
Red Hat AMQ 7.3

Using AMQ Streams on OpenShift Container
Platform

For Use with AMQ Streams 1.2

Last Updated: 2019-07-05

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

For Use with AMQ Streams 1.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install, configure, and manage Red Hat AMQ Streams to build a large-
scale messaging network.

. .

. .

. .

Table of Contents

CHAPTER 1. OVERVIEW OF AMQ STREAMS
1.1. KAFKA KEY FEATURES
1.2. DOCUMENT CONVENTIONS

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS
2.1. INSTALLING AMQ STREAMS AND DEPLOYING COMPONENTS
2.2. CUSTOM RESOURCES

2.2.1. AMQ Streams custom resource example
2.2.2. AMQ Streams custom resource status

2.3. CLUSTER OPERATOR
2.3.1. Overview of the Cluster Operator component
2.3.2. Deploying the Cluster Operator to OpenShift
2.3.3. Deploying the Cluster Operator to watch multiple namespaces
2.3.4. Deploying the Cluster Operator to watch all namespaces

2.4. KAFKA CLUSTER
2.4.1. Deploying the Kafka cluster to OpenShift

2.5. KAFKA CONNECT
2.5.1. Deploying Kafka Connect to your OpenShift cluster
2.5.2. Extending Kafka Connect with connector plug-ins

2.5.2.1. Creating a Docker image from the Kafka Connect base image
2.5.2.2. Creating a container image using OpenShift builds and Source-to-Image

2.6. KAFKA MIRROR MAKER
2.6.1. Deploying Kafka Mirror Maker to OpenShift

2.7. KAFKA BRIDGE
2.7.1. Deploying Kafka Bridge to your OpenShift cluster

2.8. DEPLOYING EXAMPLE CLIENTS
2.9. TOPIC OPERATOR

2.9.1. Overview of the Topic Operator component
2.9.2. Deploying the Topic Operator using the Cluster Operator

2.10. USER OPERATOR
2.10.1. Overview of the User Operator component
2.10.2. Deploying the User Operator using the Cluster Operator

2.11. STRIMZI ADMINISTRATORS
2.11.1. Designating Strimzi Administrators

2.12. CONTAINER IMAGES

CHAPTER 3. DEPLOYMENT CONFIGURATION
3.1. KAFKA CLUSTER CONFIGURATION

3.1.1. Data storage considerations
3.1.1.1. Apache Kafka and Zookeeper storage
3.1.1.2. File systems

3.1.2. Kafka and Zookeeper storage types
3.1.2.1. Ephemeral storage

3.1.2.1.1. Log directories
3.1.2.2. Persistent storage

3.1.2.2.1. Storage class overrides
3.1.2.2.2. Persistent Volume Claim naming
3.1.2.2.3. Log directories

3.1.2.3. Resizing persistent volumes
3.1.2.4. JBOD storage overview

3.1.2.4.1. JBOD configuration

15
15
16

17
17
17
18

20
21
21
22
23
24
25
25
26
27
27
27
28
29
30
30
30
31
31
31
32
33
33
34
34
34
35

37
37
37
37
37
38
38
39
39
40
41
41

42
43
43

Table of Contents

1

3.1.2.4.2. JBOD and Persistent Volume Claims
3.1.2.4.3. Log directories

3.1.2.5. Adding volumes to JBOD storage
3.1.2.6. Removing volumes from JBOD storage

3.1.3. Kafka broker replicas
3.1.3.1. Configuring the number of broker nodes

3.1.4. Kafka broker configuration
3.1.4.1. Kafka broker configuration
3.1.4.2. Configuring Kafka brokers

3.1.5. Kafka broker listeners
3.1.5.1. Mutual TLS authentication for clients

3.1.5.1.1. Mutual TLS authentication
3.1.5.1.2. When to use mutual TLS authentication for clients

3.1.5.2. SCRAM-SHA authentication
3.1.5.2.1. Supported SCRAM credentials
3.1.5.2.2. When to use SCRAM-SHA authentication for clients

3.1.5.3. Kafka listeners
3.1.5.3.1. External listener

3.1.5.3.1.1. Exposing Kafka using OpenShift Routes
3.1.5.3.1.2. Exposing Kafka using loadbalancers
3.1.5.3.1.3. Exposing Kafka using node ports
3.1.5.3.1.4. Customizing advertised addresses on external listeners
3.1.5.3.1.5. Customizing DNS names of external listeners

3.1.5.3.2. Listener authentication
3.1.5.3.3. Network policies

3.1.5.4. Configuring Kafka listeners
3.1.5.5. Accessing Kafka using OpenShift routes
3.1.5.6. Accessing Kafka using loadbalancers
3.1.5.7. Accessing Kafka using node ports
3.1.5.8. Restricting access to Kafka listeners using networkPolicyPeers

3.1.6. Authentication and Authorization
3.1.6.1. Authentication

3.1.6.1.1. TLS client authentication
3.1.6.2. Configuring authentication in Kafka brokers
3.1.6.3. Authorization

3.1.6.3.1. Simple authorization
3.1.6.4. Configuring authorization in Kafka brokers

3.1.7. Zookeeper replicas
3.1.7.1. Number of Zookeeper nodes
3.1.7.2. Changing the number of Zookeeper replicas

3.1.8. Zookeeper configuration
3.1.8.1. Zookeeper configuration
3.1.8.2. Configuring Zookeeper

3.1.9. Zookeeper connection
3.1.9.1. Connecting to Zookeeper from a terminal

3.1.10. Entity Operator
3.1.10.1. Configuration

3.1.10.1.1. Topic Operator
3.1.10.1.2. User Operator

3.1.10.2. Configuring Entity Operator
3.1.11. CPU and memory resources

3.1.11.1. Resource limits and requests
3.1.11.1.1. Resource requests

43
43
44
45
46
46
47
47
49
49
50
50
50
50
50
51
51
51
51
52
52
53
54
55
56
56
57
58
59
61
61
61

62
62
63
63
63
64
64
65
65
66
67
67
68
68
68
69
70
71
72
72
72

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

2

3.1.11.1.2. Resource limits
3.1.11.1.3. Supported CPU formats
3.1.11.1.4. Supported memory formats

3.1.11.2. Configuring resource requests and limits
3.1.12. Logging

3.1.12.1. Kafka loggers
3.1.12.2. Specifying inline logging
3.1.12.3. Specifying an external ConfigMap for logging

3.1.13. Kafka rack awareness
3.1.13.1. Configuring rack awareness in Kafka brokers

3.1.14. Healthchecks
3.1.14.1. Healthcheck configurations
3.1.14.2. Configuring healthchecks

3.1.15. Prometheus metrics
3.1.15.1. Metrics configuration
3.1.15.2. Configuring Prometheus metrics

3.1.16. JVM Options
3.1.16.1. JVM configuration

3.1.16.1.1. Garbage collector logging
3.1.16.2. Configuring JVM options

3.1.17. Container images
3.1.17.1. Container image configurations

3.1.17.1.1. Configuring the Kafka.spec.kafka.image property
3.1.17.1.2. Configuring the image property in other resources

3.1.17.2. Configuring container images
3.1.18. TLS sidecar

3.1.18.1. TLS sidecar configuration
3.1.18.2. Configuring TLS sidecar

3.1.19. Configuring pod scheduling
3.1.19.1. Scheduling pods based on other applications

3.1.19.1.1. Avoid critical applications to share the node
3.1.19.1.2. Affinity
3.1.19.1.3. Configuring pod anti-affinity in Kafka components

3.1.19.2. Scheduling pods to specific nodes
3.1.19.2.1. Node scheduling
3.1.19.2.2. Affinity
3.1.19.2.3. Configuring node affinity in Kafka components

3.1.19.3. Using dedicated nodes
3.1.19.3.1. Dedicated nodes
3.1.19.3.2. Affinity
3.1.19.3.3. Tolerations
3.1.19.3.4. Setting up dedicated nodes and scheduling pods on them

3.1.20. Performing a rolling update of a Kafka cluster
3.1.21. Performing a rolling update of a Zookeeper cluster
3.1.22. Scaling clusters

3.1.22.1. Scaling Kafka clusters
3.1.22.1.1. Adding brokers to a cluster
3.1.22.1.2. Removing brokers from a cluster

3.1.22.2. Partition reassignment
3.1.22.2.1. Reassignment JSON file
3.1.22.2.2. Reassigning partitions between JBOD volumes

3.1.22.3. Generating reassignment JSON files
3.1.22.4. Creating reassignment JSON files manually

73
73
74
74
75
75
76
77
77
77
78
79
79
80
80
81

82
82
84
84
85
85
86
86
88
88
89
90
91
91
91
91
91

92
92
92
93
94
94
94
94
95
96
96
97
97
97
97
98
98
99

100
101

Table of Contents

3

3.1.22.5. Reassignment throttles
3.1.22.6. Scaling up a Kafka cluster
3.1.22.7. Scaling down a Kafka cluster

3.1.23. Deleting Kafka nodes manually
3.1.24. Deleting Zookeeper nodes manually
3.1.25. Maintenance time windows for rolling updates

3.1.25.1. Maintenance time windows overview
3.1.25.2. Maintenance time window definition
3.1.25.3. Configuring a maintenance time window

3.1.26. List of resources created as part of Kafka cluster
3.2. KAFKA CONNECT CLUSTER CONFIGURATION

3.2.1. Replicas
3.2.1.1. Configuring the number of nodes

3.2.2. Bootstrap servers
3.2.2.1. Configuring bootstrap servers

3.2.3. Connecting to Kafka brokers using TLS
3.2.3.1. TLS support in Kafka Connect
3.2.3.2. Configuring TLS in Kafka Connect

3.2.4. Connecting to Kafka brokers with Authentication
3.2.4.1. Authentication support in Kafka Connect

3.2.4.1.1. TLS Client Authentication
3.2.4.1.2. SASL based SCRAM-SHA-512 authentication
3.2.4.1.3. SASL based PLAIN authentication

3.2.4.2. Configuring TLS client authentication in Kafka Connect
3.2.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Connect

3.2.5. Kafka Connect configuration
3.2.5.1. Kafka Connect configuration
3.2.5.2. Configuring Kafka Connect

3.2.6. CPU and memory resources
3.2.6.1. Resource limits and requests

3.2.6.1.1. Resource requests
3.2.6.1.2. Resource limits
3.2.6.1.3. Supported CPU formats
3.2.6.1.4. Supported memory formats

3.2.6.2. Configuring resource requests and limits
3.2.7. Logging

3.2.7.1. Kafka Connect loggers
3.2.7.2. Specifying inline logging
3.2.7.3. Specifying an external ConfigMap for logging

3.2.8. Healthchecks
3.2.8.1. Healthcheck configurations
3.2.8.2. Configuring healthchecks

3.2.9. Prometheus metrics
3.2.9.1. Metrics configuration
3.2.9.2. Configuring Prometheus metrics

3.2.10. JVM Options
3.2.10.1. JVM configuration

3.2.10.1.1. Garbage collector logging
3.2.10.2. Configuring JVM options

3.2.11. Container images
3.2.11.1. Container image configurations

3.2.11.1.1. Configuring the Kafka.spec.kafka.image property
3.2.11.1.2. Configuring the image property in other resources

101
101

103
105
106
106
107
107
107
108
110
110
111
111
111

112
112
113
114
114
114
114
115
116
117
118
118
119

120
120
121
121
122
122
123
123
124
124
124
125
125
126
127
127
128
128
128
131
131
132
132
132
133

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

4

3.2.11.2. Configuring container images
3.2.12. Configuring pod scheduling

3.2.12.1. Scheduling pods based on other applications
3.2.12.1.1. Avoid critical applications to share the node
3.2.12.1.2. Affinity
3.2.12.1.3. Configuring pod anti-affinity in Kafka components

3.2.12.2. Scheduling pods to specific nodes
3.2.12.2.1. Node scheduling
3.2.12.2.2. Affinity
3.2.12.2.3. Configuring node affinity in Kafka components

3.2.12.3. Using dedicated nodes
3.2.12.3.1. Dedicated nodes
3.2.12.3.2. Affinity
3.2.12.3.3. Tolerations
3.2.12.3.4. Setting up dedicated nodes and scheduling pods on them

3.2.13. Using external configuration and secrets
3.2.13.1. Storing connector configurations externally

3.2.13.1.1. External configuration as environment variables
3.2.13.1.2. External configuration as volumes

3.2.13.2. Mounting Secrets as environment variables
3.2.13.3. Mounting Secrets as volumes

3.2.14. List of resources created as part of Kafka Connect cluster
3.3. KAFKA CONNECT CLUSTER WITH SOURCE2IMAGE SUPPORT

3.3.1. Replicas
3.3.1.1. Configuring the number of nodes

3.3.2. Bootstrap servers
3.3.2.1. Configuring bootstrap servers

3.3.3. Connecting to Kafka brokers using TLS
3.3.3.1. TLS support in Kafka Connect
3.3.3.2. Configuring TLS in Kafka Connect

3.3.4. Connecting to Kafka brokers with Authentication
3.3.4.1. Authentication support in Kafka Connect

3.3.4.1.1. TLS Client Authentication
3.3.4.1.2. SASL based SCRAM-SHA-512 authentication
3.3.4.1.3. SASL based PLAIN authentication

3.3.4.2. Configuring TLS client authentication in Kafka Connect
3.3.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Connect

3.3.5. Kafka Connect configuration
3.3.5.1. Kafka Connect configuration
3.3.5.2. Configuring Kafka Connect

3.3.6. CPU and memory resources
3.3.6.1. Resource limits and requests

3.3.6.1.1. Resource requests
3.3.6.1.2. Resource limits
3.3.6.1.3. Supported CPU formats
3.3.6.1.4. Supported memory formats

3.3.6.2. Configuring resource requests and limits
3.3.7. Logging

3.3.7.1. Kafka Connect with Source2Image loggers
3.3.7.2. Specifying inline logging
3.3.7.3. Specifying an external ConfigMap for logging

3.3.8. Healthchecks
3.3.8.1. Healthcheck configurations

134
135
135
135
135
136
136
137
137
137
138
138
138
139
139
140
140
140
141

142
143
144
145
145
145
146
146
146
146
147
148
148
148
149
150
150
151
152
152
154
155
155
155
156
156
157
157
158
158
158
159
159
159

Table of Contents

5

3.3.8.2. Configuring healthchecks
3.3.9. Prometheus metrics

3.3.9.1. Metrics configuration
3.3.9.2. Configuring Prometheus metrics

3.3.10. JVM Options
3.3.10.1. JVM configuration

3.3.10.1.1. Garbage collector logging
3.3.10.2. Configuring JVM options

3.3.11. Container images
3.3.11.1. Container image configurations

3.3.11.1.1. Configuring the Kafka.spec.kafka.image property
3.3.11.1.2. Configuring the image property in other resources

3.3.11.2. Configuring container images
3.3.12. Configuring pod scheduling

3.3.12.1. Scheduling pods based on other applications
3.3.12.1.1. Avoid critical applications to share the node
3.3.12.1.2. Affinity
3.3.12.1.3. Configuring pod anti-affinity in Kafka components

3.3.12.2. Scheduling pods to specific nodes
3.3.12.2.1. Node scheduling
3.3.12.2.2. Affinity
3.3.12.2.3. Configuring node affinity in Kafka components

3.3.12.3. Using dedicated nodes
3.3.12.3.1. Dedicated nodes
3.3.12.3.2. Affinity
3.3.12.3.3. Tolerations
3.3.12.3.4. Setting up dedicated nodes and scheduling pods on them

3.3.13. Using external configuration and secrets
3.3.13.1. Storing connector configurations externally

3.3.13.1.1. External configuration as environment variables
3.3.13.1.2. External configuration as volumes

3.3.13.2. Mounting Secrets as environment variables
3.3.13.3. Mounting Secrets as volumes

3.3.14. List of resources created as part of Kafka Connect cluster with Source2Image support
3.3.15. Creating a container image using OpenShift builds and Source-to-Image

3.4. KAFKA MIRROR MAKER CONFIGURATION
3.4.1. Replicas

3.4.1.1. Configuring the number of replicas
3.4.2. Bootstrap servers

3.4.2.1. Configuring bootstrap servers
3.4.3. Whitelist

3.4.3.1. Configuring the topics whitelist
3.4.4. Consumer group identifier

3.4.4.1. Configuring the consumer group identifier
3.4.5. Number of consumer streams

3.4.5.1. Configuring the number of consumer streams
3.4.6. Connecting to Kafka brokers using TLS

3.4.6.1. TLS support in Kafka Mirror Maker
3.4.6.2. Configuring TLS encryption in Kafka Mirror Maker

3.4.7. Connecting to Kafka brokers with Authentication
3.4.7.1. Authentication support in Kafka Mirror Maker

3.4.7.1.1. TLS Client Authentication
3.4.7.1.2. SCRAM-SHA-512 authentication

160
161
161

162
163
163
165
165
166
166
167
167
169
169
170
170
170
170
171
171
171
172
172
172
173
173
173
175
175
175
176
176
178
179
179
181
181
181

182
182
182
183
183
183
184
184
185
185
186
187
187
187
188

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

6

3.4.7.1.3. PLAIN authentication
3.4.7.2. Configuring TLS client authentication in Kafka Mirror Maker
3.4.7.3. Configuring SCRAM-SHA-512 authentication in Kafka Mirror Maker

3.4.8. Kafka Mirror Maker configuration
3.4.8.1. Kafka Mirror Maker configuration
3.4.8.2. Configuring Kafka Mirror Maker

3.4.9. CPU and memory resources
3.4.9.1. Resource limits and requests

3.4.9.1.1. Resource requests
3.4.9.1.2. Resource limits
3.4.9.1.3. Supported CPU formats
3.4.9.1.4. Supported memory formats

3.4.9.2. Configuring resource requests and limits
3.4.10. Logging

3.4.10.1. Kafka Mirror Maker loggers
3.4.10.2. Specifying inline logging
3.4.10.3. Specifying an external ConfigMap for logging

3.4.11. Prometheus metrics
3.4.11.1. Metrics configuration
3.4.11.2. Configuring Prometheus metrics

3.4.12. JVM Options
3.4.12.1. JVM configuration

3.4.12.1.1. Garbage collector logging
3.4.12.2. Configuring JVM options

3.4.13. Container images
3.4.13.1. Container image configurations

3.4.13.1.1. Configuring the Kafka.spec.kafka.image property
3.4.13.1.2. Configuring the image property in other resources

3.4.13.2. Configuring container images
3.4.14. Configuring pod scheduling

3.4.14.1. Scheduling pods based on other applications
3.4.14.1.1. Avoid critical applications to share the node
3.4.14.1.2. Affinity
3.4.14.1.3. Configuring pod anti-affinity in Kafka components

3.4.14.2. Scheduling pods to specific nodes
3.4.14.2.1. Node scheduling
3.4.14.2.2. Affinity
3.4.14.2.3. Configuring node affinity in Kafka components

3.4.14.3. Using dedicated nodes
3.4.14.3.1. Dedicated nodes
3.4.14.3.2. Affinity
3.4.14.3.3. Tolerations
3.4.14.3.4. Setting up dedicated nodes and scheduling pods on them

3.4.15. List of resources created as part of Kafka Mirror Maker
3.5. KAFKA BRIDGE CLUSTER CONFIGURATION

3.5.1. Replicas
3.5.1.1. Configuring the number of nodes

3.5.2. Bootstrap servers
3.5.2.1. Configuring bootstrap servers

3.5.3. Connecting to Kafka brokers using TLS
3.5.3.1. TLS support for Kafka connection to the Kafka Bridge
3.5.3.2. Configuring TLS in Kafka Bridge

3.5.4. Connecting to Kafka brokers with Authentication

189
189
190
192
192
193
193
194
194
195
195
196
196
197
197
197
198
198
198
199

200
200
202
202
203
203
204
204
206
207
207
207
207
207
208
208
208
209
210
210
210
210
211
212
212
212
213
213
213
214
214
215
215

Table of Contents

7

. .

3.5.4.1. Authentication support in Kafka Bridge
3.5.4.1.1. TLS Client Authentication
3.5.4.1.2. SCRAM-SHA-512 authentication
3.5.4.1.3. SASL-based PLAIN authentication

3.5.4.2. Configuring TLS client authentication in Kafka Bridge
3.5.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Bridge

3.5.5. Kafka Bridge configuration
3.5.5.1. Kafka Bridge Consumer configuration
3.5.5.2. Kafka Bridge Producer configuration
3.5.5.3. Kafka Bridge HTTP configuration
3.5.5.4. Configuring Kafka Bridge

3.5.6. Healthchecks
3.5.6.1. Healthcheck configurations
3.5.6.2. Configuring healthchecks

3.5.7. Container images
3.5.7.1. Container image configurations

3.5.7.1.1. Configuring the Kafka.spec.kafka.image property
3.5.7.1.2. Configuring the image property in other resources

3.5.7.2. Configuring container images
3.5.8. Configuring pod scheduling

3.5.8.1. Scheduling pods based on other applications
3.5.8.1.1. Avoid critical applications to share the node
3.5.8.1.2. Affinity
3.5.8.1.3. Configuring pod anti-affinity in Kafka components

3.5.8.2. Scheduling pods to specific nodes
3.5.8.2.1. Node scheduling
3.5.8.2.2. Affinity
3.5.8.2.3. Configuring node affinity in Kafka components

3.5.8.3. Using dedicated nodes
3.5.8.3.1. Dedicated nodes
3.5.8.3.2. Affinity
3.5.8.3.3. Tolerations
3.5.8.3.4. Setting up dedicated nodes and scheduling pods on them

3.5.9. List of resources created as part of Kafka Bridge cluster
3.6. CUSTOMIZING DEPLOYMENTS

3.6.1. Template properties
3.6.2. Labels and Annotations
3.6.3. Customizing Pods
3.6.4. Customizing the image pull policy
3.6.5. Customizing Pod Disruption Budgets
3.6.6. Customizing deployments

CHAPTER 4. OPERATORS
4.1. CLUSTER OPERATOR

4.1.1. Overview of the Cluster Operator component
4.1.2. Deploying the Cluster Operator to OpenShift
4.1.3. Deploying the Cluster Operator to watch multiple namespaces
4.1.4. Deploying the Cluster Operator to watch all namespaces
4.1.5. Reconciliation
4.1.6. Cluster Operator Configuration
4.1.7. Role-Based Access Control (RBAC)

4.1.7.1. Provisioning Role-Based Access Control (RBAC) for the Cluster Operator
4.1.7.2. Delegated privileges

216
216
216
217
218
219
219

220
221
221
222
223
223
224
224
225
225
226
227
228
228
228
228
229
229
230
230
230
231
231
231

232
232
233
233
234
236
236
238
238
239

240
240
240
241
241
242
243
243
245
245
246

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

8

. .

. .

. .

4.1.7.3. ServiceAccount
4.1.7.4. ClusterRoles
4.1.7.5. ClusterRoleBindings

4.2. TOPIC OPERATOR
4.2.1. Overview of the Topic Operator component
4.2.2. Understanding the Topic Operator
4.2.3. Deploying the Topic Operator using the Cluster Operator
4.2.4. Configuring the Topic Operator with resource requests and limits
4.2.5. Deploying the standalone Topic Operator
4.2.6. Topic Operator environment

4.3. USER OPERATOR
4.3.1. Overview of the User Operator component
4.3.2. Deploying the User Operator using the Cluster Operator
4.3.3. Configuring the User Operator with resource requests and limits
4.3.4. Deploying the standalone User Operator

CHAPTER 5. USING THE TOPIC OPERATOR
5.1. TOPIC OPERATOR USAGE RECOMMENDATIONS
5.2. CREATING A TOPIC
5.3. CHANGING A TOPIC
5.4. DELETING A TOPIC

CHAPTER 6. USING THE USER OPERATOR
6.1. OVERVIEW OF THE USER OPERATOR COMPONENT
6.2. MUTUAL TLS AUTHENTICATION FOR CLIENTS

6.2.1. Mutual TLS authentication
6.2.2. When to use mutual TLS authentication for clients

6.3. CREATING A KAFKA USER WITH MUTUAL TLS AUTHENTICATION
6.4. SCRAM-SHA AUTHENTICATION

6.4.1. Supported SCRAM credentials
6.4.2. When to use SCRAM-SHA authentication for clients

6.5. CREATING A KAFKA USER WITH SCRAM SHA AUTHENTICATION
6.6. EDITING A KAFKA USER
6.7. DELETING A KAFKA USER
6.8. KAFKA USER RESOURCE

6.8.1. Authentication
6.8.1.1. TLS Client Authentication
6.8.1.2. SCRAM-SHA-512 Authentication

6.8.2. Authorization
6.8.2.1. Simple Authorization

6.8.3. Additional resources

CHAPTER 7. USING THE AMQ STREAMS KAFKA BRIDGE
7.1. OVERVIEW OF THE AMQ STREAMS KAFKA BRIDGE
7.2. SUPPORTED CLIENTS FOR THE AMQ STREAMS KAFKA BRIDGE
7.3. SECURING THE AMQ STREAMS KAFKA BRIDGE
7.4. ACCESSING THE AMQ STREAMS KAFKA BRIDGE FROM OUTSIDE OF OPENSHIFT
7.5. REQUESTS TO THE AMQ STREAMS KAFKA BRIDGE

7.5.1. Data formats and headers
7.5.1.1. Content Type headers
7.5.1.2. Embedded data format
7.5.1.3. Accept headers

7.6. AMQ STREAMS KAFKA BRIDGE API RESOURCES

246
247
254
255
255
256
257
258
258
259
260
260
261
261
262

264
264
264
265
266

268
268
268
268
268
269
270
270
270
270
271

272
273
273
273
274
275
275
277

278
278
278
279
279
280
280
280
280
281
281

Table of Contents

9

. .

. .

. .

. .

. .

. .

. .

CHAPTER 8. SECURITY
8.1. CERTIFICATE AUTHORITIES

8.1.1. CA certificates
8.2. CERTIFICATES AND SECRETS

8.2.1. Cluster CA Secrets
8.2.2. Client CA Secrets
8.2.3. User Secrets

8.3. INSTALLING YOUR OWN CA CERTIFICATES
8.4. CERTIFICATE RENEWAL

8.4.1. Renewal process with generated CAs
8.4.2. Client applications

8.5. TLS CONNECTIONS
8.5.1. Zookeeper communication
8.5.2. Kafka interbroker communication
8.5.3. Topic and User Operators
8.5.4. Kafka Client connections

8.6. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
8.7. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA

CHAPTER 9. AMQ STREAMS AND KAFKA UPGRADES
9.1. UPGRADE PREREQUISITES
9.2. UPGRADE PROCESS
9.3. KAFKA VERSIONS
9.4. UPGRADING THE CLUSTER OPERATOR

9.4.1. Upgrading the Cluster Operator to a later version
9.5. UPGRADING KAFKA

9.5.1. Kafka version and image mappings
9.5.2. Strategies for upgrading clients
9.5.3. Upgrading Kafka brokers and client applications

9.6. DOWNGRADING KAFKA
9.6.1. Target downgrade version
9.6.2. Downgrading Kafka brokers and client applications

CHAPTER 10. AMQ STREAMS RESOURCE UPGRADES
10.1. UPGRADING KAFKA RESOURCES
10.2. UPGRADING KAFKA CONNECT RESOURCES
10.3. UPGRADING KAFKA CONNECT S2I RESOURCES
10.4. UPGRADING KAFKA MIRROR MAKER RESOURCES
10.5. UPGRADING KAFKA TOPIC RESOURCES
10.6. UPGRADING KAFKA USER RESOURCES

CHAPTER 11. UNINSTALLING AMQ STREAMS

CHAPTER 12. CHECKING THE STATUS OF A CUSTOM RESOURCE

APPENDIX A. CONFIGURABLE LOGGERS

APPENDIX B. FREQUENTLY ASKED QUESTIONS
B.1. CLUSTER OPERATOR

B.1.1. Why do I need cluster admin privileges to install AMQ Streams?
B.1.2. Why does the Cluster Operator require the ability to create ClusterRoleBindings? Is that not a security
risk?
B.1.3. Why can standard OpenShift users not create the custom resource (Kafka, KafkaTopic, and so on)?
B.1.4. Log contains warnings about failing to acquire lock
B.1.5. Hostname verification fails when connecting to NodePorts using TLS

282
282
282
282
282
283
284
284
285
286
286
286
286
287
287
287
287
288

290
290
290
290
291
291
292
293
293
295
298
298
298

301
301

304
305
306
307
307

309

310

311

312
312
312

312
313
313
313

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

10

. .APPENDIX C. CUSTOM RESOURCE API REFERENCE
C.1. KAFKA SCHEMA REFERENCE
C.2. KAFKASPEC SCHEMA REFERENCE
C.3. KAFKACLUSTERSPEC SCHEMA REFERENCE
C.4. EPHEMERALSTORAGE SCHEMA REFERENCE
C.5. PERSISTENTCLAIMSTORAGE SCHEMA REFERENCE
C.6. PERSISTENTCLAIMSTORAGEOVERRIDE SCHEMA REFERENCE
C.7. JBODSTORAGE SCHEMA REFERENCE
C.8. KAFKALISTENERS SCHEMA REFERENCE
C.9. KAFKALISTENERPLAIN SCHEMA REFERENCE
C.10. KAFKALISTENERAUTHENTICATIONTLS SCHEMA REFERENCE
C.11. KAFKALISTENERAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE
C.12. KAFKALISTENERTLS SCHEMA REFERENCE
C.13. KAFKALISTENEREXTERNALROUTE SCHEMA REFERENCE
C.14. ROUTELISTENEROVERRIDE SCHEMA REFERENCE
C.15. ROUTELISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE
C.16. ROUTELISTENERBROKEROVERRIDE SCHEMA REFERENCE
C.17. KAFKALISTENEREXTERNALLOADBALANCER SCHEMA REFERENCE
C.18. LOADBALANCERLISTENEROVERRIDE SCHEMA REFERENCE
C.19. LOADBALANCERLISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE
C.20. LOADBALANCERLISTENERBROKEROVERRIDE SCHEMA REFERENCE
C.21. KAFKALISTENEREXTERNALNODEPORT SCHEMA REFERENCE
C.22. NODEPORTLISTENEROVERRIDE SCHEMA REFERENCE
C.23. NODEPORTLISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE
C.24. NODEPORTLISTENERBROKEROVERRIDE SCHEMA REFERENCE
C.25. KAFKALISTENEREXTERNALINGRESS SCHEMA REFERENCE
C.26. INGRESSLISTENERCONFIGURATION SCHEMA REFERENCE
C.27. INGRESSLISTENERBOOTSTRAPCONFIGURATION SCHEMA REFERENCE
C.28. INGRESSLISTENERBROKERCONFIGURATION SCHEMA REFERENCE
C.29. KAFKAAUTHORIZATIONSIMPLE SCHEMA REFERENCE
C.30. RACK SCHEMA REFERENCE
C.31. PROBE SCHEMA REFERENCE
C.32. JVMOPTIONS SCHEMA REFERENCE
C.33. RESOURCEREQUIREMENTS SCHEMA REFERENCE
C.34. INLINELOGGING SCHEMA REFERENCE
C.35. EXTERNALLOGGING SCHEMA REFERENCE
C.36. TLSSIDECAR SCHEMA REFERENCE
C.37. KAFKACLUSTERTEMPLATE SCHEMA REFERENCE
C.38. RESOURCETEMPLATE SCHEMA REFERENCE
C.39. METADATATEMPLATE SCHEMA REFERENCE
C.40. PODTEMPLATE SCHEMA REFERENCE
C.41. PODDISRUPTIONBUDGETTEMPLATE SCHEMA REFERENCE
C.42. ZOOKEEPERCLUSTERSPEC SCHEMA REFERENCE
C.43. ZOOKEEPERCLUSTERTEMPLATE SCHEMA REFERENCE
C.44. TOPICOPERATORSPEC SCHEMA REFERENCE
C.45. ENTITYOPERATORJVMOPTIONS SCHEMA REFERENCE
C.46. ENTITYOPERATORSPEC SCHEMA REFERENCE
C.47. ENTITYTOPICOPERATORSPEC SCHEMA REFERENCE
C.48. ENTITYUSEROPERATORSPEC SCHEMA REFERENCE
C.49. ENTITYOPERATORTEMPLATE SCHEMA REFERENCE
C.50. CERTIFICATEAUTHORITY SCHEMA REFERENCE
C.51. KAFKASTATUS SCHEMA REFERENCE
C.52. CONDITION SCHEMA REFERENCE

315
315
315
316
318
318
319
319

320
320
321
321
321

322
323
323
323
324
324
325
325
326
326
327
327
327
328
328
329
329
330
330
331
331
332
332
332
333
334
334
335
336
336
337
338
339
339
340
341

342
342
343
343

Table of Contents

11

. .

C.53. LISTENERSTATUS SCHEMA REFERENCE
C.54. LISTENERADDRESS SCHEMA REFERENCE
C.55. KAFKACONNECT SCHEMA REFERENCE
C.56. KAFKACONNECTSPEC SCHEMA REFERENCE
C.57. KAFKACONNECTTEMPLATE SCHEMA REFERENCE
C.58. KAFKACONNECTAUTHENTICATIONTLS SCHEMA REFERENCE
C.59. CERTANDKEYSECRETSOURCE SCHEMA REFERENCE
C.60. KAFKACONNECTAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE
C.61. PASSWORDSECRETSOURCE SCHEMA REFERENCE
C.62. KAFKACONNECTAUTHENTICATIONPLAIN SCHEMA REFERENCE
C.63. EXTERNALCONFIGURATION SCHEMA REFERENCE
C.64. EXTERNALCONFIGURATIONENV SCHEMA REFERENCE
C.65. EXTERNALCONFIGURATIONENVVARSOURCE SCHEMA REFERENCE
C.66. EXTERNALCONFIGURATIONVOLUMESOURCE SCHEMA REFERENCE
C.67. KAFKACONNECTTLS SCHEMA REFERENCE
C.68. CERTSECRETSOURCE SCHEMA REFERENCE
C.69. KAFKACONNECTS2I SCHEMA REFERENCE
C.70. KAFKACONNECTS2ISPEC SCHEMA REFERENCE
C.71. KAFKATOPIC SCHEMA REFERENCE
C.72. KAFKATOPICSPEC SCHEMA REFERENCE
C.73. KAFKAUSER SCHEMA REFERENCE
C.74. KAFKAUSERSPEC SCHEMA REFERENCE
C.75. KAFKAUSERTLSCLIENTAUTHENTICATION SCHEMA REFERENCE
C.76. KAFKAUSERSCRAMSHA512CLIENTAUTHENTICATION SCHEMA REFERENCE
C.77. KAFKAUSERAUTHORIZATIONSIMPLE SCHEMA REFERENCE
C.78. ACLRULE SCHEMA REFERENCE
C.79. ACLRULETOPICRESOURCE SCHEMA REFERENCE
C.80. ACLRULEGROUPRESOURCE SCHEMA REFERENCE
C.81. ACLRULECLUSTERRESOURCE SCHEMA REFERENCE
C.82. ACLRULETRANSACTIONALIDRESOURCE SCHEMA REFERENCE
C.83. KAFKAMIRRORMAKER SCHEMA REFERENCE
C.84. KAFKAMIRRORMAKERSPEC SCHEMA REFERENCE
C.85. KAFKAMIRRORMAKERCONSUMERSPEC SCHEMA REFERENCE
C.86. KAFKAMIRRORMAKERAUTHENTICATIONTLS SCHEMA REFERENCE
C.87. KAFKAMIRRORMAKERAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE
C.88. KAFKAMIRRORMAKERAUTHENTICATIONPLAIN SCHEMA REFERENCE
C.89. KAFKAMIRRORMAKERTLS SCHEMA REFERENCE
C.90. KAFKAMIRRORMAKERPRODUCERSPEC SCHEMA REFERENCE
C.91. KAFKAMIRRORMAKERTEMPLATE SCHEMA REFERENCE
C.92. KAFKABRIDGE SCHEMA REFERENCE
C.93. KAFKABRIDGESPEC SCHEMA REFERENCE
C.94. KAFKABRIDGETLS SCHEMA REFERENCE
C.95. KAFKABRIDGEAUTHENTICATIONTLS SCHEMA REFERENCE
C.96. KAFKABRIDGEAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE
C.97. KAFKABRIDGEAUTHENTICATIONPLAIN SCHEMA REFERENCE
C.98. KAFKABRIDGEHTTPCONFIG SCHEMA REFERENCE
C.99. KAFKABRIDGECONSUMERSPEC SCHEMA REFERENCE
C.100. KAFKABRIDGEPRODUCERSPEC SCHEMA REFERENCE
C.101. KAFKABRIDGETEMPLATE SCHEMA REFERENCE

APPENDIX D. USING YOUR SUBSCRIPTION
Accessing Your Account
Activating a Subscription

344
344
345
345
347
347
348
348
349
349
350
350
350
350
351
351
351
352
354
354
354
354
355
355
355
356
356
357
357
358
358
358
360
361
361
361

362
362
363
363
363
365
365
365
366
366
367
367
367

369
369
369

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

12

Downloading Zip and Tar Files 369

Table of Contents

13

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

14

CHAPTER 1. OVERVIEW OF AMQ STREAMS
AMQ Streams is based on Apache Kafka, a popular platform for streaming data delivery and processing.
AMQ Streams makes it easy to run Apache Kafka on OpenShift.

AMQ Streams provides three operators:

Cluster Operator

Responsible for deploying and managing Apache Kafka clusters within an OpenShift cluster.

Topic Operator

Responsible for managing Kafka topics within a Kafka cluster running within an OpenShift cluster.

User Operator

Responsible for managing Kafka users within a Kafka cluster running within an OpenShift cluster.

Operators within the AMQ Streams architecture

This guide describes how to install and use Red Hat AMQ Streams.

1.1. KAFKA KEY FEATURES

Designed for horizontal scalability

Message ordering guarantee at the partition level

CHAPTER 1. OVERVIEW OF AMQ STREAMS

15

Message rewind/replay

"Long term" storage allows the reconstruction of an application state by replaying the
messages

Combines with compacted topics to use Kafka as a key-value store

Additional resources

For more information about Apache Kafka, see the Apache Kafka website.

1.2. DOCUMENT CONVENTIONS

Replaceables

In this document, replaceable text is styled in monospace and italics.

For example, in the following code, you will want to replace my-namespace with the name of your
namespace:

sed -i 's/namespace: .*/namespace: my-namespace/' install/cluster-operator/*RoleBinding*.yaml

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

16

http://kafka.apache.org

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS
AMQ Streams works on all types of clusters, from public and private clouds to local deployments
intended for development. This guide expects that an OpenShift cluster is available and the oc
command-line tools are installed and configured to connect to the running cluster.

AMQ Streams is based on Strimzi 0.12.x. This chapter describes the procedures to deploy AMQ Streams
on OpenShift 3.11 and later.

NOTE

To run the commands in this guide, your OpenShift user must have the rights to manage
role-based access control (RBAC).

For more information about OpenShift and setting up OpenShift cluster, see OpenShift documentation.

2.1. INSTALLING AMQ STREAMS AND DEPLOYING COMPONENTS

To install AMQ Streams, download and extract the amq-streams-x.y.z-ocp-install-examples.zip file
from the AMQ Streams download site .

The folder contains several YAML files to help you deploy the components of AMQ Streams to
OpenShift, perform common operations, and configure your Kafka cluster. The YAML files are
referenced throughout this documentation.

The remainder of this chapter provides an overview of each component and instructions for deploying
the components to OpenShift using the YAML files provided.

NOTE

Although container images for AMQ Streams are available in the Red Hat Container
Catalog, we recommend that you use the YAML files provided instead.

2.2. CUSTOM RESOURCES

Custom resource definitions (CRDs) extend the Kubernetes API, providing definitions to create and
modify custom resources to an OpenShift cluster. Custom resources are created as instances of CRDs.

In AMQ Streams, CRDs introduce custom resources specific to AMQ Streams to an OpenShift cluster,
such as Kafka, Kafka Connect, Kafka Mirror Maker, and users and topics custom resources. CRDs
provide configuration instructions, defining the schemas used to instantiate and manage the AMQ
Streams-specific resources. CRDs also allow AMQ Streams resources to benefit from native OpenShift
features like CLI accessibility and configuration validation.

CRDs require a one-time installation in a cluster. Depending on the cluster setup, installation typically
requires cluster admin privileges.

NOTE

Access to manage custom resources is limited to AMQ Streams administrators .

CRDs and custom resources are defined as YAML files.

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

17

https://docs.openshift.com/container-platform/3.9/welcome/index.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=jboss.amq.streams
https://access.redhat.com/containers/#/product/RedHatAmq

A CRD defines a new kind of resource, such as kind:Kafka, within an OpenShift cluster.

The OpenShift API server allows custom resources to be created based on the kind and understands
from the CRD how to validate and store the custom resource when it is added to the OpenShift cluster.

WARNING

When CRDs are deleted, custom resources of that type are also deleted.
Additionally, the resources created by the custom resource, such as pods and
statefulsets are also deleted.

Additional resources

Extend the Kubernetes API with CustomResourceDefinitions

2.2.1. AMQ Streams custom resource example

Each AMQ Streams-specific custom resource conforms to the schema defined by the CRD for the
resource’s kind.

To understand the relationship between a CRD and a custom resource, let’s look at a sample of the CRD
for a Kafka topic.

Kafka topic CRD

apiVersion: kafka.strimzi.io/v1beta1
kind: CustomResourceDefinition
metadata: 1
 name: kafkatopics.kafka.strimzi.io
 labels:
 app: strimzi
spec: 2
 group: kafka.strimzi.io
 versions:
 v1beta1
 scope: Namespaced
 names:
 # ...
 singular: kafkatopic
 plural: kafkatopics
 shortNames:
 - kt 3
 additionalPrinterColumns: 4
 # ...
 validation: 5
 openAPIV3Schema:
 properties:
 spec:
 type: object
 properties:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

18

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

1

2

3

4

5

1

2

The metadata for the topic CRD, its name and a label to identify the CRD.

The specification for this CRD, including the group (domain) name, the plural name and the
supported schema version, which are used in the URL to access the API of the topic. The other
names are used to identify instance resources in the CLI. For example, oc get kafkatopic my-topic
or oc get kafkatopics.

The shortname can be used in CLI commands. For example, oc get kt can be used as an
abbreviation instead of oc get kafkatopic.

The information presented when using a get command on the custom resource.

openAPIV3Schema validation provides validation for the creation of topic custom resources. For
example, a topic requires at least one partition and one replica.

NOTE

You can identify the CRD YAML files supplied with the AMQ Streams installation files,
because the file names contain an index number followed by ‘Crd’.

Here is a corresponding example of a KafkaTopic custom resource.

Kafka topic custom resource

The kind and apiVersion identify the CRD of which the custom resource is an instance.

The spec shows the number of partitions and replicas for the topic as well as configuration for the
retention period for a message to remain in the topic and the segment file size for the log.

Custom resources can be applied to a cluster through the platform CLI. When the custom resource is
created, it uses the same validation as the built-in resources of the Kubernetes API.

 partitions:
 type: integer
 minimum: 1
 replicas:
 type: integer
 minimum: 1
 maximum: 32767
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic 1
metadata:
 name: my-topic
 labels:
 strimzi.io/cluster: my-cluster
spec: 2
 partitions: 1
 replicas: 1
 config:
 retention.ms: 7200000
 segment.bytes: 1073741824

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

19

1

After a KafkaTopic custom resource is created, the Topic Operator is notified and corresponding Kafka
topics are created in AMQ Streams.

2.2.2. AMQ Streams custom resource status

The status property of a AMQ Streams-specific custom resource publishes the current state of the
resource to users and tools that need the information.

Status information is useful for tracking progress related to a resource achieving its desired state, as
defined by the spec property. The status provides the time and reason the state of the resource
changed and details of events preventing or delaying the Operator from realizing the desired state.

AMQ Streams creates and maintains the status of custom resources, periodically evaluating the current
state of the custom resource and updating its status accordingly.

When performing an update on a custom resource using oc edit, for example, its status is not editable.
Moreover, changing the status would not affect the configuration of the Kafka cluster.

IMPORTANT

The status property feature for AMQ Streams-specific custom resources is still under
development and only available for Kafka resources.

Here we see the status property specified for a Kafka custom resource.

Kafka custom resource with status

Status conditions describe criteria related to the status that cannot be deduced from the existing
resource information, or are specific to the instance of a resource.

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
spec:
 # ...
status:
 conditions: 1
 - lastTransitionTime: 2019-06-02T23:46:57+0000
 status: "True"
 type: Ready 2
 listeners: 3
 - addresses:
 - host: my-cluster-kafka-bootstrap.myproject.svc
 port: 9092
 type: plain
 - addresses:
 - host: my-cluster-kafka-bootstrap.myproject.svc
 port: 9093
 type: tls
 - addresses:
 - host: 172.29.49.180
 port: 9094
 type: external
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

20

2

3

The Ready condition indicates whether the Cluster Operator currently considers the Kafka cluster
able to handle traffic.

The listeners describe the current Kafka bootstrap addresses by type.

IMPORTANT

The status for external listeners is still under development and does not provide a
specific IP address for external listeners of type nodeport.

NOTE

The Kafka bootstrap addresses listed in the status do not signify that those endpoints or
the Kafka cluster is in a ready state.

Accessing status information

You can access status information for a resource from the command line. For more information, see
Chapter 12, Checking the status of a custom resource .

2.3. CLUSTER OPERATOR

AMQ Streams uses the Cluster Operator to deploy and manage Kafka (including Zookeeper) and Kafka
Connect clusters. The Cluster Operator is deployed inside of the OpenShift cluster. To deploy a Kafka
cluster, a Kafka resource with the cluster configuration has to be created within the OpenShift cluster.
Based on what is declared inside of the Kafka resource, the Cluster Operator deploys a corresponding
Kafka cluster. For more information about the different configuration options supported by the Kafka
resource, see Section 3.1, “Kafka cluster configuration”

NOTE

AMQ Streams contains example YAML files, which make deploying a Cluster Operator
easier.

2.3.1. Overview of the Cluster Operator component

The Cluster Operator is in charge of deploying a Kafka cluster alongside a Zookeeper ensemble. As part
of the Kafka cluster, it can also deploy the topic operator which provides operator-style topic
management via KafkaTopic custom resources. The Cluster Operator is also able to deploy a Kafka
Connect cluster which connects to an existing Kafka cluster. On OpenShift such a cluster can be
deployed using the Source2Image feature, providing an easy way of including more connectors.

Example architecture for the Cluster Operator

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

21

When the Cluster Operator is up, it starts to watch for certain OpenShift resources containing the
desired Kafka, Kafka Connect, or Kafka Mirror Maker cluster configuration. By default, it watches only in
the same namespace or project where it is installed. The Cluster Operator can be configured to watch
for more OpenShift projects or Kubernetes namespaces. Cluster Operator watches the following
resources:

A Kafka resource for the Kafka cluster.

A KafkaConnect resource for the Kafka Connect cluster.

A KafkaConnectS2I resource for the Kafka Connect cluster with Source2Image support.

A KafkaMirrorMaker resource for the Kafka Mirror Maker instance.

When a new Kafka, KafkaConnect, KafkaConnectS2I, or Kafka Mirror Maker resource is created in
the OpenShift cluster, the operator gets the cluster description from the desired resource and starts
creating a new Kafka, Kafka Connect, or Kafka Mirror Maker cluster by creating the necessary other
OpenShift resources, such as StatefulSets, Services, ConfigMaps, and so on.

Every time the desired resource is updated by the user, the operator performs corresponding updates
on the OpenShift resources which make up the Kafka, Kafka Connect, or Kafka Mirror Maker cluster.
Resources are either patched or deleted and then re-created in order to make the Kafka, Kafka Connect,
or Kafka Mirror Maker cluster reflect the state of the desired cluster resource. This might cause a rolling
update which might lead to service disruption.

Finally, when the desired resource is deleted, the operator starts to undeploy the cluster and delete all
the related OpenShift resources.

2.3.2. Deploying the Cluster Operator to OpenShift

Prerequisites

A user with cluster-admin role needs to be used, for example, system:admin.

Modify the installation files according to the namespace the Cluster Operator is going to be
installed in.
On Linux, use:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

22

sed -i 's/namespace: .*/namespace: my-project/' install/cluster-operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-project/' install/cluster-operator/*RoleBinding*.yaml

Procedure

Deploy the Cluster Operator:

oc apply -f install/cluster-operator -n _my-project_
oc apply -f examples/templates/cluster-operator -n _my-project_

2.3.3. Deploying the Cluster Operator to watch multiple namespaces

Prerequisites

Edit the installation files according to the OpenShift project or Kubernetes namespace the
Cluster Operator is going to be installed in.
On Linux, use:

sed -i 's/namespace: .*/namespace: my-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-namespace/' install/cluster-
operator/*RoleBinding*.yaml

Procedure

1. Edit the file install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml and in
the environment variable STRIMZI_NAMESPACE list all the OpenShift projects or Kubernetes
namespaces where Cluster Operator should watch for resources. For example:

2. For all namespaces or projects which should be watched by the Cluster Operator, install the
RoleBindings. Replace the my-namespace or my-project with the OpenShift project or
Kubernetes namespace used in the previous step.

apiVersion: extensions/v1beta1
kind: Deployment
spec:
 template:
 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq7/amq-streams-operator:1.2.0
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: myproject,myproject2,myproject3

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

23

On OpenShift this can be done using oc apply:

3. Deploy the Cluster Operator
On OpenShift this can be done using oc apply:

2.3.4. Deploying the Cluster Operator to watch all namespaces

You can configure the Cluster Operator to watch AMQ Streams resources across all OpenShift projects
or Kubernetes namespaces in your OpenShift cluster. When running in this mode, the Cluster Operator
automatically manages clusters in any new projects or namespaces that are created.

Prerequisites

Your OpenShift cluster is running.

Procedure

1. Configure the Cluster Operator to watch all namespaces:

a. Edit the 050-Deployment-strimzi-cluster-operator.yaml file.

b. Set the value of the STRIMZI_NAMESPACE environment variable to *.

2. Create ClusterRoleBindings that grant cluster-wide access to all OpenShift projects or
Kubernetes namespaces to the Cluster Operator.
On OpenShift, use the oc adm policy command:

oc apply -f install/cluster-operator/020-RoleBinding-strimzi-cluster-operator.yaml -n my-
project
oc apply -f install/cluster-operator/031-RoleBinding-strimzi-cluster-operator-entity-operator-
delegation.yaml -n my-project
oc apply -f install/cluster-operator/032-RoleBinding-strimzi-cluster-operator-topic-operator-
delegation.yaml -n my-project

oc apply -f install/cluster-operator -n my-project

apiVersion: extensions/v1beta1
kind: Deployment
spec:
 template:
 spec:
 # ...
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq7/amq-streams-operator:1.2.0
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: "*"
 # ...

oc adm policy add-cluster-role-to-user strimzi-cluster-operator-namespaced --serviceaccount
strimzi-cluster-operator -n my-project

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

24

Replace my-project with the project in which you want to install the Cluster Operator.

3. Deploy the Cluster Operator to your OpenShift cluster.
On OpenShift, use the oc apply command:

2.4. KAFKA CLUSTER

You can use AMQ Streams to deploy an ephemeral or persistent Kafka cluster to OpenShift. When
installing Kafka, AMQ Streams also installs a Zookeeper cluster and adds the necessary configuration to
connect Kafka with Zookeeper.

Ephemeral cluster

In general, an ephemeral (that is, temporary) Kafka cluster is suitable for development and testing
purposes, not for production. This deployment uses emptyDir volumes for storing broker
information (for Zookeeper) and topics or partitions (for Kafka). Using an emptyDir volume means
that its content is strictly related to the pod life cycle and is deleted when the pod goes down.

Persistent cluster

A persistent Kafka cluster uses PersistentVolumes to store Zookeeper and Kafka data. The
PersistentVolume is acquired using a PersistentVolumeClaim to make it independent of the actual
type of the PersistentVolume. For example, it can use Amazon EBS volumes in Amazon AWS
deployments without any changes in the YAML files. The PersistentVolumeClaim can use a
StorageClass to trigger automatic volume provisioning.

AMQ Streams includes two templates for deploying a Kafka cluster:

kafka-ephemeral.yaml deploys an ephemeral cluster, named my-cluster by default.

kafka-persistent.yaml deploys a persistent cluster, named my-cluster by default.

The cluster name is defined by the name of the resource and cannot be changed after the cluster has
been deployed. To change the cluster name before you deploy the cluster, edit the
Kafka.metadata.name property of the resource in the relevant YAML file.

2.4.1. Deploying the Kafka cluster to OpenShift

The following procedure describes how to deploy an ephemeral or persistent Kafka cluster to OpenShift
on the command line. You can also deploy clusters in the OpenShift console.

Prerequisites

oc adm policy add-cluster-role-to-user strimzi-entity-operator --serviceaccount strimzi-cluster-
operator -n my-project
oc adm policy add-cluster-role-to-user strimzi-topic-operator --serviceaccount strimzi-cluster-
operator -n my-project

oc apply -f install/cluster-operator -n my-project

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
...

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

25

The Cluster Operator is deployed.

Procedure

1. If you plan to use the cluster for development or testing purposes, create and deploy an
ephemeral cluster using oc apply.

2. If you plan to use the cluster in production, create and deploy a persistent cluster using oc
apply.

Additional resources

For more information on deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .
For more information on the different configuration options supported by the Kafka resource,
see Section 3.1, “Kafka cluster configuration” .

2.5. KAFKA CONNECT

Kafka Connect is a tool for streaming data between Apache Kafka and external systems. It provides a
framework for moving large amounts of data into and out of your Kafka cluster while maintaining
scalability and reliability. Kafka Connect is typically used to integrate Kafka with external databases and
storage and messaging systems.

You can use Kafka Connect to:

Build connector plug-ins (as JAR files) for your Kafka cluster

Run connectors

Kafka Connect includes the following built-in connectors for moving file-based data into and out of
your Kafka cluster.

File Connector Description

FileStreamSourceConnector Transfers data to your Kafka cluster from a file (the
source).

FileStreamSinkConnector Transfers data from your Kafka cluster to a file (the
sink).

In AMQ Streams, you can use the Cluster Operator to deploy a Kafka Connect or Kafka Connect
Source-2-Image (S2I) cluster to your OpenShift cluster.

A Kafka Connect cluster is implemented as a Deployment with a configurable number of workers. The
Kafka Connect REST API is available on port 8083, as the <connect-cluster-name>-connect-api
service.

For more information on deploying a Kafka Connect S2I cluster, see Creating a container image using

oc apply -f examples/kafka/kafka-ephemeral.yaml

oc apply -f examples/kafka/kafka-persistent.yaml

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

26

https://kafka.apache.org/documentation/#connect

For more information on deploying a Kafka Connect S2I cluster, see Creating a container image using
OpenShift builds and Source-to-Image.

2.5.1. Deploying Kafka Connect to your OpenShift cluster

You can deploy a Kafka Connect cluster to your OpenShift cluster by using the Cluster Operator. Kafka
Connect is provided as an OpenShift template that you can deploy from the command line or the
OpenShift console.

Prerequisites

Deploying the Cluster Operator to OpenShift

Procedure

Use the oc apply command to create a KafkaConnect resource based on the kafka-
connect.yaml file:

Additional resources

Kafka Connect cluster configuration

Kafka Connect cluster with Source2Image support

2.5.2. Extending Kafka Connect with connector plug-ins

The AMQ Streams container images for Kafka Connect include the two built-in file connectors:
FileStreamSourceConnector and FileStreamSinkConnector. You can add your own connectors by
using one of the following methods:

Create a Docker image from the Kafka Connect base image.

Create a container image using OpenShift builds and Source-to-Image (S2I).

2.5.2.1. Creating a Docker image from the Kafka Connect base image

You can use the Kafka container image on Red Hat Container Catalog as a base image for creating your
own custom image with additional connector plug-ins.

The following procedure explains how to create your custom image and add it to the /opt/kafka/plugins
directory. At startup, the AMQ Streams version of Kafka Connect loads any third-party connector plug-
ins contained in the /opt/kafka/plugins directory.

Prerequisites

Deploying the Cluster Operator to OpenShift

Procedure

1. Create a new Dockerfile using registry.redhat.io/amq7/amqstreams-kafka-22 as the base
image:

oc apply -f examples/kafka-connect/kafka-connect.yaml

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

27

https://access.redhat.com/containers/#/product/RedHatAmq

FROM registry.redhat.io/amq7/amqstreams-kafka-22
USER root:root
COPY ./my-plugins/ /opt/kafka/plugins/
USER kafka:kafka

2. Build the container image.

3. Push your custom image to your container registry.

4. Edit the KafkaConnect.spec.image property of the KafkaConnect custom resource to point
to the new container image. If set, this property overrides the
STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable referred to in the next step.

5. In the install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml file, edit the
STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable to point to the new container image.

Additional resources

For more information on the KafkaConnect.spec.image property, see Section 3.2.11,
“Container images”.

For more information on the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE variable, see
Section 4.1.6, “Cluster Operator Configuration”.

2.5.2.2. Creating a container image using OpenShift builds and Source-to-Image

You can use OpenShift builds and the Source-to-Image (S2I) framework to create new container
images. An OpenShift build takes a builder image with S2I support, together with source code and
binaries provided by the user, and uses them to build a new container image. Once built, container
images are stored in OpenShift’s local container image repository and are available for use in
deployments.

A Kafka Connect builder image with S2I support is provided on the Red Hat Container Catalog as part of
the registry.redhat.io/amq7/amqstreams-kafka-22 image. This S2I image takes your binaries (with
plug-ins and connectors) and stores them in the /tmp/kafka-plugins/s2i directory. It creates a new Kafka
Connect image from this directory, which can then be used with the Kafka Connect deployment. When
started using the enhanced image, Kafka Connect loads any third-party plug-ins from the /tmp/kafka-
plugins/s2i directory.

Procedure

1. On the command line, use the oc apply command to create and deploy a Kafka Connect S2I
cluster:

oc apply -f examples/kafka-connect/kafka-connect-s2i.yaml

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect-cluster
spec:
 #...
 image: my-new-container-image

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

28

https://docs.okd.io/3.9/dev_guide/builds/index.html
https://docs.okd.io/3.9/creating_images/s2i.html
https://access.redhat.com/containers/#/product/RedHatAmq

2. Create a directory with Kafka Connect plug-ins:

$ tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
│ ├── bson-3.4.2.jar
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mongodb-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mongodb-driver-3.4.2.jar
│ ├── mongodb-driver-core-3.4.2.jar
│ └── README.md
├── debezium-connector-mysql
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mysql-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mysql-binlog-connector-java-0.13.0.jar
│ ├── mysql-connector-java-5.1.40.jar
│ ├── README.md
│ └── wkb-1.0.2.jar
└── debezium-connector-postgres
 ├── CHANGELOG.md
 ├── CONTRIBUTE.md
 ├── COPYRIGHT.txt
 ├── debezium-connector-postgres-0.7.1.jar
 ├── debezium-core-0.7.1.jar
 ├── LICENSE.txt
 ├── postgresql-42.0.0.jar
 ├── protobuf-java-2.6.1.jar
 └── README.md

3. Use the oc start-build command to start a new build of the image using the prepared directory:

oc start-build my-connect-cluster-connect --from-dir ./my-plugins/

NOTE

The name of the build is the same as the name of the deployed Kafka Connect
cluster.

4. Once the build has finished, the new image is used automatically by the Kafka Connect
deployment.

2.6. KAFKA MIRROR MAKER

The Cluster Operator deploys one or more Kafka Mirror Maker replicas to replicate data between Kafka
clusters. This process is called mirroring to avoid confusion with the Kafka partitions replication concept.
The Mirror Maker consumes messages from the source cluster and republishes those messages to the

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

29

target cluster.

For information about example resources and the format for deploying Kafka Mirror Maker, see Kafka
Mirror Maker configuration.

2.6.1. Deploying Kafka Mirror Maker to OpenShift

On OpenShift, Kafka Mirror Maker is provided in the form of a template. It can be deployed from the
template using the command-line or through the OpenShift console.

Prerequisites

Before deploying Kafka Mirror Maker, the Cluster Operator must be deployed.

Procedure

Create a Kafka Mirror Maker cluster from the command-line:

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator”

2.7. KAFKA BRIDGE

The Cluster Operator deploys one or more Kafka bridge replicas to send data between Kafka clusters
and clients via HTTP API.

For information about example resources and the format for deploying Kafka Bridge, see Kafka Bridge
configuration.

2.7.1. Deploying Kafka Bridge to your OpenShift cluster

You can deploy a Kafka Bridge cluster to your OpenShift cluster by using the Cluster Operator. Kafka
Bridge is provided as an OpenShift template that you can deploy from the command line or the
OpenShift console.

Prerequisites

Deploying the Cluster Operator to OpenShift

Procedure

Use the oc apply command to create a KafkaBridge resource based on the kafka-bridge.yaml
file:

Additional resources

Kafka Bridge cluster configuration

oc apply -f examples/kafka-mirror-maker/kafka-mirror-maker.yaml

oc apply -f examples/kafka-bridge/kafka-bridge.yaml

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

30

2.8. DEPLOYING EXAMPLE CLIENTS

Prerequisites

An existing Kafka cluster for the client to connect to.

Procedure

1. Deploy the producer.
On OpenShift, use oc run:

2. Type your message into the console where the producer is running.

3. Press Enter to send the message.

4. Deploy the consumer.
On OpenShift, use oc run:

5. Confirm that you see the incoming messages in the consumer console.

2.9. TOPIC OPERATOR

2.9.1. Overview of the Topic Operator component

The Topic Operator provides a way of managing topics in a Kafka cluster via OpenShift resources.

Example architecture for the Topic Operator

oc run kafka-producer -ti --image=registry.redhat.io/amq7/amq-streams-kafka-22 --rm=true --
restart=Never -- bin/kafka-console-producer.sh --broker-list cluster-name-kafka-
bootstrap:9092 --topic my-topic

oc run kafka-consumer -ti --image=registry.redhat.io/amq7/amq-streams-kafka-22 --rm=true -
-restart=Never -- bin/kafka-console-consumer.sh --bootstrap-server cluster-name-kafka-
bootstrap:9092 --topic my-topic --from-beginning

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

31

The role of the Topic Operator is to keep a set of KafkaTopic OpenShift resources describing Kafka
topics in-sync with corresponding Kafka topics.

Specifically, if a KafkaTopic is:

Created, the operator will create the topic it describes

Deleted, the operator will delete the topic it describes

Changed, the operator will update the topic it describes

And also, in the other direction, if a topic is:

Created within the Kafka cluster, the operator will create a KafkaTopic describing it

Deleted from the Kafka cluster, the operator will delete the KafkaTopic describing it

Changed in the Kafka cluster, the operator will update the KafkaTopic describing it

This allows you to declare a KafkaTopic as part of your application’s deployment and the Topic
Operator will take care of creating the topic for you. Your application just needs to deal with producing
or consuming from the necessary topics.

If the topic is reconfigured or reassigned to different Kafka nodes, the KafkaTopic will always be up to
date.

For more details about creating, modifying and deleting topics, see Chapter 5, Using the Topic Operator .

2.9.2. Deploying the Topic Operator using the Cluster Operator

This procedure describes how to deploy the Topic Operator using the Cluster Operator. If you want to
use the Topic Operator with a Kafka cluster that is not managed by AMQ Streams, you must deploy the
Topic Operator as a standalone component. For more information, see Section 4.2.5, “Deploying the
standalone Topic Operator”.

Prerequisites

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

32

A running Cluster Operator

A Kafka resource to be created or updated

Procedure

1. Ensure that the Kafka.spec.entityOperator object exists in the Kafka resource. This
configures the Entity Operator.

2. Configure the Topic Operator using the fields described in Section C.47,
“EntityTopicOperatorSpec schema reference”.

3. Create or update the Kafka resource in OpenShift.
On OpenShift, use oc apply:

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about deploying the Entity Operator, see Section 3.1.10, “Entity Operator” .

For more information about the Kafka.spec.entityOperator object used to configure the Topic
Operator when deployed by the Cluster Operator, see Section C.46, “EntityOperatorSpec
schema reference”.

2.10. USER OPERATOR

The User Operator provides a way of managing Kafka users via OpenShift resources.

2.10.1. Overview of the User Operator component

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser OpenShift
resources that describe Kafka users and ensuring that they are configured properly in the Kafka cluster.
For example:

if a KafkaUser is created, the User Operator will create the user it describes

if a KafkaUser is deleted, the User Operator will delete the user it describes

if a KafkaUser is changed, the User Operator will update the user it describes

Unlike the Topic Operator, the User Operator does not sync any changes from the Kafka cluster with the

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f your-file

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

33

OpenShift resources. Unlike the Kafka topics which might be created by applications directly in Kafka, it
is not expected that the users will be managed directly in the Kafka cluster in parallel with the User
Operator, so this should not be needed.

The User Operator allows you to declare a KafkaUser as part of your application’s deployment. When
the user is created, the credentials will be created in a Secret. Your application needs to use the user
and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s rights in the KafkaUser declaration.

2.10.2. Deploying the User Operator using the Cluster Operator

Prerequisites

A running Cluster Operator

A Kafka resource to be created or updated.

Procedure

1. Edit the Kafka resource ensuring it has a Kafka.spec.entityOperator.userOperator object that
configures the User Operator how you want.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about the Kafka.spec.entityOperator object used to configure the User
Operator when deployed by the Cluster Operator, see EntityOperatorSpec schema reference.

2.11. STRIMZI ADMINISTRATORS

AMQ Streams includes several custom resources. By default, permission to create, edit, and delete
these resources is limited to OpenShift cluster administrators. If you want to allow non-cluster
administators to manage AMQ Streams resources, you must assign them the Strimzi Administrator role.

2.11.1. Designating Strimzi Administrators

Prerequisites

AMQ Streams CustomResourceDefinitions are installed.

Procedure

1. Create the strimzi-admin cluster role in OpenShift.
On OpenShift, use oc apply:

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

34

2. Assign the strimzi-admin ClusterRole to one or more existing users in the OpenShift cluster.
On OpenShift, use oc adm:

2.12. CONTAINER IMAGES

Container images for AMQ Streams are available in the Red Hat Container Catalog . The installation
YAML files provided by AMQ Streams will pull the images directly from the Red Hat Container Catalog .

If you do not have access to the Red Hat Container Catalog or want to use your own container
repository:

1. Pull all container images listed here

2. Push them into your own registry

3. Update the image names in the installation YAML files

NOTE

Each Kafka version supported for the release has a separate image.

Container image Namespace/Repository Description

Kafka
registry.redhat.io/amq7/
amqstreams-kafka-22

registry.redhat.io/amq7/
amqstreams-kafka-21

AMQ Streams image for running
Kafka, including:

Kafka Broker

Kafka Connect / S2I

Kafka Mirror Maker

Zookeeper

TLS Sidecars

Operator
registry.redhat.io/amq7/
amq-streams-
operator:1.2.0

AMQ Streams image for running
the operators:

Cluster Operator

Topic Operator

User Operator

Kafka Initializer

oc apply -f install/strimzi-admin

oc adm policy add-cluster-role-to-user strimzi-admin user1 user2

CHAPTER 2. GETTING STARTED WITH AMQ STREAMS

35

https://access.redhat.com/containers/#/product/RedHatAmq
https://access.redhat.com/containers/#/product/RedHatAmq
https://access.redhat.com/containers/#/product/RedHatAmq

Kafka Bridge
registry.redhat.io/amq7/
amq-streams-
bridge:1.2.0

AMQ Streams image for running
the AMQ Streams Kafka Bridge

Container image Namespace/Repository Description

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

36

CHAPTER 3. DEPLOYMENT CONFIGURATION
This chapter describes how to configure different aspects of the supported deployments:

Kafka clusters

Kafka Connect clusters

Kafka Connect clusters with Source2Image support

Kafka Mirror Maker

3.1. KAFKA CLUSTER CONFIGURATION

The full schema of the Kafka resource is described in the Section C.1, “Kafka schema reference”. All
labels that are applied to the desired Kafka resource will also be applied to the OpenShift resources
making up the Kafka cluster. This provides a convenient mechanism for resources to be labeled as
required.

3.1.1. Data storage considerations

An efficient data storage infrastructure is essential to the optimal performance of AMQ Streams.

AMQ Streams requires block storage and is designed to work optimally with cloud-based block storage
solutions, including Amazon Elastic Block Store (EBS). The use of file storage (for example, NFS) is not
recommended.

Choose local storage (local persistent volumes) when possible. If local storage is not available, you can
use a Storage Area Network (SAN) accessed by a protocol such as Fibre Channel or iSCSI.

3.1.1.1. Apache Kafka and Zookeeper storage

Use separate disks for Apache Kafka and Zookeeper.

Three types of data storage are supported:

Ephemeral (Recommended for development only)

Persistent

JBOD (Just a Bunch of Disks, suitable for Kafka only)

For more information, see Kafka and Zookeeper storage .

Solid-state drives (SSDs), though not essential, can improve the performance of Kafka in large clusters
where data is sent to and received from multiple topics asynchronously. SSDs are particularly effective
with Zookeeper, which requires fast, low latency data access.

NOTE

You do not need to provision replicated storage because Kafka and Zookeeper both have
built-in data replication.

3.1.1.2. File systems

It is recommended that you configure your storage system to use the XFS file system. AMQ Streams is

CHAPTER 3. DEPLOYMENT CONFIGURATION

37

It is recommended that you configure your storage system to use the XFS file system. AMQ Streams is
also compatible with the ext4 file system, but this might require additional configuration for best results.

3.1.2. Kafka and Zookeeper storage types

As stateful applications, Kafka and Zookeeper need to store data on disk. AMQ Streams supports three
storage types for this data:

Ephemeral

Persistent

JBOD storage

NOTE

JBOD storage is supported only for Kafka, not for Zookeeper.

When configuring a Kafka resource, you can specify the type of storage used by the Kafka broker and its
corresponding Zookeeper node. You configure the storage type using the storage property in the
following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

The storage type is configured in the type field.

WARNING

The storage type cannot be changed after a Kafka cluster is deployed.

3.1.2.1. Ephemeral storage

Ephemeral storage uses the `emptyDir` volumes to store data. To use ephemeral storage, the type
field should be set to ephemeral.

IMPORTANT

EmptyDir volumes are not persistent and the data stored in them will be lost when the
Pod is restarted. After the new pod is started, it has to recover all data from other nodes
of the cluster. Ephemeral storage is not suitable for use with single node Zookeeper
clusters and for Kafka topics with replication factor 1, because it will lead to data loss.

An example of Ephemeral storage

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

38

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

3.1.2.1.1. Log directories

The ephemeral volume will be used by the Kafka brokers as log directories mounted into the following
path:

/var/lib/kafka/data/kafka-log_idx_

Where idx is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

3.1.2.2. Persistent storage

Persistent storage uses Persistent Volume Claims to provision persistent volumes for storing data.
Persistent Volume Claims can be used to provision volumes of many different types, depending on the
Storage Class which will provision the volume. The data types which can be used with persistent volume
claims include many types of SAN storage as well as Local persistent volumes.

To use persistent storage, the type has to be set to persistent-claim. Persistent storage supports
additional configuration options:

id (optional)

Storage identification number. This option is mandatory for storage volumes defined in a JBOD
storage declaration. Default is 0.

size (required)

Defines the size of the persistent volume claim, for example, "1000Gi".

class (optional)

The OpenShift Storage Class to use for dynamic volume provisioning.

selector (optional)

Allows selecting a specific persistent volume to use. It contains key:value pairs representing labels for
selecting such a volume.

deleteClaim (optional)

Boolean value which specifies if the Persistent Volume Claim has to be deleted when the cluster is
undeployed. Default is false.

 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: ephemeral
 # ...
 zookeeper:
 # ...
 storage:
 type: ephemeral
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

39

https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kubernetes.io/docs/concepts/storage/storage-classes/

WARNING

Increasing the size of persistent volumes in an existing AMQ Streams cluster is only
supported in OpenShift versions that support persistent volume resizing. The
persistent volume to be resized must use a storage class that supports volume
expansion. For other versions of OpenShift and storage classes which do not
support volume expansion, you must decide the necessary storage size before
deploying the cluster. Decreasing the size of existing persistent volumes is not
possible.

Example fragment of persistent storage configuration with 1000Gi size

The following example demonstrates the use of a storage class.

Example fragment of persistent storage configuration with specific Storage Class

Finally, a selector can be used to select a specific labeled persistent volume to provide needed features
such as an SSD.

Example fragment of persistent storage configuration with selector

3.1.2.2.1. Storage class overrides

You can specify a different storage class for one or more Kafka brokers, instead of using the default
storage class. This is useful if, for example, storage classes are restricted to different availability zones or
data centers. You can use the overrides field for this purpose.

...
storage:
 type: persistent-claim
 size: 1000Gi
...

...
storage:
 type: persistent-claim
 size: 1Gi
 class: my-storage-class
...

...
storage:
 type: persistent-claim
 size: 1Gi
 selector:
 hdd-type: ssd
 deleteClaim: true
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

40

In this example, the default storage class is named my-storage-class:

Example AMQ Streams cluster using storage class overrides

As a result of the configured overrides property, the broker volumes use the following storage classes:

The persistent volumes of broker 0 will use my-storage-class-zone-1a.

The persistent volumes of broker 1 will use my-storage-class-zone-1b.

The persistent volumes of broker 2 will use my-storage-class-zone-1c.

The overrides property is currently used only to override storage class configurations. Overriding other
storage configuration fields is not currently supported. Other fields from the storage configuration are
currently not supported.

3.1.2.2.2. Persistent Volume Claim naming

When persistent storage is used, it creates Persistent Volume Claims with the following names:

data-cluster-name-kafka-idx

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx.

data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the Zookeeper node pod idx.

3.1.2.2.3. Log directories

The persistent volume will be used by the Kafka brokers as log directories mounted into the following
path:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 labels:
 app: my-cluster
 name: my-cluster
 namespace: myproject
spec:
 # ...
 kafka:
 replicas: 3
 storage:
 deleteClaim: true
 size: 100Gi
 type: persistent-claim
 class: my-storage-class
 overrides:
 - broker: 0
 class: my-storage-class-zone-1a
 - broker: 1
 class: my-storage-class-zone-1b
 - broker: 2
 class: my-storage-class-zone-1c
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

41

/var/lib/kafka/data/kafka-log_idx_

Where idx is the Kafka broker pod index. For example /var/lib/kafka/data/kafka-log0.

3.1.2.3. Resizing persistent volumes

You can provision increased storage capacity by increasing the size of the persistent volumes used by an
existing AMQ Streams cluster. Resizing persistent volumes is supported in clusters that use either a
single persistent volume or multiple persistent volumes in a JBOD storage configuration.

NOTE

You can increase but not decrease the size of persistent volumes. Decreasing the size of
persistent volumes is not currently supported in OpenShift.

Prerequisites

An OpenShift cluster with support for volume resizing.

The Cluster Operator is running.

A Kafka cluster using persistent volumes created using a storage class that supports volume
expansion.

Procedure

1. In a Kafka resource, increase the size of the persistent volume allocated to the Kafka cluster,
the Zookeeper cluster, or both.

To increase the volume size allocated to the Kafka cluster, edit the spec.kafka.storage
property.

To increase the volume size allocated to the Zookeeper cluster, edit the
spec.zookeeper.storage property.
For example, to increase the volume size from 1000Gi to 2000Gi:

2. Create or update the resource.
On OpenShift, use oc apply:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: persistent-claim
 size: 2000Gi
 class: my-storage-class
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

42

OpenShift increases the capacity of the selected persistent volumes in response to a request
from the Cluster Operator. When the resizing is complete, the Cluster Operator restarts all pods
that use the resized persistent volumes. This happens automatically.

Additional resources

For more information about resizing persistent volumes in OpenShift, see Resizing Persistent Volumes
using Kubernetes.

3.1.2.4. JBOD storage overview

You can configure AMQ Streams to use JBOD, a data storage configuration of multiple disks or
volumes. JBOD is one approach to providing increased data storage for Kafka brokers. It can also
improve performance.

A JBOD configuration is described by one or more volumes, each of which can be either ephemeral or
persistent. The rules and constraints for JBOD volume declarations are the same as those for ephemeral
and persistent storage. For example, you cannot change the size of a persistent storage volume after it
has been provisioned.

3.1.2.4.1. JBOD configuration

To use JBOD with AMQ Streams, the storage type must be set to jbod. The volumes property allows
you to describe the disks that make up your JBOD storage array or configuration. The following
fragment shows an example JBOD configuration:

The ids cannot be changed once the JBOD volumes are created.

Users can add or remove volumes from the JBOD configuration.

3.1.2.4.2. JBOD and Persistent Volume Claims

When persistent storage is used to declare JBOD volumes, the naming scheme of the resulting
Persistent Volume Claims is as follows:

data-id-cluster-name-kafka-idx

Where id is the ID of the volume used for storing data for Kafka broker pod idx.

3.1.2.4.3. Log directories

The JBOD volumes will be used by the Kafka brokers as log directories mounted into the following path:

...
storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

43

https://kubernetes.io/blog/2018/07/12/resizing-persistent-volumes-using-kubernetes/

/var/lib/kafka/data-id/kafka-log_idx_

Where id is the ID of the volume used for storing data for Kafka broker pod idx. For example
/var/lib/kafka/data-0/kafka-log0.

3.1.2.5. Adding volumes to JBOD storage

This procedure describes how to add volumes to a Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type.

NOTE

When adding a new volume under an id which was already used in the past and removed,
you have to make sure that the previously used PersistentVolumeClaims have been
deleted.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage

Procedure

1. Edit the spec.kafka.storage.volumes property in the Kafka resource. Add the new volumes to
the volumes array. For example, add the new volume with id 2:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 1
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 - id: 2
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

44

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3. Create new topics or reassign existing partitions to the new disks.

Additional resources

For more information about reassigning topics, see Section 3.1.22.2, “Partition reassignment” .

3.1.2.6. Removing volumes from JBOD storage

This procedure describes how to remove volumes from Kafka cluster configured to use JBOD storage. It
cannot be applied to Kafka clusters configured to use any other storage type. The JBOD storage always
has to contain at least one volume.

IMPORTANT

To avoid data loss, you have to move all partitions before removing the volumes.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with JBOD storage with two or more volumes

Procedure

1. Reassign all partitions from the disks which are you going to remove. Any data in partitions still
assigned to the disks which are going to be removed might be lost.

2. Edit the spec.kafka.storage.volumes property in the Kafka resource. Remove one or more
volumes from the volumes array. For example, remove the volumes with ids 1 and 2:

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 storage:
 type: jbod
 volumes:
 - id: 0
 type: persistent-claim
 size: 100Gi
 deleteClaim: false
 # ...
 zookeeper:
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

45

3. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional resources

For more information about reassigning topics, see Section 3.1.22.2, “Partition reassignment” .

Additional resources

For more information about ephemeral storage, see ephemeral storage schema reference .

For more information about persistent storage, see persistent storage schema reference .

For more information about JBOD storage, see JBOD schema reference .

For more information about the schema for Kafka, see Kafka schema reference.

3.1.3. Kafka broker replicas

A Kafka cluster can run with many brokers. You can configure the number of brokers used for the Kafka
cluster in Kafka.spec.kafka.replicas. The best number of brokers for your cluster has to be determined
based on your specific use case.

3.1.3.1. Configuring the number of broker nodes

This procedure describes how to configure the number of Kafka broker nodes in a new cluster. It only
applies to new clusters with no partitions. If your cluster already has topics defined, see Section 3.1.22,
“Scaling clusters”.

Prerequisites

An OpenShift cluster

A running Cluster Operator

A Kafka cluster with no topics defined yet

Procedure

1. Edit the replicas property in the Kafka resource. For example:

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 replicas: 3
 # ...
 zookeeper:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

46

2. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional resources

If your cluster already has topics defined, see Section 3.1.22, “Scaling clusters”.

3.1.4. Kafka broker configuration

AMQ Streams allows you to customize the configuration of the Kafka brokers in your Kafka cluster. You
can specify and configure most of the options listed in the "Broker Configs" section of the Apache Kafka
documentation. You cannot configure options that are related to the following areas:

Security (Encryption, Authentication, and Authorization)

Listener configuration

Broker ID configuration

Configuration of log data directories

Inter-broker communication

Zookeeper connectivity

These options are automatically configured by AMQ Streams.

3.1.4.1. Kafka broker configuration

A Kafka broker can be configured using the config property in Kafka.spec.kafka.

This property should contain the Kafka broker configuration options as keys with values in one of the
following JSON types:

String

Number

Boolean

You can specify and configure all of the options in the "Broker Configs" section of the Apache Kafka
documentation apart from those managed directly by AMQ Streams. Specifically, you are prevented
from modifying all configuration options with keys equal to or starting with one of the following strings:

listeners

advertised.

broker.

listener.

host.name

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

47

http://kafka.apache.org/documentation/#brokerconfigs
http://kafka.apache.org/documentation/#brokerconfigs

port

inter.broker.listener.name

sasl.

ssl.

security.

password.

principal.builder.class

log.dir

zookeeper.connect

zookeeper.set.acl

authorizer.

super.user

If the config property specifies a restricted option, it is ignored and a warning message is printed to the
Cluster Operator log file. All other supported options are passed to Kafka.

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object. If
invalid configuration is provided, the Kafka cluster might not start or might become
unstable. In such cases, you must fix the configuration in the Kafka.spec.kafka.config
object and the Cluster Operator will roll out the new configuration to all Kafka brokers.

An example Kafka broker configuration

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 config:
 num.partitions: 1
 num.recovery.threads.per.data.dir: 1
 default.replication.factor: 3
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 1
 log.retention.hours: 168
 log.segment.bytes: 1073741824
 log.retention.check.interval.ms: 300000
 num.network.threads: 3
 num.io.threads: 8
 socket.send.buffer.bytes: 102400

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

48

3.1.4.2. Configuring Kafka brokers

You can configure an existing Kafka broker, or create a new Kafka broker with a specified configuration.

Prerequisites

An OpenShift cluster is available.

The Cluster Operator is running.

Procedure

1. Open the YAML configuration file that contains the Kafka resource specifying the cluster
deployment.

2. In the spec.kafka.config property in the Kafka resource, enter one or more Kafka configuration
settings. For example:

3. Apply the new configuration to create or update the resource.
On OpenShift, use oc apply:

where kafka.yaml is the YAML configuration file for the resource that you want to configure;
for example, kafka-persistent.yaml.

3.1.5. Kafka broker listeners

AMQ Streams allows users to configure the listeners which will be enabled in Kafka brokers. Three types
of listener are supported:

Plain listener on port 9092 (without encryption)

TLS listener on port 9093 (with encryption)

 socket.receive.buffer.bytes: 102400
 socket.request.max.bytes: 104857600
 group.initial.rebalance.delay.ms: 0
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 config:
 default.replication.factor: 3
 offsets.topic.replication.factor: 3
 transaction.state.log.replication.factor: 3
 transaction.state.log.min.isr: 1
 # ...
 zookeeper:
 # ...

oc apply -f kafka.yaml

CHAPTER 3. DEPLOYMENT CONFIGURATION

49

External listener on port 9094 for access from outside of OpenShift

3.1.5.1. Mutual TLS authentication for clients

3.1.5.1.1. Mutual TLS authentication

Mutual TLS authentication is always used for the communication between Kafka brokers and Zookeeper
pods.Mutual authentication or two-way authentication is when both the server and the client present
certificates. AMQ Streams can configure Kafka to use TLS (Transport Layer Security) to provide
encrypted communication between Kafka brokers and clients either with or without mutual
authentication. When you configure mutual authentication, the broker authenticates the client and the
client authenticates the broker.

NOTE

TLS authentication is more commonly one-way, with one party authenticating the identity
of another. For example, when HTTPS is used between a web browser and a web server,
the server obtains proof of the identity of the browser.

3.1.5.1.2. When to use mutual TLS authentication for clients

Mutual TLS authentication is recommended for authenticating Kafka clients when:

The client supports authentication using mutual TLS authentication

It is necessary to use the TLS certificates rather than passwords

You can reconfigure and restart client applications periodically so that they do not use expired
certificates.

3.1.5.2. SCRAM-SHA authentication

SCRAM (Salted Challenge Response Authentication Mechanism) is an authentication protocol that can
establish mutual authentication using passwords. AMQ Streams can configure Kafka to use SASL
(Simple Authentication and Security Layer) SCRAM-SHA-512 to provide authentication on both
unencrypted and TLS-encrypted client connections. TLS authentication is always used internally
between Kafka brokers and Zookeeper nodes. When used with a TLS client connection, the TLS
protocol provides encryption, but is not used for authentication.

The following properties of SCRAM make it safe to use SCRAM-SHA even on unencrypted connections:

The passwords are not sent in the clear over the communication channel. Instead the client and
the server are each challenged by the other to offer proof that they know the password of the
authenticating user.

The server and client each generate a new challenge for each authentication exchange. This
means that the exchange is resilient against replay attacks.

3.1.5.2.1. Supported SCRAM credentials

AMQ Streams supports SCRAM-SHA-512 only. When a KafkaUser.spec.authentication.type is
configured with scram-sha-512 the User Operator will generate a random 12 character password
consisting of upper and lowercase ASCII letters and numbers.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

50

3.1.5.2.2. When to use SCRAM-SHA authentication for clients

SCRAM-SHA is recommended for authenticating Kafka clients when:

The client supports authentication using SCRAM-SHA-512

It is necessary to use passwords rather than the TLS certificates

Authentication for unencrypted communication is required

3.1.5.3. Kafka listeners

You can configure Kafka broker listeners using the listeners property in the Kafka.spec.kafka resource.
The listeners property contains three sub-properties:

plain

tls

external

When none of these properties are defined, the listener will be disabled.

An example of listeners property with all listeners enabled

An example of listeners property with only the plain listener enabled

3.1.5.3.1. External listener

The external listener is used to connect to a Kafka cluster from outside of an OpenShift environment.
AMQ Streams supports three types of external listeners:

route

loadbalancer

nodeport

3.1.5.3.1.1. Exposing Kafka using OpenShift Routes

An external listener of type route exposes Kafka by using OpenShift Routes and the HAProxy router. A

...
listeners:
 plain: {}
 tls: {}
 external:
 type: loadbalancer
...

...
listeners:
 plain: {}
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

51

An external listener of type route exposes Kafka by using OpenShift Routes and the HAProxy router. A
dedicated Route is created for every Kafka broker pod. An additional Route is created to serve as a
Kafka bootstrap address. Kafka clients can use these Routes to connect to Kafka on port 443.

When exposing Kafka using OpenShift Routes, TLS encryption is always used.

By default, the route hosts are automatically assigned by OpenShift. However, you can override the
assigned route hosts by specifying the requested hosts in the overrides property. AMQ Streams will not
perform any validation that the requested hosts are available; you must ensure that they are free and
can be used.

Example of an external listener of type routes configured with overrides for OpenShift
route hosts

For more information on using Routes to access Kafka, see Section 3.1.5.5, “Accessing Kafka using
OpenShift routes”.

3.1.5.3.1.2. Exposing Kafka using loadbalancers

External listeners of type loadbalancer expose Kafka by using Loadbalancer type Services. A new
loadbalancer service is created for every Kafka broker pod. An additional loadbalancer is created to
serve as a Kafka bootstrap address. Loadbalancers listen to connections on port 9094.

By default, TLS encryption is enabled. To disable it, set the tls field to false.

For more information on using loadbalancers to access Kafka, see Section 3.1.5.6, “Accessing Kafka
using loadbalancers”.

3.1.5.3.1.3. Exposing Kafka using node ports

External listeners of type nodeport expose Kafka by using NodePort type Services. When exposing
Kafka in this way, Kafka clients connect directly to the nodes of OpenShift. You must enable access to
the ports on the OpenShift nodes for each client (for example, in firewalls or security groups). Each
Kafka broker pod is then accessible on a separate port. Additional NodePort type Service is created to
serve as a Kafka bootstrap address.

When configuring the advertised addresses for the Kafka broker pods, AMQ Streams uses the address

...
listeners:
 external:
 type: route
 authentication:
 type: tls
 overrides:
 bootstrap:
 host: bootstrap.myrouter.com
 brokers:
 - broker: 0
 host: broker-0.myrouter.com
 - broker: 1
 host: broker-1.myrouter.com
 - broker: 2
 host: broker-2.myrouter.com
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

52

When configuring the advertised addresses for the Kafka broker pods, AMQ Streams uses the address
of the node on which the given pod is running. When selecting the node address, the different address
types are used with the following priority:

1. ExternalDNS

2. ExternalIP

3. Hostname

4. InternalDNS

5. InternalIP

By default, TLS encryption is enabled. To disable it, set the tls field to false.

NOTE

TLS hostname verification is not currently supported when exposing Kafka clusters using
node ports.

By default, the port numbers used for the bootstrap and broker services are automatically assigned by
OpenShift. However, you can override the assigned node ports by specifying the requested port
numbers in the overrides property. AMQ Streams does not perform any validation on the requested
ports; you must ensure that they are free and available for use.

Example of an external listener configured with overrides for node ports

For more information on using node ports to access Kafka, see Section 3.1.5.7, “Accessing Kafka using
node ports”.

3.1.5.3.1.4. Customizing advertised addresses on external listeners

By default, AMQ Streams tries to automatically determine the hostnames and ports that your Kafka
cluster advertises to its clients. This is not sufficient in all situations, because the infrastructure on which
AMQ Streams is running might not provide the right hostname or port through which Kafka can be

...
listeners:
 external:
 type: nodeport
 tls: true
 authentication:
 type: tls
 overrides:
 bootstrap:
 nodePort: 32100
 brokers:
 - broker: 0
 nodePort: 32000
 - broker: 1
 nodePort: 32001
 - broker: 2
 nodePort: 32002
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

53

accessed. You can customize the advertised hostname and port in the overrides property of the
external listener. AMQ Streams will then automatically configure the advertised address in the Kafka
brokers and add it to the broker certificates so it can be used for TLS hostname verification. Overriding
the advertised host and ports is available for all types of external listeners.

Example of an external listener configured with overrides for advertised addresses

Additionally, you can specify the name of the bootstrap service. This name will be added to the broker
certificates and can be used for TLS hostname verification. Adding the additional bootstrap address is
available for all types of external listeners.

Example of an external listener configured with an additional bootstrap address

3.1.5.3.1.5. Customizing DNS names of external listeners

On loadbalancer listeners, you can use the dnsAnnotations property to add additional annotations to
the load balancer services. You can use these annotations to instrument DNS tooling such as External
DNS, which automatically assigns DNS names to the services.

Example of an external listener of type loadbalancer using External DNS annotations

...
listeners:
 external:
 type: route
 authentication:
 type: tls
 overrides:
 brokers:
 - broker: 0
 advertisedHost: example.hostname.0
 advertisedPort: 12340
 - broker: 1
 advertisedHost: example.hostname.1
 advertisedPort: 12341
 - broker: 2
 advertisedHost: example.hostname.2
 advertisedPort: 12342
...

...
listeners:
 external:
 type: route
 authentication:
 type: tls
 overrides:
 bootstrap:
 address: example.hostname
...

...
listeners:
 external:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

54

https://github.com/kubernetes-incubator/external-dns

3.1.5.3.2. Listener authentication

The listener sub-properties can also contain additional configuration. Both listeners support the
authentication property. This is used to specify an authentication mechanism specific to that listener:

mutual TLS authentication (only on the listeners with TLS encryption)

SCRAM-SHA authentication

If no authentication property is specified then the listener does not authenticate clients which connect
though that listener.

An example where the plain listener is configured for SCRAM-SHA authentication and the
tls listener with mutual TLS authentication

Authentication must be configured when using the User Operator to manage KafkaUsers.

 type: loadbalancer
 authentication:
 type: tls
 overrides:
 bootstrap:
 dnsAnnotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-bootstrap.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 brokers:
 - broker: 0
 dnsAnnotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-0.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 - broker: 1
 dnsAnnotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-1.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
 - broker: 2
 dnsAnnotations:
 external-dns.alpha.kubernetes.io/hostname: kafka-broker-2.mydomain.com.
 external-dns.alpha.kubernetes.io/ttl: "60"
...

...
listeners:
 plain:
 authentication:
 type: scram-sha-512
 tls:
 authentication:
 type: tls
 external:
 type: loadbalancer
 tls: true
 authentication:
 type: tls
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

55

3.1.5.3.3. Network policies

AMQ Streams automatically creates a NetworkPolicy resource for every listener that is enabled on a
Kafka broker. By default, a NetworkPolicy grants access to a listener to all applications and
namespaces. If you want to restrict access to a listener to only selected applications or namespaces, use
the networkPolicyPeers field. Each listener can have a different networkPolicyPeers configuration.

The following example shows a networkPolicyPeers configuration for a plain and a tls listener:

In the above example:

Only application pods matching the labels app: kafka-sasl-consumer and app: kafka-sasl-
producer can connect to the plain listener. The application pods must be running in the same
namespace as the Kafka broker.

Only application pods running in namespaces matching the labels project: myproject and
project: myproject2 can connect to the tls listener.

The syntax of the networkPolicyPeers field is the same as the from field in the NetworkPolicy
resource in Kubernetes. For more information about the schema, see NetworkPolicyPeer API reference
and the KafkaListeners schema reference.

NOTE

Your configuration of OpenShift must support Ingress NetworkPolicies in order to use
network policies in AMQ Streams.

3.1.5.4. Configuring Kafka listeners

Prerequisites

...
listeners:
 plain:
 authentication:
 type: scram-sha-512
 networkPolicyPeers:
 - podSelector:
 matchLabels:
 app: kafka-sasl-consumer
 - podSelector:
 matchLabels:
 app: kafka-sasl-producer
 tls:
 authentication:
 type: tls
 networkPolicyPeers:
 - namespaceSelector:
 matchLabels:
 project: myproject
 - namespaceSelector:
 matchLabels:
 project: myproject2
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

56

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the listeners property in the Kafka.spec.kafka resource.
An example configuration of the plain (unencrypted) listener without authentication:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional resources

For more information about the schema, see KafkaListeners schema reference.

3.1.5.5. Accessing Kafka using OpenShift routes

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Deploy Kafka cluster with an external listener enabled and configured to the type route.
An example configuration with an external listener configured to use Routes:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 plain: {}
 # ...
 zookeeper:
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 external:
 type: route
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

57

2. Create or update the resource.

3. Find the address of the bootstrap Route.

Use the address together with port 443 in your Kafka client as the bootstrap address.

4. Extract the public certificate of the broker certification authority

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

Additional resources

For more information about the schema, see KafkaListeners schema reference.

3.1.5.6. Accessing Kafka using loadbalancers

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Deploy Kafka cluster with an external listener enabled and configured to the type loadbalancer.
An example configuration with an external listener configured to use loadbalancers:

2. Create or update the resource.

 # ...
 zookeeper:
 # ...

oc apply -f your-file

oc get routes _cluster-name_-kafka-bootstrap -o=jsonpath='{.status.ingress[0].host}{"\n"}'

oc extract secret/_cluster-name_-cluster-ca-cert --keys=ca.crt --to=- > ca.crt

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 external:
 type: loadbalancer
 tls: true
 # ...
 # ...
 zookeeper:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

58

On OpenShift this can be done using oc apply:

3. Find the hostname of the bootstrap loadbalancer.
On OpenShift this can be done using oc get:

If no hostname was found (nothing was returned by the command), use the loadbalancer IP
address.

On OpenShift this can be done using oc get:

Use the hostname or IP address together with port 9094 in your Kafka client as the bootstrap
address.

4. Unless TLS encryption was disabled, extract the public certificate of the broker certification
authority.
On OpenShift this can be done using oc extract:

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

Additional resources

For more information about the schema, see KafkaListeners schema reference.

3.1.5.7. Accessing Kafka using node ports

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Deploy Kafka cluster with an external listener enabled and configured to the type nodeport.
An example configuration with an external listener configured to use node ports:

oc apply -f your-file

oc get service cluster-name-kafka-external-bootstrap -
o=jsonpath='{.status.loadBalancer.ingress[0].hostname}{"\n"}'

oc get service cluster-name-kafka-external-bootstrap -
o=jsonpath='{.status.loadBalancer.ingress[0].ip}{"\n"}'

oc extract secret/cluster-name-cluster-ca-cert --keys=ca.crt --to=- > ca.crt

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 listeners:

CHAPTER 3. DEPLOYMENT CONFIGURATION

59

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3. Find the port number of the bootstrap service.
On OpenShift this can be done using oc get:

The port should be used in the Kafka bootstrap address.

4. Find the address of the OpenShift node.
On OpenShift this can be done using oc get:

If several different addresses are returned, select the address type you want based on the
following order:

a. ExternalDNS

b. ExternalIP

c. Hostname

d. InternalDNS

e. InternalIP
Use the address with the port found in the previous step in the Kafka bootstrap address.

5. Unless TLS encryption was disabled, extract the public certificate of the broker certification
authority.
On OpenShift this can be done using oc extract:

Use the extracted certificate in your Kafka client to configure TLS connection. If you enabled
any authentication, you will also need to configure SASL or TLS authentication.

Additional resources

For more information about the schema, see KafkaListeners schema reference.

 external:
 type: nodeport
 tls: true
 # ...
 # ...
 zookeeper:
 # ...

oc apply -f your-file

oc get service cluster-name-kafka-external-bootstrap -o=jsonpath='{.spec.ports[0].nodePort}
{"\n"}'

oc get node node-name -o=jsonpath='{range .status.addresses[*]}{.type}{"\t"}{.address}{"\n"}'

oc extract secret/cluster-name-cluster-ca-cert --keys=ca.crt --to=- > ca.crt

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

60

3.1.5.8. Restricting access to Kafka listeners using networkPolicyPeers

You can restrict access to a listener to only selected applications by using the networkPolicyPeers field.

Prerequisites

An OpenShift cluster with support for Ingress NetworkPolicies.

The Cluster Operator is running.

Procedure

1. Open the Kafka resource.

2. In the networkPolicyPeers field, define the application pods or namespaces that will be
allowed to access the Kafka cluster.
For example, to configure a tls listener to allow connections only from application pods with the
label app set to kafka-client:

3. Create or update the resource.
On OpenShift use oc apply:

Additional resources

For more information about the schema, see NetworkPolicyPeer API reference and the
KafkaListeners schema reference.

3.1.6. Authentication and Authorization

AMQ Streams supports authentication and authorization. Authentication can be configured
independently for each listener. Authorization is always configured for the whole Kafka cluster.

3.1.6.1. Authentication

Authentication is configured as part of the listener configuration in the authentication property. The
authentication mechanism is defined by the type field.

When the authentication property is missing, no authentication is enabled on a given listener. The

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 tls:
 networkPolicyPeers:
 - podSelector:
 matchLabels:
 app: kafka-client
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

61

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io

When the authentication property is missing, no authentication is enabled on a given listener. The
listener will accept all connections without authentication.

Supported authentication mechanisms:

TLS client authentication

SASL SCRAM-SHA-512

3.1.6.1.1. TLS client authentication

TLS Client authentication is enabled by specifying the type as tls. The TLS client authentication is
supported only on the tls listener.

An example of authentication with type tls

3.1.6.2. Configuring authentication in Kafka brokers

Prerequisites

An OpenShift cluster is available.

The Cluster Operator is running.

Procedure

1. Open the YAML configuration file that contains the Kafka resource specifying the cluster
deployment.

2. In the spec.kafka.listeners property in the Kafka resource, add the authentication field to the
listeners for which you want to enable authentication. For example:

3. Apply the new configuration to create or update the resource.
On OpenShift, use oc apply:

...
authentication:
 type: tls
...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 listeners:
 tls:
 authentication:
 type: tls
 # ...
 zookeeper:
 # ...

oc apply -f kafka.yaml

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

62

where kafka.yaml is the YAML configuration file for the resource that you want to configure;
for example, kafka-persistent.yaml.

Additional resources

For more information about the supported authentication mechanisms, see authentication
reference.

For more information about the schema for Kafka, see Kafka schema reference.

3.1.6.3. Authorization

Authorization can be configured using the authorization property in the Kafka.spec.kafka resource.
When the authorization property is missing, no authorization will be enabled. When authorization is
enabled it will be applied for all enabled listeners. The authorization method is defined by the type field.

Currently, the only supported authorization method is the Simple authorization.

3.1.6.3.1. Simple authorization

Simple authorization is using the SimpleAclAuthorizer plugin. SimpleAclAuthorizer is the default
authorization plugin which is part of Apache Kafka. To enable simple authorization, the type field should
be set to simple.

An example of Simple authorization

3.1.6.4. Configuring authorization in Kafka brokers

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Add or edit the authorization property in the Kafka.spec.kafka resource. For example:

...
authorization:
 type: simple
...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 authorization:
 type: simple
 # ...
 zookeeper:
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

63

2. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional resources

For more information about the supported authorization methods, see authorization reference.

For more information about the schema for Kafka, see Kafka schema reference.

3.1.7. Zookeeper replicas

Zookeeper clusters or ensembles usually run with an odd number of nodes, typically three, five, or seven.

The majority of nodes must be available in order to maintain an effective quorum. If the Zookeeper
cluster loses its quorum, it will stop responding to clients and the Kafka brokers will stop working. Having
a stable and highly available Zookeeper cluster is crucial for AMQ Streams.

Three-node cluster

A three-node Zookeeper cluster requires at least two nodes to be up and running in order to
maintain the quorum. It can tolerate only one node being unavailable.

Five-node cluster

A five-node Zookeeper cluster requires at least three nodes to be up and running in order to
maintain the quorum. It can tolerate two nodes being unavailable.

Seven-node cluster

A seven-node Zookeeper cluster requires at least four nodes to be up and running in order to
maintain the quorum. It can tolerate three nodes being unavailable.

NOTE

For development purposes, it is also possible to run Zookeeper with a single node.

Having more nodes does not necessarily mean better performance, as the costs to maintain the quorum
will rise with the number of nodes in the cluster. Depending on your availability requirements, you can
decide for the number of nodes to use.

3.1.7.1. Number of Zookeeper nodes

The number of Zookeeper nodes can be configured using the replicas property in
Kafka.spec.zookeeper.

An example showing replicas configuration

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

64

3.1.7.2. Changing the number of Zookeeper replicas

Prerequisites

An OpenShift cluster is available.

The Cluster Operator is running.

Procedure

1. Open the YAML configuration file that contains the Kafka resource specifying the cluster
deployment.

2. In the spec.zookeeper.replicas property in the Kafka resource, enter the number of replicated
Zookeeper servers. For example:

3. Apply the new configuration to create or update the resource.
On OpenShift, use oc apply:

where kafka.yaml is the YAML configuration file for the resource that you want to configure;
for example, kafka-persistent.yaml.

3.1.8. Zookeeper configuration

AMQ Streams allows you to customize the configuration of Apache Zookeeper nodes. You can specify
and configure most of the options listed in the Zookeeper documentation.

Options which cannot be configured are those related to the following areas:

Security (Encryption, Authentication, and Authorization)

Listener configuration

Configuration of data directories

Zookeeper cluster composition

 # ...
 replicas: 3
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 replicas: 3
 # ...

oc apply -f kafka.yaml

CHAPTER 3. DEPLOYMENT CONFIGURATION

65

http://zookeeper.apache.org/doc/r3.4.13/zookeeperAdmin.html

These options are automatically configured by AMQ Streams.

3.1.8.1. Zookeeper configuration

Zookeeper nodes are configured using the config property in Kafka.spec.zookeeper. This property
contains the Zookeeper configuration options as keys. The values can be described using one of the
following JSON types:

String

Number

Boolean

Users can specify and configure the options listed in Zookeeper documentation with the exception of
those options which are managed directly by AMQ Streams. Specifically, all configuration options with
keys equal to or starting with one of the following strings are forbidden:

server.

dataDir

dataLogDir

clientPort

authProvider

quorum.auth

requireClientAuthScheme

When one of the forbidden options is present in the config property, it is ignored and a warning
message is printed to the Custer Operator log file. All other options are passed to Zookeeper.

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object.
When invalid configuration is provided, the Zookeeper cluster might not start or might
become unstable. In such cases, the configuration in the Kafka.spec.zookeeper.config
object should be fixed and the cluster operator will roll out the new configuration to all
Zookeeper nodes.

Selected options have default values:

timeTick with default value 2000

initLimit with default value 5

syncLimit with default value 2

autopurge.purgeInterval with default value 1

These options will be automatically configured when they are not present in the
Kafka.spec.zookeeper.config property.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

66

http://zookeeper.apache.org/doc/r3.4.13/zookeeperAdmin.html

An example showing Zookeeper configuration

3.1.8.2. Configuring Zookeeper

Prerequisites

An OpenShift cluster is available.

The Cluster Operator is running.

Procedure

1. Open the YAML configuration file that contains the Kafka resource specifying the cluster
deployment.

2. In the spec.zookeeper.config property in the Kafka resource, enter one or more Zookeeper
configuration settings. For example:

3. Apply the new configuration to create or update the resource.
On OpenShift, use oc apply:

where kafka.yaml is the YAML configuration file for the resource that you want to configure;
for example, kafka-persistent.yaml.

3.1.9. Zookeeper connection

Zookeeper services are secured with encryption and authentication and are not intended to be used by

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 config:
 autopurge.snapRetainCount: 3
 autopurge.purgeInterval: 1
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 config:
 autopurge.snapRetainCount: 3
 autopurge.purgeInterval: 1
 # ...

oc apply -f kafka.yaml

CHAPTER 3. DEPLOYMENT CONFIGURATION

67

Zookeeper services are secured with encryption and authentication and are not intended to be used by
external applications that are not part of AMQ Streams.

However, if you want to use Kafka CLI tools that require a connection to Zookeeper, such as the kafka-
topics tool, you can use a terminal inside a Kafka container and connect to the local end of the TLS
tunnel to Zookeeper by using localhost:2181 as the Zookeeper address.

3.1.9.1. Connecting to Zookeeper from a terminal

Open a terminal inside a Kafka container to use Kafka CLI tools that require a Zookeeper connection.

Prerequisites

An OpenShift cluster is available.

A kafka cluster is running.

The Cluster Operator is running.

Procedure

1. Open the terminal using the OpenShift console or run the exec command from your CLI.
For example:

Be sure to use localhost:2181.

You can now run Kafka commands to Zookeeper.

3.1.10. Entity Operator

The Entity Operator is responsible for managing different entities in a running Kafka cluster. The
currently supported entities are:

Kafka topics

managed by the Topic Operator.

Kafka users

managed by the User Operator

Both Topic and User Operators can be deployed on their own. But the easiest way to deploy them is
together with the Kafka cluster as part of the Entity Operator. The Entity Operator can include either
one or both of them depending on the configuration. They will be automatically configured to manage
the topics and users of the Kafka cluster with which they are deployed.

For more information about Topic Operator, see Section 4.2, “Topic Operator” . For more information
about how to use Topic Operator to create or delete topics, see Chapter 5, Using the Topic Operator .

3.1.10.1. Configuration

The Entity Operator can be configured using the entityOperator property in Kafka.spec

The entityOperator property supports several sub-properties:

oc exec -ti my-cluster-kafka-0 -- bin/kafka-topics.sh --list --zookeeper localhost:2181

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

68

tlsSidecar

topicOperator

userOperator

template

The tlsSidecar property can be used to configure the TLS sidecar container which is used to
communicate with Zookeeper. For more details about configuring the TLS sidecar, see Section 3.1.18,
“TLS sidecar”.

The template property can be used to configure details of the Entity Operator pod, such as labels,
annotations, affinity, tolerations and so on.

The topicOperator property contains the configuration of the Topic Operator. When this option is
missing, the Entity Operator is deployed without the Topic Operator.

The userOperator property contains the configuration of the User Operator. When this option is
missing, the Entity Operator is deployed without the User Operator.

Example of basic configuration enabling both operators

When both topicOperator and userOperator properties are missing, the Entity Operator will be not
deployed.

3.1.10.1.1. Topic Operator

Topic Operator deployment can be configured using additional options inside the topicOperator object.
The following options are supported:

watchedNamespace

The OpenShift namespace in which the topic operator watches for KafkaTopics. Default is the
namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 90.

zookeeperSessionTimeoutSeconds

The Zookeeper session timeout in seconds. Default 20.

topicMetadataMaxAttempts

The number of attempts at getting topic metadata from Kafka. The time between each attempt is

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator: {}
 userOperator: {}

CHAPTER 3. DEPLOYMENT CONFIGURATION

69

The number of attempts at getting topic metadata from Kafka. The time between each attempt is
defined as an exponential back-off. Consider increasing this value when topic creation could take
more time due to the number of partitions or replicas. Default 6.

image

The image property can be used to configure the container image which will be used. For more
details about configuring custom container images, see Section 3.1.17, “Container images”.

resources

The resources property configures the amount of resources allocated to the Topic Operator. For
more details about resource request and limit configuration, see Section 3.1.11, “CPU and memory
resources”.

logging

The logging property configures the logging of the Topic Operator.
The Topic Operator has its own configurable logger:

rootLogger.level

Example of Topic Operator configuration

3.1.10.1.2. User Operator

User Operator deployment can be configured using additional options inside the userOperator object.
The following options are supported:

watchedNamespace

The OpenShift namespace in which the topic operator watches for KafkaUsers. Default is the
namespace where the Kafka cluster is deployed.

reconciliationIntervalSeconds

The interval between periodic reconciliations in seconds. Default 120.

zookeeperSessionTimeoutSeconds

The Zookeeper session timeout in seconds. Default 6.

image

The image property can be used to configure the container image which will be used. For more
details about configuring custom container images, see Section 3.1.17, “Container images”.

resources

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

70

The resources property configures the amount of resources allocated to the User Operator. For
more details about resource request and limit configuration, see Section 3.1.11, “CPU and memory
resources”.

logging

The logging property configures the logging of the User Operator.
The User Operator has its own configurable logger:

rootLogger.level

Example of Topic Operator configuration

3.1.10.2. Configuring Entity Operator

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the entityOperator property in the Kafka resource. For example:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 # ...
 userOperator:
 watchedNamespace: my-user-namespace
 reconciliationIntervalSeconds: 60
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 entityOperator:
 topicOperator:
 watchedNamespace: my-topic-namespace
 reconciliationIntervalSeconds: 60

CHAPTER 3. DEPLOYMENT CONFIGURATION

71

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.11. CPU and memory resources

For every deployed container, AMQ Streams allows you to request specific resources and define the
maximum consumption of those resources.

AMQ Streams supports two types of resources:

CPU

Memory

AMQ Streams uses the OpenShift syntax for specifying CPU and memory resources.

3.1.11.1. Resource limits and requests

Resource limits and requests are configured using the resources property in the following resources:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

Additional resources

For more information about managing computing resources on OpenShift, see Managing
Compute Resources for Containers.

3.1.11.1.1. Resource requests

Requests specify the resources to reserve for a given container. Reserving the resources ensures that
they are always available.

IMPORTANT

 userOperator:
 watchedNamespace: my-user-namespace
 reconciliationIntervalSeconds: 60

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

72

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

IMPORTANT

If the resource request is for more than the available free resources in the OpenShift
cluster, the pod is not scheduled.

Resources requests are specified in the requests property. Resources requests currently supported by
AMQ Streams:

cpu

memory

A request may be configured for one or more supported resources.

Example resource request configuration with all resources

3.1.11.1.2. Resource limits

Limits specify the maximum resources that can be consumed by a given container. The limit is not
reserved and might not always be available. A container can use the resources up to the limit only when
they are available. Resource limits should be always higher than the resource requests.

Resource limits are specified in the limits property. Resource limits currently supported by AMQ
Streams:

cpu

memory

A resource may be configured for one or more supported limits.

Example resource limits configuration

3.1.11.1.3. Supported CPU formats

CPU requests and limits are supported in the following formats:

Number of CPU cores as integer (5 CPU core) or decimal (2.5 CPU core).

Number or millicpus / millicores (100m) where 1000 millicores is the same 1 CPU core.

...
resources:
 requests:
 cpu: 12
 memory: 64Gi
...

...
resources:
 limits:
 cpu: 12
 memory: 64Gi
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

73

Example CPU units

NOTE

The computing power of 1 CPU core may differ depending on the platform where
OpenShift is deployed.

Additional resources

For more information on CPU specification, see the Meaning of CPU.

3.1.11.1.4. Supported memory formats

Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes.

To specify memory in megabytes, use the M suffix. For example 1000M.

To specify memory in gigabytes, use the G suffix. For example 1G.

To specify memory in mebibytes, use the Mi suffix. For example 1000Mi.

To specify memory in gibibytes, use the Gi suffix. For example 1Gi.

An example of using different memory units

Additional resources

For more details about memory specification and additional supported units, see Meaning of
memory.

3.1.11.2. Configuring resource requests and limits

Prerequisites

An OpenShift cluster

A running Cluster Operator

...
resources:
 requests:
 cpu: 500m
 limits:
 cpu: 2.5
...

...
resources:
 requests:
 memory: 512Mi
 limits:
 memory: 2Gi
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

74

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory

Procedure

1. Edit the resources property in the resource specifying the cluster deployment. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional resources

For more information about the schema, see Resources schema reference.

3.1.12. Logging

This section provides information on loggers and how to configure log levels.

You can set the log levels by specifying the loggers and their levels directly (inline) or use a custom
(external) config map.

3.1.12.1. Kafka loggers

Kafka has its own configurable loggers:

kafka.root.logger.level

log4j.logger.org.I0Itec.zkclient.ZkClient

log4j.logger.org.apache.zookeeper

log4j.logger.kafka

log4j.logger.org.apache.kafka

log4j.logger.kafka.request.logger

log4j.logger.kafka.network.Processor

log4j.logger.kafka.server.KafkaApis

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 resources:
 requests:
 cpu: "8"
 memory: 64Gi
 limits:
 cpu: "12"
 memory: 128Gi
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

75

log4j.logger.kafka.network.RequestChannel$

log4j.logger.kafka.controller

log4j.logger.kafka.log.LogCleaner

log4j.logger.state.change.logger

log4j.logger.kafka.authorizer.logger

Zookeeper

zookeeper.root.logger

3.1.12.2. Specifying inline logging

Procedure

1. Edit the YAML file to specify the loggers and logging level for the required components.
For example, the logging level here is set to INFO:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 logging:
 type: inline
 loggers:
 logger.name: "INFO"
 # ...
 zookeeper:
 # ...
 logging:
 type: inline
 loggers:
 logger.name: "INFO"
 # ...
 entityOperator:
 # ...
 topicOperator:
 # ...
 logging:
 type: inline
 loggers:
 logger.name: "INFO"
 # ...
 # ...
 userOperator:
 # ...
 logging:
 type: inline
 loggers:
 logger.name: "INFO"
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

76

You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

For more information about the log levels, see the log4j manual.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

3.1.12.3. Specifying an external ConfigMap for logging

Procedure

1. Edit the YAML file to specify the name of the ConfigMap to use for the required components.
For example:

Remember to place your custom ConfigMap under the log4j.properties or log4j2.properties
key.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

Garbage collector (GC) logging can also be enabled (or disabled). For more information on GC, see
Section 3.1.16.1, “JVM configuration”

3.1.13. Kafka rack awareness

The rack awareness feature in AMQ Streams helps to spread the Kafka broker pods and Kafka topic
replicas across different racks. Enabling rack awareness helps to improve availability of Kafka brokers
and the topics they are hosting.

NOTE

"Rack" might represent an availability zone, data center, or an actual rack in your data
center.

3.1.13.1. Configuring rack awareness in Kafka brokers

Kafka rack awareness can be configured in the rack property of Kafka.spec.kafka. The rack object has
one mandatory field named topologyKey. This key needs to match one of the labels assigned to the
OpenShift cluster nodes. The label is used by OpenShift when scheduling the Kafka broker pods to

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 logging:
 type: external
 name: customConfigMap
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

77

https://logging.apache.org/log4j/2.x/manual/customloglevels.html

nodes. If the OpenShift cluster is running on a cloud provider platform, that label should represent the
availability zone where the node is running. Usually, the nodes are labeled with failure-
domain.beta.kubernetes.io/zone that can be easily used as the topologyKey value. This has the effect
of spreading the broker pods across zones, and also setting the brokers' broker.rack configuration
parameter inside Kafka broker.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Consult your OpenShift administrator regarding the node label that represents the zone / rack
into which the node is deployed.

2. Edit the rack property in the Kafka resource using the label as the topology key.

3. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional Resources

For information about Configuring init container image for Kafka rack awareness, see
Section 3.1.17, “Container images”.

3.1.14. Healthchecks

Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe
fails, OpenShift assumes that the application is not healthy and attempts to fix it.

OpenShift supports two types of Healthcheck probes:

Liveness probes

Readiness probes

For more details about the probes, see Configure Liveness and Readiness Probes . Both types of probes
are used in AMQ Streams components.

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 rack:
 topologyKey: failure-domain.beta.kubernetes.io/zone
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

78

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Users can configure selected options for liveness and readiness probes.

3.1.14.1. Healthcheck configurations

Liveness and readiness probes can be configured using the livenessProbe and readinessProbe
properties in following resources:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

Both livenessProbe and readinessProbe support two additional options:

initialDelaySeconds

timeoutSeconds

The initialDelaySeconds property defines the initial delay before the probe is tried for the first time.
Default is 15 seconds.

The timeoutSeconds property defines timeout of the probe. Default is 5 seconds.

An example of liveness and readiness probe configuration

3.1.14.2. Configuring healthchecks

Prerequisites

An OpenShift cluster

A running Cluster Operator

...
readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

79

Procedure

1. Edit the livenessProbe or readinessProbe property in the Kafka, KafkaConnect or
KafkaConnectS2I resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.15. Prometheus metrics

AMQ Streams supports Prometheus metrics using Prometheus JMX exporter to convert the JMX
metrics supported by Apache Kafka and Zookeeper to Prometheus metrics. When metrics are enabled,
they are exposed on port 9404.

3.1.15.1. Metrics configuration

Prometheus metrics are enabled by configuring the metrics property in following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaConnectS2I.spec

When the metrics property is not defined in the resource, the Prometheus metrics will be disabled. To
enable Prometheus metrics export without any further configuration, you can set it to an empty object
({}).

Example of enabling metrics without any further configuration

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 # ...
 zookeeper:
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

80

https://github.com/prometheus/jmx_exporter

The metrics property might contain additional configuration for the Prometheus JMX exporter.

Example of enabling metrics with additional Prometheus JMX Exporter configuration

3.1.15.2. Configuring Prometheus metrics

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the metrics property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

spec:
 kafka:
 # ...
 metrics: {}
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metrics:
 lowercaseOutputName: true
 rules:
 - pattern: "kafka.server<type=(.+), name=(.+)PerSec\\w*><>Count"
 name: "kafka_server_$1_$2_total"
 - pattern: "kafka.server<type=(.+), name=(.+)PerSec\\w*, topic=(.+)><>Count"
 name: "kafka_server_$1_$2_total"
 labels:
 topic: "$3"
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

81

https://github.com/prometheus/jmx_exporter

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.16. JVM Options

Apache Kafka and Apache Zookeeper run inside a Java Virtual Machine (JVM). JVM configuration
options optimize the performance for different platforms and architectures. AMQ Streams allows you to
configure some of these options.

3.1.16.1. JVM configuration

JVM options can be configured using the jvmOptions property in following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaConnectS2I.spec

Only a selected subset of available JVM options can be configured. The following options are supported:

-Xms and -Xmx

-Xms configures the minimum initial allocation heap size when the JVM starts. -Xmx configures the
maximum heap size.

NOTE

The units accepted by JVM settings such as -Xmx and -Xms are those accepted by the
JDK java binary in the corresponding image. Accordingly, 1g or 1G means 1,073,741,824
bytes, and Gi is not a valid unit suffix. This is in contrast to the units used for memory
requests and limits, which follow the OpenShift convention where 1G means
1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes

The default values used for -Xms and -Xmx depends on whether there is a memory request limit
configured for the container:

If there is a memory limit then the JVM’s minimum and maximum memory will be set to a value
corresponding to the limit.

If there is no memory limit then the JVM’s minimum memory will be set to 128M and the JVM’s
maximum memory will not be defined. This allows for the JVM’s memory to grow as-needed,
which is ideal for single node environments in test and development.

IMPORTANT

 metrics:
 lowercaseOutputName: true
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

82

IMPORTANT

Setting -Xmx explicitly requires some care:

The JVM’s overall memory usage will be approximately 4 × the maximum heap, as
configured by -Xmx.

If -Xmx is set without also setting an appropriate OpenShift memory limit, it is
possible that the container will be killed should the OpenShift node experience
memory pressure (from other Pods running on it).

If -Xmx is set without also setting an appropriate OpenShift memory request, it is
possible that the container will be scheduled to a node with insufficient memory.
In this case, the container will not start but crash (immediately if -Xms is set to -
Xmx, or some later time if not).

When setting -Xmx explicitly, it is recommended to:

set the memory request and the memory limit to the same value,

use a memory request that is at least 4.5 × the -Xmx,

consider setting -Xms to the same value as -Xms.

IMPORTANT

Containers doing lots of disk I/O (such as Kafka broker containers) will need to leave
some memory available for use as operating system page cache. On such containers, the
requested memory should be significantly higher than the memory used by the JVM.

Example fragment configuring -Xmx and -Xms

In the above example, the JVM will use 2 GiB (=2,147,483,648 bytes) for its heap. Its total memory
usage will be approximately 8GiB.

Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to
allocate memory after startup, at the cost of possibly allocating more heap than is really needed. For
Kafka and Zookeeper pods such allocation could cause unwanted latency. For Kafka Connect avoiding
over allocation may be the most important concern, especially in distributed mode where the effects of
over-allocation will be multiplied by the number of consumers.

-server

-server enables the server JVM. This option can be set to true or false.

Example fragment configuring -server

...
jvmOptions:
 "-Xmx": "2g"
 "-Xms": "2g"
...

...
jvmOptions:

CHAPTER 3. DEPLOYMENT CONFIGURATION

83

NOTE

When neither of the two options (-server and -XX) is specified, the default Apache Kafka
configuration of KAFKA_JVM_PERFORMANCE_OPTS will be used.

-XX

-XX object can be used for configuring advanced runtime options of a JVM. The -server and -XX
options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS option of Apache Kafka.

Example showing the use of the -XX object

The example configuration above will result in the following JVM options:

-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -
XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC

NOTE

When neither of the two options (-server and -XX) is specified, the default Apache Kafka
configuration of KAFKA_JVM_PERFORMANCE_OPTS will be used.

3.1.16.1.1. Garbage collector logging

The jvmOptions section also allows you to enable and disable garbage collector (GC) logging. GC
logging is enabled by default. To disable it, set the gcLoggingEnabled property as follows:

Example of disabling GC logging

3.1.16.2. Configuring JVM options

Prerequisites

An OpenShift cluster

A running Cluster Operator

 "-server": true
...

jvmOptions:
 "-XX":
 "UseG1GC": true,
 "MaxGCPauseMillis": 20,
 "InitiatingHeapOccupancyPercent": 35,
 "ExplicitGCInvokesConcurrent": true,
 "UseParNewGC": false

...
jvmOptions:
 gcLoggingEnabled: false
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

84

Procedure

1. Edit the jvmOptions property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.17. Container images

AMQ Streams allows you to configure container images which will be used for its components.
Overriding container images is recommended only in special situations, where you need to use a
different container registry. For example, because your network does not allow access to the container
repository used by AMQ Streams. In such a case, you should either copy the AMQ Streams images or
build them from the source. If the configured image is not compatible with AMQ Streams images, it
might not work properly.

3.1.17.1. Container image configurations

Container image which should be used for given components can be specified using the image property
in:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 jvmOptions:
 "-Xmx": "8g"
 "-Xms": "8g"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

85

KafkaBridge.spec

3.1.17.1.1. Configuring the Kafka.spec.kafka.image property

The Kafka.spec.kafka.image property functions differently from the others, because AMQ Streams
supports multiple versions of Kafka, each requiring the own image. The STRIMZI_KAFKA_IMAGES
environment variable of the Cluster Operator configuration is used to provide a mapping between Kafka
versions and the corresponding images. This is used in combination with the Kafka.spec.kafka.image
and Kafka.spec.kafka.version properties as follows:

If neither Kafka.spec.kafka.image nor Kafka.spec.kafka.version are given in the custom
resource then the version will default to the Cluster Operator’s default Kafka version, and the
image will be the one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

If Kafka.spec.kafka.image is given but Kafka.spec.kafka.version is not then the given image
will be used and the version will be assumed to be the Cluster Operator’s default Kafka version.

If Kafka.spec.kafka.version is given but Kafka.spec.kafka.image is not then image will be the
one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

Both Kafka.spec.kafka.version and Kafka.spec.kafka.image are given the given image will be
used, and it will be assumed to contain a Kafka broker with the given version.

WARNING

It is best to provide just Kafka.spec.kafka.version and leave the
Kafka.spec.kafka.image property unspecified. This reduces the chances of making
a mistake in configuring the Kafka resource. If you need to change the images used
for different versions of Kafka, it is better to configure the Cluster Operator’s
STRIMZI_KAFKA_IMAGES environment variable.

3.1.17.1.2. Configuring the image property in other resources

For the image property in the other custom resources, the given value will be used during deployment. If
the image property is missing, the image specified in the Cluster Operator configuration will be used. If
the image name is not defined in the Cluster Operator configuration, then the default value will be used.

For Kafka broker TLS sidecar:

1. Container image specified in the STRIMZI_DEFAULT_TLS_SIDECAR_KAFKA_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper nodes:

1. Container image specified in the STRIMZI_DEFAULT_ZOOKEEPER_IMAGE environment
variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper node TLS sidecar:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

86

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ZOOKEEPER_IMAGE environment variable from
the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Topic Operator:

1. Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For User Operator:

1. Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For Entity Operator TLS sidecar:

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE environment variable
from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect with Source2image support:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_S2I_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

WARNING

Overriding container images is recommended only in special situations, where you
need to use a different container registry. For example, because your network does
not allow access to the container repository used by AMQ Streams. In such case,
you should either copy the AMQ Streams images or build them from source. In case
the configured image is not compatible with AMQ Streams images, it might not
work properly.

Example of container image configuration

CHAPTER 3. DEPLOYMENT CONFIGURATION

87

3.1.17.2. Configuring container images

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the image property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.18. TLS sidecar

A sidecar is a container that runs in a pod but serves a supporting purpose. In AMQ Streams, the TLS
sidecar uses TLS to encrypt and decrypt all communication between the various components and
Zookeeper. Zookeeper does not have native TLS support.

The TLS sidecar is used in:

Kafka brokers

Zookeeper nodes

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

88

Entity Operator

3.1.18.1. TLS sidecar configuration

The TLS sidecar can be configured using the tlsSidecar property in:

Kafka.spec.kafka

Kafka.spec.zookeeper

Kafka.spec.entityOperator

The TLS sidecar supports the following additional options:

image

resources

logLevel

readinessProbe

livenessProbe

The resources property can be used to specify the memory and CPU resources allocated for the TLS
sidecar.

The image property can be used to configure the container image which will be used. For more details
about configuring custom container images, see Section 3.1.17, “Container images”.

The logLevel property is used to specify the logging level. Following logging levels are supported:

emerg

alert

crit

err

warning

notice

info

debug

The default value is notice.

For more information about configuring the readinessProbe and livenessProbe properties for the
healthchecks, see Section 3.1.14.1, “Healthcheck configurations” .

Example of TLS sidecar configuration

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka

CHAPTER 3. DEPLOYMENT CONFIGURATION

89

3.1.18.2. Configuring TLS sidecar

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the tlsSidecar property in the Kafka resource. For example:

metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 tlsSidecar:
 image: my-org/my-image:latest
 resources:
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 logLevel: debug
 readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 tlsSidecar:
 resources:
 requests:
 cpu: 200m
 memory: 64Mi
 limits:
 cpu: 500m
 memory: 128Mi
 # ...
 zookeeper:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

90

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.19. Configuring pod scheduling

IMPORTANT

When two application are scheduled to the same OpenShift node, both applications
might use the same resources like disk I/O and impact performance. That can lead to
performance degradation. Scheduling Kafka pods in a way that avoids sharing nodes with
other critical workloads, using the right nodes or dedicated a set of nodes only for Kafka
are the best ways how to avoid such problems.

3.1.19.1. Scheduling pods based on other applications

3.1.19.1.1. Avoid critical applications to share the node

Pod anti-affinity can be used to ensure that critical applications are never scheduled on the same disk.
When running Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers
do not share the nodes with other workloads like databases.

3.1.19.1.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.1.19.1.3. Configuring pod anti-affinity in Kafka components

Prerequisites

An OpenShift cluster

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

91

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.19.2. Scheduling pods to specific nodes

3.1.19.2.1. Node scheduling

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to
create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

3.1.19.2.2. Affinity

Affinity can be configured using the affinity property in following resources:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

92

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.1.19.2.3. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
On OpenShift this can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

oc label node your-node node-type=fast-network

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:

CHAPTER 3. DEPLOYMENT CONFIGURATION

93

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.19.3. Using dedicated nodes

3.1.19.3.1. Dedicated nodes

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Taints can be used to create dedicated nodes. Running Kafka and its components on dedicated nodes
can have many advantages. There will be no other applications running on the same nodes which could
cause disturbance or consume the resources needed for Kafka. That can lead to improved performance
and stability.

To schedule Kafka pods on the dedicated nodes, configure node affinity and tolerations.

3.1.19.3.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.1.19.3.3. Tolerations

Tolerations can be configured using the tolerations property in following resources:

 - fast-network
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

94

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The format of the tolerations property follows the OpenShift specification. For more details, see the
Kubernetes taints and tolerations .

3.1.19.3.4. Setting up dedicated nodes and scheduling pods on them

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
On OpenShift this can be done using oc adm taint:

4. Additionally, add a label to the selected nodes as well.
On OpenShift this can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

oc adm taint node your-node dedicated=Kafka:NoSchedule

oc label node your-node dedicated=Kafka

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 tolerations:
 - key: "dedicated"
 operator: "Equal"
 value: "Kafka"
 effect: "NoSchedule"

CHAPTER 3. DEPLOYMENT CONFIGURATION

95

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

6. Create or update the resource.
On OpenShift this can be done using oc apply:

3.1.20. Performing a rolling update of a Kafka cluster

This procedure describes how to manually trigger a rolling update of an existing Kafka cluster by using an
OpenShift annotation.

Prerequisites

A running Kafka cluster.

A running Cluster Operator.

Procedure

1. Find the name of the StatefulSet that controls the Kafka pods you want to manually update.
For example, if your Kafka cluster is named my-cluster, the corresponding StatefulSet is named
my-cluster-kafka.

2. Annotate a StatefulSet resource in OpenShift.
On OpenShift, use oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default). A rolling update of all
pods within the annotated StatefulSet is triggered, as long as the annotation was detected by
the reconciliation process. When the rolling update of all the pods is complete, the annotation is
removed from the StatefulSet.

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about deploying the Kafka cluster on OpenShift, see Section 2.4.1,
“Deploying the Kafka cluster to OpenShift”.

3.1.21. Performing a rolling update of a Zookeeper cluster

 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: dedicated
 operator: In
 values:
 - Kafka
 # ...
 zookeeper:
 # ...

oc apply -f your-file

oc annotate statefulset cluster-name-kafka strimzi.io/manual-rolling-update=true

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

96

This procedure describes how to manually trigger a rolling update of an existing Zookeeper cluster by
using an OpenShift annotation.

Prerequisites

A running Zookeeper cluster.

A running Cluster Operator.

Procedure

1. Find the name of the StatefulSet that controls the Zookeeper pods you want to manually
update.
For example, if your Kafka cluster is named my-cluster, the corresponding StatefulSet is named
my-cluster-zookeeper.

2. Annotate a StatefulSet resource in OpenShift.
On OpenShift, use oc annotate:

3. Wait for the next reconciliation to occur (every two minutes by default). A rolling update of all
pods within the annotated StatefulSet is triggered, as long as the annotation was detected by
the reconciliation process. When the rolling update of all the pods is complete, the annotation is
removed from the StatefulSet.

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about deploying the Zookeeper cluster, see Section 2.4.1, “Deploying the
Kafka cluster to OpenShift”.

3.1.22. Scaling clusters

3.1.22.1. Scaling Kafka clusters

3.1.22.1.1. Adding brokers to a cluster

The primary way of increasing throughput for a topic is to increase the number of partitions for that
topic. That works because the extra partitions allow the load of the topic to be shared between the
different brokers in the cluster. However, in situations where every broker is constrained by a particular
resource (typically I/O) using more partitions will not result in increased throughput. Instead, you need to
add brokers to the cluster.

When you add an extra broker to the cluster, Kafka does not assign any partitions to it automatically. You
must decide which partitions to move from the existing brokers to the new broker.

Once the partitions have been redistributed between all the brokers, the resource utilization of each
broker should be reduced.

3.1.22.1.2. Removing brokers from a cluster

Because AMQ Streams uses StatefulSets to manage broker pods, you cannot remove any pod from the

oc annotate statefulset cluster-name-zookeeper strimzi.io/manual-rolling-update=true

CHAPTER 3. DEPLOYMENT CONFIGURATION

97

cluster. You can only remove one or more of the highest numbered pods from the cluster. For example,
in a cluster of 12 brokers the pods are named cluster-name-kafka-0 up to cluster-name-kafka-11. If
you decide to scale down by one broker, the cluster-name-kafka-11 will be removed.

Before you remove a broker from a cluster, ensure that it is not assigned to any partitions. You should
also decide which of the remaining brokers will be responsible for each of the partitions on the broker
being decommissioned. Once the broker has no assigned partitions, you can scale the cluster down
safely.

3.1.22.2. Partition reassignment

The Topic Operator does not currently support reassigning replicas to different brokers, so it is
necessary to connect directly to broker pods to reassign replicas to brokers.

Within a broker pod, the kafka-reassign-partitions.sh utility allows you to reassign partitions to
different brokers.

It has three different modes:

--generate

Takes a set of topics and brokers and generates a reassignment JSON file which will result in the
partitions of those topics being assigned to those brokers. Because this operates on whole topics, it
cannot be used when you just need to reassign some of the partitions of some topics.

--execute

Takes a reassignment JSON file and applies it to the partitions and brokers in the cluster. Brokers
that gain partitions as a result become followers of the partition leader. For a given partition, once
the new broker has caught up and joined the ISR (in-sync replicas) the old broker will stop being a
follower and will delete its replica.

--verify

Using the same reassignment JSON file as the --execute step, --verify checks whether all of the
partitions in the file have been moved to their intended brokers. If the reassignment is complete, --
verify also removes any throttles that are in effect. Unless removed, throttles will continue to affect
the cluster even after the reassignment has finished.

It is only possible to have one reassignment running in a cluster at any given time, and it is not possible
to cancel a running reassignment. If you need to cancel a reassignment, wait for it to complete and then
perform another reassignment to revert the effects of the first reassignment. The kafka-reassign-
partitions.sh will print the reassignment JSON for this reversion as part of its output. Very large
reassignments should be broken down into a number of smaller reassignments in case there is a need to
stop in-progress reassignment.

3.1.22.2.1. Reassignment JSON file

The reassignment JSON file has a specific structure:

{
 "version": 1,
 "partitions": [
 <PartitionObjects>
]
}

Where <PartitionObjects> is a comma-separated list of objects like:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

98

{
 "topic": <TopicName>,
 "partition": <Partition>,
 "replicas": [<AssignedBrokerIds>]
}

NOTE

Although Kafka also supports a "log_dirs" property this should not be used in Red Hat
AMQ Streams.

The following is an example reassignment JSON file that assigns topic topic-a, partition 4 to brokers 2,
4 and 7, and topic topic-b partition 2 to brokers 1, 5 and 7:

Partitions not included in the JSON are not changed.

3.1.22.2.2. Reassigning partitions between JBOD volumes

When using JBOD storage in your Kafka cluster, you can choose to reassign the partitions between
specific volumes and their log directories (each volume has a single log directory). To reassign a
partition to a specific volume, add the log_dirs option to <PartitionObjects> in the reassignment JSON
file.

{
 "topic": <TopicName>,
 "partition": <Partition>,
 "replicas": [<AssignedBrokerIds>],
 "log_dirs": [<AssignedLogDirs>]
}

The log_dirs object should contain the same number of log directories as the number of replicas
specified in the replicas object. The value should be either an absolute path to the log directory, or the
any keyword.

For example:

{
 "topic": "topic-a",

{
 "version": 1,
 "partitions": [
 {
 "topic": "topic-a",
 "partition": 4,
 "replicas": [2,4,7]
 },
 {
 "topic": "topic-b",
 "partition": 2,
 "replicas": [1,5,7]
 }
]
}

CHAPTER 3. DEPLOYMENT CONFIGURATION

99

 "partition": 4,
 "replicas": [2,4,7].
 "log_dirs": ["/var/lib/kafka/data-0/kafka-log2", "/var/lib/kafka/data-0/kafka-log4",
"/var/lib/kafka/data-0/kafka-log7"]
}

3.1.22.3. Generating reassignment JSON files

This procedure describes how to generate a reassignment JSON file that reassigns all the partitions for
a given set of topics using the kafka-reassign-partitions.sh tool.

Prerequisites

A running Cluster Operator

A Kafka resource

A set of topics to reassign the partitions of

Procedure

1. Prepare a JSON file named topics.json that lists the topics to move. It must have the following
structure:

{
 "version": 1,
 "topics": [
 <TopicObjects>
]
}

where <TopicObjects> is a comma-separated list of objects like:

{
 "topic": <TopicName>
}

For example if you want to reassign all the partitions of topic-a and topic-b, you would need to
prepare a topics.json file like this:

2. Copy the topics.json file to one of the broker pods:
On OpenShift:

cat topics.json | oc rsh -c kafka <BrokerPod> /bin/bash -c \
 'cat > /tmp/topics.json'

{
 "version": 1,
 "topics": [
 { "topic": "topic-a"},
 { "topic": "topic-b"}
]
}

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

100

3. Use the kafka-reassign-partitions.sh` command to generate the reassignment JSON.
On OpenShift:

oc rsh -c kafka <BrokerPod> \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --topics-to-move-json-file /tmp/topics.json \
 --broker-list <BrokerList> \
 --generate

For example, to move all the partitions of topic-a and topic-b to brokers 4 and 7

3.1.22.4. Creating reassignment JSON files manually

You can manually create the reassignment JSON file if you want to move specific partitions.

3.1.22.5. Reassignment throttles

Partition reassignment can be a slow process because it involves transferring large amounts of data
between brokers. To avoid a detrimental impact on clients, you can throttle the reassignment process.
This might cause the reassignment to take longer to complete.

If the throttle is too low then the newly assigned brokers will not be able to keep up with records
being published and the reassignment will never complete.

If the throttle is too high then clients will be impacted.

For example, for producers, this could manifest as higher than normal latency waiting for
acknowledgement. For consumers, this could manifest as a drop in throughput caused by higher latency
between polls.

3.1.22.6. Scaling up a Kafka cluster

This procedure describes how to increase the number of brokers in a Kafka cluster.

Prerequisites

An existing Kafka cluster.

A reassignment JSON file named reassignment.json that describes how partitions should be
reassigned to brokers in the enlarged cluster.

Procedure

1. Add as many new brokers as you need by increasing the Kafka.spec.kafka.replicas
configuration option.

2. Verify that the new broker pods have started.

3. Copy the reassignment.json file to the broker pod on which you will later execute the

oc rsh -c kafka _<BrokerPod>_ \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --topics-to-move-json-file /tmp/topics.json \
 --broker-list 4,7 \
 --generate

CHAPTER 3. DEPLOYMENT CONFIGURATION

101

3. Copy the reassignment.json file to the broker pod on which you will later execute the
commands:
On OpenShift:

For example:

4. Execute the partition reassignment using the kafka-reassign-partitions.sh command line tool
from the same broker pod.
On OpenShift:

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

On OpenShift:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a local file (not a file in the
pod) in case you need to revert the reassignment later on. The second JSON object is the
target reassignment you have passed in your reassignment JSON file.

5. If you need to change the throttle during reassignment you can use the same command line
with a different throttled rate. For example:
On OpenShift:

6. Periodically verify whether the reassignment has completed using the kafka-reassign-
partitions.sh command line tool from any of the broker pods. This is the same command as the
previous step but with the --verify option instead of the --execute option.
On OpenShift:

cat reassignment.json | \
 oc rsh -c kafka broker-pod /bin/bash -c \
 'cat > /tmp/reassignment.json'

cat reassignment.json | \
 oc rsh -c kafka my-cluster-kafka-0 /bin/bash -c \
 'cat > /tmp/reassignment.json'

oc rsh -c kafka broker-pod \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --execute

oc rsh -c kafka my-cluster-kafka-0 \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 5000000 \
 --execute

oc rsh -c kafka my-cluster-kafka-0 \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 10000000 \
 --execute

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

102

For example, on OpenShift,

7. The reassignment has finished when the --verify command reports each of the partitions being
moved as completed successfully. This final --verify will also have the effect of removing any
reassignment throttles. You can now delete the revert file if you saved the JSON for reverting
the assignment to their original brokers.

3.1.22.7. Scaling down a Kafka cluster

Additional resources

This procedure describes how to decrease the number of brokers in a Kafka cluster.

Prerequisites

An existing Kafka cluster.

A reassignment JSON file named reassignment.json describing how partitions should be
reassigned to brokers in the cluster once the broker(s) in the highest numbered Pod(s) have
been removed.

Procedure

1. Copy the reassignment.json file to the broker pod on which you will later execute the
commands:
On OpenShift:

For example:

2. Execute the partition reassignment using the kafka-reassign-partitions.sh command line tool
from the same broker pod.
On OpenShift:

oc rsh -c kafka broker-pod \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --verify

oc rsh -c kafka my-cluster-kafka-0 \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --verify

cat reassignment.json | \
 oc rsh -c kafka broker-pod /bin/bash -c \
 'cat > /tmp/reassignment.json'

cat reassignment.json | \
 oc rsh -c kafka my-cluster-kafka-0 /bin/bash -c \
 'cat > /tmp/reassignment.json'

oc rsh -c kafka broker-pod \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \

CHAPTER 3. DEPLOYMENT CONFIGURATION

103

If you are going to throttle replication you can also pass the --throttle option with an inter-
broker throttled rate in bytes per second. For example:

On OpenShift:

This command will print out two reassignment JSON objects. The first records the current
assignment for the partitions being moved. You should save this to a local file (not a file in the
pod) in case you need to revert the reassignment later on. The second JSON object is the
target reassignment you have passed in your reassignment JSON file.

3. If you need to change the throttle during reassignment you can use the same command line
with a different throttled rate. For example:
On OpenShift:

4. Periodically verify whether the reassignment has completed using the kafka-reassign-
partitions.sh command line tool from any of the broker pods. This is the same command as the
previous step but with the --verify option instead of the --execute option.
On OpenShift:

For example, on OpenShift,

5. The reassignment has finished when the --verify command reports each of the partitions being
moved as completed successfully. This final --verify will also have the effect of removing any
reassignment throttles. You can now delete the revert file if you saved the JSON for reverting
the assignment to their original brokers.

6. Once all the partition reassignments have finished, the broker(s) being removed should not
have responsibility for any of the partitions in the cluster. You can verify this by checking that
the broker’s data log directory does not contain any live partition logs. If the log directory on the

 --execute

oc rsh -c kafka my-cluster-kafka-0 \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 5000000 \
 --execute

oc rsh -c kafka my-cluster-kafka-0 \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --throttle 10000000 \
 --execute

oc rsh -c kafka broker-pod \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --verify

oc rsh -c kafka my-cluster-kafka-0 \
 bin/kafka-reassign-partitions.sh --zookeeper localhost:2181 \
 --reassignment-json-file /tmp/reassignment.json \
 --verify

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

104

broker contains a directory that does not match the extended regular expression \.[a-z0-9]-
delete$ then the broker still has live partitions and it should not be stopped.
You can check this by executing the command:

where N is the number of the Pod(s) being deleted.

If the above command prints any output then the broker still has live partitions. In this case,
either the reassignment has not finished, or the reassignment JSON file was incorrect.

7. Once you have confirmed that the broker has no live partitions you can edit the
Kafka.spec.kafka.replicas of your Kafka resource, which will scale down the StatefulSet,
deleting the highest numbered broker Pod(s).

3.1.23. Deleting Kafka nodes manually

Additional resources

This procedure describes how to delete an existing Kafka node by using an OpenShift annotation.
Deleting a Kafka node consists of deleting both the Pod on which the Kafka broker is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss. The following
procedure should only be performed if you have encountered storage issues.

Prerequisites

A running Kafka cluster.

A running Cluster Operator.

Procedure

1. Find the name of the Pod that you want to delete.
For example, if the cluster is named cluster-name, the pods are named cluster-name-
kafka-index, where index starts at zero and ends at the total number of replicas.

2. Annotate the Pod resource in OpenShift.
On OpenShift use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

oc rsh <BrokerN> -c kafka /bin/bash -c \
 "ls -l /var/lib/kafka/kafka-log_<N>_ | grep -E '^d' | grep -vE '[a-zA-Z0-9.-]+\.[a-z0-9]+-
delete$'"

oc annotate pod cluster-name-kafka-index strimzi.io/delete-pod-and-pvc=true

CHAPTER 3. DEPLOYMENT CONFIGURATION

105

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about deploying the Kafka cluster on OpenShift, see Section 2.4.1,
“Deploying the Kafka cluster to OpenShift”.

3.1.24. Deleting Zookeeper nodes manually

This procedure describes how to delete an existing Zookeeper node by using an OpenShift annotation.
Deleting a Zookeeper node consists of deleting both the Pod on which Zookeeper is running and the
related PersistentVolumeClaim (if the cluster was deployed with persistent storage). After deletion,
the Pod and its related PersistentVolumeClaim are recreated automatically.

WARNING

Deleting a PersistentVolumeClaim can cause permanent data loss. The following
procedure should only be performed if you have encountered storage issues.

Prerequisites

A running Zookeeper cluster.

A running Cluster Operator.

Procedure

1. Find the name of the Pod that you want to delete.
For example, if the cluster is named cluster-name, the pods are named cluster-name-
zookeeper-index, where index starts at zero and ends at the total number of replicas.

2. Annotate the Pod resource in OpenShift.
On OpenShift use oc annotate:

3. Wait for the next reconciliation, when the annotated pod with the underlying persistent volume
claim will be deleted and then recreated.

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about deploying the Zookeeper cluster on OpenShift, see Section 2.4.1,
“Deploying the Kafka cluster to OpenShift”.

3.1.25. Maintenance time windows for rolling updates

Maintenance time windows allow you to schedule certain rolling updates of your Kafka and Zookeeper
clusters to start at a convenient time.

oc annotate pod cluster-name-zookeeper-index strimzi.io/delete-pod-and-pvc=true

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

106

3.1.25.1. Maintenance time windows overview

In most cases, the Cluster Operator only updates your Kafka or Zookeeper clusters in response to
changes to the corresponding Kafka resource. This enables you to plan when to apply changes to a
Kafka resource to minimize the impact on Kafka client applications.

However, some updates to your Kafka and Zookeeper clusters can happen without any corresponding
change to the Kafka resource. For example, the Cluster Operator will need to perform a rolling restart if
a CA (Certificate Authority) certificate that it manages is close to expiry.

While a rolling restart of the pods should not affect availability of the service (assuming correct broker
and topic configurations), it could affect performance of the Kafka client applications. Maintenance time
windows allow you to schedule such spontaneous rolling updates of your Kafka and Zookeeper clusters
to start at a convenient time. If maintenance time windows are not configured for a cluster then it is
possible that such spontaneous rolling updates will happen at an inconvenient time, such as during a
predictable period of high load.

3.1.25.2. Maintenance time window definition

You configure maintenance time windows by entering an array of strings in the
Kafka.spec.maintenanceTimeWindows property. Each string is a cron expression interpreted as being
in UTC (Coordinated Universal Time, which for practical purposes is the same as Greenwich Mean
Time).

The following example configures a single maintenance time window that starts at midnight and ends at
01:59am (UTC), on Sundays, Mondays, Tuesdays, Wednesdays, and Thursdays:

In practice, maintenance windows should be set in conjunction with the
Kafka.spec.clusterCa.renewalDays and Kafka.spec.clientsCa.renewalDays properties of the Kafka
resource, to ensure that the necessary CA certificate renewal can be completed in the configured
maintenance time windows.

NOTE

AMQ Streams does not schedule maintenance operations exactly according to the given
windows. Instead, for each reconciliation, it checks whether a maintenance window is
currently "open". This means that the start of maintenance operations within a given time
window can be delayed by up to the Cluster Operator reconciliation interval. Maintenance
time windows must therefore be at least this long.

Additional resources

For more information about the Cluster Operator configuration, see Section 4.1.6, “Cluster
Operator Configuration”.

3.1.25.3. Configuring a maintenance time window

You can configure a maintenance time window for rolling updates triggered by supported processes.

...
maintenanceTimeWindows:
 - "* * 0-1 ? * SUN,MON,TUE,WED,THU *"
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

107

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html

Prerequisites

An OpenShift cluster.

The Cluster Operator is running.

Procedure

1. Add or edit the maintenanceTimeWindows property in the Kafka resource. For example to
allow maintenance between 0800 and 1059 and between 1400 and 1559 you would set the
maintenanceTimeWindows as shown below:

2. Create or update the resource.
On OpenShift, use oc apply:

Additional resources

Performing a rolling update of a Kafka cluster, see Section 3.1.20, “Performing a rolling update of
a Kafka cluster”

Performing a rolling update of a Zookeeper cluster, see Section 3.1.21, “Performing a rolling
update of a Zookeeper cluster”

3.1.26. List of resources created as part of Kafka cluster

The following resources will created by the Cluster Operator in the OpenShift cluster:

cluster-name-kafka

StatefulSet which is in charge of managing the Kafka broker pods.

cluster-name-kafka-brokers

Service needed to have DNS resolve the Kafka broker pods IP addresses directly.

cluster-name-kafka-bootstrap

Service can be used as bootstrap servers for Kafka clients.

cluster-name-kafka-external-bootstrap

Bootstrap service for clients connecting from outside of the OpenShift cluster. This resource will be
created only when external listener is enabled.

cluster-name-kafka-pod-id

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 maintenanceTimeWindows:
 - "* * 8-10 * * ?"
 - "* * 14-15 * * ?"

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

108

Service used to route traffic from outside of the OpenShift cluster to individual pods. This resource
will be created only when external listener is enabled.

cluster-name-kafka-external-bootstrap

Bootstrap route for clients connecting from outside of the OpenShift cluster. This resource will be
created only when external listener is enabled and set to type route.

cluster-name-kafka-pod-id

Route for traffic from outside of the OpenShift cluster to individual pods. This resource will be
created only when external listener is enabled and set to type route.

cluster-name-kafka-config

ConfigMap which contains the Kafka ancillary configuration and is mounted as a volume by the Kafka
broker pods.

cluster-name-kafka-brokers

Secret with Kafka broker keys.

cluster-name-kafka

Service account used by the Kafka brokers.

cluster-name-kafka

Pod Disruption Budget configured for the Kafka brokers.

strimzi-namespace-name-cluster-name-kafka-init

Cluster role binding used by the Kafka brokers.

cluster-name-zookeeper

StatefulSet which is in charge of managing the Zookeeper node pods.

cluster-name-zookeeper-nodes

Service needed to have DNS resolve the Zookeeper pods IP addresses directly.

cluster-name-zookeeper-client

Service used by Kafka brokers to connect to Zookeeper nodes as clients.

cluster-name-zookeeper-config

ConfigMap which contains the Zookeeper ancillary configuration and is mounted as a volume by the
Zookeeper node pods.

cluster-name-zookeeper-nodes

Secret with Zookeeper node keys.

cluster-name-zookeeper

Pod Disruption Budget configured for the Zookeeper nodes.

cluster-name-entity-operator

Deployment with Topic and User Operators. This resource will be created only if Cluster Operator
deployed Entity Operator.

cluster-name-entity-topic-operator-config

Configmap with ancillary configuration for Topic Operators. This resource will be created only if
Cluster Operator deployed Entity Operator.

cluster-name-entity-user-operator-config

Configmap with ancillary configuration for User Operators. This resource will be created only if
Cluster Operator deployed Entity Operator.

cluster-name-entity-operator-certs

Secret with Entitiy operators keys for communication with Kafka and Zookeeper. This resource will
be created only if Cluster Operator deployed Entity Operator.

CHAPTER 3. DEPLOYMENT CONFIGURATION

109

cluster-name-entity-operator

Service account used by the Entity Operator.

strimzi-cluster-name-topic-operator

Role binding used by the Entity Operator.

strimzi-cluster-name-user-operator

Role binding used by the Entity Operator.

cluster-name-cluster-ca

Secret with the Cluster CA used to encrypt the cluster communication.

cluster-name-cluster-ca-cert

Secret with the Cluster CA public key. This key can be used to verify the identity of the Kafka
brokers.

cluster-name-clients-ca

Secret with the Clients CA used to encrypt the communication between Kafka brokers and Kafka
clients.

cluster-name-clients-ca-cert

Secret with the Clients CA public key. This key can be used to verify the identity of the Kafka
brokers.

cluster-name-cluster-operator-certs

Secret with Cluster operators keys for communication with Kafka and Zookeeper.

data-cluster-name-kafka-idx

Persistent Volume Claim for the volume used for storing data for the Kafka broker pod idx. This
resource will be created only if persistent storage is selected for provisioning persistent volumes to
store data.

data-id-cluster-name-kafka-idx

Persistent Volume Claim for the volume id used for storing data for the Kafka broker pod idx. This
resource is only created if persistent storage is selected for JBOD volumes when provisioning
persistent volumes to store data.

data-cluster-name-zookeeper-idx

Persistent Volume Claim for the volume used for storing data for the Zookeeper node pod idx. This
resource will be created only if persistent storage is selected for provisioning persistent volumes to
store data.

3.2. KAFKA CONNECT CLUSTER CONFIGURATION

The full schema of the KafkaConnect resource is described in the Section C.55, “KafkaConnect
schema reference”. All labels that are applied to the desired KafkaConnect resource will also be applied
to the OpenShift resources making up the Kafka Connect cluster. This provides a convenient
mechanism for resources to be labeled as required.

3.2.1. Replicas

Kafka Connect clusters can run multiple of nodes. The number of nodes is defined in the KafkaConnect
and KafkaConnectS2I resources. Running a Kafka Connect cluster with multiple nodes can provide
better availability and scalability. However, when running Kafka Connect on OpenShift it is not
absolutely necessary to run multiple nodes of Kafka Connect for high availability. If a node where Kafka
Connect is deployed to crashes, OpenShift will automatically reschedule the Kafka Connect pod to a
different node. However, running Kafka Connect with multiple nodes can provide faster failover times,
because the other nodes will be up and running already.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

110

3.2.1.1. Configuring the number of nodes

The number of Kafka Connect nodes is configured using the replicas property in KafkaConnect.spec
and KafkaConnectS2I.spec.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the replicas property in the KafkaConnect or KafkaConnectS2I resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.2. Bootstrap servers

A Kafka Connect cluster always works in combination with a Kafka cluster. A Kafka cluster is specified as
a list of bootstrap servers. On OpenShift, the list must ideally contain the Kafka cluster bootstrap
service named cluster-name-kafka-bootstrap, and a port of 9092 for plain traffic or 9093 for
encrypted traffic.

The list of bootstrap servers is configured in the bootstrapServers property in KafkaConnect.spec
and KafkaConnectS2I.spec. The servers must be defined as a comma-separated list specifying one or
more Kafka brokers, or a service pointing to Kafka brokers specified as a hostname:_port_ pairs.

When using Kafka Connect with a Kafka cluster not managed by AMQ Streams, you can specify the
bootstrap servers list according to the configuration of the cluster.

3.2.2.1. Configuring bootstrap servers

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the bootstrapServers property in the KafkaConnect or KafkaConnectS2I resource. For

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnectS2I
metadata:
 name: my-cluster
spec:
 # ...
 replicas: 3
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

111

1. Edit the bootstrapServers property in the KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.3. Connecting to Kafka brokers using TLS

By default, Kafka Connect tries to connect to Kafka brokers using a plain text connection. If you prefer
to use TLS, additional configuration is required.

3.2.3.1. TLS support in Kafka Connect

TLS support is configured in the tls property in KafkaConnect.spec and KafkaConnectS2I.spec. The
tls property contains a list of secrets with key names under which the certificates are stored. The
certificates must be stored in X509 format.

An example showing TLS configuration with multiple certificates

When multiple certificates are stored in the same secret, it can be listed multiple times.

An example showing TLS configuration with multiple certificates from the same secret

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 bootstrapServers: my-cluster-kafka-bootstrap:9092
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 tls:
 trustedCertificates:
 - secretName: my-secret
 certificate: ca.crt
 - secretName: my-other-secret
 certificate: certificate.crt
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnectS2I
metadata:
 name: my-cluster
spec:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

112

3.2.3.2. Configuring TLS in Kafka Connect

Prerequisites

An OpenShift cluster

A running Cluster Operator

If they exist, the name of the Secret for the certificate used for TLS Server Authentication, and
the key under which the certificate is stored in the Secret

Procedure

1. (Optional) If they do not already exist, prepare the TLS certificate used in authentication in a file
and create a Secret.

NOTE

The secrets created by the Cluster Operator for Kafka cluster may be used
directly.

On OpenShift this can be done using oc create:

2. Edit the tls property in the KafkaConnect or KafkaConnectS2I resource. For example:

3. Create or update the resource.
On OpenShift this can be done using oc apply:

 tls:
 trustedCertificates:
 - secretName: my-secret
 certificate: ca.crt
 - secretName: my-secret
 certificate: ca2.crt
 # ...

oc create secret generic my-secret --from-file=my-file.crt

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 tls:
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

113

3.2.4. Connecting to Kafka brokers with Authentication

By default, Kafka Connect will try to connect to Kafka brokers without authentication. Authentication is
enabled through the KafkaConnect and KafkaConnectS2I resources.

3.2.4.1. Authentication support in Kafka Connect

Authentication is configured through the authentication property in KafkaConnect.spec and
KafkaConnectS2I.spec. The authentication property specifies the type of the authentication
mechanisms which should be used and additional configuration details depending on the mechanism.
The currently supported authentication types are:

TLS client authentication

SASL-based authentication using the SCRAM-SHA-512 mechanism

SASL-based authentication using the PLAIN mechanism

3.2.4.1.1. TLS Client Authentication

To use TLS client authentication, set the type property to the value tls. TLS client authentication uses a
TLS certificate to authenticate. The certificate is specified in the certificateAndKey property and is
always loaded from an OpenShift secret. In the secret, the certificate must be stored in X509 format
under two different keys: public and private.

NOTE

TLS client authentication can be used only with TLS connections. For more details about
TLS configuration in Kafka Connect see Section 3.2.3, “Connecting to Kafka brokers
using TLS”.

An example TLS client authentication configuration

3.2.4.1.2. SASL based SCRAM-SHA-512 authentication

To configure Kafka Connect to use SASL-based SCRAM-SHA-512 authentication, set the type property
to scram-sha-512. This authentication mechanism requires a username and password.

Specify the username in the username property.

In the passwordSecret property, specify a link to a Secret containing the password. The

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: public.crt
 key: private.key
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

114

In the passwordSecret property, specify a link to a Secret containing the password. The
secretName property contains the name of the Secret and the password property contains
the name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password field.

An example SASL based SCRAM-SHA-512 client authentication configuration

3.2.4.1.3. SASL based PLAIN authentication

To configure Kafka Connect to use SASL-based PLAIN authentication, set the type property to plain.
This authentication mechanism requires a username and password.

WARNING

The SASL PLAIN mechanism will transfer the username and password across the
network in cleartext. Only use SASL PLAIN authentication if TLS encryption is
enabled.

Specify the username in the username property.

In the passwordSecret property, specify a link to a Secret containing the password. The
secretName property contains the name of such a Secret and the password property contains
the name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password field.

An example showing SASL based PLAIN client authentication configuration

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 authentication:
 type: scram-sha-512
 username: my-connect-user
 passwordSecret:
 secretName: my-connect-user
 password: my-connect-password-key
 # ...

apiVersion: kafka.strimzi.io/v1beta1

CHAPTER 3. DEPLOYMENT CONFIGURATION

115

3.2.4.2. Configuring TLS client authentication in Kafka Connect

Prerequisites

An OpenShift cluster

A running Cluster Operator

If they exist, the name of the Secret with the public and private keys used for TLS Client
Authentication, and the keys under which they are stored in the Secret

Procedure

1. (Optional) If they do not already exist, prepare the keys used for authentication in a file and
create the Secret.

NOTE

Secrets created by the User Operator may be used.

On OpenShift this can be done using oc create:

2. Edit the authentication property in the KafkaConnect or KafkaConnectS2I resource. For
example:

kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 authentication:
 type: plain
 username: my-connect-user
 passwordSecret:
 secretName: my-connect-user
 password: my-connect-password-key
 # ...

oc create secret generic my-secret --from-file=my-public.crt --from-file=my-private.key

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: my-public.crt
 key: my-private.key
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

116

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Connect

Prerequisites

An OpenShift cluster

A running Cluster Operator

Username of the user which should be used for authentication

If they exist, the name of the Secret with the password used for authentication and the key
under which the password is stored in the Secret

Procedure

1. (Optional) If they do not already exist, prepare a file with the password used in authentication
and create the Secret.

NOTE

Secrets created by the User Operator may be used.

On OpenShift this can be done using oc create:

2. Edit the authentication property in the KafkaConnect or KafkaConnectS2I resource. For
example:

3. Create or update the resource.
On OpenShift this can be done using oc apply:

oc apply -f your-file

echo -n '1f2d1e2e67df' > <my-password>.txt
oc create secret generic <my-secret> --from-file=<my-password.txt>

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 authentication:
 type: scram-sha-512
 username: _<my-username>_
 passwordSecret:
 secretName: _<my-secret>_
 password: _<my-password.txt>_
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

117

3.2.5. Kafka Connect configuration

AMQ Streams allows you to customize the configuration of Apache Kafka Connect nodes by editing
certain options listed in Apache Kafka documentation.

Configuration options that cannot be configured relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Listener / REST interface configuration

Plugin path configuration

These options are automatically configured by AMQ Streams.

3.2.5.1. Kafka Connect configuration

Kafka Connect is configured using the config property in KafkaConnect.spec and
KafkaConnectS2I.spec. This property contains the Kafka Connect configuration options as keys. The
values can be one of the following JSON types:

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka documentation with the exception
of those options that are managed directly by AMQ Streams. Specifically, configuration options with
keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

listeners

plugin.path

rest.

bootstrap.servers

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Custer Operator log file. All other options are passed to Kafka Connect.

IMPORTANT

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

118

http://kafka.apache.org/20/documentation.html#connectconfigs
http://kafka.apache.org/20/documentation.html#connectconfigs

IMPORTANT

The Cluster Operator does not validate keys or values in the config object provided.
When an invalid configuration is provided, the Kafka Connect cluster might not start or
might become unstable. In this circumstance, fix the configuration in the
KafkaConnect.spec.config or KafkaConnectS2I.spec.config object, then the Cluster
Operator can roll out the new configuration to all Kafka Connect nodes.

Certain options have default values:

group.id with default value connect-cluster

offset.storage.topic with default value connect-cluster-offsets

config.storage.topic with default value connect-cluster-configs

status.storage.topic with default value connect-cluster-status

key.converter with default value org.apache.kafka.connect.json.JsonConverter

value.converter with default value org.apache.kafka.connect.json.JsonConverter

These options are automatically configured in case they are not present in the
KafkaConnect.spec.config or KafkaConnectS2I.spec.config properties.

Example Kafka Connect configuration

3.2.5.2. Configuring Kafka Connect

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

119

Procedure

1. Edit the config property in the KafkaConnect or KafkaConnectS2I resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.6. CPU and memory resources

For every deployed container, AMQ Streams allows you to request specific resources and define the
maximum consumption of those resources.

AMQ Streams supports two types of resources:

CPU

Memory

AMQ Streams uses the OpenShift syntax for specifying CPU and memory resources.

3.2.6.1. Resource limits and requests

Resource limits and requests are configured using the resources property in the following resources:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

120

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

Additional resources

For more information about managing computing resources on OpenShift, see Managing
Compute Resources for Containers.

3.2.6.1.1. Resource requests

Requests specify the resources to reserve for a given container. Reserving the resources ensures that
they are always available.

IMPORTANT

If the resource request is for more than the available free resources in the OpenShift
cluster, the pod is not scheduled.

Resources requests are specified in the requests property. Resources requests currently supported by
AMQ Streams:

cpu

memory

A request may be configured for one or more supported resources.

Example resource request configuration with all resources

3.2.6.1.2. Resource limits

Limits specify the maximum resources that can be consumed by a given container. The limit is not
reserved and might not always be available. A container can use the resources up to the limit only when
they are available. Resource limits should be always higher than the resource requests.

Resource limits are specified in the limits property. Resource limits currently supported by AMQ
Streams:

cpu

memory

...
resources:
 requests:
 cpu: 12
 memory: 64Gi
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

121

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

A resource may be configured for one or more supported limits.

Example resource limits configuration

3.2.6.1.3. Supported CPU formats

CPU requests and limits are supported in the following formats:

Number of CPU cores as integer (5 CPU core) or decimal (2.5 CPU core).

Number or millicpus / millicores (100m) where 1000 millicores is the same 1 CPU core.

Example CPU units

NOTE

The computing power of 1 CPU core may differ depending on the platform where
OpenShift is deployed.

Additional resources

For more information on CPU specification, see the Meaning of CPU.

3.2.6.1.4. Supported memory formats

Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes.

To specify memory in megabytes, use the M suffix. For example 1000M.

To specify memory in gigabytes, use the G suffix. For example 1G.

To specify memory in mebibytes, use the Mi suffix. For example 1000Mi.

To specify memory in gibibytes, use the Gi suffix. For example 1Gi.

An example of using different memory units

...
resources:
 limits:
 cpu: 12
 memory: 64Gi
...

...
resources:
 requests:
 cpu: 500m
 limits:
 cpu: 2.5
...

...
resources:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

122

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu

Additional resources

For more details about memory specification and additional supported units, see Meaning of
memory.

3.2.6.2. Configuring resource requests and limits

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the resources property in the resource specifying the cluster deployment. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional resources

For more information about the schema, see Resources schema reference.

3.2.7. Logging

This section provides information on loggers and how to configure log levels.

You can set the log levels by specifying the loggers and their levels directly (inline) or use a custom

 requests:
 memory: 512Mi
 limits:
 memory: 2Gi
...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 resources:
 requests:
 cpu: "8"
 memory: 64Gi
 limits:
 cpu: "12"
 memory: 128Gi
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

123

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory

You can set the log levels by specifying the loggers and their levels directly (inline) or use a custom
(external) config map.

3.2.7.1. Kafka Connect loggers

Kafka Connect has its own configurable loggers:

connect.root.logger.level

log4j.logger.org.apache.zookeeper

log4j.logger.org.I0Itec.zkclient

log4j.logger.org.reflections

3.2.7.2. Specifying inline logging

Procedure

1. Edit the YAML file to specify the loggers and logging level for the required components.
For example, the logging level here is set to INFO:

You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

For more information about the log levels, see the log4j manual.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

3.2.7.3. Specifying an external ConfigMap for logging

Procedure

1. Edit the YAML file to specify the name of the ConfigMap to use for the required components.
For example:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
spec:
 # ...
 logging:
 type: inline
 loggers:
 logger.name: "INFO"
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
spec:
 # ...
 logging:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

124

https://logging.apache.org/log4j/2.x/manual/customloglevels.html

Remember to place your custom ConfigMap under the log4j.properties or log4j2.properties
key.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

Garbage collector (GC) logging can also be enabled (or disabled). For more information on GC, see
Section 3.2.10.1, “JVM configuration”

3.2.8. Healthchecks

Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe
fails, OpenShift assumes that the application is not healthy and attempts to fix it.

OpenShift supports two types of Healthcheck probes:

Liveness probes

Readiness probes

For more details about the probes, see Configure Liveness and Readiness Probes . Both types of probes
are used in AMQ Streams components.

Users can configure selected options for liveness and readiness probes.

3.2.8.1. Healthcheck configurations

Liveness and readiness probes can be configured using the livenessProbe and readinessProbe
properties in following resources:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

 type: external
 name: customConfigMap
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

125

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Both livenessProbe and readinessProbe support two additional options:

initialDelaySeconds

timeoutSeconds

The initialDelaySeconds property defines the initial delay before the probe is tried for the first time.
Default is 15 seconds.

The timeoutSeconds property defines timeout of the probe. Default is 5 seconds.

An example of liveness and readiness probe configuration

3.2.8.2. Configuring healthchecks

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the livenessProbe or readinessProbe property in the Kafka, KafkaConnect or
KafkaConnectS2I resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

...
readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 # ...
 zookeeper:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

126

3.2.9. Prometheus metrics

AMQ Streams supports Prometheus metrics using Prometheus JMX exporter to convert the JMX
metrics supported by Apache Kafka and Zookeeper to Prometheus metrics. When metrics are enabled,
they are exposed on port 9404.

3.2.9.1. Metrics configuration

Prometheus metrics are enabled by configuring the metrics property in following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaConnectS2I.spec

When the metrics property is not defined in the resource, the Prometheus metrics will be disabled. To
enable Prometheus metrics export without any further configuration, you can set it to an empty object
({}).

Example of enabling metrics without any further configuration

The metrics property might contain additional configuration for the Prometheus JMX exporter.

Example of enabling metrics with additional Prometheus JMX Exporter configuration

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metrics: {}
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metrics:
 lowercaseOutputName: true
 rules:
 - pattern: "kafka.server<type=(.+), name=(.+)PerSec\\w*><>Count"
 name: "kafka_server_$1_$2_total"

CHAPTER 3. DEPLOYMENT CONFIGURATION

127

https://github.com/prometheus/jmx_exporter
https://github.com/prometheus/jmx_exporter

3.2.9.2. Configuring Prometheus metrics

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the metrics property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.10. JVM Options

Apache Kafka and Apache Zookeeper run inside a Java Virtual Machine (JVM). JVM configuration
options optimize the performance for different platforms and architectures. AMQ Streams allows you to
configure some of these options.

3.2.10.1. JVM configuration

JVM options can be configured using the jvmOptions property in following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

 - pattern: "kafka.server<type=(.+), name=(.+)PerSec\\w*, topic=(.+)><>Count"
 name: "kafka_server_$1_$2_total"
 labels:
 topic: "$3"
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 metrics:
 lowercaseOutputName: true
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

128

KafkaConnect.spec

KafkaConnectS2I.spec

Only a selected subset of available JVM options can be configured. The following options are supported:

-Xms and -Xmx

-Xms configures the minimum initial allocation heap size when the JVM starts. -Xmx configures the
maximum heap size.

NOTE

The units accepted by JVM settings such as -Xmx and -Xms are those accepted by the
JDK java binary in the corresponding image. Accordingly, 1g or 1G means 1,073,741,824
bytes, and Gi is not a valid unit suffix. This is in contrast to the units used for memory
requests and limits, which follow the OpenShift convention where 1G means
1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes

The default values used for -Xms and -Xmx depends on whether there is a memory request limit
configured for the container:

If there is a memory limit then the JVM’s minimum and maximum memory will be set to a value
corresponding to the limit.

If there is no memory limit then the JVM’s minimum memory will be set to 128M and the JVM’s
maximum memory will not be defined. This allows for the JVM’s memory to grow as-needed,
which is ideal for single node environments in test and development.

IMPORTANT

Setting -Xmx explicitly requires some care:

The JVM’s overall memory usage will be approximately 4 × the maximum heap, as
configured by -Xmx.

If -Xmx is set without also setting an appropriate OpenShift memory limit, it is
possible that the container will be killed should the OpenShift node experience
memory pressure (from other Pods running on it).

If -Xmx is set without also setting an appropriate OpenShift memory request, it is
possible that the container will be scheduled to a node with insufficient memory.
In this case, the container will not start but crash (immediately if -Xms is set to -
Xmx, or some later time if not).

When setting -Xmx explicitly, it is recommended to:

set the memory request and the memory limit to the same value,

use a memory request that is at least 4.5 × the -Xmx,

consider setting -Xms to the same value as -Xms.

IMPORTANT

CHAPTER 3. DEPLOYMENT CONFIGURATION

129

IMPORTANT

Containers doing lots of disk I/O (such as Kafka broker containers) will need to leave
some memory available for use as operating system page cache. On such containers, the
requested memory should be significantly higher than the memory used by the JVM.

Example fragment configuring -Xmx and -Xms

In the above example, the JVM will use 2 GiB (=2,147,483,648 bytes) for its heap. Its total memory
usage will be approximately 8GiB.

Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to
allocate memory after startup, at the cost of possibly allocating more heap than is really needed. For
Kafka and Zookeeper pods such allocation could cause unwanted latency. For Kafka Connect avoiding
over allocation may be the most important concern, especially in distributed mode where the effects of
over-allocation will be multiplied by the number of consumers.

-server

-server enables the server JVM. This option can be set to true or false.

Example fragment configuring -server

NOTE

When neither of the two options (-server and -XX) is specified, the default Apache Kafka
configuration of KAFKA_JVM_PERFORMANCE_OPTS will be used.

-XX

-XX object can be used for configuring advanced runtime options of a JVM. The -server and -XX
options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS option of Apache Kafka.

Example showing the use of the -XX object

...
jvmOptions:
 "-Xmx": "2g"
 "-Xms": "2g"
...

...
jvmOptions:
 "-server": true
...

jvmOptions:
 "-XX":
 "UseG1GC": true,
 "MaxGCPauseMillis": 20,
 "InitiatingHeapOccupancyPercent": 35,
 "ExplicitGCInvokesConcurrent": true,
 "UseParNewGC": false

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

130

The example configuration above will result in the following JVM options:

-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -
XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC

NOTE

When neither of the two options (-server and -XX) is specified, the default Apache Kafka
configuration of KAFKA_JVM_PERFORMANCE_OPTS will be used.

3.2.10.1.1. Garbage collector logging

The jvmOptions section also allows you to enable and disable garbage collector (GC) logging. GC
logging is enabled by default. To disable it, set the gcLoggingEnabled property as follows:

Example of disabling GC logging

3.2.10.2. Configuring JVM options

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the jvmOptions property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

...
jvmOptions:
 gcLoggingEnabled: false
...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 jvmOptions:
 "-Xmx": "8g"
 "-Xms": "8g"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

131

3.2.11. Container images

AMQ Streams allows you to configure container images which will be used for its components.
Overriding container images is recommended only in special situations, where you need to use a
different container registry. For example, because your network does not allow access to the container
repository used by AMQ Streams. In such a case, you should either copy the AMQ Streams images or
build them from the source. If the configured image is not compatible with AMQ Streams images, it
might not work properly.

3.2.11.1. Container image configurations

Container image which should be used for given components can be specified using the image property
in:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

3.2.11.1.1. Configuring the Kafka.spec.kafka.image property

The Kafka.spec.kafka.image property functions differently from the others, because AMQ Streams
supports multiple versions of Kafka, each requiring the own image. The STRIMZI_KAFKA_IMAGES
environment variable of the Cluster Operator configuration is used to provide a mapping between Kafka
versions and the corresponding images. This is used in combination with the Kafka.spec.kafka.image
and Kafka.spec.kafka.version properties as follows:

If neither Kafka.spec.kafka.image nor Kafka.spec.kafka.version are given in the custom
resource then the version will default to the Cluster Operator’s default Kafka version, and the
image will be the one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

If Kafka.spec.kafka.image is given but Kafka.spec.kafka.version is not then the given image
will be used and the version will be assumed to be the Cluster Operator’s default Kafka version.

If Kafka.spec.kafka.version is given but Kafka.spec.kafka.image is not then image will be the
one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

Both Kafka.spec.kafka.version and Kafka.spec.kafka.image are given the given image will be
used, and it will be assumed to contain a Kafka broker with the given version.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

132

WARNING

It is best to provide just Kafka.spec.kafka.version and leave the
Kafka.spec.kafka.image property unspecified. This reduces the chances of making
a mistake in configuring the Kafka resource. If you need to change the images used
for different versions of Kafka, it is better to configure the Cluster Operator’s
STRIMZI_KAFKA_IMAGES environment variable.

3.2.11.1.2. Configuring the image property in other resources

For the image property in the other custom resources, the given value will be used during deployment. If
the image property is missing, the image specified in the Cluster Operator configuration will be used. If
the image name is not defined in the Cluster Operator configuration, then the default value will be used.

For Kafka broker TLS sidecar:

1. Container image specified in the STRIMZI_DEFAULT_TLS_SIDECAR_KAFKA_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper nodes:

1. Container image specified in the STRIMZI_DEFAULT_ZOOKEEPER_IMAGE environment
variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper node TLS sidecar:

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ZOOKEEPER_IMAGE environment variable from
the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Topic Operator:

1. Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For User Operator:

1. Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For Entity Operator TLS sidecar:

1. Container image specified in the

CHAPTER 3. DEPLOYMENT CONFIGURATION

133

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE environment variable
from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect with Source2image support:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_S2I_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

WARNING

Overriding container images is recommended only in special situations, where you
need to use a different container registry. For example, because your network does
not allow access to the container repository used by AMQ Streams. In such case,
you should either copy the AMQ Streams images or build them from source. In case
the configured image is not compatible with AMQ Streams images, it might not
work properly.

Example of container image configuration

3.2.11.2. Configuring container images

Prerequisites

An OpenShift cluster

A running Cluster Operator

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

134

Procedure

1. Edit the image property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.12. Configuring pod scheduling

IMPORTANT

When two application are scheduled to the same OpenShift node, both applications
might use the same resources like disk I/O and impact performance. That can lead to
performance degradation. Scheduling Kafka pods in a way that avoids sharing nodes with
other critical workloads, using the right nodes or dedicated a set of nodes only for Kafka
are the best ways how to avoid such problems.

3.2.12.1. Scheduling pods based on other applications

3.2.12.1.1. Avoid critical applications to share the node

Pod anti-affinity can be used to ensure that critical applications are never scheduled on the same disk.
When running Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers
do not share the nodes with other workloads like databases.

3.2.12.1.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

135

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.2.12.1.3. Configuring pod anti-affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.12.2. Scheduling pods to specific nodes

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

136

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

3.2.12.2.1. Node scheduling

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to
create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

3.2.12.2.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.2.12.2.3. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
On OpenShift this can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

oc label node your-node node-type=fast-network

CHAPTER 3. DEPLOYMENT CONFIGURATION

137

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.12.3. Using dedicated nodes

3.2.12.3.1. Dedicated nodes

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Taints can be used to create dedicated nodes. Running Kafka and its components on dedicated nodes
can have many advantages. There will be no other applications running on the same nodes which could
cause disturbance or consume the resources needed for Kafka. That can lead to improved performance
and stability.

To schedule Kafka pods on the dedicated nodes, configure node affinity and tolerations.

3.2.12.3.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

138

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.2.12.3.3. Tolerations

Tolerations can be configured using the tolerations property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The format of the tolerations property follows the OpenShift specification. For more details, see the
Kubernetes taints and tolerations .

3.2.12.3.4. Setting up dedicated nodes and scheduling pods on them

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
On OpenShift this can be done using oc adm taint:

4. Additionally, add a label to the selected nodes as well.
On OpenShift this can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.

oc adm taint node your-node dedicated=Kafka:NoSchedule

oc label node your-node dedicated=Kafka

CHAPTER 3. DEPLOYMENT CONFIGURATION

139

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

6. Create or update the resource.
On OpenShift this can be done using oc apply:

3.2.13. Using external configuration and secrets

Kafka Connect connectors are configured using an HTTP REST interface. The connector configuration
is passed to Kafka Connect as part of an HTTP request and stored within Kafka itself.

Some parts of the configuration of a Kafka Connect connector can be externalized using ConfigMaps or
Secrets. You can then reference the configuration values in HTTP REST commands (this keeps the
configuration separate and more secure, if needed). This method applies especially to confidential data,
such as usernames, passwords, or certificates.

ConfigMaps and Secrets are standard OpenShift resources used for storing of configurations and
confidential data.

3.2.13.1. Storing connector configurations externally

You can mount ConfigMaps or Secrets into a Kafka Connect pod as volumes or environment variables.
Volumes and environment variables are configured in the externalConfiguration property in
KafkaConnect.spec and KafkaConnectS2I.spec.

3.2.13.1.1. External configuration as environment variables

The env property is used to specify one or more environment variables. These variables can contain a

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 tolerations:
 - key: "dedicated"
 operator: "Equal"
 value: "Kafka"
 effect: "NoSchedule"
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: dedicated
 operator: In
 values:
 - Kafka
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

140

The env property is used to specify one or more environment variables. These variables can contain a
value from either a ConfigMap or a Secret.

NOTE

The names of user-defined environment variables cannot start with KAFKA_ or
STRIMZI_.

To mount a value from a Secret to an environment variable, use the valueFrom property and the
secretKeyRef as shown in the following example.

Example of an environment variable set to a value from a Secret

A common use case for mounting Secrets to environment variables is when your connector needs to
communicate with Amazon AWS and needs to read the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables with credentials.

To mount a value from a ConfigMap to an environment variable, use configMapKeyRef in the
valueFrom property as shown in the following example.

Example of an environment variable set to a value from a ConfigMap

3.2.13.1.2. External configuration as volumes

You can also mount ConfigMaps or Secrets to a Kafka Connect pod as volumes. Using volumes instead
of environment variables is useful in the following scenarios:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: MY_ENVIRONMENT_VARIABLE
 valueFrom:
 secretKeyRef:
 name: my-secret
 key: my-key

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: MY_ENVIRONMENT_VARIABLE
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key

CHAPTER 3. DEPLOYMENT CONFIGURATION

141

Mounting truststores or keystores with TLS certificates

Mounting a properties file that is used to configure Kafka Connect connectors

In the volumes property of the externalConfiguration resource, list the ConfigMaps or Secrets that
will be mounted as volumes. Each volume must specify a name in the name property and a reference to
ConfigMap or Secret.

Example of volumes with external configuration

The volumes will be mounted inside the Kafka Connect containers in the path /opt/kafka/external-
configuration/<volume-name>. For example, the files from a volume named connector1 would appear
in the directory /opt/kafka/external-configuration/connector1.

The FileConfigProvider has to be used to read the values from the mounted properties files in
connector configurations.

3.2.13.2. Mounting Secrets as environment variables

You can create an OpenShift Secret and mount it to Kafka Connect as an environment variable.

Prerequisites

A running Cluster Operator.

Procedure

1. Create a secret containing the information that will be mounted as an environment variable. For
example:

2. Create or edit the Kafka Connect resource. Configure the externalConfiguration section of the

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 volumes:
 - name: connector1
 configMap:
 name: connector1-configuration
 - name: connector1-certificates
 secret:
 secretName: connector1-certificates

apiVersion: v1
kind: Secret
metadata:
 name: aws-creds
type: Opaque
data:
 awsAccessKey: QUtJQVhYWFhYWFhYWFhYWFg=
 awsSecretAccessKey: Ylhsd1lYTnpkMjl5WkE=

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

142

2. Create or edit the Kafka Connect resource. Configure the externalConfiguration section of the
KafkaConnect or KafkaConnectS2I custom resource to reference the secret. For example:

3. Apply the changes to your Kafka Connect deployment.
On OpenShift use oc apply:

The environment variables are now available for use when developing your connectors.

Additional resources

For more information about external configuration in Kafka Connect, see Section C.63,
“ExternalConfiguration schema reference”.

3.2.13.3. Mounting Secrets as volumes

You can create an OpenShift Secret, mount it as a volume to Kafka Connect, and then use it to
configure a Kafka Connect connector.

Prerequisites

A running Cluster Operator.

Procedure

1. Create a secret containing a properties file that defines the configuration options for your
connector configuration. For example:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey

oc apply -f your-file

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
stringData:

CHAPTER 3. DEPLOYMENT CONFIGURATION

143

2. Create or edit the Kafka Connect resource. Configure the FileConfigProvider in the config
section and the externalConfiguration section of the KafkaConnect or KafkaConnectS2I
custom resource to reference the secret. For example:

3. Apply the changes to your Kafka Connect deployment.
On OpenShift use oc apply:

4. Use the values from the mounted properties file in your JSON payload with connector
configuration. For example:

Additional resources

For more information about external configuration in Kafka Connect, see Section C.63,
“ExternalConfiguration schema reference”.

3.2.14. List of resources created as part of Kafka Connect cluster

The following resources will created by the Cluster Operator in the OpenShift cluster:

 connector.properties: |-
 dbUsername: my-user
 dbPassword: my-password

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 config.providers: file
 config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider
 #...
 externalConfiguration:
 volumes:
 - name: connector-config
 secret:
 secretName: mysecret

oc apply -f your-file

{
 "name":"my-connector",
 "config":{
 "connector.class":"MyDbConnector",
 "tasks.max":"3",
 "database": "my-postgresql:5432"
 "username":"${file:/opt/kafka/external-configuration/connector-
config/connector.properties:dbUsername}",
 "password":"${file:/opt/kafka/external-configuration/connector-
config/connector.properties:dbPassword}",
 # ...
 }
}

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

144

connect-cluster-name-connect

Deployment which is in charge to create the Kafka Connect worker node pods.

connect-cluster-name-connect-api

Service which exposes the REST interface for managing the Kafka Connect cluster.

connect-cluster-name-config

ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by
the Kafka broker pods.

connect-cluster-name-connect

Pod Disruption Budget configured for the Kafka Connect worker nodes.

3.3. KAFKA CONNECT CLUSTER WITH SOURCE2IMAGE SUPPORT

The full schema of the KafkaConnectS2I resource is described in the Section C.69, “KafkaConnectS2I
schema reference”. All labels that are applied to the desired KafkaConnectS2I resource will also be
applied to the OpenShift resources making up the Kafka Connect cluster with Source2Image support.
This provides a convenient mechanism for resources to be labeled as required.

3.3.1. Replicas

Kafka Connect clusters can run multiple of nodes. The number of nodes is defined in the KafkaConnect
and KafkaConnectS2I resources. Running a Kafka Connect cluster with multiple nodes can provide
better availability and scalability. However, when running Kafka Connect on OpenShift it is not
absolutely necessary to run multiple nodes of Kafka Connect for high availability. If a node where Kafka
Connect is deployed to crashes, OpenShift will automatically reschedule the Kafka Connect pod to a
different node. However, running Kafka Connect with multiple nodes can provide faster failover times,
because the other nodes will be up and running already.

3.3.1.1. Configuring the number of nodes

The number of Kafka Connect nodes is configured using the replicas property in KafkaConnect.spec
and KafkaConnectS2I.spec.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the replicas property in the KafkaConnect or KafkaConnectS2I resource. For example:

2. Create or update the resource.

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnectS2I
metadata:
 name: my-cluster
spec:
 # ...
 replicas: 3
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

145

On OpenShift this can be done using oc apply:

3.3.2. Bootstrap servers

A Kafka Connect cluster always works in combination with a Kafka cluster. A Kafka cluster is specified as
a list of bootstrap servers. On OpenShift, the list must ideally contain the Kafka cluster bootstrap
service named cluster-name-kafka-bootstrap, and a port of 9092 for plain traffic or 9093 for
encrypted traffic.

The list of bootstrap servers is configured in the bootstrapServers property in KafkaConnect.spec
and KafkaConnectS2I.spec. The servers must be defined as a comma-separated list specifying one or
more Kafka brokers, or a service pointing to Kafka brokers specified as a hostname:_port_ pairs.

When using Kafka Connect with a Kafka cluster not managed by AMQ Streams, you can specify the
bootstrap servers list according to the configuration of the cluster.

3.3.2.1. Configuring bootstrap servers

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the bootstrapServers property in the KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.3. Connecting to Kafka brokers using TLS

By default, Kafka Connect tries to connect to Kafka brokers using a plain text connection. If you prefer
to use TLS, additional configuration is required.

3.3.3.1. TLS support in Kafka Connect

TLS support is configured in the tls property in KafkaConnect.spec and KafkaConnectS2I.spec. The

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 bootstrapServers: my-cluster-kafka-bootstrap:9092
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

146

TLS support is configured in the tls property in KafkaConnect.spec and KafkaConnectS2I.spec. The
tls property contains a list of secrets with key names under which the certificates are stored. The
certificates must be stored in X509 format.

An example showing TLS configuration with multiple certificates

When multiple certificates are stored in the same secret, it can be listed multiple times.

An example showing TLS configuration with multiple certificates from the same secret

3.3.3.2. Configuring TLS in Kafka Connect

Prerequisites

An OpenShift cluster

A running Cluster Operator

If they exist, the name of the Secret for the certificate used for TLS Server Authentication, and
the key under which the certificate is stored in the Secret

Procedure

1. (Optional) If they do not already exist, prepare the TLS certificate used in authentication in a file
and create a Secret.

NOTE

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 tls:
 trustedCertificates:
 - secretName: my-secret
 certificate: ca.crt
 - secretName: my-other-secret
 certificate: certificate.crt
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnectS2I
metadata:
 name: my-cluster
spec:
 # ...
 tls:
 trustedCertificates:
 - secretName: my-secret
 certificate: ca.crt
 - secretName: my-secret
 certificate: ca2.crt
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

147

NOTE

The secrets created by the Cluster Operator for Kafka cluster may be used
directly.

On OpenShift this can be done using oc create:

2. Edit the tls property in the KafkaConnect or KafkaConnectS2I resource. For example:

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.4. Connecting to Kafka brokers with Authentication

By default, Kafka Connect will try to connect to Kafka brokers without authentication. Authentication is
enabled through the KafkaConnect and KafkaConnectS2I resources.

3.3.4.1. Authentication support in Kafka Connect

Authentication is configured through the authentication property in KafkaConnect.spec and
KafkaConnectS2I.spec. The authentication property specifies the type of the authentication
mechanisms which should be used and additional configuration details depending on the mechanism.
The currently supported authentication types are:

TLS client authentication

SASL-based authentication using the SCRAM-SHA-512 mechanism

SASL-based authentication using the PLAIN mechanism

3.3.4.1.1. TLS Client Authentication

To use TLS client authentication, set the type property to the value tls. TLS client authentication uses a
TLS certificate to authenticate. The certificate is specified in the certificateAndKey property and is
always loaded from an OpenShift secret. In the secret, the certificate must be stored in X509 format
under two different keys: public and private.

NOTE

oc create secret generic my-secret --from-file=my-file.crt

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 tls:
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

148

NOTE

TLS client authentication can be used only with TLS connections. For more details about
TLS configuration in Kafka Connect see Section 3.3.3, “Connecting to Kafka brokers
using TLS”.

An example TLS client authentication configuration

3.3.4.1.2. SASL based SCRAM-SHA-512 authentication

To configure Kafka Connect to use SASL-based SCRAM-SHA-512 authentication, set the type property
to scram-sha-512. This authentication mechanism requires a username and password.

Specify the username in the username property.

In the passwordSecret property, specify a link to a Secret containing the password. The
secretName property contains the name of the Secret and the password property contains
the name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password field.

An example SASL based SCRAM-SHA-512 client authentication configuration

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: public.crt
 key: private.key
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 authentication:
 type: scram-sha-512
 username: my-connect-user
 passwordSecret:
 secretName: my-connect-user
 password: my-connect-password-key
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

149

3.3.4.1.3. SASL based PLAIN authentication

To configure Kafka Connect to use SASL-based PLAIN authentication, set the type property to plain.
This authentication mechanism requires a username and password.

WARNING

The SASL PLAIN mechanism will transfer the username and password across the
network in cleartext. Only use SASL PLAIN authentication if TLS encryption is
enabled.

Specify the username in the username property.

In the passwordSecret property, specify a link to a Secret containing the password. The
secretName property contains the name of such a Secret and the password property contains
the name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password field.

An example showing SASL based PLAIN client authentication configuration

3.3.4.2. Configuring TLS client authentication in Kafka Connect

Prerequisites

An OpenShift cluster

A running Cluster Operator

If they exist, the name of the Secret with the public and private keys used for TLS Client
Authentication, and the keys under which they are stored in the Secret

Procedure

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-cluster
spec:
 # ...
 authentication:
 type: plain
 username: my-connect-user
 passwordSecret:
 secretName: my-connect-user
 password: my-connect-password-key
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

150

1. (Optional) If they do not already exist, prepare the keys used for authentication in a file and
create the Secret.

NOTE

Secrets created by the User Operator may be used.

On OpenShift this can be done using oc create:

2. Edit the authentication property in the KafkaConnect or KafkaConnectS2I resource. For
example:

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Connect

Prerequisites

An OpenShift cluster

A running Cluster Operator

Username of the user which should be used for authentication

If they exist, the name of the Secret with the password used for authentication and the key
under which the password is stored in the Secret

Procedure

1. (Optional) If they do not already exist, prepare a file with the password used in authentication
and create the Secret.

NOTE

oc create secret generic my-secret --from-file=my-public.crt --from-file=my-private.key

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: my-public.crt
 key: my-private.key
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

151

NOTE

Secrets created by the User Operator may be used.

On OpenShift this can be done using oc create:

2. Edit the authentication property in the KafkaConnect or KafkaConnectS2I resource. For
example:

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.5. Kafka Connect configuration

AMQ Streams allows you to customize the configuration of Apache Kafka Connect nodes by editing
certain options listed in Apache Kafka documentation.

Configuration options that cannot be configured relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Listener / REST interface configuration

Plugin path configuration

These options are automatically configured by AMQ Streams.

3.3.5.1. Kafka Connect configuration

Kafka Connect is configured using the config property in KafkaConnect.spec and
KafkaConnectS2I.spec. This property contains the Kafka Connect configuration options as keys. The
values can be one of the following JSON types:

echo -n '1f2d1e2e67df' > <my-password>.txt
oc create secret generic <my-secret> --from-file=<my-password.txt>

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 authentication:
 type: scram-sha-512
 username: _<my-username>_
 passwordSecret:
 secretName: _<my-secret>_
 password: _<my-password.txt>_
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

152

http://kafka.apache.org/20/documentation.html#connectconfigs

String

Number

Boolean

You can specify and configure the options listed in the Apache Kafka documentation with the exception
of those options that are managed directly by AMQ Streams. Specifically, configuration options with
keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

listeners

plugin.path

rest.

bootstrap.servers

When a forbidden option is present in the config property, it is ignored and a warning message is printed
to the Custer Operator log file. All other options are passed to Kafka Connect.

IMPORTANT

The Cluster Operator does not validate keys or values in the config object provided.
When an invalid configuration is provided, the Kafka Connect cluster might not start or
might become unstable. In this circumstance, fix the configuration in the
KafkaConnect.spec.config or KafkaConnectS2I.spec.config object, then the Cluster
Operator can roll out the new configuration to all Kafka Connect nodes.

Certain options have default values:

group.id with default value connect-cluster

offset.storage.topic with default value connect-cluster-offsets

config.storage.topic with default value connect-cluster-configs

status.storage.topic with default value connect-cluster-status

key.converter with default value org.apache.kafka.connect.json.JsonConverter

value.converter with default value org.apache.kafka.connect.json.JsonConverter

These options are automatically configured in case they are not present in the
KafkaConnect.spec.config or KafkaConnectS2I.spec.config properties.

Example Kafka Connect configuration

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect

CHAPTER 3. DEPLOYMENT CONFIGURATION

153

http://kafka.apache.org/20/documentation.html#connectconfigs

3.3.5.2. Configuring Kafka Connect

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the config property in the KafkaConnect or KafkaConnectS2I resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 group.id: my-connect-cluster
 offset.storage.topic: my-connect-cluster-offsets
 config.storage.topic: my-connect-cluster-configs
 status.storage.topic: my-connect-cluster-status
 key.converter: org.apache.kafka.connect.json.JsonConverter
 value.converter: org.apache.kafka.connect.json.JsonConverter
 key.converter.schemas.enable: true
 value.converter.schemas.enable: true
 config.storage.replication.factor: 3
 offset.storage.replication.factor: 3
 status.storage.replication.factor: 3
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

154

3.3.6. CPU and memory resources

For every deployed container, AMQ Streams allows you to request specific resources and define the
maximum consumption of those resources.

AMQ Streams supports two types of resources:

CPU

Memory

AMQ Streams uses the OpenShift syntax for specifying CPU and memory resources.

3.3.6.1. Resource limits and requests

Resource limits and requests are configured using the resources property in the following resources:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

Additional resources

For more information about managing computing resources on OpenShift, see Managing
Compute Resources for Containers.

3.3.6.1.1. Resource requests

Requests specify the resources to reserve for a given container. Reserving the resources ensures that
they are always available.

IMPORTANT

If the resource request is for more than the available free resources in the OpenShift
cluster, the pod is not scheduled.

Resources requests are specified in the requests property. Resources requests currently supported by
AMQ Streams:

cpu

CHAPTER 3. DEPLOYMENT CONFIGURATION

155

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

memory

A request may be configured for one or more supported resources.

Example resource request configuration with all resources

3.3.6.1.2. Resource limits

Limits specify the maximum resources that can be consumed by a given container. The limit is not
reserved and might not always be available. A container can use the resources up to the limit only when
they are available. Resource limits should be always higher than the resource requests.

Resource limits are specified in the limits property. Resource limits currently supported by AMQ
Streams:

cpu

memory

A resource may be configured for one or more supported limits.

Example resource limits configuration

3.3.6.1.3. Supported CPU formats

CPU requests and limits are supported in the following formats:

Number of CPU cores as integer (5 CPU core) or decimal (2.5 CPU core).

Number or millicpus / millicores (100m) where 1000 millicores is the same 1 CPU core.

Example CPU units

...
resources:
 requests:
 cpu: 12
 memory: 64Gi
...

...
resources:
 limits:
 cpu: 12
 memory: 64Gi
...

...
resources:
 requests:
 cpu: 500m
 limits:
 cpu: 2.5
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

156

NOTE

The computing power of 1 CPU core may differ depending on the platform where
OpenShift is deployed.

Additional resources

For more information on CPU specification, see the Meaning of CPU.

3.3.6.1.4. Supported memory formats

Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes.

To specify memory in megabytes, use the M suffix. For example 1000M.

To specify memory in gigabytes, use the G suffix. For example 1G.

To specify memory in mebibytes, use the Mi suffix. For example 1000Mi.

To specify memory in gibibytes, use the Gi suffix. For example 1Gi.

An example of using different memory units

Additional resources

For more details about memory specification and additional supported units, see Meaning of
memory.

3.3.6.2. Configuring resource requests and limits

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the resources property in the resource specifying the cluster deployment. For example:

...
resources:
 requests:
 memory: 512Mi
 limits:
 memory: 2Gi
...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 resources:

CHAPTER 3. DEPLOYMENT CONFIGURATION

157

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory

2. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional resources

For more information about the schema, see Resources schema reference.

3.3.7. Logging

This section provides information on loggers and how to configure log levels.

You can set the log levels by specifying the loggers and their levels directly (inline) or use a custom
(external) config map.

3.3.7.1. Kafka Connect with Source2Image loggers

Kafka Connect with Source2Image support has its own configurable loggers:

connect.root.logger.level

log4j.logger.org.apache.zookeeper

log4j.logger.org.I0Itec.zkclient

log4j.logger.org.reflections

3.3.7.2. Specifying inline logging

Procedure

1. Edit the YAML file to specify the loggers and logging level for the required components.
For example, the logging level here is set to INFO:

 requests:
 cpu: "8"
 memory: 64Gi
 limits:
 cpu: "12"
 memory: 128Gi
 # ...
 zookeeper:
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnectS2I
spec:
 # ...
 logging:
 type: inline
 loggers:
 logger.name: "INFO"
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

158

You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

For more information about the log levels, see the log4j manual.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

3.3.7.3. Specifying an external ConfigMap for logging

Procedure

1. Edit the YAML file to specify the name of the ConfigMap to use for the required components.
For example:

Remember to place your custom ConfigMap under the log4j.properties or log4j2.properties
key.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

Garbage collector (GC) logging can also be enabled (or disabled). For more information on GC, see
Section 3.3.10.1, “JVM configuration”

3.3.8. Healthchecks

Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe
fails, OpenShift assumes that the application is not healthy and attempts to fix it.

OpenShift supports two types of Healthcheck probes:

Liveness probes

Readiness probes

For more details about the probes, see Configure Liveness and Readiness Probes . Both types of probes
are used in AMQ Streams components.

Users can configure selected options for liveness and readiness probes.

3.3.8.1. Healthcheck configurations

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnectS2I
spec:
 # ...
 logging:
 type: external
 name: customConfigMap
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

159

https://logging.apache.org/log4j/2.x/manual/customloglevels.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

Liveness and readiness probes can be configured using the livenessProbe and readinessProbe
properties in following resources:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

Both livenessProbe and readinessProbe support two additional options:

initialDelaySeconds

timeoutSeconds

The initialDelaySeconds property defines the initial delay before the probe is tried for the first time.
Default is 15 seconds.

The timeoutSeconds property defines timeout of the probe. Default is 5 seconds.

An example of liveness and readiness probe configuration

3.3.8.2. Configuring healthchecks

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the livenessProbe or readinessProbe property in the Kafka, KafkaConnect or

...
readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

160

1. Edit the livenessProbe or readinessProbe property in the Kafka, KafkaConnect or
KafkaConnectS2I resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.9. Prometheus metrics

AMQ Streams supports Prometheus metrics using Prometheus JMX exporter to convert the JMX
metrics supported by Apache Kafka and Zookeeper to Prometheus metrics. When metrics are enabled,
they are exposed on port 9404.

3.3.9.1. Metrics configuration

Prometheus metrics are enabled by configuring the metrics property in following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaConnectS2I.spec

When the metrics property is not defined in the resource, the Prometheus metrics will be disabled. To
enable Prometheus metrics export without any further configuration, you can set it to an empty object
({}).

Example of enabling metrics without any further configuration

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 # ...
 zookeeper:
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:

CHAPTER 3. DEPLOYMENT CONFIGURATION

161

https://github.com/prometheus/jmx_exporter

The metrics property might contain additional configuration for the Prometheus JMX exporter.

Example of enabling metrics with additional Prometheus JMX Exporter configuration

3.3.9.2. Configuring Prometheus metrics

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the metrics property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

 # ...
 metrics: {}
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metrics:
 lowercaseOutputName: true
 rules:
 - pattern: "kafka.server<type=(.+), name=(.+)PerSec\\w*><>Count"
 name: "kafka_server_$1_$2_total"
 - pattern: "kafka.server<type=(.+), name=(.+)PerSec\\w*, topic=(.+)><>Count"
 name: "kafka_server_$1_$2_total"
 labels:
 topic: "$3"
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

162

https://github.com/prometheus/jmx_exporter

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.10. JVM Options

Apache Kafka and Apache Zookeeper run inside a Java Virtual Machine (JVM). JVM configuration
options optimize the performance for different platforms and architectures. AMQ Streams allows you to
configure some of these options.

3.3.10.1. JVM configuration

JVM options can be configured using the jvmOptions property in following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaConnectS2I.spec

Only a selected subset of available JVM options can be configured. The following options are supported:

-Xms and -Xmx

-Xms configures the minimum initial allocation heap size when the JVM starts. -Xmx configures the
maximum heap size.

NOTE

The units accepted by JVM settings such as -Xmx and -Xms are those accepted by the
JDK java binary in the corresponding image. Accordingly, 1g or 1G means 1,073,741,824
bytes, and Gi is not a valid unit suffix. This is in contrast to the units used for memory
requests and limits, which follow the OpenShift convention where 1G means
1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes

The default values used for -Xms and -Xmx depends on whether there is a memory request limit
configured for the container:

If there is a memory limit then the JVM’s minimum and maximum memory will be set to a value
corresponding to the limit.

If there is no memory limit then the JVM’s minimum memory will be set to 128M and the JVM’s
maximum memory will not be defined. This allows for the JVM’s memory to grow as-needed,
which is ideal for single node environments in test and development.

IMPORTANT

 metrics:
 lowercaseOutputName: true
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

163

IMPORTANT

Setting -Xmx explicitly requires some care:

The JVM’s overall memory usage will be approximately 4 × the maximum heap, as
configured by -Xmx.

If -Xmx is set without also setting an appropriate OpenShift memory limit, it is
possible that the container will be killed should the OpenShift node experience
memory pressure (from other Pods running on it).

If -Xmx is set without also setting an appropriate OpenShift memory request, it is
possible that the container will be scheduled to a node with insufficient memory.
In this case, the container will not start but crash (immediately if -Xms is set to -
Xmx, or some later time if not).

When setting -Xmx explicitly, it is recommended to:

set the memory request and the memory limit to the same value,

use a memory request that is at least 4.5 × the -Xmx,

consider setting -Xms to the same value as -Xms.

IMPORTANT

Containers doing lots of disk I/O (such as Kafka broker containers) will need to leave
some memory available for use as operating system page cache. On such containers, the
requested memory should be significantly higher than the memory used by the JVM.

Example fragment configuring -Xmx and -Xms

In the above example, the JVM will use 2 GiB (=2,147,483,648 bytes) for its heap. Its total memory
usage will be approximately 8GiB.

Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to
allocate memory after startup, at the cost of possibly allocating more heap than is really needed. For
Kafka and Zookeeper pods such allocation could cause unwanted latency. For Kafka Connect avoiding
over allocation may be the most important concern, especially in distributed mode where the effects of
over-allocation will be multiplied by the number of consumers.

-server

-server enables the server JVM. This option can be set to true or false.

Example fragment configuring -server

...
jvmOptions:
 "-Xmx": "2g"
 "-Xms": "2g"
...

...
jvmOptions:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

164

NOTE

When neither of the two options (-server and -XX) is specified, the default Apache Kafka
configuration of KAFKA_JVM_PERFORMANCE_OPTS will be used.

-XX

-XX object can be used for configuring advanced runtime options of a JVM. The -server and -XX
options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS option of Apache Kafka.

Example showing the use of the -XX object

The example configuration above will result in the following JVM options:

-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -
XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC

NOTE

When neither of the two options (-server and -XX) is specified, the default Apache Kafka
configuration of KAFKA_JVM_PERFORMANCE_OPTS will be used.

3.3.10.1.1. Garbage collector logging

The jvmOptions section also allows you to enable and disable garbage collector (GC) logging. GC
logging is enabled by default. To disable it, set the gcLoggingEnabled property as follows:

Example of disabling GC logging

3.3.10.2. Configuring JVM options

Prerequisites

An OpenShift cluster

A running Cluster Operator

 "-server": true
...

jvmOptions:
 "-XX":
 "UseG1GC": true,
 "MaxGCPauseMillis": 20,
 "InitiatingHeapOccupancyPercent": 35,
 "ExplicitGCInvokesConcurrent": true,
 "UseParNewGC": false

...
jvmOptions:
 gcLoggingEnabled: false
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

165

Procedure

1. Edit the jvmOptions property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.11. Container images

AMQ Streams allows you to configure container images which will be used for its components.
Overriding container images is recommended only in special situations, where you need to use a
different container registry. For example, because your network does not allow access to the container
repository used by AMQ Streams. In such a case, you should either copy the AMQ Streams images or
build them from the source. If the configured image is not compatible with AMQ Streams images, it
might not work properly.

3.3.11.1. Container image configurations

Container image which should be used for given components can be specified using the image property
in:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 jvmOptions:
 "-Xmx": "8g"
 "-Xms": "8g"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

166

KafkaBridge.spec

3.3.11.1.1. Configuring the Kafka.spec.kafka.image property

The Kafka.spec.kafka.image property functions differently from the others, because AMQ Streams
supports multiple versions of Kafka, each requiring the own image. The STRIMZI_KAFKA_IMAGES
environment variable of the Cluster Operator configuration is used to provide a mapping between Kafka
versions and the corresponding images. This is used in combination with the Kafka.spec.kafka.image
and Kafka.spec.kafka.version properties as follows:

If neither Kafka.spec.kafka.image nor Kafka.spec.kafka.version are given in the custom
resource then the version will default to the Cluster Operator’s default Kafka version, and the
image will be the one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

If Kafka.spec.kafka.image is given but Kafka.spec.kafka.version is not then the given image
will be used and the version will be assumed to be the Cluster Operator’s default Kafka version.

If Kafka.spec.kafka.version is given but Kafka.spec.kafka.image is not then image will be the
one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

Both Kafka.spec.kafka.version and Kafka.spec.kafka.image are given the given image will be
used, and it will be assumed to contain a Kafka broker with the given version.

WARNING

It is best to provide just Kafka.spec.kafka.version and leave the
Kafka.spec.kafka.image property unspecified. This reduces the chances of making
a mistake in configuring the Kafka resource. If you need to change the images used
for different versions of Kafka, it is better to configure the Cluster Operator’s
STRIMZI_KAFKA_IMAGES environment variable.

3.3.11.1.2. Configuring the image property in other resources

For the image property in the other custom resources, the given value will be used during deployment. If
the image property is missing, the image specified in the Cluster Operator configuration will be used. If
the image name is not defined in the Cluster Operator configuration, then the default value will be used.

For Kafka broker TLS sidecar:

1. Container image specified in the STRIMZI_DEFAULT_TLS_SIDECAR_KAFKA_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper nodes:

1. Container image specified in the STRIMZI_DEFAULT_ZOOKEEPER_IMAGE environment
variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper node TLS sidecar:

CHAPTER 3. DEPLOYMENT CONFIGURATION

167

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ZOOKEEPER_IMAGE environment variable from
the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Topic Operator:

1. Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For User Operator:

1. Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For Entity Operator TLS sidecar:

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE environment variable
from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect with Source2image support:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_S2I_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

WARNING

Overriding container images is recommended only in special situations, where you
need to use a different container registry. For example, because your network does
not allow access to the container repository used by AMQ Streams. In such case,
you should either copy the AMQ Streams images or build them from source. In case
the configured image is not compatible with AMQ Streams images, it might not
work properly.

Example of container image configuration

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

168

3.3.11.2. Configuring container images

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the image property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.12. Configuring pod scheduling

IMPORTANT

When two application are scheduled to the same OpenShift node, both applications
might use the same resources like disk I/O and impact performance. That can lead to
performance degradation. Scheduling Kafka pods in a way that avoids sharing nodes with
other critical workloads, using the right nodes or dedicated a set of nodes only for Kafka
are the best ways how to avoid such problems.

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

169

3.3.12.1. Scheduling pods based on other applications

3.3.12.1.1. Avoid critical applications to share the node

Pod anti-affinity can be used to ensure that critical applications are never scheduled on the same disk.
When running Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers
do not share the nodes with other workloads like databases.

3.3.12.1.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.3.12.1.3. Configuring pod anti-affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

170

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.12.2. Scheduling pods to specific nodes

3.3.12.2.1. Node scheduling

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to
create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

3.3.12.2.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

171

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.3.12.2.3. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
On OpenShift this can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.3.12.3. Using dedicated nodes

3.3.12.3.1. Dedicated nodes

oc label node your-node node-type=fast-network

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

172

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Taints can be used to create dedicated nodes. Running Kafka and its components on dedicated nodes
can have many advantages. There will be no other applications running on the same nodes which could
cause disturbance or consume the resources needed for Kafka. That can lead to improved performance
and stability.

To schedule Kafka pods on the dedicated nodes, configure node affinity and tolerations.

3.3.12.3.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.3.12.3.3. Tolerations

Tolerations can be configured using the tolerations property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The format of the tolerations property follows the OpenShift specification. For more details, see the
Kubernetes taints and tolerations .

3.3.12.3.4. Setting up dedicated nodes and scheduling pods on them

CHAPTER 3. DEPLOYMENT CONFIGURATION

173

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
On OpenShift this can be done using oc adm taint:

4. Additionally, add a label to the selected nodes as well.
On OpenShift this can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

6. Create or update the resource.
On OpenShift this can be done using oc apply:

oc adm taint node your-node dedicated=Kafka:NoSchedule

oc label node your-node dedicated=Kafka

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 tolerations:
 - key: "dedicated"
 operator: "Equal"
 value: "Kafka"
 effect: "NoSchedule"
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: dedicated
 operator: In
 values:
 - Kafka
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

174

3.3.13. Using external configuration and secrets

Kafka Connect connectors are configured using an HTTP REST interface. The connector configuration
is passed to Kafka Connect as part of an HTTP request and stored within Kafka itself.

Some parts of the configuration of a Kafka Connect connector can be externalized using ConfigMaps or
Secrets. You can then reference the configuration values in HTTP REST commands (this keeps the
configuration separate and more secure, if needed). This method applies especially to confidential data,
such as usernames, passwords, or certificates.

ConfigMaps and Secrets are standard OpenShift resources used for storing of configurations and
confidential data.

3.3.13.1. Storing connector configurations externally

You can mount ConfigMaps or Secrets into a Kafka Connect pod as volumes or environment variables.
Volumes and environment variables are configured in the externalConfiguration property in
KafkaConnect.spec and KafkaConnectS2I.spec.

3.3.13.1.1. External configuration as environment variables

The env property is used to specify one or more environment variables. These variables can contain a
value from either a ConfigMap or a Secret.

NOTE

The names of user-defined environment variables cannot start with KAFKA_ or
STRIMZI_.

To mount a value from a Secret to an environment variable, use the valueFrom property and the
secretKeyRef as shown in the following example.

Example of an environment variable set to a value from a Secret

A common use case for mounting Secrets to environment variables is when your connector needs to
communicate with Amazon AWS and needs to read the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables with credentials.

To mount a value from a ConfigMap to an environment variable, use configMapKeyRef in the
valueFrom property as shown in the following example.

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: MY_ENVIRONMENT_VARIABLE
 valueFrom:
 secretKeyRef:
 name: my-secret
 key: my-key

CHAPTER 3. DEPLOYMENT CONFIGURATION

175

Example of an environment variable set to a value from a ConfigMap

3.3.13.1.2. External configuration as volumes

You can also mount ConfigMaps or Secrets to a Kafka Connect pod as volumes. Using volumes instead
of environment variables is useful in the following scenarios:

Mounting truststores or keystores with TLS certificates

Mounting a properties file that is used to configure Kafka Connect connectors

In the volumes property of the externalConfiguration resource, list the ConfigMaps or Secrets that
will be mounted as volumes. Each volume must specify a name in the name property and a reference to
ConfigMap or Secret.

Example of volumes with external configuration

The volumes will be mounted inside the Kafka Connect containers in the path /opt/kafka/external-
configuration/<volume-name>. For example, the files from a volume named connector1 would appear
in the directory /opt/kafka/external-configuration/connector1.

The FileConfigProvider has to be used to read the values from the mounted properties files in
connector configurations.

3.3.13.2. Mounting Secrets as environment variables

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: MY_ENVIRONMENT_VARIABLE
 valueFrom:
 configMapKeyRef:
 name: my-config-map
 key: my-key

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 volumes:
 - name: connector1
 configMap:
 name: connector1-configuration
 - name: connector1-certificates
 secret:
 secretName: connector1-certificates

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

176

You can create an OpenShift Secret and mount it to Kafka Connect as an environment variable.

Prerequisites

A running Cluster Operator.

Procedure

1. Create a secret containing the information that will be mounted as an environment variable. For
example:

2. Create or edit the Kafka Connect resource. Configure the externalConfiguration section of the
KafkaConnect or KafkaConnectS2I custom resource to reference the secret. For example:

3. Apply the changes to your Kafka Connect deployment.
On OpenShift use oc apply:

The environment variables are now available for use when developing your connectors.

Additional resources

For more information about external configuration in Kafka Connect, see Section C.63,
“ExternalConfiguration schema reference”.

apiVersion: v1
kind: Secret
metadata:
 name: aws-creds
type: Opaque
data:
 awsAccessKey: QUtJQVhYWFhYWFhYWFhYWFg=
 awsSecretAccessKey: Ylhsd1lYTnpkMjl5WkE=

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 externalConfiguration:
 env:
 - name: AWS_ACCESS_KEY_ID
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsAccessKey
 - name: AWS_SECRET_ACCESS_KEY
 valueFrom:
 secretKeyRef:
 name: aws-creds
 key: awsSecretAccessKey

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

177

3.3.13.3. Mounting Secrets as volumes

You can create an OpenShift Secret, mount it as a volume to Kafka Connect, and then use it to
configure a Kafka Connect connector.

Prerequisites

A running Cluster Operator.

Procedure

1. Create a secret containing a properties file that defines the configuration options for your
connector configuration. For example:

2. Create or edit the Kafka Connect resource. Configure the FileConfigProvider in the config
section and the externalConfiguration section of the KafkaConnect or KafkaConnectS2I
custom resource to reference the secret. For example:

3. Apply the changes to your Kafka Connect deployment.
On OpenShift use oc apply:

4. Use the values from the mounted properties file in your JSON payload with connector
configuration. For example:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
stringData:
 connector.properties: |-
 dbUsername: my-user
 dbPassword: my-password

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaConnect
metadata:
 name: my-connect
spec:
 # ...
 config:
 config.providers: file
 config.providers.file.class: org.apache.kafka.common.config.provider.FileConfigProvider
 #...
 externalConfiguration:
 volumes:
 - name: connector-config
 secret:
 secretName: mysecret

oc apply -f your-file

{
 "name":"my-connector",

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

178

Additional resources

For more information about external configuration in Kafka Connect, see Section C.63,
“ExternalConfiguration schema reference”.

3.3.14. List of resources created as part of Kafka Connect cluster with
Source2Image support

The following resources will created by the Cluster Operator in the OpenShift cluster:

connect-cluster-name-connect-source

ImageStream which is used as the base image for the newly-built Docker images.

connect-cluster-name-connect

BuildConfig which is responsible for building the new Kafka Connect Docker images.

connect-cluster-name-connect

ImageStream where the newly built Docker images will be pushed.

connect-cluster-name-connect

DeploymentConfig which is in charge of creating the Kafka Connect worker node pods.

connect-cluster-name-connect-api

Service which exposes the REST interface for managing the Kafka Connect cluster.

connect-cluster-name-config

ConfigMap which contains the Kafka Connect ancillary configuration and is mounted as a volume by
the Kafka broker pods.

connect-cluster-name-connect

Pod Disruption Budget configured for the Kafka Connect worker nodes.

3.3.15. Creating a container image using OpenShift builds and Source-to-Image

You can use OpenShift builds and the Source-to-Image (S2I) framework to create new container
images. An OpenShift build takes a builder image with S2I support, together with source code and
binaries provided by the user, and uses them to build a new container image. Once built, container
images are stored in OpenShift’s local container image repository and are available for use in
deployments.

A Kafka Connect builder image with S2I support is provided on the Red Hat Container Catalog as part of
the registry.redhat.io/amq7/amqstreams-kafka-22 image. This S2I image takes your binaries (with
plug-ins and connectors) and stores them in the /tmp/kafka-plugins/s2i directory. It creates a new Kafka

 "config":{
 "connector.class":"MyDbConnector",
 "tasks.max":"3",
 "database": "my-postgresql:5432"
 "username":"${file:/opt/kafka/external-configuration/connector-
config/connector.properties:dbUsername}",
 "password":"${file:/opt/kafka/external-configuration/connector-
config/connector.properties:dbPassword}",
 # ...
 }
}

CHAPTER 3. DEPLOYMENT CONFIGURATION

179

https://docs.okd.io/3.9/dev_guide/builds/index.html
https://docs.okd.io/3.9/creating_images/s2i.html
https://access.redhat.com/containers/#/product/RedHatAmq

Connect image from this directory, which can then be used with the Kafka Connect deployment. When
started using the enhanced image, Kafka Connect loads any third-party plug-ins from the /tmp/kafka-
plugins/s2i directory.

Procedure

1. On the command line, use the oc apply command to create and deploy a Kafka Connect S2I
cluster:

oc apply -f examples/kafka-connect/kafka-connect-s2i.yaml

2. Create a directory with Kafka Connect plug-ins:

$ tree ./my-plugins/
./my-plugins/
├── debezium-connector-mongodb
│ ├── bson-3.4.2.jar
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mongodb-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mongodb-driver-3.4.2.jar
│ ├── mongodb-driver-core-3.4.2.jar
│ └── README.md
├── debezium-connector-mysql
│ ├── CHANGELOG.md
│ ├── CONTRIBUTE.md
│ ├── COPYRIGHT.txt
│ ├── debezium-connector-mysql-0.7.1.jar
│ ├── debezium-core-0.7.1.jar
│ ├── LICENSE.txt
│ ├── mysql-binlog-connector-java-0.13.0.jar
│ ├── mysql-connector-java-5.1.40.jar
│ ├── README.md
│ └── wkb-1.0.2.jar
└── debezium-connector-postgres
 ├── CHANGELOG.md
 ├── CONTRIBUTE.md
 ├── COPYRIGHT.txt
 ├── debezium-connector-postgres-0.7.1.jar
 ├── debezium-core-0.7.1.jar
 ├── LICENSE.txt
 ├── postgresql-42.0.0.jar
 ├── protobuf-java-2.6.1.jar
 └── README.md

3. Use the oc start-build command to start a new build of the image using the prepared directory:

oc start-build my-connect-cluster-connect --from-dir ./my-plugins/

NOTE

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

180

NOTE

The name of the build is the same as the name of the deployed Kafka Connect
cluster.

4. Once the build has finished, the new image is used automatically by the Kafka Connect
deployment.

3.4. KAFKA MIRROR MAKER CONFIGURATION

The full schema of the KafkaMirrorMaker resource is described in the Section C.83,
“KafkaMirrorMaker schema reference”. All labels that apply to the desired KafkaMirrorMaker resource
will also be applied to the OpenShift resources making up Mirror Maker. This provides a convenient
mechanism for resources to be labeled as required.

3.4.1. Replicas

It is possible to run multiple Mirror Maker replicas. The number of replicas is defined in the
KafkaMirrorMaker resource. You can run multiple Mirror Maker replicas to provide better availability
and scalability. However, when running Kafka Mirror Maker on OpenShift it is not absolutely necessary to
run multiple replicas of the Kafka Mirror Maker for high availability. When the node where the Kafka
Mirror Maker has deployed crashes, OpenShift will automatically reschedule the Kafka Mirror Maker pod
to a different node. However, running Kafka Mirror Maker with multiple replicas can provide faster
failover times as the other nodes will be up and running.

3.4.1.1. Configuring the number of replicas

The number of Kafka Mirror Maker replicas can be configured using the replicas property in
KafkaMirrorMaker.spec.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the replicas property in the KafkaMirrorMaker resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 replicas: 3
 # ...

oc apply -f <your-file>

CHAPTER 3. DEPLOYMENT CONFIGURATION

181

3.4.2. Bootstrap servers

Kafka Mirror Maker always works together with two Kafka clusters (source and target). The source and
the target Kafka clusters are specified in the form of two lists of comma-separated list of
<hostname>: <port> pairs. The bootstrap server lists can refer to Kafka clusters which do not need to be
deployed in the same OpenShift cluster. They can even refer to any Kafka cluster not deployed by AMQ
Streams or even deployed by AMQ Streams but on a different OpenShift cluster and accessible from
outside.

If on the same OpenShift cluster, each list must ideally contain the Kafka cluster bootstrap service which
is named <cluster-name>-kafka-bootstrap and a port of 9092 for plain traffic or 9093 for encrypted
traffic. If deployed by AMQ Streams but on different OpenShift clusters, the list content depends on the
way used for exposing the clusters (routes, nodeports or loadbalancers).

The list of bootstrap servers can be configured in the
KafkaMirrorMaker.spec.consumer.bootstrapServers and
KafkaMirrorMaker.spec.producer.bootstrapServers properties. The servers should be a comma-
separated list containing one or more Kafka brokers or a Service pointing to Kafka brokers specified as
a <hostname>:<port> pairs.

When using Kafka Mirror Maker with a Kafka cluster not managed by AMQ Streams, you can specify the
bootstrap servers list according to the configuration of the given cluster.

3.4.2.1. Configuring bootstrap servers

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the KafkaMirrorMaker.spec.consumer.bootstrapServers and
KafkaMirrorMaker.spec.producer.bootstrapServers properties. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.3. Whitelist

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 bootstrapServers: my-source-cluster-kafka-bootstrap:9092
 # ...
 producer:
 bootstrapServers: my-target-cluster-kafka-bootstrap:9092

oc apply -f <your-file>

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

182

You specify the list topics that the Kafka Mirror Maker has to mirror from the source to the target Kafka
cluster in the KafkaMirrorMaker resource using the whitelist option. It allows any regular expression from
the simplest case with a single topic name to complex patterns. For example, you can mirror topics A and
B using "A|B" or all topics using "*". You can also pass multiple regular expressions separated by commas
to the Kafka Mirror Maker.

3.4.3.1. Configuring the topics whitelist

Specify the list topics that have to be mirrored by the Kafka Mirror Maker from source to target Kafka
cluster using the whitelist property in KafkaMirrorMaker.spec.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the whitelist property in the KafkaMirrorMaker resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.4. Consumer group identifier

The Kafka Mirror Maker uses Kafka consumer to consume messages and it behaves like any other Kafka
consumer client. It is in charge to consume the messages from the source Kafka cluster which will be
mirrored to the target Kafka cluster. The consumer needs to be part of a consumer group for being
assigned partitions.

3.4.4.1. Configuring the consumer group identifier

The consumer group identifier can be configured in the KafkaMirrorMaker.spec.consumer.groupId
property.

Prerequisites

An OpenShift cluster

A running Cluster Operator

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 whitelist: "my-topic|other-topic"
 # ...

oc apply -f <your-file>

CHAPTER 3. DEPLOYMENT CONFIGURATION

183

Procedure

1. Edit the KafkaMirrorMaker.spec.consumer.groupId property. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.5. Number of consumer streams

You can increase the throughput in mirroring topics by increase the number of consumer threads. More
consumer threads will belong to the same configured consumer group. The topic partitions will be
assigned across these consumer threads which will consume messages in parallel.

3.4.5.1. Configuring the number of consumer streams

The number of consumer streams can be configured using the
KafkaMirrorMaker.spec.consumer.numStreams property.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the KafkaMirrorMaker.spec.consumer.numStreams property. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 groupId: "my-group"
 # ...

oc apply -f <your-file>

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 numStreams: 2
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

184

3.4.6. Connecting to Kafka brokers using TLS

By default, Kafka Mirror Maker will try to connect to Kafka brokers, in the source and target clusters,
using a plain text connection. You must make additional configurations to use TLS.

3.4.6.1. TLS support in Kafka Mirror Maker

TLS support is configured in the tls sub-property of consumer and producer properties in
KafkaMirrorMaker.spec. The tls property contains a list of secrets with key names under which the
certificates are stored. The certificates should be stored in X.509 format.

An example showing TLS configuration with multiple certificates

When multiple certificates are stored in the same secret, it can be listed multiple times.

An example showing TLS configuration with multiple certificates from the same secret

oc apply -f <your-file>

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 tls:
 trustedCertificates:
 - secretName: my-source-secret
 certificate: ca.crt
 - secretName: my-other-source-secret
 certificate: certificate.crt
 # ...
 producer:
 tls:
 trustedCertificates:
 - secretName: my-target-secret
 certificate: ca.crt
 - secretName: my-other-target-secret
 certificate: certificate.crt
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 tls:
 trustedCertificates:
 - secretName: my-source-secret
 certificate: ca.crt
 - secretName: my-source-secret

CHAPTER 3. DEPLOYMENT CONFIGURATION

185

3.4.6.2. Configuring TLS encryption in Kafka Mirror Maker

Prerequisites

An OpenShift cluster

A running Cluster Operator

If they exist, the name of the Secret for the certificate used for TLS Server Authentication and
the key under which the certificate is stored in the Secret

Procedure

As the Kafka Mirror Maker connects to two Kafka clusters (source and target), you can choose to
configure TLS for one or both the clusters. The following steps describe how to configure TLS on the
consumer side for connecting to the source Kafka cluster:

1. (Optional) If they do not already exist, prepare the TLS certificate used for authentication in a
file and create a Secret.

NOTE

The secrets created by the Cluster Operator for Kafka cluster may be used
directly.

On OpenShift this can be done using oc create:

2. Edit the KafkaMirrorMaker.spec.consumer.tls property. For example:

 certificate: ca2.crt
 # ...
 producer:
 tls:
 trustedCertificates:
 - secretName: my-target-secret
 certificate: ca.crt
 - secretName: my-target-secret
 certificate: ca2.crt
 # ...

oc create secret generic <my-secret> --from-file=<my-file.crt>

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 tls:
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

186

3. Create or update the resource.
On OpenShift this can be done using oc apply:

Repeat the above steps for configuring TLS on the target Kafka cluster. In this case, the secret
containing the certificate has to be configured in the KafkaMirrorMaker.spec.producer.tls property.

3.4.7. Connecting to Kafka brokers with Authentication

By default, Kafka Mirror Maker will try to connect to Kafka brokers without any authentication.
Authentication is enabled through the KafkaMirrorMaker resource.

3.4.7.1. Authentication support in Kafka Mirror Maker

Authentication can be configured in the KafkaMirrorMaker.spec.consumer.authentication and
KafkaMirrorMaker.spec.producer.authentication properties. The authentication property specifies
the type of the authentication method which should be used and additional configuration details
depending on the mechanism. The currently supported authentication types are:

TLS client authentication

SASL-based authentication using the SCRAM-SHA-512 mechanism

SASL-based authentication using the PLAIN mechanism

You can use different authentication mechanisms for the Kafka Mirror Maker producer and consumer.

3.4.7.1.1. TLS Client Authentication

To use TLS client authentication, set the type property to the value tls. TLS client authentication uses a
TLS certificate to authenticate. The certificate is specified in the certificateAndKey property and is
always loaded from an OpenShift secret. In the secret, the certificate must be stored in X509 format
under two different keys: public and private.

NOTE

TLS client authentication can be used only with TLS connections. For more details about
TLS configuration in Kafka Mirror Maker see Section 3.4.6, “Connecting to Kafka brokers
using TLS”.

An example TLS client authentication configuration

oc apply -f <your-file>

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-source-secret

CHAPTER 3. DEPLOYMENT CONFIGURATION

187

3.4.7.1.2. SCRAM-SHA-512 authentication

To configure Kafka Mirror Maker to use SCRAM-SHA-512 authentication, set the type property to
scram-sha-512. The broker listener to which clients will connect must also be configured to use
SCRAM-SHA-512 SASL authentication. This authentication mechanism requires a username and
password.

Specify the username in the username property.

In the passwordSecret property, specify a link to a Secret containing the password. The
secretName property contains the name of the Secret and the password property contains
the name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password field.

An example SCRAM-SHA-512 client authentication configuration

 certificate: public.crt
 key: private.key
 # ...
 producer:
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-target-secret
 certificate: public.crt
 key: private.key
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 authentication:
 type: scram-sha-512
 username: my-source-user
 passwordSecret:
 secretName: my-source-user
 password: my-source-password-key
 # ...
 producer:
 authentication:
 type: scram-sha-512
 username: my-producer-user
 passwordSecret:
 secretName: my-producer-user
 password: my-producer-password-key
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

188

3.4.7.1.3. PLAIN authentication

To configure Kafka Mirror Maker to use PLAIN authentication, set the type property to plain. The
broker listener to which clients will connect must also be configured to use SASL PLAIN authentication.
This authentication mechanism requires a username and password.

WARNING

The SASL PLAIN mechanism will transfer the username and password across the
network in cleartext. Only use SASL PLAIN authentication if TLS encryption is
enabled.

Specify the username in the username property.

In the passwordSecret property, specify a link to a Secret containing the password. The
secretName property contains the name of the Secret and the password property contains
the name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password field.

An example PLAIN client authentication configuration

3.4.7.2. Configuring TLS client authentication in Kafka Mirror Maker

Prerequisites

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 authentication:
 type: plain
 username: my-source-user
 passwordSecret:
 secretName: my-source-user
 password: my-source-password-key
 # ...
 producer:
 authentication:
 type: plain
 username: my-producer-user
 passwordSecret:
 secretName: my-producer-user
 password: my-producer-password-key
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

189

Prerequisites

An OpenShift cluster

A running Cluster Operator with a tls listener with tls authentication enabled

If they exist, the name of the Secret with the public and private keys used for TLS Client
Authentication, and the keys under which they are stored in the Secret

Procedure

As the Kafka Mirror Maker connects to two Kafka clusters (source and target), you can choose to
configure TLS client authentication for one or both the clusters. The following steps describe how to
configure TLS client authentication on the consumer side for connecting to the source Kafka cluster:

1. (Optional) If they do not already exist, prepare the keys used for authentication in a file and
create the Secret.

NOTE

Secrets created by the User Operator may be used.

On OpenShift this can be done using oc create:

2. Edit the KafkaMirrorMaker.spec.consumer.authentication property. For example:

3. Create or update the resource.
On OpenShift this can be done using oc apply:

Repeat the above steps for configuring TLS client authentication on the target Kafka cluster. In this
case, the secret containing the certificate has to be configured in the
KafkaMirrorMaker.spec.producer.authentication property.

3.4.7.3. Configuring SCRAM-SHA-512 authentication in Kafka Mirror Maker

oc create secret generic <my-secret> --from-file=<my-public.crt> --from-file=<my-
private.key>

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: my-public.crt
 key: my-private.key
 # ...

oc apply -f <your-file>

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

190

Prerequisites

An OpenShift cluster

A running Cluster Operator with a listener configured for SCRAM-SHA-512 authentication

Username to be used for authentication

If they exist, the name of the Secret with the password used for authentication, and the key
under which it is stored in the Secret

Procedure

As the Kafka Mirror Maker connects to two Kafka clusters (source and target), you can choose to
configure SCRAM-SHA-512 authentication for one or both the clusters. The following steps describe
how to configure SCRAM-SHA-512 authentication on the consumer side for connecting to the source
Kafka cluster:

1. (Optional) If they do not already exist, prepare a file with the password used for authentication
and create the Secret.

NOTE

Secrets created by the User Operator may be used.

On OpenShift this can be done using oc create:

2. Edit the KafkaMirrorMaker.spec.consumer.authentication property. For example:

3. Create or update the resource.
On OpenShift this can be done using oc apply:

Repeat the above steps for configuring SCRAM-SHA-512 authentication on the target Kafka cluster. In
this case, the secret containing the certificate has to be configured in the
KafkaMirrorMaker.spec.producer.authentication property.

echo -n '1f2d1e2e67df' > <my-password.txt>
oc create secret generic <my-secret> --from-file=<my-password.txt>

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 authentication:
 type: scram-sha-512
 username: _<my-username>_
 passwordSecret:
 secretName: _<my-secret>_
 password: _<my-password.txt>_
 # ...

oc apply -f <your-file>

CHAPTER 3. DEPLOYMENT CONFIGURATION

191

3.4.8. Kafka Mirror Maker configuration

AMQ Streams allows you to customize the configuration of the Kafka Mirror Maker by editing most of
the options for the related consumer and producer. Producer options are listed in Apache Kafka
documentation. Consumer options are listed in Apache Kafka documentation.

The only options which cannot be configured are those related to the following areas:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Consumer group identifier

These options are automatically configured by AMQ Streams.

3.4.8.1. Kafka Mirror Maker configuration

Kafka Mirror Maker can be configured using the config sub-property in
KafkaMirrorMaker.spec.consumer and KafkaMirrorMaker.spec.producer. This property should
contain the Kafka Mirror Maker consumer and producer configuration options as keys. The values could
be in one of the following JSON types:

String

Number

Boolean

Users can specify and configure the options listed in the Apache Kafka documentation and Apache
Kafka documentation with the exception of those options which are managed directly by AMQ Streams.
Specifically, all configuration options with keys equal to or starting with one of the following strings are
forbidden:

ssl.

sasl.

security.

bootstrap.servers

group.id

When one of the forbidden options is present in the config property, it will be ignored and a warning
message will be printed to the Custer Operator log file. All other options will be passed to Kafka Mirror
Maker.

IMPORTANT

The Cluster Operator does not validate keys or values in the provided config object.
When an invalid configuration is provided, the Kafka Mirror Maker might not start or might
become unstable. In such cases, the configuration in the
KafkaMirrorMaker.spec.consumer.config or KafkaMirrorMaker.spec.producer.config
object should be fixed and the cluster operator will roll out the new configuration for
Kafka Mirror Maker.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

192

http://kafka.apache.org/20/documentation.html#producerconfigs
http://kafka.apache.org/20/documentation.html#newconsumerconfigs
http://kafka.apache.org/20/documentation.html#producerconfigs
http://kafka.apache.org/20/documentation.html#newconsumerconfigs

An example showing Kafka Mirror Maker configuration

3.4.8.2. Configuring Kafka Mirror Maker

Prerequisites

Two running Kafka clusters (source and target)

A running Cluster Operator

Procedure

1. Edit the KafkaMirrorMaker.spec.consumer.config and
KafkaMirrorMaker.spec.producer.config properties. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.9. CPU and memory resources

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirroMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 config:
 max.poll.records: 100
 receive.buffer.bytes: 32768
 producer:
 config:
 compression.type: gzip
 batch.size: 8192
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirroMaker
metadata:
 name: my-mirror-maker
spec:
 # ...
 consumer:
 config:
 max.poll.records: 100
 receive.buffer.bytes: 32768
 producer:
 config:
 compression.type: gzip
 batch.size: 8192
 # ...

oc apply -f <your-file>

CHAPTER 3. DEPLOYMENT CONFIGURATION

193

For every deployed container, AMQ Streams allows you to request specific resources and define the
maximum consumption of those resources.

AMQ Streams supports two types of resources:

CPU

Memory

AMQ Streams uses the OpenShift syntax for specifying CPU and memory resources.

3.4.9.1. Resource limits and requests

Resource limits and requests are configured using the resources property in the following resources:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

Additional resources

For more information about managing computing resources on OpenShift, see Managing
Compute Resources for Containers.

3.4.9.1.1. Resource requests

Requests specify the resources to reserve for a given container. Reserving the resources ensures that
they are always available.

IMPORTANT

If the resource request is for more than the available free resources in the OpenShift
cluster, the pod is not scheduled.

Resources requests are specified in the requests property. Resources requests currently supported by
AMQ Streams:

cpu

memory

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

194

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

A request may be configured for one or more supported resources.

Example resource request configuration with all resources

3.4.9.1.2. Resource limits

Limits specify the maximum resources that can be consumed by a given container. The limit is not
reserved and might not always be available. A container can use the resources up to the limit only when
they are available. Resource limits should be always higher than the resource requests.

Resource limits are specified in the limits property. Resource limits currently supported by AMQ
Streams:

cpu

memory

A resource may be configured for one or more supported limits.

Example resource limits configuration

3.4.9.1.3. Supported CPU formats

CPU requests and limits are supported in the following formats:

Number of CPU cores as integer (5 CPU core) or decimal (2.5 CPU core).

Number or millicpus / millicores (100m) where 1000 millicores is the same 1 CPU core.

Example CPU units

NOTE

...
resources:
 requests:
 cpu: 12
 memory: 64Gi
...

...
resources:
 limits:
 cpu: 12
 memory: 64Gi
...

...
resources:
 requests:
 cpu: 500m
 limits:
 cpu: 2.5
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

195

NOTE

The computing power of 1 CPU core may differ depending on the platform where
OpenShift is deployed.

Additional resources

For more information on CPU specification, see the Meaning of CPU.

3.4.9.1.4. Supported memory formats

Memory requests and limits are specified in megabytes, gigabytes, mebibytes, and gibibytes.

To specify memory in megabytes, use the M suffix. For example 1000M.

To specify memory in gigabytes, use the G suffix. For example 1G.

To specify memory in mebibytes, use the Mi suffix. For example 1000Mi.

To specify memory in gibibytes, use the Gi suffix. For example 1Gi.

An example of using different memory units

Additional resources

For more details about memory specification and additional supported units, see Meaning of
memory.

3.4.9.2. Configuring resource requests and limits

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the resources property in the resource specifying the cluster deployment. For example:

...
resources:
 requests:
 memory: 512Mi
 limits:
 memory: 2Gi
...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 resources:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

196

https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-cpu
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/#meaning-of-memory

2. Create or update the resource.
On OpenShift this can be done using oc apply:

Additional resources

For more information about the schema, see Resources schema reference.

3.4.10. Logging

This section provides information on loggers and how to configure log levels.

You can set the log levels by specifying the loggers and their levels directly (inline) or use a custom
(external) config map.

3.4.10.1. Kafka Mirror Maker loggers

Kafka Mirror Maker has its own configurable logger:

mirrormaker.root.logger

3.4.10.2. Specifying inline logging

Procedure

1. Edit the YAML file to specify the loggers and logging level for the required components.
For example, the logging level here is set to INFO:

You can set the log level to INFO, ERROR, WARN, TRACE, DEBUG, FATAL or OFF.

For more information about the log levels, see the log4j manual.

 requests:
 cpu: "8"
 memory: 64Gi
 limits:
 cpu: "12"
 memory: 128Gi
 # ...
 zookeeper:
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
spec:
 # ...
 logging:
 type: inline
 loggers:
 logger.name: "INFO"
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

197

https://logging.apache.org/log4j/2.x/manual/customloglevels.html

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

3.4.10.3. Specifying an external ConfigMap for logging

Procedure

1. Edit the YAML file to specify the name of the ConfigMap to use for the required components.
For example:

Remember to place your custom ConfigMap under the log4j.properties or log4j2.properties
key.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

Garbage collector (GC) logging can also be enabled (or disabled). For more information on GC, see
Section 3.4.12.1, “JVM configuration”

3.4.11. Prometheus metrics

AMQ Streams supports Prometheus metrics using Prometheus JMX exporter to convert the JMX
metrics supported by Apache Kafka and Zookeeper to Prometheus metrics. When metrics are enabled,
they are exposed on port 9404.

3.4.11.1. Metrics configuration

Prometheus metrics are enabled by configuring the metrics property in following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaConnectS2I.spec

When the metrics property is not defined in the resource, the Prometheus metrics will be disabled. To
enable Prometheus metrics export without any further configuration, you can set it to an empty object
({}).

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaMirrorMaker
spec:
 # ...
 logging:
 type: external
 name: customConfigMap
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

198

https://github.com/prometheus/jmx_exporter

Example of enabling metrics without any further configuration

The metrics property might contain additional configuration for the Prometheus JMX exporter.

Example of enabling metrics with additional Prometheus JMX Exporter configuration

3.4.11.2. Configuring Prometheus metrics

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the metrics property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metrics: {}
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 metrics:
 lowercaseOutputName: true
 rules:
 - pattern: "kafka.server<type=(.+), name=(.+)PerSec\\w*><>Count"
 name: "kafka_server_$1_$2_total"
 - pattern: "kafka.server<type=(.+), name=(.+)PerSec\\w*, topic=(.+)><>Count"
 name: "kafka_server_$1_$2_total"
 labels:
 topic: "$3"
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:

CHAPTER 3. DEPLOYMENT CONFIGURATION

199

https://github.com/prometheus/jmx_exporter

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.12. JVM Options

Apache Kafka and Apache Zookeeper run inside a Java Virtual Machine (JVM). JVM configuration
options optimize the performance for different platforms and architectures. AMQ Streams allows you to
configure some of these options.

3.4.12.1. JVM configuration

JVM options can be configured using the jvmOptions property in following resources:

Kafka.spec.kafka

Kafka.spec.zookeeper

KafkaConnect.spec

KafkaConnectS2I.spec

Only a selected subset of available JVM options can be configured. The following options are supported:

-Xms and -Xmx

-Xms configures the minimum initial allocation heap size when the JVM starts. -Xmx configures the
maximum heap size.

NOTE

The units accepted by JVM settings such as -Xmx and -Xms are those accepted by the
JDK java binary in the corresponding image. Accordingly, 1g or 1G means 1,073,741,824
bytes, and Gi is not a valid unit suffix. This is in contrast to the units used for memory
requests and limits, which follow the OpenShift convention where 1G means
1,000,000,000 bytes, and 1Gi means 1,073,741,824 bytes

The default values used for -Xms and -Xmx depends on whether there is a memory request limit
configured for the container:

If there is a memory limit then the JVM’s minimum and maximum memory will be set to a value
corresponding to the limit.

If there is no memory limit then the JVM’s minimum memory will be set to 128M and the JVM’s

 name: my-cluster
spec:
 kafka:
 # ...
 zookeeper:
 # ...
 metrics:
 lowercaseOutputName: true
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

200

If there is no memory limit then the JVM’s minimum memory will be set to 128M and the JVM’s
maximum memory will not be defined. This allows for the JVM’s memory to grow as-needed,
which is ideal for single node environments in test and development.

IMPORTANT

Setting -Xmx explicitly requires some care:

The JVM’s overall memory usage will be approximately 4 × the maximum heap, as
configured by -Xmx.

If -Xmx is set without also setting an appropriate OpenShift memory limit, it is
possible that the container will be killed should the OpenShift node experience
memory pressure (from other Pods running on it).

If -Xmx is set without also setting an appropriate OpenShift memory request, it is
possible that the container will be scheduled to a node with insufficient memory.
In this case, the container will not start but crash (immediately if -Xms is set to -
Xmx, or some later time if not).

When setting -Xmx explicitly, it is recommended to:

set the memory request and the memory limit to the same value,

use a memory request that is at least 4.5 × the -Xmx,

consider setting -Xms to the same value as -Xms.

IMPORTANT

Containers doing lots of disk I/O (such as Kafka broker containers) will need to leave
some memory available for use as operating system page cache. On such containers, the
requested memory should be significantly higher than the memory used by the JVM.

Example fragment configuring -Xmx and -Xms

In the above example, the JVM will use 2 GiB (=2,147,483,648 bytes) for its heap. Its total memory
usage will be approximately 8GiB.

Setting the same value for initial (-Xms) and maximum (-Xmx) heap sizes avoids the JVM having to
allocate memory after startup, at the cost of possibly allocating more heap than is really needed. For
Kafka and Zookeeper pods such allocation could cause unwanted latency. For Kafka Connect avoiding
over allocation may be the most important concern, especially in distributed mode where the effects of
over-allocation will be multiplied by the number of consumers.

-server

-server enables the server JVM. This option can be set to true or false.

...
jvmOptions:
 "-Xmx": "2g"
 "-Xms": "2g"
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

201

Example fragment configuring -server

NOTE

When neither of the two options (-server and -XX) is specified, the default Apache Kafka
configuration of KAFKA_JVM_PERFORMANCE_OPTS will be used.

-XX

-XX object can be used for configuring advanced runtime options of a JVM. The -server and -XX
options are used to configure the KAFKA_JVM_PERFORMANCE_OPTS option of Apache Kafka.

Example showing the use of the -XX object

The example configuration above will result in the following JVM options:

-XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -
XX:+ExplicitGCInvokesConcurrent -XX:-UseParNewGC

NOTE

When neither of the two options (-server and -XX) is specified, the default Apache Kafka
configuration of KAFKA_JVM_PERFORMANCE_OPTS will be used.

3.4.12.1.1. Garbage collector logging

The jvmOptions section also allows you to enable and disable garbage collector (GC) logging. GC
logging is enabled by default. To disable it, set the gcLoggingEnabled property as follows:

Example of disabling GC logging

3.4.12.2. Configuring JVM options

...
jvmOptions:
 "-server": true
...

jvmOptions:
 "-XX":
 "UseG1GC": true,
 "MaxGCPauseMillis": 20,
 "InitiatingHeapOccupancyPercent": 35,
 "ExplicitGCInvokesConcurrent": true,
 "UseParNewGC": false

...
jvmOptions:
 gcLoggingEnabled: false
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

202

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the jvmOptions property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.13. Container images

AMQ Streams allows you to configure container images which will be used for its components.
Overriding container images is recommended only in special situations, where you need to use a
different container registry. For example, because your network does not allow access to the container
repository used by AMQ Streams. In such a case, you should either copy the AMQ Streams images or
build them from the source. If the configured image is not compatible with AMQ Streams images, it
might not work properly.

3.4.13.1. Container image configurations

Container image which should be used for given components can be specified using the image property
in:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 jvmOptions:
 "-Xmx": "8g"
 "-Xms": "8g"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

203

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

3.4.13.1.1. Configuring the Kafka.spec.kafka.image property

The Kafka.spec.kafka.image property functions differently from the others, because AMQ Streams
supports multiple versions of Kafka, each requiring the own image. The STRIMZI_KAFKA_IMAGES
environment variable of the Cluster Operator configuration is used to provide a mapping between Kafka
versions and the corresponding images. This is used in combination with the Kafka.spec.kafka.image
and Kafka.spec.kafka.version properties as follows:

If neither Kafka.spec.kafka.image nor Kafka.spec.kafka.version are given in the custom
resource then the version will default to the Cluster Operator’s default Kafka version, and the
image will be the one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

If Kafka.spec.kafka.image is given but Kafka.spec.kafka.version is not then the given image
will be used and the version will be assumed to be the Cluster Operator’s default Kafka version.

If Kafka.spec.kafka.version is given but Kafka.spec.kafka.image is not then image will be the
one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

Both Kafka.spec.kafka.version and Kafka.spec.kafka.image are given the given image will be
used, and it will be assumed to contain a Kafka broker with the given version.

WARNING

It is best to provide just Kafka.spec.kafka.version and leave the
Kafka.spec.kafka.image property unspecified. This reduces the chances of making
a mistake in configuring the Kafka resource. If you need to change the images used
for different versions of Kafka, it is better to configure the Cluster Operator’s
STRIMZI_KAFKA_IMAGES environment variable.

3.4.13.1.2. Configuring the image property in other resources

For the image property in the other custom resources, the given value will be used during deployment. If
the image property is missing, the image specified in the Cluster Operator configuration will be used. If
the image name is not defined in the Cluster Operator configuration, then the default value will be used.

For Kafka broker TLS sidecar:

1. Container image specified in the STRIMZI_DEFAULT_TLS_SIDECAR_KAFKA_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper nodes:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

204

1. Container image specified in the STRIMZI_DEFAULT_ZOOKEEPER_IMAGE environment
variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper node TLS sidecar:

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ZOOKEEPER_IMAGE environment variable from
the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Topic Operator:

1. Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For User Operator:

1. Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For Entity Operator TLS sidecar:

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE environment variable
from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect with Source2image support:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_S2I_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

CHAPTER 3. DEPLOYMENT CONFIGURATION

205

WARNING

Overriding container images is recommended only in special situations, where you
need to use a different container registry. For example, because your network does
not allow access to the container repository used by AMQ Streams. In such case,
you should either copy the AMQ Streams images or build them from source. In case
the configured image is not compatible with AMQ Streams images, it might not
work properly.

Example of container image configuration

3.4.13.2. Configuring container images

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the image property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

206

On OpenShift this can be done using oc apply:

3.4.14. Configuring pod scheduling

IMPORTANT

When two application are scheduled to the same OpenShift node, both applications
might use the same resources like disk I/O and impact performance. That can lead to
performance degradation. Scheduling Kafka pods in a way that avoids sharing nodes with
other critical workloads, using the right nodes or dedicated a set of nodes only for Kafka
are the best ways how to avoid such problems.

3.4.14.1. Scheduling pods based on other applications

3.4.14.1.1. Avoid critical applications to share the node

Pod anti-affinity can be used to ensure that critical applications are never scheduled on the same disk.
When running Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers
do not share the nodes with other workloads like databases.

3.4.14.1.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.4.14.1.3. Configuring pod anti-affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

207

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.14.2. Scheduling pods to specific nodes

3.4.14.2.1. Node scheduling

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to
create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

3.4.14.2.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

208

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.4.14.2.3. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
On OpenShift this can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

oc label node your-node node-type=fast-network

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network

CHAPTER 3. DEPLOYMENT CONFIGURATION

209

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.14.3. Using dedicated nodes

3.4.14.3.1. Dedicated nodes

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Taints can be used to create dedicated nodes. Running Kafka and its components on dedicated nodes
can have many advantages. There will be no other applications running on the same nodes which could
cause disturbance or consume the resources needed for Kafka. That can lead to improved performance
and stability.

To schedule Kafka pods on the dedicated nodes, configure node affinity and tolerations.

3.4.14.3.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.4.14.3.3. Tolerations

Tolerations can be configured using the tolerations property in following resources:

Kafka.spec.kafka.template.pod

 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

210

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The format of the tolerations property follows the OpenShift specification. For more details, see the
Kubernetes taints and tolerations .

3.4.14.3.4. Setting up dedicated nodes and scheduling pods on them

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
On OpenShift this can be done using oc adm taint:

4. Additionally, add a label to the selected nodes as well.
On OpenShift this can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

oc adm taint node your-node dedicated=Kafka:NoSchedule

oc label node your-node dedicated=Kafka

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 tolerations:
 - key: "dedicated"
 operator: "Equal"
 value: "Kafka"
 effect: "NoSchedule"
 affinity:
 nodeAffinity:

CHAPTER 3. DEPLOYMENT CONFIGURATION

211

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

6. Create or update the resource.
On OpenShift this can be done using oc apply:

3.4.15. List of resources created as part of Kafka Mirror Maker

The following resources will created by the Cluster Operator in the OpenShift cluster:

<mirror-maker-name>-mirror-maker

Deployment which is in charge to create the Kafka Mirror Maker pods.

<mirror-maker-name>-config

ConfigMap which contains the Kafka Mirror Maker ancillary configuration and is mounted as a volume
by the Kafka broker pods.

<mirror-maker-name>-mirror-maker

Pod Disruption Budget configured for the Kafka Mirror Maker worker nodes.

3.5. KAFKA BRIDGE CLUSTER CONFIGURATION

The full schema of the KafkaBridge resource is described in the Section C.92, “KafkaBridge schema
reference”. All labels that are applied to the desired KafkaBridge resource will also be applied to the
OpenShift resources making up the Kafka Bridge cluster. This provides a convenient mechanism for
resources to be labeled as required.

3.5.1. Replicas

Kafka Bridge can run multiple nodes. The number of nodes is defined in the KafkaBridge resource.
Running a Kafka Bridge with multiple nodes can provide better availability and scalability. However, when
running Kafka Bridge on OpenShift it is not absolutely necessary to run multiple nodes of Kafka Bridge
for high availability.

IMPORTANT

If a node where Kafka Bridge is deployed to crashes, OpenShift will automatically
reschedule the Kafka Bridge pod to a different node. In order to prevent issues arising
when client consumer requests are processed by different Kafka Bridge instances,
addressed-based routing must be employed to ensure that requests are routed to the
right Kafka Bridge instance. Additionally, each independent Kafka Bridge instance must
have a replica. A Kafka Bridge instance has its own state which is not shared with another
instances.

 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: dedicated
 operator: In
 values:
 - Kafka
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

212

3.5.1.1. Configuring the number of nodes

The number of Kafka Bridge nodes is configured using the replicas property in KafkaBridge.spec.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the replicas property in the KafkaBridge resource. For example:

2. Create or update the resource.
On OpenShift use:

3.5.2. Bootstrap servers

A Kafka Bridge always works in combination with a Kafka cluster. A Kafka cluster is specified as a list of
bootstrap servers. On OpenShift, the list must ideally contain the Kafka cluster bootstrap service named
cluster-name-kafka-bootstrap, and a port of 9092 for plain traffic or 9093 for encrypted traffic.

The list of bootstrap servers is configured in the bootstrapServers property in
KafkaBridge.kafka.spec. The servers must be defined as a comma-separated list specifying one or
more Kafka brokers, or a service pointing to Kafka brokers specified as a hostname:_port_ pairs.

When using Kafka Bridge with a Kafka cluster not managed by AMQ Streams, you can specify the
bootstrap servers list according to the configuration of the cluster.

3.5.2.1. Configuring bootstrap servers

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the bootstrapServers property in the KafkaBridge resource. For example:

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 replicas: 3
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1alpha1

CHAPTER 3. DEPLOYMENT CONFIGURATION

213

2. Create or update the resource.
On OpenShift use:

3.5.3. Connecting to Kafka brokers using TLS

By default, Kafka Bridge tries to connect to Kafka brokers using a plain text connection. If you prefer to
use TLS, additional configuration is required.

3.5.3.1. TLS support for Kafka connection to the Kafka Bridge

TLS support for Kafka connection is configured in the tls property in KafkaBridge.spec.kafka. The tls
property contains a list of secrets with key names under which the certificates are stored. The
certificates must be stored in X509 format.

An example showing TLS configuration with multiple certificates

When multiple certificates are stored in the same secret, it can be listed multiple times.

An example showing TLS configuration with multiple certificates from the same secret

kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 bootstrapServers: my-cluster-kafka-bootstrap:9092
 # ...

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 tls:
 trustedCertificates:
 - secretName: my-secret
 certificate: ca.crt
 - secretName: my-other-secret
 certificate: certificate.crt
 # ...

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 tls:
 trustedCertificates:
 - secretName: my-secret
 certificate: ca.crt

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

214

3.5.3.2. Configuring TLS in Kafka Bridge

Prerequisites

An OpenShift cluster

A running Cluster Operator

If they exist, the name of the Secret for the certificate used for TLS Server Authentication, and
the key under which the certificate is stored in the Secret

Procedure

1. (Optional) If they do not already exist, prepare the TLS certificate used in authentication in a file
and create a Secret.

NOTE

The secrets created by the Cluster Operator for Kafka cluster may be used
directly.

On OpenShift use:

2. Edit the tls property in the KafkaBridge resource. For example:

3. Create or update the resource.
On OpenShift use:

3.5.4. Connecting to Kafka brokers with Authentication

By default, Kafka Bridge will try to connect to Kafka brokers without authentication. Authentication is
enabled through the KafkaBridge resources.

 - secretName: my-secret
 certificate: ca2.crt
 # ...

oc create secret generic my-secret --from-file=my-file.crt

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 tls:
 trustedCertificates:
 - secretName: my-cluster-cluster-cert
 certificate: ca.crt
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

215

3.5.4.1. Authentication support in Kafka Bridge

Authentication is configured through the authentication property in KafkaBridge.spec.kafka. The
authentication property specifies the type of the authentication mechanisms which should be used and
additional configuration details depending on the mechanism. The currently supported authentication
types are:

TLS client authentication

SASL-based authentication using the SCRAM-SHA-512 mechanism

SASL-based authentication using the PLAIN mechanism

3.5.4.1.1. TLS Client Authentication

To use TLS client authentication, set the type property to the value tls. TLS client authentication uses a
TLS certificate to authenticate. The certificate is specified in the certificateAndKey property and is
always loaded from an OpenShift secret. In the secret, the certificate must be stored in X509 format
under two different keys: public and private.

NOTE

TLS client authentication can be used only with TLS connections. For more details about
TLS configuration in Kafka Bridge see Section 3.5.3, “Connecting to Kafka brokers using
TLS”.

An example TLS client authentication configuration

3.5.4.1.2. SCRAM-SHA-512 authentication

To configure Kafka Bridge to use SASL-based SCRAM-SHA-512 authentication, set the type property
to scram-sha-512. This authentication mechanism requires a username and password.

Specify the username in the username property.

In the passwordSecret property, specify a link to a Secret containing the password. The
secretName property contains the name of the Secret and the password property contains
the name of the key under which the password is stored inside the Secret.

IMPORTANT

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: public.crt
 key: private.key
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

216

IMPORTANT

Do not specify the actual password in the password field.

An example SASL based SCRAM-SHA-512 client authentication configuration

3.5.4.1.3. SASL-based PLAIN authentication

To configure Kafka Bridge to use SASL-based PLAIN authentication, set the type property to plain.
This authentication mechanism requires a username and password.

WARNING

The SASL PLAIN mechanism will transfer the username and password across the
network in cleartext. Only use SASL PLAIN authentication if TLS encryption is
enabled.

Specify the username in the username property.

In the passwordSecret property, specify a link to a Secret containing the password. The
secretName property contains the name the Secret and the password property contains the
name of the key under which the password is stored inside the Secret.

IMPORTANT

Do not specify the actual password in the password field.

An example showing SASL based PLAIN client authentication configuration

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 authentication:
 type: scram-sha-512
 username: my-bridge-user
 passwordSecret:
 secretName: my-bridge-user
 password: my-bridge-password-key
 # ...

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

217

3.5.4.2. Configuring TLS client authentication in Kafka Bridge

Prerequisites

An OpenShift cluster

A running Cluster Operator

If they exist, the name of the Secret with the public and private keys used for TLS Client
Authentication, and the keys under which they are stored in the Secret

Procedure

1. (Optional) If they do not already exist, prepare the keys used for authentication in a file and
create the Secret.

NOTE

Secrets created by the User Operator may be used.

On OpenShift use:

2. Edit the authentication property in the KafkaBridge resource. For example:

3. Create or update the resource.
On OpenShift use:

 authentication:
 type: plain
 username: my-bridge-user
 passwordSecret:
 secretName: my-bridge-user
 password: my-bridge-password-key
 # ...

oc create secret generic my-secret --from-file=my-public.crt --from-file=my-private.key

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 authentication:
 type: tls
 certificateAndKey:
 secretName: my-secret
 certificate: my-public.crt
 key: my-private.key
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

218

3.5.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Bridge

Prerequisites

An OpenShift cluster

A running Cluster Operator

Username of the user which should be used for authentication

If they exist, the name of the Secret with the password used for authentication and the key
under which the password is stored in the Secret

Procedure

1. (Optional) If they do not already exist, prepare a file with the password used in authentication
and create the Secret.

NOTE

Secrets created by the User Operator may be used.

On OpenShift use:

2. Edit the authentication property in the KafkaBridge resource. For example:

3. Create or update the resource.
On OpenShift use:

3.5.5. Kafka Bridge configuration

AMQ Streams allows you to customize the configuration of Apache Kafka Bridge nodes by editing
certain options listed in Apache Kafka documentation and Apache Kafka documentation.

echo -n '1f2d1e2e67df' > <my-password>.txt
oc create secret generic <my-secret> --from-file=<my-password.txt>

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 authentication:
 type: scram-sha-512
 username: _<my-username>_
 passwordSecret:
 secretName: _<my-secret>_
 password: _<my-password.txt>_
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

219

http://kafka.apache.org/20/documentation.html#newconsumerconfigs
http://kafka.apache.org/20/documentation.html#producerconfigs

Configuration options that can be configured relate to:

Kafka cluster bootstrap address

Security (Encryption, Authentication, and Authorization)

Consumer configuration

Producer configuration

HTTP configuration

3.5.5.1. Kafka Bridge Consumer configuration

Kafka Bridge consumer is configured using the properties in KafkaBridge.spec.consumer. This
property contains the Kafka Bridge consumer configuration options as keys. The values can be one of
the following JSON types:

String

Number

Boolean

Users can specify and configure the options listed in the Apache Kafka documentation with the
exception of those options which are managed directly by AMQ Streams. Specifically, all configuration
options with keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

bootstrap.servers

group.id

When one of the forbidden options is present in the config property, it will be ignored and a warning
message will be printed to the Custer Operator log file. All other options will be passed to Kafka

IMPORTANT

The Cluster Operator does not validate keys or values in the config object provided.
When an invalid configuration is provided, the Kafka Bridge cluster might not start or
might become unstable. In this circumstance, fix the configuration in the
KafkaBridge.spec.consumer.config object, then the Cluster Operator can roll out the
new configuration to all Kafka Bridge nodes.

Example Kafka Bridge consumer configuration

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

220

http://kafka.apache.org/20/documentation.html#newconsumerconfigs

3.5.5.2. Kafka Bridge Producer configuration

Kafka Bridge producer is configured using the properties in KafkaBridge.spec.producer. This property
contains the Kafka Bridge producer configuration options as keys. The values can be one of the following
JSON types:

String

Number

Boolean

Users can specify and configure the options listed in the Apache Kafka documentation with the
exception of those options which are managed directly by AMQ Streams. Specifically, all configuration
options with keys equal to or starting with one of the following strings are forbidden:

ssl.

sasl.

security.

bootstrap.servers

IMPORTANT

The Cluster Operator does not validate keys or values in the config object provided.
When an invalid configuration is provided, the Kafka Bridge cluster might not start or
might become unstable. In this circumstance, fix the configuration in the
KafkaBridge.spec.producer.config object, then the Cluster Operator can roll out the
new configuration to all Kafka Bridge nodes.

Example Kafka Bridge producer configuration

3.5.5.3. Kafka Bridge HTTP configuration

Kafka Bridge HTTP configuration is set using the properties in KafkaBridge.spec.http. This property

 # ...
 consumer:
 config:
 auto.offset.reset: earliest
 enable.auto.commit: true
 # ...

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 producer:
 config:
 acks: 1
 delivery.timeout.ms: 300000
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

221

http://kafka.apache.org/20/documentation.html#producerconfigs

Kafka Bridge HTTP configuration is set using the properties in KafkaBridge.spec.http. This property
contains the Kafka Bridge HTTP configuration options.

port

When configuring port property avoid the value 8081. This port is used for the health checks.

Example Kafka Bridge HTTP configuration

IMPORTANT

The port must not be set to 8081 as that will cause a conflict with the healthcheck
settings.

3.5.5.4. Configuring Kafka Bridge

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the kafka, http, consumer or producer property in the KafkaBridge resource. For
example:

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 http:
 port: 8080
 # ...

apiVersion: kafka.strimzi.io/v1alpha1
kind: KafkaBridge
metadata:
 name: my-bridge
spec:
 # ...
 bootstrapServers: my-cluster-kafka:9092
 http:
 port: 8080
 consumer:
 config:
 auto.offset.reset: earliest
 producer:
 config:
 delivery.timeout.ms: 300000
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

222

2. Create or update the resource.
On OpenShift use:

3.5.6. Healthchecks

Healthchecks are periodical tests which verify the health of an application. When a Healthcheck probe
fails, OpenShift assumes that the application is not healthy and attempts to fix it.

OpenShift supports two types of Healthcheck probes:

Liveness probes

Readiness probes

For more details about the probes, see Configure Liveness and Readiness Probes . Both types of probes
are used in AMQ Streams components.

Users can configure selected options for liveness and readiness probes.

3.5.6.1. Healthcheck configurations

Liveness and readiness probes can be configured using the livenessProbe and readinessProbe
properties in following resources:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

Both livenessProbe and readinessProbe support two additional options:

initialDelaySeconds

timeoutSeconds

The initialDelaySeconds property defines the initial delay before the probe is tried for the first time.
Default is 15 seconds.

The timeoutSeconds property defines timeout of the probe. Default is 5 seconds.

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

223

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

An example of liveness and readiness probe configuration

3.5.6.2. Configuring healthchecks

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the livenessProbe or readinessProbe property in the Kafka, KafkaConnect or
KafkaConnectS2I resource. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.5.7. Container images

AMQ Streams allows you to configure container images which will be used for its components.
Overriding container images is recommended only in special situations, where you need to use a
different container registry. For example, because your network does not allow access to the container

...
readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
...

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 readinessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 livenessProbe:
 initialDelaySeconds: 15
 timeoutSeconds: 5
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

224

repository used by AMQ Streams. In such a case, you should either copy the AMQ Streams images or
build them from the source. If the configured image is not compatible with AMQ Streams images, it
might not work properly.

3.5.7.1. Container image configurations

Container image which should be used for given components can be specified using the image property
in:

Kafka.spec.kafka

Kafka.spec.kafka.tlsSidecar

Kafka.spec.zookeeper

Kafka.spec.zookeeper.tlsSidecar

Kafka.spec.entityOperator.topicOperator

Kafka.spec.entityOperator.userOperator

Kafka.spec.entityOperator.tlsSidecar

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaBridge.spec

3.5.7.1.1. Configuring the Kafka.spec.kafka.image property

The Kafka.spec.kafka.image property functions differently from the others, because AMQ Streams
supports multiple versions of Kafka, each requiring the own image. The STRIMZI_KAFKA_IMAGES
environment variable of the Cluster Operator configuration is used to provide a mapping between Kafka
versions and the corresponding images. This is used in combination with the Kafka.spec.kafka.image
and Kafka.spec.kafka.version properties as follows:

If neither Kafka.spec.kafka.image nor Kafka.spec.kafka.version are given in the custom
resource then the version will default to the Cluster Operator’s default Kafka version, and the
image will be the one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

If Kafka.spec.kafka.image is given but Kafka.spec.kafka.version is not then the given image
will be used and the version will be assumed to be the Cluster Operator’s default Kafka version.

If Kafka.spec.kafka.version is given but Kafka.spec.kafka.image is not then image will be the
one corresponding to this version in the STRIMZI_KAFKA_IMAGES.

Both Kafka.spec.kafka.version and Kafka.spec.kafka.image are given the given image will be
used, and it will be assumed to contain a Kafka broker with the given version.

CHAPTER 3. DEPLOYMENT CONFIGURATION

225

WARNING

It is best to provide just Kafka.spec.kafka.version and leave the
Kafka.spec.kafka.image property unspecified. This reduces the chances of making
a mistake in configuring the Kafka resource. If you need to change the images used
for different versions of Kafka, it is better to configure the Cluster Operator’s
STRIMZI_KAFKA_IMAGES environment variable.

3.5.7.1.2. Configuring the image property in other resources

For the image property in the other custom resources, the given value will be used during deployment. If
the image property is missing, the image specified in the Cluster Operator configuration will be used. If
the image name is not defined in the Cluster Operator configuration, then the default value will be used.

For Kafka broker TLS sidecar:

1. Container image specified in the STRIMZI_DEFAULT_TLS_SIDECAR_KAFKA_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper nodes:

1. Container image specified in the STRIMZI_DEFAULT_ZOOKEEPER_IMAGE environment
variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Zookeeper node TLS sidecar:

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ZOOKEEPER_IMAGE environment variable from
the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Topic Operator:

1. Container image specified in the STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For User Operator:

1. Container image specified in the STRIMZI_DEFAULT_USER_OPERATOR_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amq-streams-operator:1.2.0 container image.

For Entity Operator TLS sidecar:

1. Container image specified in the

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

226

1. Container image specified in the
STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE environment variable
from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

For Kafka Connect with Source2image support:

1. Container image specified in the STRIMZI_DEFAULT_KAFKA_CONNECT_S2I_IMAGE
environment variable from the Cluster Operator configuration.

2. registry.redhat.io/amq7/amqstreams-kafka-22 container image.

WARNING

Overriding container images is recommended only in special situations, where you
need to use a different container registry. For example, because your network does
not allow access to the container repository used by AMQ Streams. In such case,
you should either copy the AMQ Streams images or build them from source. In case
the configured image is not compatible with AMQ Streams images, it might not
work properly.

Example of container image configuration

3.5.7.2. Configuring container images

Prerequisites

An OpenShift cluster

A running Cluster Operator

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

CHAPTER 3. DEPLOYMENT CONFIGURATION

227

Procedure

1. Edit the image property in the Kafka, KafkaConnect or KafkaConnectS2I resource. For
example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.5.8. Configuring pod scheduling

IMPORTANT

When two application are scheduled to the same OpenShift node, both applications
might use the same resources like disk I/O and impact performance. That can lead to
performance degradation. Scheduling Kafka pods in a way that avoids sharing nodes with
other critical workloads, using the right nodes or dedicated a set of nodes only for Kafka
are the best ways how to avoid such problems.

3.5.8.1. Scheduling pods based on other applications

3.5.8.1.1. Avoid critical applications to share the node

Pod anti-affinity can be used to ensure that critical applications are never scheduled on the same disk.
When running Kafka cluster, it is recommended to use pod anti-affinity to ensure that the Kafka brokers
do not share the nodes with other workloads like databases.

3.5.8.1.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 kafka:
 # ...
 image: my-org/my-image:latest
 # ...
 zookeeper:
 # ...

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

228

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.5.8.1.3. Configuring pod anti-affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Edit the affinity property in the resource specifying the cluster deployment. Use labels to
specify the pods which should not be scheduled on the same nodes. The topologyKey should
be set to kubernetes.io/hostname to specify that the selected pods should not be scheduled
on nodes with the same hostname. For example:

2. Create or update the resource.
On OpenShift this can be done using oc apply:

3.5.8.2. Scheduling pods to specific nodes

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: application
 operator: In
 values:
 - postgresql
 - mongodb
 topologyKey: "kubernetes.io/hostname"
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

229

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

3.5.8.2.1. Node scheduling

The OpenShift cluster usually consists of many different types of worker nodes. Some are optimized for
CPU heavy workloads, some for memory, while other might be optimized for storage (fast local SSDs) or
network. Using different nodes helps to optimize both costs and performance. To achieve the best
possible performance, it is important to allow scheduling of AMQ Streams components to use the right
nodes.

OpenShift uses node affinity to schedule workloads onto specific nodes. Node affinity allows you to
create a scheduling constraint for the node on which the pod will be scheduled. The constraint is
specified as a label selector. You can specify the label using either the built-in node label like
beta.kubernetes.io/instance-type or custom labels to select the right node.

3.5.8.2.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.5.8.2.3. Configuring node affinity in Kafka components

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Label the nodes where AMQ Streams components should be scheduled.
On OpenShift this can be done using oc label:

Alternatively, some of the existing labels might be reused.

2. Edit the affinity property in the resource specifying the cluster deployment. For example:

oc label node your-node node-type=fast-network

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

230

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

3. Create or update the resource.
On OpenShift this can be done using oc apply:

3.5.8.3. Using dedicated nodes

3.5.8.3.1. Dedicated nodes

Cluster administrators can mark selected OpenShift nodes as tainted. Nodes with taints are excluded
from regular scheduling and normal pods will not be scheduled to run on them. Only services which can
tolerate the taint set on the node can be scheduled on it. The only other services running on such nodes
will be system services such as log collectors or software defined networks.

Taints can be used to create dedicated nodes. Running Kafka and its components on dedicated nodes
can have many advantages. There will be no other applications running on the same nodes which could
cause disturbance or consume the resources needed for Kafka. That can lead to improved performance
and stability.

To schedule Kafka pods on the dedicated nodes, configure node affinity and tolerations.

3.5.8.3.2. Affinity

Affinity can be configured using the affinity property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: node-type
 operator: In
 values:
 - fast-network
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

231

KafkaBridge.spec.template.pod

The affinity configuration can include different types of affinity:

Pod affinity and anti-affinity

Node affinity

The format of the affinity property follows the OpenShift specification. For more details, see the
Kubernetes node and pod affinity documentation .

3.5.8.3.3. Tolerations

Tolerations can be configured using the tolerations property in following resources:

Kafka.spec.kafka.template.pod

Kafka.spec.zookeeper.template.pod

Kafka.spec.entityOperator.template.pod

KafkaConnect.spec.template.pod

KafkaConnectS2I.spec.template.pod

KafkaBridge.spec.template.pod

The format of the tolerations property follows the OpenShift specification. For more details, see the
Kubernetes taints and tolerations .

3.5.8.3.4. Setting up dedicated nodes and scheduling pods on them

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

1. Select the nodes which should be used as dedicated.

2. Make sure there are no workloads scheduled on these nodes.

3. Set the taints on the selected nodes:
On OpenShift this can be done using oc adm taint:

4. Additionally, add a label to the selected nodes as well.
On OpenShift this can be done using oc label:

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.

oc adm taint node your-node dedicated=Kafka:NoSchedule

oc label node your-node dedicated=Kafka

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

232

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

5. Edit the affinity and tolerations properties in the resource specifying the cluster deployment.
For example:

6. Create or update the resource.
On OpenShift this can be done using oc apply:

3.5.9. List of resources created as part of Kafka Bridge cluster

The following resources are created by the Cluster Operator in the OpenShift cluster:

bridge-cluster-name-bridge

Deployment which is in charge to create the Kafka Bridge worker node pods.

bridge-cluster-name-bridge-service

Service which exposes the REST interface of the Kafka Bridge cluster.

bridge-cluster-name-bridge-config

ConfigMap which contains the Kafka Bridge ancillary configuration and is mounted as a volume by the
Kafka broker pods.

bridge-cluster-name-bridge

Pod Disruption Budget configured for the Kafka Bridge worker nodes.

3.6. CUSTOMIZING DEPLOYMENTS

AMQ Streams creates several OpenShift resources, such as Deployments, StatefulSets, Pods, and
Services, which are managed by OpenShift operators. Only the operator that is responsible for
managing a particular OpenShift resource can change that resource. If you try to manually change an

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 kafka:
 # ...
 template:
 pod:
 tolerations:
 - key: "dedicated"
 operator: "Equal"
 value: "Kafka"
 effect: "NoSchedule"
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: dedicated
 operator: In
 values:
 - Kafka
 # ...
 zookeeper:
 # ...

oc apply -f your-file

CHAPTER 3. DEPLOYMENT CONFIGURATION

233

operator-managed OpenShift resource, the operator will revert your changes back.

However, changing an operator-managed OpenShift resource can be useful if you want to perform
certain tasks, such as:

Adding custom labels or annotations that control how Pods are treated by Istio or other
services;

Managing how Loadbalancer-type Services are created by the cluster.

You can make these types of changes using the template property in the AMQ Streams custom
resources.

3.6.1. Template properties

You can use the template property to configure aspects of the resource creation process. You can
include it in the following resources and properties:

Kafka.spec.kafka

Kafka.spec.zookeeper

Kafka.spec.entityOperator

KafkaConnect.spec

KafkaConnectS2I.spec

KafkaMirrorMakerSpec

In the following example, the template property is used to modify the labels in a Kafka broker’s
StatefulSet:

Supported resources in Kafka cluster

When defined in a Kafka cluster, the template object can have the following fields:

statefulset

Configures the StatefulSet used by the Kafka broker.

pod

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
 labels:
 app: my-cluster
spec:
 kafka:
 # ...
 template:
 statefulset:
 metadata:
 labels:
 mylabel: myvalue
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

234

Configures the Kafka broker Pods created by the StatefulSet.

bootstrapService

Configures the bootstrap service used by clients running within OpenShift to connect to the Kafka
broker.

brokersService

Configures the headless service.

externalBootstrapService

Configures the bootstrap service used by clients connecting to Kafka brokers from outside of
OpenShift.

perPodService

Configures the per-Pod services used by clients connecting to the Kafka broker from outside
OpenShift to access individual brokers.

externalBootstrapRoute

Configures the bootstrap route used by clients connecting to the Kafka brokers from outside of
OpenShift using OpenShift Routes.

perPodRoute

Configures the per-Pod routes used by clients connecting to the Kafka broker from outside
OpenShift to access individual brokers using OpenShift Routes.

podDisruptionBudget

Configures the Pod Disruption Budget for Kafka broker StatefulSet.

Supported resources in Zookeeper cluster

When defined in a Zookeeper cluster, the template object can have the following fields:

statefulset

Configures the Zookeeper StatefulSet.

pod

Configures the Zookeeper Pods created by the StatefulSet.

clientsService

Configures the service used by clients to access Zookeeper.

nodesService

Configures the headless service.

podDisruptionBudget

Configures the Pod Disruption Budget for Zookeeper StatefulSet.

Supported resources in Entity Operator

When defined in an Entity Operator , the template object can have the following fields:

deployment

Configures the Deployment used by the Entity Operator.

pod

Configures the Entity Operator Pod created by the Deployment.

Supported resources in Kafka Connect and Kafka Connect with Source2Image support

When used with Kafka Connect and Kafka Connect with Source2Image support , the template object

CHAPTER 3. DEPLOYMENT CONFIGURATION

235

When used with Kafka Connect and Kafka Connect with Source2Image support , the template object
can have the following fields:

deployment

Configures the Kafka Connect Deployment.

pod

Configures the Kafka Connect Pods created by the Deployment.

apiService

Configures the service used by the Kafka Connect REST API.

podDisruptionBudget

Configures the Pod Disruption Budget for Kafka Connect Deployment.

Supported resource in Kafka Mirror Maker

When used with Kafka Mirror Maker , the template object can have the following fields:

deployment

Configures the Kafka Mirror Maker Deployment.

pod

Configures the Kafka Mirror Maker Pods created by the Deployment.

podDisruptionBudget

Configures the Pod Disruption Budget for Kafka Mirror Maker Deployment.

3.6.2. Labels and Annotations

For every resource, you can configure additional Labels and Annotations. Labels and Annotations are
configured in the metadata property. For example:

The labels and annotations fields can contain any labels or annotations that do not contain the
reserved string strimzi.io. Labels and annotations containing strimzi.io are used internally by AMQ
Streams and cannot be configured by the user.

3.6.3. Customizing Pods

In addition to Labels and Annotations, you can customize some other fields on Pods. These fields are
described in the following table and affect how the Pod is created.

...
template:
 statefulset:
 metadata:
 labels:
 label1: value1
 label2: value2
 annotations:
 annotation1: value1
 annotation2: value2
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

236

Field Description

terminationGracePeriodSeconds Defines the period of time, in seconds, by which the
Pod must have terminated gracefully. After the grace
period, the Pod and its containers are forcefully
terminated (killed). The default value is 30 seconds.

NOTE: You might need to increase the grace period
for very large Kafka clusters, so that the Kafka
brokers have enough time to transfer their work to
another broker before they are terminated.

imagePullSecrets Defines a list of references to OpenShift Secrets
that can be used for pulling container images from
private repositories. For more information about how
to create a Secret with the credentials, see Pull an
Image from a Private Registry.

NOTE: When the
STRIMZI_IMAGE_PULL_SECRETS
environment variable in Cluster Operator and the
imagePullSecrets option are specified, only the
imagePullSecrets variable is used. The
STRIMZI_IMAGE_PULL_SECRETS variable is
ignored.

securityContext Configures pod-level security attributes for
containers running as part of a given Pod. For more
information about configuring SecurityContext, see
Configure a Security Context for a Pod or Container.

These fields are effective on each type of cluster (Kafka and Zookeeper; Kafka Connect and Kafka
Connect with S2I support; and Kafka Mirror Maker).

The following example shows these customized fields on a template property:

Additional resources

For more information, see Section C.40, “PodTemplate schema reference”.

...
template:
 pod:
 metadata:
 labels:
 label1: value1
 imagePullSecrets:
 - name: my-docker-credentials
 securityContext:
 runAsUser: 1000001
 fsGroup: 0
 terminationGracePeriodSeconds: 120
...

CHAPTER 3. DEPLOYMENT CONFIGURATION

237

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/

3.6.4. Customizing the image pull policy

AMQ Streams allows you to customize the image pull policy for containers in all pods deployed by the
Cluster Operator. The image pull policy is configured using the environment variable
STRIMZI_IMAGE_PULL_POLICY in the Cluster Operator deployment. The
STRIMZI_IMAGE_PULL_POLICY environment variable can be set to three different values:

Always

Container images are pulled from the registry every time the pod is started or restarted.

IfNotPresent

Container images are pulled from the registry only when they were not pulled before.

Never

Container images are never pulled from the registry.

The image pull policy can be currently customized only for all Kafka, Kafka Connect, and Kafka Mirror
Maker clusters at once. Changing the policy will result in a rolling update of all your Kafka, Kafka
Connect, and Kafka Mirror Maker clusters.

Additional resources

For more information about Cluster Operator configuration, see Section 4.1, “Cluster Operator” .

For more information about Image Pull Policies, see Disruptions.

3.6.5. Customizing Pod Disruption Budgets

AMQ Streams creates a pod disruption budget for every new StatefulSet or Deployment. By default,
these pod disruption budgets only allow a single pod to be unavailable at a given time by setting the
maxUnavailable value in the`PodDisruptionBudget.spec` resource to 1. You can change the amount of
unavailable pods allowed by changing the default value of maxUnavailable in the pod disruption budget
template. This template applies to each type of cluster (Kafka and Zookeeper; Kafka Connect and Kafka
Connect with S2I support; and Kafka Mirror Maker).

The following example shows customized podDisruptionBudget fields on a template property:

Additional resources

For more information, see Section C.41, “PodDisruptionBudgetTemplate schema reference”.

The Disruptions chapter of the Kubernetes documentation.

...
template:
 podDisruptionBudget:
 metadata:
 labels:
 key1: label1
 key2: label2
 annotations:
 key1: label1
 key2: label2
 maxUnavailable: 1
...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

238

https://kubernetes.io/docs/concepts/containers/images/#updating-images
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/

3.6.6. Customizing deployments

This procedure describes how to customize Labels of a Kafka cluster.

Prerequisites

An OpenShift cluster.

A running Cluster Operator.

Procedure

1. Edit the template property in the Kafka, KafkaConnect, KafkaConnectS2I, or
KafkaMirrorMaker resource. For example, to modify the labels for the Kafka broker
StatefulSet, use:

2. Create or update the resource.
On OpenShift, use oc apply:

Alternatively, use oc edit:

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
 labels:
 app: my-cluster
spec:
 kafka:
 # ...
 template:
 statefulset:
 metadata:
 labels:
 mylabel: myvalue
 # ...

oc apply -f your-file

oc edit Resource ClusterName

CHAPTER 3. DEPLOYMENT CONFIGURATION

239

CHAPTER 4. OPERATORS

4.1. CLUSTER OPERATOR

4.1.1. Overview of the Cluster Operator component

The Cluster Operator is in charge of deploying a Kafka cluster alongside a Zookeeper ensemble. As part
of the Kafka cluster, it can also deploy the topic operator which provides operator-style topic
management via KafkaTopic custom resources. The Cluster Operator is also able to deploy a Kafka
Connect cluster which connects to an existing Kafka cluster. On OpenShift such a cluster can be
deployed using the Source2Image feature, providing an easy way of including more connectors.

Example architecture for the Cluster Operator

When the Cluster Operator is up, it starts to watch for certain OpenShift resources containing the
desired Kafka, Kafka Connect, or Kafka Mirror Maker cluster configuration. By default, it watches only in
the same namespace or project where it is installed. The Cluster Operator can be configured to watch
for more OpenShift projects or Kubernetes namespaces. Cluster Operator watches the following
resources:

A Kafka resource for the Kafka cluster.

A KafkaConnect resource for the Kafka Connect cluster.

A KafkaConnectS2I resource for the Kafka Connect cluster with Source2Image support.

A KafkaMirrorMaker resource for the Kafka Mirror Maker instance.

When a new Kafka, KafkaConnect, KafkaConnectS2I, or Kafka Mirror Maker resource is created in
the OpenShift cluster, the operator gets the cluster description from the desired resource and starts
creating a new Kafka, Kafka Connect, or Kafka Mirror Maker cluster by creating the necessary other
OpenShift resources, such as StatefulSets, Services, ConfigMaps, and so on.

Every time the desired resource is updated by the user, the operator performs corresponding updates
on the OpenShift resources which make up the Kafka, Kafka Connect, or Kafka Mirror Maker cluster.
Resources are either patched or deleted and then re-created in order to make the Kafka, Kafka Connect,

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

240

or Kafka Mirror Maker cluster reflect the state of the desired cluster resource. This might cause a rolling
update which might lead to service disruption.

Finally, when the desired resource is deleted, the operator starts to undeploy the cluster and delete all
the related OpenShift resources.

4.1.2. Deploying the Cluster Operator to OpenShift

Prerequisites

A user with cluster-admin role needs to be used, for example, system:admin.

Modify the installation files according to the namespace the Cluster Operator is going to be
installed in.
On Linux, use:

sed -i 's/namespace: .*/namespace: my-project/' install/cluster-operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-project/' install/cluster-operator/*RoleBinding*.yaml

Procedure

Deploy the Cluster Operator:

oc apply -f install/cluster-operator -n _my-project_
oc apply -f examples/templates/cluster-operator -n _my-project_

4.1.3. Deploying the Cluster Operator to watch multiple namespaces

Prerequisites

Edit the installation files according to the OpenShift project or Kubernetes namespace the
Cluster Operator is going to be installed in.
On Linux, use:

sed -i 's/namespace: .*/namespace: my-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-namespace/' install/cluster-
operator/*RoleBinding*.yaml

Procedure

1. Edit the file install/cluster-operator/050-Deployment-strimzi-cluster-operator.yaml and in
the environment variable STRIMZI_NAMESPACE list all the OpenShift projects or Kubernetes
namespaces where Cluster Operator should watch for resources. For example:

CHAPTER 4. OPERATORS

241

2. For all namespaces or projects which should be watched by the Cluster Operator, install the
RoleBindings. Replace the my-namespace or my-project with the OpenShift project or
Kubernetes namespace used in the previous step.
On OpenShift this can be done using oc apply:

3. Deploy the Cluster Operator
On OpenShift this can be done using oc apply:

4.1.4. Deploying the Cluster Operator to watch all namespaces

You can configure the Cluster Operator to watch AMQ Streams resources across all OpenShift projects
or Kubernetes namespaces in your OpenShift cluster. When running in this mode, the Cluster Operator
automatically manages clusters in any new projects or namespaces that are created.

Prerequisites

Your OpenShift cluster is running.

Procedure

1. Configure the Cluster Operator to watch all namespaces:

a. Edit the 050-Deployment-strimzi-cluster-operator.yaml file.

b. Set the value of the STRIMZI_NAMESPACE environment variable to *.

apiVersion: extensions/v1beta1
kind: Deployment
spec:
 template:
 spec:
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq7/amq-streams-operator:1.2.0
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: myproject,myproject2,myproject3

oc apply -f install/cluster-operator/020-RoleBinding-strimzi-cluster-operator.yaml -n my-
project
oc apply -f install/cluster-operator/031-RoleBinding-strimzi-cluster-operator-entity-operator-
delegation.yaml -n my-project
oc apply -f install/cluster-operator/032-RoleBinding-strimzi-cluster-operator-topic-operator-
delegation.yaml -n my-project

oc apply -f install/cluster-operator -n my-project

apiVersion: extensions/v1beta1
kind: Deployment
spec:
 template:
 spec:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

242

2. Create ClusterRoleBindings that grant cluster-wide access to all OpenShift projects or
Kubernetes namespaces to the Cluster Operator.
On OpenShift, use the oc adm policy command:

Replace my-project with the project in which you want to install the Cluster Operator.

3. Deploy the Cluster Operator to your OpenShift cluster.
On OpenShift, use the oc apply command:

4.1.5. Reconciliation

Although the operator reacts to all notifications about the desired cluster resources received from the
OpenShift cluster, if the operator is not running, or if a notification is not received for any reason, the
desired resources will get out of sync with the state of the running OpenShift cluster.

In order to handle failovers properly, a periodic reconciliation process is executed by the Cluster
Operator so that it can compare the state of the desired resources with the current cluster deployments
in order to have a consistent state across all of them. You can set the time interval for the periodic
reconciliations using the [STRIMZI_FULL_RECONCILIATION_INTERVAL_MS] variable.

4.1.6. Cluster Operator Configuration

The Cluster Operator can be configured through the following supported environment variables:

STRIMZI_NAMESPACE

A comma-separated list of OpenShift projects or Kubernetes namespaces that the operator should
operate in. When not set, set to empty string, or to * the cluster operator will operate in all OpenShift
projects or Kubernetes namespaces. The Cluster Operator deployment might use the Kubernetes
Downward API to set this automatically to the namespace the Cluster Operator is deployed in. See
the example below:

 # ...
 serviceAccountName: strimzi-cluster-operator
 containers:
 - name: strimzi-cluster-operator
 image: registry.redhat.io/amq7/amq-streams-operator:1.2.0
 imagePullPolicy: IfNotPresent
 env:
 - name: STRIMZI_NAMESPACE
 value: "*"
 # ...

oc adm policy add-cluster-role-to-user strimzi-cluster-operator-namespaced --serviceaccount
strimzi-cluster-operator -n my-project
oc adm policy add-cluster-role-to-user strimzi-entity-operator --serviceaccount strimzi-cluster-
operator -n my-project
oc adm policy add-cluster-role-to-user strimzi-topic-operator --serviceaccount strimzi-cluster-
operator -n my-project

oc apply -f install/cluster-operator -n my-project

env:
 - name: STRIMZI_NAMESPACE
 valueFrom:

CHAPTER 4. OPERATORS

243

https://kubernetes.io/docs/tasks/inject-data-application/downward-api-volume-expose-pod-information/#the-downward-api

STRIMZI_FULL_RECONCILIATION_INTERVAL_MS

Optional, default is 120000 ms. The interval between periodic reconciliations, in milliseconds.

STRIMZI_LOG_LEVEL

Optional, default INFO. The level for printing logging messages. The value can be set to: ERROR,
WARNING, INFO, DEBUG, and TRACE.

STRIMZI_OPERATION_TIMEOUT_MS

Optional, default 300000 ms. The timeout for internal operations, in milliseconds. This value should
be increased when using AMQ Streams on clusters where regular OpenShift operations take longer
than usual (because of slow downloading of Docker images, for example).

STRIMZI_KAFKA_IMAGES

Required. This provides a mapping from Kafka version to the corresponding Docker image containing
a Kafka broker of that version. The required syntax is whitespace or comma separated
<version>=<image> pairs. For example 2.1.1=registry.redhat.io/amq7/amqstreams-kafka-21,
2.2.1=registry.redhat.io/amq7/amqstreams-kafka-22. This is used when a
Kafka.spec.kafka.version property is specified but not the Kafka.spec.kafka.image, as described
in Section 3.1.17, “Container images”.

STRIMZI_DEFAULT_KAFKA_INIT_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-operator:1.2.0. The image name to use as
default for the init container started before the broker for initial configuration work (that is, rack
support), if no image is specified as the kafka-init-image in the Section 3.1.17, “Container images”.

STRIMZI_DEFAULT_TLS_SIDECAR_KAFKA_IMAGE

Optional, default registry.redhat.io/amq7/amqstreams-kafka-22. The image name to use as the
default when deploying the sidecar container which provides TLS support for Kafka, if no image is
specified as the Kafka.spec.kafka.tlsSidecar.image in the Section 3.1.17, “Container images”.

STRIMZI_DEFAULT_ZOOKEEPER_IMAGE

Optional, default registry.redhat.io/amq7/amqstreams-kafka-22. The image name to use as the
default when deploying Zookeeper, if no image is specified as the Kafka.spec.zookeeper.image in
the Section 3.1.17, “Container images”.

STRIMZI_DEFAULT_TLS_SIDECAR_ZOOKEEPER_IMAGE

Optional, default registry.redhat.io/amq7/amqstreams-kafka-22. The image name to use as the
default when deploying the sidecar container which provides TLS support for Zookeeper, if no image
is specified as the Kafka.spec.zookeeper.tlsSidecar.image in the Section 3.1.17, “Container
images”.

STRIMZI_KAFKA_CONNECT_IMAGES

Required. This provides a mapping from the Kafka version to the corresponding Docker image
containing a Kafka connect of that version. The required syntax is whitespace or comma separated
<version>=<image> pairs. For example 2.1.1=registry.redhat.io/amq7/amqstreams-kafka-21,
2.2.1=registry.redhat.io/amq7/amqstreams-kafka-22. This is used when a
KafkaConnect.spec.version property is specified but not the KafkaConnect.spec.image, as
described in Section 3.2.11, “Container images” .

STRIMZI_KAFKA_CONNECT_S2I_IMAGES

Required. This provides a mapping from the Kafka version to the corresponding Docker image
containing a Kafka connect of that version. The required syntax is whitespace or comma separated
<version>=<image> pairs. For example 2.1.1=registry.redhat.io/amq7/amqstreams-kafka-21,

 fieldRef:
 fieldPath: metadata.namespace

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

244

2.2.1=registry.redhat.io/amq7/amqstreams-kafka-22. This is used when a
KafkaConnectS2I.spec.version property is specified but not the KafkaConnectS2I.spec.image, as
described in Section 3.3.11, “Container images”.

STRIMZI_KAFKA_MIRROR_MAKER_IMAGES

Required. This provides a mapping from the Kafka version to the corresponding Docker image
containing a Kafka mirror maker of that version. The required syntax is whitespace or comma
separated <version>=<image> pairs. For example 2.1.1=registry.redhat.io/amq7/amqstreams-
kafka-21, 2.2.1=registry.redhat.io/amq7/amqstreams-kafka-22. This is used when a
KafkaMirrorMaker.spec.version property is specified but not the KafkaMirrorMaker.spec.image,
as described in Section 3.4.13, “Container images”.

STRIMZI_DEFAULT_TOPIC_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-operator:1.2.0. The image name to use as
the default when deploying the topic operator, if no image is specified as the
Kafka.spec.entityOperator.topicOperator.image in the Section 3.1.17, “Container images” of the
Kafka resource.

STRIMZI_DEFAULT_USER_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amq-streams-operator:1.2.0. The image name to use as
the default when deploying the user operator, if no image is specified as the
Kafka.spec.entityOperator.userOperator.image in the Section 3.1.17, “Container images” of the
Kafka resource.

STRIMZI_DEFAULT_TLS_SIDECAR_ENTITY_OPERATOR_IMAGE

Optional, default registry.redhat.io/amq7/amqstreams-kafka-22. The image name to use as the
default when deploying the sidecar container which provides TLS support for the Entity Operator, if
no image is specified as the Kafka.spec.entityOperator.tlsSidecar.image in the Section 3.1.17,
“Container images”.

STRIMZI_IMAGE_PULL_POLICY

Optional. The ImagePullPolicy which will be applied to containers in all pods managed by AMQ
Streams Cluster Operator. The valid values are Always, IfNotPresent, and Never. If not specified,
the OpenShift defaults will be used. Changing the policy will result in a rolling update of all your
Kafka, Kafka Connect, and Kafka Mirror Maker clusters.

STRIMZI_IMAGE_PULL_SECRETS

Optional. A comma-separated list of Secret names. The secrets referenced here contain the
credentials to the container registries where the container images are pulled from. The secrets are
used in the imagePullSecrets field for all Pods created by the Cluster Operator. Changing this list
results in a rolling update of all your Kafka, Kafka Connect, and Kafka Mirror Maker clusters.

4.1.7. Role-Based Access Control (RBAC)

4.1.7.1. Provisioning Role-Based Access Control (RBAC) for the Cluster Operator

For the Cluster Operator to function it needs permission within the OpenShift cluster to interact with
resources such as Kafka, KafkaConnect, and so on, as well as the managed resources, such as
ConfigMaps, Pods, Deployments, StatefulSets, Services, and so on. Such permission is described in
terms of OpenShift role-based access control (RBAC) resources:

ServiceAccount,

Role and ClusterRole,

RoleBinding and ClusterRoleBinding.

In addition to running under its own ServiceAccount with a ClusterRoleBinding, the Cluster Operator

CHAPTER 4. OPERATORS

245

In addition to running under its own ServiceAccount with a ClusterRoleBinding, the Cluster Operator
manages some RBAC resources for the components that need access to OpenShift resources.

OpenShift also includes privilege escalation protections that prevent components operating under one
ServiceAccount from granting other ServiceAccounts privileges that the granting ServiceAccount
does not have. Because the Cluster Operator must be able to create the ClusterRoleBindings, and
RoleBindings needed by resources it manages, the Cluster Operator must also have those same
privileges.

4.1.7.2. Delegated privileges

When the Cluster Operator deploys resources for a desired Kafka resource it also creates
ServiceAccounts, RoleBindings, and ClusterRoleBindings, as follows:

The Kafka broker pods use a ServiceAccount called cluster-name-kafka

When the rack feature is used, the strimzi-cluster-name-kafka-init ClusterRoleBinding is
used to grant this ServiceAccount access to the nodes within the cluster via a ClusterRole
called strimzi-kafka-broker

When the rack feature is not used no binding is created.

The Zookeeper pods use the default ServiceAccount, as they do not need access to the
OpenShift resources.

The Topic Operator pod uses a ServiceAccount called cluster-name-topic-operator

The Topic Operator produces OpenShift events with status information, so the
ServiceAccount is bound to a ClusterRole called strimzi-topic-operator which grants this
access via the strimzi-topic-operator-role-binding RoleBinding.

The pods for KafkaConnect and KafkaConnectS2I resources use the default ServiceAccount, as they
do not require access to the OpenShift resources.

4.1.7.3. ServiceAccount

The Cluster Operator is best run using a ServiceAccount:

Example ServiceAccount for the Cluster Operator

The Deployment of the operator then needs to specify this in its
spec.template.spec.serviceAccountName:

Partial example of Deployment for the Cluster Operator

apiVersion: v1
kind: ServiceAccount
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

246

Note line 12, where the the strimzi-cluster-operator ServiceAccount is specified as the
serviceAccountName.

4.1.7.4. ClusterRoles

The Cluster Operator needs to operate using ClusterRoles that gives access to the necessary
resources. Depending on the OpenShift cluster setup, a cluster administrator might be needed to create
the ClusterRoles.

NOTE

Cluster administrator rights are only needed for the creation of the ClusterRoles. The
Cluster Operator will not run under the cluster admin account.

The ClusterRoles follow the principle of least privilege and contain only those privileges needed by the
Cluster Operator to operate Kafka, Kafka Connect, and Zookeeper clusters. The first set of assigned
privileges allow the Cluster Operator to manage OpenShift resources such as StatefulSets,
Deployments, Pods, and ConfigMaps.

Cluster Operator uses ClusterRoles to grant permission at the namespace-scoped resources level and
cluster-scoped resources level:

ClusterRole with namespaced resources for the Cluster Operator

 name: strimzi-cluster-operator
 labels:
 app: strimzi
spec:
 replicas: 1
 template:
 metadata:
 labels:
 name: strimzi-cluster-operator
 strimzi.io/kind: cluster-operator
 # ...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-cluster-operator-namespaced
 labels:
 app: strimzi
rules:
- apiGroups:
 - ""
 resources:
 - serviceaccounts
 verbs:
 - get
 - create
 - delete
 - patch
 - update
- apiGroups:

CHAPTER 4. OPERATORS

247

 - rbac.authorization.k8s.io
 resources:
 - rolebindings
 verbs:
 - get
 - create
 - delete
 - patch
 - update
- apiGroups:
 - ""
 resources:
 - configmaps
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
- apiGroups:
 - kafka.strimzi.io
 resources:
 - kafkas
 - kafkas/status
 - kafkaconnects
 - kafkaconnects2is
 - kafkamirrormakers
 - kafkabridges
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
- apiGroups:
 - ""
 resources:
 - pods
 verbs:
 - get
 - list
 - watch
 - delete
- apiGroups:
 - ""
 resources:
 - services
 verbs:
 - get
 - list
 - watch
 - create

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

248

 - delete
 - patch
 - update
- apiGroups:
 - ""
 resources:
 - endpoints
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - extensions
 resources:
 - deployments
 - deployments/scale
 - replicasets
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
- apiGroups:
 - apps
 resources:
 - deployments
 - deployments/scale
 - deployments/status
 - statefulsets
 - replicasets
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
- apiGroups:
 - ""
 resources:
 - events
 verbs:
 - create
- apiGroups:
 - extensions
 resources:
 - replicationcontrollers
 verbs:
 - get
 - list
 - watch
 - create

CHAPTER 4. OPERATORS

249

 - delete
 - patch
 - update
- apiGroups:
 - apps.openshift.io
 resources:
 - deploymentconfigs
 - deploymentconfigs/scale
 - deploymentconfigs/status
 - deploymentconfigs/finalizers
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
- apiGroups:
 - build.openshift.io
 resources:
 - buildconfigs
 - builds
 verbs:
 - create
 - delete
 - get
 - list
 - patch
 - watch
 - update
- apiGroups:
 - image.openshift.io
 resources:
 - imagestreams
 - imagestreams/status
 verbs:
 - create
 - delete
 - get
 - list
 - watch
 - patch
 - update
- apiGroups:
 - ""
 resources:
 - replicationcontrollers
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

250

- apiGroups:
 - ""
 resources:
 - secrets
 verbs:
 - get
 - list
 - create
 - delete
 - patch
 - update
- apiGroups:
 - extensions
 resources:
 - networkpolicies
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
- apiGroups:
 - networking.k8s.io
 resources:
 - networkpolicies
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
- apiGroups:
 - route.openshift.io
 resources:
 - routes
 - routes/custom-host
 verbs:
 - get
 - list
 - create
 - delete
 - patch
 - update
- apiGroups:
 - ""
 resources:
 - persistentvolumeclaims
 verbs:
 - get
 - list
 - create
 - delete

CHAPTER 4. OPERATORS

251

The second includes the permissions needed for cluster-scoped resources.

ClusterRole with cluster-scoped resources for the Cluster Operator

The strimzi-kafka-broker ClusterRole represents the access needed by the init container in Kafka

 - patch
 - update
- apiGroups:
 - policy
 resources:
 - poddisruptionbudgets
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update
- apiGroups:
 - extensions
 resources:
 - ingresses
 verbs:
 - get
 - list
 - watch
 - create
 - delete
 - patch
 - update

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-cluster-operator-global
 labels:
 app: strimzi
rules:
- apiGroups:
 - rbac.authorization.k8s.io
 resources:
 - clusterrolebindings
 verbs:
 - get
 - create
 - delete
 - patch
 - update
- apiGroups:
 - storage.k8s.io
 resources:
 - storageclasses
 verbs:
 - get

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

252

The strimzi-kafka-broker ClusterRole represents the access needed by the init container in Kafka
pods that is used for the rack feature. As described in the Delegated privileges section, this role is also
needed by the Cluster Operator in order to be able to delegate this access.

ClusterRole for the Cluster Operator allowing it to delegate access to OpenShift nodes to
the Kafka broker pods

The strimzi-topic-operator ClusterRole represents the access needed by the Topic Operator. As
described in the Delegated privileges section, this role is also needed by the Cluster Operator in order to
be able to delegate this access.

ClusterRole for the Cluster Operator allowing it to delegate access to events to the Topic
Operator

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-kafka-broker
 labels:
 app: strimzi
rules:
- apiGroups:
 - ""
 resources:
 - nodes
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: strimzi-entity-operator
 labels:
 app: strimzi
rules:
- apiGroups:
 - kafka.strimzi.io
 resources:
 - kafkatopics
 verbs:
 - get
 - list
 - watch
 - create
 - patch
 - update
 - delete
- apiGroups:
 - ""
 resources:
 - events
 verbs:
 - create
- apiGroups:
 - kafka.strimzi.io

CHAPTER 4. OPERATORS

253

4.1.7.5. ClusterRoleBindings

The operator needs ClusterRoleBindings and RoleBindings which associates its ClusterRole with its
ServiceAccount: ClusterRoleBindings are needed for ClusterRoles containing cluster-scoped
resources.

Example ClusterRoleBinding for the Cluster Operator

ClusterRoleBindings are also needed for the ClusterRoles needed for delegation:

Examples RoleBinding for the Cluster Operator

 resources:
 - kafkausers
 verbs:
 - get
 - list
 - watch
 - create
 - patch
 - update
 - delete
- apiGroups:
 - ""
 resources:
 - secrets
 verbs:
 - get
 - list
 - create
 - patch
 - update
 - delete

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
subjects:
- kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-cluster-operator-global
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: strimzi-cluster-operator-kafka-broker-delegation
 labels:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

254

ClusterRoles containing only namespaced resources are bound using RoleBindings only.

4.2. TOPIC OPERATOR

4.2.1. Overview of the Topic Operator component

The Topic Operator provides a way of managing topics in a Kafka cluster via OpenShift resources.

Example architecture for the Topic Operator

 app: strimzi
subjects:
- kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-kafka-broker
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: strimzi-cluster-operator
 labels:
 app: strimzi
subjects:
- kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-cluster-operator-namespaced
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: strimzi-cluster-operator-entity-operator-delegation
 labels:
 app: strimzi
subjects:
- kind: ServiceAccount
 name: strimzi-cluster-operator
 namespace: myproject
roleRef:
 kind: ClusterRole
 name: strimzi-entity-operator
 apiGroup: rbac.authorization.k8s.io

CHAPTER 4. OPERATORS

255

The role of the Topic Operator is to keep a set of KafkaTopic OpenShift resources describing Kafka
topics in-sync with corresponding Kafka topics.

Specifically, if a KafkaTopic is:

Created, the operator will create the topic it describes

Deleted, the operator will delete the topic it describes

Changed, the operator will update the topic it describes

And also, in the other direction, if a topic is:

Created within the Kafka cluster, the operator will create a KafkaTopic describing it

Deleted from the Kafka cluster, the operator will delete the KafkaTopic describing it

Changed in the Kafka cluster, the operator will update the KafkaTopic describing it

This allows you to declare a KafkaTopic as part of your application’s deployment and the Topic
Operator will take care of creating the topic for you. Your application just needs to deal with producing
or consuming from the necessary topics.

If the topic is reconfigured or reassigned to different Kafka nodes, the KafkaTopic will always be up to
date.

For more details about creating, modifying and deleting topics, see Chapter 5, Using the Topic Operator .

4.2.2. Understanding the Topic Operator

A fundamental problem that the operator has to solve is that there is no single source of truth: Both the
KafkaTopic resource and the topic within Kafka can be modified independently of the operator.
Complicating this, the Topic Operator might not always be able to observe changes at each end in real
time (for example, the operator might be down).

To resolve this, the operator maintains its own private copy of the information about each topic. When a
change happens either in the Kafka cluster, or in OpenShift, it looks at both the state of the other
system and at its private copy in order to determine what needs to change to keep everything in sync.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

256

The same thing happens whenever the operator starts, and periodically while it is running.

For example, suppose the Topic Operator is not running, and a KafkaTopic my-topic gets created.
When the operator starts it will lack a private copy of "my-topic", so it can infer that the KafkaTopic has
been created since it was last running. The operator will create the topic corresponding to "my-topic"
and also store a private copy of the metadata for "my-topic".

The private copy allows the operator to cope with scenarios where the topic configuration gets changed
both in Kafka and in OpenShift, so long as the changes are not incompatible (for example, both changing
the same topic config key, but to different values). In the case of incompatible changes, the Kafka
configuration wins, and the KafkaTopic will be updated to reflect that.

The private copy is held in the same ZooKeeper ensemble used by Kafka itself. This mitigates availability
concerns, because if ZooKeeper is not running then Kafka itself cannot run, so the operator will be no
less available than it would even if it was stateless.

4.2.3. Deploying the Topic Operator using the Cluster Operator

This procedure describes how to deploy the Topic Operator using the Cluster Operator. If you want to
use the Topic Operator with a Kafka cluster that is not managed by AMQ Streams, you must deploy the
Topic Operator as a standalone component. For more information, see Section 4.2.5, “Deploying the
standalone Topic Operator”.

Prerequisites

A running Cluster Operator

A Kafka resource to be created or updated

Procedure

1. Ensure that the Kafka.spec.entityOperator object exists in the Kafka resource. This
configures the Entity Operator.

2. Configure the Topic Operator using the fields described in Section C.47,
“EntityTopicOperatorSpec schema reference”.

3. Create or update the Kafka resource in OpenShift.
On OpenShift, use oc apply:

Additional resources

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
metadata:
 name: my-cluster
spec:
 #...
 entityOperator:
 topicOperator: {}
 userOperator: {}

oc apply -f your-file

CHAPTER 4. OPERATORS

257

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about deploying the Entity Operator, see Section 3.1.10, “Entity Operator” .

For more information about the Kafka.spec.entityOperator object used to configure the Topic
Operator when deployed by the Cluster Operator, see Section C.46, “EntityOperatorSpec
schema reference”.

4.2.4. Configuring the Topic Operator with resource requests and limits

You can allocate resources, such as CPU and memory, to the Topic Operator and set a limit on the
amount of resources it can consume.

Prerequisites

The Cluster Operator is running.

Procedure

1. Update the Kafka cluster configuration in an editor, as required:
On OpenShift, use:

2. In the spec.entityOperator.topicOperator.resources property in the Kafka resource, set the
resource requests and limits for the Topic Operator.

3. Apply the new configuration to create or update the resource.
On OpenShift, use oc apply:

Additional resources

For more information about the schema of the resources object, see Section C.33,
“ResourceRequirements schema reference”.

4.2.5. Deploying the standalone Topic Operator

Deploying the Topic Operator as a standalone component is more complicated than installing it using

oc edit kafka my-cluster

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 # kafka and zookeeper sections...
 entityOperator:
 topicOperator:
 resources:
 request:
 cpu: "1"
 memory: 500Mi
 limit:
 cpu: "1"
 memory: 500Mi

oc apply -f kafka.yaml

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

258

Deploying the Topic Operator as a standalone component is more complicated than installing it using
the Cluster Operator, but it is more flexible. For instance, it can operate with any Kafka cluster, not
necessarily one deployed by the Cluster Operator.

Prerequisites

An existing Kafka cluster for the Topic Operator to connect to.

Procedure

1. Edit the install/topic-operator/05-Deployment-strimzi-topic-operator.yaml resource. You will
need to change the following

a. The STRIMZI_KAFKA_BOOTSTRAP_SERVERS environment variable in
Deployment.spec.template.spec.containers[0].env should be set to a list of bootstrap
brokers in your Kafka cluster, given as a comma-separated list of hostname: port pairs.

b. The STRIMZI_ZOOKEEPER_CONNECT environment variable in
Deployment.spec.template.spec.containers[0].env should be set to a list of the
Zookeeper nodes, given as a comma-separated list of hostname: port pairs. This should be
the same Zookeeper cluster that your Kafka cluster is using.

c. The STRIMZI_NAMESPACE environment variable in
Deployment.spec.template.spec.containers[0].env should be set to the OpenShift
namespace in which you want the operator to watch for KafkaTopic resources.

2. Deploy the Topic Operator.
On OpenShift this can be done using oc apply:

3. Verify that the Topic Operator has been deployed successfully. On OpenShift this can be done
using oc describe:

The Topic Operator is deployed once the Replicas: entry shows 1 available.

NOTE

This could take some time if you have a slow connection to the OpenShift and the
images have not been downloaded before.

Additional resources

For more information about the environment variables used to configure the Topic Operator,
see Section 4.2.6, “Topic Operator environment”.

For more information about getting the Cluster Operator to deploy the Topic Operator for you,
see Section 2.9.2, “Deploying the Topic Operator using the Cluster Operator” .

4.2.6. Topic Operator environment

When deployed standalone the Topic Operator can be configured using environment variables.

oc apply -f install/topic-operator

oc describe deployment strimzi-topic-operator

CHAPTER 4. OPERATORS

259

NOTE

The Topic Operator should be configured using the
Kafka.spec.entityOperator.topicOperator property when deployed by the Cluster
Operator.

STRIMZI_RESOURCE_LABELS

The label selector used to identify KafkaTopics to be managed by the operator.

STRIMZI_ZOOKEEPER_SESSION_TIMEOUT_MS

The Zookeeper session timeout, in milliseconds. For example, 10000. Default 20000 (20 seconds).

STRIMZI_KAFKA_BOOTSTRAP_SERVERS

The list of Kafka bootstrap servers. This variable is mandatory.

STRIMZI_ZOOKEEPER_CONNECT

The Zookeeper connection information. This variable is mandatory.

STRIMZI_FULL_RECONCILIATION_INTERVAL_MS

The interval between periodic reconciliations, in milliseconds.

STRIMZI_TOPIC_METADATA_MAX_ATTEMPTS

The number of attempts at getting topic metadata from Kafka. The time between each attempt is
defined as an exponential back-off. Consider increasing this value when topic creation could take
more time due to the number of partitions or replicas. Default 6.

STRIMZI_LOG_LEVEL

The level for printing logging messages. The value can be set to: ERROR, WARNING, INFO, DEBUG,
and TRACE. Default INFO.

STRIMZI_TLS_ENABLED

For enabling the TLS support so encrypting the communication with Kafka brokers. Default true.

STRIMZI_TRUSTSTORE_LOCATION

The path to the truststore containing certificates for enabling TLS based communication. This
variable is mandatory only if TLS is enabled through STRIMZI_TLS_ENABLED.

STRIMZI_TRUSTSTORE_PASSWORD

The password for accessing the truststore defined by STRIMZI_TRUSTSTORE_LOCATION. This
variable is mandatory only if TLS is enabled through STRIMZI_TLS_ENABLED.

STRIMZI_KEYSTORE_LOCATION

The path to the keystore containing private keys for enabling TLS based communication. This
variable is mandatory only if TLS is enabled through STRIMZI_TLS_ENABLED.

STRIMZI_KEYSTORE_PASSWORD

The password for accessing the keystore defined by STRIMZI_KEYSTORE_LOCATION. This
variable is mandatory only if TLS is enabled through STRIMZI_TLS_ENABLED.

4.3. USER OPERATOR

The User Operator provides a way of managing Kafka users via OpenShift resources.

4.3.1. Overview of the User Operator component

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser OpenShift
resources that describe Kafka users and ensuring that they are configured properly in the Kafka cluster.
For example:

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

260

if a KafkaUser is created, the User Operator will create the user it describes

if a KafkaUser is deleted, the User Operator will delete the user it describes

if a KafkaUser is changed, the User Operator will update the user it describes

Unlike the Topic Operator, the User Operator does not sync any changes from the Kafka cluster with the
OpenShift resources. Unlike the Kafka topics which might be created by applications directly in Kafka, it
is not expected that the users will be managed directly in the Kafka cluster in parallel with the User
Operator, so this should not be needed.

The User Operator allows you to declare a KafkaUser as part of your application’s deployment. When
the user is created, the credentials will be created in a Secret. Your application needs to use the user
and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s rights in the KafkaUser declaration.

4.3.2. Deploying the User Operator using the Cluster Operator

Prerequisites

A running Cluster Operator

A Kafka resource to be created or updated.

Procedure

1. Edit the Kafka resource ensuring it has a Kafka.spec.entityOperator.userOperator object that
configures the User Operator how you want.

2. Create or update the Kafka resource in OpenShift.
On OpenShift this can be done using oc apply:

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about the Kafka.spec.entityOperator object used to configure the User
Operator when deployed by the Cluster Operator, see EntityOperatorSpec schema reference.

4.3.3. Configuring the User Operator with resource requests and limits

You can allocate resources, such as CPU and memory, to the User Operator and set a limit on the
amount of resources it can consume.

Prerequisites

The Cluster Operator is running.

Procedure

oc apply -f your-file

CHAPTER 4. OPERATORS

261

1. Update the Kafka cluster configuration in an editor, as required:
On OpenShift, use:

2. In the spec.entityOperator.userOperator.resources property in the Kafka resource, set the
resource requests and limits for the User Operator.

3. Apply the new configuration to create or update the resource.
On OpenShift, use oc apply:

Additional resources

For more information about the schema of the resources object, see Section C.33,
“ResourceRequirements schema reference”.

4.3.4. Deploying the standalone User Operator

Deploying the User Operator as a standalone component is more complicated than installing it using the
Cluster Operator, but it is more flexible. For instance, it can operate with any Kafka cluster, not only the
one deployed by the Cluster Operator.

Prerequisites

An existing Kafka cluster for the User Operator to connect to.

Procedure

1. Edit the install/user-operator/05-Deployment-strimzi-user-operator.yaml resource. You will
need to change the following

a. The STRIMZI_CA_CERT_NAME environment variable in
Deployment.spec.template.spec.containers[0].env should be set to point to an
OpenShift Secret which should contain the public key of the Certificate Authority for
signing new user certificates for TLS Client Authentication. The Secret should contain the
public key of the Certificate Authority under the key ca.crt.

b. The STRIMZI_CA_KEY_NAME environment variable in

oc edit kafka my-cluster

apiVersion: kafka.strimzi.io/v1beta1
kind: Kafka
spec:
 # kafka and zookeeper sections...
 entityOperator:
 userOperator:
 resources:
 request:
 cpu: "1"
 memory: 500Mi
 limit:
 cpu: "1"
 memory: 500Mi

oc apply -f kafka.yaml

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

262

Deployment.spec.template.spec.containers[0].env should be set to point to an
OpenShift Secret which should contain the private key of the Certificate Authority for
signing new user certificates for TLS Client Authentication. The Secret should contain the
private key of the Certificate Authority under the key ca.key.

c. The STRIMZI_ZOOKEEPER_CONNECT environment variable in
Deployment.spec.template.spec.containers[0].env should be set to a list of the
Zookeeper nodes, given as a comma-separated list of hostname: port pairs. This should be
the same Zookeeper cluster that your Kafka cluster is using.

d. The STRIMZI_NAMESPACE environment variable in
Deployment.spec.template.spec.containers[0].env should be set to the OpenShift
namespace in which you want the operator to watch for KafkaUser resources.

2. Deploy the User Operator.
On OpenShift this can be done using oc apply:

3. Verify that the User Operator has been deployed successfully. On OpenShift this can be done
using oc describe:

The User Operator is deployed once the Replicas: entry shows 1 available.

NOTE

This could take some time if you have a slow connection to the OpenShift and the
images have not been downloaded before.

Additional resources

For more information about getting the Cluster Operator to deploy the User Operator for you,
see Section 2.10.2, “Deploying the User Operator using the Cluster Operator” .

oc apply -f install/user-operator

oc describe deployment strimzi-user-operator

CHAPTER 4. OPERATORS

263

CHAPTER 5. USING THE TOPIC OPERATOR

5.1. TOPIC OPERATOR USAGE RECOMMENDATIONS

Be consistent and always operate on KafkaTopic resources or always operate on topics directly.
Avoid routinely using both methods for a given topic.

When creating a KafkaTopic resource:

Remember that the name cannot be changed later.

Choose a name for the KafkaTopic resource that reflects the name of the topic it
describes.

Ideally the KafkaTopic.metadata.name should be the same as its spec.topicName. To do
this, the topic name will have to be a valid Kubernetes resource name .

When creating a topic:

Remember that the name cannot be changed later.

It is best to use a name that is a valid Kubernetes resource name , otherwise the operator will
have to modify the name when creating the corresponding KafkaTopic.

5.2. CREATING A TOPIC

This procedure describes how to create a Kafka topic using a KafkaTopic OpenShift resource.

Prerequisites

A running Kafka cluster.

A running Topic Operator.

Procedure

1. Prepare a file containing the KafkaTopic to be created

An example KafkaTopic

NOTE

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
 name: orders
 labels:
 strimzi.io/cluster: my-cluster
spec:
 partitions: 10
 replicas: 2

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

264

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/identifiers.md
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/identifiers.md

NOTE

It is recommended that the topic name given is a valid OpenShift resource name,
as it is then not necessary to set the KafkaTopic.spec.topicName property. The
KafkaTopic.spec.topicName cannot be changed after creation.

NOTE

The KafkaTopic.spec.partitions cannot be decreased.

2. Create the KafkaTopic resource in OpenShift.
On OpenShift this can be done using oc apply:

Additional resources

For more information about the schema for KafkaTopics, see KafkaTopic schema reference.

For more information about deploying a Kafka cluster using the Cluster Operator, see
Section 2.3, “Cluster Operator” .

For more information about deploying the Topic Operator using the Cluster Operator, see
Section 2.9.2, “Deploying the Topic Operator using the Cluster Operator” .

For more information about deploying the standalone Topic Operator, see Section 4.2.5,
“Deploying the standalone Topic Operator”.

5.3. CHANGING A TOPIC

This procedure describes how to change the configuration of an existing Kafka topic by using a
KafkaTopic OpenShift resource.

Prerequisites

A running Kafka cluster.

A running Topic Operator.

An existing KafkaTopic to be changed.

Procedure

1. Prepare a file containing the desired KafkaTopic

An example KafkaTopic

oc apply -f your-file

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaTopic
metadata:
 name: orders
 labels:
 strimzi.io/cluster: my-cluster

CHAPTER 5. USING THE TOPIC OPERATOR

265

TIP

You can get the current version of the resource using oc get kafkatopic orders -o yaml.

NOTE

Changing topic names using the KafkaTopic.spec.topicName variable and
decreasing partition size using the KafkaTopic.spec.partitions variable is not
supported by Kafka.

CAUTION

Increasing spec.partitions for topics with keys will change how records are partitioned, which
can be particularly problematic when the topic uses semantic partitioning.

2. Update the KafkaTopic resource in OpenShift.
On OpenShift this can be done using oc apply:

Additional resources

For more information about the schema for KafkaTopics, see KafkaTopic schema reference.

For more information about deploying a Kafka cluster, see Section 2.3, “Cluster Operator” .

For more information about deploying the Topic Operator using the Cluster Operator, see
Section 2.9.2, “Deploying the Topic Operator using the Cluster Operator” .

For more information about creating a topic using the Topic Operator, see Section 5.2,
“Creating a topic”.

5.4. DELETING A TOPIC

This procedure describes how to delete a Kafka topic using a KafkaTopic OpenShift resource.

Prerequisites

A running Kafka cluster.

A running Topic Operator.

An existing KafkaTopic to be deleted.

delete.topic.enable=true (default)

NOTE

spec:
 partitions: 16
 replicas: 2

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

266

NOTE

The delete.topic.enable property must be set to true in Kafka.spec.kafka.config.
Otherwise, the steps outlined here will delete the KafkaTopic resource, but the Kafka
topic and its data will remain. After reconciliation by the Topic Operator, the custom
resource is then recreated.

Procedure

Delete the KafkaTopic resource in OpenShift.
On OpenShift this can be done using oc:

Additional resources

For more information about deploying a Kafka cluster using the Cluster Operator, see
Section 2.3, “Cluster Operator” .

For more information about deploying the Topic Operator using the Cluster Operator, see
Section 2.9.2, “Deploying the Topic Operator using the Cluster Operator” .

For more information about creating a topic using the Topic Operator, see Section 5.2,
“Creating a topic”.

oc delete kafkatopic your-topic-name

CHAPTER 5. USING THE TOPIC OPERATOR

267

CHAPTER 6. USING THE USER OPERATOR
The User Operator provides a way of managing Kafka users via OpenShift resources.

6.1. OVERVIEW OF THE USER OPERATOR COMPONENT

The User Operator manages Kafka users for a Kafka cluster by watching for KafkaUser OpenShift
resources that describe Kafka users and ensuring that they are configured properly in the Kafka cluster.
For example:

if a KafkaUser is created, the User Operator will create the user it describes

if a KafkaUser is deleted, the User Operator will delete the user it describes

if a KafkaUser is changed, the User Operator will update the user it describes

Unlike the Topic Operator, the User Operator does not sync any changes from the Kafka cluster with the
OpenShift resources. Unlike the Kafka topics which might be created by applications directly in Kafka, it
is not expected that the users will be managed directly in the Kafka cluster in parallel with the User
Operator, so this should not be needed.

The User Operator allows you to declare a KafkaUser as part of your application’s deployment. When
the user is created, the credentials will be created in a Secret. Your application needs to use the user
and its credentials for authentication and to produce or consume messages.

In addition to managing credentials for authentication, the User Operator also manages authorization
rules by including a description of the user’s rights in the KafkaUser declaration.

6.2. MUTUAL TLS AUTHENTICATION FOR CLIENTS

6.2.1. Mutual TLS authentication

Mutual TLS authentication is always used for the communication between Kafka brokers and Zookeeper
pods.Mutual authentication or two-way authentication is when both the server and the client present
certificates. AMQ Streams can configure Kafka to use TLS (Transport Layer Security) to provide
encrypted communication between Kafka brokers and clients either with or without mutual
authentication. When you configure mutual authentication, the broker authenticates the client and the
client authenticates the broker.

NOTE

TLS authentication is more commonly one-way, with one party authenticating the identity
of another. For example, when HTTPS is used between a web browser and a web server,
the server obtains proof of the identity of the browser.

6.2.2. When to use mutual TLS authentication for clients

Mutual TLS authentication is recommended for authenticating Kafka clients when:

The client supports authentication using mutual TLS authentication

It is necessary to use the TLS certificates rather than passwords

You can reconfigure and restart client applications periodically so that they do not use expired

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

268

You can reconfigure and restart client applications periodically so that they do not use expired
certificates.

6.3. CREATING A KAFKA USER WITH MUTUAL TLS AUTHENTICATION

Prerequisites

A running Kafka cluster configured with a listener using TLS authentication.

A running User Operator.

Procedure

1. Prepare a YAML file containing the KafkaUser to be created.

An example KafkaUser

2. Create the KafkaUser resource in OpenShift.
On OpenShift this can be done using oc apply:

3. Use the credentials from the secret my-user in your application

Additional resources

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Read
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Describe
 - resource:
 type: group
 name: my-group
 patternType: literal
 operation: Read

oc apply -f your-file

CHAPTER 6. USING THE USER OPERATOR

269

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about configuring a listener that authenticates using TLS see
Section 3.1.5, “Kafka broker listeners”.

For more information about deploying the Entity Operator, see Section 3.1.10, “Entity Operator” .

For more information about the KafkaUser object, see KafkaUser schema reference.

6.4. SCRAM-SHA AUTHENTICATION

SCRAM (Salted Challenge Response Authentication Mechanism) is an authentication protocol that can
establish mutual authentication using passwords. AMQ Streams can configure Kafka to use SASL
(Simple Authentication and Security Layer) SCRAM-SHA-512 to provide authentication on both
unencrypted and TLS-encrypted client connections. TLS authentication is always used internally
between Kafka brokers and Zookeeper nodes. When used with a TLS client connection, the TLS
protocol provides encryption, but is not used for authentication.

The following properties of SCRAM make it safe to use SCRAM-SHA even on unencrypted connections:

The passwords are not sent in the clear over the communication channel. Instead the client and
the server are each challenged by the other to offer proof that they know the password of the
authenticating user.

The server and client each generate a new challenge for each authentication exchange. This
means that the exchange is resilient against replay attacks.

6.4.1. Supported SCRAM credentials

AMQ Streams supports SCRAM-SHA-512 only. When a KafkaUser.spec.authentication.type is
configured with scram-sha-512 the User Operator will generate a random 12 character password
consisting of upper and lowercase ASCII letters and numbers.

6.4.2. When to use SCRAM-SHA authentication for clients

SCRAM-SHA is recommended for authenticating Kafka clients when:

The client supports authentication using SCRAM-SHA-512

It is necessary to use passwords rather than the TLS certificates

Authentication for unencrypted communication is required

6.5. CREATING A KAFKA USER WITH SCRAM SHA AUTHENTICATION

Prerequisites

A running Kafka cluster configured with a listener using SCRAM SHA authentication.

A running User Operator.

Procedure

1. Prepare a YAML file containing the KafkaUser to be created.

An example KafkaUser

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

270

An example KafkaUser

2. Create the KafkaUser resource in OpenShift.
On OpenShift this can be done using oc apply:

3. Use the credentials from the secret my-user in your application

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about configuring a listener that authenticates using SCRAM SHA see
Section 3.1.5, “Kafka broker listeners”.

For more information about deploying the Entity Operator, see Section 3.1.10, “Entity Operator” .

For more information about the KafkaUser object, see KafkaUser schema reference.

6.6. EDITING A KAFKA USER

This procedure describes how to change the configuration of an existing Kafka user by using a
KafkaUser OpenShift resource.

Prerequisites

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: scram-sha-512
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Read
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Describe
 - resource:
 type: group
 name: my-group
 patternType: literal
 operation: Read

oc apply -f your-file

CHAPTER 6. USING THE USER OPERATOR

271

A running Kafka cluster.

A running User Operator.

An existing KafkaUser to be changed

Procedure

1. Prepare a YAML file containing the desired KafkaUser.

2. Update the KafkaUser resource in OpenShift.
On OpenShift this can be done using oc apply:

3. Use the updated credentials from the my-user secret in your application.

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about deploying the Entity Operator, see Section 3.1.10, “Entity Operator” .

For more information about the KafkaUser object, see KafkaUser schema reference.

6.7. DELETING A KAFKA USER

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Read
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Describe
 - resource:
 type: group
 name: my-group
 patternType: literal
 operation: Read

oc apply -f your-file

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

272

This procedure describes how to delete a Kafka user created with KafkaUser OpenShift resource.

Prerequisites

A running Kafka cluster.

A running User Operator.

An existing KafkaUser to be deleted.

Procedure

Delete the KafkaUser resource in OpenShift.
On OpenShift this can be done using oc:

Additional resources

For more information about deploying the Cluster Operator, see Section 2.3, “Cluster Operator” .

For more information about the KafkaUser object, see KafkaUser schema reference.

6.8. KAFKA USER RESOURCE

The KafkaUser resource is used to declare a user with its authentication mechanism, authorization
mechanism, and access rights.

6.8.1. Authentication

Authentication is configured using the authentication property in KafkaUser.spec. The authentication
mechanism enabled for this user will be specified using the type field. Currently, the only supported
authentication mechanisms are the TLS Client Authentication mechanism and the SCRAM-SHA-512
mechanism.

When no authentication mechanism is specified, User Operator will not create the user or its credentials.

6.8.1.1. TLS Client Authentication

To use TLS client authentication, set the type field to tls.

An example of KafkaUser with enabled TLS Client Authentication

When the user is created by the User Operator, it will create a new secret with the same name as the

oc delete kafkauser your-user-name

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: tls
 # ...

CHAPTER 6. USING THE USER OPERATOR

273

When the user is created by the User Operator, it will create a new secret with the same name as the
KafkaUser resource. The secret will contain a public and private key which should be used for the TLS
Client Authentication. Bundled with them will be the public key of the client certification authority which
was used to sign the user certificate. All keys will be in X509 format.

An example of the Secret with user credentials

6.8.1.2. SCRAM-SHA-512 Authentication

To use SCRAM-SHA-512 authentication mechanism, set the type field to scram-sha-512.

An example of KafkaUser with enabled SCRAM-SHA-512 authentication

When the user is created by the User Operator, the User Operator will create a new secret with the same
name as the KafkaUser resource. The secret contains the generated password in the password key,
which is encoded with base64. In order to use the password it must be decoded.

An example of the Secret with user credentials

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 ca.crt: # Public key of the Clients CA
 user.crt: # Public key of the user
 user.key: # Private key of the user

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 authentication:
 type: scram-sha-512
 # ...

apiVersion: v1
kind: Secret
metadata:
 name: my-user
 labels:
 strimzi.io/kind: KafkaUser
 strimzi.io/cluster: my-cluster
type: Opaque
data:
 password: Z2VuZXJhdGVkcGFzc3dvcmQ= # Generated password

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

274

For decode the generated password:

echo "Z2VuZXJhdGVkcGFzc3dvcmQ=" | base64 --decode

6.8.2. Authorization

Authorization is configured using the authorization property in KafkaUser.spec. The authorization type
enabled for this user will be specified using the type field. Currently, the only supported authorization
type is the Simple authorization.

When no authorization is specified, the User Operator will not provision any access rights for the user.

6.8.2.1. Simple Authorization

To use Simple Authorization, set the type property to simple. Simple authorization is using the
SimpleAclAuthorizer plugin. SimpleAclAuthorizer is the default authorization plugin which is part of
Apache Kafka. Simple Authorization allows you to specify list of ACL rules in the acls property.

The acls property should contain a list of AclRule objects. AclRule specifies the access rights whcih will
be granted to the user. The AclRule object contains following properties:

type

Specifies the type of the ACL rule. The type can be either allow or deny. The type field is optional
and when not specified, the ACL rule will be treated as allow rule.

operation

Specifies the operation which will be allowed or denied. Following operations are supported:

Read

Write

Delete

Alter

Describe

All

IdempotentWrite

ClusterAction

Create

AlterConfigs

DescribeConfigs

NOTE

Not every operation can be combined with every resource.

host

Specifies a remote host from which is the rule allowed or denied. Use * to allow or deny the operation

CHAPTER 6. USING THE USER OPERATOR

275

Specifies a remote host from which is the rule allowed or denied. Use * to allow or deny the operation
from all hosts. The host field is optional and when not specified, the value * will be used as default.

resource

Specifies the resource for which the rule applies. Simple Authorization supports four different
resource types:

Topics

Consumer Groups

Clusters

Transactional IDs
The resource type can be specified in the type property. Use topic for Topics, group for
Consumer Groups, cluster for clusters, and transactionalId for Transactional IDs.

Additionally, Topic, Group, and Transactional ID resources allow you to specify the name of
the resource for which the rule applies. The name can be specified in the name property.
The name can be either specified as literal or as a prefix. To specify the name as literal, set
the patternType property to the value literal. Literal names will be taken exactly as they are
specified in the name field. To specify the name as a prefix, set the patternType property to
the value prefix. Prefix type names will use the value from the name only a prefix and will
apply the rule to all resources with names starting with the value. The cluster type resources
have no name.

For more details about SimpleAclAuthorizer, its ACL rules and the allowed combinations of resources
and operations, see Authorization and ACLs.

For more information about the AclRule object, see AclRule schema reference.

An example KafkaUser

apiVersion: kafka.strimzi.io/v1beta1
kind: KafkaUser
metadata:
 name: my-user
 labels:
 strimzi.io/cluster: my-cluster
spec:
 # ...
 authorization:
 type: simple
 acls:
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Read
 - resource:
 type: topic
 name: my-topic
 patternType: literal
 operation: Describe
 - resource:
 type: group

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

276

http://kafka.apache.org/documentation/#security_authz

6.8.3. Additional resources

For more information about the KafkaUser object, see KafkaUser schema reference.

For more information about the TLS Client Authentication, see Section 6.2, “Mutual TLS
authentication for clients”.

For more information about the SASL SCRAM-SHA-512 authentication, see Section 6.4,
“SCRAM-SHA authentication”.

 name: my-group
 patternType: prefix
 operation: Read

CHAPTER 6. USING THE USER OPERATOR

277

CHAPTER 7. USING THE AMQ STREAMS KAFKA BRIDGE
This chapter provides an overview of the AMQ Streams Kafka Bridge and helps you get started using its
REST API to interact with AMQ Streams.

NOTE

For the full list of REST API endpoints and descriptions, including example requests and
responses, see Kafka Bridge API reference . For information on how to deploy and
configure the Kafka Bridge, see Section 2.7, “Kafka Bridge” .

7.1. OVERVIEW OF THE AMQ STREAMS KAFKA BRIDGE

The AMQ Streams Kafka Bridge provides an API for integrating HTTP-based clients with a Kafka cluster
running on OpenShift. The API enables such clients to produce and consume messages without the
requirement to use the native Kafka protocol.

The API has two main resources — consumers and topics — that are exposed and made accessible
through endpoints to interact with consumers and producers in your Kafka cluster. The resources relate
only to the Kafka Bridge, not the consumers and producers connected directly to Kafka.

You can:

Send messages to a topic.

Create and delete consumers.

Subscribe consumers to topics, so that they start receiving messages from those topics.

Unsubscribe consumers from topics.

Assign partitions to consumers.

Retrieve messages from topics.

Commit a list of consumer offsets.

Seek on a partition, so that a consumer starts receiving messages from the first or last offset
position, or a given offset position.

Similar to a Kafka Connect cluster, you can deploy the Kafka Bridge into your OpenShift cluster using
the Cluster Operator. For deployment instructions, see Section 2.7, “Kafka Bridge” .

After the Kafka Bridge is deployed, the Cluster Operator creates a Deployment, Service, and Pod in your
OpenShift cluster, each named strimzi-kafka-bridge by default.

7.2. SUPPORTED CLIENTS FOR THE AMQ STREAMS KAFKA BRIDGE

You can use the Kafka Bridge to integrate both internal and external HTTP client applications with your
Kafka cluster.

Internal clients are container-based HTTP clients running in the same OpenShift cluster as the
Kafka Bridge itself.

External clients are HTTP clients running outside the OpenShift cluster in which the Kafka

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

278

https://strimzi.io/docs/bridge/0.12.0/full.html

External clients are HTTP clients running outside the OpenShift cluster in which the Kafka
Bridge is deployed and running.

Internal clients can access the Kafka Bridge on the host and port defined in the KafkaBridge custom
resource. External clients can access the Kafka Bridge through an OpenShift Route, a LoadBalancer
Service, or a Kubernetes Ingress.

Additional resources

For more information on configuring the host and port for the KafkaBridge resource, see
Section 3.5.5.3, “Kafka Bridge HTTP configuration” .

For more information on integrating external clients, see Section 7.4, “Accessing the AMQ
Streams Kafka Bridge from outside of OpenShift”.

7.3. SECURING THE AMQ STREAMS KAFKA BRIDGE

AMQ Streams does not currently provide any encryption, authentication, or authorization for the Kafka
Bridge. This means that requests sent from external clients to the Kafka Bridge are:

Not encrypted, and must use HTTP rather than HTTPS

Sent without authentication

However, you can secure the Kafka Bridge using other methods, such as:

OpenShift Network Policies that define which pods can access the Kafka Bridge.

Reverse proxies with authentication or authorization, for example, OAuth2 proxies.

API Gateways.

Kubernetes Ingress or OpenShift Routes with TLS termination.

The Kafka Bridge supports TLS encryption and TLS and SASL authentication when connecting to the
Kafka Brokers. Within your OpenShift cluster, you can configure:

TLS or SASL-based authentication between the Kafka Bridge and your Kafka cluster

A TLS-encrypted connection between the Kafka Bridge and your Kafka cluster.

For more information, see Section 3.5.4.1, “Authentication support in Kafka Bridge” .

You can use ACLs in Kafka brokers to restrict the topics that can be consumed and produced using the
Kafka Bridge.

7.4. ACCESSING THE AMQ STREAMS KAFKA BRIDGE FROM OUTSIDE
OF OPENSHIFT

After deployment, the AMQ Streams Kafka Bridge can only be accessed by applications running in the
same OpenShift cluster. These applications use the kafka-bridge-name-bridge-service Service to
access the API.

If you want to make the Kafka Bridge accessible to applications running outside of the OpenShift cluster,
you can expose it manually by using one of the following features:

CHAPTER 7. USING THE AMQ STREAMS KAFKA BRIDGE

279

1

Kubernetes Services of types LoadBalancer or NodePort

Kubernetes Ingress resources

OpenShift Routes

If you decide to create Services, use the following labels in the selector to configure the pods to which
the service will route the traffic:

Name of the Kafka Bridge custom resource in your OpenShift cluster.

7.5. REQUESTS TO THE AMQ STREAMS KAFKA BRIDGE

7.5.1. Data formats and headers

Specify data formats and HTTP headers to ensure valid requests are submitted to the Kafka Bridge.

7.5.1.1. Content Type headers

API request and response bodies are always encoded as JSON.

When performing consumer operations, POST requests must provide the following Content-
Type header:

When performing producer operations, POST requests must provide Content-Type headers
specifying the desired embedded data format , either json or binary, as shown in the following
table.

Embedded data format Content-Type header

JSON Content-Type:
application/vnd.kafka.json.v2+json

Binary Content-Type:
application/vnd.kafka.binary.v2+json

You set the embedded data format when creating a consumer using the consumers/groupid endpoint
—for more information, see the next section.

7.5.1.2. Embedded data format

The embedded data format is the format of the Kafka messages that are transmitted, over HTTP, from a

 # ...
 selector:
 strimzi.io/cluster: kafka-bridge-name 1
 strimzi.io/kind: KafkaBridge
 #...

Content-Type: application/vnd.kafka.v2+json

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

280

1

The embedded data format is the format of the Kafka messages that are transmitted, over HTTP, from a
producer to a consumer using the Kafka Bridge. Two embedded data formats are supported: JSON and
binary.

When creating a consumer using the /consumers/groupid endpoint, the POST request body must
specify an embedded data format of either JSON or binary. This is specified in the format field, for
example:

A binary embedded data format.

The embedded data format specified when creating a consumer must match the data format of the
Kafka messages it will consume.

If you choose to specify a binary embedded data format, subsequent producer requests must provide
the binary data in the request body as Base64-encoded strings. For example, when sending messages
using the /topics/topicname endpoint, records.value must be encoded in Base64:

Producer requests must also provide a Content-Type header that corresponds to the embedded data
format, for example, Content-Type: application/vnd.kafka.binary.v2+json.

7.5.1.3. Accept headers

After creating a consumer, all subsequent GET requests must provide an Accept header in the following
format:

The embedded-data-format is either json or binary.

For example, when retrieving records for a subscribed consumer using an embedded data format of
JSON, include this Accept header:

7.6. AMQ STREAMS KAFKA BRIDGE API RESOURCES

For the full list of REST API endpoints and descriptions, including example requests and responses, see
Kafka Bridge API reference .

{
 "name": "my-consumer",
 "format": "binary", 1
...
}

{
 "records": [
 {
 "key": "my-key",
 "value": "ZWR3YXJkdGhldGhyZWVsZWdnZWRjYXQ="
 },
]
}

Accept: application/vnd.kafka.embedded-data-format.v2+json

Accept: application/vnd.kafka.json.v2+json

CHAPTER 7. USING THE AMQ STREAMS KAFKA BRIDGE

281

https://strimzi.io/docs/bridge/0.12.0/full.html

CHAPTER 8. SECURITY
AMQ Streams supports encrypted communication between the Kafka and AMQ Streams components
using the TLS protocol. Communication between Kafka brokers (interbroker communication), between
Zookeeper nodes (internodal communication), and between these and the AMQ Streams operators is
always encrypted. Communication between Kafka clients and Kafka brokers is encrypted according to
how the cluster is configured. For the Kafka and AMQ Streams components, TLS certificates are also
used for authentication.

The Cluster Operator automatically sets up TLS certificates to enable encryption and authentication
within your cluster. It also sets up other TLS certificates if you want to enable encryption or TLS
authentication between Kafka brokers and clients.

8.1. CERTIFICATE AUTHORITIES

To support encryption, each AMQ Streams component needs its own private keys and public key
certificates. All component certificates are signed by a Certificate Authority (CA) called the cluster CA .

Similarly, each Kafka client application connecting using TLS client authentication needs private keys
and certificates. The clients CA is used to sign the certificates for the Kafka clients.

8.1.1. CA certificates

Each CA has a self-signed public key certificate.

Kafka brokers are configured to trust certificates signed by either the clients CA or the cluster CA.
Components to which clients do not need to connect, such as Zookeeper, only trust certificates signed
by the cluster CA. Client applications that perform mutual TLS authentication have to trust the
certificates signed by the cluster CA.

By default, AMQ Streams generates and renews CA certificates automatically. You can configure the
management of CA certificates in the Kafka.spec.clusterCa and Kafka.spec.clientsCa objects.

8.2. CERTIFICATES AND SECRETS

AMQ Streams stores CA, component and Kafka client private keys and certificates in Secrets. All keys
are 2048 bits in size.

CA certificate validity periods, expressed as a number of days after certificate generation, can be
configured in Kafka.spec.clusterCa.validityDays and Kafka.spec.clusterCa.validityDays.

8.2.1. Cluster CA Secrets

Table 8.1. Cluster CA Secrets managed by the Cluster Operator in <cluster>

Secret name Field within
Secret

Description

<cluster>-cluster-ca ca.key The current private key for the cluster CA.

<cluster>-cluster-ca-cert ca.crt The current certificate for the cluster CA.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

282

<cluster>-kafka-brokers <cluster>-
kafka-<num>.cr
t

Certificate for Kafka broker pod <num>. Signed by a
current or former cluster CA private key in
<cluster>-cluster-ca.

<cluster>-
kafka-<num>.ke
y

Private key for Kafka broker pod <num>.

<cluster>-zookeeper-
nodes

<cluster>-
zookeeper-<nu
m>.crt

Certificate for Zookeeper node <num>. Signed by a
current or former cluster CA private key in
<cluster>-cluster-ca.

<cluster>-
zookeeper-<nu
m>.key

Private key for Zookeeper pod <num>.

<cluster>-entity-operator-
certs

entity-
operator_.crt

Certificate for TLS communication between the
Entity Operator and Kafka or Zookeeper. Signed by a
current or former cluster CA private key in
<cluster>-cluster-ca.

entity-
operator.key

Private key for TLS communication between the
Entity Operator and Kafka or Zookeeper

Secret name Field within
Secret

Description

The CA certificates in <cluster>-cluster-ca-cert must be trusted by Kafka client applications so that
they validate the Kafka broker certificates when connecting to Kafka brokers over TLS.

NOTE

Only <cluster>-cluster-ca-cert needs to be used by clients. All other Secrets in the table
above only need to be accessed by the AMQ Streams components. You can enforce this
using OpenShift role-based access controls if necessary.

8.2.2. Client CA Secrets

Table 8.2. Clients CA Secrets managed by the Cluster Operator in <cluster>

Secret name Field within
Secret

Description

<cluster>-clients-ca ca.key The current private key for the clients CA.

<cluster>-clients-ca-cert ca.crt The current certificate for the clients CA.

CHAPTER 8. SECURITY

283

The certificates in <cluster>-clients-ca-cert are those which the Kafka brokers trust.

NOTE

<cluster>-cluster-ca is used to sign certificates of client applications. It needs to be
accessible to the AMQ Streams components and for administrative access if you are
intending to issue application certificates without using the User Operator. You can
enforce this using OpenShift role-based access controls if necessary.

8.2.3. User Secrets

Table 8.3. Secrets managed by the User Operator

Secret name Field within
Secret

Description

<user> user.crt Certificate for the user, signed by the clients CA

user.key Private key for the user

8.3. INSTALLING YOUR OWN CA CERTIFICATES

This procedure describes how to install your own CA certificates and private keys instead of using CA
certificates and private keys generated by the Cluster Operator.

Prerequisites

The Cluster Operator is running.

A Kafka cluster is not yet deployed.

Your own X.509 certificates and keys in PEM format for the cluster CA or clients CA.

If you want to use a cluster or clients CA which is not a Root CA, you have to include the
whole chain in the certificate file. The chain should be in the following order:

1. The cluster or clients CA

2. One or more intermediate CAs

3. The root CA

All CAs in the chain should be configured as a CA in the X509v3 Basic Constraints.

Procedure

1. Put your CA certificate in the corresponding Secret (<cluster>-cluster-ca-cert for the cluster
CA or <cluster>-clients-ca-cert for the clients CA):
On OpenShift, run the following commands:

Delete any existing secret (ignore "Not Exists" errors)
oc delete secret <ca-cert-secret>
Create the new one

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

284

2. Put your CA key in the corresponding Secret (<cluster>-cluster-ca for the cluster CA or
<cluster>-clients-ca for the clients CA)
On OpenShift, run the following commands:

3. Label both Secrets with labels strimzi.io/kind=Kafka and strimzi.io/cluster=<my-cluster>:
On OpenShift, run the following commands:

4. Create the Kafka resource for your cluster, configuring either the Kafka.spec.clusterCa or the
Kafka.spec.clientsCa object to not use generated CAs:

Example fragment Kafka resource configuring the cluster CA to use certificates you
supply for yourself

8.4. CERTIFICATE RENEWAL

The cluster CA and clients CA certificates are only valid for a limited time period, known as the validity
period. This is usually defined as a number of days since the certificate was generated. For auto-
generated CA certificates, you can configure the validity period in Kafka.spec.clusterCa.validityDays
and Kafka.spec.clientsCa.validityDays. The default validity period for both certificates is 365 days.
Manually-installed CA certificates should have their own validity period defined.

When a CA certificate expires, components and clients which still trust that certificate will not accept
TLS connections from peers whose certificate were signed by the CA private key. The components and
clients need to trust the new CA certificate instead.

To allow the renewal of CA certificates without a loss of service, the Cluster Operator will initiate
certificate renewal before the old CA certificates expire. You can configure the renewal period in
Kafka.spec.clusterCa.renewalDays and Kafka.spec.clientsCa.renewalDays (both default to 30
days). The renewal period is measured backwards, from the expiry date of the current certificate.

Not Before Not After
 | |
 |<--------------- validityDays --------------->|
 <--- renewalDays --->|

The behavior of the Cluster Operator during the renewal period depends on whether the relevant

oc create secret generic <ca-cert-secret> --from-file=ca.crt=<ca-cert-file>

Delete the existing secret
oc delete secret <ca-key-secret>
Create the new one
oc create secret generic <ca-key-secret> --from-file=ca.key=<ca-key-file>

oc label secret <ca-cert-secret> strimzi.io/kind=Kafka strimzi.io/cluster=<my-cluster>
oc label secret <ca-key-secret> strimzi.io/kind=Kafka strimzi.io/cluster=<my-cluster>

kind: Kafka
version: kafka.strimzi.io/v1beta1
spec:
 # ...
 clusterCa:
 generateCertificateAuthority: false

CHAPTER 8. SECURITY

285

The behavior of the Cluster Operator during the renewal period depends on whether the relevant
setting is enabled, in either Kafka.spec.clusterCa.generateCertificateAuthority or
Kafka.spec.clientsCa.generateCertificateAuthority.

8.4.1. Renewal process with generated CAs

The Cluster Operator performs the following process to renew CA certificates:

1. Generate a new CA certificate, but retaining the existing key. The new certificate replaces the
old one with the name ca.crt within the corresponding Secret.

2. Generate new client certificates (for Zookeeper nodes, Kafka brokers, and the Entity Operator).
This is not strictly necessary because the signing key has not changed, but it keeps the validity
period of the client certificate in sync with the CA certificate.

3. Restart Zookeeper nodes so that they will trust the new CA certificate and use the new client
certificates.

4. Restart Kafka brokers so that they will trust the new CA certificate and use the new client
certificates.

5. Restart the Topic and User Operators so that they will trust the new CA certificate and use the
new client certificates.

8.4.2. Client applications

The Cluster Operator is not aware of all the client applications using the Kafka cluster.

IMPORTANT

Depending on how your applications are configured, you might need take action to ensure
they continue working after certificate renewal.

Consider the following important points to ensure that client applications continue working.

When they connect to the cluster, client applications must trust the cluster CA certificate
published in <cluster>-cluster-ca-cert.

When using the User Operator to provision client certificates, client applications must use the
current user.crt and user.key published in their <user> Secret when they connect to the
cluster. For workloads running inside the same OpenShift cluster this can be achieved by
mounting the secrets as a volume and having the client Pods construct their key- and
truststores from the current state of the Secrets. For more details on this procedure, see
Section 8.6, “Configuring internal clients to trust the cluster CA” .

When renewing client certificates, if you are provisioning client certificates and keys manually,
you must generate new client certificates and ensure the new certificates are used by clients
within the renewal period. Failure to do this by the end of the renewal period could result in
client applications being unable to connect.

8.5. TLS CONNECTIONS

8.5.1. Zookeeper communication

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

286

Zookeeper does not support TLS itself. By deploying a TLS sidecar within every Zookeeper pod, the
Cluster Operator is able to provide data encryption and authentication between Zookeeper nodes in a
cluster. Zookeeper only communicates with the TLS sidecar over the loopback interface. The TLS
sidecar then proxies all Zookeeper traffic, TLS decrypting data upon entry into a Zookeeper pod, and
TLS encrypting data upon departure from a Zookeeper pod.

This TLS encrypting stunnel proxy is instantiated from the spec.zookeeper.stunnelImage specified in
the Kafka resource.

8.5.2. Kafka interbroker communication

Communication between Kafka brokers is done through the REPLICATION listener on port 9091, which
is encrypted by default.

Communication between Kafka brokers and Zookeeper nodes uses a TLS sidecar, as described above.

8.5.3. Topic and User Operators

Like the Cluster Operator, the Topic and User Operators each use a TLS sidecar when communicating
with Zookeeper. The Topic Operator connects to Kafka brokers on port 9091.

8.5.4. Kafka Client connections

Encrypted communication between Kafka brokers and clients running within the same OpenShift cluster
is provided through the CLIENTTLS listener on port 9093.

Encrypted communication between Kafka brokers and clients running outside the same OpenShift
cluster is provided through the EXTERNAL listener on port 9094.

NOTE

You can use the CLIENT listener on port 9092 for unencrypted communication with
brokers.

8.6. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA

This procedure describes how to configure a Kafka client that resides inside the OpenShift cluster —
connecting to the tls listener on port 9093 — to trust the cluster CA certificate.

The easiest way to achieve this for an internal client is to use a volume mount to access the Secrets
containing the necessary certificates and keys.

Prerequisites

The Cluster Operator is running.

A Kafka resource within the OpenShift cluster.

A Kafka client application inside the OpenShift cluster which will connect using TLS and needs
to trust the cluster CA certificate.

Procedure

1. When defining the client Pod

CHAPTER 8. SECURITY

287

2. The Kafka client has to be configured to trust certificates signed by this CA. For the Java-based
Kafka Producer, Consumer, and Streams APIs, you can do this by importing the CA certificate
into the JVM’s truststore using the following keytool command:

3. To configure the Kafka client, specify the following properties:

security.protocol: SSL when using TLS for encryption (with or without TLS
authentication), or security.protocol: SASL_SSL when using SCRAM-SHA authentication
over TLS.

ssl.truststore.location: the truststore location where the certificates were imported.

ssl.truststore.password: the password for accessing the truststore. This property can be
omitted if it is not needed by the truststore.

Additional resources

For the procedure for configuring external clients to trust the cluster CA, see Section 8.7,
“Configuring external clients to trust the cluster CA”

8.7. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA

This procedure describes how to configure a Kafka client that resides outside the OpenShift cluster –
connecting to the external listener on port 9094 – to trust the cluster CA certificate.

You can use the same procedure to configure clients inside OpenShift, which connect to the tls listener
on port 9093, but it is usually more convenient to access the Secrets using a volume mount in the client
Pod.

Follow this procedure when setting up the client and during the renewal period, when the old clients CA
certificate is replaced.

IMPORTANT

The <cluster-name>-cluster-ca-cert Secret will contain more than one CA certificate
during CA certificate renewal. Clients must add all of them to their truststores.

Prerequisites

The Cluster Operator is running.

A Kafka resource within the OpenShift cluster.

A Kafka client application outside the OpenShift cluster which will connect using TLS and needs
to trust the cluster CA certificate.

Procedure

1. Extract the cluster CA certificate from the generated <cluster-name>-cluster-ca-cert Secret.
On OpenShift, run the following command to extract the certificates:

keytool -keystore client.truststore.jks -alias CARoot -import -file ca.crt

oc extract secret/<cluster-name>-cluster-ca-cert --keys ca.crt

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

288

2. The Kafka client has to be configured to trust certificates signed by this CA. For the Java-based
Kafka Producer, Consumer, and Streams APIs, you can do this by importing the CA certificates
into the JVM’s truststore using the following keytool command:

3. To configure the Kafka client, specify the following properties:

security.protocol: SSL when using TLS for encryption (with or without TLS
authentication), or security.protocol: SASL_SSL when using SCRAM-SHA authentication
over TLS.

ssl.truststore.location: the truststore location where the certificates were imported.

ssl.truststore.password: the password for accessing the truststore. This property can be
omitted if it is not needed by the truststore.

Additional resources

For the procedure for configuring internal clients to trust the cluster CA, see Section 8.6,
“Configuring internal clients to trust the cluster CA”

keytool -keystore client.truststore.jks -alias CARoot -import -file ca.crt

CHAPTER 8. SECURITY

289

CHAPTER 9. AMQ STREAMS AND KAFKA UPGRADES
AMQ Streams can be upgraded with no cluster downtime. Each version of AMQ Streams supports one
or more versions of Apache Kafka: you can upgrade to a higher Kafka version as long as it is supported
by your version of AMQ Streams. In some cases, you can also downgrade to a lower supported Kafka
version.

Newer versions of AMQ Streams may support newer versions of Kafka, but you need to upgrade AMQ
Streams before you can upgrade to a higher supported Kafka version.

9.1. UPGRADE PREREQUISITES

Before you begin the upgrade process, make sure that:

AMQ Streams is installed. For instructions, see Chapter 2, Getting started with AMQ Streams .

You are familiar with any upgrade changes described in the AMQ Streams 1.2 on Red Hat
OpenShift Container Platform Release Notes.

9.2. UPGRADE PROCESS

Upgrading AMQ Streams is a two-stage process. To upgrade brokers and clients without downtime, you
must complete the upgrade procedures in the following order:

1. Update your Cluster Operator to the latest AMQ Streams version.

Section 9.4, “Upgrading the Cluster Operator”

2. Upgrade all Kafka brokers and client applications to the latest Kafka version.

Section 9.5, “Upgrading Kafka”

9.3. KAFKA VERSIONS

AMQ Streams is based on a specific version of Apache Kafka.

AMQ Streams version Kafka version

1.2 2.2.1

Kafka’s log message format version and inter-broker protocol version specify the log format version
appended to messages and the version of protocol used in a cluster. As a result, the upgrade process
involves making configuration changes to existing Kafka brokers and code changes to client applications
(consumers and producers) to ensure the correct versions are used.

The following table shows the differences between Kafka versions:

Kafka version Interbroker protocol
version

Log message format
version

Zookeeper version

2.1.1 2.1 2.1 3.4.13

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

290

https://access.redhat.com/documentation/en-us/red_hat_amq/7.3/html-single/amq_streams_1.2_on_openshift_container_platform_release_notes

2.2.1 2.2 2.2 3.4.14

Although Kafka versions may use the same version of Zookeeper, it is recommended that you update
your Zookeeper cluster to use the newest Zookeeper binaries before proceeding with the main AMQ
Streams upgrade.

Message format version

When a producer sends a message to a Kafka broker, the message is encoded using a specific format.
The format can change between Kafka releases, so messages include a version identifying which version
of the format they were encoded with. You can configure a Kafka broker to convert messages from
newer format versions to a given older format version before the broker appends the message to the
log.

In Kafka, there are two different methods for setting the message format version:

The log.message.format.version property is set on Kafka brokers.

The message.format.version property is set on topics.

The default value of message.format.version for a topic is defined by the
log.message.format.version that is set on the Kafka broker. You can manually set the
message.format.version of a topic by modifying its topic configuration.

The upgrade tasks in this section assume that the message format version is defined by the
log.message.format.version.

9.4. UPGRADING THE CLUSTER OPERATOR

The steps to upgrade your Cluster Operator deployment to use AMQ Streams 1.2 are outlined in this
section.

The availability of Kafka clusters managed by the Cluster Operator is not affected by the upgrade
operation.

NOTE

Refer to the documentation supporting a specific version of AMQ Streams for
information on how to upgrade to that version.

9.4.1. Upgrading the Cluster Operator to a later version

This procedure describes how to upgrade a Cluster Operator deployment to a later version.

Prerequisites

An existing Cluster Operator deployment.

Procedure

1. Backup the existing Cluster Operator resources:

oc get all -l app=strimzi -o yaml > strimzi-backup.yaml

CHAPTER 9. AMQ STREAMS AND KAFKA UPGRADES

291

2. Update the Cluster Operator.
Modify the installation files according to the OpenShift project or Kubernetes namespace the
Cluster Operator is running in.

On Linux, use:

sed -i 's/namespace: .*/namespace: my-namespace/' install/cluster-
operator/*RoleBinding*.yaml

On MacOS, use:

sed -i '' 's/namespace: .*/namespace: my-namespace/' install/cluster-
operator/*RoleBinding*.yaml

If you modified one or more environment variables in your existing Cluster Operator
Deployment, edit the install/cluster-operator/050-Deployment-cluster-operator.yaml file to
reflect the changes that you made in the new version of the Cluster Operator.

3. When you have an updated configuration, deploy it along with the rest of the install resources:

Wait for the rolling updates to complete.

4. Get the image for the Kafka pod to ensure the upgrade was successful:

The image tag shows the new AMQ Streams version followed by the Kafka version. For example,
<New AMQ Streams version>-kafka-<Current Kafka version>.

5. Update existing resources to handle deprecated custom resource properties.

AMQ Streams resource upgrades

You now have an updated Cluster Operator, but the version of Kafka running in the cluster it manages is
unchanged.

What to do next

Following the Cluster Operator upgrade, you can perform a Kafka upgrade.

9.5. UPGRADING KAFKA

After you have upgraded your Cluster Operator, you can upgrade your brokers to a higher supported
version of Kafka.

Kafka upgrades are performed using the Cluster Operator. How the Cluster Operator performs an
upgrade depends on the differences between versions of:

Interbroker protocol

Log message format

ZooKeeper

oc apply -f install/cluster-operator

oc get po my-cluster-kafka-0 -o jsonpath='{.spec.containers[0].image}'

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

292

When the versions are the same for the current and target Kafka version, as is typically the case for a
patch level upgrade, the Cluster Operator can upgrade through a single rolling update of the Kafka
brokers.

When one or more of these versions differ, the Cluster Operator requires two or three rolling updates of
the Kafka brokers to perform the upgrade.

Additional resources

Section 9.4, “Upgrading the Cluster Operator”

9.5.1. Kafka version and image mappings

When upgrading Kafka, consider your settings for the STRIMZI_KAFKA_IMAGES and
Kafka.spec.kafka.version properties.

Each Kafka resource can be configured with a Kafka.spec.kafka.version.

The Cluster Operator’s STRIMZI_KAFKA_IMAGES environment variable provides a mapping
between the Kafka version and the image to be used when that version is requested in a given
Kafka resource.

If Kafka.spec.kafka.image is not configured, the default image for the given version is
used.

If Kafka.spec.kafka.image is configured, the default image is overridden.

WARNING

The Cluster Operator cannot validate that an image actually contains a Kafka broker
of the expected version. Take care to ensure that the given image corresponds to
the given Kafka version.

9.5.2. Strategies for upgrading clients

The best approach to upgrading your client applications (including Kafka Connect connectors) depends
on your particular circumstances.

Consuming applications need to receive messages in a message format that they understand. You can
ensure that this is the case in one of two ways:

By upgrading all the consumers for a topic before upgrading any of the producers.

By having the brokers down-convert messages to an older format.

Using broker down-conversion puts extra load on the brokers, so it is not ideal to rely on down-
conversion for all topics for a prolonged period of time. For brokers to perform optimally they should not
be down converting messages at all.

Broker down-conversion is configured in two ways:

CHAPTER 9. AMQ STREAMS AND KAFKA UPGRADES

293

The topic-level message.format.version configures it for a single topic.

The broker-level log.message.format.version is the default for topics that do not have the
topic-level message.format.version configured.

Messages published to a topic in a new-version format will be visible to consumers, because brokers
perform down-conversion when they receive messages from producers, not when they are sent to
consumers.

There are a number of strategies you can use to upgrade your clients:

Consumers first

1. Upgrade all the consuming applications.

2. Change the broker-level log.message.format.version to the new version.

3. Upgrade all the producing applications.
This strategy is straightforward, and avoids any broker down-conversion. However, it
assumes that all consumers in your organization can be upgraded in a coordinated way, and it
does not work for applications that are both consumers and producers. There is also a risk
that, if there is a problem with the upgraded clients, new-format messages might get added
to the message log so that you cannot revert to the previous consumer version.

Per-topic consumers first

For each topic:

1. Upgrade all the consuming applications.

2. Change the topic-level message.format.version to the new version.

3. Upgrade all the producing applications.
This strategy avoids any broker down-conversion, and means you can proceed on a topic-
by-topic basis. It does not work for applications that are both consumers and producers of
the same topic. Again, it has the risk that, if there is a problem with the upgraded clients,
new-format messages might get added to the message log.

Per-topic consumers first, with down conversion

For each topic:

1. Change the topic-level message.format.version to the old version (or rely on the topic
defaulting to the broker-level log.message.format.version).

2. Upgrade all the consuming and producing applications.

3. Verify that the upgraded applications function correctly.

4. Change the topic-level message.format.version to the new version.
This strategy requires broker down-conversion, but the load on the brokers is minimized
because it is only required for a single topic (or small group of topics) at a time. It also works
for applications that are both consumers and producers of the same topic. This approach
ensures that the upgraded producers and consumers are working correctly before you
commit to using the new message format version.

The main drawback of this approach is that it can be complicated to manage in a cluster with
many topics and applications.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

294

Other strategies for upgrading client applications are also possible.

NOTE

It is also possible to apply multiple strategies. For example, for the first few applications
and topics the "per-topic consumers first, with down conversion" strategy can be used.
When this has proved successful another, more efficient strategy can be considered
acceptable to use instead.

9.5.3. Upgrading Kafka brokers and client applications

This procedure describes how to upgrade a AMQ Streams Kafka cluster to a higher version of Kafka.

Prerequisites

For the Kafka resource to be upgraded, check:

The Cluster Operator, which supports both versions of Kafka, is up and running.

The Kafka.spec.kafka.config does not contain options that are not supported in the version of
Kafka that you are upgrading to.

Whether the log.message.format.version for the current Kafka version needs to be updated
for the new version.
Consult the Kafka versions table .

Procedure

1. Update the Kafka cluster configuration in an editor, as required:
On OpenShift, use:

a. If the log.message.format.version of the current Kafka version is the same as that of the
new Kafka version, proceed to the next step.
Otherwise, ensure that Kafka.spec.kafka.config has the log.message.format.version
configured to the default for the current version.

For example, if upgrading from Kafka 2.1.1:

If the log.message.format.version is unset, set it to the current version.

NOTE

oc edit kafka my-cluster

kind: Kafka
spec:
 # ...
 kafka:
 version: 2.1.1
 config:
 log.message.format.version: "2.1"
 # ...

CHAPTER 9. AMQ STREAMS AND KAFKA UPGRADES

295

1

2

NOTE

The value of log.message.format.version must be a string to prevent it
from being interpreted as a floating point number.

b. Change the Kafka.spec.kafka.version to specify the new version (leaving the
log.message.format.version as the current version).
For example, if upgrading from Kafka 2.1.1 to 2.2.1:

This is changed to the new version

This remains at the current version

c. If the image for the Kafka version is different from the image defined in
STRIMZI_KAFKA_IMAGES for the Cluster Operator, update Kafka.spec.kafka.image.
See Section 9.5.1, “Kafka version and image mappings”

2. Save and exit the editor, then wait for rolling updates to complete.
Check the update in the logs or by watching the pod state transitions:

On OpenShift, use:

If the current and new versions of Kafka have different interbroker protocol versions, check the
Cluster Operator logs for an INFO level message:

Alternatively, if the current and new versions of Kafka have the same interbroker protocol
version, check for:

The rolling updates:

Ensure each pod is using the broker binaries for the new version of Kafka

apiVersion: v1alpha1
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.2.1 1
 config:
 log.message.format.version: "2.1" 2
 # ...

oc logs -f <cluster-operator-pod-name> | grep -E "Kafka version upgrade from [0-9.]+ to [0-
9.]+, phase ([0-9]+) of \1 completed"

oc get po -w

Reconciliation #<num>(watch) Kafka(<namespace>/<name>): Kafka version upgrade from
<from-version> to <to-version>, phase 2 of 2 completed

Reconciliation #<num>(watch) Kafka(<namespace>/<name>): Kafka version upgrade from
<from-version> to <to-version>, phase 1 of 1 completed

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

296

Configure the brokers to send messages using the interbroker protocol of the new version
of Kafka

NOTE

Clients are still using the old version, so brokers will convert messages to the
old version before sending them to the clients. To minimize this additional
load, updates the clients as quickly as possible.

3. Depending on your chosen strategy for upgrading clients, upgrade all client applications to use
the new version of the client binaries.
See Section 9.5.2, “Strategies for upgrading clients”

WARNING

You cannot downgrade after completing this step. If you need to revert the
update at this point, follow the procedure Section 9.6.2, “Downgrading
Kafka brokers and client applications”.

If required, set the version property for Kafka Connect and Mirror Maker as the new version of
Kafka:

a. For Kafka Connect, update KafkaConnect.spec.version

b. For MIrror Maker, update KafkaMirrorMaker.spec.version

4. If the log.message.format.version identified in step 1 is the same as the new version proceed
to the next step.
Otherwise change the log.message.format.version in Kafka.spec.kafka.config to the default
version for the new version of Kafka now being used.

For example, if upgrading to 2.2.1:

5. Wait for the Cluster Operator to update the cluster.
The Kafka cluster and clients are now using the new Kafka version.

Additional resources

See Section 9.6.2, “Downgrading Kafka brokers and client applications” for the procedure to

apiVersion: v1alpha1
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.2.1
 config:
 log.message.format.version: "2.2"
 # ...

CHAPTER 9. AMQ STREAMS AND KAFKA UPGRADES

297

See Section 9.6.2, “Downgrading Kafka brokers and client applications” for the procedure to
downgrade a AMQ Streams Kafka cluster from one version to a lower version.

9.6. DOWNGRADING KAFKA

Kafka version downgrades are performed using the Cluster Operator.

Whether and how the Cluster Operator performs a downgrade depends on the differences between
versions of:

Interbroker protocol

Log message format

Zookeeper

9.6.1. Target downgrade version

How the Cluster Operator handles a downgrade operation depends on the
log.message.format.version.

If the target downgrade version of Kafka has the same log.message.format.version as the
current version, the Cluster Operator downgrades by performing a single rolling restart of the
brokers.

If the target downgrade version of Kafka has a different log.message.format.version,
downgrading is only possible if the running cluster has always had log.message.format.version
set to the version used by the downgraded version.
This is typically only the case if the upgrade procedure was aborted before the
log.message.format.version was changed. In this case, the downgrade requires:

Two rolling restarts of the brokers if the interbroker protocol of the two versions is different

A single rolling restart if they are the same

9.6.2. Downgrading Kafka brokers and client applications

This procedure describes how you can downgrade a AMQ Streams Kafka cluster to a lower (previous)
version of Kafka, such as downgrading from 2.2.1 to 2.1.1.

IMPORTANT

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

298

IMPORTANT

Downgrading is not possible if the new version has ever used a
log.message.format.version that is not supported by the previous version, including
when the default value for log.message.format.version is used. For example, this
resource can be downgraded to Kafka version 2.1.1 because the
log.message.format.version has not been changed:

The downgrade would not be possible if the log.message.format.version was set at
"2.2" or a value was absent (so that the parameter took the default value for a 2.2.1
broker of 2.2).

Prerequisites

For the Kafka resource to be downgraded, check:

The Cluster Operator, which supports both versions of Kafka, is up and running.

The Kafka.spec.kafka.config does not contain options that are not supported in the version of
Kafka you are downgrading to.

The Kafka.spec.kafka.config has a log.message.format.version that is supported by the
version being downgraded to.

Procedure

1. Update the Kafka cluster configuration in an editor, as required:
On OpenShift, use:

a. Change the Kafka.spec.kafka.version to specify the previous version.
For example, if downgrading from Kafka 2.2.1 to 2.1.1:

apiVersion: v1alpha1
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.2.1
 config:
 log.message.format.version: "2.1"
 # ...

oc edit kafka my-cluster

apiVersion: v1alpha1
kind: Kafka
spec:
 # ...
 kafka:
 version: 2.1.1 1
 config:
 log.message.format.version: "2.1" 2
 # ...

CHAPTER 9. AMQ STREAMS AND KAFKA UPGRADES

299

1

2

This is changed to the previous version

This is unchanged

NOTE

You must format the value of log.message.format.version as a string to
prevent it from being interpreted as a floating point number.

b. If the image for the Kafka version is different from the image defined in
STRIMZI_KAFKA_IMAGES for the Cluster Operator, update Kafka.spec.kafka.image.
See Section 9.5.1, “Kafka version and image mappings”

2. Save and exit the editor, then wait for rolling updates to complete.
Check the update in the logs or by watching the pod state transitions:

On OpenShift use:

If the previous and current versions of Kafka have different interbroker protocol versions, check
the Cluster Operator logs for an INFO level message:

Alternatively, if the previous and current versions of Kafka have the same interbroker protocol
version, check for:

3. Downgrade all client applications (consumers) to use the previous version of the client binaries.
The Kafka cluster and clients are now using the previous Kafka version.

oc logs -f <cluster-operator-pod-name> | grep -E "Kafka version downgrade from [0-9.]+ to
[0-9.]+, phase ([0-9]+) of \1 completed"

oc get po -w

Reconciliation #<num>(watch) Kafka(<namespace>/<name>): Kafka version downgrade from
<from-version> to <to-version>, phase 2 of 2 completed

Reconciliation #<num>(watch) Kafka(<namespace>/<name>): Kafka version downgrade from
<from-version> to <to-version>, phase 1 of 1 completed

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

300

CHAPTER 10. AMQ STREAMS RESOURCE UPGRADES
For this release of AMQ Streams, resources that use the API version kafka.strimzi.io/v1alpha1 must be
updated to use kafka.strimzi.io/v1beta1.

The kafka.strimzi.io/v1alpha1 API version is deprecated in release 1.2.

This section describes the upgrade steps for the resources.

IMPORTANT

The upgrade of resources must be performed after upgrading the Cluster Operator , so
the Cluster Operator can understand the resources.

What if the resource upgrade does not take effect?

If the upgrade does not take effect, a warning is given in the logs on reconciliation to indicate that the
resource cannot be updated until the apiVersion is updated.

To trigger the update, make a cosmetic change to the custom resource, such as adding an annotation.

Example annotation:

10.1. UPGRADING KAFKA RESOURCES

Prerequisites

A Cluster Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each Kafka resource in your deployment.

1. Update the Kafka resource in an editor.

2. Replace:

with:

3. If the Kafka resource has:

metadata:
 # ...
 annotations:
 upgrade: "Upgraded to kafka.strimzi.io/v1beta1"

oc edit kafka my-cluster

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

Kafka.spec.topicOperator

CHAPTER 10. AMQ STREAMS RESOURCE UPGRADES

301

Replace it with:

For example, replace:

with:

4. If present, move:

to:

For example, move:

to:

5. If present, move:

Kafka.spec.entityOperator.topicOperator

spec:
 # ...
 topicOperator: {}

spec:
 # ...
 entityOperator:
 topicOperator: {}

Kafka.spec.entityOperator.affinity

Kafka.spec.entityOperator.tolerations

Kafka.spec.entityOperator.template.pod.affinity

Kafka.spec.entityOperator.template.pod.tolerations

spec:
 # ...
 entityOperator:
 affinity {}
 tolerations {}

spec:
 # ...
 entityOperator:
 template:
 pod:
 affinity {}
 tolerations {}

Kafka.spec.kafka.affinity

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

302

to:

For example, move:

to:

6. If present, move:

to:

For example, move:

to:

Kafka.spec.kafka.tolerations

Kafka.spec.kafka.template.pod.affinity

Kafka.spec.kafka.template.pod.tolerations

spec:
 # ...
 kafka:
 affinity {}
 tolerations {}

spec:
 # ...
 kafka:
 template:
 pod:
 affinity {}
 tolerations {}

Kafka.spec.zookeeper.affinity

Kafka.spec.zookeeper.tolerations

Kafka.spec.zookeeper.template.pod.affinity

Kafka.spec.zookeeper.template.pod.tolerations

spec:
 # ...
 zookeeper:
 affinity {}
 tolerations {}

spec:
 # ...
 zookeeper:

CHAPTER 10. AMQ STREAMS RESOURCE UPGRADES

303

7. Save the file, exit the editor and wait for the updated resource to be reconciled.

10.2. UPGRADING KAFKA CONNECT RESOURCES

Prerequisites

A Cluster Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaConnect resource in your deployment.

1. Update the KafkaConnect resource in an editor.

2. Replace:

with:

3. If present, move:

to:

For example, move:

to:

 template:
 pod:
 affinity {}
 tolerations {}

oc edit kafkaconnect my-connect

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

KafkaConnect.spec.affinity

KafkaConnect.spec.tolerations

KafkaConnect.spec.template.pod.affinity

KafkaConnect.spec.template.pod.tolerations

spec:
 # ...
 affinity {}
 tolerations {}

spec:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

304

4. Save the file, exit the editor and wait for the updated resource to be reconciled.

10.3. UPGRADING KAFKA CONNECT S2I RESOURCES

Prerequisites

A Cluster Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaConnectS2I resource in your deployment.

1. Update the KafkaConnectS2I resource in an editor.

2. Replace:

with:

3. If present, move:

to:

For example, move:

to:

 template:
 pod:
 affinity {}
 tolerations {}

oc edit kafkaconnects2i my-connect

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

KafkaConnectS2I.spec.affinity

KafkaConnectS2I.spec.tolerations

KafkaConnectS2I.spec.template.pod.affinity

KafkaConnectS2I.spec.template.pod.tolerations

spec:
 # ...
 affinity {}
 tolerations {}

spec:
 # ...

CHAPTER 10. AMQ STREAMS RESOURCE UPGRADES

305

4. Save the file, exit the editor and wait for the updated resource to be reconciled.

10.4. UPGRADING KAFKA MIRROR MAKER RESOURCES

Prerequisites

A Cluster Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaMirrorMaker resource in your deployment.

1. Update the KafkaMirrorMaker resource in an editor.

2. Replace:

with:

3. If present, move:

to:

For example, move:

to:

 template:
 pod:
 affinity {}
 tolerations {}

oc edit kafkamirrormaker my-connect

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

KafkaConnectMirrorMaker.spec.affinity

KafkaConnectMirrorMaker.spec.tolerations

KafkaConnectMirrorMaker.spec.template.pod.affinity

KafkaConnectMirrorMaker.spec.template.pod.tolerations

spec:
 # ...
 affinity {}
 tolerations {}

spec:
 # ...

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

306

4. Save the file, exit the editor and wait for the updated resource to be reconciled.

10.5. UPGRADING KAFKA TOPIC RESOURCES

Prerequisites

A Topic Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaTopic resource in your deployment.

1. Update the KafkaTopic resource in an editor.

2. Replace:

with:

3. Save the file, exit the editor and wait for the updated resource to be reconciled.

10.6. UPGRADING KAFKA USER RESOURCES

Prerequisites

A User Operator supporting the v1beta1 API version is up and running.

Procedure

Execute the following steps for each KafkaUser resource in your deployment.

1. Update the KafkaUser resource in an editor.

2. Replace:

with:

 template:
 pod:
 affinity {}
 tolerations {}

oc edit kafkatopic my-topic

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

oc edit kafkauser my-user

apiVersion: kafka.strimzi.io/v1alpha1

apiVersion:kafka.strimzi.io/v1beta1

CHAPTER 10. AMQ STREAMS RESOURCE UPGRADES

307

3. Save the file, exit the editor and wait for the updated resource to be reconciled.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

308

CHAPTER 11. UNINSTALLING AMQ STREAMS
This procedure describes how to uninstall AMQ Streams and remove resources related to the
deployment.

Prerequisites

In order to perform this procedure, identify resources created specifically for a deployment and
referenced from the AMQ Streams resource.

Such resources include:

Secrets (Custom CAs and certificates, Kafka Connect secrets, and other Kafka secrets)

Logging ConfigMaps (of type external)

These are resources referenced by Kafka, KafkaConnect, KafkaConnectS2I, or KafkaMirrorMaker
configuration.

Procedure

1. Delete the cluster operator Deployment, related CustomResourceDefinitions, and RBAC
resources:

oc delete -f install/cluster-operator

WARNING

Deleting CustomResourceDefinitions results in the garbage collection of
the corresponding custom resources (Kafka, KafkaConnect,
KafkaConnectS2I, or KafkaMirrorMaker) and the resources dependent on
them (Deployments, StatefulSets, and other dependent resources).

2. Delete the resources you identified in the prerequisites.

CHAPTER 11. UNINSTALLING AMQ STREAMS

309

CHAPTER 12. CHECKING THE STATUS OF A CUSTOM
RESOURCE

This procedure describes how to find the status of a custom resource.

Prerequisites

An OpenShift cluster

A running Cluster Operator

Procedure

Specify the custom resource and use -o jsonpath option to apply a standard JSONPath
expression to select the status property:

This expression returns all the status information for the specified custom resource. You can use
dot notation, such as status.listeners, to fine-tune the status information you wish to see.

Additional resources

Section 2.2.2, “AMQ Streams custom resource status”

For more information about using JSONPath, see JSONPath support.

oc get kafka <kafka_resource_name> -o jsonpath='{.status}'

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

310

https://kubernetes.io/docs/reference/kubectl/jsonpath/

APPENDIX A. CONFIGURABLE LOGGERS
Logging allows you to diagnose error and performance issues for AMQ Streams.

The following logger implementations are used in AMQ Streams:

log4j logger for Kafka and Zookeeper

log4j2 logger for Topic Operator, User Operator, and other components

AMQ Streams components have their own configurable loggers.

Kafka loggers

Kafka Connect loggers

Kafka Connect with Source2Image loggers

Kafka Mirror Maker loggers

Topic Operator loggers

User Operator loggers

APPENDIX A. CONFIGURABLE LOGGERS

311

APPENDIX B. FREQUENTLY ASKED QUESTIONS

B.1. CLUSTER OPERATOR

B.1.1. Why do I need cluster admin privileges to install AMQ Streams?

To install AMQ Streams, you must have the ability to create Custom Resource Definitions (CRDs). CRDs
instruct OpenShift about resources that are specific to AMQ Streams, such as Kafka, KafkaConnect, and
so on. Because CRDs are a cluster-scoped resource rather than being scoped to a particular OpenShift
namespace, they typically require cluster admin privileges to install.

In addition, you must also have the ability to create ClusterRoles and ClusterRoleBindings. Like CRDs,
these are cluster-scoped resources that typically require cluster admin privileges.

The cluster administrator can inspect all the resources being installed (in the /install/ directory) to
assure themselves that the ClusterRoles do not grant unnecessary privileges. For more information
about why the Cluster Operator installation resources grant the ability to create ClusterRoleBindings
see the following question.

After installation, the Cluster Operator will run as a regular Deployment; any non-admin user with
privileges to access the Deployment can configure it.

By default, normal users will not have the privileges necessary to manipulate the custom resources, such
as Kafka, KafkaConnect and so on, which the Cluster Operator deals with. These privileges can be
granted using normal RBAC resources by the cluster administrator. See this procedure for more details
of how to do this.

B.1.2. Why does the Cluster Operator require the ability to create ClusterRoleBindings?
Is that not a security risk?

OpenShift has built-in privilege escalation prevention . That means that the Cluster Operator cannot
grant privileges it does not have itself. Which in turn means that the Cluster Operator needs to have the
privileges necessary for all the components it orchestrates.

In the context of this question there are two places where the Cluster Operator needs to create bindings
to ClusterRoleBindings to ServiceAccounts:

1. The Topic Operator and User Operator need to be able to manipulate KafkaTopics and
KafkaUsers, respectively. The Cluster Operator therefore needs to be able to grant them this
access, which it does by creating a Role and RoleBinding. For this reason the Cluster Operator
itself needs to be able to create Roles and RoleBindings in the namespace that those
operators will run in. However, because of the privilege escalation prevention, the Cluster
Operator cannot grant privileges it does not have itself (in particular it cannot grant such
privileges in namespace it cannot access).

2. When using rack-aware partition assignment, AMQ Streams needs to be able to discover the
failure domain (for example, the Availability Zone in AWS) of the node on which a broker pod is
assigned. To do this the broker pod needs to be able to get information about the Node it is
running on. A Node is a cluster-scoped resource, so access to it can only be granted via a
ClusterRoleBinding (not a namespace-scoped RoleBinding). Therefore the Cluster Operator
needs to be able to create ClusterRoleBindings. But again, because of privilege escalation
prevention, the Cluster Operator cannot grant privileges it does not have itself (so it cannot, for
example, create a ClusterRoleBinding to a ClusterRole to grant privileges that the Cluster
Operator does not not already have).

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

312

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#privilege-escalation-prevention-and-bootstrapping

B.1.3. Why can standard OpenShift users not create the custom resource (Kafka,
KafkaTopic, and so on)?

Because, when they installed AMQ Streams, the OpenShift cluster administrator did not grant the
necessary privileges to standard users.

See this FAQ answer for more details.

B.1.4. Log contains warnings about failing to acquire lock

For each cluster, the Cluster Operator always executes only one operation at a time. The Cluster
Operator uses locks to make sure that there are never two parallel operations running for the same
cluster. In case an operation requires more time to complete, other operations will wait until it is
completed and the lock is released.

INFO

Examples of cluster operations are cluster creation , rolling update, scale down or scale up and so on.

If the wait for the lock takes too long, the operation times out and the following warning message will be
printed to the log:

Depending on the exact configuration of STRIMZI_FULL_RECONCILIATION_INTERVAL_MS and
STRIMZI_OPERATION_TIMEOUT_MS, this warning message may appear regularly without indicating
any problems. The operations which time out will be picked up by the next periodic reconciliation. It will
try to acquire the lock again and execute.

Should this message appear periodically even in situations when there should be no other operations
running for a given cluster, it might indicate that due to some error the lock was not properly released. In
such cases it is recommended to restart the cluster operator.

B.1.5. Hostname verification fails when connecting to NodePorts using TLS

Currently, off-cluster access using NodePorts with TLS encryption enabled does not support TLS
hostname verification. As a result, the clients that verify the hostname will fail to connect. For example,
the Java client will fail with the following exception:

To connect, you must disable hostname verification. In the Java client, you can do this by setting the
configuration option ssl.endpoint.identification.algorithm to an empty string.

When configuring the client using a properties file, you can do it this way:

2018-03-04 17:09:24 WARNING AbstractClusterOperations:290 - Failed to acquire lock for kafka
cluster lock::kafka::myproject::my-cluster

Caused by: java.security.cert.CertificateException: No subject alternative names matching IP address
168.72.15.231 found
 at sun.security.util.HostnameChecker.matchIP(HostnameChecker.java:168)
 at sun.security.util.HostnameChecker.match(HostnameChecker.java:94)
 at sun.security.ssl.X509TrustManagerImpl.checkIdentity(X509TrustManagerImpl.java:455)
 at sun.security.ssl.X509TrustManagerImpl.checkIdentity(X509TrustManagerImpl.java:436)
 at sun.security.ssl.X509TrustManagerImpl.checkTrusted(X509TrustManagerImpl.java:252)
 at sun.security.ssl.X509TrustManagerImpl.checkServerTrusted(X509TrustManagerImpl.java:136)
 at sun.security.ssl.ClientHandshaker.serverCertificate(ClientHandshaker.java:1501)
 ... 17 more

APPENDIX B. FREQUENTLY ASKED QUESTIONS

313

When configuring the client directly in Java, set the configuration option to an empty string:

ssl.endpoint.identification.algorithm=

props.put("ssl.endpoint.identification.algorithm", "");

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

314

APPENDIX C. CUSTOM RESOURCE API REFERENCE

C.1. KAFKA SCHEMA REFERENCE

Property Description

spec The specification of the Kafka and Zookeeper
clusters, and Topic Operator.

KafkaSpec

status The status of the Kafka and Zookeeper clusters, and
Topic Operator.

KafkaStatus

C.2. KAFKASPEC SCHEMA REFERENCE

Used in: Kafka

Property Description

kafka Configuration of the Kafka cluster.

KafkaClusterSpec

zookeeper Configuration of the Zookeeper cluster.

ZookeeperClusterSpec

topicOperator The property topicOperator has been
deprecated. This feature should now be
configured at path
spec.entityOerator.topicOperator.
Configuration of the Topic Operator.

TopicOperatorSpec

entityOperator Configuration of the Entity Operator.

EntityOperatorSpec

clusterCa Configuration of the cluster certificate authority.

CertificateAuthority

clientsCa Configuration of the clients certificate authority.

CertificateAuthority

APPENDIX C. CUSTOM RESOURCE API REFERENCE

315

maintenanceTimeWindows A list of time windows for the maintenance tasks
(that is, certificates renewal). Each time window is
defined by a cron expression.string array

Property Description

C.3. KAFKACLUSTERSPEC SCHEMA REFERENCE

Used in: KafkaSpec

Property Description

replicas The number of pods in the cluster.

integer

image The docker image for the pods. The default value
depends on the configured
Kafka.spec.kafka.version.string

storage Storage configuration (disk). Cannot be updated.
The type depends on the value of the storage.type
property within the given object, which must be one
of [ephemeral, persistent-claim, jbod].

EphemeralStorage, PersistentClaimStorage,
JbodStorage

listeners Configures listeners of Kafka brokers.

KafkaListeners

authorization Authorization configuration for Kafka brokers. The
type depends on the value of the
authorization.type property within the given
object, which must be one of [simple].

KafkaAuthorizationSimple

config The kafka broker config. Properties with the following
prefixes cannot be set: listeners, advertised., broker.,
listener., host.name, port, inter.broker.listener.name,
sasl., ssl., security., password., principal.builder.class,
log.dir, zookeeper.connect, zookeeper.set.acl,
authorizer., super.user.

map

rack Configuration of the broker.rack broker config.

Rack

brokerRackInitImage The image of the init container used for initializing
the broker.rack.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

316

string

affinity The property affinity has been deprecated. This
feature should now be configured at path
spec.kafka.template.pod.affinity. The pod’s
affinity rules.See external documentation of core/v1
affinity.

Affinity

tolerations The property tolerations has been deprecated.
This feature should now be configured at path
spec.kafka.template.pod.tolerations. The pod’s
tolerations.See external documentation of core/v1
toleration.

Toleration array

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

resources Resource constraints (limits and requests).

ResourceRequirements

metrics The Prometheus JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.map

logging Logging configuration for Kafka. The type depends
on the value of the logging.type property within the
given object, which must be one of [inline, external].InlineLogging, ExternalLogging

tlsSidecar TLS sidecar configuration.

TlsSidecar

template Template for Kafka cluster resources. The template
allows users to specify how are the StatefulSet,
Pods and Services generated.KafkaClusterTemplate

Property Description

APPENDIX C. CUSTOM RESOURCE API REFERENCE

317

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://github.com/prometheus/jmx_exporter

version The kafka broker version. Defaults to 2.2.1. Consult
the user documentation to understand the process
required to upgrade or downgrade the version.string

Property Description

C.4. EPHEMERALSTORAGE SCHEMA REFERENCE

Used in: JbodStorage, KafkaClusterSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes the use of the type EphemeralStorage from
PersistentClaimStorage. It must have the value ephemeral for the type EphemeralStorage.

Property Description

id Storage identification number. It is mandatory only
for storage volumes defined in a storage of type
'jbod'.integer

type Must be ephemeral.

string

C.5. PERSISTENTCLAIMSTORAGE SCHEMA REFERENCE

Used in: JbodStorage, KafkaClusterSpec, ZookeeperClusterSpec

The type property is a discriminator that distinguishes the use of the type PersistentClaimStorage
from EphemeralStorage. It must have the value persistent-claim for the type
PersistentClaimStorage.

Property Description

type Must be persistent-claim.

string

size When type=persistent-claim, defines the size of the
persistent volume claim (i.e 1Gi). Mandatory when
type=persistent-claim.string

selector Specifies a specific persistent volume to use. It
contains key:value pairs representing labels for
selecting such a volume.map

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

318

deleteClaim Specifies if the persistent volume claim has to be
deleted when the cluster is un-deployed.

boolean

class The storage class to use for dynamic volume
allocation.

string

id Storage identification number. It is mandatory only
for storage volumes defined in a storage of type
'jbod'.integer

overrides Overrides for individual brokers. The overrides field
allows to specify a different configuration for
different brokers.PersistentClaimStorageOverride array

Property Description

C.6. PERSISTENTCLAIMSTORAGEOVERRIDE SCHEMA REFERENCE

Used in: PersistentClaimStorage

Property Description

class The storage class to use for dynamic volume
allocation for this broker.

string

broker Id of the kafka broker (broker identifier).

integer

C.7. JBODSTORAGE SCHEMA REFERENCE

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes the use of the type JbodStorage from
EphemeralStorage, PersistentClaimStorage. It must have the value jbod for the type JbodStorage.

Property Description

type Must be jbod.

string

APPENDIX C. CUSTOM RESOURCE API REFERENCE

319

volumes List of volumes as Storage objects representing the
JBOD disks array.

EphemeralStorage, PersistentClaimStorage
array

Property Description

C.8. KAFKALISTENERS SCHEMA REFERENCE

Used in: KafkaClusterSpec

Property Description

plain Configures plain listener on port 9092.

KafkaListenerPlain

tls Configures TLS listener on port 9093.

KafkaListenerTls

external Configures external listener on port 9094. The type
depends on the value of the external.type property
within the given object, which must be one of [route,
loadbalancer, nodeport, ingress].

KafkaListenerExternalRoute,
KafkaListenerExternalLoadBalancer,
KafkaListenerExternalNodePort,
KafkaListenerExternalIngress

C.9. KAFKALISTENERPLAIN SCHEMA REFERENCE

Used in: KafkaListeners

Property Description

authentication Authentication configuration for this listener. Since
this listener does not use TLS transport you cannot
configure an authentication with type: tls. The type
depends on the value of the authentication.type
property within the given object, which must be one
of [tls, scram-sha-512].

KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationScramSha512

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

320

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list.See external documentation of
networking.k8s.io/v1 networkpolicypeer.

NetworkPolicyPeer array

Property Description

C.10. KAFKALISTENERAUTHENTICATIONTLS SCHEMA REFERENCE

Used in: KafkaListenerExternalIngress, KafkaListenerExternalLoadBalancer,
KafkaListenerExternalNodePort, KafkaListenerExternalRoute, KafkaListenerPlain,
KafkaListenerTls

The type property is a discriminator that distinguishes the use of the type
KafkaListenerAuthenticationTls from KafkaListenerAuthenticationScramSha512. It must have the
value tls for the type KafkaListenerAuthenticationTls.

Property Description

type Must be tls.

string

C.11. KAFKALISTENERAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE

Used in: KafkaListenerExternalIngress, KafkaListenerExternalLoadBalancer,
KafkaListenerExternalNodePort, KafkaListenerExternalRoute, KafkaListenerPlain,
KafkaListenerTls

The type property is a discriminator that distinguishes the use of the type
KafkaListenerAuthenticationScramSha512 from KafkaListenerAuthenticationTls. It must have the
value scram-sha-512 for the type KafkaListenerAuthenticationScramSha512.

Property Description

type Must be scram-sha-512.

string

C.12. KAFKALISTENERTLS SCHEMA REFERENCE

Used in: KafkaListeners

APPENDIX C. CUSTOM RESOURCE API REFERENCE

321

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io

Property Description

authentication Authentication configuration for this listener. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512].

KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationScramSha512

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list.See external documentation of
networking.k8s.io/v1 networkpolicypeer.

NetworkPolicyPeer array

C.13. KAFKALISTENEREXTERNALROUTE SCHEMA REFERENCE

Used in: KafkaListeners

The type property is a discriminator that distinguishes the use of the type KafkaListenerExternalRoute
from KafkaListenerExternalLoadBalancer, KafkaListenerExternalNodePort,
KafkaListenerExternalIngress. It must have the value route for the type KafkaListenerExternalRoute.

Property Description

type Must be route.

string

authentication Authentication configuration for Kafka brokers. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512].

KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationScramSha512

overrides Overrides for external bootstrap and broker services
and externally advertised addresses.

RouteListenerOverride

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list.See external documentation of
networking.k8s.io/v1 networkpolicypeer.

NetworkPolicyPeer array

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

322

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io

C.14. ROUTELISTENEROVERRIDE SCHEMA REFERENCE

Used in: KafkaListenerExternalRoute

Property Description

bootstrap External bootstrap service configuration.

RouteListenerBootstrapOverride

brokers External broker services configuration.

RouteListenerBrokerOverride array

C.15. ROUTELISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE

Used in: RouteListenerOverride

Property Description

address Additional address name for the bootstrap service.
The address will be added to the list of subject
alternative names of the TLS certificates.string

host Host for the bootstrap route. This field will be used in
the spec.host field of the OpenShift Route.

string

C.16. ROUTELISTENERBROKEROVERRIDE SCHEMA REFERENCE

Used in: RouteListenerOverride

Property Description

broker Id of the kafka broker (broker identifier).

integer

advertisedHost The host name which will be used in the brokers'
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers'
advertised.brokers.

integer

APPENDIX C. CUSTOM RESOURCE API REFERENCE

323

host Host for the broker route. This field will be used in the
spec.host field of the OpenShift Route.

string

Property Description

C.17. KAFKALISTENEREXTERNALLOADBALANCER SCHEMA REFERENCE

Used in: KafkaListeners

The type property is a discriminator that distinguishes the use of the type
KafkaListenerExternalLoadBalancer from KafkaListenerExternalRoute,
KafkaListenerExternalNodePort, KafkaListenerExternalIngress. It must have the value loadbalancer
for the type KafkaListenerExternalLoadBalancer.

Property Description

type Must be loadbalancer.

string

authentication Authentication configuration for Kafka brokers. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512].

KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationScramSha512

overrides Overrides for external bootstrap and broker services
and externally advertised addresses.

LoadBalancerListenerOverride

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list.See external documentation of
networking.k8s.io/v1 networkpolicypeer.

NetworkPolicyPeer array

tls Enables TLS encryption on the listener. By default
set to true for enabled TLS encryption.

boolean

C.18. LOADBALANCERLISTENEROVERRIDE SCHEMA REFERENCE

Used in: KafkaListenerExternalLoadBalancer

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

324

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io

Property Description

bootstrap External bootstrap service configuration.

LoadBalancerListenerBootstrapOverride

brokers External broker services configuration.

LoadBalancerListenerBrokerOverride array

C.19. LOADBALANCERLISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE

Used in: LoadBalancerListenerOverride

Property Description

address Additional address name for the bootstrap service.
The address will be added to the list of subject
alternative names of the TLS certificates.string

dnsAnnotations Annotations which will be added to the Service
resource. You can use this field to instrument DNS
providers such as External DNS.map

C.20. LOADBALANCERLISTENERBROKEROVERRIDE SCHEMA REFERENCE

Used in: LoadBalancerListenerOverride

Property Description

broker Id of the kafka broker (broker identifier).

integer

advertisedHost The host name which will be used in the brokers'
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers'
advertised.brokers.

integer

dnsAnnotations Annotations which will be added to the Service
resources for individual brokers. You can use this field
to instrument DNS providers such as External DNS.map

APPENDIX C. CUSTOM RESOURCE API REFERENCE

325

C.21. KAFKALISTENEREXTERNALNODEPORT SCHEMA REFERENCE

Used in: KafkaListeners

The type property is a discriminator that distinguishes the use of the type
KafkaListenerExternalNodePort from KafkaListenerExternalRoute,
KafkaListenerExternalLoadBalancer, KafkaListenerExternalIngress. It must have the value
nodeport for the type KafkaListenerExternalNodePort.

Property Description

type Must be nodeport.

string

authentication Authentication configuration for Kafka brokers. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512].

KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationScramSha512

overrides Overrides for external bootstrap and broker services
and externally advertised addresses.

NodePortListenerOverride

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list.See external documentation of
networking.k8s.io/v1 networkpolicypeer.

NetworkPolicyPeer array

tls Enables TLS encryption on the listener. By default
set to true for enabled TLS encryption.

boolean

C.22. NODEPORTLISTENEROVERRIDE SCHEMA REFERENCE

Used in: KafkaListenerExternalNodePort

Property Description

bootstrap External bootstrap service configuration.

NodePortListenerBootstrapOverride

brokers External broker services configuration.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

326

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io

NodePortListenerBrokerOverride array

Property Description

C.23. NODEPORTLISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE

Used in: NodePortListenerOverride

Property Description

address Additional address name for the bootstrap service.
The address will be added to the list of subject
alternative names of the TLS certificates.string

nodePort Node port for the bootstrap service.

integer

C.24. NODEPORTLISTENERBROKEROVERRIDE SCHEMA REFERENCE

Used in: NodePortListenerOverride

Property Description

broker Id of the kafka broker (broker identifier).

integer

advertisedHost The host name which will be used in the brokers'
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers'
advertised.brokers.

integer

nodePort Node port for the broker service.

integer

C.25. KAFKALISTENEREXTERNALINGRESS SCHEMA REFERENCE

Used in: KafkaListeners

The type property is a discriminator that distinguishes the use of the type

APPENDIX C. CUSTOM RESOURCE API REFERENCE

327

KafkaListenerExternalIngress from KafkaListenerExternalRoute,
KafkaListenerExternalLoadBalancer, KafkaListenerExternalNodePort. It must have the value
ingress for the type KafkaListenerExternalIngress.

Property Description

type Must be ingress.

string

authentication Authentication configuration for Kafka brokers. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512].

KafkaListenerAuthenticationTls,
KafkaListenerAuthenticationScramSha512

configuration Overrides for external bootstrap and broker services
and externally advertised addresses.

IngressListenerConfiguration

networkPolicyPeers List of peers which should be able to connect to this
listener. Peers in this list are combined using a logical
OR operation. If this field is empty or missing, all
connections will be allowed for this listener. If this
field is present and contains at least one item, the
listener only allows the traffic which matches at least
one item in this list.See external documentation of
networking.k8s.io/v1 networkpolicypeer.

NetworkPolicyPeer array

C.26. INGRESSLISTENERCONFIGURATION SCHEMA REFERENCE

Used in: KafkaListenerExternalIngress

Property Description

bootstrap External bootstrap ingress configuration.

IngressListenerBootstrapConfiguration

brokers External broker ingress configuration.

IngressListenerBrokerConfiguration array

C.27. INGRESSLISTENERBOOTSTRAPCONFIGURATION SCHEMA REFERENCE

Used in: IngressListenerConfiguration

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

328

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#networkpolicypeer-v1-networking-k8s-io

Property Description

address Additional address name for the bootstrap service.
The address will be added to the list of subject
alternative names of the TLS certificates.string

dnsAnnotations Annotations which will be added to the Ingress
resource. You can use this field to instrument DNS
providers such as External DNS.map

host Host for the bootstrap route. This field will be used in
the Ingress resource.

string

C.28. INGRESSLISTENERBROKERCONFIGURATION SCHEMA REFERENCE

Used in: IngressListenerConfiguration

Property Description

broker Id of the kafka broker (broker identifier).

integer

advertisedHost The host name which will be used in the brokers'
advertised.brokers.

string

advertisedPort The port number which will be used in the brokers'
advertised.brokers.

integer

host Host for the broker ingress. This field will be used in
the Ingress resource.

string

dnsAnnotations Annotations which will be added to the Ingress
resources for individual brokers. You can use this field
to instrument DNS providers such as External DNS.map

C.29. KAFKAAUTHORIZATIONSIMPLE SCHEMA REFERENCE

Used in: KafkaClusterSpec

The type property is a discriminator that distinguishes the use of the type KafkaAuthorizationSimple

APPENDIX C. CUSTOM RESOURCE API REFERENCE

329

The type property is a discriminator that distinguishes the use of the type KafkaAuthorizationSimple
from other subtypes which may be added in the future. It must have the value simple for the type
KafkaAuthorizationSimple.

Property Description

type Must be simple.

string

superUsers List of super users. Should contain list of user
principals which should get unlimited access rights.

string array

C.30. RACK SCHEMA REFERENCE

Used in: KafkaClusterSpec

Property Description

topologyKey A key that matches labels assigned to the OpenShift
or Kubernetes cluster nodes. The value of the label is
used to set the broker’s broker.rack config.string

C.31. PROBE SCHEMA REFERENCE

Used in: EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec, KafkaClusterSpec,
KafkaConnectS2ISpec, KafkaConnectSpec, TlsSidecar, TopicOperatorSpec,
ZookeeperClusterSpec

Property Description

failureThreshold Minimum consecutive failures for the probe to be
considered failed after having succeeded. Defaults to
3. Minimum value is 1.integer

initialDelaySeconds The initial delay before first the health is first
checked.

integer

periodSeconds How often (in seconds) to perform the probe.
Default to 10 seconds. Minimum value is 1.

integer

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

330

successThreshold Minimum consecutive successes for the probe to be
considered successful after having failed. Defaults to
1. Must be 1 for liveness. Minimum value is 1.integer

timeoutSeconds The timeout for each attempted health check.

integer

Property Description

C.32. JVMOPTIONS SCHEMA REFERENCE

Used in: KafkaBridgeSpec, KafkaClusterSpec, KafkaConnectS2ISpec, KafkaConnectSpec,
KafkaMirrorMakerSpec, ZookeeperClusterSpec

Property Description

-XX A map of -XX options to the JVM.

map

-Xms -Xms option to to the JVM.

string

-Xmx -Xmx option to to the JVM.

string

gcLoggingEnabled Specifies whether the Garbage Collection logging is
enabled. The default is true.

boolean

C.33. RESOURCEREQUIREMENTS SCHEMA REFERENCE

Used in: EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec, KafkaClusterSpec,
KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMakerSpec, TlsSidecar,
TopicOperatorSpec, ZookeeperClusterSpec

Property Description

limits

map

APPENDIX C. CUSTOM RESOURCE API REFERENCE

331

requests

map

Property Description

C.34. INLINELOGGING SCHEMA REFERENCE

Used in: EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec, KafkaClusterSpec,
KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMakerSpec, TopicOperatorSpec,
ZookeeperClusterSpec

The type property is a discriminator that distinguishes the use of the type InlineLogging from
ExternalLogging. It must have the value inline for the type InlineLogging.

Property Description

type Must be inline.

string

loggers A Map from logger name to logger level.

map

C.35. EXTERNALLOGGING SCHEMA REFERENCE

Used in: EntityTopicOperatorSpec, EntityUserOperatorSpec, KafkaBridgeSpec, KafkaClusterSpec,
KafkaConnectS2ISpec, KafkaConnectSpec, KafkaMirrorMakerSpec, TopicOperatorSpec,
ZookeeperClusterSpec

The type property is a discriminator that distinguishes the use of the type ExternalLogging from
InlineLogging. It must have the value external for the type ExternalLogging.

Property Description

type Must be external.

string

name The name of the ConfigMap from which to get the
logging configuration.

string

C.36. TLSSIDECAR SCHEMA REFERENCE

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

332

Used in: EntityOperatorSpec, KafkaClusterSpec, TopicOperatorSpec, ZookeeperClusterSpec

Property Description

image The docker image for the container.

string

livenessProbe Pod liveness checking.

Probe

logLevel The log level for the TLS sidecar. Default value is
notice.

string (one of [emerg, debug, crit, err, alert, warning,
notice, info])

readinessProbe Pod readiness checking.

Probe

resources Resource constraints (limits and requests).

ResourceRequirements

C.37. KAFKACLUSTERTEMPLATE SCHEMA REFERENCE

Used in: KafkaClusterSpec

Property Description

statefulset Template for Kafka StatefulSet.

ResourceTemplate

pod Template for Kafka Pods.

PodTemplate

bootstrapService Template for Kafka bootstrap Service.

ResourceTemplate

brokersService Template for Kafka broker Service.

ResourceTemplate

APPENDIX C. CUSTOM RESOURCE API REFERENCE

333

externalBootstrapIngress Template for Kafka external bootstrap Ingress.

ResourceTemplate

externalBootstrapRoute Template for Kafka external bootstrap Route.

ResourceTemplate

externalBootstrapService Template for Kafka external bootstrap Service.

ResourceTemplate

perPodIngress Template for Kafka per-pod Ingress used for access
from outside of Kubernetes.

ResourceTemplate

perPodRoute Template for Kafka per-pod Routes used for access
from outside of OpenShift.

ResourceTemplate

perPodService Template for Kafka per-pod Services used for
access from outside of Kubernetes.

ResourceTemplate

podDisruptionBudget Template for Kafka PodDisruptionBudget.

PodDisruptionBudgetTemplate

Property Description

C.38. RESOURCETEMPLATE SCHEMA REFERENCE

Used in: EntityOperatorTemplate, KafkaBridgeTemplate, KafkaClusterTemplate,
KafkaConnectTemplate, KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Property Description

metadata Metadata which should be applied to the resource.

MetadataTemplate

C.39. METADATATEMPLATE SCHEMA REFERENCE

Used in: PodDisruptionBudgetTemplate, PodTemplate, ResourceTemplate

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

334

Property Description

labels Labels which should be added to the resource
template. Can be applied to different resources such
as StatefulSets, Deployments, Pods, and
Services.

map

annotations Annotations which should be added to the resource
template. Can be applied to different resources such
as StatefulSets, Deployments, Pods, and
Services.

map

C.40. PODTEMPLATE SCHEMA REFERENCE

Used in: EntityOperatorTemplate, KafkaBridgeTemplate, KafkaClusterTemplate,
KafkaConnectTemplate, KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Property Description

metadata Metadata which should be applied to the resource.

MetadataTemplate

imagePullSecrets List of references to secrets in the same namespace
to use for pulling any of the images used by this
Pod.See external documentation of core/v1
localobjectreference.

LocalObjectReference array

securityContext Configures pod-level security attributes and common
container settings.See external documentation of
core/v1 podsecuritycontext.PodSecurityContext

terminationGracePeriodSeconds The grace period is the duration in seconds after the
processes running in the pod are sent a termination
signal and the time when the processes are forcibly
halted with a kill signal. Set this value longer than the
expected cleanup time for your process.Value must
be non-negative integer. The value zero indicates
delete immediately. Defaults to 30 seconds.

integer

affinity The pod’s affinity rules.See external documentation
of core/v1 affinity.

Affinity

tolerations The pod’s tolerations.See external documentation of
core/v1 toleration.

Toleration array

APPENDIX C. CUSTOM RESOURCE API REFERENCE

335

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#localobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#localobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#podsecuritycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#podsecuritycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core

C.41. PODDISRUPTIONBUDGETTEMPLATE SCHEMA REFERENCE

Used in: KafkaBridgeTemplate, KafkaClusterTemplate, KafkaConnectTemplate,
KafkaMirrorMakerTemplate, ZookeeperClusterTemplate

Property Description

metadata Metadata which should be applied to the
PodDistruptionBugetTemplate resource.

MetadataTemplate

maxUnavailable Maximum number of unavailable pods to allow
voluntary Pod eviction. A Pod eviction will only be
allowed when "maxUnavailable" or fewer pods are
unavailable after the eviction. Setting this value to 0
will prevent all voluntary evictions and the pods will
need to be evicted manually. Defaults to 1.

integer

C.42. ZOOKEEPERCLUSTERSPEC SCHEMA REFERENCE

Used in: KafkaSpec

Property Description

replicas The number of pods in the cluster.

integer

image The docker image for the pods.

string

storage Storage configuration (disk). Cannot be updated.
The type depends on the value of the storage.type
property within the given object, which must be one
of [ephemeral, persistent-claim].

EphemeralStorage, PersistentClaimStorage

config The zookeeper broker config. Properties with the
following prefixes cannot be set: server., dataDir,
dataLogDir, clientPort, authProvider, quorum.auth,
requireClientAuthScheme.

map

affinity The property affinity has been deprecated. This
feature should now be configured at path
spec.zookeeper.template.pod.affinity. The
pod’s affinity rules.See external documentation of
core/v1 affinity.

Affinity

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

336

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core

tolerations The property tolerations has been deprecated.
This feature should now be configured at path
spec.zookeeper.template.pod.tolerations. The
pod’s tolerations.See external documentation of
core/v1 toleration.

Toleration array

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

resources Resource constraints (limits and requests).

ResourceRequirements

metrics The Prometheus JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.map

logging Logging configuration for Zookeeper. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

tlsSidecar TLS sidecar configuration.

TlsSidecar

template Template for Zookeeper cluster resources. The
template allows users to specify how are the
StatefulSet, Pods and Services generated.ZookeeperClusterTemplate

Property Description

C.43. ZOOKEEPERCLUSTERTEMPLATE SCHEMA REFERENCE

Used in: ZookeeperClusterSpec

APPENDIX C. CUSTOM RESOURCE API REFERENCE

337

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://github.com/prometheus/jmx_exporter

Property Description

statefulset Template for Zookeeper StatefulSet.

ResourceTemplate

pod Template for Zookeeper Pods.

PodTemplate

clientService Template for Zookeeper client Service.

ResourceTemplate

nodesService Template for Zookeeper nodes Service.

ResourceTemplate

podDisruptionBudget Template for Zookeeper PodDisruptionBudget.

PodDisruptionBudgetTemplate

C.44. TOPICOPERATORSPEC SCHEMA REFERENCE

Used in: KafkaSpec

Property Description

watchedNamespace The namespace the Topic Operator should watch.

string

image The image to use for the Topic Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

zookeeperSessionTimeoutSeconds Timeout for the Zookeeper session.

integer

affinity Pod affinity rules.See external documentation of
core/v1 affinity.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

338

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core

Affinity

resources Resource constraints (limits and requests).

ResourceRequirements

topicMetadataMaxAttempts The number of attempts at getting topic metadata.

integer

tlsSidecar TLS sidecar configuration.

TlsSidecar

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

EntityOperatorJvmOptions

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

Property Description

C.45. ENTITYOPERATORJVMOPTIONS SCHEMA REFERENCE

Used in: EntityTopicOperatorSpec, EntityUserOperatorSpec, TopicOperatorSpec

Property Description

gcLoggingEnabled Specifies whether the Garbage Collection logging is
enabled. The default is true.

boolean

C.46. ENTITYOPERATORSPEC SCHEMA REFERENCE

Used in: KafkaSpec

APPENDIX C. CUSTOM RESOURCE API REFERENCE

339

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core

Property Description

topicOperator Configuration of the Topic Operator.

EntityTopicOperatorSpec

userOperator Configuration of the User Operator.

EntityUserOperatorSpec

affinity The property affinity has been deprecated. This
feature should now be configured at path
spec.template.pod.affinity. The pod’s affinity
rules.See external documentation of core/v1 affinity.

Affinity

tolerations The property tolerations has been deprecated.
This feature should now be configured at path
spec.template.pod.tolerations. The pod’s
tolerations.See external documentation of core/v1
toleration.

Toleration array

tlsSidecar TLS sidecar configuration.

TlsSidecar

template Template for Entity Operator resources. The
template allows users to specify how is the
Deployment and Pods generated.EntityOperatorTemplate

C.47. ENTITYTOPICOPERATORSPEC SCHEMA REFERENCE

Used in: EntityOperatorSpec

Property Description

watchedNamespace The namespace the Topic Operator should watch.

string

image The image to use for the Topic Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

integer

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

340

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core

zookeeperSessionTimeoutSeconds Timeout for the Zookeeper session.

integer

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

resources Resource constraints (limits and requests).

ResourceRequirements

topicMetadataMaxAttempts The number of attempts at getting topic metadata.

integer

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

EntityOperatorJvmOptions

Property Description

C.48. ENTITYUSEROPERATORSPEC SCHEMA REFERENCE

Used in: EntityOperatorSpec

Property Description

watchedNamespace The namespace the User Operator should watch.

string

image The image to use for the User Operator.

string

reconciliationIntervalSeconds Interval between periodic reconciliations.

APPENDIX C. CUSTOM RESOURCE API REFERENCE

341

integer

zookeeperSessionTimeoutSeconds Timeout for the Zookeeper session.

integer

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

resources Resource constraints (limits and requests).

ResourceRequirements

logging Logging configuration. The type depends on the
value of the logging.type property within the given
object, which must be one of [inline, external].InlineLogging, ExternalLogging

jvmOptions JVM Options for pods.

EntityOperatorJvmOptions

Property Description

C.49. ENTITYOPERATORTEMPLATE SCHEMA REFERENCE

Used in: EntityOperatorSpec

Property Description

deployment Template for Entity Operator Deployment.

ResourceTemplate

pod Template for Entity Operator Pods.

PodTemplate

C.50. CERTIFICATEAUTHORITY SCHEMA REFERENCE

Used in: KafkaSpec

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

342

Configuration of how TLS certificates are used within the cluster. This applies to certificates used for
both internal communication within the cluster and to certificates used for client access via
Kafka.spec.kafka.listeners.tls.

Property Description

generateCertificateAuthority If true then Certificate Authority certificates will be
generated automatically. Otherwise the user will need
to provide a Secret with the CA certificate. Default is
true.

boolean

validityDays The number of days generated certificates should be
valid for. The default is 365.

integer

renewalDays The number of days in the certificate renewal period.
This is the number of days before the a certificate
expires during which renewal actions may be
performed. When generateCertificateAuthority is
true, this will cause the generation of a new
certificate. When generateCertificateAuthority is
true, this will cause extra logging at WARN level
about the pending certificate expiry. Default is 30.

integer

certificateExpirationPolicy How should CA certificate expiration be handled
when generateCertificateAuthority=true. The
default is for a new CA certificate to be generated
reusing the existing private key.

string (one of [replace-key, renew-certificate])

C.51. KAFKASTATUS SCHEMA REFERENCE

Used in: Kafka

Property Description

conditions List of status conditions.

Condition array

observedGeneration The generation of the CRD which was last reconciled
by the operator.

integer

listeners Addresses of the internal and external listeners.

ListenerStatus array

C.52. CONDITION SCHEMA REFERENCE

APPENDIX C. CUSTOM RESOURCE API REFERENCE

343

Used in: KafkaStatus

Property Description

type The unique identifier of a condition, used to
distinguish between other conditions in the resource.

string

status The status of the condition, one of True, False,
Unknown.

string

lastTransitionTime Last time the condition of a type changes from one
status to another.The required format is 'yyyy-MM-
ddTHH:mm:ssZ', in the UTC time zone.string

reason One-word CamelCase reason for the condition’s last
transition.

string

message Human-readable message indicating details about
last transition.

string

C.53. LISTENERSTATUS SCHEMA REFERENCE

Used in: KafkaStatus

Property Description

type The type of the listener. Can be one of the following
three types: plain, tls, and external.

string

addresses A list of the addresses for this listener.

ListenerAddress array

C.54. LISTENERADDRESS SCHEMA REFERENCE

Used in: ListenerStatus

Property Description

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

344

host The DNS name or IP address of Kafka bootstrap
service.

string

port The port of the Kafka bootstrap service.

integer

Property Description

C.55. KAFKACONNECT SCHEMA REFERENCE

Property Description

spec The specification of the Kafka Connect deployment.

KafkaConnectSpec

C.56. KAFKACONNECTSPEC SCHEMA REFERENCE

Used in: KafkaConnect

Property Description

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

APPENDIX C. CUSTOM RESOURCE API REFERENCE

345

affinity The property affinity has been deprecated. This
feature should now be configured at path
spec.template.pod.affinity. The pod’s affinity
rules.See external documentation of core/v1 affinity.

Affinity

tolerations The property tolerations has been deprecated.
This feature should now be configured at path
spec.template.pod.tolerations. The pod’s
tolerations.See external documentation of core/v1
toleration.

Toleration array

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

metrics The Prometheus JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.map

template Template for Kafka Connect and Kafka Connect S2I
resources. The template allows users to specify how
is the Deployment, Pods and Service generated.KafkaConnectTemplate

authentication Authentication configuration for Kafka Connect. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain].

KafkaConnectAuthenticationTls,
KafkaConnectAuthenticationScramSha512,
KafkaConnectAuthenticationPlain

bootstrapServers Bootstrap servers to connect to. This should be
given as a comma separated list of
<hostname>:<port> pairs.string

config The Kafka Connect configuration. Properties with the
following prefixes cannot be set: ssl., sasl., security.,
listeners, plugin.path, rest., bootstrap.servers.map

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

ExternalConfiguration

resources Resource constraints (limits and requests).

ResourceRequirements

Property Description

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

346

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://github.com/prometheus/jmx_exporter

tls TLS configuration.

KafkaConnectTls

version The Kafka Connect version. Defaults to 2.2.1. Consult
the user documentation to understand the process
required to upgrade or downgrade the version.string

Property Description

C.57. KAFKACONNECTTEMPLATE SCHEMA REFERENCE

Used in: KafkaConnectS2ISpec, KafkaConnectSpec

Property Description

deployment Template for Kafka Connect Deployment.

ResourceTemplate

pod Template for Kafka Connect Pods.

PodTemplate

apiService Template for Kafka Connect API Service.

ResourceTemplate

podDisruptionBudget Template for Kafka Connect
PodDisruptionBudget.

PodDisruptionBudgetTemplate

C.58. KAFKACONNECTAUTHENTICATIONTLS SCHEMA REFERENCE

Used in: KafkaConnectS2ISpec, KafkaConnectSpec

The type property is a discriminator that distinguishes the use of the type
KafkaConnectAuthenticationTls from KafkaConnectAuthenticationScramSha512,
KafkaConnectAuthenticationPlain. It must have the value tls for the type
KafkaConnectAuthenticationTls.

Property Description

certificateAndKey Certificate and private key pair for TLS
authentication.

APPENDIX C. CUSTOM RESOURCE API REFERENCE

347

CertAndKeySecretSource

type Must be tls.

string

Property Description

C.59. CERTANDKEYSECRETSOURCE SCHEMA REFERENCE

Used in: KafkaBridgeAuthenticationTls, KafkaConnectAuthenticationTls,
KafkaMirrorMakerAuthenticationTls

Property Description

certificate The name of the file certificate in the Secret.

string

key The name of the private key in the Secret.

string

secretName The name of the Secret containing the certificate.

string

C.60. KAFKACONNECTAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE

Used in: KafkaConnectS2ISpec, KafkaConnectSpec

The type property is a discriminator that distinguishes the use of the type
KafkaConnectAuthenticationScramSha512 from KafkaConnectAuthenticationTls,
KafkaConnectAuthenticationPlain. It must have the value scram-sha-512 for the type
KafkaConnectAuthenticationScramSha512.

Property Description

passwordSecret Password used for the authentication.

PasswordSecretSource

type Must be scram-sha-512.

string

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

348

username Username used for the authentication.

string

Property Description

C.61. PASSWORDSECRETSOURCE SCHEMA REFERENCE

Used in: KafkaBridgeAuthenticationPlain, KafkaBridgeAuthenticationScramSha512,
KafkaConnectAuthenticationPlain, KafkaConnectAuthenticationScramSha512,
KafkaMirrorMakerAuthenticationPlain, KafkaMirrorMakerAuthenticationScramSha512

Property Description

password The name of the key in the Secret under which the
password is stored.

string

secretName The name of the Secret containing the password.

string

C.62. KAFKACONNECTAUTHENTICATIONPLAIN SCHEMA REFERENCE

Used in: KafkaConnectS2ISpec, KafkaConnectSpec

The type property is a discriminator that distinguishes the use of the type
KafkaConnectAuthenticationPlain from KafkaConnectAuthenticationTls,
KafkaConnectAuthenticationScramSha512. It must have the value plain for the type
KafkaConnectAuthenticationPlain.

Property Description

passwordSecret Password used for the authentication.

PasswordSecretSource

type Must be plain.

string

username Username used for the authentication.

string

APPENDIX C. CUSTOM RESOURCE API REFERENCE

349

C.63. EXTERNALCONFIGURATION SCHEMA REFERENCE

Used in: KafkaConnectS2ISpec, KafkaConnectSpec

Property Description

env Allows to pass data from Secret or ConfigMap to the
Kafka Connect pods as environment variables.

ExternalConfigurationEnv array

volumes Allows to pass data from Secret or ConfigMap to the
Kafka Connect pods as volumes.

ExternalConfigurationVolumeSource array

C.64. EXTERNALCONFIGURATIONENV SCHEMA REFERENCE

Used in: ExternalConfiguration

Property Description

name Name of the environment variable which will be
passed to the Kafka Connect pods. The name of the
environment variable cannot start with KAFKA_ or
STRIMZI_.

string

valueFrom Value of the environment variable which will be
passed to the Kafka Connect pods. It can be passed
either as a reference to Secret or ConfigMap field.
The field has to specify exactly one Secret or
ConfigMap.

ExternalConfigurationEnvVarSource

C.65. EXTERNALCONFIGURATIONENVVARSOURCE SCHEMA REFERENCE

Used in: ExternalConfigurationEnv

Property Description

configMapKeyRef Refernce to a key in a ConfigMap.See external
documentation of core/v1 configmapkeyselector.

ConfigMapKeySelector

secretKeyRef Reference to a key in a Secret.See external
documentation of core/v1 secretkeyselector.

SecretKeySelector

C.66. EXTERNALCONFIGURATIONVOLUMESOURCE SCHEMA REFERENCE

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

350

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#configmapkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#secretkeyselector-v1-core

Used in: ExternalConfiguration

Property Description

configMap Reference to a key in a ConfigMap. Exactly one
Secret or ConfigMap has to be specified.See
external documentation of core/v1
configmapvolumesource.

ConfigMapVolumeSource

name Name of the volume which will be added to the Kafka
Connect pods.

string

secret Reference to a key in a Secret. Exactly one Secret or
ConfigMap has to be specified.See external
documentation of core/v1 secretvolumesource.SecretVolumeSource

C.67. KAFKACONNECTTLS SCHEMA REFERENCE

Used in: KafkaConnectS2ISpec, KafkaConnectSpec

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

C.68. CERTSECRETSOURCE SCHEMA REFERENCE

Used in: KafkaBridgeTls, KafkaConnectTls, KafkaMirrorMakerTls

Property Description

certificate The name of the file certificate in the Secret.

string

secretName The name of the Secret containing the certificate.

string

C.69. KAFKACONNECTS2I SCHEMA REFERENCE

APPENDIX C. CUSTOM RESOURCE API REFERENCE

351

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#configmapvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#configmapvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#secretvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#secretvolumesource-v1-core

Property Description

spec The specification of the Kafka Connect deployment.

KafkaConnectS2ISpec

C.70. KAFKACONNECTS2ISPEC SCHEMA REFERENCE

Used in: KafkaConnectS2I

Property Description

replicas The number of pods in the Kafka Connect group.

integer

image The docker image for the pods.

string

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

jvmOptions JVM Options for pods.

JvmOptions

affinity The property affinity has been deprecated. This
feature should now be configured at path
spec.template.pod.affinity. The pod’s affinity
rules.See external documentation of core/v1 affinity.

Affinity

logging Logging configuration for Kafka Connect. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

metrics The Prometheus JMX Exporter configuration. See
https://github.com/prometheus/jmx_exporter for
details of the structure of this configuration.map

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

352

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://github.com/prometheus/jmx_exporter

template Template for Kafka Connect and Kafka Connect S2I
resources. The template allows users to specify how
is the Deployment, Pods and Service generated.KafkaConnectTemplate

authentication Authentication configuration for Kafka Connect. The
type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain].

KafkaConnectAuthenticationTls,
KafkaConnectAuthenticationScramSha512,
KafkaConnectAuthenticationPlain

bootstrapServers Bootstrap servers to connect to. This should be
given as a comma separated list of
<hostname>:<port> pairs.string

config The Kafka Connect configuration. Properties with the
following prefixes cannot be set: ssl., sasl., security.,
listeners, plugin.path, rest., bootstrap.servers.map

externalConfiguration Pass data from Secrets or ConfigMaps to the Kafka
Connect pods and use them to configure connectors.

ExternalConfiguration

insecureSourceRepository When true this configures the source repository with
the 'Local' reference policy and an import policy that
accepts insecure source tags.boolean

resources Resource constraints (limits and requests).

ResourceRequirements

tls TLS configuration.

KafkaConnectTls

tolerations The property tolerations has been deprecated.
This feature should now be configured at path
spec.template.pod.tolerations. The pod’s
tolerations.See external documentation of core/v1
toleration.

Toleration array

version The Kafka Connect version. Defaults to 2.2.1. Consult
the user documentation to understand the process
required to upgrade or downgrade the version.string

Property Description

APPENDIX C. CUSTOM RESOURCE API REFERENCE

353

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core

C.71. KAFKATOPIC SCHEMA REFERENCE

Property Description

spec The specification of the topic.

KafkaTopicSpec

C.72. KAFKATOPICSPEC SCHEMA REFERENCE

Used in: KafkaTopic

Property Description

partitions The number of partitions the topic should have. This
cannot be decreased after topic creation. It can be
increased after topic creation, but it is important to
understand the consequences that has, especially for
topics with semantic partitioning.

integer

replicas The number of replicas the topic should have.

integer

config The topic configuration.

map

topicName The name of the topic. When absent this will default
to the metadata.name of the topic. It is
recommended to not set this unless the topic name is
not a valid Kubernetes resource name.

string

C.73. KAFKAUSER SCHEMA REFERENCE

Property Description

spec The specification of the user.

KafkaUserSpec

C.74. KAFKAUSERSPEC SCHEMA REFERENCE

Used in: KafkaUser

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

354

Property Description

authentication Authentication mechanism enabled for this Kafka
user. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512].

KafkaUserTlsClientAuthentication,
KafkaUserScramSha512ClientAuthentication

authorization Authorization rules for this Kafka user. The type
depends on the value of the authorization.type
property within the given object, which must be one
of [simple].

KafkaUserAuthorizationSimple

C.75. KAFKAUSERTLSCLIENTAUTHENTICATION SCHEMA REFERENCE

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes the use of the type
KafkaUserTlsClientAuthentication from KafkaUserScramSha512ClientAuthentication. It must have
the value tls for the type KafkaUserTlsClientAuthentication.

Property Description

type Must be tls.

string

C.76. KAFKAUSERSCRAMSHA512CLIENTAUTHENTICATION SCHEMA REFERENCE

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes the use of the type
KafkaUserScramSha512ClientAuthentication from KafkaUserTlsClientAuthentication. It must have
the value scram-sha-512 for the type KafkaUserScramSha512ClientAuthentication.

Property Description

type Must be scram-sha-512.

string

C.77. KAFKAUSERAUTHORIZATIONSIMPLE SCHEMA REFERENCE

Used in: KafkaUserSpec

The type property is a discriminator that distinguishes the use of the type
KafkaUserAuthorizationSimple from other subtypes which may be added in the future. It must have
the value simple for the type KafkaUserAuthorizationSimple.

APPENDIX C. CUSTOM RESOURCE API REFERENCE

355

Property Description

type Must be simple.

string

acls List of ACL rules which should be applied to this
user.

AclRule array

C.78. ACLRULE SCHEMA REFERENCE

Used in: KafkaUserAuthorizationSimple

Property Description

host The host from which the action described in the ACL
rule is allowed or denied.

string

operation Operation which will be allowed or denied. Supported
operations are: Read, Write, Create, Delete, Alter,
Describe, ClusterAction, AlterConfigs,
DescribeConfigs, IdempotentWrite and All.

string (one of [Read, Write, Delete, Alter, Describe,
All, IdempotentWrite, ClusterAction, Create,
AlterConfigs, DescribeConfigs])

resource Indicates the resource for which given ACL rule
applies. The type depends on the value of the
resource.type property within the given object,
which must be one of [topic, group, cluster,
transactionalId].

AclRuleTopicResource,
AclRuleGroupResource,
AclRuleClusterResource,
AclRuleTransactionalIdResource

type The type of the rule. Currently the only supported
type is allow. ACL rules with type allow are used to
allow user to execute the specified operations.
Default value is allow.

string (one of [allow, deny])

C.79. ACLRULETOPICRESOURCE SCHEMA REFERENCE

Used in: AclRule

The type property is a discriminator that distinguishes the use of the type AclRuleTopicResource from
AclRuleGroupResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must have
the value topic for the type AclRuleTopicResource.

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

356

Property Description

type Must be topic.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full topic name. With prefix pattern
type, the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

C.80. ACLRULEGROUPRESOURCE SCHEMA REFERENCE

Used in: AclRule

The type property is a discriminator that distinguishes the use of the type AclRuleGroupResource
from AclRuleTopicResource, AclRuleClusterResource, AclRuleTransactionalIdResource. It must
have the value group for the type AclRuleGroupResource.

Property Description

type Must be group.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full topic name. With prefix pattern
type, the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

C.81. ACLRULECLUSTERRESOURCE SCHEMA REFERENCE

Used in: AclRule

The type property is a discriminator that distinguishes the use of the type AclRuleClusterResource
from AclRuleTopicResource, AclRuleGroupResource, AclRuleTransactionalIdResource. It must
have the value cluster for the type AclRuleClusterResource.

APPENDIX C. CUSTOM RESOURCE API REFERENCE

357

Property Description

type Must be cluster.

string

C.82. ACLRULETRANSACTIONALIDRESOURCE SCHEMA REFERENCE

Used in: AclRule

The type property is a discriminator that distinguishes the use of the type
AclRuleTransactionalIdResource from AclRuleTopicResource, AclRuleGroupResource,
AclRuleClusterResource. It must have the value transactionalId for the type
AclRuleTransactionalIdResource.

Property Description

type Must be transactionalId.

string

name Name of resource for which given ACL rule applies.
Can be combined with patternType field to use
prefix pattern.string

patternType Describes the pattern used in the resource field. The
supported types are literal and prefix. With literal
pattern type, the resource field will be used as a
definition of a full name. With prefix pattern type,
the resource name will be used only as a prefix.
Default value is literal.

string (one of [prefix, literal])

C.83. KAFKAMIRRORMAKER SCHEMA REFERENCE

Property Description

spec The specification of the mirror maker.

KafkaMirrorMakerSpec

C.84. KAFKAMIRRORMAKERSPEC SCHEMA REFERENCE

Used in: KafkaMirrorMaker

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

358

Property Description

replicas The number of pods in the Deployment.

integer

image The docker image for the pods.

string

whitelist List of topics which are included for mirroring. This
option allows any regular expression using Java-style
regular expressions. Mirroring two topics named A
and B can be achieved by using the whitelist 'A|B'.
Or, as a special case, you can mirror all topics using
the whitelist '*'. Multiple regular expressions
separated by commas can be specified as well.

string

consumer Configuration of source cluster.

KafkaMirrorMakerConsumerSpec

producer Configuration of target cluster.

KafkaMirrorMakerProducerSpec

resources Resource constraints (limits and requests).

ResourceRequirements

affinity The property affinity has been deprecated. This
feature should now be configured at path
spec.template.pod.affinity. The pod’s affinity
rules.See external documentation of core/v1 affinity.

Affinity

tolerations The property tolerations has been deprecated.
This feature should now be configured at path
spec.template.pod.tolerations. The pod’s
tolerations.See external documentation of core/v1
toleration.

Toleration array

jvmOptions JVM Options for pods.

JvmOptions

logging Logging configuration for Mirror Maker. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

APPENDIX C. CUSTOM RESOURCE API REFERENCE

359

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#affinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.11/#toleration-v1-core

metrics The Prometheus JMX Exporter configuration. See
JMX Exporter documentation for details of the
structure of this configuration.map

template Template for Kafka Mirror Maker resources. The
template allows users to specify how is the
Deployment and Pods generated.KafkaMirrorMakerTemplate

version The Kafka Mirror Maker version. Defaults to 2.2.1.
Consult the user documentation to understand the
process required to upgrade or downgrade the
version.

string

Property Description

C.85. KAFKAMIRRORMAKERCONSUMERSPEC SCHEMA REFERENCE

Used in: KafkaMirrorMakerSpec

Property Description

numStreams Specifies the number of consumer stream threads to
create.

integer

groupId A unique string that identifies the consumer group
this consumer belongs to.

string

bootstrapServers A list of host:port pairs to use for establishing the
initial connection to the Kafka cluster.

string

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain].

KafkaMirrorMakerAuthenticationTls,
KafkaMirrorMakerAuthenticationScramSha51
2, KafkaMirrorMakerAuthenticationPlain

config The mirror maker consumer config. Properties with
the following prefixes cannot be set: ssl.,
bootstrap.servers, group.id, sasl., security.map

tls TLS configuration for connecting to the cluster.

KafkaMirrorMakerTls

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

360

https://github.com/prometheus/jmx_exporter

C.86. KAFKAMIRRORMAKERAUTHENTICATIONTLS SCHEMA REFERENCE

Used in: KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

The type property is a discriminator that distinguishes the use of the type
KafkaMirrorMakerAuthenticationTls from KafkaMirrorMakerAuthenticationScramSha512,
KafkaMirrorMakerAuthenticationPlain. It must have the value tls for the type
KafkaMirrorMakerAuthenticationTls.

Property Description

certificateAndKey Reference to the Secret which holds the certificate
and private key pair.

CertAndKeySecretSource

type Must be tls.

string

C.87. KAFKAMIRRORMAKERAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE

Used in: KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

The type property is a discriminator that distinguishes the use of the type
KafkaMirrorMakerAuthenticationScramSha512 from KafkaMirrorMakerAuthenticationTls,
KafkaMirrorMakerAuthenticationPlain. It must have the value scram-sha-512 for the type
KafkaMirrorMakerAuthenticationScramSha512.

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be scram-sha-512.

string

username Username used for the authentication.

string

C.88. KAFKAMIRRORMAKERAUTHENTICATIONPLAIN SCHEMA REFERENCE

Used in: KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

The type property is a discriminator that distinguishes the use of the type
KafkaMirrorMakerAuthenticationPlain from KafkaMirrorMakerAuthenticationTls,

APPENDIX C. CUSTOM RESOURCE API REFERENCE

361

KafkaMirrorMakerAuthenticationScramSha512. It must have the value plain for the type
KafkaMirrorMakerAuthenticationPlain.

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be plain.

string

username Username used for the authentication.

string

C.89. KAFKAMIRRORMAKERTLS SCHEMA REFERENCE

Used in: KafkaMirrorMakerConsumerSpec, KafkaMirrorMakerProducerSpec

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

C.90. KAFKAMIRRORMAKERPRODUCERSPEC SCHEMA REFERENCE

Used in: KafkaMirrorMakerSpec

Property Description

bootstrapServers A list of host:port pairs to use for establishing the
initial connection to the Kafka cluster.

string

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain].

KafkaMirrorMakerAuthenticationTls,
KafkaMirrorMakerAuthenticationScramSha51
2, KafkaMirrorMakerAuthenticationPlain

config The mirror maker producer config. Properties with
the following prefixes cannot be set: ssl.,
bootstrap.servers, sasl., security.map

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

362

tls TLS configuration for connecting to the cluster.

KafkaMirrorMakerTls

Property Description

C.91. KAFKAMIRRORMAKERTEMPLATE SCHEMA REFERENCE

Used in: KafkaMirrorMakerSpec

Property Description

deployment Template for Kafka Mirror Maker Deployment.

ResourceTemplate

pod Template for Kafka Mirror Maker Pods.

PodTemplate

podDisruptionBudget Template for Kafka Mirror Maker
PodDisruptionBudget.

PodDisruptionBudgetTemplate

C.92. KAFKABRIDGE SCHEMA REFERENCE

Property Description

spec The specification of the Kafka Bridge.

KafkaBridgeSpec

C.93. KAFKABRIDGESPEC SCHEMA REFERENCE

Used in: KafkaBridge

Property Description

replicas The number of pods in the Deployment.

integer

image The docker image for the pods.

APPENDIX C. CUSTOM RESOURCE API REFERENCE

363

string

bootstrapServers A list of host:port pairs to use for establishing the
initial connection to the Kafka cluster.

string

tls TLS configuration for connecting to the cluster.

KafkaBridgeTls

authentication Authentication configuration for connecting to the
cluster. The type depends on the value of the
authentication.type property within the given
object, which must be one of [tls, scram-sha-512,
plain].

KafkaBridgeAuthenticationTls,
KafkaBridgeAuthenticationScramSha512,
KafkaBridgeAuthenticationPlain

http The HTTP related configuration.

KafkaBridgeHttpConfig

consumer Kafka consumer related configuration.

KafkaBridgeConsumerSpec

producer Kafka producer related configuration.

KafkaBridgeProducerSpec

resources Resource constraints (limits and requests).

ResourceRequirements

jvmOptions Currently not supported JVM Options for pods.

JvmOptions

logging Logging configuration for Kafka Bridge. The type
depends on the value of the logging.type property
within the given object, which must be one of [inline,
external].

InlineLogging, ExternalLogging

metrics Currently not supported The Prometheus JMX
Exporter configuration. See JMX Exporter
documentation for details of the structure of this
configuration.

map

Property Description

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

364

https://github.com/prometheus/jmx_exporter

livenessProbe Pod liveness checking.

Probe

readinessProbe Pod readiness checking.

Probe

template Template for Kafka Bridge resources. The template
allows users to specify how is the Deployment and
Pods generated.KafkaBridgeTemplate

Property Description

C.94. KAFKABRIDGETLS SCHEMA REFERENCE

Used in: KafkaBridgeSpec

Property Description

trustedCertificates Trusted certificates for TLS connection.

CertSecretSource array

C.95. KAFKABRIDGEAUTHENTICATIONTLS SCHEMA REFERENCE

Used in: KafkaBridgeSpec

The type property is a discriminator that distinguishes the use of the type
KafkaBridgeAuthenticationTls from KafkaBridgeAuthenticationScramSha512,
KafkaBridgeAuthenticationPlain. It must have the value tls for the type
KafkaBridgeAuthenticationTls.

Property Description

certificateAndKey Reference to the Secret which holds the certificate
and private key pair.

CertAndKeySecretSource

type Must be tls.

string

C.96. KAFKABRIDGEAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE

Used in: KafkaBridgeSpec

APPENDIX C. CUSTOM RESOURCE API REFERENCE

365

The type property is a discriminator that distinguishes the use of the type
KafkaBridgeAuthenticationScramSha512 from KafkaBridgeAuthenticationTls,
KafkaBridgeAuthenticationPlain. It must have the value scram-sha-512 for the type
KafkaBridgeAuthenticationScramSha512.

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be scram-sha-512.

string

username Username used for the authentication.

string

C.97. KAFKABRIDGEAUTHENTICATIONPLAIN SCHEMA REFERENCE

Used in: KafkaBridgeSpec

The type property is a discriminator that distinguishes the use of the type
KafkaBridgeAuthenticationPlain from KafkaBridgeAuthenticationTls,
KafkaBridgeAuthenticationScramSha512. It must have the value plain for the type
KafkaBridgeAuthenticationPlain.

Property Description

passwordSecret Reference to the Secret which holds the password.

PasswordSecretSource

type Must be plain.

string

username Username used for the authentication.

string

C.98. KAFKABRIDGEHTTPCONFIG SCHEMA REFERENCE

Used in: KafkaBridgeSpec

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

366

Property Description

port The port which is the server listening on. Avoid using
port 8081 which is used for readiness checking.

integer

C.99. KAFKABRIDGECONSUMERSPEC SCHEMA REFERENCE

Used in: KafkaBridgeSpec

Property Description

config The Kafka consumer configuration used for consumer
instances created by the bridge. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, group.id, sasl., security.

map

C.100. KAFKABRIDGEPRODUCERSPEC SCHEMA REFERENCE

Used in: KafkaBridgeSpec

Property Description

config The Kafka producer configuration used for producer
instances created by the bridge. Properties with the
following prefixes cannot be set: ssl.,
bootstrap.servers, sasl., security.

map

C.101. KAFKABRIDGETEMPLATE SCHEMA REFERENCE

Used in: KafkaBridgeSpec

Property Description

deployment Template for Kafka Bridge Deployment.

ResourceTemplate

pod Template for Kafka Bridge Pods.

PodTemplate

apiService Template for Kafka Bridge API Service.

ResourceTemplate

APPENDIX C. CUSTOM RESOURCE API REFERENCE

367

podDisruptionBudget Template for Kafka Bridge PodDisruptionBudget.

PodDisruptionBudgetTemplate

Property Description

Red Hat AMQ 7.3 Using AMQ Streams on OpenShift Container Platform

368

APPENDIX D. USING YOUR SUBSCRIPTION
AMQ Streams is provided through a software subscription. To manage your subscriptions, access your
account at the Red Hat Customer Portal.

Accessing Your Account

1. Go to access.redhat.com.

2. If you do not already have an account, create one.

3. Log in to your account.

Activating a Subscription

1. Go to access.redhat.com.

2. Navigate to My Subscriptions.

3. Navigate to Activate a subscription and enter your 16-digit activation number.

Downloading Zip and Tar Files
To access zip or tar files, use the customer portal to find the relevant files for download. If you are using
RPM packages, this step is not required.

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Streams entries in the JBOSS INTEGRATION AND AUTOMATION
category.

3. Select the desired AMQ Streams product. The Software Downloads page opens.

4. Click the Download link for your component.

Revised on 2019-07-05 10:23:01 UTC

APPENDIX D. USING YOUR SUBSCRIPTION

369

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads

	Table of Contents
	CHAPTER 1. OVERVIEW OF AMQ STREAMS
	1.1. KAFKA KEY FEATURES
	1.2. DOCUMENT CONVENTIONS

	CHAPTER 2. GETTING STARTED WITH AMQ STREAMS
	2.1. INSTALLING AMQ STREAMS AND DEPLOYING COMPONENTS
	2.2. CUSTOM RESOURCES
	2.2.1. AMQ Streams custom resource example
	2.2.2. AMQ Streams custom resource status

	2.3. CLUSTER OPERATOR
	2.3.1. Overview of the Cluster Operator component
	2.3.2. Deploying the Cluster Operator to OpenShift
	2.3.3. Deploying the Cluster Operator to watch multiple namespaces
	2.3.4. Deploying the Cluster Operator to watch all namespaces

	2.4. KAFKA CLUSTER
	2.4.1. Deploying the Kafka cluster to OpenShift

	2.5. KAFKA CONNECT
	2.5.1. Deploying Kafka Connect to your OpenShift cluster
	2.5.2. Extending Kafka Connect with connector plug-ins
	2.5.2.1. Creating a Docker image from the Kafka Connect base image
	2.5.2.2. Creating a container image using OpenShift builds and Source-to-Image

	2.6. KAFKA MIRROR MAKER
	2.6.1. Deploying Kafka Mirror Maker to OpenShift

	2.7. KAFKA BRIDGE
	2.7.1. Deploying Kafka Bridge to your OpenShift cluster

	2.8. DEPLOYING EXAMPLE CLIENTS
	2.9. TOPIC OPERATOR
	2.9.1. Overview of the Topic Operator component
	2.9.2. Deploying the Topic Operator using the Cluster Operator

	2.10. USER OPERATOR
	2.10.1. Overview of the User Operator component
	2.10.2. Deploying the User Operator using the Cluster Operator

	2.11. STRIMZI ADMINISTRATORS
	2.11.1. Designating Strimzi Administrators

	2.12. CONTAINER IMAGES

	CHAPTER 3. DEPLOYMENT CONFIGURATION
	3.1. KAFKA CLUSTER CONFIGURATION
	3.1.1. Data storage considerations
	3.1.1.1. Apache Kafka and Zookeeper storage
	3.1.1.2. File systems

	3.1.2. Kafka and Zookeeper storage types
	3.1.2.1. Ephemeral storage
	3.1.2.2. Persistent storage
	3.1.2.3. Resizing persistent volumes
	3.1.2.4. JBOD storage overview
	3.1.2.5. Adding volumes to JBOD storage
	3.1.2.6. Removing volumes from JBOD storage

	3.1.3. Kafka broker replicas
	3.1.3.1. Configuring the number of broker nodes

	3.1.4. Kafka broker configuration
	3.1.4.1. Kafka broker configuration
	3.1.4.2. Configuring Kafka brokers

	3.1.5. Kafka broker listeners
	3.1.5.1. Mutual TLS authentication for clients
	3.1.5.2. SCRAM-SHA authentication
	3.1.5.3. Kafka listeners
	3.1.5.4. Configuring Kafka listeners
	3.1.5.5. Accessing Kafka using OpenShift routes
	3.1.5.6. Accessing Kafka using loadbalancers
	3.1.5.7. Accessing Kafka using node ports
	3.1.5.8. Restricting access to Kafka listeners using networkPolicyPeers

	3.1.6. Authentication and Authorization
	3.1.6.1. Authentication
	3.1.6.2. Configuring authentication in Kafka brokers
	3.1.6.3. Authorization
	3.1.6.4. Configuring authorization in Kafka brokers

	3.1.7. Zookeeper replicas
	3.1.7.1. Number of Zookeeper nodes
	3.1.7.2. Changing the number of Zookeeper replicas

	3.1.8. Zookeeper configuration
	3.1.8.1. Zookeeper configuration
	3.1.8.2. Configuring Zookeeper

	3.1.9. Zookeeper connection
	3.1.9.1. Connecting to Zookeeper from a terminal

	3.1.10. Entity Operator
	3.1.10.1. Configuration
	3.1.10.2. Configuring Entity Operator

	3.1.11. CPU and memory resources
	3.1.11.1. Resource limits and requests
	3.1.11.2. Configuring resource requests and limits

	3.1.12. Logging
	3.1.12.1. Kafka loggers
	3.1.12.2. Specifying inline logging
	3.1.12.3. Specifying an external ConfigMap for logging

	3.1.13. Kafka rack awareness
	3.1.13.1. Configuring rack awareness in Kafka brokers

	3.1.14. Healthchecks
	3.1.14.1. Healthcheck configurations
	3.1.14.2. Configuring healthchecks

	3.1.15. Prometheus metrics
	3.1.15.1. Metrics configuration
	3.1.15.2. Configuring Prometheus metrics

	3.1.16. JVM Options
	3.1.16.1. JVM configuration
	3.1.16.2. Configuring JVM options

	3.1.17. Container images
	3.1.17.1. Container image configurations
	3.1.17.2. Configuring container images

	3.1.18. TLS sidecar
	3.1.18.1. TLS sidecar configuration
	3.1.18.2. Configuring TLS sidecar

	3.1.19. Configuring pod scheduling
	3.1.19.1. Scheduling pods based on other applications
	3.1.19.2. Scheduling pods to specific nodes
	3.1.19.3. Using dedicated nodes

	3.1.20. Performing a rolling update of a Kafka cluster
	3.1.21. Performing a rolling update of a Zookeeper cluster
	3.1.22. Scaling clusters
	3.1.22.1. Scaling Kafka clusters
	3.1.22.2. Partition reassignment
	3.1.22.3. Generating reassignment JSON files
	3.1.22.4. Creating reassignment JSON files manually
	3.1.22.5. Reassignment throttles
	3.1.22.6. Scaling up a Kafka cluster
	3.1.22.7. Scaling down a Kafka cluster

	3.1.23. Deleting Kafka nodes manually
	3.1.24. Deleting Zookeeper nodes manually
	3.1.25. Maintenance time windows for rolling updates
	3.1.25.1. Maintenance time windows overview
	3.1.25.2. Maintenance time window definition
	3.1.25.3. Configuring a maintenance time window

	3.1.26. List of resources created as part of Kafka cluster

	3.2. KAFKA CONNECT CLUSTER CONFIGURATION
	3.2.1. Replicas
	3.2.1.1. Configuring the number of nodes

	3.2.2. Bootstrap servers
	3.2.2.1. Configuring bootstrap servers

	3.2.3. Connecting to Kafka brokers using TLS
	3.2.3.1. TLS support in Kafka Connect
	3.2.3.2. Configuring TLS in Kafka Connect

	3.2.4. Connecting to Kafka brokers with Authentication
	3.2.4.1. Authentication support in Kafka Connect
	3.2.4.2. Configuring TLS client authentication in Kafka Connect
	3.2.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Connect

	3.2.5. Kafka Connect configuration
	3.2.5.1. Kafka Connect configuration
	3.2.5.2. Configuring Kafka Connect

	3.2.6. CPU and memory resources
	3.2.6.1. Resource limits and requests
	3.2.6.2. Configuring resource requests and limits

	3.2.7. Logging
	3.2.7.1. Kafka Connect loggers
	3.2.7.2. Specifying inline logging
	3.2.7.3. Specifying an external ConfigMap for logging

	3.2.8. Healthchecks
	3.2.8.1. Healthcheck configurations
	3.2.8.2. Configuring healthchecks

	3.2.9. Prometheus metrics
	3.2.9.1. Metrics configuration
	3.2.9.2. Configuring Prometheus metrics

	3.2.10. JVM Options
	3.2.10.1. JVM configuration
	3.2.10.2. Configuring JVM options

	3.2.11. Container images
	3.2.11.1. Container image configurations
	3.2.11.2. Configuring container images

	3.2.12. Configuring pod scheduling
	3.2.12.1. Scheduling pods based on other applications
	3.2.12.2. Scheduling pods to specific nodes
	3.2.12.3. Using dedicated nodes

	3.2.13. Using external configuration and secrets
	3.2.13.1. Storing connector configurations externally
	3.2.13.2. Mounting Secrets as environment variables
	3.2.13.3. Mounting Secrets as volumes

	3.2.14. List of resources created as part of Kafka Connect cluster

	3.3. KAFKA CONNECT CLUSTER WITH SOURCE2IMAGE SUPPORT
	3.3.1. Replicas
	3.3.1.1. Configuring the number of nodes

	3.3.2. Bootstrap servers
	3.3.2.1. Configuring bootstrap servers

	3.3.3. Connecting to Kafka brokers using TLS
	3.3.3.1. TLS support in Kafka Connect
	3.3.3.2. Configuring TLS in Kafka Connect

	3.3.4. Connecting to Kafka brokers with Authentication
	3.3.4.1. Authentication support in Kafka Connect
	3.3.4.2. Configuring TLS client authentication in Kafka Connect
	3.3.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Connect

	3.3.5. Kafka Connect configuration
	3.3.5.1. Kafka Connect configuration
	3.3.5.2. Configuring Kafka Connect

	3.3.6. CPU and memory resources
	3.3.6.1. Resource limits and requests
	3.3.6.2. Configuring resource requests and limits

	3.3.7. Logging
	3.3.7.1. Kafka Connect with Source2Image loggers
	3.3.7.2. Specifying inline logging
	3.3.7.3. Specifying an external ConfigMap for logging

	3.3.8. Healthchecks
	3.3.8.1. Healthcheck configurations
	3.3.8.2. Configuring healthchecks

	3.3.9. Prometheus metrics
	3.3.9.1. Metrics configuration
	3.3.9.2. Configuring Prometheus metrics

	3.3.10. JVM Options
	3.3.10.1. JVM configuration
	3.3.10.2. Configuring JVM options

	3.3.11. Container images
	3.3.11.1. Container image configurations
	3.3.11.2. Configuring container images

	3.3.12. Configuring pod scheduling
	3.3.12.1. Scheduling pods based on other applications
	3.3.12.2. Scheduling pods to specific nodes
	3.3.12.3. Using dedicated nodes

	3.3.13. Using external configuration and secrets
	3.3.13.1. Storing connector configurations externally
	3.3.13.2. Mounting Secrets as environment variables
	3.3.13.3. Mounting Secrets as volumes

	3.3.14. List of resources created as part of Kafka Connect cluster with Source2Image support
	3.3.15. Creating a container image using OpenShift builds and Source-to-Image

	3.4. KAFKA MIRROR MAKER CONFIGURATION
	3.4.1. Replicas
	3.4.1.1. Configuring the number of replicas

	3.4.2. Bootstrap servers
	3.4.2.1. Configuring bootstrap servers

	3.4.3. Whitelist
	3.4.3.1. Configuring the topics whitelist

	3.4.4. Consumer group identifier
	3.4.4.1. Configuring the consumer group identifier

	3.4.5. Number of consumer streams
	3.4.5.1. Configuring the number of consumer streams

	3.4.6. Connecting to Kafka brokers using TLS
	3.4.6.1. TLS support in Kafka Mirror Maker
	3.4.6.2. Configuring TLS encryption in Kafka Mirror Maker

	3.4.7. Connecting to Kafka brokers with Authentication
	3.4.7.1. Authentication support in Kafka Mirror Maker
	3.4.7.2. Configuring TLS client authentication in Kafka Mirror Maker
	3.4.7.3. Configuring SCRAM-SHA-512 authentication in Kafka Mirror Maker

	3.4.8. Kafka Mirror Maker configuration
	3.4.8.1. Kafka Mirror Maker configuration
	3.4.8.2. Configuring Kafka Mirror Maker

	3.4.9. CPU and memory resources
	3.4.9.1. Resource limits and requests
	3.4.9.2. Configuring resource requests and limits

	3.4.10. Logging
	3.4.10.1. Kafka Mirror Maker loggers
	3.4.10.2. Specifying inline logging
	3.4.10.3. Specifying an external ConfigMap for logging

	3.4.11. Prometheus metrics
	3.4.11.1. Metrics configuration
	3.4.11.2. Configuring Prometheus metrics

	3.4.12. JVM Options
	3.4.12.1. JVM configuration
	3.4.12.2. Configuring JVM options

	3.4.13. Container images
	3.4.13.1. Container image configurations
	3.4.13.2. Configuring container images

	3.4.14. Configuring pod scheduling
	3.4.14.1. Scheduling pods based on other applications
	3.4.14.2. Scheduling pods to specific nodes
	3.4.14.3. Using dedicated nodes

	3.4.15. List of resources created as part of Kafka Mirror Maker

	3.5. KAFKA BRIDGE CLUSTER CONFIGURATION
	3.5.1. Replicas
	3.5.1.1. Configuring the number of nodes

	3.5.2. Bootstrap servers
	3.5.2.1. Configuring bootstrap servers

	3.5.3. Connecting to Kafka brokers using TLS
	3.5.3.1. TLS support for Kafka connection to the Kafka Bridge
	3.5.3.2. Configuring TLS in Kafka Bridge

	3.5.4. Connecting to Kafka brokers with Authentication
	3.5.4.1. Authentication support in Kafka Bridge
	3.5.4.2. Configuring TLS client authentication in Kafka Bridge
	3.5.4.3. Configuring SCRAM-SHA-512 authentication in Kafka Bridge

	3.5.5. Kafka Bridge configuration
	3.5.5.1. Kafka Bridge Consumer configuration
	3.5.5.2. Kafka Bridge Producer configuration
	3.5.5.3. Kafka Bridge HTTP configuration
	3.5.5.4. Configuring Kafka Bridge

	3.5.6. Healthchecks
	3.5.6.1. Healthcheck configurations
	3.5.6.2. Configuring healthchecks

	3.5.7. Container images
	3.5.7.1. Container image configurations
	3.5.7.2. Configuring container images

	3.5.8. Configuring pod scheduling
	3.5.8.1. Scheduling pods based on other applications
	3.5.8.2. Scheduling pods to specific nodes
	3.5.8.3. Using dedicated nodes

	3.5.9. List of resources created as part of Kafka Bridge cluster

	3.6. CUSTOMIZING DEPLOYMENTS
	3.6.1. Template properties
	3.6.2. Labels and Annotations
	3.6.3. Customizing Pods
	3.6.4. Customizing the image pull policy
	3.6.5. Customizing Pod Disruption Budgets
	3.6.6. Customizing deployments

	CHAPTER 4. OPERATORS
	4.1. CLUSTER OPERATOR
	4.1.1. Overview of the Cluster Operator component
	4.1.2. Deploying the Cluster Operator to OpenShift
	4.1.3. Deploying the Cluster Operator to watch multiple namespaces
	4.1.4. Deploying the Cluster Operator to watch all namespaces
	4.1.5. Reconciliation
	4.1.6. Cluster Operator Configuration
	4.1.7. Role-Based Access Control (RBAC)
	4.1.7.1. Provisioning Role-Based Access Control (RBAC) for the Cluster Operator
	4.1.7.2. Delegated privileges
	4.1.7.3. ServiceAccount
	4.1.7.4. ClusterRoles
	4.1.7.5. ClusterRoleBindings

	4.2. TOPIC OPERATOR
	4.2.1. Overview of the Topic Operator component
	4.2.2. Understanding the Topic Operator
	4.2.3. Deploying the Topic Operator using the Cluster Operator
	4.2.4. Configuring the Topic Operator with resource requests and limits
	4.2.5. Deploying the standalone Topic Operator
	4.2.6. Topic Operator environment

	4.3. USER OPERATOR
	4.3.1. Overview of the User Operator component
	4.3.2. Deploying the User Operator using the Cluster Operator
	4.3.3. Configuring the User Operator with resource requests and limits
	4.3.4. Deploying the standalone User Operator

	CHAPTER 5. USING THE TOPIC OPERATOR
	5.1. TOPIC OPERATOR USAGE RECOMMENDATIONS
	5.2. CREATING A TOPIC
	5.3. CHANGING A TOPIC
	5.4. DELETING A TOPIC

	CHAPTER 6. USING THE USER OPERATOR
	6.1. OVERVIEW OF THE USER OPERATOR COMPONENT
	6.2. MUTUAL TLS AUTHENTICATION FOR CLIENTS
	6.2.1. Mutual TLS authentication
	6.2.2. When to use mutual TLS authentication for clients

	6.3. CREATING A KAFKA USER WITH MUTUAL TLS AUTHENTICATION
	6.4. SCRAM-SHA AUTHENTICATION
	6.4.1. Supported SCRAM credentials
	6.4.2. When to use SCRAM-SHA authentication for clients

	6.5. CREATING A KAFKA USER WITH SCRAM SHA AUTHENTICATION
	6.6. EDITING A KAFKA USER
	6.7. DELETING A KAFKA USER
	6.8. KAFKA USER RESOURCE
	6.8.1. Authentication
	6.8.1.1. TLS Client Authentication
	6.8.1.2. SCRAM-SHA-512 Authentication

	6.8.2. Authorization
	6.8.2.1. Simple Authorization

	6.8.3. Additional resources

	CHAPTER 7. USING THE AMQ STREAMS KAFKA BRIDGE
	7.1. OVERVIEW OF THE AMQ STREAMS KAFKA BRIDGE
	7.2. SUPPORTED CLIENTS FOR THE AMQ STREAMS KAFKA BRIDGE
	7.3. SECURING THE AMQ STREAMS KAFKA BRIDGE
	7.4. ACCESSING THE AMQ STREAMS KAFKA BRIDGE FROM OUTSIDE OF OPENSHIFT
	7.5. REQUESTS TO THE AMQ STREAMS KAFKA BRIDGE
	7.5.1. Data formats and headers
	7.5.1.1. Content Type headers
	7.5.1.2. Embedded data format
	7.5.1.3. Accept headers

	7.6. AMQ STREAMS KAFKA BRIDGE API RESOURCES

	CHAPTER 8. SECURITY
	8.1. CERTIFICATE AUTHORITIES
	8.1.1. CA certificates

	8.2. CERTIFICATES AND SECRETS
	8.2.1. Cluster CA Secrets
	8.2.2. Client CA Secrets
	8.2.3. User Secrets

	8.3. INSTALLING YOUR OWN CA CERTIFICATES
	8.4. CERTIFICATE RENEWAL
	8.4.1. Renewal process with generated CAs
	8.4.2. Client applications

	8.5. TLS CONNECTIONS
	8.5.1. Zookeeper communication
	8.5.2. Kafka interbroker communication
	8.5.3. Topic and User Operators
	8.5.4. Kafka Client connections

	8.6. CONFIGURING INTERNAL CLIENTS TO TRUST THE CLUSTER CA
	8.7. CONFIGURING EXTERNAL CLIENTS TO TRUST THE CLUSTER CA

	CHAPTER 9. AMQ STREAMS AND KAFKA UPGRADES
	9.1. UPGRADE PREREQUISITES
	9.2. UPGRADE PROCESS
	9.3. KAFKA VERSIONS
	9.4. UPGRADING THE CLUSTER OPERATOR
	9.4.1. Upgrading the Cluster Operator to a later version

	9.5. UPGRADING KAFKA
	9.5.1. Kafka version and image mappings
	9.5.2. Strategies for upgrading clients
	9.5.3. Upgrading Kafka brokers and client applications

	9.6. DOWNGRADING KAFKA
	9.6.1. Target downgrade version
	9.6.2. Downgrading Kafka brokers and client applications

	CHAPTER 10. AMQ STREAMS RESOURCE UPGRADES
	10.1. UPGRADING KAFKA RESOURCES
	10.2. UPGRADING KAFKA CONNECT RESOURCES
	10.3. UPGRADING KAFKA CONNECT S2I RESOURCES
	10.4. UPGRADING KAFKA MIRROR MAKER RESOURCES
	10.5. UPGRADING KAFKA TOPIC RESOURCES
	10.6. UPGRADING KAFKA USER RESOURCES

	CHAPTER 11. UNINSTALLING AMQ STREAMS
	CHAPTER 12. CHECKING THE STATUS OF A CUSTOM RESOURCE
	APPENDIX A. CONFIGURABLE LOGGERS
	APPENDIX B. FREQUENTLY ASKED QUESTIONS
	B.1. CLUSTER OPERATOR
	B.1.1. Why do I need cluster admin privileges to install AMQ Streams?
	B.1.2. Why does the Cluster Operator require the ability to create ClusterRoleBindings? Is that not a security risk?
	B.1.3. Why can standard OpenShift users not create the custom resource (Kafka, KafkaTopic, and so on)?
	B.1.4. Log contains warnings about failing to acquire lock
	B.1.5. Hostname verification fails when connecting to NodePorts using TLS

	APPENDIX C. CUSTOM RESOURCE API REFERENCE
	C.1. KAFKA SCHEMA REFERENCE
	C.2. KAFKASPEC SCHEMA REFERENCE
	C.3. KAFKACLUSTERSPEC SCHEMA REFERENCE
	C.4. EPHEMERALSTORAGE SCHEMA REFERENCE
	C.5. PERSISTENTCLAIMSTORAGE SCHEMA REFERENCE
	C.6. PERSISTENTCLAIMSTORAGEOVERRIDE SCHEMA REFERENCE
	C.7. JBODSTORAGE SCHEMA REFERENCE
	C.8. KAFKALISTENERS SCHEMA REFERENCE
	C.9. KAFKALISTENERPLAIN SCHEMA REFERENCE
	C.10. KAFKALISTENERAUTHENTICATIONTLS SCHEMA REFERENCE
	C.11. KAFKALISTENERAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE
	C.12. KAFKALISTENERTLS SCHEMA REFERENCE
	C.13. KAFKALISTENEREXTERNALROUTE SCHEMA REFERENCE
	C.14. ROUTELISTENEROVERRIDE SCHEMA REFERENCE
	C.15. ROUTELISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE
	C.16. ROUTELISTENERBROKEROVERRIDE SCHEMA REFERENCE
	C.17. KAFKALISTENEREXTERNALLOADBALANCER SCHEMA REFERENCE
	C.18. LOADBALANCERLISTENEROVERRIDE SCHEMA REFERENCE
	C.19. LOADBALANCERLISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE
	C.20. LOADBALANCERLISTENERBROKEROVERRIDE SCHEMA REFERENCE
	C.21. KAFKALISTENEREXTERNALNODEPORT SCHEMA REFERENCE
	C.22. NODEPORTLISTENEROVERRIDE SCHEMA REFERENCE
	C.23. NODEPORTLISTENERBOOTSTRAPOVERRIDE SCHEMA REFERENCE
	C.24. NODEPORTLISTENERBROKEROVERRIDE SCHEMA REFERENCE
	C.25. KAFKALISTENEREXTERNALINGRESS SCHEMA REFERENCE
	C.26. INGRESSLISTENERCONFIGURATION SCHEMA REFERENCE
	C.27. INGRESSLISTENERBOOTSTRAPCONFIGURATION SCHEMA REFERENCE
	C.28. INGRESSLISTENERBROKERCONFIGURATION SCHEMA REFERENCE
	C.29. KAFKAAUTHORIZATIONSIMPLE SCHEMA REFERENCE
	C.30. RACK SCHEMA REFERENCE
	C.31. PROBE SCHEMA REFERENCE
	C.32. JVMOPTIONS SCHEMA REFERENCE
	C.33. RESOURCEREQUIREMENTS SCHEMA REFERENCE
	C.34. INLINELOGGING SCHEMA REFERENCE
	C.35. EXTERNALLOGGING SCHEMA REFERENCE
	C.36. TLSSIDECAR SCHEMA REFERENCE
	C.37. KAFKACLUSTERTEMPLATE SCHEMA REFERENCE
	C.38. RESOURCETEMPLATE SCHEMA REFERENCE
	C.39. METADATATEMPLATE SCHEMA REFERENCE
	C.40. PODTEMPLATE SCHEMA REFERENCE
	C.41. PODDISRUPTIONBUDGETTEMPLATE SCHEMA REFERENCE
	C.42. ZOOKEEPERCLUSTERSPEC SCHEMA REFERENCE
	C.43. ZOOKEEPERCLUSTERTEMPLATE SCHEMA REFERENCE
	C.44. TOPICOPERATORSPEC SCHEMA REFERENCE
	C.45. ENTITYOPERATORJVMOPTIONS SCHEMA REFERENCE
	C.46. ENTITYOPERATORSPEC SCHEMA REFERENCE
	C.47. ENTITYTOPICOPERATORSPEC SCHEMA REFERENCE
	C.48. ENTITYUSEROPERATORSPEC SCHEMA REFERENCE
	C.49. ENTITYOPERATORTEMPLATE SCHEMA REFERENCE
	C.50. CERTIFICATEAUTHORITY SCHEMA REFERENCE
	C.51. KAFKASTATUS SCHEMA REFERENCE
	C.52. CONDITION SCHEMA REFERENCE
	C.53. LISTENERSTATUS SCHEMA REFERENCE
	C.54. LISTENERADDRESS SCHEMA REFERENCE
	C.55. KAFKACONNECT SCHEMA REFERENCE
	C.56. KAFKACONNECTSPEC SCHEMA REFERENCE
	C.57. KAFKACONNECTTEMPLATE SCHEMA REFERENCE
	C.58. KAFKACONNECTAUTHENTICATIONTLS SCHEMA REFERENCE
	C.59. CERTANDKEYSECRETSOURCE SCHEMA REFERENCE
	C.60. KAFKACONNECTAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE
	C.61. PASSWORDSECRETSOURCE SCHEMA REFERENCE
	C.62. KAFKACONNECTAUTHENTICATIONPLAIN SCHEMA REFERENCE
	C.63. EXTERNALCONFIGURATION SCHEMA REFERENCE
	C.64. EXTERNALCONFIGURATIONENV SCHEMA REFERENCE
	C.65. EXTERNALCONFIGURATIONENVVARSOURCE SCHEMA REFERENCE
	C.66. EXTERNALCONFIGURATIONVOLUMESOURCE SCHEMA REFERENCE
	C.67. KAFKACONNECTTLS SCHEMA REFERENCE
	C.68. CERTSECRETSOURCE SCHEMA REFERENCE
	C.69. KAFKACONNECTS2I SCHEMA REFERENCE
	C.70. KAFKACONNECTS2ISPEC SCHEMA REFERENCE
	C.71. KAFKATOPIC SCHEMA REFERENCE
	C.72. KAFKATOPICSPEC SCHEMA REFERENCE
	C.73. KAFKAUSER SCHEMA REFERENCE
	C.74. KAFKAUSERSPEC SCHEMA REFERENCE
	C.75. KAFKAUSERTLSCLIENTAUTHENTICATION SCHEMA REFERENCE
	C.76. KAFKAUSERSCRAMSHA512CLIENTAUTHENTICATION SCHEMA REFERENCE
	C.77. KAFKAUSERAUTHORIZATIONSIMPLE SCHEMA REFERENCE
	C.78. ACLRULE SCHEMA REFERENCE
	C.79. ACLRULETOPICRESOURCE SCHEMA REFERENCE
	C.80. ACLRULEGROUPRESOURCE SCHEMA REFERENCE
	C.81. ACLRULECLUSTERRESOURCE SCHEMA REFERENCE
	C.82. ACLRULETRANSACTIONALIDRESOURCE SCHEMA REFERENCE
	C.83. KAFKAMIRRORMAKER SCHEMA REFERENCE
	C.84. KAFKAMIRRORMAKERSPEC SCHEMA REFERENCE
	C.85. KAFKAMIRRORMAKERCONSUMERSPEC SCHEMA REFERENCE
	C.86. KAFKAMIRRORMAKERAUTHENTICATIONTLS SCHEMA REFERENCE
	C.87. KAFKAMIRRORMAKERAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE
	C.88. KAFKAMIRRORMAKERAUTHENTICATIONPLAIN SCHEMA REFERENCE
	C.89. KAFKAMIRRORMAKERTLS SCHEMA REFERENCE
	C.90. KAFKAMIRRORMAKERPRODUCERSPEC SCHEMA REFERENCE
	C.91. KAFKAMIRRORMAKERTEMPLATE SCHEMA REFERENCE
	C.92. KAFKABRIDGE SCHEMA REFERENCE
	C.93. KAFKABRIDGESPEC SCHEMA REFERENCE
	C.94. KAFKABRIDGETLS SCHEMA REFERENCE
	C.95. KAFKABRIDGEAUTHENTICATIONTLS SCHEMA REFERENCE
	C.96. KAFKABRIDGEAUTHENTICATIONSCRAMSHA512 SCHEMA REFERENCE
	C.97. KAFKABRIDGEAUTHENTICATIONPLAIN SCHEMA REFERENCE
	C.98. KAFKABRIDGEHTTPCONFIG SCHEMA REFERENCE
	C.99. KAFKABRIDGECONSUMERSPEC SCHEMA REFERENCE
	C.100. KAFKABRIDGEPRODUCERSPEC SCHEMA REFERENCE
	C.101. KAFKABRIDGETEMPLATE SCHEMA REFERENCE

	APPENDIX D. USING YOUR SUBSCRIPTION
	Accessing Your Account
	Activating a Subscription
	Downloading Zip and Tar Files

