
Red Hat AMQ 2021.Q3

Deploying AMQ Broker on OpenShift

For Use with AMQ Broker 7.9

Last Updated: 2022-05-19

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

For Use with AMQ Broker 7.9

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Learn how to install and deploy AMQ Broker on OpenShift Container Platform.

. .

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
1.1. VERSION COMPATIBILITY AND SUPPORT
1.2. UNSUPPORTED FEATURES
1.3. DOCUMENT CONVENTIONS

The sudo command
About the use of file paths in this document
Replaceable values

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
2.1. OVERVIEW OF THE AMQ BROKER OPERATOR CUSTOM RESOURCE DEFINITIONS
2.2. OVERVIEW OF THE AMQ BROKER OPERATOR SAMPLE CUSTOM RESOURCES
2.3. WATCH OPTIONS FOR A CLUSTER OPERATOR DEPLOYMENT
2.4. HOW THE OPERATOR CHOOSES CONTAINER IMAGES

2.4.1. Environment variables for broker container images
2.4.2. Environment variables for Init Container images

2.5. OPERATOR DEPLOYMENT NOTES

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ
BROKER OPERATOR

3.1. PREREQUISITES
3.2. INSTALLING THE OPERATOR USING THE CLI

3.2.1. Getting the Operator code
3.2.2. Deploying the Operator using the CLI

3.3. INSTALLING THE OPERATOR USING OPERATORHUB
3.3.1. Overview of the Operator Lifecycle Manager
3.3.2. Deploying the Operator from OperatorHub

3.4. CREATING OPERATOR-BASED BROKER DEPLOYMENTS
3.4.1. Deploying a basic broker instance
3.4.2. Deploying clustered brokers
3.4.3. Applying Custom Resource changes to running broker deployments

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS
4.1. HOW THE OPERATOR GENERATES THE BROKER CONFIGURATION

4.1.1. How the Operator generates the address settings configuration
4.1.2. Directory structure of a broker Pod

4.2. CONFIGURING ADDRESSES AND QUEUES FOR OPERATOR-BASED BROKER DEPLOYMENTS
4.2.1. Differences in configuration of address and queue settings between OpenShift and standalone broker
deployments
4.2.2. Creating addresses and queues for an Operator-based broker deployment
4.2.3. Matching address settings to configured addresses in an Operator-based broker deployment

4.3. CREATING A SECURITY CONFIGURATION FOR AN OPERATOR-BASED BROKER DEPLOYMENT
4.4. CONFIGURING BROKER STORAGE REQUIREMENTS

4.4.1. Configuring broker storage size
4.5. CONFIGURING RESOURCE LIMITS AND REQUESTS FOR OPERATOR-BASED BROKER DEPLOYMENTS

4.5.1. Configuring broker resource limits and requests
4.6. SPECIFYING A CUSTOM INIT CONTAINER IMAGE
4.7. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS FOR CLIENT CONNECTIONS

4.7.1. Configuring acceptors
4.7.2. Securing broker-client connections

4.7.2.1. Configuring a broker certificate for host name verification

4

5
5
5
6
6
6
6

7
7
8
9
9

10
11

14

16
16
16
16
18
21
21
21
23
23
26
27

29
29
29
30
31

32
33
35
41

43
44

46
47
49
53
53
55
56

Table of Contents

1

. .

. .

. .

. .

4.7.2.2. Configuring one-way TLS
4.7.2.3. Configuring two-way TLS

4.7.3. Networking Services in your broker deployments
4.7.4. Connecting to the broker from internal and external clients

4.7.4.1. Connecting to the broker from internal clients
4.7.4.2. Connecting to the broker from external clients
4.7.4.3. Connecting to the Broker using a NodePort

4.8. CONFIGURING LARGE MESSAGE HANDLING FOR AMQP MESSAGES
4.8.1. Configuring AMQP acceptors for large message handling

4.9. HIGH AVAILABILITY AND MESSAGE MIGRATION
4.9.1. High availability
4.9.2. Message migration
4.9.3. Migrating messages upon scaledown

CHAPTER 5. CONNECTING TO AMQ MANAGEMENT CONSOLE FOR AN OPERATOR-BASED BROKER
DEPLOYMENT

5.1. CONNECTING TO AMQ MANAGEMENT CONSOLE
5.2. ACCESSING AMQ MANAGEMENT CONSOLE LOGIN CREDENTIALS

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT
6.1. BEFORE YOU BEGIN
6.2. UPGRADING THE OPERATOR USING THE CLI

6.2.1. Prerequisites
6.2.2. Upgrading version 7.8.x of the Operator

6.3. UPGRADING THE OPERATOR USING OPERATORHUB
6.3.1. Prerequisites
6.3.2. Before you begin
6.3.3. Upgrading the Operator using OperatorHub

6.4. UPGRADING THE BROKER CONTAINER IMAGE BY SPECIFYING AN AMQ BROKER VERSION

CHAPTER 7. MONITORING YOUR BROKERS
7.1. VIEWING BROKERS IN FUSE CONSOLE
7.2. MONITORING BROKER RUNTIME METRICS USING PROMETHEUS

7.2.1. Metrics overview
7.2.2. Enabling the Prometheus plugin using a CR
7.2.3. Enabling the Prometheus plugin for a running broker deployment using an environment variable
7.2.4. Accessing Prometheus metrics for a running broker Pod

7.3. MONITORING BROKER RUNTIME DATA USING JMX

CHAPTER 8. REFERENCE
8.1. CUSTOM RESOURCE CONFIGURATION REFERENCE

8.1.1. Broker Custom Resource configuration reference
8.1.2. Address Custom Resource configuration reference
8.1.3. Security Custom Resource configuration reference

8.2. APPLICATION TEMPLATE PARAMETERS
8.3. LOGGING

57
58
60
60
60
61

62
63
63
64
65
65
67

70
70
71

73
73
73
73
74
75
75
75
75
76

80
80
82
82
84
85
85
86

89
89
89
131
132
146
149

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

2

Table of Contents

3

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO AMQ BROKER ON
OPENSHIFT CONTAINER PLATFORM

Red Hat AMQ Broker 7.9 is available as a containerized image for use with OpenShift Container
Platform (OCP) 4.6, 4.7, 4.8, 4.9 or 4.10.

AMQ Broker is based on Apache ActiveMQ Artemis. It provides a message broker that is JMS-
compliant. After you have set up the initial broker pod, you can quickly deploy duplicates by using
OpenShift Container Platform features.

1.1. VERSION COMPATIBILITY AND SUPPORT

For details about OpenShift Container Platform image version compatibility, see:

OpenShift Container Platform 4.x Tested Integrations

NOTE

All deployments of AMQ Broker on OpenShift Container Platform now use RHEL 8 based
images.

1.2. UNSUPPORTED FEATURES

Master-slave-based high availability
High availability (HA) achieved by configuring master and slave pairs is not supported. Instead,
when pods are scaled down, HA is provided in OpenShift by using the scaledown controller,
which enables message migration.

External Clients that connect to a cluster of brokers, either through the OpenShift proxy or by
using bind ports, may need to be configured for HA accordingly. In a clustered scenario, a broker
will inform certain clients of the addresses of all the broker’s host and port information. Since
these are only accessible internally, certain client features either will not work or will need to be
disabled.

Client Configuration

Core JMS Client Because external Core Protocol JMS clients do
not support HA or any type of failover, the
connection factories must be configured with
useTopologyForLoadBalancing=false.

AMQP Clients AMQP clients do not support failover lists

Durable subscriptions in a cluster
When a durable subscription is created, this is represented as a durable queue on the broker to
which a client has connected. When a cluster is running within OpenShift the client does not
know on which broker the durable subscription queue has been created. If the subscription is
durable and the client reconnects there is currently no method for the load balancer to
reconnect it to the same node. When this happens, it is possible that the client will connect to a
different broker and create a duplicate subscription queue. For this reason, using durable
subscriptions with a cluster of brokers is not recommended.

CHAPTER 1. INTRODUCTION TO AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

5

https://access.redhat.com/articles/4128421

1.3. DOCUMENT CONVENTIONS

This document uses the following conventions for the sudo command, file paths, and replaceable
values.

The sudo command
In this document, sudo is used for any command that requires root privileges. You should always
exercise caution when using sudo, as any changes can affect the entire system.

For more information about using sudo, see The sudo Command.

About the use of file paths in this document
In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/...). If you are using Microsoft Windows, you should use the equivalent Microsoft Windows paths
(for example, C:\Users\...).

Replaceable values
This document sometimes uses replaceable values that you must replace with values specific to your
environment. Replaceable values are lowercase, enclosed by angle brackets (< >), and are styled using
italics and monospace font. Multiple words are separated by underscores (_) .

For example, in the following command, replace <project_name> with your own project name.

$ oc new-project <project_name>

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

6

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Gaining_Privileges-The_sudo_Command.html

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER
ON OPENSHIFT CONTAINER PLATFORM

This section describes how to plan an Operator-based deployment.

Operators are programs that enable you to package, deploy, and manage OpenShift applications. Often,
Operators automate common or complex tasks. Commonly, Operators are intended to provide:

Consistent, repeatable installations

Health checks of system components

Over-the-air (OTA) updates

Managed upgrades

Operators enable you to make changes while your broker instances are running, because they are always
listening for changes to the Custom Resource (CR) instances that you used to configure your
deployment. When you make changes to a CR, the Operator reconciles the changes with the existing
broker deployment and updates the deployment to reflect the changes. In addition, the Operator
provides a message migration capability, which ensures the integrity of messaging data. When a broker
in a clustered deployment shuts down due to failure or intentional scaledown of the deployment, this
capability migrates messages to a broker Pod that is still running in the same broker cluster.

2.1. OVERVIEW OF THE AMQ BROKER OPERATOR CUSTOM
RESOURCE DEFINITIONS

In general, a Custom Resource Definition (CRD) is a schema of configuration items that you can modify
for a custom OpenShift object deployed with an Operator. By creating a corresponding Custom
Resource (CR) instance, you can specify values for configuration items in the CRD. If you are an
Operator developer, what you expose through a CRD essentially becomes the API for how a deployed
object is configured and used. You can directly access the CRD through regular HTTP curl commands,
because the CRD gets exposed automatically through Kubernetes.

You can install the AMQ Broker Operator using either the OpenShift command-line interface (CLI), or
the Operator Lifecycle Manager, through the OperatorHub graphical interface. In either case, the AMQ
Broker Operator includes the CRDs described below.

Main broker CRD

You deploy a CR instance based on this CRD to create and configure a broker deployment.
Based on how you install the Operator, this CRD is:

The broker_activemqartemis_crd file in the crds directory of the Operator installation
archive (OpenShift CLI installation method)

The ActiveMQArtemis CRD in the Custom Resource Definitions section of the OpenShift
Container Platform web console (OperatorHub installation method)

Address CRD

You deploy a CR instance based on this CRD to create addresses and queues for a broker
deployment.
Based on how you install the Operator, this CRD is:

The broker_activemqartemisaddress_crd file in the crds directory of the Operator

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

7

The broker_activemqartemisaddress_crd file in the crds directory of the Operator
installation archive (OpenShift CLI installation method)

The ActiveMQArtemisAddresss CRD in the Custom Resource Definitions section of the
OpenShift Container Platform web console (OperatorHub installation method)

Security CRD

You deploy a CR instance based on this CRD to create users and associate those users with security
contexts.
Based on how you install the Operator, this CRD is:

The broker_activemqartemissecurity_crd file in the crds directory of the Operator
installation archive (OpenShift CLI installation method)

The ActiveMQArtemisSecurity CRD in the Custom Resource Definitions section of the
OpenShift Container Platform web console (OperatorHub installation method).

Scaledown CRD

The Operator automatically creates a CR instance based on this CRD when instantiating a scaledown
controller for message migration.
Based on how you install the Operator, this CRD is:

The broker_activemqartemisscaledown_crd file in the crds directory of the Operator
installation archive (OpenShift CLI installation method)

The ActiveMQArtemisScaledown CRD in the Custom Resource Definitions section of
the OpenShift Container Platform web console (OperatorHub installation method).

Additional resources

To learn how to install the AMQ Broker Operator (and all included CRDs) using:

The OpenShift CLI, see Section 3.2, “Installing the Operator using the CLI”

The Operator Lifecycle Manager and OperatorHub graphical interface, see Section 3.3,
“Installing the Operator using OperatorHub”.

For complete configuration references to use when creating CR instances based on the main
broker and address CRDs, see:

Section 8.1.1, “Broker Custom Resource configuration reference”

Section 8.1.2, “Address Custom Resource configuration reference”

2.2. OVERVIEW OF THE AMQ BROKER OPERATOR SAMPLE CUSTOM
RESOURCES

The AMQ Broker Operator archive that you download and extract during installation includes sample
Custom Resource (CR) files in the deploy/crs directory. These sample CR files enable you to:

Deploy a minimal broker without SSL or clustering.

Define addresses.

The broker Operator archive that you download and extract also includes CRs for example deployments

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

8

The broker Operator archive that you download and extract also includes CRs for example deployments
in the deploy/examples directory, as listed below.

artemis-basic-deployment.yaml

Basic broker deployment.

artemis-persistence-deployment.yaml

Broker deployment with persistent storage.

artemis-cluster-deployment.yaml

Deployment of clustered brokers.

artemis-persistence-cluster-deployment.yaml

Deployment of clustered brokers with persistent storage.

artemis-ssl-deployment.yaml

Broker deployment with SSL security.

artemis-ssl-persistence-deployment.yaml

Broker deployment with SSL security and persistent storage.

artemis-aio-journal.yaml

Use of asynchronous I/O (AIO) with the broker journal.

address-queue-create.yaml

Address and queue creation.

2.3. WATCH OPTIONS FOR A CLUSTER OPERATOR DEPLOYMENT

When the Cluster Operator is running, it starts to watch for updates of AMQ Broker custom resources
(CRs).

You can choose to deploy the Cluster Operator to watch CRs from:

A single namespace (the same namespace containing the Operator)

All namespaces

NOTE

If you have already installed a previous version of the AMQ Broker Operator in a
namespace on your cluster, Red Hat recommends that you do not install the AMQ Broker
Operator 7.9 version to watch that namespace to avoid potential conflicts.

2.4. HOW THE OPERATOR CHOOSES CONTAINER IMAGES

When you create a Custom Resource (CR) instance for a broker deployment based on at least version
7.9.4-opr-3 of the Operator, you do not need to explicitly specify broker or Init Container image names
in the CR. By default, if you deploy a CR and do not explicitly specify container image values, the
Operator automatically chooses the appropriate container images to use.

NOTE

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

9

NOTE

If you install the Operator using the OpenShift command-line interface, the Operator
installation archive includes a sample CR file called broker_activemqartemis_cr.yaml. In
the sample CR, the spec.deploymentPlan.image property is included and set to its
default value of placeholder. This value indicates that the Operator does not choose a
broker container image until you deploy the CR.

The spec.deploymentPlan.initImage property, which specifies the Init Container image,
is not included in the broker_activemqartemis_cr.yaml sample CR file. If you do not
explicitly include the spec.deploymentPlan.initImage property in your CR and specify a
value, the Operator chooses an appropriate built-in Init Container image to use when you
deploy the CR.

How the Operator chooses these images is described in this section.

To choose broker and Init Container images, the Operator first determines an AMQ Broker version to
which the images should correspond. The Operator determines the version as follows:

If the spec.upgrades.enabled property in the main CR is already set to true and the
spec.version property specifies 7.7.0, 7.8.0, 7.8.1, or 7.8.2, the Operator uses that specified
version.

If spec.upgrades.enabled is not set to true, or spec.version is set to an AMQ Broker version
earlier than 7.7.0, the Operator uses the latest version of AMQ Broker (that is, 7.9.4).

The Operator then detects your container platform. The AMQ Broker Operator can run on the following
container platforms:

OpenShift Container Platform (x86_64)

OpenShift Container Platform on IBM Z (s390x)

OpenShift Container Platform on IBM Power Systems (ppc64le)

Based on the version of AMQ Broker and your container platform, the Operator then references two
sets of environment variables in the operator.yaml configuration file. These sets of environment
variables specify broker and Init Container images for various versions of AMQ Broker, as described in
the following sub-sections.

2.4.1. Environment variables for broker container images

The environment variables included in the operator.yaml configuration file for broker container images
have the following naming convention:

OpenShift Container Platform

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_<AMQ_Broker_version_identifier>

OpenShift Container Platform on IBM Z

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_<AMQ_Broker_version_identifier>
_s390x

OpenShift Container Platform on IBM Power Systems

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_<AMQ_Broker_version_identifier>
_ppc64le

Environment variable names for each supported container platform and specific AMQ Broker versions

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

10

Environment variable names for each supported container platform and specific AMQ Broker versions
are shown in the table.

Container platform Environment variable names

OpenShift Container Platform
RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet
es_781

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet
es_782

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet
es_790

OpenShift Container Platform
on IBM Z RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet

es_781_s390x

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet
es_782_s390x

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet
es_790_s390x

OpenShift Container Platform
on IBM Power Systems RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet

es_781_ppc64le

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet
es_782_ppc64le

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernet
es_790_ppc64le

The value of each environment variable specifies a broker container image that is available from Red
Hat. For example:

Therefore, based on an AMQ Broker version and your container platform, the Operator determines the
applicable environment variable name. The Operator uses the corresponding image value when starting
the broker container.

NOTE

In the operator.yaml file, the Operator uses an image that is represented by a Secure
Hash Algorithm (SHA) value. The comment line, which begins with a number sign (#)
symbol, denotes that the SHA value corresponds to a specific container image tag.

2.4.2. Environment variables for Init Container images

- name: RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_790
 #value: registry.redhat.io/amq7/amq-broker-rhel8:7.9
 value: registry.redhat.io/amq7/amq-broker-
rhel8@sha256:71aef8faa1c661212ef8a7ef450656a250d95b51d33d1ce77f12ece27cdb9442

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

11

The environment variables included in the operator.yaml configuration file for Init Container images
have the following naming convention:

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_<AMQ_Broker_version_identifier>

Environment variable names for specific AMQ Broker versions are listed below.

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_781

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_782

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_790

The value of each environment variable specifies an Init Container image that is available from Red Hat.
For example:

Therefore, based on an AMQ Broker version, the Operator determines the applicable environment
variable name. The Operator uses the corresponding image value when starting the Init Container.

NOTE

As shown in the example, the Operator uses an image that is represented by a Secure
Hash Algorithm (SHA) value. The comment line, which begins with a number sign (#)
symbol, denotes that the SHA value corresponds to a specific container image tag.
Observe that the corresponding container image tag is not a floating tag in the form of
0.4-21. This means that the container image used by the Operator remains fixed. The
Operator does not automatically pull and use a new micro image version (that is, 0.4-21-
n, where n is the latest micro version) when it becomes available from Red Hat.

The environment variables included in the operator.yaml configuration file for Init Container images
have the following naming convention:

OpenShift Container Platform

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_<AMQ_Broker_version_identifier>

OpenShift Container Platform on IBM Z

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_s390x_<AMQ_Broker_version_identifier>

OpenShift Container Platform on IBM Power Systems

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_ppc64le_<AMQ_Broker_version_identifier>

Environment variable names for each supported container platform and specific AMQ Broker versions
are shown in the table.

Container platform Environment variable names

- name: RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_790
 #value: registry.redhat.io/amq7/amq-broker-init-rhel8:0.4-21
 value: registry.redhat.io/amq7/amq-broker-init-
rhel8@sha256:d327d358e6cfccac14becc486bce643e34970ecfc6c4d187a862425867a9ac8a

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

12

OpenShift Container Platform
RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_781

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_782

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_790

OpenShift Container Platform
on IBM Z RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_s390x

_781

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_s390x
_782

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_s390x
_790

OpenShift Container Platform
on IBM Power Systems RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_ppc6

4le_781

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_ppc6
4le_782

RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_ppc6
4le_790

Container platform Environment variable names

The value of each environment variable specifies an Init Container image that is available from Red Hat.
For example:

Therefore, based on an AMQ Broker version and your container platform, the Operator determines the
applicable environment variable name. The Operator uses the corresponding image value when starting
the Init Container.

NOTE

As shown in the example, the Operator uses an image that is represented by a Secure
Hash Algorithm (SHA) value. The comment line, which begins with a number sign (#)
symbol, denotes that the SHA value corresponds to a specific container image tag.
Observe that the corresponding container image tag is not a floating tag in the form of
0.4-21. This means that the container image used by the Operator remains fixed. The
Operator does not automatically pull and use a new micro image version (that is, 0.4-21-
n, where n is the latest micro version) when it becomes available from Red Hat.

Additional resources

To learn how to use the AMQ Broker Operator to create a broker deployment, see Chapter 3,

- name: RELATED_IMAGE_ActiveMQ_Artemis_Broker_Init_790
 #value: registry.redhat.io/amq7/amq-broker-init-rhel8:0.4-21-1
 value: registry.redhat.io/amq7/amq-broker-init-
rhel8@sha256:d327d358e6cfccac14becc486bce643e34970ecfc6c4d187a862425867a9ac8a

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

13

To learn how to use the AMQ Broker Operator to create a broker deployment, see Chapter 3,
Deploying AMQ Broker on OpenShift Container Platform using the AMQ Broker Operator .

For more information about how the Operator uses an Init Container to generate the broker
configuration, see Section 4.1, “How the Operator generates the broker configuration” .

To learn how to build and specify a custom Init Container image, see Section 4.6, “Specifying a
custom Init Container image”.

2.5. OPERATOR DEPLOYMENT NOTES

This section describes some important considerations when planning an Operator-based deployment

Deploying the Custom Resource Definitions (CRDs) that accompany the AMQ Broker Operator
requires cluster administrator privileges for your OpenShift cluster. When the Operator is
deployed, non-administrator users can create broker instances via corresponding Custom
Resources (CRs). To enable regular users to deploy CRs, the cluster administrator must first
assign roles and permissions to the CRDs. For more information, see Creating cluster roles for
Custom Resource Definitions in the OpenShift Container Platform documentation.

When you update your cluster with the CRDs for the latest Operator version, this update affects
all projects in the cluster. Any broker Pods deployed from previous versions of the Operator
might become unable to update their status. When you click the Logs tab of a running broker
Pod in the OpenShift Container Platform web console, you see messages indicating that
'UpdatePodStatus' has failed. However, the broker Pods and Operator in that project continue
to work as expected. To fix this issue for an affected project, you must also upgrade that project
to use the latest version of the Operator.

While you can create more than one broker deployment in a given OpenShift project by
deploying multiple Custom Resource (CR) instances, typically, you create a single broker
deployment in a project, and then deploy multiple CR instances for addresses.
Red Hat recommends you create broker deployments in separate projects.

If you intend to deploy brokers with persistent storage and do not have container-native
storage in your OpenShift cluster, you need to manually provision Persistent Volumes (PVs) and
ensure that these are available to be claimed by the Operator. For example, if you want to create
a cluster of two brokers with persistent storage (that is, by setting persistenceEnabled=true in
your CR), you need to have two persistent volumes available. By default, each broker instance
requires storage of 2 GiB.
If you specify persistenceEnabled=false in your CR, the deployed brokers uses ephemeral
storage. Ephemeral storage means that that every time you restart the broker Pods, any
existing data is lost.

For more information about provisioning persistent storage in OpenShift Container Platform,
see:

Understanding persistent storage (OpenShift Container Platform 4.5)

You must add configuration for the items listed below to the main broker CR instance before
deploying the CR for the first time. You cannot add configuration for these items to a broker
deployment that is already running.

The size of the Persistent Volume Claim (PVC) required by each broker in a deployment for
persistent storage

Limits and requests for memory and CPU for each broker in a deployment

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

14

https://docs.openshift.com/container-platform/4.5/operators/understanding/crds/crd-extending-api-with-crds.html#crd-creating-aggregated-cluster-role_crd-extending-api-with-crds
https://docs.openshift.com/container-platform/4.5/storage/understanding-persistent-storage.html

The procedures in the next section show you how to install the Operator and use Custom Resources
(CRs) to create broker deployments on OpenShift Container Platform. When you have successfully
completed the procedures, you will have the Operator running in an individual Pod. Each broker instance
that you create will run as an individual Pod in a StatefulSet in the same project as the Operator. Later,
you will you will see how to use a dedicated addressing CR to define addresses in your broker
deployment.

CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM

15

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT
CONTAINER PLATFORM USING THE AMQ BROKER

OPERATOR

3.1. PREREQUISITES

Before you install the Operator and use it to create a broker deployment, you should consult the
Operator deployment notes in Section 2.5, “Operator deployment notes” .

3.2. INSTALLING THE OPERATOR USING THE CLI

NOTE

Each Operator release requires that you download the latest AMQ Broker 7.9.4
Operator Installation and Example Files as described below.

The procedures in this section show how to use the OpenShift command-line interface (CLI) to install
and deploy the latest version of the Operator for AMQ Broker 7.9 in a given OpenShift project. In
subsequent procedures, you use this Operator to deploy some broker instances.

For an alternative method of installing the AMQ Broker Operator that uses the OperatorHub
graphical interface, see Section 3.3, “Installing the Operator using OperatorHub” .

To learn about upgrading existing Operator-based broker deployments, see Chapter 6,
Upgrading an Operator-based broker deployment .

3.2.1. Getting the Operator code

This procedure shows how to access and prepare the code you need to install the latest version of the
Operator for AMQ Broker 7.9.

Procedure

1. In your web browser, navigate to the Software Downloads page for AMQ Broker 7.9.4 releases .

2. Ensure that the value of the Version drop-down list is set to 7.9.4 and the Releases tab is
selected.

3. Next to AMQ Broker 7.9.4 Operator Installation and Example Files, click Download.
Download of the amq-broker-operator-7.9.4-ocp-install-examples.zip compressed archive
automatically begins.

4. When the download has completed, move the archive to your chosen installation directory. The
following example moves the archive to a directory called ~/broker/operator.

5. In your chosen installation directory, extract the contents of the archive. For example:

$ mkdir ~/broker/operator
$ mv amq-broker-operator-7.9.4-ocp-install-examples.zip ~/broker/operator

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

16

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=jboss.amq.broker&downloadType=distributions&version=7.9.4

6. Switch to the directory that was created when you extracted the archive. For example:

7. Log in to OpenShift Container Platform as a cluster administrator. For example:

8. Specify the project in which you want to install the Operator. You can create a new project or
switch to an existing one.

a. Create a new project:

b. Or, switch to an existing project:

9. Specify a service account to use with the Operator.

a. In the deploy directory of the Operator archive that you extracted, open the
service_account.yaml file.

b. Ensure that the kind element is set to ServiceAccount.

c. In the metadata section, assign a custom name to the service account, or use the default
name. The default name is amq-broker-operator.

d. Create the service account in your project.

10. Specify a role name for the Operator.

a. Open the role.yaml file. This file specifies the resources that the Operator can use and
modify.

b. Ensure that the kind element is set to Role.

c. In the metadata section, assign a custom name to the role, or use the default name. The
default name is amq-broker-operator.

d. Create the role in your project.

11. Specify a role binding for the Operator. The role binding binds the previously-created service
account to the Operator role, based on the names you specified.

a. Open the role_binding.yaml file. Ensure that the name values for ServiceAccount and

$ cd ~/broker/operator
$ unzip amq-broker-operator-7.9.4-ocp-install-examples.zip

$ cd amq-broker-operator-7.9.4-ocp-install-examples

$ oc login -u system:admin

$ oc new-project <project_name>

$ oc project <project_name>

$ oc create -f deploy/service_account.yaml

$ oc create -f deploy/role.yaml

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

17

a. Open the role_binding.yaml file. Ensure that the name values for ServiceAccount and
Role match those specified in the service_account.yaml and role.yaml files. For example:

b. Create the role binding in your project.

In the procedure that follows, you deploy the Operator in your project.

3.2.2. Deploying the Operator using the CLI

The procedure in this section shows how to use the OpenShift command-line interface (CLI) to deploy
the latest version of the Operator for AMQ Broker 7.9 in your OpenShift project.

Prerequisites

You must have already prepared your OpenShift project for the Operator deployment. See
Section 3.2.1, “Getting the Operator code”.

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Ecosystem Catalog to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images. Before you can follow the procedure in this section, you must
first complete the steps described in Red Hat Container Registry Authentication .

If you intend to deploy brokers with persistent storage and do not have container-native
storage in your OpenShift cluster, you need to manually provision Persistent Volumes (PVs) and
ensure that they are available to be claimed by the Operator. For example, if you want to create
a cluster of two brokers with persistent storage (that is, by setting persistenceEnabled=true in
your Custom Resource), you need to have two PVs available. By default, each broker instance
requires storage of 2 GiB.
If you specify persistenceEnabled=false in your Custom Resource, the deployed brokers uses
ephemeral storage. Ephemeral storage means that that every time you restart the broker Pods,
any existing data is lost.

For more information about provisioning persistent storage, see:

Understanding persistent storage (OpenShift Container Platform 4.5)

Procedure

1. In the OpenShift command-line interface (CLI), log in to OpenShift as a cluster administrator.
For example:

metadata:
 name: amq-broker-operator
subjects:
 kind: ServiceAccount
 name: amq-broker-operator
roleRef:
 kind: Role
 name: amq-broker-operator

$ oc create -f deploy/role_binding.yaml

$ oc login -u system:admin

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

18

https://access.redhat.com/RegistryAuthentication
https://docs.openshift.com/container-platform/4.5/storage/understanding-persistent-storage.html

2. Switch to the project that you previously prepared for the Operator deployment. For example:

3. Switch to the directory that was created when you previously extracted the Operator
installation archive. For example:

4. Deploy the CRDs that are included with the Operator. You must install the CRDs in your
OpenShift cluster before deploying and starting the Operator.

a. Deploy the main broker CRD.

b. Deploy the address CRD.

c. Deploy the scaledown controller CRD.

5. Link the pull secret associated with the account used for authentication in the Red Hat
Ecosystem Catalog with the default, deployer, and builder service accounts for your OpenShift
project.

6. In the deploy directory of the Operator archive that you downloaded and extracted, open the
operator.yaml file. Ensure that the value of the spec.containers.image property corresponds
to version 7.9.4-opr-3 of the Operator, as shown below.

NOTE

In the operator.yaml file, the Operator uses an image that is represented by a
Secure Hash Algorithm (SHA) value. The comment line, which begins with a
number sign (#) symbol, denotes that the SHA value corresponds to a specific
container image tag.

7. Determine which namespaces are watched by the Operator by optionally editing the

$ oc project <project_name>

$ cd ~/broker/operator/amq-broker-operator-7.9.4-ocp-install-examples

$ oc create -f deploy/crds/broker_activemqartemis_crd.yaml

$ oc create -f deploy/crds/broker_activemqartemisaddress_crd.yaml

$ oc create -f deploy/crds/broker_activemqartemisscaledown_crd.yaml

$ oc secrets link --for=pull default <secret_name>
$ oc secrets link --for=pull deployer <secret_name>
$ oc secrets link --for=pull builder <secret_name>

spec:
 template:
 spec:
 containers:
 #image: registry.redhat.io/amq7/amq-broker-rhel8-operator:7.9
 image: registry.redhat.io/amq7/amq-broker-rhel8-
operator@sha256:4045170b583f76cdfbe123fd794ed4d175de0c2a76bdb7bf8762b3e35f0eb5b
8

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

19

7. Determine which namespaces are watched by the Operator by optionally editing the
WATCH_NAMESPACE section of the operator.yaml file.

To deploy the Operator to watch the active namespace, do not edit the section:

To deploy the Operator to watch all namespaces:

To deploy the Operator to watch multiple namespaces, for example namespace1 and
namespace2:

NOTE

If you previously deployed brokers using an earlier version of the Operator, and
you want deploy the Operator to watch many namespaces, see Before you
upgrade.

8. Deploy the Operator.

In your OpenShift project, the Operator starts in a new Pod.

In the OpenShift Container Platform web console, the information on the Events tab of the
Operator Pod confirms that OpenShift has deployed the Operator image that you specified, has
assigned a new container to a node in your OpenShift cluster, and has started the new container.

In addition, if you click the Logs tab within the Pod, the output should include lines resembling
the following:

...
{"level":"info","ts":1553619035.8302743,"logger":"kubebuilder.controller","msg":"Starting
Controller","controller":"activemqartemisaddress-controller"}
{"level":"info","ts":1553619035.830541,"logger":"kubebuilder.controller","msg":"Starting
Controller","controller":"activemqartemis-controller"}
{"level":"info","ts":1553619035.9306898,"logger":"kubebuilder.controller","msg":"Starting
workers","controller":"activemqartemisaddress-controller","worker count":1}
{"level":"info","ts":1553619035.9311671,"logger":"kubebuilder.controller","msg":"Starting
workers","controller":"activemqartemis-controller","worker count":1}

The preceding output confirms that the newly-deployed Operator is communicating with
Kubernetes, that the controllers for the broker and addressing are running, and that these
controllers have started some workers.

NOTE

- name: WATCH_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

- name: WATCH_NAMESPACE
 value: '*'

- name: WATCH_NAMESPACE
 value: 'namespace1,namespace2'

$ oc create -f deploy/operator.yaml

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

20

NOTE

It is recommended that you deploy only a single instance of the AMQ Broker Operator in
a given OpenShift project. Setting the spec.replicas property of your Operator
deployment to a value greater than 1, or deploying the Operator more than once in the
same project is not recommended.

Additional resources

For an alternative method of installing the AMQ Broker Operator that uses the OperatorHub
graphical interface, see Section 3.3, “Installing the Operator using OperatorHub” .

3.3. INSTALLING THE OPERATOR USING OPERATORHUB

3.3.1. Overview of the Operator Lifecycle Manager

In OpenShift Container Platform 4.5 and later, the Operator Lifecycle Manager (OLM) helps users
install, update, and generally manage the lifecycle of all Operators and their associated services running
across their clusters. It is part of the Operator Framework, an open source toolkit designed to manage
Kubernetes-native applications (Operators) in an effective, automated, and scalable way.

The OLM runs by default in OpenShift Container Platform 4.5 and later, which aids cluster
administrators in installing, upgrading, and granting access to Operators running on their cluster. The
OpenShift Container Platform web console provides management screens for cluster administrators to
install Operators, as well as grant specific projects access to use the catalog of Operators available on
the cluster.

OperatorHub is the graphical interface that OpenShift cluster administrators use to discover, install, and
upgrade Operators using the OLM. With one click, these Operators can be pulled from OperatorHub,
installed on the cluster, and managed by the OLM, ready for engineering teams to self-service manage
the software in development, test, and production environments.

When you have deployed the Operator, you can use Custom Resource (CR) instances to create broker
deployments such as standalone and clustered brokers.

3.3.2. Deploying the Operator from OperatorHub

This procedure shows how to use OperatorHub to deploy the latest version of the Operator for AMQ
Broker to a specified OpenShift project.

IMPORTANT

Deploying the Operator using OperatorHub requires cluster administrator privileges.

Prerequisites

The Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) Operator must be available in
OperatorHub.

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. In left navigation menu, click Operators → OperatorHub.

3. On the Project drop-down menu at the top of the OperatorHub page, select the project in

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

21

3. On the Project drop-down menu at the top of the OperatorHub page, select the project in
which you want to deploy the Operator.

4. On the OperatorHub page, use the Filter by keyword… box to find the Red Hat Integration -
AMQ Broker for RHEL 8 (Multiarch) Operator.

NOTE

In OperatorHub, you might find more than one Operator than includes AMQ
Broker in its name. Ensure that you click the Red Hat Integration - AMQ Broker
for RHEL 8 (Multiarch) Operator. When you click this Operator, review the
information pane that opens. For AMQ Broker 7.9, the latest minor version tag of
this Operator is 7.9.4-opr-3.

5. Click the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) Operator. On the dialog
box that appears, click Install.

6. On the Install Operator page:

a. Under Update Channel, specify the channel used to track and receive updates for the
Operator by selecting 7.x from the following radio buttons:

7.x - This channel will update to 7.10 when available.

7.8.x - This is the Long Term Support (LTS) channel.

b. Under Installation Mode, choose which namespaces the Operator watches:

A specific namespace on the cluster - The Operator is installed in that namespace and
only monitors that namespace for CR changes.

All namespaces - The Operator monitors all namespaces for CR changes.

NOTE

If you previously deployed brokers using an earlier version of the Operator,
and you want deploy the Operator to watch many namespaces, see Before
you upgrade.

7. From the Installed Namespace drop-down menu, select the project in which you want to install
the Operator.

8. Under Approval Strategy, ensure that the radio button entitled Automatic is selected. This
option specifies that updates to the Operator do not require manual approval for installation to
take place.

9. Click Install.

When the Operator installation is complete, the Installed Operators page opens. You should see that
the Red Hat Integration - AMQ Broker for RHEL 8 (Multiarch) Operator is installed in the project
namespace that you specified.

Additional resources

To learn how to create a broker deployment in a project that has the Operator for AMQ Broker
installed, see Section 3.4.1, “Deploying a basic broker instance” .

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

22

3.4. CREATING OPERATOR-BASED BROKER DEPLOYMENTS

3.4.1. Deploying a basic broker instance

The following procedure shows how to use a Custom Resource (CR) instance to create a basic broker
deployment.

NOTE

While you can create more than one broker deployment in a given OpenShift
project by deploying multiple Custom Resource (CR) instances, typically, you
create a single broker deployment in a project, and then deploy multiple CR
instances for addresses.
Red Hat recommends you create broker deployments in separate projects.

In AMQ Broker 7.9, if you want to configure the following items, you must add the
appropriate configuration to the main broker CR instance before deploying the
CR for the first time.

The size of the Persistent Volume Claim (PVC) required by each broker in a
deployment for persistent storage

Limits and requests for memory and CPU for each broker in a deployment

Prerequisites

You must have already installed the AMQ Broker Operator.

To use the OpenShift command-line interface (CLI) to install the AMQ Broker Operator,
see Section 3.2, “Installing the Operator using the CLI” .

To use the OperatorHub graphical interface to install the AMQ Broker Operator, see
Section 3.3, “Installing the Operator using OperatorHub” .

You should understand how the Operator chooses a broker container image to use for your
broker deployment. For more information, see Section 2.4, “How the Operator chooses
container images”.

Starting in AMQ Broker 7.3, you use a new version of the Red Hat Ecosystem Catalog to access
container images. This new version of the registry requires you to become an authenticated user
before you can access images. Before you can follow the procedure in this section, you must
first complete the steps described in Red Hat Container Registry Authentication .

Procedure

When you have successfully installed the Operator, the Operator is running and listening for changes
related to your CRs. This example procedure shows how to use a CR instance to deploy a basic broker in
your project.

1. Start configuring a Custom Resource (CR) instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

23

https://access.redhat.com/RegistryAuthentication

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

For a basic broker deployment, a configuration might resemble that shown below. This
configuration is the default content of the broker_activemqartemis_cr.yaml sample CR file.

Observe that in the broker_activemqartemis_cr.yaml sample CR file, the image property is
set to a default value of placeholder. This value indicates that, by default, the image property
does not specify a broker container image to use for the deployment. To learn how the
Operator determines the appropriate broker container image to use, see Section 2.4, “How the
Operator chooses container images”.

NOTE

The broker_activemqartemis_cr.yaml sample CR uses a naming convention of
ex-aao. This naming convention denotes that the CR is an example resource for
the AMQ Broker Operator. AMQ Broker is based on the ActiveMQ Artemis
project. When you deploy this sample CR, the resulting StatefulSet uses the
name ex-aao-ss. Furthermore, broker Pods in the deployment are directly based
on the StatefulSet name, for example, ex-aao-ss-0, ex-aao-ss-1, and so on. The
application name in the CR appears in the deployment as a label on the
StatefulSet. You might use this label in a Pod selector, for example.

2. The size property specifies the number of brokers to deploy. A value of 2 or greater specifies a

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

24

2. The size property specifies the number of brokers to deploy. A value of 2 or greater specifies a
clustered broker deployment. However, to deploy a single broker instance, ensure that the value
is set to 1.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4. In the OpenShift Container Platform web console, click Workloads → StatefulSets. You see a
new StatefulSet called ex-aao-ss.

a. Click the ex-aao-ss StatefulSet. You see that there is one Pod, corresponding to the single
broker that you defined in the CR.

b. Within the StatefulSet, click the Pods tab. Click the ex-aao-ss Pod. On the Events tab of
the running Pod, you see that the broker container has started. The Logs tab shows that
the broker itself is running.

5. To test that the broker is running normally, access a shell on the broker Pod to send some test
messages.

a. Using the OpenShift Container Platform web console:

i. Click Workloads → Pods.

ii. Click the ex-aao-ss Pod.

iii. Click the Terminal tab.

b. Using the OpenShift command-line interface:

i. Get the Pod names and internal IP addresses for your project.

$ oc get pods -o wide

NAME STATUS IP
amq-broker-operator-54d996c Running 10.129.2.14
ex-aao-ss-0 Running 10.129.2.15

ii. Access the shell for the broker Pod.

$ oc rsh ex-aao-ss-0

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

25

6. From the shell, use the artemis command to send some test messages. Specify the internal IP
address of the broker Pod in the URL. For example:

sh-4.2$./amq-broker/bin/artemis producer --url tcp://10.129.2.15:61616 --destination
queue://demoQueue

The preceding command automatically creates a queue called demoQueue on the broker and
sends a default quantity of 1000 messages to the queue.

You should see output that resembles the following:

Connection brokerURL = tcp://10.129.2.15:61616
Producer ActiveMQQueue[demoQueue], thread=0 Started to calculate elapsed time ...

Producer ActiveMQQueue[demoQueue], thread=0 Produced: 1000 messages
Producer ActiveMQQueue[demoQueue], thread=0 Elapsed time in second : 3 s
Producer ActiveMQQueue[demoQueue], thread=0 Elapsed time in milli second : 3492 milli
seconds

Additional resources

For a complete configuration reference for the main broker Custom Resource (CR), see
Section 8.1, “Custom Resource configuration reference” .

To learn how to connect a running broker to AMQ Management Console, see Chapter 5,
Connecting to AMQ Management Console for an Operator-based broker deployment .

3.4.2. Deploying clustered brokers

If there are two or more broker Pods running in your project, the Pods automatically form a broker
cluster. A clustered configuration enables brokers to connect to each other and redistribute messages
as needed, for load balancing.

The following procedure shows you how to deploy clustered brokers. By default, the brokers in this
deployment use on demand load balancing, meaning that brokers will forward messages only to other
brokers that have matching consumers.

Prerequisites

A basic broker instance is already deployed. See Section 3.4.1, “Deploying a basic broker
instance”.

Procedure

1. Open the CR file that you used for your basic broker deployment.

2. For a clustered deployment, ensure that the value of deploymentPlan.size is 2 or greater. For
example:

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

26

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

3. Save the modified CR file.

4. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which you
previously created your basic broker deployment.

$ oc login -u <user> -p <password> --server=<host:port>

5. Switch to the project in which you previously created your basic broker deployment.

$ oc project <project_name>

6. At the command line, apply the change:

In the OpenShift Container Platform web console, additional broker Pods starts in your project,
according to the number specified in your CR. By default, the brokers running in the project are
clustered.

7. Open the Logs tab of each Pod. The logs show that OpenShift has established a cluster
connection bridge on each broker. Specifically, the log output includes a line like the following:

targetConnector=ServerLocatorImpl (identity=(Cluster-connection-
bridge::ClusterConnectionBridge@6f13fb88

3.4.3. Applying Custom Resource changes to running broker deployments

The following are some important things to note about applying Custom Resource (CR) changes to
running broker deployments:

You cannot dynamically update the persistenceEnabled attribute in your CR. To change this
attribute, scale your cluster down to zero brokers. Delete the existing CR. Then, recreate and
redeploy the CR with your changes, also specifying a deployment size.

The value of the deploymentPlan.size attribute in your CR overrides any change you make to
size of your broker deployment via the oc scale command. For example, suppose you use oc
scale to change the size of a deployment from three brokers to two, but the value of

spec:
 version: 7.9.4
 deploymentPlan:
 size: 4
 image: placeholder
 ...

$ oc apply -f <path/to/custom_resource_instance>.yaml

CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR

27

deploymentPlan.size in your CR is still 3. In this case, OpenShift initially scales the deployment
down to two brokers. However, when the scaledown operation is complete, the Operator
restores the deployment to three brokers, as specified in the CR.

As described in Section 3.2.2, “Deploying the Operator using the CLI” , if you create a broker
deployment with persistent storage (that is, by setting persistenceEnabled=true in your CR),
you might need to provision Persistent Volumes (PVs) for the AMQ Broker Operator to claim
for your broker Pods. If you scale down the size of your broker deployment, the Operator
releases any PVs that it previously claimed for the broker Pods that are now shut down.
However, if you remove your broker deployment by deleting your CR, AMQ Broker Operator
does not release Persistent Volume Claims (PVCs) for any broker Pods that are still in the
deployment when you remove it. In addition, these unreleased PVs are unavailable to any new
deployment. In this case, you need to manually release the volumes. For more information, see
Release a persistent volume in the OpenShift documentation.

In AMQ Broker 7.9, if you want to configure the following items, you must add the appropriate
configuration to the main CR instance before deploying the CR for the first time.

The size of the Persistent Volume Claim (PVC) required by each broker in a deployment for
persistent storage

Limits and requests for memory and CPU for each broker in a deployment

During an active scaling event, any further changes that you apply are queued by the Operator
and executed only when scaling is complete. For example, suppose that you scale the size of
your deployment down from four brokers to one. Then, while scaledown is taking place, you also
change the values of the broker administrator user name and password. In this case, the
Operator queues the user name and password changes until the deployment is running with one
active broker.

All CR changes – apart from changing the size of your deployment, or changing the value of the
expose attribute for acceptors, connectors, or the console – cause existing brokers to be
restarted. If you have multiple brokers in your deployment, only one broker restarts at a time.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

28

https://docs.openshift.com/container-platform/4.5/storage/understanding-persistent-storage.html#releasing_understanding-persistent-storage

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER
DEPLOYMENTS

4.1. HOW THE OPERATOR GENERATES THE BROKER
CONFIGURATION

Before you use Custom Resource (CR) instances to configure your broker deployment, you should
understand how the Operator generates the broker configuration.

When you create an Operator-based broker deployment, a Pod for each broker runs in a StatefulSet in
your OpenShift project. An application container for the broker runs within each Pod.

The Operator runs a type of container called an Init Container when initializing each Pod. In OpenShift
Container Platform, Init Containers are specialized containers that run before application containers. Init
Containers can include utilities or setup scripts that are not present in the application image.

By default, the AMQ Broker Operator uses a built-in Init Container. The Init Container uses the main CR
instance for your deployment to generate the configuration used by each broker application container.

If you have specified address settings in the CR, the Operator generates a default configuration and
then merges or replaces that configuration with the configuration specified in the CR. This process is
described in the section that follows.

4.1.1. How the Operator generates the address settings configuration

If you have included an address settings configuration in the main Custom Resource (CR) instance for
your deployment, the Operator generates the address settings configuration for each broker as
described below.

1. The Operator runs the Init Container before the broker application container. The Init Container
generates a default address settings configuration. The default address settings configuration
is shown below.

<address-settings>
 <!--
 if you define auto-create on certain queues, management has to be auto-create
 -->
 <address-setting match="activemq.management#">
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!--
 with -1 only the global-max-size is in use for limiting
 -->
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>

 <!-- default for catch all -->

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

29

2. If you have also specified an address settings configuration in your Custom Resource (CR)
instance, the Init Container processes that configuration and converts it to XML.

3. Based on the value of the applyRule property in the CR, the Init Container merges or replaces
the default address settings configuration shown above with the configuration that you have
specified in the CR. The result of this merge or replacement is the final address settings
configuration that the broker will use.

4. When the Init Container has finished generating the broker configuration (including address
settings), the broker application container starts. When starting, the broker container copies its
configuration from the installation directory previously used by the Init Container. You can
inspect the address settings configuration in the broker.xml configuration file. For a running
broker, this file is located in the /home/jboss/amq-broker/etc directory.

Additional resources

For an example of using the applyRule property in a CR, see Section 4.2.3, “Matching address
settings to configured addresses in an Operator-based broker deployment”.

4.1.2. Directory structure of a broker Pod

When you create an Operator-based broker deployment, a Pod for each broker runs in a StatefulSet in
your OpenShift project. An application container for the broker runs within each Pod.

The Operator runs a type of container called an Init Container when initializing each Pod. In OpenShift
Container Platform, Init Containers are specialized containers that run before application containers. Init
Containers can include utilities or setup scripts that are not present in the application image.

When generating the configuration for a broker instance, the Init Container uses files contained in a
default installation directory. This installation directory is on a volume that the Operator mounts to the
broker Pod and which the Init Container and broker container share. The path that the Init Container
uses to mount the shared volume is defined in an environment variable called
CONFIG_INSTANCE_DIR. The default value of CONFIG_INSTANCE_DIR is /amq/init/config. In the
documentation, this directory is referred to as <install_dir>.

NOTE

You cannot change the value of the CONFIG_INSTANCE_DIR environment variable.

 <address-setting match="#">
 <dead-letter-address>DLQ</dead-letter-address>
 <expiry-address>ExpiryQueue</expiry-address>
 <redelivery-delay>0</redelivery-delay>
 <!--
 with -1 only the global-max-size is in use for limiting
 -->
 <max-size-bytes>-1</max-size-bytes>
 <message-counter-history-day-limit>10</message-counter-history-day-limit>
 <address-full-policy>PAGE</address-full-policy>
 <auto-create-queues>true</auto-create-queues>
 <auto-create-addresses>true</auto-create-addresses>
 <auto-create-jms-queues>true</auto-create-jms-queues>
 <auto-create-jms-topics>true</auto-create-jms-topics>
 </address-setting>
<address-settings>

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

30

By default, the installation directory has the following sub-directories:

Sub-directory Contents

<install_dir>/bin Binaries and scripts needed to run the broker.

<install_dir>/etc Configuration files.

<install_dir>/data The broker journal.

<install_dir>/lib JARs and libraries needed to run the broker.

<install_dir>/log Broker log files.

<install_dir>/tmp Temporary web application files.

When the Init Container has finished generating the broker configuration, the broker application
container starts. When starting, the broker container copies its configuration from the installation
directory previously used by the Init Container. When the broker Pod is initialized and running, the
broker configuration is located in the /home/jboss/amq-broker directory (and subdirectories) of the
broker.

Additional resources

For more information about how the Operator chooses a container image for the built-in Init
Container, see Section 2.4, “How the Operator chooses container images” .

To learn how to build and specify a custom Init Container image, see Section 4.6, “Specifying a
custom Init Container image”.

4.2. CONFIGURING ADDRESSES AND QUEUES FOR OPERATOR-
BASED BROKER DEPLOYMENTS

For an Operator-based broker deployment, you use two separate Custom Resource (CR) instances to
configure address and queues and their associated settings.

To create address and queues on your brokers, you deploy a CR instance based on the address
Custom Resource Definition (CRD).

If you used the OpenShift command-line interface (CLI) to install the Operator, the address
CRD is the broker_activemqartemisaddress_crd.yaml file that was included in the
deploy/crds of the Operator installation archive that you downloaded and extracted.

If you used OperatorHub to install the Operator, the address CRD is the
ActiveMQAretmisAddress CRD listed under Administration → Custom Resource
Definitions in the OpenShift Container Platform web console.

To configure address and queue settings that you then match to specific addresses, you include
configuration in the main Custom Resource (CR) instance used to create your broker
deployment .

If you used the OpenShift CLI to install the Operator, the main broker CRD is the

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

31

If you used the OpenShift CLI to install the Operator, the main broker CRD is the
broker_activemqartemis_crd.yaml file that was included in the deploy/crds of the
Operator installation archive that you downloaded and extracted.

If you used OperatorHub to install the Operator, the main broker CRD is the
ActiveMQAretmis CRD listed under Administration → Custom Resource Definitions in
the OpenShift Container Platform web console.

In general, the address and queue settings that you can configure for a broker deployment on
OpenShift Container Platform are fully equivalent to those of standalone broker deployments
on Linux or Windows. However, you should be aware of some differences in how those settings
are configured. Those differences are described in the following sub-section.

4.2.1. Differences in configuration of address and queue settings between
OpenShift and standalone broker deployments

To configure address and queue settings for broker deployments on OpenShift Container
Platform, you add configuration to an addressSettings section of the main Custom Resource
(CR) instance for the broker deployment. This contrasts with standalone deployments on Linux
or Windows, for which you add configuration to an address-settings element in the broker.xml
configuration file.

The format used for the names of configuration items differs between OpenShift Container
Platform and standalone broker deployments. For OpenShift Container Platform deployments,
configuration item names are in camel case , for example, defaultQueueRoutingType. By
contrast, configuration item names for standalone deployments are in lower case and use a dash
(-) separator, for example, default-queue-routing-type.
The following table shows some further examples of this naming difference.

Configuration item for standalone broker
deployment

Configuration item for OpenShift broker
deployment

address-full-policy addressFullPolicy

auto-create-queues autoCreateQueues

default-queue-routing-type defaultQueueRoutingType

last-value-queue lastValueQueue

Additional resources

For examples of creating addresses and queues and matching settings for OpenShift Container
Platform broker deployments, see:

Creating addresses and queues for a broker deployment on OpenShift Container Platform

Matching address settings to configured addresses for a broker deployment on OpenShift
Container Platform

To learn about all of the configuration options for addresses, queues, and address settings for
OpenShift Container Platform broker deployments, see Section 8.1, “Custom Resource
configuration reference”.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

32

For comprehensive information about configuring addresses, queues, and associated address
settings for standalone broker deployments, see Addresses, Queues, and Topics in Configuring
AMQ Broker. You can use this information to create equivalent configurations for broker
deployments on OpenShift Container Platform.

4.2.2. Creating addresses and queues for an Operator-based broker deployment

The following procedure shows how to use a Custom Resource (CR) instance to add an address and
associated queue to an Operator-based broker deployment.

NOTE

To create multiple addresses and/or queues in your broker deployment, you need to
create separate CR files and deploy them individually, specifying new address and/or
queue names in each case. In addition, the name attribute of each CR instance must be
unique.

Prerequisites

You must have already installed the AMQ Broker Operator, including the dedicated Custom
Resource Definition (CRD) required to create addresses and queues on your brokers. For
information on two alternative ways to install the Operator, see:

Section 3.2, “Installing the Operator using the CLI” .

Section 3.3, “Installing the Operator using OperatorHub” .

You should be familiar with how to use a CR instance to create a basic broker deployment. For
more information, see Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Start configuring a Custom Resource (CR) instance to define addresses and queues for the
broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemisaddress_cr.yaml that was
included in the deploy/crs directory of the Operator installation archive that you
downloaded and extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the address CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemisAddresss CRD.

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

33

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker//index#addresses

iv. Click the Instances tab.

v. Click Create ActiveMQArtemisAddress.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the spec section of the CR, add lines to define an address, queue, and routing type. For
example:

The preceding configuration defines an address named myAddress0 with a queue named
myQueue0 and an anycast routing type.

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/address_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4. (Optional) To delete an address and queue previously added to your deployment using a CR
instance, use the following command:

4.2.3. Matching address settings to configured addresses in an Operator-based

apiVersion: broker.amq.io/v2alpha2
kind: ActiveMQArtemisAddress
metadata:
 name: myAddressDeployment0
 namespace: myProject
spec:
 ...
 addressName: myAddress0
 queueName: myQueue0
 routingType: anycast
 ...

$ oc delete -f <path/to/address_custom_resource_instance>.yaml

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

34

4.2.3. Matching address settings to configured addresses in an Operator-based
broker deployment

If delivery of a message to a client is unsuccessful, you might not want the broker to make ongoing
attempts to deliver the message. To prevent infinite delivery attempts, you can define a dead letter
address and an associated dead letter queue. After a specified number of delivery attempts, the broker
removes an undelivered message from its original queue and sends the message to the configured dead
letter address. A system administrator can later consume undelivered messages from a dead letter
queue to inspect the messages.

The following example shows how to configure a dead letter address and queue for an Operator-based
broker deployment. The example demonstrates how to:

Use the addressSetting section of the main broker Custom Resource (CR) instance to
configure address settings.

Match those address settings to addresses in your broker deployment.

Prerequisites

You must be using the latest version of the Operator for AMQ Broker 7.9 (that is, version 7.9.4-
opr-3). To learn how to upgrade the Operator to the latest version, see Chapter 6, Upgrading an
Operator-based broker deployment.

You should be familiar with how to use a CR instance to create a basic broker deployment. For
more information, see Section 3.4.1, “Deploying a basic broker instance” .

You should be familiar with the default address settings configuration that the Operator
merges or replaces with the configuration specified in your CR instance. For more information,
see Section 4.1.1, “How the Operator generates the address settings configuration” .

Procedure

1. Start configuring a CR instance to add a dead letter address and queue to receive undelivered
messages for each broker in the deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemisaddress_cr.yaml that was
included in the deploy/crs directory of the Operator installation archive that you
downloaded and extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the address CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemisAddresss CRD.

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

35

iv. Click the Instances tab.

v. Click Create ActiveMQArtemisAddress.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the spec section of the CR, add lines to specify a dead letter address and queue to receive
undelivered messages. For example:

The preceding configuration defines a dead letter address named myDeadLetterAddress with
a dead letter queue named myDeadLetterQueue and an anycast routing type.

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

3. Deploy the address CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Create the address CR.

$ oc create -f <path/to/address_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4. Start configuring a Custom Resource (CR) instance for a broker deployment.

a. From a sample CR file:

i. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

apiVersion: broker.amq.io/v2alpha2
kind: ActiveMQArtemisAddress
metadata:
 name: ex-aaoaddress
spec:
 ...
 addressName: myDeadLetterAddress
 queueName: myDeadLetterQueue
 routingType: anycast
 ...

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

36

i. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

ii. Click the ActiveMQArtemis CRD.

iii. Click the Instances tab.

iv. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

For a basic broker deployment, a configuration might resemble that shown below. This
configuration is the default content of the broker_activemqartemis_cr.yaml sample CR file.

Observe that in the broker_activemqartemis_cr.yaml sample CR file, the image property is
set to a default value of placeholder. This value indicates that, by default, the image property
does not specify a broker container image to use for the deployment. To learn how the
Operator determines the appropriate broker container image to use, see Section 2.4, “How the
Operator chooses container images”.

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

5. In the deploymentPlan section of the CR, add a new addressSettings section that contains a
single addressSetting section, as shown below.

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 addressSettings:
 addressSetting:

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

37

6. Add a single instance of the match property to the addressSetting block. Specify an address-
matching expression. For example:

match

Specifies the address, or set of address to which the broker applies the configuration that
follows. In this example, the value of the match property corresponds to a single address
called myAddress.

7. Add properties related to undelivered messages and specify values. For example:

deadLetterAddress

Address to which the broker sends undelivered messages.

maxDeliveryAttempts

Maximum number of delivery attempts that a broker makes before moving a message to the
configured dead letter address.
In the preceding example, if the broker makes five unsuccessful attempts to deliver a
message to an address that begins with myAddress, the broker moves the message to the
specified dead letter address, myDeadLetterAddress.

8. (Optional) Apply similar configuration to another address or set of addresses. For example:

spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 addressSettings:
 addressSetting:
 - match: myAddress

spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 addressSettings:
 addressSetting:
 - match: myAddress
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 5

spec:
 version: 7.9.4
 deploymentPlan:
 size: 1

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

38

In this example, the value of the second match property includes an asterisk wildcard character.
The wildcard character means that the preceding configuration is applied to any address that
begins with the string myOtherAddresses.

NOTE

If you use a wildcard expression as a value for the match property, you must
enclose the value in single quotation marks, for example, 'myOtherAddresses*'.

9. At the beginning of the addressSettings section, add the applyRule property and specify a
value. For example:

The applyRule property specifies how the Operator applies the configuration that you add to
the CR for each matching address or set of addresses. The values that you can specify are:

merge_all

For address settings specified in both the CR and the default configuration that match
the same address or set of addresses:

Replace any property values specified in the default configuration with those
specified in the CR.

 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 addressSettings:
 addressSetting:
 - match: myAddress
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 5
 - match: 'myOtherAddresses*'
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 3

spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 addressSettings:
 applyRule: merge_all
 addressSetting:
 - match: myAddress
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 5
 - match: 'myOtherAddresses*'
 deadLetterAddress: myDeadLetterAddress
 maxDeliveryAttempts: 3

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

39

Keep any property values that are specified uniquely in the CR or the default
configuration. Include each of these in the final, merged configuration.

For address settings specified in either the CR or the default configuration that uniquely
match a particular address or set of addresses, include these in the final, merged
configuration.

merge_replace

For address settings specified in both the CR and the default configuration that match
the same address or set of addresses, include the settings specified in the CR in the
final, merged configuration. Do not include any properties specified in the default
configuration, even if these are not specified in the CR.

For address settings specified in either the CR or the default configuration that uniquely
match a particular address or set of addresses, include these in the final, merged
configuration.

replace_all

Replace all address settings specified in the default configuration with those specified in the
CR. The final, merged configuration corresponds exactly to that specified in the CR.

NOTE

If you do not explicitly include the applyRule property in your CR, the Operator
uses a default value of merge_all.

10. Deploy the broker CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Create the CR instance.

$ oc create -f <path/to/broker_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

Additional resources

To learn about all of the configuration options for addresses, queues, and address settings for
OpenShift Container Platform broker deployments, see Section 8.1, “Custom Resource
configuration reference”.

If you installed the AMQ Broker Operator using the OpenShift command-line interface (CLI),
the installation archive that you downloaded and extracted contains some additional examples
of configuring address settings. In the deploy/examples folder of the installation archive, see:

artemis-basic-address-settings-deployment.yaml

artemis-merge-replace-address-settings-deployment.yaml

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

40

artemis-replace-address-settings-deployment.yaml

For comprehensive information about configuring addresses, queues, and associated address
settings for standalone broker deployments, see Addresses, Queues, and Topics in Configuring
AMQ Broker. You can use this information to create equivalent configurations for broker
deployments on OpenShift Container Platform.

For more information about Init Containers in OpenShift Container Platform, see Using Init
Containers to perform tasks before a pod is deployed.

4.3. CREATING A SECURITY CONFIGURATION FOR AN OPERATOR-
BASED BROKER DEPLOYMENT

The following procedure shows how to use a Custom Resource (CR) instance to add users and
associated security configuration to an Operator-based broker deployment.

Prerequisites

You must have already installed the AMQ Broker Operator. For information on two alternative
ways to install the Operator, see:

Section 3.2, “Installing the Operator using the CLI” .

Section 3.3, “Installing the Operator using OperatorHub” .

You should be familiar with broker security as described in Securing brokers

You should be familiar with how to use a CR instance to create a basic broker deployment. For
more information, see Section 3.4.1, “Deploying a basic broker instance” .

PROCEDURE

You can deploy the security CR before or after you create a broker deployment.
However, if you deploy the security CR after creating the broker deployment, the broker
pod is restarted to accept the new configuration.

1. Start configuring a Custom Resource (CR) instance to define users and associated security
configuration for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project for the
broker deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemissecurity_cr.yaml that was
included in the deploy/crs directory of the Operator installation archive that you
downloaded and extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project for the
broker deployment.

ii. Start a new CR instance based on the address CRD. In the left pane, click

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

41

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker//index#addresses
https://docs.openshift.com/container-platform/4.5/nodes/containers/nodes-containers-init.html
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#assembly-br-securing-brokers_configuring

ii. Start a new CR instance based on the address CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemisSecurity CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemisSecurity.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

2. In the spec section of the CR, add lines to define users and roles. For example:

The preceding configuration defines two users:

a propertiesLoginModule named prop-module that defines a user named sam with a role

apiVersion: broker.amq.io/v1alpha1
kind: ActiveMQArtemisSecurity
metadata:
 name: ex-prop
spec:
 loginModules:
 propertiesLoginModules:
 - name: "prop-module"
 users:
 - name: "sam"
 password: "samsecret"
 roles:
 - "sender"
 - name: "rob"
 password: "robsecret"
 roles:
 - "receiver"
 securityDomains:
 brokerDomain:
 name: "activemq"
 loginModules:
 - name: "prop-module"
 flag: "sufficient"
 securitySettings:
 broker:
 - match: "#"
 permissions:
 - operationType: "send"
 roles:
 - "sender"
 - operationType: "createAddress"
 roles:
 - "sender"
 - operationType: "createDurableQueue"
 roles:
 - "sender"
 - operationType: "consume"
 roles:
 - "receiver"
 ...

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

42

a propertiesLoginModule named prop-module that defines a user named sam with a role
named sender.

a propertiesLoginModule named prop-module that defines a user named rob with a role
named receiver.

The properties of these roles are defined in the brokerDomain and broker sections of the
securityDomains section. For example, the send role is defined to allow users with that role to
create a durable queue on any address. By default, the configuration applies to all deployed
brokers defined by CRs in the current namespace. To limit the configuration to particular broker
deployments, use the applyToCrNames option described in Section 8.1.3, “Security Custom
Resource configuration reference”.

NOTE

In the metadata section, you need to include the namespace property and
specify a value only if you are using the OpenShift Container Platform web
console to create your CR instance. The value that you should specify is the
name of the OpenShift project for your broker deployment.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/address_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

Additional resources

Section 8.1.3, “Security Custom Resource configuration reference”

Section 3.4.1, “Deploying a basic broker instance”

4.4. CONFIGURING BROKER STORAGE REQUIREMENTS

To use persistent storage in an Operator-based broker deployment, you set persistenceEnabled to
true in the Custom Resource (CR) instance used to create the deployment. If you do not have
container-native storage in your OpenShift cluster, you need to manually provision Persistent Volumes
(PVs) and ensure that these are available to be claimed by the Operator using a Persistent Volume
Claim (PVC). If you want to create a cluster of two brokers with persistent storage, for example, then
you need to have two PVs available. By default, each broker in your deployment requires storage of 2
GiB. However, you can configure the CR for your broker deployment to specify the size of PVC required
by each broker.

IMPORTANT

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

43

IMPORTANT

You must add the configuration for broker storage size to the main CR for your broker
deployment before deploying the CR for the first time. You cannot add the
configuration to a broker deployment that is already running.

4.4.1. Configuring broker storage size

The following procedure shows how to configure the Custom Resource (CR) instance for your broker
deployment to specify the size of the Persistent Volume Claim (PVC) required by each broker for
persistent message storage.

IMPORTANT

You must add the configuration for broker storage size to the main CR for your broker
deployment before deploying the CR for the first time. You cannot add the
configuration to a broker deployment that is already running.

Prerequisites

You must be using at least the latest version of the Operator for AMQ Broker 7.7 (that is,
version 0.17). To learn how to upgrade the Operator to the latest version for AMQ Broker 7.9,
see Chapter 6, Upgrading an Operator-based broker deployment .

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

You must have already provisioned Persistent Volumes (PVs) and made these available to be
claimed by the Operator. For example, if you want to create a cluster of two brokers with
persistent storage, you need to have two PVs available.
For more information about provisioning persistent storage, see:

Understanding persistent storage (OpenShift Container Platform 4.5)

Procedure

1. Start configuring a Custom Resource (CR) instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

44

https://docs.openshift.com/container-platform/4.5/storage/understanding-persistent-storage.html

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

For a basic broker deployment, a configuration might resemble that shown below. This
configuration is the default content of the broker_activemqartemis_cr.yaml sample CR file.

Observe that in the broker_activemqartemis_cr.yaml sample CR file, the image property is
set to a default value of placeholder. This value indicates that, by default, the image property
does not specify a broker container image to use for the deployment. To learn how the
Operator determines the appropriate broker container image to use, see Section 2.4, “How the
Operator chooses container images”.

2. To specify broker storage requirements, in the deploymentPlan section of the CR, add a
storage section. Add a size property and specify a value. For example:

storage.size

Size, in bytes, of the Persistent Volume Claim (PVC) that each broker Pod requires for
persistent storage. This property applies only when persistenceEnabled is set to true. The
value that you specify must include a unit. Supports byte notation (for example, K, M, G), or
the binary equivalents (Ki, Mi, Gi).

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 storage:
 size: 4Gi

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

45

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4.5. CONFIGURING RESOURCE LIMITS AND REQUESTS FOR
OPERATOR-BASED BROKER DEPLOYMENTS

When you create an Operator-based broker deployment, the broker Pods in the deployment run in a
StatefulSet on a node in your OpenShift cluster. You can configure the Custom Resource (CR) instance
for the deployment to specify the host-node compute resources used by the broker container that runs
in each Pod. By specifying limit and request values for CPU and memory (RAM), you can ensure
satisfactory performance of the broker Pods.

IMPORTANT

You must add configuration for limits and requests to the CR instance for your
broker deployment before deploying the CR for the first time. You cannot add
the configuration to a broker deployment that is already running.

It is not possible for Red Hat to recommend values for limits and requests
because these are based on your specific messaging system use-cases and the
resulting architecture that you have implemented. However, it is recommended
that you test and tune these values in a development environment before
configuring them for your production environment.

The Operator runs a type of container called an Init Container when initializing
each broker Pod. Any resource limits and requests that you configure for each
broker container also apply to each Init Container. For more information about
the use of Init Containers in broker deployments, see Section 4.1, “How the
Operator generates the broker configuration”.

You can specify the following limit and request values:

CPU limit

For each broker container running in a Pod, this value is the maximum amount of host-node CPU
that the container can consume. If a broker container attempts to exceed the specified CPU limit,
OpenShift throttles the container. This ensures that containers have consistent performance,
regardless of the number of Pods running on a node.

Memory limit

For each broker container running in a Pod, this value is the maximum amount of host-node memory
that the container can consume. If a broker container attempts to exceed the specified memory limit,
OpenShift terminates the container. The broker Pod restarts.

CPU request

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

46

For each broker container running in a Pod, this value is the amount of host-node CPU that the
container requests. The OpenShift scheduler considers the CPU request value during Pod
placement, to bind the broker Pod to a node with sufficient compute resources.
The CPU request value is the minimum amount of CPU that the broker container requires to run.
However, if there is no contention for CPU on the node, the container can use all available CPU. If
you have specified a CPU limit, the container cannot exceed that amount of CPU usage. If there is
CPU contention on the node, CPU request values provide a way for OpenShift to weigh CPU usage
across all containers.

Memory request

For each broker container running in a Pod, this value is the amount of host-node memory that the
container requests. The OpenShift scheduler considers the memory request value during Pod
placement, to bind the broker Pod to a node with sufficient compute resources.
The memory request value is the minimum amount of memory that the broker container requires to
run. However, the container can consume as much available memory as possible. If you have specified
a memory limit, the broker container cannot exceed that amount of memory usage.

CPU is measured in units called millicores. Each node in an OpenShift cluster inspects the operating
system to determine the number of CPU cores on the node. Then, the node multiplies that value by
1000 to express the total capacity. For example, if a node has two cores, the CPU capacity of the node
is expressed as 2000m. Therefore, if you want to use one-tenth of a single core, you specify a value of
100m.

Memory is measured in bytes. You can specify the value using byte notation (E, P, T, G, M, K) or the
binary equivalents (Ei, Pi, Ti, Gi, Mi, Ki). The value that you specify must include a unit.

4.5.1. Configuring broker resource limits and requests

The following example shows how to configure the main Custom Resource (CR) instance for your
broker deployment to set limits and requests for CPU and memory for each broker container that runs
in a Pod in the deployment.

IMPORTANT

You must add configuration for limits and requests to the CR instance for your
broker deployment before deploying the CR for the first time. You cannot add
the configuration to a broker deployment that is already running.

It is not possible for Red Hat to recommend values for limits and requests
because these are based on your specific messaging system use-cases and the
resulting architecture that you have implemented. However, it is recommended
that you test and tune these values in a development environment before
configuring them for your production environment.

Prerequisites

You should be familiar with how to use a CR instance to create a basic broker deployment. See
Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Start configuring a Custom Resource (CR) instance for the broker deployment.

a. Using the OpenShift command-line interface:

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

47

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

For a basic broker deployment, a configuration might resemble that shown below. This
configuration is the default content of the broker_activemqartemis_cr.yaml sample CR file.

Observe that in the broker_activemqartemis_cr.yaml sample CR file, the image property is
set to a default value of placeholder. This value indicates that, by default, the image property
does not specify a broker container image to use for the deployment. To learn how the
Operator determines the appropriate broker container image to use, see Section 2.4, “How the
Operator chooses container images”.

2. In the deploymentPlan section of the CR, add a resources section. Add limits and requests
sub-sections. In each sub-section, add a cpu and memory property and specify values. For
example:

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

spec:
 version: 7.9.4
 deploymentPlan:
 size: 1

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

48

limits.cpu

Each broker container running in a Pod in the deployment cannot exceed this amount of
host-node CPU usage.

limits.memory

Each broker container running in a Pod in the deployment cannot exceed this amount of
host-node memory usage.

requests.cpu

Each broker container running in a Pod in the deployment requests this amount of host-node
CPU. This value is the minimum amount of CPU required for the broker container to run.

requests.memory

Each broker container running in a Pod in the deployment requests this amount of host-node
memory. This value is the minimum amount of memory required for the broker container to
run.

3. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

4.6. SPECIFYING A CUSTOM INIT CONTAINER IMAGE

As described in Section 4.1, “How the Operator generates the broker configuration” , the AMQ Broker
Operator uses a default, built-in Init Container to generate the broker configuration. To generate the
configuration, the Init Container uses the main Custom Resource (CR) instance for your deployment.
The only items that you can specify in the CR are those that are exposed in the main broker Custom
Resource Definition (CRD).

However, there might a case where you need to include configuration that is not exposed in the CRD. In

 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true
 resources:
 limits:
 cpu: "500m"
 memory: "1024M"
 requests:
 cpu: "250m"
 memory: "512M"

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

49

However, there might a case where you need to include configuration that is not exposed in the CRD. In
this case, in your main CR instance, you can specify a custom Init Container. The custom Init Container
can modify or add to the configuration that has already been created by the Operator. For example, you
might use a custom Init Container to modify the broker logging settings. Or, you might use a custom Init
Container to include extra runtime dependencies (that is, .jar files) in the broker installation directory.

When you build a custom Init Container image, you must follow these important guidelines:

In the build script (for example, a Docker Dockerfile or Podman Containerfile) that you create
for the custom image, the FROM instruction must specify the latest version of the AMQ Broker
Operator built-in Init Container as the base image. In your script, include the following line:

FROM registry.redhat.io/amq7/amq-broker-init-
rhel8@sha256:d327d358e6cfccac14becc486bce643e34970ecfc6c4d187a862425867a9ac8a

The custom image must include a script called post-config.sh that you include in a directory
called /amq/scripts. The post-config.sh script is where you can modify or add to the initial
configuration that the Operator generates. When you specify a custom Init Container, the
Operator runs the post-config.sh script after it uses your CR instance to generate a
configuration, but before it starts the broker application container.

As described in Section 4.1.2, “Directory structure of a broker Pod” , the path to the installation
directory used by the Init Container is defined in an environment variable called
CONFIG_INSTANCE_DIR. The post-config.sh script should use this environment variable
name when referencing the installation directory (for example,
${CONFIG_INSTANCE_DIR}/lib) and not the actual value of this variable (for example,
/amq/init/config/lib).

If you want to include additional resources (for example, .xml or .jar files) in your custom broker
configuration, you must ensure that these are included in the custom image and accessible to
the post-config.sh script.

The following procedure describes how to specify a custom Init Container image.

Prerequisites

You must be using at least version 7.9.4-opr-3 of the Operator. To learn how to upgrade to the
latest Operator version, see Chapter 6, Upgrading an Operator-based broker deployment .

You must have built a custom Init Container image that meets the guidelines described above.
For a complete example of building and specifying a custom Init Container image for the
ArtemisCloud Operator, see custom Init Container image for JDBC-based persistence .

To provide a custom Init Container image for the AMQ Broker Operator, you need to be able to
add the image to a repository in a container registry such as the Quay container registry.

You should understand how the Operator uses an Init Container to generate the broker
configuration. For more information, see Section 4.1, “How the Operator generates the broker
configuration”.

You should be familiar with how to use a CR to create a broker deployment. For more
information, see Section 3.4, “Creating Operator-based broker deployments” .

Procedure

1. Start configuring a Custom Resource (CR) instance for the broker deployment.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

50

https://github.com/artemiscloud/artemiscloud-examples/tree/main/operator/init/jdbc
http://quay.io

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

oc login -u <user> -p <password> --server=<host:port>

ii. Open the sample CR file called broker_activemqartemis_cr.yaml that was included in
the deploy/crs directory of the Operator installation archive that you downloaded and
extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to deploy CRs in the project in which
you are creating the deployment.

ii. Start a new CR instance based on the main broker CRD. In the left pane, click
Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Click Create ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to configure a CR instance.

For a basic broker deployment, a configuration might resemble that shown below. This
configuration is the default content of the broker_activemqartemis_cr.yaml sample CR file.

Observe that in the broker_activemqartemis_cr.yaml sample CR file, the image property is
set to a default value of placeholder. This value indicates that, by default, the image property
does not specify a broker container image to use for the deployment. To learn how the
Operator determines the appropriate broker container image to use, see Section 2.4, “How the
Operator chooses container images”.

2. In the deploymentPlan section of the CR, add the initImage property.

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

51

3. Set the value of the initImage property to the URL of your custom Init Container image.

initImage

Specifies the full URL for your custom Init Container image, which you must have added to
repository in a container registry.

4. Deploy the CR instance.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project in which you are creating the broker deployment.

$ oc project <project_name>

iii. Create the CR instance.

$ oc create -f <path/to/custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished configuring the CR, click Create.

Additional resources

For a complete example of building and specifying a custom Init Container image for the

 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 initImage:
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 1
 image: placeholder
 initImage: <custom_init_container_image_url>
 requireLogin: false
 persistenceEnabled: true
 journalType: nio
 messageMigration: true

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

52

For a complete example of building and specifying a custom Init Container image for the
ArtemisCloud Operator, see custom Init Container image for JDBC-based persistence .

4.7. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS FOR
CLIENT CONNECTIONS

4.7.1. Configuring acceptors

To enable client connections to broker Pods in your OpenShift deployment, you define acceptors for
your deployment. Acceptors define how a broker Pod accepts connections. You define acceptors in the
main Custom Resource (CR) used for your broker deployment. When you create an acceptor, you
specify information such as the messaging protocols to enable on the acceptor, and the port on the
broker Pod to use for these protocols.

The following procedure shows how to define a new acceptor in the CR for your broker deployment.

Prerequisites

To configure acceptors, your broker deployment must be based on version 0.9 or greater of the
AMQ Broker Operator. For more information about installing the latest version of the Operator,
see Section 3.2, “Installing the Operator using the CLI” .

Procedure

1. In the deploy/crs directory of the Operator archive that you downloaded and extracted during
your initial installation, open the broker_activemqartemis_cr.yaml Custom Resource (CR) file.

2. In the acceptors element, add a named acceptor. Add the protocols and port parameters. Set
values to specify the messaging protocols to be used by the acceptor and the port on each
broker Pod to expose for those protocols. For example:

The configured acceptor exposes port 5672 to AMQP clients. The full set of values that you can
specify for the protocols parameter is shown in the table.

Protocol Value

Core Protocol core

AMQP amqp

OpenWire openwire

MQTT mqtt

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp
 port: 5672
...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

53

https://github.com/artemiscloud/artemiscloud-examples/tree/main/operator/init/jdbc

STOMP stomp

All supported protocols all

Protocol Value

NOTE

For each broker Pod in your deployment, the Operator also creates a default
acceptor that uses port 61616. This default acceptor is required for broker
clustering and has Core Protocol enabled.

By default, the AMQ Broker management console uses port 8161 on the
broker Pod. Each broker Pod in your deployment has a dedicated Service
that provides access to the console. For more information, see Chapter 5,
Connecting to AMQ Management Console for an Operator-based broker
deployment.

3. To use another protocol on the same acceptor, modify the protocols parameter. Specify a
comma-separated list of protocols. For example:

The configured acceptor now exposes port 5672 to AMQP and OpenWire clients.

4. To specify the number of concurrent client connections that the acceptor allows, add the
connectionsAllowed parameter and set a value. For example:

5. By default, an acceptor is exposed only to clients in the same OpenShift cluster as the broker
deployment. To also expose the acceptor to clients outside OpenShift, add the expose
parameter and set the value to true.

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
...

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 connectionsAllowed: 5
...

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

54

When you expose an acceptor to clients outside OpenShift, the Operator automatically creates
a dedicated Service and Route for each broker Pod in the deployment.

6. To enable secure connections to the acceptor from clients outside OpenShift, add the
sslEnabled parameter and set the value to true.

When you enable SSL (that is, Secure Sockets Layer) security on an acceptor (or connector),
you can add related configuration, such as:

The secret name used to store authentication credentials in your OpenShift cluster. A
secret is required when you enable SSL on the acceptor. For more information on
generating this secret, see Section 4.7.2, “Securing broker-client connections” .

The Transport Layer Security (TLS) protocols to use for secure network communication.
TLS is an updated, more secure version of SSL. You specify the TLS protocols in the
enabledProtocols parameter.

Whether the acceptor uses two-way TLS, also known as mutual authentication, between the
broker and the client. You specify this by setting the value of the needClientAuth
parameter to true.

Additional resources

To learn how to configure TLS to secure broker-client connections, including generating a
secret to store authentication credentials, see Section 4.7.2, “Securing broker-client
connections”.

For a complete Custom Resource configuration reference, including configuration of acceptors
and connectors, see Section 8.1, “Custom Resource configuration reference” .

4.7.2. Securing broker-client connections

If you have enabled security on your acceptor or connector (that is, by setting sslEnabled to true), you
must configure Transport Layer Security (TLS) to allow certificate-based authentication between the
broker and clients. TLS is an updated, more secure version of SSL. There are two primary TLS
configurations:

One-way TLS

Only the broker presents a certificate. The certificate is used by the client to authenticate the broker.

 connectionsAllowed: 5
 expose: true
 ...
...

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 connectionsAllowed: 5
 expose: true
 sslEnabled: true
 ...
...

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

55

Only the broker presents a certificate. The certificate is used by the client to authenticate the broker.
This is the most common configuration.

Two-way TLS

Both the broker and the client present certificates. This is sometimes called mutual authentication.

The sections that follow describe:

Configuration requirements for the broker certificate used by one-way and two-way TLS

How to configure one-way TLS

How to configure two-way TLS

For both one-way and two-way TLS, you complete the configuration by generating a secret that stores
the credentials required for a successful TLS handshake between the broker and the client. This is the
secret name that you must specify in the sslSecret parameter of your secured acceptor or connector.
The secret must contain a Base64-encoded broker key store (both one-way and two-way TLS), a
Base64-encoded broker trust store (two-way TLS only), and the corresponding passwords for these
files, also Base64-encoded. The one-way and two-way TLS configuration procedures show how to
generate this secret.

NOTE

If you do not explicitly specify a secret name in the sslSecret parameter of a secured
acceptor or connector, the acceptor or connector assumes a default secret name. The
default secret name uses the format <custom_resource_name>-<acceptor_name>-
secret or <custom_resource_name>-<connector_name>-secret. For example, my-
broker-deployment-my-acceptor-secret.

Even if the acceptor or connector assumes a default secrete name, you must still
generate this secret yourself. It is not automatically created.

4.7.2.1. Configuring a broker certificate for host name verification

NOTE

This section describes some requirements for the broker certificate that you must
generate when configuring one-way or two-way TLS.

When a client tries to connect to a broker Pod in your deployment, the verifyHost option in the client
connection URL determines whether the client compares the Common Name (CN) of the broker’s
certificate to its host name, to verify that they match. The client performs this verification if you specify
verifyHost=true or similar in the client connection URL.

You might omit this verification in rare cases where you have no concerns about the security of the
connection, for example, if the brokers are deployed on an OpenShift cluster in an isolated network.
Otherwise, for a secure connection, it is advisable for a client to perform this verification. In this case,
correct configuration of the broker key store certificate is essential to ensure successful client
connections.

In general, when a client is using host verification, the CN that you specify when generating the broker
certificate must match the full host name for the Route on the broker Pod that the client is connecting
to. For example, if you have a deployment with a single broker Pod, the CN might look like the following:

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

56

CN=my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain

To ensure that the CN can resolve to any broker Pod in a deployment with multiple brokers, you can
specify an asterisk (*) wildcard character in place of the ordinal of the broker Pod. For example:

CN=my-broker-deployment-*-svc-rte-my-openshift-project.my-openshift-domain

The CN shown in the preceding example successfully resolves to any broker Pod in the my-broker-
deployment deployment.

In addition, the Subject Alternative Name (SAN) that you specify when generating the broker certificate
must individually list all broker Pods in the deployment, as a comma-separated list. For example:

"SAN=DNS:my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain,DNS:my-
broker-deployment-1-svc-rte-my-openshift-project.my-openshift-domain,..."

4.7.2.2. Configuring one-way TLS

The procedure in this section shows how to configure one-way Transport Layer Security (TLS) to secure
a broker-client connection.

In one-way TLS, only the broker presents a certificate. This certificate is used by the client to
authenticate the broker.

Prerequisites

You should understand the requirements for broker certificate generation when clients use host
name verification. For more information, see Section 4.7.2.1, “Configuring a broker certificate
for host name verification”.

Procedure

1. Generate a self-signed certificate for the broker key store.

2. Export the certificate from the broker key store, so that it can be shared with clients. Export the
certificate in the Base64-encoded .pem format. For example:

3. On the client, create a client trust store that imports the broker certificate.

4. Log in to OpenShift Container Platform as an administrator. For example:

5. Switch to the project that contains your broker deployment. For example:

$ keytool -genkey -alias broker -keyalg RSA -keystore ~/broker.ks

$ keytool -export -alias broker -keystore ~/broker.ks -file ~/broker_cert.pem

$ keytool -import -alias broker -keystore ~/client.ts -file ~/broker_cert.pem

$ oc login -u system:admin

$ oc project <my_openshift_project>

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

57

6. Create a secret to store the TLS credentials. For example:

NOTE

When generating a secret, OpenShift requires you to specify both a key store
and a trust store. The trust store key is generically named client.ts. For one-way
TLS between the broker and a client, a trust store is not actually required.
However, to successfully generate the secret, you need to specify some valid
store file as a value for client.ts. The preceding step provides a "dummy" value
for client.ts by reusing the previously-generated broker key store file. This is
sufficient to generate a secret with all of the credentials required for one-way
TLS.

7. Link the secret to the service account that you created when installing the Operator. For
example:

8. Specify the secret name in the sslSecret parameter of your secured acceptor or connector. For
example:

4.7.2.3. Configuring two-way TLS

The procedure in this section shows how to configure two-way Transport Layer Security (TLS) to secure
a broker-client connection.

In two-way TLS, both the broker and client presents certificates. The broker and client use these
certificates to authenticate each other in a process sometimes called mutual authentication.

Prerequisites

You should understand the requirements for broker certificate generation when clients use host
name verification. For more information, see Section 4.7.2.1, “Configuring a broker certificate
for host name verification”.

$ oc create secret generic my-tls-secret \
--from-file=broker.ks=~/broker.ks \
--from-file=client.ts=~/broker.ks \
--from-literal=keyStorePassword=<password> \
--from-literal=trustStorePassword=<password>

$ oc secrets link sa/amq-broker-operator secret/my-tls-secret

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 sslEnabled: true
 sslSecret: my-tls-secret
 expose: true
 connectionsAllowed: 5
...

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

58

Procedure

1. Generate a self-signed certificate for the broker key store.

2. Export the certificate from the broker key store, so that it can be shared with clients. Export the
certificate in the Base64-encoded .pem format. For example:

3. On the client, create a client trust store that imports the broker certificate.

4. On the client, generate a self-signed certificate for the client key store.

5. On the client, export the certificate from the client key store, so that it can be shared with the
broker. Export the certificate in the Base64-encoded .pem format. For example:

6. Create a broker trust store that imports the client certificate.

7. Log in to OpenShift Container Platform as an administrator. For example:

8. Switch to the project that contains your broker deployment. For example:

9. Create a secret to store the TLS credentials. For example:

NOTE

When generating a secret, OpenShift requires you to specify both a key store
and a trust store. The trust store key is generically named client.ts. For two-way
TLS between the broker and a client, you must generate a secret that includes
the broker trust store, because this holds the client certificate. Therefore, in the
preceding step, the value that you specify for the client.ts key is actually the
broker trust store file.

10. Link the secret to the service account that you created when installing the Operator. For

$ keytool -genkey -alias broker -keyalg RSA -keystore ~/broker.ks

$ keytool -export -alias broker -keystore ~/broker.ks -file ~/broker_cert.pem

$ keytool -import -alias broker -keystore ~/client.ts -file ~/broker_cert.pem

$ keytool -genkey -alias broker -keyalg RSA -keystore ~/client.ks

$ keytool -export -alias broker -keystore ~/client.ks -file ~/client_cert.pem

$ keytool -import -alias broker -keystore ~/broker.ts -file ~/client_cert.pem

$ oc login -u system:admin

$ oc project <my_openshift_project>

$ oc create secret generic my-tls-secret \
--from-file=broker.ks=~/broker.ks \
--from-file=client.ts=~/broker.ts \
--from-literal=keyStorePassword=<password> \
--from-literal=trustStorePassword=<password>

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

59

10. Link the secret to the service account that you created when installing the Operator. For
example:

11. Specify the secret name in the sslSecret parameter of your secured acceptor or connector. For
example:

4.7.3. Networking Services in your broker deployments

On the Networking pane of the OpenShift Container Platform web console for your broker
deployment, there are two running Services; a headless Service and a ping Service. The default name of
the headless Service uses the format <custom_resource_name>-hdls-svc, for example, my-broker-
deployment-hdls-svc. The default name of the ping Service uses a format of
<custom_resource_name>-ping-svc, for example, `my-broker-deployment-ping-svc.

The headless Service provides access to ports 8161 and 61616 on each broker Pod. Port 8161 is used by
the broker management console, and port 61616 is used for broker clustering. You can also use the
headless Service to connect to a broker Pod from an internal client (that is, a client inside the same
OpenShift cluster as the broker deployment).

The ping Service is used by the brokers for discovery, and enables brokers to form a cluster within the
OpenShift environment. Internally, this Service exposes port 8888.

Additional resources

To learn about using the headless Service to connect to a broker Pod from an internal client, see
Section 4.7.4.1, “Connecting to the broker from internal clients” .

4.7.4. Connecting to the broker from internal and external clients

The examples in this section show how to connect to the broker from internal clients (that is, clients in
the same OpenShift cluster as the broker deployment) and external clients (that is, clients outside the
OpenShift cluster).

4.7.4.1. Connecting to the broker from internal clients

An internal client can connect to the broker Pod using the headless Service that is running for the broker
deployment.

To connect to a broker Pod using the headless Service, specify an address in the format
<Protocol>://<PodName>.<HeadlessServiceName>.<ProjectName>.svc.cluster.local. For example:

$ oc secrets link sa/amq-broker-operator secret/my-tls-secret

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp,openwire
 port: 5672
 sslEnabled: true
 sslSecret: my-tls-secret
 expose: true
 connectionsAllowed: 5
...

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

60

$ tcp://my-broker-deployment-0.my-broker-deployment-hdls-svc.my-openshift-project.svc.cluster.local

OpenShift DNS successfully resolves addresses in this format because the StatefulSets created by
Operator-based broker deployments provide stable Pod names.

Additional resources

For more information about the headless Service that runs by a default in a broker deployment,
see Section 4.7.3, “Networking Services in your broker deployments” .

4.7.4.2. Connecting to the broker from external clients

When you expose an acceptor to external clients (that is, by setting the value of the expose parameter
to true), the Operator automatically creates a dedicated Service and Route for each broker Pod in the
deployment. To see the Routes configured on a given broker Pod, select the Pod in the OpenShift
Container Platform web console and click the Routes tab.

An external client can connect to the broker by specifying the full host name of the Route created for
the the broker Pod. You can use a basic curl command to test external access to this full host name. For
example:

$ curl https://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain

The full host name for the Route must resolve to the node that’s hosting the OpenShift router. The
OpenShift router uses the host name to determine where to send the traffic inside the OpenShift
internal network.

By default, the OpenShift router listens to port 80 for non-secured (that is, non-SSL) traffic and port
443 for secured (that is, SSL-encrypted) traffic. For an HTTP connection, the router automatically
directs traffic to port 443 if you specify a secure connection URL (that is, https), or to port 80 if you
specify a non-secure connection URL (that is, http).

For non-HTTP connections:

Clients must explicitly specify the port number (for example, port 443) as part of the connection
URL.

For one-way TLS, the client must specify the path to its trust store and the corresponding
password, as part of the connection URL.

For two-way TLS, the client must also specify the path to its key store and the corresponding
password, as part of the connection URL.

Some example client connection URLs, for supported messaging protcols, are shown below.

External Core client, using one-way TLS

tcp://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443?
useTopologyForLoadBalancing=false&sslEnabled=true \
&trustStorePath=~/client.ts&trustStorePassword=<password>

NOTE

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

61

NOTE

The useTopologyForLoadBalancing key is explicitly set to false in the connection URL
because an external Core client cannot use topology information returned by the broker.
If this key is set to true or you do not specify a value, it results in a DEBUG log message.

External Core client, using two-way TLS

tcp://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443?
useTopologyForLoadBalancing=false&sslEnabled=true \
&keyStorePath=~/client.ks&keyStorePassword=<password> \
&trustStorePath=~/client.ts&trustStorePassword=<password>

External OpenWire client, using one-way TLS

ssl://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443"

Also, specify the following JVM flags
-Djavax.net.ssl.trustStore=~/client.ts -Djavax.net.ssl.trustStorePassword=<password>

External OpenWire client, using two-way TLS

ssl://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443"

Also, specify the following JVM flags
-Djavax.net.ssl.keyStore=~/client.ks -Djavax.net.ssl.keyStorePassword=<password> \
-Djavax.net.ssl.trustStore=~/client.ts -Djavax.net.ssl.trustStorePassword=<password>

External AMQP client, using one-way TLS

amqps://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443?
transport.verifyHost=true \
&transport.trustStoreLocation=~/client.ts&transport.trustStorePassword=<password>

External AMQP client, using two-way TLS

amqps://my-broker-deployment-0-svc-rte-my-openshift-project.my-openshift-domain:443?
transport.verifyHost=true \
&transport.keyStoreLocation=~/client.ks&transport.keyStorePassword=<password> \
&transport.trustStoreLocation=~/client.ts&transport.trustStorePassword=<password>

4.7.4.3. Connecting to the Broker using a NodePort

As an alternative to using a Route, an OpenShift administrator can configure a NodePort to connect to a
broker Pod from a client outside OpenShift. The NodePort should map to one of the protocol-specifc
ports specified by the acceptors configured for the broker.

By default, NodePorts are in the range 30000 to 32767, which means that a NodePort typically does
not match the intended port on the broker Pod.

To connect from a client outside OpenShift to the broker via a NodePort, you specify a URL in the
format <protocol>://<ocp_node_ip>:<node_port_number>.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

62

Additional resources

For more information about using methods such as Routes and NodePorts for communicating
from outside an OpenShift cluster with services running in the cluster, see:

Configuring ingress cluster traffic overview (OpenShift Container Platform 4.5)

4.8. CONFIGURING LARGE MESSAGE HANDLING FOR AMQP
MESSAGES

Clients might send large AMQP messages that can exceed the size of the broker’s internal buffer,
causing unexpected errors. To prevent this situation, you can configure the broker to store messages as
files when the messages are larger than a specified minimum value. Handling large messages in this way
means that the broker does not hold the messages in memory. Instead, the broker stores the messages
in a dedicated directory used for storing large message files.

For a broker deployment on OpenShift Container Platform, the large messages directory is
/opt/<custom_resource_name>/data/large-messages on the Persistent Volume (PV) used by the
broker for message storage. When the broker stores a message as a large message, the queue retains a
reference to the file in the large messages directory.

IMPORTANT

For Operator-based broker deployments in AMQ Broker 7.9, large message handling is
available only for the AMQP protocol.

4.8.1. Configuring AMQP acceptors for large message handling

The following procedure shows how to configure an acceptor to handle an AMQP message larger than a
specified size as a large message.

Prerequisites

You should be familiar with how to configure acceptors for Operator-based broker
deployments. See Section 4.7.1, “Configuring acceptors”.

To store large AMQP messages in a dedicated large messages directory, your broker
deployment must be using persistent storage (that is, persistenceEnabled is set to true in the
Custom Resource (CR) instance used to create the deployment). For more information about
configuring persistent storage, see:

Section 2.5, “Operator deployment notes”

Section 8.1, “Custom Resource configuration reference”

Procedure

1. Open the Custom Resource (CR) instance in which you previously defined an AMQP acceptor.

a. Using the OpenShift command-line interface:

b. Using the OpenShift Container Platform web console:

$ oc edit -f <path/to/custom_resource_instance>.yaml

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

63

https://docs.openshift.com/container-platform/4.5/networking/configuring_ingress_cluster_traffic/overview-traffic.html

i. In the left navigation menu, click Administration → Custom Resource Definitions

ii. Click the ActiveMQArtemis CRD.

iii. Click the Instances tab.

iv. Locate the CR instance that corresponds to your project namespace.

A previously-configured AMQP acceptor might resemble the following:

2. Specify the minimum size, in bytes, of an AMQP message that the broker handles as a large
message. For example:

In the preceding example, the broker is configured to accept AMQP messages on port 5672.
Based on the value of amqpMinLargeMessageSize, if the acceptor receives an AMQP
message with a body larger than or equal to 204800 bytes (that is, 200 kilobytes), the broker
stores the message as a large message.

The broker stores the message in the large messages directory
(/opt/<custom_resource_name>/data/large-messages, by default) on the persistent volume
(PV) used by the broker for message storage.

If you do not explicitly specify a value for the amqpMinLargeMessageSize property, the broker
uses a default value of 102400 (that is, 100 kilobytes).

If you set amqpMinLargeMessageSize to a value of -1, large message handling for AMQP
messages is disabled.

4.9. HIGH AVAILABILITY AND MESSAGE MIGRATION

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp
 port: 5672
 connectionsAllowed: 5
 expose: true
 sslEnabled: true
...

spec:
...
 acceptors:
 - name: my-acceptor
 protocols: amqp
 port: 5672
 connectionsAllowed: 5
 expose: true
 sslEnabled: true
 amqpMinLargeMessageSize: 204800
 ...
...

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

64

4.9.1. High availability

The term high availability refers to a system that can remain operational even when part of that system
fails or is shut down. For AMQ Broker on OpenShift Container Platform, this means ensuring the
integrity and availability of messaging data if a broker Pod fails, or shuts down due to intentional
scaledown of your deployment.

To allow high availability for AMQ Broker on OpenShift Container Platform, you run multiple broker
Pods in a broker cluster. Each broker Pod writes its message data to an available Persistent Volume
(PV) that you have claimed for use with a Persistent Volume Claim (PVC). If a broker Pod fails or is shut
down, the message data stored in the PV is migrated to another available broker Pod in the broker
cluster. The other broker Pod stores the message data in its own PV.

The following figure shows a StatefulSet-based broker deployment. In this case, the two broker Pods in
the broker cluster are still running.

When a broker Pod shuts down, the AMQ Broker Operator automatically starts a scaledown controller
that performs the migration of messages to an another broker Pod that is still running in the broker
cluster. This message migration process is also known as Pod draining . The section that follows describes
message migration.

4.9.2. Message migration

Message migration is how you ensure the integrity of messaging data when a broker in a clustered
deployment shuts down due to failure or intentional scaledown of the deployment. Also known as Pod
draining, this process refers to removal and redistribution of messages from a broker Pod that has shut
down.

NOTE

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

65

NOTE

The scaledown controller that performs message migration can operate only
within a single OpenShift project. The controller cannot migrate messages
between brokers in separate projects.

To use message migration, you must have a minimum of two brokers in your
deployment. A broker with two or more brokers is clustered by default.

For an Operator-based broker deployment, you enable message migration by setting
messageMigration to true in the main broker Custom Resource for your deployment.

The message migration process follows these steps:

1. When a broker Pod in the deployment shuts down due to failure or intentional scaledown of the
deployment, the Operator automatically starts a scaledown controller to prepare for message
migration. The scaledown controller runs in the same OpenShift project name as the broker
cluster.

2. The scaledown controller registers itself and listens for Kubernetes events that are related to
Persistent Volume Claims (PVCs) in the project.

3. To check for Persistent Volumes (PVs) that have been orphaned, the scaledown controller looks
at the ordinal on the volume claim. The controller compares the ordinal on the volume claim to
that of the broker Pods that are still running in the StatefulSet (that is, the broker cluster) in the
project.
If the ordinal on the volume claim is higher than the ordinal on any of the broker Pods still
running in the broker cluster, the scaledown controller determines that the broker Pod at that
ordinal has been shut down and that messaging data must be migrated to another broker Pod.

4. The scaledown controller starts a drainer Pod. The drainer Pod runs the broker and executes
the message migration. Then, the drainer Pod identifies an alternative broker Pod to which the
orphaned messages can be migrated.

NOTE

There must be at least one broker Pod still running in your deployment for
message migration to occur.

The following figure illustrates how the scaledown controller (also known as a drain controller) migrates
messages to a running broker Pod.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

66

After the messages are successfully migrated to an operational broker Pod, the drainer Pod shuts down
and the scaledown controller removes the PVC for the orphaned PV. The PV is returned to a "Released"
state.

NOTE

If you scale a broker deployment down to 0 (zero), message migration does not occur,
since there is no running broker Pod to which messaging data can be migrated. However,
if you scale a deployment down to zero and then back up to a size that is smaller than the
original deployment, drainer Pods are started for the brokers that remain shut down.

Additional resources

For an example of message migration when you scale down a broker deployment, see Migrating
messages upon scaledown.

4.9.3. Migrating messages upon scaledown

To migrate messages upon scaledown of your broker deployment, use the main broker Custom
Resource (CR) to enable message migration. The AMQ Broker Operator automatically runs a dedicated
scaledown controller to execute message migration when you scale down a clustered broker
deployment.

With message migration enabled, the scaledown controller within the Operator detects shutdown of a
broker Pod and starts a drainer Pod to execute message migration. The drainer Pod connects to one of
the other live broker Pods in the cluster and migrates messages to that live broker Pod. After migration
is complete, the scaledown controller shuts down.

NOTE

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

67

NOTE

A scaledown controller operates only within a single OpenShift project. The
controller cannot migrate messages between brokers in separate projects.

If you scale a broker deployment down to 0 (zero), message migration does not
occur, since there is no running broker Pod to which the messaging data can be
migrated. However, if you scale a deployment down to zero brokers and then
back up to only some of the brokers that were in the original deployment, drainer
Pods are started for the brokers that remain shut down.

The following example procedure shows the behavior of the scaledown controller.

Prerequisites

You already have a basic broker deployment. See Section 3.4.1, “Deploying a basic broker
instance”.

You should understand how message migration works. For more information, see Section 4.9.2,
“Message migration”.

Procedure

1. In the deploy/crs directory of the Operator repository that you originally downloaded and
extracted, open the main broker CR, broker_activemqartemis_cr.yaml.

2. In the main broker CR set messageMigration and persistenceEnabled to true.
These settings mean that when you later scale down the size of your clustered broker
deployment, the Operator automatically starts a scaledown controller and migrates messages to
a broker Pod that is still running.

3. In your existing broker deployment, verify which Pods are running.

You see output that looks like the following.

activemq-artemis-operator-8566d9bf58-9g25l 1/1 Running 0 3m38s
ex-aao-ss-0 1/1 Running 0 112s
ex-aao-ss-1 1/1 Running 0 8s

The preceding output shows that there are three Pods running; one for the broker Operator
itself, and a separate Pod for each broker in the deployment.

4. Log into each Pod and send some messages to each broker.

a. Supposing that Pod ex-aao-ss-0 has a cluster IP address of 172.17.0.6, run the following
command:

b. Supposing that Pod ex-aao-ss-1 has a cluster IP address of 172.17.0.7, run the following
command:

$ oc get pods

$ /opt/amq-broker/bin/artemis producer --url tcp://172.17.0.6:61616 --user admin --
password admin

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

68

The preceding commands create a queue called TEST on each broker and add 1000
messages to each queue.

5. Scale the cluster down from two brokers to one.

a. Open the main broker CR, broker_activemqartemis_cr.yaml.

b. In the CR, set deploymentPlan.size to 1.

c. At the command line, apply the change:

You see that the Pod ex-aao-ss-1 starts to shut down. The scaledown controller starts a
new drainer Pod of the same name. This drainer Pod also shuts down after it migrates all
messages from broker Pod ex-aao-ss-1 to the other broker Pod in the cluster, ex-aao-ss-
0.

6. When the drainer Pod is shut down, check the message count on the TEST queue of broker Pod
ex-aao-ss-0. You see that the number of messages in the queue is 2000, indicating that the
drainer Pod successfully migrated 1000 messages from the broker Pod that shut down.

$ /opt/amq-broker/bin/artemis producer --url tcp://172.17.0.7:61616 --user admin --
password admin

$ oc apply -f deploy/crs/broker_activemqartemis_cr.yaml

CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS

69

CHAPTER 5. CONNECTING TO AMQ MANAGEMENT
CONSOLE FOR AN OPERATOR-BASED BROKER

DEPLOYMENT
Each broker Pod in an Operator-based deployment hosts its own instance of AMQ Management
Console at port 8161. To provide access to the console for each broker, you can configure the Custom
Resource (CR) instance for the broker deployment to instruct the Operator to automatically create a
dedicated Service and Route for each broker Pod.

The following procedures describe how to connect to AMQ Management Console for a deployed broker.

Prerequisites

You must have created a broker deployment using the AMQ Broker Operator. For example, to
learn how to use a sample CR to create a basic broker deployment, see Section 3.4.1, “Deploying
a basic broker instance”.

To instruct the Operator to automatically create a Service and Route for each broker Pod in a
deployment for console access, you must set the value of the console.expose property to true
in the Custom Resource (CR) instance used to create the deployment. The default value of this
property is false. For a complete Custom Resource configuration reference, including
configuration of the console section of the CR, see Section 8.1, “Custom Resource
configuration reference”.

5.1. CONNECTING TO AMQ MANAGEMENT CONSOLE

When you set the value of the console.expose property to true in the Custom Resource (CR) instance
used to create a broker deployment, the Operator automatically creates a dedicated Service and Route
for each broker Pod, to provide access to AMQ Management Console.

The default name of the automatically-created Service is in the form <custom-resource-name>-
wconsj-<broker-pod-ordinal>-svc. For example, my-broker-deployment-wconsj-0-svc. The default
name of the automatically-created Route is in the form <custom-resource-name>-wconsj-<broker-
pod-ordinal>-svc-rte. For example, my-broker-deployment-wconsj-0-svc-rte.

This procedure shows you how to access the console for a running broker Pod.

Procedure

1. In the OpenShift Container Platform web console, click Networking → Routes.
On the Routes page, identify the wconsj Route for the given broker Pod. For example, my-
broker-deployment-wconsj-0-svc-rte.

2. Under Location, click the link that corresponds to the Route.
A new tab opens in your web browser.

3. Click the Management Console link.
The AMQ Management Console login page opens.

4. To log in to the console, enter the values specified for the adminUser and adminPassword
properties in the Custom Resource (CR) instance used to create your broker deployment.
If there are no values explicitly specified for adminUser and adminPassword in the CR, follow
the instructions in Section 5.2, “Accessing AMQ Management Console login credentials” to
retrieve the credentials required to log in to the console.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

70

NOTE

Values for adminUser and adminPassword are required to log in to the console
only if the requireLogin property of the CR is set to true. This property specifies
whether login credentials are required to log in to the broker and the console. If
requireLogin is set to false, you can log in to the console without supplying a
valid username password by entering any text when prompted for username and
password.

5.2. ACCESSING AMQ MANAGEMENT CONSOLE LOGIN
CREDENTIALS

If you do not specify a value for adminUser and adminPassword in the Custom Resource (CR)
instance used for your broker deployment, the Operator automatically generates these credentials and
stores them in a secret. The default secret name is in the form <custom-resource-name>-credentials-
secret, for example, my-broker-deployment-credentials-secret.

NOTE

Values for adminUser and adminPassword are required to log in to the management
console only if the requireLogin parameter of the CR is set to true.

If requireLogin is set to false, you can log in to the console without supplying a valid
username password by entering any text when prompted for username and password.

This procedure shows how to access the login credentials.

Procedure

1. See the complete list of secrets in your OpenShift project.

a. From the OpenShift Container Platform web console, click Workload → Secrets.

b. From the command line:

$ oc get secrets

2. Open the appropriate secret to reveal the Base64-encoded console login credentials.

a. From the OpenShift Container Platform web console, click the secret that includes your
broker Custom Resource instance in its name. Click the YAML tab.

b. From the command line:

$ oc edit secret <my-broker-deployment-credentials-secret>

3. To decode a value in the secret, use a command such as the following:

$ echo 'dXNlcl9uYW1l' | base64 --decode
console_admin

Additional resources

To learn more about using AMQ Management Console to view and manage brokers, see

CHAPTER 5. CONNECTING TO AMQ MANAGEMENT CONSOLE FOR AN OPERATOR-BASED BROKER DEPLOYMENT

71

To learn more about using AMQ Management Console to view and manage brokers, see
Managing brokers using AMQ Management Console in Managing AMQ Broker

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

72

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/index#assembly-br-managing-broker_managing

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER
DEPLOYMENT

The procedures in this section show how to upgrade:

The AMQ Broker Operator version, using both the OpenShift command-line interface (CLI) and
OperatorHub

The broker container image for an Operator-based broker deployment

6.1. BEFORE YOU BEGIN

This section describes some important considerations before you upgrade the Operator and broker
container images for an Operator-based broker deployment.

To upgrade an Operator-based broker deployment running on OpenShift Container Platform
3.11 to run on OpenShift Container Platform 4.5 or later, you must first upgrade your OpenShift
Container Platform installation. Then, you must create a new Operator-based broker
deployment that matches your existing deployment. To learn how to create a new Operator-
based broker deployment, see Chapter 3, Deploying AMQ Broker on OpenShift Container
Platform using the AMQ Broker Operator.

Upgrading the Operator using either the OpenShift command-line interface (CLI) or
OperatorHub requires cluster administrator privileges for your OpenShift cluster.

If you originally used the CLI to install the Operator, you should also use the CLI to upgrade the
Operator. If you originally used OperatorHub to install the Operator (that is, it appears under
Operators → Installed Operators for your project in the OpenShift Container Platform web
console), you should also use OperatorHub to upgrade the Operator. For more information
about these upgrade methods, see:

Section 6.2, “Upgrading the Operator using the CLI”

Section 6.3.3, “Upgrading the Operator using OperatorHub”

If you want to deploy the Operator to watch many namespaces, for example to watch all
namespaces, you must:

1. Make sure you have backed up all the CRs relating to broker deployments in your cluster.

2. Uninstall the existing Operator.

3. Deploy the 7.9 Operator to watch the namespaces you require.

4. Check all your deployments and recreate if necessary.

6.2. UPGRADING THE OPERATOR USING THE CLI

The procedures in this section show how to use the OpenShift command-line interface (CLI) to upgrade
different versions of the Operator to the latest version available for AMQ Broker 7.9.

6.2.1. Prerequisites

You should use the CLI to upgrade the Operator only if you originally used the CLI to install the
Operator. If you originally used OperatorHub to install the Operator (that is, the Operator

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

73

appears under Operators → Installed Operators for your project in the OpenShift Container
Platform web console), you should use OperatorHub to upgrade the Operator. To learn how to
upgrade the Operator using OperatorHub, see Section 6.3, “Upgrading the Operator using
OperatorHub”.

6.2.2. Upgrading version 7.8.x of the Operator

This procedure shows to how to use the OpenShift command-line interface (CLI) to upgrade version
7.8.x of the Operator to the latest version for AMQ Broker 7.9.

Procedure

1. In your web browser, navigate to the Software Downloads page for AMQ Broker 7.9.4 patches .

2. Ensure that the value of the Version drop-down list is set to 7.9.4 and the Patches tab is
selected.

3. Next to AMQ Broker 7.9.4 Operator Installation and Example Files, click Download.
Download of the amq-broker-operator-7.9.4-ocp-install-examples.zip compressed archive
automatically begins.

4. When the download has completed, move the archive to your chosen installation directory. The
following example moves the archive to a directory called ~/broker/operator.

5. In your chosen installation directory, extract the contents of the archive. For example:

6. Log in to OpenShift Container Platform as an administrator for the project that contains your
existing Operator deployment.

7. Switch to the OpenShift project in which you want to upgrade your Operator version.

8. In the deploy directory of the latest Operator archive that you downloaded and extracted, open
the operator.yaml file.

NOTE

In the operator.yaml file, the Operator uses an image that is represented by a
Secure Hash Algorithm (SHA) value. The comment line, which begins with a
number sign (#) symbol, denotes that the SHA value corresponds to a specific
container image tag.

9. Open the operator.yaml file for your previous Operator deployment. Check that any non-

mkdir ~/broker/operator
mv amq-broker-operator-7.9.4-ocp-install-examples.zip ~/broker/operator

cd ~/broker/operator
unzip amq-broker-operator-7.9.4-ocp-install-examples.zip

$ oc login -u <user>

$ oc project <project-name>

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

74

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=patches&product=jboss.amq.broker&version=7.9.4

9. Open the operator.yaml file for your previous Operator deployment. Check that any non-
default values that you specified in your previous configuration are replicated in the new
operator.yaml configuration file.

10. If you have made any updates to the new operator.yaml file, save the file.

11. Apply the updated Operator configuration.

OpenShift updates your project to use the latest Operator version.

12. To recreate your previous broker deployment, create a new CR yaml file to match the purpose
of your original CR and apply it. Section 3.4.1, “Deploying a basic broker instance” . describes how
to apply the deploy/crs/broker_activemqartemis_cr.yaml file in the Operator installation
archive, you can use that file as a basis for your new CR yaml file.

6.3. UPGRADING THE OPERATOR USING OPERATORHUB

This section describes how to use OperatorHub to upgrade different versions of the Operator to the
latest version available for AMQ Broker 7.9.

6.3.1. Prerequisites

You should use OperatorHub to upgrade the Operator only if you originally used OperatorHub
to install the Operator (that is, the Operator appears under Operators → Installed Operators
for your project in the OpenShift Container Platform web console). By contrast, if you originally
used the OpenShift command-line interface (CLI) to install the Operator, you should also use
the CLI to upgrade the Operator. To learn how to upgrade the Operator using the CLI, see
Section 6.2, “Upgrading the Operator using the CLI” .

Upgrading the AMQ Broker Operator using OperatorHub requires cluster administrator
privileges for your OpenShift cluster.

6.3.2. Before you begin

This section describes some important considerations before you use OperatorHub to upgrade an
instance of the AMQ Broker Operator.

The Operator Lifecycle Manager automatically updates the CRDs in your OpenShift cluster
when you install the latest Operator version from OperatorHub. You do not need to remove
existing CRDs.

When you update your cluster with the CRDs for the latest Operator version, this update affects
all projects in the cluster. Any broker Pods deployed from previous versions of the Operator
might become unable to update their status in the OpenShift Container Platform web console.
When you click the Logs tab of a running broker Pod, you see messages indicating that
'UpdatePodStatus' has failed. However, the broker Pods and Operator in that project continue
to work as expected. To fix this issue for an affected project, you must also upgrade that project
to use the latest version of the Operator.

6.3.3. Upgrading the Operator using OperatorHub

This procedure shows how to use OperatorHub to upgrade an instance of the AMQ Broker Operator.

Procedure

$ oc apply -f deploy/operator.yaml

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

75

Procedure

1. Log in to the OpenShift Container Platform web console as a cluster administrator.

2. Delete the main Custom Resource (CR) instance for the broker deployment in your project. This
action deletes the broker deployment.

a. In the left navigation menu, click Administration → Custom Resource Definitions.

b. On the Custom Resource Definitions page, click the ActiveMQArtemis CRD.

c. Click the Instances tab.

d. Locate the CR instance that corresponds to your project namespace.

e. For your CR instance, click the More Options icon (three vertical dots) on the right-hand
side. Select Delete ActiveMQArtemis.

3. Uninstall the existing AMQ Broker Operator from your project.

a. In the left navigation menu, click Operators → Installed Operators.

b. From the Project drop-down menu at the top of the page, select the project in which you
want to uninstall the Operator.

c. Locate the Red Hat Integration - AMQ Broker instance that you want to uninstall.

d. For your Operator instance, click the More Options icon (three vertical dots) on the right-
hand side. Select Uninstall Operator.

e. On the confirmation dialog box, click Uninstall.

4. Use OperatorHub to install the latest version of the Operator for AMQ Broker 7.9. For more
information, see Section 3.3.2, “Deploying the Operator from OperatorHub” .

5. To recreate your previous broker deployment, create a new CR yaml file to match the purpose
of your original CR and apply it. Section 3.4.1, “Deploying a basic broker instance” . describes how
to apply the deploy/crs/broker_activemqartemis_cr.yaml file in the Operator installation
archive, you can use that file as a basis for your new CR yaml file.

6.4. UPGRADING THE BROKER CONTAINER IMAGE BY SPECIFYING
AN AMQ BROKER VERSION

The following procedure shows how to upgrade the broker container image for an Operator-based
broker deployment by specifying an AMQ Broker version. You might do this, for example, if you upgrade
the Operator to the latest version for AMQ Broker 7.9.4 but the spec.upgrades.enabled property in
your CR is already set to true and the spec.version property specifies 7.8.0. To upgrade the broker
container image, you need to manually specify a new AMQ Broker version (for example, 7.9.4). When you
specify a new version of AMQ Broker, the Operator automatically chooses the broker container image
that corresponds to this version.

Prerequisites

You must be using the latest version of the Operator for 7.9.4. To learn how to upgrade the
Operator to the latest version, see:

Section 6.2, “Upgrading the Operator using the CLI”

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

76

Section 6.3.3, “Upgrading the Operator using OperatorHub” .

As described in Section 2.4, “How the Operator chooses container images” , if you deploy a CR
and do not explicitly specify a broker container image, the Operator automatically chooses the
appropriate container image to use. To use the upgrade process described in this section, you
must use this default behavior. If you override the default behavior by directly specifying a
broker container image in your CR, the Operator cannot automatically upgrade the broker
container image to correspond to an AMQ Broker version as described below.

Procedure

1. Edit the main broker CR instance for the broker deployment.

a. Using the OpenShift command-line interface:

i. Log in to OpenShift as a user that has privileges to edit and deploy CRs in the project
for the broker deployment.

$ oc login -u <user> -p <password> --server=<host:port>

ii. In a text editor, open the CR file that you used for your broker deployment. For
example, this might be the broker_activemqartemis_cr.yaml file that was included in
the deploy/crs directory of the Operator installation archive that you previously
downloaded and extracted.

b. Using the OpenShift Container Platform web console:

i. Log in to the console as a user that has privileges to edit and deploy CRs in the project
for the broker deployment.

ii. In the left pane, click Administration → Custom Resource Definitions.

iii. Click the ActiveMQArtemis CRD.

iv. Click the Instances tab.

v. Locate the CR instance that corresponds to your project namespace.

vi. For your CR instance, click the More Options icon (three vertical dots) on the right-
hand side. Select Edit ActiveMQArtemis.
Within the console, a YAML editor opens, enabling you to edit the CR instance.

2. To specify a version of AMQ Broker to which to upgrade the broker container image, set a value
for the spec.version property of the CR. For example:

3. In the spec section of the CR, locate the upgrades section. If this section is not already included
in the CR, add it.

spec:
 version: 7.9.4
 ...

spec:
 version: 7.9.4
 ...
 upgrades:

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

77

4. Ensure that the upgrades section includes the enabled and minor properties.

5. To enable an upgrade of the broker container image based on a specified version of AMQ
Broker, set the value of the enabled property to true.

6. To define the upgrade behavior of the broker, set a value for the minor property.

a. To allow upgrades between minor AMQ Broker versions, set the value of minor to true.

For example, suppose that the current broker container image corresponds to 7.8.0, and a
new image, corresponding to the 7.9.0 version specified for spec.version, is available. In
this case, the Operator determines that there is an available upgrade between the 7.8 and
7.9 minor versions. Based on the preceding settings, which allow upgrades between minor
versions, the Operator upgrades the broker container image.

By contrast, suppose that the current broker container image corresponds to 7.9.0, and you
specify a new value of 7.9.1 for spec.version. If an image corresponding to 7.9.1 exists, the
Operator determines that there is an available upgrade between 7.9.0 and 7.9.1 micro
versions. Based on the preceding settings, which allow upgrades only between minor
versions, the Operator does not upgrade the broker container image.

b. To allow upgrades between micro AMQ Broker versions, set the value of minor to false.

For example, suppose that the current broker container image corresponds to 7.8.0, and a
new image, corresponding to the 7.9.0 version specified for spec.version, is available. In
this case, the Operator determines that there is an available upgrade between the 7.8 and

spec:
 version: 7.9.4
 ...
 upgrades:
 enabled:
 minor:

spec:
 version: 7.9.4
 ...
 upgrades:
 enabled: true
 minor:

spec:
 version: 7.9.0
 ...
 upgrades:
 enabled: true
 minor: true

spec:
 version: 7.9.0
 ...
 upgrades:
 enabled: true
 minor: false

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

78

7.9 minor versions. Based on the preceding settings, which do not allow upgrades between
minor versions (that is, only between micro versions), the Operator does not upgrade the
broker container image.

By contrast, suppose that the current broker container image corresponds to 7.9.0, and you
specify a new value of 7.9.1 for spec.version. If an image corresponding to 7.9.1 exists, the
Operator determines that there is an available upgrade between 7.9.0 and 7.9.1 micro
versions. Based on the preceding settings, which allow upgrades between micro versions,
the Operator upgrades the broker container image.

7. Apply the changes to the CR.

a. Using the OpenShift command-line interface:

i. Save the CR file.

ii. Switch to the project for the broker deployment.

$ oc project <project_name>

iii. Apply the CR.

$ oc apply -f <path/to/broker_custom_resource_instance>.yaml

b. Using the OpenShift web console:

i. When you have finished editing the CR, click Save.

When you apply the CR change, the Operator first validates that an upgrade to the AMQ Broker
version specified for spec.version is available for your existing deployment. If you have
specified an invalid version of AMQ Broker to which to upgrade (for example, a version that is
not yet available), the Operator logs a warning message, and takes no further action.

However, if an upgrade to the specified version is available, and the values specified for
upgrades.enabled and upgrades.minor allow the upgrade, then the Operator upgrades each
broker in the deployment to use the broker container image that corresponds to the new AMQ
Broker version.

The broker container image that the Operator uses is defined in an environment variable in the
operator.yaml configuration file of the Operator deployment. The environment variable name
includes an identifier for the AMQ Broker version. For example, the environment variable
RELATED_IMAGE_ActiveMQ_Artemis_Broker_Kubernetes_791 corresponds to AMQ
Broker 7.9.1.

When the Operator has applied the CR change, it restarts each broker Pod in your deployment
so that each Pod uses the specified image version. If you have multiple brokers in your
deployment, only one broker Pod shuts down and restarts at a time.

Additional resources

To learn how the Operator uses environment variables to choose a broker container image, see
Section 2.4, “How the Operator chooses container images” .

CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT

79

CHAPTER 7. MONITORING YOUR BROKERS

7.1. VIEWING BROKERS IN FUSE CONSOLE

You can configure an Operator-based broker deployment to use Fuse Console for OpenShift instead of
the AMQ Management Console. When you have configured your broker deployment appropriately, Fuse
Console discovers the brokers and displays them on a dedicated Artemis tab. You can view the same
broker runtime data that you do in the AMQ Management Console. You can also perform the same
basic management operations, such as creating addresses and queues.

The following procedure describes how to configure the Custom Resource (CR) instance for a broker
deployment to enable Fuse Console for OpenShift to discover and display brokers in the deployment.

IMPORTANT

Viewing brokers from Fuse Console is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process. For more information about the support scope of Red Hat Technology Preview
features, see Technology Preview Features Support Scope .

Prerequisites

Fuse Console for OpenShift must be deployed to an OCP cluster, or to a specific namespace on
that cluster. If you have deployed the console to a specific namespace, your broker deployment
must be in the same namespace, to enable the console to discover the brokers. Otherwise, it is
sufficient for Fuse Console and the brokers to be deployed on the same OCP cluster. For more
information on installing Fuse Online on OCP, see Installing and Operating Fuse Online on
OpenShift Container Platform.

You must have already created a broker deployment. For example, to learn how to use a
Custom Resource (CR) instance to create a basic Operator-based deployment, see
Section 3.4.1, “Deploying a basic broker instance” .

Procedure

1. Open the CR instance that you used for your broker deployment. For example, the CR for a
basic deployment might resemble the following:

2. In the deploymentPlan section, add the jolokiaAgentEnabled and

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 4
 image: registry.redhat.io/amq7/amq-broker-rhel8:7.9
 ...

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

80

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.8/html/installing_and_operating_fuse_online_on_openshift_container_platform/index

2. In the deploymentPlan section, add the jolokiaAgentEnabled and
managementRBACEnabled properties and specify values, as shown below.

jolokiaAgentEnabled

Specifies whether Fuse Console can discover and display runtime data for the brokers in the
deployment. To use Fuse Console, set the value to true.

managementRBACEnabled

Specifies whether role-based access control (RBAC) is enabled for the brokers in the
deployment. You must set the value to false to use Fuse Console because Fuse Console
uses its own role-based access control.

IMPORTANT

If you set the value of managementRBACEnabled to false to enable use of
Fuse Console, management MBeans for the brokers no longer require
authorization. You should not use the AMQ management console while
managementRBACEnabled is set to false because this potentially exposes
all management operations on the brokers to unauthorized use.

3. Save the CR instance.

4. Switch to the project in which you previously created your broker deployment.

$ oc project <project_name>

5. At the command line, apply the change.

6. In Fuse Console, to view Fuse applications, click the Online tab. To view running brokers, in the
left navigation menu, click Artemis.

Additional resources

For more information about using Fuse Console for OpenShift, see Monitoring and managing
Red Hat Fuse applications on OpenShift.

To learn about using AMQ Management Console to view and manage brokers in the same way

apiVersion: broker.amq.io/v2alpha4
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 4
 image: registry.redhat.io/amq7/amq-broker-rhel8:7.9
 ...
 jolokiaAgentEnabled: true
 managementRBACEnabled: false

$ oc apply -f <path/to/custom_resource_instance>.yaml

CHAPTER 7. MONITORING YOUR BROKERS

81

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.8/html/managing_fuse/manage-monitor-fuse-openshift

To learn about using AMQ Management Console to view and manage brokers in the same way
that you can in Fuse Console, see Managing brokers using AMQ Management Console .

7.2. MONITORING BROKER RUNTIME METRICS USING PROMETHEUS

The sections that follow describe how to configure the Prometheus metrics plugin for AMQ Broker on
OpenShift Container Platform. You can use the plugin to monitor and store broker runtime metrics. You
might also use a graphical tool such as Grafana to configure more advanced visualizations and
dashboards of the data that the Prometheus plugin collects.

NOTE

The Prometheus metrics plugin enables you to collect and export broker metrics in
Prometheus format. However, Red Hat does not provide support for installation or
configuration of Prometheus itself, nor of visualization tools such as Grafana. If you
require support with installing, configuring, or running Prometheus or Grafana, visit the
product websites for resources such as community support and documentation.

7.2.1. Metrics overview

To monitor the health and performance of your broker instances, you can use the Prometheus plugin for
AMQ Broker to monitor and store broker runtime metrics. The AMQ Broker Prometheus plugin exports
the broker runtime metrics to Prometheus format, enabling you to use Prometheus itself to visualize
and run queries on the data.

You can also use a graphical tool, such as Grafana, to configure more advanced visualizations and
dashboards for the metrics that the Prometheus plugin collects.

The metrics that the plugin exports to Prometheus format are described below.

Broker metrics

artemis_address_memory_usage

Number of bytes used by all addresses on this broker for in-memory messages.

artemis_address_memory_usage_percentage

Memory used by all the addresses on this broker as a percentage of the global-max-size parameter.

artemis_connection_count

Number of clients connected to this broker.

artemis_total_connection_count

Number of clients that have connected to this broker since it was started.

Address metrics

artemis_routed_message_count

Number of messages routed to one or more queue bindings.

artemis_unrouted_message_count

Number of messages not routed to any queue bindings.

Queue metrics

artemis_consumer_count

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

82

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/managing_amq_broker/index#assembly-br-managing-broker_managing

Number of clients consuming messages from a given queue.

artemis_delivering_durable_message_count

Number of durable messages that a given queue is currently delivering to consumers.

artemis_delivering_durable_persistent_size

Persistent size of durable messages that a given queue is currently delivering to consumers.

artemis_delivering_message_count

Number of messages that a given queue is currently delivering to consumers.

artemis_delivering_persistent_size

Persistent size of messages that a given queue is currently delivering to consumers.

artemis_durable_message_count

Number of durable messages currently in a given queue. This includes scheduled, paged, and in-
delivery messages.

artemis_durable_persistent_size

Persistent size of durable messages currently in a given queue. This includes scheduled, paged, and
in-delivery messages.

artemis_messages_acknowledged

Number of messages acknowledged from a given queue since the queue was created.

artemis_messages_added

Number of messages added to a given queue since the queue was created.

artemis_message_count

Number of messages currently in a given queue. This includes scheduled, paged, and in-delivery
messages.

artemis_messages_killed

Number of messages removed from a given queue since the queue was created. The broker kills a
message when the message exceeds the configured maximum number of delivery attempts.

artemis_messages_expired

Number of messages expired from a given queue since the queue was created.

artemis_persistent_size

Persistent size of all messages (both durable and non-durable) currently in a given queue. This
includes scheduled, paged, and in-delivery messages.

artemis_scheduled_durable_message_count

Number of durable, scheduled messages in a given queue.

artemis_scheduled_durable_persistent_size

Persistent size of durable, scheduled messages in a given queue.

artemis_scheduled_message_count

Number of scheduled messages in a given queue.

artemis_scheduled_persistent_size

Persistent size of scheduled messages in a given queue.

For higher-level broker metrics that are not listed above, you can calculate these by aggregating lower-
level metrics. For example, to calculate total message count, you can aggregate the
artemis_message_count metrics from all queues in your broker deployment.

For an on-premise deployment of AMQ Broker, metrics for the Java Virtual Machine (JVM) hosting the

CHAPTER 7. MONITORING YOUR BROKERS

83

For an on-premise deployment of AMQ Broker, metrics for the Java Virtual Machine (JVM) hosting the
broker are also exported to Prometheus format. This does not apply to a deployment of AMQ Broker on
OpenShift Container Platform.

7.2.2. Enabling the Prometheus plugin using a CR

When you install AMQ Broker, a Prometheus metrics plugin is included in your installation. When enabled,
the plugin collects runtime metrics for the broker and exports these to Prometheus format.

The following procedure shows how to enable the Prometheus plugin for AMQ Broker using a CR. This
procedure supports new and existing deployments of AMQ Broker 7.9 or later.

See Section 7.2.3, “Enabling the Prometheus plugin for a running broker deployment using an
environment variable” for an alternative procedure with running brokers.

Procedure

1. Open the CR instance that you use for your broker deployment. For example, the CR for a basic
deployment might resemble the following:

2. In the deploymentPlan section, add the enableMetricsPlugin property and set the value to
true, as shown below.

enableMetricsPlugin

Specifies whether the Prometheus plugin is enabled for the brokers in the deployment.

3. Save the CR instance.

4. Switch to the project in which you previously created your broker deployment.

apiVersion: broker.amq.io/v2alpha5
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 4
 image: registry.redhat.io/amq7/amq-broker-rhel8:7.9
 ...

apiVersion: broker.amq.io/v2alpha5
kind: ActiveMQArtemis
metadata:
 name: ex-aao
 application: ex-aao-app
spec:
 version: 7.9.4
 deploymentPlan:
 size: 4
 image: registry.redhat.io/amq7/amq-broker-rhel8:7.9
 ...
 enableMetricsPlugin: true

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

84

$ oc project <project_name>

5. At the command line, apply the change.

The metrics plugin starts to gather broker runtime metrics in Prometheus format.

Additional resources

For information about updating a running broker, see Section 3.4.3, “Applying Custom Resource
changes to running broker deployments”.

7.2.3. Enabling the Prometheus plugin for a running broker deployment using an
environment variable

The following procedure shows how to enable the Prometheus plugin for AMQ Broker using an
environment variable. See Section 7.2.2, “Enabling the Prometheus plugin using a CR” for an alternative
procedure.

Prerequisites

You can enable the Prometheus plugin for a broker Pod created with the AMQ Broker
Operator. However, your deployed broker must use the broker container image for AMQ Broker
7.7 or later.

Procedure

1. Log in to the OpenShift Container Platform web console with administrator privileges for the
project that contains your broker deployment.

2. In the web console, click Home → Projects. Choose the project that contains your broker
deployment.

3. To see the StatefulSets or DeploymentConfigs in your project, click Workloads → StatefulSets
or Workloads → DeploymentConfigs.

4. Click the StatefulSet or DeploymentConfig that corresponds to your broker deployment.

5. To access the environment variables for your broker deployment, click the Environment tab.

6. Add a new environment variable, AMQ_ENABLE_METRICS_PLUGIN. Set the value of the
variable to true.
When you set the AMQ_ENABLE_METRICS_PLUGIN environment variable, OpenShift
restarts each broker Pod in the StatefulSet or DeploymentConfig. When there are multiple
Pods in the deployment, OpenShift restarts each Pod in turn. When each broker Pod restarts,
the Prometheus plugin for that broker starts to gather broker runtime metrics.

7.2.4. Accessing Prometheus metrics for a running broker Pod

This procedure shows how to access Prometheus metrics for a running broker Pod.

Prerequisites

You must have already enabled the Prometheus plugin for your broker Pod. See Section 7.2.3,

$ oc apply -f <path/to/custom_resource_instance>.yaml

CHAPTER 7. MONITORING YOUR BROKERS

85

You must have already enabled the Prometheus plugin for your broker Pod. See Section 7.2.3,
“Enabling the Prometheus plugin for a running broker deployment using an environment
variable”.

Procedure

1. For the broker Pod whose metrics you want to access, you need to identify the Route you
previously created to connect the Pod to the AMQ Broker management console. The Route
name forms part of the URL needed to access the metrics.

a. Click Networking → Routes.

b. For your chosen broker Pod, identify the Route created to connect the Pod to the AMQ
Broker management console. Under Hostname, note the complete URL that is shown. For
example:

http://rte-console-access-pod1.openshiftdomain

2. To access Prometheus metrics, in a web browser, enter the previously noted Route name
appended with “/metrics”. For example:

http://rte-console-access-pod1.openshiftdomain/metrics

NOTE

If your console configuration does not use SSL, specify http in the URL. In this case, DNS
resolution of the host name directs traffic to port 80 of the OpenShift router. If your
console configuration uses SSL, specify https in the URL. In this case, your browser
defaults to port 443 of the OpenShift router. This enables a successful connection to the
console if the OpenShift router also uses port 443 for SSL traffic, which the router does
by default.

7.3. MONITORING BROKER RUNTIME DATA USING JMX

This example shows how to monitor a broker using the Jolokia REST interface to JMX.

Prerequisites

Completion of Deploying a basic broker is recommended.

Procedure

1. Get the list of running pods:

$ oc get pods

NAME READY STATUS RESTARTS AGE
ex-aao-ss-1 1/1 Running 0 14d

2. Run the oc logs command:

$ oc logs -f ex-aao-ss-1

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

86

...
Running Broker in /home/jboss/amq-broker
...
2021-09-17 09:35:10,813 INFO [org.apache.activemq.artemis.integration.bootstrap]
AMQ101000: Starting ActiveMQ Artemis Server
2021-09-17 09:35:10,882 INFO [org.apache.activemq.artemis.core.server] AMQ221000: live
Message Broker is starting with configuration Broker Configuration
(clustered=true,journalDirectory=data/journal,bindingsDirectory=data/bindings,largeMessagesDi
rectory=data/large-messages,pagingDirectory=data/paging)
2021-09-17 09:35:10,971 INFO [org.apache.activemq.artemis.core.server] AMQ221013:
Using NIO Journal
2021-09-17 09:35:11,114 INFO [org.apache.activemq.artemis.core.server] AMQ221057:
Global Max Size is being adjusted to 1/2 of the JVM max size (-Xmx). being defined as
2,566,914,048
2021-09-17 09:35:11,369 WARNING [org.jgroups.stack.Configurator] JGRP000014:
BasicTCP.use_send_queues has been deprecated: will be removed in 4.0
2021-09-17 09:35:11,385 WARNING [org.jgroups.stack.Configurator] JGRP000014:
Discovery.timeout has been deprecated: GMS.join_timeout should be used instead
2021-09-17 09:35:11,480 INFO [org.jgroups.protocols.openshift.DNS_PING] serviceName
[ex-aao-ping-svc] set; clustering enabled
2021-09-17 09:35:24,540 INFO [org.openshift.ping.common.Utils] 3 attempt(s) with a
1000ms sleep to execute [GetServicePort] failed. Last failure was
[javax.naming.CommunicationException: DNS error]
...
2021-09-17 09:35:25,044 INFO [org.apache.activemq.artemis.core.server] AMQ221034:
Waiting indefinitely to obtain live lock
2021-09-17 09:35:25,045 INFO [org.apache.activemq.artemis.core.server] AMQ221035:
Live Server Obtained live lock
2021-09-17 09:35:25,206 INFO [org.apache.activemq.artemis.core.server] AMQ221080:
Deploying address DLQ supporting [ANYCAST]
2021-09-17 09:35:25,240 INFO [org.apache.activemq.artemis.core.server] AMQ221003:
Deploying ANYCAST queue DLQ on address DLQ
2021-09-17 09:35:25,360 INFO [org.apache.activemq.artemis.core.server] AMQ221080:
Deploying address ExpiryQueue supporting [ANYCAST]
2021-09-17 09:35:25,362 INFO [org.apache.activemq.artemis.core.server] AMQ221003:
Deploying ANYCAST queue ExpiryQueue on address ExpiryQueue
2021-09-17 09:35:25,656 INFO [org.apache.activemq.artemis.core.server] AMQ221020:
Started EPOLL Acceptor at ex-aao-ss-1.ex-aao-hdls-svc.broker.svc.cluster.local:61616 for
protocols [CORE]
2021-09-17 09:35:25,660 INFO [org.apache.activemq.artemis.core.server] AMQ221007:
Server is now live
2021-09-17 09:35:25,660 INFO [org.apache.activemq.artemis.core.server] AMQ221001:
Apache ActiveMQ Artemis Message Broker version 2.16.0.redhat-00022 [amq-broker,
nodeID=8d886031-179a-11ec-9e02-0a580ad9008b]
2021-09-17 09:35:26,470 INFO [org.apache.amq.hawtio.branding.PluginContextListener]
Initialized amq-broker-redhat-branding plugin
2021-09-17 09:35:26,656 INFO [org.apache.activemq.hawtio.plugin.PluginContextListener]
Initialized artemis-plugin plugin
...

3. Run your query to monitor your broker for MaxConsumers:

$ curl -k -u admin:admin http://console-broker.amq-
demo.apps.example.com/console/jolokia/read/org.apache.activemq.artemis:broker=%22broker
%22,component=addresses,address=%22TESTQUEUE%22,subcomponent=queues,routing-
type=%22anycast%22,queue=%22TESTQUEUE%22/MaxConsumers

CHAPTER 7. MONITORING YOUR BROKERS

87

{"request":
{"mbean":"org.apache.activemq.artemis:address=\"TESTQUEUE\",broker=\"broker\",compone
nt=addresses,queue=\"TESTQUEUE\",routing-
type=\"anycast\",subcomponent=queues","attribute":"MaxConsumers","type":"read"},"value":-
1,"timestamp":1528297825,"status":200}

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

88

CHAPTER 8. REFERENCE

8.1. CUSTOM RESOURCE CONFIGURATION REFERENCE

A Custom Resource Definition (CRD) is a schema of configuration items for a custom OpenShift object
deployed with an Operator. By deploying a corresponding Custom Resource (CR) instance, you specify
values for configuration items shown in the CRD.

The following sub-sections detail the configuration items that you can set in Custom Resource
instances based on the main broker CRD.

8.1.1. Broker Custom Resource configuration reference

A CR instance based on the main broker CRD enables you to configure brokers for deployment in an
OpenShift project. The following table describes the items that you can configure in the CR instance.

IMPORTANT

Configuration items marked with an asterisk (*) are required in any corresponding
Custom Resource (CR) that you deploy. If you do not explicitly specify a value for a non-
required item, the configuration uses the default value.

Entry Sub-entry Description and usage

adminUser* Administrator user name
required for connecting to
the broker and
management console.

If you do not specify a
value, the value is
automatically generated
and stored in a secret. The
default secret name has a
format of
<custom_resource_na
me>-credentials-
secret. For example, my-
broker-deployment-
credentials-secret.

Type: string

Example: my-user

Default value:
Automatically-generated,
random value

CHAPTER 8. REFERENCE

89

adminPassword* Administrator password
required for connecting to
the broker and
management console.

If you do not specify a
value, the value is
automatically generated
and stored in a secret. The
default secret name has a
format of
<custom_resource_na
me>-credentials-
secret. For example, my-
broker-deployment-
credentials-secret.

Type: string

Example: my-password

Default value:
Automatically-generated,
random value

deploymentPlan* Broker deployment
configuration

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

90

 image* Full path of the broker
container image used for
each broker in the
deployment.

You do not need to
explicitly specify a value
for image in your CR. The
default value of
placeholder indicates
that the Operator has not
yet determined the
appropriate image to use.

To learn how the Operator
chooses a broker container
image to use, see
Section 2.4, “How the
Operator chooses
container images”.

Type: string

Example:
registry.redhat.io/amq7/a
mq-broker-
rhel8@sha256:71aef8faa1c
661212ef8a7ef450656a25
0d95b51d33d1ce77f12ece2
7cdb9442

Default value: placeholder

 size* Number of broker Pods to
create in the deployment.

If you specify a value of 2
or greater, your broker
deployment is clustered by
default. The cluster user
name and password are
automatically generated
and stored in the same
secret as adminUser and
adminPassword, by
default.

Type: int

Example: 1

Default value: 2

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

91

 requireLogin Specify whether login
credentials are required to
connect to the broker.

Type: Boolean

Example: false

Default value: true

 persistenceEnabled Specify whether to use
journal storage for each
broker Pod in the
deployment. If set to true,
each broker Pod requires
an available Persistent
Volume (PV) that the
Operator can claim using a
Persistent Volume Claim
(PVC).

Type: Boolean

Example: false

Default value: true

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

92

 initImage Init Container image used
to configure the broker.

You do not need to
explicitly specify a value
for initImage in your CR,
unless you want to provide
a custom image.

To learn how the Operator
chooses a built-in Init
Container image to use,
see Section 2.4, “How the
Operator chooses
container images”.

To learn how to specify a
custom Init Container
image, see Section 4.6,
“Specifying a custom Init
Container image”.

Type: string

Example:
registry.redhat.io/amq7/a
mq-broker-init-
rhel8@sha256:d327d358e
6cfccac14becc486bce643
e34970ecfc6c4d187a862
425867a9ac8a

Default value: Not
specified

 journalType Specify whether to use
asynchronous I/O (AIO) or
non-blocking I/O (NIO).

Type: string

Example: aio

Default value: nio

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

93

 messageMigration When a broker Pod shuts
down due to a failure or
intentional scaledown of
the broker deployment,
specify whether to migrate
messages to another
broker Pod that is still
running in the broker
cluster.

Type: Boolean

Example: false

Default value: true

 resources.limits.cpu Maximum amount of host-
node CPU, in millicores,
that each broker container
running in a Pod in a
deployment can consume.

Type: string

Example: "500m"

Default value: Uses the
same default value that
your version of OpenShift
Container Platform uses.
Consult a cluster
administrator.

 resources.limits.memory Maximum amount of host-
node memory, in bytes,
that each broker container
running in a Pod in a
deployment can consume.
Supports byte notation
(for example, K, M, G), or
the binary equivalents (Ki,
Mi, Gi).

Type: string

Example: "1024M"

Default value: Uses the
same default value that
your version of OpenShift
Container Platform uses.
Consult a cluster
administrator.

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

94

 resources.requests.cpu Amount of host-node
CPU, in millicores, that
each broker container
running in a Pod in a
deployment explicitly
requests.

Type: string

Example: "250m"

Default value: Uses the
same default value that
your version of OpenShift
Container Platform uses.
Consult a cluster
administrator.

 resources.requests.memory Amount of host-node
memory, in bytes, that
each broker container
running in a Pod in a
deployment explicitly
requests. Supports byte
notation (for example, K,
M, G), or the binary
equivalents (Ki, Mi, Gi).

Type: string

Example: "512M"

Default value: Uses the
same default value that
your version of OpenShift
Container Platform uses.
Consult a cluster
administrator.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

95

 storage.size Size, in bytes, of the
Persistent Volume Claim
(PVC) that each broker in
a deployment requires for
persistent storage. This
property applies only when
persistenceEnabled is
set to true. The value that
you specify must include a
unit. Supports byte
notation (for example, K,
M, G), or the binary
equivalents (Ki, Mi, Gi).

Type: string

Example: 4Gi

Default value: 2Gi

 jolokiaAgentEnabled Specifies whether the
Jolokia JVM Agent is
enabled for the brokers in
the deployment. If the
value of this property is set
to true, Fuse Console can
discover and display
runtime data for the
brokers.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

96

 managementRBACEnabled Specifies whether role-
based access control
(RBAC) is enabled for the
brokers in the deployment.
To use Fuse Console, you
must set the value to
false, because Fuse
Console uses its own role-
based access control.

Type: Boolean

Example: false

Default value: true

console Configuration of broker
management console.

 expose Specify whether to expose
the management console
port for each broker in a
deployment.

Type: Boolean

Example: true

Default value: false

 sslEnabled Specify whether to use
SSL on the management
console port.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

97

 sslSecret Secret where broker key
store, trust store, and their
corresponding passwords
(all Base64-encoded) are
stored. If you do not
specify a value for
sslSecret, the console
uses a default secret name.
The default secret name is
in the form of
<custom_resource_na
me>-console-secret.

Type: string

Example: my-broker-
deployment-console-
secret

Default value: Not
specified

 useClientAuth Specify whether the
management console
requires client
authorization.

Type: Boolean

Example: true

Default value: false

acceptors.acceptor A single acceptor
configuration instance.

 name* Name of acceptor.

Type: string

Example: my-acceptor

Default value: Not
applicable

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

98

 port Port number to use for the
acceptor instance.

Type: int

Example: 5672

Default value: 61626 for
the first acceptor that you
define. The default value
then increments by 10 for
every subsequent acceptor
that you define.

 protocols Messaging protocols to be
enabled on the acceptor
instance.

Type: string

Example: amqp,core

Default value: all

 sslEnabled Specify whether SSL is
enabled on the acceptor
port. If set to true, look in
the secret name specified
in sslSecret for the
credentials required by
TLS/SSL.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

99

 sslSecret Secret where broker key
store, trust store, and their
corresponding passwords
(all Base64-encoded) are
stored.

If you do not specify a
custom secret name for
sslSecret, the acceptor
assumes a default secret
name. The default secret
name has a format of
<custom_resource_na
me>-<acceptor_name>
-secret.

You must always create
this secret yourself, even
when the acceptor
assumes a default name.

Type: string

Example: my-broker-
deployment-my-acceptor-
secret

Default value:
<custom_resource_name>-
<acceptor_name>-secret

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

100

 enabledCipherSuites Comma-separated list of
cipher suites to use for
TLS/SSL communication.

Specify the most secure
cipher suite(s) supported
by your client application.
If you use a comma-
separated list to specify a
set of cipher suites that is
common to both the
broker and the client, or
you do not specify any
cipher suites, the broker
and client mutually
negotiate a cipher suite to
use. If you do not know
which cipher suites to
specify, it is recommended
that you first establish a
broker-client connection
with your client running in
debug mode, to verify the
cipher suites that are
common to both the
broker and the client. Then,
configure
enabledCipherSuites
on the broker.

Type: string

Default value: Not
specified

 enabledProtocols Comma-separated list of
protocols to use for
TLS/SSL communication.

Type: string

Example:
TLSv1,TLSv1.1,TLSv1.2

Default value: Not
specified

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

101

 needClientAuth Specify whether the broker
informs clients that two-
way TLS is required on the
acceptor. This property
overrides
wantClientAuth.

Type: Boolean

Example: true

Default value: Not
specified

 wantClientAuth Specify whether the broker
informs clients that two-
way TLS is requested on
the acceptor, but not
required. This property is
overridden by
needClientAuth.

Type: Boolean

Example: true

Default value: Not
specified

 verifyHost Specify whether to
compare the Common
Name (CN) of a client’s
certificate to its host
name, to verify that they
match. This option applies
only when two-way TLS is
used.

Type: Boolean

Example: true

Default value: Not
specified

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

102

 sslProvider Specify whether the SSL
provider is JDK or
OPENSSL.

Type: string

Example: OPENSSL

Default value: JDK

 sniHost Regular expression to
match against the
server_name extension
on incoming connections.
If the names don’t match,
connection to the acceptor
is rejected.

Type: string

Example:
some_regular_expression

Default value: Not
specified

 expose Specify whether to expose
the acceptor to clients
outside OpenShift
Container Platform.

When you expose an
acceptor to clients outside
OpenShift, the Operator
automatically creates a
dedicated Service and
Route for each broker Pod
in the deployment.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

103

 anycastPrefix Prefix used by a client to
specify that the anycast
routing type should be
used.

Type: string

Example: jms.queue

Default value: Not
specified

 multicastPrefix Prefix used by a client to
specify that the multicast
routing type should be
used.

Type: string

Example: /topic/

Default value: Not
specified

 connectionsAllowed Number of connections
allowed on the acceptor.
When this limit is reached,
a DEBUG message is
issued to the log, and the
connection is refused. The
type of client in use
determines what happens
when the connection is
refused.

Type: integer

Example: 2

Default value: 0 (unlimited
connections)

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

104

 amqpMinLargeMessageSize Minimum message size, in
bytes, required for the
broker to handle an AMQP
message as a large
message. If the size of an
AMQP message is equal or
greater to this value, the
broker stores the message
in a large messages
directory
(/opt/<custom_resourc
e_name>/data/large-
messages, by default) on
the persistent volume (PV)
used by the broker for
message storage. Setting
the value to -1 disables
large message handling for
AMQP messages.

Type: integer

Example: 204800

Default value: 102400
(100 KB)

connectors.connector A single connector
configuration instance.

 name* Name of connector.

Type: string

Example: my-connector

Default value: Not
applicable

 type The type of connector to
create; tcp or vm.

Type: string

Example: vm

Default value: tcp

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

105

 host* Host name or IP address to
connect to.

Type: string

Example: 192.168.0.58

Default value: Not
specified

 port* Port number to be used
for the connector instance.

Type: int

Example: 22222

Default value: Not
specified

 sslEnabled Specify whether SSL is
enabled on the connector
port. If set to true, look in
the secret name specified
in sslSecret for the
credentials required by
TLS/SSL.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

106

 sslSecret Secret where broker key
store, trust store, and their
corresponding passwords
(all Base64-encoded) are
stored.

If you do not specify a
custom secret name for
sslSecret, the connector
assumes a default secret
name. The default secret
name has a format of
<custom_resource_na
me>-<connector_name
>-secret.

You must always create
this secret yourself, even
when the connector
assumes a default name.

Type: string

Example: my-broker-
deployment-my-
connector-secret

Default value:
<custom_resource_name>-
<connector_name>-secret

 enabledCipherSuites Comma-separated list of
cipher suites to use for
TLS/SSL communication.

Type: string

NOTE: For a connector, it
is recommended that you
do not specify a list of
cipher suites.

Default value: Not
specified

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

107

 enabledProtocols Comma-separated list of
protocols to use for
TLS/SSL communication.

Type: string

Example:
TLSv1,TLSv1.1,TLSv1.2

Default value: Not
specified

 needClientAuth Specify whether the broker
informs clients that two-
way TLS is required on the
connector. This property
overrides
wantClientAuth.

Type: Boolean

Example: true

Default value: Not
specified

 wantClientAuth Specify whether the broker
informs clients that two-
way TLS is requested on
the connector, but not
required. This property is
overridden by
needClientAuth.

Type: Boolean

Example: true

Default value: Not
specified

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

108

 verifyHost Specify whether to
compare the Common
Name (CN) of client’s
certificate to its host
name, to verify that they
match. This option applies
only when two-way TLS is
used.

Type: Boolean

Example: true

Default value: Not
specified

 sslProvider Specify whether the SSL
provider is JDK or
OPENSSL.

Type: string

Example: OPENSSL

Default value: JDK

 sniHost Regular expression to
match against the
server_name extension
on outgoing connections.
If the names don’t match,
the connector connection
is rejected.

Type: string

Example:
some_regular_expression

Default value: Not
specified

 expose Specify whether to expose
the connector to clients
outside OpenShift
Container Platform.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

109

addressSettings.applyRule Specifies how the
Operator applies the
configuration that you add
to the CR for each
matching address or set of
addresses.

The values that you can
specify are:

merge_all
For address settings
specified in both the
CR and the default
configuration that
match the same
address or set of
addresses:

Replace any
property
values
specified in
the default
configuration
with those
specified in
the CR.

Keep any
property
values that
are specified
uniquely in the
CR or the
default
configuration.
Include each
of these in the
final, merged
configuration.

For address settings
specified in either the
CR or the default
configuration that
uniquely match a
particular address or
set of addresses,
include these in the
final, merged
configuration.

merge_replace
For address settings
specified in both the
CR and the default
configuration that
match the same
address or set of
addresses, include the
settings specified in
the CR in the final,
merged configuration.

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

110

Do not include any
properties specified in
the default
configuration, even if
these are not specified
in the CR.
For address settings
specified in either the
CR or the default
configuration that
uniquely match a
particular address or
set of addresses,
include these in the
final, merged
configuration.

replace_all
Replace all address
settings specified in
the default
configuration with
those specified in the
CR. The final, megred
configuration
corresponds exactly to
that specified in the
CR.

Type: string

Example: replace_all

Default value: merge_all

addressSettings.addressSettin
g

 Address settings for a
matching address or set of
addresses.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

111

 addressFullPolicy Specify what happens
when an address
configured with
maxSizeBytes becomes
full. The available policies
are:

PAGE
Messages sent to a full
address are paged to
disk.

DROP
Messages sent to a full
address are silently
dropped.

FAIL
Messages sent to a full
address are dropped
and the message
producers receive an
exception.

BLOCK
Message producers will
block when they try to
send any further
messages.
The BLOCK policy
works only for AMQP,
OpenWire, and Core
Protocol, because
those protocols
support flow control.

Type: string

Example: DROP

Default value: PAGE

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

112

 autoCreateAddresses Specify whether the broker
automatically creates an
address when a client
sends a message to, or
attempts to consume a
message from, a queue
that is bound to an address
that does not exist.

Type: Boolean

Example: false

Default value: true

 autoCreateDeadLetterResources Specify whether the broker
automatically creates a
dead letter address and
queue to receive
undelivered messages.

If the parameter is set to
true, the broker
automatically creates a
dead letter address and an
associated dead letter
queue. The name of the
automatically-created
address matches the value
that you specify for
deadLetterAddress.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

113

 autoCreateExpiryResources Specify whether the broker
automatically creates an
address and queue to
receive expired messages.

If the parameter is set to
true, the broker
automatically creates an
expiry address and an
associated expiry queue.
The name of the
automatically-created
address matches the value
that you specify for
expiryAddress.

Type: Boolean

Example: true

Default value: false

 autoCreateJmsQueues This property is
deprecated. Use
autoCreateQueues
instead.

 autoCreateJmsTopics This property is
deprecated. Use
autoCreateQueues
instead.

 autoCreateQueues Specify whether the broker
automatically creates a
queue when a client sends
a message to, or attempts
to consume a message
from, a queue that does
not yet exist.

Type: Boolean

Example: false

Default value: true

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

114

 autoDeleteAddresses Specify whether the broker
automatically deletes
automatically-created
addresses when the broker
no longer has any queues.

Type: Boolean

Example: false

Default value: true

 autoDeleteAddressDelay Time, in milliseconds, that
the broker waits before
automatically deleting an
automatically-created
address when the address
has no queues.

Type: integer

Example: 100

Default value: 0

 autoDeleteJmsQueues This property is
deprecated. Use
autoDeleteQueues
instead.

 autoDeleteJmsTopics This property is
deprecated. Use
autoDeleteQueues
instead.

 autoDeleteQueues Specify whether the broker
automatically deletes an
automatically-created
queue when the queue has
no consumers and no
messages.

Type: Boolean

Example: false

Default value: true

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

115

 autoDeleteCreatedQueues Specify whether the broker
automatically deletes a
manually-created queue
when the queue has no
consumers and no
messages.

Type: Boolean

Example: true

Default value: false

 autoDeleteQueuesDelay Time, in milliseconds, that
the broker waits before
automatically deleting an
automatically-created
queue when the queue has
no consumers.

Type: integer

Example: 10

Default value: 0

 autoDeleteQueuesMessageCoun
t

Maximum number of
messages that can be in a
queue before the broker
evaluates whether the
queue can be
automatically deleted.

Type: integer

Example: 5

Default value: 0

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

116

 configDeleteAddresses When the configuration file
is reloaded, this parameter
specifies how to handle an
address (and its queues)
that has been deleted
from the configuration file.
You can specify the
following values:

OFF
The broker does not
delete the address
when the configuration
file is reloaded.

FORCE
The broker deletes the
address and its queues
when the configuration
file is reloaded. If there
are any messages in
the queues, they are
removed also.

Type: string

Example: FORCE

Default value: OFF

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

117

 configDeleteQueues When the configuration file
is reloaded, this setting
specifies how the broker
handles queues that have
been deleted from the
configuration file. You can
specify the following
values:

OFF
The broker does not
delete the queue when
the configuration file is
reloaded.

FORCE
The broker deletes the
queue when the
configuration file is
reloaded. If there are
any messages in the
queue, they are
removed also.

Type: string

Example: FORCE

Default value: OFF

 deadLetterAddress The address to which the
broker sends dead (that is,
undelivered) messages.

Type: string

Example: DLA

Default value: None

 deadLetterQueuePrefix Prefix that the broker
applies to the name of an
automatically-created
dead letter queue.

Type: string

Example: myDLQ.

Default value: DLQ.

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

118

 deadLetterQueueSuffix Suffix that the broker
applies to an
automatically-created
dead letter queue.

Type: string

Example: .DLQ

Default value: None

 defaultAddressRoutingType Routing type used on
automatically-created
addresses.

Type: string

Example: ANYCAST

Default value:
MULTICAST

 defaultConsumersBeforeDispatc
h

Number of consumers
needed before message
dispatch can begin for
queues on an address.

Type: integer

Example: 5

Default value: 0

 defaultConsumerWindowSize Default window size, in
bytes, for a consumer.

Type: integer

Example: 300000

Default value: 1048576
(1024*1024)

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

119

 defaultDelayBeforeDispatch Default time, in
milliseconds, that the
broker waits before
dispatching messages if
the value specified for
defaultConsumersBefo
reDispatch has not been
reached.

Type: integer

Example: 5

Default value: -1 (no
delay)

 defaultExclusiveQueue Specifies whether all
queues on an address are
exclusive queues by
default.

Type: Boolean

Example: true

Default value: false

 defaultGroupBuckets Number of buckets to use
for message grouping.

Type: integer

Example: 0 (message
grouping disabled)

Default value: -1 (no limit)

 defaultGroupFirstKey Key used to indicate to a
consumer which message
in a group is first.

Type: string

Example: firstMessageKey

Default value: None

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

120

 defaultGroupRebalance Specifies whether to
rebalance groups when a
new consumer connects to
the broker.

Type: Boolean

Example: true

Default value: false

 defaultGroupRebalancePauseDis
patch

Specifies whether to pause
message dispatch while
the broker is rebalancing
groups.

Type: Boolean

Example: true

Default value: false

 defaultLastValueQueue Specifies whether all
queues on an address are
last value queues by
default.

Type: Boolean

Example: true

Default value: false

 defaultLastValueKey Default key to use for a
last value queue.

Type: string

Example: stock_ticker

Default value: None

 defaultMaxConsumers Maximum number of
consumers allowed on a
queue at any time.

Type: integer

Example: 100

Default value: -1 (no limit)

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

121

 defaultNonDestructive Specifies whether all
queues on an address are
non-destructive by default.

Type: Boolean

Example: true

Default value: false

 defaultPurgeOnNoConsumers Specifies whether the
broker purges the contents
of a queue once there are
no consumers.

Type: Boolean

Example: true

Default value: false

 defaultQueueRoutingType Routing type used on
automatically-created
queues. The default value
is MULTICAST.

Type: string

Example: ANYCAST

Default value:
MULTICAST

 defaultRingSize Default ring size for a
matching queue that does
not have a ring size
explicitly set.

Type: integer

Example: 3

Default value: -1 (no size
limit)

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

122

 enableMetrics Specifies whether a
configured metrics plugin
such as the Prometheus
plugin collects metrics for
a matching address or set
of addresses.

Type: Boolean

Example: false

Default value: true

 expiryAddress Address that receives
expired messages.

Type: string

Example:
myExpiryAddress

Default value: None

 expiryDelay Expiration time, in
milliseconds, applied to
messages that are using
the default expiration time.

Type: integer

Example: 100

Default value: -1 (no
expiration time applied)

 expiryQueuePrefix Prefix that the broker
applies to the name of an
automatically-created
expiry queue.

Type: string

Example: myExp.

Default value: EXP.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

123

 expiryQueueSuffix Suffix that the broker
applies to the name of an
automatically-created
expiry queue.

Type: string

Example: .EXP

Default value: None

 lastValueQueue Specify whether a queue
uses only last values or not.

Type: Boolean

Example: true

Default value: false

 managementBrowsePageSize Specify how many
messages a management
resource can browse.

Type: integer

Example: 100

Default value: 200

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

124

 match* String that matches
address settings to
addresses configured on
the broker. You can specify
an exact address name or
use a wildcard expression
to match the address
settings to a set of
addresses.

If you use a wildcard
expression as a value for
the match property, you
must enclose the value in
single quotation marks, for
example,
'myAddresses*'.

Type: string

Example: 'myAddresses*'

Default value: None

 maxDeliveryAttempts Specifies how many times
the broker attempts to
deliver a message before
sending the message to
the configured dead letter
address.

Type: integer

Example: 20

Default value: 10

 maxExpiryDelay Expiration time, in
milliseconds, applied to
messages that are using an
expiration time greater
than this value.

Type: integer

Example: 20

Default value: -1 (no
maximum expiration time
applied)

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

125

 maxRedeliveryDelay Maximum value, in
milliseconds, between
message redelivery
attempts made by the
broker.

Type: integer

Example: 100

Default value: The default
value is ten times the value
of redeliveryDelay,
which has a default value
of 0.

 maxSizeBytes Maximum memory size, in
bytes, for an address. Used
when addressFullPolicy
is set to PAGING,
BLOCK, or FAIL. Also
supports byte notation
such as "K", "Mb", and
"GB".

Type: string

Example: 10Mb

Default value: -1 (no limit)

 maxSizeBytesRejectThreshold Maximum size, in bytes,
that an address can reach
before the broker begins
to reject messages. Used
when the address-full-
policy is set to BLOCK.
Works in combination with
maxSizeBytes for the
AMQP protocol only.

Type: integer

Example: 500

Default value: -1 (no
maximum size)

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

126

 messageCounterHistoryDayLimit Number of days for which
a broker keeps a message
counter history for an
address.

Type: integer

Example: 5

Default value: 0

 minExpiryDelay Expiration time, in
milliseconds, applied to
messages that are using an
expiration time lower than
this value.

Type: integer

Example: 20

Default value: -1 (no
minimum expiration time
applied)

 pageMaxCacheSize Number of page files to
keep in memory to
optimize I/O during paging
navigation.

Type: integer

Example: 10

Default value: 5

 pageSizeBytes Paging size in bytes. Also
supports byte notation
such as K, Mb, and GB.

Type: string

Example: 20971520

Default value: 10485760
(approximately 10.5 MB)

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

127

 redeliveryDelay Time, in milliseconds, that
the broker waits before
redelivering a cancelled
message.

Type: integer

Example: 100

Default value: 0

 redeliveryDelayMultiplier Multiplying factor to apply
to the value of
redeliveryDelay.

Type: number

Example: 5

Default value: 1

 redeliveryCollisionAvoidanceFac
tor

Multiplying factor to apply
to the value of
redeliveryDelay to avoid
collisions.

Type: number

Example: 1.1

Default value: 0

 redistributionDelay Time, in milliseconds, that
the broker waits after the
last consumer is closed on
a queue before
redistributing any
remaining messages.

Type: integer

Example: 100

Default value: -1 (not set)

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

128

 retroactiveMessageCount Number of messages to
keep for future queues
created on an address.

Type: integer

Example: 100

Default value: 0

 sendToDlaOnNoRoute Specify whether a
message will be sent to the
configured dead letter
address if it cannot be
routed to any queues.

Type: Boolean

Example: true

Default value: false

 slowConsumerCheckPeriod How often, in seconds,
that the broker checks for
slow consumers.

Type: integer

Example: 15

Default value: 5

 slowConsumerPolicy Specifies what happens
when a slow consumer is
identified. Valid options
are KILL or NOTIFY.
KILL kills the consumer’s
connection, which impacts
any client threads using
that same connection.
NOTIFY sends a
CONSUMER_SLOW
management notification
to the client.

Type: string

Example: KILL

Default value: NOTIFY

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

129

 slowConsumerThreshold Minimum rate of message
consumption, in messages
per second, before a
consumer is considered
slow.

Type: integer

Example: 100

Default value: -1 (not set)

upgrades

 enabled When you update the
value of version to
specify a new target
version of AMQ Broker,
specify whether to allow
the Operator to
automatically update the
deploymentPlan.image
value to a broker container
image that corresponds to
that version of AMQ
Broker.

Type: Boolean

Example: true

Default value: false

 minor Specify whether to allow
the Operator to
automatically update the
deploymentPlan.image
value when you update the
value of version from one
minor version of AMQ
Broker to another, for
example, from 7.8.0 to
7.9.4.

Type: Boolean

Example: true

Default value: false

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

130

version Specify a target minor
version of AMQ Broker for
which you want the
Operator to automatically
update the CR to use a
corresponding broker
container image. For
example, if you change the
value of version from
7.6.0 to 7.7.0 (and
upgrades.enabled and
upgrades.minor are
both set to true), then the
Operator updates
deploymentPlan.image
to a broker image of the
form
registry.redhat.io/amq7
/amq-broker-rhel8:7.8-
x.

Type: string

Example: 7.7.0

Default value: Current
version of AMQ Broker

Entry Sub-entry Description and usage

8.1.2. Address Custom Resource configuration reference

A CR instance based on the address CRD enables you to define addresses and queues for the brokers in
your deployment. The following table details the items that you can configure.

IMPORTANT

Configuration items marked with an asterisk (*) are required in any corresponding
Custom Resource (CR) that you deploy. If you do not explicitly specify a value for a non-
required item, the configuration uses the default value.

Entry Description and usage

addressName* Address name to be created on broker.

Type: string

Example: address0

Default value: Not specified

CHAPTER 8. REFERENCE

131

queueName Queue name to be created on broker. If
queueName is not specified, the CR creates only
the address.

Type: string

Example: queue0

Default value: Not specified

removeFromBrokerOnDelete* Specify whether the Operator removes existing
addresses for all brokers in a deployment when you
remove the address CR instance for that
deployment. The default value is false, which means
the Operator does not delete existing addresses
when you remove the CR.

Type: Boolean

Example: true

Default value: false

routingType* Routing type to be used; anycast or multicast.

Type: string

Example: anycast

Default value: multicast

Entry Description and usage

8.1.3. Security Custom Resource configuration reference

A CR instance based on the security CRD enables you to define the security configuration for the
brokers in your deployment, including:

users and roles

login modules, including propertiesLoginModule, guestLoginModule and
keycloakLoginModule

role based access control

console access control

NOTE

Many of the options require you understand the broker security concepts described in
Securing brokers

The following table details the items that you can configure.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

132

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#assembly-br-securing-brokers_configuring

IMPORTANT

Configuration items marked with an asterisk (*) are required in any corresponding
Custom Resource (CR) that you deploy. If you do not explicitly specify a value for a non-
required item, the configuration uses the default value.

Entry Sub-entry Description and usage

loginModules One or more login module configurations.

A login module can be one of the
following types:

propertiesLoginModule -
allows you define broker users
directly.

guestLoginModule - for a
user who does not have login
credentials, or whose credentials
fail authentication, you can grant
limited access to the broker
using a guest account.

keycloakLoginModule. -
allows you secure brokers using
Red Hat Single Sign-On.

propertiesLoginModule name* Name of login module.

Type: string

Example: my-login

Default value: Not applicable

 users.name* Name of user.

Type: string

Example: jdoe

Default value: Not applicable

 users.password* password of user.

Type: string

Example: password

Default value: Not applicable

CHAPTER 8. REFERENCE

133

 users.roles Names of roles.

Type: string

Example: viewer

Default value: Not applicable

guestLoginModule name* Name of guest login module.

Type: string

Example: guest-login

Default value: Not applicable

 guestUser Name of guest user.

Type: string

Example: myguest

Default value: Not applicable

 guestRole Name of role for guest user.

Type: string

Example: guest

Default value: Not applicable

keycloakLoginModule name Name for KeycloakLoginModule

Type: string

Example: sso

Default value: Not applicable

 moduleType Type of KeycloakLoginModule
(directAccess or bearerToken)

Type: string

Example: bearerToken

Default value: Not applicable

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

134

 configuration The following configuration items are
related to Red Hat Single Sign-On and
detailed information is available from the
OpenID Connect documentation.

 configuration.realm* Realm for KeycloakLoginModule

Type: string

Example: myrealm

Default value: Not applicable

 configuration.realmPublicKey Public key for the realm

Type: string

Default value: Not applicable

 configuration.authServerUrl* URL of the keycloak authentication
server

Type: string

Default value: Not applicable

 configuration.sslRequired Specify whether SSL is required

Type: string

Valid values are 'all', 'external' and 'none'.

 configuration.resource* Resource Name

The client-id of the application. Each
application has a client-id that is used to
identify the application.

 configuration.publicClient Specify whether it is public client.

Type: Boolean

Default value: false

Example: false

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

135

https://access.redhat.com/documentation/en-us/red_hat_single_sign-on/7.4/html-single/securing_applications_and_services_guide/index#openid_connect_3

 configuration.credentials.key Specify the credentials key.

Type: string

Default value: Not applicable

Type: string

Default value: Not applicable

 configuration.credentials.valu
e

Specify the credentials value

Type: string

Default value: Not applicable

 configuration.useResourceRol
eMappings

Specify whether to use resource role
mappings

Type: Boolean

Example: false

 configuration.enableCors Specify whether to enable Cross-Origin
Resource Sharing (CORS)

It will handle CORS preflight requests. It
will also look into the access token to
determine valid origins.

Type: Boolean

Default value: false

 configuration.corsMaxAge CORS max age

If CORS is enabled, this sets the value of
the Access-Control-Max-Age header.

 configuration.corsAllowedMet
hods

CORS allowed methods

If CORS is enabled, this sets the value of
the Access-Control-Allow-Methods
header. This should be a comma-
separated string.

 configuration.corsAllowedHea
ders

CORS allowed headers

If CORS is enabled, this sets the value of
the Access-Control-Allow-Headers
header. This should be a comma-
separated string.

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

136

 configuration.corsExposedHe
aders

CORS exposed headers

If CORS is enabled, this sets the value of
the Access-Control-Expose-Headers
header. This should be a comma-
separated string.

 configuration.exposeToken Specify whether to expose access token

Type: Boolean

Default value: false

 configuration.bearerOnly Specify whether to verify bearer token

Type: Boolean

Default value: false

 configuration.autoDetectBear
erOnly

Specify whether to only auto-detect
bearer token

Type: Boolean

Default value: false

 configuration.connectionPool
Size

Size of the connection pool

Type: Integer

Default value: 20

 configuration.allowAnyHostNa
me

Specify whether to allow any host name

Type: Boolean

Default value: false

 configuration.disableTrustMa
nager

Specify whether to disable trust manager

Type: Boolean

Default value: false

 configuration.trustStore* Path of a trust store

This is REQUIRED unless ssl-required is
none or disable-trust-manager is true.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

137

 configuration.trustStorePass
word*

Truststore password

This is REQUIRED if truststore is set and
the truststore requires a password.

 configuration.clientKeyStore Path of a client keystore

Type: string

Default value: Not applicable

 configuration.clientKeyStoreP
assword

Client keystore password

Type: string

Default value: Not applicable

 configuration.clientKeyPassw
ord

Client key password

Type: string

Default value: Not applicable

 configuration.alwaysRefreshT
oken

Specify whether to always refresh token

Type: Boolean

Example: false

 configuration.registerNodeAt
Startup

Specify whether to register node at
startup

Type: Boolean

Example: false

 configuration.registerNodePe
riod

Period for re-registering node

Type: string

Default value: Not applicable

 configuration.tokenStore Type of token store (session or cookie)

Type: string

Default value: Not applicable

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

138

 configuration.tokenCookiePat
h

Cookie path for a cookie store

Type: string

Default value: Not applicable

 configuration.principalAttribut
e

OpenID Connect ID Token attribute to
populate the UserPrincipal name with

OpenID Connect ID Token attribute to
populate the UserPrincipal name with. If
token attribute is null, defaults to sub.
Possible values are sub,
preferred_username, email, name,
nickname, given_name, family_name.

 configuration.proxyUrl The proxy URL

 configuration.turnOffChange
SessionIdOnLogin

Specify whether to change session id on
a successful login

Type: Boolean

Example: false

 configuration.tokenMinimumT
imeToLive

Minimum time to refresh an active access
token

Type: Integer

Default value: 0

 configuration.minTimeBetwee
nJwksRequests

Minimum interval between two requests
to Keycloak to retrieve new public keys

Type: Integer

Default value: 10

 configuration.publicKeyCache
Ttl

Maximum interval between two requests
to Keycloak to retrieve new public keys

Type: Integer

Default value: 86400

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

139

 configuration.ignoreOauthQu
eryParameter

Whether to turn off processing of the
access_token query parameter for bearer
token processing

Type: Boolean

Example: false

 configuration.verifyTokenAudi
ence

Verify whether the token contains this
client name (resource) as an audience

Type: Boolean

Example: false

 configuration.enableBasicAut
h

Whether to support basic authentication

Type: Boolean

Default value: false

 configuration.confidentialPort The confidential port used by the
Keycloak server for secure connections
over SSL/TLS

Type: Integer

Example: 8443

 configuration.redirectRewrite
Rules.key

The regular expression used to match the
Redirect URI.

Type: string

Default value: Not applicable

 configuration.redirectRewrite
Rules.value

The replacement String

Type: string

Default value: Not applicable

 configuration.scope The OAuth2 scope parameter for
DirectAccessGrantsLoginModule

Type: string

Default value: Not applicable

securityDomains Broker security domains

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

140

 brokerDomain.name Broker domain name

Type: string

Example: activemq

Default value: Not applicable

 brokerDomain.loginModules One or more login modules. Each entry
must be previously defined in the
loginModules section above.

 brokerDomain.loginModules.n
ame

Name of login module

Type: string

Example: prop-module

Default value: Not applicable

 brokerDomain.loginModules.fl
ag

Same as propertiesLoginModule,
required, requisite, sufficient and
optional are valid values.

Type: string

Example: sufficient

Default value: Not applicable

 brokerDomain.loginModules.d
ebug

Debug

 brokerDomain.loginModules.r
eload

Reload

 consoleDomain.name Broker domain name

Type: string

Example: activemq

Default value: Not applicable

 consoleDomain.loginModules A single login module configuration.

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

141

 consoleDomain.loginModules.
name

Name of login module

Type: string

Example: prop-module

Default value: Not applicable

 consoleDomain.loginModules.
flag

Same as propertiesLoginModule,
required, requisite, sufficient and
optional are valid values.

Type: string

Example: sufficient

Default value: Not applicable

 consoleDomain.loginModules.
debug

Debug

Type: Boolean

Example: false

 consoleDomain.loginModules.
reload

Reload

Type: Boolean

Example: true

Default: false

securitySettings Additional security settings to add to
broker.xml or management.xml

 broker.match The address match pattern for a security
setting section. See AMQ Broker wildcard
syntax for details about the match
pattern syntax.

 broker.permissions.operation
Type

The operation type of a security setting,
as described in Setting permissions.

Type: string

Example: createAddress

Default value: Not applicable

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

142

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#con-br-broker-wildcard-syntax_configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#assembly-br-setting-permissions_configuring

 broker.permissions.roles The security settings are applied to these
roles, as described in Setting permissions.

Type: string

Example: root

Default value: Not applicable

securitySettings.management Options to configure
management.xml.

 hawtioRoles The roles allowed to log into the Broker
console.

Type: string

Example: root

Default value: Not applicable

 connector.host The connector host for connecting to the
management API.

Type: string

Example: myhost

Default value: localhost

 connector.port The connector port for connecting to the
management API.

Type: integer

Example: 1099

Default value: 1099

 connector.jmxRealm The JMX realm of the management API.

Type: string

Example: activemq

Default value: activemq

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

143

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#assembly-br-setting-permissions_configuring

 connector.objectName The JMX object name of the
management API.

Type: String

Example: connector:name=rmi

Default: connector:name=rmi

 connector.authenticatorType The management API authentication
type.

Type: String

Example: password

Default: password

 connector.secured Whether the management API connection
is secured.

Type: Boolean

Example: true

Default value: false

 connector.keyStoreProvider The keystore provider for the
management connector. Required if you
have set connector.secured="true". The
default value is JKS.

 connector.keyStorePath Location of the keystore. Required if you
have set connector.secured="true".

 connector.keyStorePassword The keystore password for the
management connector. Required if you
have set connector.secured="true".

 connector.trustStoreProvider The truststore provider for the
management connector Required if you
have set connector.secured="true".

Type: String

Example: JKS

Default: JKS

Entry Sub-entry Description and usage

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

144

 connector.trustStorePath Location of the truststore for the
management connector. Required if you
have set connector.secured="true".

Type: string

Default value: Not applicable

 connector.trustStorePasswor
d

The truststore password for the
management connector. Required if you
have set connector.secured="true".

Type: string

Default value: Not applicable

 connector.passwordCodec The password codec for management
connector The fully qualified class name
of the password codec to use as
described in Encrypting a password in a
configuration file.

 authorisation.allowedList.dom
ain

The domain of allowedList

Type: string

Default value: Not applicable

 authorisation.allowedList.key The key of allowedList

Type: string

Default value: Not applicable

 authorisation.defaultAccess.m
ethod

The method of defaultAccess List

Type: string

Default value: Not applicable

 authorisation.defaultAccess.ro
les

The roles of defaultAccess List

Type: string

Default value: Not applicable

 authorisation.roleAccess.dom
ain

The domain of roleAccess List

Type: string

Default value: Not applicable

Entry Sub-entry Description and usage

CHAPTER 8. REFERENCE

145

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q3/html-single/configuring_amq_broker/#proc_br-encrypting-passwords-configuration-files-configuring

 authorisation.roleAccess.key The key of roleAccess List

Type: string

Default value: Not applicable

 authorisation.roleAccess.acce
ssList.method

The method of roleAccess List

Type: string

Default value: Not applicable

 authorisation.roleAccess.acce
ssList.roles

The roles of roleAccess List

Type: string

Default value: Not applicable

 applyToCrNames Apply this security config to the brokers
defined by the named CRs in the current
namespace. A value of * or empty string
means applying to all brokers.

Type: string

Example: my-broker

Default value: All brokers defined by CRs
in the current namespace.

Entry Sub-entry Description and usage

8.2. APPLICATION TEMPLATE PARAMETERS

Configuration of the AMQ Broker on OpenShift Container Platform image is performed by specifying
values of application template parameters. You can configure the following parameters:

Table 8.1. Application template parameters

Parameter Description

AMQ_ADDRESSES Specifies the addresses available by default on the
broker on its startup, in a comma-separated list.

AMQ_ANYCAST_PREFIX Specifies the anycast prefix applied to the
multiplexed protocol ports 61616 and 61617.

AMQ_CLUSTERED Enables clustering.

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

146

AMQ_CLUSTER_PASSWORD Specifies the password to use for clustering. The
AMQ Broker application templates use the value of
this parameter stored in the secret named in
AMQ_CREDENTIAL_SECRET.

AMQ_CLUSTER_USER Specifies the cluster user to use for clustering. The
AMQ Broker application templates use the value of
this parameter stored in the secret named in
AMQ_CREDENTIAL_SECRET.

AMQ_CREDENTIAL_SECRET Specifies the secret in which sensitive credentials
such as broker user name/password, cluster user
name/password, and truststore and keystore
passwords are stored.

AMQ_DATA_DIR Specifies the directory for the data. Used in
StatefulSets.

AMQ_DATA_DIR_LOGGING Specifies the directory for the data directory logging.

AMQ_EXTRA_ARGS Specifies additional arguments to pass to artemis
create.

GLOBAL_MAX_SIZE Specifies the maximum amount of memory that
message data can consume. If no value is specified,
half of the system’s memory is allocated.

AMQ_KEYSTORE Specifies the SSL keystore file name. If no value is
specified, a random password is generated but SSL
will not be configured.

AMQ_KEYSTORE_PASSWORD (Optional) Specifies the password used to decrypt
the SSL keystore. The AMQ Broker application
templates use the value of this parameter stored in
the secret named in AMQ_CREDENTIAL_SECRET.

AMQ_KEYSTORE_TRUSTSTORE_DIR Specifies the directory where the secrets are
mounted. The default value is /etc/amq-secret-
volume.

AMQ_MAX_CONNECTIONS For SSL only, specifies the maximum number of
connections that an acceptor will accept.

AMQ_MULTICAST_PREFIX Specifies the multicast prefix applied to the
multiplexed protocol ports 61616 and 61617.

AMQ_NAME Specifies the name of the broker instance. The
default value is amq-broker.

Parameter Description

CHAPTER 8. REFERENCE

147

AMQ_PASSWORD Specifies the password used for authentication to
the broker. The AMQ Broker application templates
use the value of this parameter stored in the secret
named in AMQ_CREDENTIAL_SECRET.

AMQ_PROTOCOL Specifies the messaging protocols used by the
broker in a comma-separated list. Available options
are amqp, mqtt, openwire, stomp, and hornetq. If
none are specified, all protocols are available. Note
that for integration of the image with Red Hat JBoss
Enterprise Application Platform, the OpenWire
protocol must be specified, while other protocols can
be optionally specified as well.

AMQ_QUEUES Specifies the queues available by default on the
broker on its startup, in a comma-separated list.

AMQ_REQUIRE_LOGIN If set to true, login is required. If not specified, or set
to false, anonymous access is permitted. By default,
the value of this parameter is not specified.

AMQ_ROLE Specifies the name for the role created. The default
value is amq.

AMQ_TRUSTSTORE Specifies the SSL truststore file name. If no value is
specified, a random password is generated but SSL
will not be configured.

AMQ_TRUSTSTORE_PASSWORD (Optional) Specifies the password used to decrypt
the SSL truststore. The AMQ Broker application
templates use the value of this parameter stored in
the secret named in AMQ_CREDENTIAL_SECRET.

AMQ_USER Specifies the user name used for authentication to
the broker. The AMQ Broker application templates
use the value of this parameter stored in the secret
named in AMQ_CREDENTIAL_SECRET.

APPLICATION_NAME Specifies the name of the application used internally
within OpenShift. It is used in names of services,
pods, and other objects within the application.

IMAGE Specifies the image. Used in the persistence,
persistent-ssl, and statefulset-clustered
templates.

Parameter Description

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

148

IMAGE_STREAM_NAMESPACE Specifies the image stream name space. Used in the
ssl and basic templates.

OPENSHIFT_DNS_PING_SERVICE_PORT Specifies the port number for the OpenShift DNS
ping service.

PING_SVC_NAME Specifies the name of the OpenShift DNS ping
service. The default value is
$APPLICATION_NAME-ping if you have
specified a value for APPLICATION_NAME.
Otherwise, the default value is ping. If you specify a
custom value for PING_SVC_NAME, this value
overrides the default value. If you want to use
templates to deploy multiple broker clusters in the
same OpenShift project namespace, you must
ensure that PING_SVC_NAME has a unique value
for each deployment.

VOLUME_CAPACITY Specifies the size of the persistent storage for
database volumes.

Parameter Description

NOTE

If you use broker.xml for a custom configuration, any values specified in that file for the
following parameters will override values specified for the same parameters in the your
application templates.

AMQ_NAME

AMQ_ROLE

AMQ_CLUSTER_USER

AMQ_CLUSTER_PASSWORD

8.3. LOGGING

In addition to viewing the OpenShift logs, you can troubleshoot a running AMQ Broker on OpenShift
Container Platform image by viewing the AMQ logs that are output to the container’s console.

Procedure

At the command line, run the following command:

$ oc logs -f <pass:quotes[<pod-name>]> <pass:quotes[<container-name>]>

Revised on 2022-05-19 14:41:05 UTC

CHAPTER 8. REFERENCE

149

Red Hat AMQ 2021.Q3 Deploying AMQ Broker on OpenShift

150

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
	1.1. VERSION COMPATIBILITY AND SUPPORT
	1.2. UNSUPPORTED FEATURES
	1.3. DOCUMENT CONVENTIONS
	The sudo command
	About the use of file paths in this document
	Replaceable values

	CHAPTER 2. PLANNING A DEPLOYMENT OF AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM
	2.1. OVERVIEW OF THE AMQ BROKER OPERATOR CUSTOM RESOURCE DEFINITIONS
	2.2. OVERVIEW OF THE AMQ BROKER OPERATOR SAMPLE CUSTOM RESOURCES
	2.3. WATCH OPTIONS FOR A CLUSTER OPERATOR DEPLOYMENT
	2.4. HOW THE OPERATOR CHOOSES CONTAINER IMAGES
	2.4.1. Environment variables for broker container images
	2.4.2. Environment variables for Init Container images

	2.5. OPERATOR DEPLOYMENT NOTES

	CHAPTER 3. DEPLOYING AMQ BROKER ON OPENSHIFT CONTAINER PLATFORM USING THE AMQ BROKER OPERATOR
	3.1. PREREQUISITES
	3.2. INSTALLING THE OPERATOR USING THE CLI
	3.2.1. Getting the Operator code
	3.2.2. Deploying the Operator using the CLI

	3.3. INSTALLING THE OPERATOR USING OPERATORHUB
	3.3.1. Overview of the Operator Lifecycle Manager
	3.3.2. Deploying the Operator from OperatorHub

	3.4. CREATING OPERATOR-BASED BROKER DEPLOYMENTS
	3.4.1. Deploying a basic broker instance
	3.4.2. Deploying clustered brokers
	3.4.3. Applying Custom Resource changes to running broker deployments

	CHAPTER 4. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS
	4.1. HOW THE OPERATOR GENERATES THE BROKER CONFIGURATION
	4.1.1. How the Operator generates the address settings configuration
	4.1.2. Directory structure of a broker Pod

	4.2. CONFIGURING ADDRESSES AND QUEUES FOR OPERATOR-BASED BROKER DEPLOYMENTS
	4.2.1. Differences in configuration of address and queue settings between OpenShift and standalone broker deployments
	4.2.2. Creating addresses and queues for an Operator-based broker deployment
	4.2.3. Matching address settings to configured addresses in an Operator-based broker deployment

	4.3. CREATING A SECURITY CONFIGURATION FOR AN OPERATOR-BASED BROKER DEPLOYMENT
	4.4. CONFIGURING BROKER STORAGE REQUIREMENTS
	4.4.1. Configuring broker storage size

	4.5. CONFIGURING RESOURCE LIMITS AND REQUESTS FOR OPERATOR-BASED BROKER DEPLOYMENTS
	4.5.1. Configuring broker resource limits and requests

	4.6. SPECIFYING A CUSTOM INIT CONTAINER IMAGE
	4.7. CONFIGURING OPERATOR-BASED BROKER DEPLOYMENTS FOR CLIENT CONNECTIONS
	4.7.1. Configuring acceptors
	4.7.2. Securing broker-client connections
	4.7.2.1. Configuring a broker certificate for host name verification
	4.7.2.2. Configuring one-way TLS
	4.7.2.3. Configuring two-way TLS

	4.7.3. Networking Services in your broker deployments
	4.7.4. Connecting to the broker from internal and external clients
	4.7.4.1. Connecting to the broker from internal clients
	4.7.4.2. Connecting to the broker from external clients
	4.7.4.3. Connecting to the Broker using a NodePort

	4.8. CONFIGURING LARGE MESSAGE HANDLING FOR AMQP MESSAGES
	4.8.1. Configuring AMQP acceptors for large message handling

	4.9. HIGH AVAILABILITY AND MESSAGE MIGRATION
	4.9.1. High availability
	4.9.2. Message migration
	4.9.3. Migrating messages upon scaledown

	CHAPTER 5. CONNECTING TO AMQ MANAGEMENT CONSOLE FOR AN OPERATOR-BASED BROKER DEPLOYMENT
	5.1. CONNECTING TO AMQ MANAGEMENT CONSOLE
	5.2. ACCESSING AMQ MANAGEMENT CONSOLE LOGIN CREDENTIALS

	CHAPTER 6. UPGRADING AN OPERATOR-BASED BROKER DEPLOYMENT
	6.1. BEFORE YOU BEGIN
	6.2. UPGRADING THE OPERATOR USING THE CLI
	6.2.1. Prerequisites
	6.2.2. Upgrading version 7.8.x of the Operator

	6.3. UPGRADING THE OPERATOR USING OPERATORHUB
	6.3.1. Prerequisites
	6.3.2. Before you begin
	6.3.3. Upgrading the Operator using OperatorHub

	6.4. UPGRADING THE BROKER CONTAINER IMAGE BY SPECIFYING AN AMQ BROKER VERSION

	CHAPTER 7. MONITORING YOUR BROKERS
	7.1. VIEWING BROKERS IN FUSE CONSOLE
	7.2. MONITORING BROKER RUNTIME METRICS USING PROMETHEUS
	7.2.1. Metrics overview
	7.2.2. Enabling the Prometheus plugin using a CR
	7.2.3. Enabling the Prometheus plugin for a running broker deployment using an environment variable
	7.2.4. Accessing Prometheus metrics for a running broker Pod

	7.3. MONITORING BROKER RUNTIME DATA USING JMX

	CHAPTER 8. REFERENCE
	8.1. CUSTOM RESOURCE CONFIGURATION REFERENCE
	8.1.1. Broker Custom Resource configuration reference
	8.1.2. Address Custom Resource configuration reference
	8.1.3. Security Custom Resource configuration reference

	8.2. APPLICATION TEMPLATE PARAMETERS
	8.3. LOGGING

