
Red Hat build of MicroShift 4.15

Installing

Installing and configuring MicroShift clusters

Last Updated: 2024-06-07

Red Hat build of MicroShift 4.15 Installing

Installing and configuring MicroShift clusters

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information about installing MicroShift and details about some
configuration processes.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INSTALLING FROM AN RPM PACKAGE
1.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT
1.2. COMPATIBILITY TABLE
1.3. BEFORE INSTALLING MICROSHIFT FROM AN RPM PACKAGE

1.3.1. Configuring volume groups
1.3.2. Prepare for FIPS mode

1.4. PREPARING TO INSTALL MICROSHIFT FROM AN RPM PACKAGE
1.5. INSTALLING RED HAT BUILD OF MICROSHIFT FROM AN RPM PACKAGE

1.5.1. Installing the Operator Lifecycle Manager (OLM) from an RPM package
1.5.2. Installing the GitOps Argo CD manifests from an RPM package

1.6. STARTING THE MICROSHIFT SERVICE
1.7. STOPPING THE MICROSHIFT SERVICE
1.8. HOW TO ACCESS THE MICROSHIFT CLUSTER

1.8.1. Accessing the MicroShift cluster locally
1.8.2. Opening the firewall for remote access to the MicroShift cluster
1.8.3. Accessing the MicroShift cluster remotely

CHAPTER 2. USING FIPS MODE WITH MICROSHIFT
2.1. FIPS MODE WITH RHEL RPM-BASED INSTALLATIONS

2.1.1. Limitations
2.1.2. Installing RHEL in FIPS mode

2.2. ADDITIONAL RESOURCES

CHAPTER 3. MIRRORING CONTAINER IMAGES FOR DISCONNECTED INSTALLATIONS
3.1. MIRROR CONTAINER IMAGES INTO AN EXISTING REGISTRY
3.2. GETTING THE MIRROR REGISTRY CONTAINER IMAGE LIST
3.3. CONFIGURING MIRRORING PREREQUISITES

3.3.1. Example mirror registry pull secret entry
3.4. DOWNLOADING CONTAINER IMAGES
3.5. UPLOADING CONTAINER IMAGES TO A MIRROR REGISTRY
3.6. CONFIGURING HOSTS FOR MIRROR REGISTRY ACCESS

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE
4.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT
4.2. COMPATIBILITY TABLE
4.3. PREPARING FOR IMAGE BUILDING
4.4. ADDING MICROSHIFT REPOSITORIES TO IMAGE BUILDER
4.5. ADDING THE MICROSHIFT SERVICE TO A BLUEPRINT

4.5.1. Adding the Operator Lifecycle Manager (OLM) service to a blueprint
4.6. ADDING A CERTIFICATE AUTHORITY BUNDLE

4.6.1. Adding a certificate authority bundle to an rpm-ostree image
4.7. CREATING THE RHEL FOR EDGE IMAGE
4.8. ADD THE BLUEPRINT TO IMAGE BUILDER AND BUILD THE ISO
4.9. DOWNLOAD THE ISO AND PREPARE IT FOR USE
4.10. PROVISIONING A MACHINE FOR MICROSHIFT
4.11. HOW TO ACCESS THE MICROSHIFT CLUSTER

4.11.1. Accessing the MicroShift cluster locally
4.11.2. Opening the firewall for remote access to the MicroShift cluster
4.11.3. Accessing the MicroShift cluster remotely

CHAPTER 5. EMBEDDING IN A RHEL FOR EDGE IMAGE FOR OFFLINE USE
5.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT

4
4
4
4
5
5
5
6
7
8
8
9

10
10
10
11

13
13
13
13
13

14
14
14
15
15
16
17
18

20
20
20
21
21
22
24
25
25
26
28
29
29
31
31
32
32

34
34

Table of Contents

1

. .

. .

5.2. COMPATIBILITY TABLE
5.3. EMBEDDING MICROSHIFT CONTAINERS FOR OFFLINE DEPLOYMENTS
5.4. UPDATING OSBUILDER WORKER CONFIGURATION TO PREPARE FOR IMAGE BUILDING
5.5. BUILD AND USE THE RPM-OSTREE IMAGE FOR OFFLINE DEPLOYMENTS

5.5.1. Additional prerequisites for offline deployments
5.5.2. Adding the MicroShift service to a blueprint
5.5.3. Creating the RHEL for Edge image

5.6. ADDITIONAL RESOURCES

CHAPTER 6. THE GREENBOOT HEALTH CHECK FRAMEWORK
6.1. HOW GREENBOOT USES DIRECTORIES TO RUN SCRIPTS

6.1.1. Greenboot directories details
6.2. THE MICROSHIFT HEALTH CHECK SCRIPT

6.2.1. Validation wait period
6.3. ENABLING SYSTEMD JOURNAL SERVICE DATA PERSISTENCY
6.4. UPDATES AND THIRD-PARTY WORKLOADS
6.5. CHECKING THE RESULTS OF AN UPDATE
6.6. ACCESSING HEALTH CHECK OUTPUT IN THE SYSTEM LOG
6.7. ACCESSING PREROLLBACK HEALTH CHECK OUTPUT IN THE SYSTEM LOG
6.8. CHECKING UPDATES WITH A HEALTH CHECK SCRIPT
6.9. ADDITIONAL RESOURCES

CHAPTER 7. TROUBLESHOOTING INSTALLATION ISSUES
7.1. GATHERING DATA FROM AN SOS REPORT
7.2. ADDITIONAL RESOURCES

34
35
37
37
37
38
40
42

43
43
43
44
45
45
45
46
46
47
47
48

49
49
50

Red Hat build of MicroShift 4.15 Installing

2

Table of Contents

3

CHAPTER 1. INSTALLING FROM AN RPM PACKAGE
You can install MicroShift from an RPM package on a machine with a supported version of Red Hat
Enterprise Linux (RHEL).

1.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT

The following conditions must be met prior to installing MicroShift:

A compatible version of RHEL or RHEL for Edge.

AArch64 or x86_64 system architecture.

2 CPU cores.

2 GB RAM for MicroShift or 3 GB RAM, required by RHEL for networked-based HTTPs or FTP
installations.

10 GB of storage.

You have an active MicroShift subscription on your Red Hat account. If you do not have a
subscription, contact your sales representative for more information.

You have a Logical Volume Manager (LVM) Volume Group (VG) with sufficient capacity for the
Persistent Volumes (PVs) of your workload.

1.2. COMPATIBILITY TABLE

Plan to pair a supported version of RHEL for Edge with the MicroShift version you are using as described
in the following compatibility table:

Red Hat Device Edge release compatibility matrix

The two products of Red Hat Device Edge work together as a single solution for device-edge
computing. To successfully pair your products, use the verified releases together for each as listed in the
following table:

RHEL for Edge
Version(s)

MicroShift Version MicroShift Release
Status

MicroShift Supported
Updates

9.2, 9.3 4.15 Generally Available 4.15.0→4.15.z and
4.15→future minor

version

9.2, 9.3 4.14 Generally Available 4.14.0→4.14.z and
4.14→4.15

9.2 4.13 Technology Preview None

8.7 4.12 Developer Preview None

1.3. BEFORE INSTALLING MICROSHIFT FROM AN RPM PACKAGE

Red Hat build of MicroShift 4.15 Installing

4

Preparation of the host machine is recommended prior to installing MicroShift for memory configuration
and FIPS mode.

1.3.1. Configuring volume groups

MicroShift uses the logical volume manager storage (LVMS) Container Storage Interface (CSI) plugin
for providing storage to persistent volumes (PVs). LVMS relies on the Linux logical volume manager
(LVM) to dynamically manage the backing logical volumes (LVs) for PVs. For this reason, your machine
must have an LVM volume group (VG) with unused space in which LVMS can create the LVs for your
workload’s PVs.

To configure a volume group (VG) that allows LVMS to create the LVs for your workload’s PVs, lower
the Desired Size of your root volume during the installation of RHEL. Lowering the size of your root
volume allows unallocated space on the disk for additional LVs created by LVMS at runtime.

1.3.2. Prepare for FIPS mode

If your use case requires running MicroShift containers in FIPS mode, you must install RHEL with FIPS
enabled. After the worker machine is configured to run in FIPS mode, your MicroShift containers are
automatically configured to also run in FIPS mode.

IMPORTANT

Because FIPS must be enabled before the operating system that your cluster uses starts
for the first time, you cannot enable FIPS after you deploy a cluster.

Additional resources

Using FIPS mode with MicroShift

1.4. PREPARING TO INSTALL MICROSHIFT FROM AN RPM PACKAGE

Configure your RHEL machine to have a logical volume manager (LVM) volume group (VG) with
sufficient capacity for the persistent volumes (PVs) of your workload.

Prerequisites

The system requirements for installing MicroShift have been met.

You have root user access to your machine.

You have configured your LVM VG with the capacity needed for the PVs of your workload.

Procedure

1. In the graphical installer under Installation Destination in the Storage Configuration
subsection, select Custom → Done to open the dialog for configuring partitions and volumes.
The Manual Partitioning window is displayed.

2. Under New Red Hat Enterprise Linux 9.x Installation, select Click here to create them
automatically.

3. Select the root partition, /, reduce Desired Capacity so that the VG has sufficient capacity for
your PVs, and then click Update Settings.

CHAPTER 1. INSTALLING FROM AN RPM PACKAGE

5

4. Complete your installation.

NOTE

For more options on partition configuration, read the guide linked in the
Additional information section for Configuring Manual Partitioning.

5. As a root user, verify the VG capacity available on your system by running the following
command:

Example output:

Additional resources

Download the pull secret from the Red Hat Hybrid Cloud Console.

Configuring MicroShift.

For more options on partition configuration, read Configuring Manual Partitioning.

For more information about resizing your existing LVs to free up capacity in your VGs, read
Managing LVM Volume Groups.

For more information about creating VGs and PVs, read Overview of logical volume
management.

1.5. INSTALLING RED HAT BUILD OF MICROSHIFT FROM AN RPM
PACKAGE

Use the following procedure to install Red Hat build of MicroShift from an RPM package.

Prerequisites

The system requirements for installing Red Hat build of MicroShift have been met.

You have completed the steps of preparing to install Red Hat build of MicroShift from an RPM
package.

Procedure

1. As a root user, enable the Red Hat build of MicroShift repositories by running the following
command:

2. Install Red Hat build of MicroShift by running the following command:

$ sudo vgs

VG #PV #LV #SN Attr VSize VFree
rhel 1 2 0 wz--n- <127.00g 54.94g

$ sudo subscription-manager repos \
 --enable rhocp-4.15-for-rhel-9-$(uname -m)-rpms \
 --enable fast-datapath-for-rhel-9-$(uname -m)-rpms

Red Hat build of MicroShift 4.15 Installing

6

https://console.redhat.com/openshift/install/pull-secret
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/configuring/#microshift-using-config-tools
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index#manual-partitioning_graphical-installation
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/configuring_and_managing_logical_volumes/index#managing-lvm-volume-groups_configuring-and-managing-logical-volumes
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/configuring_and_managing_logical_volumes/overview-of-logical-volume-management_configuring-and-managing-logical-volumes

3. Download your installation pull secret from the Red Hat Hybrid Cloud Console to a temporary
folder, for example, $HOME/openshift-pull-secret. This pull secret allows you to authenticate
with the container registries that serve the container images used by Red Hat build of
MicroShift.

4. To copy the pull secret to the /etc/crio folder of your RHEL machine, run the following
command:

5. Make the root user the owner of the /etc/crio/openshift-pull-secret file by running the
following command:

6. Make the /etc/crio/openshift-pull-secret file readable and writeable by the root user only by
running the following command:

7. If your RHEL machine has a firewall enabled, you must configure a few mandatory firewall rules.
For firewalld, run the following commands:

If the Volume Group (VG) that you have prepared for Red Hat build of MicroShift used the default
name rhel, no further configuration is necessary. If you have used a different name, or if you want to
change more configuration settings, see the Configuring Red Hat build of MicroShift section.

1.5.1. Installing the Operator Lifecycle Manager (OLM) from an RPM package

When you install MicroShift, the Operator Lifecycle Manager (OLM) package is not installed by default.
You can install the OLM on your MicroShift instance using a RPM package.

Procedure

1. Install the OLM package by running the following command:

2. To apply the manifest from the package to an active cluster, run the following command:

Additional resources

$ sudo dnf install -y microshift

$ sudo cp $HOME/openshift-pull-secret /etc/crio/openshift-pull-secret

$ sudo chown root:root /etc/crio/openshift-pull-secret

$ sudo chmod 600 /etc/crio/openshift-pull-secret

$ sudo firewall-cmd --permanent --zone=trusted --add-source=10.42.0.0/16

$ sudo firewall-cmd --permanent --zone=trusted --add-source=169.254.169.1

$ sudo firewall-cmd --reload

$ sudo dnf install microshift-olm

$ sudo systemctl restart microshift

CHAPTER 1. INSTALLING FROM AN RPM PACKAGE

7

https://console.redhat.com/openshift/install/pull-secret

System requirements for installing MicroShift

Preparing to install MicroShift from an RPM package

Using Operator Lifecycle Manager with MicroShift

1.5.2. Installing the GitOps Argo CD manifests from an RPM package

You can use a lightweight version of the OpenShift GitOps with MicroShift to help manage your
applications. Install the necessary Argo CD manifests using an RPM package. This RPM package included
the necessary manifests that runs core Argo CD.

IMPORTANT

This process installs the basic GitOps functionalities, the Argo CD CLI is not currently
available on MicroShift.

Prerequisites

You installed MicroShift version 4.14 or higher

Additional RAM storage of 250MB recommended

Procedure

1. Enable the GitOps repository with the subscription manager by running the following command:

2. Install the GitOps package by running the following command:

3. To deploy Argo CD pods, restart the MicroShift service by running the following command:

Verification

You can verify that your pods are running properly by running the following command:

Example output

1.6. STARTING THE MICROSHIFT SERVICE

$ sudo subscription-manager repos --enable=gitops-1.12-for-rhel-9-$(uname -m)-rpms

$ sudo dnf install -y microshift-gitops

$ sudo systemctl restart microshift

$ oc get pods -n openshift-gitops

NAME READY STATUS RESTARTS AGE
argocd-application-controller-0 1/1 Running 0 4m11s
argocd-redis-56844446bc-dzmhf 1/1 Running 0 4m12s
argocd-repo-server-57b4f896cf-7qk8l 1/1 Running 0 4m12s

Red Hat build of MicroShift 4.15 Installing

8

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/running_applications/#microshift-operators-olm

Use the following procedure to start the MicroShift service.

Prerequisites

You have installed MicroShift from an RPM package.

Procedure

1. As a root user, start the MicroShift service by entering the following command:

2. Optional: To configure your RHEL machine to start MicroShift when your machine starts, enter
the following command:

3. Optional: To disable MicroShift from automatically starting when your machine starts, enter the
following command:

NOTE

The first time that the MicroShift service starts, it downloads and initializes the
container images for MicroShift. As a result, it can take several minutes for
MicroShift to start the first time that the service is deployed. Boot time is
reduced for subsequent starts of the MicroShift service.

1.7. STOPPING THE MICROSHIFT SERVICE

Use the following procedure to stop the MicroShift service.

Prerequisites

The MicroShift service is running.

Procedure

1. Enter the following command to stop the MicroShift service:

2. Workloads deployed on MicroShift might continue running even after the MicroShift service has
been stopped. Enter the following command to display running workloads:

3. Enter the following commands to stop the deployed workloads:

$ sudo systemctl start microshift

$ sudo systemctl enable microshift

$ sudo systemctl disable microshift

$ sudo systemctl stop microshift

$ sudo crictl ps -a

$ sudo systemctl stop kubepods.slice

CHAPTER 1. INSTALLING FROM AN RPM PACKAGE

9

1.8. HOW TO ACCESS THE MICROSHIFT CLUSTER

Use the procedures in this section to access the MicroShift cluster, either from the same machine
running the MicroShift service or remotely from a workstation. You can use this access to observe and
administrate workloads. When using these steps, choose the kubeconfig file that contains the host
name or IP address you want to connect with and place it in the relevant directory. As listed in each
procedure, you use the OpenShift Container Platform CLI tool (oc) for cluster activities.

Additional resources

Installing the OpenShift CLI tool .

1.8.1. Accessing the MicroShift cluster locally

Use the following procedure to access the MicroShift cluster locally by using a kubeconfig file.

Prerequisites

You have installed the oc binary.

Procedure

1. Optional: to create a ~/.kube/ folder if your RHEL machine does not have one, run the following
command:

2. Copy the generated local access kubeconfig file to the ~/.kube/ directory by running the
following command:

3. Update the permissions on your ~/.kube/config file by running the following command:

Verification

Verify that MicroShift is running by entering the following command:

1.8.2. Opening the firewall for remote access to the MicroShift cluster

Use the following procedure to open the firewall so that a remote user can access the MicroShift
cluster. This procedure must be completed before a workstation user can access the cluster remotely.

For this procedure, user@microshift is the user on the MicroShift host machine and is responsible for
setting up that machine so that it can be accessed by a remote user on a separate workstation.

Prerequisites

$ mkdir -p ~/.kube/

$ sudo cat /var/lib/microshift/resources/kubeadmin/kubeconfig > ~/.kube/config

$ chmod go-r ~/.kube/config

$ oc get all -A

Red Hat build of MicroShift 4.15 Installing

10

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/cli_tools/#microshift-oc-cli-install

You have installed the oc binary.

Your account has cluster administration privileges.

Procedure

As user@microshift on the MicroShift host, open the firewall port for the Kubernetes API
server (6443/tcp) by running the following command:

Verification

As user@microshift, verify that MicroShift is running by entering the following command:

1.8.3. Accessing the MicroShift cluster remotely

Use the following procedure to access the MicroShift cluster from a remote workstation by using a
kubeconfig file.

The user@workstation login is used to access the host machine remotely. The <user> value in the
procedure is the name of the user that user@workstation logs in with to the MicroShift host.

Prerequisites

You have installed the oc binary.

The user@microshift has opened the firewall from the local host.

Procedure

1. As user@workstation, create a ~/.kube/ folder if your RHEL machine does not have one by
running the following command:

2. As user@workstation, set a variable for the hostname of your MicroShift host by running the
following command:

3. As user@workstation, copy the generated kubeconfig file that contains the host name or IP
address you want to connect with from the RHEL machine running MicroShift to your local
machine by running the following command:

NOTE

[user@microshift]$ sudo firewall-cmd --permanent --zone=public --add-port=6443/tcp &&
sudo firewall-cmd --reload

[user@microshift]$ oc get all -A

[user@workstation]$ mkdir -p ~/.kube/

[user@workstation]$ MICROSHIFT_MACHINE=<name or IP address of MicroShift machine>

[user@workstation]$ ssh <user>@$MICROSHIFT_MACHINE "sudo cat
/var/lib/microshift/resources/kubeadmin/$MICROSHIFT_MACHINE/kubeconfig" >
~/.kube/config

CHAPTER 1. INSTALLING FROM AN RPM PACKAGE

11

NOTE

To generate kubeconfig files for this step, see the "Generating additional kubeconfig
files for remote access" link in the additional resources section.

1. As user@workstation, update the permissions on your ~/.kube/config file by running the
following command:

Verification

As user@workstation, verify that MicroShift is running by entering the following command:

$ chmod go-r ~/.kube/config

[user@workstation]$ oc get all -A

Red Hat build of MicroShift 4.15 Installing

12

CHAPTER 2. USING FIPS MODE WITH MICROSHIFT
You can use FIPS mode with RPM-based installations of MicroShift on Red Hat Enterprise Linux (RHEL)
9.

To enable FIPS mode in MicroShift containers, the worker machine kernel must be enabled to
run in FIPS mode before the machine starts.

Using FIPS with Red Hat Enterprise Linux for Edge (RHEL for Edge) images is not supported.

2.1. FIPS MODE WITH RHEL RPM-BASED INSTALLATIONS

Using FIPS with MicroShift requires enabling the cryptographic module self-checks in your Red Hat
Enterprise Linux (RHEL) installation. After the host operating system has been configured to start with
the FIPS modules, MicroShift containers are automatically enabled to run in FIPS mode.

When RHEL is started in FIPS mode, MicroShift core components use the RHEL cryptographic
libraries that have been submitted to NIST for FIPS 140-2/140-3 validation on only the x86_64
architectures.

You must enable FIPS mode when you install RHEL 9 on the machines that you plan to use as
worker machines.

IMPORTANT

Because FIPS must be enabled before the operating system that your cluster
uses starts for the first time, you cannot enable FIPS after you deploy a cluster.

MicroShift uses a FIPS-compatible Golang compiler.

FIPS is supported in the CRI-O container runtime.

2.1.1. Limitations

TLS implementation FIPS support is not complete.

The FIPS implementation does not offer a single function that both computes hash functions
and validates the keys that are based on that hash. This limitation continues to be evaluated for
improvement in future MicroShift releases.

2.1.2. Installing RHEL in FIPS mode

To install RHEL with FIPS, follow the guidance in the Installing the system in FIPS mode of the RHEL
documentation.

2.2. ADDITIONAL RESOURCES

Installing the system in FIPS mode

Enabling FIPS mode in a container

Federal Information Processing Standards 140 and FIPS mode

CHAPTER 2. USING FIPS MODE WITH MICROSHIFT

13

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_installing-the-system-in-fips-mode_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_installing-the-system-in-fips-mode_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/using-the-system-wide-cryptographic-policies_security-hardening#enabling-fips-mode-in-a-container_using-the-system-wide-cryptographic-policies
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/security_hardening/assembly_installing-the-system-in-fips-mode_security-hardening#federal-information-processing-standards-140-and-fips-mode_assembly_installing-the-system-in-fips-mode

CHAPTER 3. MIRRORING CONTAINER IMAGES FOR
DISCONNECTED INSTALLATIONS

You can use a custom container registry when you deploy MicroShift in a disconnected network.
Running your cluster in a restricted network without direct internet connectivity is possible by installing
the cluster from a mirrored set of container images in a private registry.

3.1. MIRROR CONTAINER IMAGES INTO AN EXISTING REGISTRY

Using a custom air-gapped container registry, or mirror, is necessary with certain user environments and
workload requirements. Mirroring allows for the transfer of container images and updates to air-gapped
environments where they can be installed on a MicroShift instance.

To create an air-gapped mirror registry for MicroShift containers, you must complete the following
steps:

Get the container image list to be mirrored.

Configure the mirroring prerequisites.

Download images on a host with internet access.

Copy the downloaded image directory to an air-gapped site.

Upload images to a mirror registry in an air-gapped site.

Configure your MicroShift hosts to use the mirror registry.

Additional resources

Creating a mirror registry with mirror registry for Red Hat OpenShift

3.2. GETTING THE MIRROR REGISTRY CONTAINER IMAGE LIST

To use a mirror registry, you must know which container image references are used by a specific version
of MicroShift. These references are provided in the release-<arch>.json files that are part of the
microshift-release-info RPM package.

NOTE

To mirror the Operator Lifecycle Manager (OLM) in disconnected environments, add the
references provided in the release-olm-$ARCH.json that is included in the microshift-
olm RPM and follow the same procedure. Use oc-mirror for mirroring Operator catalogs
and Operators.

Prerequisites

You have installed jq.

Procedure

1. Access the list of container image references by using one of the following methods:

If the package is installed on the MicroShift host, get the location of the files by running the

Red Hat build of MicroShift 4.15 Installing

14

https://docs.openshift.com/container-platform/4.15/installing/disconnected_install/installing-mirroring-creating-registry.html

If the package is installed on the MicroShift host, get the location of the files by running the
following command:

Example output

If the package is not installed on a MicroShift host, download and unpack the RPM package
without installing it by running the following command:

Example output

2. Extract the list of container images into the microshift-container-refs.txt file by running the
following commands:

NOTE

After the microshift-container-refs.txt file is created with the MicroShift container
image list, you can append the file with other user-specific image references before
running the mirroring procedure.

3.3. CONFIGURING MIRRORING PREREQUISITES

You must create a container image registry credentials file that allows the mirroring of images from your
internet-connected mirror host to your air-gapped mirror. Follow the instructions in the "Configuring
credentials that allow images to be mirrored" link provided in the "Additional resources" section. These
instructions guide you to create a ~/.pull-secret-mirror.json file on the mirror registry host that includes
the user credentials for accessing the mirror.

3.3.1. Example mirror registry pull secret entry

For example, the following section is added to the pull secret file for the microshift_quay:8443 mirror
registry using microshift:microshift as username and password.

Example mirror registry section for pull secret file

$ rpm -ql microshift-release-info

/usr/share/microshift/release/release-x86_64.json

$ rpm2cpio microshift-release-info*.noarch.rpm | cpio -idmv

/usr/share/microshift/release/release-x86_64.json

$ RELEASE_FILE=/usr/share/microshift/release/release-$(uname -m).json

$ jq -r '.images | .[]' ${RELEASE_FILE} > microshift-container-refs.txt

"<microshift_quay:8443>": { 1
 "auth": "<microshift_auth>", 2
 "email": "<microshift_quay@example.com>" 3
},

CHAPTER 3. MIRRORING CONTAINER IMAGES FOR DISCONNECTED INSTALLATIONS

15

1

2

3

Replace the <registry_host>:<port> value microshift_quay:8443 with the host name and port of
your mirror registry server.

Replace the <microshift_auth> value with the user password.

Replace the </microshift_quay@example.com> value with the user email.

Additional resources

Configuring credentials that allow images to be mirrored

3.4. DOWNLOADING CONTAINER IMAGES

After you have located the container list and completed the mirroring prerequisites, download the
container images to a host with internet access.

Prerequisites

You are logged into a host with access to the internet.

You have ensured that the .pull-secret-mirror.json file and microshift-containers directory
contents are available locally.

Procedure

1. Install the skopeo tool used for copying the container images by running the following
command:

2. Set the environment variable that points to the pull secret file:

3. Set the environment variable that points to the list of container images:

4. Set the environment variable that points to the destination directory for storing the
downloaded data:

5. Run the following script to download the container images to the ${IMAGE_LOCAL_DIR}
directory:

$ sudo dnf install -y skopeo

$ PULL_SECRET_FILE=~/.pull-secret-mirror.json

$ IMAGE_LIST_FILE=~/microshift-container-refs.txt

$ IMAGE_LOCAL_DIR=~/microshift-containers

while read -r src_img ; do
 # Remove the source registry prefix
 dst_img=$(echo "${src_img}" | cut -d '/' -f 2-)

 # Run the image download command
 echo "Downloading '${src_img}' to '${IMAGE_LOCAL_DIR}'"

Red Hat build of MicroShift 4.15 Installing

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html/installing/disconnected-installation-mirroring#installation-adding-registry-pull-secret_installing-mirroring-disconnected

1

6. Transfer the image set to the target environment, such as air-gapped site. Then you can upload
the image set into the mirror registry.

3.5. UPLOADING CONTAINER IMAGES TO A MIRROR REGISTRY

To use your container images at an air-gapped site, upload them to the mirror registry using the
following procedure.

Prerequisites

You are logged into a host with access to microshift-quay.

The .pull-secret-mirror.json file is available locally.

The microshift-containers directory contents are available locally.

Procedure

1. Install the skopeo tool used for copying the container images by running the following
command:

2. Set the environment variables pointing to the pull secret file:

3. Set the environment variables pointing to the local container image directory:

4. Set the environment variables pointing to the mirror registry URL for uploading the container
images:

Replace <registry_host>:<port> with the host name and port of your mirror registry
server.

5. Run the following script to upload the container images to the ${TARGET_REGISTRY} mirror
registry:

 mkdir -p "${IMAGE_LOCAL_DIR}/${dst_img}"
 skopeo copy --all --quiet \
 --preserve-digests \
 --authfile "${PULL_SECRET_FILE}" \
 docker://"${src_img}" dir://"${IMAGE_LOCAL_DIR}/${dst_img}"

done < "${IMAGE_LIST_FILE}"

$ sudo dnf install -y skopeo

$ IMAGE_PULL_FILE=~/.pull-secret-mirror.json

$ IMAGE_LOCAL_DIR=~/microshift-containers

$ TARGET_REGISTRY=<registry_host>:<port> 1

image_tag=mirror-$(date +%y%m%d%H%M%S)
image_cnt=1

CHAPTER 3. MIRRORING CONTAINER IMAGES FOR DISCONNECTED INSTALLATIONS

17

3.6. CONFIGURING HOSTS FOR MIRROR REGISTRY ACCESS

To configure a MicroShift host to use a mirror registry, you must give the MicroShift host access to the
registry by creating a configuration file that maps the Red Hat registry host names to the mirror.

Prerequisites

Your mirror host has access to the internet.

The mirror host can access the mirror registry.

You configured the mirror registry for use in your restricted network.

You downloaded the pull secret and modified it to include authentication to your mirror
repository.

Procedure

1. Log into your MicroShift host.

2. Enable the SSL certificate trust on any host accessing the mirror registry by completing the
following steps:

a. Copy the rootCA.pem file from the mirror registry, for example, <registry_path>/quay-
rootCA, to the MicroShift host at the /etc/pki/ca-trust/source/anchors directory.

b. Enable the certificate in the system-wide trust store configuration by running the following
command:

3. Create the /etc/containers/registries.conf.d/999-microshift-mirror.conf configuration file

 # Uses timestamp and counter as a tag on the target images to avoid
 # their overwrite by the 'latest' automatic tagging

pushd "${IMAGE_LOCAL_DIR}" >/dev/null
while read -r src_manifest ; do
 # Remove the manifest.json file name
 src_img=$(dirname "${src_manifest}")
 # Add the target registry prefix and remove SHA
 dst_img="${TARGET_REGISTRY}/${src_img}"
 dst_img=$(echo "${dst_img}" | awk -F'@' '{print $1}')

 # Run the image upload command
 echo "Uploading '${src_img}' to '${dst_img}'"
 skopeo copy --all --quiet \
 --preserve-digests \
 --authfile "${IMAGE_PULL_FILE}" \
 dir://"${IMAGE_LOCAL_DIR}/${src_img}" docker://"${dst_img}:${image_tag}-
${image_cnt}"
 # Increment the counter
 ((image_cnt += 1))

done < <(find . -type f -name manifest.json -printf '%P\n')
popd >/dev/null

$ sudo update-ca-trust

Red Hat build of MicroShift 4.15 Installing

18

1

3. Create the /etc/containers/registries.conf.d/999-microshift-mirror.conf configuration file
that maps the Red Hat registry host names to the mirror registry:

Example mirror configuration file

Replace <registry_host>:<port> with the host name and port of your mirror registry
server, for example, <microshift-quay:8443>.

4. Enable the MicroShift service by running the following command:

5. Reboot the host by running the following command:

[[registry]]
 prefix = ""
 location = "<registry_host>:<port>" 1
 mirror-by-digest-only = true
 insecure = false

[[registry]]
 prefix = ""
 location = "quay.io"
 mirror-by-digest-only = true
[[registry.mirror]]
 location = "<registry_host>:<port>"
 insecure = false

[[registry]]
 prefix = ""
 location = "registry.redhat.io"
 mirror-by-digest-only = true
[[registry.mirror]]
 location = "<registry_host>:<port>"
 insecure = false

[[registry]]
 prefix = ""
 location = "registry.access.redhat.com"
 mirror-by-digest-only = true
[[registry.mirror]]
 location = "<registry_host>:<port>"
 insecure = false

$ sudo systemctl enable microshift

$ sudo reboot

CHAPTER 3. MIRRORING CONTAINER IMAGES FOR DISCONNECTED INSTALLATIONS

19

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE
You can embed MicroShift into a Red Hat Enterprise Linux for Edge (RHEL for Edge) image. Use this
guide to build a RHEL image containing MicroShift.

4.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT

The following conditions must be met prior to installing MicroShift:

A compatible version of RHEL or RHEL for Edge.

AArch64 or x86_64 system architecture.

2 CPU cores.

2 GB RAM for MicroShift or 3 GB RAM, required by RHEL for networked-based HTTPs or FTP
installations.

10 GB of storage.

You have an active MicroShift subscription on your Red Hat account. If you do not have a
subscription, contact your sales representative for more information.

You have a Logical Volume Manager (LVM) Volume Group (VG) with sufficient capacity for the
Persistent Volumes (PVs) of your workload.

Plan to use a supported version of RHEL paired with your version of MicroShift as described in the
following table.

4.2. COMPATIBILITY TABLE

Plan to pair a supported version of RHEL for Edge with the MicroShift version you are using as described
in the following compatibility table:

Red Hat Device Edge release compatibility matrix

The two products of Red Hat Device Edge work together as a single solution for device-edge
computing. To successfully pair your products, use the verified releases together for each as listed in the
following table:

RHEL for Edge
Version(s)

MicroShift Version MicroShift Release
Status

MicroShift Supported
Updates

9.2, 9.3 4.15 Generally Available 4.15.0→4.15.z and
4.15→future minor

version

9.2, 9.3 4.14 Generally Available 4.14.0→4.14.z and
4.14→4.15

9.2 4.13 Technology Preview None

8.7 4.12 Developer Preview None

Red Hat build of MicroShift 4.15 Installing

20

4.3. PREPARING FOR IMAGE BUILDING

Read Composing, installing, and managing RHEL for Edge images .

To build an Red Hat Enterprise Linux for Edge (RHEL for Edge) 9.2 image for a given CPU architecture,
you need a RHEL 9.2 build host of the same CPU architecture that meets the Image Builder system
requirements.

Follow the instructions in Installing Image Builder to install Image Builder and the composer-cli tool.

4.4. ADDING MICROSHIFT REPOSITORIES TO IMAGE BUILDER

Use the following procedure to add the MicroShift repositories to Image Builder on your build host.

Prerequisites

Your build host meets the Image Builder system requirements.

You have installed and set up Image Builder and the composer-cli tool.

You have root-user access to your build host.

Procedure

1. Create an Image Builder configuration file for adding the rhocp-4.15 RPM repository source
required to pull MicroShift RPMs by running the following command:

2. Create an Image Builder configuration file for adding the fast-datapath RPM repository by
running the following command:

3. Add the sources to the Image Builder by running the following commands:

cat > rhocp-4.15.toml <<EOF
id = "rhocp-4.15"
name = "Red Hat OpenShift Container Platform 4.15 for RHEL 9"
type = "yum-baseurl"
url = "https://cdn.redhat.com/content/dist/layered/rhel9/$(uname -m)/rhocp/4.15/os"
check_gpg = true
check_ssl = true
system = false
rhsm = true
EOF

cat > fast-datapath.toml <<EOF
id = "fast-datapath"
name = "Fast Datapath for RHEL 9"
type = "yum-baseurl"
url = "https://cdn.redhat.com/content/dist/layered/rhel9/$(uname -m)/fast-datapath/os"
check_gpg = true
check_ssl = true
system = false
rhsm = true
EOF

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE

21

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/setting-up-image-builder_composing-installing-managing-rhel-for-edge-images#edge-image-builder-system-requirements_setting-up-image-builder
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/setting-up-image-builder_composing-installing-managing-rhel-for-edge-images#edge-installing-image-builder_setting-up-image-builder

Verification

Confirm that the sources were added properly by running the following command:

Example output

Additional resources

Image Builder system requirements

Installing Image Builder

4.5. ADDING THE MICROSHIFT SERVICE TO A BLUEPRINT

Adding the MicroShift RPM package to an Image Builder blueprint enables the build of a RHEL for Edge
image with MicroShift embedded.

Start with step 1 to create your own minimal blueprint file which results in a faster MicroShift
installation.

Start with step 2 to use the generated blueprint for installation which includes all the RPM
packages and container images. This is a longer installation process, but a faster start up
because container references are accessed locally.

IMPORTANT

Replace <microshift_blueprint.toml> in the following procedures with the
name of the TOML file you are using.

Replace <microshift_blueprint> in the following procedures with the name you
want to use for your blueprint.

Procedure

1. Use the following example to create your own blueprint file:

Custom Image Builder blueprint example

$ sudo composer-cli sources add rhocp-4.15.toml

$ sudo composer-cli sources add fast-datapath.toml

$ sudo composer-cli sources list

appstream
baseos
fast-datapath
rhocp-4.15

cat > <microshift_blueprint.toml> <<EOF 1
name = "<microshift_blueprint>" 2

Red Hat build of MicroShift 4.15 Installing

22

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/setting-up-image-builder_composing-installing-managing-rhel-for-edge-images#edge-image-builder-system-requirements_setting-up-image-builder
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/setting-up-image-builder_composing-installing-managing-rhel-for-edge-images#edge-installing-image-builder_setting-up-image-builder

1

2

<microshift_blueprint.toml> is the name of the TOML file.

<microshift_blueprint> is the name of your blueprint.

NOTE

The wildcard * in the commands uses the latest MicroShift RPMs. If you need a
specific version, substitute the wildcard for the version you want. For example,
insert 4.15.0 to download the MicroShift 4.15.0 RPMs.

2. Optional. Use the blueprint installed in the /usr/share/microshift/blueprint directory that is
specific to your platform architecture. See the following example snippet for an explanation of
the blueprint sections:

Generated Image Builder blueprint example snippet

description = ""
version = "0.0.1"
modules = []
groups = []

[[packages]]
name = "microshift"
version = "*"

[customizations.services]
enabled = ["microshift"]
EOF

name = "microshift_blueprint"
description = "MicroShift 4.15.1 on x86_64 platform"
version = "0.0.1"
modules = []
groups = []

[[packages]] 1
name = "microshift"
version = "4.15.1"
...
...

[customizations.services] 2
enabled = ["microshift"]

[customizations.firewall]
ports = ["22:tcp", "80:tcp", "443:tcp", "5353:udp", "6443:tcp", "30000-32767:tcp", "30000-
32767:udp"]
...
...

[[containers]] 3
source = "quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:f41e79c17e8b41f1b0a5a32c3e2dd7cd15b8274554d3f1ba12b2598a347475f4"

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE

23

1

2

3

1

1

1

References for all non-optional MicroShift RPM packages using the same version
compatible with the microshift-release-info RPM.

References for automatically enabling MicroShift on system startup and applying default
networking settings.

References for all non-optional MicroShift container images necessary for an offline
deployment.

3. Add the blueprint to the Image Builder by running the following command:

Replace <microshift_blueprint.toml> with the name of your TOML file.

Verification

1. Verify the Image Builder configuration listing only MicroShift packages by running the following
command:

Replace <microshift_blueprint> with the name of your blueprint.

Example output

2. Optional: Verify the Image Builder configuration listing all components to be installed by running
the following command:

Replace <microshift_blueprint> with the name of your blueprint.

4.5.1. Adding the Operator Lifecycle Manager (OLM) service to a blueprint

When you install MicroShift, the Operator Lifecycle Manager (OLM) package is not installed by default.

[[containers]]
source = "quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:dbc65f1fba7d92b36cf7514cd130fe83a9bd211005ddb23a8dc479e0eea645fd"
...
…
EOF

$ sudo composer-cli blueprints push <microshift_blueprint.toml> 1

$ sudo composer-cli blueprints depsolve <microshift_blueprint> | grep microshift 1

blueprint: microshift_blueprint v0.0.1
 microshift-greenboot-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.noarch
 microshift-networking-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.x86_64
 microshift-release-info-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.noarch
 microshift-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.x86_64
 microshift-selinux-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.noarch

$ sudo composer-cli blueprints depsolve <microshift_blueprint> 1

Red Hat build of MicroShift 4.15 Installing

24

1

When you install MicroShift, the Operator Lifecycle Manager (OLM) package is not installed by default.
You can add the microshift-olm package in the ostree blueprint to enable OLM in MicroShift.

1. Edit your ostree blueprint by running the following example command:

Specify the name of the blueprint file you used when adding the MicroShift service.

2. Add the following example text to your ostree blueprint:

3. To apply the manifest from the package to an active cluster, you must build a new OSTree
system then deploy it on the machine. To update your OSTree system, use the instruction’s in
"Applying updates on an OSTree system"

Additional resources

Using Operator Lifecycle Manager with MicroShift

Applying updates on an OSTree system

4.6. ADDING A CERTIFICATE AUTHORITY BUNDLE

MicroShift uses the host trust bundle when clients evaluate server certificates. You can also use a
customized security certificate chain to improve the compatibility of your endpoint certificates with
clients specific to your deployments. To do this, you can add a certificate authority (CA) bundle with
root and intermediate certificates to the Red Hat Enterprise Linux for Edge (RHEL for Edge) system-
wide trust store.

4.6.1. Adding a certificate authority bundle to an rpm-ostree image

You can include additional trusted certificate authorities (CAs) to the Red Hat Enterprise Linux for Edge
(RHEL for Edge) rpm-ostree image by adding them to the blueprint that you use to create the image.
Using the following procedure sets up additional CAs to be trusted by the operating system when pulling
images from an image registry.

NOTE

This procedure requires you to configure the CA bundle customizations in the blueprint,
and then add steps to your kickstart file to enable the bundle. In the following steps, data
is the key, and <value> represents the PEM-encoded certificate.

Prerequisites

You have root user access to your build host.

Your build host meets the Image Builder system requirements.

You have installed and set up Image Builder and the composer-cli tool.

$ vi <microshift_blueprint.toml> 1

[[packages]]
name = "microshift-olm"
version = "*"

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE

25

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/running_applications/#microshift-operators-olm
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/updating/#updates-with-rpm-ostree-systems

Procedure

1. Add the following custom values to your blueprint to add a directory.

a. Add instructions to your blueprint on the host where the image is built to create the
directory, for example, /etc/pki/ca-trust/source/anchors/ for your certificate bundles.

b. After the image has booted, create the certificate bundles, for example, /etc/pki/ca-
trust/source/anchors/cert1.pem:

2. To enable the certificate bundle in the system-wide trust store configuration, use the update-
ca-trust command on the host where the image you are using has booted, for example:

NOTE

The update-ca-trust command might be included in the %post section of a kickstart file
used for MicroShift host installation so that all the necessary certificate trust is enabled
on the first boot. You must configure the CA bundle customizations in the blueprint
before adding steps to your kickstart file to enable the bundle.

Additional resources

Creating the RHEL for Edge image

Using Shared System Certificates (RHEL 9)

Supported image customizations (RHEL 9)

4.7. CREATING THE RHEL FOR EDGE IMAGE

Use the following procedure to create the ISO. The RHEL for Edge Installer image pulls the commit from
the running container and creates an installable boot ISO with a Kickstart file configured to use the
embedded rpm-ostree commit.

Prerequisites

Your build host meets the Image Builder system requirements.

[[customizations.directories]]
path = "/etc/pki/ca-trust/source/anchors"

[[customizations.files]]
path = "/etc/pki/ca-trust/source/anchors/cert1.pem"
data = "<value>"

$ sudo update-ca-trust

%post
Update certificate trust storage in case new certificates were
installed at /etc/pki/ca-trust/source/anchors directory
update-ca-trust
%end

Red Hat build of MicroShift 4.15 Installing

26

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/securing_networks/using-shared-system-certificates_securing-networks
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_a_customized_rhel_system_image/creating-system-images-with-composer-command-line-interface_composing-a-customized-rhel-system-image#image-customizations_creating-system-images-with-composer-command-line-interface

You have installed and set up Image Builder and the composer-cli tool.

You have root-user access to your build host.

You have installed the podman tool.

Procedure

1. Start an ostree container image build by running the following command:

This command also returns the identification (ID) of the build for monitoring.

2. You can check the status of the build periodically by running the following command:

Example output of a running build

Example output of a completed build

NOTE

You can use the watch command to monitor your build if you are familiar with
how to start and stop it.

3. Download the container image using the ID and get the image ready for use by running the
following command:

4. Change the ownership of the downloaded container image to the current user by running the
following command:

5. Add read permissions for the current user to the image by running the following command:

$ BUILDID=$(sudo composer-cli compose start-ostree --ref "rhel/9/$(uname -m)/edge"
minimal-microshift edge-container | awk '{print $2}')

$ sudo composer-cli compose status

ID Status Time Blueprint Version Type
Size
cc3377ec-4643-4483-b0e7-6b0ad0ae6332 RUNNING Wed Jun 7 12:26:23 2023
minimal-microshift 0.0.1 edge-container

ID Status Time Blueprint Version Type
Size
cc3377ec-4643-4483-b0e7-6b0ad0ae6332 FINISHED Wed Jun 7 12:32:37 2023
minimal-microshift 0.0.1 edge-container

$ sudo composer-cli compose image ${BUILDID}

$ sudo chown $(whoami). ${BUILDID}-container.tar

$ sudo chmod a+r ${BUILDID}-container.tar

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE

27

6. Bootstrap a server on port 8085 for the ostree container image to be consumed by the ISO
build by completing the following steps:

a. Get the IMAGEID variable result by running the following command:

b. Use the IMAGEID variable result to execute the podman command step by running the
following command:

This command also returns the ID of the container saved in the IMAGEID variable for
monitoring.

7. Generate the installer blueprint file by running the following command:

4.8. ADD THE BLUEPRINT TO IMAGE BUILDER AND BUILD THE ISO

1. Add the blueprint to the Image Builder by running the following command:

2. Start the ostree ISO build by running the following command:

This command also returns the identification (ID) of the build for monitoring.

3. You can check the status of the build periodically by running the following command:

Example output for a running build

Example output for a completed build

$ IMAGEID=$(cat < "./${BUILDID}-container.tar" | sudo podman load | grep -o -P '(?
<=sha256[@:])[a-z0-9]*')

$ sudo podman run -d --name=minimal-microshift-server -p 8085:8080 ${IMAGEID}

cat > microshift-installer.toml <<EOF
name = "microshift-installer"

description = ""
version = "0.0.0"
modules = []
groups = []
packages = []
EOF

$ sudo composer-cli blueprints push microshift-installer.toml

$ BUILDID=$(sudo composer-cli compose start-ostree --url http://localhost:8085/repo/ --ref
"rhel/9/$(uname -m)/edge" microshift-installer edge-installer | awk '{print $2}')

$ sudo composer-cli compose status

ID Status Time Blueprint Version Type
Size
c793c24f-ca2c-4c79-b5b7-ba36f5078e8d RUNNING Wed Jun 7 13:22:20 2023
microshift-installer 0.0.0 edge-installer

Red Hat build of MicroShift 4.15 Installing

28

4.9. DOWNLOAD THE ISO AND PREPARE IT FOR USE

1. Download the ISO using the ID by running the following command:

2. Change the ownership of the downloaded container image to the current user by running the
following command:

3. Add read permissions for the current user to the image by running the following command:

Additional resources

Creating a RHEL for Edge Container blueprint using image builder CLI

Supported image customizations

Building OSTree image

Blueprint Reference

Installing podman

4.10. PROVISIONING A MACHINE FOR MICROSHIFT

Provision a machine with your RHEL for Edge image by using the procedures from the RHEL for Edge
documentation.

To use MicroShift, you must provision the system so that it meets the following requirements:

The machine you are provisioning must meet the system requirements for installing MicroShift.

The file system must have a logical volume manager (LVM) volume group (VG) with sufficient
capacity for the persistent volumes (PVs) of your workload.

A pull secret from the Red Hat Hybrid Cloud Console must be present as /etc/crio/openshift-
pull-secret and have root user-only read/write permissions.

The firewall must be configured with the required settings.

NOTE

If you are using a Kickstart such as the RHEL for Edge Installer (ISO) image, you can
update your Kickstart file to meet the provisioning requirements.

ID Status Time Blueprint Version Type
Size
c793c24f-ca2c-4c79-b5b7-ba36f5078e8d FINISHED Wed Jun 7 13:34:49 2023
microshift-installer 0.0.0 edge-installer

$ sudo composer-cli compose image ${BUILDID}

$ sudo chown $(whoami). ${BUILDID}-installer.iso

$ sudo chmod a+r ${BUILDID}-installer.iso

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE

29

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/composing-a-rhel-for-edge-image-using-image-builder-command-line_composing-installing-managing-rhel-for-edge-images
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_installing_and_managing_rhel_for_edge_images/composing-a-rhel-for-edge-image-using-image-builder-command-line_composing-installing-managing-rhel-for-edge-images#image-customizations_composing-a-rhel-for-edge-image-using-image-builder-command-line
https://osbuild.org/docs/on-premises/commandline/building-ostree-images
https://osbuild.org/docs/user-guide/blueprint-reference
https://podman.io/docs/installation
https://console.redhat.com/openshift/install/pull-secret

Prerequisites

1. You have created a RHEL for Edge Installer (ISO) image containing your RHEL for Edge commit
with Red Hat build of MicroShift.

a. This requirement includes the steps of composing an RFE Container image, creating the
RFE Installer blueprint, starting the RFE container, and composing the RFE Installer image.

2. Create a Kickstart file or use an existing one. In the Kickstart file, you must include:

a. Detailed instructions about how to create a user.

b. How to fetch and deploy the RHEL for Edge image.

For more information, read "Additional resources."

Procedure

1. In the main section of the Kickstart file, update the setup of the filesystem such that it contains
an LVM volume group called rhel with at least 10GB system root. Leave free space for the
LVMS CSI driver to use for storing the data for your workloads.

Example kickstart snippet for configuring the filesystem

2. In the %post section of the Kickstart file, add your pull secret and the mandatory firewall rules.

Example Kickstart snippet for adding the pull secret and firewall rules

Partition disk such that it contains an LVM volume group called `rhel` with a
10GB+ system root but leaving free space for the LVMS CSI driver for storing data.
#
For example, a 20GB disk would be partitioned in the following way:
#
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 20G 0 disk
├─sda1 8:1 0 200M 0 part /boot/efi
├─sda1 8:1 0 800M 0 part /boot
└─sda2 8:2 0 19G 0 part
└─rhel-root 253:0 0 10G 0 lvm /sysroot
#
ostreesetup --nogpg --osname=rhel --remote=edge \
--url=file:///run/install/repo/ostree/repo --ref=rhel/<RHEL VERSION NUMBER>/x86_64/edge
zerombr
clearpart --all --initlabel
part /boot/efi --fstype=efi --size=200
part /boot --fstype=xfs --asprimary --size=800
Uncomment this line to add a SWAP partition of the recommended size
#part swap --fstype=swap --recommended
part pv.01 --grow
volgroup rhel pv.01
logvol / --vgname=rhel --fstype=xfs --size=10000 --name=root
To add users, use a line such as the following
user --name=<YOUR_USER_NAME> \
--password=<YOUR_HASHED_PASSWORD> \
--iscrypted --groups=<YOUR_USER_GROUPS>

Red Hat build of MicroShift 4.15 Installing

30

3. Install the mkksiso tool by running the following command:

4. Update the Kickstart file in the ISO with your new Kickstart file by running the following
command:

Additional resources

RHEL for Edge documentation

System requirements for installing MicroShift

Red Hat Hybrid Cloud Console pull secret

Required firewall settings

Creating a Kickstart file

How to embed a Kickstart file into an ISO image

4.11. HOW TO ACCESS THE MICROSHIFT CLUSTER

Use the procedures in this section to access the MicroShift cluster, either from the same machine
running the MicroShift service or remotely from a workstation. You can use this access to observe and
administrate workloads. When using these steps, choose the kubeconfig file that contains the host
name or IP address you want to connect with and place it in the relevant directory. As listed in each
procedure, you use the OpenShift Container Platform CLI tool (oc) for cluster activities.

4.11.1. Accessing the MicroShift cluster locally

Use the following procedure to access the MicroShift cluster locally by using a kubeconfig file.

Prerequisites

You have installed the oc binary.

%post --log=/var/log/anaconda/post-install.log --erroronfail

Add the pull secret to CRI-O and set root user-only read/write permissions
cat > /etc/crio/openshift-pull-secret << EOF
YOUR_OPENSHIFT_PULL_SECRET_HERE
EOF
chmod 600 /etc/crio/openshift-pull-secret

Configure the firewall with the mandatory rules for MicroShift
firewall-offline-cmd --zone=trusted --add-source=10.42.0.0/16
firewall-offline-cmd --zone=trusted --add-source=169.254.169.1

%end

$ sudo yum install -y lorax

$ sudo mkksiso <your_kickstart>.ks <your_installer>.iso <updated_installer>.iso

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE

31

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/composing_installing_and_managing_rhel_for_edge_images/index
https://console.redhat.com/openshift/install/pull-secret
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/networking/#microshift-firewall-req-settings_microshift-firewall
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/performing_an_advanced_rhel_9_installation/creating-kickstart-files_installing-rhel-as-an-experienced-user
https://access.redhat.com/solutions/60959

Procedure

1. Optional: to create a ~/.kube/ folder if your RHEL machine does not have one, run the following
command:

2. Copy the generated local access kubeconfig file to the ~/.kube/ directory by running the
following command:

3. Update the permissions on your ~/.kube/config file by running the following command:

Verification

Verify that MicroShift is running by entering the following command:

4.11.2. Opening the firewall for remote access to the MicroShift cluster

Use the following procedure to open the firewall so that a remote user can access the MicroShift
cluster. This procedure must be completed before a workstation user can access the cluster remotely.

For this procedure, user@microshift is the user on the MicroShift host machine and is responsible for
setting up that machine so that it can be accessed by a remote user on a separate workstation.

Prerequisites

You have installed the oc binary.

Your account has cluster administration privileges.

Procedure

As user@microshift on the MicroShift host, open the firewall port for the Kubernetes API
server (6443/tcp) by running the following command:

Verification

As user@microshift, verify that MicroShift is running by entering the following command:

4.11.3. Accessing the MicroShift cluster remotely

$ mkdir -p ~/.kube/

$ sudo cat /var/lib/microshift/resources/kubeadmin/kubeconfig > ~/.kube/config

$ chmod go-r ~/.kube/config

$ oc get all -A

[user@microshift]$ sudo firewall-cmd --permanent --zone=public --add-port=6443/tcp &&
sudo firewall-cmd --reload

[user@microshift]$ oc get all -A

Red Hat build of MicroShift 4.15 Installing

32

Use the following procedure to access the MicroShift cluster from a remote workstation by using a
kubeconfig file.

The user@workstation login is used to access the host machine remotely. The <user> value in the
procedure is the name of the user that user@workstation logs in with to the MicroShift host.

Prerequisites

You have installed the oc binary.

The user@microshift has opened the firewall from the local host.

Procedure

1. As user@workstation, create a ~/.kube/ folder if your RHEL machine does not have one by
running the following command:

2. As user@workstation, set a variable for the hostname of your MicroShift host by running the
following command:

3. As user@workstation, copy the generated kubeconfig file that contains the host name or IP
address you want to connect with from the RHEL machine running MicroShift to your local
machine by running the following command:

NOTE

To generate kubeconfig files for this step, see the "Generating additional kubeconfig
files for remote access" link in the additional resources section.

1. As user@workstation, update the permissions on your ~/.kube/config file by running the
following command:

Verification

As user@workstation, verify that MicroShift is running by entering the following command:

Additional resources

Generating additional kubeconfig files for remote access

[user@workstation]$ mkdir -p ~/.kube/

[user@workstation]$ MICROSHIFT_MACHINE=<name or IP address of MicroShift machine>

[user@workstation]$ ssh <user>@$MICROSHIFT_MACHINE "sudo cat
/var/lib/microshift/resources/kubeadmin/$MICROSHIFT_MACHINE/kubeconfig" >
~/.kube/config

$ chmod go-r ~/.kube/config

[user@workstation]$ oc get all -A

CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE

33

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/configuring/#microshift-kubeconfig-generating-remote-kcfiles_microshift-cluster-access-kubeconfig

CHAPTER 5. EMBEDDING IN A RHEL FOR EDGE IMAGE FOR
OFFLINE USE

Embedding MicroShift containers in an rpm-ostree commit means that you can run a cluster in air-
gapped, disconnected, or offline environments. You can embed Red Hat build of MicroShift containers
in a Red Hat Enterprise Linux for Edge (RHEL for Edge) image so that container engines do not need to
pull images over a network from a container registry. Workloads can start up immediately without
network connectivity.

5.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT

The following conditions must be met prior to installing MicroShift:

A compatible version of RHEL or RHEL for Edge.

AArch64 or x86_64 system architecture.

2 CPU cores.

2 GB RAM for MicroShift or 3 GB RAM, required by RHEL for networked-based HTTPs or FTP
installations.

10 GB of storage.

You have an active MicroShift subscription on your Red Hat account. If you do not have a
subscription, contact your sales representative for more information.

You have a Logical Volume Manager (LVM) Volume Group (VG) with sufficient capacity for the
Persistent Volumes (PVs) of your workload.

5.2. COMPATIBILITY TABLE

Plan to pair a supported version of RHEL for Edge with the MicroShift version you are using as described
in the following compatibility table:

Red Hat Device Edge release compatibility matrix

The two products of Red Hat Device Edge work together as a single solution for device-edge
computing. To successfully pair your products, use the verified releases together for each as listed in the
following table:

RHEL for Edge
Version(s)

MicroShift Version MicroShift Release
Status

MicroShift Supported
Updates

9.2, 9.3 4.15 Generally Available 4.15.0→4.15.z and
4.15→future minor

version

9.2, 9.3 4.14 Generally Available 4.14.0→4.14.z and
4.14→4.15

9.2 4.13 Technology Preview None

Red Hat build of MicroShift 4.15 Installing

34

8.7 4.12 Developer Preview None

5.3. EMBEDDING MICROSHIFT CONTAINERS FOR OFFLINE
DEPLOYMENTS

You can use Image Builder to create rpm-ostree system images with embedded MicroShift container
images. To embed container images, you must add the image references to your Image Builder
blueprint.

Prerequisites

You have root-user access to your build host.

Your build host meets the Image Builder system requirements.

You have installed and set up Image Builder and the composer-cli tool.

You have created a RHEL for Edge image blueprint.

You have installed jq.

Procedure

1. Get the exact list of container image references used by the MicroShift version you are
deploying. You can either install the microshift-release-info RPM package by following step 2
or download and unpack the RPM by following step 3.

2. To install the microshift-release-info RPM package:

a. Install the microshift-release-info RPM package by running the following command:

Replace <release_version> with the numerical value of the release you are deploying, using
the entire version number, such as 4.15.0.

b. List the contents of the /usr/share/microshift/release directory to verify the presence of
the release information files by running the following command:

Example output

If you installed the microshift-release-info RPM, you can proceed to step 4.

3. If you did not complete step 2, download and unpack the microshift-release-info RPM without
installing it:

a. Download the RPM package by running the following command:

$ sudo dnf install -y microshift-release-info-<release_version>

$ ls /usr/share/microshift/release

release-x86_64.json
release-aarch64.json

CHAPTER 5. EMBEDDING IN A RHEL FOR EDGE IMAGE FOR OFFLINE USE

35

1

1

Replace <release_version> with the numerical value of the release you are deploying, using
the entire version number, such as 4.15.0.

Example rpm

The * represents the date and commit ID. Your output should contain both, for
example -202311101230.p0.g7dc6a00.assembly.4.15.0.

b. Unpack the RPM package without installing it by running the following command:

Replace <my_microshift_release_info> with the name of the RPM package from the
previous step.

4. Define the location of your JSON file, which contains the container reference information, by
running the following command:

Replace </path/to/your/release-$(uname -m).json> with the full path to your JSON file. Be
sure to use the file needed for your architecture.

5. Define the location of your TOML file, which contains instructions for building the image, by
running the following command:

Replace </path/to/your/blueprint.toml> with the full path to your JSON file.

6. Generate and then embed the container image references in your blueprint TOML file by
running the following command:

Example resulting <my_blueprint.toml> fragment showing container references

$ sudo dnf download microshift-release-info-<release_version>

microshift-release-info-4.15.0.*.el9.noarch.rpm 1

$ rpm2cpio <my_microshift_release_info> | cpio -idmv 1
./usr/share/microshift/release/release-aarch64.json
./usr/share/microshift/release/release-x86_64.json

$ RELEASE_FILE=</path/to/your/release-$(uname -m).json>

$ BLUEPRINT_FILE=</path/to/your/blueprint.toml>

$ jq -r '.images | .[] | ("[[containers]]\nsource = \"" + . + "\"\n")' "${RELEASE_FILE}" >>
"${BLUEPRINT_FILE}"

[[containers]]
source = "quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:82cfef91557f9a70cff5a90accba45841a37524e9b93f98a97b20f6b2b69e5db"

[[containers]]
source = "quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:82cfef91557f9a70cff5a90accba45841a37524e9b93f98a97b20f6b2b69e5db"

Red Hat build of MicroShift 4.15 Installing

36

7. You can manually embed any container image by adding it to the Image Builder blueprint using
the following example:

Example section for manually embedding container image to Image Builder

Replace <my_image_pullspec_with_tag_or_digest> with the exact reference to a container
image used by the MicroShift version you are deploying.

5.4. UPDATING OSBUILDER WORKER CONFIGURATION TO PREPARE
FOR IMAGE BUILDING

After you have updated the blueprint, you must update the osbuilder worker configuration to prepare for
building the image with embedded MicroShift containers.

Prerequisites

You have root-user access to your build host.

Your build host meets the Image Builder system requirements.

You have installed and set up Image Builder and the composer-cli tool.

NOTE

You can create an /etc/osbuild-worker/osbuild-worker.toml directory and configuration
file if they do not exist.

Procedure

1. Add a pull secret for authenticating to the registry by setting the auth_file_path in the
[containers] section of the /etc/osbuild-worker/osbuild-worker.toml osbuilder worker
configuration file:

2. Restart the osbuild-worker to apply configuration changes by restarting the host. Restarting
the host ensures that all osbuild-worker services currently running are restarted.

5.5. BUILD AND USE THE RPM-OSTREE IMAGE FOR OFFLINE
DEPLOYMENTS

You can use Image Builder to create rpm-ostree system images with embedded MicroShift container
images. To embed container images, you must add the image references to your Image Builder
blueprint. You can create the commit and ISO as needed for your use case.

Add the prerequisites listed here to the ones that are included in the procedures that follow.

5.5.1. Additional prerequisites for offline deployments

[[containers]]
source = "<my_image_pullspec_with_tag_or_digest>"

[containers]
auth_file_path = "/etc/osbuild-worker/pull-secret.json"

CHAPTER 5. EMBEDDING IN A RHEL FOR EDGE IMAGE FOR OFFLINE USE

37

You have created and updated a RHEL for Edge image blueprint for offline use. The following
procedures use the example of a blueprint created with container images. You must use the
updated blueprint you created in the "Embedding MicroShift containers for offline
deployments" procedure.

You have updated the /etc/osbuild-worker/osbuild-worker.toml configuration file for offline
use.

IMPORTANT

Replace minimal-microshift.toml in the following procedures with the name of the
TOML you updated for offline use, <my_blueprint_name>.

5.5.2. Adding the MicroShift service to a blueprint

Adding the MicroShift RPM package to an Image Builder blueprint enables the build of a RHEL for Edge
image with MicroShift embedded.

Start with step 1 to create your own minimal blueprint file which results in a faster MicroShift
installation.

Start with step 2 to use the generated blueprint for installation which includes all the RPM
packages and container images. This is a longer installation process, but a faster start up
because container references are accessed locally.

IMPORTANT

Replace <microshift_blueprint.toml> in the following procedures with the
name of the TOML file you are using.

Replace <microshift_blueprint> in the following procedures with the name you
want to use for your blueprint.

Procedure

1. Use the following example to create your own blueprint file:

Custom Image Builder blueprint example

cat > <microshift_blueprint.toml> <<EOF 1
name = "<microshift_blueprint>" 2

description = ""
version = "0.0.1"
modules = []
groups = []

[[packages]]
name = "microshift"
version = "*"

[customizations.services]
enabled = ["microshift"]
EOF

Red Hat build of MicroShift 4.15 Installing

38

1

2

1

2

<microshift_blueprint.toml> is the name of the TOML file.

<microshift_blueprint> is the name of your blueprint.

NOTE

The wildcard * in the commands uses the latest MicroShift RPMs. If you need a
specific version, substitute the wildcard for the version you want. For example,
insert 4.15.0 to download the MicroShift 4.15.0 RPMs.

2. Optional. Use the blueprint installed in the /usr/share/microshift/blueprint directory that is
specific to your platform architecture. See the following example snippet for an explanation of
the blueprint sections:

Generated Image Builder blueprint example snippet

References for all non-optional MicroShift RPM packages using the same version
compatible with the microshift-release-info RPM.

References for automatically enabling MicroShift on system startup and applying default
networking settings.

name = "microshift_blueprint"
description = "MicroShift 4.15.1 on x86_64 platform"
version = "0.0.1"
modules = []
groups = []

[[packages]] 1
name = "microshift"
version = "4.15.1"
...
...

[customizations.services] 2
enabled = ["microshift"]

[customizations.firewall]
ports = ["22:tcp", "80:tcp", "443:tcp", "5353:udp", "6443:tcp", "30000-32767:tcp", "30000-
32767:udp"]
...
...

[[containers]] 3
source = "quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:f41e79c17e8b41f1b0a5a32c3e2dd7cd15b8274554d3f1ba12b2598a347475f4"

[[containers]]
source = "quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:dbc65f1fba7d92b36cf7514cd130fe83a9bd211005ddb23a8dc479e0eea645fd"
...
…
EOF

CHAPTER 5. EMBEDDING IN A RHEL FOR EDGE IMAGE FOR OFFLINE USE

39

3

1

1

1

References for all non-optional MicroShift container images necessary for an offline
deployment.

3. Add the blueprint to the Image Builder by running the following command:

Replace <microshift_blueprint.toml> with the name of your TOML file.

Verification

1. Verify the Image Builder configuration listing only MicroShift packages by running the following
command:

Replace <microshift_blueprint> with the name of your blueprint.

Example output

2. Optional: Verify the Image Builder configuration listing all components to be installed by running
the following command:

Replace <microshift_blueprint> with the name of your blueprint.

5.5.3. Creating the RHEL for Edge image

Use the following procedure to create the ISO. The RHEL for Edge Installer image pulls the commit from
the running container and creates an installable boot ISO with a Kickstart file configured to use the
embedded rpm-ostree commit.

Prerequisites

Your build host meets the Image Builder system requirements.

You have installed and set up Image Builder and the composer-cli tool.

You have root-user access to your build host.

You have installed the podman tool.

Procedure

$ sudo composer-cli blueprints push <microshift_blueprint.toml> 1

$ sudo composer-cli blueprints depsolve <microshift_blueprint> | grep microshift 1

blueprint: microshift_blueprint v0.0.1
 microshift-greenboot-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.noarch
 microshift-networking-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.x86_64
 microshift-release-info-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.noarch
 microshift-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.x86_64
 microshift-selinux-4.15.1-202305250827.p0.g4105d3b.assembly.4.15.1.el9.noarch

$ sudo composer-cli blueprints depsolve <microshift_blueprint> 1

Red Hat build of MicroShift 4.15 Installing

40

Procedure

1. Start an ostree container image build by running the following command:

This command also returns the identification (ID) of the build for monitoring.

2. You can check the status of the build periodically by running the following command:

Example output of a running build

Example output of a completed build

NOTE

You can use the watch command to monitor your build if you are familiar with
how to start and stop it.

3. Download the container image using the ID and get the image ready for use by running the
following command:

4. Change the ownership of the downloaded container image to the current user by running the
following command:

5. Add read permissions for the current user to the image by running the following command:

6. Bootstrap a server on port 8085 for the ostree container image to be consumed by the ISO
build by completing the following steps:

a. Get the IMAGEID variable result by running the following command:

$ BUILDID=$(sudo composer-cli compose start-ostree --ref "rhel/9/$(uname -m)/edge"
minimal-microshift edge-container | awk '{print $2}')

$ sudo composer-cli compose status

ID Status Time Blueprint Version Type
Size
cc3377ec-4643-4483-b0e7-6b0ad0ae6332 RUNNING Wed Jun 7 12:26:23 2023
minimal-microshift 0.0.1 edge-container

ID Status Time Blueprint Version Type
Size
cc3377ec-4643-4483-b0e7-6b0ad0ae6332 FINISHED Wed Jun 7 12:32:37 2023
minimal-microshift 0.0.1 edge-container

$ sudo composer-cli compose image ${BUILDID}

$ sudo chown $(whoami). ${BUILDID}-container.tar

$ sudo chmod a+r ${BUILDID}-container.tar

$ IMAGEID=$(cat < "./${BUILDID}-container.tar" | sudo podman load | grep -o -P '(?
<=sha256[@:])[a-z0-9]*')

CHAPTER 5. EMBEDDING IN A RHEL FOR EDGE IMAGE FOR OFFLINE USE

41

b. Use the IMAGEID variable result to execute the podman command step by running the
following command:

This command also returns the ID of the container saved in the IMAGEID variable for
monitoring.

7. Generate the installer blueprint file by running the following command:

5.6. ADDITIONAL RESOURCES

Pushing a container to a registry and embedding it into an image

Container registry credentials

Configuring network settings for fully disconnected hosts

Using Operator Lifecycle Manager with MicroShift

Creating custom catalogs using the oc-mirror plugin

$ sudo podman run -d --name=minimal-microshift-server -p 8085:8080 ${IMAGEID}

cat > microshift-installer.toml <<EOF
name = "microshift-installer"

description = ""
version = "0.0.0"
modules = []
groups = []
packages = []
EOF

Red Hat build of MicroShift 4.15 Installing

42

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/composing_a_customized_rhel_system_image/assembly_pushing-a-container-to-a-register-and-embedding-it-into-a-image_composing-a-customized-rhel-system-image#con_the-container-registry-credentials_assembly_pushing-a-container-to-a-register-and-embedding-it-into-a-image
https://osbuild.org/docs/on-premises/installation/container-auth
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/networking/#microshift-disconnected-network-config
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/running_applications/#microshift-operators-olm
https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/running_applications/#microshift-operators-oc-mirror

CHAPTER 6. THE GREENBOOT HEALTH CHECK FRAMEWORK
Greenboot is the generic health check framework for the systemd service on rpm-ostree systems such
as Red Hat Enterprise Linux for Edge (RHEL for Edge). This framework is included in MicroShift
installations with the microshift-greenboot and greenboot-default-health-checks RPM packages.

Greenboot health checks run at various times to assess system health and automate a rollback to the
last healthy state in the event of software trouble, for example:

Default health check scripts run each time the system starts.

In addition the to the default health checks, you can write, install, and configure application
health check scripts to also run every time the system starts.

Greenboot can reduce your risk of being locked out of edge devices during updates and
prevent a significant interruption of service if an update fails.

When a failure is detected, the system boots into the last known working configuration using the
rpm-ostree rollback capability. This feature is especially useful automation for edge devices
where direct serviceability is either limited or non-existent.

A MicroShift application health check script is included in the microshift-greenboot RPM. The
greenboot-default-health-checks RPM includes health check scripts verifying that DNS and ostree
services are accessible. You can create your own health check scripts for the workloads you are running.
You can write one that verifies that an application has started, for example.

NOTE

Rollback is not possible in the case of an update failure on a system not using rpm-ostree.
This is true even though health checks might run.

6.1. HOW GREENBOOT USES DIRECTORIES TO RUN SCRIPTS

Health check scripts run from four /etc/greenboot directories. These scripts run in alphabetical order.
Keep this in mind when you configure the scripts for your workloads.

When the system starts, Greenboot runs the scripts in the required.d and wanted.d directories.
Depending on the outcome of those scripts, Greenboot continues the startup or attempts a rollback as
follows:

1. System as expected: When all of the scripts in the required.d directory are successfully run,
Greenboot runs any scripts present in the /etc/greenboot/green.d directory.

2. System trouble: If any of the scripts in the required.d directory fail, Greenboot runs any
prerollback scripts present in the red.d directory, then restarts the system.

NOTE

Greenboot redirects script and health check output to the system log. When you are
logged in, a daily message provides the overall system health output.

6.1.1. Greenboot directories details

Returning a nonzero exit code from any script means that script has failed. Greenboot restarts the
system a few times to retry the scripts before attempting to roll back to the previous version.

CHAPTER 6. THE GREENBOOT HEALTH CHECK FRAMEWORK

43

/etc/greenboot/check/required.d contains the health checks that must not fail.

If the scripts fail, Greenboot retries them three times by default. You can configure the
number of retries in the /etc/greenboot/greenboot.conf file by setting the
GREENBOOT_MAX_BOOTS parameter to the desired number of retries.

After all retries fail, Greenboot automatically initiates a rollback if one is available. If a
rollback is not available, the system log output shows that manual intervention is required.

The 40_microshift_running_check.sh health check script for MicroShift is installed into
this directory.

/etc/greenboot/check/wanted.d contains health scripts that are allowed to fail without causing
the system to be rolled back.

If any of these scripts fail, Greenboot logs the failure but does not initiate a rollback.

/etc/greenboot/green.d contains scripts that run after Greenboot has declared the start
successful.

/etc/greenboot/red.d contains scripts that run after Greenboot has declared the startup as
failed, including the 40_microshift_pre_rollback.sh prerollback script. This script is executed
right before a system rollback. The script performs MicroShift pod and OVN-Kubernetes
cleanup to avoid potential conflicts after the system is rolled back to a previous version.

6.2. THE MICROSHIFT HEALTH CHECK SCRIPT

The 40_microshift_running_check.sh health check script only performs validation of core MicroShift
services. Install your customized workload health check scripts in the Greenboot directories to ensure
successful application operations after system updates. Scripts run in alphabetical order.

MicroShift health checks are listed in the following table:

Table 6.1. Validation statuses and outcome for MicroShift

Validation Pass Fail

Check that the script runs with
root permissions

Next exit 0

Check that the
microshift.service is enabled

Next exit 0

Wait for the microshift.service
to be active (!failed)

Next exit 1

Wait for Kubernetes API health
endpoints to be working and
receiving traffic

Next exit 1

Wait for any pod to start Next exit 1

For each core namespace, wait for
images to be pulled

Next exit 1

Red Hat build of MicroShift 4.15 Installing

44

For each core namespace, wait for
pods to be ready

Next exit 1

For each core namespace, check if
pods are not restarting

exit 0 exit 1

Validation Pass Fail

6.2.1. Validation wait period

The wait period in each validation is five minutes by default. After the wait period, if the validation has
not succeeded, it is declared a failure. This wait period is incrementally increased by the base wait period
after each boot in the verification loop.

You can override the base-time wait period by setting the
MICROSHIFT_WAIT_TIMEOUT_SEC environment variable in the
/etc/greenboot/greenboot.conf configuration file. For example, you can change the wait time
to three minutes by resetting the value to 180 seconds, such as
MICROSHIFT_WAIT_TIMEOUT_SEC=180.

6.3. ENABLING SYSTEMD JOURNAL SERVICE DATA PERSISTENCY

The default configuration of the systemd journal service stores the data in the volatile /run/log/journal
directory. To view system logs across system starts and restarts, you must enable log persistence and
set limits on the maximal journal data size.

Procedure

1. Make the directory by running the following command:

2. Create the configuration file by running the following command:

3. Edit the configuration file values for your size requirements.

Additional resources

Auto applying manifests

6.4. UPDATES AND THIRD-PARTY WORKLOADS

$ sudo mkdir -p /etc/systemd/journald.conf.d

cat <<EOF | sudo tee /etc/systemd/journald.conf.d/microshift.conf &>/dev/null
[Journal]
Storage=persistent
SystemMaxUse=1G
RuntimeMaxUse=1G
EOF

CHAPTER 6. THE GREENBOOT HEALTH CHECK FRAMEWORK

45

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/running_applications/#microshift-manifests-example_applications-microshift

Health checks are especially useful after an update. You can examine the output of Greenboot health
checks and determine whether the update was declared valid. This health check can help you determine
if the system is working properly.

Health check scripts for updates are installed into the /etc/greenboot/check/required.d directory and
are automatically executed during each system start. Exiting scripts with a nonzero status means the
system start is declared as failed.

IMPORTANT

Wait until after an update is declared valid before starting third-party workloads. If a
rollback is performed after workloads start, you can lose data. Some third-party
workloads create or update data on a device before an update is complete. Upon rollback,
the file system reverts to its state before the update.

6.5. CHECKING THE RESULTS OF AN UPDATE

After a successful start, Greenboot sets the variable boot_success= to 1 in GRUB. You can view the
overall status of system health checks after an update in the system log by using the following
procedure.

Procedure

To access the overall status of system health checks, run the following command:

Example output for a successful system start

6.6. ACCESSING HEALTH CHECK OUTPUT IN THE SYSTEM LOG

You can manually access the output of health checks in the system log by using the following procedure.

Procedure

To access the results of a health check, run the following command:

Example output of a failed health check

$ sudo grub2-editenv - list | grep ^boot_success

boot_success=1

$ sudo journalctl -o cat -u greenboot-healthcheck.service

...

...
Running Required Health Check Scripts...
STARTED
GRUB boot variables:
boot_success=0
boot_indeterminate=0
boot_counter=2
...

Red Hat build of MicroShift 4.15 Installing

46

6.7. ACCESSING PREROLLBACK HEALTH CHECK OUTPUT IN THE
SYSTEM LOG

You can access the output of health check scripts in the system log. For example, check the results of a
prerollback script using the following procedure.

Procedure

To access the results of a prerollback script, run the following command:

Example output of a prerollback script

6.8. CHECKING UPDATES WITH A HEALTH CHECK SCRIPT

Access the output of Greenboot health check scripts in the system log after an update by using the
following procedure.

Procedure

...
Waiting 300s for MicroShift service to be active and not failed
FAILURE
...
...

$ sudo journalctl -o cat -u redboot-task-runner.service

...

...
Running Red Scripts...
STARTED
GRUB boot variables:
boot_success=0
boot_indeterminate=0
boot_counter=0
The ostree status:
* rhel c0baa75d9b585f3dd989a9cf05f647eb7ca27ee0dbd4b94fe8c93ed3a4b9e4a5.0
 Version: 9.1
 origin: <unknown origin type>
 rhel 6869c1347b0e0ba1bbf0be750cdf32da5138a1fcbc5a4c6325ab9eb647b64663.0 (rollback)
 Version: 9.1
 origin refspec: edge:rhel/9/x86_64/edge
System rollback imminent - preparing MicroShift for a clean start
Stopping MicroShift services
Removing MicroShift pods
Killing conmon, pause and OVN processes
Removing OVN configuration
Finished greenboot Failure Scripts Runner.
Cleanup succeeded
Script '40_microshift_pre_rollback.sh' SUCCESS
FINISHED
redboot-task-runner.service: Deactivated successfully.

CHAPTER 6. THE GREENBOOT HEALTH CHECK FRAMEWORK

47

To access the result of update checks, run the following command:

Example output for a successful update

If your command returns boot_success=0, either the Greenboot health check is still running, or the
update is a failure.

6.9. ADDITIONAL RESOURCES

Greenboot workload health check scripts

$ sudo grub2-editenv - list | grep ^boot_success

boot_success=1

Red Hat build of MicroShift 4.15 Installing

48

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/running_applications/#microshift-greenboot-workload-scripts

CHAPTER 7. TROUBLESHOOTING INSTALLATION ISSUES
To troubleshoot a failed MicroShift installation, you can run an sos report. Use the sos report command
to generate a detailed report that shows all of the enabled plugins and data from the different
components and applications in a system.

7.1. GATHERING DATA FROM AN SOS REPORT

Prerequisites

You must have the sos package installed.

Procedure

1. Log into the failing host as a root user.

2. Perform the debug report creation procedure by running the following command:

Example output

$ microshift-sos-report

sosreport (version 4.5.1)

This command will collect diagnostic and configuration information from
this Red Hat Enterprise Linux system and installed applications.

An archive containing the collected information will be generated in
/var/tmp/sos.o0sznf_8 and may be provided to a Red Hat support
representative.

Any information provided to Red Hat will be treated in accordance with
the published support policies at:

 Distribution Website : https://www.redhat.com/
 Commercial Support : https://www.access.redhat.com/

The generated archive may contain data considered sensitive and its
content should be reviewed by the originating organization before being
passed to any third party.

No changes will be made to system configuration.

 Setting up archive ...
 Setting up plugins ...
 Running plugins. Please wait ...

 Starting 1/2 microshift [Running: microshift]
 Starting 2/2 microshift_ovn [Running: microshift microshift_ovn]
 Finishing plugins [Running: microshift]

 Finished running plugins

CHAPTER 7. TROUBLESHOOTING INSTALLATION ISSUES

49

7.2. ADDITIONAL RESOURCES

About MicroShift sos reports

Generating an sos report for technical support

Found 1 total reports to obfuscate, processing up to 4 concurrently

sosreport-microshift-rhel9-2023-03-31-axjbyxw : Beginning obfuscation...
sosreport-microshift-rhel9-2023-03-31-axjbyxw : Obfuscation completed

Successfully obfuscated 1 report(s)

Creating compressed archive...

A mapping of obfuscated elements is available at
 /var/tmp/sosreport-microshift-rhel9-2023-03-31-axjbyxw-private_map

Your sosreport has been generated and saved in:
 /var/tmp/sosreport-microshift-rhel9-2023-03-31-axjbyxw-obfuscated.tar.xz

 Size 444.14KiB
 Owner root
 sha256 922e5ff2db25014585b7c6c749d2c44c8492756d619df5e9838ce863f83d4269

Please send this file to your support representative.

Red Hat build of MicroShift 4.15 Installing

50

https://access.redhat.com/documentation/en-us/red_hat_build_of_microshift/4.15/html-single/support/#microshift-sos-report
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/getting_the_most_from_your_support_experience/generating-an-sos-report-for-technical-support_getting-the-most-from-your-support-experience

	Table of Contents
	CHAPTER 1. INSTALLING FROM AN RPM PACKAGE
	1.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT
	1.2. COMPATIBILITY TABLE
	1.3. BEFORE INSTALLING MICROSHIFT FROM AN RPM PACKAGE
	1.3.1. Configuring volume groups
	1.3.2. Prepare for FIPS mode

	1.4. PREPARING TO INSTALL MICROSHIFT FROM AN RPM PACKAGE
	1.5. INSTALLING RED HAT BUILD OF MICROSHIFT FROM AN RPM PACKAGE
	1.5.1. Installing the Operator Lifecycle Manager (OLM) from an RPM package
	1.5.2. Installing the GitOps Argo CD manifests from an RPM package

	1.6. STARTING THE MICROSHIFT SERVICE
	1.7. STOPPING THE MICROSHIFT SERVICE
	1.8. HOW TO ACCESS THE MICROSHIFT CLUSTER
	1.8.1. Accessing the MicroShift cluster locally
	1.8.2. Opening the firewall for remote access to the MicroShift cluster
	1.8.3. Accessing the MicroShift cluster remotely

	CHAPTER 2. USING FIPS MODE WITH MICROSHIFT
	2.1. FIPS MODE WITH RHEL RPM-BASED INSTALLATIONS
	2.1.1. Limitations
	2.1.2. Installing RHEL in FIPS mode

	2.2. ADDITIONAL RESOURCES

	CHAPTER 3. MIRRORING CONTAINER IMAGES FOR DISCONNECTED INSTALLATIONS
	3.1. MIRROR CONTAINER IMAGES INTO AN EXISTING REGISTRY
	3.2. GETTING THE MIRROR REGISTRY CONTAINER IMAGE LIST
	3.3. CONFIGURING MIRRORING PREREQUISITES
	3.3.1. Example mirror registry pull secret entry

	3.4. DOWNLOADING CONTAINER IMAGES
	3.5. UPLOADING CONTAINER IMAGES TO A MIRROR REGISTRY
	3.6. CONFIGURING HOSTS FOR MIRROR REGISTRY ACCESS

	CHAPTER 4. EMBEDDING IN A RHEL FOR EDGE IMAGE
	4.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT
	4.2. COMPATIBILITY TABLE
	4.3. PREPARING FOR IMAGE BUILDING
	4.4. ADDING MICROSHIFT REPOSITORIES TO IMAGE BUILDER
	4.5. ADDING THE MICROSHIFT SERVICE TO A BLUEPRINT
	4.5.1. Adding the Operator Lifecycle Manager (OLM) service to a blueprint

	4.6. ADDING A CERTIFICATE AUTHORITY BUNDLE
	4.6.1. Adding a certificate authority bundle to an rpm-ostree image

	4.7. CREATING THE RHEL FOR EDGE IMAGE
	4.8. ADD THE BLUEPRINT TO IMAGE BUILDER AND BUILD THE ISO
	4.9. DOWNLOAD THE ISO AND PREPARE IT FOR USE
	4.10. PROVISIONING A MACHINE FOR MICROSHIFT
	4.11. HOW TO ACCESS THE MICROSHIFT CLUSTER
	4.11.1. Accessing the MicroShift cluster locally
	4.11.2. Opening the firewall for remote access to the MicroShift cluster
	4.11.3. Accessing the MicroShift cluster remotely

	CHAPTER 5. EMBEDDING IN A RHEL FOR EDGE IMAGE FOR OFFLINE USE
	5.1. SYSTEM REQUIREMENTS FOR INSTALLING MICROSHIFT
	5.2. COMPATIBILITY TABLE
	5.3. EMBEDDING MICROSHIFT CONTAINERS FOR OFFLINE DEPLOYMENTS
	5.4. UPDATING OSBUILDER WORKER CONFIGURATION TO PREPARE FOR IMAGE BUILDING
	5.5. BUILD AND USE THE RPM-OSTREE IMAGE FOR OFFLINE DEPLOYMENTS
	5.5.1. Additional prerequisites for offline deployments
	5.5.2. Adding the MicroShift service to a blueprint
	5.5.3. Creating the RHEL for Edge image

	5.6. ADDITIONAL RESOURCES

	CHAPTER 6. THE GREENBOOT HEALTH CHECK FRAMEWORK
	6.1. HOW GREENBOOT USES DIRECTORIES TO RUN SCRIPTS
	6.1.1. Greenboot directories details

	6.2. THE MICROSHIFT HEALTH CHECK SCRIPT
	6.2.1. Validation wait period

	6.3. ENABLING SYSTEMD JOURNAL SERVICE DATA PERSISTENCY
	6.4. UPDATES AND THIRD-PARTY WORKLOADS
	6.5. CHECKING THE RESULTS OF AN UPDATE
	6.6. ACCESSING HEALTH CHECK OUTPUT IN THE SYSTEM LOG
	6.7. ACCESSING PREROLLBACK HEALTH CHECK OUTPUT IN THE SYSTEM LOG
	6.8. CHECKING UPDATES WITH A HEALTH CHECK SCRIPT
	6.9. ADDITIONAL RESOURCES

	CHAPTER 7. TROUBLESHOOTING INSTALLATION ISSUES
	7.1. GATHERING DATA FROM AN SOS REPORT
	7.2. ADDITIONAL RESOURCES

