
Robert Krátký Red Hat Developer Group Documentation
Team

Red Hat Container Development Kit
2.3
Getting Started Guide

Quick-start guide to using and developing with Red Hat Container
Development Kit

Red Hat Container Development Kit 2.3 Getting Started Guide

Quick-start guide to using and developing with Red Hat Container
Development Kit

Robert Krátký
rkratky@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide shows how to get up to speed using Red Hat Container Development Kit. Included
instructions and examples guide through first steps developing containerized applications using
Docker, Kubernetes, and OpenShift Container Platform, both from your host workstation (Microsoft
Windows, macOS, or Red Hat Enterprise Linux) and from within the Container Development
Environment provided by Red Hat Container Development Kit.

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT
1.1. UNDERSTANDING CONTAINER DEVELOPMENT KIT DOCUMENTATION
1.2. ABOUT CONTAINERS
1.3. ABOUT CONTAINER DEVELOPMENT KIT
1.4. ABOUT VAGRANT

CHAPTER 2. INSTALLING RED HAT CONTAINER DEVELOPMENT KIT

CHAPTER 3. INTERACTING WITH RUNNING VAGRANT BOXES

CHAPTER 4. USING VAGRANT CONTAINER DEVELOPMENT KIT PLUGINS
4.1. USING THE VAGRANT-SERVICE-MANAGER PLUGIN
4.2. USING THE VAGRANT-REGISTRATION PLUGIN

CHAPTER 5. USING CONTAINER DEVELOPMENT KIT WITH DOCKER TOOLING IN ECLIPSE

CHAPTER 6. USING THE DOCKER SERVICE
6.1. PREPARING HOST SYSTEM FOR USING DOCKER FROM THE COMMAND LINE
6.2. LEARNING ABOUT THE DOCKER ENVIRONMENT
6.3. LEARNING ABOUT CONTAINERS AND IMAGES
6.4. GETTING NEW DOCKER-FORMATTED CONTAINER IMAGES
6.5. USING CONTAINERS
6.6. ADDITIONAL RESOURCES

CHAPTER 7. USING OPENSHIFT CONTAINER PLATFORM
7.1. USING OPENSHIFT FROM THE WEB USER INTERFACE
7.2. USING OPENSHIFT FROM THE COMMAND LINE

CHAPTER 8. DEPLOYING AN APPLICATION ON OPENSHIFT
8.1. DEPLOYING AN INSTANTAPP TEMPLATE AS A NEW APPLICATION
8.2. DEPLOYING A 'HELLO WORLD' APPLICATION USING NODE.JS
8.3. ADDITIONAL RESOURCES

CHAPTER 9. USING THE KUBERNETES SERVICE
9.1. ADDITIONAL RESOURCES

3
3
3
4
4

7

8

10
10
11

14

16
16
17
19
20
22
23

24
24
25

35
35
37
42

43
43

Table of Contents

1

Red Hat Container Development Kit 2.3 Getting Started Guide

2

CHAPTER 1. INTRODUCING RED HAT
CONTAINER DEVELOPMENT KIT

Red Hat Container Development Kit is a platform for developing containerized applications — it is a
set of tools that enables developers to quickly and easily set up an environment for developing and
testing containerized applications on the Red Hat Enterprise Linux platform.

Container Development Kit provides a personal Container Development Environment you can
install on your own laptop, desktop, or server system. The Container Development Environment
is provided in the form of a Red Hat Enterprise Linux virtual machine. The
Container Development Environment itself can also be installed in a virtual machine.

Container Development Kit includes the same container-development and run-time tools used to
create and deploy containers for large data centers.

Container Development Kit offers an easy installation method that results in virtual machines
created from pre-configured Vagrant boxes and Vagrantfiles running on your local system.

Container Development Kit is available for Microsoft Windows, Mac OS X, and Linux operating
systems, thus allowing developers to use their favorite platform while producing applications
ready to be deployed in the Red Hat Enterprise Linux ecosystem.

Container Development Kit is a part of the Red Hat Developers program, which provides tools,
resources, and support for developers who wish to utilize Red Hat solutions and products to create
applications, both locally and in the cloud. For additional information and to register to become a part
of the program, visit developers.redhat.com.

1.1. UNDERSTANDING CONTAINER DEVELOPMENT KIT
DOCUMENTATION

The Red Hat Container Development Kit 2.3 Release Notes and Known Issues contains
information about the current release of the product as well as a list of known problems that
users may encounter when using it.

The Red Hat Container Development Kit 2.3 Installation Guide guide contains instructions for
installing the Container Development Environment provided by Red Hat
Container Development Kit on your chosen system.

The Container Development Kit Getting Started Guide contains instructions on how to start using
the Container Development Environment to develop Red Hat Enterprise Linux-based containers
using tools and services such as OpenShift Container Platform, Docker, Eclipse, and various
command-line tools.

Report issues with Red Hat Container Development Kit or request new features using the CDK
project at https://issues.jboss.org/projects/CDK.

1.2. ABOUT CONTAINERS

Containers are a form of operating-system-level virtualization, which is based on sharing the
underlying host system’s kernel while providing multiple user-space instances (software containers).
Containers are easier to build and initialize than hardware-level virtual machines, which makes them
useful for situations where virtual environments need to be deployed rapidly or in large numbers.
Applications running inside virtual software containers remain isolated from the host system.

CHAPTER 1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT

3

http://developers.redhat.com
http://developers.redhat.com
https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.3/single/release-notes-and-known-issues/
https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.3/single/installation-guide/
https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.3/single/getting-started-guide/
https://issues.jboss.org/projects/CDK

1.3. ABOUT CONTAINER DEVELOPMENT KIT

Container Development Kit enables the development of containers on Red Hat Enterprise Linux,
regardless of what operating system you use on your development workstation. The core of the
development environment is a virtualized instance of Red Hat Enterprise Linux managed by
Vagrant, an open-source tool for using light-weight, portable, and consistent development
environments. Vagrant is utilized to bring up a pre-built Red Hat Enterprise Linux virtual machine
with the Container Development Kit software components installed. Virtual machines that are
packaged for use with Vagrant are called boxes.

Once you have the Container Development Kit software components installed, you can explore
Linux container development using Docker, an open-source project that automates the deployment
of applications inside of software containers. Docker is built upon a number of key Linux
technologies that provide the capabilities to keep containers isolated and secure while controlling
resource usage. For actual deployment and orchestration of containerized applications,
Container Development Kit offers OpenShift with Kubernetes, a platform as a service (PaaS)
product, which can be used to maintain underlying services and scale running applications as
needed.

After the installation of Container Development Kit, the technology stack that is available to you for
container development is:

Layer Description Technology

Your Containers Your application running in containers

Container management Docker service

Development VM Red Hat Enterprise Linux Server 7

VM management Vagrant

Virtualization provider Virtualbox, HyperV, or libvirt/KVM

Host machine OS Microsoft Windows, macOS, or Red Hat Enterprise Linux 7

1.4. ABOUT VAGRANT

Vagrant has become a de facto standard for packaging and distributing development environments
that run using most of the popular virtualization platforms on Windows, Mac OS X, and Linux as well
as in the cloud with plugins for OpenStack, Amazon Web Services (AWS), and other environments.

Vagrant uses a single configuration file, the Vagrantfile, to describe a development environment.
Using a Vagrantfile and a virtual-machine image packaged as a Vagrant box, a single command,
vagrant up, brings up a consistent development environment that includes networking and

Red Hat Container Development Kit 2.3 Getting Started Guide

4

support for folders that are shared with the host OS for moving code, data, or configuration.

Container Development Kit includes a Vagrant box with a Red Hat Enterprise Linux system that is
preconfigured to provide an environment for easy container development. The supplied Vagrant box
can be deployed using VirtualBox, KVM (with libvirt), or HyperV as a virtualization platform.
Container Development Kit also includes two Vagrantfiles that demonstrate Vagrant provisioning,
which includes setting up private networking that exposes services from the virtual machine to the
host system and other configuration tasks.

The vagrant ssh command is used to log into Vagrant boxes. The configuration details for
networking and SSH keys are handled automatically by Vagrant.

1.4.1. Understanding Vagrant Configuration

Vagrant’s power for creating and distributing portable and reproducible environments derives from
using a single file (Vagrantfile) to describe the target environment. A Vagrantfile defines required
resources, such as virtual-machine images, networking, and provisioning steps. A separate directory
containing a Vagrantfile is used for each target environment.

1.4.1.1. Managing Vagrantfiles

Vagrant commands that take action on a specific environment need to either specify the ID of the
environment (if it has already been initialized) or be executed in the directory that contains the
environment’s Vagrantfile. That directory forms a 'root' directory for the environment. Within this
'root' directory, Vagrant stores state information for the given environment in the .vagrant
subdirectory.

Container Development Kit includes a number of sample Vagrantfiles in separate directories with a
README file in each one. Start by changing into the directories, viewing the README and
Vagrantfile files, and then starting the environment with the vagrant up command.

Note

The tilde character (~) used in a file-system path denotes a user’s home directory on
Unix-based operating systems, such as Mac OS X or Linux. Therefore, ~/.vagrant.d
on Linux or macOS corresponds to %USERPROFILE%\.vagrant.d on Windows
systems.

In addition to the per-environment configuration and state directories, Vagrant uses the
~/.vagrant.d directory to store data that applies to all Vagrant environments run by a given user.
When a Vagrant box is added, or plugins are installed, they are added to ~/.vagrant.d. That is,
when you run the vagrant box add command, the box’s Vagrantfile is installed in the per-user
Vagrant directory, ~/.vagrant.d/boxes/. Since this is stored in the user’s home directory, each
user is completely independent and not able to see Vagrant boxes or plugins installed by another
user.

Note

Vagrant does not use a concept of system-wide configuration, so even if you run Vagrant
as root (Administrator), it only makes changes in the root’s home directory, and these
changes are not visible to regular users.

CHAPTER 1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT

5

Each Vagrant box that you download or build has its own Vagrantfile, which provides basic
configuration for that box. When a Vagrant box is added, the included Vagrantfile is copied into the
per-user ~/.vagrant.d directory. The settings in the box’s Vagrantfile can be overridden with the
per-environment Vagrantfile.

Finally, there is per-user Vagrantfile in ~/.vagrant.d for configuration that should be available to
all of the user’s Vagrant environments. This file is not created by default.

1.4.2. Vagrant Synchronized Folders

When a box is brought up, Vagrant automatically creates a Vagrant synchronized directory using the
vagrant-sshfs plugin. This synchronized directory maps your home directory on the host into the
Container Development Kit virtual machine.

For example, /home/joe/ on the host is synchronized to /home/joe/. On Microsoft Windows,
the home folder, C:\Users\joe is mapped to /c/home/joe within the virtual machine.

This provides a convenient and automated method to move code, data, and configuration from the
host machine to your Vagrant boxes.

A number of other methods are available for sharing folders or making copies, such as rsync, NFS,
or VirtualBox shared folders. The type of synchronization used for each shared folder can be set in
the definition for the shared folder in the Vagrantfile (the config.vm.synced_folder option).
Shared folder definitions may also be in the Vagrantfile that comes with a Vagrant box. This is
important to remember if you are trying to completely disable shared folders or change the method
used for sharing data.

Red Hat Container Development Kit 2.3 Getting Started Guide

6

CHAPTER 2. INSTALLING RED HAT
CONTAINER DEVELOPMENT KIT

Installation steps for setting up Container Development Kit on your development workstation
(Microsoft Windows, macOS, Red Hat Enterprise Linux) are described in detail in the Red Hat
Container Development Kit 2.3 Installation Guide. This section only provides a concise outline of the
installation procedure for reference purposes.

Regardless of the host operating system you use, the installation of Container Development Kit
always involves the following steps:

1. Installing or enabling a virtualization provider (VirtualBox on Microsoft Windows and
macOS, libvirt and KVM on Red Hat Enterprise Linux).

2. Installing Vagrant.

3. Downloading Container Development Kit Vagrant box for your virtualization provider.

4. Downloading and unpacking Red Hat Container Tools.

5. Installing additional auxiliary tools, such as rsync (in case of Microsoft Windows).

6. Initializing the obtained Vagrant box.

CHAPTER 2. INSTALLING RED HAT CONTAINER DEVELOPMENT KIT

7

https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.3/single/installation-guide/

CHAPTER 3. INTERACTING WITH RUNNING VAGRANT
BOXES

To use a Vagrant box that is up and running, first change to the directory from which you started that
box. For example, on Microsoft Windows, run:

C:\> cd %USERPROFILE%\cdk\components\rhel\rhel-ose

On Linux or macOS, run:

$ cd ~/cdk/components/rhel/rhel-ose

From that location, you can run different vagrant commands to use or manage the box in different
ways.

List the subcommands available to use with your vagrant command:

$ vagrant list-commands

Log into your Container Development Kit Vagrant box using SSH. This automatically logs you into
the Red Hat Enterprise Linux virtual machine as the vagrant user:

$ vagrant ssh

To exit the SSH session without affecting the Vagrant box, type exit in the virtual machine.

To stop the Vagrant box from the system, execute:

$ vagrant halt

To delete the created VM and free virtualization resources, use the vagrant destroy command.
Your Vagrantfile and the box image in the .vagrant.d directory in your home directory will remain,
allowing you to recreate a fresh version of the environment with a subsequent vagrant up
command.

$ vagrant destroy

Note

Do not delete the .vagrant subdirectory where Vagrant keeps its per-machine state
without first using the vagrant destroy command to free virtualization (libvirt or
Virtualbox) resources.

If you no longer have the .vagrant subdirectory on a system using libvirt, you will need
to use libvirt tools, such as virt-manager (GUI) or virsh (CLI), to manually delete the
resources that were created by Vagrant before you can again start a Vagrant box with the
same name. On a system using Virtualbox for virtualization, use the Virtualbox GUI to
delete the resources you created with Vagrant.

After vagrant destroy, you will be able to bring the Vagrant box up again in its original, clean
state.

Red Hat Container Development Kit 2.3 Getting Started Guide

8

To view the status of all Vagrant boxes on your system and verify that your box was properly
stopped, use:

$ vagrant global-status

CHAPTER 3. INTERACTING WITH RUNNING VAGRANT BOXES

9

CHAPTER 4. USING VAGRANT
CONTAINER DEVELOPMENT KIT PLUGINS

Container Development Kit comes with several plugins that provide added features you can use
with your Vagrant boxes. This chapter contains descriptions of those plugins and ways to use them.

4.1. USING THE VAGRANT-SERVICE-MANAGER PLUGIN

On the host machine, you can use the vagrant-service-manager plugin to obtain information
about the Docker, OpenShift, and Kubernetes services running in the virtual machine. It displays
environment variables that need to be set on the host system (your development workstation) to
enable host-based tools (such as the Eclipse IDE, the docker command, or OpenShift’s oc
command) to interact with the Docker daemon from the virtual machine.

The vagrant-service-manager plugin automatically recognizes the host operationg system and
outputs information based on the platform.

4.1.1. Setting the Host Environment on Linux and macOS

Run the following command from the directory in which the Vagrant box was initialized (in this
example, the rhel-ose Vagrantfile was used to provision the Container Development Kit Vagrant
box):

~/cdk/components/rhel/rhel-ose]$ vagrant service-manager env
Configured services:
docker - running
openshift - running
kubernetes - stopped

docker env:
Set the following environment variables to enable access to the
docker daemon running inside of the vagrant virtual machine:
export DOCKER_HOST=tcp://10.1.2.2:2376
export DOCKER_CERT_PATH=/home/john/down/cdk/components/rhel/rhel-
ose/.vagrant/machines/default/libvirt/docker
export DOCKER_TLS_VERIFY=1
export DOCKER_API_VERSION=1.22
run following command to configure your shell:
eval "$(vagrant service-manager env docker)"

openshift env:
You can access the OpenShift console on: https://10.1.2.2:8443/console
To use OpenShift CLI, run: oc login https://10.1.2.2:8443

Run the following command to set the required environment variables, so that the docker client on
the host system can be used to interact with the Docker service running inside the
Container Development Kit virtual machine:

~]$ eval "$(vagrant service-manager env docker)"

4.1.2. Setting Up the Host Environment on Microsoft Windows

Red Hat Container Development Kit 2.3 Getting Started Guide

10

Run the following command from the directory in which the Vagrant box was initialized (in this
example, the rhel-ose Vagrantfile was used to provision the Container Development Kit Vagrant
box).

~/cdk/components/rhel/rhel-ose]$ vagrant service-manager env docker
Set the following environment variables to enable access to the
docker daemon running inside of the vagrant virtual machine:
export DOCKER_HOST=tcp://10.1.2.5:2376
export DOCKER_CERT_PATH='C:\cygwin64\home\cdk\cdk\components\rhel\rhel-
ose\.vagrant\machines\default\virtualbox\docker\'
export DOCKER_TLS_VERIFY=1
export DOCKER_API_VERSION=1.22
run following command to configure your shell:
eval "$(VAGRANT_NO_COLOR=1 vagrant service-manager env docker | tr -d
'\r')"

openshift env:
You can access the OpenShift console on: https://10.1.2.2:8443/console
To use OpenShift CLI, run: oc login https://10.1.2.2:8443

To set the required environment variables, so that the docker.exe client on the host system can
be used to interact with the Docker service running inside the Container Development Kit virtual
machine, you need to run the following commands (note that you need to use the Cygwin Bash
environment for the commands to work properly):

~]$ export VAGRANT_DETECTED_OS=cygwin

~]$ eval "$(VAGRANT_NO_COLOR=1 vagrant service-manager env docker | tr
-d '\r')"

4.2. USING THE VAGRANT-REGISTRATION PLUGIN

With the vagrant-registration plugin, you can manage Red Hat subscriptions for your
Red Hat Enterprise Linux virtual machines through Vagrant.

4.2.1. Understanding Red Hat Enterprise Linux Subscription for
Container Development Kit

Registering your Red Hat Enterprise Linux system is highly recommended. Until you register, you
cannot use the official Red Hat repositories to:

Upgrade the software in your Red Hat Enterprise Linux virtual machine.

Add more software packages to your Red Hat Enterprise Linux virtual machine.

Add software packages to the Red Hat Enterprise Linux containers you build or run on that
virtual machine.

Red Hat Enterprise Linux base container images are configured to have Docker use the credentials
of the host system. So when you try to install packages inside of a container, the yum command
uses the host credentials to gain access to those packages from Red Hat. Without a valid Red Hat
subscription, you will not have a fully functioning setup for building Red Hat Enterprise Linux
containers.

The process of registering your Container Development Kit virtual machine with Red Hat is

CHAPTER 4. USING VAGRANT CONTAINER DEVELOPMENT KIT PLUGINS

11

automated using the vagrant-registration plugin. By default, when a Vagrant box is started,
you are prompted to enter your username and password for the Red Hat Customer Portal. When the
registration plugin is properly configured, the Vagrant box is automatically attached to an available
subscription.

When a Red Hat Enterprise Linux VM is registered in Container Development Kit, an identity and
time-limited entitlement is created for that VM. Once it is registered, the VM does not need to be re-
registered until the Container Development Kit entitlement expires. Once the time limit is up, that
container loses access to the Red Hat software repositories (CDN).

You can register your Container Development Kit system with a valid Red Hat Enterprise Linux
Developer Subscription. Joining the Red Hat Developers program also provides a path to getting
registration credentials. Once you register a Container Development Kit VM, you get a new
entitlement that lasts for 90 days that does not come out of your pool. If you re-register the same
VM, you will get a new 90 day entitlement. You can do this over and over.

4.2.2. Releasing a Subscription

There are a few things you should know about releasing a subscription:

When you stop the Vagrant box, using either vagrant halt or vagrant destroy, the plugin
automatically releases the Red Hat subscription.

If you stop the box by some other means, such as a reboot of the host system, you may need to
manually remove the subscription in order to use it on another box. Use subscription
management at Red Hat Customer Portal Subscriptions to find and delete the virtual system that
is no longer being used.

If you do not want to unregister a system when it is halted, you can set
config.registration.unregister_on_halt = false in the selected Vagrantfile. In that
case, the subscription will still be intact the next time you run vagrant up on that Vagrantfile.

4.2.3. Automating the Registration Process (Saving Your Credentials)

It is recommended that you store your Red Hat credentials, so that you do not have to answer the
prompts every time you bring up a Vagrant box. This is mandatory for complex Vagrantfiles that
bring up multiple virtual machines from a single Vagrantfile.

To store your credentials, the following lines should be added to the per-user Vagrantfile. The path
to that file is different for the different platforms:

Microsoft Windows: %USERPROFILE%\.vagrant.d\Vagrantfile

Red Hat Enterprise Linux and macOS: ~/.vagrant.d/Vagrantfile

The configuration will be available to all boxes started under that user ID. The per-user Vagrantfile is
not created automatically.

To avoid storing your Red Hat credential details in the file system, you can use the following
configuration to retrieve them from environment variables. Remember to store your username in the
$SUB_USERNAME environment variable (SUB_USERNAME for Microsoft Windows) and your

Vagrant.configure('2') do |config|
 config.registration.username = '<your Red Hat username>'
 config.registration.password = '<your Red Hat password>'
end

Red Hat Container Development Kit 2.3 Getting Started Guide

12

https://developers.redhat.com/
https://access.redhat.com/management/subscriptions

password in the $SUB_PASSWORD environment variable (SUB_PASSWORD for Microsoft Windows)
before starting Vagrant.

These settings may also be used in a specific Vagrantfile that will override the settings in the per-
user ~/.vagrant.d/Vagrantfile. In an existing Vagrantfile, there will already be a block that
begins with Vagrant.configure('2') do |config|, so just add the two
config.registration lines (see above) in the existing block.

For more information, see the vagrant-registration-README.md file in the ~/cdk/plugins
directory of the Red Hat Container Tools ZIP file.

4.2.4. Additional Resources

For more information on configuring the vagrant-registration plugin, see the vagrant-
registration GitHub page.

For information about subscription management, see the documentation for Red Hat
Subscription Management.

Vagrant.configure('2') do |config|
 config.registration.username = ENV['SUB_USERNAME']
 config.registration.password = ENV['SUB_PASSWORD']
end

CHAPTER 4. USING VAGRANT CONTAINER DEVELOPMENT KIT PLUGINS

13

https://github.com/projectatomic/adb-vagrant-registration
https://access.redhat.com/documentation/en/red-hat-subscription-management/

CHAPTER 5. USING CONTAINER DEVELOPMENT KIT WITH
DOCKER TOOLING IN ECLIPSE

You can access the Docker service runnning on the CDK Red Hat Enterprise Linux VM from an
Eclipse IDE running on your local system.

1. Install Eclipse on the system where you are running Container Development Kit and start
Eclipse. For example, to install and start Eclipse on Red Hat Enterprise Linux, do the
following:

yum install devtoolset-4-eclipse devtoolset-4-eclipse-
linuxtools \
 devtoolset-4-eclipse-linuxtools-docker.noarch

2. Enable the Eclipse software collection from Red Hat Developer Toolset:

$ cd ~/cdk/components/rhel/rhel-ose/
$ eval "$(vagrant service-manager env docker)"
$ scl enable devtoolset-4 'eclipse' &

3. Select a workspace. Choose a directory to store our Eclipse work on your local desktop
(such as /home/joe/workspace). The Eclipse Platform screen appears.

4. Open the Docker perspective. Select Window → Perspective → Open Perspective →
Other → Docker Tooling → OK. Then select the Workbench icon. The Docker Tooling -
Eclipse Platform screen should appear as shown in Figure 5-2

Red Hat Container Development Kit 2.3 Getting Started Guide

14

You can now begin using the Eclipse Docker Tooling screen to work with Docker-formatted
container images from inside the Container Development Kit virtual machine.

CHAPTER 5. USING CONTAINER DEVELOPMENT KIT WITH DOCKER TOOLING IN ECLIPSE

15

CHAPTER 6. USING THE DOCKER SERVICE

When you initialize the Container Development Kit virtual machine (using the vagrant up
command), various services are automatically pre-configured and running — depending on the
Vagrantfile you used to provision the Container Development Kit box. The Docker service is running
in all cases, and you can use it immediately after the virtual machine is launched. While it is
possible to use and interact with the Docker service using GUI tools (for example, the integrated
Docker support provided by the Eclipse IDE), this section introduces a number of basic docker
commands to get you started using the Docker service from the command line.

Command-line usage of the Docker service provided by the Container Development Kit box is
possible both from within the virtual machine and from the host machine — see section Using the
vagrant-service-manager Plugin for instructions on how to set up your host machine to interact with
the Docker service running inside the Container Development Kit virtual machine.

See the Get Started with Docker Formatted Container Images chapter of the Red Hat
Enterprise Linux Atomic Host 7 Getting Started with Containers guide for a more thorough
introduction into the Docker service.

6.1. PREPARING HOST SYSTEM FOR USING DOCKER FROM THE
COMMAND LINE

To use the docker command on your host system to interact with the Docker service running inside
the Container Development Kit virtual machine, you need to install the docker executable.

If you intend to use Docker (and the docker command) only from within the
Container Development Kit virtual machine, no preparation is required — the docker command is
installed in the Container Development Kit box by default.

6.1.1. Installing the docker Executable

Use the install-cli command of the vagrant-service-manager plugin to install the docker
binary on your host system.

For example:

~]$ vagrant service-manager install-cli docker
Binary now available at /home/joe/.vagrant.d/data/service-
manager/bin/docker/1.10.3/docker
run binary as:
docker <command>
export PATH=/home/joe/.vagrant.d/data/service-
manager/bin/docker/1.10.3:$PATH

run following command to configure your shell:
eval "$(VAGRANT_NO_COLOR=1 vagrant service-manager install-cli docker
| tr -d '\r')"

Red Hat Container Development Kit 2.3 Getting Started Guide

16

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#get_started_with_docker_formatted_container_images

Note

To use the install-cli command when behind a proxy, the
Container Development Environment needs to be configured to operate behind a proxy
using the vagrant-service-manager plugin. See section Using vagrant-service-
manager to Set Proxy Environment Variables in the Red Hat
Container Development Kit 2.3 Installation Guide.

6.1.1.1. Installing a Custom Version of the docker Binary

By default, the install-cli command installs the docker binary from the upstream Docker
project in version 1.10.3. To install a different version, use the --cli-version option.

For example:

~]$ vagrant service-manager install-cli docker --cli-version 1.12.3
Binary now available at /home/joe/.vagrant.d/data/service-
manager/bin/docker/1.12.3/docker
run binary as:
docker <command>
export PATH=/home/joe/.vagrant.d/data/service-
manager/bin/docker/1.12.3:$PATH

run following command to configure your shell:
eval "$(VAGRANT_NO_COLOR=1 vagrant service-manager install-cli docker
--cli-version 1.12.3 | tr -d '\r')"

6.1.1.2. Installing the docker Binary to a Custom Location

By default, the install-cli command installs the docker binary from the upstream Docker
project to the following directory: /home/joe/.vagrant.d/data/service-
manager/bin/docker/1.10.3/. To install the executable to a different location, use the --path
option. Note that you need to specify an existing directory and the name of the binary.

For example:

~]$ vagrant service-manager install-cli docker --cli-version 1.12.3 --
path ~/bin/docker
Binary now available at /home/joe/bin/docker
run binary as:
docker <command>
export PATH=/home/joe/bin:$PATH

run following command to configure your shell:
eval "$(VAGRANT_NO_COLOR=1 vagrant service-manager install-cli docker
--path /home/joe/bin/docker --cli-version 1.12.3 | tr -d '\r')"

6.2. LEARNING ABOUT THE DOCKER ENVIRONMENT

The docker command offers several sub-commands that let you acquire information about the
Docker service, the environment it runs in, and available resources. You can also query the service
for images and containers it manages and for images that are available to you from the pre-

CHAPTER 6. USING THE DOCKER SERVICE

17

https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.3/single/installation-guide/#_using_vagrant_service_manager_to_set_proxy_environment_variables

configured registries. By default, the Docker service in Container Development Kit can download
and use images from both the Docker Hub (docker.io) and the Red Hat Atomic Registry
(registry.access.redhat.com).

Use the following commands to obtain information about the Docker service and the working
environment.

6.2.1. Verifying the Version of the Docker Service

Run the docker version command to see the version of both the Docker Client and Docker
Server:

~]$ docker version
Client:
 Version: 1.10.3
 API version: 1.22
 Package version: docker-1.10.3-46.el7.14.x86_64
 Go version: go1.4.2
 Git commit: 78ee77d/1.10.3
 Built:
 OS/Arch: linux/amd64

Server:
 Version: 1.10.3
 API version: 1.22
 Package version: docker-1.10.3-46.el7.14.x86_64
 Go version: go1.4.2
 Git commit: 78ee77d/1.10.3
 Built:
 OS/Arch: linux/amd64

6.2.2. Displaying Information about the System and Resources

Run the docker info command to see information about the host system (which, in this case, is
the virtualized Red Hat Enterprise Linux instance managed by Vagrant), utilization of virtualization
resources, basic networking information, and the numbers of managed containerrs and images:

~]$ docker info
Containers: 14
Images: 32
Server Version: 1.9.1
Storage Driver: devicemapper
 Pool Name: VolGroup00-docker--pool
 Pool Blocksize: 524.3 kB
 Base Device Size: 107.4 GB
 Backing Filesystem: xfs
 Data file:
 Metadata file:
 Data Space Used: 2.172 GB
 Data Space Total: 13.6 GB
 Data Space Available: 11.43 GB
 Metadata Space Used: 1.016 MB
 Metadata Space Total: 46.14 MB
 Metadata Space Available: 45.12 MB
 Udev Sync Supported: true

Red Hat Container Development Kit 2.3 Getting Started Guide

18

 Deferred Removal Enabled: true
 Deferred Deletion Enabled: true
 Deferred Deleted Device Count: 0
 Library Version: 1.02.107-RHEL7 (2015-12-01)
Execution Driver: native-0.2
Logging Driver: json-file
Kernel Version: 3.10.0-514.el7.x86_64
Operating System: Red Hat Enterprise Linux Server 7.3 (Maipo)
CPUs: 2
Total Memory: 2.781 GiB
Name: rhel-cdk
ID: PZ3X:6J7V:OF4L:KZRY:XXDT:QXCU:UHGQ:XMWE:EMM5:4POR:CG6D:YF4S

6.3. LEARNING ABOUT CONTAINERS AND IMAGES

Use the following commands to obtain information about images and containers on your system.

6.3.1. Listing Managed Images

Run the docker images command to display a list of images available in the local registry.

~]$ docker images
REPOSITORY TAG
IMAGE ID CREATED VIRTUAL SIZE
docker.io/prom/haproxy-exporter latest
2b168f203700 11 days ago 23.64 MB
registry.access.redhat.com/openshift3/ose-pod v3.1.1.6
2b96d2bcbc46 2 weeks ago 428 MB
registry.access.redhat.com/openshift3/ose-sti-builder v3.1.1.6
983aa720a8e7 3 weeks ago 441.9 MB
registry.access.redhat.com/openshift3/ose-deployer v3.1.1.6
d772a87d1aac 3 weeks ago 441.9 MB
registry.access.redhat.com/openshift3/ose v3.1.1.6
88178069a37f 3 weeks ago 441.9 MB
registry.access.redhat.com/openshift3/ose-haproxy-router v3.1.1.6
5e18f7fbcc6c 3 weeks ago 456.8 MB
registry.access.redhat.com/openshift3/ose-docker-registry v3.1.1.6
3c272743b20a 3 weeks ago 478.5 MB

6.3.2. Listing Managed Containers

Run the docker ps command to display a list of running containers. Add the --all or -a
parameter to list all available containers (not just the running ones). As you can see from the
example output below, there are several running containers in Container Development Kit
immediately after launch. These containers provide some of the services offered by
Container Development Kit and as such should not be stopped or removed. The example below
shows containers with the OpenShift service

Use the --format parameter to specify what information you want displayed about the individual
containers (see the docker-ps(1) manual page for a list of available placeholders). For example:

~]$ docker ps --format "table
{{.ID}}\t{{.Image}}\t{{.Command}}\t{{.Status}}"

CHAPTER 6. USING THE DOCKER SERVICE

19

CONTAINER ID IMAGE
COMMAND STATUS
ce4817df7620 prom/haproxy-exporter:latest
"/bin/go-run -haproxy" Up 55 minutes
e38b37b6e13a openshift3/ose-docker-registry:v3.1.1.6
"/bin/sh -c 'DOCKER_R" Up 56 minutes
8abd50d2311f openshift3/ose-pod:v3.1.1.6
"/pod" Up 56 minutes
6821a60044a8 openshift3/ose-haproxy-router:v3.1.1.6
"/usr/bin/openshift-r" Up 56 minutes
5312e060116d openshift3/ose-pod:v3.1.1.6
"/pod" Up 56 minutes
8c94cc0c049b registry.access.redhat.com/openshift3/ose:v3.1.1.6
"/usr/bin/openshift s" Up 59 minutes

6.3.3. Displaying Information about Container Resource Usage

Run the docker stats <container> command to display a live output showing resource-usage
statistics for a specific running container. For example:

~]$ docker stats openshift
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O
openshift 0.00% 110.4 MB / 2.986 GB 3.70% 0 B / 0 B 77.24 MB /
3.708 MB

6.3.4. Displaying Detailed Information about Container or Image Configuration

Run the docker inspect <container> command to show low-level information about a
container or an image in JSON format. Use the --type parameter to specify whether you want to
display information about a container (the default) or an image in case you have containers and
images of the same name.

Use the --format parameter to specify what part of the output you want displayed (see the
docker-inspect(1) manual page for examples of the output). For example, define the following
format to list network ports exposed by the container:

~]$ docker inspect --format='{{.Config.ExposedPorts}}' openshift
map[8443/tcp:{} 53/tcp:{}]

6.4. GETTING NEW DOCKER-FORMATTED CONTAINER IMAGES

Existing images for creating containers can be either downloaded (pulled) from one of the two pre-
configured repositories (the Docker Hub (docker.io) and the Red Hat Atomic Registry
(registry.access.redhat.com)) or imported from a local file.

6.4.1. Searching Registries for Images

Run the docker search <search-term> command to search the pre-configured registries for
images. For example, to search for images containing the string rhscl in the name or namespace,
use the following command:

~]$ docker search rhscl

Red Hat Container Development Kit 2.3 Getting Started Guide

20

INDEX NAME
DESCRIPTION STARS OFFICIAL
AUTOMAT
docker.io docker.io/rhscl/mongodb-26-centos7
A Centos7 based MongoDB v2.6 image for use... 0
redhat.com registry.access.redhat.com/rhscl/devtoolset-4-toolchain-
rhel7 Developer toolset toolchain 0
redhat.com registry.access.redhat.com/rhscl/httpd-24-rhel7
Apache HTTP 2.4 Server 0
redhat.com registry.access.redhat.com/rhscl/mariadb-100-rhel7
MariaDB 10.0 SQL database server 0
redhat.com registry.access.redhat.com/rhscl/mongodb-26-rhel7
MongoDB 2.6 NoSQL database server 0
redhat.com registry.access.redhat.com/rhscl/mysql-56-rhel7
MySQL 5.6 SQL database server 0
redhat.com registry.access.redhat.com/rhscl/nginx-16-rhel7
Nginx 1.6 server and a reverse proxy server 0
[...]

6.4.2. Downloading Images from a Registry

Run the docker pull <image> command to download (pull) the specified image to your system
for local use. Note that while it is possible to provide just the name of the image, it is better practice
to also specify the registry you want to pull from and the namespace in which the particular image is
published. The naming convention follows this order: [registry/][namespace/]name.

For example, to pull the image with the toolchain components of the Red Hat Developer Toolset
from the Red Hat Atomic Registry, use the following command:

~]$ docker pull registry.access.redhat.com/rhscl/devtoolset-4-
toolchain-rhel7
Using default tag: latest
68f6775524af: Download complete
6c3a84d798dc: Download complete
Status: Downloaded newer image for
registry.access.redhat.com/rhscl/devtoolset-4-toolchain-rhel7:latest

~]$ docker images registry.access.redhat.com/rhscl/devtoolset-4-
toolchain-rhel7
REPOSITORY TAG
IMAGE ID CREATED VIRTUAL SIZE
registry.access.redhat.com/rhscl/devtoolset-4-toolchain-rhel7 latest
68f6775524af 7 weeks ago 365.5 MB

6.4.3. Loading an Image from a File

Run the docker load < file.tar command to load an image from a local file file.tar. By
default, the docker pull command loads image data from the standard input. To load an image
from a file, use the --input or -i parameter. For example to load the Red Hat Developer Toolset
toolchain image that was previously saved to a tar file using the docker save command, use the
following command:

~]$ docker load -i devtoolset.tar

CHAPTER 6. USING THE DOCKER SERVICE

21

6.5. USING CONTAINERS

Use the following commands to launch, stop, or remove containers or to run applications from within
containers.

6.5.1. Launching a New Container and Running a Command

Run the docker run <image> <command> command to launch a new container from an image
and run the specified command. Use the --name parameter to specify a name for the container to
prevent the Docker service from assigning a random name to the container. For example, to run the
uname -a command (and display its output) in a container created from the Red Hat Developer
Toolset toolchain image, use the following command:

~]$ docker run --name devtoolset
registry.access.redhat.com/rhscl/devtoolset-4-toolchain-rhel7 uname -a
Linux 22b819dec3f1 3.10.0-327.el7.x86_64 #1 SMP Thu Oct 29 17:29:29 EDT
2015 x86_64 x86_64 x86_64 GNU/Linux

~]$ docker ps -a --format "table
{{.ID}}\t{{.Names}}\t{{.Command}}\t{{.Status}}"
CONTAINER ID NAMES COMMAND STATUS
22b819dec3f1 devtoolset "uname -a" Exited (0) 2 seconds ago
[...]

6.5.2. Stopping a Container

Run the docker stop <container> command to stop one or more containers. This action tries
to gracefully shut down the applications running in the container by sending them the SIGTERM
signal (followed by the SIGKILL signal if SIGTERM does not work). For example, to stop the
container created in the previous example, use the following command:

~]$ docker stop devtoolset
devtoolset

~]$ docker ps | grep devtoolset

6.5.3. Starting an Existing Container

Use the docker start -i <container> command to run the container stopped in the previous
example (the --interactive or -i parameter ensures that the container’s standard output is
attached to your current shell — in other words, it ensures that the output of the command executed
in the container is displayed):

~]$ docker start -i devtoolset
Linux 22b819dec3f1 3.10.0-327.el7.x86_64 #1 SMP Thu Oct 29 17:29:29 EDT
2015 x86_64 x86_64 x86_64 GNU/Linux

6.5.4. Launching a New Container and Switching to the Container’s Shell

Red Hat Container Development Kit 2.3 Getting Started Guide

22

Run the docker run -ti <image> bash command to launch a new container from an image
and switch to an interactive shell within the container. The --interactive or -i parameter along
with the --tty or -t parameter are used to allocate a pseudo-TTY within which the Bash shell is
run. For example:

~]$ docker run -it registry.access.redhat.com/rhscl/devtoolset-4-
toolchain-rhel7 bash
bash-4.2$ uname -a
Linux 5e224c8c3878 3.10.0-327.el7.x86_64 #1 SMP Thu Oct 29 17:29:29 EDT
2015 x86_64 x86_64 x86_64 GNU/Linux
bash-4.2$ exit
exit

~]$ docker ps -a --format "table
{{.ID}}\t{{.Names}}\t{{.Command}}\t{{.Status}}"
CONTAINER ID NAMES COMMAND STATUS
5e224c8c3878 devtoolset "uname -a" Exited (0) 2 seconds ago
[...]

6.5.5. Removing a Container

Run the docker rm <container> command to remove one or more containers, thus freeing the
host’s resources. For example, to remove the container created in the previous example, use the
following command:

~]$ docker rm devtoolset
devtoolset

~]$ docker ps -a | grep devtoolset

6.6. ADDITIONAL RESOURCES

See the COMMANDS section of the docker(1) manual page for a complete list of available
docker commands and detailed descriptions of their function.

See the Getting Started with Containers guide for detailed information about the use and
management of containers on the Red Hat Enterprise Linux and Red Hat Atomic platforms.

CHAPTER 6. USING THE DOCKER SERVICE

23

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/

CHAPTER 7. USING OPENSHIFT CONTAINER PLATFORM

When you initialize the Container Development Kit Vagrant box using the rhel-ose Vagrantfile,
which is provided as a part of Red Hat Container Tools (located in
cdk/components/rhel/rhel-ose/Vagrantfile in the ZIP file), the launched virtual machine
automatically provisions an instance of OpenShift Container Platform. (See the Red Hat
Container Development Kit 2.3 Installation Guide for additional information on how to launch
Container Development Kit with a specific Vagrantfile.)

Note

OpenShift Container Platform is a Platform as a Service (PaaS) offering by Red Hat
that extends the functionality of the Docker service and the Kubernetes container
orchestration tool to provide a powerful and easy-to-use platform for building, deploying,
and orchestrating multi-container applications and services.

7.1. USING OPENSHIFT FROM THE WEB USER INTERFACE

1. Point your Web browser to the URL shown for the OpenShift console. The default is:
https://10.1.2.2:8443/console.

Red Hat Container Development Kit 2.3 Getting Started Guide

24

https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.3/single/installation-guide/
https://10.1.2.2:8443/console

2. Log in as either a basic user with the openshift-dev username and devel password or
cluster admin user with the admin username and admin password.

7.1.1. Additional Resources

For a walk-through of the OpenShift Web Console, see Developers: Web Console Walkthrough.

For help creating your first OpenShift application, see Creating New Applications Using the Web
Console.

7.2. USING OPENSHIFT FROM THE COMMAND LINE

Command-line usage of the OpenShift service provided by the Container Development Kit box is
possible both from within the virtual machine and from the host machine. This section provides
examples of basic usage of the oc command. Note that you can also administer a subset of
OpenShift features using its web user interface, which is accesible at https://10.1.2.2:8443/console.

CHAPTER 7. USING OPENSHIFT CONTAINER PLATFORM

25

https://access.redhat.com/documentation/en/openshift-enterprise/version-3.2/getting-started/#web-console-walkthrough
https://access.redhat.com/documentation/en/openshift-container-platform/3.3/single/developer-guide/#using-the-web-console-na
https://10.1.2.2:8443/console

See also the OpenShift Container Platform Developer Guide for detailed instructions on how to set
up and configure a workstation to develop and deploy applications in an OpenShift cloud
environment with a command-line interface (CLI) and the web console.

7.2.1. Preparing Host System for Using OpenShift from the Command Line

To use the oc command on your host system to interact with the OpenShift service running inside
the Container Development Kit virtual machine, you need to install the oc executable.

If you intend to use OpenShift (and the oc command) only from within the
Container Development Kit virtual machine, no preparation is required — the oc command is
installed in the Container Development Kit box by default.

7.2.1.1. Installing the oc Executable

Use the install-cli command of the vagrant-service-manager plugin to install the oc
binary on your host system.

For example:

~]$ vagrant service-manager install-cli openshift
Binary now available at /home/joe/.vagrant.d/data/service-
manager/bin/openshift/1.2.1/oc
run binary as:
oc <command>
export PATH=/home/joe/.vagrant.d/data/service-
manager/bin/openshift/1.2.1:$PATH

run following command to configure your shell:
eval "$(VAGRANT_NO_COLOR=1 vagrant service-manager install-cli
openshift | tr -d '\r')"

Note

To use the install-cli command when behind a proxy, the
Container Development Environment needs to be configured to operate behind a proxy
using the vagrant-service-manager plugin. See section Using vagrant-service-
manager to Set Proxy Environment Variables in the Red Hat
Container Development Kit 2.3 Installation Guide.

7.2.1.1.1. Installing a Custom Version of the oc Binary

By default, the install-cli command installs the oc binary from the upstream OpenShift Origin
project in version 1.2.1. To install a different version, use the --cli-version option.

~]$ vagrant service-manager install-cli openshift --cli-version 1.3.1
Binary now available at /home/joe/.vagrant.d/data/service-
manager/bin/openshift/1.3.1/oc
run binary as:
oc <command>
export PATH=/home/joe/.vagrant.d/data/service-
manager/bin/openshift/1.3.1:$PATH

Red Hat Container Development Kit 2.3 Getting Started Guide

26

https://access.redhat.com/documentation/en/openshift-container-platform/3.3/single/developer-guide/
https://access.redhat.com/documentation/en/red-hat-container-development-kit/2.3/single/installation-guide/#_using_vagrant_service_manager_to_set_proxy_environment_variables

run following command to configure your shell:
eval "$(VAGRANT_NO_COLOR=1 vagrant service-manager install-cli
openshift --cli-version 1.3.1 | tr -d '\r')"

7.2.1.1.2. Installing the oc Binary to a Custom Location

By default, the install-cli command installs the oc binary from the upstream OpenShift Origin
project to the following directory: /home/joe/.vagrant.d/data/service-
manager/bin/openshift/1.2.1/. To install the executable to a different location, use the --
path option. Note that you need to specify an existing directory and the name of the binary.

For example:

~]$ vagrant service-manager install-cli openshift --cli-version 1.3.1 -
-path ~/bin/oc
Binary now available at /home/joe/bin/oc
run binary as:
oc <command>
export PATH=/home/joe/bin:$PATH

run following command to configure your shell:
eval "$(VAGRANT_NO_COLOR=1 vagrant service-manager install-cli
openshift --path /home/joe/bin/oc --cli-version 1.3.1 | tr -d '\r')"

7.2.2. Verifying the OpenShift Installation

Upon initializing the Container Development Kit Vagrant box using the rhel-ose Vagrantfile, the
following information is output about the OpenShift service that has been provisioned for you:

You can now access the OpenShift console on:
https://10.1.2.2:8443/console

To use OpenShift CLI, run:
$ vagrant ssh
$ oc login 10.1.2.2:8443

Configured users are (<username>/<password>):
openshift-dev/devel
admin/admin

If you have the oc client library on your host, you can also login from
your host.

The automatically provisioned instance of OpenShift Container Platform in
Container Development Kit is provided in the form of a container. You can check that the OpenShift
container is installed and running by examining the output of the docker ps command:

~]$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
...
ddb2d13604ef openshift "/usr/bin/openshift s" 2 hours ago Up 2
hours openshift

CHAPTER 7. USING OPENSHIFT CONTAINER PLATFORM

27

You can also run a health check to determine whether OpenShift is running properly by querying its
network interface using the curl command:

~]$ curl -k https://10.1.2.2:8443/healthz
ok

7.2.3. Displaying Information about the OpenShift Service

The command-line interface of OpenShift is accessed using the oc command. This command has a
number of subcommands that help to interact with various features of the OpenShift service. This
section describes how to use the oc command to gather basic information about the current
OpenShift instance.

7.2.3.1. Checking the Version of OpenShift and Kubernetes

Use the oc version command to display the version of OpenShift Container Platform and the
Kubernetes service currently in use:

~]$ oc version
oc v3.1.0.4-16-g112fcc4
kubernetes v1.1.0-origin-1107-g4c8e6f4

7.2.4. Logging in and out of the OpenShift Server

Use the oc login command to log into specific user profiles. Upon start up, the
Container Development Kit box logs you in automatically to the openshift-dev account.

7.2.4.1. Logging in to the OpenShift Server

Use the oc login command to log into the OpenShift server. If you want to log in from your host
system, you need to specify a host address (10.1.2.2:8443). The command asks for the username
and password interactively, but you can also supply this information on the command line using the
-u (--username) and -p (--password) options respectively. For example, to log into the default
OpenShift instance in Container Development Kit from your host system, use the following
command:

~]$ oc login -u openshift-dev -p devel https://10.1.2.2:8443
x509: certificate signed by unknown authority
You can bypass the certificate check, but any data you send to the
server could be intercepted by others.
Use insecure connections? (y/n): y

Authentication required for https://10.1.2.2:8443 (openshift)
Username: openshift-dev
Password:
Login successful.

You have access to the following projects and can switch between them
with 'oc project <projectname>':

Red Hat Container Development Kit 2.3 Getting Started Guide

28

 * sample-project (current)

Using project "sample-project".
Welcome! See 'oc help' to get started.

Note

Use the --insecure-skip-tls-verify=true option with the oc login command
to prevent the warning about insecure connection.

Use the oc whoami command to check the user account to which you are currently logged:

~]$ oc whoami
openshift-dev

7.2.4.2. Viewing Current OpenShift CLI Configuration

To display the configuration values for the command-line environment, use the oc config view.
For example, to show the part of the configuration pertaining to the default user name (openshift-
dev), issue the following command:

~]$ oc config view | grep -A2 "name: openshift-dev"
- name: openshift-dev/10-1-2-2:8443
 user:
 token: THdHS4sw1qgzs95CnCf5ic6D8eOrZss1aT5jyGOmd2w

7.2.4.3. Logging out of the OpenShift Server

To log out, use the oc logout command:

~]$ oc logout
Logged "openshift-dev" out on "https://10.1.2.2:8443"

7.2.5. Working with OpenShift Projects

In OpenShift, projects are used to organize and manage applications by groups of users. Individual
projects keep their content separated from each other, and individual users need to be granted
access to projects. Upon start up, the Container Development Kit box automatically creates the
sample-project project.

7.2.5.1. Creating a New OpenShift Project

Use the oc new-project command to create a new project on the OpenShift server you are
currently logged in to. The following example uses the optional --display-name option to set a
user-friendly name for the project:

~]$ oc new-project testing --display-name="Test Project"
Now using project "testing" on server "https://127.0.0.1:8443".

You can add applications to this project with the 'new-app' command.

CHAPTER 7. USING OPENSHIFT CONTAINER PLATFORM

29

For example, try:

 $ oc new-app centos/ruby-22-
centos7~https://github.com/openshift/ruby-hello-world.git

to build a new hello-world application in Ruby.

7.2.5.2. Switching to a Different OpenShift Project

Use the oc project <project-name> command to switch to another project on the OpenShift
server you are currently logged in to. The following switches to the default sample-project
project:

~]$ oc project sample-project
Now using project "sample-project" on server "https://10.1.2.2:8443".

7.2.5.3. Listing Available Projects

To list projects available on the server and their status, use the oc get projects command. Note
that the oc get command can be used to display information about a number of other resources
besides projects (pods, builds, services, etc.). In the following example, only the project created in
the preceeding example is shown:

~]$ oc get project
NAME DISPLAY NAME STATUS
testing Test Project Active

7.2.5.4. Displaying Status Information about the Currently Used Project

Run the oc status command to display information about the currently used project and about
activities (services, builds, deployments, etc.) within that project. When executed in a new (empty)
project, the output looks like the following:

~]$ oc status
In project Test Project (testing) on server https://10.1.2.2:8443

You have no services, deployment configs, or build configs.
Run 'oc new-app' to create an application.

Alternatively, you can also use the oc project command to display project information:

~]$ oc project
Using project "testing" from context named "testing/10-1-2-
2:8443/openshift-dev" on server "https://10.1.2.2:8443".

7.2.5.5. Deleting a Project

To remove a project from the server, use the oc delete project command and specify the
name of the project you want deleted. To remove all projects, include the --all option. Note that
the oc delete command can be used to delete other resources (pods, services, etc.) as well. For
example, to delete the project created in this section, run the following command:

Red Hat Container Development Kit 2.3 Getting Started Guide

30

~]$ oc delete project testing
project "testing" deleted

7.2.6. Working with OpenShift Templates

A template in OpenShift is a text file (in the JSON or YAML format) that defines a set of objects. The
object definitions, such as services or build configurations, can be parametrized. Templates can be
processed to create the objects they describe and thus populate your current project.

To get you quickly started with application development, OpenShift offers a number of basic
templates, which are included in the global openshift project. In order to use these templates as the
foundation block of a new application, they need to be downloaded from the openshift project and
subsequently uploaded to your current project. You can also create a new application (using the oc
new-app command) directly from a template.

7.2.6.1. Listing Available Templates

To display the templates available in a project, issue the oc get templates command and use
the -n option to specify the project from which you wish to list the templates. For example, to list the
templates available in the global openshift project, run:

~]$ oc get templates -n openshift
NAME DESCRIPTION
PARAMETERS OBJECTS
cakephp-example An example CakePHP application...
15 (8 blank) 5
cakephp-mysql-example An example CakePHP application...
16 (3 blank) 7
eap64-basic-s2i Application template for EAP 6...
12 (3 blank) 5
eap64-mysql-persistent-s2i Application template for EAP 6...
34 (16 blank) 10
jws30-tomcat7-mysql-persistent-s2i Application template for JWS M...
28 (11 blank) 10
nodejs-example An example Node.js application...
12 (8 blank) 5
nodejs-mongodb-example An example Node.js application...
13 (3 blank) 7

There are also templates bundled with the Container Development Environment. Find them in the
/opt/adb/openshift/templates/common directory:

~]$ ls -1 /opt/adb/openshift/templates/common/
cakephp.json
cakephp-mysql.json
eap64-basic-s2i.json
eap64-mysql-persistent-s2i.json
image-streams.json
jboss-image-streams.json
jenkins-ephemeral-template.json
jenkins-persistent-template.json
jenkins-slave-template.json

CHAPTER 7. USING OPENSHIFT CONTAINER PLATFORM

31

jws30-tomcat7-mysql-persistent-s2i.json
nodejs.json
nodejs-mongodb.json
wildfly-image-streams.json

Note

Please note that not all OpenShift templates that are listed in OpenShift and xPaaS
documentation are available as a part of the Container Development Environment — only
a subset of the templates has been tested with the Container Development Environment.
Also, in the Container Development Environment, the templates are located in the
/opt/adb/openshift/templates/common directory, not in
/usr/share/openshift/examples/. For example, the xpaas-streams template
mentioned in OpenShift Source-to-Image (S2I) Workflow is not in the
Container Development Environment.

To use the templates that are not included by default, download them from their upstream
GitHub repositories:

JBoss Fuse Integration Services templates: jboss-fuse/application-templates

JBoss Middleware templates: jboss-openshift/application-templates

See Can’t find Fuse Integration Services (FIS) or A-MQ xPaaS image templates for
further information.

7.2.6.2. Downloading an InstantApp Template

To obtain a template definition file, which can be used for uploading to your project, use the oc get
templates command and specify the project in which the template is located (using the -n or --
namespace option), choose the format in which you wish to store the template (typically JSON or
YAML — use the -o or --output option), and supply the name of the requested template. Note
that by default, the oc get command outputs the requested data to the standard output. To store
the template in a file, redirect the output of the command to a file.

For example, to download the nodejs-mongodb-example template from the global openshift
project and save it in the JSON format on your local syastem, use the following command:

~]$ oc get templates -o json -n openshift nodejs-mongodb-example \ >
nodejs-mongodb-example.json

~]$ ls
nodejs-mongodb-example.json

7.2.6.3. Modifying the Namespace (Project Name)

When you download an InstantApp template from the default openshift project, the namespace
(project name) in the template is set to openshift. To be able to upload the template to your
project, you need to modify the template accordingly. If you do not do that, the upload fails with the
following error message:

Red Hat Container Development Kit 2.3 Getting Started Guide

32

https://access.redhat.com/documentation/en/red-hat-xpaas/version-0/red-hat-xpaas-fuse-integration-services-image/#fuse-using-application-templates
https://github.com/jboss-fuse/application-templates
https://github.com/jboss-openshift/application-templates
https://access.redhat.com/solutions/2361911

~]$ oc create -f nodejs-mongodb-example.json -n testing
the namespace from the provided object "openshift" does not match the
namespace "testing". You must pass '--namespace=openshift' to perform
this operation.

To modify the namespace, edit the file using a text editor, such as vi, and in the metadata section,
replace the value of the namespace parameter with the name of your project. For example, to use
the name testing, the beginning of the nodejs-mongodb-example.json template file would
look like this:

7.2.6.4. Uploading a Template to the Current Project

For a template to be available for use in your project, it must be first uploaded to it. Use the oc
create command to do this and specify the template file using the -f or --filename option. For
example, to upload the nodejs-mongodb-example InstantApp template obtained from the
openshift project, run the following command:

~]$ oc create -f nodejs-mongodb-example.json
template "nodejs-mongodb-example" created

To verify that the template has been successfully uploaded, use the oc get templates
command. Optionally, you can specify the namespace from which you wish to list by using the -n or
--namespace option. By default, templates from the currently used project are listed:

~]$ oc get templates
NAME DESCRIPTION
PARAMETERS OBJECTS
nodejs-mongodb-example An example Node.js application with a MongoDB
database 11 (3 blank) 7

7.2.6.5. Listing Template Parameters

To list the parameters that a template specifies along with short descriptions and predefined values,
use the oc process command with the --parameters option. For example, to list the
parameters used by the nodejs-mongodb-example template, use the following command:

~]$ oc process --parameters nodejs-mongodb-example
NAME DESCRIPTION
GENERATOR VALUE
SOURCE_REPOSITORY_URL The URL of the repository with your...
https://github.com/openshift/nodejs-ex.git
SOURCE_REPOSITORY_REF Set this to a branch name, tag or ot...
CONTEXT_DIR Set this to the relative path to you...
APPLICATION_DOMAIN The exposed hostname that will route...
GITHUB_WEBHOOK_SECRET A secret string used to configure th...

{
 "kind": "Template",
 "apiVersion": "v1",
 "metadata": {
 "name": "nodejs-mongodb-example",
 "namespace": "testing",
[...]

CHAPTER 7. USING OPENSHIFT CONTAINER PLATFORM

33

expression [a-zA-Z0-9]{40}
GENERIC_WEBHOOK_SECRET A secret string used to configure th...
expression [a-zA-Z0-9]{40}
DATABASE_SERVICE_NAME Database service name
mongodb
DATABASE_USER Username for MongoDB user that will...
expression user[A-Z0-9]{3}
DATABASE_PASSWORD Password for the MongoDB user
expression [a-zA-Z0-9]{16}
DATABASE_NAME Database name
sampledb
DATABASE_ADMIN_PASSWORD Password for the database admin user...
expression [a-zA-Z0-9]{16}

7.2.6.6. Creating Objects from a Template

To process a template and use it to create the objects it defines in your project, use a combination
of the oc process and oc create commands. The template processed by the oc process
command can be piped to the oc create command.

Note that in most cases, the template parameters need to be modified, so that the resulting
application can be useful in a real-world scenario. To modify the template parameters when creating
the objects, use the -v or --value option.

For example, to create objects using the nodejs-mongodb-example template and to set a
different source repository for the application (the original repository would need to be forked to the
repository specified on the command line), use the following combination of commands:

~]$ oc process nodejs-mongodb-example \
-v SOURCE_REPOSITORY_URL=https://github.com/username/nodejs-ex.git | \
oc create -f -
service "nodejs-mongodb-example" created
route "nodejs-mongodb-example" created
imagestream "nodejs-mongodb-example" created
buildconfig "nodejs-mongodb-example" created
deploymentconfig "nodejs-mongodb-example" created
service "mongodb" created
deploymentconfig "mongodb" created

In the above example, substitute username for the name of the GitHub account into which the
original repository was forked.

7.2.7. Additional Resources

See the output of the oc help command for an overview of all oc subcommands available.
More detailed help for individual subcommands can be accessed by running oc help
[subcommand].

See the OpenShift Container Platform CLI Reference for detailed descriptions of the command-
line user interface used to interact with OpenShift Container Platform.

See the OpenShift Container Platform Developer Guide for detailed instructions and examples to
help developers configure a workstation to develop and deploy applications in an OpenShift
Container Platform cloud environment with a command-line interface.

Red Hat Container Development Kit 2.3 Getting Started Guide

34

https://access.redhat.com/documentation/en/openshift-container-platform/3.3/single/cli-reference/
https://access.redhat.com/documentation/en/openshift-container-platform/3.3/single/developer-guide/

CHAPTER 8. DEPLOYING AN APPLICATION ON OPENSHIFT

This section describes how to use OpenShift to create containerized applications and deploy them
on an OpenShift cluster. The examples in this section use only basic features of the OpenShift
service and are for demonstration purposes only. See the CDK Developer Guide (to be published)
for more in-depth descriptions.

8.1. DEPLOYING AN INSTANTAPP TEMPLATE AS A NEW
APPLICATION

In this example, an InstantApp template available from the default openshift project is used to
create and deploy a web application. The definition of the template sets all necessary configuration
options. A good way to experiment with OpenShift deployments is to clone the example’s repository
and modify different parts of the defined template.

8.1.1. Creating a New OpenShift Application from a Template

To use a template to directly create a new application, run the oc new-app command with the --
template option specifying the template you want to use as the basis for your application. For
example, to use the nodejs-example InstantApp template, run the following command:

~]$ oc new-app --template=nodejs-example
--> Deploying template nodejs-example in project openshift for "nodejs-
example"
 With parameters:
 Memory Limit=512Mi
 Git Repository URL=https://github.com/openshift/nodejs-ex.git
 Git Reference=
 Context Directory=
 Application Hostname=
 GitHub Webhook Secret=UKWP4bVymgjXcNMVnHIdaVeaORt3NMPuyqAEHhLv #
generated
 Generic Webhook Secret=wabGtSM7g5eSykRuH5aCskWKdFOXB0UxyNNrnQyr #
generated
 Database Service Name=
 MongoDB Username=
 MongoDB Password=
 Database Name=
 Database Administrator Password=
--> Creating resources with label app=nodejs-example ...
 Service "nodejs-example" created
 Route "nodejs-example" created
 ImageStream "nodejs-example" created
 BuildConfig "nodejs-example" created
 DeploymentConfig "nodejs-example" created
--> Success
 Build scheduled for "nodejs-example" - use the logs command to
track its progress.
 Run 'oc status' to view your app.

8.1.2. Monitoring Deployment Progress

CHAPTER 8. DEPLOYING AN APPLICATION ON OPENSHIFT

35

To monitor the progress of the deployment, use the oc status command, optionally with the -v (-
-verbose) parameter to display information about potential warnings:

~]$ oc status -v
In project OpenShift sample project (sample-project) on server
https://127.0.0.1:8443

svc/nodejs-example - 172.30.142.222:8080
 dc/nodejs-example deploys imagestreamtag/nodejs-example:latest <-
 bc/nodejs-example builds https://github.com/openshift/nodejs-ex.git
with openshift/nodejs:0.10
 #1 build running for 27 seconds
 #1 deployment waiting on image or update
 exposed by route/nodejs-example

Warnings:
 * The image trigger for dc/nodejs-example will have no effect until
imagestreamtag/nodejs-example:latest is imported or created by a build.

View details with 'oc describe <resource>/<name>' or list everything
with 'oc get all'.

8.1.3. Displaying Information about a Deployed Service

The application is automatically deployed when the build completes. Use the oc describe
command to display information about different parts of the application (or use the oc get all
command to display all information at once).

To see summary information about the service, use:

~]$ oc describe svc/nodejs-example
Name: nodejs-example
Namespace: sample-project
Labels: app=nodejs-example,template=nodejs-example
Selector: name=nodejs-example
Type: ClusterIP
IP: 172.30.142.222
Port: web 8080/TCP
Endpoints: 172.17.0.2:8080
Session Affinity: None
No events.

To display information about the route established for the application, use:

~]$ oc describe route/nodejs-example
Name: nodejs-example
Created: 46 minutes ago
Labels: app=nodejs-example,template=nodejs-example
Annotations: openshift.io/generated-by=OpenShiftNewApp
 openshift.io/host.generated=true
Host: nodejs-example-sample-project.rhel-
cdk.10.1.2.2.xip.io

Red Hat Container Development Kit 2.3 Getting Started Guide

36

Path: <none>
Service: nodejs-example
TLS Termination: <none>
Insecure Policy: <none>

The above command shows that the deployed application can be accessed at nodejs-example-
sample-project.rhel-cdk.10.1.2.2.xip.io (the URL is made available through the external xip.io DNS
service).

You can point a web browser from your host system at this address to see the page generated by
the application. To check whether the application is running properly from the command line, either
use a text-mode browser like lynx or download the page using curl:

~]$ curl nodejs-example-sample-project.rhel-cdk.10.1.2.2.xip.io 2>
/dev/null | grep '<h1>'
 <h1>Welcome to your Node.js application on OpenShift</h1>

8.1.4. Learning about Service Images and Containers

To check the Docker images and containers that form the application, use the docker images and
docker ps commands:

~]$ docker images
REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE
172.30.254.28:5000/sample-project/nodejs-example latest bc19f3f7dd86
2 hours ago 432.6 MB
172.30.254.28:5000/sample-project/nodejs-example <none> bc19f3f7dd86
2 hours ago 432.6 MB

[...]

~]$ docker ps
CONTAINER ID IMAGE
COMMAND CREATED STATUS NAMES
bcafafb013ce 172.30.254.28:5000/sample-project/nodejs-
example@sha256:... "container-entrypoint" 2 hours ago Up 2 hours
k8s_nodejs-example.27445d76_nodejs-example-1-hdq11_sample-
project_e5c69b57-0496-11e6-907d-525400806d1b_3e6e6b39
d4f52a47cb10 openshift3/ose-pod:v3.1.1.6
"/pod" 2 hours ago Up 2 hours
k8s_POD.5983fd1a_nodejs-example-1-hdq11_sample-project_e5c69b57-0496-
11e6-907d-525400806d1b_b3dee3ea

[...]

8.2. DEPLOYING A 'HELLO WORLD' APPLICATION USING NODE.JS

In this example, a very simple Node.js web application is created. The application is defined using a
minimalistic build strategy that is automatically downloaded from a Git repository (in this case,
GitHub is used). The built application is deployed on top of a Node.js container pulled from the Red
Hat Atomic Registry.

CHAPTER 8. DEPLOYING AN APPLICATION ON OPENSHIFT

37

http://nodejs-example-sample-project.rhel-cdk.10.1.2.2.xip.io

8.2.1. Preparing the Application Source Code

Create a new repository on GitHub. For the purposes of this example, we will assume that the
created repository has the following URL: http://github.com/example/nodejs-hello-
world.git. Then upload a basic Node.js application to the root directory of the repository. Name
the file helloworld.js.

The application creates an HTTP server listening on port 8080 and prints Hello World when
accessed. Download the helloword.js file.

8.2.2. Preparing the Definition of an OpenShift Application

Upload the following minimal definition of a Node.js OpenShift application to the GitHub repository.
Name the file package.json. Based on the name of the file, OpenShift automatically selects the
appropriate builder (nodejs, in this case).

Application source file

Required build dependencies— automatically supplied by npm (Node.js package manager)

var http = require('http');

var server = http.createServer(function(req, res) {
 res.writeHead(200);
 res.end('Hello World');
});
server.listen(8080);

{
 "name": "nodejs-hello-world",
 "version": "0.0.1",
 "description": "Node.js Hello World for OpenShift 3",

 "main": "helloworld.js",

 "dependencies": {

 "ejs": "^2.4.1",

 "express": "^4.13.4"
 },
 "scripts": {

 "start": "node helloworld.js"

 },
 "repository": {
 "type": "git",
 "url": "http://github.com/rkratky/nodejs-hello-world.git"
 }
}

1

2

1

2

3

Red Hat Container Development Kit 2.3 Getting Started Guide

38

http://github.com/example/nodejs-hello-world.git
files/helloworld.js

Command to execute

Download the package.json file.

8.2.3. Creating a New OpenShift Application

To create a new application in OpenShift, use the oc new-app command. OpenShift automatically
performs the following steps:

1. downloads required dependencies, including specified Docker-formatted container images,

2. pulls latest source code and application definition from the specified location (a Git
repository, in this case),

3. builds the application source code,

4. builds a container with the resulting application,

5. deploys the application container.

In this example, the required Node.js container image from the Red Hat Atomic Registry is specified
along with the URL of the Git repository:

~]$ oc new-app registry.access.redhat.com/openshift3/nodejs-010-
rhel7~https://github.com/example/nodejs-hello-world.git
--> Found Docker image 92eee82 (6 weeks old) from
registry.access.redhat.com for
"registry.access.redhat.com/openshift3/nodejs-010-rhel7"
 * An image stream will be created as "nodejs-010-rhel7:latest" that
will track the source image
 * A source build using source code from
https://github.com/example/nodejs-hello-world.git will be created
 * The resulting image will be pushed to image stream "nodejs-
hello-world:latest"
 * Every time "nodejs-010-rhel7:latest" changes a new build will
be triggered
 * This image will be deployed in deployment config "nodejs-hello-
world"
 * Port 8080/tcp will be load balanced by service "nodejs-hello-
world"
--> Creating resources with label app=nodejs-hello-world ...
 ImageStream "nodejs-010-rhel7" created
 ImageStream "nodejs-hello-world" created
 BuildConfig "nodejs-hello-world" created
 DeploymentConfig "nodejs-hello-world" created
 Service "nodejs-hello-world" created
--> Success
 Build scheduled for "nodejs-hello-world" - use the logs command to
track its progress.
 Run 'oc status' to view your app.

8.2.4. Monitoring Build Progress

3

CHAPTER 8. DEPLOYING AN APPLICATION ON OPENSHIFT

39

files/package.json

Use the oc describe build command to display information about the build currently in
progress:

~]$ oc describe build
Name: nodejs-hello-world-1
Created: 35 seconds ago
Labels: app=nodejs-hello-world,buildconfig=nodejs-hello-
world,openshift.io/build-config.name=nodejs-hello-world
Annotations: openshift.io/build.number=1
 openshift.io/build.pod-name=nodejs-hello-world-1-build
Build Config: nodejs-hello-world
Started: 2016-04-18 07:05:25 -0400 EDT
Duration: running for 25s
Build Pod: nodejs-hello-world-1-build
Strategy: Source
URL: https://github.com/rkratky/nodejs-hello-world.git
From Image: DockerImage
registry.access.redhat.com/openshift3/nodejs-010-rhel7:latest
Output to: ImageStreamTag nodejs-hello-world:latest
Push Secret: builder-dockercfg-9000s
Status: Running
Events:
 FirstSeen LastSeen Count From SubobjectPath
Reason Message
 ───────── ──────── ───── ──── ─────────────
────── ───────
 34s 34s 1 {scheduler }
Scheduled Successfully assigned nodejs-hello-world-1-build to rhel-cdk
 32s 32s 1 {kubelet rhel-cdk} implicitly
required container POD Pulled Container image "openshift3/ose-
pod:v3.1.1.6" already present on machine
 30s 30s 1 {kubelet rhel-cdk} implicitly
required container POD Created Created with docker id 462325c7c721
 29s 29s 1 {kubelet rhel-cdk} implicitly
required container POD Started Started with docker id 462325c7c721
 29s 29s 1 {kubelet rhel-cdk}
spec.containers{sti-build} Pulled Container image
"openshift3/ose-sti-builder:v3.1.1.6" already present on machine
 27s 27s 1 {kubelet rhel-cdk}
spec.containers{sti-build} Created Created with docker id
f5bcba8891c3
 26s 26s 1 {kubelet rhel-cdk}
spec.containers{sti-build} Started Started with docker id
f5bcba8891c3

To see the build logs, use the oc logs command and specify the build you are interested in:

~]$ oc logs build/nodejs-hello-world-1
---> Installing application source
---> Building your Node application from source
E0418 09:17:59.264104 1 util.go:91] npm info it worked if it ends with
ok
E0418 09:17:59.265357 1 util.go:91] npm info using npm@2.14.13
E0418 09:17:59.265366 1 util.go:91] npm info using node@v0.10.40
E0418 09:18:00.697173 1 util.go:91] npm WARN package.json nodejs-
hello-world@0.0.1 No license field.

Red Hat Container Development Kit 2.3 Getting Started Guide

40

E0418 09:18:00.720236 1 util.go:91] npm info preinstall nodejs-hello-
world@0.0.1
E0418 09:18:00.828498 1 util.go:91] npm info attempt registry request
try #1 at 09:18:00

[...]

8.2.5. Displaying Information about the Deployed Service

Use the oc describe command and specify the service you are interested in to show summary
information about the created service:

]$ oc describe svc/nodejs-hello-world
Name: nodejs-hello-world
Namespace: sample-project
Labels: app=nodejs-hello-world
Selector: app=nodejs-hello-world,deploymentconfig=nodejs-
hello-world
Type: ClusterIP
IP: 172.30.166.144
Port: 8080-tcp 8080/TCP
Endpoints: 172.17.0.4:8080
Session Affinity: None
No events.

Similarly, you can specify the deployment to show information about it, including the containers that
have been created and deployed for the application:

~]$ oc describe dc
Name: nodejs-hello-world
Created: 2 minutes ago
Labels: app=nodejs-hello-world
Annotations: openshift.io/generated-by=OpenShiftNewApp
Latest Version: 1
Triggers: Config, Image(nodejs-hello-world@latest, auto=true)
Strategy: Rolling
Template:
 Selector: app=nodejs-hello-world,deploymentconfig=nodejs-hello-
world
 Replicas: 1
 Containers:
 NAME IMAGE
ENV
 nodejs-hello-world 172.30.91.119:5000/sample-project/nodejs-hello-
world@sha256:d97a0c44759c93b4231691813c12b5d2975c78fbee028f6c0091d97ed3
816678
Deployment #1 (latest):
 Name: nodejs-hello-world-1
 Created: 2 minutes ago
 Status: Complete
 Replicas: 1 current / 1 desired
 Selector: app=nodejs-hello-world,deployment=nodejs-hello-world-
1,deploymentconfig=nodejs-hello-world

CHAPTER 8. DEPLOYING AN APPLICATION ON OPENSHIFT

41

 Labels: app=nodejs-hello-world,openshift.io/deployment-
config.name=nodejs-hello-world
 Pods Status: 1 Running / 0 Waiting / 0 Succeeded / 0 Failed
No events.

8.2.6. Testing the Running Application

To verify that the deployed HTTP server works correctly and serves the message specified in the
application source code, you can use, for example, the curl tool:

~]$ curl 172.17.0.4:8080
Hello World

The IP address is shown, for example, in the description of the deployed service or pod. Use the oc
get pods to list all pods:

~]$ oc get pods
NAME READY STATUS RESTARTS AGE
nodejs-hello-world-1-1b5xi 1/1 Running 0 2m
nodejs-hello-world-1-build 0/1 Completed 0 2m

Use the name of the pod to display its description and grep for its IP address:

~]$ oc describe pod/nodejs-hello-world-1-1b5xi | grep IP
IP: 172.17.0.4

8.3. ADDITIONAL RESOURCES

See the definition of InstantApp OpenShift templates at https://github.com/openshift for
inspiration.

See the OpenShift Container Platform Developer Guide for detailed instructions on how to
prepare, build, and deploy containerized applications on OpenShift.

See the video tutorials and demonstration for developers at the OpenShift YouTube channel.

Red Hat Container Development Kit 2.3 Getting Started Guide

42

https://github.com/openshift
https://access.redhat.com/documentation/en/openshift-container-platform/3.3/single/developer-guide/
https://www.youtube.com/channel/UCZKMj3YI0wP-kq4QYpaKdEA

CHAPTER 9. USING THE KUBERNETES SERVICE

When you run vagrant up from the rhel-k8s-singlenode-setup directory, the Vagrantfile
starts a Red Hat Enterprise Linux virtual machine from the Vagrant box you installed. The
characteristics of that box are as follows:

Starts the Docker service.

Starts all the services needed to run an all-in-one Kubernetes master and node in the Red Hat
Enterprise Linux VM.

The resulting virtual machine is ready to start using the kubectl command to build Kubernetes
pods, services, replication controllers, and other features.

1. Change to the rhel-docker-eclipse directory and start the Red Hat Enterprise Linux VM (for
Microsoft Windows, use %USERPROFILE%\cdk\components\rhel\rhel\rhel-k8s-
singlenode-setup):

$ cd ~/cdk/components/rhel/misc/rhel-k8s-singlenode-setup/
$ vagrant up

2. Use vagrant ssh to access the Red Hat Enterprise Linux VM and check the status of
kubernetes:

$ vagrant ssh

[vagrant@localhost ~]$ kubectl cluster-info
Kubernetes master is running at http://localhost:8080

3. Begin using your Red Hat Enterprise Linux Kubernetes-enabled VM.

9.1. ADDITIONAL RESOURCES

For information on developing containerized applications to run in Kubernetes, see the
Launching container pods with Kubernetes section of the Get Started Orchestrating Containers
with Kubernetes guide.

CHAPTER 9. USING THE KUBERNETES SERVICE

43

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#launching_container_pods_with_kubernetes

	Table of Contents
	CHAPTER 1. INTRODUCING RED HAT CONTAINER DEVELOPMENT KIT
	1.1. UNDERSTANDING CONTAINER DEVELOPMENT KIT DOCUMENTATION
	1.2. ABOUT CONTAINERS
	1.3. ABOUT CONTAINER DEVELOPMENT KIT
	1.4. ABOUT VAGRANT
	1.4.1. Understanding Vagrant Configuration
	1.4.1.1. Managing Vagrantfiles

	1.4.2. Vagrant Synchronized Folders

	CHAPTER 2. INSTALLING RED HAT CONTAINER DEVELOPMENT KIT
	CHAPTER 3. INTERACTING WITH RUNNING VAGRANT BOXES
	CHAPTER 4. USING VAGRANT CONTAINER DEVELOPMENT KIT PLUGINS
	4.1. USING THE VAGRANT-SERVICE-MANAGER PLUGIN
	4.1.1. Setting the Host Environment on Linux and macOS
	4.1.2. Setting Up the Host Environment on Microsoft Windows

	4.2. USING THE VAGRANT-REGISTRATION PLUGIN
	4.2.1. Understanding Red Hat Enterprise Linux Subscription for Container Development Kit
	4.2.2. Releasing a Subscription
	4.2.3. Automating the Registration Process (Saving Your Credentials)
	4.2.4. Additional Resources

	CHAPTER 5. USING CONTAINER DEVELOPMENT KIT WITH DOCKER TOOLING IN ECLIPSE
	CHAPTER 6. USING THE DOCKER SERVICE
	6.1. PREPARING HOST SYSTEM FOR USING DOCKER FROM THE COMMAND LINE
	6.1.1. Installing the docker Executable
	6.1.1.1. Installing a Custom Version of the docker Binary
	6.1.1.2. Installing the docker Binary to a Custom Location

	6.2. LEARNING ABOUT THE DOCKER ENVIRONMENT
	6.2.1. Verifying the Version of the Docker Service
	6.2.2. Displaying Information about the System and Resources

	6.3. LEARNING ABOUT CONTAINERS AND IMAGES
	6.3.1. Listing Managed Images
	6.3.2. Listing Managed Containers
	6.3.3. Displaying Information about Container Resource Usage
	6.3.4. Displaying Detailed Information about Container or Image Configuration

	6.4. GETTING NEW DOCKER-FORMATTED CONTAINER IMAGES
	6.4.1. Searching Registries for Images
	6.4.2. Downloading Images from a Registry
	6.4.3. Loading an Image from a File

	6.5. USING CONTAINERS
	6.5.1. Launching a New Container and Running a Command
	6.5.2. Stopping a Container
	6.5.3. Starting an Existing Container
	6.5.4. Launching a New Container and Switching to the Container’s Shell
	6.5.5. Removing a Container

	6.6. ADDITIONAL RESOURCES

	CHAPTER 7. USING OPENSHIFT CONTAINER PLATFORM
	7.1. USING OPENSHIFT FROM THE WEB USER INTERFACE
	7.1.1. Additional Resources

	7.2. USING OPENSHIFT FROM THE COMMAND LINE
	7.2.1. Preparing Host System for Using OpenShift from the Command Line
	7.2.1.1. Installing the oc Executable

	7.2.2. Verifying the OpenShift Installation
	7.2.3. Displaying Information about the OpenShift Service
	7.2.3.1. Checking the Version of OpenShift and Kubernetes

	7.2.4. Logging in and out of the OpenShift Server
	7.2.4.1. Logging in to the OpenShift Server
	7.2.4.2. Viewing Current OpenShift CLI Configuration
	7.2.4.3. Logging out of the OpenShift Server

	7.2.5. Working with OpenShift Projects
	7.2.5.1. Creating a New OpenShift Project
	7.2.5.2. Switching to a Different OpenShift Project
	7.2.5.3. Listing Available Projects
	7.2.5.4. Displaying Status Information about the Currently Used Project
	7.2.5.5. Deleting a Project

	7.2.6. Working with OpenShift Templates
	7.2.6.1. Listing Available Templates
	7.2.6.2. Downloading an InstantApp Template
	7.2.6.3. Modifying the Namespace (Project Name)
	7.2.6.4. Uploading a Template to the Current Project
	7.2.6.5. Listing Template Parameters
	7.2.6.6. Creating Objects from a Template

	7.2.7. Additional Resources

	CHAPTER 8. DEPLOYING AN APPLICATION ON OPENSHIFT
	8.1. DEPLOYING AN INSTANTAPP TEMPLATE AS A NEW APPLICATION
	8.1.1. Creating a New OpenShift Application from a Template
	8.1.2. Monitoring Deployment Progress
	8.1.3. Displaying Information about a Deployed Service
	8.1.4. Learning about Service Images and Containers

	8.2. DEPLOYING A 'HELLO WORLD' APPLICATION USING NODE.JS
	8.2.1. Preparing the Application Source Code
	8.2.2. Preparing the Definition of an OpenShift Application
	8.2.3. Creating a New OpenShift Application
	8.2.4. Monitoring Build Progress
	8.2.5. Displaying Information about the Deployed Service
	8.2.6. Testing the Running Application

	8.3. ADDITIONAL RESOURCES

	CHAPTER 9. USING THE KUBERNETES SERVICE
	9.1. ADDITIONAL RESOURCES

