ./target/*-runner.jar

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

140

1. Install GraalVM and the native-image tool. For information, see Configuring GraalVMl on the
Quarkus website.

2. Navigate to the quarkus-vaccination-scheduling directory.

3. To compile the OptaPlanner vaccination appointment scheduler natively, enter the following
command:

4. To run the native executable, enter the following command:

5. To start the OptaPlanner vaccination appointment scheduler, enter the following URL in a web
browser.

http://localhost:8080/

9.5. ADDITIONAL RESOURCES

Vaccination appointment scheduling video

$ mvn package -Dnative -DskipTests

$./target/*-runner

CHAPTER 9. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A VACCINATION APPOINTMENT SCHEDULER QUICK START GUIDE

141

https://quarkus.io/guides/building-native-image#configuring-graalvm
https://www.youtube.com/watch?v=LTkoaBk-P6U

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING
BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

This guide walks you through the process of creating a Spring Boot application with OptaPlanner’s
constraint solving artificial intelligence (AI). You will build a REST application that optimizes a school
timetable for students and teachers.

Your service will assign Lesson instances to Timeslot and Room instances automatically by using AI to
adhere to the following hard and soft scheduling constraints:

A room can have at most one lesson at the same time.

A teacher can teach at most one lesson at the same time.

A student can attend at most one lesson at the same time.

A teacher prefers to teach in a single room.

A teacher prefers to teach sequential lessons and dislikes gaps between lessons.

Mathematically speaking, school timetabling is an NP-hard problem. That means it is difficult to scale.
Simply iterating through all possible combinations with brute force would take millions of years for a
non-trivial dataset, even on a supercomputer. Fortunately, AI constraint solvers such as OptaPlanner
have advanced algorithms that deliver a near-optimal solution in a reasonable amount of time. What is
considered to be a reasonable amount of time is subjective and depends on the goals of your problem.

Prerequisites

OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

142

OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software
Downloads page in the Red Hat Customer Portal (login required).

Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project
website.

An IDE, such as IntelliJ IDEA, VSCode, Eclipse, or NetBeans is available.

10.1. DOWNLOADING AND BUILDING THE SPRING BOOT SCHOOL
TIMETABLE QUICK START

If you want to see a completed example of the school timetable project for Red Hat build of
OptaPlanner with Spring Boot product, download the starter application from the Red Hat Customer
Portal.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Decision Manager

Version: 7.11

2. Download Red Hat Decision Manager 7.11.0 Kogito and OptaPlanner 8 Decision Services
Quickstarts (rhdm-7.11.0-decision-services-quickstarts.zip).

3. Extract the rhdm-7.11.0-decision-services-quickstarts.zip file.

4. Download the Red Hat Decision Manager 7.11.0 Kogito and OptaPlanner 8 Decision Services
Maven Repositroy (rhdm-7.11.0-kogito-maven-repository.zip).

5. Extract the rhdm-7.11.0-kogito-maven-repository.zip file.

6. Copy the contents of the rhdm-7.11.0-kogito-maven-repository/maven-repository
subdirectory into the ~/.m2/repository directory.

7. Navigate to the optaplanner-quickstarts-8.5.0.Final-redhat-00004/spring-boot-school-
timetabling directory.

8. Enter the following command to build the Spring Boot school timetabling project:

mvn clean install -DskipTests

9. To build the Spring Boot school timetabling project, enter the following command:

mvn spring-boot:run -DskipTests

10. To view the project, enter the following URL in a web browser:

http://localhost:8080/

10.2. MODEL THE DOMAIN OBJECTS

The goal of the Red Hat build of OptaPlanner timetable project is to assign each lesson to a time slot

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

143

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://maven.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

The goal of the Red Hat build of OptaPlanner timetable project is to assign each lesson to a time slot
and a room. To do this, add three classes, Timeslot, Lesson, and Room, as shown in the following
diagram:

Timeslot

The Timeslot class represents a time interval when lessons are taught, for example, Monday 10:30 -
11:30 or Tuesday 13:30 - 14:30. In this example, all time slots have the same duration and there are no
time slots during lunch or other breaks.

A time slot has no date because a high school schedule just repeats every week. There is no need for
continuous planning. A timeslot is called a problem fact because no Timeslot instances change during
solving. Such classes do not require any OptaPlanner-specific annotations.

Room

The Room class represents a location where lessons are taught, for example, Room A or Room B. In this
example, all rooms are without capacity limits and they can accommodate all lessons.

Room instances do not change during solving so Room is also a problem fact.

Lesson

During a lesson, represented by the Lesson class, a teacher teaches a subject to a group of students, for
example, Math by A.Turing for 9th grade or Chemistry by M.Curie for 10th grade. If a subject is
taught multiple times each week by the same teacher to the same student group, there are multiple
Lesson instances that are only distinguishable by id. For example, the 9th grade has six math lessons a
week.

During solving, OptaPlanner changes the timeslot and room fields of the Lesson class to assign each
lesson to a time slot and a room. Because OptaPlanner changes these fields, Lesson is a planning entity :

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

144

https://docs.optaplanner.org/latestFinal/optaplanner-docs/html_single/index.html#continuousPlanning

Most of the fields in the previous diagram contain input data, except for the orange fields. A lesson’s
timeslot and room fields are unassigned (null) in the input data and assigned (not null) in the output
data. OptaPlanner changes these fields during solving. Such fields are called planning variables. In order
for OptaPlanner to recognize them, both the timeslot and room fields require an @PlanningVariable
annotation. Their containing class, Lesson, requires an @PlanningEntity annotation.

Procedure

1. Create the src/main/java/com/example/domain/Timeslot.java class:

package com.example.domain;

import java.time.DayOfWeek;
import java.time.LocalTime;

public class Timeslot {

 private DayOfWeek dayOfWeek;
 private LocalTime startTime;
 private LocalTime endTime;

 private Timeslot() {
 }

 public Timeslot(DayOfWeek dayOfWeek, LocalTime startTime, LocalTime endTime) {
 this.dayOfWeek = dayOfWeek;
 this.startTime = startTime;
 this.endTime = endTime;
 }

 @Override
 public String toString() {
 return dayOfWeek + " " + startTime.toString();
 }

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

145

Notice the toString() method keeps the output short so it is easier to read OptaPlanner’s
DEBUG or TRACE log, as shown later.

2. Create the src/main/java/com/example/domain/Room.java class:

3. Create the src/main/java/com/example/domain/Lesson.java class:

 // ********************************
 // Getters and setters
 // ********************************

 public DayOfWeek getDayOfWeek() {
 return dayOfWeek;
 }

 public LocalTime getStartTime() {
 return startTime;
 }

 public LocalTime getEndTime() {
 return endTime;
 }

}

package com.example.domain;

public class Room {

 private String name;

 private Room() {
 }

 public Room(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return name;
 }

 // ********************************
 // Getters and setters
 // ********************************

 public String getName() {
 return name;
 }

}

package com.example.domain;

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

146

import org.optaplanner.core.api.domain.entity.PlanningEntity;
import org.optaplanner.core.api.domain.variable.PlanningVariable;

@PlanningEntity
public class Lesson {

 private Long id;

 private String subject;
 private String teacher;
 private String studentGroup;

 @PlanningVariable(valueRangeProviderRefs = "timeslotRange")
 private Timeslot timeslot;

 @PlanningVariable(valueRangeProviderRefs = "roomRange")
 private Room room;

 private Lesson() {
 }

 public Lesson(Long id, String subject, String teacher, String studentGroup) {
 this.id = id;
 this.subject = subject;
 this.teacher = teacher;
 this.studentGroup = studentGroup;
 }

 @Override
 public String toString() {
 return subject + "(" + id + ")";
 }

 // ********************************
 // Getters and setters
 // ********************************

 public Long getId() {
 return id;
 }

 public String getSubject() {
 return subject;
 }

 public String getTeacher() {
 return teacher;
 }

 public String getStudentGroup() {
 return studentGroup;
 }

 public Timeslot getTimeslot() {
 return timeslot;
 }

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

147

The Lesson class has an @PlanningEntity annotation, so OptaPlanner knows that this class
changes during solving because it contains one or more planning variables.

The timeslot field has an @PlanningVariable annotation, so OptaPlanner knows that it can
change its value. In order to find potential Timeslot instances to assign to this field,
OptaPlanner uses the valueRangeProviderRefs property to connect to a value range provider
that provides a List<Timeslot> to pick from. See Section 10.4, “Gather the domain objects in a
planning solution” for information about value range providers.

The room field also has an @PlanningVariable annotation for the same reasons.

10.3. DEFINE THE CONSTRAINTS AND CALCULATE THE SCORE

When solving a problem, a score represents the quality of a specific solution. The higher the score the
better. Red Hat build of OptaPlanner looks for the best solution, which is the solution with the highest
score found in the available time. It might be the optimal solution.

Because the timetable example use case has hard and soft constraints, use the HardSoftScore class to
represent the score:

Hard constraints must not be broken. For example: A room can have at most one lesson at the
same time.

Soft constraints should not be broken. For example: A teacher prefers to teach in a single room.

Hard constraints are weighted against other hard constraints. Soft constraints are weighted against
other soft constraints. Hard constraints always outweigh soft constraints, regardless of their respective
weights.

To calculate the score, you could implement an EasyScoreCalculator class:

 public void setTimeslot(Timeslot timeslot) {
 this.timeslot = timeslot;
 }

 public Room getRoom() {
 return room;
 }

 public void setRoom(Room room) {
 this.room = room;
 }

}

public class TimeTableEasyScoreCalculator implements EasyScoreCalculator<TimeTable> {

 @Override
 public HardSoftScore calculateScore(TimeTable timeTable) {
 List<Lesson> lessonList = timeTable.getLessonList();
 int hardScore = 0;
 for (Lesson a : lessonList) {
 for (Lesson b : lessonList) {
 if (a.getTimeslot() != null && a.getTimeslot().equals(b.getTimeslot())
 && a.getId() < b.getId()) {

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

148

Unfortunately, this solution does not scale well because it is non-incremental: every time a lesson is
assigned to a different time slot or room, all lessons are re-evaluated to calculate the new score.

A better solution is to create a src/main/java/com/example/solver/TimeTableConstraintProvider.java
class to perform incremental score calculation. This class uses OptaPlanner’s ConstraintStream API
which is inspired by Java 8 Streams and SQL. The ConstraintProvider scales an order of magnitude
better than the EasyScoreCalculator: O(n) instead of O(n²).

Procedure

Create the following src/main/java/com/example/solver/TimeTableConstraintProvider.java class:

 // A room can accommodate at most one lesson at the same time.
 if (a.getRoom() != null && a.getRoom().equals(b.getRoom())) {
 hardScore--;
 }
 // A teacher can teach at most one lesson at the same time.
 if (a.getTeacher().equals(b.getTeacher())) {
 hardScore--;
 }
 // A student can attend at most one lesson at the same time.
 if (a.getStudentGroup().equals(b.getStudentGroup())) {
 hardScore--;
 }
 }
 }
 }
 int softScore = 0;
 // Soft constraints are only implemented in the "complete" implementation
 return HardSoftScore.of(hardScore, softScore);
 }

}

package com.example.solver;

import com.example.domain.Lesson;
import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;
import org.optaplanner.core.api.score.stream.Constraint;
import org.optaplanner.core.api.score.stream.ConstraintFactory;
import org.optaplanner.core.api.score.stream.ConstraintProvider;
import org.optaplanner.core.api.score.stream.Joiners;

public class TimeTableConstraintProvider implements ConstraintProvider {

 @Override
 public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {
 return new Constraint[] {
 // Hard constraints
 roomConflict(constraintFactory),
 teacherConflict(constraintFactory),
 studentGroupConflict(constraintFactory),
 // Soft constraints are only implemented in the "complete" implementation
 };
 }

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

149

10.4. GATHER THE DOMAIN OBJECTS IN A PLANNING SOLUTION

A TimeTable instance wraps all Timeslot, Room, and Lesson instances of a single dataset.
Furthermore, because it contains all lessons, each with a specific planning variable state, it is a planning
solution and it has a score:

If lessons are still unassigned, then it is an uninitialized solution, for example, a solution with the
score -4init/0hard/0soft.

If it breaks hard constraints, then it is an infeasible solution, for example, a solution with the
score -2hard/-3soft.

If it adheres to all hard constraints, then it is a feasible solution, for example, a solution with the
score 0hard/-7soft.

The TimeTable class has an @PlanningSolution annotation, so Red Hat build of OptaPlanner knows
that this class contains all of the input and output data.

 private Constraint roomConflict(ConstraintFactory constraintFactory) {
 // A room can accommodate at most one lesson at the same time.

 // Select a lesson ...
 return constraintFactory.from(Lesson.class)
 // ... and pair it with another lesson ...
 .join(Lesson.class,
 // ... in the same timeslot ...
 Joiners.equal(Lesson::getTimeslot),
 // ... in the same room ...
 Joiners.equal(Lesson::getRoom),
 // ... and the pair is unique (different id, no reverse pairs)
 Joiners.lessThan(Lesson::getId))
 // then penalize each pair with a hard weight.
 .penalize("Room conflict", HardSoftScore.ONE_HARD);
 }

 private Constraint teacherConflict(ConstraintFactory constraintFactory) {
 // A teacher can teach at most one lesson at the same time.
 return constraintFactory.from(Lesson.class)
 .join(Lesson.class,
 Joiners.equal(Lesson::getTimeslot),
 Joiners.equal(Lesson::getTeacher),
 Joiners.lessThan(Lesson::getId))
 .penalize("Teacher conflict", HardSoftScore.ONE_HARD);
 }

 private Constraint studentGroupConflict(ConstraintFactory constraintFactory) {
 // A student can attend at most one lesson at the same time.
 return constraintFactory.from(Lesson.class)
 .join(Lesson.class,
 Joiners.equal(Lesson::getTimeslot),
 Joiners.equal(Lesson::getStudentGroup),
 Joiners.lessThan(Lesson::getId))
 .penalize("Student group conflict", HardSoftScore.ONE_HARD);
 }

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

150

Specifically, this class is the input of the problem:

A timeslotList field with all time slots

This is a list of problem facts, because they do not change during solving.

A roomList field with all rooms

This is a list of problem facts, because they do not change during solving.

A lessonList field with all lessons

This is a list of planning entities because they change during solving.

Of each Lesson:

The values of the timeslot and room fields are typically still null, so unassigned. They
are planning variables.

The other fields, such as subject, teacher and studentGroup, are filled in. These fields
are problem properties.

However, this class is also the output of the solution:

A lessonList field for which each Lesson instance has non-null timeslot and room fields after
solving

A score field that represents the quality of the output solution, for example, 0hard/-5soft

Procedure

Create the src/main/java/com/example/domain/TimeTable.java class:

package com.example.domain;

import java.util.List;

import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty;
import org.optaplanner.core.api.domain.solution.PlanningScore;
import org.optaplanner.core.api.domain.solution.PlanningSolution;
import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty;
import org.optaplanner.core.api.domain.valuerange.ValueRangeProvider;
import org.optaplanner.core.api.score.buildin.hardsoft.HardSoftScore;

@PlanningSolution
public class TimeTable {

 @ValueRangeProvider(id = "timeslotRange")
 @ProblemFactCollectionProperty
 private List<Timeslot> timeslotList;

 @ValueRangeProvider(id = "roomRange")
 @ProblemFactCollectionProperty
 private List<Room> roomList;

 @PlanningEntityCollectionProperty
 private List<Lesson> lessonList;

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

151

The value range providers

The timeslotList field is a value range provider. It holds the Timeslot instances which OptaPlanner can
pick from to assign to the timeslot field of Lesson instances. The timeslotList field has an
@ValueRangeProvider annotation to connect those two, by matching the id with the
valueRangeProviderRefs of the @PlanningVariable in the Lesson.

Following the same logic, the roomList field also has an @ValueRangeProvider annotation.

The problem fact and planning entity properties

Furthermore, OptaPlanner needs to know which Lesson instances it can change as well as how to
retrieve the Timeslot and Room instances used for score calculation by your
TimeTableConstraintProvider.

The timeslotList and roomList fields have an @ProblemFactCollectionProperty annotation, so your
TimeTableConstraintProvider can select from those instances.

The lessonList has an @PlanningEntityCollectionProperty annotation, so OptaPlanner can change
them during solving and your TimeTableConstraintProvider can select from those too.

 @PlanningScore
 private HardSoftScore score;

 private TimeTable() {
 }

 public TimeTable(List<Timeslot> timeslotList, List<Room> roomList,
 List<Lesson> lessonList) {
 this.timeslotList = timeslotList;
 this.roomList = roomList;
 this.lessonList = lessonList;
 }

 // ********************************
 // Getters and setters
 // ********************************

 public List<Timeslot> getTimeslotList() {
 return timeslotList;
 }

 public List<Room> getRoomList() {
 return roomList;
 }

 public List<Lesson> getLessonList() {
 return lessonList;
 }

 public HardSoftScore getScore() {
 return score;
 }

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

152

10.5. CREATE THE TIMETABLE SERVICE

Now you are ready to put everything together and create a REST service. But solving planning problems
on REST threads causes HTTP timeout issues. Therefore, the Spring Boot starter injects a
SolverManager, which runs solvers in a separate thread pool and can solve multiple datasets in parallel.

Procedure

Create the src/main/java/com/example/solver/TimeTableController.java class:

In this example, the initial implementation waits for the solver to finish, which can still cause an HTTP
timeout. The complete implementation avoids HTTP timeouts much more elegantly.

10.6. SET THE SOLVER TERMINATION TIME

If your planning application does not have a termination setting or a termination event, it theoretically
runs forever and in reality eventually causes an HTTP timeout error. To prevent this from occurring, use

package com.example.solver;

import java.util.UUID;
import java.util.concurrent.ExecutionException;

import com.example.domain.TimeTable;
import org.optaplanner.core.api.solver.SolverJob;
import org.optaplanner.core.api.solver.SolverManager;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/timeTable")
public class TimeTableController {

 @Autowired
 private SolverManager<TimeTable, UUID> solverManager;

 @PostMapping("/solve")
 public TimeTable solve(@RequestBody TimeTable problem) {
 UUID problemId = UUID.randomUUID();
 // Submit the problem to start solving
 SolverJob<TimeTable, UUID> solverJob = solverManager.solve(problemId, problem);
 TimeTable solution;
 try {
 // Wait until the solving ends
 solution = solverJob.getFinalBestSolution();
 } catch (InterruptedException | ExecutionException e) {
 throw new IllegalStateException("Solving failed.", e);
 }
 return solution;
 }

}

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

153

the optaplanner.solver.termination.spent-limit parameter to specify the length of time after which
the application terminates. In most applications, set the time to at least five minutes (5m). However, in
the Timetable example, limit the solving time to five second, which is short enough to avoid the HTTP
timeout.

Procedure

Create the src/main/resources/application.properties file with the following content:

10.7. MAKE THE APPLICATION EXECUTABLE

After you complete the Red Hat build of OptaPlanner Spring Boot timetable project, package
everything into a single executable JAR file driven by a standard Java main() method.

Prerequisites

You have a completed OptaPlanner Spring Boot timetable project.

Procedure

1. Create the TimeTableSpringBootApp.java class with the following content:

2. Replace the src/main/java/com/example/DemoApplication.java class created by Spring
Initializr with the TimeTableSpringBootApp.java class.

3. Run the TimeTableSpringBootApp.java class as the main class of a regular Java application.

10.7.1. Try the timetable application

After you start the Red Hat build of OptaPlanner Spring Boot timetable application, you can test the
REST service with any REST client that you want. This example uses the Linux curl command to send a
POST request.

Prerequisites

The OptaPlanner Spring Boot timetable application is running.

Procedure

quarkus.optaplanner.solver.termination.spent-limit=5s

package com.example;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class TimeTableSpringBootApp {

 public static void main(String[] args) {
 SpringApplication.run(TimeTableSpringBootApp.class, args);
 }

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

154

Enter the following command:

$ curl -i -X POST http://localhost:8080/timeTable/solve -H "Content-Type:application/json" -d
'{"timeslotList":[{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},
{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"}],"roomList":[{"name":"Room
A"},{"name":"Room B"}],"lessonList":[{"id":1,"subject":"Math","teacher":"A. Turing","studentGroup":"9th
grade"},{"id":2,"subject":"Chemistry","teacher":"M. Curie","studentGroup":"9th grade"},
{"id":3,"subject":"French","teacher":"M. Curie","studentGroup":"10th grade"},
{"id":4,"subject":"History","teacher":"I. Jones","studentGroup":"10th grade"}]}'

After about five seconds, the termination spent time defined in application.properties, the service
returns an output similar to the following example:

HTTP/1.1 200
Content-Type: application/json
...

{"timeslotList":...,"roomList":...,"lessonList":[{"id":1,"subject":"Math","teacher":"A.
Turing","studentGroup":"9th grade","timeslot":
{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"room":{"name":"Room A"}},
{"id":2,"subject":"Chemistry","teacher":"M. Curie","studentGroup":"9th grade","timeslot":
{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"room":{"name":"Room A"}},
{"id":3,"subject":"French","teacher":"M. Curie","studentGroup":"10th grade","timeslot":
{"dayOfWeek":"MONDAY","startTime":"08:30:00","endTime":"09:30:00"},"room":{"name":"Room B"}},
{"id":4,"subject":"History","teacher":"I. Jones","studentGroup":"10th grade","timeslot":
{"dayOfWeek":"MONDAY","startTime":"09:30:00","endTime":"10:30:00"},"room":{"name":"Room
B"}}],"score":"0hard/0soft"}

Notice that the application assigned all four lessons to one of the two time slots and one of the two
rooms. Also notice that it conforms to all hard constraints. For example, M. Curie’s two lessons are in
different time slots.

On the server side, the info log shows what OptaPlanner did in those five seconds:

... Solving started: time spent (33), best score (-8init/0hard/0soft), environment mode
(REPRODUCIBLE), random (JDK with seed 0).
... Construction Heuristic phase (0) ended: time spent (73), best score (0hard/0soft), score calculation
speed (459/sec), step total (4).
... Local Search phase (1) ended: time spent (5000), best score (0hard/0soft), score calculation
speed (28949/sec), step total (28398).
... Solving ended: time spent (5000), best score (0hard/0soft), score calculation speed (28524/sec),
phase total (2), environment mode (REPRODUCIBLE).

10.7.2. Test the application

A good application includes test coverage. This example tests the Timetable Red Hat build of
OptaPlanner Spring Boot application. It uses a JUnit test to generate a test dataset and send it to the
TimeTableController to solve.

Procedure

Create the src/test/java/com/example/solver/TimeTableControllerTest.java class with the following
content:

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

155

package com.example.solver;

import java.time.DayOfWeek;
import java.time.LocalTime;
import java.util.ArrayList;
import java.util.List;

import com.example.domain.Lesson;
import com.example.domain.Room;
import com.example.domain.TimeTable;
import com.example.domain.Timeslot;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest(properties = {
 "optaplanner.solver.termination.spent-limit=1h", // Effectively disable this termination in favor of
the best-score-limit
 "optaplanner.solver.termination.best-score-limit=0hard/*soft"})
public class TimeTableControllerTest {

 @Autowired
 private TimeTableController timeTableController;

 @Test
 @Timeout(600_000)
 public void solve() {
 TimeTable problem = generateProblem();
 TimeTable solution = timeTableController.solve(problem);
 assertFalse(solution.getLessonList().isEmpty());
 for (Lesson lesson : solution.getLessonList()) {
 assertNotNull(lesson.getTimeslot());
 assertNotNull(lesson.getRoom());
 }
 assertTrue(solution.getScore().isFeasible());
 }

 private TimeTable generateProblem() {
 List<Timeslot> timeslotList = new ArrayList<>();
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(8, 30), LocalTime.of(9,
30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(9, 30), LocalTime.of(10,
30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(10, 30), LocalTime.of(11,
30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(13, 30), LocalTime.of(14,
30)));
 timeslotList.add(new Timeslot(DayOfWeek.MONDAY, LocalTime.of(14, 30), LocalTime.of(15,
30)));

 List<Room> roomList = new ArrayList<>();

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

156

This test verifies that after solving, all lessons are assigned to a time slot and a room. It also verifies that
it found a feasible solution (no hard constraints broken).

Normally, the solver finds a feasible solution in less than 200 milliseconds. Notice how the
@SpringBootTest annotation’s properties overwrites the solver termination to terminate as soon as a
feasible solution (0hard/*soft) is found. This avoids hard coding a solver time, because the unit test
might run on arbitrary hardware. This approach ensures that the test runs long enough to find a feasible
solution, even on slow systems. However, it does not run a millisecond longer than it strictly must, even
on fast systems.

10.7.3. Logging

After you complete the Red Hat build of OptaPlanner Spring Boot timetable application, you can use
logging information to help you fine-tune the constraints in the ConstraintProvider. Review the score
calculation speed in the info log file to assess the impact of changes to your constraints. Run the
application in debug mode to show every step that your application takes or use trace logging to log
every step and every move.

Procedure

1. Run the timetable application for a fixed amount of time, for example, five minutes.

2. Review the score calculation speed in the log file as shown in the following example:

... Solving ended: ..., score calculation speed (29455/sec), ...

3. Change a constraint, run the planning application again for the same amount of time, and review
the score calculation speed recorded in the log file.

4. Run the application in debug mode to log every step:

To run debug mode from the command line, use the -D system property.

To change logging in the application.properties file, add the following line to that file:

 roomList.add(new Room("Room A"));
 roomList.add(new Room("Room B"));
 roomList.add(new Room("Room C"));

 List<Lesson> lessonList = new ArrayList<>();
 lessonList.add(new Lesson(101L, "Math", "B. May", "9th grade"));
 lessonList.add(new Lesson(102L, "Physics", "M. Curie", "9th grade"));
 lessonList.add(new Lesson(103L, "Geography", "M. Polo", "9th grade"));
 lessonList.add(new Lesson(104L, "English", "I. Jones", "9th grade"));
 lessonList.add(new Lesson(105L, "Spanish", "P. Cruz", "9th grade"));

 lessonList.add(new Lesson(201L, "Math", "B. May", "10th grade"));
 lessonList.add(new Lesson(202L, "Chemistry", "M. Curie", "10th grade"));
 lessonList.add(new Lesson(203L, "History", "I. Jones", "10th grade"));
 lessonList.add(new Lesson(204L, "English", "P. Cruz", "10th grade"));
 lessonList.add(new Lesson(205L, "French", "M. Curie", "10th grade"));
 return new TimeTable(timeslotList, roomList, lessonList);
 }

}

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

157

The following example shows output in the log file in debug mode:

... Solving started: time spent (67), best score (-20init/0hard/0soft), environment mode
(REPRODUCIBLE), random (JDK with seed 0).
... CH step (0), time spent (128), score (-18init/0hard/0soft), selected move count (15),
picked move ([Math(101) {null -> Room A}, Math(101) {null -> MONDAY 08:30}]).
... CH step (1), time spent (145), score (-16init/0hard/0soft), selected move count (15),
picked move ([Physics(102) {null -> Room A}, Physics(102) {null -> MONDAY 09:30}]).
...

5. Use trace logging to show every step and every move for each step.

10.8. ADD DATABASE AND UI INTEGRATION

After you create the Red Hat build of OptaPlanner application example with Spring Boot, add database
and UI integration.

Prerequisite

You have created the OptaPlanner Spring Boot timetable example.

Procedure

1. Create Java Persistence API (JPA) repositories for Timeslot, Room, and Lesson. For
information about creating JPA repositories, see Accessing Data with JPA on the Spring
website.

2. Expose the JPA repositories through REST. For information about exposing the repositories,
see Accessing JPA Data with REST on the Spring website.

3. Build a TimeTableRepository facade to read and write a TimeTable in a single transaction.

4. Adjust the TimeTableController as shown in the following example:

logging.level.org.optaplanner=debug

package com.example.solver;

import com.example.domain.TimeTable;
import com.example.persistence.TimeTableRepository;
import org.optaplanner.core.api.score.ScoreManager;
import org.optaplanner.core.api.solver.SolverManager;
import org.optaplanner.core.api.solver.SolverStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("/timeTable")
public class TimeTableController {

 @Autowired

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

158

https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io/guides/gs/accessing-data-rest/

For simplicity, this code handles only one TimeTable instance, but it is straightforward to enable
multi-tenancy and handle multiple TimeTable instances of different high schools in parallel.

The getTimeTable() method returns the latest timetable from the database. It uses the
ScoreManager (which is automatically injected) to calculate the score of that timetable so the
UI can show the score.

The solve() method starts a job to solve the current timetable and store the time slot and room
assignments in the database. It uses the SolverManager.solveAndListen() method to listen to
intermediate best solutions and update the database accordingly. This enables the UI to show
progress while the backend is still solving.

5. Now that the solve() method returns immediately, adjust the TimeTableControllerTest as
shown in the following example:

 private TimeTableRepository timeTableRepository;
 @Autowired
 private SolverManager<TimeTable, Long> solverManager;
 @Autowired
 private ScoreManager<TimeTable> scoreManager;

 // To try, GET http://localhost:8080/timeTable
 @GetMapping()
 public TimeTable getTimeTable() {
 // Get the solver status before loading the solution
 // to avoid the race condition that the solver terminates between them
 SolverStatus solverStatus = getSolverStatus();
 TimeTable solution =
timeTableRepository.findById(TimeTableRepository.SINGLETON_TIME_TABLE_ID);
 scoreManager.updateScore(solution); // Sets the score
 solution.setSolverStatus(solverStatus);
 return solution;
 }

 @PostMapping("/solve")
 public void solve() {
 solverManager.solveAndListen(TimeTableRepository.SINGLETON_TIME_TABLE_ID,
 timeTableRepository::findById,
 timeTableRepository::save);
 }

 public SolverStatus getSolverStatus() {
 return
solverManager.getSolverStatus(TimeTableRepository.SINGLETON_TIME_TABLE_ID);
 }

 @PostMapping("/stopSolving")
 public void stopSolving() {
 solverManager.terminateEarly(TimeTableRepository.SINGLETON_TIME_TABLE_ID);
 }

}

package com.example.solver;

import com.example.domain.Lesson;

CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE

159

6. Poll for the latest solution until the solver finishes solving.

7. To visualize the time table, build an attractive web UI on top of these REST methods.

import com.example.domain.TimeTable;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.Timeout;
import org.optaplanner.core.api.solver.SolverStatus;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;

import static org.junit.jupiter.api.Assertions.assertFalse;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import static org.junit.jupiter.api.Assertions.assertTrue;

@SpringBootTest(properties = {
 "optaplanner.solver.termination.spent-limit=1h", // Effectively disable this termination in
favor of the best-score-limit
 "optaplanner.solver.termination.best-score-limit=0hard/*soft"})
public class TimeTableControllerTest {

 @Autowired
 private TimeTableController timeTableController;

 @Test
 @Timeout(600_000)
 public void solveDemoDataUntilFeasible() throws InterruptedException {
 timeTableController.solve();
 TimeTable timeTable = timeTableController.getTimeTable();
 while (timeTable.getSolverStatus() != SolverStatus.NOT_SOLVING) {
 // Quick polling (not a Test Thread Sleep anti-pattern)
 // Test is still fast on fast systems and doesn't randomly fail on slow systems.
 Thread.sleep(20L);
 timeTable = timeTableController.getTimeTable();
 }
 assertFalse(timeTable.getLessonList().isEmpty());
 for (Lesson lesson : timeTable.getLessonList()) {
 assertNotNull(lesson.getTimeslot());
 assertNotNull(lesson.getRoom());
 }
 assertTrue(timeTable.getScore().isFeasible());
 }

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

160

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA
SOLVERS: A CLOUD BALANCING QUICK START GUIDE

This guide walks you through the process of creating Java solvers with OptaPlanner’s constraint solving
artificial intelligence (AI).

11.1. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING
EXAMPLE

An example demonstrates development of a basic Red Hat build of OptaPlanner solver using Java code.

Suppose your company owns a number of cloud computers and needs to run a number of processes on
those computers. You must assign each process to a computer.

The following hard constraints must be fulfilled:

Every computer must be able to handle the minimum hardware requirements of the sum of its
processes:

CPU capacity: The CPU power of a computer must be at least the sum of the CPU power
required by the processes assigned to that computer.

Memory capacity: The RAM memory of a computer must be at least the sum of the RAM
memory required by the processes assigned to that computer.

Network capacity: The network bandwidth of a computer must be at least the sum of the
network bandwidth required by the processes assigned to that computer.

The following soft constraints should be optimized:

Each computer that has one or more processes assigned incurs a maintenance cost which is
fixed for each computer.

Cost: Minimize the total maintenance cost.

This problem is a form of bin packing. In the following simplified example, we assign four processes to
two computers with two constraints (CPU and RAM) with a simple algorithm:

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK START GUIDE

161

The simple algorithm used here is the First Fit Decreasing algorithm, which assigns the bigger processes
first and assigns the smaller processes to the remaining space. As you can see, it is not optimal, because
it does not leave enough room to assign the yellow process D.

OptaPlanner finds a more optimal solution by using additional, smarter algorithms. It also scales: both in
data (more processes, more computers) and constraints (more hardware requirements, other
constraints).

The following summary applies to this example, as well as to an advanced implementation with more
constraints that is described in Section 4.7, “Machine reassignment (Google ROADEF 2012)” :

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

162

Table 11.1. Cloud balancing problem size

Problem size Computers Processes Search space

2computers-6processes 2 6 64

3computers-9processes 3 9 10^4

4computers-
012processes

4 12 10^7

100computers-
300processes

100 300 10^600

200computers-
600processes

200 600 10^1380

400computers-
1200processes

400 1200 10^3122

800computers-
2400processes

800 2400 10^6967

11.1.1. Domain Model Design

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK START GUIDE

163

Using a domain model helps determine which classes are planning entities and which of their properties
are planning variables. It also helps to simplify constraints, improve performance, and increase flexibility
for future needs.

11.1.1.1. Designing a domain model

To create a domain model, define all the objects that represent the input data for the problem. In this
example, the objects are processes and computers.

A separate object in the domain model must represent a full data set of the problem, which contains the
input data as well as a solution. In this example, this object holds a list of computers and a list of
processes. Each process is assigned to a computer; the distribution of processes between computers is
the solution.

Procedure

1. Draw a class diagram of your domain model.

2. Normalize it to remove duplicate data.

3. Write down some sample instances for each class. Sample instances are entity properties that
are relevant for planning purposes.

Computer: Represents a computer with certain hardware and maintenance costs.
In this example, the sample instances for the Computer class are cpuPower, memory,
networkBandwidth, cost.

Process: Represents a process with a demand. Needs to be assigned to a Computer by
Planner.
Sample instances for Process are requiredCpuPower, requiredMemory, and
requiredNetworkBandwidth.

CloudBalance: Represents the distribution of processes between computers. Contains
every Computer and Process for a certain data set.
For an object representing the full data set and solution, a sample instance holding the
score must be present. OptaPlanner can calculate and compare the scores for different
solutions; the solution with the highest score is the optimal solution. Therefore, the sample
instance for CloudBalance is score.

4. Determine which relationships (or fields) change during planning:

Planning entity : The class (or classes) that OptaPlanner can change during solving. In this
example, it is the class Process, because we can move processes to different computers.

A class representing input data that OptaPlanner can not change is known as a problem
fact.

Planning variable : The property (or properties) of a planning entity class that changes during
solving. In this example, it is the property computer on the class Process.

Planning solution: The class that represents a solution to the problem. This class must
represent the full data set and contain all planning entities. In this example that is the class
CloudBalance.

In the UML class diagram below, the OptaPlanner concepts are already annotated:

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

164

You can find the class definitions for this example in the
examples/sources/src/main/java/org/optaplanner/examples/cloudbalancing/domain directory.

11.1.1.2. The Computer Class

The Computer class is a Java object that stores data, sometimes known as a POJO (Plain Old Java
Object). Usually, you will have more of this kind of classes with input data.

Example 11.1. CloudComputer.java

11.1.1.3. The Process Class

The Process class is the class that is modified during solving.

We need to tell OptaPlanner that it can change the property computer. To do this, annotate the class

public class CloudComputer ... {

 private int cpuPower;
 private int memory;
 private int networkBandwidth;
 private int cost;

 ... // getters
}

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK START GUIDE

165

We need to tell OptaPlanner that it can change the property computer. To do this, annotate the class
with @PlanningEntity and annotate the getComputer() getter with @PlanningVariable.

Of course, the property computer needs a setter too, so OptaPlanner can change it during solving.

Example 11.2. CloudProcess.java

OptaPlanner needs to know which values it can choose from to assign to the property computer. Those
values are retrieved from the method CloudBalance.getComputerList() on the planning solution, which
returns a list of all computers in the current data set.

The @PlanningVariable's valueRangeProviderRefs parameter on CloudProcess.getComputer()
needs to match with the @ValueRangeProvider's id on CloudBalance.getComputerList().

NOTE

You can also use annotations on fields instead of getters.

11.1.1.4. The CloudBalance Class

The CloudBalance class has a @PlanningSolution annotation.

This class holds a list of all computers and processes. It represents both the planning problem and (if it is
initialized) the planning solution.

The CloudBalance class has the following key attributes:

@PlanningEntity(...)
public class CloudProcess ... {

 private int requiredCpuPower;
 private int requiredMemory;
 private int requiredNetworkBandwidth;

 private CloudComputer computer;

 ... // getters

 @PlanningVariable(valueRangeProviderRefs = {"computerRange"})
 public CloudComputer getComputer() {
 return computer;
 }

 public void setComputer(CloudComputer computer) {
 computer = computer;
 }

 // **
 // Complex methods
 // **

 ...

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

166

It holds a collection of processes that OptaPlanner can change. We annotate the getter
getProcessList() with @PlanningEntityCollectionProperty, so that OptaPlanner can retrieve
the processes that it can change. To save a solution, OptaPlanner initializes a new instance of
the class with the list of changed processes.

1. It also has a @PlanningScore annotated property score, which is the Score of that solution
in its current state. OptaPlanner automatically updates it when it calculates a Score for a
solution instance; therefore, this property needs a setter.

2. Especially for score calculation with Drools, the property computerList needs to be
annotated with a @ProblemFactCollectionProperty so that OptaPlanner can retrieve a list
of computers (problem facts) and make it available to the decision engine.

Example 11.3. CloudBalance.java

11.1.2. Running the cloud balancing Hello World application

You can run the sample Hello World application to demonstrate the solver.

Procedure

1. Download and configure the examples in your preferred IDE. For instructions on downloading

@PlanningSolution
public class CloudBalance ... {

 private List<CloudComputer> computerList;

 private List<CloudProcess> processList;

 private HardSoftScore score;

 @ValueRangeProvider(id = "computerRange")
 @ProblemFactCollectionProperty
 public List<CloudComputer> getComputerList() {
 return computerList;
 }

 @PlanningEntityCollectionProperty
 public List<CloudProcess> getProcessList() {
 return processList;
 }

 @PlanningScore
 public HardSoftScore getScore() {
 return score;
 }

 public void setScore(HardSoftScore score) {
 this.score = score;
 }

 ...
}

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK START GUIDE

167

1. Download and configure the examples in your preferred IDE. For instructions on downloading
and configuring examples in an IDE, see Section 5.2, “Running the Red Hat build of OptaPlanner
examples in an IDE (IntelliJ, Eclipse, or Netbeans)”.

2. Create a run configuration with the following main class:
org.optaplanner.examples.cloudbalancing.app.CloudBalancingHelloWorld
By default, the Cloud Balancing Hello World is configured to run for 120 seconds.

Result

The application executes the following code:

Example 11.4. CloudBalancingHelloWorld.java

The code example does the following:

1. Builds the Solver based on a solver configuration (in this case an XML file,
cloudBalancingSolverConfig.xml, from the classpath).
Building the Solver is the most complicated part of this procedure. For more details, see
Section 11.1.3, “Solver Configuration”.

2. Loads the problem.
CloudBalancingGenerator generates a random problem: you will replace this with a class that
loads a real problem, for example from a database.

public class CloudBalancingHelloWorld {

 public static void main(String[] args) {
 // Build the Solver
 SolverFactory<CloudBalance> solverFactory =
SolverFactory.createFromXmlResource("org/optaplanner/examples/cloudbalancing/solver/cloudBal
ancingSolverConfig.xml");
 Solver<CloudBalance> solver = solverFactory.buildSolver();

 // Load a problem with 400 computers and 1200 processes
 CloudBalance unsolvedCloudBalance = new
CloudBalancingGenerator().createCloudBalance(400, 1200);

 // Solve the problem
 CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);

 // Display the result
 System.out.println("\nSolved cloudBalance with 400 computers and 1200 processes:\n" +
toDisplayString(solvedCloudBalance));
 }

 ...
}

 SolverFactory<CloudBalance> solverFactory = SolverFactory.createFromXmlResource(

"org/optaplanner/examples/cloudbalancing/solver/cloudBalancingSolverConfig.xml");
 Solver solver<CloudBalance> = solverFactory.buildSolver();

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

168

3. Solve the problem.

4. Displays the result.

11.1.3. Solver Configuration

The solver configuration file determines how the solving process works; it is considered a part of the
code. The file is named
examples/sources/src/main/resources/org/optaplanner/examples/cloudbalancing/solver/cloudBal
ancingSolverConfig.xml.

Example 11.5. cloudBalancingSolverConfig.xml

This solver configuration consists of three parts:

1. Domain model configuration: What can OptaPlanner change?
We need to make OptaPlanner aware of our domain classes. In this configuration, it will
automatically scan all classes in your classpath (for a @PlanningEntity or @PlanningSolution
annotation):

2. Score configuration: How should OptaPlanner optimize the planning variables? What is our

 CloudBalance unsolvedCloudBalance = new
CloudBalancingGenerator().createCloudBalance(400, 1200);

 CloudBalance solvedCloudBalance = solver.solve(unsolvedCloudBalance);

 System.out.println("\nSolved cloudBalance with 400 computers and 1200 processes:\n"
 + toDisplayString(solvedCloudBalance));

<?xml version="1.0" encoding="UTF-8"?>
<solver>
 <!-- Domain model configuration -->
 <scanAnnotatedClasses/>

 <!-- Score configuration -->
 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.CloudBalanci
ngEasyScoreCalculator</easyScoreCalculatorClass>
 <!--
<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.drl</scoreDrl
>-->
 </scoreDirectorFactory>

 <!-- Optimization algorithms configuration -->
 <termination>
 <secondsSpentLimit>30</secondsSpentLimit>
 </termination>
</solver>

 <scanAnnotatedClasses/>

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK START GUIDE

169

2. Score configuration: How should OptaPlanner optimize the planning variables? What is our
goal?
Since we have hard and soft constraints, we use a HardSoftScore. But we need to tell
OptaPlanner how to calculate the score, depending on our business requirements. Further
down, we will look into two alternatives to calculate the score: using a basic Java
implementation and using Drools DRL.

3. Optimization algorithms configuration: How should OptaPlanner optimize it? In this case, we
use the default optimization algorithms (because no explicit optimization algorithms are
configured) for 30 seconds:

OptaPlanner should get a good result in seconds (and even in less than 15 milliseconds if the
real-time planning feature is used), but the more time it has, the better the result will be.
Advanced use cases might use different termination criteria than a hard time limit.

The default algorithms will already easily surpass human planners and most in-house
implementations. You can use the advanced Benchmarker feature to power tweak to get even
better results.

11.1.4. Score Configuration

OptaPlanner will search for the Solution with the highest Score. This example uses a HardSoftScore,
which means OptaPlanner will look for the solution with no hard constraints broken (fulfill hardware
requirements) and as little as possible soft constraints broken (minimize maintenance cost).

 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.CloudBal
ancingEasyScoreCalculator</easyScoreCalculatorClass>
 <!--
<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.drl</scor
eDrl>-->
 </scoreDirectorFactory>

 <termination>
 <secondsSpentLimit>30</secondsSpentLimit>
 </termination>

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

170

You can define constraints using plain Java, Drools, or the OptaPlanner ConstraintStream API. For
information about the ConstraintStream API, see Section 10.3, “Define the constraints and calculate the
score”.

11.1.4.1. Configuring score calculation using Java

One way to define a score function is to implement the interface EasyScoreCalculator in plain Java.

Procedure

1. In the cloudBalancingSolverConfig.xml file, add or uncomment the setting:

2. Implement the calculateScore(Solution) method to return a HardSoftScore instance.

Example 11.6. CloudBalancingEasyScoreCalculator.java

 <scoreDirectorFactory>

<easyScoreCalculatorClass>org.optaplanner.examples.cloudbalancing.optional.score.CloudBal
ancingEasyScoreCalculator</easyScoreCalculatorClass>
 </scoreDirectorFactory>

public class CloudBalancingEasyScoreCalculator implements
EasyScoreCalculator<CloudBalance> {

 /**
 * A very simple implementation. The double loop can easily be removed by using

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK START GUIDE

171

Even if we optimize the code above to use Maps to iterate through the processList only once, it is still
slow because it does not do incremental score calculation.

To fix that, either use incremental Java score calculation or Drools score calculation. Incremental Java
score calculation is not covered in this guide.

Maps as shown in
 * {@link
CloudBalancingMapBasedEasyScoreCalculator#calculateScore(CloudBalance)}.
 */
 public HardSoftScore calculateScore(CloudBalance cloudBalance) {
 int hardScore = 0;
 int softScore = 0;
 for (CloudComputer computer : cloudBalance.getComputerList()) {
 int cpuPowerUsage = 0;
 int memoryUsage = 0;
 int networkBandwidthUsage = 0;
 boolean used = false;

 // Calculate usage
 for (CloudProcess process : cloudBalance.getProcessList()) {
 if (computer.equals(process.getComputer())) {
 cpuPowerUsage += process.getRequiredCpuPower();
 memoryUsage += process.getRequiredMemory();
 networkBandwidthUsage += process.getRequiredNetworkBandwidth();
 used = true;
 }
 }

 // Hard constraints
 int cpuPowerAvailable = computer.getCpuPower() - cpuPowerUsage;
 if (cpuPowerAvailable < 0) {
 hardScore += cpuPowerAvailable;
 }
 int memoryAvailable = computer.getMemory() - memoryUsage;
 if (memoryAvailable < 0) {
 hardScore += memoryAvailable;
 }
 int networkBandwidthAvailable = computer.getNetworkBandwidth() -
networkBandwidthUsage;
 if (networkBandwidthAvailable < 0) {
 hardScore += networkBandwidthAvailable;
 }

 // Soft constraints
 if (used) {
 softScore -= computer.getCost();
 }
 }
 return HardSoftScore.valueOf(hardScore, softScore);
 }

}

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

172

11.1.4.2. Configuring score calculation using Drools

You can use Drools rule language (DRL) to define constraints. Drools score calculation uses incremental
calculation, where every score constraint is written as one or more score rules.

Using the decision engine for score calculation enables you to integrate with other Drools technologies,
such as decision tables (XLS or web based), Business Central, and other supported features.

Procedure

1. Add a scoreDrl resource in the classpath to use the decision engine as a score function. In the
cloudBalancingSolverConfig.xml file, add or uncomment the setting:

2. Create the hard constraints. These constraints ensure that all computers have enough CPU,
RAM and network bandwidth to support all their processes:

Example 11.7. cloudBalancingScoreRules.drl - Hard Constraints

...

import org.optaplanner.examples.cloudbalancing.domain.CloudBalance;
import org.optaplanner.examples.cloudbalancing.domain.CloudComputer;
import org.optaplanner.examples.cloudbalancing.domain.CloudProcess;

global HardSoftScoreHolder scoreHolder;

//
##
####
// Hard constraints
//
##
####

rule "requiredCpuPowerTotal"
 when
 $computer : CloudComputer($cpuPower : cpuPower)
 accumulate(
 CloudProcess(
 computer == $computer,
 $requiredCpuPower : requiredCpuPower);
 $requiredCpuPowerTotal : sum($requiredCpuPower);
 $requiredCpuPowerTotal > $cpuPower
)
 then
 scoreHolder.addHardConstraintMatch(kcontext, $cpuPower -
$requiredCpuPowerTotal);
end

rule "requiredMemoryTotal"

 <scoreDirectorFactory>

<scoreDrl>org/optaplanner/examples/cloudbalancing/solver/cloudBalancingScoreRules.drl</s
coreDrl>
 </scoreDirectorFactory>

CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK START GUIDE

173

 ...
end

rule "requiredNetworkBandwidthTotal"
 ...
end

3. Create a soft constraint. This constraint minimizes the maintenance cost. It is applied only if
hard constraints are met:

Example 11.8. cloudBalancingScoreRules.drl - Soft Constraints

//
##
####
// Soft constraints
//
##
####

rule "computerCost"
 when
 $computer : CloudComputer($cost : cost)
 exists CloudProcess(computer == $computer)
 then
 scoreHolder.addSoftConstraintMatch(kcontext, - $cost);
end

11.1.5. Further development of the solver

Now that this example works, you can try developing it further. For example, you can enrich the domain
model and add extra constraints such as these:

Each Process belongs to a Service. A computer might crash, so processes running the same
service should (or must) be assigned to different computers.

Each Computer is located in a Building. A building might burn down, so processes of the same
services should (or must) be assigned to computers in different buildings.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

174

PART IV. RED HAT BUILD OF OPTAPLANNER STARTER
APPLICATIONS

Red Hat build of OptaPlanner provides the following starter applications that you can deploy out-of-
the-box on Red Hat OpenShift Container Platform:

Employee Rostering starter application

Vechile Route Planning starter application

OptaPlanner starter applications are more developed than examples and quick start guides. They focus
on specific use cases and use the best technologies available to build a planning solution.

PART IV. RED HAT BUILD OF OPTAPLANNER STARTER APPLICATIONS

175

CHAPTER 12. USING RED HAT BUILD OF OPTAPLANNER IN AN
IDE: AN EMPLOYEE ROSTERING EXAMPLE

As a business rules developer, you can use an IDE to build, run, and modify the optaweb-employee-
rostering starter application that uses the Red Hat build of OptaPlanner functionality.

Prerequisites

You use an integrated development environment, such as Red Hat CodeReady Studio or IntelliJ
IDEA.

You have an understanding of the Java language.

You have an understanding of React and TypeScript. This requirement is necessary to develop
the OptaWeb UI.

12.1. OVERVIEW OF THE EMPLOYEE ROSTERING STARTER
APPLICATION

The employee rostering starter application assigns employees to shifts on various positions in an
organization. For example, you can use the application to distribute shifts in a hospital between nurses,
guard duty shifts across a number of locations, or shifts on an assembly line between workers.

Optimal employee rostering must take a number of variables into account. For example, different skills
can be required for shifts in different positions. Also, some employees might be unavailable for some
time slots or might prefer a particular time slot. Moreover, an employee can have a contract that limits
the number of hours that the employee can work in a single time period.

The Red Hat build of OptaPlanner rules for this starter application use both hard and soft constraints.
During an optimization, the planning engine may not violate hard constraints, for example, if an
employee is unavailable (out sick), or that an employee cannot work two spots in a single shift. The
planning engine tries to adhere to soft constraints, such as an employee’s preference to not work a
specific shift, but can violate them if the optimal solution requires it.

12.2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER
APPLICATION

You can build the employee rostering starter application from the source code and run it as a JAR file.

Alternatively, you can use your IDE, for example, Eclipse (including Red Hat CodeReady Studio), to build
and run the application.

12.2.1. Preparing deployment files

You must download and prepare the deployment files before building and deploying the application.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Decision Manager

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

176

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Version: 7.11

2. Download Red Hat Decision Manager 7.11.0 Kogito and OptaPlanner 8 Decision Services
Quickstarts (rhdm-7.11.0-decision-services-quickstarts.zip).

3. Extract the rhdm-7.11.0-decision-services-quickstarts.zip file.

4. Download the Red Hat Decision Manager 7.11 Maven Repository Kogito and OptaPlanner 8
Maven Repository (rhdm-7.11.0-kogito-maven-repository.zip) file.

5. Extract the rhdm-7.11.0-kogito-maven-repository.zip file.

6. Copy the contents of the rhdm-7.11.0-kogito-maven-repository/maven-repository
subdirectory into the ~/.m2/repository directory.

7. Navigate to the optaweb-8.5.0.Final-redhat-00004/optaweb-employee-rostering directory.
This folder is the base folder in subsequent parts of this document.

NOTE

File and folder names might have higher version numbers than specifically noted
in this document.

12.2.2. Running the Employee Rostering starter application JAR file

You can run the Employee Rostering starter application from a JAR file included in the Red Hat
Decision Manager 7.11.0 Kogito and OptaPlanner 8 Decision Services Quickstarts download.

Prerequisites

You have downloaded and extracted the rhdm-7.11.0-decision-services-quickstarts.zip file
as described in Section 12.2.1, “Preparing deployment files”.

A Java Development Kit is installed.

Maven is installed.

The host has access to the Internet. The build process uses the Internet for downloading Maven
packages from external repositories.

Procedure

1. In a command terminal, change to the rhdm-7.11.0-decision-services-quickstarts/optaweb-
8.5.0.Final-redhat-00004/optaweb-employee-rostering directory.

2. Enter the following command:

3. Wait for the build process to complete.

4. Navigate to the rhdm-7.11.0-decision-services-quickstarts/optaweb-8.5.0.Final-redhat-
00004/optaweb-employee-rostering/optaweb-employee-rostering-standalone/target
directory.

mvn clean install -DskipTests

CHAPTER 12. USING RED HAT BUILD OF OPTAPLANNER IN AN IDE: AN EMPLOYEE ROSTERING EXAMPLE

177

5. Enter the following command to run the Employee Rostering JAR file:

NOTE

The value of the quarkus.datasource.db-kind parameter is set to H2 by default
at build time. To use a different database, you must rebuild the standalone
module and specify the database type on the command line. For example, to use
a PostgreSQL database, enter the following command:

mvn clean install -DskipTests -Dquarkus.profile=postgres

6. To access the application, enter http://localhost:8080/ in a web browser.

12.2.3. Building and running the Employee Rostering starter application using Maven

You can use the command line to build and run the employee rostering starter application.

If you use this procedure, the data is stored in memory and is lost when the server is stopped. To build
and run the application with a database server for persistent storage, see Section 12.2.4, “Building and
running the employee rostering starter application with persistent data storage from the command line”.

Prerequisites

You have prepared the deployment files as described in Section 12.2.1, “Preparing deployment
files”.

A Java Development Kit is installed.

Maven is installed.

The host has access to the Internet. The build process uses the Internet for downloading Maven
packages from external repositories.

Procedure

1. Navigate to the optaweb-employee-rostering-backend directory.

2. Enter the following command:

3. Navigate to the optaweb-employee-rostering-frontend directory.

4. Enter the following command:

NOTE

If you use npm to start the server, npm monitors code changes.

java -jar quarkus-app/quarkus-run.jar

mvn quarkus:dev

npm start

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

178

5. To access the application, enter http://localhost:3000/ in a web browser.

12.2.4. Building and running the employee rostering starter application with
persistent data storage from the command line

If you use the command line to build the employee rostering starter application and run it, you can
provide a database server for persistent data storage.

Prerequisites

You have prepared the deployment files as described in Section 12.2.1, “Preparing deployment
files”.

A Java Development Kit is installed.

Maven is installed.

The host has access to the Internet. The build process uses the Internet for downloading Maven
packages from external repositories.

You have a deployed MySQL or PostrgeSQL database server.

Procedure

1. In a command terminal, navigate to the optaweb-employee-rostering-standalone/target
directory.

2. Enter the following command to run the Employee Rostering JAR file:

In this example, replace the following placeholders:

<DATABASE_URL>: URL to connect to the database

<DATABASE_USER>: The user to connect to the database

<DATABASE_PASSWORD>: The password for <DATABASE_USER>

NOTE

The value of the quarkus.datasource.db-kind parameter is set to H2 by default at build
time. To use a different database, you must rebuild the standalone module and specify
the database type on the command line. For example, to use a PostgreSQL database,
enter the following command:

mvn clean install -DskipTests -Dquarkus.profile=postgres

12.2.5. Building and running the employee rostering starter application using IntelliJ
IDEA

java \
-Dquarkus.datasource.username=<DATABASE_USER> \
-Dquarkus.datasource.password=<DATABASE_PASSWORD> \
-Dquarkus.datasource.jdbc.url=<DATABASE_URL> \
-jar quarkus-app/quarkus-run.jar

CHAPTER 12. USING RED HAT BUILD OF OPTAPLANNER IN AN IDE: AN EMPLOYEE ROSTERING EXAMPLE

179

You can use IntelliJ IDEA to build and run the employee rostering starter application.

Prerequisites

You have downloaded the Employee Rostering source code, available from the Employee
Rostering GitHub page.

IntelliJ IDEA, Maven, and Node.js are installed.

The host has access to the Internet. The build process uses the Internet for downloading Maven
packages from external repositories.

Procedure

1. Start IntelliJ IDEA.

2. From the IntelliJ IDEA main menu, select File → Open.

3. Select the root directory of the application source and click OK.

4. From the main menu, select Run → Edit Configurations.

5. In the window that appears, expand Templates and select Maven. The Maven sidebar appears.

6. In the Maven sidebar, select optaweb-employee-rostering-backend from the Working
Directory menu.

7. In Command Line, enter mvn quarkus:dev.

8. To start the back end, click OK .

9. In a command terminal, navigate to the optaweb-employee-rostering-frontend directory.

10. Enter the following command to start the front end:

npm start

11. To access the application, enter http://localhost:3000/ in a web browser.

12.3. OVERVIEW OF THE SOURCE CODE OF THE EMPLOYEE
ROSTERING STARTER APPLICATION

The employee rostering starter application consists of the following principal components:

A backend that implements the rostering logic using Red Hat build of OptaPlanner and
provides a REST API

A frontend module that implements a user interface using React and interacts with the
backend module through the REST API

You can build and use these components independently. In particular, you can implement a different
user interface and use the REST API to call the server.

In addition to the two main components, the employee rostering template contains a generator of
random source data (useful for demonstration and testing purposes) and a benchmarking application.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

180

https://github.com/kiegroup/optaweb-employee-rostering

Modules and key classes

The Java source code of the employee rostering template contains several Maven modules. Each of
these modules includes a separate Maven project file (pom.xml), but they are intended for building in a
common project.

The modules contain a number of files, including Java classes. This document lists all the modules, as
well as the classes and other files that contain the key information for the employee rostering
calculations.

optaweb-employee-rostering-benchmark module: Contains an additional application that
generates random data and benchmarks the solution.

optaweb-employee-rostering-distribution module: Contains README files.

optaweb-employee-rostering-docs module: Contains documentation files.

optaweb-employee-rostering-frontend module: Contains the client application with the user
interface, developed in React.

optaweb-employee-rostering-backend module: Contains the server application that uses
OptaPlanner to perform the rostering calculation.

src/main/java/org.optaweb.employeerostering.service.roster/rosterGenerator.java:
Generates random input data for demonstration and testing purposes. If you change the
required input data, change the generator accordingly.

src/main/java/org.optaweb.employeerostering.domain.employee/EmployeeAvailability
.java: Defines availability information for an employee. For every time slot, an employee can
be unavailable, available, or the time slot can be designated a preferred time slot for the
employee.

src/main/java/org.optaweb.employeerostering.domain.employee/Employee.java:
Defines an employee. An employee has a name, a list of skills, and works under a contract.
Skills are represented by skill objects.

src/main/java/org.optaweb.employeerostering.domain.roster/Roster.java: Defines the
calculated rostering information.

src/main/java/org.optaweb.employeerostering.domain.shift/Shift.java: Defines a shift to
which an employee can be assigned. A shift is defined by a time slot and a spot. For
example, in a diner there could be a shift in the Kitchen spot for the February 20 8AM-4PM
time slot. Multiple shifts can be defined for a specific spot and time slot. In this case, multiple
employees are required for this spot and time slot.

src/main/java/org.optaweb.employeerostering.domain.skill/Skill.java: Defines a skill that
an employee can have.

src/main/java/org.optaweb.employeerostering.domain.spot/Spot.java: Defines a spot
where employees can be placed. For example, a Kitchen can be a spot.

src/main/java/org.optaweb.employeerostering.domain.contract/Contract.java: Defines
a contract that sets limits on work time for an employee in various time periods.

src/main/java/org.optaweb.employeerostering.domain.tenant/Tenant.java: Defines a
tenant. Each tenant represents an independent set of data. Changes in the data for one
tenant do not affect any other tenants.

*View.java: Classes related to domain objects that define value sets that are calculated

CHAPTER 12. USING RED HAT BUILD OF OPTAPLANNER IN AN IDE: AN EMPLOYEE ROSTERING EXAMPLE

181

*View.java: Classes related to domain objects that define value sets that are calculated
from other information; the client application can read these values through the REST API,
but not write them.

*Service.java: Interfaces located in the service package that define the REST API. Both the
server and the client application separately define implementations of these interfaces.

optaweb-employee-rostering-standalone module: Contains the assembly configurations for
the standalone application.

12.4. MODIFYING THE EMPLOYEE ROSTERING STARTER
APPLICATION

To modify the employee rostering starter application to suit your needs, you must change the rules that
govern the optimization process. You must also ensure that the data structures include the required
data and provide the required calculations for the rules. If the required data is not present in the user
interface, you must also modify the user interface.

The following procedure outlines the general approach to modifying the employee rostering starter
application.

Prerequisites

You have a build environment that successfully builds the application.

You can read and modify Java code.

Procedure

1. Plan the required changes. Answer the following questions:

What are the additional scenarios that must be avoided? These scenarios are hard
constraints.

What are the additional scenarios that the optimizer must try to avoid when possible? These
scenarios are soft constraints.

What data is required to calculate if each scenario is happening in a potential solution?

Which of the data can be derived from the information that the user enters in the existing
version?

Which of the data can be hardcoded?

Which of the data must be entered by the user and is not entered in the current version?

2. If any required data can be calculated from the current data or can be hardcoded, add the
calculations or hardcoding to existing view or utility classes. If the data must be calculated on
the server side, add REST API endpoints to read it.

3. If any required data must be entered by the user, add the data to the classes representing the
data entities (for example, the Employee class), add REST API endpoints to read and write the
data, and modify the user interface to enter the data.

4. When all of the data is available, modify the rules. For most modifications, you must add a new
rule. The rules are located in the

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

182

src/main/java/org/optaweb/employeerostering/service/solver/EmployeeRosteringConstrai
ntProvider.java file of the optaweb-employee-rostering-backend module.

5. After modifying the application, build and run it.

CHAPTER 12. USING RED HAT BUILD OF OPTAPLANNER IN AN IDE: AN EMPLOYEE ROSTERING EXAMPLE

183

CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF
OPTAPLANNER IN RED HAT OPENSHIFT CONTAINER

PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE
As a business rules developer, you can test and interact with the Red Hat build of OptaPlanner
functionality by quickly deploying the optaweb-employee-rostering starter project included in the Red
Hat Decision Manager distribution to OpenShift.

Prerequisites

You have access to a deployed OpenShift environment. For details, see the documentation for
the OpenShift product that you use.

13.1. OVERVIEW OF THE EMPLOYEE ROSTERING STARTER
APPLICATION

The employee rostering starter application assigns employees to shifts on various positions in an
organization. For example, you can use the application to distribute shifts in a hospital between nurses,
guard duty shifts across a number of locations, or shifts on an assembly line between workers.

Optimal employee rostering must take a number of variables into account. For example, different skills
can be required for shifts in different positions. Also, some employees might be unavailable for some
time slots or might prefer a particular time slot. Moreover, an employee can have a contract that limits
the number of hours that the employee can work in a single time period.

The Red Hat build of OptaPlanner rules for this starter application use both hard and soft constraints.
During an optimization, the planning engine may not violate hard constraints, for example, if an
employee is unavailable (out sick), or that an employee cannot work two spots in a single shift. The
planning engine tries to adhere to soft constraints, such as an employee’s preference to not work a
specific shift, but can violate them if the optimal solution requires it.

13.2. INSTALLING AND STARTING THE EMPLOYEE ROSTERING
STARTER APPLICATION ON OPENSHIFT

Use the runOnOpenShift.sh script to deploy the Employee Rostering starter application to Red Hat
OpenShift Container Platform. The runOnOpenShift.sh shell script is available in the Red Hat Decision
Manager 7.11.0 Kogito and OptaPlanner 8 Decision Services Quickstarts distribution.

The runOnOpenShift.sh script builds and packages the application source code locally and uploads it to
the OpenShift environment for deployment. This method requires Java Development Kit, Apache
Maven, and a bash shell command line.

13.2.1. Deploying the application using the provided script

You can deploy the Employee Rostering starter application to Red Hat OpenShift Container Platform
using the provided script. The script builds and packages the application source code locally and uploads
it to the OpenShift environment for deployment.

Prerequisites

You are logged in to the target OpenShift environment using the oc command line tool. For
more information about this tool, see the OpenShift Container Platform CLI Reference.

OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

184

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cli_reference/

OpenJDK 11 or later is installed. Red Hat build of Open JDK is available from the Software
Downloads page in the Red Hat Customer Portal (login required).

Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project
website.

A bash shell environment is available on your local system.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Decision Manager

Version: 7.11

2. Download the Red Hat Decision Manager 7.11 Maven Repository Kogito and OptaPlanner 8
Maven Repository (rhdm-7.11.0-kogito-maven-repository.zip) file.

3. Extract the rhdm-7.11.0-kogito-maven-repository.zip file.

4. Copy the contents of the rhdm-7.11.0-kogito-maven-repository/maven-repository
subdirectory into the ~/.m2/repository directory.

5. Download the rhdm-7.11.0-decision-services-quickstarts.zip file from the Software
Downloads page of the Red Hat Customer Portal.

6. Extract the downloaded archive.

7. Navigate to the optaweb-employee-rostering folder.

8. To build the Employee Rostering application, run the following command:

mvn clean install -DskipTests -DskipITs

9. Log in to an OpenShift account or a Red Hat Code Ready Container instance. In the following
example, <account-url> is the URL for an OpenShift account or Red Hat Code Ready Container
instance and <login-token> is the login token for that account:

oc login <account-url> --token <login-token>

10. Create a new project to host Employee Rostering:

oc new-project optaweb-employee-rostering

11. Run the provision script to build and deploy the application:

./runOnOpenShift.sh

Compilation and packaging might take up to 10 minutes to complete. These processes
continually show progress on the command line output.

When the operation completes, the following message is displayed, where <URL> is the URL for
the deployment:

CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF OPTAPLANNER IN RED HAT OPENSHIFT CONTAINER PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE

185

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://maven.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhdm&productChanged=yes

You can access the application at <URL> once the deployment is done.

12. Enter the URL that you used earlier in the procedure, for either an OpenShift account or Red
Hat Code Ready Container instance, to access the deployed application. The first startup can
take up to a minute because additional building is completed on the OpenShift platform.

NOTE

If the application does not open a minute after clicking the link, perform a hard
refresh of your browser page.

13.3. USING THE EMPLOYEE ROSTERING STARTER APPLICATION

You can use the web interface to use the Employee Rostering starter application. The interface is
developed in ReactJS. You can also access the REST API to create a custom user interface as
necessary.

13.3.1. The draft and published periods

At any particular moment, you can use the application to create the roster for a time period, called a
draft period. By default, the length of a draft period is three weeks.

When the roster is final for the first week of the draft period, you can publish the roster. At this time, the
roster for the first week of the current draft period becomes a published period. In a published period,
the roster is fixed and you can no longer change it automatically (however, emergency manual changes
are still possible). This roster can then be distributed to employees so they can plan their time around it.
The draft period is shifted a week later.

For example, assume that a draft period of September 1 to September 21 is set. You can automatically
create the employee roster for this period. Then, when you publish the roster, the period up to
September 7 becomes published. The new draft period is September 8 to September 28.

For instructions about publishing the roster, see Section 13.3.12, “Publishing the shift roster” .

13.3.2. The rotation pattern

The employee rostering application supports a rotation pattern for shifts and employees.

The rotation pattern is a "model" period of any time starting from two days. The pattern is not tied to a
particular date.

You can create time buckets for every day of the rotation. Every time bucket sets the time of a shift.
Optionally, the template can include the name of the default employee for the shift.

When you publish the roster, the application adds a new week to the draft period. At this time, the shifts
and, if applicable, default employee names are copied from the rotation pattern to the new part of the
draft period.

When the end of the rotation pattern is reached, it is automatically restarted from the beginning.

If weekend shift patterns in your organization are different from weekday shift patterns, use a rotation
pattern of one week or a whole number of weeks, for example, 14, 21, or 28 days. The default length is 28
days. Then the pattern is always repeated on the same weekdays and you can set the shifts for different
weekdays.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

186

For instructions about editing the rotation pattern, see Section 13.3.13, “Viewing and editing the rotation
pattern”.

13.3.3. Employee Rostering tenants

The Employee Rostering application supports multiple tenants. Each tenant is an independent set of
data, including inputs and roster outputs. Changing data for one tenant does not affect other tenants.
You can switch between tenants to use several independent data sets, for example, to prepare
employee rosters for different locations.

Several sample tenants are present after installation, representing several typical enterprise types such
as a factory or hospital. You can select any of these tenants and modify them to suit your needs. You
can also create a new tenant to enter data from a blank slate.

13.3.3.1. Changing an Employee Rostering tenant

You can change the current tenant. After you select a different tenant, all of the displayed information
refers to this tenant and any changes you make affect only this tenant.

Procedure

1. In the Employee Rostering application web interface, in the top right part of the browser
window, click the Tenant list.

2. Select a tenant from the list.

13.3.3.2. Creating a tenant

You can create a new tenant to enter data from a blank slate. When creating a tenant, you can set
several parameters that determine how the application prepares the output for this tenant.

IMPORTANT

You cannot change tenant parameters after you create the tenant.

Procedure

1. To create a new tenant in the Employee Rostering application web interface, in the top right
corner of the browser window click the settings (gear) icon then click Add.

2. Set the following values:

Name: The name of the new tenant. This name is displayed in the list of tenants.

Schedule Start Date: The start date of the initial draft period. After you publish the roster,
this date becomes the start date of the published period. The weekday of this date always
remains the weekday that starts the draft period, any particular published period, and the
first use of the rotation pattern. So it is usually most convenient to set the start date to the
start of a week (Sunday or Monday).

Draft Length (days): The length of the draft period. The draft period stays the same
length for the lifetime of the tenant.

Publish Notice (days): The length of the publish notice period. Aspire to publish the final
roster for any day at least this time in advance, so employees have enough notice to plan

CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF OPTAPLANNER IN RED HAT OPENSHIFT CONTAINER PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE

187

their personal life around their shift times. In the current version, this setting is not enforced
in any way.

Publish Length (days): The length of the period that becomes published (fixed) every time
you publish the roster. In the current version, this setting is fixed at 7 days.

Rotation Length (days): The length of the rotation pattern.

Timezone: The timezone of the environment to which the roster applies. This timezone is
used to determine the "current" date for user interface display.

3. Click Save.

The tenant is created with blank data.

13.3.4. Entering skills

You can set all skills that are required in any position within the roster. For example, a 24-hour diner can
require cooking, serving, bussing, and hosting skills, in addition to skills such as general human resources
and restaurant operations.

Procedure

1. In the Employee Rostering application web interface, click the Skills tab.
You can see the numbers of currently visible skills in the top right part of the browser window,
for example, 1-15 of 34. You can use the < and > buttons to display other skills in the list.

You can enter any part of a skill name in the Search box to search for skills.

2. Complete the following steps to add a new skill:

a. Click Add.

b. Enter the name of the new skill in the text field under Name.

c. Click the Save icon.

3. To edit the name of a skill, click the Edit Skill icon (pencil shape) next to the skill.

4. To delete a skill, click the Delete Skill icon (trashcan shape) next to the skill.

NOTE

Within each tenant, skill names must be unique. You cannot delete a skill if the skill is
associated with an employee or spot.

13.3.5. Entering spots

You must enter the list of spots, which represent various positions at the business. For a diner, spots
include the bar, the bussing stations, the front counter, the various kitchen stations, the serving areas,
and the office.

For each spot, you can select one or more required skills from the list that you entered in the Skills tab.
The application rosters only employees that have all of the required skills for a spot into that spot. If the
spot has no required skill, the application can roster any employee into the spot.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

188

Procedure

1. To enter or change spots in the Employee Rostering application web interface, click the Spots
tab. You can enter any part of a spot name in the Search box to search for spots.

2. Complete the following steps to add a new spot:

a. Click Add Spot.

b. Enter the name of the new spot in the text field under Name.

c. Optional: Select one or more skills from the drop-down list under Required skill set.

d. Click the Save icon.

3. To edit the name and required skills for a spot, click the Edit Spot icon (pencil shape) next to
the spot.

4. To delete a spot, click the Delete Spot icon (trashcan shape) next to the spot.

NOTE

Within each tenant, spot names must be unique. You cannot delete a spot when any shifts
are created for it.

13.3.6. Entering the list of contracts

You must enter the list of all of the types of contracts that the business uses for employees.

A contract determines the maximum time that the employee can work in a day, calendar week, calendar
month, or calendar year.

When creating a contract, you can set any of the limitations or none at all. For example, a part-time
employee might not be allowed to work more than 20 hours in a week, while a full-time employee might
be limited to 10 hours in a day and 1800 hours in a year. Another contract might include no limitations on
worked hours.

You must enter all work time limits for contracts in minutes.

Procedure

1. To enter or change the list of contracts in the Employee Rostering application web interface,
click the Contracts tab.
You can see the numbers of currently visible contracts in the top right part of the browser
window, for example, 1-15 of 34. You can use the < and > buttons to display other contracts in
the list.

You can enter any part of a contract name in the Search box to search for contracts.

2. Complete the following steps to add a new contract:

a. Click Add.

b. Enter the name of the contract in the text field under Name.

c. Enter the required time limits under Maximum minutes:

CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF OPTAPLANNER IN RED HAT OPENSHIFT CONTAINER PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE

189

If the employee must not work more than a set time per day, enable the check box at
Per Day and enter the amount of minutes in the field next to this check box.

If the employee must not work more than a set time per calendar week, enable the
check box at Per Week and enter the amount of minutes in the field next to this check
box.

If the employee must not work more than a set time per calendar month, enable the
check box at Per Month and enter the amount of minutes in the field next to this check
box.

If the employee must not work more than a set time per calendar year, enable the check
box at Per Year and enter the amount of minutes in the field next to this check box.

d. Click the Save icon.

3. To edit the name and time limits for a contract, click the Edit Contract icon (pencil shape) next
to the name of the contract.

4. To delete a contract, click the Delete Contract icon (trashcan shape) next to the name of the
contract.

NOTE

Within each tenant, contract names must be unique. You cannot delete a contract if it is
assigned to any employee.

13.3.7. Entering the list of employees

You must enter the list of all employees of the business, the skills they possess, and the contracts that
apply to them. The application rosters these employees to spots according to their skills and according
to the work time limits in the contracts.

Procedure

1. To enter or change the list of employees in the Employee Rostering application web interface,
click the Employees tab.
You can see the numbers of currently visible employees in the top right part of the browser
window, for example, 1-15 of 34. You can use the < and > buttons to display other employees in
the list.

You can enter any part of an employee name in the Search box to search for employees.

2. Complete the following steps to add a new employee:

a. Click Add.

b. Enter the name of the employee in the text field under Name.

c. Optional: Select one or more skills from the drop-down list under Skill set.

d. Select a contract from the drop-down list under Contract.

e. Click the Save icon.

3. To edit the name and skills for an employee, click the Edit Employee icon (pencil shape) next to

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

190

3. To edit the name and skills for an employee, click the Edit Employee icon (pencil shape) next to
the name of the employee.

4. To delete an employee, click the Delete Employee icon (trashcan shape) next to the name of
the employee.

NOTE

Within each tenant, employee names must be unique. You cannot delete employees if
they are rostered to any shifts.

13.3.8. Setting employee availability

You can set the availability of employees for particular time spans.

If an employee is unavailable for a particular time span, the employee can never be assigned to any shift
during this time span (for example, if the employee has called in sick or is on vacation). Undesired and
desired are employee preferences for particular time spans; the application accommodates them when
possible.

Procedure

1. To view and edit employee availability in the Employee Rostering application web interface, click
the Availability Roster tab.
In the top left part of the window, you can see the dates for which the roster is displayed. To
view other weeks, you can use the < and > buttons next to the Week of field. Alternatively, you
can click the date field and change the date to view the week that includes this date.

2. To create an availability entry for an employee, click empty space on the schedule and then
select an employee. Initially, an Unavailable entry for the entire day is created.

3. To change an availability entry, click the entry. You can change the following settings:

From and To date and time: The time span to which the availability entry applies.

Status: you can select Unavailable, Desired, or Undesired status from a drop-down list.
To save the entry, click Apply.

4. To delete an availability entry, click the entry, then click Delete availability.
You can also change or delete an availability entry by moving the mouse pointer over the entry
and then clicking one of the icons displayed over the entry:

Click the icon to set the status of the entry to Unavailable.

Click the icon to set the status of the entry to Undesired.

Click the icon to set the status of the entry to Desired.

Click the icon to delete the entry.

IMPORTANT

CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF OPTAPLANNER IN RED HAT OPENSHIFT CONTAINER PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE

191

IMPORTANT

If an employee is already assigned to a shift and then you create or change an availability
entry during this shift, the assignment is not changed automatically. You must create the
employee shift roster again to apply new or changed availability entries.

13.3.9. Viewing and editing shifts in the shift roster

The Shift Roster is a table of all spots and all possible time spans.

If an employee must be present in a spot during a time span, a shift must exist for this spot and this time
span. If a spot requires several employees at the same time, you can create several shifts for the same
spot and time span.

Each shift is represented by a rectangle at the intersection of a spot (row) and time span (column).

When new time is added to the draft period, the application copies the shifts (and default employees, if
present) from the rotation pattern into this new part of the draft period. You can also manually add and
edit shifts in the draft period.

Procedure

1. To view and edit the shift roster in the Employee Rostering application web interface, click the
Shift tab.
In the top left part of the window, you can see the dates for which the roster is displayed. To
view other weeks, you can use the < and > buttons next to the Week of field. Alternatively, you
can click the date field and change the date to view the week that includes this date.

2. To add a shift, click an open area of the schedule. The application adds a shift, determining the
slot and time span automatically from the location of the click.

3. To edit a shift, click the shift. You can set the following values for a shift:

From and To date and time: The exact time and duration of the shift.

Employee: The employee assigned to the shift.

Pinned: Whether the employee is pinned to the shift. If an employee is pinned, automatic
employee rostering cannot change the assignment of the employee to the shift. A pinned
employee is not automatically replicated to any other shift.
To save the changes, click Apply.

4. To delete a shift, click the shift, and then click Delete shift.

13.3.10. Creating and viewing the employee shift roster

You can use the application to create and view the optimal shift roster for all employees.

Procedure

1. To view and edit the shift roster in the Employee Rostering application web interface, click the
Shift tab.

2. To create the optimal shift roster, click Schedule. The application takes 30 seconds to find the
optimal solution.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

192

Result

When the operation is finished, the Shift Roster view contains the optimal shift roster. The new roster is
created for the draft period. The operation does not modify the published periods.

In the top left part of the window, you can see the dates for which the roster is displayed. To view other
weeks, you can use the < and > buttons next to the Week of field. Alternatively, you can click the date
field and change the date to view the week that includes this date.

In the draft period, the borders of boxes that represent shifts are dotted lines. In the published periods,
the borders are unbroken lines.

The color of the boxes that represent shifts shows the constraint status of every shift:

Strong green: Soft constraint matched; for example, the shift is in a "desired" timeslot for the
employee.

Pale green: No constraint broken.

Grey: Soft constraint broken; for example, the shift is in an "undesired" timeslot for the
employee.

Yellow: Medium constraint broken; for example, no employee is assigned to the shift.

Red: Hard constraint broken; for example, an employee has two shifts at the same time.

13.3.11. Viewing employee shifts

You can view the assigned shifts for particular employees in an employee-centric table. The information
is the same as the Shift Roster, but the viewing format might be more convenient for informing
employees about their assigned shifts.

Procedure

To view a table of employees and shifts in the Employee Rostering application web interface, click the
Availability Roster tab.

In the top left part of the window, you can see the dates for which the roster is displayed. To view other
weeks, you can use the < and > buttons next to the Week of field. Alternatively, you can click the date
field and change the date to view the week that includes this date.

You can see the numbers of currently visible employees in the top right part of the browser window, for
example, 1-10 of 34. You can use the < and > buttons next to the numbers to display other employees in
the list.

In the draft period, the borders of boxes representing shifts are dotted lines. In the published periods,
the borders are unbroken lines.

13.3.12. Publishing the shift roster

When you publish the shift roster, the first week of the draft period becomes published. Automatic
employee rostering no longer changes any shift assignments in the published period, though emergency
manual changing is still possible. The draft period is shifted one week later. For details about draft and
published periods, see Section 13.3.1, “The draft and published periods” .

Procedure

1. To view and edit the shift roster in the Employee Rostering application web interface, click the

CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF OPTAPLANNER IN RED HAT OPENSHIFT CONTAINER PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE

193

1. To view and edit the shift roster in the Employee Rostering application web interface, click the
Shift tab.

2. Review the shift roster for the first week of the draft period to ensure that it is acceptable.

3. Click Publish.

13.3.13. Viewing and editing the rotation pattern

The rotation pattern enables you to add, move, and delete shifts so you can manage your employee
resources efficiently. It is defined by time buckets and seats.

A time bucket describes a time slot (for example, 9:00 a.m. to 5:00 p.m.) for a particular spot or
location (A) (for example, Anaesthetics), over two or more days, and any skills that are required
(for example, firearm training).

A seat (B) is an employee assignment for a particular day in a specific time bucket.

An employee stub is an icon that represents an employee that is available to be assigned to a
time bucket. Employee stubs are listed in the Employee Stub List.

For more information about the rotation pattern, see Section 13.3.2, “The rotation pattern” .

Procedure

1. Click the Rotation tab to view and edit the rotation pattern.

2. Select a spot from the Rotation menu.

3. Click Add New Time Bucket. The Creating Working Time Bucket dialog is displayed.

4. Specify a start and end time, select any additional required skills, select the days for this time
bucket, and click Save. The unassigned seats for that time bucket appears on the Rotation
page organized by time ranges.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

194

5. To create an employee stub list so that you can add employees to the rotation, click Edit
Employee Stub List.

6. In the Edit Employee Stub List dialog, click Add Employee and select an employee from the
list.

7. Add all of the employees required for this stub list and click Save. The employees appear above
the time buckets on the Rotation page.

8. Click an employee icon to select an employee from the employee stub list.

9. Click and drag the mouse over the seats of a time bucket to assign the selected employee to
those seats. The seat is populated with the employee icon.

NOTE

A time bucket can only have one employee assigned to it for each day. To add
multiple employees to the same time bucket, copy the time bucket and change
the employee name as required.

10. To provision the schedule, click Scheduling and select the spot that you created the rotation
for.

11. Click Provision and specify the date range.

12. Deselect the spots that you do not want to include in this schedule.

13. Click the arrow next to the selected spot and deselect any time buckets that you do not want to
use in your schedule.

14. Click Provision Shifts. The calendar is populated with shifts generated from the time buckets.

15. To modify a shift, click a generated shift on the calendar.

CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF OPTAPLANNER IN RED HAT OPENSHIFT CONTAINER PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE

195

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD
OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER

APPLICATION
As a developer, you can use the OptaWeb Vehicle Routing starter application to optimize your vehicle
fleet deliveries.

Prerequisites

OpenJDK (JDK) 11 is installed. Red Hat build of Open JDK is available from the Software
Downloads page in the Red Hat Customer Portal (login required).

Apache Maven 3.6 or higher is installed. Maven is available from the Apache Maven Project
website.

14.1. WHAT IS OPTAWEB VEHICLE ROUTING?

The main purpose of many businesses is to transport various types of cargo. The goal of these
businesses is to deliver a piece of cargo from the loading point to a destination and use its vehicle fleet
in the most efficient way. One of the main objectives is to minimize travel costs which are measured in
either time or distance.

This type of optimization problem is referred to as the vehicle routing problem (VRP) and has many
variations.

Red Hat build of OptaPlanner can solve many of these vehicle routing variations and provides solution
examples. OptaPlanner enables developers to focus on modeling business rules and requirements
instead of learning constraint programming theory. OptaWeb Vehicle Routing expands the vehicle
routing capabilities of OptaPlanner by providing a starter application that answers questions such as
these:

Where do I get the distances and travel times?

How do I visualize the solution on a map?

How do I build an application that runs in the cloud?

OptaWeb Vehicle Routing uses OpenStreetMap (OSM) data files. For information about
OpenStreetMap, see the OpenStreetMap web site.

Use the following definitions when working with OptaWeb Vehicle Routing:

Region: An arbitrary area on the map of Earth, represented by an OSM file. A region can be a country, a
city, a continent, or a group of countries that are frequently used together. For example, the DACH
region includes Germany (DE), Austria (AT), and Switzerland (CH).

Country code: A two-letter code assigned to a country by the ISO-3166 standard. You can use a country
code to filter geosearch results. Because you can work with a region that spans multiple countries (for
example, the DACH region), OptaWeb Vehicle Routing accepts a list of country codes so that
geosearch filtering can be used with such regions. For a list of country codes, see ISO 3166 Country
Codes

Geosearch: A type of query where you provide an address or a place name of a region as the search
keyword and receive a number of GPS locations as a result. The number of locations returned depends
on how unique the search keyword is. Because most place names are not unique, filter out nonrelevant

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

196

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html
https://maven.apache.org/
https://en.wikipedia.org/wiki/Constraint_programming
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://www.iso.org/iso-3166-country-codes.html

results by including only places in the country or countries that are in your working region.

14.2. DOWNLOAD AND BUILD THE OPTAWEB VEHICLE ROUTING
DEPLOYMENT FILES

You must download and prepare the deployment files before building and deploying OptaWeb Vehicle
Routing.

Procedure

1. Navigate to the Software Downloads page in the Red Hat Customer Portal (login required), and
select the product and version from the drop-down options:

Product: Decision Manager

Version: 7.11.0

2. Download Red Hat Decision Manager 7.11.0 Kogito and OptaPlanner 8 Decision Services
Quickstarts (rhdm-7.11.0-decision-services-quickstarts.zip).

3. Extract the rhdm-7.11.0-decision-services-quickstarts.zip file.

4. Download the Red Hat Decision Manager 7.11 Maven Repository Kogito and OptaPlanner 8
Maven Repository (rhdm-7.11.0-kogito-maven-repository.zip) file.

5. Extract the rhdm-7.11.0-kogito-maven-repository.zip file.

6. Copy the contents of the rhdm-7.11.0-kogito-maven-repository/maven-repository
subdirectory into the ~/.m2/repository directory.

7. Navigate to the optaweb-8.5.0.Final-redhat-00004/optaweb-vehicle-routing directory.

8. Enter the following command to build OptaWeb Vehicle Routing:

mvn clean package -DskipTests

14.3. RUN OPTAWEB VEHICLE ROUTING LOCALLY USING THE
RUNLOCALLY.SH SCRIPT

Linux users can use the runLocally.sh Bash script to run OptaWeb Vehicle Routing.

NOTE

The runLocally.sh script does not run on macOS. If you cannot use the runLocally.sh
script, see Section 14.4, “Configure and run OptaWeb Vehicle Routing manually” .

The runLocally.sh script automates the following setup steps that otherwise must be carried out
manually:

Create the data directory.

Download selected OpenStreetMap (OSM) files from Geofabrik.

Try to associate a country code with each downloaded OSM file automatically.

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

197

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

Build the project if the standalone JAR file does not exist.

Launch OptaWeb Vehicle Routing by taking a single region argument or by selecting the region
interactively.

See the following sections for instructions about executing the runLocally.sh script:

Section 14.3.1, “Run the OptaWeb Vehicle Routing runLocally.sh script in quick start mode”

Section 14.3.2, “Run the OptaWeb Vehicle Routing runLocally.sh script in interactive mode”

Section 14.3.3, “Run the OptaWeb Vehicle Routing runLocally.sh script in non-interactive mode”

14.3.1. Run the OptaWeb Vehicle Routing runLocally.sh script in quick start mode

The easiest way to get started with OptaWeb Vehicle Routing is to run the runLocally.sh script without
any arguments.

Prerequisites

OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 14.2,
“Download and build the OptaWeb Vehicle Routing deployment files”.

Internet access is available.

Procedure

1. Enter the following command in the rhdm-7.11.0-decision-services-quickstarts/optaweb-
8.5.0.Final-redhat-00004/optaweb-vehicle-routing directory.

 ./runLocally.sh

2. If prompted to create the .optaweb-vehicle-routing directory, enter y. You are prompted to
create this directory the first time you run the script.

3. If prompted to download an OSM file, enter y. The first time that you run the script, OptaWeb
Vehicle Routing downloads the Belgium OSM file.
The application starts after the OSM file is downloaded.

4. To open the OptaWeb Vehicle Routing user interface, enter the following URL in a web browser:

http://localhost:8080

NOTE

The first time that you run the script, it will take a few minutes to start because the OSM
file must be imported by GraphHopper and stored as a road network graph. The next time
you run the runlocally.sh script, load times will be significantly faster.

Next steps

Section 14.6, “Using OptaWeb Vehicle Routing”

14.3.2. Run the OptaWeb Vehicle Routing runLocally.sh script in interactive mode

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

198

Use interactive mode to see the list of downloaded OSM files and country codes assigned to each
region. You can use the interactive mode to download additional OSM files from Geofabrik without
visiting the website and choosing a destination for the download.

Prerequisites

OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 14.2,
“Download and build the OptaWeb Vehicle Routing deployment files”.

Internet access is available.

Procedure

1. Change directory to rhdm-7.11.0-decision-services-quickstarts/optaweb-8.5.0.Final-redhat-
00004/optaweb-vehicle-routing.

2. Enter the following command to run the script in interactive mode:

./runLocally.sh -i

3. At the Your choice prompt, enter d to display the download menu. A list of previously
downloaded regions appears followed by a list of regions that you can download.

4. Optional: Select a region from the list of previously downloaded regions:

a. Enter the number associated with a region in the list of downloaded regions.

b. Press the Enter key.

5. Optional: Download a region:

a. Enter the number associated with the region that you want to download. For example, to
select the map of Europe, enter 5.

b. To download the map, enter d then press the Enter key.

c. To download a specific region within the map, enter e then enter the number associated
with the region that you want to download, and press the Enter key.

USING LARGE OSM FILES

For the best user experience, use smaller regions such as individual
European or US states. Using OSM files larger than 1 GB will require
significant RAM size and take a lot of time (up to several hours) for the
initial processing.

The application starts after the OSM file is downloaded.

6. To open the OptaWeb Vehicle Routing user interface, enter the following URL in a web browser:

http://localhost:8080

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

199

Next steps

Section 14.6, “Using OptaWeb Vehicle Routing”

14.3.3. Run the OptaWeb Vehicle Routing runLocally.sh script in non-interactive
mode

Use OptaWeb Vehicle Routing in non-interactive mode to start OptaWeb Vehicle Routing with a single
command that includes an OSM file that you downloaded previously. This is useful when you want to
switch between regions quickly or when doing a demo.

Prerequisites

OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 14.2,
“Download and build the OptaWeb Vehicle Routing deployment files”.

The OSM file for the region that you want to use has been downloaded. For information about
downloading OSM files, see Section 14.3.2, “Run the OptaWeb Vehicle Routing runLocally.sh
script in interactive mode”.

Internet access is available.

Procedure

1. Change directory to rhdm-7.11.0-decision-services-quickstarts/optaweb-8.5.0.Final-redhat-
00004/optaweb-vehicle-routing.

2. Execute the following command where <OSM_FILE_NAME> is an OSM file that you
downloaded previously:

./runLocally.sh <OSM_FILE_NAME>

Next steps

Section 14.6, “Using OptaWeb Vehicle Routing”

14.3.4. Update the data directory

You can update the data directory that OptaWeb Vehicle Routing uses if you want to use a different
data directory. The default data directory is $HOME/.optaweb-vehicle-routing.

Prerequisites

OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 14.2,
“Download and build the OptaWeb Vehicle Routing deployment files”.

Procedure

To use a different data directory, add the directory’s absolute path to the .DATA_DIR_LAST
file in the current data directory.

To change country codes associated with a region, edit the corresponding file in the
country_codes directory, in the current data directory.
For example, if you downloaded an OSM file for Scotland and the script fails to guess the
country code, set the content of country_codes/scotland-latest to GB.

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

200

To remove a region, delete the corresponding OSM file from openstreetmap directory in the
data directory and delete the region’s directory in the graphhopper directory.

14.4. CONFIGURE AND RUN OPTAWEB VEHICLE ROUTING
MANUALLY

The easiest way to run OptaWeb Vehicle Routing is to use the runlocally.sh script. However, if Bash is
not available on your system you can manually complete the steps that the runlocally.sh script
performs.

Prerequisites

OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 14.2,
“Download and build the OptaWeb Vehicle Routing deployment files”.

Internet access is available.

Procedure

1. Download routing data.
The routing engine requires geographical data to calculate the time it takes vehicles to travel
between locations. You must download and store OpenStreetMap (OSM) data files on the local
file system before you run OptaWeb Vehicle Routing.

NOTE

The OSM data files are typically between 100 MB to 1 GB and take time to
download so it is a good idea to download the files before building or starting the
OptaWeb Vehicle Routing application.

a. Open http://download.geofabrik.de/ in a web browser.

b. Click a region in the Sub Region list, for example Europe. The subregion page opens.

c. In the Sub Regions table, download the OSM file (.osm.pbf) for a country, for example
Belgium.

2. Create the data directory structure.
OptaWeb Vehicle Routing reads and writes several types of data on the file system. It reads
OSM (OpenStreetMap) files from the openstreetmap directory, writes a road network graph to
the graphhopper directory, and persists user data in a directory called db. Create a new
directory dedicated to storing all of these data to make it easier to upgrade to a newer version
of OptaWeb Vehicle Routing in the future and continue working with the data you created
previously.

a. Create the $HOME/.optaweb-vehicle-routing directory.

b. Create the openstreetmap directory in the $HOME/.optaweb-vehicle-routing directory:

$HOME/.optaweb-vehicle-routing
└── openstreetmap

c. Move all of your downloaded OSM files (files with the extension .osm.pbf) to the
openstreetmap directory.

The rest of the directory structure is created by the OptaWeb Vehicle Routing application

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

201

http://download.geofabrik.de/

The rest of the directory structure is created by the OptaWeb Vehicle Routing application
when it runs for the first time. After that, your directory structure is similar to the following
example:

$HOME/.optaweb-vehicle-routing

├── db
│ └── vrp.mv.db
├── graphhopper
│ └── belgium-latest
└── openstreetmap
 └── belgium-latest.osm.pbf

3. Change directory to rhdm-7.11.0-decision-services-quickstarts/optaweb-8.5.0.Final-redhat-
00004/optaweb-vehicle-routing/optaweb-vehicle-routing-standalone/target.

4. To run OptaWeb Vehicle Routing, enter the following command:

java \
-Dapp.demo.data-set-dir=$HOME/.optaweb-vehicle-routing/dataset \
-Dapp.persistence.h2-dir=$HOME/.optaweb-vehicle-routing/db \
-Dapp.routing.gh-dir=$HOME/.optaweb-vehicle-routing/graphhopper \
-Dapp.routing.osm-dir=$HOME/.optaweb-vehicle-routing/openstreetmap \
-Dapp.routing.osm-file=<OSM_FILE_NAME> \
-Dapp.region.country-codes=<COUNTRY_CODE_LIST> \
-jar quarkus-app/quarkus-run.jar

In this command, replace the following variables:

<OSM_FILE_NAME>: The OSM file for the region that you want to use and that you
downloaded previously

<COUNTRY_CODE_LIST>: A comma-separated list of country codes used to filter
geosearch queries. For a list of country codes, see ISO 3166 Country Codes.
The application starts after the OSM file is downloaded.

In the following example, OptaWeb Vehicle Routing downloads the OSM map of Central
America (central-america-latest.osm.pbf) and searches in the countries Belize (BZ) and
Guatemala (GT).

java \
-Dapp.demo.data-set-dir=$HOME/.optaweb-vehicle-routing/dataset \
-Dapp.persistence.h2-dir=$HOME/.optaweb-vehicle-routing/db \
-Dapp.routing.gh-dir=$HOME/.optaweb-vehicle-routing/graphhopper \
-Dapp.routing.osm-dir=$HOME/.optaweb-vehicle-routing/openstreetmap \
-Dapp.routing.osm-file=entral-america-latest.osm.pbf \
-Dapp.region.country-codes=BZ,GT \
-jar quarkus-app/quarkus-run.jar

5. To open the OptaWeb Vehicle Routing user interface, enter the following URL in a web browser:

http://localhost:8080

Next steps

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

202

https://www.iso.org/iso-3166-country-codes.html

Section 14.6, “Using OptaWeb Vehicle Routing”

14.5. RUN OPTAWEB VEHICLE ROUTING ON RED HAT OPENSHIFT
CONTAINER PLATFORM

Linux users can use the runOnOpenShift.sh Bash script to install OptaWeb Vehicle Routing on Red Hat
OpenShift Container Platform.

NOTE

The runOnOpenShift.sh script does not run on macOS.

Prerequisites

You have access to an OpenShift cluster and the OpenShift command-line interface (oc) has
been installed. For information about Red Hat OpenShift Container Platform, see Installing
OpenShift Container Platform.

OptaWeb Vehicle Routing has been successfully built with Maven as described in Section 14.2,
“Download and build the OptaWeb Vehicle Routing deployment files”.

Internet access is available.

Procedure

1. Log in to or start a Red Hat OpenShift Container Platform cluster.

a. Enter the following command where <PROJECT_NAME> is the name of your new project:

oc new-project <PROJECT_NAME>

b. If necessary, change directory to rhdm-7.11.0-decision-services-quickstarts/optaweb-
8.5.0.Final-redhat-00004/optaweb-vehicle-routing.

c. Enter the following command to execute the runOnOpenShift.sh script and download an
OpenStreetMap (OSM) file:

./runOnOpenShift.sh <OSM_FILE_NAME> <COUNTRY_CODE_LIST>
<OSM_FILE_DOWNLOAD_URL>

In this command, replace the following variables:

<OSM_FILE_NAME>: The name of a file downloaded from
<OSM_FILE_DOWNLOAD_URL>.

<COUNTRY_CODE_LIST>: A comma-separated list of country codes used to filter
geosearch queries. For a list of country codes, see ISO 3166 Country Codes.

<OSM_FILE_DOWNLOAD_URL>: The URL of an OSM data file in PBF format accessible
from OpenShift. The file will be downloaded during backend startup and saved as
/deployments/local/<OSM_FILE_NAME>.
In the following example, OptaWeb Vehicle Routing downloads the OSM map of Central
America (central-america-latest.osm.pbf) and searches in the countries Belize (BZ) and
Guatemala (GT).

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

203

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/index
https://www.iso.org/iso-3166-country-codes.html

./runOnOpenShift.sh central-america-latest.osm.pbf BZ,GT
http://download.geofabrik.de/europe/central-america-latest.osm.pbf

NOTE

For help with the runOnOpenShift.sh script, enter ./runOnOpenShift.sh --help.

14.5.1. Updating the deployed OptaWeb Vehicle Routing application with local
changes

After you deploy your OptaWeb Vehicle Routing application on Red Hat OpenShift Container Platform,
you can update the back end and front end.

Prerequisites

OptaWeb Vehicle Routing has been successfully built with Maven and deployed on OpenShift.

Procedure

To update the back end, perform the following steps:

1. Change the source code and build the back-end module with Maven.

2. Change directory to rhdm-7.11.0-decision-services-quickstarts/optaweb-8.5.0.Final-
redhat-00004/optaweb-vehicle-routing.

3. Enter the following command to start the OpenShift build:

To update the front end, perform the following steps:

1. Change the source code and build the front-end module with the npm utility.

2. Change directory to sources/optaweb-vehicle-routing-frontend.

3. Enter the following command to start the OpenShift build:

Next steps

Section 14.6, “Using OptaWeb Vehicle Routing”

14.6. USING OPTAWEB VEHICLE ROUTING

In the OptaWeb Vehicle Routing application, you can mark a number of locations on the map. The first
location is assumed to be the depot. Vehicles must deliver goods from this depot to every other location
that you marked.

You can set the number of vehicles and the carrying capacity of every vehicle. However, the route is not
guaranteed to use all vehicles. The application uses as many vehicles as required for an optimal route.

The current version has certain limitations:

oc start-build backend --from-dir=. --follow

oc start-build frontend --from-dir=docker --follow

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

204

Every delivery to a location is supposed to take one point of vehicle capacity. For example, a
vehicle with a capacity of 10 can visit up to 10 locations before returning to the depot.

Setting custom names of vehicles and locations is not supported.

14.6.1. Creating a route

To create an optimal route, use the Demo tab of the OptaWeb Vehicle Routing user interface.

Prerequisites

OptaWeb Vehicle Routing is running and you have access to the user interface.

Procedure

1. In OptaWeb Vehicle Routing, click Demo to open the Demo tab.

2. Use the blue minus and plus buttons above the map to set the number of vehicles. Each vehicle
has a default capacity of 10.

3. Use the plus button in a square on the map to zoom in as required.

NOTE

Do not double-click to zoom in. A double click also creates a location.

4. Click a location for the depot.

5. Click other locations on the map for delivery points.

6. If you want to delete a location:

a. Hover the mouse cursor over the location to see the location name.

b. Find the location name in the list in the left part of the screen.

c. Click the X icon next to the name.

Every time you add or remove a location or change the number of vehicles, the application creates and
displays a new optimal route. If the solution uses several vehicles, the application shows the route for
every vehicle in a different color.

14.6.2. Viewing and setting other details

You can use other tabs in the OptaWeb Vehicle Routing user interface to view and set additional details.

Prerequisites

OptaWeb Vehicle Routing is running and you have access to the user interface.

Procedure

Click the Vehicles tab to view, add, and remove vehicles, and also set the capacity for every
vehicle.

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

205

Click the Visits tab to view and remove locations.

Click the Route tab to select each vehicle and view the route for the selected vehicle.

14.6.3. Creating custom data sets with OptaWeb Vehicle Routing

There is a built-in demo data set consisting of a several large Belgian cities. If you want to have more
demos available in the Load demo menu, you can prepare your own data sets.

Procedure

1. In OptaWeb Vehicle Routing, add a depot and one or more of visits by clicking on the map or
using geosearch.

2. Click Export and save the file in the data set directory.

NOTE

The data set directory is the directory specified in the app.demo.data-set-dir
property.

If the application is running through the runLocally.sh script, the data set
directory is set to $HOME/.optaweb-vehicle-routing/dataset.

Otherwise, the property is taken from the application.properties file and
defaults to rhdm-7.11.0-decision-services-quickstarts/optaweb-8.5.0.Final-
redhat-00004/optaweb-vehicle-routing/optaweb-vehicle-routing-
standalone/target/local/dataset.

You can edit the app.demo.data-set-dir property to specify a diffent data
directory.

3. Edit the YAML file and choose a unique name for the data set.

4. Restart the back end.

After you restart the back end, files in the data set directory appear in the Load demo menu.

14.6.4. Troubleshooting OptaWeb Vehicle Routing

If the OptaWeb Vehicle Routing behaves unexpectedly, follow this procedure to trouble-shoot.

Prerequisites

OptaWeb Vehicle Routing is running and behaving unexpectedly.

Procedure

1. To identify issues, review the back-end terminal output log.

2. To resolve issues, remove the back-end database:

a. Stop the back end by pressing Ctrl+C in the back-end terminal window.

b. Remove the optaweb-vehicle-routing/optaweb-vehicle-routing-backend/local/db

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

206

b. Remove the optaweb-vehicle-routing/optaweb-vehicle-routing-backend/local/db
directory.

c. Restart OptaWeb Vehicle Routing.

14.7. OPTAWEB VEHICLE ROUTING DEVELOPMENT GUIDE

This section describes how to configure and run the back-end and front-end modules in development
mode.

14.7.1. OptaWeb Vehicle Routing project structure

The OptaWeb Vehicle Routing project is a multi-module Maven project.

Figure 14.1. Module dependency tree diagram

distribution

docs standalone

The back-end and front-end modules are at the bottom of the module tree. These modules contain the
application source code.

The standalone module is an assembly module that combines the back end and front end into a single
executable JAR file.

The distribution module represents the final assembly step. It takes the standalone application and the
documentation and wraps them in an archive that is easy to distribute.

The back end and front end are separate projects that you can build and deploy separately. In fact, they
are written in completely different languages and built with different tools. Both projects have tools that
provide a modern developer experience with fast turn-around between code changes and the running
application.

The next sections describe how to run both back-end and front-end projects in development mode.

14.7.2. The OptaWeb Vehicle Routing back-end module

The back-end module contains a server-side application that uses Red Hat build of OptaPlanner to
optimize vehicle routes. Optimization is a CPU-intensive computation that must avoid any I/O
operations in order to perform to its full potential. Because one of the chief objectives is to minimize
travel cost, either time or distance, OptaWeb Vehicle Routing keeps the travel cost information in RAM
memory. While solving, OptaPlanner needs to know the travel cost between every pair of locations
entered by the user. This information is stored in a structure called the distance matrix.

When you enter a new location, OptaWeb Vehicle Routing calculates the travel cost between the new
location and every other location that has been entered so far, and stores the travel cost in the distance
matrix. The travel cost calculation is performed by the GraphHopper routing engine.

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

207

https://github.com/graphhopper/graphhopper

The back-end module implements the following additional functionality:

Persistence

WebSocket connection for the front end

Data set loading, export, and import

To learn more about the back-end code architecture, see Section 14.8, “OptaWeb Vehicle Routing
back-end architecture”.

The next sections describe how to configure and run the back end in development mode.

14.7.2.1. Running the OptaWeb Vehicle Routing back-end module

You can run the back-end module in Quarkus development mode.

Prerequisites

OptaWeb Vehicle Routing has been configured as described in Section 14.4, “Configure and run
OptaWeb Vehicle Routing manually”.

Procedure

1. Change directory to rhdm-7.11.0-decision-services-quickstarts/optaweb-8.5.0.Final-redhat-
00004/optaweb-vehicle-routing/optaweb-vehicle-routing-backend.

2. To run the back end in development mode, enter the following command:

14.7.2.2. Running the OptaWeb Vehicle Routing back-end module from IntelliJ IDEA
Ultimate

You can use IntelliJ IDEA Ulitmate to run the OptaWeb Vehicle Routing back-end module to make it
easier to develop your project. IntelliJ IDEA Ultimate includes a Quarkus plug-in that automatically
creates run configurations for modules that use the Quarkus framework.

Procedure

Use the optaweb-vehicle-routing-backend run configuration to run the back end.

Additional resources

For more information, see Run the Quarkus application.

14.7.2.3. Quarkus development mode

In development mode, if there are changes to the back-end source code or configuration and you
refresh the browser tab where the front end runs, the back-end automatically restarts.

Learn more about Quarkus development mode.

14.7.2.4. Changing OptaWeb Vehicle Routing back-end module system property values

You can temporarily or permanently override the default system property values of the OptaWeb

mvn compile quarkus:dev

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

208

https://www.jetbrains.com/help/idea/quarkus.html#run-app
https://quarkus.io/guides/maven-tooling#development-mode

You can temporarily or permanently override the default system property values of the OptaWeb
Vehicle Routing back-end module.

The OptaWeb Vehicle Routing back-end module system properties are stored in the
/src/main/resources/application.properties file. This file is under version control. Use it to permanently
store default configuration property values and to define Quarkus profiles.

Prerequisites

The OptaWeb Vehicle Routing starter application has been downloaded and extracted. For
information, see Section 14.2, “Download and build the OptaWeb Vehicle Routing deployment
files”.

Procedure

To temporarily override a default system property value, include the -D<PROPERTY>=
<VALUE> argument when you run the mvn or java command, where <PROPERTY> is the
name of the property that you want to change and <VALUE> is the value that you want to
temporarily assign to that property. The following example shows how to temporarily change
the value of the quarkus.http.port system property to 8181 when you use Maven to compile a
Quarkus project in dev mode:

mvn compile quarkus:dev -Dquarkus.http.port=8181

This temporarily changes the value of the property stored in the
/src/main/resources/application.properties file.

To change a configuration value permanently, for example to store a configuration that is
specific to your development environment, copy the contents of the env-example file to the
optaweb-vehicle-routing-backend/.env file.
This file is excluded from version control and therefore it does not exist when you clone the
repository. You can make changes in the .env file without affecting the Git working tree.

Additional resources

For a complete list of OptaWeb Vehicle Routing configuration properties, see Section 14.9, “OptaWeb
Vehicle Routing back-end configuration properties”.

14.7.2.5. OptaWeb Vehicle Routing backend logging

OptaWeb Vehicle Routing uses the SLF4J API and Logback as the logging framework. For more
information, see Quarkus - Configuring Logging .

14.7.3. Working with the OptaWeb Vehicle Routing front-end module

The front-end project was bootstrapped with Create React App. Create React App provides a number
of scripts and dependencies that help with development and with building the application for
production.

Prerequisites

The OptaWeb Vehicle Routing starter application has been downloaded and extracted. For
information, see Section 14.2, “Download and build the OptaWeb Vehicle Routing deployment
files”.

Procedure

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

209

https://quarkus.io/guides/logging
https://create-react-app.dev/

Procedure

1. On Fedora, enter the following command to set up the development environment:

See Downloading and installing Node.js and npm for more information about installing npm.

2. Change directory to rhdm-7.11.0-decision-services-quickstarts/optaweb-8.5.0.Final-redhat-
00004/optaweb-vehicle-routing/optaweb-vehicle-routing-frontend.

3. Install npm dependencies:

Unlike Maven, the npm package manager installs dependencies in node_modules under the
project directory and does that only when you execute npm install. Whenever the
dependencies listed in package.json change, for example when you pull changes to the master
branch, you must execute npm install before you run the development server.

4. Enter the following command to run the development server:

5. If it does not open automatically, open http://localhost:3000/ in a web browser.
By default, the npm start command attempts to open this URL in your default browser.

NOTE

If you do not want the npm start command to open a new browser tab each time
you run it, export the BROWSER=none environment variable. You can use
.env.local file to make this preference permanent. To do that, enter the following
command:

The browser refreshes the page whenever you make changes in the front-end source code. The
development server process running in the terminal picks up the changes as well and prints
compilation and lint errors to the console.

6. Enter the following command to run tests:

npm test

7. Change the value of the REACT_APP_BACKEND_URL environment variable to specify the
location of the back-end project to be used by npm when you execute npm start or npm run
build, for example:

REACT_APP_BACKEND_URL=http://10.0.0.123:8081

NOTE

sudo dnf install npm

npm install

npm start

echo BROWSER=none >> .env.local

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

210

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

NOTE

Environment variables are hard coded inside the JavaScript bundle during the
npm build process, so you must specify the back-end location before you build
and deploy the front end.

To learn more about the React environment variables, see Adding Custom Environment
Variables.

8. To build the front end, enter one of the following commands:

./mvnw install

mvn install

14.8. OPTAWEB VEHICLE ROUTING BACK-END ARCHITECTURE

Domain model and use cases are essential for the application. The OptaWeb Vehicle Routing domain
model is at the center of the architecture and is surround by the application layer that embeds use
cases. Functions such as route optimization, distance calculation, persistence, and network
communication are considered implementation details and are placed at the outermost layer of the
architecture.

Figure 14.2. Diagram of application layers

Use cases

Infrastructure

14.8.1. Code organization

The back-end code is organized in three layers, illustrated in the preceding graphic.

org.optaweb.vehiclerouting
├── domain
├── plugin # Infrastructure layer
│ ├── persistence
│ ├── planner
│ ├── routing
│ └── rest
└── service # Application layer
 ├── demo
 ├── distance
 ├── error
 ├── location
 ├── region

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

211

https://create-react-app.dev/docs/adding-custom-environment-variables/

 ├── reload
 ├── route
 └── vehicle

The service package contains the application layer that implements use cases. The plugin package
contains the infrastructure layer.

Code in each layer is further organized by function. This means that each service or plug-in has its own
package.

14.8.2. Dependency rules

Compile-time dependencies are only allowed to point from outer layers towards the center. Following
this rule helps to keep the domain model independent of underlying frameworks and other
implementation details and models the behavior of business entities more precisely. With presentation
and persistence being pushed out to the periphery, it is easier to test the behavior of business entities
and use cases.

The domain has no dependencies.

Services only depend on the domain. If a service needs to send a result (for example to the database or
to the client), it uses an output boundary interface. Its implementation is injected by the contexts and
dependency injection (CDI) container.

Plug-ins depend on services in two ways. First, they invoke services based on events such as a user input
or a route update coming from the optimization engine. Services are injected into plug-ins which moves
the burden of their construction and dependency resolution to the IoC container. Second, plug-ins
implement service output boundary interfaces to handle use case results, for example persisting
changes to the database or sending a response to the web UI.

14.8.3. The domain package

The domain package contains business objects that model the domain of this project, for example
Location, Vehicle, Route. These objects are strictly business-oriented and must not be influenced by
any tools and frameworks, for example object-relational mapping tools and web service frameworks.

14.8.4. The service package

The service package contains classes that implement use cases . A use case describes something that
you want to do, for example adding a new location, changing vehicle capacity, or finding coordinates for
an address. The business rules that govern use cases are expressed using the domain objects.

Services often need to interact with plug-ins in the outer layer, such as persistence, web, and
optimization. To satisfy the dependency rules between layers, the interaction between services and
plug-ins is expressed in terms of interfaces that define the dependencies of a service. A plug-in can
satisfy a dependency of a service by providing a bean that implements the boundary interface of the
service. The CDI container creates an instance of the plug-in bean and injects it to the service at
runtime. This is an example of the inversion of control principle.

14.8.5. The plugin package

The plugin package contains infrastructure functions such as optimization, persistence, routing, and
network.

14.9. OPTAWEB VEHICLE ROUTING BACK-END CONFIGURATION

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

212

https://quarkus.io/guides/cdi

14.9. OPTAWEB VEHICLE ROUTING BACK-END CONFIGURATION
PROPERTIES

You can set the OptaWeb Vehicle Routing application properties listed in the following table.

Property Type Example Description

app.demo.data-set-
dir

Relative or absolute
path

/home/user/.optaweb
-vehicle-
routing/dataset

Custom data sets are
loaded from this
directory. Defaults to
local/dataset.

app.persistence.h2-
dir

Relative or absolute
path

/home/user/.optaweb
-vehicle-routing/db

The directory used by
H2 to store the
database file. Defaults
to local/db.

app.region.country-
codes

List of ISO 3166-1
alpha-2 country codes

US, GB,IE, DE,AT,CH,
may be empty

Restricts geosearch
results.

app.routing.engine Enumeration air, graphhopper Routing engine
implementation.
Defaults to
graphhopper.

app.routing.gh-dir Relative or absolute
path

/home/user/.optaweb
-vehicle-
routing/graphhopper

The directory used by
GraphHopper to store
road network graphs.
Defaults to
local/graphhopper.

app.routing.osm-dir Relative or absolute
path

/home/user/.optaweb
-vehicle-
routing/openstreetm
ap

The directory that
contains OSM files.
Defaults to
local/openstreetmap.

app.routing.osm-file File name belgium-
latest.osm.pbf

Name of the OSM file to
be loaded by
GraphHopper. The file
must be placed under
app.routing.osm-dir.

optaplanner.solver.t
ermination.spent-
limit

java.time.Duration
1m

150s

P2dT21h
(PnDTnHnMn
.nS)

How long the solver
should run after a
location change occurs.

CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION

213

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

server.address IP address or hostname 10.0.0.123, my-
vrp.geo-
1.openshiftapps.com

Network address to
which to bind the server.

server.port Port number 4000, 8081 Server HTTP port.

Property Type Example Description

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

214

APPENDIX A. VERSIONING INFORMATION
Documentation last updated on Monday, July 26, 2021.

APPENDIX A. VERSIONING INFORMATION

215

APPENDIX B. CONTACT INFORMATION
Red Hat Decision Manager documentation team: brms-docs@redhat.com

Red Hat Decision Manager 7.11 Developing solvers with Red Hat build of OptaPlanner in Red Hat Decision Manager

216

mailto:brms-docs@redhat.com

	Table of Contents
	PREFACE
	MAKING OPEN SOURCE MORE INCLUSIVE
	PART I. UPGRADING YOUR RED HAT BUILD OF OPTAPLANNER PROJECTS TO OPTAPLANNER 8
	CHAPTER 1. CHANGES THAT ARE NOT COMPATIBLE WITH OPTAPLANNER 7.X OR EARLIER
	Java 11 or higher required
	SolverFactory and PlannerBenchmarkFactory no longer support KIE containers
	OSGi metadata removed
	Refrain from using Java serialization
	SolverFactory.getScoreDirectorFactory() replaced with ScoreManager
	SolverFactory: getSolverConfig() removed
	SolverConfig: buildSolver() removed
	PlannerBenchmarkConfig: buildPlannerBenchmark() removed
	SolverFactory: cloneSolverFactory() removed
	SolverFactory: createEmpty() removed
	XML <solver/> root element now belongs to the https://www.optaplanner.org/xsd/solver namespace
	Property subPillarEnabled in move selector configuration has been removed
	Solver: getScoreDirectorFactory() removed
	Solver.explainBestScore() has been removed
	The Solver interface methods getBestSolution(), getBestScore(), and getTimeMillisSpent() have been removed
	Annotation scanning has been removed
	New package for @PlanningFactProperty and @PlanningFactCollectionProperty
	filterClassList replaced with a single filter class
	AcceptorConfig renamed to LocalSearchAcceptorConfig
	Custom properties XML configuration format changes
	<variableNameInclude/> elements are now wrapped by the <variableNameIncludes/> element
	Solution interface removed
	BestSolutionChangedEvent: isNewBestSolutionInitialized() removed
	<valueSelector>: variableName is now an attribute
	Partitioned Search: threadFactoryClass removed
	SimpleDoubleScore and HardSoftDoubleScore removed
	Score.toInitializedScore() removed
	Various justification Comparators removed
	FeasibilityScore removed
	@PlanningEntity.movableEntitySelectionFilter removed
	@PlanningVariable.reinitializeVariableEntityFilter removed
	*ScoreHolder classes turned into interfaces
	ValueRangeFactory class now final
	ConstraintMatchTotal and Indictment are now interfaces
	ScoreManager: generic type Score added
	ConstraintMatchTotal, ConstraintMatch, and Indictment: generic type Score added
	ConstraintMatchAwareIncrementalScoreCalculator: generic type Score added
	AbstractCustomPhaseCommand was removed
	Score calculators moved to the public API
	PlannerBenchmarkFactory: createFromSolverFactory() removed
	PlannerBenchmarkFactory: getPlannerBenchmarkConfig() removed
	XML <plannerBenchmark/> root element now belongs to the https://www.optaplanner.org/xsd/benchmark namespace
	ProblemBenchmarksConfig: xStreamAnnotatedClass removed
	BenchmarkAggregatorFrame: createAndDisplay(PlannerBenchmarkFactory) removed
	Removed JavaScript expression support in configuration
	Removed the deprecated variable listeners

	CHAPTER 2. CHANGES BETWEEN OPTAPLANNER 8.2.0 AND OPTAPLANNER 8.3.0
	ConstraintMatch.compareTo() inconsistent with equals()

	PART II. GETTING STARTED WITH RED HAT BUILD OF OPTAPLANNER
	CHAPTER 3. INTRODUCTION TO RED HAT BUILD OF OPTAPLANNER
	3.1. PLANNING PROBLEMS
	3.2. NP-COMPLETENESS IN PLANNING PROBLEMS
	3.3. SOLUTIONS TO PLANNING PROBLEMS
	3.4. CONSTRAINTS ON PLANNING PROBLEMS

	CHAPTER 4. EXAMPLES PROVIDED WITH RED HAT BUILD OF OPTAPLANNER
	4.1. N QUEENS
	4.1.1. Domain model for N queens

	4.2. CLOUD BALANCING
	4.3. TRAVELING SALESMAN (TSP - TRAVELING SALESMAN PROBLEM)
	4.4. TENNIS CLUB SCHEDULING
	4.5. MEETING SCHEDULING
	4.6. COURSE TIMETABLING (ITC 2007 TRACK 3 - CURRICULUM COURSE SCHEDULING)
	4.7. MACHINE REASSIGNMENT (GOOGLE ROADEF 2012)
	4.8. VEHICLE ROUTING
	4.8.1. Domain model for Vehicle routing

	4.9. PROJECT JOB SCHEDULING
	4.10. TASK ASSIGNING
	4.11. EXAM TIMETABLING (ITC 2007 TRACK 1 - EXAMINATION)
	4.11.1. Domain model for Exam timetabling

	4.12. NURSE ROSTERING (INRC 2010)
	4.13. TRAVELING TOURNAMENT PROBLEM (TTP)
	4.14. CHEAP TIME SCHEDULING
	4.15. INVESTMENT ASSET CLASS ALLOCATION (PORTFOLIO OPTIMIZATION)
	4.16. CONFERENCE SCHEDULING
	4.17. ROCK TOUR
	4.18. FLIGHT CREW SCHEDULING

	CHAPTER 5. DOWNLOADING RED HAT BUILD OF OPTAPLANNER EXAMPLES
	5.1. RUNNING OPTAPLANNER EXAMPLES
	5.2. RUNNING THE RED HAT BUILD OF OPTAPLANNER EXAMPLES IN AN IDE (INTELLIJ, ECLIPSE, OR NETBEANS)

	CHAPTER 6. GETTING STARTED WITH OPTAPLANNER IN BUSINESS CENTRAL: AN EMPLOYEE ROSTERING EXAMPLE
	6.1. DEPLOYING THE EMPLOYEE ROSTERING SAMPLE PROJECT IN BUSINESS CENTRAL
	6.2. RE-CREATING THE EMPLOYEE ROSTERING SAMPLE PROJECT
	6.2.1. Setting up the employee rostering project
	6.2.2. Problem facts and planning entities
	6.2.3. Creating the data model for the employee rostering project
	6.2.3.1. Creating the employee roster planning entity
	6.2.3.2. Creating the employee roster planning solution

	6.2.4. Employee rostering constraints
	6.2.4.1. DRL (Drools Rule Language) rules
	6.2.4.2. Defining constraints for employee rostering using the DRL designer

	6.2.5. Creating rules for employee rostering using guided rules
	6.2.5.1. Guided rules
	6.2.5.2. Creating a guided rule to balance employee shift numbers
	6.2.5.3. Creating a guided rule for no more than one shift per day
	6.2.5.4. Creating a guided rule to match skills to shift requirements
	6.2.5.5. Creating a guided rule to manage day off requests

	6.2.6. Creating a solver configuration for employee rostering
	6.2.7. Configuring Solver termination for the employee rostering project

	6.3. ACCESSING THE SOLVER USING THE REST API
	6.3.1. Registering the Solver using the REST API
	6.3.2. Calling the Solver using the REST API

	CHAPTER 7. GETTING STARTED WITH OPTAPLANNER AND QUARKUS
	7.1. APACHE MAVEN AND RED HAT BUILD OF QUARKUS
	7.2. CONFIGURING THE MAVEN SETTINGS.XML FILE FOR THE ONLINE REPOSITORY
	7.3. DOWNLOADING AND CONFIGURING THE QUARKUS MAVEN REPOSITORY
	7.4. CREATING A RED HAT BUILD OF QUARKUS MAVEN PROJECT USING CODE.QUARKUS.REDHAT.COM

	PART III. RED HAT BUILD OF OPTAPLANNER QUICK START GUIDES
	CHAPTER 8. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A SCHOOL TIMETABLE QUICK START GUIDE
	8.1. CREATING THE SCHOOL TIMETABLE PROJECT
	8.2. MODEL THE DOMAIN OBJECTS
	8.3. DEFINE THE CONSTRAINTS AND CALCULATE THE SCORE
	8.4. GATHER THE DOMAIN OBJECTS IN A PLANNING SOLUTION
	8.5. CREATE THE SOLVER SERVICE
	8.6. SET THE SOLVER TERMINATION TIME
	8.7. RUNNING THE SCHOOL TIMETABLE APPLICATION
	8.7.1. Test the application
	8.7.2. Logging

	CHAPTER 9. RED HAT BUILD OF OPTAPLANNER ON RED HAT BUILD OF QUARKUS: A VACCINATION APPOINTMENT SCHEDULER QUICK START GUIDE
	9.1. HOW THE OPTAPLANNER VACCINATION APPOINTMENT SCHEDULER WORKS
	9.1.1. OptaPlanner vaccination appointment scheduler constraints
	9.1.2. The OptaPlanner solver
	9.1.3. Continuous planning
	9.1.4. Pinned planning entities

	9.2. DOWNLOADING AND RUNNING THE OPTAPLANNER VACCINATION APPOINTMENT SCHEDULER
	9.3. PACKAGE AND RUN THE OPTAPLANNER VACCINATION APPOINTMENT SCHEDULER
	9.4. RUN THE OPTAPLANNER VACCINATION APPOINTMENT SCHEDULER AS A NATIVE EXECUTABLE
	9.5. ADDITIONAL RESOURCES

	CHAPTER 10. RED HAT BUILD OF OPTAPLANNER ON SPRING BOOT: A SCHOOL TIMETABLE QUICK START GUIDE
	10.1. DOWNLOADING AND BUILDING THE SPRING BOOT SCHOOL TIMETABLE QUICK START
	10.2. MODEL THE DOMAIN OBJECTS
	10.3. DEFINE THE CONSTRAINTS AND CALCULATE THE SCORE
	10.4. GATHER THE DOMAIN OBJECTS IN A PLANNING SOLUTION
	10.5. CREATE THE TIMETABLE SERVICE
	10.6. SET THE SOLVER TERMINATION TIME
	10.7. MAKE THE APPLICATION EXECUTABLE
	10.7.1. Try the timetable application
	10.7.2. Test the application
	10.7.3. Logging

	10.8. ADD DATABASE AND UI INTEGRATION

	CHAPTER 11. RED HAT BUILD OF OPTAPLANNER WITH JAVA SOLVERS: A CLOUD BALANCING QUICK START GUIDE
	11.1. GETTING STARTED WITH JAVA SOLVERS: A CLOUD BALANCING EXAMPLE
	11.1.1. Domain Model Design
	11.1.1.1. Designing a domain model
	11.1.1.2. The Computer Class
	11.1.1.3. The Process Class
	11.1.1.4. The CloudBalance Class

	11.1.2. Running the cloud balancing Hello World application
	11.1.3. Solver Configuration
	11.1.4. Score Configuration
	11.1.4.1. Configuring score calculation using Java
	11.1.4.2. Configuring score calculation using Drools

	11.1.5. Further development of the solver

	PART IV. RED HAT BUILD OF OPTAPLANNER STARTER APPLICATIONS
	CHAPTER 12. USING RED HAT BUILD OF OPTAPLANNER IN AN IDE: AN EMPLOYEE ROSTERING EXAMPLE
	12.1. OVERVIEW OF THE EMPLOYEE ROSTERING STARTER APPLICATION
	12.2. BUILDING AND RUNNING THE EMPLOYEE ROSTERING STARTER APPLICATION
	12.2.1. Preparing deployment files
	12.2.2. Running the Employee Rostering starter application JAR file
	12.2.3. Building and running the Employee Rostering starter application using Maven
	12.2.4. Building and running the employee rostering starter application with persistent data storage from the command line
	12.2.5. Building and running the employee rostering starter application using IntelliJ IDEA

	12.3. OVERVIEW OF THE SOURCE CODE OF THE EMPLOYEE ROSTERING STARTER APPLICATION
	12.4. MODIFYING THE EMPLOYEE ROSTERING STARTER APPLICATION

	CHAPTER 13. DEPLOYING AND USING RED HAT BUILD OF OPTAPLANNER IN RED HAT OPENSHIFT CONTAINER PLATFORM: AN EMPLOYEE ROSTERING STARTER EXAMPLE
	13.1. OVERVIEW OF THE EMPLOYEE ROSTERING STARTER APPLICATION
	13.2. INSTALLING AND STARTING THE EMPLOYEE ROSTERING STARTER APPLICATION ON OPENSHIFT
	13.2.1. Deploying the application using the provided script

	13.3. USING THE EMPLOYEE ROSTERING STARTER APPLICATION
	13.3.1. The draft and published periods
	13.3.2. The rotation pattern
	13.3.3. Employee Rostering tenants
	13.3.3.1. Changing an Employee Rostering tenant
	13.3.3.2. Creating a tenant

	13.3.4. Entering skills
	13.3.5. Entering spots
	13.3.6. Entering the list of contracts
	13.3.7. Entering the list of employees
	13.3.8. Setting employee availability
	13.3.9. Viewing and editing shifts in the shift roster
	13.3.10. Creating and viewing the employee shift roster
	13.3.11. Viewing employee shifts
	13.3.12. Publishing the shift roster
	13.3.13. Viewing and editing the rotation pattern

	CHAPTER 14. DEPLOYING AND USING THE RED HAT BUILD OF OPTAPLANNER VEHICLE ROUTE PLANNING STARTER APPLICATION
	14.1. WHAT IS OPTAWEB VEHICLE ROUTING?
	14.2. DOWNLOAD AND BUILD THE OPTAWEB VEHICLE ROUTING DEPLOYMENT FILES
	14.3. RUN OPTAWEB VEHICLE ROUTING LOCALLY USING THE RUNLOCALLY.SH SCRIPT
	14.3.1. Run the OptaWeb Vehicle Routing runLocally.sh script in quick start mode
	14.3.2. Run the OptaWeb Vehicle Routing runLocally.sh script in interactive mode
	14.3.3. Run the OptaWeb Vehicle Routing runLocally.sh script in non-interactive mode
	14.3.4. Update the data directory

	14.4. CONFIGURE AND RUN OPTAWEB VEHICLE ROUTING MANUALLY
	14.5. RUN OPTAWEB VEHICLE ROUTING ON RED HAT OPENSHIFT CONTAINER PLATFORM
	14.5.1. Updating the deployed OptaWeb Vehicle Routing application with local changes

	14.6. USING OPTAWEB VEHICLE ROUTING
	14.6.1. Creating a route
	14.6.2. Viewing and setting other details
	14.6.3. Creating custom data sets with OptaWeb Vehicle Routing
	14.6.4. Troubleshooting OptaWeb Vehicle Routing

	14.7. OPTAWEB VEHICLE ROUTING DEVELOPMENT GUIDE
	14.7.1. OptaWeb Vehicle Routing project structure
	14.7.2. The OptaWeb Vehicle Routing back-end module
	14.7.2.1. Running the OptaWeb Vehicle Routing back-end module
	14.7.2.2. Running the OptaWeb Vehicle Routing back-end module from IntelliJ IDEA Ultimate
	14.7.2.3. Quarkus development mode
	14.7.2.4. Changing OptaWeb Vehicle Routing back-end module system property values
	14.7.2.5. OptaWeb Vehicle Routing backend logging

	14.7.3. Working with the OptaWeb Vehicle Routing front-end module

	14.8. OPTAWEB VEHICLE ROUTING BACK-END ARCHITECTURE
	14.8.1. Code organization
	14.8.2. Dependency rules
	14.8.3. The domain package
	14.8.4. The service package
	14.8.5. The plugin package

	14.9. OPTAWEB VEHICLE ROUTING BACK-END CONFIGURATION PROPERTIES

	APPENDIX A. VERSIONING INFORMATION
	APPENDIX B. CONTACT INFORMATION

