
Red Hat AMQ 2021.Q3

Managing AMQ Broker

For Use with AMQ Broker 7.9

Last Updated: 2022-03-30

Red Hat AMQ 2021.Q3 Managing AMQ Broker

For Use with AMQ Broker 7.9

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to monitor, manage, and upgrade AMQ Broker.

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. OVERVIEW
1.1. SUPPORTED CONFIGURATIONS
1.2. DOCUMENT CONVENTIONS

The sudo command
About the use of file paths in this document
Replaceable values

CHAPTER 2. UPGRADING YOUR BROKER
2.1. ABOUT UPGRADES
2.2. UPGRADING OLDER 7.X VERSIONS

2.2.1. Upgrading a broker instance from 7.0.x to 7.0.y
2.2.1.1. Upgrading from 7.0.x to 7.0.y on Linux
2.2.1.2. Upgrading from 7.0.x to 7.0.y on Windows

2.2.2. Upgrading a broker instance from 7.0.x to 7.1.0
2.2.2.1. Upgrading from 7.0.x to 7.1.0 on Linux
2.2.2.2. Upgrading from 7.0.x to 7.1.0 on Windows

2.2.3. Upgrading a broker instance from 7.1.x to 7.2.0
2.2.3.1. Upgrading from 7.1.x to 7.2.0 on Linux
2.2.3.2. Upgrading from 7.1.x to 7.2.0 on Windows

2.2.4. Upgrading a broker instance from 7.2.x to 7.3.0
2.2.4.1. Resolve exception due to deprecated dispatch console
2.2.4.2. Upgrading from 7.2.x to 7.3.0 on Linux
2.2.4.3. Upgrading from 7.2.x to 7.3.0 on Windows

2.2.5. Upgrading a broker instance from 7.3.0 to 7.4.0
2.2.5.1. Upgrading from 7.3.0 to 7.4.0 on Linux
2.2.5.2. Upgrading from 7.3.0 to 7.4.0 on Windows

2.3. UPGRADING A BROKER INSTANCE FROM 7.4.0 TO 7.4.X
2.3.1. Upgrading from 7.4.0 to 7.4.x on Linux
2.3.2. Upgrading from 7.4.0 to 7.4.x on Windows

2.4. UPGRADING A BROKER INSTANCE FROM 7.4.X TO 7.5.0
2.4.1. Upgrading from 7.4.x to 7.5.0 on Linux
2.4.2. Upgrading from 7.4.x to 7.5.0 on Windows

2.5. UPGRADING A BROKER INSTANCE FROM 7.5.0 TO 7.6.0
2.5.1. Upgrading from 7.5.0 to 7.6.0 on Linux
2.5.2. Upgrading from 7.5.0 to 7.6.0 on Windows

2.6. UPGRADING A BROKER INSTANCE FROM 7.6.0 TO 7.7.0
2.6.1. Upgrading from 7.6.0 to 7.7.0 on Linux
2.6.2. Upgrading from 7.6.0 to 7.7.0 on Windows

2.7. UPGRADING A BROKER INSTANCE FROM 7.7.0 TO 7.8.0
2.7.1. Upgrading from 7.7.0 to 7.8.0 on Linux
2.7.2. Upgrading from 7.7.0 to 7.8.0 on Windows

2.8. UPGRADING A BROKER INSTANCE FROM 7.8.0 TO 7.9.0
2.8.1. Upgrading from 7.8.0 to 7.9.0 on Linux
2.8.2. Upgrading from 7.8.0 to 7.9.0 on Windows

CHAPTER 3. USING THE COMMAND LINE INTERFACE
3.1. STARTING BROKER INSTANCES

3.1.1. Starting the broker instance
3.1.2. Starting a broker as a Linux service
3.1.3. Starting a broker as a Windows service

5

6
6
6
6
6
6

7
7
7
7
7
9

10
10
12
13
13
15
16
16
17
18

20
20
22
23
24
25
26
26
28
29
30
31

33
33
35
37
37
39
40
41

43

45
45
45
46
46

Table of Contents

1

. .

. .

. .

3.2. STOPPING BROKER INSTANCES
3.2.1. Stopping the broker instance
3.2.2. Stopping a broker instance gracefully

3.3. AUDITING MESSAGES BY INTERCEPTING PACKETS
3.3.1. Creating interceptors
3.3.2. Configuring the broker to use interceptors
3.3.3. Interceptors on the client side

3.4. CHECKING THE HEALTH OF BROKERS AND QUEUES
3.5. COMMAND LINE TOOLS

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE
4.1. OVERVIEW
4.2. CONFIGURING LOCAL AND REMOTE ACCESS TO AMQ MANAGEMENT CONSOLE
4.3. ACCESSING AMQ MANAGEMENT CONSOLE
4.4. CONFIGURING AMQ MANAGEMENT CONSOLE

4.4.1. Securing AMQ Management Console using Red Hat Single Sign-On
4.4.2. Setting up user access to AMQ Management Console
4.4.3. Securing network access to AMQ Management Console

4.5. MANAGING BROKERS USING AMQ MANAGEMENT CONSOLE
4.5.1. Viewing details about the broker
4.5.2. Viewing the broker diagram
4.5.3. Viewing acceptors
4.5.4. Managing addresses and queues

4.5.4.1. Creating addresses
4.5.4.2. Sending messages to an address
4.5.4.3. Creating queues
4.5.4.4. Checking the status of a queue
4.5.4.5. Browsing queues
4.5.4.6. Sending messages to a queue
4.5.4.7. Resending messages to a queue
4.5.4.8. Moving messages to a different queue
4.5.4.9. Deleting messages or queues

CHAPTER 5. MONITORING BROKER RUNTIME METRICS
5.1. METRICS OVERVIEW
5.2. ENABLING THE PROMETHEUS METRICS PLUGIN FOR AMQ BROKER
5.3. CONFIGURING THE BROKER TO COLLECT JVM METRICS
5.4. DISABLING METRICS COLLECTION FOR SPECIFIC ADDRESSES
5.5. ACCESSING BROKER RUNTIME DATA USING PROMETHEUS

CHAPTER 6. USING THE MANAGEMENT API
6.1. METHODS FOR MANAGING AMQ BROKER USING THE MANAGEMENT API
6.2. MANAGING AMQ BROKER USING JMX

6.2.1. Configuring JMX management
6.2.2. Configuring JMX management access
6.2.3. MBeanServer configuration
6.2.4. How JMX is exposed with Jolokia
6.2.5. Subscribing to JMX management notifications

6.3. MANAGING AMQ BROKER USING THE JMS API
6.3.1. Configuring broker management using JMS messages and the AMQ JMS Client
6.3.2. Managing brokers using the JMS API and AMQ JMS Client

6.4. MANAGEMENT OPERATIONS
6.4.1. Broker management operations
6.4.2. Address management operations

47
47
47
48
48
51
51
52
55

58
58
58
60
62
62
64
64
65
65
67
68
68
69
70
70
71
72
73
74
74
74

76
76
78
78
79
80

81
81
81

82
82
84
84
85
85
85
86
86
87
88

Red Hat AMQ 2021.Q3 Managing AMQ Broker

2

. .

6.4.3. Queue management operations
6.4.4. Remote resource management operations

6.5. MANAGEMENT NOTIFICATIONS
6.6. USING MESSAGE COUNTERS

6.6.1. Types of message counters
6.6.2. Enabling message counters
6.6.3. Retrieving message counters

CHAPTER 7. MONITORING BROKERS FOR PROBLEMS
7.1. CONFIGURING THE CRITICAL ANALYZER

88
89
90
93
93
94
94

96
96

Table of Contents

3

Red Hat AMQ 2021.Q3 Managing AMQ Broker

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. OVERVIEW
AMQ Broker is a high-performance messaging implementation based on ActiveMQ Artemis. It has fast,
journal-based message persistence and supports multiple languages, protocols, and platforms.

AMQ Broker provides multiple interfaces for managing and interacting with your broker instances, such
as a management console, management APIs, and a command-line interface. In addition, you can
monitor broker performance by collecting runtime metrics, configure brokers to proactively monitor for
problems such as deadlock conditions, and interactively check the health of brokers and queues.

This guide provides detailed information about typical broker management tasks such as:

Upgrading your broker instances

Using the command-line interface and management API

Checking the health of brokers and queues

Collecting broker runtime metrics

Proactively monitoring critical broker operations

1.1. SUPPORTED CONFIGURATIONS

Refer to the article "Red Hat AMQ 7 Supported Configurations " on the Red Hat Customer Portal for
current information regarding AMQ Broker supported configurations.

1.2. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command, file paths, and replaceable
values.

The sudo command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

About the use of file paths in this document
In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows paths
(for example, C:\Users\...).

Replaceable values
This document sometimes uses replaceable values that you must replace with values specific to your
environment. Replaceable values are lowercase, enclosed by angle brackets (< >), and are styled using
italics and monospace font. Multiple words are separated by underscores (_) .

For example, in the following command, replace <install_dir> with your own directory name.

$ <install_dir>/bin/artemis create mybroker

Red Hat AMQ 2021.Q3 Managing AMQ Broker

6

https://access.redhat.com/articles/2791941
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. UPGRADING YOUR BROKER

2.1. ABOUT UPGRADES

Red Hat releases new versions of AMQ Broker to the Customer Portal. Update your brokers to the
newest version to ensure that you have the latest enhancements and fixes. In general, Red Hat releases
a new version of AMQ Broker in one of three ways:

Major Release

A major upgrade or migration is required when an application is transitioned from one major release
to the next, for example, from AMQ Broker 6 to AMQ Broker 7. This type of upgrade is not
addressed in this guide. For instructions on how to upgrade from previous releases of AMQ Broker,
see Migrating to Red Hat AMQ 7 .

Minor Release

AMQ Broker periodically provides minor releases, which are updates that include new features, as
well as bug and security fixes. If you plan to upgrade from one AMQ Broker minor release to another,
for example, from AMQ Broker 7.0 to AMQ Broker 7.1, code changes should not be required for
applications that do not use private, unsupported, or tech preview components.

Micro Release

AMQ Broker also periodically provides micro releases that contain minor enhancements and fixes.
Micro releases increment the minor release version by the last digit, for example from 7.0.1 to 7.0.2. A
micro release should not require code changes, however, some releases may require configuration
changes.

2.2. UPGRADING OLDER 7.X VERSIONS

2.2.1. Upgrading a broker instance from 7.0.x to 7.0.y

The procedure for upgrading AMQ Broker from one version of 7.0 to another is similar to the one for
installation: you download an archive from the Customer Portal and then extract it.

The following subsections describe how to upgrade a 7.0.x broker for different operating systems.

Upgrading from 7.0.x to 7.0.y on Linux

Upgrading from 7.0.x to 7.0.y on Windows

2.2.1.1. Upgrading from 7.0.x to 7.0.y on Linux

The name of the archive that you download could differ from what is used in the following examples.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.0 Release Notes .

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions

CHAPTER 2. UPGRADING YOUR BROKER

7

http://access.redhat.com
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/migrating_to_red_hat_amq_7/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.0/html-single/amq_broker_7.0_release_notes/

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded.

sudo chown amq-broker:amq-broker jboss-amq-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. In the
following example, the directory /opt/redhat is used.

sudo mv jboss-amq-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. The archive is kept in a
compressed format. In the following example, the user amq-broker extracts the archive by
using the unzip command.

su - amq-broker
cd /opt/redhat
unzip jboss-amq-7.x.x.redhat-1.zip

5. Stop the broker if it is running.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
<broker_instance_dir>/log/artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.0.0.amq-700005-redhat-1 [4782d50d-47a2-11e7-a160-
9801a793ea45] stopped, uptime 28 minutes

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/jboss-amq-7.x.x-redhat-1'

9. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file <broker_instance_dir>/log/artemis.log and find two lines similar
to the ones below. Note the new version number that appears in the log after the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...

Red Hat AMQ 2021.Q3 Managing AMQ Broker

8

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.1.0.amq-700005-redhat-1 [0.0.0.0, nodeID=4782d50d-47a2-11e7-
a160-9801a793ea45]

2.2.1.2. Upgrading from 7.0.x to 7.0.y on Windows

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.0 Release Notes .

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. Stop the broker if it is running by entering the following command.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker by using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
<broker_instance_dir>\log\artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.0.0.amq-700005-redhat-1 [4782d50d-47a2-11e7-a160-
9801a793ea45] stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

9. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file <broker_instance_dir>\log\artemis.log and find two lines similar
to the ones below. Note the new version number that appears in the log after the broker is live.

CHAPTER 2. UPGRADING YOUR BROKER

9

https://access.redhat.com/documentation/en-us/red_hat_amq/7.0/html-single/amq_broker_7.0_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.1.0.amq-700005-redhat-1 [0.0.0.0, nodeID=4782d50d-47a2-11e7-
a160-9801a793ea45]

2.2.2. Upgrading a broker instance from 7.0.x to 7.1.0

AMQ Broker 7.1.0 includes configuration files and settings that were not included with previous versions.
Upgrading a broker instance from 7.0.x to 7.1.0 requires adding these new files and settings to your
existing 7.0.x broker instances. The following subsections describe how to upgrade a 7.0.x broker
instance to 7.1.0 for different operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.0.x to 7.1.0 on Linux

Upgrading from 7.0.x to 7.1.0 on Windows

2.2.2.1. Upgrading from 7.0.x to 7.1.0 on Linux

Before you can upgrade a 7.0.x broker, you need to install Red Hat AMQ Broker 7.1.0 and create a
temporary broker instance. This will generate the 7.1.0 configuration files required to upgrade a 7.0.x
broker.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.1 Release Notes .

Before upgrading your 7.0.x brokers, you must first install version 7.1.
For steps on installing 7.1 on Linux, see Installing AMQ Broker .

Procedure

1. If it is running, stop the 7.0.x broker you want to upgrade:

$ <broker_instance_dir>/bin/artemis stop

2. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

3. Open the file artemis.profile in the <broker_instance_dir>/etc/ directory of the 7.0.x broker.

a. Update the ARTEMIS_HOME property so that its value refers to the installation directory

Red Hat AMQ 2021.Q3 Managing AMQ Broker

10

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/amq_broker_7.1_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#installing-broker-getting-started

a. Update the ARTEMIS_HOME property so that its value refers to the installation directory
for AMQ Broker 7.1.0:

ARTEMIS_HOME="<7.1.0_install_dir>"

b. On the line below the one you updated, add the property ARTEMIS_INSTANCE_URI and
assign it a value that refers to the 7.0.x broker instance directory:

ARTEMIS_INSTANCE_URI="file://<7.0.x_broker_instance_dir>"

c. Update the JAVA_ARGS property by adding the jolokia.policyLocation parameter and
assigning it the following value:

-Djolokia.policyLocation=${ARTEMIS_INSTANCE_URI}/etc/jolokia-access.xml

4. Create a 7.1.0 broker instance. The creation procedure generates the configuration files
required to upgrade from 7.0.x to 7.1.0. In the following example, note that the instance is
created in the directory upgrade_tmp:

$ <7.1.0_install_dir>/bin/artemis create --allow-anonymous --user admin --password admin
upgrade_tmp

5. Copy configuration files from the etc directory of the temporary 7.1.0 instance into the
<broker_instance_dir>/etc/ directory of the 7.0.x broker.

a. Copy the management.xml file:

$ cp <temporary_7.1.0_broker_instance_dir>/etc/management.xml
<7.0_broker_instance_dir>/etc/

b. Copy the jolokia-access.xml file:

$ cp <temporary_7.1.0_broker_instance_dir>/etc/jolokia-access.xml
<7.0_broker_instance_dir>/etc/

6. Open up the bootstrap.xml file in the <broker_instance_dir>/etc/ directory of the 7.0.x
broker.

a. Comment out or delete the following two lines:

<app url="jolokia" war="jolokia.war"/>
<app url="hawtio" war="hawtio-no-slf4j.war"/>

b. Add the following to replace the two lines removed in the previous step:

<app url="console" war="console.war"/>

7. Start the broker that you upgraded:

$ <broker_instance_dir>/bin/artemis run

Additional Resources

CHAPTER 2. UPGRADING YOUR BROKER

11

For more information about creating an instance of the broker, see Creating a broker instance .

2.2.2.2. Upgrading from 7.0.x to 7.1.0 on Windows

Before you can upgrade a 7.0.x broker, you need to install Red Hat AMQ Broker 7.1.0 and create a
temporary broker instance. This will generate the 7.1.0 configuration files required to upgrade a 7.0.x
broker.

Prerequisites

Before upgrading AMQ Broker, review the release notes for the target release.
The release notes describe important enhancements, known issues, and changes to behavior in
the target release.

For more information, see the AMQ Broker 7.1 Release Notes .

Before upgrading your 7.0.x brokers, you must first install version 7.1.
For steps on installing 7.1 on Windows, see Installing AMQ Broker .

Procedure

1. If it is running, stop the 7.0.x broker you want to upgrade:

> <broker_instance_dir>\bin\artemis-service.exe stop

2. Back up the instance directory of the broker by using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

3. Open the file artemis.profile in the <broker_instance_dir>/etc/ directory of the 7.0.x broker.

a. Update the ARTEMIS_HOME property so that its value refers to the installation directory
for AMQ Broker 7.1.0:

ARTEMIS_HOME="<7.1.0_install_dir>"

b. On the line below the one you updated, add the property ARTEMIS_INSTANCE_URI and
assign it a value that refers to the 7.0.x broker instance directory:

ARTEMIS_INSTANCE_URI="file://<7.0.x_broker_instance_dir>"

c. Update the JAVA_ARGS property by adding the jolokia.policyLocation parameter and
assigning it the following value:

-Djolokia.policyLocation=${ARTEMIS_INSTANCE_URI}/etc/jolokia-access.xml

4. Create a 7.1.0 broker instance. The creation procedure generates the configuration files
required to upgrade from 7.0.x to 7.1.0. In the following example, note that the instance is
created in the directory upgrade_tmp:

> <7.1.0_install_dir>/bin/artemis create --allow-anonymous --user admin --password admin
upgrade_tmp

Red Hat AMQ 2021.Q3 Managing AMQ Broker

12

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/7.1/html-single/amq_broker_7.1_release_notes/
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#installing-broker-getting-started

5. Copy configuration files from the etc directory of the temporary 7.1.0 instance into the
<broker_instance_dir>/etc/ directory of the 7.0.x broker.

a. Copy the management.xml file:

> cp <temporary_7.1.0_broker_instance_dir>/etc/management.xml
<7.0_broker_instance_dir>/etc/

b. Copy the jolokia-access.xml file:

> cp <temporary_7.1.0_broker_instance_dir>/etc/jolokia-access.xml
<7.0_broker_instance_dir>/etc/

6. Open up the bootstrap.xml file in the <broker_instance_dir>/etc/ directory of the 7.0.x
broker.

a. Comment out or delete the following two lines:

<app url="jolokia" war="jolokia.war"/>
<app url="hawtio" war="hawtio-no-slf4j.war"/>

b. Add the following to replace the two lines removed in the previous step:

<app url="console" war="console.war"/>

7. Start the broker that you upgraded:

> <broker_instance_dir>\bin\artemis-service.exe start

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

2.2.3. Upgrading a broker instance from 7.1.x to 7.2.0

AMQ Broker 7.2.0 includes configuration files and settings that were not included with 7.0.x versions. If
you are running 7.0.x instances, you must first upgrade those broker instances from 7.0.x to 7.1.0 before
upgrading to 7.2.0. The following subsections describe how to upgrade a 7.1.x broker instance to 7.2.0
for different operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.1.x to 7.2.0 on Linux

Upgrading from 7.1.x to 7.2.0 on Windows

2.2.3.1. Upgrading from 7.1.x to 7.2.0 on Linux

NOTE

CHAPTER 2. UPGRADING YOUR BROKER

13

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded.

sudo chown amq-broker:amq-broker amq-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. In the
following example, the directory /opt/redhat is used.

sudo mv amq-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive by using the unzip command.

su - amq-broker
cd /opt/redhat
unzip jboss-amq-7.x.x.redhat-1.zip

5. Stop the broker if it is running.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
<broker_instance_dir>/log/artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.5.0.amq-720001-redhat-1 [0.0.0.0, nodeID=554cce00-63d9-11e8-
9808-54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/amq-7.x.x-redhat-1'

9. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

Red Hat AMQ 2021.Q3 Managing AMQ Broker

14

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file <broker_instance_dir>/log/artemis.log and find two lines similar
to the ones below. Note the new version number that appears in the log after the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.5.0.amq-720001-redhat-1 [0.0.0.0, nodeID=554cce00-63d9-11e8-
9808-54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

2.2.3.2. Upgrading from 7.1.x to 7.2.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. Stop the broker if it is running by entering the following command.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker by using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
<broker_instance_dir>\log\artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.0.0.amq-700005-redhat-1 [4782d50d-47a2-11e7-a160-
9801a793ea45] stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

CHAPTER 2. UPGRADING YOUR BROKER

15

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

ARTEMIS_HOME=<install_dir>

8. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

9. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file <broker_instance_dir>\log\artemis.log and find two lines similar
to the ones below. Note the new version number that appears in the log after the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.5.0.amq-720001-redhat-1 [0.0.0.0, nodeID=554cce00-63d9-11e8-
9808-54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

2.2.4. Upgrading a broker instance from 7.2.x to 7.3.0

The following subsections describe how to upgrade a 7.2.x broker instance to 7.3.0 for different
operating systems.

2.2.4.1. Resolve exception due to deprecated dispatch console

Starting in version 7.3.0, AMQ Broker no longer ships with the Hawtio dispatch console plugin dispatch-
hawtio-console.war. Previously, the dispatch console was used to manage AMQ Interconnect.
However, AMQ Interconnect now uses its own, standalone web console. This change affects the
upgrade procedures in the sections that follow.

If you take no further action before upgrading your broker instance to 7.3.0, the upgrade process
produces an exception that looks like the following:

2019-04-11 18:00:41,334 WARN [org.eclipse.jetty.webapp.WebAppContext] Failed startup of context
o.e.j.w.WebAppContext@1ef3efa8{/dispatch-hawtio-console,null,null}{/opt/amqbroker/amq-broker-
7.3.0/web/dispatch-hawtio-console.war}: java.io.FileNotFoundException: /opt/amqbroker/amq-broker-
7.3.0/web/dispatch-hawtio-console.war.

You can safely ignore the preceding exception without affecting the success of your upgrade.

However, if you would prefer not to see this exception during your upgrade, you must first remove a
reference to the Hawtio dispatch console plugin in the bootstrap.xml file of your existing broker
instance. The bootstrap.xml file is in the {instance_directory}/etc/ directory of your broker instance.
The following example shows some of the contents of the bootstrap.xml file for a AMQ Broker 7.2.4
instance:

Red Hat AMQ 2021.Q3 Managing AMQ Broker

16

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

<broker xmlns="http://activemq.org/schema">
....
 <!-- The web server is only bound to localhost by default -->
 <web bind="http://localhost:8161" path="web">
 <app url="redhat-branding" war="redhat-branding.war"/>
 <app url="artemis-plugin" war="artemis-plugin.war"/>
 <app url="dispatch-hawtio-console" war="dispatch-hawtio-console.war"/>
 <app url="console" war="console.war"/>
 </web>
</broker>

To avoid an exception when upgrading AMQ Broker to version 7.3.0, delete the line <app
url="dispatch-hawtio-console" war="dispatch-hawtio-console.war"/>, as shown in the preceding
example. Then, save the modified bootstrap file and start the upgrade process, as described in the
sections that follow.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.2.x to 7.3.0 on Linux

Upgrading from 7.2.x to 7.3.0 on Windows

2.2.4.2. Upgrading from 7.2.x to 7.3.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded.

sudo chown amq-broker:amq-broker amq-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. In the
following example, the directory /opt/redhat is used.

sudo mv amq-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive by using the unzip command.

CHAPTER 2. UPGRADING YOUR BROKER

17

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

su - amq-broker
cd /opt/redhat
unzip jboss-amq-7.x.x.redhat-1.zip

5. Stop the broker if it is running.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
<broker_instance_dir>/log/artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.6.3.amq-720001-redhat-1 [0.0.0.0, nodeID=554cce00-63d9-11e8-
9808-54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/amq-7.x.x-redhat-1'

9. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file <broker_instance_dir>/log/artemis.log and find two lines similar
to the ones below. Note the new version number that appears in the log after the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

2.2.4.3. Upgrading from 7.2.x to 7.3.0 on Windows

Red Hat AMQ 2021.Q3 Managing AMQ Broker

18

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

Procedure

1. Download the desired archive from the Red Hat Customer Portal by following the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. Stop the broker if it is running by entering the following command.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker by using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, a line similar to the
one below is displayed at the end of its log file, which can be found at
<broker_instance_dir>\log\artemis.log.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.6.3.amq-720001-redhat-1 [4782d50d-47a2-11e7-a160-
9801a793ea45] stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files to set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Edit the <broker_instance_dir>\etc\artemis.profile.cmd configuration file to set the
JAVA_ARGS environment variable to reference the correct log manager version.

JAVA_ARGS=<install_dir>\lib\jboss-logmanager-2.0.3.Final-redhat-1.jar

9. Edit the <broker_instance_dir>\bin\artemis-service.xml configuration file to set the
bootstrap class path start argument to reference the correct log manager version.

<startargument>Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.0.3.Final-
redhat-1.jar</startargument>

10. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the log file <broker_instance_dir>\log\artemis.log and find two lines similar
to the ones below. Note the new version number that appears in the log after the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live

CHAPTER 2. UPGRADING YOUR BROKER

19

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

2.2.5. Upgrading a broker instance from 7.3.0 to 7.4.0

The following subsections describe how to upgrade a 7.3.0 broker instance to 7.4.0 for different
operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.3.0 to 7.4.0 on Linux

Upgrading from 7.3.0 to 7.4.0 on Windows

2.2.5.1. Upgrading from 7.3.0 to 7.4.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.x.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.x.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following

Red Hat AMQ 2021.Q3 Managing AMQ Broker

20

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.x.x.redhat-1.zip

5. If the broker is running, stop it.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>/log/artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file.

a. Set the ARTEMIS_HOME property to the new directory created when the archive was
extracted.

ARTEMIS_HOME='/opt/redhat/amq-broker-7.x.x-redhat-1'

b. Edit the JAVA_ARGS property. Add the bootstrap class path argument, which references a
dependent file for the log manager.

-Xbootclasspath/a:$ARTEMIS_HOME/lib/wildfly-common-1.5.1.Final-redhat-00001.jar

9. Edit the <broker_instance_dir>/etc/bootstrap.xml configuration file. In the <web>
configuration element, add a reference to the metrics plugin file for AMQ Broker.

<app url="metrics" war="metrics.war"/>

10. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>/log/artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

CHAPTER 2. UPGRADING YOUR BROKER

21

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

2.2.5.2. Upgrading from 7.3.0 to 7.4.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. If the broker is running, stop it.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>\log\artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files. Set the ARTEMIS_HOME
property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Edit the <broker_instance_dir>\etc\artemis.profile.cmd configuration file. Set the
JAVA_ARGS environment variable to reference the correct log manager version and dependent
file.

JAVA_ARGS=-Xbootclasspath/%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.1.Final-redhat-00001.jar

9. Edit the <broker_instance_dir>\bin\artemis-service.xml configuration file. Set the bootstrap
class path start argument to reference the correct log manager version and dependent file.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

22

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

<startargument>-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.1.Final-redhat-
00001.jar</startargument>

10. Edit the <broker_instance_dir>\etc\bootstrap.xml configuration file. In the <web>
configuration element, add a reference to the metrics plugin file for AMQ Broker.

<app url="metrics" war="metrics.war"/>

11. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

12. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>\log\artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

2.3. UPGRADING A BROKER INSTANCE FROM 7.4.0 TO 7.4.X

IMPORTANT

AMQ Broker 7.4 has been designated as a Long Term Support (LTS) release version. Bug
fixes and security advisories will be made available for AMQ Broker 7.4 in a series of micro
releases (7.4.1, 7.4.2, and so on) for a period of at least 12 months. This means that you will
be able to get recent bug fixes and security advisories for AMQ Broker without having to
upgrade to a new minor release. For more information, see Long Term Support for AMQ
Broker.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

The following subsections describe how to upgrade a 7.4.0 broker instance to 7.4.x for different

CHAPTER 2. UPGRADING YOUR BROKER

23

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/articles/4369141
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing

The following subsections describe how to upgrade a 7.4.0 broker instance to 7.4.x for different
operating systems.

Upgrading from 7.4.0 to 7.4.x on Linux

Upgrading from 7.4.0 to 7.4.x on Windows

2.3.1. Upgrading from 7.4.0 to 7.4.x on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.4.x.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.4.x.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.4.x.redhat-1.zip

5. If the broker is running, stop it.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>/log/artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file. Set the

Red Hat AMQ 2021.Q3 Managing AMQ Broker

24

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file. Set the
ARTEMIS_HOME property to the new directory created when the archive was extracted.

ARTEMIS_HOME='/opt/redhat/amq-broker-7.4.x-redhat-1'

9. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>/log/artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

2.3.2. Upgrading from 7.4.0 to 7.4.x on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. If the broker is running, stop it.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>\log\artemis.log file.

CHAPTER 2. UPGRADING YOUR BROKER

25

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files. Set the ARTEMIS_HOME
property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

9. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>\log\artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

2.4. UPGRADING A BROKER INSTANCE FROM 7.4.X TO 7.5.0

The following subsections describe how to upgrade a 7.4.x broker instance to 7.5.0 for different
operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.4.x to 7.5.0 on Linux

Upgrading from 7.4.x to 7.5.0 on Windows

2.4.1. Upgrading from 7.4.x to 7.5.0 on Linux

NOTE

Red Hat AMQ 2021.Q3 Managing AMQ Broker

26

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.5.0.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.5.0.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.5.0.redhat-1.zip

5. If the broker is running, stop it.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>/log/artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file.

a. Set the ARTEMIS_HOME property to the new directory created when the archive was
extracted.

ARTEMIS_HOME='/opt/redhat/amq-broker-7.5.0-redhat-1'

b. Edit the JAVA_ARGS property. Add the bootstrap class path argument, which references a
dependent file for the log manager.

CHAPTER 2. UPGRADING YOUR BROKER

27

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

-Xbootclasspath/a:$ARTEMIS_HOME/lib/wildfly-common-1.5.2.Final-redhat-00001.jar

9. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>/log/artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

2.4.2. Upgrading from 7.4.x to 7.5.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. If the broker is running, stop it.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>\log\artemis.log file.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

28

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.7.0.redhat-00054 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files. Set the ARTEMIS_HOME
property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Edit the <broker_instance_dir>\etc\artemis.profile.cmd configuration file. Set the
JAVA_ARGS environment variable to reference the correct log manager version and
dependent file.

JAVA_ARGS=-Xbootclasspath/%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-00001.jar

9. Edit the <broker_instance_dir>\bin\artemis-service.xml configuration file. Set the bootstrap
class path start argument to reference the correct log manager version and dependent file.

<startargument>-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-
00001.jar</startargument>

10. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>\log\artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

2.5. UPGRADING A BROKER INSTANCE FROM 7.5.0 TO 7.6.0

The following subsections describe how to upgrade a 7.5.0 broker instance to 7.6.0 for different
operating systems.

CHAPTER 2. UPGRADING YOUR BROKER

29

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.5.0 to 7.6.0 on Linux

Upgrading from 7.5.0 to 7.6.0 on Windows

2.5.1. Upgrading from 7.5.0 to 7.6.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.6.0.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.6.0.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.6.0.redhat-1.zip

5. If the broker is running, stop it.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>/log/artemis.log file.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

30

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00054 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file.

a. Set the ARTEMIS_HOME property to the new directory created when the archive was
extracted.

ARTEMIS_HOME='/opt/redhat/amq-broker-7.6.0-redhat-1'

b. Edit the JAVA_ARGS property. Add the bootstrap class path argument, which references a
dependent file for the log manager.

-Xbootclasspath/a:$ARTEMIS_HOME/lib/wildfly-common-1.5.2.Final-redhat-00002.jar

9. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

10. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>/log/artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.11.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

2.5.2. Upgrading from 7.5.0 to 7.6.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

CHAPTER 2. UPGRADING YOUR BROKER

31

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

4. If the broker is running, stop it.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>\log\artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.9.0.redhat-00054 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files. Set the ARTEMIS_HOME
property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Edit the <broker_instance_dir>\etc\artemis.profile.cmd configuration file. Set the
JAVA_ARGS environment variable to reference the correct log manager version and
dependent file.

JAVA_ARGS=-Xbootclasspath/%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-00002.jar

9. Edit the <broker_instance_dir>\bin\artemis-service.xml configuration file. Set the bootstrap
class path start argument to reference the correct log manager version and dependent file.

<startargument>-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-
00002.jar</startargument>

10. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>\log\artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.11.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

Red Hat AMQ 2021.Q3 Managing AMQ Broker

32

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

2.6. UPGRADING A BROKER INSTANCE FROM 7.6.0 TO 7.7.0

The following subsections describe how to upgrade a 7.6.0 broker instance to 7.7.0 for different
operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.6.0 to 7.7.0 on Linux

Upgrading from 7.6.0 to 7.7.0 on Windows

2.6.1. Upgrading from 7.6.0 to 7.7.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.7.0.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.7.0.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.7.0.redhat-1.zip

CHAPTER 2. UPGRADING YOUR BROKER

33

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

5. If the broker is running, stop it.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>/log/artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.11.0.redhat-00001 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file.

a. Set the ARTEMIS_HOME property to the new directory created when the archive was
extracted. For example:

ARTEMIS_HOME='/opt/redhat/amq-broker-7.7.0-redhat-1'

b. Locate the JAVA_ARGS property. Ensure that the bootstrap class path argument
references the required version of a dependent file for the log manager, as shown below.

-Xbootclasspath/a:$ARTEMIS_HOME/lib/wildfly-common-1.5.2.Final-redhat-00002.jar

9. Edit the <broker_instance_dir>/etc/logging.properties configuration file.

a. On the list of additional loggers to be configured, include the
org.apache.activemq.audit.resource resource logger that was added in AMQ Broker
7.7.0.

b. Before the Console handler configuration section, add a default configuration for the
resource logger.

10. Start the upgraded broker.

loggers=org.eclipse.jetty,org.jboss.logging,org.apache.activemq.artemis.core.server,org.ap
ache.activemq.artemis.utils,org.apache.activemq.artemis.journal,org.apache.activemq.arte
mis.jms.server,org.apache.activemq.artemis.integration.bootstrap,org.apache.activemq.aud
it.base,org.apache.activemq.audit.message,org.apache.activemq.audit.resource

..

logger.org.apache.activemq.audit.resource.level=ERROR
logger.org.apache.activemq.audit.resource.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.resource.useParentHandlers=false

Console handler configuration
..

Red Hat AMQ 2021.Q3 Managing AMQ Broker

34

<broker_instance_dir>/bin/artemis run

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>/log/artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Mesq.audit.resource.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.resource.useParentHandlers=false
sage Broker version 2.13.0.redhat-00003 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

2.6.2. Upgrading from 7.6.0 to 7.7.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. If the broker is running, stop it.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right-click the <broker_instance_dir> folder and select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>\log\artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.11.0.redhat-00001 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and

CHAPTER 2. UPGRADING YOUR BROKER

35

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files. Set the ARTEMIS_HOME
property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Edit the <broker_instance_dir>\etc\artemis.profile.cmd configuration file. Ensure that the
JAVA_ARGS environment variable references the correct versions for the log manager and
dependent file, as shown below.

JAVA_ARGS=-Xbootclasspath/%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-00002.jar

9. Edit the <broker_instance_dir>\bin\artemis-service.xml configuration file. Ensure that the
bootstrap class path start argument references the correct versions for the log manager and
dependent file, as shown below.

<startargument>-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-
00002.jar</startargument>

10. Edit the <broker_instance_dir>\etc\logging.properties configuration file.

a. On the list of additional loggers to be configured, include the
org.apache.activemq.audit.resource resource logger that was added in AMQ Broker
7.7.0.

b. Before the Console handler configuration section, add a default configuration for the
resource logger.

11. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

12. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>\log\artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...

loggers=org.eclipse.jetty,org.jboss.logging,org.apache.activemq.artemis.core.server,org.ap
ache.activemq.artemis.utils,org.apache.activemq.artemis.journal,org.apache.activemq.arte
mis.jms.server,org.apache.activemq.artemis.integration.bootstrap,org.apache.activemq.aud
it.base,org.apache.activemq.audit.message,org.apache.activemq.audit.resource

..

logger.org.apache.activemq.audit.resource.level=ERROR
logger.org.apache.activemq.audit.resource.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.resource.useParentHandlers=false

Console handler configuration
..

Red Hat AMQ 2021.Q3 Managing AMQ Broker

36

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.13.0.redhat-00003 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

2.7. UPGRADING A BROKER INSTANCE FROM 7.7.0 TO 7.8.0

The following subsections describe how to upgrade a 7.7.0 broker instance to 7.8.0 for different
operating systems.

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.7.0 to 7.8.0 on Linux

Upgrading from 7.7.0 to 7.8.0 on Windows

2.7.1. Upgrading from 7.7.0 to 7.8.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.9.3.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.9.3.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following

CHAPTER 2. UPGRADING YOUR BROKER

37

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.9.3.redhat-1.zip

5. If the broker is running, stop it.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>/log/artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.13.0.redhat-00003 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file.

a. Set the ARTEMIS_HOME property to the new directory created when the archive was
extracted. For example:

ARTEMIS_HOME='/opt/redhat/amq-broker-7.9.3-redhat-1'

b. Locate the JAVA_ARGS property. Ensure that the bootstrap class path argument
references the required version of a dependent file for the log manager, as shown below.

-Xbootclasspath/a:$ARTEMIS_HOME/lib/wildfly-common-1.5.2.Final-redhat-00002.jar

9. Edit the <broker_instance_dir>/etc/bootstrap.xml configuration file. In the web element,
update the name of the .war file required by AMQ Management Console in 7.9.

10. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>/log/artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live

<web bind="http://localhost:8161" path="web">
 ...
 <app url="console" war="hawtio.war"/>
 ...
</web>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

38

...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Mesq.audit.resource.handlers=AUDIT_FILE
logger.org.apache.activemq.audit.resource.useParentHandlers=false
sage Broker version 2.16.0.redhat-00007 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

2.7.2. Upgrading from 7.7.0 to 7.8.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. If the broker is running, stop it.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right-click the <broker_instance_dir> folder amd select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>\log\artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.13.0.redhat-00003 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files. Set the ARTEMIS_HOME
property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Edit the <broker_instance_dir>\etc\artemis.profile.cmd configuration file. Ensure that the

CHAPTER 2. UPGRADING YOUR BROKER

39

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

8. Edit the <broker_instance_dir>\etc\artemis.profile.cmd configuration file. Ensure that the
JAVA_ARGS environment variable references the correct versions for the log manager and
dependent file, as shown below.

JAVA_ARGS=-Xbootclasspath/%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-00002.jar

9. Edit the <broker_instance_dir>\bin\artemis-service.xml configuration file. Ensure that the
bootstrap class path start argument references the correct versions for the log manager and
dependent file, as shown below.

<startargument>-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-
00002.jar</startargument>

10. Edit the <broker_instance_dir>\etc\bootstrap.xml configuration file. In the web element,
update the name of the .war file required by AMQ Management Console in 7.9

11. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

12. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>\log\artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.16.0.redhat-00007 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

2.8. UPGRADING A BROKER INSTANCE FROM 7.8.0 TO 7.9.0

The following subsections describe how to upgrade a 7.8.0 broker instance to 7.9.0 for different
operating systems.

IMPORTANT

<web bind="http://localhost:8161" path="web">
 ...
 <app url="console" war="hawtio.war"/>
 ...
</web>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

40

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

IMPORTANT

Starting with AMQ Broker 7.1.0, you can access AMQ Management Console only from the
local host by default. To learn about configuring remote access to the console, see
Configuring local and remote access to AMQ Management Console .

Upgrading from 7.8.0 to 7.9.0 on Linux

Upgrading from 7.8.0 to 7.9.0 on Windows

NOTE

The format of the journal used by the broker changed in version 7.9.0. Therefore, after
you upgrade a broker to version 7.9.0, you cannot downgrade to a previous version.

2.8.1. Upgrading from 7.8.0 to 7.9.0 on Linux

NOTE

The name of the archive that you download could differ from what is used in the following
examples.

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Change the owner of the archive to the same user that owns the AMQ Broker installation to be
upgraded. The following example shows a user called amq-broker.

sudo chown amq-broker:amq-broker amq-broker-7.9.3.redhat-1.zip

3. Move the archive to the directory created during the original installation of AMQ Broker. The
following example uses /opt/redhat.

sudo mv amq-broker-7.9.3.redhat-1.zip /opt/redhat

4. As the directory owner, extract the contents of the compressed archive. In the following
example, the user amq-broker extracts the archive using the unzip command.

su - amq-broker
cd /opt/redhat
unzip amq-broker-7.9.3.redhat-1.zip

5. If the broker is running, stop it.

<broker_instance_dir>/bin/artemis stop

6. Back up the instance directory of the broker by copying it to the home directory of the current
user.

cp -r <broker_instance_dir> ~/

CHAPTER 2. UPGRADING YOUR BROKER

41

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/#proc-br-configuring-local-and-remote-access-to-console_managing
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

7. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>/log/artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.13.0.redhat-00003 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

8. Edit the <broker_instance_dir>/etc/artemis.profile configuration file.

a. Set the ARTEMIS_HOME property to the new directory created when the archive was
extracted. For example:

ARTEMIS_HOME='/opt/redhat/amq-broker-7.9.3-redhat-1'

b. Locate the JAVA_ARGS property. Ensure that the bootstrap class path argument
references the required version of a dependent file for the log manager, as shown below.

-Xbootclasspath/a:$ARTEMIS_HOME/lib/wildfly-common-1.5.2.Final-redhat-00002.jar

9. Edit the <broker_instance_dir>/etc/bootstrap.xml configuration file. In the web element,
update the name of the .war file required by AMQ Management Console in 7.9.

10. Start the upgraded broker.

<broker_instance_dir>/bin/artemis run

11. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>/log/artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Mes
INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
sage Broker version 2.18.0.redhat-00010 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>/etc/artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the etc/ and data/
directories within the broker instance’s directory.

<web bind="http://localhost:8161" path="web">
 ...
 <app url="console" war="hawtio.war"/>
 ...
</web>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

42

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

2.8.2. Upgrading from 7.8.0 to 7.9.0 on Windows

Procedure

1. Download the desired archive from the Red Hat Customer Portal. Follow the instructions
provided in Downloading the AMQ Broker archive .

2. Use a file manager to move the archive to the folder you created during the last installation of
AMQ Broker.

3. Extract the contents of the archive. Right-click the .zip file and select Extract All.

4. If the broker is running, stop it.

<broker_instance_dir>\bin\artemis-service.exe stop

5. Back up the broker using a file manager.

a. Right-click the <broker_instance_dir> folder amd select Copy.

b. Right-click in the same window and select Paste.

6. (Optional) Note the current version of the broker. After the broker stops, you see a line similar
to the one below at the end of the <broker_instance_dir>\log\artemis.log file.

INFO [org.apache.activemq.artemis.core.server] AMQ221002: Apache ActiveMQ Artemis
Message Broker version 2.13.0.redhat-00003 [4782d50d-47a2-11e7-a160-9801a793ea45]
stopped, uptime 28 minutes

7. Edit the <broker_instance_dir>\etc\artemis.profile.cmd and
<broker_instance_dir>\bin\artemis-service.xml configuration files. Set the ARTEMIS_HOME
property to the new directory created when the archive was extracted.

ARTEMIS_HOME=<install_dir>

8. Edit the <broker_instance_dir>\etc\artemis.profile.cmd configuration file. Ensure that the
JAVA_ARGS environment variable references the correct versions for the log manager and
dependent file, as shown below.

JAVA_ARGS=-Xbootclasspath/%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-00002.jar

9. Edit the <broker_instance_dir>\bin\artemis-service.xml configuration file. Ensure that the
bootstrap class path start argument references the correct versions for the log manager and
dependent file, as shown below.

<startargument>-Xbootclasspath/a:%ARTEMIS_HOME%\lib\jboss-logmanager-2.1.10.Final-
redhat-00001.jar;%ARTEMIS_HOME%\lib\wildfly-common-1.5.2.Final-redhat-
00002.jar</startargument>

10. Edit the <broker_instance_dir>\etc\bootstrap.xml configuration file. In the web element,
update the name of the .war file required by AMQ Management Console in 7.9

<web bind="http://localhost:8161" path="web">

CHAPTER 2. UPGRADING YOUR BROKER

43

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#downloading-broker-archive-getting-started

11. Start the upgraded broker.

<broker_instance_dir>\bin\artemis-service.exe start

12. (Optional) Confirm that the broker is running and that the version has changed. After starting
the broker, open the <broker_instance_dir>\log\artemis.log file. Find two lines similar to the
ones below. Note the new version number that appears in the log when the broker is live.

INFO [org.apache.activemq.artemis.core.server] AMQ221007: Server is now live
...
INFO [org.apache.activemq.artemis.core.server] AMQ221001: Apache ActiveMQ Artemis
Message Broker version 2.18.0.redhat-00010 [0.0.0.0, nodeID=554cce00-63d9-11e8-9808-
54ee759954c4]

Additional Resources

For more information about creating an instance of the broker, see Creating a broker instance .

You can now store a broker instance’s configuration files and data in any custom directory,
including locations outside of the broker instance’s directory. In the
<broker_instance_dir>\etc\artemis.profile file, update the ARTEMIS_INSTANCE_ETC_URI
property by specifying the location of the custom directory after creating the broker instance.
Previously, these configuration files and data could only be stored in the \etc and \data
directories within the broker instance’s directory.

 ...
 <app url="console" war="hawtio.war"/>
 ...
</web>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

44

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

CHAPTER 3. USING THE COMMAND LINE INTERFACE
The command line interface (CLI) allows interaction with the message broker by use of an interactive
terminal. Manage broker actions, configure messages, and enter useful commands by using the CLI.

The command line interface (CLI) allows users and roles to be added to files, by using an interactive
process.

3.1. STARTING BROKER INSTANCES

A broker instance is a directory containing all the configuration and runtime data, such as logs and data
files. The runtime data is associated with a unique broker process.

You can start a broker in the foreground by using the artemis script, as a Linux service, or as a Windows
service.

3.1.1. Starting the broker instance

After the broker instance is created, you use the artemis run command to start it.

Procedure

1. Switch to the user account you created during installation.

2. Use the artemis run command to start the broker instance.

$ /var/opt/amq-broker/mybroker/bin/artemis run

 __ __ ____ ____ _
 /\ | \/ |/ __ \ | _ \ | |
 / \ | \ / | | | | | |_) |_ __ ___ | | _____ _ __
 / /\ \ | |\/| | | | | | _ <| '__/ _ \| |/ / _ \ '__|
 / ____ \| | | | |__| | | |_) | | | (_) | < __/ |
/_/ __| |_|____\ |____/|_| ___/|_|____|_|

Red Hat JBoss AMQ 7.2.1.GA

10:53:43,959 INFO [org.apache.activemq.artemis.integration.bootstrap] AMQ101000:
Starting ActiveMQ Artemis Server
10:53:44,076 INFO [org.apache.activemq.artemis.core.server] AMQ221000: live Message
Broker is starting with configuration Broker Configuration
(clustered=false,journalDirectory=./data/journal,bindingsDirectory=./data/bindings,largeMessage
sDirectory=./data/large-messages,pagingDirectory=./data/paging)
10:53:44,099 INFO [org.apache.activemq.artemis.core.server] AMQ221012: Using AIO
Journal
...

The broker starts and displays log output with the following information:

The location of the transaction logs and cluster configuration.

The type of journal being used for message persistence (AIO in this case).

$ su - amq-broker

CHAPTER 3. USING THE COMMAND LINE INTERFACE

45

The URI(s) that can accept client connections.
By default, port 61616 can accept connections from any of the supported protocols (CORE,
MQTT, AMQP, STOMP, HORNETQ, and OPENWIRE). There are separate, individual ports
for each protocol as well.

The web console is available at http://localhost:8161.

The Jolokia service (JMX over REST) is available at http://localhost:8161/jolokia.

3.1.2. Starting a broker as a Linux service

If the broker is installed on Linux, you can run it as a service.

Procedure

1. Create a new amq-broker.service file in the /etc/systemd/system/ directory.

2. Copy the following text into the file.
Modify the path and user fields according to the information provided during the broker
instance creation. In the example below, the user amq-broker starts the broker service installed
under the /var/opt/amq-broker/mybroker/ directory.

[Unit]
Description=AMQ Broker
After=syslog.target network.target

[Service]
ExecStart=/var/opt/amq-broker/mybroker/bin/artemis run
Restart=on-failure
User=amq-broker
Group=amq-broker

A workaround for Java signal handling
SuccessExitStatus=143

[Install]
WantedBy=multi-user.target

3. Open a terminal.

4. Enable the broker service using the following command:

sudo systemctl enable amq-broker

5. Run the broker service using the following command:

sudo systemctl start amq-broker

3.1.3. Starting a broker as a Windows service

If the broker is installed on Windows, you can run it as a service.

Procedure

Red Hat AMQ 2021.Q3 Managing AMQ Broker

46

http://localhost:8161
http://localhost:8161/jolokia

1. Open a command prompt to enter the commands

2. Install the broker as a service with the following command:

<broker_instance_dir>\bin\artemis-service.exe install

3. Start the service by using the following command:

<broker_instance_dir>\bin\artemis-service.exe start

4. (Optional) Uninstall the service:

<broker_instance_dir>\bin\artemis-service.exe uninstall

3.2. STOPPING BROKER INSTANCES

Stop the broker instance manually or configure the broker to shutdown gracefully.

3.2.1. Stopping the broker instance

After creating the standalone broker and producing and consuming test messages, you can stop the
broker instance.

This procedure manually stops the broker, which forcefully closes all client connections. In a production
environment, you should configure the broker to stop gracefully so that client connections can be closed
properly.

Procedure

Use the artemis stop command to stop the broker instance:

3.2.2. Stopping a broker instance gracefully

A manual shutdown forcefully disconnects all clients after a stop command is entered. As an alternative,
configure the broker to shut down gracefully by using the graceful-shutdown-enabled configuration
element.

When graceful-shutdown-enabled is set to true, no new client connections are allowed after a stop
command is entered. However, existing connections are allowed to close on the client-side before the
shutdown process is started. The default value for graceful-shutdown-enabled is false.

Use the graceful-shutdown-timeout configuration element to set a length of time, in milliseconds, for
clients to disconnect before connections are forcefully closed from the broker side. After all connections
are closed, the shutdown process is started. One advantage of using graceful-shutdown-timeout is
that it prevents client connections from delaying a shutdown. The default value for graceful-shutdown-
timeout is -1, meaning the broker waits indefinitely for clients to disconnect.

$ /var/opt/amq-broker/mybroker/bin/artemis stop
2018-12-03 14:37:30,630 INFO [org.apache.activemq.artemis.core.server] AMQ221002:
Apache ActiveMQ Artemis Message Broker version 2.6.1.amq-720004-redhat-1 [b6c244ef-
f1cb-11e8-a2d7-0800271b03bd] stopped, uptime 35 minutes
Server stopped!

CHAPTER 3. USING THE COMMAND LINE INTERFACE

47

The following procedure demonstrates how to configure a graceful shutdown that uses a timeout.

Procedure

1. Open the configuration file <broker_instance_dir>\etc\broker.xml.

2. Add the graceful-shutdown-enabled configuration element and set the value to true.

3. Add the graceful-shutdown-timeout configuration element and set a value for the timeout in
milliseconds. In the following example, client connections are forcefully closed 30 seconds
(30000 milliseconds) after the stop command is issued.

3.3. AUDITING MESSAGES BY INTERCEPTING PACKETS

Intercept packets entering or exiting the broker, to audit packets or filter messages. Interceptors
change the packets that they intercept. This makes interceptors powerful, but also potentially
dangerous.

Develop interceptors to meet your business requirements. Interceptors are protocol specific and must
implement the appropriate interface.

Interceptors must implement the intercept() method, which returns a boolean value. If the value is true,
the message packet continues onward. If false, the process is aborted, no other interceptors are called,
and the message packet is not processed further.

3.3.1. Creating interceptors

Interceptors can change the packets they intercept. You can create your own incoming and outgoing
interceptors. All interceptors are protocol specific and are called for any packet entering or exiting the
server respectively. This allows you to create interceptors to meet business requirements such as
auditing packets.

<configuration>
 <core>
 ...
 <graceful-shutdown-enabled>
 true
 </graceful-shutdown-enabled>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <graceful-shutdown-enabled>
 true
 </graceful-shutdown-enabled>
 <graceful-shutdown-timeout>
 30000
 </graceful-shutdown-timeout>
 ...
 </core>
</configuration>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

48

Interceptors and their dependencies must be placed in the Java classpath of the broker. You can use the
<broker_instance_dir>/lib directory because it is part of the classpath by default.

The following examples demonstrate how to create an interceptor that checks the size of each packet
passed to it.

NOTE

The examples implement a specific interface for each protocol.

Procedure

1. Implement the appropriate interface and override its intercept() method.

a. If you are using the AMQP protocol, implement the
org.apache.activemq.artemis.protocol.amqp.broker.AmqpInterceptor interface.

b. If you are using Core Protocol, your interceptor must implement the
org.apache.artemis.activemq.api.core.Interceptor interface.

package com.example;

import org.apache.activemq.artemis.protocol.amqp.broker.AMQPMessage;
import org.apache.activemq.artemis.protocol.amqp.broker.AmqpInterceptor;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements AmqpInterceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 public boolean intercept(final AMQPMessage message, RemotingConnection
connection)
 {
 int size = message.getEncodeSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This AMQPMessage has an acceptable size.");
 return true;
 }
 return false;
 }
}

package com.example;

import org.apache.artemis.activemq.api.core.Interceptor;
import org.apache.activemq.artemis.core.protocol.core.Packet;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(Packet packet, RemotingConnection connection)

CHAPTER 3. USING THE COMMAND LINE INTERFACE

49

c. If you are using the MQTT protocol, implement the
org.apache.activemq.artemis.core.protocol.mqtt.MQTTInterceptor interface.

d. If you are using the STOMP protocol, implement the
org.apache.activemq.artemis.core.protocol.stomp.StompFrameInterceptor interface.

 throws ActiveMQException
 {
 int size = packet.getPacketSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This Packet has an acceptable size.");
 return true;
 }
 return false;
 }
}

package com.example;

import org.apache.activemq.artemis.core.protocol.mqtt.MQTTInterceptor;
import io.netty.handler.codec.mqtt.MqttMessage;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(MqttMessage mqttMessage, RemotingConnection connection)
 throws ActiveMQException
 {
 byte[] msg = (mqttMessage.toString()).getBytes();
 int size = msg.length;
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This MqttMessage has an acceptable size.");
 return true;
 }
 return false;
 }
}

package com.example;

import org.apache.activemq.artemis.core.protocol.stomp.StompFrameInterceptor;
import org.apache.activemq.artemis.core.protocol.stomp.StompFrame;
import org.apache.activemq.artemis.spi.core.protocol.RemotingConnection;

public class MyInterceptor implements Interceptor
{
 private final int ACCEPTABLE_SIZE = 1024;

 @Override
 boolean intercept(StompFrame stompFrame, RemotingConnection connection)
 throws ActiveMQException
 {

Red Hat AMQ 2021.Q3 Managing AMQ Broker

50

3.3.2. Configuring the broker to use interceptors

Prerequisites

Create an interceptor class and add it (and its dependencies) to the Java classpath of the
broker. You can use the <broker_instance_dir>/lib directory since it is part of the classpath by
default.

Procedure

1. Open <broker_instance_dir>/etc/broker.xml

2. Configure the broker to use an interceptor by adding configuration to
<broker_instance_dir>/etc/broker.xml

a. If the interceptor is intended for incoming messages, add its class-name to the list of
remoting-incoming-interceptors.

b. If the interceptor is intended for outgoing messages, add its class-name to the list of
remoting-outgoing-interceptors.

3.3.3. Interceptors on the client side

Clients can use interceptors to intercept packets either sent by the client to the server or by the server
to the client. If the broker-side interceptor returns a false value, then no other interceptors are called
and the client does not process the packet further. This process happens transparently, unless an

 int size = stompFrame.getEncodedSize();
 if (size <= ACCEPTABLE_SIZE) {
 System.out.println("This StompFrame has an acceptable size.");
 return true;
 }
 return false;
 }
}

<configuration>
 <core>
 ...
 <remoting-incoming-interceptors>
 <class-name>org.example.MyIncomingInterceptor</class-name>
 </remoting-incoming-interceptors>
 ...
 </core>
</configuration>

<configuration>
 <core>
 ...
 <remoting-outgoing-interceptors>
 <class-name>org.example.MyOutgoingInterceptor</class-name>
 </remoting-outgoing-interceptors>
 </core>
</configuration>

CHAPTER 3. USING THE COMMAND LINE INTERFACE

51

outgoing packet is sent in a blocking fashion. In this case, an ActiveMQException is thrown to the
caller. The ActiveMQException thrown contains the name of the interceptor that returned the false
value.

On the server, the client interceptor classes and their dependencies must be added to the Java
classpath of the client, to be properly instantiated and invoked.

3.4. CHECKING THE HEALTH OF BROKERS AND QUEUES

AMQ Broker includes a command-line utility that enables you to perform various health checks on
brokers and queues in your broker topology.

The following example shows how to the use the utility to run health checks.

Procedure

1. See the list of checks that you can run for a particular broker (that is, node) in your broker
topology.

You see output that describes the set of options that you can use with the artemis check node
command.

$ <broker_instance_dir>/bin/artemis help check node

NAME
 artemis check node - Check a node

SYNOPSIS
 artemis check node [--backup] [--clientID <clientID>]
 [--diskUsage <diskUsage>] [--fail-at-end] [--live]
 [--memoryUsage <memoryUsage>] [--name <name>] [--password <password>]
 [--peers <peers>] [--protocol <protocol>] [--silent]
 [--timeout <timeout>] [--up] [--url <brokerURL>] [--user <user>]
 [--verbose]

OPTIONS
 --backup
 Check that the node has a backup

 --clientID <clientID>
 ClientID to be associated with connection

 --diskUsage <diskUsage>
 Disk usage percentage to check or -1 to use the max-disk-usage

 --fail-at-end
 If a particular module check fails, continue the rest of the checks

 --live
 Check that the node has a live

 --memoryUsage <memoryUsage>
 Memory usage percentage to check

 --name <name>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

52

2. For example, check that the disk usage of the local broker is below the maximum disk usage
configured for the broker.

In the preceding example, specifying a value of -1 for the --diskUsage option means that the
utility checks disk usage against the maximum disk usage configured for the broker. The
maximum disk usage of a broker is configured using the max-disk-usage parameter in the
broker.xml configuration file. The value specified for max-disk-usage represents the
percentage of available physical disk space that the broker is allowed to consume.

3. See the list of checks that you can run for a particular queue in your broker topology.

You see output that describes the set of options that you can use with the artemis check
queue command.

 Name of the target to check

 --password <password>
 Password used to connect

 --peers <peers>
 Number of peers to check

 --protocol <protocol>
 Protocol used. Valid values are amqp or core. Default=core.

 --silent
 It will disable all the inputs, and it would make a best guess for any required input

 --timeout <timeout>
 Time to wait for the check execution, in milliseconds

 --up
 Check that the node is started, it is executed by default if there are no other checks

 --url <brokerURL>
 URL towards the broker. (default: tcp://localhost:61616)

 --user <user>
 User used to connect

 --verbose
 Adds more information on the execution

$ <broker_instance_dir>/bin/artemis check node --url tcp://localhost:61616 --diskUsage -1

Connection brokerURL = tcp://localhost:61616
Running NodeCheck
Checking that the disk usage is less then the max-disk-usage ... success
Checks run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.065 sec - NodeCheck

$ <broker_instance_dir>/bin/artemis help check queue

NAME
 artemis check queue - Check a queue

CHAPTER 3. USING THE COMMAND LINE INTERFACE

53

4. The utility can execute multiple options with a single command. For example, to check
production, browsing, and consumption of 1000 messages on the default helloworld queue on
the local broker, use the following command:

SYNOPSIS
 artemis check queue [--browse <browse>] [--clientID <clientID>]
 [--consume <consume>] [--fail-at-end] [--name <name>]
 [--password <password>] [--produce <produce>] [--protocol <protocol>]
 [--silent] [--timeout <timeout>] [--up] [--url <brokerURL>]
 [--user <user>] [--verbose]

OPTIONS
 --browse <browse>
 Number of the messages to browse or -1 to check that the queue is
 browsable

 --clientID <clientID>
 ClientID to be associated with connection

 --consume <consume>
 Number of the messages to consume or -1 to check that the queue is consumable

 --fail-at-end
 If a particular module check fails, continue the rest of the checks

 --name <name>
 Name of the target to check

 --password <password>
 Password used to connect

 --produce <produce>
 Number of the messages to produce

 --protocol <protocol>
 Protocol used. Valid values are amqp or core. Default=core.

 --silent
 It will disable all the inputs, and it would make a best guess for any required input

 --timeout <timeout>
 Time to wait for the check execution, in milliseconds

 --up
 Check that the queue exists and is not paused, it is executed by default if there are no
other checks

 --url <brokerURL>
 URL towards the broker. (default: tcp://localhost:61616)

 --user <user>
 User used to connect

 --verbose
 Adds more information on the execution

Red Hat AMQ 2021.Q3 Managing AMQ Broker

54

In the preceding example, observe that you did not specify a broker URL when running the
queue check. If you do not explicitly specify a URL, the utility uses a default value of
tcp://localhost:61616.

3.5. COMMAND LINE TOOLS

AMQ Broker includes a set of command line interface (CLI) tools, so you can manage your messaging
journal. The table below lists the name for each tool and its corresponding description.

Tool Description

address Addresses tool groups (create/delete/update/show) (example ./artemis address
create).

browser Browses messages on an instance.

consumer Consumes messages on an instance.

data Prints reports about journal records and compacts the data.

decode Imports the internal journal format from encode.

encode Shows an internal format of the journal encoded to String.

exp Exports the message data using a special and independent XML format.

help Displays help information.

imp Imports the journal to a running broker using the output provided by exp.

kill Kills a broker instance started with --allow-kill.

mask Masks a password and prints it out.

perf-journal Calculates the journal-buffer timeout you should use with the current data folder.

queue Queues tool groups (create/delete/update/stat) (example ./artemis queue create).

$ <broker_instance_dir>/bin/artemis check queue --name helloworld --produce 1000 --
browse 1000 --consume 1000

Connection brokerURL = tcp://localhost:61616
Running QueueCheck
Checking that a producer can send 1000 messages to the queue helloworld ... success
Checking that a consumer can browse 1000 messages from the queue helloworld ... success
Checking that a consumer can consume 1000 messages from the queue helloworld ...
success
Checks run: 3, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 2.882 sec - QueueCheck

CHAPTER 3. USING THE COMMAND LINE INTERFACE

55

run Runs the broker instance.

stop Stops the broker instance.

user Default file-based user managament (add/rm/list/reset) (example ./artemis user list)

Tool Description

For a full list of commands available for each tool, use the help parameter followed by the tool’s name.
For instance, in the example below, the CLI output lists all the commands available to the data tool after
the user enters the command ./artemis help data.

$./artemis help data

NAME
 artemis data - data tools group
 (print|imp|exp|encode|decode|compact) (example ./artemis data print)

SYNOPSIS
 artemis data
 artemis data compact [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data decode [--broker <brokerConfig>] [--suffix <suffix>]
 [--verbose] [--paging <paging>] [--prefix <prefix>] [--file-size <size>]
 [--directory <directory>] --input <input> [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data encode [--directory <directory>] [--broker <brokerConfig>]
 [--suffix <suffix>] [--verbose] [--paging <paging>] [--prefix <prefix>]
 [--file-size <size>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data exp [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]
 artemis data imp [--host <host>] [--verbose] [--port <port>]
 [--password <password>] [--transaction] --input <input> [--user <user>]
 artemis data print [--broker <brokerConfig>] [--verbose]
 [--paging <paging>] [--journal <journal>]
 [--large-messages <largeMessges>] [--bindings <binding>]

COMMANDS
 With no arguments, Display help information

 print
 Print data records information (WARNING: don't use while a
 production server is running)

 ...

You can use the help parameter for more information on how to execute each of the commands. For
example, the CLI lists more information about the data print command after the user enters the
./artemis help data print.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

56

$./artemis help data print

NAME
 artemis data print - Print data records information (WARNING: don't use
 while a production server is running)

SYNOPSIS
 artemis data print [--bindings <binding>] [--journal <journal>]
 [--paging <paging>]

OPTIONS
 --bindings <binding>
 The folder used for bindings (default ../data/bindings)

 --journal <journal>
 The folder used for messages journal (default ../data/journal)

 --paging <paging>
 The folder used for paging (default ../data/paging)

CHAPTER 3. USING THE COMMAND LINE INTERFACE

57

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE
AMQ Management Console is a web console included in the AMQ Broker installation that enables you to
use a web browser to manage AMQ Broker.

AMQ Management Console is based on hawtio.

4.1. OVERVIEW

AMQ Broker is a full-featured, message-oriented middleware broker. It offers specialized queueing
behaviors, message persistence, and manageability. It supports multiple protocols and client languages,
freeing you to use many of your application assets.

AMQ Broker’s key features allow you to:

monitor your AMQ brokers and clients

view the topology

view network health at a glance

manage AMQ brokers using:

AMQ Management Console

Command-line Interface (CLI)

Management API

The supported web browsers for AMQ Management Console are Firefox and Chrome. For more
information on supported browser versions, see AMQ 7 Supported Configurations .

4.2. CONFIGURING LOCAL AND REMOTE ACCESS TO AMQ
MANAGEMENT CONSOLE

The procedure in this section shows how to configure local and remote access to AMQ Management
Console.

Remote access to the console can take one of two forms:

Within a console session on a local broker, you use the Connect tab to connect to another,
remote broker

From a remote host, you connect to the console for the local broker, using an externally-
reachable IP address for the local broker

Prerequisites

You must upgrade to at least AMQ Broker 7.1.0. As part of this upgrade, an access-
management configuration file named jolokia-access.xml is added to the broker instance. For
more information about upgrading, see Upgrading a Broker instance from 7.0.x to 7.1.0 .

Procedure

1. Open the <broker_instance_dir>/etc/bootstrap.xml file.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

58

http://hawt.io/
https://access.redhat.com/articles/2791941

2. Within the web element, observe that the web port is bound only to localhost by default.

3. To enable connection to the console for the local broker from a remote host, change the web
port binding to a network-reachable interface. For example:

In the preceding example, by specifying 0.0.0.0, you bind the web port to all interfaces on the
local broker.

4. Save the bootstrap.xml file.

5. Open the <broker_instance_dir>/etc/jolokia-access.xml file.

6. Within the <cors> (that is, Cross-Origin Resource Sharing) element, add an allow-origin entry
for each HTTP origin request header that you want to allow to access the console. For example:

In the preceding configuration, you specify that the following connections are allowed:

Connection from the local host (that is, the host machine for your local broker instance) to
the console.

The first asterisk (*) wildcard character allows either the http or https scheme to be
specified in the connection request, based on whether you have configured the console
for secure connections.

The second asterisk wildcard character allows any port on the host machine to be used
for the connection.

Connection from a remote host to the console for the local broker, using the externally-
reachable IP address of the local broker. In this case, the externally-reachable IP address of
the local broker is 192.168.0.49.

Connection from within a console session opened on another, remote broker to the local
broker. In this case, the IP address of the remote broker is 192.168.0.51.

7. Save the jolokia-access.xml file.

8. Open the <broker_instance_dir>/etc/artemis.profile file.

9. To enable the Connect tab in the console, set the value of the Dhawtio.disableProxy

<web bind="http://localhost:8161" path="web">
 <app url="redhat-branding" war="redhat-branding.war"/>
 <app url="artemis-plugin" war="artemis-plugin.war"/>
 <app url="dispatch-hawtio-console" war="dispatch-hawtio-console.war"/>
 <app url="console" war="console.war"/>
</web>

<web bind="http://0.0.0.0:8161" path="web">

<cors>
 <allow-origin>*://localhost*</allow-origin>
 <allow-origin>*://192.168.0.49*</allow-origin>
 <allow-origin>*://192.168.0.51*</allow-origin>
 <!-- Check for the proper origin on the server side, too -->
 <strict-checking/>
</cors>

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

59

9. To enable the Connect tab in the console, set the value of the Dhawtio.disableProxy
argument to false.

IMPORTANT

It is recommended that you enable remote connections from the console (that is,
set the value of the Dhawtio.disableProxy argument to false) only if the
console is exposed to a secure network.

10. Add a new argument, Dhawtio.proxyWhitelist, to the JAVA_ARGS list of Java system
arguments. As a comma-separated list, specify IP addresses for any remote brokers that you
want to connect to from the local broker (that is, by using the Connect tab within a console
session running on the local broker). For example:

Based on the preceding configuration, you can use the Connect tab within a console session on
the local broker to connect to another, remote broker with an IP address of 192.168.0.51.

11. Save the aretmis.profile file.

Additional resources

To learn how to access the console, see Section 4.3, “Accessing AMQ Management Console” .

For more information about:

Cross-Origin Resource Sharing, see W3C Recommendations.

Jolokia security, see Jolokia Protocols.

Securing connections to the console, see Section 4.4.3, “Securing network access to AMQ
Management Console”.

4.3. ACCESSING AMQ MANAGEMENT CONSOLE

The procedure in this section shows how to:

Open AMQ Management Console from the local broker

Connect to other brokers from within a console session on the local broker

Open a console instance for the local broker from a remote host using the externally-reachable
IP address of the local broker

Prerequisites

You must have already configured local and remote access to the console. For more
information, see Section 4.2, “Configuring local and remote access to AMQ Management
Console”.

Procedure

-Dhawtio.disableProxy=false

-Dhawtio.proxyWhitelist=192.168.0.51

Red Hat AMQ 2021.Q3 Managing AMQ Broker

60

https://www.w3.org/TR/cors/
https://jolokia.org/reference/html/security.html

1. In your web browser, navigate to the console address for the local broker.
The console address is http://<host:port>/console/login. If you are using the default address,
navigate to http://localhost:8161/console/login. Otherwise, use the values of host and port that
are defined for the bind attribute of the web element in the
<broker_instance_dir>/etc/bootstrap.xml configuration file.

Figure 4.1. Console login page

2. Log in to AMQ Management Console using the default user name and password that you
created when you created the broker.

3. To connect to another, remote broker from the console session of the local broker:

a. In the left menu, click the Connect tab.

b. In the main pane, on the Remote tab, click the Add connection button.

c. In the Add Connection dialog box, specify the following details:

Name

Name for the remote connection, for example, my_other_broker.

Scheme

Protocol to use for the remote connection. Select http for a non-secured connection, or
https for a secured connection.

Host

IP address of a remote broker. You must have already configured console access for this
remote broker.

Port

Port on the local broker to use for the remote connection. Specify the port value that is
defined for the bind attribute of the web element in the
<broker_instance_dir>/etc/bootstrap.xml configuration file. The default value is 8161.

Path

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

61

http://localhost:8161/console/login

Path to use for console access. Specify console/jolokia.

d. To test the connection, click the Test Connection button.
If the connection test is successful, click the Add button. If the connection test fails, review
and modify the connection details as needed. Test the connection again.

e. On the Remote page, for a connection that you have added, click the Connect button.
A new web browser tab opens for the console instance on the remote broker.

f. In the Log In dialog box, enter the user name and password for the remote broker. Click
Log In.
The console instance for the remote broker opens.

4. To connect to the console for the local broker from a remote host, specify the Jolokia endpoint
for the local broker in a web browser. This endpoint includes the externally-reachable IP address
that you specified for the local broker when configuring remote console access. For example:

http://192.168.0.49/console/jolokia

4.4. CONFIGURING AMQ MANAGEMENT CONSOLE

Configure user access and request access to resources on the broker.

4.4.1. Securing AMQ Management Console using Red Hat Single Sign-On

Prerequisites

Red Hat Single Sign-On 7.4

Procedure

1. Configure Red Hat Single Sign-On:

a. Navigate to the realm in Red Hat Single Sign-On that you want to use for securing AMQ
Management Console. Each realm in Red Hat Single Sign-On includes a client named
Broker. This client is not related to AMQ.

b. Create a new client in Red Hat Single Sign-On, for example artemis-console.

c. Navigate to the client settings page and set:

Valid Redirect URIs to the AMQ Management Console URL followed by *, for example:

https://broker.example.com:8161/console/*

Web Origins to the same value as Valid Redirect URIs. Red Hat Single Sign-On allows
you enter +, indicating that allowed CORS origins includes the value for Valid Redirect
URIs.

d. Create a role for the client, for example guest.

e. Make sure all users who require access to AMQ Management Console are assigned the
above role, for example, using Red Hat Single Sign-On groups.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

62

2. Configure the AMQ Broker instance:

a. Add the following to your <broker-instance-dir>/instances/broker0/etc/login.config file
to configure AMQ Management Console to use Red Hat Single Sign-On:

console {
 org.keycloak.adapters.jaas.BearerTokenLoginModule required
 keycloak-config-file="${artemis.instance}/etc/keycloak-bearer-token.json"
 role-principal-
class=org.apache.activemq.artemis.spi.core.security.jaas.RolePrincipal
 ;
};

Adding this configuration sets up a JAAS principal and a requirement for a bearer token
from Red Hat Single Sign-On. The connection to Red Hat Single Sign-On is defined in the
keycloak-bearer-token.json file, as described in the next step.

b. Create a file <broker-instance-dir>/etc/keycloak-bearer-token.json with the following
contents to specify the connection to Red Hat Single Sign-On used for the bearer token
exchange:

<realm-name>

the name of the realm in Red Hat Single Sign-On

<client-name>

the name of the client in Red Hat Single Sign-On

<RHSSO-URL>

the URL of Red Hat Single Sign-On

c. Create a file <broker-instance-dir>/etc/keycloak-js-token.json with the following
contents to specify the Red Hat Single Sign-On authentication endpoint:

d. Configure the security settings by editing the the <broker-instance-
dir>/etc/bootstrap.xml file.
For example, to allow users with the amq role consume messages and allow users with the
guest role send messages, add the following:

{
 "realm": "<realm-name>",
 "resource": "<client-name>",
 "auth-server-url": "<RHSSO-URL>/auth",
 "principal-attribute": "preferred_username",
 "use-resource-role-mappings": true,
 "ssl-required": "external",
 "confidential-port": 0
}

{
 "realm": "<realm-name>",
 "clientId": "<client-name>",
 "url": "<RHSSO-URL>/auth"
}

 <security-setting match="Info">

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

63

3. Run the AMQ Broker instance and validate AMQ Management Console configuration.

4.4.2. Setting up user access to AMQ Management Console

You can access AMQ Management Console using the broker login credentials. The following table
provides information about different methods to add additional broker users to access AMQ
Management Console:

Authentication Method Description

Guest authentication Enables anonymous access. In this configuration, any user who connects
without credentials or with the wrong credentials will be authenticated
automatically and assigned a specific user and role.

For more information, see Configuring guest access in Configuring AMQ
Broker.

Basic user and password
authentication

For each user, you must define a username and password and assign a
security role. Users can only log into AMQ Management Console using
these credentials.

For more information, see Configuring basic user and password
authentication in Configuring AMQ Broker.

LDAP authentication Users are authenticated and authorized by checking the credentials against
user data stored in a central X.500 directory server.

For more information, see Configuring LDAP to authenticate clients in
Configuring AMQ Broker.

4.4.3. Securing network access to AMQ Management Console

To secure AMQ Management Console when the console is being accessed over a WAN or the internet,
use SSL to specify that network access uses https instead of http.

Prerequisites

The following should be located in the <broker_instance_dir>/etc/ directory:

Java key store

Java trust store (needed only if you require client authentication)

Procedure

1. Open the <broker_instance_dir>/etc/bootstrap.xml file.

 <permission roles="amq" type="createDurableQueue"/>
 <permission roles="amq" type="deleteDurableQueue"/>
 <permission roles="amq" type="createNonDurableQueue"/>
 <permission roles="amq" type="deleteNonDurableQueue"/>
 <permission roles="guest" type="send"/>
 <permission roles="amq" type="consume"/>
 </security-setting>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

64

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#proc_br-configuring-guest-access_configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#proc-br-configuring-basic-user-and-password-authentication_configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#proc_br-using-ldap-authentication_configuring

2. In the <web> element, add the following attributes:

bind

For secure connections to the console, change the URI scheme to https.

keyStorePath

Path of the keystore file. For example:

keyStorePassword

Key store password. This password can be encrypted.

clientAuth

Specifies whether client authentication is required. The default value is false.

trustStorePath

Path of the trust store file. You need to define this attribute only if clientAuth is set to true.

trustStorePassword

Trust store password. This password can be encrypted.

Additional resources

For more information about encrypting passwords in broker configuration files, including
bootstrap.xml, see Encrypting Passwords in Configuration Files .

4.5. MANAGING BROKERS USING AMQ MANAGEMENT CONSOLE

You can use AMQ Management Console to view information about a running broker and manage the
following resources:

Incoming network connections (acceptors)

Addresses

Queues

4.5.1. Viewing details about the broker

To see how the broker is configured, in the left menu, click Artemis. In the folder tree, the local broker is
selected by default.

In the main pane, the following tabs are available:

<web bind="https://0.0.0.0:8161"
 path="web"
 keyStorePath="<path_to_keystore>"
 keyStorePassword="<password>"
 clientAuth="<true/false>"
 trustStorePath="<path_to_truststore>"
 trustStorePassword="<password>">
 ...
</web>

keyStorePath="<broker_instance_dir>/etc/keystore.jks"

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

65

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker//security#password_masking

Status

Displays information about the current status of the broker, such as uptime and cluster information.
Also displays the amount of address memory that the broker is currently using. The graph shows this
value as a proportion of the global-max-size configuration parameter.

Figure 4.2. Status tab

Connections

Displays information about broker connections, including client, cluster, and bridge connections.

Sessions

Displays information about all sessions currently open on the broker.

Consumers

Displays information about all consumers currently open on the broker.

Producers

Displays information about producers currently open on the broker.

Addresses

Displays information about addresses on the broker. This includes internal addresses, such as store-
and-forward addresses.

Queues

Displays information about queues on the broker. This includes internal queues, such as store-and-
forward queues.

Attributes

Displays detailed information about attributes configured on the broker.

Operations

Displays JMX operations that you can execute on the broker from the console. When you click an
operation, a dialog box opens that enables you to specify parameter values for the operation.

Chart

Displays real-time data for attributes configured on the broker. You can edit the chart to specify the
attributes that are included in the chart.

Broker diagram

Displays a diagram of the cluster topology. This includes all brokers in the cluster and any addresses
and queues on the local broker.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

66

4.5.2. Viewing the broker diagram

You can view a diagram of all AMQ Broker resources in your topology, including brokers (live and backup
brokers), producers and consumers, addresses, and queues.

Procedure

1. In the left menu, click Artemis.

2. In the main pane, click the Broker diagram tab.
The console displays a diagram of the cluster topology. This includes all brokers in the cluster
and any addresses and queues on the local broker, as shown in the figure.

Figure 4.3. Broker diagram tab

3. To change what items are displayed on the diagram, use the check boxes at the top of the
diagram. Click Refresh.

4. To show attributes for the local broker or an address or queue that is connected to it, click that
node in the diagram. For example, the following figure shows a diagram that also includes
attributes for the local broker.

Figure 4.4. Broker diagram tab, including attributes

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

67

Figure 4.4. Broker diagram tab, including attributes

4.5.3. Viewing acceptors

You can view details about the acceptors configured for the broker.

Procedure

1. In the left menu, click Artemis.

2. In the folder tree, click acceptors.

3. To view details about how an acceptor is configured, click the acceptor.
The console shows the corresponding attributes on the Attributes tab, as shown in the figure.

Figure 4.5. AMQP acceptor attributes

4. To see complete details for an attribute, click the attribute. An additional window opens to show
the details.

4.5.4. Managing addresses and queues

An address represents a messaging endpoint. Within the configuration, a typical address is given a
unique name.

A queue is associated with an address. There can be multiple queues per address. Once an incoming
message is matched to an address, the message is sent on to one or more of its queues, depending on
the routing type configured. Queues can be configured to be automatically created and deleted.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

68

4.5.4.1. Creating addresses

A typical address is given a unique name, zero or more queues, and a routing type.

A routing type determines how messages are sent to the queues associated with an address. Addresses
can be configured with two different routing types.

If you want your messages routed to… Use this routing type…

A single queue within the matching address, in a point-to-point manner. Anycast

Every queue within the matching address, in a publish-subscribe manner. Multicast

You can create and configure addresses and queues, and then delete them when they are no longer in
use.

Procedure

1. In the left menu, click Artemis.

2. In the folder tree, click addresses.

3. In the main pane, click the Create address tab.
A page appears for you to create an address, as shown in the figure.

Figure 4.6. Create Address page

4. Complete the following fields:

Address name

The routing name of the address.

Routing type

Select one of the following options:

Multicast: Messages sent to the address will be distributed to all subscribers in a publish-
subscribe manner.

Anycast: Messages sent to this address will be distributed to only one subscriber in a
point-to-point manner.

Both: Enables you to define more than one routing type per address. This typically
results in an anti-pattern and is not recommended.

NOTE

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

69

NOTE

If an address does use both routing types, and the client does not show a
preference for either one, the broker defaults to the anycast routing
type. The one exception is when the client uses the MQTT protocol. In
that case, the default routing type is multicast.

5. Click Create Address.

4.5.4.2. Sending messages to an address

The following procedure shows how to use the console to send a message to an address.

Procedure

1. In the left menu, click Artemis.

2. In the folder tree, select an address.

3. On the navigation bar in the main pane, click More → Send message.
A page appears for you to create a message, as shown in the figure.

Figure 4.7. Send Message page

4. If necessary, click the Add Header button to add message header information.

5. Enter the message body.

6. In the Format drop-down menu, select an option for the format of the message body, and then
click Format. The message body is formatted in a human-readable style for the format you
selected.

7. Click Send message.
The message is sent.

8. To send additional messages, change any of the information you entered, and then click Send
message.

4.5.4.3. Creating queues

Queues provide a channel between a producer and a consumer.

Prerequisites

The address to which you want to bind the queue must exist. To learn how to use the console to

Red Hat AMQ 2021.Q3 Managing AMQ Broker

70

The address to which you want to bind the queue must exist. To learn how to use the console to
create an address, see Section 4.5.4.1, “Creating addresses” .

Procedure

1. In the left menu, click Artemis.

2. In the folder tree, select the address to which you want to bind the queue.

3. In the main pane, click the Create queue tab.
A page appears for you to create a queue, as shown in the figure.

Figure 4.8. Create Queue page

4. Complete the following fields:

Queue name

A unique name for the queue.

Routing type

Select one of the following options:

Multicast: Messages sent to the parent address will be distributed to all queues bound to
the address.

Anycast: Only one queue bound to the parent address will receive a copy of the
message. Messages will be distributed evenly among all of the queues bound to the
address.

Durable

If you select this option, the queue and its messages will be persistent.

Filter

The username to be used when connecting to the broker.

Max Consumers

The maximum number of consumers that can access the queue at a given time.

Purge when no consumers

If selected, the queue will be purged when no consumers are connected.

5. Click Create Queue.

4.5.4.4. Checking the status of a queue

Charts provide a real-time view of the status of a queue on a broker.

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

71

Procedure

1. In the left menu, click Artemis.

2. In the folder tree, navigate to a queue.

3. In the main pane, click the Chart tab.
The console displays a chart that shows real-time data for all of the queue attributes.

Figure 4.9. Chart tab for a queue

NOTE

To view a chart for multiple queues on an address, select the anycast or
multicast folder that contains the queues.

4. If necessary, select different criteria for the chart:

a. In the main pane, click Edit.

b. On the Attributes list, select one or more attributes that you want to include in the chart. To
select multiple attributes, press and hold the Ctrl key and select each attribute.

c. Click the View Chart button. The chart is updated based on the attributes that you
selected.

4.5.4.5. Browsing queues

Browsing a queue displays all of the messages in the queue. You can also filter and sort the list to find
specific messages.

Procedure

1. In the left menu, click Artemis.

2. In the folder tree, navigate to a queue.
Queues are located within the addresses to which they are bound.

3. On the navigation bar in the main pane, click More → Browse queue.
The messages in the queue are displayed. By default, the first 200 messages are displayed.

Figure 4.10. Browse Queue page

Red Hat AMQ 2021.Q3 Managing AMQ Broker

72

Figure 4.10. Browse Queue page

4. To browse for a specific message or group of messages, do one of the following:

To…​ Do this…​

Filter the list of messages In the Filter… ​ text field, enter filter criteria. Click the
search (that is, magnifying glass) icon.

Sort the list of messages In the list of messages, click a column header. To sort the
messages in descending order, click the header a second
time.

5. To view the content of a message, click the Show button.
You can view the message header, properties, and body.

4.5.4.6. Sending messages to a queue

After creating a queue, you can send a message to it. The following procedure outlines the steps
required to send a message to an existing queue.

Procedure

1. In the left menu, click Artemis.

2. In the folder tree, navigate to a queue.

3. In the main pane, click the Send message tab.
A page appears for you to compose the message.

Figure 4.11. Send Message page for a queue

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

73

4. If necessary, click the Add Header button to add message header information.

5. Enter the message body.

6. In the Format drop-down menu, select an option for the format of the message body, and then
click Format. The message body is formatted in a human-readable style for the format you
selected.

7. Click Send message. The message is sent.

8. To send additional messages, change any of the information you entered, and click Send
message.

4.5.4.7. Resending messages to a queue

You can resend previously sent messages.

Procedure

1. Browse for the message you want to resend .

2. Click the check box next to the message that you want to resend.

3. Click the Resend button. The message is displayed.

4. Update the message header and body as needed, and then click Send message.

4.5.4.8. Moving messages to a different queue

You can move one or more messages in a queue to a different queue.

Procedure

1. Browse for the messages you want to move .

2. Click the check box next to each message that you want to move.

3. In the navigation bar, click Move Messages.
A confirmation dialog box appears.

4. From the drop-down menu, select the name of the queue to which you want to move the
messages. Click Move.

4.5.4.9. Deleting messages or queues

You can delete a queue or purge all of the messages from a queue.

Procedure

1. Browse for the queue you want to delete or purge .

2. Do one of the following:

Red Hat AMQ 2021.Q3 Managing AMQ Broker

74

To…​ Do this…​

Delete a message from the
queue 1. Click the check box next to each message that you want to

delete.

2. Click the Delete button.

Purge all messages from
the queue 1. On the navigation bar in the main pane, click Delete queue.

2. Click the Purge Queue button.

Delete the queue
1. On the navigation bar in the main pane, click Delete queue.

2. Click the Delete Queue button.

CHAPTER 4. USING AMQ MANAGEMENT CONSOLE

75

CHAPTER 5. MONITORING BROKER RUNTIME METRICS
When you install AMQ Broker, a Prometheus metrics plugin is included in your installation. Prometheus is
software built for monitoring large, scalable systems and storing historical runtime data over an
extended time period. You must modify the broker configuration to enable the plugin. When enabled,
the plugin collects runtime metrics for the broker and exports these to Prometheus format. You can
then use Prometheus to review the metrics. You might also use a graphical tool such as Grafana to
configure more advanced visualizations of the data.

NOTE

The Prometheus metrics plugin enables you to collect and export broker metrics in
Prometheus format. However, Red Hat does not provide support for installation or
configuration of Prometheus itself, nor of visualization tools such as Grafana. If you
require support with installing, configuring, or running Prometheus or Grafana, visit the
product websites for resources such as community support and documentation.

In addition to the broker metrics collected by the Prometheus plugin, you can modify the broker
configuration to capture standard sets of metrics relating to the host Java Virtual Machine (JVM) for
the broker. Specifically, you can capture JVM metrics for Garbage Collection (GC), memory, and
threads.

The sections that follow describe:

The metrics that the Prometheus plugin exports

How to enable the Prometheus plugin

How to configure the broker to collect JVM metrics

5.1. METRICS OVERVIEW

To monitor the health and performance of your broker instances, you can use the Prometheus plugin for
AMQ Broker to monitor and store broker runtime metrics. The AMQ Broker Prometheus plugin exports
the broker runtime metrics to Prometheus format, enabling you to use Prometheus itself to visualize
and run queries on the data.

You can also use a graphical tool, such as Grafana, to configure more advanced visualizations and
dashboards for the metrics that the Prometheus plugin collects.

The metrics that the plugin exports to Prometheus format are described below.

Broker metrics

artemis_address_memory_usage

Number of bytes used by all addresses on this broker for in-memory messages.

artemis_address_memory_usage_percentage

Memory used by all the addresses on this broker as a percentage of the global-max-size parameter.

artemis_connection_count

Number of clients connected to this broker.

artemis_total_connection_count

Number of clients that have connected to this broker since it was started.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

76

Address metrics

artemis_routed_message_count

Number of messages routed to one or more queue bindings.

artemis_unrouted_message_count

Number of messages not routed to any queue bindings.

Queue metrics

artemis_consumer_count

Number of clients consuming messages from a given queue.

artemis_delivering_durable_message_count

Number of durable messages that a given queue is currently delivering to consumers.

artemis_delivering_durable_persistent_size

Persistent size of durable messages that a given queue is currently delivering to consumers.

artemis_delivering_message_count

Number of messages that a given queue is currently delivering to consumers.

artemis_delivering_persistent_size

Persistent size of messages that a given queue is currently delivering to consumers.

artemis_durable_message_count

Number of durable messages currently in a given queue. This includes scheduled, paged, and in-
delivery messages.

artemis_durable_persistent_size

Persistent size of durable messages currently in a given queue. This includes scheduled, paged, and
in-delivery messages.

artemis_messages_acknowledged

Number of messages acknowledged from a given queue since the queue was created.

artemis_messages_added

Number of messages added to a given queue since the queue was created.

artemis_message_count

Number of messages currently in a given queue. This includes scheduled, paged, and in-delivery
messages.

artemis_messages_killed

Number of messages removed from a given queue since the queue was created. The broker kills a
message when the message exceeds the configured maximum number of delivery attempts.

artemis_messages_expired

Number of messages expired from a given queue since the queue was created.

artemis_persistent_size

Persistent size of all messages (both durable and non-durable) currently in a given queue. This
includes scheduled, paged, and in-delivery messages.

artemis_scheduled_durable_message_count

Number of durable, scheduled messages in a given queue.

artemis_scheduled_durable_persistent_size

Persistent size of durable, scheduled messages in a given queue.

CHAPTER 5. MONITORING BROKER RUNTIME METRICS

77

artemis_scheduled_message_count

Number of scheduled messages in a given queue.

artemis_scheduled_persistent_size

Persistent size of scheduled messages in a given queue.

For higher-level broker metrics that are not listed above, you can calculate these by aggregating lower-
level metrics. For example, to calculate total message count, you can aggregate the
artemis_message_count metrics from all queues in your broker deployment.

For an on-premise deployment of AMQ Broker, metrics for the Java Virtual Machine (JVM) hosting the
broker are also exported to Prometheus format. This does not apply to a deployment of AMQ Broker on
OpenShift Container Platform.

5.2. ENABLING THE PROMETHEUS METRICS PLUGIN FOR AMQ
BROKER

When you install AMQ Broker, a Prometheus metrics plugin is included in your installation. Although the
plugin is already configured for use, you need to enable the plugin in your broker configuration. When
enabled, the plugin collects runtime metrics for the broker and exports these to Prometheus format.

The following procedure shows how to enable the Prometheus plugin for AMQ Broker.

Procedure

1. Copy the Prometheus metrics plugin .jar file from your AMQ Broker 7.9 extracted archive to the
lib directory of your broker instance.

2. Open the <broker_instance_dir>/etc/broker.xml configuration file.

3. Enable the Prometheus plugin in the broker configuration. Add a <metrics> element with a
<plugin> sub-element, configured as shown below.

4. Save the broker.xml configuration file. The metrics plugin starts to gather broker runtime
metrics in Prometheus format.

5.3. CONFIGURING THE BROKER TO COLLECT JVM METRICS

The following procedure shows how to configure the broker to collect Java Virtual Machine (JVM)
metrics for Garbage Collection (GC), memory, and threads.

Prerequisites

You have previously enabled the Prometheus metrics plugin in your broker configuration. For
more information, see Section 5.2, “Enabling the Prometheus metrics plugin for AMQ Broker” .

$ cp amq-broker-7.9.0/lib/artemis-prometheus-metrics-plugin-1.0.0.CR1-redhat-00010.jar
<broker_instance_dir>/lib

<metrics>
 <plugin class-
name="org.apache.activemq.artemis.core.server.metrics.plugins.ArtemisPrometheusMetricsPlu
gin"/>
</metrics>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

78

Procedure

1. Open the <broker_instance_dir>/etc/broker.xml configuration file.

2. In the <metrics> element that you added to the configuration when enabling the Prometheus
metrics plugin, specify whether the broker collects JVM metrics for Garbage Collection (GC),
memory, and threads. For example:

NOTE

If you do not explicitly add the jvm-memory parameter to your configuration and
specify a value, the broker uses a default value of true. This means that the
broker exports JVM memory metrics by default. The default values of the jvm-
gc and jvm-threads parameters are false.

3. Save the broker.xml configuration file. The broker starts to gather the JVM metrics that you
have enabled. These metrics are also exported to Prometheus format.

5.4. DISABLING METRICS COLLECTION FOR SPECIFIC ADDRESSES

When you configure a metrics plugin for AMQ Broker (for example, the Prometheus metrics plugin),
metrics collection is enabled by default. However, within the address-setting configuration element of a
specific address or set of addresses, you can explicitly disable metrics collection.

The following procedure shows how disable metrics collection for a specific address or set of addresses.

Procedure

1. Open the <broker_instance_dir>/etc/broker.xml configuration file.

2. In the address-setting element of a matching address or set of addresses, add the enable-
metrics parameter and set the value of the parameter to false. For example, the following
configuration disables metrics collection for an address called orders.

<metrics>
 <jvm-gc>true</jvm-gc>
 <jvm-memory>true</jvm-memory
 <jvm-threads>true</jvm-threads>
 <plugin class-
name="org.apache.activemq.artemis.core.server.metrics.plugins.ArtemisPrometheusMetricsPlu
gin"/>
</metrics>

<configuration>
 <core>
 ...
 <address-settings>
 <address-setting match="orders">
 ...
 <enable-metrics>false</enable-metrics>
 ...
 </address-setting>
 </address-settings>

CHAPTER 5. MONITORING BROKER RUNTIME METRICS

79

5.5. ACCESSING BROKER RUNTIME DATA USING PROMETHEUS

Prerequisites

To query and visualize the broker runtime data collected by the Prometheus plugin, you need to
install Prometheus. For more information, see Installing Prometheus in the Prometheus
documentation.

Procedure

1. From your Prometheus installation directory, open the prometheus.yml configuration file.

2. In the static_configs section of the configuration file, change the targets element to
localhost:8161. This location is where the broker runs its web server. By default, /metrics is
appended to this host name, forming the full path to the metrics stored on the broker web
server.

3. To view the broker runtime metrics collected by the Prometheus plugin, open
localhost:8161/metrics in a web browser.
On the resulting web page, you see the current values of the metrics collected by the plugin,
based on the queues and addresses that you have configured on the broker. If you have more
than one running broker instance in your JVM, you see metrics for each broker.

4. From your Prometheus installation directory, run Prometheus.

When Prometheus starts, the shell output includes the following line:

The preceding line indicates that Prometheus is listening for HTTP traffic on port 9090.

5. To access the Prometheus web console, open 127.0.0.1:9090 in a web browser.

6. In the Prometheus web console, you can use the Expression field to create a query on your
broker data. The queries you create are based on the Prometheus query language, PromQL.
Broker metrics that are available to insert in your query are in the Insert metric drop-down list.
As a simple example, suppose you want to query the message count on the DLQ queue, over
time. In this case, select artemis_message_count from the metrics drop-down list. Complete
your query by specifying the DLQ queue name and address. This example query is shown below.

For more advanced visualizations, you can use regular expressions to create complex queries
that overlay several metrics, for example. Or, you can perform mathematical operations on a
number of metrics, such as aggregating them. For more information about creating Prometheus
queries, see Querying Prometheus in the Prometheus documentation.

 ...
 </core>
</configuration>

$./prometheus

component=web, msg=”Start listening for connections” address=0.0.0.0:9090

artemis_message_count{address=“DLQ”, queue=“DLQ”}

Red Hat AMQ 2021.Q3 Managing AMQ Broker

80

https://prometheus.io/docs/prometheus/latest/installation/
https://prometheus.io/docs/prometheus/latest/querying/basics/

CHAPTER 6. USING THE MANAGEMENT API
AMQ Broker has an extensive management API, which you can use to modify a broker’s configuration,
create new resources (for example, addresses and queues), inspect these resources (for example, how
many messages are currently held in a queue), and interact with them (for example, to remove messages
from a queue).

In addition, clients can use the management API to manage the broker and subscribe to management
notifications.

6.1. METHODS FOR MANAGING AMQ BROKER USING THE
MANAGEMENT API

There are two ways to use the management API to manage the broker:

Using JMX — JMX is the standard way to manage Java applications

Using the JMS API — management operations are sent to the broker using JMS messages and
the AMQ JMS client

Although there are two different ways to manage the broker, each API supports the same functionality.
If it is possible to manage a resource using JMX it is also possible to achieve the same result by using
JMS messages and the AMQ JMS client.

This choice depends on your particular requirements, application settings, and environment. Regardless
of the way you invoke management operations, the management API is the same.

For each managed resource, there exists a Java interface describing what can be invoked for this type
of resource. The broker exposes its managed resources in the
org.apache.activemq.artemis.api.core.management package. The way to invoke management
operations depends on whether JMX messages or JMS messages and the AMQ JMS client are used.

NOTE

Some management operations require a filter parameter to choose which messages are
affected by the operation. Passing null or an empty string means that the management
operation will be performed on all messages.

6.2. MANAGING AMQ BROKER USING JMX

You can use Java Management Extensions (JMX) to manage a broker. The management API is exposed
by the broker using MBeans interfaces. The broker registers its resources with the domain
org.apache.activemq.

For example, the ObjectName to manage a queue named exampleQueue is:

The MBean is:

The MBean’s ObjectName is built using the helper class

org.apache.activemq.artemis:broker="__BROKER_NAME__",component=addresses,address="exam
pleQueue",subcomponent=queues,routingtype="anycast",queue="exampleQueue"

org.apache.activemq.artemis.api.management.QueueControl

CHAPTER 6. USING THE MANAGEMENT API

81

The MBean’s ObjectName is built using the helper class
org.apache.activemq.artemis.api.core.management.ObjectNameBuilder. You can also use jconsole
to find the ObjectName of the MBeans you want to manage.

Managing the broker using JMX is identical to management of any Java applications using JMX. It can
be done by reflection or by creating proxies of the MBeans.

6.2.1. Configuring JMX management

By default, JMX is enabled to manage the broker. You can enable or disable JMX management by
setting the jmx-management-enabled property in the broker.xml configuration file.

Procedure

1. Open the <broker_instance_dir>/etc/broker.xml configuration file.

2. Set <jmx-management-enabled>.

If JMX is enabled, the broker can be managed locally using jconsole.

NOTE

Remote connections to JMX are not enabled by default for security reasons.

3. If you want to manage multiple brokers from the same MBeanServer, configure the JMX
domain for each of the brokers.
By default, the broker uses the JMX domain org.apache.activemq.artemis.

NOTE

If you are using AMQ Broker on a Windows system, system properties must be set
in artemis, or artemis.cmd. A shell script is located under <install_dir>/bin.

Additional resources

For more information on configuring the broker for remote management, see Oracle’s Java
Management Guide.

6.2.2. Configuring JMX management access

By default, remote JMX access to a broker is disabled for security reasons. However, AMQ Broker has a
JMX agent that allows remote access to JMX MBeans. You enable JMX access by configuring a
connector element in the broker management.xml configuration file.

NOTE

<jmx-management-enabled>true</jmx-management-enabled>

<jmx-domain>my.org.apache.activemq</jmx-domain>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

82

http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html

NOTE

While it is also possible to enable JMX access using the
`com.sun.management.jmxremote ` JVM system property, that method is not supported
and is not secure. Modifying that JVM system property can bypass RBAC on the broker.
To minimize security risks, consider limited access to localhost.

IMPORTANT

Exposing the JMX agent of a broker for remote management has security implications.

To secure your configuration as described in this procedure:

Use SSL for all connections.

Explicitly define the connector host, that is, the host and port to expose the
agent on.

Explicitly define the port that the RMI (Remote Method Invocation) registry
binds to.

Prerequisites

A working broker instance

The Java jconsole utility

Procedure

1. Open the <broker-instance-dir>/etc/management.xml configuration file.

2. Define a connector for the JMX agent. The connector-port setting establishes an RMI registry
that clients such as jconsole query for the JMX connector server. For example, to allow remote
access on port 1099:

3. Verify the connection to the JMX agent using jconsole:

service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi

4. Define additional properties on the connector, as described below.

connector-host

The broker server host to expose the agent on. To prevent remote access, set connector-
host to 127.0.0.1 (localhost).

rmi-registry-port

The port that the JMX RMI connector server binds to. If not set, the port is always random.
Set this property to avoid problems with remote JMX connections tunnelled through a
firewall.

jmx-realm

JMX realm to use for authentication. The default value is activemq to match the JAAS
configuration.

<connector connector-port="1099"/>

CHAPTER 6. USING THE MANAGEMENT API

83

object-name

Object name to expose the remote connector on. The default value is
connector:name=rmi.

secured

Specify whether the connector is secured using SSL. The default value is false. Set the value
to true to ensure secure communication.

key-store-path

Location of the keystore. Required if you have set secured="true".

key-store-password

Keystore password. Required if you have set secured="true". The password can be
encrypted.

key-store-provider

Keystore provider. Required if you have set secured="true". The default value is JKS.

trust-store-path

Location of the truststore. Required if you have set secured="true".

trust-store-password

Truststore password. Required if you have set secured="true". The password can be
encrypted.

trust-store-provider

Truststore provider. Required if you have set secured="true". The default value is JKS

password-codec

The fully qualified class name of the password codec to use. See the password masking
documentation, linked below, for more details on how this works.

5. Set an appropriate value for the endpoint serialization using jdk.serialFilter as described in the
Java Platform documentation .

Additional resources

For more information about encrypted passwords in configuration files, see Encrypting
Passwords in Configuration Files.

6.2.3. MBeanServer configuration

When the broker runs in standalone mode, it uses the Java Virtual Machine’s Platform MBeanServer to
register its MBeans. By default, Jolokia is also deployed to allow access to the MBean server using REST.

6.2.4. How JMX is exposed with Jolokia

By default, AMQ Broker ships with the Jolokia HTTP agent deployed as a web application. Jolokia is a
remote JMX over HTTP bridge that exposes MBeans.

NOTE

To use Jolokia, the user must belong to the role defined by the hawtio.role system
property in the <broker_instance_dir>/etc/artemis.profile configuration file. By default,
this role is amq.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

84

https://docs.oracle.com/javase/10/core/serialization-filtering1.htm
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker//security#password_masking
http://www.jolokia.org/
http://www.jolokia.org/

Example 6.1. Using Jolokia to query the broker’s version

This example uses a Jolokia REST URL to find the version of a broker. The Origin flag should specify
the domain name or DNS host name for the broker server. In addition, the value you specify for
Origin must correspond to an entry for <allow-origin> in your Jolokia Cross-Origin Resource
Sharing (CORS) specification.

Additional resources

For more information on using a JMX-HTTP bridge, see the Jolokia documentation.

For more information on assigning a user to a role, see Adding Users.

For more information on specifying Jolokia Cross-Origin Resource Sharing (CORS), see section
4.1.5 of Security.

6.2.5. Subscribing to JMX management notifications

If JMX is enabled in your environment, you can subscribe to management notifications.

Procedure

Subscribe to ObjectName org.apache.activemq.artemis:broker="<broker-name>".

Additional resources

For more information about management notifications, see Section 6.5, “Management
notifications”.

6.3. MANAGING AMQ BROKER USING THE JMS API

The Java Message Service (JMS) API allows you to create, send, receive, and read messages. You can
use JMS and the AMQ JMS client to manage brokers.

6.3.1. Configuring broker management using JMS messages and the AMQ JMS
Client

To use JMS to manage a broker, you must first configure the broker’s management address with the
manage permission.

Procedure

1. Open the <broker_instance_dir>/etc/broker.xml configuration file.

2. Add the <management-address> element, and specify a management address.

By default, the management address is queue.activemq.management. You only need to

$ curl
http://admin:admin@localhost:8161/console/jolokia/read/org.apache.activemq.artemis:broker=\"0.
0.0.0\"/Version -H "Origin: mydomain.com"
{"request":
{"mbean":"org.apache.activemq.artemis:broker=\"0.0.0.0\"","attribute":"Version","type":"read"},"val
ue":"2.4.0.amq-710002-redhat-1","timestamp":1527105236,"status":200}

CHAPTER 6. USING THE MANAGEMENT API

85

http://www.jolokia.org/documentation.html
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#pass_auth
https://jolokia.org/reference/html/security.html

By default, the management address is queue.activemq.management. You only need to
specify a different address if you do not want to use the default.

3. Provide the management address with the manage user permission type.
This permission type enables the management address to receive and handle management
messages.

6.3.2. Managing brokers using the JMS API and AMQ JMS Client

To invoke management operations using JMS messages, the AMQ JMS client must instantiate the
special management queue.

Procedure

1. Create a QueueRequestor to send messages to the management address and receive replies.

2. Create a Message.

3. Use the helper class
org.apache.activemq.artemis.api.jms.management.JMSManagementHelper to fill the
message with the management properties.

4. Send the message using the QueueRequestor.

5. Use the helper class
org.apache.activemq.artemis.api.jms.management.JMSManagementHelper to retrieve the
operation result from the management reply.

Example 6.2. Viewing the number of messages in a queue

This example shows how to use the JMS API to view the number of messages in the JMS queue
exampleQueue:

6.4. MANAGEMENT OPERATIONS

Whether you are using JMX or JMS messages to manage AMQ Broker, you can use the same API

<management-address>my.management.address</management-address>

<security-setting-match="queue.activemq.management">
 <permission-type="manage" roles="admin"/>
</security-setting>

Queue managementQueue = ActiveMQJMSClient.createQueue("activemq.management");

QueueSession session = ...
QueueRequestor requestor = new QueueRequestor(session, managementQueue);
connection.start();
Message message = session.createMessage();
JMSManagementHelper.putAttribute(message, "queue.exampleQueue", "messageCount");
Message reply = requestor.request(message);
int count = (Integer)JMSManagementHelper.getResult(reply);
System.out.println("There are " + count + " messages in exampleQueue");

Red Hat AMQ 2021.Q3 Managing AMQ Broker

86

Whether you are using JMX or JMS messages to manage AMQ Broker, you can use the same API
management operations. Using the management API, you can manage brokers, addresses, and queues.

6.4.1. Broker management operations

You can use the management API to manage your brokers.

Listing, creating, deploying, and destroying queues

A list of deployed queues can be retrieved using the getQueueNames() method.
Queues can be created or destroyed using the management operations createQueue(),
deployQueue(), or destroyQueue() on the ActiveMQServerControl (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name server).

createQueue will fail if the queue already exists while deployQueue will do nothing.

Pausing and resuming queues

The QueueControl can pause and resume the underlying queue. When a queue is paused, it will
receive messages but will not deliver them. When it is resumed, it will begin delivering the queued
messages, if any.

Listing and closing remote connections

Retrieve a client’s remote addresses by using listRemoteAddresses(). It is also possible to close the
connections associated with a remote address using the closeConnectionsForAddress() method.
Alternatively, list connection IDs using listConnectionIDs() and list all the sessions for a given
connection ID using listSessions().

Managing transactions

In case of a broker crash, when the broker restarts, some transactions might require manual
intervention. Use the the following methods to help resolve issues you encounter.
List the transactions which are in the prepared states (the transactions are represented as opaque
Base64 Strings) using the listPreparedTransactions() method lists.

Commit or rollback a given prepared transaction using commitPreparedTransaction() or
rollbackPreparedTransaction() to resolve heuristic transactions.

List heuristically completed transactions using the listHeuristicCommittedTransactions() and
listHeuristicRolledBackTransactions methods.

Enabling and resetting message counters

Enable and disable message counters using the enableMessageCounters() or
disableMessageCounters() method.
Reset message counters by using the resetAllMessageCounters() and
resetAllMessageCounterHistories() methods.

Retrieving broker configuration and attributes

The ActiveMQServerControl exposes the broker’s configuration through all its attributes (for
example, getVersion() method to retrieve the broker’s version, and so on).

Listing, creating, and destroying Core Bridge and diverts

List deployed Core Bridge and diverts using the getBridgeNames() and getDivertNames() methods
respectively.

Create or destroy using bridges and diverts using createBridge() and destroyBridge() or

CHAPTER 6. USING THE MANAGEMENT API

87

Create or destroy using bridges and diverts using createBridge() and destroyBridge() or
createDivert() and destroyDivert() on the ActiveMQServerControl (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name server).

Stopping the broker and forcing failover to occur with any currently attached clients

Use the forceFailover() on the ActiveMQServerControl (with the ObjectName
org.apache.activemq.artemis:broker="BROKER_NAME" or the resource name server)

NOTE

Because this method actually stops the broker, you will likely receive an error. The
exact error depends on the management service you used to call the method.

6.4.2. Address management operations

You can use the management API to manage addresses.

Manage addresses using the AddressControl class with ObjectName
org.apache.activemq.artemis:broker="<broker-name>",
component=addresses,address="<address-name>" or the resource name address.<address-
name>.

Modify roles and permissions for an address using the addRole() or removeRole() methods. You can list
all the roles associated with the queue with the getRoles() method.

6.4.3. Queue management operations

You can use the management API to manage queues.

The core management API deals with queues. The QueueControl class defines the queue management
operations (with the ObjectName,org.apache.activemq.artemis:broker="<broker-
name>",component=addresses,address="<bound-address>",subcomponent=queues,routing-
type="<routing-type>",queue="<queue-name>" or the resource name queue.<queue-name>).

Most of the management operations on queues take either a single message ID (for example, to remove
a single message) or a filter (for example, to expire all messages with a given property).

Expiring, sending to a dead letter address, and moving messages

Expire messages from a queue using the expireMessages() method. If an expiry address is defined,
messages are sent to this address, otherwise they are discarded. You can define the expiry address
for an address or set of addresses (and hence the queues bound to those addresses) in the address-
settings element of the broker.xml configuration file. For an example, see the "Default message
address settings" section in Understanding the default broker configuration .
Send messages to a dead letter address using the sendMessagesToDeadLetterAddress() method.
This method returns the number of messages sent to the dead letter address. If a dead letter address
is defined, messages are sent to this address, otherwise they are removed from the queue and
discarded. You can define the dead letter address for an address or set of addresses (and hence the
queues bound to those addresses) in the address-settings element of the broker.xml configuration
file. For an example, see the "Default message address settings" section in Understanding the
default broker configuration.

Move messages from one queue to another using the moveMessages() method.

Red Hat AMQ 2021.Q3 Managing AMQ Broker

88

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker//index#understanding-default-broker-configuration-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker//index#understanding-default-broker-configuration-configuring

Listing and removing messages

List messages from a queue using the listMessages() method. It will return an array of Map, one Map
for each message.
Remove messages from a queue using the removeMessages() method, which returns a boolean for
the single message ID variant or the number of removed messages for the filter variant. This method
takes a filter argument to remove only filtered messages. Setting the filter to an empty string will in
effect remove all messages.

Counting messages

The number of messages in a queue is returned by the getMessageCount() method. Alternatively,
the countMessages() will return the number of messages in the queue which match a given filter.

Changing message priority

The message priority can be changed by using the changeMessagesPriority() method which returns
a boolean for the single message ID variant or the number of updated messages for the filter
variant.

Message counters

Message counters can be listed for a queue with the listMessageCounter() and
listMessageCounterHistory() methods (see Section 6.6, “Using message counters”). The message
counters can also be reset for a single queue using the resetMessageCounter() method.

Retrieving the queue attributes

The QueueControl exposes queue settings through its attributes (for example, getFilter() to
retrieve the queue’s filter if it was created with one, isDurable() to know whether the queue is
durable, and so on).

Pausing and resuming queues

The QueueControl can pause and resume the underlying queue. When a queue is paused, it will
receive messages but will not deliver them. When it is resumed, it will begin delivering the queued
messages, if any.

6.4.4. Remote resource management operations

You can use the management API to start and stop a broker’s remote resources (acceptors, diverts,
bridges, and so on) so that the broker can be taken offline for a given period of time without stopping
completely.

Acceptors

Start or stop an acceptor using the start() or. stop() method on the AcceptorControl class (with the
ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=acceptors,name="<acceptor-name>" or the resource name
acceptor.<address-name>). Acceptor parameters can be retrieved using the AcceptorControl
attributes. See Network Connections: Acceptors and Connectors for more information about
Acceptors.

Diverts

Start or stop a divert using the start() or stop() method on the DivertControl class (with the
ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=diverts,name="<divert-name>" or the resource name divert.<divert-
name>). Divert parameters can be retrieved using the DivertControl attributes.

Bridges

Start or stop a bridge using the start() (resp. stop()) method on the BridgeControl class (with the
ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=bridge,name="<bridge-name>" or the resource name bridge.<bridge-

CHAPTER 6. USING THE MANAGEMENT API

89

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#transports

name>). Bridge parameters can be retrieved using the BridgeControl attributes.

Broadcast groups

Start or stop a broadcast group using the start() or stop() method on the BroadcastGroupControl
class (with the ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=broadcast-group,name="<broadcast-group-name>" or the resource name
broadcastgroup.<broadcast-group-name>). Broadcast group parameters can be retrieved using
the BroadcastGroupControl attributes. See Broker discovery methods for more information.

Discovery groups

Start or stop a discovery group using the start() or stop() method on the DiscoveryGroupControl
class (with the ObjectName org.apache.activemq.artemis:broker="<broker-
name>",component=discovery-group,name="<discovery-group-name>" or the resource name
discovery.<discovery-group-name>). Discovery groups parameters can be retrieved using the
DiscoveryGroupControl attributes. See Broker discovery methods for more information.

Cluster connections

Start or stop a cluster connection using the start() or stop() method on the
ClusterConnectionControl class (with the ObjectName
org.apache.activemq.artemis:broker="<broker-name>",component=cluster-
connection,name="<cluster-connection-name>" or the resource name
clusterconnection.<cluster-connection-name>). Cluster connection parameters can be retrieved
using the ClusterConnectionControl attributes. See Creating a broker cluster for more information.

6.5. MANAGEMENT NOTIFICATIONS

Below is a list of all the different kinds of notifications as well as which headers are on the messages.
Every notification has a _AMQ_NotifType (value noted in parentheses) and _AMQ_NotifTimestamp
header. The time stamp is the unformatted result of a call to java.lang.System.currentTimeMillis().

Notification type Headers

BINDING_ADDED (0) _AMQ_Binding_Type

_AMQ_Address

_AMQ_ClusterName

_AMQ_RoutingName

_AMQ_Binding_ID

_AMQ_Distance

_AMQ_FilterString

Red Hat AMQ 2021.Q3 Managing AMQ Broker

90

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#broker-discovery-methods-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#broker-discovery-methods-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#creating-broker-cluster-configuring

BINDING_REMOVED (1) _AMQ_Address

_AMQ_ClusterName

_AMQ_RoutingName

_AMQ_Binding_ID

_AMQ_Distance

_AMQ_FilterString

CONSUMER_CREATED (2) _AMQ_Address

_AMQ_ClusterName

_AMQ_RoutingName

_AMQ_Distance

_AMQ_ConsumerCount

_AMQ_User

_AMQ_RemoteAddress

_AMQ_SessionName

_AMQ_FilterString

CONSUMER_CLOSED (3) _AMQ_Address

_AMQ_ClusterName

_AMQ_RoutingName

_AMQ_Distance

_AMQ_ConsumerCount

_AMQ_User

_AMQ_RemoteAddress

_AMQ_SessionName

_AMQ_FilterString

SECURITY_AUTHENTICATION_VIOLATION
(6)

_AMQ_User

Notification type Headers

CHAPTER 6. USING THE MANAGEMENT API

91

SECURITY_PERMISSION_VIOLATION (7) _AMQ_Address

_AMQ_CheckType

_AMQ_User

DISCOVERY_GROUP_STARTED (8) name

DISCOVERY_GROUP_STOPPED (9) name

BROADCAST_GROUP_STARTED (10) name

BROADCAST_GROUP_STOPPED (11) name

BRIDGE_STARTED (12) name

BRIDGE_STOPPED (13) name

CLUSTER_CONNECTION_STARTED (14) name

CLUSTER_CONNECTION_STOPPED (15) name

ACCEPTOR_STARTED (16) factory

id

ACCEPTOR_STOPPED (17) factory

id

PROPOSAL (18) _JBM_ProposalGroupId

_JBM_ProposalValue

_AMQ_Binding_Type

_AMQ_Address

_AMQ_Distance

Notification type Headers

Red Hat AMQ 2021.Q3 Managing AMQ Broker

92

PROPOSAL_RESPONSE (19) _JBM_ProposalGroupId

_JBM_ProposalValue

_JBM_ProposalAltValue

_AMQ_Binding_Type

_AMQ_Address

_AMQ_Distance

CONSUMER_SLOW (21) _AMQ_Address

_AMQ_ConsumerCount

_AMQ_RemoteAddress

_AMQ_ConnectionName

_AMQ_ConsumerName

_AMQ_SessionName

Notification type Headers

6.6. USING MESSAGE COUNTERS

You use message counters to obtain information about queues over time. This helps you to identify
trends that would otherwise be difficult to see.

For example, you could use message counters to determine how a particular queue is being used over
time. You could also attempt to obtain this information by using the management API to query the
number of messages in the queue at regular intervals, but this would not show how the queue is actually
being used. The number of messages in a queue can remain constant because no clients are sending or
receiving messages on it, or because the number of messages sent to the queue is equal to the number
of messages consumed from it. In both of these cases, the number of messages in the queue remains
the same even though it is being used in very different ways.

6.6.1. Types of message counters

Message counters provide additional information about queues on a broker.

count

The total number of messages added to the queue since the broker was started.

countDelta

The number of messages added to the queue since the last message counter update.

lastAckTimestamp

The time stamp of the last time a message from the queue was acknowledged.

lastAddTimestamp

The time stamp of the last time a message was added to the queue.

messageCount

CHAPTER 6. USING THE MANAGEMENT API

93

The current number of messages in the queue.

messageCountDelta

The overall number of messages added/removed from the queue since the last message counter
update. For example, if messageCountDelta is -10, then 10 messages overall have been removed
from the queue.

udpateTimestamp

The time stamp of the last message counter update.

NOTE

You can combine message counters to determine other meaningful data as well. For
example, to know specifically how many messages were consumed from the queue since
the last update, you would subtract the messageCountDelta from countDelta.

6.6.2. Enabling message counters

Message counters can have a small impact on the broker’s memory; therefore, they are disabled by
default. To use message counters, you must first enable them.

Procedure

1. Open the <broker_instance_dir>/etc/broker.xml configuration file.

2. Enable message counters.

3. Set the message counter history and sampling period.

message-counter-max-day-history

The number of days the broker should store queue metrics. The default is 10 days.

message-counter-sample-period

How often (in milliseconds) the broker should sample its queues to collect metrics. The
default is 10000 milliseconds.

6.6.3. Retrieving message counters

You can use the management API to retrieve message counters.

Prerequisites

Message counters must be enabled on the broker.
For more information, see Section 6.6.2, “Enabling message counters” .

Procedure

Use the management API to retrieve message counters.

<message-counter-enabled>true</message-counter-enabled>

<message-counter-max-day-history>7</message-counter-max-day-history>
<message-counter-sample-period>60000</message-counter-sample-period>

Red Hat AMQ 2021.Q3 Managing AMQ Broker

94

Additional resources

For more information about message counters, see Section 6.4.3, “Queue management
operations”.

// Retrieve a connection to the broker's MBeanServer.
MBeanServerConnection mbsc = ...
JMSQueueControlMBean queueControl =
(JMSQueueControl)MBeanServerInvocationHandler.newProxyInstance(mbsc,
 on,
 JMSQueueControl.class,
 false);

// Message counters are retrieved as a JSON string.
String counters = queueControl.listMessageCounter();

// Use the MessageCounterInfo helper class to manipulate message counters more easily.
MessageCounterInfo messageCounter = MessageCounterInfo.fromJSON(counters);
System.out.format("%s message(s) in the queue (since last sample: %s)\n",
messageCounter.getMessageCount(),
messageCounter.getMessageCountDelta());

CHAPTER 6. USING THE MANAGEMENT API

95

CHAPTER 7. MONITORING BROKERS FOR PROBLEMS
AMQ Broker includes an internal tool called the Critical Analyzer that actively monitors running brokers
for problems such as deadlock conditions. In a production environment, a problem such as a deadlock
condition can be caused by IO errors, a defective disk, memory shortage, or excess CPU usage caused
by other processes.

The Critical Analyzer periodically measures the response time for critical operations such as queue
delivery (that is, adding of messages to a queue on the broker) and journal operations. If the response
time of a checked operation exceeds a configurable timeout value, the broker is considered unstable. In
this case, you can configure the Critical Analyzer to simply log a message or take action to protect the
broker, such as shutting down the broker or stopping the virtual machine (VM) that is running the
broker.

7.1. CONFIGURING THE CRITICAL ANALYZER

The following procedure shows how to configure the Critical Analyzer to monitor the broker for
problems.

Procedure

1. Open the <broker_instance_dir>/etc/broker.xml configuration file.
The default configuration for the Critical Analyzer is shown below.

<critical-analyzer>true</critical-analyzer>
<critical-analyzer-timeout>120000</critical-analyzer-timeout>
<critical-analyzer-check-period>60000</critical-analyzer-check-period>
<critical-analyzer-policy>HALT</critical-analyzer-policy>

2. Specify parameter values, as described below.

critical-analyzer

Specifies whether to enable or disable the Critical Analyzer tool. The default value is true,
which means that the tool is enabled.

critical-analyzer-timeout

Timeout, in milliseconds, for the checks run by the Critical Analyzer. If the time taken by one
of the checked operations exceeds this value, the broker is considered unstable.

critical-analyzer-check-period

Time period, in milliseconds, between consecutive checks by the Critical Analyzer for each
operation.

critical-analyzer-policy

If the broker fails a check and is considered unstable, this parameter specifies whether the
broker logs a message (LOG), stops the virtual machine (VM) hosting the broker (HALT), or
shuts down the broker (SHUTDOWN).

Based on the policy option that you have configured, if the response time for a critical operation
exceeds the configured timeout value, you see output that resembles one of the following:

critical-analyzer-policy=LOG

[Artemis Critical Analyzer] 18:11:52,145 WARN [org.apache.activemq.artemis.core.server]
AMQ224081: The component

Red Hat AMQ 2021.Q3 Managing AMQ Broker

96

org.apache.activemq.artemis.tests.integration.critical.CriticalSimpleTest$2@5af97850 is not
responsive

critical-analyzer-policy=HALT

[Artemis Critical Analyzer] 18:10:00,831 ERROR [org.apache.activemq.artemis.core.server]
AMQ224079: The process for the virtual machine will be killed, as component
org.apache.activemq.artemis.tests.integration.critical.CriticalSimpleTest$2@5af97850 is not
responsive

critical-analyzer-policy=SHUTDOWN

[Artemis Critical Analyzer] 18:07:53,475 ERROR [org.apache.activemq.artemis.core.server]
AMQ224080: The server process will now be stopped, as component
org.apache.activemq.artemis.tests.integration.critical.CriticalSimpleTest$2@5af97850 is not
responsive

You also see a thread dump on the broker that resembles the following:

[Artemis Critical Analyzer] 18:10:00,836 WARN [org.apache.activemq.artemis.core.server]
AMQ222199: Thread dump: AMQ119001: Generating thread dump
*
===
==== AMQ119002: Thread Thread[Thread-1 (ActiveMQ-scheduled-threads),5,main] name =
Thread-1 (ActiveMQ-scheduled-threads) id = 19 group =
java.lang.ThreadGroup[name=main,maxpri=10] sun.misc.Unsafe.park(Native Method)
java.util.concurrent.locks.LockSupport.park(LockSupport.java:175)
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueued
Synchronizer.java:2039)
java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThrea
dPoolExecutor.java:1088)
java.util.concurrent.ScheduledThreadPoolExecutor$DelayedWorkQueue.take(ScheduledThrea
dPoolExecutor.java:809)
java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:1067)
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1127)
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
java.lang.Thread.run(Thread.java:745)
===
====
===
==== AMQ119003: End Thread dump *

Revised on 2022-03-30 11:53:23 UTC

CHAPTER 7. MONITORING BROKERS FOR PROBLEMS

97

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. OVERVIEW
	1.1. SUPPORTED CONFIGURATIONS
	1.2. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document
	Replaceable values

	CHAPTER 2. UPGRADING YOUR BROKER
	2.1. ABOUT UPGRADES
	2.2. UPGRADING OLDER 7.X VERSIONS
	2.2.1. Upgrading a broker instance from 7.0.x to 7.0.y
	2.2.1.1. Upgrading from 7.0.x to 7.0.y on Linux
	2.2.1.2. Upgrading from 7.0.x to 7.0.y on Windows

	2.2.2. Upgrading a broker instance from 7.0.x to 7.1.0
	2.2.2.1. Upgrading from 7.0.x to 7.1.0 on Linux
	2.2.2.2. Upgrading from 7.0.x to 7.1.0 on Windows

	2.2.3. Upgrading a broker instance from 7.1.x to 7.2.0
	2.2.3.1. Upgrading from 7.1.x to 7.2.0 on Linux
	2.2.3.2. Upgrading from 7.1.x to 7.2.0 on Windows

	2.2.4. Upgrading a broker instance from 7.2.x to 7.3.0
	2.2.4.1. Resolve exception due to deprecated dispatch console
	2.2.4.2. Upgrading from 7.2.x to 7.3.0 on Linux
	2.2.4.3. Upgrading from 7.2.x to 7.3.0 on Windows

	2.2.5. Upgrading a broker instance from 7.3.0 to 7.4.0
	2.2.5.1. Upgrading from 7.3.0 to 7.4.0 on Linux
	2.2.5.2. Upgrading from 7.3.0 to 7.4.0 on Windows

	2.3. UPGRADING A BROKER INSTANCE FROM 7.4.0 TO 7.4.X
	2.3.1. Upgrading from 7.4.0 to 7.4.x on Linux
	2.3.2. Upgrading from 7.4.0 to 7.4.x on Windows

	2.4. UPGRADING A BROKER INSTANCE FROM 7.4.X TO 7.5.0
	2.4.1. Upgrading from 7.4.x to 7.5.0 on Linux
	2.4.2. Upgrading from 7.4.x to 7.5.0 on Windows

	2.5. UPGRADING A BROKER INSTANCE FROM 7.5.0 TO 7.6.0
	2.5.1. Upgrading from 7.5.0 to 7.6.0 on Linux
	2.5.2. Upgrading from 7.5.0 to 7.6.0 on Windows

	2.6. UPGRADING A BROKER INSTANCE FROM 7.6.0 TO 7.7.0
	2.6.1. Upgrading from 7.6.0 to 7.7.0 on Linux
	2.6.2. Upgrading from 7.6.0 to 7.7.0 on Windows

	2.7. UPGRADING A BROKER INSTANCE FROM 7.7.0 TO 7.8.0
	2.7.1. Upgrading from 7.7.0 to 7.8.0 on Linux
	2.7.2. Upgrading from 7.7.0 to 7.8.0 on Windows

	2.8. UPGRADING A BROKER INSTANCE FROM 7.8.0 TO 7.9.0
	2.8.1. Upgrading from 7.8.0 to 7.9.0 on Linux
	2.8.2. Upgrading from 7.8.0 to 7.9.0 on Windows

	CHAPTER 3. USING THE COMMAND LINE INTERFACE
	3.1. STARTING BROKER INSTANCES
	3.1.1. Starting the broker instance
	3.1.2. Starting a broker as a Linux service
	3.1.3. Starting a broker as a Windows service

	3.2. STOPPING BROKER INSTANCES
	3.2.1. Stopping the broker instance
	3.2.2. Stopping a broker instance gracefully

	3.3. AUDITING MESSAGES BY INTERCEPTING PACKETS
	3.3.1. Creating interceptors
	3.3.2. Configuring the broker to use interceptors
	3.3.3. Interceptors on the client side

	3.4. CHECKING THE HEALTH OF BROKERS AND QUEUES
	3.5. COMMAND LINE TOOLS

	CHAPTER 4. USING AMQ MANAGEMENT CONSOLE
	4.1. OVERVIEW
	4.2. CONFIGURING LOCAL AND REMOTE ACCESS TO AMQ MANAGEMENT CONSOLE
	4.3. ACCESSING AMQ MANAGEMENT CONSOLE
	4.4. CONFIGURING AMQ MANAGEMENT CONSOLE
	4.4.1. Securing AMQ Management Console using Red Hat Single Sign-On
	4.4.2. Setting up user access to AMQ Management Console
	4.4.3. Securing network access to AMQ Management Console

	4.5. MANAGING BROKERS USING AMQ MANAGEMENT CONSOLE
	4.5.1. Viewing details about the broker
	4.5.2. Viewing the broker diagram
	4.5.3. Viewing acceptors
	4.5.4. Managing addresses and queues
	4.5.4.1. Creating addresses
	4.5.4.2. Sending messages to an address
	4.5.4.3. Creating queues
	4.5.4.4. Checking the status of a queue
	4.5.4.5. Browsing queues
	4.5.4.6. Sending messages to a queue
	4.5.4.7. Resending messages to a queue
	4.5.4.8. Moving messages to a different queue
	4.5.4.9. Deleting messages or queues

	CHAPTER 5. MONITORING BROKER RUNTIME METRICS
	5.1. METRICS OVERVIEW
	5.2. ENABLING THE PROMETHEUS METRICS PLUGIN FOR AMQ BROKER
	5.3. CONFIGURING THE BROKER TO COLLECT JVM METRICS
	5.4. DISABLING METRICS COLLECTION FOR SPECIFIC ADDRESSES
	5.5. ACCESSING BROKER RUNTIME DATA USING PROMETHEUS

	CHAPTER 6. USING THE MANAGEMENT API
	6.1. METHODS FOR MANAGING AMQ BROKER USING THE MANAGEMENT API
	6.2. MANAGING AMQ BROKER USING JMX
	6.2.1. Configuring JMX management
	6.2.2. Configuring JMX management access
	6.2.3. MBeanServer configuration
	6.2.4. How JMX is exposed with Jolokia
	6.2.5. Subscribing to JMX management notifications

	6.3. MANAGING AMQ BROKER USING THE JMS API
	6.3.1. Configuring broker management using JMS messages and the AMQ JMS Client
	6.3.2. Managing brokers using the JMS API and AMQ JMS Client

	6.4. MANAGEMENT OPERATIONS
	6.4.1. Broker management operations
	6.4.2. Address management operations
	6.4.3. Queue management operations
	6.4.4. Remote resource management operations

	6.5. MANAGEMENT NOTIFICATIONS
	6.6. USING MESSAGE COUNTERS
	6.6.1. Types of message counters
	6.6.2. Enabling message counters
	6.6.3. Retrieving message counters

	CHAPTER 7. MONITORING BROKERS FOR PROBLEMS
	7.1. CONFIGURING THE CRITICAL ANALYZER

