& RedHat

Red Hat Data Grid 7.3

Red Hat Data Grid for OpenShift

Run Data Grid on OpenShift

Last Updated: 2022-06-23

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

Run Data Grid on OpenShift

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to configure, customize, and run Red Hat Data Grid containers on Red Hat OpenShift.

Table of Contents

Table of Contents

CHAPTER 1. RED HAT DAT A GRID .ottt ittt ittt ittt et ttnaeeeeennnneneennnnaneeennnnnnns 4
1.1. DATA GRID DOCUMENTATION 4
1.2. DATA GRID REPOSITORIES 4
1.3. DATA GRID IMAGE DETAILS 4

CHAPTER 2. GETTING STARTED ..ttt ittt ittt et ttneeeeeetanneseeeannneeeeesnnaeeeeennnnns 5
2.1.SYSTEM REQUIREMENTS 5
2.2. CREATING A DATA GRID FOR OPENSHIFT PROJECT 5
2.3.SETTING UP REGISTRY AUTHENTICATION 5

2.3.1. Configuring Hosts with Authentication Tokens 5
2.3.2. Creating Pull Secrets 6

CHAPTER 3. CONFIGURING AUTHENTICATION AND ENCRYPTION ... it eienees 7
3.1. ADDING KEYSTORES TO SECRETS 7
3.2. CONFIGURING DEPLOYMENTS 7
3.3. SETTING UNIQUE KEYSTORES FOR THE HOT ROD PROTOCOL 8

CHAPTER 4. SETTING UP DATA GRID FOROPENSHIFTSERVICESttt iiiiieeeeeennnnns 9
4.1. DATA GRID FOR OPENSHIFT SERVICES 9

4.1.1. Container Storage 9
4.1.2. Partition Handling 9
4.1.3. Confirming Service Availability 10
4.1.3.1. Importing Templates 10

4.2. CREATING CACHE SERVICES 10
4.3. CREATING DATA GRID SERVICES 12

CHAPTER 5. INVOKING THE DATA GRID REST APl .ot ittt ittt tiee e iinnaenaennnns 14
5.1. CREATING EXTERNAL ROUTES TO THE REST API 14
5.2. MAKING REST CALLS 14

5.2.1. Using the OpenShift CA to Make REST Calls 15

CHAPTER 6. CONFIGURING HOT ROD CLIENT S ...ttt et ttiieee e tnneeaeeeennaeneanenns 16
6.1. CONFIGURING TRUSTSTORES WITH HOT ROD 16
6.2. CLIENT INTELLIGENCE 16
6.3. CREATING EXTERNAL ROUTES FORHOT ROD 17
6.4. HOSTNAMES FOR DATA GRID SERVICES 17
6.5. CONFIGURING HOT ROD CLIENTS PROGRAMMATICALLY 18

6.5.1. Hot Rod Configuration Builder On OpenShift 18
6.5.2. Hot Rod Configuration Builder Outside OpenShift 18
6.6. SETTING HOT ROD CLIENT PROPERTIES 19
6.6.1. Hot Rod Configuration Properties On OpenShift 19
6.6.2. Hot Rod Configuration Properties Outside OpenShift 19

CHAPTER 7. REMOTELY CREATING CACHES ... ittt ittt et tieteeeeeennnaenaannnns 21

CHAPTER 8. DEFINING FILE-BASED CACHE STORES ... ittt itiee e ienneeeeannnn, 23

CHAPTER 9. USING DATA GRID DEPLOYMENT CONFIGURATION TEMPLATESciiiiiiiienennns, 25
9.1. DATA GRID DEPLOYMENT CONFIGURATION TEMPLATES 25
9.2. IMPORTING DEPLOYMENT CONFIGURATION TEMPLATES 25
9.3. IMPORTING OPENSHIFT SECRETS 26
9.4. DEPLOYING DATA GRID FOR OPENSHIFT 27
9.5. CONFIGURING DATA GRID FOR OPENSHIFT 27

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

CHAPTER10.SETTINGUP MONITORING ... i i

10.1. DEPLOYING THE PROMETHEUS OPERATOR
10.2. EXPOSING DATA GRID METRICS TO PROMETHEUS
10.3. ENABLING PROMETHEUS TO MONITOR DATA GRID

CHAPTER 11. CONFIGURING DATA GRID FOR OPENSHIFT CLUSTERScooiiiiat

11.1. CONFIGURING CLUSTER DISCOVERY
11.1.1. Configuring DNS_PING
11.1.2. Configuring KUBE_PING

11.2. CONFIGURING JGROUPS ENCRYPTION
11.2.1. Setting Up Symmetric Encryption
1.2.2. Setting Up Asymmetric Encryption

CHAPTER 12. CUSTOMIZING DATA GRID FOROPENSHIFT i

12.1. CLONING THE DATA GRID EXAMPLES
12.2. CREATING S2I BUILDS WITH CUSTOM CONFIGURATION
12.2.1. Setting Up the Data Grid Image
12.2.2. Creating Custom Data Grid Images
12.2.3. Verifying Custom Data Grid Images
12.3. CREATING CUSTOM DATA GRID FOR OPENSHIFT PODS WITH THE CONFIGMAP API
12.3.1. Verifying Custom Data Grid for OpenShift Pods with the ConfigMap API
12.4. CONFIGURING PERSISTENT DATASOURCES
12.4.1. Configuring Internal Datasources
12.4.1.1. Single Datasource Example
12.4.1.2. Multiple Datasource Example
12.4.2. Configuring External Datasources
12.4.3. Datasource Environment Variables

CHAPTER 13. EMBEDDED DATA GRID (LIBRARY MODE)ot

CHAPTER 14. TROUBLESHOOTING DATA GRID FOROPENSHIFTt

14.1. LAUNCHING THE COMMAND LINE INTERFACE (CLI)
14.2. VIEWING POD LOGS

CHAPTER 1S, REFERENCE ..o i i i i i et it

15.1. PROBES
15.2. PORTS
15.3. ADMINISTRATION CONSOLE
15.4. ENVIRONMENT VARIABLES
15.4.1. Monitoring and Logging
15.4.2. Containers
15.4.3. Caches
15.4.3.1. Cache Container Security Configuration
15.4.3.2. Named Cache Configuration
15.4.4. Security Domain
15.4.5. Endpoints

29
29
30

31
31
31
32
32
33
34

35
35
36
36
36
37
38
38
39
39
40
40
40
42

45

46
46
46

47
47
47
48
48
48
49
50

51

51
56
56

Table of Contents

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

CHAPTER 1. RED HAT DATA GRID

Data Grid provides an elastically scalable in-memory data store for Red Hat OpenShift.

Schemaless data structure
Flexibility to store different objects as key-value pairs.
Grid-based data storage
Designed to distribute and replicate data across clusters.
Elastic scaling
Dynamically adjust the number of nodes to meet demand without service disruption.
Data interoperability

Store, retrieve, and query data in the grid from different endpoints.

1.1. DATA GRID DOCUMENTATION

Red Hat Data Grid documentation is available on the Red Hat Customer Portal.

1.2. DATA GRID REPOSITORIES

® Data Grid 7 OpenShift Image holds the container image and resources for Data Grid for
OpenShift.

® OpenShift Quickstart Tutorials provide code examples with how-to and best practice
demonstrations for running Data Grid on OpenShift.

1.3. DATA GRID IMAGE DETAILS

Red Hat Data Grid for OpenShift images are hosted on the Red Hat Container Registry, where you can
find health indexes for the images along with information about each tagged version.

® Red Hat Data Grid for OpenShift Image Tags and Red Hat Advisories

https://access.redhat.com/documentation/en-us/red_hat_data_grid/
https://github.com/jboss-container-images/jboss-datagrid-7-openshift-image
https://github.com/jboss-developer/jboss-jdg-quickstarts/tree/jdg-7.3.x/openshift/
https://access.redhat.com/containers/?tab=tags#/registry.access.redhat.com/jboss-datagrid-7/datagrid73-openshift

CHAPTER 2. GETTING STARTED

CHAPTER 2. GETTING STARTED

2.1. SYSTEM REQUIREMENTS
To use Red Hat Data Grid for OpenShift, you need:

® Arunning Red Hat OpenShift cluster.

For supported Red Hat OpenShift Container Platform versions, refer to Red Hat Data Grid
Supported Configurations.

TIP

Use the Red Hat Container Development Kit to create a local OpenShift cluster with minishift.

® Anocclientinyour $PATH.

2.2. CREATING A DATA GRID FOR OPENSHIFT PROJECT
Set up an OpenShift project where you can run Data Grid for OpenShift pods.

1. Log in to your OpenShift cluster.
If you are new to OpenShift, try the following tutorial: Logging in to an OpenShift Cluster .

2. Create an OpenShift project with the oc new-project command, for example:

I $ oc new-project rhdg-helloworld --display-name="Red Hat Data Grid"

2.3.SETTING UP REGISTRY AUTHENTICATION
You must authenticate with the Red Hat Container Catalog, registry.redhat.io, to pull Data Grid images.
Use one of the following:

® Red Hat customer account username and password. Pull resources from registry.redhat.io with
the docker login command.

® Registry service account tokens. Use authentication tokens to configure multiple hosts. Do the
following:

1. Login to registry.redhat.io.
2. Create or select a Registry Service Account

3. Generate authentication tokens.

2.3.1. Configuring Hosts with Authentication Tokens

Add authentication tokens from your Registry Service Accountto hosts as follows:
1. Select the Docker Login tab and copy the command.

2. Run the docker login command on each host that pulls from registry.redhat.io.

https://access.redhat.com/articles/2435931
https://developers.redhat.com/products/cdk/overview/
https://learn.openshift.com/introduction/cluster-access/

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

3. Verify your Docker configuration.

$ cat ~/.docker/config.json
"registry.redhat.io”: {

"auth": "MTEWMDKkKX..."
}

2.3.2. Creating Pull Secrets

To pull secured container images that are not available on the internal registry for OpenShift, do the
following:

1. Log in to your OpenShift cluster.

2. Select your working project, for example:
I $ oc project rhdg-helloworld
3. Create a generic pull secret with your Docker configuration.

$ oc create secret generic ${SECRET_NAME} \
--from-file=.dockerconfigjson=path/to/.docker/config.json \
--type=kubernetes.io/dockerconfigjson

4. Link the pull secret to your service account.
I $ oc secrets link default ${SECRET_NAME} --for=pull
5. Mount the secret.

I $ oc secrets link builder ${SECRET_NAME}

For more information, including troubleshooting procedures, see Red Hat Container Registry
Authentication.

https://access.redhat.com/RegistryAuthentication

CHAPTER 3. CONFIGURING AUTHENTICATION AND ENCRYPTION

CHAPTER 3. CONFIGURING AUTHENTICATION AND
ENCRYPTION

You need to configure authentication and encryption only if you are using a custom template or want to
use your own keystores with the Data Grid deployment configuration templates.

3.1. ADDING KEYSTORES TO SECRETS

To configure authentication and encryption:

1.

2.

Create a keystore (.jks) with a trusted certificate.
Both HTTPS and Hot Rod services can use the same keystore or you can create separate
keystores.

Add the keystore as an OpenShift secret.

a. Create a secret. For example, to create a secret named rhdg-https-secret from a keystore
named rhdg-https.jks:

$ oc create secret generic rhdg-https-secret \
--from-file=rhdg-https.jks

b. Link the secret to the default service account.

I $ oc secrets link default rhdg-https-secret

3.2. CONFIGURING DEPLOYMENTS

Instantiate one of the secure templates with following parameters:

1.

Set up HTTP and HTTPS hostnames:
HOSTNAME_HTTP=my.example.hosthame

HOSTNAME_HTTPS=secure-my.example.hosthame

. Specify the name of the keystore: HTTPS_KEYSTORE=keystore.jks

Specify the path to the keystore: HTTPS_KEYSTORE_DIR=/etc/datagrid-secret-volume

. Specify the name of the secret: HTTPS_SECRET=rhdg-https-secret

Specify credentials for the keystore:
HTTPS_NAME=${USERNAME}

HTTPS_PASSWORD=${PASSWORD}

. Set the HTTP security domain for the user: REST_SECURITY_DOMAIN=SecurityRealm

Enforce client certificate authentication. ENCRYPTION_REQUIRE_SSL_CLIENT_AUTH=true

Enable authentication and encryption for the Hot Rod protocol:
HOTROD_AUTHENTICATION=true

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

NOTE

The template automatically sets HOTROD_ENCRYPTION=true if you set a value
for HOSTNAME_HTTPS.

3.3.SETTING UNIQUE KEYSTORES FOR THE HOT ROD PROTOCOL
To use a unique keystore for the Hot Rod protocol:
1. Specify the path to the keystore: SSL_KEYSTORE_PATH=hr_keystore.jks
2. Specify the keystore password: SSL_KEYSTORE_PASSWORD=${PASSWORD}
3. If necessary, do the following:
a. Set arelative path to the keystore: SSL_KEYSTORE_RELATIVE_TO=path/to/keystore/

b. Specify the private key password, if different to the keystore password:
SSL_KEY_PASSWORD=${PASSWORD}

c. Setthe correct alias in the keystore if it contains multiple entries:
SSL_KEYSTORE_ALIAS=cert_alias

4. Specify authorization credentials if you have not already:
USERNAME=${USERNAME}

PASSWORD=${PASSWORD}

NOTE

The Hot Rod endpoint always uses the ApplicationRealm to authorize users. If
you want to use separate keystores for the Hot Rod and REST endpoints, you
must set credentials with the USERNAME and PASSWORD parameters.
Templates then configure the REST endpoint to use the jdg-openshift security
realm. In this case the REST_SECURITY_DOMAIN environment variable does
not take effect.

CHAPTER 4. SETTING UP DATA GRID FOR OPENSHIFT SERVICES

CHAPTER 4. SETTING UP DATA GRID FOR OPENSHIFT
SERVICES

4.1. DATA GRID FOR OPENSHIFT SERVICES
Data Grid services are stateful applications that you can easily scale up or down without losing data.

cache-service
An easy-to-use Data Grid for OpenShift cluster designed to accelerate application response time
with high-performance caching.

® Datain memory is distributed evenly across nodes. You define the initial size of the Data Grid
cluster when you create the service. Distribution is also synchronous. When propagating data
to another node, the sending node waits for the operation to complete before the thread
continues.

® Single copies of cache entries by default. If a pod restarts, data in that pod is lost. For more
resiliency with your data, you can easily enable replication when you create the service.

® Cache entries are stored off-heap for JVM efficiency. When the cache size reaches the
amount of memory available to the pod, entries are evicted. You can optionally change the
eviction policy to throw a ContainerFullException.

datagrid-service

A full distribution of Data Grid for OpenShift that lets you create multiple different cache
configurations. Gives you advanced capabilities such as indexing and querying as well as Prometheus
monitoring.

4.1.1. Container Storage

cache-service and datagrid-service containers have storage volumes mounted at
/opt/datagrid/standalone/data.

The volume size is 1GB by default. You can adjust the size with datagrid-service but not cache-service.

Ephemeral or Permanent

When you remotely create caches, you control whether they are ephemeral or permanent. Permanent
caches survive container restarts because the cache definitions are saved in the storage volume.
Default caches are always permanent.

Persistent

datagrid-service lets you persist cache entries and indexes to the storage volume. If you require
more guarantees for your data, you can optionally persist to external file-based storage or a
database via a cache store.

4.1.2. Partition Handling

By default, Data Grid for OpenShift services use a partition handling configuration to ensure data
consistency.

e DENY_READ_WRITES conflict resolution strategy that denies read and write operations for
cache entries unless all the owners of a segment are in the same partition.

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

® REMOVE_ALL merge policy that removes entries from the cache when conflicts are detected.

NOTE

- Network partitioning applies only when data is replicated across a cluster.

4.1.3. Confirming Service Availability

The templates for cache-service and datagrid-service are available on Red Hat OpenShift Online and
Red Hat OpenShift Container Platform in the openshift namespace.

Run the following command to verify that the service templates are available:

I $ oc get templates -n openshift | grep 'cache-service\|datagrid-service'

4.1.3.1. Importing Templates

If necessary, import cache-service and datagrid-service as follows:
1. Log in to your OpenShift cluster.

2. Import the service templates:

$ for resource in cache-service-template.yaml \
datagrid-service-template.yaml

do
oc create -n openshift -f \
https://raw.githubusercontent.com/jboss-container-images/jboss-datagrid-7-openshift-

image/7.3-v1.9/services/${resource}

done

TIP

Overwrite existing templates with oc replace --force.

4.2. CREATING CACHE SERVICES

Use cache-service to quickly set up clusters that give you optimal performance and ease of use with
minimal configuration.

1. Create the service with the new-app command.

2. Set template parameters and environment variables as appropriate.

For Example:

® Create cache-service with minimal configuration:

$ oc new-app cache-service \
-p APPLICATION_USER=${USERNAME} \
-p APPLICATION_PASSWORD=${PASSWORD}

® Create a cache-service cluster with three nodes and data replication:

10

CHAPTER 4. SETTING UP DATA GRID FOR OPENSHIFT SERVICES

$ oc new-app cache-service \
-p APPLICATION_USER=${USERNAME} \
-p APPLICATION_PASSWORD=${PASSWORD} \
-p NUMBER_OF_INSTANCES=3\
-p REPLICATION_FACTOR=2

Template Parameters

e APPLICATION_NAME specifies a name for the application. The defaultis cache-service.

o NUMBER_OF_INSTANCES sets the number of nodes in the Data Grid for OpenShift cluster.
The defaultis 1.

e TOTAL_CONTAINER_MEM configures the total amount of memory, in MiB, available to the
container. The default is 512.

o APPLICATION_USER creates a user to securely access the cache. There is no default value.
You must always create a user.

e APPLICATION_PASSWORD specifies a password for the user. If you do not set a password, the
service template randomly generates one and stores it as a secret.

e REPLICATION_FACTOR specifies the number of copies for each cache entry. The defaultis 1.

e EVICTION_POLICY defines how cache-service behaves when the size of the cache reaches
the amount of memory available to the pod. There are two values:

o evict removes entries from the cache. This is the default.

o reject throws ContainerFullException instead of adding new entries.

Environment Variables

e AB PROMETHEUS_ENABLE allows you to collect JMX metrics to monitor and analyze Data
Grid and has the following values:
false
Disables monitoring with the default Prometheus agent.
true

Enables monitoring with the default Prometheus agent. The Prometheus Operator must be
installed and running. You must also Set Up Monitoring after you create the service.

e AB PROMETHEUS_JMX_ EXPORTER_PORT defines the port on which Data Grid publishes
JMX metrics. The default is 9779.

Verifying the Application

Command output displays parameter values and resources when you create cache-service, as in the
following example:

--> Deploying template "rhdg-helloworld/cache-service" to project rhdg-helloworld
Red Hat Cache Service

Red Hat Data Grid is an in-memory, distributed key/value store.

1

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

* With parameters:

--> Creating resources ...
secret "cache-service" created
service "cache-service-ping" created
service "cache-service" created
statefulset "cache-service" created
--> Success

TIP

Try the Hello World Quickstart Tutorial.

4.3. CREATING DATA GRID SERVICES

Use datagrid-service to set up a cluster that you can use with different cache configurations and more
complex Data Grid capabilities.

1. Create the service with the new-app command.

2. Settemplate parameters and environment variables as appropriate.

For Example:

® Create datagrid-service with minimal configuration:

$ oc new-app datagrid-service \
-p APPLICATION_USER=${USERNAME} \
-p APPLICATION_PASSWORD=${PASSWORD}

® Create a datagrid-service cluster with three nodes and monitoring enabled:

$ oc new-app datagrid-service \
-p APPLICATION_USER=${USERNAME} \
-p APPLICATION_PASSWORD=${PASSWORD} \
-p NUMBER_OF_INSTANCES=3
-e AB_PROMETHEUS_ENABLE=true

Template Parameters

e APPLICATION_NAME specifies a name for the application. The default is datagrid-service.

o NUMBER_OF_INSTANCES sets the number of nodes in the Data Grid for OpenShift cluster.
The defaultis 1.

e TOTAL_CONTAINER_MEM configures the total amount of memory, in MiB, available to the
container. The default is 512.

o APPLICATION_USER creates a user to securely access the cache. There is no default value.
You must always create a user.

12

https://github.com/jboss-developer/jboss-jdg-quickstarts/tree/jdg-7.3.x/openshift/shared/hello-world/README.md

CHAPTER 4. SETTING UP DATA GRID FOR OPENSHIFT SERVICES

e APPLICATION_PASSWORD specifies a password for the user. If you do not set a password, the

service template randomly generates one and stores it as a secret.
e REPLICATION_FACTOR specifies the number of copies for each cache entry. The defaultis 2.

e TOTAL_CONTAINER_STORAGE configures the size, in GiB, of the file-based storage volume.
The defaultis 1.

Environment Variables

e AB PROMETHEUS_ENABLE allows you to collect JMX metrics to monitor and analyze Data
Grid and has the following values:

false
Disables monitoring with the default Prometheus agent.
true

Enables monitoring with the default Prometheus agent. The Prometheus Operator must be
installed and running. You must also Set Up Monitoring after you create the service.

e AB PROMETHEUS_JMX_ EXPORTER_PORT defines the port on which Data Grid publishes
JMX metrics. The default is 9779.

Verifying the Application

Command output displays parameter values and resources when you create datagrid-service, as in the
following example:

--> Deploying template "rhdg-helloworld/datagrid-service" to project rhdg-helloworld

Red Hat Data Grid Service

Red Hat Data Grid is an in-memory, distributed key/value store.

* With parameters:

--> Creating resources ...
secret "datagrid-service" created
service "datagrid-service-ping" created
service "datagrid-service" created
statefulset "datagrid-service" created
--> Success

TIP

Try the Hello World Quickstart Tutorial.

13

https://github.com/jboss-developer/jboss-jdg-quickstarts/tree/jdg-7.3.x/openshift/shared/hello-world/README.md

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

CHAPTER 5. INVOKING THE DATA GRID REST API

Data Grid services expose a REST endpoint at port 8443.
By default, Data Grid requires user authentication for data access and encryption for client connections.

Authentication

Data Grid authorizes data access requests with credentials that you specify with the
APPLICATION_USER and APPLICATION_PASSWORD parameters.

Encryption

When Data Grid pods start they generate TLS certificate/key pairs and save them in the service-
certs secret. The TLS certificates are signed by the OpenShift certificate authority (CA).

5.1. CREATING EXTERNAL ROUTES TO THE REST API

REST clients running outside OpenShift access Data Grid pods through routes with reencrypt
termination.

Procedure

1. Create a route with reencrypt termination.

$ oc create route reencrypt ${ROUTE_NAME} \
--port=https \
--service ${APPLICATION_NAME}

For example:

$ oc create route reencrypt cache-service-https-route \
--port=https \
--service cache-service

2. Run oc get routes to find the HTTPS route hostname, for example:

$ oc get routes

NAME HOST/PORT
cache-service-https-route cache-service-https-route-rhdg-helloworld.192.0.2.0.nip.io

5.2. MAKING REST CALLS

Prerequisite
e Configure REST clients for authentication and encryption.

On OpenShift

Create truststores with the CA bundle mounted in the pod at:
/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt

Outside OpenShift

Create truststores with the CA for your OpenShift environment.

14

CHAPTER 5. INVOKING THE DATA GRID REST API

Procedure

® |nvoke the Data Grid REST APl as appropriate.
For example, invoke a PUT call to add a key:value pair:

curl -X PUT\
-u ${USERNAME}:${PASSWORD} \
-H 'Content-type: text/plain’ \
-d 'world" \
https://${HOSTNAME_FOR_HTTPS_ROUTE}/rest/default/hello

5.2.1. Using the OpenShift CA to Make REST Calls

In cases where the CA certificate is not valid, such as local OpenShift clusters or Red Hat OpenShift
Container Platform development installations, you can use service-ca.crt to make REST calls.

Procedure

1. Get service-ca.crt from Data Grid pods.
I $ oc rsync ${pod_name}:/var/run/secrets/kubernetes.io/serviceaccount/..data/service-ca.crt .

2. Pass service-ca.crt when you invoke REST calls.

curl -X PUT\
-u ${USERNAME}:${PASSWORD} \
--cacert service-ca.crt \
-H 'Content-type: text/plain’ \
-d 'world" \
https://${HOSTNAME_FOR_HTTPS_ROUTE}/rest/default/hello

15

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

CHAPTER 6. CONFIGURING HOT ROD CLIENTS

Data Grid services expose a Hot Rod endpoint at port 11222.
By default, Data Grid requires user authentication for data access and encryption for client connections.

Authentication

Data Grid authorizes data access requests with credentials that you specify with the
APPLICATION_USER and APPLICATION_PASSWORD parameters.

Encryption

When Data Grid pods start they generate TLS certificate/key pairs and save them in the service-
certs secret. The TLS certificates are signed by the OpenShift certificate authority (CA).

6.1. CONFIGURING TRUSTSTORES WITH HOT ROD

Set trustStorePath to the location of a valid certificate in PEM format in your Hot Rod client
configuration. The Hot Rod Java client builds an in-memory Java keystore with all certificates found in
the path.

On OpenShift

® Specify the OpenShift certificate authority (CA) bundle.
/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt

Outside OpenShift

1. Get tls.crt from the service-certs secret.

$ oc get secret service-certs \
-0 jsonpath="{.data.tls\.crt}' \
| baseb4 -d > tls.crt

2. Specify the path to tls.crt in your client configuration.

6.2. CLIENT INTELLIGENCE

Client intelligence refers to mechanisms the Hot Rod protocol provides so that clients can locate and
send requests to Data Grid pods.

On OpenShift

Clients can access the internal IP addresses for pods so you can use any client intelligence. The default
intelligence, HASH_DISTRIBUTION_AWARE, is recommended because it allows clients to route
requests to primary owners, which improves performance.

Outside OpenShift
Use BASIC intelligence only.

Reference

® org.infinispan.client.hotrod.configuration.ClientIntelligence

16

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/7.3/java/org/infinispan/client/hotrod/configuration/ClientIntelligence.html

CHAPTER 6. CONFIGURING HOT ROD CLIENTS

6.3. CREATING EXTERNAL ROUTES FORHOT ROD

Hot Rod clients running outside OpenShift access Data Grid pods through routes with passthrough
termination.

Prerequisites

® Configure Data Grid Server to encrypt client connections.
Procedure
1. Create aroute with passthrough termination.
$ oc create route passthrough ${ROUTE_NAME} \
--port=hotrod \
--service ${APPLICATION_NAME}

For example:

$ oc create route passthrough cache-service-hotrod-route \
--port=hotrod \
--service cache-service

2. Get the Hot Rod route hostname from .spec.host.

$ oc get route cache-service-hotrod-route -0 jsonpath="{.spec.host}"

cache-service-hotrod-route-rhdg-helloworld.192.0.2.0.nip.io

6.4. HOSTNAMES FOR DATA GRID SERVICES

Use the hostname for Data Grid that corresponds to the location of your Hot Rod client.

In the Same OpenShift Namespace
Use APPLICATION_NAME.

For example:
I .host("cache-service")

In Different OpenShift Namespaces

Use the internal service DNS name in this form:
APPLICATION_NAME.SERVICE_NAMESPACE.svc

For example:
I .host("cache-service.rhdg-helloworld.svc")

Outside OpenShift

Use the Hot Rod route hostname.

17

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

For example:

I .host("cache-service-hotrod-route-rhdg-helloworld.192.0.2.0.nip.io")

6.5. CONFIGURING HOT ROD CLIENTS PROGRAMMATICALLY

Use the ConfigurationBuilder class to programmatically configure Hot Rod clients to access Data Grid
clusters.

1. Call the create() method to create a configuration bean that you can pass to the
RemoteCacheManager.

2. Use the authentication() and ssl() methods to configure authentication and encryption.

Reference

® org.infinispan.client.hotrod.configuration.ConfigurationBuilder

6.5.1. Hot Rod Configuration Builder On OpenShift

Configuration bean for Hot Rod clients running on OpenShift:

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer()
// Connection
.host("${APPLICATION_NAME}.${SERVICE_NAMESPACE}.svc").port(11222)
.security()
// Authentication
.authentication().enable()
.username("${USERNAME}")
.password("${PASSWORD}")
.serverName("${APPLICATION_NAME}")
.sasIMechanism("DIGEST-MD5")
.saslQop(SaslQop.AUTH)
// Encryption
.ssl()
trustStorePath(/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt);

6.5.2. Hot Rod Configuration Builder Outside OpenShift

Configuration bean for Hot Rod clients running outside OpenShift:

ConfigurationBuilder builder = new ConfigurationBuilder();
builder.addServer()
// Connection
host("${HOTROD_ROUTE_HOSTNAME}").port(443)
// Use BASIC client intelligence.
.clientIntelligence(ClientIntelligence.BASIC)
.security()
// Authentication
.authentication().enable()
.username("${USERNAME}")
.password("${PASSWORD}")

18

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/7.3/java/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html

CHAPTER 6. CONFIGURING HOT ROD CLIENTS

.serverName("${APPLICATION_NAME}")
.sasIMechanism("DIGEST-MD5")
.saslQop(SaslQop.AUTH)

// Encryption

.ssl()
.sniHostName("${HOTROD_ROUTE_HOSTNAME}")
trustStorePath(path/to/tls.crt);

6.6. SETTING HOT ROD CLIENT PROPERTIES

Use Hot Rod client configuration properties to specify Data Grid hostnames and ports, authentication
details, and TLS certificates.

Procedure

1. Create a hotrod-client.properties file that contains your Hot Rod client configuration.

2. Add hotrod-client.properties to the classpath.

Reference

® org.infinispan.client.hotrod.configuration

6.6.1. Hot Rod Configuration Properties On OpenShift

Configuration properties for Hot Rod clients running on OpenShift:

Connection
infinispan.client.hotrod.server_list=${APPLICATION_NAME}.${SERVICE_NAMESPACE}.svc:11222

Authentication

infinispan.client.hotrod.use_auth=true
infinispan.client.hotrod.auth_username=${USERNAME}
infinispan.client.hotrod.auth_password=${PASSWORD}
infinispan.client.hotrod.auth_server_name=${APPLICATION_NAME}
infinispan.client.hotrod.sasl_mechanism=DIGEST-MD5
infinispan.client.hotrod.sasl_properties.javax.security.sasl.qop=auth

Encryption
infinispan.client.hotrod.trust_store_path=/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt

6.6.2. Hot Rod Configuration Properties Outside OpenShift

Configuration properties for Hot Rod clients running outside OpenShift:

Connection
infinispan.client.hotrod.server_list=${HOTROD_ROUTE_HOSTNAME}:443

Use BASIC client intelligence.
infinispan.client.hotrod.client_intelligence=BASIC

Authentication
infinispan.client.hotrod.use_auth=true

19

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/7.3/java/org/infinispan/client/hotrod/configuration/package-summary.html#package.description

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

20

infinispan.client.hotrod.auth_username=${USERNAME}
infinispan.client.hotrod.auth_password=${PASSWORD}
infinispan.client.hotrod.auth_server_name=${APPLICATION_NAME}
infinispan.client.hotrod.sasl_mechanism=DIGEST-MD5
infinispan.client.hotrod.sasl_properties.javax.security.sasl.qop=auth

Encryption
infinispan.client.hotrod.sni_host_name=${HOTROD_ROUTE_HOSTNAME}

infinispan.client.hotrod.trust_store_path=path/to/tls.crt

CHAPTER 7. REMOTELY CREATING CACHES

CHAPTER 7. REMOTELY CREATING CACHES

When you remotely create caches with the cache-service, you can configure caches to be ephemeral or
permanent and if data is replicated across the cluster.

You can define any custom configuration when you remotely create caches with the datagrid-service.

Remotely create cache definitions with the cache-service and datagrid-service through the Hot Rod
protocol as follows:

1. Instantiate the RemoteCacheManager class to connect to the service.

2. Call the createCache() method to create a cache, as in the following example:

private static void createCache(String appName) {
//Connect to the Hot Rod service.
final String host = appName;
//Use the configuration bean.
ConfigurationBuilder cfg = ...

System.out.printf("--- Connecting to %s ---%n", appName);

//Create a new RemoteCacheManager and start it.
final RemoteCacheManager remote = new RemoteCacheManager(cfg.build());

//Set a name for the cache.
final String cacheName = "custom";

System.out.printf("--- Creating cache in %s ---%n", appName);
//Perform remote administration operations.
remote.administration()
//Include a flag to make the cache permanent.
.withFlags(CacheContainerAdmin.AdminFlag. PERMANENT)
//Create a cache on the remote server.

//Pass null instead of XML to use the default cache configuration.
.createCache(cacheName, null);

System.out.printf("--- Cache '%s' created in '%s' ---%n", cacheName, appName);

NOTE
If the named cache already exists, an exception is thrown. Alternatives are to:

® Call the getOrCreateCache method in RemoteCacheManagerAdmin to
return the cache name instead of throwing an exception.

® Call the removeCache method in RemoteCacheManagerAdmin to destroy
the cache and then call createCache again.

21

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

TIP
Try one of the Quickstart Tutorials:
® Creating Caches with Cache Service

® Creating Caches with Data Grid Service

22

https://github.com/jboss-developer/jboss-jdg-quickstarts/tree/jdg-7.3.x/openshift/cache-service/create-cache/README.md
https://github.com/jboss-developer/jboss-jdg-quickstarts/tree/jdg-7.3.x/openshift/datagrid-service/create-cache/README.md

CHAPTER 8. DEFINING FILE-BASED CACHE STORES

CHAPTER 8. DEFINING FILE-BASED CACHE STORES

Define a file-based cache store with datagrid-service to persist data to external storage.

Use the XMLStringConfiguration class to provide XML configuration as a string through the Hot Rod
interface.

e XML must be valid with the Data Grid configuration schema.

® | ocation of your file store should be under the storage volume mounted at
/opt/datagrid/standalone/data because the data folder is a PersistentVolume that allows data
to survive when the container restarts.

As an example, the following main method creates a cache with a distributed configuration that includes
a file store:

public static void main(String[] args) {
ConfigurationBuilder cfg = ...
RemoteCacheManager rcm = new RemoteCacheManager(build);

String xml = String.format(
"<infinispan>" +
"<cache-container>" +
"<distributed-cache name=\"%1$s\">" +
"<persistence passivation=\"false\">" +
"<file-store " +
"shared=\"false\" " +
"fetch-state=\"true\" " +
"path=\"${jboss.server.data.dir}/datagrid-infinispan/%1$s\"" +
"5
"</persistence>" +
"</distributed-cache>" +
"</cache-container>" +
"</infinispan>",
"cacheName"

);

RemoteCache<Object, Object> index = rcm.administration()
//Include a flag to make the cache permanent.
.withFlags(CacheContainerAdmin.AdminFlag.PERMANENT)
//Create a cache with the XML configuration
.createCache("cacheName", new XMLStringConfiguration(xml));

System.out.printin(index.size());

}

For information about valid file-store configuration options, see the Data Grid configuration schema.

See the Javadocs for more information:

® org.infinispan.commons.configuration. XMLStringConfiguration

® org.infinispan.client.hotrod.RemoteCacheManager

23

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/7.3/Configuration/index.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/7.3/api/org/infinispan/commons/configuration/XMLStringConfiguration.html
https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/7.3/java/org/infinispan/client/hotrod/RemoteCacheManager.html

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

® org.infinispan.client.hotrod.configuration.ConfigurationBuilder

24

https://access.redhat.com/webassets/avalon/d/red-hat-data-grid/7.3/java/org/infinispan/client/hotrod/configuration/ConfigurationBuilder.html

CHAPTER 9. USING DATA GRID DEPLOYMENT CONFIGURATION TEMPLATES

CHAPTER 9. USING DATA GRID DEPLOYMENT
CONFIGURATION TEMPLATES

9.1. DATA GRID DEPLOYMENT CONFIGURATION TEMPLATES

Data Grid provides a set of templates that can help you deploy Data Grid for OpenShift with different

configurations.

IMPORTANT

As of Data Grid 7.3, these deployment configuration templates are deprecated. You
should use cache-service or datagrid-service service templates instead. For more
information see Red Hat Data Grid Supported Configurations .

Template Description

datagrid73-basic

datagrid73-https

datagrid73-mysq|

datagrid73-mysql-persistent

datagrid73-postgresq|l

datagrid73-postgresql-persistent

datagrid73-partition

Run Data Grid for OpenShift without authentication
or encryption.

Run Data Grid for OpenShift with an HTTPS route to
securely access caches. Requires an OpenShift
secret for encrypting network traffic.

Run Data Grid for OpenShift with a MySQL database
as an ephemeral cache store. Requires an OpenShift
secret for encrypting network traffic.

Run Data Grid for OpenShift with a MySQL database
as a persistent cache store. Requires an OpenShift
secret for encrypting network traffic.

Run Data Grid for OpenShift with a PostgreSQL
database as an ephemeral cache store. Requires an
OpenShift secret for encrypting network traffic.

Run Data Grid for OpenShift with a PostgreSQL
database as a persistent cache store. Requires an
OpenShift secret for encrypting network traffic.

Run Data Grid for OpenShift with a partitioned data
directory that preserves metadata for cache entries
when the pod restarts.

9.2. IMPORTING DEPLOYMENT CONFIGURATION TEMPLATES

Import the Data Grid for OpenShift deployment configuration templates into OpenShift as follows:

1. Log in to your OpenShift cluster.

25

https://access.redhat.com/articles/2435931

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

2. Import a specific template or all templates.

® Import a specific template:

$ oc create -f\
https://raw.githubusercontent.com/jboss-container-images/jboss-datagrid-7-openshift-
image/7.3-v1.8/templates/datagrid73-mysql.json

® |mport all templates:

$ for resource in datagrid73-image-stream.json \
datagrid73-basic.json \
datagrid73-https.json \
datagrid73-mysql-persistent.json \
datagrid73-mysql.json \
datagrid73-partition.json \
datagrid73-postgresql.json \
datagrid73-postgresql-persistent.json

do
oc create -f\
https://raw.githubusercontent.com/jboss-container-images/jboss-datagrid-7-openshift-

image/7.3-v1.8/templates/${resource}

done

TIP

Use oc create to import new templates. Use oc replace --force to overwrite existing
templates.

Specify the namespace into which to import the templates with the -n option. For example,

-n openshift imports resources into the global openshift namespace and requires
administrative permissions.

3. Import the Data Grid image.
I $ oc -n openshift import-image jboss-datagrid73-openshift:1.9
4. Verify the templates are available on OpenShift.

I $ oc get templates -n openshift | grep datagrid73

9.3. IMPORTING OPENSHIFT SECRETS

Some Data Grid for OpenShift deployment configuration templates require HTTPS and JGroups
keystores.

Data Grid for OpenShift provides HTTPS and JGroups keystores that you can import for evaluation
purposes. However, you should not use this secret in production environments.

Import the secret with the keystores into your project namespace as follows:

26

CHAPTER 9. USING DATA GRID DEPLOYMENT CONFIGURATION TEMPLATES

$ oc create \
-f https://raw.githubusercontent.com/jboss-openshift/application-templates/master/secrets/datagrid-
app-secret.json

For more information, see:
® Configuring Authentication and Encryption

® Configuring JGroups Encryption

9.4. DEPLOYING DATA GRID FOR OPENSHIFT
1. Create a new deployment with the new-app command.
2. Specify a template with the --template option.

3. Set environment variables to configure the deployment with the -e option.
For example, to create a deployment with the datagrid73-basic template that includes a cache
named mycache that starts eagerly, run the following command:

$ oc new-app --template=datagrid73-basic \
-p USERNAME=${USERNAME} \
-p PASSWORD=${PASSWORD} \
-p CACHE_NAMES=mycache \
-e MYCACHE_CACHE_START=EAGER

See Environment Variables for information about supported environment variables.

9.5. CONFIGURING DATA GRID FOR OPENSHIFT
After you create a Data Grid for OpenShift deployment, you can configure it with environment variables.

For example, you have a deployment configuration (d¢) named datagrid-app with a cache named
mycache. Configure mycache to start lazily as follows:

I $ oc env dc/datagrid-app -e MYCACHE_CACHE_START=LAZY

When you modify a deployment configuration, the replication controller deploys a new version. Get the
updated deployment configuration as follows:

$ oc get pods

NAME READY STATUS RESTARTS AGE
datagrid-app-2-<id> 0/1 Running 0 58s
datagrid-app-2-deploy 1/1 Running 0 59s

Verify configuration changes as follows:

$ oc env pods/datagrid-app-2-<id> --list
pods datagrid-app-2-<id>, container datagrid-app

CACHE_NAMES=mycache
MYCACHE_CACHE_START=LAZY

27

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

PASSWORD=${PASSWORD}
USERNAME=${USERNAME}

28

CHAPTER10. SETTING UP MONITORING

CHAPTER10. SETTING UP MONITORING

Collect JMX metrics with the Prometheus Operator to monitor events and get statistics for Data Grid
clusters.

From a high-level, you set up monitoring capabilities as follows:
1. Configure Data Grid with the AB_PROMETHEUS_ENABLE environment variable set to true.
2. Install the Prometheus Operator and expose the Prometheus web UI.
3. Export Data Grid metrics to Prometheus.

4. Enable Prometheus to monitor Data Grid for metrics.

10.1. DEPLOYING THE PROMETHEUS OPERATOR

To install the Prometheus Operator, you should refer to the following documentation:
e Prometheus Operator
® Getting Started

® Prometheus RBAC

TIP

Try the Monitoring Data Grid Quickstart Tutorial.

10.2. EXPOSING DATA GRID METRICS TO PROMETHEUS
Add a service that exposes JMX metrics from Data Grid to Prometheus.

1. Create a service-metrics.yaml file that defines a metrics service.

apiVersion: vi
kind: Service
metadata:
annotations:
description: Expose Data Grid metrics to Prometheus.
labels:
app: datagrid-service
application: datagrid-service
template: datagrid-service
metrics: datagrid
name: datagrid-app-metrics
spec:
ClusterIP: None
ports:
Set the port name where Data Grid publishes metrics.
You add the port name to service-monitor.yaml.
- name: web
port: 8080
protocol: TCP
targetPort: 9779

29

https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator/blob/master/Documentation/user-guides/getting-started.md
https://github.com/coreos/prometheus-operator/blob/master/Documentation/rbac.md
https://github.com/jboss-developer/jboss-jdg-quickstarts/tree/jdg-7.3.x/openshift/shared/prometheus-monitoring/README.md

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

selector:
deploymentConfig: datagrid-service
sessionAffinity: None

2. Apply service-metrics.yaml.

I $ oc apply -f service-metrics.yaml

10.3. ENABLING PROMETHEUS TO MONITOR DATA GRID

A service monitor lets Prometheus connect to the Data Grid metrics service.

1. Create a service-monitor.yaml file that holds the definition for a ServiceMonitor object.

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: datagrid-service-monitor
labels:
team: frontend
spec:
selector:
matchLabels:
metrics: datagrid
endpoints:
Set the name of the port where Data Grid publishes metrics.
You create this port in service-metrics.yaml.
- port: web

2. Apply service-monitor.yaml.

I $ oc apply -f service-monitor.yaml

30

CHAPTER 11. CONFIGURING DATA GRID FOR OPENSHIFT CLUSTERS

CHAPTER 1. CONFIGURING DATA GRID FOR OPENSHIFT
CLUSTERS

11.1. CONFIGURING CLUSTER DISCOVERY

Data Grid for OpenShift can use either the Kubernetes or DNS discovery mechanisms for clustering.
These discovery mechanisms enable images to automatically join clusters.

Data Grid for OpenShift templates and services use DNS by default. If you deploy Data Grid for
OpenShift directly from the image or custom template, you must configure the appropriate discovery
mechanism.

11.1.1. Configuring DNS_PING

To configure the DNS discovery mechanism for clustering, do the following:

1. Set openshift.DNS_PING as the value for the JGROUPS_PING_PROTOCOL environment
variable.

I JGROUPS_PING_PROTOCOL=openshift. DNS_PING

2. Specify the name of the ping service for the cluster as the value for the
OPENSHIFT_DNS_PING_SERVICE_NAME environment variable.

I OPENSHIFT_DNS_PING_SERVICE_NAME=${PING_SERVICE_NAME}

3. Specify the port number where the ping service is exposed as the value for the
OPENSHIFT_DNS_PING_SERVICE_PORT environment variable. The default value is 8888.

I OPENSHIFT_DNS_PING_SERVICE_PORT=${PING_SERVICE_NAME}

4. Define a ping service that exposes the ping port, as in the following example:

apiVersion: vi
kind: Service
spec:
clusterlP: None
ports:
- hame: ping
port: 8888
protocol: TCP
targetPort: 8888
selector: deploymentConfig=datagrid-service
metadata:
annotations:
description: The JGroups ping port for clustering.
service.alpha.kubernetes.io/tolerate-unready-endpoints: 'true’

31

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

IMPORTANT

You should configure clusterlP: None so that the service is headless. Likewise,
the ping port must be named and include the
service.alpha.kubernetes.io/tolerate-unready-endpoints: 'true' annotation.

11.1.2. Configuring KUBE_PING

To configure the Kubernetes discovery mechanism for clustering, do the following:

1.

Set openshift. KUBE_PING as the value for the JGROUPS_PING_PROTOCOL environment
variable.

I JGROUPS_PING_PROTOCOL=openshift. KUBE_PING

Specify the OpenShift project name as the value for the
OPENSHIFT_KUBE_PING_NAMESPACE environment variable. If you do not set this variable,
the server behaves like a single-node cluster.

I OPENSHIFT_KUBE_PING_NAMESPACE=${PING_NAMESPACE}

Specify a cluster label with the OPENSHIFT_KUBE_PING_LABELS environment variable. If
you do not set this variable, pods outside the application but in the same namespace attempt to
join.

I OPENSHIFT_KUBE_PING_LABELS=labelKey=labelValue

Grant authorization to the service account the pod is running under so that it can access the
Kubernetes REST API. For example, grant authorization to datagrid-service-account as follows:

oc policy add-role-to-user view \
system:serviceaccount:$(oc project -q):datagrid-service-account \
-n $(oc project -q)

Ensure port 8888 is defined as a ping port on the pod container, as follows:

ports:
- containerPort: 8888
name: ping
protocol: TCP

11.2. CONFIGURING JGROUPS ENCRYPTION

Data Grid for OpenShift uses JGroups technology to secure traffic between clustered servers with the
following options:

Authentication

32

Uses the JGroups AUTH protocol that requires nodes to authenticate with a password when joining
the cluster.

You configure authentication with the JGROUPS_CLUSTER_PASSWORD environment variable.
This environment variable sets a password for nodes to use when joining the cluster. The password
must be the same across the cluster.

CHAPTER 11. CONFIGURING DATA GRID FOR OPENSHIFT CLUSTERS

Symmetric encryption

Uses the JGroups SYM_ENCRYPT protocol to secure traffic with a JGroups keystore (.jceks). This
is the default encryption protocol.
The JGroups AUTH protocol is optional with symmetric encryption.

The JGroups keystore contains credentials that each node in the cluster uses to secure
communication.

Asymmetric encryption

Uses the JGroups ASYM_ENCRYPT protocol to secure traffic with public/private key encryption.
The JGroups AUTH protocol is required with asymmetric encryption.

The coordinator node generates a secret key. When a node joins the cluster, it requests the secret
key from the coordinator and provides its public key. The coordinator encrypts the secret key with
the public key and returns it to the node. The node then decrypts and installs the secret so that it
can securely communicate with other nodes in the cluster.

11.2.1. Setting Up Symmetric Encryption

To use symmetric encryption, do the following:

1. Create a JGroups keystore (.jeeks) that contains credentials to encrypt traffic.
You can use the Java keytool to generate a JGroups keystore.

2. Deploy the JGroups keystore to OpenShift as a secret.
a. Login to your OpenShift cluster.

b. Create a secret for the JGroups keystore. For example, to create a secret named jgroups-
secret from a keystore named jgroups.jceks, do the following:

$ oc create secret generic jgroups-secret \
--from-file=jgroups.jceks

c. Link the secret to the default service account.

I $ oc secrets link default jgroups-secret

d. Mount the secret to the container.

$ oc set volumes dc/datagrid \
--add -t secret \
--secret-name='jgroups-secret' \
--mount-path="/keystores/jgroups’

3. Set the value of the JGROUPS_ENCRYPT_PROTOCOL environment variable to
SYM_ENCRYPT for each node in the cluster.

4. Configure each node in the cluster to use the JGroups keystore with the following environment
variables:

JGROUPS_ENCRYPT_KEYSTORE

Specifes the JGroups keystore for encrypting cluster traffic.

33

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

JGROUPS_ENCRYPT_KEYSTORE_DIR

Specifies the directory where the JGroups keystore resides.
JGROUPS_ENCRYPT_SECRET

Matches the OpenShift secret for the keystore.
JGROUPS_ENCRYPT_NAME

Matches the username for the keystore.
JGROUPS_ENCRYPT_PASSWORD

Matches the keystore password.

5. If required, set a password for nodes to use when joining the cluster with the
JGROUPS_CLUSTER_PASSWORD environment variable.

11.2.2. Setting Up Asymmetric Encryption

To use asymmetric encryption, do the following:
1. Configure authentication with the JGROUPS_CLUSTER_PASSWORD environment variable.

2. Set the value of the JGROUPS_ENCRYPT_PROTOCOL environment variable to
ASYM_ENCRYPT for each node in the cluster.

34

CHAPTER 12. CUSTOMIZING DATA GRID FOR OPENSHIFT

CHAPTER 12. CUSTOMIZING DATA GRID FOR OPENSHIFT

Use the Data Grid image with custom configuration either with the Source-to-Image (S2I) process or via
the ConfigMap API.

NOTE

Red Hat encourages you to use the Data Grid for OpenShift image and datagrid-service
and cache-service templates to create Data Grid clusters. While it is possible to create
Data Grid pods with custom configuration, datagrid-service and cache-service are
designed for high performance and are suitable for a wide range of use cases with little to
no configuration required.

Go to Setting Up Data Grid for OpenShift Services and learn how to quickly create Data
Grid clusters.

Source-to-Image (S2I)

Use the S2I process and binary builds to create custom Data Grid images.

Add cache definitions and endpoint configurations to openshift-clustered.xml then use S2I
capabilities to build a custom Data Grid image that uses that configuration file. You can then create
Data Grid pods with the image as required.

To modify the configuration you must build a new image. However, when you rebuild your custom
image, the Data Grid pods automatically redeploy with the new configuration changes.

ConfigMap API

Use the Red Hat OpenShift ConfigMap API to dynamically configure Data Grid pods.

Define custom configuration in standalone.xml that maps to a ConfigMap object in the namespace
as the Data Grid pod. You can modify the Data Grid configuration and then redeploy pods to load
configuration changes. However, Data Grid pods do not automatically redeploy when you modify
standalone.xml. You must manually redeploy pods to load the configuration changes.

® You should explicitly define all cache and endpoint configuration in standalone.xml before
you create Data Grid pods.
Environment variables for cache and endpoint configuration do not take effect unless the
placeholder exists before deployment. For example, the following is a placeholder for the
JGROUPS_PING_PROTOCOL:

I <!-- #JGROUPS_PING_PROTOCOL## -->

See clustered-openshift.xml to review available placeholders.
® To encrypt client to server traffic, you must configure the server identity in standalone.xml.

e The DATAGRID_SPLIT environment variable does not take effect with Data Grid for
OpenShift pods that you customize via the ConfigMap API. These pods cannot use shared
persistent volumes with DATAGRID_SPLIT.

12.1. CLONING THE DATA GRID EXAMPLES

1. Clone the Data Grid for OpenShift image source repository.

35

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

I $ git clone git@github.com:jboss-container-images/jboss-datagrid-7-openshift-image.git .
2. View the contents of the docs/examples directory, for example:

$ cd jboss-datagrid-7-openshift-image/docs/examples/s2i/configuration

$ tree

F— s2i

| L— configuration

| L— clustered-openshift.xml
L user-configuration

—— standalone.xml

—— user-config-template.yaml

S21

Injects clustered-openshift.xml to ${JBOSS_HOME}/standalone/configuration/ inside the
Data Grid for OpenShift image.

TIP

Add custom logging.properties and application-role.properties to the configuration
directory to include them when you build a custom image.

ConfigMap

Maps standalone.xml to the /opt/datagrid/standalone/configuration/user directory inside
the Data Grid for OpenShift image.

12.2. CREATING S21 BUILDS WITH CUSTOM CONFIGURATION

12.2.1. Setting Up the Data Grid Image

You need the Data Grid for OpenShift image as source for your customization.

1. Confirm if the Data Grid for OpenShift image is available.
I $ oc get images | grep jboss-datagrid73-openshift
2. If the image is not available, create an image stream and import it.

$ oc create -f https://raw.githubusercontent.com/jboss-container-images/jboss-datagrid-7-
openshift-image/7.3-v1.9/templates/datagrid73-image-stream.json

$ oc import-image jboss-datagrid73-openshift --from="registry.redhat.io/jooss-datagrid-
7/datagrid73-openshift:1.9'

12.2.2. Creating Custom Data Grid Images

1. Create a new binary build using the Data Grid for OpenShift image.

I $ oc new-build jooss-datagrid73-openshift:1.9 --binary=true --name=custom-datagrid

36

12.2.3.

CHAPTER 12. CUSTOMIZING DATA GRID FOR OPENSHIFT

Navigate to the s2i directory so you can pass --from-dir=".". You must include the
configuration directory so that the S2I process can detect your custom configuration.
To use the example configuration, do the following:

I $ cd jboss-datagrid-7-openshift-image/docs/examples/s2i/

Build the Data Grid for OpenShift image with your custom configuration.

$ oc start-build custom-datagrid --from-dir="." --follow

Uploading directory "." as binary input for the build ...

Push successful

Check that your image is available.

I $ oc get images | grep custom-datagrid

Verifying Custom Data Grid Images

Confirm that the build pod is running.

$ oc get pods

NAME READY STATUS RESTARTS AGE
custom-datagrid-1-build 0/1 Completed 0 38s

. Create a Data Grid application with your custom configuration.

$ oc new-app custom-datagrid \
-p APPLICATION_USER=${USERNAME} \
-p APPLICATION_PASSWORD=${PASSWORD}

. Wait for your custom Data Grid application to start running.

$ oc get pods -w

NAME READY STATUS RESTARTS AGE
custom-datagrid-1-build 0/1 Completed 0 8m
custom-datagrid-1-<id> 1/1 Running 0 11s

. Remotely access the bash shell for your custom Data Grid pod.

I $ oc exec -it ${pod-name} -- /bin/bash

. View clustered-openshift.xml to verify the configuration, for example:

I $ cat /opt/datagrid/configuration/clustered-openshift.xmi

37

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

If clustered-openshift.xml contains your custom configuration then the Data Grid pod is using
it. You can optionally use the Data Grid command line interface to verify your configuration, for
example:

I $ /opt/datagrid/bin/cli.sh -c

6. End the remote session after you verify your configuration.

I $ exit

12.3. CREATING CUSTOM DATA GRID FOR OPENSHIFT PODS WITH
THE CONFIGMAP API

1. Create a custom template for your Data Grid for OpenShift pod.

a. Expose the required ports and services in your template.
b. Add a configMap object to the custom template.
c. Add a config volume for the container at /opt/datagrid/standalone/configuration/user.

d. Import your custom template into OpenShift.
To use the example template, do the following:

I $ cd jboss-datagrid-7-openshift-image/docs/examples/user-configuration/

I $ oc create -f user-config-template.yaml

2. Create a ConfigMap in your OpenShift project, for example:

I $ oc create configmap user-config --from-file=".
3. Create Data Grid pods with your custom configuration.

$ oc new-app user-config \
-p APPLICATION_NAME=${USERNAME} \
-e USER_CONFIG_MAP=true

Where:

e APPLICATION_NAME is a required parameter in the example template and defaults to
custom-datagrid.

e USER_CONFIG_MAP=true applies the ConfigMap to the Data Grid pod. This is set in the
example template as follows:

- env:
- name: USER_CONFIG_MAP
value: "true"

12.3.1. Verifying Custom Data Grid for OpenShift Pods with the ConfigMap API

38

CHAPTER 12. CUSTOMIZING DATA GRID FOR OPENSHIFT

1. Wait for your custom Data Grid application to start running.
$ oc get pods -w

NAME READY STATUS RESTARTS AGE
user-config-0 0/1 Running 7 17m

2. Check the container logs.

$ oc logs ${pod-name} | grep standalone.xml
INFO Running jboss-datagrid-7/datagrid73-openshift image, version 1.9 with user
standalone.xml

TIP

Try the Customizing Data Grid Service Deployments Quickstart Tutorial.

12.4. CONFIGURING PERSISTENT DATASOURCES

Data Grid lets you persist data stored in the cache to a datasource. There are two types of datasources
for Red Hat Data Grid for OpenShift:

® |nternal datasources that run on OpenShift. These datasources are available through the Red
Hat Container Registry and do not require you to configure additional environment files.

NOTE

Internal datasources include PostgreSQL, MySQL, and MongoDB. However, Red
Hat Data Grid for OpenShift currently supports PostgreSQL and MySQL only.

® External datasources that do not run on OpenShift. You must configure these external
datasources with environment files that you add to OpenShift Secrets.
12.4.1. Configuring Internal Datasources

The DB_SERVICE_PREFIX_MAPPING environment variable defines JNDI mappings for internal
datasources.

You can define multiple JNDI mappings as comma-separated values for the
DB_SERVICE_PREFIX_MAPPING environment variable. When you run the Data Grid for OpenShift
image, the launch script creates a separate datasource for each JNDI mapping. The Data Grid for
OpenShift then automatically discovers each datasource.

To define a JNDI mapping, specify a value for the environment variable in the following format:
${POOL_NAME}-${DATABASE_TYPE}=${PREFIX}
e ${POOL_NAME} is the pool-name attribute for the datasource. Use any alphanumeric value
that is meaningful and easy to identify. The value cannot contain special characters. Likewise,

the value must contain lowercase characters only.

e ${DATABASE_TYPE} specifies the database driver to use. The value must contain lowercase
characters only.

39

https://github.com/jboss-developer/jboss-jdg-quickstarts/tree/jdg-7.3.x/openshift/datagrid-service/user-config

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

NOTE

Only mysql and postgresql are supported values for {$DATABASE_TYPE}.
o ${PREFIX}is used for the names of environment variables that configure the datasource.

12.4.1.1. Single Datasource Example

If you specify test-postgresql=TEST as the value for the DB_SERVICE_PREFIX_MAPPING
environment variable, it creates a datasource with the following name:

java:jboss/datasources/test_postgresql

You must use the TEST prefix when specifying other environment variables for the datasource. For
example, to set the username and password, use TEST_USERNAME and TEST_PASSWORD as the
environment variables.

12.4.1.2. Multiple Datasource Example

If you specify cloud-postgresql=CLOUD,test-mysql=TEST_MYSQL as the value for the
DB_SERVICE_PREFIX_MAPPING environment variable, it creates two datasources with the following
names:

e java:jboss/datasources/test_mysql

e java:jboss/datasources/cloud_postgresql
When specifying other environment variables for the datasources, you must use the TEST_MYSQL
prefix to configure the MySQL datasource. For example, use TEST_MYSQL_USERNAME as the

environment variable to specify the username.

Similarly, you must use the CLOUD prefix to configure the PostgreSQL datasource. For example, use
CLOUD_USERNAME as the environment variable to specify the username.
12.4.2. Configuring External Datasources

To use an external datasource, you define a custom image template and then use the Source-to-Image
(S21) build tool to create an image. S2l is a framework that takes application source code as an input and
produces a new image that runs the assembled application as output.

The following high-level steps provide an overview of the process:

1. Specify the CUSTOM_INSTALL_DIRECTORIES environment variable in the image template
JSON. This variable defines the location where S2| artifacts reside, as in the following example:

{
"name": "CUSTOM_INSTALL_DIRECTORIES",

"value": "extensions/*"

2. Create aninstall.sh script in that directory. This script installs the modules and drivers for the
external datasource in the image.
The following is an example install.sh script:

I #!/bin/bash

40

CHAPTER 12. CUSTOMIZING DATA GRID FOR OPENSHIFT

Import the common functions for
installing modules and configuring drivers
source /usr/local/s2i/install-common.sh

Directory where this script is located
injected_dir=%$1

Install the modules for the datasource
install_modules ${injected_dir}/modules

Configure the drivers for the datasource
configure_drivers ${injected_dir}/drivers.properties

3. Include a modules subdirectory that contains a module.xml file and the driver for the
datasource. The resulting image uses the module to load classes and define dependencies.
As an example, you plan to use Derby as an external datasource. You need to obtain a driver such
as derby-10.12.1.1.jar and place it in the following directory:
modules/org/apache/derby/main/

In the same directory, you also need to create a module.xml file that defines the driver as a
resource and declares dependencies.

The following is an example module.xml file:

<?xml version="1.0" encoding="UTF-8"7>
<module xmIns="urn:jboss:module:1.3" name="org.apache.derby">
<resources>
<resource-root path="derby-10.12.1.1.jar"/>
<resource-root path="derbyclient-10.12.1.1.jar"/>
</resources>

<dependencies>

<module name="javax.api"/>

<module name="javax.transaction.api"/>
</dependencies>
</module>

4. Define the driver configuration properties in a drivers.property environment variable file.
The following is an example drivers.property file:

#DRIVERS
DRIVERS=DERBY

DERBY_DRIVER_NAME=derby

DERBY_DRIVER_MODULE=org.apache.derby
DERBY_DRIVER_CLASS=org.apache.derby.jdbc.EmbeddedDriver
DERBY_XA_DATASOURCE_CLASS=org.apache.derby.jdbc.EmbeddedXADataSource

5. After you build and deploy the image, specify environment variables for the datasource.
The following example shows a datasource definition with the DATASOURCES environment
variable:

I # Set a unique prefix for the datasource

41

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

DATASOURCES=ACCOUNTS_DERBY

Specify other environment variables using the prefix
ACCOUNTS_DERBY_DATABASE=accounts
ACCOUNTS_DERBY_JNDI=java:/accounts-ds
ACCOUNTS_DERBY_DRIVER=derby
ACCOUNTS_DERBY_JTA=true
ACCOUNTS_DERBY_NONXA=false
ACCOUNTS_DERBY_USERNAME=${USERNAME}
ACCOUNTS_DERBY_PASSWORD=${PASSWORD}
ACCOUNTS_DERBY_XA_CONNECTION_PROPERTY_DatabaseName=/opt/eap/standalone
/data/databases/derby/accounts

_ HOST and _PORT are required but not used
ACCOUNTS_ORACLE_HOST=dummy
ACCOUNTS_ORACLE_PORT=1527

12.4.3. Datasource Environment Variables

DB_SERVICE_PREFIX_MAPPING

Defines a comma-separated list of datasources to configure.
For example, DB_SERVICE_PREFIX_MAPPING=test-mysql=TEST_MYSQL. See Configuring
Persistent Datasources for more information.

${NAME}_${DATABASE_TYPE} SERVICE_HOST

Defines the database server hostname or IP for the datasource connection_url property.
For example, EXAMPLE_MYSQL_SERVICE_HOST=192.0.2.0

${NAME}_${DATABASE_TYPE} SERVICE_PORT

Defines the database server port.
${PREFIX}_USERNAME

Defines the user for the datasource.
${PREFIX}_PASSWORD

Defines the password for the datasource.
${PREFIX}_DATABASE

Defines the database name for the datasource.
For example, CLOUD_DATABASE=myDatabase.

${PREFIX}_DRIVER

Defines Java database driver for the datasource.
For example, CLOUD_DRIVER=postgresq|

${PREFIX}_BACKGROUND_VALIDATION

Specifies if a background thread validates database connections before they are used. The value is
true or false (default). By default, the <validate-on-match> method is enabled.

${PREFIX}_BACKGROUND_VALIDATION_MILLIS

Specifies how often validation occurs, in milliseconds, if you set the
${PREFIX}_BACKGROUND_VALIDATION environment variable to true. The default value is 10000.

${PREFIX}_CONNECTION_CHECKER

Specifies a connection checker class that validates connections to the database.

42

CHAPTER 12. CUSTOMIZING DATA GRID FOR OPENSHIFT

For example,
CLOUD_CONNECTION_CHECKER=o0rg.jboss.jca.adapters.jdbc.extensions.postgres.PostgreS
QLValidConnectionChecker

${PREFIX}_EXCEPTION_SORTER

Specifies the exception sorter class that detects and cleans up after fatal database connection
exceptions.

For example,
CLOUD_EXCEPTION_SORTER=org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptio
nSorter

${PREFIX}_JNDI

Defines the JNDI name for the datasource.
Defaults to java:jboss/datasources/<name>_<database_type>. The launch script automatically
generates the value from the DB_SERVICE_PREFIX_MAPPING environment variable.

For example, CLOUD_JNDI=java:jboss/datasources/test-postgresql

${PREFIX} JTA

Defines the Java Transaction API (JTA) option for non-XA datasources. The value is true (default)
or false.

${PREFIX}_MAX_POOL_SIZE
Defines the maximum pool size for the datasource.
${PREFIX}_MIN_POOL_SIZE
Defines the minimum pool size for the datasource.
${PREFIX}_NONXA
Defines the datasource as a non-XA datasource. The value is true or false (default).
${PREFIX}_TX_ISOLATION

Defines the java.sgl.Connection transaction isolation level for the database.
For example, CLOUD_TX_ISOLATION=TRANSACTION_READ_UNCOMMITTED

${PREFIX}_URL

Defines the connection URL for a non-XA datasource.

If you do not specify a connection URL, the launch script automatically generates it from other
environment variables as follows: url="jdbc:${DRIVER}://${HOST}:${PORT}/${DATABASE}".

However, the launch script constructs the correct connection URLs only for internal datasources
such as PostgreSQL and MySQL. If you use any other non-XA datasource you must specify the
connection URL.

For example, CLOUD_URL=jdbc:postgresql://localhost:5432/postgresdb

${PREFIX} XA CONNECTION_PROPERTY_<PROPERTY_NAME>

Defines connection properties for an XA datasource.
Consult the appropriate driver documentation for your datasource to find which XA properties you
can set on the connection.

For example,

CLOUD_XA_CONNECTION_PROPERTY_DatabaseName=/opt/eap/standalone/data/databases/
db/accounts

43

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

This example adds the following to the configuration:

<xa-datasource-property
name="DatabaseName">/opt/eap/standalone/data/databases/db/accounts</xa-datasource-
property>

44

CHAPTER 13. EMBEDDED DATA GRID (LIBRARY MODE)

CHAPTER 13. EMBEDDED DATA GRID (LIBRARY MODE)

Embedding Data Grid in a custom OpenShift application, or running in Library Mode, is intended for
specific uses only:

e Using local or distributed caching in custom Java applications to retain full control of the cache
lifecycle. Additionally, when using features that are available only with embedded Data Grid such
as distributed streams.

® Reducing network latency to improve the speed of cache operations. Although it is worth noting
that the Hot Rod protocol provides near-cache capabilities that achieve equivalent
performance of a standard client-server architecture.

Embedding Data Grid also has some limitations:

® Persistence to a cache store is not currently supported. You can embed Data Grid for in-
memory caching only.

e Only DNS_PING is supported for clustering.
® TCPis supported for the ping port.

® UDP is not supported with embedded Data Grid.

IMPORTANT

Red Hat highly discourages embedding Data Grid to build custom caching servers to
handle remote client requests. Use the datagrid-service server implementation. It is fully
supported and benefits from regular updates with performance improvements and
security fixes.

TIP

Try the Embedded Data Grid Quickstart.

45

https://github.com/jboss-developer/jboss-jdg-quickstarts/tree/jdg-7.3.x/embedded-openshift

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

CHAPTER 14. TROUBLESHOOTING DATA GRID FOR
OPENSHIFT

14.1. LAUNCHING THE COMMAND LINE INTERFACE (CLI)
Access the Data Grid Management CLI to troubleshoot Data Grid for OpenShift as follows:

1. Open a remote shell session to the running pod.
I $ oc rsh ${POD_NAME}
2. Launch the Data Grid CLI from the remote shell.

I $ /opt/datagrid/bin/cli.sh

NOTE

The Data Grid Management CLI is bound to the pod in which it runs. Changes that you
make with the CLI are not saved if the container restarts.

14.2. VIEWING POD LOGS

Run the following command to view log messages for a running pod:

I $ oc logs -f ${POD_NAME}

46

CHAPTER 15. REFERENCE

CHAPTER 15. REFERENCE

15.1. PROBES

Data Grid for OpenShift provides a liveness probe and a readiness probe to perform container health
checks.

Liveness probe

The liveness probe is located in the container at /opt/datagrid/bin/livenessProbe.sh.
The liveness probe tests server status and restarts pods if the following events occur:

® Data Grid for OpenShift boots with errors.
® Custom deployment configurations do not successfully deploy.

® One or more caches fail to instantiate, which usually occurs if the cache configuration is not
valid.

Readiness probe

The readiness probe is located in the container at /opt/datagrid/bin/readinessProbe.sh.
The readiness probe determines if the pod is ready to receive requests and checks Data Grid cache

level MBeans to ensure the following:
® All cache instances are initialized.

® All cache instances have joined the cluster, if using distributed cache mode.

® |nitial state transfer is complete. If state transfer is in progress, the pod is not marked as
ready.

® All cache instances in the Cache manager are running.

To configure custom deployments to use the liveness probe and readiness probe, run the following
commands:

$ oc set probe dc/datagrid \
--readiness \
-- /bin/bash \
-c /opt/datagrid/bin/readinessProbe.sh

$ oc set probe dc/datagrid \
--liveness \
-- /bin/bash \
-c /opt/datagrid/bin/livenessProbe.sh
15.2. PORTS

Data Grid for OpenShift uses the following ports:

47

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

Port Number Protocol Use

8080 TCP HTTP Access
8443 TCP HTTPS Access
8888 TCP JGroups Ping
11222 TCP Hot Rod Access

Data Grid deployment configuration templates also use the following ports:

Port Number Protocol Use

n2n TCP Memcached Access

1333 TCP External Hot Rod Access

8778 TCP Remote JMX Access
NOTE

If you set the HOTROD_SERVICE_NAME environment variable with the deployment
configuration templates, the Hot Rod external connector returns
${service_name}:11333 for the endpoint.

15.3. ADMINISTRATION CONSOLE
The Data Grid Administration Console is not supported on Red Hat OpenShift.

To monitor events and get statistics for Data Grid for OpenShift clusters, you should use Prometheus.
See Setting Up Monitoring.

You can also use the Management CLI to troubleshoot Data Grid for OpenShift pods. See Launching
the Command Line Interface.

15.4. ENVIRONMENT VARIABLES

15.4.1. Monitoring and Logging

AB_PROMETHEUS_ENABLE

Allows you to collect JMX metrics to monitor and analyze Data Grid. The default value is false. Set
the value to true to enable monitoring with the default Prometheus agent.
The Prometheus Operator must be installed and running. You must also Set Up Monitoring.

AB_PROMETHEUS_JMX_EXPORTER_PORT
Defines the port on which Data Grid publishes JMX metrics. The default is 9779.

48

CHAPTER 15. REFERENCE

LOGGING_CATEGORIES

Adjusts the categories and levels for which Data Grid captures log messages, for example:
I $ LOGGING_CATEGORIES=org.infinipan.core=WARN,org.infinispan.config=DEBUG

Log categories correspond to Java package names and use standard log levels: TRACE, DEBUG,
INFO, WARN, ERROR, and FATAL.

IMPORTANT

If you specify LOGGING_CATEGORIES, Data Grid does not set the following default
loggers. Instead, Data Grid uses the default level of INFO for all packages that you do
not explicitly specify with LOGGING_CATEGORIES.

Table 15.1. Default Loggers

Category Level

com.arjuna WARN
sun.rmi WARN
org.jboss.as.config DEBUG

15.4.2. Containers

USERNAME
Creates a user in the security realm who is authorized to access data.
NOTE

By default, the Hot Rod endpoint uses the ApplicationRealm security realm and the
REST endpoint uses the jdg-openshift security realm.

PASSWORD
Specifies the password for the user.
DATAGRID_SPLIT

Determines if the data directory for each node should be split in a mesh. The value is true or false
(default).

If you set the value to true, you must also configure a persistent volume mounted on
/opt/datagrid/standalone/partitioned_data.

JAVA_OPTS_APPEND

Appends options to the JAVA_OPTS environment variable on startup.
For example, JAVA_OPTS_APPEND=-Dfoo=bar

OPENSHIFT_KUBE_PING_LABELS

49

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

Specifies the clustering labels selector.
For example, OPENSHIFT_KUBE_PING_LABELS=application=eap-app

OPENSHIFT_KUBE_PING_NAMESPACE
Specifies the clustering project namespace.
TRANSPORT_LOCK_TIMEOUT

Sets the time to wait to acquire a distributed lock. The default value is 240000.

Data Grid uses a distributed lock to maintain a coherent transaction log during state transfer or
rehashing, which means that only one cache can perform state transfer or rehashing at a time. This
constraint is in place because more than one cache could be involved in a transaction.

15.4.3. Caches

Creating and configuring caches with cache-service and datagrid-service

Do not use environment variables to create and configure caches with cache-service or datagrid-
service.

These environment variables are intended for use with the deployment configuration templates only and
are deprecated.

You should remote create caches with cache-service and datagrid-service dynamically through the
Hot Rod endpoint. For more information, see Remotely Creating Caches.

CACHE_NAMES

Defines cache instances in your configuration.
If you are using the Data Grid deployment configuration templates and you do not define any cache
instances, the launch script adds a default distributed cache in SYNC mode.

TIP

Give each cache instance in your configuration a unique name. Use underscore characters (_) and
descriptive labels to help you distinguish between cache instances. This ensures that you do not have
conflicts when applying cache-specific configuration.

For example, CACHE_NAMES=addressbook,addressbook_indexed

CACHE_CONTAINER_START

Configures how the cache container starts. Specify one of the following:

® LAZY Starts the cache container when requested by a service or deployment. This is the
default.

e EAGER Starts the cache container when the server starts.

CACHE_CONTAINER_STATISTICS

Configures the cache container to collect statistics. The value is true (default) or false. You can set
the value to false to improve performance.

DEFAULT_CACHE

Sets the default cache for the cache container.

50

CHAPTER 15. REFERENCE

15.4.3.1. Cache Container Security Configuration

CONTAINER_SECURITY_CUSTOM_ROLE_MAPPER_CLASS

Specifies the class of the custom principal to role mapper.

For example,
CONTAINER_SECURITY_CUSTOM_ROLE_MAPPER_CLASS=com.acme.CustomRoleMapper

CONTAINER_SECURITY_ROLE_MAPPER

Sets a role mapper for this cache container with the following values:

e identity-role-mapper Uses the Principal name as the role name. This is the default role
mapper if you do not specify one and use the CONTAINER_SECURITY_ROLES
environment variable to define role names.

e common-name-role-mapper Uses the Common Name (CN) as the role name if the Principal
name is a Distinguished Name (DN). For example, the DN
cn=managers,ou=people,dc=example,dc=com is mapped to the manager role name.

e cluster-role-mapper Uses the ClusterRegistry to store Principal name to role mappings.

e custom-role-mapper Takes the fully-qualified class name of an implementation of the
org.infinispan.security.impl.PrincipalRoleMapper interface.

CONTAINER_SECURITY_ROLES

Defines role names and assigns permissions to them.
For example, CONTAINER_SECURITY_ROLES=admin=ALL,reader=READ,writer=WRITE

15.4.3.2. Named Cache Configuration

You specify the cache name as a prefix for the environment variable in capital letters (all caps)
otherwise the configuration does not take effect.

For example, you create two separate cache instances: MyCache and MYCACHE. You then set
MyCache CACHE_TYPE=replicated to configure the MyCache instance. This configuration does not
take effect. However, if you set MYCACHE_CACHE_TYPE=replicated the configuration takes effect
for both the MyCache and MYCACHE instances.

${CACHE_NAME}_CACHE_TYPE

Determines whether this cache should be distributed or replicated. You can specify either
distributed (default) or replicated.

${CACHE_NAME} CACHE_START

Configures how the cache starts. Specify one of the following:

e |AZY Starts the cache when requested by a service or deployment. This is the default.

e EAGER Starts the cache when the server starts.

${CACHE_NAME} CACHE_BATCHING
Enables invocation batching for this cache. The value is true or false (default).
${CACHE_NAME} CACHE_STATISTICS

Configures the cache to collect statistics. The value is true (default) or false. You can set the value
to false to improve performance.

51

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

${CACHE_NAME}_CACHE_MODE

Sets the clustered cache mode. Specify one of the following:

® ASYNC for asynchronous operations.

® SYNC for synchronous operations.

${CACHE_NAME} CACHE_QUEUE_SIZE

Sets the threshold at which the replication queue is flushed when the cache isin ASYNC mode. The
default value is 0 (flushing is disabled).

${CACHE_NAME}_CACHE_QUEUE_FLUSH_INTERVAL

Specifies the wakeup time, in milliseconds, for the thread that flushes the replication queue in
ASYNC mode. The default value is 10.

${CACHE_NAME} CACHE_REMOTE_TIMEOUT

Specifies the timeout, in milliseconds, to wait for acknowledgement when making remote calls in
SYNC mode. If the timeout is reached, the remote call is aborted and an exception is thrown. The
default value is 17500.

${CACHE_NAME} CACHE_OWNERS
Specifies the number of cluster-wide replicas for each cache entry. The default value is 2.
${CACHE_NAME} CACHE_SEGMENTS

Specifies the number of hash space segments per cluster. The recommended value is 10 * cluster
size. The default value is 80.

${CACHE_NAME} CACHE_L1_LIFESPAN

Specifies the maximum lifespan, in milliseconds, of an entry placed in the L1 cache. The default value
is 0 (L1is disabled).

${CACHE_NAME}_CACHE_MEMORY_EVICTION_TYPE

Defines the maximum limit for entries in the cache. You can set the following values:

® COUNT Measures the number of entries in the cache. When the count exceeds the
maximum, Data Grid evicts unused entries.

e MEMORY Measures the amount of memory that all entries in the cache take up. When the
total amount of memory exceeds the maximum, Data Grid evicts unused entries.

${CACHE_NAME}_CACHE_MEMORY_STORAGE_TYPE

Defines how Data Grid stores entries in the cache. You can set the following values:

Storage Type Description Eviction Type Policy

object Stores entries as COUNT TinyLFU
objects in the Java
heap. This is the default
storage type.

binary Stores entries as COUNT or MEMORY TinyLFU
bytes[] in the Java
heap.

52

CHAPTER 15. REFERENCE

Storage Type Description Eviction Type Policy

off-heap Stores entries as COUNT or MEMORY LRU
bytes[] in native
memory outside the
Java.

${CACHE_NAME}_CACHE_MEMORY_EVICTION_SIZE

Configures the size of the cache before eviction starts. Set the value to a number greater than zero.

® For COUNT, the size is the maximum number of entries the cache can hold before eviction
starts.

o For MEMORY, the size is the maximum number of bytes the cache can take from memory
before eviction starts. For example, a value of 10000000000 is 10 GB.
Try different cache sizes to determine the optimal setting. A cache size that is too large can
cause Data Grid to run out of memory. At the same time, a cache size that is too small
wastes available memory.

4 NOTE

If you configure a JDBC store, passivation is automatically enabled when you
set the eviction size to a value that is greater than zero.

N

e

${CACHE_NAME}_CACHE_MEMORY_EVICTION_STRATEGY

Controls how Data Grid performs eviction. You can set the following values:

Strategy Description

NONE Data Grid does not evict entries. This is the default
setting unless you configure eviction.

REMOVE Data Grid removes entries from memory so that
the cache does not exceed the configured size.
This is the default setting when you configure
eviction.

MANUAL Data Grid does not perform eviction. Eviction takes
place manually by invoking the evict() method
from the Cache API.

EXCEPTION Data Grid does not write new entries to the cache if
doing so would exceed the configured size. Instead
of writing new entries to the cache, Data Grid
throws a ContainerFullException.

${CACHE_NAME} CACHE_MEMORY_OFF_HEAP_ADDRESS_COUNT

Specifies the number of pointers that are available in the hash map to prevent collisions when using
OFFHEAP storage. Preventing collisions in the hash map improves performance.

53

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

Set the value to a number that is greater than the number of cache entries. By default address-
count is 2720, or 1048576. The parameter is always rounded up to a power of 2.

${CACHE_NAME}_CACHE_EXPIRATION_LIFESPAN

Specifies the maximum lifespan, in milliseconds, of a cache entry, after which the entry is expired
cluster-wide. The default value is -1 (entries never expire).

${CACHE_NAME}_CACHE_EXPIRATION_MAX_IDLE

Specifies the maximum idle time, in milliseconds, that cache entries are maintained in the cache. If
the idle time is exceeded, then the entry is expired cluster-wide. The default value is -1 (expiration is
disabled).

${CACHE_NAME}_CACHE_EXPIRATION_INTERVAL

Specifies the interval, in milliseconds, between runs to purge expired entries from memory and any
cache stores. The default value is 5000. Set -1 to disable expiration.

${CACHE_NAME} JDBC_STORE_TYPE

Sets the type of JDBC store to configure. You can set the following values:
e string

® binary

${CACHE_NAME}_JDBC_STORE_DATASOURCE

Defines the jndiname of the datasource.
For example, MYCACHE_JDBC_STORE_DATASOURCE-=java:jboss/datasources/ExampleDS

${CACHE_NAME} KEYED_TABLE_PREFIX

Defines the prefix prepended to the cache name used when composing the name of the cache entry
table. The defaule value is ispn_entry.

${CACHE_NAME}_CACHE_INDEX

Sets the indexing mode of the cache. You can set the following values:
® NONE This is the default.
e LOCAL
e ALL

${CACHE_NAME}_INDEXING_PROPERTIES

Specifies a comma-separated list of properties to pass to the indexing system.
For example, MYCACHE_INDEXING_PROPERTIES=default.directory_provider=ram

${CACHE_NAME} CACHE_SECURITY_AUTHORIZATION_ENABLED
Enables authorization checks for this cache. The value is true or false (default).
${CACHE_NAME} CACHE_SECURITY_AUTHORIZATION_ROLES

Sets the roles required to access this cache.
For example, MYCACHE_CACHE_SECURITY_AUTHORIZATION_ROLES=admin, reader, writer

${CACHE_NAME}_CACHE_PARTITION_HANDLING_WHEN_SPLIT

54

CHAPTER 15. REFERENCE

Contigures the strategy tor handling partitions between nodes in a cluster when network events
isolate nodes from each other. Partitions function as independent clusters until Data Grid merges
cache entries to re-form a single cluster. You can set the following values:

Partition Handling Strategy Description

ALLOW_READ_WRITES Nodes from any partition can read or write cache
entries. This is the default value.

DENY_READ_WRITES Nodes enter degraded mode if:

* One or more hash space segments in the
partition have no owners. The OWners are the
number of cluster-wide replicas for cache entries.

* The partition has less than half the nodes from
the most recent stable cluster topology.

In degraded mode, only nodes in the same partition
can read or write cache entries. All owners, or
copies, for a cache entry must exist on the same
partition, otherwise the read or write operation fails
with an AvailabilityException.

ALLOW_READS Nodes enter degraded mode similarly to the
DENY_READ_WRITES strategy. Nodes from

any partition can read cache entries.

In degraded mode, only nodes in the same partition
can write cache entries. All owners, or copies, for a
cache entry must exist on the same partition,
otherwise the write operation fails with an
AvailabilityException.

${CACHE_NAME}_CACHE_PARTITION_MERGE_POLICY

Configures how Data Grid resolves conflicts between cache entries when merging partitions. You can
set the following values:

Merge Policy Description

NONE Do not resolve conflicts when merging partitions.
This is the default value.

PREFERRED_ALWAYS Always use the preferredEntry. The
preferredEntry is the primary replica of a cache
entry that resides in the partition that contains the
most nodes. If the number of nodes is equal
between partitions, the preferredEntry is the
cache entry that resides in the partition with the
highest topology ID, which means that topology is
more recent.

55

Red Hat Data Grid 7.3 Red Hat Data Grid for OpenShift

Merge Policy Description

PREFERRED_NON_NULL Use the preferredEntry if it has a value (non-
null). If the preferredEntry does not have a value,
use the first entry defined in otherEntries.

REMOVE_ALL Remove entries (key and value) from the cache if
conflicts exist.

${CACHE_NAME}_STATE_TRANSFER_TIMEOUT

Sets the amount of time, in milliseconds, to wait for other cache instances in the cluster to transfer
state to the cache. If other cache instances do not transfer state before the timeout occurs, the
application throws an exception and aborts startup. The default value is 240000 (4 minutes).

You must use a custom template to set this environment variable. It does not take effect if you set
the state transfer timeout in the default Data Grid for OpenShift templates.

15.4.4. Security Domain

SECDOMAIN_NAME
Defines additional security domains. For example: SECDOMAIN_NAME=myDomain
SECDOMAIN_PASSWORD_STACKING

Enables the password staking module and sets the useFirstPass option. The value is true or false
(default).

SECDOMAIN_LOGIN_MODULE

Specifies a login module to use. The default value is UsersRoles.
SECDOMAIN_USERS_PROPERTIES

Specifies the properties file that contains user definitions. The default value is users.properties.
SECDOMAIN_ROLES_PROPERTIES

Specifies the properties file that contains role definitions. The default value is roles.properties.

15.4.5. Endpoints

Clients can access Data Grid via REST, Hot Rod, and Memcached endpoints that you define in the
cache configuration.

Clients that run in the same project as Data Grid for OpenShift can access the cache via Hot Rod and
receive a full cluster view. These clients can also use consistent hashing capabilities.

However, when clients run in a different project to Data Grid for OpenShift, they need to access the
Data Grid cluster using an OpenShift service that exposes the Hot Rod endpoint externally. Depending
on your network configuration, clients might not have access to some pods and must use BASIC client
intelligence. In these cases, clients might require extra network hops to access data, which can increase
network latency.

External access to clients running in OpenShift requires routes with passthrough encryption termination.
Clients must also use BASIC client intelligence and the fully qualified domain name as a TLS/SNI host

56

CHAPTER 15. REFERENCE

name. Alternatively, you can expose the Data Grid cluster behind a Load Balancer service that is
externally available.

Configure endpoints with the following environment variables:

INFINISPAN_CONNECTORS

Defines a comma-separated list of connectors to configure. Defaults to hotrod, memcached, rest. If
authorization or authentication is enabled on the cache then you should remove memcached
because this protocol is inherently insecure.

MEMCACHED_CACHE

Sets the cache name for the Memcached connector. Defaults to memcached if you do not specify a
cache name with the CACHE_NAMES environment variable.

HOTROD_SERVICE_NAME

Defines the name of the OpenShift service for the external Hot Rod connector.

The external Hot Rod connector is available with deployment configuration templates only if you
define this environment variable. cache-service and datagrid-service do not use the external Hot
Rod connector.

For example, if you set HOTROD_SERVICE_NAME=DATAGRID_APP_HOTROD the Hot Rod
external connector returns DATAGRID_APP_HOTROD:11333.

REST_STORE_AS_STRING

Specifies if Data Grid saves entries as Java strings when written to the cache via the REST API. The
value is true or false (default).

Set the value to true if you are upgrading the image from a previous version and plan to read
persisted cache entries.

NOTE

Data Grid version 7.1and earlier:When you write entries to the cache through the
REST endpoint, Data Grid stores them as Java strings.

Data Grid version 7.2 and later:Data Grid stores cache entries as bytes|[] to enable
data interoperability between clients and protocols.

If you upgrade Data Grid for OpenShift images to version 7.2 or later, Data Grid
returns null values when you attempt to read cache entries that are persisted to a data
store. To resolve the null values, set REST_STORE_AS_STRING=true.

57

	Table of Contents
	CHAPTER 1. RED HAT DATA GRID
	1.1. DATA GRID DOCUMENTATION
	1.2. DATA GRID REPOSITORIES
	1.3. DATA GRID IMAGE DETAILS

	CHAPTER 2. GETTING STARTED
	2.1. SYSTEM REQUIREMENTS
	2.2. CREATING A DATA GRID FOR OPENSHIFT PROJECT
	2.3. SETTING UP REGISTRY AUTHENTICATION
	2.3.1. Configuring Hosts with Authentication Tokens
	2.3.2. Creating Pull Secrets

	CHAPTER 3. CONFIGURING AUTHENTICATION AND ENCRYPTION
	3.1. ADDING KEYSTORES TO SECRETS
	3.2. CONFIGURING DEPLOYMENTS
	3.3. SETTING UNIQUE KEYSTORES FOR THE HOT ROD PROTOCOL

	CHAPTER 4. SETTING UP DATA GRID FOR OPENSHIFT SERVICES
	4.1. DATA GRID FOR OPENSHIFT SERVICES
	4.1.1. Container Storage
	4.1.2. Partition Handling
	4.1.3. Confirming Service Availability
	4.1.3.1. Importing Templates

	4.2. CREATING CACHE SERVICES
	4.3. CREATING DATA GRID SERVICES

	CHAPTER 5. INVOKING THE DATA GRID REST API
	5.1. CREATING EXTERNAL ROUTES TO THE REST API
	5.2. MAKING REST CALLS
	5.2.1. Using the OpenShift CA to Make REST Calls

	CHAPTER 6. CONFIGURING HOT ROD CLIENTS
	6.1. CONFIGURING TRUSTSTORES WITH HOT ROD
	6.2. CLIENT INTELLIGENCE
	6.3. CREATING EXTERNAL ROUTES FOR HOT ROD
	6.4. HOSTNAMES FOR DATA GRID SERVICES
	6.5. CONFIGURING HOT ROD CLIENTS PROGRAMMATICALLY
	6.5.1. Hot Rod Configuration Builder On OpenShift
	6.5.2. Hot Rod Configuration Builder Outside OpenShift

	6.6. SETTING HOT ROD CLIENT PROPERTIES
	6.6.1. Hot Rod Configuration Properties On OpenShift
	6.6.2. Hot Rod Configuration Properties Outside OpenShift

	CHAPTER 7. REMOTELY CREATING CACHES
	CHAPTER 8. DEFINING FILE-BASED CACHE STORES
	CHAPTER 9. USING DATA GRID DEPLOYMENT CONFIGURATION TEMPLATES
	9.1. DATA GRID DEPLOYMENT CONFIGURATION TEMPLATES
	9.2. IMPORTING DEPLOYMENT CONFIGURATION TEMPLATES
	9.3. IMPORTING OPENSHIFT SECRETS
	9.4. DEPLOYING DATA GRID FOR OPENSHIFT
	9.5. CONFIGURING DATA GRID FOR OPENSHIFT

	CHAPTER 10. SETTING UP MONITORING
	10.1. DEPLOYING THE PROMETHEUS OPERATOR
	10.2. EXPOSING DATA GRID METRICS TO PROMETHEUS
	10.3. ENABLING PROMETHEUS TO MONITOR DATA GRID

	CHAPTER 11. CONFIGURING DATA GRID FOR OPENSHIFT CLUSTERS
	11.1. CONFIGURING CLUSTER DISCOVERY
	11.1.1. Configuring DNS_PING
	11.1.2. Configuring KUBE_PING

	11.2. CONFIGURING JGROUPS ENCRYPTION
	11.2.1. Setting Up Symmetric Encryption
	11.2.2. Setting Up Asymmetric Encryption

	CHAPTER 12. CUSTOMIZING DATA GRID FOR OPENSHIFT
	12.1. CLONING THE DATA GRID EXAMPLES
	12.2. CREATING S2I BUILDS WITH CUSTOM CONFIGURATION
	12.2.1. Setting Up the Data Grid Image
	12.2.2. Creating Custom Data Grid Images
	12.2.3. Verifying Custom Data Grid Images

	12.3. CREATING CUSTOM DATA GRID FOR OPENSHIFT PODS WITH THE CONFIGMAP API
	12.3.1. Verifying Custom Data Grid for OpenShift Pods with the ConfigMap API

	12.4. CONFIGURING PERSISTENT DATASOURCES
	12.4.1. Configuring Internal Datasources
	12.4.1.1. Single Datasource Example
	12.4.1.2. Multiple Datasource Example

	12.4.2. Configuring External Datasources
	12.4.3. Datasource Environment Variables

	CHAPTER 13. EMBEDDED DATA GRID (LIBRARY MODE)
	CHAPTER 14. TROUBLESHOOTING DATA GRID FOR OPENSHIFT
	14.1. LAUNCHING THE COMMAND LINE INTERFACE (CLI)
	14.2. VIEWING POD LOGS

	CHAPTER 15. REFERENCE
	15.1. PROBES
	15.2. PORTS
	15.3. ADMINISTRATION CONSOLE
	15.4. ENVIRONMENT VARIABLES
	15.4.1. Monitoring and Logging
	15.4.2. Containers
	15.4.3. Caches
	15.4.3.1. Cache Container Security Configuration
	15.4.3.2. Named Cache Configuration

	15.4.4. Security Domain
	15.4.5. Endpoints

